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Preface

We welcome you to the proceedings of the 21st International Conference on Database 
and Expert Systems Applications held in Bilbao. With information and database sys-
tems being a central topic of computer science, it was to be expected that the integra-
tion of knowledge, information and data is today contributing to the again rapidly 
increasing attractiveness of this field for researchers and practitioners. 

Since its foundation in 1990, DEXA has been an annual international conference, 
located in Europe, which showcases state-of-the-art research activities in these areas. 
DEXA 2010 continued this tradition and provided a forum for presenting and discuss-
ing research results in the area of database and intelligent systems and advanced re-
search topics, applications and practically relevant issues related to these areas. It 
offered attendees the opportunity to extensively discuss requirements, problems, and 
solutions in the field in the pleasant atmosphere of the city of Bilbao, which is known 
for its driving industriousness, its top cultural venues and its rich and inspiring heri-
tage and lifestyle. The University of Deusto with its great educational and research 
traditions, and the hospitality which the university and the city are so famous for, set 
the stage for this year’s DEXA conference. 

This volume contains the papers selected for presentation at the DEXA conference. 
DEXA 2010 attracted 197 submissions, and from these the Program Committee, based 
on the reviews, accepted two categories of papers: 45 regular papers and 36 short 
papers. Regular papers were given a maximum of 15 pages in the proceedings to  
report their results. Short papers were given an 8-page limit. Decisions made by mem-
bers of the Program Committee were not always easy, and due to limited space a num-
ber of submissions had to be left out. 

We would like to thank all those who contributed to the success of DEXA 2010: 
the hard work of the authors, the Program Committee, the external reviewers, and all 
the institutions (University of Deusto and University of Linz/FAW) that actively sup-
ported this conference and made it possible. Our special thanks go to Gabriela Wag-
ner, manager of the DEXA organization, for her valuable help and efficiency in the 
realization of this conference. 

We thank the DEXA Association and the University of Deusto for making DEXA 
2010 a successful event. Without the continuous efforts of the General Chair, Pablo 
Garcia Bringas and his team, and the active support of José Luis del Val from Deusto 
University, this conference would not have been able to take place in the charming 
city of Bilbao. 

June 2009 Abdelkader Hameurlain 
Gerald Quirchmayr 
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Abstract. Mining and explaining relationships between objects are challenging
tasks in the field of knowledge search. We propose a new approach for the tasks
using disjoint paths formed by links in Wikipedia. To realizing this approach, we
propose a naive and a generalized flow based method, and a technique of avoiding
flow confluences for forcing a generalized flow to be disjoint as possible. We also
apply the approach to classification of relationships. Our experiments reveal that
the generalized flow based method can mine many disjoint paths important for a
relationship, and the classification is effective for explaining relationships.

Keywords: link analysis, generalized max-flow, Wikipedia mining, relationship.

1 Introduction

Knowledge search has recently been researched to obtain knowledge of a single object
and relations between multiple objects, such as humans, places or events. Wikipedia
is widely used for searching knowledge of objects. In Wikipedia, the knowledge of
an object is gathered in a single page updated constantly by a number of volunteers.
Wikipedia covers objects in numerous categories, such as people, science, geography,
politic, and history. Therefore, Wikipedia is usually a better choice than typical keyword
search engines for searching knowledge of a single object.

A user might desire to search not only knowledge about a single object, but also
knowledge about a relationship between two objects. For example, a user would de-
sire to know the relationship between petroleum and a certain country, or to know the
financial relationships between the USA and other countries. Typical keyword search
engines are inadequate for discovering knowledge about a relationship; it is difficult for
a user to find and organize the information about a relationship from numerous search
result web pages. The main issue for analyzing relationships arises from the fact that
two kinds of relationships exist: “explicit relationships” and “implicit relationships.” In
Wikipedia, an explicit relationship is represented as a link. A user could understand an
explicit relationship easily by reading text surrounding the anchor text of the link. For
example, an explicit relationship between petroleum and plastic might be represented
by a link from page “Plastic” to page “Petroleum.” A user could understand its meaning
by reading the text “plastic is mainly produced from petroleum” surrounding the anchor
text “petroleum” on page “Plastic.” An implicit relationship is represented by multiple
links and pages in Wikipedia. For example, the Gulf of Mexico is a major oil producer
in the USA. This fact could be an implicit relationship represented by two links in
Wikipedia: one between “Petroleum” and “Gulf of Mexico” and the other one between

P. Garcı́a Bringas et al. (Eds.): DEXA 2010, Part II, LNCS 6262, pp. 1–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Since 20th October 1973, The members 
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re-supply the Israel military.

The oil crisis started in October 1973, when 

the members of OAPEC proclaimed an oil 

embargo to countries supporting Israel 

during the Yom Kippur war.

Oil crisis

Gulf of Mexico

Petroleum USA
Plastic Alabama

Fig. 1. Explaining the relationship between Petroleum and the USA

“Gulf of Mexico” and the “USA.” It is difficult for a user to discover or understand an
implicit relationship without investigating a number of pages and links. Therefore, it is
an interesting problem to mine and explain an implicit relationship in Wikipedia.

Several methods [1,2,3] have been proposed for analysing relationships on an in-
formation network (V, E), a directed graph where V is a set of objects; edges in E
represents explicit relationships between objects. A Wikipedia information network can
be defined, whose vertices are pages of Wikipedia and edges are links between pages.
In this paper, we propose a new approach for explaining a relationship from a source
object s to a destination object t on a Wikipedia information network by mining dis-
joint s-t paths, that is, paths connecting s and t sharing no vertices except s and t with
each other. For example, four disjoint paths linking “Petroleum” to “USA” depicted in
Fig. 1, explain the implicit relationship between petroleum and the USA. We mine s-t
paths in a network, because a user could understand the meaning of a path easily by
tracing the links in the path from s to t. Tracing each link can be done by understanding
the meaning of an explicit relationship represented by the link. For example, if users
read the snippets shown in Fig. 1 from left to right, then they can understand the top
path containing “Oil crisis”. They can understand why the oil crisis is important to the
relationship between petroleum and the USA. We will explain our motivation for min-
ing “disjoint” paths for explaining a relationship in Section 2. Our motivation is mainly
based on an idea that the same or similar paths should not appear multiple times in
the mined paths. A similar idea is widely accepted in the field of document retrieval: a
search result should not contain same or similar documents [4,5,6].

To mine paths important for a relationship in Wikipedia, we first propose a naive
method based on CFEC [2], which is a method for measuring the strength of a relation-
ship. The naive method adopts the scheme for computing the weight of a path of CFEC,
although it cannot mine disjoint paths. We then propose a method to mine disjoint paths
important for a relationship, based on the generalized max-flow model proposed by
Zhang et al. [1]. For a relationship between two objects s and t, we compute a general-
ized max-flow emanating from s to t. We then output paths along which a large amount
of flow is sent as paths important for the relationship. To force a generalized flow to be
sent along disjoint paths as much as possible, we propose a new technique using vertex
capacities. We also construct an interface for understanding a relationship by visualiz-
ing the top-k important mined paths and snippets for explaining the paths. We obtain
snippets for every edge (u, v) in the paths by extracting text surrounding the anchor text
of link v on page u in Wikipedia.

As an application of our approach, we propose a method for classifying relationships
between a common source object and different destination objects, e.g. relationships
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Fig. 2. Dependent paths (A) and disjoint paths (B)

between petroleum and countries, by analyzing mined paths for the relationships. For
this example, the method classifies the countries into two groups which could corre-
spond to “petroleum exporting countries” and “petroleum consuming countries.”

Our experiment results reveal that the generalized flow based method mines impor-
tant paths more than the method based on CFEC does, and that the proposed technique
using vertex capacities is useful for mining more disjoint paths. We also confirm that the
classification method is helpful for understanding relationships through case studies.

The rest of this paper is organized as follows. Section 3 reviews related work. Sec-
tion 4 presents the methods for mining paths important for a relationship in Wikipedia,
and the method for classifying relationships. Section 5 reports the experimental results.
Section 6 concludes the paper.

2 Mining Disjoint Paths for Explaining Relationships

Users prefer not to read similar documents repeatedly, and they might desire to obtain
various kinds of knowledge by reading small number of documents. Therefore, recent
document information retrieval methods [4,5,6] adopt an idea that redundant informa-
tion should be minimized in the top-ranked documents by removing documents similar
to a higher ranked documents. For example, given a query “foreign relations of the
USA,” a set of the top-ranked documents should cover relations between the USA and
various countries, the set should not contain a number of similar documents explaining
the relation between the USA and a certain country.

Applying the idea to the problem of mining paths important for a relationship on an
information network, we should avoid outputting redundant objects in the mined paths.
Disjoint paths connecting two object s and t are paths sharing no vertices except s and
t with each other. If we could mine disjoint paths connecting s and t, we then could
prevent an object except s and t from appearing multiple times in the mined paths.

Fig. 2 (A) and (B) depict graphs constituted by three dependent paths and three dis-
joint paths, respectively. Both graphs explain the relationship about the territorial prob-
lem between Japan and Russian. All the three dependent paths in Fig. 2 (A) contain the
same object “Northern Territories dispute” which represents the dispute between Japan
and Russia over sovereignty over the South Kuril Islands, including Shikotan, Kunashir
and Habomai rocks. If a user knows about the dispute, then the user could not get any
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Kidman

Portman

Bullock

Anderson

Jolie

Diaz

Fig. 3. A snapshot of a connection subgraph for the relationship between Kidman and Diaz

new knowledge from the dependent paths. On the other hand, the three disjoint paths de-
picted in Fig. 2 (B) contains no redundant object. A user could obtain knowledge other
than the Northern Territories dispute such as knowledge about the “Soviet-Japanese
Joint Decalaration of 1956” and the “Treaty of Shimoda.” Furthermore, it is easy to
understand the meaning of each disjoint path by tracing the links in the path from left to
right, as discussed in Section 1. In contrast, dependent paths make a graph be too com-
plicated to find out the order of tracing links in some cases, such as those in the graph
depicted in Fig. 3. Therefore, in this paper, we aim to mine disjoint paths important for
a relationship on an Wikipedia information network.

3 Related Work

Measuring the strength of an implicit relationship is one approach for explaining the
relationship. Zhang et al. [1] model a relationship between two objects in a Wikipedia
information network using a generalized max-flow. They ascertained a method using
the model that can measure the strength of an implicit relationship more correctly than
previous methods can. Several kinds of questions about relationships can be answered
by measuring relationships. For example, a user could know which one of two specified
countries has a stronger relationship to petroleum. However, measuring strength alone
is insufficient for understanding relationships. A user would desire to know what objects
constitute a relationship or what roles they play in the relationship.

Another approach to explain relationships might be extracting a “connection sub-
graph” [2,3,7,8]. Faloutsos et al. [3] model an information network as an electric net-
work [9], and model the weight of a path as the current delivered by the path. Given two
query vertices s and t and an undirected graph G, they extract a connected subgraph H
containing s and t and limited number of other vertices that maximize the weight of
H , the sum of the weights of all the paths in H . Extending the problem into more than
two query vertices, Tong and Faloutsos [7] proposed CEPS problem. Koren et al. [2]
proposed CFEC to outputs a small subgraph on which the strength of the relationship
measured approximates to that measured on the original graph.

Fig. 3 is an example of a connection subgraph presented by Faloutsos et al. [3].
Vertices in a connection subgraph represent objects that are considered important for a
relationship. Therefore, a user could know what objects constitute a relationship. How-
ever, it is still difficult to know what roles the objects play in the relationship using
the connection subgraph. A connection subgraph usually contains several dependent
paths, so that it can not present the order of tracing links. For the above example, a
user would wonder which order is proper: the order from “Kidman,” “Bullock,” “An-
derson,” to “Diaz?”; or exchanging “Bullock” and “Anderson” in the order? Without the
order of tracing links, a user could not understand the roles of objects correctly by read-
ing Wikipedia pages. Therefore, a connection subgraph is inadequate for understanding



Mining and Explaining Relationships in Wikipedia 5

Rice Koizumi

Bush

Olmert
289

1265edge weight = 1

Olmert

Koizumi

1 × 1/289 = 1/289

1 × 1/1265 = 1/1265

Rice

Bush

Koizumi(A)

(B) Rice

Fig. 4. An example for CFEC

a relationship. We ascertain through experiments in Section 5.2 that methods [2] ex-
tracting connection subgraph are inadequate for mining disjoint paths important for a
relationship.

To create a connection subgraph for a relationship, the methods [2,3,8] discussed
above first compute the weights of paths using random walk [9]. They define the weight
of a path fundamentally as the product of the weights of the edges composing the path
divided by the product of the weights of the edges incident to every vertex in the path.
Therefore, random walk based methods have a property that they compute the weight
of a path extremely small if a popular object—an object linked by or from many other
objects—exists in the path. We claim that this property is unsuitable for mining paths
important for a relationship through experiments discussed in Section 5.2.

Zhu et al. [10] extract explicit relationships between pairs of people from the Web.
Some semantic based methods extract good paths between two entities in an RDF
graph [11,12,13]. Assuming semantics in an information network is beyond the scope
of this paper. Therefore, we do not adopt the ideas used by these methods.

4 Methods for Mining Disjoint Paths in Wikipedia

We now present our methods for mining disjoint paths important for a relationship. To
the best of our knowledge, no such method was proposed. We first propose a naive
method based on CFEC [2] in section 4.1.

4.1 Naive Method Based on CFEC

Given a graph G, a source vertex s and a destination vertex t, CFEC first finds the n
shortest paths between s and t. It then computes the strength of the relationship between
s and t using random walk on the paths [9]. In CFEC, the weight of a path p = (s =
v1, v2, ..., v� = t) from s to t is defined as wsum(v1) �

∏�−1
i=1

w(vi,vi+1)
wsum(vi)

, where w(u, v)
is the weight of edge (u, v) and wsum(v) is the sum of the weights of the edges going
from vertex v. For example, Fig. 4 depicts two paths between “Rice” and “Koizumi.”
The number shown beside a vertex oi is the number of links going from the vertex,
which equals to wsum(oi) if the weight of every edge is 1. The weights of path (A) and
path (B) become 1/289 and 1/1265, respectively.

We now propose a naive method for mining paths important for a relationship be-
tween a source object s and a destination object t in Wikipedia based on CFEC [2].

(1) Construct a network G = (V, E) using pages and links within at most m hop
links from s or t in Wikipedia. (2) Set the weight of every edge e ∈ E to 1, compute
the top-k paths in decreasing order of the path weight. (3) For each edge (u, v) in the
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top-k paths, extract an explanatory snippet, i.e., text surrounding the anchor text of link
v on page u, using a KWIC concordance tool [14].

The top-k paths mined by the method probably contain some dependent paths. Al-
though we can select some disjoint paths among the mined paths, we cannot determine
in advance how many paths should be mined to obtain a specified number of disjoint
paths. Moreover, this method has a problem because of popular objects, as discussed in
Section 3. For example, in Fig. 4, the weight of path (B) is significantly smaller than that
of path (A), because “Bush” is more popular, i.e., linked from or to more objects, than
“Olmert.” Consequently, important paths containing a popular object seldom appear in
the top-k paths mined by the method.

4.2 Improvements Using Doubled Network and Domain-Based Weight

We now discuss two improvements for mining important paths: a doubled network and
an edge weight function using the category information on Wikipedia. Both improve-
ments were originally proposed for measuring a relationship [1].

A path constituted by links of different directions could be important for a relation-
ship in Wikipedia. For example, the path (Petroleum, Plastic, Alabama, USA) in Fig. 1
is formed by links of different directions. Tha path would correspond to an important
fact between “Petroleum” and the “USA” that the Alabama State of the USA produces
a large quantity of plastic from petroleum. To mine such paths, we construct a doubled
network [1] by adding to every original edge a reversed edge whose direction is oppo-
site to the original one. For example, Fig. 6(B) depicts the doubled network G′ for G in
Fig. 6(A).

For mining important paths, it is desired to assign a larger weight to an important
edge. The importance of an edge depends on its roles for the relationship. Let consider
the relationship between the American politician “Rice” and the Japanese politician
“Koizumi” depicted in Fig. 4. In the example, we should assign a larger weight to the
primarily important edges connecting American and Japanese politicians, than proba-
bly unimportant edges connecting American and Israeli Politicians. Edges connecting
American politicians or Japanese politicians would be secondarily important. There-
fore, the weight of an edge is best determined according to the kinds of objects that the
source and the destinations are. To realize such a weight assignment, we must construct
groups of objects in Wikipedia, such as “Japanese politicians” and “baseball players”.
In Wikipedia, a page corresponding to an object belongs to at least one category. For
example, “George W. Bush” belongs to the category “Presidents of the USA.” However,
categories cannot be used as groups directly because the category structure of Wikipedia
is too fractionalized. Given a category ci, Zhang et al. [1] construct the group for ci by
grouping ci and its descendant categories which represent sub concepts of ci together.
Let S be the set of objects belonging to a category in group for a category of the source.
Similarly, let T be the set of objects for the destination. Zhang et al. [1] then proposed
an edge weight function to assign a high weight to edges connecting an object in S
with an object in T ; assign a medium weight to edges connecting objects in s or edges
connecting objects in t; and assign low weights to other kinds of edges. Zhang et al. [1]
assign a smaller weight to a reversed edge in the doubled network than that of its original
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Fig. 5. A generalized max-flow and its decomposition

one. We omit the details because of space limitations. The groups and the weight func-
tion is useful for mining important paths directly.

4.3 Generalized Max-Flow Model

The naive method was unable to mine disjoint paths. We propose a generalized flow
based method that could mine disjoint paths in Section 4.4. Before introducing the
method, we explain its basis: the generalized max-flow model proposed by Zhang et
al. [1] for computing the strength of a relationship.

The generalized max-flow problem [15][16] is identical to the classical max-flow
problem except that every edge e has a gain γ(e) > 0; the value of a flow sent along
edge e is multiplied by γ(e). Let f(e) ≥ 0 be the amount of flow f on edge e, and
μ(e) ≥ 0 be the capacity of edge e. The capacity constraint f(e) ≤ μ(e) must hold
for every edge e. The goal of the problem is to send a flow emanating from the source
into the destination to the greatest extent possible, subject to the capacity constraints.
Let generalized network G = (V, E, s, t, μ, γ) be information network (V, E) with the
source s ∈ V , the destination t ∈ V , the capacity μ, and the gain γ. Fig. 5 depicts an
example of a generalized max-flow. 0.4 units and 0.2 units of the flow arrive at “USA”
along path (A) and path (B), respectively.

To use edges of both directions, Zhang et al. [1] construct a doubled network, as
discussed in Section 4.2. The reversed edge erev for every edge e in G is assigned with
μ(erev) = μ(e) and γ(erev) = rev(e) = λ × γ(e), 0 ≤ λ ≤ 1, as depicted in Fig. 6
(B). Also, a new constraint f(e)f(erev) = 0 for every edge e is introduced to satisfy the
capacity constraint on the doubled network. To assign gain for edges, Zhang et al. [1]
use the edge weight function introduced in Section 4.2.

4.4 A Generalized Flow Based Method

We propose a generalized flow based method to mine disjoint paths important for a
relationship from object s to object t in Wikipedia. We use a new technique for avoiding
“confluences” of a generalized max-flow by setting vertex capacities.

We first present the method as follows.

(1) Construct a generalized network G = (V, E, s, t, μ, γ) using pages and links within
at most m hop links from s or t in Wikipedia.

(2) Construct the doubled network G′ for G, determine edge gain γ using the edge
weight function discussed in Section 4.2, and set vertex capacities discussed later.
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(3) Compute a generalized max-flow f emanating from s into t on G′.
(4) Decompose the flow f into flows on a set P of paths [16]. Let df(pi) denote the

value of flow on a path pi, for i = 1, 2, ..., |P |. For example, the flow on the network
depicted in Fig. 5 is decomposed into flows on two paths (A) and (B). The value of
the decomposed flow on path (A) is 0.4; that on path (B) is 0.2.

(5) Output the top-k paths in decreasing order of df(pi).
(6) For each edge (u, v) in the top-k paths, extracts an explanatory snippet, i.e., text sur-

rounding the anchor text of link v on page u, using a KWIC concordance tool [14].

We next discuss the new technique of setting vertex capacity. The generalized max-
flow problem is a natural extension of the classical max-flow problem whose flow is
always sent along disjoint paths. A problem arises, however, which is attributable to
the gain: a flow can be confluent at a vertex except s and t. For example, Fig. 7 (A)
depicts a confluence of flow at vertex v3; the amount of the flow sent along (v1, v3)
becomes 0.64 at v3. That along (v2, v3) becomes 0.36. The flow can be confluent at v3

and can be sent along (v3, t). If a generalized max-flow is confluent at many vertices,
then the paths composing the flow become dependent paths. Consequently, the top-
k paths obtained in (5) might contain some dependent paths. One idea to solve the
problem is to introduce a constraint that a flow must be sent along vertex disjoint paths.
Unfortunately, no polynomial-time algorithm exists, to the best of our knowledge, to
solve the generalized max-flow with the constraint.

We propose an approach to prevent a flow from being confluent to the greatest extent
possible. Concretely, we set the capacity of every edge to one and set the capacity of
every vertex v, except s and t, to μ′(v) = maxp∈P

∏
e∈p γ(e), the maximum produc-

tion of the gains of the edges in a path, where P is the set of all paths from s to v. The
vertex capacity of s or t is set to ∞. The capacities of all the vertices can be computed
easily by solving a single source shortest path problem setting the length of edge e to
− log(γ(e)). Because the capacity of every edge is setting to 1, the largest value of the
flow could be sent to node v along a single path going from s to v is μ′(v). Therefore,
by setting the capacity of vertex v to μ′(v), most of the time, we could prevent a flow
to be sent to v along more than one paths. For example, Fig. 7 (B) depicts the vertex
capacity function for the generalized network depicted in Fig. 7 (A). Although a flow
is confluent at vertex v3 in Fig. 7 (A), the confluence does not happen in Fig. 7 (B)
because of the vertex capacity. We examine how effective the vertex capacity function
is using experiments discussed in Section 5.2.
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Country Elucidatory Objects

Japan
Oil crisis, Niigata, Nihon Shoki, Kyushu Oil Co., Ltd., added-profit trade, 

Crude oil, Nippon Oil Corp., Japanese post-war economic miracle, …

Saudi Arabia
GhawarField, OAPEC, Crude oil, Oil field, Price of petroleum, Oil-

producing Country, Rub' al Khali, Arabian Oil Company, OPEC, ...

Kuwait
Burgan Field, OAPEC, Crude oil, Oil field, Oil-producing Country, OPEC, 

Asphalt, Gulf War, Middle East War, …

Fig. 8. Elucidatory objects for relationships from petroleum to each country

Group Countries Label

0 Saudi Arabia, Kuwait, 

Iran, Bahrain, Libya

Oil crisis, OAPEC, Oil-producing country, Middle East, Oil field, 

Price of petroleum, Saudi Aramco, Iran–Iraq War, Asphalt 

1 Japan, USA, Russia, 

China, UK

Crude oil, Middle East, Asphalt, Oil field, Iraq, Iran, 

Price of petroleum, North Sea oil, Sudan

Fig. 9. Classification for relationships between petroleum and countries

4.5 Classification for Relationships

In this section, given a set of relationships between a common source object and differ-
ent destination objects, we apply our method for mining paths to classify the destination
objects in the relationships. For example, given a set of relationships between petroleum
and countries, we classify the countries into groups. We first mine the top-k paths for
each relationship, say k = 50. We define elucidatory objects for a relationship as the
objects in the paths, except the source and destination. Intuitively, similar relationships
could share many common elucidatory objects. For example, Fig. 8 presents some elu-
cidatory objects for Japan, Saudi Arabia, and Kuwait. Saudi Arabia and Kuwait, which
are both oil-producing countries in the Middle East, share many common elucidatory
objects. On the other hand, Japan shares almost no elucidatory objects with them.

We apply a frequent itemsets based clustering method named FIHC [17] to our clas-
sification. In fact, FIHC is used to classify documents using sets of words appearing
together in many documents. Using elucidatory objects instead of words, we can obtain
clusters of destinations. Every cluster is also assigned a label which is a set of elu-
cidatory objects shared by every relationship in the cluster. In some cases, the clusters
obtained by FIHC could be too numerous for a user to understand. Our classification
method unifies them into fewer groups in response to a user’s request, by computing
similarities between clusters according to frequent elucidatory objects of every destina-
tion in the each cluster. We omit details of the classification method because of space
limitations. As an example, our method classifies the relationships from petroleum to
the top-10 countries strongly related to petroleum into two groups. Fig. 9 presents the
groups of the countries. By investigating the labels of groups, a user could understand
that group 0 and group 1 respectively correspond to “petroleum exporting countries”
and “petroleum consuming countries.”
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5 Experiments and Evaluation

5.1 Dataset and Environment

We perform experiments on a Japanese Wikipedia dataset (2009/05/13 snapshot). We
first extract 27,380,916 links that appeared in all pages. We then remove pages that are
not corresponding to objects, such as each day, month, category, person list, and portal.
We also remove links to such pages, and obtain 11,504,720 remaining links.

We implemented our program in Java and performed experiments on a PC with four
3.0 GHz CPUs (Xeon), 64 GB of RAM, and a 64-bit operating system (Windows Vista).

5.2 Evaluation of Mined Paths

In this section, we first investigate whether paths mined by our methods are actually
important for a relationship. We then examine how many of the mined paths are disjoint.

Let the following five symbols represent our methods below. (o) is the naive method
explained in Section 4.1. (e), (d), (de) are the naive methods using improvements de-
scribed in Section 4.2: (e) the edge weight function, (d) the doubled network, and (de)
the both ones. (g) is the generalized flow based method proposed in Section 4.4. We
select 105 relationships between two objects of the following six types: (1) two politi-
cians, (2) two countries, (3) a politician and a country, (4) petroleum and a country, (5)
Buddhism and a country, and (6) two countries’ cuisines. To mine paths important for
a relationship between s and t, we construct a network G using pages and links within
at most three hop links from s or t in Wikipedia, for all methods. Careful observation
of Wikipedia pages revealed that several paths formed by three links are important for
a relation, although we were able to find few important paths formed by four links. In
preliminary experiments, we also find that paths formed by four links seldom appear in
the top-k paths mined on G constructed using four hop links.

Path Importance. It is desired to consider the following two questions to evaluate our
methods: (Q1) How many mined paths are important for a relationship; and (Q2) Do
most paths important for a relationship could be found by our methods? To answer these
two questions, we evaluate the importance of the mined paths by human subjects.

We first randomly select 10 from the 105 relationships (one or two from each of the
six types) explained above. For each relationship, we mine a set of the top-20 paths by
each of our five methods. Let P be the union of these five sets. On average, P contains
50-60 paths, because the sets mined by different methods usually overlap. We then ask
10 testers to evaluate every path p in P and every edge e(u, v) in p. To each edge
e(u, v), every tester assigns an integer score 0, 1, or 2 representing the strength of the
explicit relationship between u and v, by reading the explanatory snippet of e(u, v). A
higher score was assigned to a stronger relationship. To each path p, every tester assigns
an integer score 0, 1, or 2 representing how important p is for the relationship between
the source s and the destination t, by reading the snippets of the edges in p along the
direction from s to t. A higher score was assigned to a more important path. We then
compute the average score of every edge and every path for each relationship.

We present some examples of the assignments here. All the testers assigned score 2
to the top path and the two edges in the path depicted in Fig. 1. For the relationship from
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petroleum to Saudi Arabia, path (Petroleum, Burgan Field, Saudi Arabia) is mined. The
snippet of edge (Burgan Field, Saudi Arabia) is “Burgan Field in Kuwait is still one of
the world’s easiest production sites now, which differs from the Ghawar Field in Saudi
Arabia.” Most testers assigned score 0 to the path and the edge. Let us consider another
path (George W. Bush, Yasuo Fukuda, Junichiro Koizumi). Each of “Yasuo Fukuda”
and “Junichiro Koizumi” was a prime minister of Japan during the tenure of “George
W. Bush” as the president of the USA. Most testers think that both the two edges in the
path represent strong explicit relationships. However, they think that “Yasuo Fukuda”
is unimportant in the relationship. Consequently, they assigned score 0 to the path.

It is difficult to find all important paths for a relationship in Wikipedia. Therefore,
we could not adopt the conventional precision and recall based evaluation to answer
questions Q1 and Q2 presented above. Instead, we introduce two measures : “Impor-
tant Path Ratio (PRatio)” for Q1, “Retrieved Important Path Ratio (RPRatio).” Let
TP@n be the set of the top-n paths mined by a method, let AP@n be the union of the
top-n paths mined by every method, and let s(p) be the average score of path p, then

PRatio@n =

∑
p∈TP@n s(p)

2× n
, RPRatio@20 =

∑
p∈TP@20 s(p)∑
p∈AP@20 s(p)

.

These ratios vary from 0 to 1. For a method, if all the average scores of every path in
TP@20 are 2, then PRatio@20 is 1; if the other methods yielded no path with an aver-
age score greater than 0 except the ones in TP@20, then its RPRation@20 becomes
1. Therefore, PRatio corresponds to an absolute evaluation; RPRatio corresponds to
a relative evaluation. Similarly, we define “Important Edge Ratio (ERatio)” and “Re-
trieved Important Edge Ratio (RERatio).” Let TE@n be the set of edges in TP@n,
let AE@n be the set of edges in AP@n, and let s(e) be the average score of edge e,
then

ERatio@n =
∑

e∈TE@n s(e)
2× |TE@n| , RERatio@20 =

∑
e∈TE@20 s(e)∑
e∈AE@20 s(e)

.

Table 1 presents the PRatios and RPRatios of our five methods (g), (d), (de),
(o), and (e) for only five relationships because of space limitations. Similar results are
obtained for the remaining five relationships. The shaded cells emphasize the maxi-
mum ratios of each relationship. The generalized flow based method (g) yields most of
the highest ratios. The ratios obtained by the methods without the double network, (o)
and (e), are significantly low for some relationships, such as the relationship between
petroleum and the USA. Using only the original directions of edges, few directed paths
exist from the source to the destination in the network. However, several important paths
formed by edges of different directions are mined by using the doubled network.

Fig. 10 presents the average ERatios and RERatio of the edges of all the 10 re-
lationships obtained by each method. Similarly, Fig. 11 presents the average PRatios
and RPRatio of the paths of the 10 relationships. Method (g) produces the highest
average ratios for both paths and edges. All methods yield high average ERatios; they
can mine many edges representing strong explicit relationships. However, such edges
do not necessarily constitute a path important for a relationship. For example, the path
(George W. Bush, Yasuo Fukuda, Junichiro Koizumi) discussed above is constituted by
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Table 1. PRatios and RPRatios of paths

Relationship Method
PRatio PRatio PRatio RPRatio

@5 @10 @20 @20

Japan
–

Russia

g 0.88 0.87 0.71 0.64
d 0.76 0.56 0.54 0.49
de 0.84 0.69 0.61 0.55
o 0.52 0.49 0.47 0.43
e 0.68 0.57 0.50 0.45

Petroleum
–

USA

g 0.92 0.75 0.68 0.85
d 0.44 0.38 0.47 0.59
de 0.76 0.57 0.53 0.66
o 0.10 0.10 0.10 0.10
e 0.10 0.10 0.10 0.10

Buddhism
–

Sri Lanka

g 0.70 0.54 0.50 0.45
d 0.58 0.5 0.43 0.39
de 0.58 0.53 0.46 0.41
o 0.64 0.52 0.48 0.43
e 0.78 0.52 0.48 0.43

Yoshiro
Mori

–
China

g 0.40 0.46 0.45 0.47
d 0.52 0.5 0.35 0.37
de 0.52 0.48 0.38 0.39
o 0.42 0.3 0.26 0.27
e 0.44 0.35 0.27 0.28

George W.
Bush

–
Junichiro
Koizumi

g 0.98 0.8 0.76 0.49
d 0.80 0.82 0.74 0.47
de 0.8 0.82 0.73 0.47
o 0.96 0.86 0.79 0.50
e 0.96 0.88 0.79 0.50

such edges, but is not important. With respect to paths, the method (g) produces signif-
icantly higher average ratios than the other methods. The methods without the doubled
network, (o) and (e), produce the lowest average ratios for paths, because paths formed
by edges of different directions cannot be mined by them. The methods without the
edge weight function, (o) and (d), produce lower ratios for paths than those using the
edge weight, (e) and (de), respectively. Therefore, we conclude that the generalized flow
based method is the best for mining many paths important for relationships, and that the
doubled network and the edge weight function are effective.

Evaluation of Disjoint Paths. We have proposed a technique for avoiding confluences
using the vertex capacity function in section 4.4. We examine how many disjoint paths
were mined by each method, and how effective the technique is. For the selected 105
relationships, we first mine the top 20 and the top 50 paths by each of our five methods
and the generalized flow based method without the technique. We then count the disjoint
paths in the mined paths for each relationship. Fig. 12 (A) and Fig. 12 (B) depict the
average number of disjoint paths in the top-20 and that in the top-50 paths, respectively.
The symbol (g, w/ vc) denotes the generalized flow based method with the technique,
and (g, w/o vc) denotes that without the technique. Method (g, w/ vc) produced the
highest average number for both the top-20 and top-50 paths; especially, all the top-20
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paths are disjoint for all the 105 relationships. The naive methods without the doubled
network, (o) and (e), produced the lowest average numbers. Consequently, we observed
the following three facts: (1) Our technique is effective in mining disjoint paths. (2)
The naive method is inadequate for mining disjoint paths. (3) The doubled network is
effective in mining disjoint paths formed by edges of different directions.

As discussed in Section 2, we mine disjoint path to prevent an object appearing
multiple times in the mined paths. Therefore, we also evaluate how frequent an object
appears in the top-k paths. We compute the average object frequency f@k in the top-k
paths important for a relationship between s and t mined by each method. Let Ok be the
set of objects in the top-k paths, except s and t, and let nk,j denote how many times the
j-th object ok,j ∈ Ok appears in the top-k paths. Then, the average object frequency is

defined as f@k =
∑

j nk,j

|Ok| . Note that f@k is at least 1. If f@k = 1, then every object
appears only once in the top-k paths; if a number of objects appear many times in the
top-k paths, then f@k becomes larger than 1. Fig. 13 illustrates the average value of
f@k in the top-k paths mined by each method, for the selected 105 relationships. The
method (g, w/ vc) has the lowest f@k among all methods; especially, f@100 = 1.04
is almost equal to 1. That is, almost all objects appear only once in the top-100 paths
mined by the method (g, w/ vc). The method without setting the vertex capacity (g,
w/o vc) has higher f@k than the method (g, w/ vc). The naive methods without the
doubled network, (o) and (e), produced the highest f@k; the values of f@k increase
dramatically as k increases. Consequently, we conclude that our technique of using the
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Fig. 13. Average object frequency in the top-k paths mined by each method

Table 2. Objects in the paths for relationship between “Japanese cuisine” and “Chinese cuisine”

The generalized flow base method (g)
Karaage (269), Chili pepper (402), Soy milk (103), Sesame oil (95), Mochi (345), Dashi
(305), Ginger (344), Donburi (119), Tonkatsu (215), Sashimi (477), Fried vegetables (87),
Jiaozi (341), Jellied fish (45), Yatai (412), Chazuke (164), Kenchin soup (47), Western Cui-
sine (77), Crab stick (58), Japanese noodle (1038)

The naive method (de)
Nouvelle Chinois (12), Three major world cuisine (10), Seafood (12), Wynn Macau (13),
Cooking School of West Japan (15), The Family Restaurant (15), Kazuhiko Cheng (31),
Radisson Hotel Bangkok (21), Hotel Laforet Tokyo (17), Banyan Tree Bangkok (18), Jellied
fish (45), West (Japanese restaurant chain) (19), Soup spoon (38), Grand Hyatt Fukuoka
(20), Grand Hyatt Singapore (16), Ship dish person (20), Resort Okinawa Marriott & Spa
(21), Hyatt Regency Osaka (22)

vertex capacity function is effective for avoiding redundant objects in the mined paths.
Many objects appear frequently in the paths mined by the naive methods, although the
doubled network is helpful for alleviating the redundancy issue.

Case Studies for Understanding Relationships. Table 2 presents the elucidatory ob-
jects in the top-20 paths important for the relationship between “Japanese cuisine” and
“Chinese cuisine,” mined by methods (g) and (de), respectively. The number in the
parentheses behind each object is the number of links going from or to the page repre-
senting the object in Wikipedia. Each object shown in Table 2 constitutes a mined path,
e.g. “Karaage” constitutes (Japanese cuisine, Karaage, Chinese cuisine). Method (g)
mines many Japanese foods originated in China, such as karaage, mochi, fried vegeta-
bles, jiaozi, Japanese noodle, and soy milk. Method (g) also mines some cooking ingre-
dients used in both cuisines, such as chili pepper, sesame oil, and ginger. On the other
hand, most elucidatory objects mined by method (de) are hotels or restaurants purveying
both cuisines. As discussed in Section 3, random walk based methods always underes-
timate popular objects; inversely, the weights of paths constituted by objects having
few links are always overestimated. As shown in Table 2, these hotels and restaurants
have few links in Wikipedia. Therefore, the naive methods based on CFEC overestimate
paths constituted by objects corresponding to these pages. However, method (g) mined
many important objects regardless of how many links the objects have. Therefore,
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Group Industries Label

0 Retailing, information and 

communication industry ,

Service, Traffic, Finance industry

Convenience store, Vending machine, Emissions 

Trading, Transportation, Niigata, Industry,       

Senko Co.,Ltd., Shima Spain Village

1 Construction industry,

Manufacturing

Fuel cell, Biofuel, Carbon footprint, Convenience

store, Emissions Trading, Industrial evolution, USA

2 Agriculture, Forestry,

Fishing industry

Afforestation, Local production for local 

consumption, Biodiesel, Biomass, Biofuel

Fig. 14. Classification for relationships between CO2 and industries

we confirm that the generalized flow based method is more appropriate than the naive
methods for mining paths important for a relationship in Wikipedia.

5.3 Case Study: Classification for Relationships

We present an example of our classification for relationships from carbon dioxide, CO2,
to the top-10 industries strongly related to CO2. Our method discussed in Section 4.5
then classifies the 10 industries into three groups. Fig. 14 presents the groups and the
label for each group. By investigating the groups and the labels, a user could under-
stand the classification. In fact, the groups 0, 1, and 2 respectively correspond to the
tertiary sector, the secondary sector, and the primary sector of the economy. The la-
bel for group 2 includes “Afforestation,” “Local production for local consumption,”
“Biodiesel,” “Biomass,” and “Biofuel,” which are approaches performed in “Agricul-
ture,” “Forestry,” or “Fishing industry,” for decreasing CO2 emissions. The label for
group 0 also contains objects related to CO2 emitted by the industries in the group. For
example, “Shima Spain Village” is a famous amusement park in Japan, and “Senko Co.
Ltd.” is a Japanese Logistics company, both of which use renewable energy; ”Niigata”
is one of the top three cities having high CO2 emissions per capita in the transportation
industry of Japan. Similarly, the label for group 1 is helpful for understanding the rela-
tionships between CO2 and the industries in group 1. Consequently, we confirmed that
our classification method could give a user a better understanding of relationships.

6 Conclusion

We proposed a new approach for explaining a relationship between two objects by
mining disjoint paths connecting the objects on Wikipedia. We realized the approach by
proposing the naive method and the generalized flow based method. Our experiments
revealed that the generalized flow based method can mine many disjoint paths important
for relationships, and that the proposed technique for avoiding flow confluences is very
effective in improving the method. We ascertained that our classification, proposed as
an application of our approach, is also helpful for understanding relationships.

We plan to apply the mined paths for a relationship to Web search of images and
texts explaining the relationship.
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Abstract. In this paper we address the problem of preserving mining
accuracy as well as privacy in publishing sensitive time-series data. For
example, people with heart disease do not want to disclose their electro-
cardiogram time-series, but they still allow mining of some accurate pat-
terns from their time-series. Based on this observation, we introduce the
related assumptions and requirements. We show that only randomization
methods satisfy all assumptions, but even those methods do not satisfy
the requirements. Thus, we discuss the randomization-based solutions
that satisfy all assumptions and requirements. For this purpose, we use
the noise averaging effect of piecewise aggregate approximation (PAA),
which may alleviate the problem of destroying distance orders in ran-
domly perturbed time-series. Based on the noise averaging effect, we
first propose two naive solutions that use the random data perturbation
in publishing time-series while exploiting the PAA distance in comput-
ing distances. There is, however, a tradeoff between these two solutions
with respect to uncertainty and distance orders. We thus propose two
more advanced solutions that take advantages of both naive solutions.
Experimental results show that our advanced solutions are superior to
the naive solutions.

Keywords: data mining, time-series data, privacy preservation, simi-
larity search, data perturbation.

1 Introduction

In recent years privacy preserving data mining (PPDM) [2,4] has been investi-
gated extensively motivated by the current practice by private and public orga-
nizations of collecting large amounts of often sensitive data. The aim of PPDM
algorithms is to extract relevant knowledge from a large amount of data while
protecting at the same time sensitive information [4]. PPDM algorithms can be
classified into four categories [1]: random data perturbation, k-anonymization,
distributed privacy preservation, and privacy preservation of mining results.

In this paper we address the problem of preserving both privacy and mining
accuracy in publishing sensitive time-series data. Time-series data have been
widely used in many applications, and data mining on time-series data has been
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3rd parties (data miner, analyst)data source data source

(distorted) time-series (distorted) time-series

Fig. 1. A data flow model of independent data sources and third parties

actively studied [8,10,11]. Fig. 1 shows the data flow model that we assume.
We use the centralized model [12,13] where multiple independent data sources
provide their time-series to third parties. In this model, however, data sources do
not trust third parties, so they do not wish to provide their original time-series,
but they could still provide appropriately distorted time-series to get meaningful
mining results. Thus, we can say that accuracy preservation of mining results as
important as privacy preservation of sensitive time-series data.

To address both privacy and mining accuracy, we first setup a privacy model
that addresses the underlying assumptions and requirements. Our model has
three assumptions: full disclosure, equi-uncertainty, and independency. Full dis-
closure means that all information used in distorting and publishing time-series
can be revealed to third parties or attackers. Equi-uncertainty means that each
of distorted time-series has the same amount of uncertainty, which represents the
degree of difference between original and distorted time-series [13]. Independency
means that each time-series can be independently distorted without considering
other time-series. To meet our main goal of preserving privacy and mining ac-
curacy, we also derive two preservation requirements: uncertainty and distance
order. Uncertainty preservation means that original time-series cannot be recon-
structed from the published, distorted time-series. Distance order preservation
means that relative distance orders among time-series must be preserved after
the distortion. According to our analysis, only the random perturbation meth-
ods [1,2,13] satisfy all three assumptions, but even these methods do not satisfy
both the requirements. Therefore, we discuss the randomization-based solutions
that satisfy all assumptions and requirements of the privacy model.

For the purpose of preserving distance orders, we use the noise averaging effect
of piecewise aggregate approximation (PAA) [8]. This notion is derived from a
simple intuition that the summation of random noise eventually converges to 0.
The noise averaging effect can alleviate the problem of distorting distance orders
in randomly perturbed time-series. PAA extracts a fixed number of averages from
a long time-series and uses those averages to compute the distance [8]. Since PAA
uses the averages in computing distances, it naturally exploits the noise averaging
effect on the distorted/published time-series. To exploit this noise averaging
effect, we use PAA distances in computing distances of the distorted time-series.

In this paper we propose naive and advanced solutions based on the random
perturbation and the noise averaging effect. Our first solution simply adopts
the random perturbation in publishing time-series, but it uses PAA distances
to preserve distance orders by exploiting the noise averaging effect. The simple
random perturbation, however, can be attacked by the wavelet filter [13]. We thus
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propose another solution that uses the recent wavelet-based perturbation [13]
which is secure against the wavelet filtering attack. These two solutions, however,
are in a tradeoff relationship with respect to uncertainty and distance orders. We
thus propose two more advanced solutions that take advantages of both naive
solutions. Our advanced solutions can be seen as an engineering approach that
preserves uncertainty and distance orders as much as possible through the recent
wavelet-based perturbation and the noise averaging effect of PAA.

Our solutions provide a very practical approach to publish time-series data
which well preserves mining accuracy as well as privacy. We do not use any
complicated cryptography techniques or SMC protocols [5], but simply adopt
an intuitive notion of the noise averaging effect and the wavelet-based secure
perturbation method. The contributions of the paper can be summarized as
follows. (1) We present a privacy model characterized by assumptions required in
a centralized data flow model and requirements for preserving privacy and mining
accuracy. (2) We discuss the notion of the noise averaging effect and show its
effectiveness in computing distances of the perturbed time-series. (3) We propose
two naive solutions that exploit the noise averaging effect and introduce two more
advanced solutions that represent a compromise in the tradeoff relationships
between those naive solutions. (4) Through extensive experiments we showcase
the superiority of our advanced solutions.

2 Proposed Privacy Model

Our privacy model uses the Euclidean distance [10,11,13] as the metric of
(dis)similarity between time-series since it has been widely used in many cluster-
ing or classification algorithms [11]. Given two time-series X = {x1, . . . , xn} and
Y ={y1, . . . , yn}, the Euclidean distance D(X, Y ) is defined as

√∑n
i=1(xi − yi)2.

Our model assumes that each data source first distorts its time-series X to
Xd = {xd

1, . . . , x
d
n} independently, and then publishes the distorted time-series

Xd. Attackers may try to recover the original time-series X from the published
time-series Xd for the malicious purpose of obtaining privacy-sensitive data. We
denote by Xr = {xr

1, . . . , x
r
n} the recovered time-series recovered from Xd.

Under the data flows in Fig. 1, our privacy model has three assumptions.

• Full disclosure: We assume that all information used in distorting time-
series can be revealed to third parties or attackers. It means that distortion
techniques and related parameters can be published.

• Equi-uncertainty: We assume that every published time-series has the same
amount of distorted information. In other words, all distorted time-series
have the same amount of uncertainty. Here, the uncertainty represents the
degree of difference between original and distorted time-series. (We will for-
mally define it below.)

• Independency: We assume that each time-series can be independently dis-
torted without considering other time-series. This is because, as shown in
Fig. 1, time-series are scattered in multiple independent data sources, and
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those sources do not interact with each other. Thus, each data source inde-
pendently distorts its time-series without interacting with other data sources
or third parties.

The major goal of our privacy model is to preserve privacy and at the same
time assure mining accuracy. To discuss about the privacy preservation first, we
use the uncertainty [13], also known as the mean square error or discrepancy [6],
as the metric of privacy. Uncertainty between an original time-series X and its
distorted time-series Xd is defined as u(X, Xd) =

∑n
i=1 |xi − xd

i |2; uncertainty
between X and its recovered time-series Xr is defined as u(X, Xr) =

∑n
i=1 |xi−

xr
i |2. The former uncertainty u(X, Xd) can be seen as the noise amount enforced

by the data source of X ; the latter uncertainty u(X, Xr) the noise amount
remaining after the attack. Thus, the smaller difference between u(X, Xd) and
u(X, Xr) the better privacy preservation is [13]. Based on this observation, we
formally define the uncertainty preservation and derive the privacy requirement.

Definition 1. Given an original time-series X, its distorted time-series Xd,
and its recovered time-series Xr, we say that the uncertainty of Xd is preserved
if |u(X, Xd)− u(X, Xr)| is less than the user-specified threshold. �

Requirement 1. Uncertainty of the published time-series needs to be preserved
to assure that original time-series cannot be reconstructed from the published
ones. �

We next discuss about the mining accuracy preservation. Different mining tech-
niques use different accuracy measures, and we thus introduce a notion of dis-
tance orders as a general measure of mining accuracy. Distance orders represent
the relative orders among distances between time-series. In general, preserving
both the absolute distances between time-series and their privacy is difficult.
However, preserving the relative orders among distances is enough for providing
higher accuracy in most mining algorithms [7]. Based on this observation, we use
the notion of distance order preservation for assuring mining accuracy.

Definition 2. Let O, A, and B be time-series, and Od, Ad, and Bd be the
corresponding distorted time-series, respectively. We say that the distance order
among O, A, and B is preserved if one of the following implications holds (i.e.,
if their relative order of distances is not changed).

D(O, A) ≤ D(O, B) =⇒ D(Od, Ad) ≤ D(Od, Bd),
D(O, A) ≥ D(O, B) =⇒ D(Od, Ad) ≥ D(Od, Bd)

Using Definition 2 we now derive the mining accuracy requirement.

Requirement 2. Distance orders among time-series need to be preserved for
the purpose of providing high quality of mining results. �

We analyzed existing solutions with respect to the assumptions and requirements
in our privacy model. In our comparison, we only considered approaches that can
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be applied to time-series data. (For the detailed analysis of existing solutions,
refer to Section 6.) The analysis result shows that, except for random data per-
turbation solutions in [2,13], all privacy preserving solutions do not satisfy one
or more assumptions. This is because most solutions assume some constraints
on distortion techniques or underlined environments. The randomization meth-
ods, which distort time-series by adding white noise locally and independently,
satisfy all three assumptions, but even those methods do not satisfy both the
requirements. Therefore, in this paper we aim at finding the best solution that
solves the following problem.

Problem Statement. In publishing time-series, find a solution that satisfies
the three assumptions of full disclosure, equi-uncertainty, and independency and
the two requirements of privacy preservation and distance order preservation. �

3 PAA-Based Intuitive Solutions

3.1 Noise Averaging Effect of PAA

Random data perturbation (randomization in short) generates white noise based
on uniform or Gaussian distributions and adds that noise to original time-series.
More formally, for a time-series X , the randomization generates a noise time-
series N = {n1, . . . , nn} with mean 0 and standard deviation σ and constructs
a distorted time-series as Xd = {x1 + n1, . . . , xn + nn}. Obviously, the standard
deviation σ equals to u(X, Xd), the uncertainty between original and published
time-series. Full disclosure, the first assumption, is satisfied since we do not hide
any information including the mean and standard deviation. Equi-uncertainty,
the second assumption, is also satisfied since we use the same standard deviation
for all time-series. Independency, the third assumption, is trivially satisfied since
each time-series reflects its own noise time-series. Thus, the only thing we need
to consider in randomization is whether it satisfies two requirements or not.

Randomization is known to well preserve privacy, but not mining accu-
racy [11]. White noise makes it difficult to disclose the exact value of each en-
try, but at the same time it destroys distance orders among time-series. As
we increase the amount of noise for better privacy, mining accuracy decreases
rapidly [11]. To solve this problem, we use the noise averaging effect, which is
derived from a simple intuition that the summation of white noise eventually
converges to 0 since the mean of noise is 0. To exploit the noise averaging effect
in computing the distance between two distorted time-series, we simply use their
averages of multiple entries instead of individual entries.

In this paper we use the noise averaging effect of PAA [8]. PAA transforms a
time-series X (= {x1, . . . , xn}) and its distorted time-series Xd (= {xd

1, . . . , x
d
n})

to their averaged sequences X̄ (= {x̄1, . . . , x̄f}) and X̄d (= {x̄d
1, . . . , x̄

d
f}):

x̄i =
f

n

n
f i∑

j= n
f (i−1)+1

xj , x̄d
i =

f

n

n
f i∑

j= n
f (i−1)+1

xd
j (1)
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As shown in Eq. (1), PAA gets an average from each interval, and we thus
naturally exploit the noise averaging effect if we use PAA in computing the
distance. For this purpose, we define the PAA distance between two distorted
time-series as follows.

Definition 3. Given two distorted time-series Xd and Y d, their PAA distance,
denoted as PD(Xd, Y d), is defined as follows:

PD(Xd, Y d) = D(X̄d, Ȳ d) =

√√√√ f∑
i=1

(x̄d
i − ȳd

i )2. (2)

Using PAA distances instead of original distances we may alleviate the problem
of destroying distance orders.

3.2 RAND: Random Data Perturbation and PAA Distances

Our first solution, called RAND, uses the randomization without any modifica-
tion in distorting time-series, but it uses the PAA distance in comparing distance
orders. Algorithm 1 shows the distortion procedure of RAND, which is simple
and self-explained. In Line 1, GaussRand(0, σ) generates a white noise based
on the Gaussian distribution. According to the data flow model of Fig. 1, each
data source publishes its time-series using RAND, and third parties mine the
meaningful patterns using the PAA distance to get the higher mining accuracy.

Algorithm 1. RAND(X = {x1, . . . , xn}, σ)
1: Generate a noise time-series N where ni :=GaussRand(0, σ);
2: Make a distorted time-series Xd from X and N ; // xd

i := xi + ni

3: Publish the distorted time-series Xd to third parties;

According to our preliminary experiment, the PAA distance in RAND closely
preserves distance orders, and it thus improves the mining accuracy. RAND,
however, has a critical problem in preserving privacy. The problem is that white
noise can be easily removed by the wavelet filter [13]. Example 1 shows how we
can remove the white noise from the distorted time-series.

Example 1. In Fig. 2, we first distort an original time-series X to Xd by adding
20% of noise. We then perform the discrete wavelet transform (DWT) on Xd and
get wavelet coefficients from Xd. Through DWT, most energy is concentrated on
the first few coefficients. We next filter the less energy coefficients whose absolute
values are less than σ [13]. We finally recover the time-series through the inverse
DWT. As a result, the recovered time-series Xr has only 4.8% of white noise.
It means that the uncertainty is significantly reduced from 20% (= u(X, Xd)) to
4.8%(= u(X, Xr)) by the wavelet filter. �
Likewise, the uncertainty, i.e., the white noise can be removed by the wavelet
filter, and we can say that privacy is not well preserved in RAND.
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original time-series

distorted time-series wavelet coefficients

filtered wavelet coefficients
recovered time-series

(2) DWT

(3) Inverse
DWT

(1) randomization (4) filtering

Most energy is here.

( ) =

( ) =

Fig. 2. Recovery of similar time-series by the wavelet filter

3.3 WAVE: Wavelet-Based Noise and PAA Distances

Papadimitriou et al.[13] pointed out the privacy problem of randomization and
proposed a novel solution to avoid the filtering attack. Their solution generates
a noise time-series by considering wavelet coefficients of an original time-series;
more specifically, less energy coefficients have no contribution to making a noise
time-series, but higher energy coefficients have much contribution to making it.
Fig. 3 shows how their solution makes a distorted time-series. As shown in the
figure, we first get a sequence of wavelet coefficients, Xw = {xw

1 , . . . , xw
n }, from an

original time-series X . We then construct a sequence of noise coefficients, Nw =
{nw

1 , . . . , nw
n}, based on Xw. A noise coefficient nw

i is set to 0 if its corresponding
wavelet coefficient xw

i is less than the given uncertainty σ; in contrast, nw
i is set to

GaussRand(0, c · σ) if xw
i is not less than σ, where c =

√
n/|{xw

i |xw
i ≥ σ}| (refer

to [13] for details). This process explains that less energy coefficients are ignored,
but higher energy coefficients have much noise. We next make a noise time-series
N from Nw through the inverse DWT. We finally obtain a distorted time-series
Xd by adding N to X and publish it to third parties. Papadimitriou et al.[13]
showed that the noise of the resulting time-series was not removed by the wavelet
filter, and the uncertainty was preserved well.

We now propose another randomization method, called WAVE, which uses
the wavelet-based noise [13] in distorting time-series. WAVE solves the recover-
ing problem of RAND by using the wavelet-based noise, but it still uses the PAA
distance in comparing distance orders. The formal algorithm of WAVE is given

original time-series

1
{ , , }

n
X x x= …

wavelet coefficients
1{ , , }w w w

n
X x x= …

(1) DWT

(3) inverse DWT⊕

(2) making noise coefficients

if   

else   

( ) 0;

(0, );

w w
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i

x n
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< σ =
= ⋅σ
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N n n= …noise time-series

1
{ , , }
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(4) addition

distorted time-series

1{ , , }d d d

nX x x= …

Fig. 3. WAVE-based noise time-series and its distorted time-series
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in Algorithm 2. In Line 1, we get wavelet coefficients from the given time-series.
In Lines 2-6, we obtain noise coefficients by considering energy of original coeffi-
cients. In Line 7, we make a noise time-series from the noise coefficients through
the inverse DWT. In Lines 8-9, we construct a distorted time-series and publish
it to third parties. Like RAND, each data source publishes its time-series using
WAVE, and third parties use the PAA distance to mine the meaningful patterns.

Algorithm 2. WAVE(X = {x1, . . . , xn}, σ)
1: Get a sequence Xw of wavelet coefficients from X;
2: c :=

√
n/|{xw

i |xw
i ≥ σ}|;

3: for i := 1 to n do // get a seq. Nw of noise wavelet coefficients
4: if xw

i < σ then nw
i := 0;

5: else nw
i :=GaussRand(0, c · σ);

6: end-for
7: Make a noise time-series N from Nw through the inverse DWT;
8: Get a distorted time-series Xd from X and N ; // xd

i = xi + ni

9: Publish the distorted time-series Xd to third parties;

WAVE, however, incurs another problem of destroying distance orders. Ac-
cording to our experiment, distance orders are severely destroyed in WAVE even
though we use the PAA distance. The reason why WAVE destroys distance or-
ders is that only a few high levels of wavelet coefficients are considered to make
a noise time-series. That is, most noise is concentrated on a very small part
of noise wavelet coefficients. This concentration simply makes WAVE stronger
against the wavelet filtering attack and preserves the uncertainty well, but at
the same time it significantly destroys distance orders.

4 Advanced Solutions

As we explained in Section 3, RAND has a problem in preserving privacy; WAVE
has another problem in preserving distance orders. In other words, RAND is an
extreme example of focusing on distance orders; WAVE is an extreme example
of focusing on privacy. It means that there can be some intermediate solutions in
between RAND and WAVE. In this section we discuss those advanced solutions
that take advantages of both RAND and WAVE.

4.1 SNIL: Spread Noise to Intermediate Wavelet Levels

Our first advanced solution, called SNIL, spreads the noise to intermediate levels
of wavelet coefficients when making a noise time-series. SNIL comes from an
observation that WAVE concentrates most noise to only a few high levels of
wavelet coefficients, and this concentration destroys distance orders. Based on
this observation, SNIL spreads the noise to several intermediate levels instead of
a few high levels. By not using a few high levels, some of noise can be removed
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by the wavelet filter; in contrast, by using intermediate levels rather than low
levels, much noise can be preserved as the uncertainty. Moreover, using the PAA
distance SNIL preserves distance orders relatively well since it spreads the noise
to several levels of wavelet coefficients.

Algorithm 3 shows the distortion procedure of SNIL. As inputs to the al-
gorithm, start and end levels, ls and le, are given together with an original
time-series X and the uncertainty σ. We let ls be lower than le in wavelet lev-
els. Thus, if the highest level is L (= log2 n), the start and end levels, ls and
le, have 2L−ls and 2L−le (< 2L−ls) coefficients, respectively. Like Algorithm 2,
in Line 2 we compute how many coefficients will have the noise and obtain the
constant factor c of that noise. In Lines 3-6 we assign the noise to the coefficients
whose levels are in between start and end levels. This noise assignment spreads
the given uncertainty to intermediate levels of ls to le. The rest of Algorithm
3 is the same as Algorithm 2. Compared to WAVE, SNIL spreads the noise to
more wavelet levels. This spread leads a well distribution of noise compared with
WAVE, and through this well distribution we get the noise time-series that is
strong to the wavelet filter and adequate to the PAA distance.

Algorithm 3. SNIL(X = {x1, . . . , xn}, σ, start ls, end le)
1: Get a sequence Xw of wavelet coefficients from X;

2: c :=
√

n/
∑le

l=ls
2L−l; //

∑le
l=ls

2L−l: the number of coefficients in ls to le levels
3: for i := 1 to n do // get a seq. Nw of noise wavelet coefficients
4: if xw

i ’s level is in [ls, le] then nw
i :=GaussRand(0, c · σ);

5: else nw
i := 0;

6: end-for
7: Make a noise time-series N from Nw through the inverse DWT;
8: Get a distorted time-series Xd from X and N ; // xd

i = xi + ni

9: Publish the distorted time-series Xd to third parties;

Start and end levels of ls and le represent on which levels we concentrate the
noise. If those levels are close to the highest level (= L), the resulting time-series
becomes similar to that of WAVE; in contrast, if those levels are close to the
lowest level (= 1), the resulting time-series becomes similar to that of RAND.
In this paper we use

⌈
1
2 log2 n

⌉
as ls and

⌊
3
4 log2 n

⌋
as le. This is based on the

real experimental result on random walk time-series such that if ls is lower than⌈
1
2 log2 n

⌉
, too much noise is removed by the wavelet filter, and if le is higher than⌊

3
4 log2 n

⌋
, too many distance orders are destroyed. We also note that optimal

ls and le vary slightly according to the data set. For simplicity, however, we use⌈
1
2 log2 n

⌉
and

⌊
3
4 log2 n

⌋
only in the experiment of Section 5.

4.2 DAPI: Divide And Perturb Independently

The second advanced solution, called DAPI, divides a time-series into several
pieces and perturbs those pieces independently. DAPI exploits the noise aver-
aging effect on each piece of a time-series by adding the noise to that piece
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independently. Regarding each piece as a unit of computing the PAA distance,
we can easily exploit the noise averaging effect in DAPI. On the other hand,
considering the wavelet filter we use the same distortion procedure of WAVE in
distorting each piece, i.e., it computes a wavelet-based noise for each piece and
adds the noise to that original piece.

Fig. 4 depicts the distortion procedure of DAPI. (We omit the detailed algo-
rithm due to space limitation.) As shown in the figure, before adding the noise,
we divide a time-series of length n into p pieces of length n

p and localize the noise
to individual pieces; after dividing the time-series, we add the same amount of
noise to those pieces independently to enforce the given uncertainty σ.

(1) division

(3) inverse DWT 
& concatenation⊕

original time-series

1
{ , , }

n
X x x= …

noise time-series

1 1
{ , , } { , , }

n p
N n n N N= ←… …

distorted time-series

1{ , , }d d d

nX x x= …

p pieces of time-series

1 2
{ , , , }

p
X Y Y Y→ …

(2) making noise coefficients for each piece

noise coefficients of p pieces

(4) addition

1 2
{ , , , }w w w

p
N N N…

Fig. 4. DAPI-based noise time-series and its distorted time-series

To use DAPI in distorting time-series, we need to determine p, the number of
pieces. We note that, as p increases, the number of entries (= n

p ) contained in a
piece decreases. The smaller number of entries (i.e., the larger number of pieces)
makes it difficult to add the given uncertainty correctly, but it well preserves
distance orders. This is because a small length time-series cannot have a large
amount of noise while its average relatively well reflects all entries. In contrast,
the larger number of entries (i.e., the smaller number of pieces) well preserves
the uncertainty, but it does not preserve distance orders well. In other words, as
we increase the number of pieces, DAPI shows a similar trend with RAND; in
contrast, as we decrease the number, it shows a similar trend with WAVE. We
use 1

2 and 3
4 of wavelet levels in SNIL, and thus, to be consistent with SNIL, we

choose their average 7
8

(
=
(

1
2 + 3

4

)
/2
)

as the number of pieces in DAPI. More
precisely, we set p to a factor of n that is closest to 7

8 log2 n.

5 Experimental Evaluation

From the UCR data [9], we selected three data sets, CBF (143 time-series of
length 60), ECG200 (600 time-series of length 319), and Two Patterns (512 time-
series of length 1,024), which were suitable for evaluating clustering or clas-
sification algorithms on time-series data. We implemented our four distortion
methods and measured three evaluation metrics: (1) uncertainty preservation,
how many time-series preserved their uncertainty after the distortion; (2) dis-
tance order preservation, how many time-series preserved their distance orders;
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(3) clustering accuracy preservation, how many clusters preserved their original
clusters. In particular, for the clustering accuracy preservation, we first obtained
the actual clustering result from the original data and then compared it with
the result of the distorted data. The hardware platform was SUN Ultra 25 work-
station equipped with UltraSPARC IIIi 1.34GHz CPU, 1.0GB RAM, and an
80GB HDD; its software platform was Solaris 10. We used C/C++ language for
implementing our solutions and k-means clustering algorithm.

5.1 Uncertainty Preservation

To evaluate the uncertainty preservation, we compared (1) the distorted time-
series, which was generated by adding the noise to the original time-series, and
(2) the recovered time-series, which was obtained by applying the wavelet fil-
ter to the distorted time-series. Through these two steps, we investigated how
much noise was remained after the filtering attack; more specifically, for a given
time-series X , we compared the remaining uncertainty u(X, Xr) with the given
uncertainty u(X, Xd). In the experiment, we measured u(X, Xd) and u(X, Xr)
for every time-series X , and used their average as the result.

Fig. 5 shows the experimental result on uncertainty preservation. First, in
Fig. 5 (a) of CBF, we note that WAVE shows the best result while RAND shows
the worst result. This is because WAVE extremely focuses on preserving the
uncertainty while RAND extremely focuses on preserving distance orders. In Fig.
5 (a) we also note that our advanced solutions, SNIL and DAPI, are in between
WAVE and RAND. In particular, SNIL, which tries to spread the noise to many
wavelet levels, is comparable with WAVE in preserving the uncertainty. This
is because, even though the given noise is spread to many wavelet coefficients,
a large portion of the noise is still concentrated on a small number of higher
wavelet levels, and it is not easily removed by the wavelet filter. On the other
hand, DAPI is relatively worse than SNIL because it has difficulty in generating
the full amount of noise due to the small size of individual pieces.

Figs. 5 (b) and (c) of ECG200 and Two Patterns show the similar trend with
Fig. 5 (a) of CBF. In summary, our advanced solutions take advantage of WAVE
and show the better uncertainty preservation compared with RAND. In partic-
ular, SNIL is comparable with WAVE in preserving the uncertainty.
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5.2 Distance Order Preservation

We constructed 10,000 triplets from each data sets. Each triplet consisted of three
time-series as in Definition 2. We measured how much percent of triplets pre-
served their distance orders by investigating all 10,000 triplets for each method.

Fig. 6 shows the experimental result on distance order preservation. As shown
in the figure, for all three data sets, RAND shows the best result, but WAVE
shows the worst result. This trend is exactly opposite to that of uncertainty
preservation. As we explained earlier, this is because RAND emphasizes distance
orders while WAVE focuses on uncertainty. Similar to uncertainty preservation,
our advanced solutions are in between RAND and WAVE by taking advatage
of RAND in preserving distance orders. Unlike Fig. 5, however, DAPI is better
than SNIL in Fig. 6 because DAPI well preserves the PAA distance by dividing
a long time-series into smaller pieces.

(a) CBF (b) ECG200 (c) Two_Patterns
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Fig. 6. Experimental result on distance order preservation

A notable point in comparing Figs. 5 and 6 is a tradeoff between uncer-
tainty (i.e., privacy) and distance orders (i.e., mining accuracy). The uncertainty
result of “RAND < DAPI < SNIL < WAVE” is exactly opposite to the distance
order result of “WAVE < SNIL < DAPI < RAND.” In case of SNIL and DAPI,
we can emphasize one of uncertainty and distance orders by adjusting the input
parameters ((ls, le) in SNIL and p in DAPI). Thus, we can say SNIL and DAPI
are more flexible than other methods in adjusting the tradeoff relationship.

5.3 Clustering Accuracy Preservation

We also experimented the actual clustering accuracy of the proposed distortion
methods. As the measure of clustering accuracy, we used F-measure [11], which
was widely used in information retrieval or data mining to evaluate the accu-
racy of retrieved or mined results. F -measure was computed by comparing the
resulting clusters of original time-series and those of distorted time-series. In our
experiment, the higher F -measure means the more accurate clustering result.
For the detailed explanation about F -measures, readers are referred to [11].
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After executing the k-means algorithm for the distortion methods, we obtain
their F -measures, respectively. We omit the experimental result of F -measures
since it is very similar to that of distance order preservation in Fig. 6. This means
that preserving distance orders well reflects preserving clustering (or mining) ac-
curacy. In other words, if a distortion method preserves distance orders well, it
also preserves mining accuracy well. In summary, like the distance order preser-
vation, RAND is the best while WAVE is the worst, and the advanced solutions
are still in between RAND and WAVE.

6 Related Work

PPDM solutions can be classified into four categories [1]: random perturba-
tion [6,13], k-anonymization [3], distributed privacy preservation [5], and privacy
preserving of mining results [14]. We review these solutions w.r.t. our approach.

First, the random data perturbation adds white noise to the data in order
to mask the sensitive values of data [1]. Agrawal and Srikant [2] first proposed
random perturbation-based PPDM solutions. This random perturbation can be
easily used for adding noise to time-series data, but it distorts distance orders as
well and eventually incurs bad mining accuracy [13] (refer to RAND). Geomet-
ric transformation [12] and rotation perturbation [6] were proposed to get a set
of distorted time-series from a set of original time-series. These solutions pro-
vide higher clustering/classification accuracy. However, they cannot deal with
an individual time-series of a specific data source, and their related parameters
should not be disclosed to preserve privacy. Papadimitriou et al. [13] proposed a
novel perturbation solution which generated the wavelet-based noise to preserve
privacy (i.e., uncertainty) against the filtering attack. This solution, on which
our WAVE and advanced solutions are based, satisfies all three assumptions and
the privacy preservation requirement, but it is still inadequate to the distance
order preservation requirement as we explained in WAVE.

Second, k-anonymization increases anonymity of data by reducing the gran-
ularity of data representation with the use of generalization and suppression [1].
We can adopt the concept of k-anonymity in publishing time-series as follows:
“Ensure at least k time-series should be similar.” This anonymity problem is
orthogonal to ours, and we may use our solutions to solve this problem.

Third, distributed privacy preservation provides secure mining protocols for
the distributed environment. In general, those solutions use the cryptography-
based secure multiparty computation (SMC) techniques to preserve data privacy
of individual entities. Clifton et al. [5] proposed various types of SMC operations
and used those operations for privacy preserving clustering and association rule
mining. Those SMC-based solutions, however, are not suitable for our privacy
model since in their solutions data sources need to co-work together, or some
encryption parameters should be hidden from others.

Fourth, privacy preserving of mining results prevents the outputs (i.e., mining
results) from disclosing data privacy [1]. For example, Verykios et al. [14] pro-
posed solutions to hide the sensitive association rules that might disclose private
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data. We can also adopt this concept in publishing time-series as follows: “En-
sure that the original time-series cannot be recovered even though the mining
results are published.” This output problem is also orthogonal to our distortion
problem, and we may use our solutions to solve this problem.

Recently, Mukherjee and Chen [11] proposed a novel solution to privacy pre-
serving clustering on time-series data. Their solution published a few Fourier
coefficients instead of a whole time-series. Since the Fourier coefficients well pre-
serve the Euclidean distance, their solution provides a higher clustering accuracy.
However, it may cause privacy breach if positions of coefficients are revealed. To
avoid this problem, they tried to hide the exact positions through the sophisti-
cated permutation protocol [11]. However, the positions can be easily revealed if
only one original time-series and its published coefficients are disclosed.

7 Conclusions

Time-series data are very sensitive since a time-series itself may disclose its cor-
responding private information (e.g., identifier). Thus, preserving both privacy
and mining accuracy is an important issue in publishing time-series data. In this
paper we presented naive and advanced solutions which considered mining accu-
racy preservation as well as privacy preservation. Our work can be summarized
as follows. First, we proposed a privacy model of publishing sensitive time-series
data and derived the related assumptions and requirements. Second, we analyzed
the randomization-based solutions on the privacy model and presented their com-
mon problems. Third, we introduced a notion of the noise averaging effect of
PAA and explained that the PAA distance might well preserve distance orders
for the higher mining accuracy. Fourth, we proposed two naive randomization
methods by exploiting the PAA distance. Fifth, to take advantages of both naive
solutions, we proposed two more engineering solutions. Sixth, through extensive
experiments, we showcased the superiority of our solutions.
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Abstract. This paper proposes the concept of generalized sentinel rules (sen-
tinels) and presents an algorithm for their discovery. Sentinels represent schema
level relationships between changes over time in certain measures in a multi-
dimensional data cube. Sentinels notify users based on previous observations,
e.g., that revenue might drop within two months if an increase in customer prob-
lems combined with a decrease in website traffic is observed. If the vice versa
also holds, we have a bi-directional sentinel, which has a higher chance of being
causal rather than coincidental. We significantly extend prior work to combine
multiple measures into better sentinels as well as auto-fitting the best warning pe-
riod. We introduce two novel quality measures, Balance and Score, that are used
for selecting the best sentinels. We introduce an efficient algorithm incorporating
novel optimization techniques. The algorithm is efficient and scales to very large
datasets, which is verified by extensive experiments on both real and synthetic
data. Moreover, we are able to discover strong and useful sentinels that could not
be found when using sequential pattern mining or correlation techniques.

1 Introduction

The Computer Aided Leadership and Management (CALM) concept copes with the
challenges facing managers that operate in a world of chaos due to the globalization of
commerce and connectivity [10]; in this chaotic world, the ability to continuously react
is far more crucial for success than the ability to long-term forecast. The idea in CALM
is to take the Observation-Orientation-Decision-Action (OODA) loop (originally pio-
neered by “Top Gun”1 fighter pilot John Boyd in the 1950s), and integrate business
intelligence (BI) technologies to drastically increase the speed with which a user in an
organization cycles through the OODA loop. One way to improve the speed from ob-
servation to action is to expand the “time-horizon” by providing the user of a BI system
with warnings based on “micro-predictions” of changes to an important measure, of-
ten called a Key Performance Indicator (KPI). A generalized sentinel rule (sentinel for
short) is a causal relationship where changes in one or multiple source measures, are
followed by changes to a target measure (typically a KPI), within a given time period,
referred to as the warning period. We attribute higher quality to bi-directional sentinels
that can predict changes in both directions, since such a relationship intuitively is less
likely to be coincidental. An example of a sentinel for a company could be: “IF Num-
ber of Customer Problems go up and Website Traffic goes down THEN Revenue goes

1 Colonel John Boyd was fighter instructor at Nellis Air Force Base in Nevada, the predecessor
of U.S. Navy Fighter Weapons School.

P. Garcı́a Bringas et al. (Eds.): DEXA 2010, Part II, LNCS 6262, pp. 32–48, 2010.
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down within two months AND IF Number of Customer Problems go down and Website
Traffic goes up THEN Revenue goes up within two months”. Such a rule will allow a
BI system to notify a user to take corrective action once there is an occurrence of, e.g.,
“Customer Problems go up and Website Traffic goes down”, since he knows, based on
the “micro-prediction” of the rule, that Revenue, with the probability stated by the rule’s
confidence, will go down in two months if no action is taken. In Section 4 we describe
an example where a valuable, and not so obvious, sentinel was uncovered.

Compared to prior art, sentinels are mined on the measures and dimensions of mul-
tiple cubes in an OLAP database, as opposed to the “flat file” formats used by most
traditional data mining methods. Sentinels find rules that would be impossible to detect
using traditional techniques, since sentinels operate on data changes at the schema level
as opposed to absolute data values at the data level such as association rules [1] and
sequential patterns typically do [4]. This means that our solution works on numerical
data such as measure values, whereas association rules and sequential patterns work
on categorical data, i.e., dimension values. In [12] we specifically provide a concrete,
realistic example where nothing useful is found using these techniques, while sentinel
mining do find meaningful rules. In addition, bi-directional sentinels are stronger than
both association rules and sequential patterns since such relationships have a greater
chance of being causal rather than coincidental. The schema level nature of sentinels
gives rise to the table of combinations (TC) and the reduced pattern growth (RPG)
optimization (see Section 3), and such optimizations can therefore not be offered by se-
quential pattern mining or other known optimizations for simpler “market basket”-type
data such as [6]. In addition to the TC and RPG optimizations, the auto-fitting of the
warning period, and the ability to combine source measures into better sentinel rules,
adds to the distance between our solution and optimizations offered in prior art such
as [3,8,14,15,16,17,18].

Gradual rule mining [5] is a process much like association rules, where the cate-
gorical data are created by mapping numerical data to fuzzy partitions, and thus this
technique works on numerical data similar to our solution. However, similar to associ-
ation rules and sequential patterns, gradual rule mining does not have the schema level
property of sentinels that allows our solution to create the strong bi-directional rules.
Moreover, the primary objective of gradual rules is to describe the absolute values of a
measure, whereas our solution operates on changes in the measure values. Therefore,
for similar reasons as mentioned above, gradual rule mining does not have the ability
to use the TC and RPG optimizations, and neither does it have the ability to auto-fit a
warning period for a given rule.

Other approaches to interpreting the behavior of data sequences are various regres-
sion [2] and correlation [7,19] techniques which attempt to describe a functional rela-
tionship between one measure and another. Similar to gradual rules, these techniques
are also concerned with the absolute values of a measure, as opposed to sentinels that
are based on changes in the measure values. With regards to the output, sentinels are
more specific “micro-predictions”, and are thus complementary to these techniques.
Sentinels are useful for discovering strong relationships between a smaller subset within
a dataset [11], and thus they are useful for detecting warnings whenever changes (that
would otherwise go unnoticed) in a relevant source measure occur.
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The novel contributions in this paper are as follows: First we generalize the concept
of sentinel rules from previous work into generalized sentinel rules, that allow mul-
tiple source measures to be combined in sentinels, and that can facilitate auto-fitting
of the best warning period. In this context, we define two new qualitative measures
for sentinels, namely: Balance and Score, and we expand the previous notation to sup-
port our generalization. Secondly, we present an algorithm for sentinel discovery that
can combine multiple source measures and auto-fit the optimal warning period within a
given range. In the algorithm, we introduce and define the optimization technique called
Reduced Pattern Growth, and we apply Hill Climbing for further optimization. In ad-
dition, our algorithm uses a so-called Table of Combinations that efficiently supports
these optimization techniques. Third, we assess the computational complexity and con-
duct extensive experiments to validate our complexity assessment, and we verify that
our optimized algorithm scales well on large volumes of real-world and synthetic data.

The remainder of the paper is structured as follows: Section 2 presents the formal
definition, Section 3 presents the new SentHiRPG algorithm and its implementation.
Section 4 presents a scalability study, and Section 5 presents our conclusions and pro-
posals for future work.

2 Problem Definition

Running Example: We imagine having a company that sells products world-wide, and
that we, in addition to the traditional financial measures such as revenue, Rev, have been
monitoring the environment outside our organization and collected that information in
three measures. The measure NBlgs represents the number of times an entry is written
on a blog where a user is venting a negative opinion about our company or products. The
measure CstPrb represents the number of times a customer contacts our company with
a problem related to our products. The measure WHts represents the number of human
hits on our website. We want to investigate whether we can use changes on any of the
external measures (NBlgs, CstPrb, WHts) to predict a future change on the internal
measure (Rev). To generalize our terminology, we call the external measures NBlgs,
CstPrb, and WHts source measures and the internal measure, Rev, the target measure.

In Table 1 we see two subsets from our database, the source measures representing
the external environment have been extracted for January to October 2008, and the
target measure has been extracted for February to November 2008. For both source and
target measures we have calculated the cases where a measure changes 10% or more,
either up or down, from one month to another.

Formal Definition: Let C be a multi-dimensional cube containing a set of facts, C =
{(d1, d2, ..., dn, m1, m2, ..., mp)}. The dimension values, d1, d2, ..., dn, belong to the
dimensions D1, D2, ..., Dn, and we refer to the ”dimension part” of a fact,
(d1, d2, ..., dn), as a cell. We say that a cell belongs to C, denoted by (d1, d2, ..., dn) ∈
C, when a fact (d1, d2, ..., dn, m1, m2, ..., mp) ∈ C exists. We say that a measure
value, mi, is the result of a partial function, Mi : D1 × D2 × ... × Dn ↪→ �, de-
noted by, Mi(d1, d2, ..., dn) = mi, if (d1, d2, ..., dn) ∈ C and 1 � i � p. We assume,
without loss of generality, that there is only one time dimension, T , in C, and that
T = D1, and subsequently t = d1. In addition, we assume that measures M1, ..., Mp−1

are source measures, and that measure Mp is the target measure. An indication, Indi,
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Table 1. Source and target measure data with indications

Month NBlgs CstPrb WHts Indications
2008-Jan 80 310 1227
2008-Feb 89 390 1101 NBlgs�,CstPrb�,WHts�
2008-Mar 90 363 1150
2008-Apr 99 399 987 NBlgs�,WHts�
2008-May 113 440 888 NBlgs�,CstPrb�,WHts�
2008-Jun 101 297 1147 NBlgs�,CstPrb�,WHts�
2008-Jul 115 323 1003 NBlgs�,WHts�
2008-Aug 105 355 999
2008-Sep 93 294 993 NBlgs�,CstPrb�
2008-Oct 100 264 1110 CstPrb�,WHts�

(a) Source

Month Rev Indications
2008-Feb 1020
2008-Mar 911 Rev�
2008-Apr 1001
2008-May 1015
2008-Jun 900 Rev�
2008-Jul 1025 Rev�
2008-Aug 1100
2008-Sep 1090
2008-Oct 970 Rev�
2008-Nov 1150 Rev�
(b) Target

tells us whether a measure, Mi, changes by at least α over a period, o. We define
Indi(C, t, o, d2, d3, ..., dn) as shown in Formula 1.

if (t, d2, d3, ..., dn) ∈ C ∧ (t + o, d2, d3, ..., dn) ∈ C then Indi(C, t, o, d2, d3, ..., dn) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mi� if
Mi(t + o, d2, d3, ..., dn) − Mi(t, d2, d3, ..., dn)

Mi(t, d2, d3, ..., dn)
� α

Mi� if
Mi(t + o, d2, d3, ..., dn) − Mi(t, d2, d3, ..., dn)

Mi(t, d2, d3, ..., dn)
� −α

Mi � otherwise

(1)

We refer to Mi� as a positive indication, to Mi� as a negative indication, and to
Mi � as a neutral indication. We define a wildcard, ?, meaning that Mi? can be ei-
ther Mi�, Mi�, or Mi �. In addition, we define the complement of an indication as
follows: Mi� = Mi�, Mi� = Mi�, and Mi � = Mi �. We expand the comple-
ment to work for sets by taking the complement of each element, and we expand the
wildcard to work for sets meaning that any member of the set can have any indication.
An indication set, IndSet(C, t, o, d2, d3, ..., dn), as shown in Formula 2, is a set of all
possible combinations of indications (of up to RuleLen source measures) that occur for
one or more source measures in the same cell. We use MaxSource as a threshold for the
maximum number of source measures we want to combine in an IndSet, and we denote
the number of indications in a given IndSet by RuleLen(IndSet).

IndSet(C, t, o, d2, d3, ..., dn) = {{Indi1 (C, t, o, d2, d3, ..., dn), ...,

Indiq (C, t, o, d2, d3, ..., dn), ..., IndiRuleLen (C, t, o, d2, d3, ..., dn)}|
1 � RuleLen � MaxSource ∧ 1 � iq � p − 1}

(2)

A sentinel set, SentSet, is defined as all indications in a cube, C, given the offset,
o, where the source measure indication sets, IndSets , are paired with the indications on
the target measure, Indp , that occur a given warning period, w, later.

SentSet(C, o, w) = {(ISs , Indp(C, t + w, o, d2, d3, ..., dn))|
ISs ∈ IndSet(C, t, o, d2, d3, ..., dn) ∧
(t, d2, d3, ..., dn) ∈ C ∧ (t + w, d2, d3, ..., dn) ∈ C

∧ ∀Indm ∈ ISs : (Indm �= Mm �)}

(3)

We say that (IndSource , IndTarget) ∈ SentSet(C, o, w) supports the indication rule
denoted IndSource → IndTarget . The support of an indication rule, denoted by
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IndSuppSource→Target , is the number of (IndSource , IndTarget) ∈ SentSet(C, o, w)
which support the rule. Similarly, the support of Source, IndSuppSource , is the number
of (IndSource , Mp?) ∈ SentSet(C, o, w). In Table 1, we have calculated the indications
(Formula 1) with α = 10% as well as arranged the indications for the source measures
in the largest possible indication set (Formula 2) for each month. The combination of
the source and target measures is equivalent to a sentinel set (Formula 3) where o and w
are both set to 1 month. We see that for example the indication rule NBlgs� → Rev�
has a support, IndSuppNBlgs�→Rev�, of 2, and the indication NBlgs� has a support,
IndSuppNBlgs�, of 4.

A generalized sentinel rule is an unambiguous relationship between Source and Tar-
get, that consists of one or two indication rules. Therefore, we say that there are only
two potential sentinels between a set of source measures, Source, and a target measure,
Target, namely: Source 	 Target or Source 	 inv(Target), where inv represents
an inverted relationship (intuitively, when source changes up, target changes down and
vice versa). The relationships between the two potential generalized sentinel rules and
their indication rules are defined in Formula 4.

Source 	Target = {IndSource → IndTarget , IndSource → IndTarget}
Source 	inv(Target) = {IndSource → IndTarget , IndSource → IndTarget}

(4)

If two contradicting indication rules are both supported in SentSet, e.g. IndSource →
IndTarget and IndSource → IndTarget , we use the contradiction elimination process
(Formula 5) to eliminate the indication rules with the least support that have the same
premise, but a different consequent, and vice versa. However, in order to reflect the con-
tradiction between the indication rules as a less desired feature, we reduce the support
of the “cleansed rule” by deducting the support of the rules we eliminated from the
support of the rules we preserve.

ElimSuppSource�Target = IndSuppSource→Target − IndSuppSource→Target

+ IndSuppSource→Target − IndSuppSource→Target

(5)

Essentially, we force our generalized sentinel rule to be either Source 	 Target or
Source 	 inv(Target), and thereby we effectively eliminate both contradicting (same
premise but different consequent) and orthogonal (different premise but same conse-
quent) indication rules. ElimSupp represents the sum of the support for the indication
rule(s) in a sentinel after elimination of its contradictions, and if ElimSuppSource�Target

is positive, it means that the sentinel Source 	 Target contains the strongest indica-
tion rules (as opposed to Source 	 inv(Target)). Subsequently, SentRules(C , o,w)
(Formula 6) conducts the elimination process and extract the generalized sentinel rules
from C with the offset o and the warning period w. We note that SentRules only contain
rules where ElimSupp > 0, this way we eliminate sentinels composed by indication
rules that completely contradict each other (ElimSupp = 0).

SentRules(C , o,w) =⎧⎪⎪⎨
⎪⎪⎩

{Sources 	 Targetp | (Sources?,Targetp?) ∈ SentSet(C, o, w)}
if ElimSuppSources�Targetp > 0
{Sources 	 inv(Targetp) | (Sources?, Targetp?) ∈ SentSet(C, o, w)}
if ElimSuppSources�inv(Targetp) > 0

(6)
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BalanceSource�Target =
4 × |A| × |B|
(|A| + |B|)2

where A = IndSuppSource→Target − IndSuppSource→Target

B = IndSuppSource→Target − IndSuppSource→Target

(7)

SentSuppSource�Target =⎧⎪⎨
⎪⎩

IndSuppSource , ifBalanceSource�Target = 0 ∧ IndSuppSource > 0
IndSuppSource , ifBalanceSource�Target = 0 ∧ IndSuppSource > 0
IndSuppSource + IndSuppSource , otherwise

(8)

ConfSource�Target =
ElimSuppSource�Target

SentSuppSource�Target
(9)

To determine the quality of a sentinel, Source 	 Target ∈ SentRules(C , o,w), we
define Formulae 7 to 9. Balance (Formula 7) is used to determine the degree to which
a generalized sentinel rule is uni-directional (Balance=0) or completely bi-directional
(Balance=1), meaning that there are exactly the same amounts of positive and negative
indications on the target measure in the data used to discover the rule. SentSupp (For-
mula 8) tells us how often the premise of the sentinel occurs, and Conf (Formula 9)
tells us how often, when the premise occurs, the consequent occurs within w time. We
denote the minimum threshold for SentSupp by σ, the minimum threshold for Conf is
denoted by γ, and the minimum threshold for Balance is denoted by β. With these defi-
nitions, we say that a sentinel, A 	 B, with an offset, o, and a warning period, w, exists
in C when SentSuppA�B � σ, ConfA�B � γ, and BalanceA�B � β. We use the
following notation when describing a generalized sentinel rule: we use inv relative to
the first source measure which is never inverted. The order of the source measures in
a rule is unimportant for its logic, thus source measures can be ordered as it is seen
most fit for presentation purposes. In the case where the rule is uni-directional, we add
� or � to both the source and the target measure to express the distinct direction of the
sentinel. We add ∧ between the source measures, when there is more than one source
measure in a rule, e.g., A ∧B ∧ C 	 D, A ∧ inv(B) 	 C, and A� ∧B� 	 C�.

If we revert to our running example and apply Formulae 4, 5, and 6 to the data,
we get Table 2 as output. Using Formulae 7, 8, and 9, we test each rule to see if it
meets the thresholds MaxSource = 3, σ = 3, γ = 60%, and β = 70%. The column

Table 2. Sentinels ordered by their respective Conformance and Score

SentRules RuleLen SentSupp Conf Balance Score Conformance
(ElimSupp)

CstPrb ∧ inv(WHts) � inv(Rev) 2 4 (4) 100% 100% 0.83 OK
WHts � Rev 1 6 (4) 67% 100% 0.67 OK
NBlgs ∧ CstPrb ∧ inv(WHts) � inv(Rev) 3 3 (3) 100% 89% 0.47 OK
CstPrb � inv(Rev) 1 5 (3) 60% 89% 0.43 OK
NBlgs ∧ inv(WHts) � inv(Rev) 2 5 (3) 60% 89% 0.35 OK

NBlgs ∧ CstPrb � inv(Rev) 2 4 (2) 50% 0% 0.10 Failed
NBlgs � inv(Rev) 1 6 (2) 33% 0% 0.08 Failed
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Conformance lists the result of this test. We use same order as Table 1 to ease the read-
ability. With regards to the failing rules we should note that the uni-directional rules
NBlgs� → Rev� and NBlgs� ∧ CstPrb� → Rev� have higher confidence than the
bi-directional rules based on the same indications. However since our threshold for bal-
ance is greater than zero, these uni-directional rules would also fail and are thus not
listed in the table. In Table 2, the generalized sentinel rules found can be ordered by ei-
ther RuleLen, SentSupp, Conf, Balance, or a combination in order to describe the quality
of the rules. However, when using an optimization algorithm, e.g, hill climbing, it is de-
sirable to be able to describe the quality of a rule with just a single number. For this pur-
pose we denote the maximal value of ElimSupp for any sentinel in SentRules(C, o, w)
by MaxElimSupp(C, o, w).

Score(Source 	 Target) = (1 − wp +
(1 + Maxw − w) × wp

Maxw
)

× (
1
2

+
1 + MaxSource − RuleLen(Source)

MaxSource × 2
) × ElimSuppSource�Target

MaxElimSupp(C, o, w)

× ConfSource�Target × (
1
2

+
BalanceSource�Target

2
)

(10)

We define Score for a sentinel, Source 	 Target ∈ SentRules(C, o, w), as shown
in Formula 10. With this definition of Score, we introduce the threshold, Maxw, which
is the maximum length of the warning period, w, we are willing to accept. The constant,
wp, represents the warning penalty, i.e., the degree to which we want to penalize rules
with a higher w (0=no penalty, 1=full penalty). The idea of penalizing higher values
of w is relevant if a pattern is cyclic, e.g., if the indication of a sentinel occurs every
12 months, and the relationship between the indications on the source measure(s) and
the target measure is less than 12 months, then a given rule with a warning period w
is more desirable than the same rule with a warning period w+12. We also take into
consideration that it is desirable to have shorter, general rules with low RuleLen. This
prevents our algorithm from ”overfitting” rules and thus generating very specific and
therefore irrelevant rules. In addition, Score takes into consideration the actual number
of times the rule occurs in a cube, adjusted for contradictions, ElimSupp, as well as the
confidence, Conf, of the rule. Finally, we consider the Balance of the rule, since we
have a preference for rules that are bi-directional. In Table 2 the ordering by Score has
proven useful, and we note that the two bottom rules with the lowest Score are also
the rules that fail to meet the thresholds we set. Given these thresholds, and constants
set to wp = 1

2 ,Maxw = 10, we would expect a conforming rule to have: Score �
(1− 1

2 + (1+10−1)× 1
2

10 )× (1
2 + 1+3−3

3×2 )× 3×0.6
4 × 0.6× (1

2 + 0.7
2 ) = 0.15. We should

note that this is only a ”rule of thumb” since the values in Formula 10 may vary, thus
the thresholds needs to be inspected individually to determine if a rule is conforming
or not. With Score as a uniform way to assess the quality of a generalized sentinel rule,
we can now define Optimalw(C,o), as shown in Formula 11, which is the value of w,
1 � w � Maxw , where SentRules(C,o,w) contains the rule with the highest Score. The
reason for the construction details of Score is elaborated further in [13].

Optimalw(C, o) = w such that 1 � w, w′ � Maxw ∧ ∃S ∈ SentRules(C , o,w) :

(∀w′ �= w : (∀S ′ ∈ SentRules(C , o,w ′) : (Score(S) � Score(S ′))))
(11)
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SentRulesPruned(C , o,w) = S ∈ SentRules(C , o,w) |
� ∃S ′ ∈ SentRules(C , o,w) : (Score(S ′) � Score(S) ∧ IndSourceS′ ⊂ IndSourceS )} (12)

Having found the optimal w, it is also desirable to prune the generalized sentinel
rules such that we only output the best rules in terms of Score, and the shortest rules
in terms of number of source measures. For this purpose, we use the SentRulesPruned
function, as shown in Formula 12, that eliminates rules with poor quality (lower Score)
if a shorter rule exists with at least as good a Score, and where the indication set is a
proper subset of the longer rule.

We say that SentRulesPruned(C, o, Optimalw(C, o)) ordered by their respective
Score are the best sentinels in a database, C, with the offset, o. Using the SentRule-
sPruned function, we note that NBlgs ∧ CstPrb ∧ inv(WHts) 	 inv(Rev) in third
line in Table 2 would be eliminated since the shorter rule
CstPrb ∧ inv(WHts) 	 inv(Rev) has a better Score. In other words, we do not im-
prove the quality by adding NBlgs.

3 Discovering Generalized Sentinel Rules

Preliminaries: To discover all generalized sentinel rules in a cube, C, we intuitively
need to test all possible rule combinations where the number of source measures com-
bined varies from 1 to MaxSource, and the warning period, w, varies from 1 to Maxw.
However, as an alternative to this brute force approach, we apply two good approxi-
mations to improve performance, namely, Reduced Pattern Growth (RPG) to optimize
the combining of source measures, and hill climbing to optimize the auto-fit of warn-
ing periods. Intuitively, it is not hard to imagine that the number of source measures
has a significant impact on the performance of the algorithm since they can each have
indications in two directions, and all of these directions can be combined. This means
that the total number of combinations for k source measures is

∑l
x=1

2k!
(2k−x)! where

l = MaxSource. If we preserve the order of the source measures we can reduce the
number of potential rules (permutations) to

∑l
x=1

2k!
l!(2k−x)! , however, the number of

combinations still explode when a significant amount of source measures needs to be
examined. Therefore, there is a performance reward if we can prune the source mea-
sures that are unlikely to become part of any good rule, at an early stage in the algorithm.

Table 3. Logical Table of Combinations (TC) Example

IndM1 IndM2 IndM3 ... IndMp−1
CombSupp ElimSupp ElimSupp ElimSupp ... ElimSupp

w = 1 w = 2 w = 3 ... w = Maxw
Neutral Neutral Dec Dec 1 1 -1 -1 1
Neutral Inc Inc Inc 2 0 -2 1 1
Neutral Dec Dec Dec 3 -1 3 1 -1
Neutral Dec Neutral Dec 1 1 1 -1 0
Neutral Dec Dec Inc 1 -1 0 0 -1
Neutral Neutral Inc Dec 1 0 0 -1 1
Neutral Inc Neutral Dec 1 0 -1 1 1
Neutral Inc Inc Inc 1 -1 1 1 -1

Inc Inc Dec Dec 4 3 4 -1 0
Dec Inc Inc Inc 3 -3 -3 0 0
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From experiments on real-world data, we know that the likelihood of individual source
measures being part of a good rule can be described as a power law, meaning that a
few source measures are very likely to be part of many good rules for a given target
measure, whereas the majority of source measures are not likely to be part of a good
rule at all. Given this property of source measures, the ability to prune has a significant
potential for performance improvement. In addition to reducing the number of source
measures we examine, we can save time and memory by storing only the best rules in
memory. The RPG optimization, described below, has these two abilities.

The Table of Combinations (TC) (Table 3) is an intermediate table used for opti-
mization. The TC is generated in one pass over the cube, C. We use a sliding window of
Maxw + o rows in memory for each combination of (d2, d3, ..., dn) to update the indi-
cations (Formula 1) on source and target measures for w ∈ {1, 2, ..., Maxw}. For each
occurrence of combined source measure indications, (Indm1 , ..., Indmp−1 ), the target
measure indication, Indmp , is calculated for all values of w ∈ {1, 2, ..., Maxw}, and
the indications, ElimSuppw , are mapped to integers as follows: Inc→1, Dec→-1, and
Neutral→0. The discretized values are added to the fields ElimSuppw on the unique row
in TC for the combination (Indm1 , ..., Indmp−1 ). In addition, the field CombSupp on this
row is increased by 1. If a combination, (Indm1 , ..., Indmp−1 ), does not exist in TC, an
additional row is appended with the new combination. The TC holds all indication rules
with RuleLen(Source) = p − 1 with their respective ElimSupp (Formula 5), denoted
by ElimSuppw=x for all x ∈ {1, 2, ...,Maxw}. We store the additional information
about the direction of the target measure in the sign of ElimSuppw (positive=up, nega-
tive=down). The field CombSupp in TC holds the support of the given source measure
indication combination, and is used for calculating SentSupp (Formula 8). Once gener-
ated, the TC is a highly compressed form representing the information needed to mine
all potential sentinel rules in C. In the TC, a rule, SentRule ∈ SentRules(C , o,w), has
SentSupp =

∑
CombSupp (Formula 8) when selecting the rows that support either

IndSourceSentRule
or IndSourceSentRule

. Similarly, the components for Balance
(Formula 7) can be found as A =

∑
x∈X ElimSuppw where X are the rows that sup-

port IndSourceSentRule
, and B =

∑
y∈Y ElimSuppw where Y are the rows that support

IndSourceSentRule
. We recall from Formulae 4 and 6 that a bi-directional sentinel has

Balance > 0 and thus require a pair of indication rules with opposite directions.
In Table 3, the sentinel M1 	 Mp has SentSuppM1�Mp = 7, A = 3, and

B = −3, when w = 1 (as seen in column ElimSuppw=1 ), meaning that the rule
has ElimSuppM1�Mp = |A|+ |B| = 6. We note that A and B have been cleansed for
contradictions prior to insertion in the TC, and that the sign is a property used by the TC
and should thus be omitted. We have ConfM1�Mp = 0.857 and BalanceM1�Mp = 1
when the warning period, w, is 1. Similarly, we can find the values for M3 ∧ Mp−1 	
inv(Mp) by inspecting the rows where M3 
= Neutral ∧ Mp−1 
= Neutral. If we
set w = 2, we find SentSuppM3∧Mp−1�inv(Mp) = 14, A = −4, and B = 6,
ElimSuppM3∧Mp−1�inv(Mp) = 10, thus ConfM3∧Mp−1�inv(Mp) = 0.714. In addition,
we have BalanceM3∧Mp−1�inv(Mp) = 0.960. A sentinel is therefore typically com-
bined from multiple rows in the TC, i.e., a rule with RuleLen(Source) � MaxSource
will need a full scan of TC to identify ElimSupp, Balance, and SentSupp because
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Table 4. Source Measure Influence & Pareto Example

w InfM1 InfM2 InfM3 InfMp−1
InfAll InfM2 +M3+Mp−1

Pareto

1 2 6 6 7 22 19 86%
2 2 7 6 8 25 21 84%
3 1 6 6 8 24 20 83%
...

Maxw 0 5 6 7 18 18 100%

MaxSource << p. Since we do not know which source measure indications occur
at the same time, there is no generic sorting method that can optimize the scans further.

Reduced Pattern Growth (RPG) is a method that delivers a good approximation of
the top sentinel rules, and which is much more efficient than a full pattern growth of all
combinations of source measures. The quality of the approximation is examined in de-
tail in Section 4, specifically in Figure 4(a). In the RPG process, we identify the source
measures, that are most likely to be part of the best generalized sentinel rules for a given
value of w, as an alternative to testing all combinations of source measures. We do this
by inspecting the influence of the source measure in the TC, defined as the number of
rows in the TC in which a source measure has indications different from neutral while
at the same time the indication on the target measure is different from neutral (zero in
Table 3). With this definition we can assess the influence, Inf, of all source measures
for each value of w as shown in Table 4. We note that the source measure Mp−1 is the
most influential from our TC (Table 3), specifically it has an influence of 8 for values
w = 2 and w = 3, and it has an influence of 7 for values w = 1 and w = Maxw .
With the notion of the source measures “behaving” in accordance with a power law, we
apply a Pareto principle to select only the most influential source measures, meaning
that we select the source measures with a total influence that account for more than
RPGpareto % of the sum of the influence of all source measures. In Table 4 we see
that source measures M2, M3, and Mp−1 account for more than 80% of the influence
for all values of w, i.e. setting RPGpareto = 80% would mean that we only con-
sider these three measures for the values of w shown in the table. Alternatively, setting
RPGpareto = 85% would mean that source measure M1 would also be included in the
pattern growth for values w = 2 and w = 3. From this point, we grow sentinels from
the measures identified. Starting with 1 source measure, we add the remaining influ-
ential source measures one at a time to create longer rules until the maximum number
of source measures we desire is reached. In this process we only store a sentinel, and
continue to add source measures, if the added source measures give a higher Score.

Hill Climbing identifies the warning period, w, where the sentinel with the highest
Score exists as an alternative to calculating all max(Score) for all w. We optimize the
hill climbing process by changing w +22 in the direction of the local maximum while
Score increased. Once Score decreases, we have passed a local maximum, and we test
Score for w − 1 as well to ensure that we have not stepped over the local maximum.
During the hill climb, the set of sentinels with the highest Score resides in memory until
a better set for another value of w is found. Upon termination, the best set of generalized
sentinel rules SentRulesPruned(C, o, Optimalw(C, o)) resides in memory.
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Algorithm: SentHiRPG
Input: A list of facts from a cube, C, ordered by (d2, d3, ..., dn, t), an offset, o, a maximum
warning period length, Maxw, a maximum number of source measures per rule, MaxSource, a
warning penalty, wp, a threshold for RPG, RPGpareto, a threshold for indications, α, a minimum
SentSupp threshold, σ, a minimum Conf threshold, γ, and a minimum Balance threshold, β.
Output: Sentinel rules with a given warning period, Optimalw, and their respective SentSupp,
Conf, Balance, and Score.
Method: Sentinel rules are discovered as follows:

Procedure UpdateTC. For each cell pair, {(t, d2, d3, ..., dn), (t + o, d2, d3, ..., dn)} in
memory, calculate the indications (Formula 1) using α on source measures m1...mp−1,
discretize Indmi ∈ (Indm1 , ..., Indmp−1 ) as Inc, Dec, or Neutral. If combination
(Indm1 , ..., Indmp−1 ) does not already exist in Table of Combinations (TC), append row
to TC. For each w ∈ {1, 2, ..., Maxw}, for the combination (Indm1 , ..., Indmp−1 ), update
the value of the indication, ElimSuppw , by adding the indication (Formula 1) based on the
pairs, {(t + w, d2, d3, ..., dn), (t + w + o, d2, d3, ..., dn)} in memory, discretized as 1, -1,
or 0. In addition, increase the value of the combination support counter, CombSupp, by 1.

Function RPGmeasures(w); Returns a set of source measures. For each source mea-
sure, Mi ∈ {M1...Mp−1}, calculate influence as

∑
ElimSuppw for all rows in TC

where mi �= Neutral. Return source measures in ascending order of influence until∑
influence of source measures returned∑

influence of all source measures � RPGpareto .

1. Scan C, and when the sliding window of Maxw + o rows are in memory perform Up-
dateTC whenever a new row is read. From this point keep only Maxw + o rows in memory
by disregarding the oldest row whenever a new row is read until a new combination of
(d2, d3, ..., dn) occurs, at this point flush all rows and load new Maxw + o rows for the next
combination of (d2, d3, ..., dn). Repeat UpdateTC whenever a new row is read until the scan
of C is complete, and while the sliding window of Maxw + o rows exist in memory.

2. Find the value of w that corresponds to Optimalw(C,o) (Formula 11) by hill climbing on the
value of max(Score(SentRules(C,o,w))) (Formulae 6 and 10). The generalized sentinel rules
for each tested w, SentRules(C,o,w), are “grown” from 1 to MaxSource in RuleLen by com-
bining the source measures returned by RPGmeasures(w). Only rules with source measure
combinations where Score improves when adding an additional source measure are stored,
meaning that the output will be equivalent to SentRulesPruned (C, o, w) (Formula 12).
While testing different values of w, the sentinels with the highest score at any given time is
stored in memory and not flushed until a better set of rules exists for another value of w.

3. Output the “best” generalized sentinel rules from memory, i.e.,
SentRulesPruned (C, o, Optimalw(C, o)) (Formula 12), where SentSupp >= σ,
Conf => γ, and Balance >= β.

The SentHiRPG Algorithm: We assume without loss of generality that of the p mea-
sures in the cube, C, M1...Mp−1 are the source measures and Mp is the target measure.

Step 1 scans the cube, C, and builds the Table of Combinations (TC) (Table 3). Since
the data is received in sorted order by the time-dimension, t, for each combination of
(d2, d3, ..., dn), we only need a sliding window of Maxw +o rows in memory to update
the indications (Formula 1) on source and target measures for w ∈ {1, 2, ..., Maxw}.
Using the procedure UpdateTC, each unique combination of source measure indica-
tions, (Indm1 , ..., Indmp−1 ), that exists in the cube, C, is added or updated in the TC.
For each source measure combination, the indications on the target measure, Indmp ,
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are calculated for all values of w ∈ {1, 2, ..., Maxw}, and the indications, ElimSuppw ,
are mapped to integers as follows: Inc→1, Dec→-1, and Neutral→0. The discretized
values are added to the fields ElimSuppw on the unique row in TC for the combina-
tion (Indm1 , ..., Indmp−1 ). In addition, the field CombSupp on the row is increased by
1 each time the source measure combination occurs. In other words, as we scan the
cube, C, new unique combinations of (Indm1 ...Indmp−1 ) make the number of rows in
the TC grow. Every time one of these combinations are found during the scan, 1, -1, or
0 is added to the corresponding value for ElimSuppw , and the value of CombSupp is
increased by 1. Following Step 1, we have the contribution to ElimSupp (Formula 5) for
all values of w ∈ {1, 2, ..., Maxw} as well as SentSupp (Formula 8) for each source
measure combination in the TC.

When selecting the rows that support either IndSourceSentRule
or IndSourceSentRule

in
the TC, a rule, SentRule ∈ SentRules(C , o,w), has SentSupp =

∑
CombSupp (For-

mula 8). Similarly, the components for Balance (Formula 7) can be found as
A =

∑
x∈X ElimSuppw where X are the rows that support IndSourceSentRule

, and
B =

∑
y∈Y ElimSuppw where Y are the rows that support IndSourceSentRule

. We should
note that since we express the direction (Inc or Dec) with the sign of the indications
on the target measure, ElimSuppw , we need to use the absolute values for each di-
rection when calculating ElimSupp, thus we have ElimSupp = |A|+ |B | (Formulae 5
and 7). In the conceptual description of the TC, we calculated SentSuppM1�Mp = 7,
ConfM1�Mp = 0.857 and BalanceM1�Mp = 1 for the sentinel M1 	 Mp when
w = 1. Calculating Score with these values allows us to compare the quality of any
sentinel combined from the source measures and the target measure in C using the TC.

In Step 2 we identify the best value of w, Optimalw(C,o) (Formula 11), which
is defined as the value of w where the sentinel(s) with the highest Score exist(s)
(Formula 10). We use two optimization techniques for this purpose: hill climbing
and Reduced Pattern Growth as explained above. Hill climbing is a well-known
optimization technique [9] and it is an alternative to testing all values of w ∈
{1, 2, ..., Maxw} to identify max(Score(SentRules(C,o,w))) (Formulae 6 and 10). Dur-
ing the hill climbing process, whenever a value of w needs to be inspected to identify
max(Score(SentRules(C,o,w))), we apply the Reduced Pattern Growth (RPG) function,
RPGmeasures. Having identified the most influential source measures, we “grow” the
sentinels with RuleLen=1 to “longer” rules until RuleLen=MaxSource by combining
the source measures returned by RPGmeasures for a given value of w. During this pro-
cess we only store sentinels with greater RuleLen if the extended RuleLen translates
into a higher Score. This means that we are growing a set of sentinels equivalent to
SentRulesPruned(C, o, w) (Formula 12). Once all sentinels have been grown for a
particular value of w, the max(Score(SentRules(C,o,w))) value is returned to the hill
climbing process to determine whether to examine more values of w or not. During the
entire hill climb, the set of sentinels with the highest Score so far is stored in memory
until a better set is found for another value of w. Upon termination, the best set of gen-
eralized sentinel rules SentRulesPruned(C, o, Optimalw(C, o)) resides in memory.

In Step 3 the sentinels that conform with the thresholds for SentSupp, Conf and Bal-
ance from the set SentRulesPruned(C, o, Optimalw(C, o)) are output from memory.



44 M. Middelfart, T.B. Pedersen, and J. Krogsgaard

Computational Complexity: The algorithm has a complexity of O(n + c × p(q)l ×
kl × m) where n is the size of C, c is the size of TC, p the percentage of remaining
source measures expressed as a function of q, where q is RPGpareto, l is MaxSource,
and m is Maxw. In Section 4 we verify this assessment through extensive experiments.

Implementation: The SentHiRPG algorithm variants were implemented in Microsoft
C# and compiled into a stand-alone 64-bit executable file. The initial version loaded the
data directly from a Microsoft SQL Server during Step 1. However, this approach was
not able to feed the data fast enough to stress test the algorithm. As a consequence, we
loaded all data into main memory and from here into Step 1. This approach is realistic
(see Section 4) and it provided sufficient bandwidth to stress the algorithm in order
to see the effect of the optimizations applied. The TC built in Step 1 is stored in a
hash table where each source measure indication for a row is encoded into 2 bits. In
Step 2, when testing a given value of w, we found that testing all combinations of source
measures from RuleLen = 1 to RuleLen = MaxSource, and storing only longer rules
if Score improved, was far more efficient than a genetic algorithm without mutation. We
use the following algorithm variants: Brute: brute force, both optimization options are
off. Hi: Hill climbing optimization activated, RPG off. RPG: Reduced Pattern Growth
activated, hill climb off. HiRPG: both Hill climb & Reduced Pattern Growth activated.

4 Experiments

We use a range of synthetic datasets and a range of real-world datasets for the experi-
ments. The synthetic datasets closely resemble our running example and have the same
rule relationships, since the three source measures are duplicated to create a dataset
with any number of source measures. The synthetic datasets range from 1,000,000 to
10,000,000 rows in 1,000,000 row intervals, with 50 source measures and one target
measure. We note that the sizes of these datasets are huge compared to the real-world
dataset. In general, we would expect any real application of sentinels to work on sig-
nificantly fewer rows since we typically aggregate the data, e.g., into months or weeks,
before finding sentinels. In addition, we have generated datasets with 1,000,000 rows
and with 1, 10, 20, 50, 100 and 150 source measures and one target measure. The
real-world datasets are produced from the operational data warehouse of TARGIT A/S.
Based on experience with more than 3,600 customers worldwide, we will characterize
this dataset as typical for a medium-sized company with a mature data warehouse. The
original dataset contains 241 months (20.1 years) of operational data scattered across
148 source measures. Descendants of this dataset are produced by selecting a given
number of source measures randomly to produce datasets with 10, 20, 30, ..., 140 source
measures. When nothing else is specified, the synthetic dataset has 1,000,000 rows,
and the algorithm has the following settings: wp=0.5, MaxSource=3, Pareto=85%, and
thresholds: SentSupp=3, Conf =0.6, and Balance=0.7.

Scaling rows: In Figure 1 we validate that “HiRPG” scales linearly to 10 million rows
of data. In Figure 1(a) a “simple Brute” with TC optimization alone was far more effi-
cient than the baseline from prior art [11]. In Figure 1(b) we compare “simple Brute”
with “HiRPG ”; the distance between the lines is the cost of auto-fitting w over 50
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Fig. 2. Scaling the number of source measures

periods and combining 50 source measures. As expected, based on our assessment of
computational complexity, we observe “simple Brute” and “HiRPG” to scale linearly.
We observe the difference between “simple Brute” and “HiRPG” to be close to con-
stant for an explanation of the slight increase in runtime. In Figure 1(c) the variants
scale linearly as expected, and not surprisingly the fully optimized “HiRPG” is best.

Scaling source measures: Scaling the number of source measures on real data has an
exponential impact on all variants, but “HiRPG” and “RPG” are very efficient in reduc-
ing this impact. On the comparable synthetic dataset in Figure 2(b) “RPG”and “Hi” are
almost equal in efficiency, and we see “Hi” excelling when expanding the fitting period
in Figure 2(c). We attribute this to the existence of a true power law in the real data,
whereas in the synthetic data the relationships between source and target measures are
simply repeated for every three measures which means that many measures have strong
relationships. The fact that “Hi” improves further when increasing Maxw is not surpris-
ing since hill climbing specifically reduces the cost of increasing Maxw. We note that
for the synthetic data “HiRPG” is still by far the most efficient variant of the algorithm,
and although the dominant computational complexity is cubic in the number of source
measures (MaxSource = 3), the RPG optimization significantly reduces this impact.

Scaling the fitting period: In this experiment, we vary the Maxw over which we fit the
warning period, w. In Figure 3(a) and (b) we see that “HiRPG” is performing best when
scaling Maxw, followed by “Hi”, that lack the RPG optimization. Both variants scale
linearly to the extreme fitting over 10,000 periods. In Figure 3(c) the same lack of RPG
optimization is more evident on real data, given the power law explained earlier. The
slight decrease in runtime on the higher values of Maxw should be seen in the context
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that the dataset has only 241 rows. Therefore, we should not interpret the findings on
the real dataset as sub-linear scalability. In other words, we note that scaling the fitting
of w scales linearly as expected from our assessment of computational complexity.

Scaling parameters RPGpareto and MaxSource: In Figure 4(a) we see the recall
( Number of Sentinels - false negatives

Number of Sentinels ) of the top 10 to 100 top-Score sentinels for “HiRPG”.
We note the significant drop in the recall at RPGpareto = 80. In Figure 4(b) we
see performance for “HiRPG” when scaling RPGpareto. We notice the impact cost
when RPGpareto > 85. Combining Figure 4(a) and (b) suggests a recall “sweet-spot”
at RPGpareto = 85 (100% of top 10, and 88% of top 100) before the performance
cost “explodes”. In Figure 4(c) we scale MaxSource for “HiRPG”. We note that perfor-
mance on the real dataset passes the synthetic dataset as the complexity “explodes”. We
attribute this shift to the power law in the real dataset, i.e., as MaxSource increases, so
does the effect of the RPG process.

Qualitative Experiment: Apart from assessing the performance of SentHiRPG, we
also found interesting and business relevant sentinels on the real-world data, e.g, IF the
number of people involved in a customer decision process decrease AND the revenue
from training increase, both by 10% or more, THEN the total revenue for TARGIT A/S
is expected to increase by 10% or more within three months; and vice versa. In this
particular case for TARGIT A/S, it was surprising that the number of people involved
in the decision process could be used as an indicator, whereas it has been known for
some time that selling more training will typically make a customer expand his solution.
Intuitively, it makes sense that if more people are involved in a decision process, then it
takes more time, and therefore less revenue will be generated on the short-term. In [13]
these sentinels and their business potential is described in greater detail.
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5 Conclusion and Future Work

We have proposed a novel approach for discovering so-called generalized sentinel rules
(sentinels) in a multi-dimensional data cube for business intelligence. We extended prior
work to allow multiple measures to be combined into better sentinels using the novel
qualitative measures Balance and Score. In addition, these measures were used to auto-
fit the best warning period for the sentinel. We presented an algorithm that, given a
target measure, could autonomously find the best warning period and output the best
sentinels from this. In the algorithm we introduced a novel table of combinations (TC)
and a reduced pattern growth (RPG) approach, and we demonstrated the optimization
effect of these approaches in combination with a hill-climbing optimization to produce
from ten to twenty times improvement in performance. We showed that our optimized
algorithm scales linearly on large volumes of data and when fitting warning period over
large period intervals, and that it scales close to linearly when combining large sets of
source measures. We have previously demonstrated that sentinels can find strong and
general rules that would not be found by sequential pattern mining or correlation tech-
niques [11], this obviously holds even more for generalized sentinel rules.

For future work, a natural development would be to mine sentinels for multiple tar-
get measures simultaneously to improve performance. Secondly, we could exploit the
multi-dimensional environment by having sentinel mining fit the aggregation level on
dimensions as well as select the location and shape of the data area. Third, a paralleliza-
tion of SentHiRPG could improve scaling to datasets with even more source measures.

Acknowledgments. This work was supported by TARGIT A/S, Cassiopeia Innovation
and the European Regional Development Fund.
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Abstract. Scalability and availability are key features of parallel
database systems. To realize scalability, many dynamic load-balancing
methods with data placement and parallel index structures on shared-
nothing parallel infrastructure have been proposed. Data migration with
range-partitioned placement using a parallel Btree is one solution. The
combination of range partitioning and chained declustered replicas pro-
vides high availability while preserving scalability. However, independent
treatment of the primary and backup data in each node results in long
failover times. We propose a novel method for compound treatment of
chained declustered replicas using a parallel Btree, called the Fat-Btree.
In the proposed method, the single Fat-Btree provides access paths to
both primary and backup data in all processor elements, which greatly
reduces failover time. Moreover, it enables dynamic load balancing with-
out physical data migration, and improves memory space utilization for
processing the index. Experiments using PostgreSQL on a 160-node PC
cluster demonstrate the effect.

1 Introduction

The explosive growth of digital information, together with the high performance
and availability requirements, has driven a continuing interest in the research on
database systems in shared-nothing parallel environments in which replication
plays an important role in availability and scalability with load balancing among
the different processing nodes. However, existing replicated-database systems
have a weakness in scaling up under frequent update requests because of the high
costs of synchronizing the replicas. Well-known approaches for cloud applications
in large data centers, such as PNUTS, Dynamo and BigTable, sacrifice strong
consistency for scalability. However, they lose opportunities of using the high
system throughput for applications requiring stricter consistency, because the
replicas are not consistent most of the time in these approaches. Moreover, the
advantage of higher availability gained from the replication may also be lost in
the long run because of the inconsistency [26]. Therefore, this trade-off between
scalability, availability and consistency has long been an obstacle in efficient
replication techniques.
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To attack this problem, efficient data access methods guaranteeing consistency
between the replicas play an important role. The data access methods must also
be capable of handling sophisticated failover and dynamic load-balancing for
availability and scalability. Many parallel index structures have been introduced
to access the data stored in a shared-nothing environment [16]. For instance, the
Fat-Btree [24] and the aB+-tree [13] are range-partition-based parallel indexes
providing dynamic data allocation for high scalability. However, these parallel
indexes are mainly focused on throughput or latency rather than availability.

Chained declustering data placement [9] adopts a low degree of replication
to realize availability and scalability. From the availability point of view, only
low degrees of replication are required. The range-partition-based index method
is well suited to chained declustering. However, as far as we know, no valid
indexing methods have been proposed to consider the use of replicas in chained
declustering to enhance system availability and scalability.

We propose a database infrastructure for indexing range-partitioned data with
a low degree of replication to achieve high scalability and availability without sac-
rificing data consistency. We first consider a parallel index structure on a range-
partitioned chained replication database as a straightforward configuration for
the infrastructure. We then propose a novel method of compound replica treat-
ment utilizing the Fat-Btree index. It reduces the management cost of the in-
dex structure, balances load without data migration and enables shorter failover
times. We also adopt the neighbor write-ahead log protocol (nWAL) [10] adapted
to the proposed configuration, to reduce the synchronization cost between the
replicas without data loss.

The key innovative points of this work are: a) it is the first proposal for man-
aging both primary and backup within one directory structure; b) it has an
efficient automatic load-balance algorithm for dynamic load skew without data
migration; and c) it has an efficient failover algorithm for higher system avail-
ability without the cost of “promotion” backups. To the best of our knowledge,
no previous work provides practical dynamic load-balancing or failover utilities
in chained replication database systems, although they have long been claimed
[8, 20]. We have evaluated our method on a PC cluster with 160 nodes. The
experimental results demonstrate all the above-mentioned effects.

2 Background

We briefly review three technologies in shared-nothing parallel databases: data
placement strategies, parallel indexing structures and synchronization methods.

2.1 Data Placement Strategies

Chained declustering [9] offers high availability, scalability and load balancing
on shared-nothing parallel database systems [3]. Two physical copies of the re-
lation are declustered by the same partitioning strategy, and the corresponding
fragments of these two copies are stored on different Processing Elements (PEs),
so data on a failed node will not be completely lost during the failure.
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Basically, there are three types of partitioning strategies in chained declus-
tering: hash, round-robin and value-range. Hash partitioning is ineffective for
range queries and does not scale up [20], round-robin partitioning produces no
skew, but is ineffective for queries, while value-range partitioning can treat range
queries efficiently, but has a risk of load skew after repeated updates. Thus, each
partition strategy has limitations, and it is important to choose an appropriate
strategy and provide solutions to overcome the limitations.

2.2 Parallel Indexing Structures

To meet the demands of handling large amounts of data, parallel indexing struc-
tures have been proposed to provide dynamic data management, high through-
put and efficient load skew handling via the index nodes for these systems [17].

The Fat-Btree is a parallel Btree structure that was proposed to provide dy-
namic data management, high throughput and efficient skew handling [24]. In
a Fat-Btree, the leaf pages of the parallel Btree are distributed among PEs.
Each PE has a subtree of the whole Btree containing the root node and inter-
mediate index nodes between the root node and leaf nodes allocated to that
PE. In the Fat-Btree structure, there are multiple copies of index nodes close
to the root node, but they have a relatively low update frequency; on the other
hand, leaf nodes have a relatively high update frequency but are not duplicated.
Thus, the nodes with higher update frequencies have lower synchronization over-
head. Therefore, the maintenance cost is much lower than other parallel Btree
structures, such as Copy-Whole-Btree and Single-Index-Btree [24]. Moreover,
the Fat-Btree has a higher cache hit rate [24] and more efficient concurrency
control protocols LCFB [25] than conventional parallel Btrees [17, 14, 19,25].

2.3 Synchronization with nWAL

Write-ahead log (WAL) [7] is widely used in database systems to ensure atom-
icity and durability. However, transactions must be suspended to wait for the
forced log-write to stable storage before the new version replaces the previous
one. In replication databases, this inefficiency is solved by the neighbor WAL
(nWAL) protocol [10], which transfers the log of the transaction on PEi into the
memory of its replica nodes PEi+1 through the network before the transaction
commits. Moreover, nWAL is naturally suitable for maintaining data consistency
in range-partitioned chained replication systems, because the backup can always
be synchronized with the latest version of its primary by using the nWAL in the
memory. Thus, no extra synchronization messages are required.

3 A Straightforward Configuration

We present a straightforward configuration for our distributed replication
database with existing techniques.
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Fig. 1. Configuration of IndepIndexCDR

As mentioned in Section 1, the synchronization cost is the most serious ob-
stacle to achieving high performance and scalability in replication databases.
Considerable work has been done to reduce the costs [4, 6, 15, 11]. However, it
is hard to achieve satisfactory results unless the number of replica copies is re-
duced. As we know, the chained replication system only maintains one replica
for each piece of data, thus easily achieving higher throughput, availability and
stronger consistency compared with other replication schemes [8,20]. Therefore,
we treat the chained replication scheme as the base configuration.

To provide a global access path for the primary data in a chained replica-
tion system, some parallel index structure is required. We adopt the Fat-Btree
mainly because of its low cost in concurrency control [25] and high flexibility in
the compound treatment discussed in the next section. Alternative indexes are
discussed later in Section 6.

On the other hand, the backup parts may also be indexed to speed up syn-
chronization in most distributed databases. Because they are not required to
serve queries when no failure or skew happens, it is sufficient to maintain an
independent Btree for the backup in each PE. Therefore, we adopt the inde-
pendent Btree to index backups and name this configuration independent-index
chained declustered replication IndepIndexCDR.

3.1 Implementation of IndepIndexCDR

We implemented IndepIndexCDR using PostgreSQL and the Fat-Btree. Each
PE has an instance of PostgreSQL with a part of the Fat-Btree (a subFat-Btree)
to access its primary. Following the chained declustering strategy, the backup
is located in its primary’s right-hand neighbor and it receives the nWAL from
its primary synchronously, which may be applied to the backup asynchronously
after the primary transaction commits. Figure 1 illustrates this configuration.

Because of space limitations, we omit the detailed data access process in
IndepIndexCDR, which is almost the same as that in [24]. Note that for an
update request, an nWAL message is sent to the right node before the result is
returned to the user. The backup is then updated asynchronously by using the
local Btree index on the backup.
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3.2 Scalability in IndepIndexCDR

Because of the low degree of replication in IndepIndexCDR, the number of
synchronization transactions is greatly reduced. Moreover, unlike the original
chained replicated structure in [8, 20], in which only the head and tail PEs ac-
cepted query and update requests, IndepIndexCDR can access any data item in
primary storage from any PE by the Fat-Btree; thus, the overhead for handling
client requests is dispersed over all the PEs. Therefore, IndepIndexCDR should
have good scalability. We will report a quantitative experimental evaluation of
this later in Section 5.3.

3.3 Availability in IndepIndexCDR

We are not concerned with failure detection techniques here; we assume that a
failure can be detected, and only consider the failover efficiency.

Almost all the replication databases claim failover capabilities, but the recov-
ery time is seldom discussed. In addition, the metadata server that is required
in many systems introduces a possible bottleneck and single point of failure,
while no central node is required in IndepIndexCDR. Although a record of the
neighbor in the backup circle is required in each PE, it is only updated when
the adjacent PE fails, which is a low-probability event; thus, the cost may be
negligible. In addition, the nWAL ensures no data loss whenever a failure occurs.

However, this structure has its weak points. As the backup are not indexed
within the parallel index, they are not directly accessible from other PEs to
share the workload if the primary is overloaded. To make the backup accessible,
additional processes are required, such as merging the Btree with the subFat-
Btree on the primary, or dumping the backup into the primary to build the Fat-
Btree for these data. Obviously, the “promotion” process is very time consuming.

4 Compound Treatment

We now propose our solution, which overcomes the disadvantages while inherit-
ing the advantages of IndepIndexCDR.

As mentioned, the above configuration can be improved if both primary and
backup are managed by one parallel index. Fortunately, the chained declustered
replication places continuous logical fragments in the range partitions as a pri-
mary for the current PE and a backup for its neighbor. As shown in Fig. 2,
because the data are declustered and range partitioned, they can be coupled
into the Fat-Btree structure without any intersection. Because the compound
subFat-Btree on each PE also has overlapping intermediate paths to the subFat-
Btrees located on its neighbors, as in the original Fat-Btree, it provides the
access path from the root node to any data located in any PE either in pri-
mary or backup. Therefore, the independent Btree for the backup is no longer
required. We name this configuration the compound-index chained declustered
replication CompIndexCDR.



54 M. Luo, A. Watanabe, and H. Yokota

Fig. 2. Configuration of CompIndexCDR

Figure 3 shows an example of this configuration. The upper part shows a
global view of the intermediate nodes in the Btree index for all the data over
the range (1–60), which are evenly stored in four PEs. By using the original
Fat-Btree, some of the nodes will be replicated in several PEs because they are
overlapped. To help readers visualize this, we circle the nodes that have a copy
in each PE. We use a dotted line for PE1, a dashed line for PE2, a solid line
for PE3, and a dashed-dotted line for PE4. Note that the intermediate nodes
that have more than one copy in the PEs have pointers to the leaf nodes located
in other PEs. For example, the copy of node “1, 10” in PE2 has the pointer to
the leaf nodes “1, 7” and “10, 16” located in PE1 and the leaf node “10, 16”
located in PE2. Thus, these overlapped intermediate nodes make an access path
for tracing any data from the root among the PEs.

As shown in the lower part of Fig. 3, each PE has two subFat-Btrees for its
backup (left) and primary (right), respectively. For the same volume of data,
they may have similar index structure and intermediate nodes in their primary
and backup PE, such as the index of PE1’s primary and PE2’s backup, while
their leaf nodes have pointers to different data pages that are located in PE1’s
primary and PE2’s backup, respectively.

To maintain the overlapped paths in this compound Fat-Btree, we also main-
tain pointers in the parent nodes to all the copies of their child nodes. An example
of the overlapped paths for data in the range (31–40) is shown in Fig. 4. In this
figure, the root node “1, 20, 46” has paths to all the copies of the second-level
node “20, 31” and all the copies of this second-level node have the paths to the
primary’s and backup’s leaf nodes. To distinguish these pointers, we store them
with different flags, such as “P” and “B” in the intermediate node. Ordinarily,
transactions are carried out by using the pointers that are marked with flag “P”
in each intermediate node to access the primary data. nWAL will synchronize the
backup after an update. Because the transactions started by the nWAL manager
are local synchronization updates, they will use the index pointer marked by flag
“B”. Note that these pointers are kept available during structure modification
operations (SMOs) [25], by referencing all the SMOs in any primary PE to its
backup PE. Although the index structure may vary after the SMOs in each PE,
the access paths still exist in the intermediate nodes.
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Fig. 3. A Compound Fat-Btree Model

Fig. 4. Overlapped Paths in the Compound Fat-Btree

Our method does not introduce any additional overhead for keeping the
backup’s index up to date, even if indexing the backup for efficient synchroniza-
tion is very common in other replication databases. We show that the double-
index-sized CompIndexCDR does not reduce the throughput in Section 5.3.

4.1 Availability in CompIndexCDR

The time-consuming “promotion” process described in Section 3 is no longer
necessary in CompIndexCDR. In practice, we only switch the flag values between
“P” and “B”, or modify the indexes of the adjacent PEs that have overlapped
intermediate nodes with the failed one with value “P/B”.

For example, if PE3 fails, the new primary location information must be
modified only in PE2 and PE4, which have intermediate nodes with PE3. In
this case, PE2 and PE4 will receive data records (31–45). Then, the flags of
those intermediate nodes that covered this range of data records will switch in
two steps: Step-A, switch the flags of the corresponding leaf nodes between “B”
and “P”; Step-B, modify the flags of the other intermediate nodes having child
nodes that are switched in Step-A, following the rules: if all the child nodes of
an intermediate node are modified in Step-A, then switch the flag; else if the
original flag in the intermediate node is the same as that of the modified leaf
node in Step-A, then do nothing; else modify the flag to “P/B”, which means
some leaf nodes of this intermediate node are stored as backups while others
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can be accessed as primaries. After this process, node (P, 20, 31) in PE2 will be
(P/B, 20, 31) and node (B, 20, 31) in PE4 will be (P/B, 20, 31), while the “31”
in both nodes will have the primary point to the leaf node in PE4. Thus, requests
for the data located in this data range will be forwarded to PE4’s backup. If the
original PE fails, there is no need to modify the new backup’s location or the
intermediate nodes on PE3, and the “update” on the new primary does not write
to backup, which is different from the load balancing described later. However,
after the failed PE is replaced, the new backup’s location will be registered.

We verified that this failover process is much quicker than that of IndepIn-
dexCDR; a comparison experiment is presented in Section 5.4.

4.2 Scalability in CompIndexCDR

Load skew in a value-range partition may greatly degrade system scalability [3].
Ordinarily, data migration is required to handle the skew; this may take a long
time and destroy the efficiency of load balancing [2].

The declustering replication scheme [9] provides the ability to balance skews
without data migration. However, although there have been many studies on
this topic, so far as we know, no one has provided an implementation of this
capability in practice. In addition, the metadata servers introduced in these
studies may decrease system availability. Our system, CompIndexCDR has no
central node, and backups can share the workload with the primary PEs by some
simple configuration rules.

For the above example of four nodes, the load can be balanced without data
migration if, for example, the query frequency on PE1, PE3 and PE4 is α, while
the query frequency on PE2 is 2α, as shown in Table 1.We also assume that Pi

and Bi (i ∈ [1, 4]) in the table represent the same amounts of data. We assume
that the query frequency is known merely for convenience; in practical terms,
many methods have already been proposed to find the access probability on any
PE, for example, [21] is one of them and is suitable for the Fat-Btree.

Table 1. Before Load Balancing

PE1 PE2 PE3 PE4

Access rate α 2α α α

Primary P1 P2 P3 P4

Backup B4 B1 B2 B3

Table 2. After Load Balancing

PE1 PE2 PE3 PE4

Access rate 5
4
α

5
4
α

5
4
α

5
4
α

Primary P1+
1
4
B4

5
8
P2

1
2
P3+

3
8
B2

3
4
P4+

1
2
B3

Backup 3
4
B4 B1+

3
8
P2

5
8
B2+

1
2
P3

1
2
B3+

1
4
P4

We first assume the workloads are “all-read”. The balanced placement is
shown in Table 2. Because of space limitations, we omit the detailed description
of the balancing process. A general algorithm for load balancing is given in Fig. 5.

Next, we assume the workloads are “all-update”. The method still balances the
skew by using the same placement in Table 2. Note that each piece of data still
keeps a copy of its backup by changing the “old primary” into “new backup”
in the neighbor. For example, 3

8P2 on PE2. Similarly to Section 4.1, all the
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Dynamic Load Balancing
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Fig. 5. Algorithm for Handling Skews

“updates” on 3
8P2 will be forwarded through the intermediate path to PE2 or

PE3, then the “updates” are carried out on 3
8B2 at PE3, and the nWAL manager

on PE3 will send nWAL log messages to the backup PE2. Because the data
backups are always maintained in the system, future failures are still tolerable.

It is obvious that for update transactions, each node still has the same number
of transactions to be executed even if the placement in Table 2 is adopted. How-
ever, as the backups are updated asynchronously, the backup overhead can be
alleviated and the unexecuted updates can be preserved temporarily as nWAL
records until the overhead is remitted. Therefore, small load skews (i.e., a 2α
skew always arises after a node fails) can easily be balanced without data mi-
gration. Nevertheless, data migration is still necessary when the skew is more
than 2(n−1)

n−2 α (n is the number of PEs). However, even so, the proposed method
is able to halve the skew immediately, and reduce the data migration cost.

5 Experiments

It is hard to provide direct comparisons with former studies because, to the
best of our knowledge, no previous work exists that manages both primary
and backup within one directory or analyzes the failover efficiency issue in a
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Table 3. Experimental environment

Blade servers: Sun Fire B200x Blade Server
CPU: AMD Athlon XP-M 1800+ (1.53 GHz)
Memory: PC2100 DDR SDRAM 1 GB
Network: 1000BASE-T
Gigabit Ethernet Switch: Catalyst 6505 (720 GB/s backbone)
Hard Drives: TOSHIBA MK3019GAX

(30 GB, 5400 rpm, 2.5 inch)
OS: Linux 2.4.20
Java VM: Sun J2SE SDK 1.5.0 03 Server VM

chained declustering database. Instead, we compare our work with the well-
known Postgres-R (PG-R) and HBase replication DBMSs, as well as with the
naive-structure IndepIndexCDR that treats primary and backup separately, to
demonstrate the scalability and availability of our proposed approach.

5.1 Experimental Environment

The experimental system was implemented on a 160-node PC cluster system,
and the experimental environment is summarized in Table 3. We used continuous
integers to act as the primary key in each PE in these experiments.

5.2 Comparison with Postgres-R and HBase

At first, we compare the performance of CompIndexCDR with multi-replication
DBMS PG-R and HBase to assess our system performance.

PG-R [23] is the first significant research prototype to provide fully functional
database replication mechanisms based on an open-source database. HBase is an
open-source, distributed database modeled after Google’s BigTable; it provides
BigTable-like capabilities and has recently attracted much interest in the dis-
tributed database community. We chose these two systems as the criteria for our
comparisons. Although the configurations of these systems are different in repli-
cation strategies, what we focus on here is the comparison between full/partial
replication with our approach.

We use the same experimental configuration as in [23], which gives the most
recent performance results of PG-R, to make the first comparison. In this exper-
iment, both PG-R and CompIndexCDR contain five or 10 nodes and each node
stores 8000 tuples. The experiment is performed with 40 clients that are evenly
distributed on PEs. Figure 6-a shows the experimental results.

For the “all-read” result, PG-R clearly outperforms our system because of its
full replication scheme. However, as its authors declared [23], PG-R does not win
by much and will lose in scalability even for a moderate number of updates when
the system scales. In contrast, CompIndexCDR has a limitted update overhead
and share the load along the cluster. We verify its scalability with up to 64 nodes
in the next section.

We adopted the recently released HBase-0.20.2 to make the second compari-
son, which runs on our cluster system based on Hadoop-0.20.1 and jdk1.6.0.18.
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Fig. 6. Performance Comparison with Postgres-R and Hbase

We used the default settings in HBase and Hadoop throughout the experiments,
except for changing the replica degree to two, which is the same as in our system.
The “Datanode” number in our experiments is only up to 32 because the soft-
ware in current computation clouds typically uses significantly fewer instances.
For example, Amazon limits the number of nodes to 20 by default [27].

In this experiment, the dataset contains 10,000 tuples, and each tuple is 4
KBytes with four columns, and we have one client on each node to perform all-
read transactions. The results are shown in Fig. 6-b. We do not provide all-update
results here because they are almost the same as the all-read results. The figure
shows that the column-oriented DBMS with BigTable has better performance
for a small number of nodes. However, as our system has better scalability, it
soon outperforms Hbase as the system grows.

We can conclude from these experiments that, for scalability and through-
put, CompIndexCDR outperforms both the full-replication PG-R and partial-
replication HBase. A further examination of the availability follows.

5.3 Throughput Comparison

We compare the throughput and scalability of our two structures to reflect their
different index-traversing costs. The cost mainly consists of intranode and in-
ternode traverse costs. The first one is the cost for traversing a local index; larger
datasets increase this cost. The second one is the cost for locating remote data
as well as maintaining the distributed index; the low cost of this part is one of
the strengths of our index. Because the throughput only reflects total traversing
cost, and huge datasets increase the intranode cost in both systems, we show
the difference in the internode costs more clearly by initializing each PE with a
small dataset of 10,000 tuples, each of 134 bytes.

In the experiments, each PE receives the requests from their client nodes
simultaneously; the key in each request is generated randomly from the whole
data range. As for the 64 PE case, these queries will be: key = random(1, 640000);
select* from table where id = key; update table set value += 1 where id = key.
Because we focus on the index cost, we do not use complex queries. In addition,
each client sends 20 transactions to a PE serially and has a private thread on
the target PE to process its requests.
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Fig. 7. Scalability Comparison

Figure 7-(a,b) shows the scalability of our systems with 32 clients on each
node. Figure 7-a illustrates the all-read case. The performances of these two
structures are almost the same and their scalability is quite good. The through-
put increases by about 80% when the number of PEs is doubled. The missing
20% may result from the increasing amount of network communication caused
by the growing number of remote transactions in the larger system. Figure 7-a
also shows that although the index size of CompIndexCDR is twice that of In-
depIndexCDR, their throughputs are almost the same. The reason may be that
the backup is not accessed, so both systems have similar memory hit rates. Fig-
ure 7-b shows that CompIndexCDR has a better scalability for the all-update
workload. This may be because the backup in IndepIndexCDR is updated by an
independent Btree, while it is accessed within one compound index in CompIn-
dexCDR, therefore the index is not switched in memory. We do not provide
experiments for mixed read/write workloads, because they simply produce in-
termediate results between all-read and all-update workloads.

Figure 7-c shows the throughput and response time of CompIndexCDR at the
scale of 64 PEs with various client numbers per node. We omit the results at
other sizes, because those results are almost the same as this one. As the figure
shows, the throughput of CompIndexCDR increases with the client numbers.
When each node has 32 clients, the growth is moderate at a stable value that is
defined by the limitations of the CPU and I/O performance in our cluster system.
On the other hand, the response time also increases with the client numbers,
which is normal in DBMSs and is usually solved by adding more PEs to scatter
the workload. Figure 8-a shows the trend of response times as the number of
PEs increases. For a fixed workload of 256 clients in total, the response time is
effectively reduced because those requests are evenly scattered after new PEs
are added into the system.

5.4 Failover Time Comparison

In this experiment, we used four PEs, each with 10,000 tuples and each serving
two users. When a PE fails, we dump the backup into the primary and rebuild
the Fat-Btree for those data for IndepIndexCDR, and we take the failover as
described in Section 4 for CompIndexCDR. In Fig. 8-b, “Normal” stands for the
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Fig. 8. Response Time and Failover, Load Balancing Performance

time required to initialize 10,000 tuples in one PE. “Failover in Indep” stands for
the time taken by IndepIndexCDR to prepare a new primary. It is much higher
than the value for “Normal” because the PE must process ordinary requests while
making the new primary. As the graph shows, the failover in CompIndexCDR
takes less than 2 seconds, which is much better than the time for IndepIndex-
CDR. We also examined the throughput during failover. Figure 8-c shows that
the throughput decreases only slightly during failover.

5.5 Load Balance Comparison

In this experiment, we used four PEs, each with 10,000 tuples and serving 32
users 40% of the requests access the data in one PE and the other three PEs
share the remaining 60%, the same skew as in Sec. 4.2. Figure 8-d shows that
this skew decreases the throughputs in “all-read” and “all-update” by 25% and
15%, respectively. After using the balancing method in Sec. 4.2, the “all-read”
is almost the same as that of “no-skew” and the “all-update” is also much
improved, which verifies the effectiveness as argued in Section 4.2.

6 Related Work

The primary/backup approach has been studied to provide system availabil-
ity. The interleave declustering strategy provides an immediate load and space
balance, but at the cost of reliability. Chained declustering strategy handles the
range partition and reconcile high availability with load balancing without loss in
reliability. Hot mirroring and RAID suggest the possibility of a hybrid approach,
combining parity-based and primary-backup approaches.

On the other side, various parallel index structures have been proposed [16,
13,24] to provide efficient access method for declustering database. In addition,
[1] provides two alternatives for performing the necessary index modifications
(OAT), however, they both lead to considerable SMOs cost [13]. Fat-Btree [24]
vastly reduces the SMOs cost and improves the dynamic skew handling method.
[5, 12] provide load balancing solutions with less data migration.
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Unfortunately, all the above proposals mainly focused on only one or two
targets among reducing synchronization cost, rapid recovery, efficient access and
dynamic skew handling. They did not explore access methods or the use of repli-
cas to promote scalability and availability. Note that, other parallel indexes that
may be alternative in our method are not suitable for the compound treatment
as ours. For example, the “FirstTierIndex” of the “aB+-tree” [13] must be up-
dated immediately in all PEs after data reallocation. “GHT” in [16] requires an
“AST” in all PEs to record the primary/backup switch, and [12] require much
more modification of adjacent nodes’ indexes in skew balancing.

7 Conclusions and Future Work

We proposed a compound index treatment of a chained, replicated declustering
scheme CompIndexCDR for shared-nothing parallel database systems. So far
as we know, this is the first research to support rapid recovery, dynamic skew
handling and efficient data access, as well as reducing synchronization cost by the
compound management of primary and backup in a chained replication system.

As the CPU and I/O performance of the PC cluster we used in our experiments
are slower than those of current systems, we believe CompIndexCDR can achieve
much better performance once the hardware is upgraded. Thus, we conclude that
CompIndexCDR is a very good choice for highly scalable and available parallel
databases.

In this work, we have not considered the time for restoring a backup after
a failure. The adaptive overlapped declustering method [22] is a good way to
reduce the restoration time. In future, we plan to combine adaptive overlapped
declustering with CompIndexCDR. We also plan to consider the management of
multi-replica schemes to improve availability and performance.
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Abstract. Nowadays, data dissemination often involves online databases that are
hidden behind query forms, thus forming the deep web. Lately, there has been
a lot of research interest on supporting query answering over the deep web. To
answer a deep web query efficiently, the current approaches generate a query plan
for each query independently.

However, in practice, deep web queries issued by a user over a short period of
time can often share similarities. This, if properly utilized, can help us in gener-
ating more efficient query plan. In this paper, we have developed a solution for
generating query plan for a deep web query based on the similarities between a
given query and a set of earlier queries. Our algorithm systematically finds the
reusable components of earlier query plans, and then develops a new query plan
reusing these. While the resulting query plans may not be optimal, they are likely
to enable more data reuse, and hence, speedup the execution.

1 Introduction

Nowadays, data dissemination often involves online databases that are hidden behind
query forms, thus forming the deep web. To access data from the deep web, users need
to submit queries on the input interfaces of deep web sources by specifying values for
input attributes.

There has been a lot of work on supporting advanced query over deep web data
sources [19,18,2]. Because answering deep web query involves data transmission over
a network, current systems focus on finding an efficient query plan, either to use the
least number of data sources [19,18] or to minimize the amount of data transmitted
over the network[2,10]. Each of these methods, however, generates a plan for a query
independently, disregarding any previous queries and their query plans.

A given user, or users from a particular organization, may issue several closely re-
lated queries over a short time. In fact, a recent study on the surface web [16] and our
experience with a deep web query answering system [19,18], support this intuition.
Thus, a query plan generated considering a single query in isolation cannot fully utilize
the data cached from earlier queries. Instead, if one generates a query plan focusing
specifically on maximizing the reuse, we are much more likely to be able to reuse data.

This paper presents a novel query planning algorithm for deep web queries. Our goal
is to generate a query plan for a new query based on a set of similar (and reusable) pre-
vious queries and their query plans, achieve a high reuse of the cached data. While the
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resulting query plan may not be most efficient, its execution will replace many network
operations with simple data reads. Thus, it is going to be very likely to significantly
reduce the execution time. We illustrate our idea with the following example.

Example: A biologist, who is interested in the genes and Single Nucleotide Polymor-
phisms (SNPs) located in the two sex-determining chromosomes X and Y, issues two
queries related with her research. The first query Q1 finds “the IDs of all the SNPs, with
a heterozygosity value between 0 and 0.4, located in chromosome X”.

An efficient query plan for Q1 is shown in Figure 1(a). It shows that taking chro-
mosome X as the input, SeattleSNP data source will return the SNPs located at
chromosome X and the heterozygosity value of each SNP. By applying a filter on the
heterozygosity data, we could obtain the answers for Q1. The input and output attributes
of the data sources in this example is shown in Figure 1(d).

Now, another query, Q2 , issued by the same researcher wants to find “the IDs of all
the SNPs, with a heterozygosity value between 0 and 0.3, located in gene OTC”. If we
consider query Q2 independently, the plan we could generate is shown in Figure 1(b).
In this plan, given the gene OTC, we use dbSNP data source to obtain all the SNPs
located in OTC, along with the heterozygosity values.

There is a similarity between the two queries, i.e., both of them request SNP IDs
and heterozygosity values. Although SeattleSNP and dbSNP take different input
attributes, they have data redundancy, as shown in Figure 1(d). In other words, we can
obtain SNP IDs and heterozygosity data from both of the two data sources.

This motivates us to generate a new query plan for Q2 considering the already gener-
ated and executed plan for Q1. The alternative plan for Q2 is shown in the Figure 1(c).
SeattleSNP is reused. Since Q2 is closely related with Q1, i.e., the gene OTC is lo-
cated in chromosome X, the alternative plan could reduce execution time by reusing
previous results from Q1. In this alternative plan, given the gene OTC, we first use the
NCBI Gene data source to find the chromosome at which this gene is located, which
is chromosome X. Then, we use chromosome X as input to SeattleSNP, as in the
plan for Q1, to find the SNP IDs and their heterozygosity values. This alternative plan
may be viewed as sub-optimal since it involves more data sources, compared with the
original plan in sub-figure (b). However, it can effectively reuse the cached data from
Q1 and speedup query execution. Particularly, many remote data accesses are replaced
by local disk accesses, and the total execution time can be significantly reduced.

This paper presents algorithms to generate query plans for a deep web query, based
on previous similar queries and their plans, with the goal of reusing results from pre-
vious queries aggressively. Our approach is motivated by the following observations.
First, there is data redundancy across deep web sources [1]. The data redundancy dis-
cussed here focuses on partial data overlapping, i.e., two data sources may have over-
lapping data in terms of certain attributes. Data redundancy shows that a query can be
answered by multiple query plans with different set of data sources, and our aim is to
find the plan which could enable the most data reuse based on previous similar queries.

Second, deep web data sources return query answers in an All-In-One fashion, i.e.,
values of all the output attributes of a data source are returned, irrespective of the spe-
cific attributes requested in the query. For example, from Figure 1(d), we know that
given a chromosome number, SeattleSNP could provide data about gene names,
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Fig. 1. Motivating Example: (a) Query Plan for Q1;(b) Query Plan for Q2 Generated Indepen-
dently; (c) Alternative Query Plan for Q2 Generated based on Q1; (d) Input and Output Attributes
of SeattleSNP and dbSNP Data Source

ontology functions, SNP IDs and SNP heterozygosity. In the above example, although
Q1 only asks for the SNP ID and the heterozygosity data, in fact, all the outputs of
SeattleSNP will be returned, including the gene names and the ontology functions.
This All-In-One feature of the deep web sources can facilitate data reuse. This is clearly
in contrast with relational databases, where only the values of the attributes that are
explicitly stated in the select clause of a query are returned.

Taking advantage of the above features of deep web sources and queries, our ap-
proach is as follows. We not only cache previous extracted data, but more importantly,
cache the query plans for previous queries. Thus, we generate query plans for a new
query based on the plans of the previous similar queries. If previous plans are reused,
the likelihood of data reuse can be significantly increased. Because deep web queries
are read-only queries and the content of such data sources is relatively static, we do not
consider concurrency control issues or advanced data caching techniques [9].

The rest of the paper is organized as follows. In Section 2, we formulate our query
reused-based query planning problem. We introduce the detail of selecting reusable
previous sub-query plans in Section 3, and the query planning algorithm QPReuse in
Section 4. In Section 5, we evaluate our system. We compare our work with related
efforts in Section 6 and conclude in Section 7.

2 Problem Formulation

This section gives a formal description of the problem we are focusing on. Initially, we
define the query and query plans we consider in our work.

2.1 Queries and Query Plans

Queries. We consider the queries in the select-project-join (SPJ) format. For example,
the query Q1 in the motivating example can be represented as follows.

Example 2.1
SELECT s.SNPID, s.Heterozygosity
FROM SNP s, CHROMOSOME c
WHERE 0<s.Heterozygosity<0.4 AND s.chromsome=c.chromosome AND c.chromosome=’X’
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We extracts search terms from the select and where clause. Search terms consists of
the entity terms ET and attribute terms AT . Entity term is used to initiate the answering
of the query. When querying a deep web data source, a user must specify values for
the input attributes of the data source to initiate the search, and these values are the
entity terms. The search term(s) in the where clause with a value assignment are entity
term(s). In example 2.1, chromosome X is an entity term. Besides the entity terms,
all other search terms are attribute terms. In answering the query, we need to obtain
the values of these attribute terms. In example 2.1, SNPID and Heterozygosity are
attribute terms. Overall, a deep web query considered in our work implies that we find
the data records that are specified by the entity term(s), and then obtain the values of
the attribute terms from these records.

Query Plans. A query plan P of a query Q is defined as a graph P = (V, E, V0). V is a
finite set of data sources in the query plan. E is a set of directed edges in the plan, each of
which indicating an inter-dependence relation between a pair of data sources. An edge
e pointing from node A to B implies that data source A provides the input attributes for
B. V0 is the set of starting data sources of the plan. Suppose P is the query plan of a
query Q, we want the set of all output attributes of the nodes in P covers all attribute
terms in Q, and the set of all input attributes of the nodes without incoming edges in P
covers all entity terms in Q. The data source nodes covering attribute terms are called
target nodes, and the data source nodes covering entity terms are called starting nodes.

The reason why such a graph P forms a valid query plan for Q is as follows. For an
attribute term ta in Q, we want to obtain its value from certain data sources, so we need
at least one node in P that outputs (or covers) ta. For an entity term te, te helps initiate
answering of Q. Thus, we need the input of the starting nodes in P to cover te.

2.2 Query Reuse Problem

To formulate the query reuse problem, we use the following definitions.

Query Subplan: We define a query subplan SubP of an original query plan P as a
connected sub-graph of the original query plan graph. Formally, SubP = (V

′
, E

′
, V

′
0 )

where V
′ ⊆ V , E

′ ⊆ E, V
′
0 ⊆ V and |V ′

0 | > 0.

Query Subplan Set: The query subplan set SubPSet of query plan P is the set con-
taining all query subplans of P .

Ψ Selection: Given a new query and a previous query with plan P , we want to determine
the subplan of P that, among all subplans of P , will enable maximal reuse for the
new query, and of all subplans enabling such maximal reuse, will involve fewest data
sources. This is captured through the Ψ selection operator. The selected query subplan
is denoted as Ψ(SubPSet(P )).

Problem Definition: Using the above terms, our query reuse based query planning
problem is formally stated as follows. We are given a list of n previous issued queries,
each of which has a query plan Pi. Given a new query, we want to construct its query
plan using a list of Ψ selected query subplans, Ψ(SubPSet(P1)), Ψ(SubPSet(P2), . . . ,
Ψ(SubPSet(Pn)) and other necessary data sources. We obtain the query plan for the
new query, and while executing this query plan, we reuse previously cached data.
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2.3 Solution Overview

To solve the problem formulated as above, we take the following steps. First, we define
a reusability metric to identify the query plans that we would be beneficial to reuse.
We consider these as reusable queries and query plans. Second, we select a list of such
reusable previous queries and their plans, and then apply the Ψ selection function to
obtain the sub-query plans we will like to reuse. Here, one challenge that we address
is performing Ψ selection without explicit enumeration of all query subplans. Third,
we modify the bidirectional query planning algorithm proposed in our earlier publica-
tions [17] so as to generate a query plan based on a list of selected reusable sub-query
plans. Here, a particular issue is balancing the trade-off between reuse and plan quality.
The first two issues are described in Section 3 and the last one is detailed in Section 4.

3 Reusable Sub-query Plan Selection

In this section, we describe how reusable query subplans are selected from cached
queries and their plans.

3.1 Query Reusability Metric

For two queries Q1 and Q2, we want to know the potential of reusing Q1 in answering
Q2. An intuitive method is to count how many common attribute terms they have. How-
ever, this method is not sufficient. For example, given a chromosome, the SeattleSNP
data source returns four attribute terms as shown in Figure 1(d), which are t1=SNPID,
t2=Heterozygosity, t3=Gene Name, and t4=Ontology Function. For a biologist
only interested in the SNPs, his query Q1 would only contain two attribute terms, t1,
and t2. For another biologist who is more interested in the genes, her query Q2 would
contain the other two attribute terms, t3 and t4. However, due to the All-In-One feature
of deep web data sources, when the first query is being answered, the values of t3 and
t4 are also returned. Thus, Q2 can be answered completely by reusing the results of
Q1. In the rest of this paper, we use the attribute term set to represent the query. For
example, query Q1 can be represented as Q1={SNP ID, heterozygosity}.

To capture this observation in the query reusability metric, we formally define an
augmented query as follows.

Augmented Query: Suppose we have a query plan P for a query Q. The augmented
query of Q, Q∗, has the same entity term set as Q, but the attribute term set of Q∗ is
constructed as follows. For each vi ∈ V , we extract all terms tij ∈ Output(vi) and the
augmented query Q∗ is defined to be Q∗ = {t11, t12, . . . , t1k1 , . . . , t|V |1, . . . , t|V |k|V |}
where ki = |Output(vi)|. Clearly Q∗ is a superset of Q, and we say that Q∗ is an
augmented query of Q related to the plan P , and denote it as AP (Q). Considering the
query Q1 in the motivating example, since the data source SeattleSNP is the query
plan for answering Q1={SNP ID, heterozygosity}, the augmented query of Q1 is
AP (Q1)={ SNP ID, heterozygosity, Gene Name, ontology function}.

To compute the reusability of Q1 for answering Q2, we first obtain the augmented
query of Q1, AP (Q1). The query similarity between Q1 and Q2 depends on the sim-
ilarity between the attribute sets of AP (Q1) and Q2. We first define the similarity be-
tween two attribute terms. In general, an attribute term can be in the following format
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vlow < (=) attribute term label < (=)vhigh, where vlow and vhigh are the
range constraint values. For two attribute terms a1 and a2, the similarity is defined as

Sim(a1, a2) =

{
0 if label(a1) �= label(a2),
Range(a1)∩Range(a2)
Range(a1)∪Range(a2)

if label(a1) = label(a2).

For two queries Q1 and Q2, we use Sreuse to capture the similarities of the common
attribute terms in AP (Q1) and Q2. We define Sreuse =

∑
ai∈AP (Q1)

∑
aj∈Q2 Sim(ai, aj).

We use Spenalty to capture the attributes that Q2 contains but AP (Q1) does not. These
attributes are requested by the new query Q2 but not retrieved by AP (Q1), as a result,
they should be considered as a penalty for reuse. Specifically, we define Spenalty =
|{ai|ai ∈ Q2 and ai /∈ AP (Q1)}|. Similarity, we use Spartialpenalty to denote the
number of attributes that AP (Q1) contains but Q2 does not. These attribute terms are
retrieved by AP (Q1) but not requested by Q2 lower the similarity between Q2 and
AP (Q1), even though they do not adversely impact the reuse of Q1 for Q2. We define
Spartialpenalty = |{ai|ai /∈ Q2 and ai ∈ AP (Q1)}|.

Based on the above definitions, the similarity function between Q1 and Q2 is Sim
(Q1, Q2) = F(Sreuse, Spenalty , Spartialpenalty). The function F can be implemented
in different ways, but it must meet several properties. First, F should be symmetric,
second, it should be bounded within the interval [0,1]. Finally, F should be a non-
decreasing function with respect to Sreuse, and a non-increasing function with respect
to both Spenalty and Spartialpenalty .

3.2 Ψ Selection of a Reusable Query Subplan

Suppose an earlier query Q1 has a high reusability score for a new query Q2. How-
ever, we cannot just reuse the entire plan of Q1, because the plan of Q1 may extract
some terms which are not requested by Q2. We need to use a selection function to find
a subplan that satisfies the following two conditions: 1) the subplan maximally covers
Q2, and 2) the size of the subplan is minimal. We use the maximal coverage condition
to select the previous subplan which could enable the maximal reuse. For the second
condition, when we have a cache hit, the cost would be the number of local disk ac-
cesses, which is proportional to the number of data sources in the reused subplans. As
a result, the minimal size condition is used to select the previous subplan which causes
the lowest cost.

To explain the idea, we use the following example. The augmented query of Q1
is AP (Q1) = {t1, t2, t3, t4, t5, t6, t7, t8}. The query plan of Q1 is shown in the sub-
figure (a) of Figure 2. The terms inside each nodes indicate the output set of the data
source, and the terms located above the arrow of each link indicate the input terms of
the pointed data source. The new query we consider is Q2 = {t1, t3, t4}.

Maximal Coverage Query Subplan: We consider a query subplan SubP to be max-
imally covering a new query Q2 iff the keywords covered by all the data sources in
SubP is a superset of the common terms in Q2 and AP (Q1).

In the example in Figure 2, sub-figures (b),(c) and (d) are all Maximal Coverage
Query Subplans of the plan (a) w.r.t Q2. The subplan in sub-figure (d) shows maximal
coverage subplans with minimal size.
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Subplan Selection Problem Formulation:
The subplan selection problem can be converted to a graph problem as follows. The
query plan of a previous query is considered as a graph G = (V, E), where V is a set of
data sources. Each vi ∈ V covers a set of terms Si. We define the set of terms covered
by any data source in the graph G as GS =

⋃
∀vi∈V Si. Given a new set T , which

is a subset of GS, we want to find a connected subgraph of G, SubG, which covers
all elements in T , while having the minimal size. We call this problem the connected
subgraph set cover problem. We have established the following Lemma 1.

Fig. 2. Example for Ψ Selection: (a) Query Plan of Q1, (b) Ψ Selection Step 1, (c) Ψ Selection
Step 2, (d) Ψ Selection Step 3 (minimal size obtained) (e) A query plan with only partial coverage.

Lemma 1. The connected subgraph set cover problem is NP-hard.

The proof of Lemma 1 is omitted due to lack of space. The basic idea is that we could
reduce the set cover problem to the connected subgraph set cover problem.

In view of the above lemma, we have developed a polynomial-time but heuristic Ψ
selection algorithm. The algorithm is based on two heuristics, The first heuristic is to
give preference to nodes covering search terms, which implies that we prefer to include
the node which can cover some search terms of the new query. The second heuristic
is to give preference to nodes close to each other. The idea of this heuristic is shown
in Figure 2(a). Suppose the set of elements we want to cover is T = {t1, t2, t6}. We
can see that the nodes A and F cover T with minimal size, which is 2. But, if we want
to connect A and F using a subgraph, the smallest subgraph has a size of 6, (it will
contain A, B, C, D, E and F ). We can also observe that the nodes D, E, and F also
cover T . Although here we use three nodes to cover T , but the subgraph connecting
these three nodes only has a size of 3. The reason is that the nodes we selected were
already connected to each other.

The Ψ selection algorithm scans the data sources in the query plan, in the reverse
topological order. During the scan, a data source D in the plan P of previous query Q1
is removed if it meets any of the following two conditions: 1) D cannot provide any
terms requested by Q2 (heuristic 1) 2) D can provide some terms requested in Q2, but
is subsumed by one of its predecessors (heuristic 2).

To explain what we mean by subsumed, we use the following definitions. The data
source Di contains Dj according to a new query Q2 iff Output(Di) ⊇ Output(Dj)∩
Q2. The data source Di topologically contains Dj iff Di topologically precedes Dj

and Di contains Dj . Finally, the data source Di subsumes Dj if the following two
conditions hold: 1) Di topologically contains Dj , and 2) Dj has no descendants in the
current subplan or although Dj has descendants, the output from Di could provide the
input of Dj’s descendants. When Di subsumes Dj , we can remove Dj , and if Dj has
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descendants, we can link Di directly to Dj’s descendants. From the above definition,
we can know that if Di subsumes Dj , Di covers the required search terms that Dj

can and meanwhile Di topologically proceeds Dj . Since we scan data sources in the
reverse topological order, if we find other data sources which covers other requested
search terms later, these data sources would be nearer to Di than Dj . The replacement
of Dj for Di shows the application of the second heuristic.

We use the example in Figure 2 to illustrate the Ψ selection method. The algorithm
starts from node F in sub-figure(a). Since F cannot provide any terms in Q2, F is
removed(sub-figure (b)). Then, similar as F , data sources E and G are removed. Node
D provides term t4, which is requested by Q2, so D is kept(sub-figure (c)). Data sources
B and C are examined next. Both of them provide terms in Q2, and B subsumes D
because: 1) B covers t4(B contains D), 2) B topologically precedes D(B topologically
contains D), and 3) D doesn’t have dependents. As a result, D is subsumed by B and
D is removed from the plan. Sub-figure(d) shows the final subplan.

3.3 Algorithm for Selecting Reusable Query Subplans

Our overall algorithm combines the ideas from the discussion above. One issue, how-
ever, is that for certain queries, we may want to reuse subplans from multiple prior
queries. This is done through a greedy algorithm as follows.

Step 1: Given a new query Q2, from all previous cached queries, we find the query
Q1, which has the highest reusability value. If the reusability value is greater than a
threshold, the algorithm continues. Otherwise, the algorithm terminates.
Step 2: We obtain the augmented query of Q1 and invoke the Ψ selection function
to obtain the corresponding reusable query subplan and add it into a reusable query
subplans list.
Step 3: We update the query Q2 by deleting all search terms which are covered by the
reusable query subplan generated in the previous step.
Step 4: We repeat steps 1 to 3 using the updated query Q2, until the algorithm termi-
nates. The last updated Q2 contains the search terms which cannot be covered by any
previous reusable query subplan and we define it as the remainder query.

4 Query Plan Generation Algorithm QPReuse

In the previous section, we described how we convert a new query Q2 into a list of
reusable query subplans and a remainder query. Now, our goal is to generate a query
plan for Q2. The planning algorithm QPReuse we present for this purpose is modi-
fied from the bidirectional deep web query planning algorithm proposed in our earlier
publications [17]. Initially, we give an overview of this algorithm.

4.1 Background: Bidirectional Query Planning for Deep Web Query

There is a dependency graph capturing the dependency between data sources, i.e., if
the output of data source A can be used as the input of data source B, there is an edge
pointing from A to B. Given a query with n search terms and a dependency graph, we
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first identify the target nodes and starting nodes in the dependency graph as described
in Section 2.1. Then, we want to find a subgraph which connects the starting nodes with
the target nodes and at the same time covers all search terms. There maybe multiple
such subgraphs can be valid query plans. Among them, we want to select the one with
the least execution time and likely to give the highest quality of results. In our approach,
we combine these two considerations into one benefit model.

Bidirectional Algorithm Overview: We explore the query plan in a bidirectional man-
ner. We perform backward exploration from the target nodes to connect them with start-
ing nodes. To accelerate this process, we also do forward exploration from the starting
nodes. In this way, the bidirectional exploration can meet mid-way.

Bidirectional Exploration: Initially we add all starting nodes to a forward exploration
queue, and all target nodes to a backward exploration queue. Then, the algorithm tries
to find a optimal sub-graph to connect the target node set with the starting node set. At
each iteration of the sub-graph exploration, the algorithm always selects the node with
the highest benefit, CN , from the two queues. If CN belongs to the forward queue, all
out-going neighbors of CN are explored. If CN belongs to the backward queue, all
in-coming parents of CN are explored.

Edge Exploration: To build the sub-graph as the final query plan, paths (sequence of
graph edges) must be explored to connect target nodes with starting nodes. Here, we
always connect pair of nodes through the shortest path. This is realized by modifying
the Dijkstra’s shortest path algorithm.

Algorithm Termination: When every search term can be reached from at least one
starting node with finite distance, a query plan is found.

4.2 Modified Algorithm for Enabling Reuse: QPReuse

We first give the intuition behind query planning using previous plans, and then we
explain the detail of two modifications we made to our bidirectional planning algorithm.

The query planning algorithm QPReuse takes two input parameters. The first is the
remainder query, denoted as RQ = {t1, . . . , tk}, k ≥ 0, where each ti is a search term,
The second parameter is the query template QT = {qt1, . . . , qtn}, n ≥ 0, where each
qti is a reusable query subplan selected by the Ψ selection algorithm. If n = 0, there is
no reusable query template, so we simply invoke our bidirectional planning algorithm.
For other cases, we treat the remainder query as an ordinary query and do the query
planning using the bidirectional algorithm. But we want to use the query templates
whenever possible. To achieve this, we modify our bidirectional algorithm as follows.

In our QPReuse algorithm, we perform the forward and backward exploration in
the normal fashion, till we reach a point where the current selected data source to be
explored, denoted as CN , is in one of the templates in QT , qti. Now, we suspend
the normal bidirectional planning, and instead, we do a depth first exploration from
the node CN , along the edges in qti (the selected reusable subplan), to include all
data sources in qti to be in the query plan of RQ. After the exploration of data sources
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in qti, we return to the normal bidirectional planning. The depth-first exploration of the
query template is referred to as a detour exploration.

Detour Exploration: Suppose data source CN is currently being explored, and CN is
involved in a query template qt. In detour exploration, we first do backward explorations
from the node CN till we reach the starting node(s) of the query template qt. After the
backward explorations, we start from node CN again to do forward explorations.

In the backward detour function, all the immediate parents of the current node are
explored in a recursive fashion. The forward detour function works similarly and the
immediate descendants of the current node are explored in a recursive fashion. An
important difference between backward and forward detour exploration is that in the
backward version, if we reach the starting node(s) of the query templates, we do not
just stop. Instead, we do an extra backward exploration from the starting node(s) of the
query template to its parents outside the query template. The reason is that the query
template is only a detour, and we ultimately need to connect the starting node(s) of the
detour with node(s) in the main query path that is generated by the original bidirectional
algorithm.

Modified Edge Exploration: In our bidirectional planning algorithm, like the Dijk-
stra’s shortest path algorithm, the shortest distance from a node to search term is up-
dated whenever a shorter path is found through a newly explored node. However, in
QPReuse, because we want to give higher priority to the detour path which normally
have longer distance, we lock the shortest distance if it is achieved by going through a
detour path. This ensures that it is not updated by a path generated by the normal bidi-
rectional algorithm. We call this shortest path locking for detour. The other issue is that
although we give priority to the detour path, we do not want to penalize the normal path
severely. In other words, we do not want to reuse previous plans if it results in extremely
large query plans. As a result, the lock is released if the distance coming from a normal
path is much shorter than the locked shortest distance obtaining by a detour path. The
release of the lock is controlled by a specified threshold.

4.3 Managing Cached Queries and Query Plans

The admission of a new query plan depends on the newness of the plan. The Newness
of the plan is the benefit score of all nodes and edges not in any reused query templates.
The score coming from the remaining nodes and edges is the Re-usage of the new plan.
For a new plan np, if Newness(np) ≥ α × Re − usage(np), np is admitted. When a
new plan is admitted, some previous cached plans may be covered by the new plan,
and should be replaced. If the similarity score between the augmented query of the new
query and the augmented query of a previous cached query is greater than a threshold,
the previous cached query is removed.

5 Experimental Results

In this section, we describe the experiments we conducted to evaluate our techniques.
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5.1 Experiment Setup

We used 12 biological deep web sources, which includes dbSNP1, Entrez Gene1,
Protein1, BLAST1, SNP5002, Seattle3, SIFT4, BIND5, Human Protein6, HGNC7,
Mouse SNP8, and ALFRED9. A collaborating biologist provided us 24 real queries,
which were divided into 4 groups, with each group intended to simulate a list of similar
queries. The first query in the first, third, and the fourth group, and the first two queries
in the second group, are considered seeds, and the rest of the queries in each group are
considered as new coming queries. The reason we put 2 seeds in the second group is
that we want to test our algorithm when there is a potential for reusing multiple previous
queries.

Table 1 shows the Cumulative Reusability Score (CRS) for the 24 queries, which
is computed as follows. We consider all previous queries in the same group as one
single existing query, and then compute the reusability score between the new query and
the existing query. In our evaluation, we compared three scenarios. They are Baseline
with No Data Reuse (BaseNDR), Baseline with Data Reuse (BaseDR), and our Query
Reuse Method with Data Reuse (ReuseDR). The BaseNDR refers to the method that
both query plan generation and plan execution of a new query are independent of any
previous query. The BaseDR refers to the case that we generate a query plan for the
new query independent of any previous queries. But, during plan execution, we reuse
any reusable data. The ReuseDR method refers to the strategy proposed in this paper.

Table 1. Experiment Queries

Group1 CRS Group2 CRS Group3 CRS Group4 CRS
SeedA N/A SeedB N/A SeedD N/A SeedE N/A
Q 1.1 43% SeedC N/A 3.1 60.3% 4.1 60%
1.2 37% 2.1 92% 3.2 60.5% 4.2 51.4%
1.3 43% 2.2 80.4% 3.3 55.6% 4.3 54.3%
1.4 37% 2.3 76% 3.4 51.4% 4.4 52.5%
1.5 41.5% 2.4 70% 3.5 46% 4.5 48%

5.2 Evaluation Metrics

Query Execution Time: Query Execution Time is the time for query planning and the
time for actually issuing the query on each of the data sources in the plan.

1 http://www.ncbi.nlm.nih.gov/
2 http://snp500cancer.nci.nih.gov/home 1.cfm
3 http://pga.gs.washington.edu/
4 http://blocks.fhcrc.org/sift/SIFT.html
5 http://www.bind.ca
6 www.hprd.org
7 www.genenames.org
8 http://mousesnp.roche.com/
9 http://alfred.med.yale.edu/alfred/
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Query Plan Score: For each query, we compute the score of the query plan generated
by the BaseNDR and our ReuseDR using the benefit model in the bidirectional planning
algorithm [17]. We want to examine whether the desired trade-off between plan quality
and plan execution time is achieved.

Actual Query Result: For the query plans generated using our method, we record the
query results. We want to know whether the results from our method are correct and
complete comparing with the true answers provided by our collaborating biologist.

5.3 Experimental Results

Comparing Query Execution Times: Figure 3 shows the comparison of query execu-
tion time for the three scenarios, BaseNDR, BaseDR and ReuseDR. The x axis is the
query number in each group (the seed is excluded), and the y axis is the speedup that
each scenario achieves compared to the BaseNDR method.

In the Figure 3, five queries are highlighted by ovals, and will be discussed below.
For all the remaining 14 queries, both BaseDR and ReuseDR significantly outperformed
BaseNDR. Our method ReuseDR outperformed BaseDR in 13 of the 14 queries, and
in 8 of the 14 queries, our method achieved at least twice the speedup of the BaseDR
method.

For the five queries highlighted by ovals, the two methods with data reuse, BaseDR
and ReuseDR, do not obtain any speedups over the BaseNDR version. The reason is
that for these five queries, our QPReuse algorithm decides not to reuse any previous
cached query plans, because it is likely to give a query plan with low score (benefit).

Fig. 3. Comparison of Query Execution Time: (a) Group 1 Queries;(b) Group 2 Queries; (c)
Group 3 Queries; (d) Group 4 Queries
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The overhead of checking local databases and QPReuse algorithm causes our method
having lower performance than BaseNDR.

Comparing Query Plan Score: We now examine if our QPReuse algorithm achieves
the desired trade-off between the execution speedup and the plan quality.

For each query, we first record the score of the plan, ScoreReuseDR , if it was gen-
erated with ReuseDR. Then, we record the score of the query plan, ScoreBaseNDR,
if generated with BaseNDR. The ratio of them are shown in Figure 4. The x axis rep-
resents the 19 queries (seeds excluded), and the y axis is the ratio ScoreBaseNDR

ScoreReuseDR
. The

reference line is Ratio = 2, which means that the lowest score we accept for the query
plan generated with reuse is half of the score of the plan generated by the original bidi-
rectional algorithm.

From the figure, we observe that except for six queries, the ratios are below the
reference line, though above 1. This shows that the query plans from our method indeed
have lower score, but the score is not very low in most cases, and they still result in
overall speedup. For the six queries for which the values are above the reference line,
except for query number 13 (rectangle), all other five queries (circle) are the ones we
highlighted by ovals in Figure 3. This shows that when the score of the plan generated
by reusing tends to be very low, our algorithm correctly decides to generate the plan
from the original method.

Fig. 4. Values of Plan Ratio ScoreBaseNDR
ScoreReuseDR

Comparing Actual Query Results: Now we examine if the results from our ReuseDR
method are correct(Crt) and complete(Cpt) w.r.t. our collaborating biologist provided
answers.

Table 2 shows the results. First, for all the queries, the query results obtained by
our strategy ReuseDR are always 100% correct. Second, except for 5 queries (in bold
font), the results from ReuseDR are also 100% complete. Among the five queries with
incomplete answers, 3 of them have nearly 100% complete answers (above 95%). This
is because the query plans generated by ReuseDR reuse some data sources that have a
low data coverage on some of the query terms.

Overall, the above statistics show that for most cases, the query plans generated by
our ReuseDR method obtain correct and complete answers and at the same time have
much shorter execution time.
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Table 2. Query Results for Query Plans from ReuseDR

Grp1 Crt Cpt Grp2 Crt Cpt Grp3 Crt Cpt Grp4 Crt Cpt
Seed
A

N/A N/A Seed
B

N/A N/A Seed
C

N/A N/A Seed
D

N/A N/A

Query
1.1

100% 95% Seed
C

N/A N/A Query
3.1

100% 100% 4.1 100% 100%

1.2 100% 69% 2.1 100% 100% 3.2 100% 100% 4.2 100% 100%
1.3 100% 95% 2.2 100% 100% 3.3 100% 100% 4.3 100% 100%
1.4 100% 100% 2.3 100% 97.7% 3.4 100% 100% 4.4 100% 100%
1.5 100% 80% 2.4 100% 100% 3.5 100% 100% 4.5 100% 100%

6 Related Work

We now compare our work with existing work on a number of topics related to query
answering, optimization and caching.

Answering Queries Using Views: The work on answering queries using views [7,4,6]
is different from our work in the following aspects. First, in answering queries using
views, a new query is answered using views only. However, in our work, we reuse
previous plans to accelerate the answering of a new query, and the new query could
still use data which is not cached (the remainder query). Second, the reusability of a
materialized view is determined based on the exact matching between the table names
in the view and the table names in the new query [8]. However, in our case, the new
query could reuse data from different data sources as long as there is data redundancy.
Finally, answering queries using views is based on data reuse, but our method is based
on query plan reuse.

Multi Query Optimization: Sellis [15] proposes an algorithm which finds common
tasks across sub-queries. Sub-queries sharing common tasks and data can be executed
together. Roy et al. [14] represent multiple queries in a single DAG, sharing subexpres-
sions. A greedy algorithm picks a set of nodes from the DAG to be materialized and then
finds the optimal plan for the given set of materialized nodes. The common subexpres-
sions in existing work are identified by direct comparison between queries. However, in
our work, we utilize the All-In-One feature of deep web sources, and augmented queries
of previous queries to identify the common data. Furthermore, existing algorithms work
on relational database and queries are issued in a batch. It is clearly distinct from our
context where deep web is the focus and queries are issued sequentially.

Query Caching for Dynamic Web Content: There are a number of efforts on optimiz-
ing query processing on data-intensive web sites on the server side [11,3,20,5] or the
client side [13,9,12]. The server side caching mechanisms cache the dynamically gen-
erated web pages, shrinking the query processing time on the server side [3,11]. But,
the network delivery time, a major component of the delay, is not reduced. Robinson
and Lowden [13] developed a system that supports query results reuse for syntactically
unrelated queries using range constraints. Common data in their system is identified
by direct comparison of range constraints in queries. In our work, we proposed a more
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efficient method to identify reusable cached data based on augmented queries. Luo et
al. [12] propose a proxy caching mechanism for database-backend web sites on key-
word queries, which is data-driven caching. In their system, only one data source is
considered. Our work is clearly distinct in considering multiple inter-dependent deep
web data sources which can have data redundancy.

7 Conclusions

In this paper, we have presented a query reuse based query planning algorithm to gen-
erate query plans for deep web queries. In our algorithm, the query plan of a query is
generated based on a list of similar previous queries and their query plans. Although the
query plan thus generated may not be the optimal plan when considering the query inde-
pendently, it could effectively take advantage of the cached data from previous queries
so that the query execution time could be significantly reduced.

Our experimental results show that for 93% of the queries, the query plans generated
by our algorithm runs faster than the plans generated based on a single query indepen-
dently, and we achieve a least twice the speedup for more than 50% of the queries. For
all experimental queries, our query plans obtain the correct results, and for about 90%
of the queries, the answers obtained by our query plans is complete.
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Abstract. Wireless Data Broadcast is an efficient data dissemination
method for public information to a large number of mobile/wireless
clients. With the advance of the fourth-generation wireless communi-
cation system (4G), mobile devices may embed multiple-input multiple-
output (MIMO) antennae to setup multi-connections to a base station.
In this paper, we deal with data retrieval problem for mobile clients with
MIMO antennae to retrieve a set of indexed data from parallel communi-
cation channels. Our purpose is to construct fast and energy efficient data
retrieval protocols to reduce the response time and energy consumption.
We name this problem as parallel data retrieval scheduling with MIMO
Antennae (PADRS-MIMO), and propose two greedy heuristics named
Least Switch Data Retrieval Protocol (Least-Switch) and Best First Data
Retrieval Protocol (Best-First). We are the first work to deal with data
retrieval with MIMO antennae for wireless data broadcast. We analyze
the performances of Least-Switch and Best-First both theoretically and
practically. Simulation results prove the efficiency of the two protocols.

1 Introduction

With the explosive increase of wireless/mobile clients and development of wire-
less network technologies, wireless data broadcast has become an important data
dissemination method for public information, such as stock activities, traffic con-
ditions, weather reports, and flight schedules. In a typical wireless data broadcast
system, a set of data items are broadcasted over several channels at a base sta-
tion repeatedly. Clients can access onto channels, search for their requested data
(usually through index), and then download the corresponding data.

The most important issues in data broadcast are the energy efficiency and
query response time for mobile clients, since the majority of mobile devices
have limited battery power and constraint lifetime. As a result, tuning time
and access latency are two significant criteria to evaluate the performance of
a data broadcast system. According to the architectural enhancements, each
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mobile device has two mode: active mode and doze mode. They can only process
operations in active mode, while “sleep” in doze mode to save energy. Consider
a process from the time a client requires some data, to the time when this client
finishes downloading, tuning time denotes the total time a client keeps active,
while access latency denotes the time interval for the whole process. Intuitively, a
critical problem to improve the performance of a wireless data broadcast system
is to reduce the access latency and tuning time for clients.

Index technology is an efficient technique to reduce tuning time (e.g., B+-Tree
[6], Huffman Tree [4], Hash Table [14], Exponential Index [13], Signature Index
[17], etc). With the help of index technique, clients can first get the estimated
waiting time offset and channel information of their requested data, sleep during
this offset, wake up and tune in corresponding channel right before the target
data appear. Formally, in an indexed parallel wireless data broadcast system, it
takes three steps to retrieve a data item:

1. Initial Probing: the client tunes in some broadcast channel and decide when
the next index is arriving;

2. Searching: the client searches through the indices and locate the requested
data item on the broadcast channels;

3. Retrieving: the client tunes in the channel where the requested data item is
at and download the data item when it arrives.

Based on different index techniques, the searching process may vary in different
broadcast system. However, no matter what index technique is used, by the end
of the searching process, the client should have the knowledge of the time offset
and resided channel of the requested data. Since in this paper, we focus on the
data retrieving process, we omit the discussion of searching process and index
constructions and assume we know the locations of requested data.

If a client requires more than one data items, it needs to get the location
of every data item, order them as a permutation, and download them one by
one sequentially. If the order of data items to retrieve is not appropriate, the
client may spend unnecessarily extra time for downloading. Thus, a time effi-
cient schedule for retrieving data from parallel channels which can reduce access
latency is very important for the performance of the whole wireless data broad-
cast system. Moreover, during the data retrieving process, the tuning time is
always the time needed for downloading the requested data. However, a client
may switch among broadcasting channels several times (say, disconnect from
one communication channel, and then construct connection to another channel).
Switching among channels costs additional energy consumption [5], and thus the
number of switchings during the data retrieving process also has notable impact
on the energy efficiency of a data retrieving protocol. Therefore, a good data
retrieving protocol should be able to reduce both access latency and number of
switchings among channels during the retrieving process.

Some literatures discussed the data retrieval protocols to download a set of
data from multiple broadcasting channels [3][5][9]. Their common assumption
is that each client only has one antenna (or one retrieving process). Each time
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the antenna can access onto one communication channel to set up one con-
nection. However, only one connection results in narrow bandwidth and small
throughput, which is a crucial physical constraint for wireless networks to satisfy
increasing requirements with Quality of Service (QoS) guarantees.

To solve this problem, the Fourth-Generation Wireless Communication Sys-
tem (4G) applies multiple-input multiple-output (MIMO) technology, which al-
lows different data streams to be transmitted simultaneously from different trans-
mitter antennae. 4G is a complete evolution which will become a total replace-
ment of current Third-Generation Network System (3G) in the next few years.
It is predicted that at that time, the majority of mobile clients will be equipped
with MIMO antenna for high-speed communications. They can access onto mul-
tiple channels in parallel and shorten the query processing time significantly.

As a result, the focus of our research is to discuss how to schedule the retriev-
ing process of a set of requested data, given their time offset and resided channels,
using a client with multiple antennae. Our target is to minimize the access la-
tency and number of channels switchings for the client. In other words, by the
employing protocols proposed in this paper, a client should be able to download
a set of requested data using multiple retrieving processes in parallel, with short
response time and minimum energy consumption. We name this problem as Par-
allel Data Retrieval Scheduling with MIMO Antennae (PADRS-MIMO). In this
paper, we present the communication model, formally define the PADRS-MIMO
problem, and construct two greedy heuristics named Least Switch Data Retrieval
Protocol (Least-Switch) and Best First Data Retrieval Protocol (Best-First). We
are the first work to discuss the data retrieval with MIMO antennae for wireless
data broadcast problem and propose practical solutions. We analyze the per-
formance of Least-Switch and Best-First both theoretically and practically, and
prove their effectiveness and efficiency by simulation results.

The rest of our paper is organized as follows: in Sec. 2 we list the related
works to PADRS-MIMO; In Sec. 3 we propose the communication model and
formally define PADRS-MIMO. Section 4 analyzes the nature of PADRS-MIMO,
constructs two data retrieval protocols for PADRS-MIMO which are illustrated
with detailed examples and theoretical analysis. Section 5 evaluates the two
algorithms’ performances from several aspects by simulation results. Section 6
concludes the whole work and provides future directions for this topic.

2 Related Works

Multi-channel data broadcast has been a trend in the wireless data broadcast
research area since it can significantly reduce the access latency by partition-
ing data onto multiple channels. Research works on multi-channel wireless data
broadcast mainly focus on two aspects from the server side: how to schedule
data on multiple channels to reduce access latency and how to design efficient
indexing schemes to reduce tuning time.

Several literatures discussed the data scheduling problem on multiple chan-
nels in the wireless data broadcast environment. In [1], Ardizzoni et al. devel-
oped several algorithms based on dynamic programming techniques to optimally
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schedule skewed data on multiple channels while preserving the flat broadcast
scheme of each channel. Prabhakara et al. [7] provided a wide range of design
considerations for the server which broadcasts over the multi-level multi-channel
air cache to improve server’s performance. Saxena et al. [8] presented a balanced
on-line broadcast scheduling scheme which adopts a hybrid push-pull broadcast
schedule per channel. In [15], how to minimize the average access latency by
optimally partitioning data among multiple channels was discussed by Yee et
al., and an approximation algorithm that is less complex than optimal solution
yet with near-optimal performance was developed.

Indexing techniques of multi-channel wireless data broadcast not only discuss
how to index data, but also concern about how to allocate indices, given mul-
tiple channels. One popular way to allocate index is to assign certain channels
as designated index channels and others as data channels. Jung et al. [4] pre-
sented a tree-structured index allocation method to allocate index on separate
channels from data, which minimized average access latency by broadcasting
hot data and their indices more frequently than less hot data and their indices.
Waluyo et al. [11] presented a global index schemes where each index channel
preserves a part of the index tree with replication among each other. Wang and
Chen [12] adopted the distributed indexing technique proposed in [6] to multiple
channel environment, by creating an virtual index tree for each data channel
and multiplexing them onto one physical index channel.

Despite of various literatures on scheduling and indexing problems on server’s
side, there is very little research about how to schedule the data retrieval process
more efficiently. In [9], Sun et al. presented two algorithms to retrieve a set of
requested data from parallel broadcast channels. Hurson et al. [5] gave other
two heuristic algorithms to schedule data retrieving from multiple broadcast
channels to reduce the access latency and number of switchings among channels.
However, both work assume there can be only one process to retrieve data, and
data are evenly allocated on multiple channels.

3 Problem Formulation

In this section, we will discuss the communication model of MIMO wireless data
broadcast system and formulate the PADRS-MIMO problem.

3.1 Communication Model

A program is a complete broadcast cycle which contains a set of data and pos-
sibly some index information. Suppose a set of data D = {d1, · · · , d|D|} are
broadcasted in a program. Without the loss of generality, assume the keys of
data items di.key in D are monotonically increasing. The popularity of data
items in D are represented by their access probability. Let P = {p1, · · · , p|D|}
denote the access probability set of D, where each pi is the access probability
of di and we have

∑|D|
i=1 pi = 1. Assume all data items in D have the same size,

which fits in one data bucket on the broadcast channel.
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D is allocated on N channels according to some data allocation method with
respect to their access probability. Let bcasti represent one round of broadcasting
all data on the ith channel, and blengthi = |bcasti|. The blengthi of channel i
is decided by the data allocation method used. Different from [5] and [9], we
assume that blengthi is not necessarily of the same length, which is a common
feature of most data allocation methods. Let bcycle represent the total length
of a program. Note that if any update is needed, it will take place between
two consecutive programs. Therefore, within one program, the length of each
broadcast channel needs to be the same. This can be achieved by making bcycle
equal to the least common multiple of blengthi, i = 1, · · · , N . We define the time
needed to broadcast one data bucket as one unit time. In a broadcast program,
sequence numbers are assigned to each data bucket to represent its time offset
from the beginning of the program, denoted as t, 1 ≤ t ≤ bcycle.

Example 1. A data set D with 10 items are to be broadcasted. Their keys are
1, · · · , 10 respectively. The access probability is P = {0.1138, 0.0488, 0.0427,
0.3414, 0.0854, 0.0682, 0.0379, 0.0569, 0.0341, 0.1707}, which follows zipf dis-
tribution, a typical distribution used to model non-uniform access patterns of
web data [4]. D is allocated on N = 4 broadcast channels using the Dynamic
Weight-Schedule allocation method described in [3]. The data allocation result
is illustrated in Fig. 1. Each data item is represented by its key value.

4 4 4 4 4 4 4 4 4 4 4 4

10 1 10 1 10 1 10 1 10 1 10 1

5 6 8 5 6 8 5 6 8 5 6 8

2 3 7 9 2 3 7 9 2 3 7 9

C1

C2

C3

C4

bcycle = 12

bcast1  = {4};    blength1 = 1

bcast2  = {10,1};    blength2 = 2

bcast3  = {5,6,8};    blength3 = 3

bcast4  = {2,3,7,9}; blength4 = 4

t: 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1. Communication Model Example: Data Allocation of D

A mobile client has M antennae, which enables it to retrieve data using at most
M processes in parallel. Due to technical constraints, the number of antennae
is usually limited because of the size of mobile devices. The common number of
antennae for mobile handsets is 2 or 3 [10]. On the other hand, the number of
channels for a base station to broadcast data is relatively large. Therefore, we
assume M < N .

As mentioned in Sec. 1, there are three steps to retrieve requested data from
broadcasting channels. After Initial Probing and Searching, the client should
know the location of each requested datum, which includes: key, resided channel,
sequence number within the channel, and the channel blength, represented by
a four-tuple < key, ch, sq, blength > respectively. Based on the data allocation
method, a data item di may be broadcasted multiple times in a program. The sq
included in the tuple is defined as the sequence number of the first appearance
of di in the broadcast program. For instance, if di is broadcasted on channel j,
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its sq should be 1 ≤ sq ≤ blengthj. The sequence numbers of all data buckets
broadcasting di in a program can be easily computed given its sq and blength.

3.2 Parallel Data Retrieval Scheduling Problem

The parallel data retrieval scheduling problem in a MIMO wireless data broad-
cast system can be addressed as follows. Given a base station broadcasting a set
of data on multiple channels, a client with multiple antennae has a request of a
subset of the data broadcasted. The client would like to start the data retriev-
ing from a certain starting time. The problem is: 1) how to assign antennae to
retrieve different data items in the request; and 2) how to order the retrieval of
data items for each antenna, so that we can reduce

– the access latency of the data retrieval,
– number of switchings among broadcast channels.

Obviously, to reduce access latency is to reduce the time needed to retrieve a
request. The reason why we want to reduce the number of switchings among
channels is for the sake of energy efficiency. As discussed in [5], switching among
channels also consumes energy. In general, one switching takes 10% of the active
mode power consumption. However, the objectives of reducing access latency
and reducing number of switchings can be contradictive to each other.

Example 2. In the broadcast program shown in Fig. 2, suppose the grey circled
data items {1,2,3,4} are of request. The client has only one antenna and the
starting point of retrieving process is at t = 1. If we want to minimize the access
latency, the request should be retrieved in the order of “3 → 1 → 4 → 2” which
takes only 7 time units but needs 3 switchings. However, if we want to minimize
the switchings, the best retrieving order should be “3 → 4 → 2 → 1” which
needs only 1 switching but takes 12 time units. This example shows that access
latency and number of switchings can not be minimized at the same time.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1821

c2 43

c1 1 2

blength=9

1 2

43

blength=6
43

43 1 2

43 2 1

t
OL1

OL2

switch

AL=7

AL=12

S=3

S=1

switch switch

switch

Fig. 2. Example of Possible Objective Contradiction

To balance the two objectives mentioned above, we introduce a cost function
that takes both of them into consideration:

Definition 1. The cost of a parallel data retrieving schedule is evaluated as
c = α ·AT + β · S, where AT is the access latency of the data retrieving process
from the starting time (initial probing and searching processes not included); S
is the number of switches among channels during the retrieving process.
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α and β are adjustable parameters which can reflect the user’s preference. For
example, if the user’s first priority is to get the requested data faster, α should
be increased; if energy is of more concern, β should be increased.

Definition 2. A request R = {R1, · · · , Rw} is a client request to retrieve w data
items in a broadcast program.EachRi ∈ R is a four-tuple:< key, ch, sq, blength >.
{Ri.key|Ri ∈ R} ⊆ {dj .key|dj ∈ D}.

Given a request R, there may be some channels that do not contain any data
items in R. During data retrieving, these channels will not affect the retrieving
process at all, and thus can be ignored. In other words, when retrieving a request,
we are only interested in broadcast channels which has requested data on them.
Therefore, we have the following definition:

Definition 3. Given R, let CH = {ch1, · · · , chK}, K = |
⋃

Ri∈R{Ri.ch}|. CH
is a set of requested channels where requested data reside. ∀chi ∈ CH, define:

– chi.begin= min
Rj.ch=chi

{Rj .sq}: starting sequence number of required data on chi;

– chi.end= max
Rj .ch=chi

{Rj .sq}: ending sequence number of required data on chi;

– chi.blength: blength of chi.

Definition 4. Given R, a data retrieval schedule is a set of ordered lists of
data items (represented by their key values) OL = {OL1, · · · , OLM} for M
processes, where each OLi provides a schedule for one process. There should be⋃

OLj∈OL{di.key|di ∈ OLj} =
⋃

Rj∈R{Rj .key}. ∀OLi ∈ OL, define:

– OLi.t as the first time slot after retrieving the last data item in OLi;
– OLi.ch as the channel of the last data item in OLi;
– OLi.c as the total downloading cost for OLi, where c = αAT + βS.

In data retrieving, we need to pay attention to possible conflicts of retrieving data
buckets on parallel channels. If a retrieving process is on chi at time t, there will
be a conflict if it tries to download a datum on chj (j 
= i) which also appears at
t, because the time needed to switch between channels is not neglectable, which
is almost equivalent to broadcasting one data bucket [5]. More formally:

Definition 5. For a retrieving process OLi, a conflict will occur if it wants to
retrieve Rj at OLi.t, where Rj .sq = OLi.t%Rj .blength, and Rj .ch 
= OLi.ch.

Based on the above definitions, PADRS-MIMO can be more formally defined:

Definition 6. Given D broadcasted on N channels, a client with M antennae
has a request R. t0 is a predefined starting point in a program for the client to
start retrieving R, which is not necessarily the beginning of a program. The par-
allel data retrieval scheduling with MIMO Antennae problem (PADRS-MIMO)
is to develop a function f : {R, t0} → OL to produce a schedule OL without any
conflicts, so that the cost function c defined in Def. 1 is as small as possible.

Let us use an example to illustrate the above definitions.
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Example 3. In the broadcast program in Example 1, assume a client with M = 2
antennae has a request R = {1, 2, 6, 8, 9}. The predefined starting time is t0 = 3.
The cost function parameters are α = 1 and β = 2. The request channel set CH
and a schedule OL = {OL1, OL2} are shown in Fig. 3. If OL1 wants to retrieve
d4 at time 9, there will be a conflict because OL1.t = 9 and OL1.ch = 2 
= 1.

4 4 4 4 4 4 4 4 4 4 4 4

10 1 10 1 10 1 10 1 10 1 10 1

5 6 8 5 6 8 5 6 8 5 6 8

2 3 7 9 2 3 7 9 2 3 7 9

t: 1 2 t0=3 4 5 6 7 8 9 10 12 13

C3

C2

C1

C4

CH = {C2,C3,C4}, K=3 

C2.begin=2,  C2.end=2,   C2.blength=2

C3.begin=2,  C3.end=3,   C3.blength=3

C4.begin=1,  C4.end=4,   C2.blength=4

R = {1,2,6,8,9},

8 6 1

9 2

OL1

OL2

OL1.t = 9, OL1.ch = C2, OL1.c = 8

 OL2.t = 6, OL2.ch = C4, OL2.c = 3

switch

Fig. 3. Example of R, CH , OL and conflict

4 Efficient Parallel Data Retrieval Scheduling

As discussed in Sec. 3, how to schedule the request to multiple retrieving pro-
cesses can significantly influence the access latency and energy consumption for
clients. In this section, we introduce several algorithms to solve PARDRS-MIMO.

We first consider the relation between K: number of channels where requested
data R locates; and M : number of available processes a client can use to retrieve
data in parallel. When K ≤ M , it is obvious that the optimal schedule is to assign
a different process to retrieve requested data on each channel. This schedule
requires only K processes. In the following discussion for algorithm construction,
we assume that K > M . We will present two scheduling algorithms of parallel
data retrieval for clients equipped with MIMO antennae. The first algorithm
is Least Switch Data Retrieval Scheduling (Least-Switch), which guarantees the
least switching number S, and tries to minimize AL, while the second algorithm
is Best First Data Retrieval Scheduling (Best-First), which minimizes global cost
function c.

4.1 Least Switch Data Retrieval Scheduling (Least-Switch)

For one retrieving process, switching among channels not only will consume
energy, but also may introduce unnecessary conflicts. An intuitive thought is to
minimize the total number of switchings among channels during the complete
data retrieval. Therefore, we develop an algorithm which guarantees the least
number of switchings among channels. Alg. 1 presents the Least-Switch protocol
and Alg. 2 computes the cost function used in Alg. 1.

Least-Switch (Alg. 1) can be decomposed into two steps. The first step (Line
2 to 4) is to find the M channels to read. The criteria is the time needed for
each channel to retrieve all requested data on the channel starting from t0,
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which is evaluated by cost function c. M channels with the longest time will be
assigned to the M processes. The second step (Line 5 to 8) is to read the rest
K −M channels. Choose the process with least cost, append to it the channel
which requires the longest time to retrieve all requested data on it. If several
processes have the same cost, randomly choose one to proceed. The M processes
keep reading the remaining channels until all K channels are read and R is
completely retrieved. Note that in Algorithm 1, once we append a channel ch′

j

to an OLi, it means appending every data item on this channel to OLi with the
order calculated from OLi.t and ch′

j .blength. OLi.t, OLi.c and OLi.ch should
also be changed correspondingly afterwards.

Algorithm 1. Least Switch Data Retrieval Scheduling (Least-Switch)
Input: R; CH ; t0.
Output: OL.

1: ∀1 ≤ i ≤ M , OLi.t = t0, OLi.c = 0, OLi.ch = ∅.
2: Sort CH in descending order by c(OL1, chi, 1, 0) as CH ′.
3: Append ch′

1, · · · , ch′
M to OL1, · · · , OLM correspondingly.

4: CH ′ = CH ′ \ {ch′
1, · · · , ch′

M}.
5: while CH ′ �= ∅ do
6: OL∗

i = arg min
OLi∈OL

{OLi.c}; append ch′∗
j = arg max

ch′
j∈CH′

{c(OL∗
i , ch′

j , 1, 0)} to OL∗
i .

7: CH ′ = CH ′\{ch′∗
j }.

8: end while

The reason why in Least-Switch we every time append the longest channel
to the fastest process is that access latency of the complete data retrieval is
determined by the process which takes the longest time. Therefore, we would
like to balance the time needed by each process to avoid delay caused by some
process which is much more slower than others. This can be achieved by keeping
appending the “longest” channel remained to the fastest process.

Algorithm 2, the computation of the cost function plays an importance role
in the Least-Switch. The input of the cost function is candidate process OLi,
channel chj, and parameters α and β. It will return the cost of downloading all
requested data on chj starting from OLi.t. Since Least-Switch always guarantees
the minimum number of switchings, it is not necessary to consider switching
during evaluating the cost function. Therefore, we set α = 1 and β = 0.

For initial channel assignment to M processes, no switching is needed to tune
in the target channel and thus no conflicts will occur. There are three possible
cases (Line 3 to 7):

Case 1: If the starting point local = OLi.t%chj .blength is before or at
chj .begin in a broadcast round on chj , the access latency is simply the distance
between chj .end and the starting point (Line 10).

Case 2: If the starting point is between chj .begin and chj .end or at chj .end,
the access latency will be chj .blength− local + g2 + 1, where g2 is the requested
data appeared right before or at local.
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Case 3: If local is after chj .end, the process needs to wait till the next chj .end
to finish downloading all requested data on chj , that is, chj .blength− local +
chj .end + 1 time slots.

When OLi.ch 
= chj (Line 8 to 13), possible conflicts should be considered.
The computation of cost is similar except for two differences: 1) If local lies
exactly at chj.begin, the access latency should be computed as Case 2. This
is because the data item at chj.begin will be the last requested data on chj

available for OLi due to the conflict; 2) Similarly, if local lies at chj .end, the
access latency should be computed as Case 3.

Algorithm 2. Cost Function c(OLi, chj, α, β)
Input: OLi, chj , α, β.
Output: Cost for OLi to download data on channel chj .

1: local = OLi.t%chj .blength � if local = 0, let local = blength
2: g1 = max

Rk.ch=chj

{Rk.sq|Rk.sq < local}; g2 = max
Rk.ch=chj

{Rk.sq|Rk.sq ≤ local}.
3: if OLi.ch = ∅ then � calculate cost at initial stage
4: S = 0;
5: if local ≤ chj .begin then AL = chj .end − local + 1;
6: else if chj .begin < local ≤ chj .end then AL = chj .blength − local + g1 + 1;
7: else AL = chj .blength − local + chj .end + 1; end if
8: else � calculate cost with switch
9: S = 1;

10: if local < chj .begin then AL = chj .end − local + 1;
11: else if chj .begin ≤ local < chj .end then AL = chj .blength − local + g2 + 1;
12: else AL = chj .blength − local + chj .end + 1; end if
13: end if
14: Return c = α × AL + β × S

Lemma 1. The minimum number of switchings for a client with M processes
to download requested data allocated on K channels is K −M (when K > M).

Proof. Consider one process first. If data are located on K channels, the process
has to visit each channel at least once. Suppose it first accesses chi, it has to
switch to the rest K−1 channels. Hence, minS =K−1. If we have M processes,
only the first M channels accessed do not need switchings, so minS =K−M . �

Theorem 1. Least-Switch guarantees minimum switchings to download R.

Proof. From Line 3 in Alg. 1, M processes will access onto M channels without
switching. According to the procedure between Line 5 and 8, and the fact that
each data will only be downloaded once, each candidate channel chi ∈ CH ′

will only be visited once. Therefore, in total Least-Switch has S = K −M . By
Lemma 1, this algorithm guarantees the minimum number of switchings. �

Example 4. Fig. 4 is the result of Least-Switch with the setting in Example 3.
The eclipses are the decision procedure and rectangles are the resulting schedules.
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OL2= n/a
OL2.t=3 
OL2.ch= n/a 
OL2.c=0

OL1= n/a
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OL1.c=0 c(OL1,C3,1,0)=3

c(OL1,C4,1,0)=3
c(OL1,C2,1,0)=2

C3

C4

OL1.c=OL2.c
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C2OL1

OL2

OL1=
OL1.t=6, 
OL1.ch=C3, 
OL1.c = 3

8 6

OL2=
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OL2.ch=C4, 
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9 2
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OL1.t=9, 
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OL1.c = 6

8 6 1

4 4 4 4 4 4 4 4 4 4 4 4
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C2

C1
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t0=3 R = {1,2,6,8,9}

Fig. 4. Example of Least-Switch scheduling scheme

4.2 Best First Data Retrieval Scheduling (Best-First)

Least-Switch discussed in Section 4.1 can minimize the switching among channels
during the entire data retrieval. However, if two requested data items on one
channel are far from each other, the retrieving process reading that channel
may miss the chance to retrieve available data items on other channels during
waiting and thus increase the access latency. In order to take account of both
the access latency and number of switching, we introduce the second algorithm
which adopts the idea of best-first search, as illustrated in Alg. 3 and Alg. 4.

Algorithm 3. Best First Data Retrieval Scheduling(Best-First)
Input: R; CH ; t0.
Output: OL.

1: ∀1 ≤ i ≤ M , OLi.t = t0, OLi.c = 0, OLi.ch = ∅.
2: ∀1 ≤ i ≤ K, let chi.R

∗ be the Rj that appears first on chi after t0.
3: Sort CH ascendingly by c(OL1, chi.R

∗, α, β) as CH ′. To break tie, select the one
with longer chi.blength if two channels have the same cost.

4: Append ch′
1.R

∗, · · · , ch′
M .R∗ to OL1, · · · , OLM correspondingly.

5: R = R \ {ch′
1.R

∗, · · · , ch′
M .R∗}; Update CH .

6: while |CH | > M do
7: OL∗

i = arg min
OLi∈OL

{OLi.c}; append R∗
j = arg min

Rj∈R
{c(OL∗

i , Rj , α, β)} to OL∗
i .

8: R = R\{R∗
j }; Update CH .

9: end while
10: Sort OL descendingly by OLi.c.
11: for i = 1 to M do
12: Append ch′∗

j = arg min
ch′

j∈CH′
{c(OLi, ch

′
j , α, β)} to OLi; CH = CH \ {ch′∗

j }.

13: end for

Best-First (Alg. 3) can be interpreted as three phases:

Phase 1: Initial Assignment (Line 1 to 5). Starting from t0, for each channel
chi ∈ CH , chi.R

∗ is its first appeared requested data item. All K channels will
be sorted in ascending order by their chi.R

∗ into CH ′. chi.R
∗ of the first M

ch′
i will be assigned to M processes respectively and removed from request list

R. OLi.t, OLi.c and OLi.ch should also be updated correspondingly. If there is
any tie occurred, the requested data whose channel has longer blength will be
selected. This is out of the consideration that requested data on channels with
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longer blength appear less frequently in the broadcast program, and thus the
client will need longer time to wait for it.

Phase 2: Best First Assignment (Line 6 to 9). The idea of best first search is
adopted in this phase to choose the next data item to retrieve. We first choose
the process OL∗

i with least cost, and append R∗
j which needs the least cost for

OL∗
i to retrieve. Note that for OL∗

i , there might be multiple R∗
j with the same

anticipated cost to retrieve. To break the tie, R∗
j with longer blength will be

chosen. OLi.t, OLi.c and OLi.ch should be updated after the assignment. If chi

does not contain requested data any more, it should be removed from CH . This
procedure will continue until there are only M channels with requested data left.

Phase 3: Final Assignment (Line 10 to 13). When there are only M channels
with requested data on them, they will be assigned to the M processes with the
same reason as if K ≤ M . M processes will first be sorted by their total cost
so far. Starting from the process with the most cost, it will append the channel
that costs least for it to finish retrieving. Once again, the reason of doing this is
to balance the cost of each process in order to avoid unnecessary delay caused
by possible “super-costly” process.

Algorithm 4. Cost Function c(OLi, Rj , α, β)
Input: OLi, Rj , α, β.
Output: Cost for OLi to download data Rj .

1: local = OLi.t%Rj .blength � if local = 0, let local = blength
2: if OLi.ch = Rj .ch ∨ OLi.ch = ∅ then � initial stage or no switch
3: S = 0;
4: if local ≤ Rj .sq then AL = Rj .sq − local + 1;
5: else AL = Rj .blength − local + Rj .sq + 1; end if
6: else � switch from one channel to another
7: S = 1;
8: if local ≤ Rj .sq − 1 then AL = Rj .sq − local + 1;
9: else AL = Rj .blength − local + Rj .sq + 1; end if

10: end if
11: Return c = α × AL + β × S

Different from Alg. 2, the cost computed in Best-First is related to single
requested data item, instead of a channel. As described in Al. 4, For each OLi

and Rj pair, there are two possible cases: 1) OLi is on the same channel as Rj

or OLi is still empty (Line 2 to 5) and 2) they are on different channels (Line
6 to 10). In the first case, no switching between channels is needed, and access
latency can be easily computed. In the second case, one switching is required,
and the possible conflict should be considered.

Example 5. With the setting in Example 3, Best-First is performed as shown
in Fig. 5, with α = 1 and β = 2. The eclipses are the decision procedure and
rectangles are the resulting schedule.
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OL2= n/a
OL2.t=3
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OL2.c=0

OL1= n/a
OL1.t=3
OL1.ch= n/a 
OL1.c=0 d8

d9

OL1=
OL1.t=4 
OL1.ch=C3 
OL1.c = 1

OL2=
OL2.t=5 
OL2.ch= C4 
OL2.c=2

c(OL1,d6,1,2)=2
c(OL1,d2,1,2)=4
c(OL1,d1,1,2)=5

d6

OL1=
OL1.t=6 
OL1.ch=C3 
OL1.c = 3

c(OL1,C2,1,2)=5
c(OL1,C4,1,2)=6

K=3 K=3

K=2=M

c(OL2,C4,1,2)=1

C4

OL1=
OL1.t=9
OL1.ch=C2 
OL1.c = 8

R={2}

OL2=
OL2.t=6 
OL2.ch= C4

OL2.c=3

R = {1,2,6,8,9} R = {1,2,6} R = {1,2}
8 8 6 8 6 1

9 9 2

c(OL1,d8,1,2)=0
c(OL1,d9,1,2)=1,blength=4
c(OL1,d1,1,2)=1,blength=2

C2
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OL1
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Fig. 5. Example of Best-First scheduling scheme

5 Performance Analysis

In this section, we will use simulation result to discuss the characteristics of
PADRS-MIMO and evaluate the performances of Least-Switch and Best-First
data retrieval scheduling schemes.

5.1 Simulation Setup

Simulation is implemented in Java 1.6.0 16 on an Intel(R) Xeon(R) E5520 com-
puter with 6.00GB memory, with Windows 7 version 6.1 operating system. We
simulate a base station with N broadcast channels, and multiple clients with
various requests of data. The database to be broadcast has 10000 items [16],
each of size 1KB. The access probability of the database follows zipf distribution
[2], which is a typical model for non-uniform access patterns [4,12]. We adopt
Dynamic Weight-Schedule [3] for data allocation. N varies from 5 to 30. (α, β)
are set to (1, 0) and (1, 2) for Least-Switch and Best-First.

Clients have multiple antennae to retrieve the data from broadcast channels.
The number of antennae varies from 1 to 10. The size of a request varies from 10
to 1000. For each experiment, we generate 100 requests to get their average access
latency and number of switchings during data retrieval. Requests are generated
according to data’s access probability.

5.2 Simulation Results

When N = 20, |R| = 100, we vary the number of antennae M .Access latency
is measured in unit time (the time needed to broadcast one data bucket). Fig.
6 shows that when M is small (M =1, 2 or 3), Best-First takes much shorter
access latency than Least-Switch, while when M is relatively large (M ≥ 4), both
protocol takes similar access latency. Due to current technique constraints of the
number of antennae in mobile devices (usually 2 or 3 antennae [10]), we can claim
that Best-First protocol has advantage in reducing response time of request
retrieving. However, from Fig. 9, it is clear that Best-First needs much more
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Fig. 6. Impact of M :
Average AL (N = 20,
|R| = 100)

Fig. 7. Impact of N :
Average AL (M = 3,
|R| = 100)

Fig. 8. Impact of |R|:
Average AL (M = 3,
N = 20)

Fig. 9. Impact of M :
Average S (N = 20,
|R| = 100)

Fig. 10. Impact of N :
Average S (M = 3,
|R| = 100)

Fig. 11. Impact of |R|:
Average S (M = 3,
N = 20)

switchings during retrieval than Least-Switch, which guarantees the minimum
number of switchings. When M decreases, the number of switchings needed by
Best-First is dropping dramatically, because more data will be retrieved during
its third phase and thus it needs not switch among channels any more.

Next, we evaluate the impact of the number of broadcast channels on the two
protocols’ performances. The average access latency and number of switchings
needed are shown in Fig. 7 and Fig. 10, given M = 3 and |R| = 100. We observe
that when N increases, access latency of both protocols decrease similarly. This
shows the benefit of using more broadcast channels with respect to reducing the
access latency. For Least-Switch protocol, the number of switchings increases
only a bit when N increases. However, for Best-First, number of switchings
increases significantly when N increases.

We are also interested in how the size of requests can influence the perfor-
mances of two protocols. Fig. 8 presents the change of average access latency
with the increasing of request size. Both protocols behave similarly. The access
latency increases rapidly when request size first increase from 10 to 200. After
that, it becomes relatively stable despite of the increasing request size. This is
because when the number of requested data increases, the requested data will
appear more frequently on broadcast channels and thus retrieval protocols can
download them more continuously without having to wait extra time. As regards
to number of switchings as shown in Fig. 11, Best-First have to switch much
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more times when the request size increases, while Least-Switch remains similar
amount of switchings.

Based on the above observations, we can conclude that the two protocols pro-
posed in this paper have their own advantages. With limited number of antennae
in mobile devices, Best-First can significantly reduce the response time needed
to download client requests, while Least-Switch can guarantee minimum energy
consumption during data retrieving and also provide similar response time as
Best-First when there are reasonable amount of antennae available.

6 Conclusions

In this paper, we are the first to propose data retrieval scheduling problem
for mobile clients with MIMO antennae (PADRS-MIMO), which is a promising
technique within the emerging 4G wireless network. We formally define PADRS-
MIMO, analyze its nature, and then design two data retrieval scheduling pro-
tocols: Least-Switch and Best-First to minimize the access latency and energy
consumption of clients. We proof that Least-Switch guarantees minimum num-
ber of switchings during the data retrieval process. The performance of two
protocols are evaluated by simulation. Simulation results show the advantages
of two protocols: Least-Switch is more energy effective while Best-First reduces
response time significantly when the number of antennae in the mobile devices
are limited. Our future work includes developing more advanced data retrieving
scheduling scheme and provide more theoretical analysis on PADRS-MIMO.
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Abstract. The problem of integrating heterogeneous data marts is an im-
portant problem in building enterprise data warehouses. Specially identi-
fying compatible dimensions is crucial to successful integration. Existing
notions of dimension compatibility rely on given and exact dimension hi-
erarchy information being available. In this paper, we propose to infer
aggregation hierarchies for dimensions from a database instance and use
these inferred aggregation hierarchies for integration of data marts. We
formulate the problem of inferring aggregation hierarchies as computing
a minimal directed graph from data, and develop algorithms to this end.
We extend previous notions of dimension compatibility in terms of in-
ferred aggregation hierarchies.

Keywords: Aggregation Hierarchy, Data Mart, Data Warehouse, OLAP,
Summarizable, Compatible Dimensions.

1 Introduction

Data marts are based on the Star schema, a data model that allows implemen-
tation of relational data bases that can serve the purpose of multidimensional
databases. In this model, quantitative data (i.e. facts) that can be aggregated are
included in fact tables, and information by which facts are aggregated and fil-
tered by (i.e. dimension attributes) are included in dimension tables. Dimension
attributes are grouped into levels of aggregation hierarchies such that aggregated
facts at a higher level of the hierarchy can be computed from facts at a lower
level. This important property of aggregation hierarchies is known as summa-
rizability.

Fig. 1(a) is an example of a simple data mart. Fig. 1(b) shows the hierarchy of
levels on which the dimensions from Fig. 1(a) are organized. In this example,
we can aggregate the sales for stores to get sales for localities and aggregate
sales for localities to get the sales for cities. We say that the sales value is rolled-
up from Store to Locality and from Locality to City.

Many autonomous data marts are developed over years in large enterprises.
The integration of these data marts into an enterprise warehouse for enterprise-
wide large scale analysis is a strategic business objective [6].
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Fig. 1. Our running example of a data mart

The success of On-line Analytical Processing (OLAP) tools for exploration
and summarization of information in the warehouse after integration relies on
that the dimensions and aggregation hierarchies for the warehouse after inte-
gration accurately reflects those of the data marts before integration. An impor-
tant problem in integration of data marts is the integration of dimensions. All
existing work (e.g. [23] and [8]) assume that aggregation hierarchies defining
the levels and the relationships between them, are given as part of the schema
and the data is structured according to the given aggregation hierarchies. How-
ever, in many practical applications, especially in the situation of autonomous
data marts, the aggregation hierarchy for dimensions are not always available.

In this paper, we propose to infer the aggregation hierarchies for dimensions
from their data and use them for integration of data marts. In Section 2 we de-
scribe aggregation hierarchies. We formulate the problem of inferring aggrega-
tion hierarchies as computing from data a minimal directed graph for the roll-
up relationship between levels, and develop algorithms to this end in Section 3.
In Section 4 we describe the relationship between the schema-defined and in-
ferred aggregation hierarchies. Aggregation hierarchies inferred from data have
an important property, they guarantee the summarizability of data, which we
prove in Section 5, alongside proving that inferred aggregation hierarchies can
ensure the accuracy of integrating data marts, and therefore provide a sound
basis for applications on top of the warehouse after integration. In Section 6 we
discuss related works and finally in Section 7 we conclude and describe our
future work.

2 Aggregation Hierarchies

In this section we introduce definitions for dimension, level and aggregation
hierarchy in the context of relational multidimensional databases.
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Definition 1. A dimension D consists of an aggregation hierarchy H of levels. Given
two levels l and l′ of a dimension D, we say level l rolls-up to level l′ (which we denote
as l � l′) if we can compute aggregated facts at level l′ from facts at level l. The roll-up
relationship � forms a partial order over the levels. The aggregation hierarchy H is an
acyclic directed graph with no transitive edges, where the nodes of the graph are the
levels and the edges are those roll-up relationships in the covering relation of the partial
order between the levels.

A dimension can be represented by a relational database schema.

Definition 2. A dimension D can be represented by a relation D(A1, ..., An) of n
attributes, where one or more attributes correspond to each level such that the levels
partition all the attributes into disjoint subsets.

Most levels correspond to only one attribute, in which case we will use the
attribute name and the level name interchangeably, if a level corresponds to
two (or more) attributes we will refer to the level by the combination of attribute
names (using a ’/’ between the attribute names).

Definition 3. A dimension table T = {t1, ..., ts} is an instance of the relation
D(A1, ..., An) representing the dimension, such that each tuple ta = 〈va1 , ..., van〉 in
T contains n values, where each value vai is an element from the corresponding domain
of attribute Ai.

We can define a partial order over the attributes in a dimension table.

Definition 4. Given an instance T of a dimension D(A1, ..., An), then we say Ai ≤
Aj if for every pair of tuples ta = 〈va1 , ..., van〉 and tb = 〈vb1

, ..., vbn〉 in T, vai = vbi
implies vaj = vbj

. The ≤ relationship forms a partial order P over the set of dimension
attributes.

If there is a functional dependency Ai → Aj between two attributes of the
relation D(A1, ..., An) representing the dimension, then it follows that Ai ≤ Aj
must hold in every instance T of dimension D. Furthermore, if two attributes Ai
and Aj correspond to different levels l and l′ such that l � l′, then we require
Ai ≤ Aj. Likewise, if two attributes Ai and Aj correspond to the same level,
then we require Ai ≤ Aj and Aj ≤ Ai.

Definition 5. A Schema-defined Aggregation Hierarchy (SAH) is an aggregation hi-
erarchy that is defined as part of the schema of D and constitutes a constraint on the
tuples in any instance T of D.

SAH describes roll-up relationships between levels as intended by the data
modeler and/or the application. Ideally, an aggregation hierarchy must be de-
fined as part of the data model and then implemented as constraints and en-
forced by the DBMS which ensures that the population of the dimension tables
does not violate those constraints. For example, Oracle’s syntax for creating
a dimension allows specifying the aggregation hierarchy through explicit de-
scription of each level, attributes for each level and the relationship between
the levels [18].
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3 Inferring the Aggregation Hierarchy

Given that every instance of a dimension is constrained by its SAH, the data can
be a reliable source from which we can infer the aggregation hierarchy. How-
ever the inferred aggregation hierarchies (IAH) may vary from the intended
SAH. How similar the IAH for a dimension table is to the SAH for the same
dimension table depends on how close the data represents the SAH. The dif-
ference is most often due to the fact that the dimension table is only partially
populated, although this is rare in the real world. We will discuss this issue
when we establish the viability of IAHs in testing for dimension compatibility
in Section 5.

Definition 6. Given an instance T of dimension D, the inferred partial order of at-
tributes for D is the set of partial order relationships (P) inferred from the partial order
relationships between attributes of D and inferred from T.

In line with the definitions in Section 2, and in this section, we obtain the IAH in
three steps. In the first step we obtain the partial order between dimension at-
tributes. In the second step we remove the transitive partial order relationships
and finally we obtain the levels and the inferred aggregation hierarchy.

3.1 Inferring the Partial Order of Attributes

We propose Algorithm 1 for inferring the partial order of attributes. We explain
this algorithm using the following example: Let us suppose we wish to deter-
mine if Country≤ City. The algorithm first sorts the tuples in T on Country. It
then scans the values of Country and City. If for as long as the value in Country
remains the same from one tuple to the next, then the value in City must also
remain the same on the same tuples. If this holds true for the entire T then the
roll-up relationship will hold. Given the sample data for Store dimension in
Table 1 this relationship does not hold. By scanning T for Country against the
remaining attributes we can see that only Country ≤ Region holds true. This
process is applied for every attributes. The scan of T for each pair of attributes
can however stop as soon as it is established that the partial order relationship
does not hold. Fig. 2(a) shows the partial order of attributes inferred from the
sample data for Store dimension in Table 1, where dashed lines represent tran-
sitive relationships.

The complexity of inferring partial order of attributes: The algorithm per-
forms a sort for each attribute with the complexity in the order of n p log p

Table 1. Sample data for Store and Shop dimensions

Region Country Division City Locality Store
Asia Pacific Australia Div1 Sydney Ryde st1
Asia Pacific Australia Div1 Sydney Ryde st2
Asia Pacific Australia Div1 Melbourne Epping st3
Asia Pacific Australia Div1 Melbourne Morang st4
Asia Pacific Australia Div1 Melbourne Brighton st5
Asia Pacific Australia Div2 Geelong Hill st6

Country City Area Suburb Shop
Australia Sydney NE Ryde st1
Australia Sydney NE Ryde st2
Australia Melbourne NT Epping st3
Australia Melbourne NT Morang st4
Australia Melbourne SW Brighton st5
Australia Geelong NW Hill st6
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Algorithm 1. Inferring the partial order relationships
Input Tuples T = {t1, t2, ..., tp} in the instance of a dimension D(A1, A2, ..., An), and
p is the number of tuples.
Output Partial order P of attributes.
1: P := {}
2: for each attribute Ai do
3: Sort T on Ai
4: for each attribute Aj do
5: for each tuple do
6: if Ai on current tuple equals Ai on the previous tuple then
7: if Aj on current tuple does not equal Aj on the previous tuple then
8: exit this loop
9: end if

10: end if
11: end for
12: if end of tuples was reached then
13: P := P ∪ {(Ai, Aj)}
14: end if
15: end for
16: end for

where n is the number of attributes and p is the number of tuples. We also scan
T for every pair of attributes (n2 − 1) with the complexity in the order of n2 p,
though in some cases only a subset of T is scanned. Therefore, the complexity
of the Algorithm 1 is O(n2 p + n p log p).

Observe that Algorithm 1 obviously computes all partial order relationships
between any pair of levels for any given dimension table.

3.2 Cover for Partial Order of Attributes

Definition of aggregation hierarchies does not includes transitive roll-up rela-
tionships as values at each level can be computed from the next immediate
child level. In order to remove transitive partial order relationships, we can use
existing algorithms ([1]) that remove transitive edges from a directed graph.
Fig. 2(b) shows the partial order of attributes after removing transitive partial
order relationships.

3.3 The Levels and the Inferred Aggregation Hierarchy

Based on Definition 4, the two attributes Country and Region in Fig. 2(c) cor-
respond to the same level. We propose Algorithm 2 to obtain the levels that
is disjoint subsets of attributes (L) and then associate each attribute with its
corresponding level. The result is the inferred aggregation hierarchy over a set
of levels with roll-up relationship between them. The resulting IAH is also an
acyclic directed graph.

We assume that q = |P| and r = |L|. Statements 2 to 8 of Algorithm 2 with
complexity of q2 add to L each attribute of any partial order (pm) as a level
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unless there is another partial order (pn) which makes their attributes to cor-
respond to the same level in which case the added level will include both at-
tributes. Statements 9 to 13 with the complexity of r2 combine those subsets of
L that have at least one common attribute. At this point, L contains disjoint sub-
sets of attributes that correspond to the same level. Statements 14 to 16 with the
complexity of q r revisit the partial orders (copied into HL as roll-ups) and as-
signs each attribute to a level name that is derived from attribute names in the
corresponding level. Finally, duplicate roll-ups are removed. The complexity of
statement 17 is q2. The overall complexity for Algorithm 2 is O(2 q2 + r2 + q r).

Algorithm 2. Identifying levels and roll-ups
Input P is the partial order of attributes with no transitive relationship.
Output HL is the inferred aggregation hierarchy.

L is a set of levels corresponding to disjoint subsets of attributes.

1: HL := P, L = {}
2: for each pair of partial order relationships ρm and ρn in P do
3: if ρm = Ai ≤ Aj and ρn = Aj ≤ Ai then
4: L := L ∪ {Ai, Aj}, HL := HL − ρm, ρn
5: else
6: L := L ∪ {Ai}, {Aj}
7: end if
8: end for
9: for all x ∈ L and y ∈ L where x 
= y do

10: if x ∩ y 
= ∅ then
11: L := L− {x}, L := L− {y}, L := L ∪ {(x ∪ y)}
12: end if
13: end for
14: for each partial-order pm = (Ai, Aj) in HL and each subset of levels ls in L do
15: Replace any Ai and Aj that appear in ls with a level name that is a combination

of attribute names in ls (and using a ’/’ between the attribute names).
16: end for
17: Remove any duplicate roll-up relationship from HL.

4 Inferred Aggregation Hierarchies Subsuming
Schema-Defined Aggregation Hierarchies

Based on the inferred partial order relationships in Fig. 2(a) we have Country
≤ Region which is a valid partial order relationship, and Region ≤ Country
which may indeed be only a coincidence due to the incomplete instance of
the Store dimension in Table 1. If the following tuple 〈Asia Pacific,New
Zealand,Div3,Wellington,Brooklyn,st7〉 is added to the Store dimension
table in Table. 1, the second partial order will become invalid. Other spurious
partial orders are Locality ≤ Division and City ≤ Division. This is a gen-
eral principle, as formulated in the theorem below.
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Fig. 2. Inferring the aggregation hierarchy

Theorem 1. Given an instance T of a dimension table D and the inferred partial order
of its attributes P as derived using Algorithm 1, the partial order of attributes P′, and its
covering relation, for the schema-defined aggregation hierarchy for D must be subgraph
of P.

Proof. It is possible to obtain a covering relation of the partial order over the
attributes from the schema-defined hierarchy. We can also obtain the transitive
closure of the partial order over the attributes from its covering relation.

– If the given dimension table is complete – in the sense that all base members
are represented, given that all partial order relationships of attributes are
captured in Algorithm 1, P′ is equivalent to P.

– Otherwise suppose that some of the base members are removed. While
some spurious roll-ups are added, none of the partial orders from P is re-
moved. The latter point can be proved easily by the fact that the data from
which the inferred partial order is derived is constrained by the schema-
defined aggregation hierarchy. ��

From the above proof we have the following corollary.

Corollary 1. If all base members are present in a given dimension table, the inferred
aggregation hierarchy is the same as the schema-defined aggregation hierarchy.

If not all base members are present in a given dimension table, all roll-up rela-
tionships in the schema-defined hierarchy are present or implied (by transitive
roll-ups) in the inferred aggregation hierarchy.

The inferred aggregation hierarchies derived for independent data marts
are used to guide the process of integration. Intuitively two dimensions of
autonomous data marts are compatible if their common information is consis-
tent. Compatible dimensions are important for OLAP operations across mul-
tiple data marts. Another important issue to consider in data mart integration
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is fact summarizability [16,19,21]. Essentially the summarizability ensures the
correctness of aggregations.

Definition 7. Given two levels l1 and l2, and summary values for l1, the roll-up ρ =
l1 � l2 is summarizable if using ρ yields correct summary values for l2.

Using either type of the aggregation hierarchies, summary values for each level
can be computed by summing the values at the lower level. This is due to the
fact that the roll-up relationships either constrain the data or are inferred from
data. Consequently, using either of them guarantees the summarizability.

5 Integration of Matching Dimensions Using Inferred
Aggregation Hierarchies

In this section, we discuss the properties of integration of matching dimensions
using IAHs. Especially, we relate such properties with the integration using
SAHs. We show that inferred aggregation hierarchies ensure the correctness of
checking compatible dimensions and the summarizability of integrated facts.

5.1 Properties of Compatible Dimensions

To successfully integrate data marts, matching dimensions 1 must be compati-
ble and the common information of the matching dimensions is used for OLAP
operations after integration. A matching for two dimensions is a one-to-one in-
jective partial mapping between levels of the two dimensions. According to Tor-
lone [23], for a matching to be fully compatible, it must have three properties: i)
soundness: the matching levels must have identical member values; ii) coherence:
aggregation hierarchies must have matching roll-up relationships correspond-
ing to their matching levels; iii) consistency: the data after the integration must
be consistent with the original aggregation hierarchies. The tests for coherence
and consistency achieve the same objective. The former uses schema information
only and the latter uses the schemas and instances. A fully compatible match-
ing ensures that the data after integration of dimensions with matching levels
is summarizable.

Example 1. Fig. 3(a) shows a schema-defined matching between dimen-
sions Store(Region, Country, Division, City, Locality, Store) and
Shop(Country, Area, City, Suburb, Shop) and their matching levels. Sup-
pose that the instance for the Store and Shop dimensions are as shown in Ta-
ble 1. The matching is sound, coherent and consistent.

An important issue to consider is to ensure the summarizability of facts along
the dimensions after integration. We have the following observation.

Theorem 2. Integration based on coherent and consistent matchings of dimensions
ensures summarizability.

1 The problem of identifying matching dimensions is beyond the scope of this paper.



104 D. Riazati, J.A. Thom, and X. Zhang

Store

Division

City

Locality

Country

Region

Shop

City

Suburb

Country

Area

(a) Schema-defined matching.

Shop

City

Suburb

Country

Area

Store

Locality

Division City

Region/Country

(b) Inferred matching.

Fig. 3. Matchings between the Store and Shop dimensions

Proof. Following Definition 7, the roll-up relationships ensure the summariz-
ability of facts along the dimensions before integration. The coherence and
consistency for matching levels further ensure that the data after integration
conforms to the original roll-up relationships. As a result, the facts after inte-
gration are summarizable. ��

Let a matching defined using inferred hierarchies be called an inferred match-
ing. Similar to a matching defined using schema-defined hierarchies, an in-
ferred matching between dimensions comprises a set of one-to-one mappings
between levels of the dimensions.

Soundness of inferred matchings: Testing the soundness of a matching be-
tween (schema-defined or inferred) dimensions involves only checking that
for a member of a level, its corresponding member in the mapped level is the
same. For example, with the matching from Locality of the Store dimension
to Suburb of the Shop dimension, the set of members of Locality are mapped
to members of Suburb in one-to-one manner. Similarly the mapping of mem-
bers for other levels is straightforward. Because checking the soundness of a
matching does not depend on the rollup relationship between levels, obviously
testing for soundness of a matching using inferred aggregation hierarchies is
the same as that using given schema aggregation hierarchies.

We will explain in the next two sections that testing for coherence and con-
sistency for integration of dimensions using inferred aggregation hierarchies is
also feasible.

5.2 The Coherence of Inferred Matchings

When inferred aggregation hierarchies are the same as the schema defined hi-
erarchies, matchings defined for inferred hierarchies are the same as those de-
fined for schema defined hierarchies. However, due to the incomplete data for
dimensions, the inferred aggregation hierarchy for a dimension may contain
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spurious roll-up relationships that are not defined in the schema-defined hier-
archy. As a result, a matching defined for inferred aggregation hierarchies may
be different from the matching defined for schema-defined hierarchies.

True coherence: The coherence of an inferred matching defined on a set of lev-
els is true coherence if the matching on these levels for the schema-defined
matching is also coherent. This is present when the non-spurious as well as
the spurious roll-ups (if any) over matching levels are the same in both inferred
hierarchies.

Example 2. Based on the sample data for dimensions Store and Shop, the in-
ferred aggregation hierarchies and their matching is shown in Fig. 3(b). The
matching is sound and coherent. In comparison with the matching for schema-
defined hierarchies shown in Fig. 3(a), this matching using inferred hierarchies
is truly sound and coherent.

True incoherence: The incoherence of an inferred matching defined on a set
of levels is true inconsistence if the matching on these levels for the schema-
defined matching is also incoherent. This is present when the inferred hierar-
chies are the same as schema-defined hierarchies and/or the spurious roll-ups
are different between the inferred hierarchies.

False coherence: The coherence of an inferred matching on a set of levels is
false coherence if the matching defined on these levels for the schema-defined
hierarchies is not coherent. False coherence is present when there are some spu-
rious roll-up relationships in one of the inferred hierarchies that also exist in the
other inferred hierarchy but as non-spurious roll-ups. In this case the matching
is in indeed coherent for the dimension tables from which the hierarchies are
inferred.

Example 3. The matching on the schema-defined hierarchies shown in Fig. 4(a)
is incoherent. But the inferred matching shown in Fig. 4(b) is coherent. The
inferred matching is a false coherent matching. This is made possible because
of the spurious roll-up Suburb � Area.

False incoherence: The incoherence of an inferred matching on a set of levels is
false incoherence if the matching defined on these levels for the schema-defined
hierarchies is coherent.

Store

Locality

City

Shop

Suburb

Area

(a) Incoherent schema defined matching

Store

Locality

City

Shop

Suburb

Area

(b) A coherent inferred matching

Fig. 4. A false coherent matching that uses inferred hierarchies
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Fig. 5. False incoherent inferred matching

False incoherence is present when the spurious roll-up relationships relate
the matching levels differently or some spurious roll-up relationships are miss-
ing in one of the inferred hierarchies.

Example 4. Suppose that Division and Area were matching levels in Fig. 3(a).
In this case, the schema-defined matching between Store and Shop dimensions
remains coherent. However, the inferred matching is incoherent. Fig. 5 shows
spurious roll-ups (�) relating matching levels differently.

5.3 The Consistency of Inferred Matchings

True consistency: The consistency of an inferred matching on a set of levels is
true consistency if the matching defined on these levels for the schema-defined
hierarchies is also consistent.

Example 5. Based on Table 1, the result of the integration of the two sample data
for Store and Shop satisfy the constraints in the schema-defined and inferred
hierarchies for these two dimensions.

True inconsistency: The inconsistency of an inferred matching on a set of levels
is true inconsistency if the matching defined on these levels for the schema-
defined hierarchies is also inconsistent.

Example 6. If the base members for Store included the following tuple:

<Asia Pacific,Australia,Div3,Melbourne,Chelsea,st8>

and the base members for Shop included the following tuple:

<UK,London,WC,Chelsea,st9>

then using the schema-defined hierarchies, they would be coherent but not con-
sistent. The reason is that the data after integration does not reflect the roll-
up Suburb � Country (for Shop) and Locality � Country (for Store) in the
original hierarchies. The matching using inferred hierarchies would be also in-
consistent if the two tuples were also present in the sample data in Table 1.
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Table 2. True inconsistency: sample data for Store and Shop dimensions

Region Country Division City Locality Store
Asia Pacific Australia Div1 Sydney Ryde st1
Asia Pacific Australia Div1 Sydney Ryde st2
Asia Pacific Australia Div1 Melbourne Epping st3
Asia Pacific Australia Div1 Melbourne Morang st4
Asia Pacific Australia Div1 Melbourne Brighton st5
Asia Pacific Australia Div2 Geelong Hill st6
Asia Pacific Australia Div3 Melbourne Chelsea st8

Country City Area Suburb Shop
Australia Sydney NE Ryde st1
Australia Sydney NE Ryde st2
Australia Melbourne NT Epping st3
Australia Melbourne NT Morang st4
Australia Melbourne SW Brighton st5
Australia Geelong NW Hill st6

UK London WC Chelsea st9

False consistency: The consistency of an inferred matching on a set of levels is
false consistency if the matching defined on these levels for the schema-defined
hierarchies is not consistent. In this case the matching is indeed consistent for
the dimension tables from which the hierarchies are inferred.

Example 7. Using Example 6, if the base members included the additional tu-
ples but were not present in the sample data in Table 1, then the data after inte-
gration would reflect the original hierarchies and the inferred matching would
remain consistent.

False inconsistency: The inconsistency of an inferred matching on a set of levels
is false inconsistency if the matching defined on these levels for the schema-
defined hierarchies is consistent.

Example 8. If the sample data for Shop dimension in Table 1 in-
cluded the tuple <Australia,Sydney,NT,Epping,st3> in place of
<Australia,Melbourne,NT,Epping,st3> (resulting in Table 3) then the
inferred hierarchy from the data after integration will not be consistent with
either of the original hierarchies, since Epping rolls-up to contradicting values
in City.

Table 3. False inconsistency: sample data for Store and Shop dimensions

Region Country Division City Locality Store
Asia Pacific Australia Div1 Sydney Ryde st1
Asia Pacific Australia Div1 Sydney Ryde st2
Asia Pacific Australia Div1 Melbourne Epping st3
Asia Pacific Australia Div1 Melbourne Morang st4
Asia Pacific Australia Div1 Melbourne Brighton st5
Asia Pacific Australia Div2 Geelong Hill st6

Country City Area Suburb Shop
Australia Sydney NE Ryde st1
Australia Sydney NE Ryde st2
Australia Sydney NT Epping st3
Australia Melbourne NT Morang st4
Australia Melbourne SW Brighton st5
Australia Geelong NW Hill st6

Although false incoherence and false inconsistency may prevent the integra-
tion, what is critical is that where we do proceed with the integration, the result
of the integration will be correct and summarizable. Based on the above, use
of IAHs to test for compatibility guarantees the summarizability of data after
integration and IAHs are viable for testing dimension compatibility for the in-
stances from which the aggregation hierarchies are inferred. Compared to the
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situation where we are unable to ensure the accuracy of the integration due to
the absence of SAHs, this is a significant outcome and a viable solution to the
problem. This is summarized in the theorem below.

Theorem 3. A coherent and consistent inferred matching for dimensions is sufficient
but not necessary for the summarizability of integration.

Proof. A summarizable integration on the matching levels of dimensions must
have coherent and consistent inferred matching. But from the above discussions
it can be seen that an inferred matching may present as incoherent or inconsis-
tent based on the current dimension instances, but they are indeed coherent
and consistent and thus can be integrated and the result is summarizable. ��

6 Related Work

Database integration is a well researched area [4,14,22], however integra-
tion of data warehouses and data marts has only attracted interest in recent
years [10,23]. Kimball requires the integrating dimension tables to be conformed,
meaning that they must be identical in terms of their semantics, structure and
data [13]. This is clearly restrictive and difficult to achieve when integrating
heterogeneous data marts [23].

In the absence of readily available SAHs, we could use a thesaurus to estab-
lish relativity of levels by identifying the super-ordination (Holonym) and sub-
ordination (Meronym) for each pair of attributes based on their labels and/or
data [3,23]. This is however a difficult task as labels and data are very often
represented as acronyms. Another option would be to query the user to pro-
vide the aggregation hierarchy, but this may not be practical as the user may be
accessing data from unfamiliar sources. It must be said that use of additional
semantic information may help getting closer to the intended aggregation hier-
archies, but the problem remains.

In automating the design of data warehouses based on multidimensional
design, Romero et al. [20] have suggested using conceptual representations of
the domain ontology in discovering of functional dependencies. In contrast, we
aim to infer aggregation hierarchies from an existing database.

Smith et al. [2] have compared aggregation hierarchies with generalization
and specialization in the context of class hierarchy. Akoka et al. [5] model ag-
gregation hierarchy by mapping generalization hierarchies in dimensions to
UML aggregations. Mózon et al. [17] capture additional semantic information
on levels and the relationship between them as part of the definition for levels
for aggregation hierarchies, these authors rely on given SAHs.

Several people have investigated the pre-integration requirements for di-
mensions [8,7,11,13,23] all of which rely on the prior knowledge of the SAH.
The work by Torlone [23] offers a comprehensive analysis of these require-
ments, which we introduced in Section 5.

Coincidentally, functional dependency is similar to the partial order relation-
ship. Discovering functional dependencies to design relational databases has
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been investigated by several people [9,12,15,20]. The complexity of inferring
functional dependency between n levels over p tuples is m(m n p log p + n 22n)
[15]. Unlike the roll-up relationship between levels, inferring functional depen-
dency is concerned with the composition of attributes on the left as well as on
the right hand side of the functional dependency and hence leading to higher
order of complexity.

7 Conclusion and Future Work

In this paper we have discussed the problem with existing approaches for
testing dimension compatibility. We have proposed a procedure for inferring
the levels and the aggregation hierarchy using the current instance of a dimen-
sion. We have established the relationship between the schema-defined and
inferred aggregation hierarchies as subsumed and subsuming hierarchies. We
have established that using inferred hierarchies for testing for dimension com-
patibility is viable for the instances from which the aggregation hierarchies are
inferred. In our future work we will test the theoretical aspect and algorithms
introduced here in a semi-automated integration of data marts using real data.
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Abstract. Data warehousing is widely used in industry for reporting and analy-
sis of huge volumes of data at different levels of detail. In general, data ware-
houses use standard dimensional schema designs to organize their data. How-
ever, current data warehousing schema designs fall short in their ability to 
model the multi-granular data found in various real-world application domains. 
For example, modern farm equipment in a field produces massive amounts of 
data at different levels of granularity that has to be stored and queried. A study 
of the commonly used data warehousing schemas exposes the limitation that the 
schema designs are intended to simply store data at the same single level of 
granularity. This paper on the other hand, presents several extended dimen-
sional data warehousing schema design alternatives to store both detail and ag-
gregated data at different levels of granularity. The paper presents three solu-
tions to design the time dimension tables and four solutions to design the fact 
tables. Moreover, each of these solutions is evaluated in different combinations 
of the time dimension and the fact tables based on a real world farming case 
study. 

Keywords: Multi-granular data, data warehousing, data warehousing schema 
design. 

1   Introduction 

Data warehousing is commonly used by companies to store and analyze data. Data 
warehouses normally use dimensional schema designs to structure their data. A di-
mensional model consists of facts and dimensions. A fact is a single measurable re-
cord. A dimension, which is mostly textual and static in nature, is utilized to describe 
the fact. For example, in farm equipment related data; parameters are logged against 
tasks at certain times with certain values. A typical fact would be a farm-
ing_equipment_data_log with the value, for instance tractor speed as the measure, the 
task logging the parameter, the parameter being logged and the time of logging as the 
dimensions. The grain is thus parameter per task per time per value. 

In data warehousing research, most of the work has concentrated on the perform-
ance and less work is done on schema design models [1]. A schema design model for 
data warehousing should has the ability to model the multi-granular data found in 
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various real-world application domains. The leading schema designs for data ware-
housing, which are represented in Section 2, are evaluated against the multi-granular 
data storage requirement, and it is shown that none of these models possess the ability 
to store data at different levels of granularity.  In this paper, we present and evaluate 
various schema design alternatives to structure both the detail and the aggregated data 
at different levels of granularity. The proposed alternatives consist of several combi-
nations of the time dimension and the fact tables design approaches. In this work, the 
following two possible scenarios are considered.  

 

•  The detail data has a single level of granularity. To save storage and to en-
hance query performance, it is aggregated gradually to multiple levels of 
granularity. For example, in the farming business, the farm equipment re-
lated data is initially logged at per parameter per task per second level, when 
the data is older than three months it is aggregated to per parameter per task 
per minute level, next the data that is older than six months is aggregated to 
per parameter per task per 2 minutes level and so on. Thus in the example, 
the data will have different levels of granularity (second, minute, 2 minutes). 

•  Both the detail and the aggregated data consist of multiple levels of granular-
ity. For instance, in extension to the above mentioned farming example, the 
data is initially logged at different levels of granularity for the reason that 
different parameters have different sampling frequencies. Some parameters 
are logged at per parameter per task per second level and some at per pa-
rameter per task per minute, followed by further higher levels of granularity 
due to gradual aggregation. 
 

To the best of our knowledge, this paper is the first to present and evaluate schema 
design alternatives for multi-granular data warehousing. The paper is structured as 
follows. Section 2 presents the real-world farming case study, evaluates the standard 
schema design models against the requirements and explains the motivation behind 
the proposed schema design models. Section 3 defines the time dimension design 
solutions and Section 4 defines the fact table design solutions. Section 5 evaluates the 
proposed approaches in combinations with different time dimension and fact tables. 
Section 6 presents the related work. Finally, Section 7 summarizes and points to the 
future research. 

2   Motivation 

This section presents a real-world case study based on the farming business. The case 
study is a result of LandIT [2] that was an industrial collaboration project about de-
veloping technologies for integration, aggregation and exchange of data between 
farming devices and other farming-related IT systems, both for operational and busi-
ness intelligence purposes. This section then discusses multi-granular data storage, 
both at the detail and the aggregated levels, according to the needs of the application 
domain and highlights the inappropriateness of the standard data warehousing design 
approaches to handle multi-granular data.  

The main goal of this case study is to store and query data at different levels of de-
tail or granularity, according to the needs of the application domain. We use the case 
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study to illustrate the kind of challenges faced by storing multi-granular data, which 
are addressed by this paper. This case study concerns farm equipment related data in a 
field. The data is initially logged in order to comply with environmental regulations 
and is kept in detailed format at a single level of granularity or different levels of 
granularity, depending on the application domain. Further, as the data ages the de-
tailed data may no longer be useful; however, the data could not be deleted due to the 
organizational and/or governmental data retention policies. This potentially excessive 
data volume would affect storage as well as query processing capacity of the data 
warehouse. Thus, the goal is to reduce the data by aggregating it. The fact table at-
tributes used in this case study are: Pid (Parameterid), Tkid (Taskid) Teid (Timeid) 
and Value. The Task represents activities to distinguish all the work that is carried out 
by a contractor for a farmer in a particular field of a farm. The Parameter represents a 
variable code for which a data value is recorded. For example, parameter 247 repre-
sents the amount of chemical sprayed in liters; parameter 248 represents distance 
covered by a tractor in kilometers; parameter 1 represents tractor speed in km/h; pa-
rameter 41 represents area sprayed in hectares. Moreover, each parameter has a dif-
ferent data logging frequency, for example the logging frequency of parameter 1 and 
247 are every 1 second, the logging frequency of parameter 41 and 248  are every 60 
seconds and so on. The Time represents an instance of time when a data value is re-
corded. Lastly, the value is simply a numeric attribute. In order to list some example 
data, we used farm equipment related data. The snapshot of data consists of one task 
and four parameters with two different levels of time granularities. The data at the 
detailed level is represented as (247, 10, 20, 13.44); (1, 10, 20, 11.20); (247, 10, 21, 
13.57); (1, 10, 21, 11.20)…(247, 10, 80, 15.73); (1, 10, 80, 11.00); (248, 10, 80, 
2.51); (41, 10, 80, 0.13). In this example data, parameter 247 and parameter 1 have 
granularity (logging frequency) equal to “second” and  parameter 248 and parameter 
41 have granularity equal to “minute”. Each set of entries within parentheses repre-
sent a row. For instance, row number 1 reads as follows: Pid=247 (represents: amount 
of fertilizer used), Tkid=10 (represents: unique id for a task), Teid=20 (represents: 
time at a second granularity level 12.04.2007 16:25:01) and Value=13.44 (represents: 
current value of fertilizer used in liters). Further, the detailed data could be aggregated 
from the second level to the minute level if it is more than three months old. In that 
case, the data at the minute aggregated level is represented as (247, 10, 80, 15.73); (1, 
10, 80, 11.10); (248, 10, 80, 2.51); (41, 10, 80, 0.13). Note that parameters 248 and 
parameter 41 are not aggregated, since they are already at the minute granularity 
level, although, for parameter 247 and parameter 1 the aggregate functions MAX and 
AVG are used, respectively. Furthermore, the data could be aggregated from the min-
ute level to the 2 minutes if it is more than six months old and so on. Two leading 
approaches to store data in a data warehouse – the star schema [3] approach and the 
snowflake schema [3] approach have been selected for analysis.  

The star schema approach regarding multi-granular data is unable to represent data 
at different levels of detail due to the fact that it requires all the dimension attributes, 
to be given concrete values. For example, if a time dimension has the following at-
tributes in the descending order: Y (Year), M (Month), D (Day), H (Hour), M (Minute) 
and S (Second). In the case of data with uniform granularity, say at a second level, 
everything works well, where all the attributes ranging from the second to the year 
will be assigned values. However, in the case of multi-granular data, the levels of 
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granularity for some data may vary; say to a minute level or even higher; however, 
the dimension table still requires the value for the second, since all the levels are 
mandatory, as shown below. 

 
TIME(Teid, Y, M, D, H, M, S); 
FACT(Pid, Tkid, Teid, Value); 

 

Similarly, snowflake schema-based time dimensions are also unable to handle 
multi-granular data. Even though the association between a fact table and time dimen-
sions is based on a separate dimension for each time granularity level (parent-child), 
however, the lowest granularity dimension (second) is pre-linked with the fact table. 
The following time dimension example represents a normalized dimensional structure 
based on a parent-child relationship. As structure is defined at the design level, it is 
not possible to make any changes to handle the data with granularity levels higher 
than second. 

 
YEAR(Yid, Y); MONTH(Mid, M, Yid); 
DAY(Did, D, Mid); HOUR(Hid, H, Did); 
MINUTE(Mid, M, Hid); SECOND(Sid, S, Mid); 
FACT(Pid, Tkid, Sid, Value); 
 

In conclusion, based on the above mentioned case study, the existing data ware-
housing design solutions are not appropriate to handle multi-granular data both at the 
detail and the aggregated levels. For that reason, a number of schema design alterna-
tives to handle multi-granular data are proposed and evaluated in this paper. We first 
propose time dimension design solutions followed by fact table design solutions, as 
we can consider the time dimension independently and not the vice versa. Further-
more, the reason to consider the time dimension only, rather than any other dimen-
sion(s), is that different levels of granularity always occur for time and the solution 
also works for other granularity phenomena.   

3   Time Dimension Design Solutions 

In this section, we describe several solutions for designing time dimension tables for 
multi-granular data warehousing. These time dimension tables may later be used in 
different combinations with fact tables presented in Section 4. In general, levels in 
dimension hierarchies can be arranged in various alternate orders. The one exception 
to this is the time dimension. In the time dimension, the hierarchal levels must follow 
a certain order, from the smallest value (a year) to the largest value (a second). The 
time dimension design solutions presented in this paper are based on single hierarchy 
(Fig. 1a) that is further composed of numerous one-to-many relationships. The pro-
posed solutions can easily be applied to the fact tables having time as a dimension,  
in order to specify instances of fact table at different levels of granularity. In fact, 
three specific design solutions are presented for the time dimension, namely the  
extended de-normalized time dimension solution, the extended normalized time di-
mension solution and the extended shrunken time dimension solution. In the extended 
de-normalized time dimension solution, all the granularities are handled by a single 
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dimension table. In the extended normalized time dimension solution, the 
granularities are handled by multiple dimension tables. Finally, in the extended 
shrunken time dimension solution, the granularities are handled by shrunken [4] di-
mension tables. These solutions are described in detail in the following subsections.  
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Fig. 1. Time dimension: (a) UML diagram, (b) Extended de-normalized time dimension,  
(c) Extended normalized time dimension and (d) Extended shrunken time dimension 

3.1   The Extended De-normalized Time Dimension Solution 

In the extended de-normalized time dimension, presented in Fig 1b, the standard star 
schema has been expanded with a new attribute Granularity to handle granularity at 
different levels rather than at a single level. The attribute granularity represents the 
level of detail of each time instance stored in the time dimension. Thus, with the in-
clusion of this new attribute in the time dimension table the associated fact tables are 
no longer restricted to store data only at the same single level of granularity. The 
snapshot of the time instances, presented in Table 1 is the result of the proposed ex-
tended de-normalized solution. In the snapshot, Teid (Timeid) is an auto generated 
primary key attribute. Y (Year), Q (Quarter), M (Month) and D (Day), represent the 
standard calendar. For instance, row number 4 has a granularity at the day level and it 
is read as follows: year = 2009, 3rd quarter, month of August and day in month = 12. 
The level of granularity of the row is at day level for this reason rest of the attributes 
have NULL values. Further, POD (Partofday) represents an eight-hour time span. 
Hence each day, is divided into three eight-hour time spans, from 0000 to 0800 hours, 
0800 to 1600 hours and 1600 to 0000 hours. The symbol shown in the time dimension 
for Partofday is Day[8-16[, which means that it is the second time span of the day, 
where 0800 hours are included but 1600 hours are excluded. 1600 hours will be in-
cluded in the next time span. Furthermore, 4H (4Hour) represents a four-hour time 
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span, whereas, H (Hour) represents the standard hour in 24 hours time format. More-
over, 20M (20Minute), 10M (10Minute) and 2M (2Minute), represents twenty-minute, 
ten-minute and two-minute time spans. M (Minute) and S (Second) represent the stan-
dard minute and second. Finally, Gran (Granularity) represents the level of granular-
ity of each row. One of the advantages of the proposed approach is: simple to use and 
to understand. However, one of the main disadvantages is redundancy, repeated at-
tribute values especially null values.  

Table 1. Snapshot of the extended de-normalized time dimension table proposed in our work 

Teid Y Q M D POD 4H H 20M 10M 2M M S Gran
1 2009 Null Null Null Null Null Null Null Null Null Null Null Y
2 2009 3 Null Null Null Null Null Null Null Null Null Null Q
3 2009 3 8 Null Null Null Null Null Null Null Null Null M
4 2009 3 8 12 Null Null Null Null Null Null Null Null D
5
6
7
8
9
10
11
12

2009
2009
2009
2009
2009
2009
2009
2009

3
3
3
3
3
3
3
3

8
8
8
8
8
8
8
8

12
12
12
12
12
12
12
12

Day[8-16[
Day[8-16[
Day[8-16[
Day[8-16[
Day[8-16[
Day[8-16[
Day[8-16[
Day[8-16[

Null
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Null
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Null
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Null
Null
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Null
Null
Null
25
25

Null
Null
Null
Null
Null
Null
Null
40

POD
4H
H
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3.2   The Extended Normalized Time Dimension Solution 

In the extended normalized time dimensions, presented in Fig. 1c, the standard snow-
flake schema has been modified to handle granularity at different levels. Like the 
standard snowflake schema, it consists of separate tables for Year, Quarter, Month, 
Day, Partofday, 4hour, Hour, 20minute, 10minute, 2minute, Minute and Second. This 
implies that each granularity level is represented in a separate table with its attributes. 
Furthermore, unlike the standard snow flake schema, the inclusion of a primary time 
dimension table and an extra attribute Granularity (Fig. 1c), allows the primary time 
dimension table to point to any level of granularity rather than to the lowest level only 
(which is the main problem with the snowflake schema in order to handle different 
levels of granularity). On the whole, similar to any normalized dimensional schema, 
each lower level dimension table provides supplementary information about the di-
mension table at a higher level of the hierarchy. The relational schema presented 
below is the result of the proposed extended normalized solution. The Time is the 
primary dimension table that is further linked to all of the dimension tables. In the 
primary Time dimension table, Teid (Timeid) is an auto generated primary key attrib-
ute and Gran (Granularity) represents the level of details related to this Timeid. Fur-
ther, each lower level dimension table is also associated with higher level dimension 
table through their primary and foreign key combination. Some of the advantages of 
the normalized time dimensional approach are less storage space requirement due to 
the elimination of redundancy and easy maintenance due to the smaller nature of 
dimension tables. However, one of the main disadvantages is multiple join operations 
when querying, which may trigger performance and navigation concerns.  
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TIME(Teid, Gran);  
YEAR(Teid, Y);  
QUARTER(Teid, Q, Yid); 
.... 
MIN(Teid, M, 2Mid);  
SEC(Teid, S, Mid); 

3.3   The Extended Shrunken Time Dimension Solution 

In the extended shrunken time dimensions, presented in Fig 1d, the standard shrunken 
based dimension model has been enhanced by adding the primary time dimension 
table in order to handle granularity at different levels. The shrunken dimensions are 
subsets of the main dimensions. Each shrunken dimension is stored in a separate de-
normalized dimension table with its own primary key. On the whole, this solution 
mainly consists of the primary Time dimension table and the multiple de-normalized 
shrunken dimension tables. The primary Time dimension table consists of an extra 
attribute Granularity to navigate the subsets of the time dimension tables when 
querying. Like the previous solution (sub-section 3.2), each subset of the Time di-
mension tables is linked with the primary Time dimension table in order to keep track 
of the level of granularity, however, unlike the previous solution each lower level 
dimension table is not connected with the dimension table at a higher level because of 
the de-normalized nature of the sub-dimension tables. The relational schema pre-
sented below is the result of the proposed extended shrunken solution. The Time 
dimension table is the primary dimension table that is further linked to all of the di-
mension tables. In the time dimension table, Teid (Timeid) is an auto generated pri-
mary key attribute and Gran (granularity) represents the level of details related to this 
Timeid. One of the advantages of the proposed approach is: fewer joins when query-
ing. However, some of the main disadvantages are: complex navigation when query-
ing and maintenance due to the existence of numerous sub-dimensions.  
 
TIME(Teid, Gran);  
YEAR(Yid, Y); 
QUARTER(Mid, Y, Q);  
.... 
MIN(Mid, Y, Q, M, D, POD, 4H, H, 20M, 10M, 2M, M); 
SEC(Sid, Y, Q, M, D, POD, 4H, H, 20M, 10M, 2M, M, S); 

4   Fact Table Design Solutions 

In this section, we describe several solutions for designing fact tables for multi-granular 
data warehousing. These fact tables may later be used in different combinations with the 
time dimension tables presented in Section 3. In general, the fact table stores measures. 
The measures are factual data about the subject and normally contain numeric values. 
For instance, in the case study presented in Section 2, the measure is represented as 
value. The value represents quantitative data about farming equipment in the fields. For 
example, tractors speed in km/h. Further, each such measure is associated with the value 
at the lowest level of each dimension table involved. This association forces the fact 
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Table 2. Single fact table 
 

Pid Tkid Teid Value 
1 29 1200 11.10 
247 29 1200 13.44 
1 29 1201 11.10 
247 29 1201 13.57 
.. .. .. .. 
248 29 1260 2.46 
41 29 1260 0.11 
.. .. ..  
248 10 3020 5.42 
1 10 3020 10.82 
.. .. .. .. 

table to store data only at the lowest (same) level of granularity. To resolve this prob-
lem, four fact table design solutions are presented, namely the single fact table solution, 
the multiple fact tables solution, the hybrid solution and the single fact table without 
separate time dimension solution. In the single fact table solution, both detailed and 
aggregated data (multiple granularities) are handled by a single table. In the multiple 
fact tables solution differing data granularities are handled separately, one fact table for 
each granularity level. Further, in the hybrid solution, the granularities are handled by 
two fact tables; detail data is handled by one fact table, while the aggregated data is 
handled by another fact table. Finally, in the single fact table without separate time 
dimension solution all the granularities are handled by a single fact table with time as an 
attribute rather than a separate dimension. In summary, the standard fact tables handle 
only same single granularity, whereas, the proposed fact table design solutions along 
with the associated proposed time dimension table solutions have the ability to specify 
instances of a fact table at different levels of detail. These solutions are further described 
in detail in the following subsections. 

4.1   The Single Fact Table Solution 

In this solution, multiple data granularities are handled by a single fact table. In the 
case study presented in Section 2, each row of the fact table contains farming equip-
ment related value for each parameter associated to each task each time. Thus, in this 
case the grain [3] of the fact table is expressed as “value by parameter by task by 
time” (note that time can be of any granularity ranging from the second to the year). 
In the existing fact table design solutions, the grain refers to the single level of detail 
of the information stored in each row of the fact 
table, however in this solution, differing data 
granularities are handled by adding “granularity” 
as a column in the time dimensions, presented in 
Section 3. The fact table (Table 2) has one meas-
ure Value. It has a primary key consisting of the 
combined foreign keys (referencing the Parameter, 
Task and Time dimensions respectively). The fact 
table contains one row for every parameter logged 
to each task each time. For example, the fact table 
contains three different granularity levels (second, 
minute and 2 minutes) and it is flexible enough to 
hold both finer and coarser levels of granularities. 
In Table 2, Teid (Timeid) 1200 and 1201 represent 
granularity at a second level, 1260 represents 
granularity at a minute level and Teid 3020 represents granularity at 2 minutes level. 
Moreover,  row number 1 (first row) in the fact table reads as follows:  Pid=1  (tractor 
speed), Tkid = 29 (unique id for a task), Teid=1200 (time at 1 second level 
12.04.2007 16:25:01) and Value=11.10 (current value of the speed in km/h). Simi-
larly, row number 7 (second last row) represents aggregated data and reads as fol-
lows: Pid=248 (distance covered by a tractor in km/h), Tkid=10 (a previous task), 
Teid= 3020 (time at 2 minutes level 12.01.2006 13:10:00) and Value=5.42 (aggre-
gated value of area sprayed). Some of the advantages of this solution are: simple 
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Table 3a. Fact table I 
 

Pid Tkid Teid Value 
1 29 1200 11.10 
247 29 1200 13.44 
1 29 1201 11.10 
247 29 1201 13.57 
.. .. .. .. 

 
Table 3b. Fact table II 

 
Pid Tkid Teid Value 
248 29 1260 2.46 
41 29 1260 0.11 
248 29 1320 2.71 
41 29 1320 0.18 
.. .. .. .. 

maintenance, transparent query processing, faster data loading and lower operational 
cost. However, some of the disadvantages are: a de-normalized structure and possibil-
ity of erroneous summarizability [5]. The erroneous summarizability may occur dur-
ing higher levels of data aggregation process due to the presence of aggregated data at 
different levels of granularity. For example, if data warehouse contains aggregated 
data at the month and the day granularity levels using SUM function. In that case, to 
calculate the average extra care has to be taken, otherwise the aggregated data will be 
erroneous.  

4.2   The Multiple Fact Tables Solution 

In this solution, differing data granularities are handled by using multiple fact tables, 
one fact table for each granularity level. Each such fact table contains a single meas-
ure value, and the grain is expressed as “value by parameter by task by time” (note 
that time must be of same granularity ranging from the second to the year). In addi-
tion, the granularity in each of these multiple fact tables exactly refers to the same 
level of detail of the information stored in each row 
of the fact table. For example, fact table I (3a) con-
tains time granularities equal to 1 second, fact table 
II (3b) contains time granularities equal to 1 minute 
and so on. The fact tables (Table 3a and 3b) have 
primary keys consisting of the combined foreign 
keys (referencing the Parameter, Task and Time 
dimensions respectively). Further, each of these fact 
tables contains one row for every parameter logged 
to each task each time. Some of the advantages of 
this solution are: smaller and more manageable 
pieces of data, simple to use and understand, easily 
manageable and scalable. However, some of the 
disadvantages are: uneven distribution of data (some 
fact tables might contain more data than others), 
high operational cost due to the increased number of 
physical tables and complex navigation due to large 
number of joins when querying.  

4.3   The Hybrid Fact Table Solution 

In this solution, the granularities are handled by two fact tables with the same set of 
attributes. The detail data are handled by the first fact table while the aggregated data 
with different levels of granularity are handled by the second fact table. Further, the 
detailed data may consist of single or multiple levels of granularity. Comparable to 
the previous fact table design solutions, each of the two fact tables has a measure 
Value, and has a primary key consisting of the combined foreign keys (referencing 
the Parameter, Task and Time dimensions respectively). Thus, the grain of each of the 
two fact tables is expressed as “value by parameter by task by time” (note that time 
can be of any granularity ranging from second to the year). Some of the advantages of 
this solution are: simple to manage, use, access and understand due to the separation 
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Table 4. Single fact table without separate 
time dimension 

Pid Tkid Ts L Value 
1 29 1155208060 1 11.10 
247 29 1155208060 1 2.46 
248 29 1155208120 60 12.42 
41 29 1155208120 60 0.14 
.. .. .. .. .. 

of detail and aggregated data. However, some of the disadvantages are: possibility of 
erroneous summarizability and uneven data distribution between the tables.  

4.4   The Single Fact Table without Separate Time Dimension Solution 

In this solution, the different levels of granularity are handled by a single fact table 
without a separate time dimension. The fact table consists of five measures: Pi (Pa-
rameterid), Tkid (Taskid), Ts (Timestamp), L (Label) and Value. Timestamp repre-
sents the logging time of the value in UTC [6] format, whereas, Label represents the 
logging frequency of the value. Label is the level of granularity of each row in the fact 
table. It is first equal to logging frequency, then to aggregation granularity. For exam-
ple in Table 4, L = 1 represents that the level of granularity of the concerned rows is 
equal to one second. Similarly, the L = 60 represents that the level of granularity of 
the concerned rows is equal to sixty seconds. The fact table has a primary key consist-
ing of the combined foreign keys (referencing the Parameter, Task and Timestamp). It 
contains one row for every parameter logged to each task. As a result, the grain of the 
fact table is stated as “value by label by parameter by task by time” (note that time 
can be of any granularity ranging from second to the year). For example, row number 
4 in the fact table reads as follows: Pid=41 (area sprayed in hectares) Tkid=29 (unique 
id for a task), Ts=1155208120 (time at 1 
minute level 10.08.2005 11:08:40) and 
Value=0.14 (value of area sprayed in 
hectares). Some of the advantages of this 
solution are: less storage, fast query 
processing and efficient data loading and 
management due to the non-existence of 
a separate time dimension. However, 
one of the disadvantages is that this 
model is not common among data ware-
house schema design solutions.  

5   Evaluation 

An evaluation of the schema design alternatives has been done with the following 
combinations of the proposed time dimension and fact tables.  
 
Combination 1 (C1): single fact table without a separate time dimension table 
Combination 2 (C2): extended de-normalized time dimension and single fact table 
Combination 3 (C3): extended de-normalized time dimension and multiple fact tables 
Combination 4 (C4): extended de-normalized time dimension and two fact tables 
Combination 5 (C5): extended normalized time dimension and single fact table 
Combination 6 (C6): extended normalized time dimension and multiple fact tables 
Combination 7 (C7): extended shrunken time dimension and multiple fact tables 
 

Performance tests have been carried out on single-level and multi-level aggregation 
queries based on the above mentioned combinations. The single-level queries aggregate 
data from a single level of granularity to a higher level of granularity. For example, to 
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aggregate values from per parameter per task per second to per parameter per task per 
minute. The multi-level queries aggregate data from several different levels of granular-
ity to a single higher level of granularity. For instance, to aggregate values from per 
parameter per task per second plus from per parameter per task per minute plus from 
per parameter per task per 2 minutes to per parameter per task per 10 minutes. The 
logical design of the fact and time dimension tables proposed in the paper and the que-
ries used in the tests can be viewed at [7]. All the fact and dimension tables have pri-
mary and secondary indexes on all the primary and foreign keys, respectively. 

The tests were designed to measure the query time in seconds, query complexity 
with respect to number of lines of code, overall aggregation time in seconds and stor-
age used in MB. The tests were performed on a 2.0 GHz Intel® Core Duo with 512 
MB RAM, running Ubuntu 8.04 (hardy) and MySQL 5.0.5. Every test was performed 
5 times. The maximum and minimum values are discarded and an average is calcu-
lated using the middle three values. From the tests, it is observed that the processing 
rate of the single-granular queries for the above mentioned combinations is between 
110,000 and 300,000 rows per second (Fig. 2). Combination 1, is the best, given that 
it is based on a single fact table without a separate time dimension table, whereas, rest 
of the combinations performed almost the same. In comparison, the processing rate of 
multi-granular queries (across three different levels of granularity) is between 20,000 
and 300,000 rows per second (Fig. 3). Combination 1 again shows the best perform-
ance, whereas, combination 2 and 4 perform well for the reason that fewer JOIN and 
UNION clauses are required. Combinations (3, 5, 6 and 7) performed approximately 
identical since additional JOIN and UNION clauses are required. In conclusion, the 
multi-granular queries have an overhead of 275%, though; it is reasonable given the 
flexibility of the proposed schema design combinations to handle multi-granular data. 
Furthermore, the inclusion of the primary time dimension table, with Timeid and 
Granularity as attributes, in the extended normalized and shrunken time dimension 
schema design has matched the performance of the queries (Combination 5, 6 and 7) 
with Combination 3 that is based on a de-normalized time dimension and multiple 
fact tables. The primary time dimension table (sub-sections 3.2 and 3.3) acts as a front 
end table. Each entry in the table contains a search-key (Timeid) and a pointer 
(Granularity) to the sub-dimension table containing that value.  

    

Fig. 2. Single-granular query time Fig. 3. Multi-granular query time 
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Fig. 4. Single-granular query complexity Fig. 5. Multi-granular query complexity 

 

    

Fig. 6. Single-granular aggregation time Fig. 7. Multi-granular aggregation time 

 
Complexity of the single-granular queries is between 6 and 22 lines of code (Fig. 4) 

in comparison to approximately between 6 and 69 lines of code (Fig. 5) of the multi-
granular queries. The number of lines of code for multi-granular queries are approxi-
mately three times higher than for the single-granular queries for the reason that to 
aggregate data across three different levels of granularity requires at least two UNION 
and numerous JOIN clauses. The complete aggregation process consists of 1) aggregat-
ing the existing rows based on single or different levels of granularity, 2) generating 
the new rows in the time dimension table(s) in order to point to the higher granularity 
rows in the fact table(s), 3) inserting the newly aggregated rows in the fact table(s) and 
4) deleting the previous rows from the fact table(s). The total time of the aggregation 
process based on the single granular data performed really well. On average it takes 
about 650 seconds (Fig. 6) to aggregate 10,000,000 rows from the second granularity 
level to the minute granularity level, insert approximately 166,000 new aggregated 
rows and delete approximately 9,840,000 previous rows. Similarly, the total time of the 
aggregation process based on the multi-granular data (Fig. 7) is also performed rea-
sonably well due to their flexibility in handling multi-granular data. Combination 2 and 
4, performed better than the others due to fewer tables, whereas, combination 5 and 6 
performed slightly worse than the average due to normalized nature of tables. Finally,  
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the storage used by Combination 1 is 
approximately 457 MB (Fig. 8), which 
is the best, whereas, the rest of the 
combinations used between 1600 to 
2000 MB to store 10,000,000 rows. 
Furthermore, Combination 5 and 6, 
which is based on normalized extended 
time dimension tables, demonstrates its 
worth in terms of storage used, 
whereas, Combination 7, which is 
based on shrunken time dimensions 
tables is slightly worse than average in 
terms of storage. 

In conclusion, Combination 1 has proved to be the best with respect to query time, 
query complexity, overall aggregation time and storage used, given that it consists of 
only a single fact table with time as a “measure” rather than a separate dimension 
table. Combination 2 and 4 has also performed well in terms of query time, query 
complexity and over all aggregation speed, since that they are composed of a de-
normalized time dimension table and at most two fact tables. Combination 5 and 6 has 
performed well as compared to rest of the combinations (excluding combination 1) in 
terms of storage used, for the reason that they consists of normalized time dimension 
tables. Combination 3 and 7 performed well in terms of query complexity as com-
pared to combinations 4, 5 and 6, as they consists of de-normalized and shrunken time 
dimension tables, respectively. Based on the above mentioned facts, Combination 1 
proved to be the best, however the level of granularity is not explained in the schema 
for that reason computations may require in queries, thus it may not be the ultimate 
choice for a data warehouse design solution. Combinations 2 and 4 proved to be the 
average, however in spite of this they can be the best option for a data warehouse 
design solution. The other reason is that they are also based on a schema that is simi-
lar to the star schema. Combinations 5 and 6 proved to be the worse than the average, 
given that they are based on a schema that is somewhat similar to the snowflake 
schema. Finally, Combinations 3 and 7 proved to be the worst, given that they are 
based on de-normalized and shrunken time dimension and multiple fact tables. More-
over, to the best of our knowledge this is the first paper to conduct a performance 
evaluation of the schema design alternatives for multi-granular data warehouses. 

6   Related Work 

Related work exists in several areas. In the context of gradual data aggregation, an 
efficient tree-based indexing scheme for dynamically and gradually maintaining ag-
gregates is presented in [8]. Aggregates were maintained using multiple levels of 
temporal granularities. The focal point of this work is to introduce effective indexing 
schemes for storing aggregated data. A language for specifying a strategy to archive 
data and keep summaries of archived data in data warehouses is presented by [9]. The 
main motivation of this work is on archiving and generating aggregates depending on 
the age of archived data. Further, the semantic foundation for data reduction in di-
mensional data warehouses that permits the gradual aggregation of detailed data as 

Fig. 8. Storage used
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the data gets older is provided by [10]. The work is purely theoretical and the main 
direction of this work is on querying multi-dimensional data that is being aggregated 
gradually. Furthermore, one specific gradual granular data aggregation based solution 
has been described in [11]. The work proposes an algorithm in order to achieve data 
aggregation effectively and to store multi-granular data efficiently. Lastly, a number 
of algorithms are proposed by [12] to enforce summarizability in dimensional hierar-
chies. The work is relevant in order to achieve summarizabiltiy in the case of dimen-
sional hierarchies proposed in one of our design option. In contrast to most of the 
above mentioned approaches, the main focus of our work is to provide alternative 
relational multi-granular data warehousing schema design alternatives to store data at 
different levels of granularity.   

In the context of data warehousing design quality and evaluation, a set of metrics 
are proposed by [13] to evaluate the quality of alternative design options of the data 
warehouse. Similarly, one survey paper [14] points out the need for the quality of 
design process and its consequences in data warehouses. However, both of these pa-
pers do not concentrate on data warehousing design alternatives with respect to multi-
granular data. In comparison, our work concentrates on evaluating the schema design 
alternatives extensively both at the conceptual and the logical level with main focus 
on multi-granular data. 

7   Conclusion 

Motivated by the reality that data warehousing is widely used in industry for reporting 
and analysis of huge volume of data at different levels of detail, data warehouse 
schema design has become a major database research area. The two most popular 
schema designs are evaluated according to the requirement of storing data at different 
levels of granularity, and it is shown that both of them fail to satisfy the multi-
granular data requirement fully or partially. Instead, we propose extended schema 
design alternatives, which addresses the multi-granular data storage and query re-
quirements. The extended schema design alternatives have the ability to handle data at 
different levels of granularity. We present a real-world case study from the farming 
business, where we store multi-granular data both at the detail and aggregated levels. 
The schema design alternatives consist of three time dimension and four fact table 
design options to handle data at different levels of granularity. The proposed time 
dimension and fact tables are used in seven different combinations to evaluate their 
performance. The results show that the proposed schema design alternatives are capa-
ble of handling multi-granular data, effectively and efficiently. We also show how to 
represent the multi-granular data as relational tables, thus providing a basis for im-
plementing the model using relational technology. In the future it should be investi-
gated how the model can be efficiently implemented using standard data warehousing 
technologies. It is also interesting to investigate if the proposed schema design alter-
natives can be utilized with the help of a user interface. Finally, we believe that it is 
important to investigate how these schema design alternatives cope with multiple 
dimensions. 
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Abstract. Relationships are fundamental to all but the most impersonal forms of
interaction in business. An agent aims to secure projected needs by attempting to
build a set of (business) relationships with other agents. A relationship is built by
exchanging private information, and is characterised by its intimacy — degree of
closeness — and balance — degree of fairness. Each argumentative interaction
between two agents then has two goals: to satisfy some immediate need, and to
do so in a way that develops the relationship in a desired direction. An agent’s
desire to develop each relationship in a particular way then places constraints
on the argumentative utterances. This paper describes argumentative interaction
constrained by a desire to develop such relationships.

1 Introduction

Modelling long-term (business) relationships underpins the evolution of trust relation-
ships. A basis for agent interaction is presented that manages the (business) relation-
ships that an agent has with each agent that it interacts with. Our agent summaries its
relationships using ‘intimacy’ and ‘balance’ measures. Its actions are then shaped by its
desired values for these two measures that represent its foreseeable social aspirations,
and are called the ‘target intimacy’ and ‘target balance’. Given all of this, a particular
interaction with another agent is approached both with the goal of negotiating towards a
satisfactory conclusion, and as an opportunity to do so in a way that gradually develops
the relationship towards its target. In this way the agent’s target aspirations constrain
and shape its argumentative behaviour in relationship-based argumentation.

Negotiation dialogues are traditionally organised around the basic illocutionary par-
ticles: Offer, Accept and Reject. Previous work has been centred on the design of nego-
tiation strategies and on proposing agent architectures able to deal with the exchange of
offers [1,2]. Game theory [3], possibilistic logic [4] and first-order logic [5] have been
used for this purpose. Some initial steps in proposing rhetoric particles have been made,
especially around the idea of appeals, rewards and threats [6]. Expanded negotiation di-
alogues, including these and other rhetoric moves, are known as argumentation-based
negotiations. Argumentation in this sense is mainly to do with building (business) re-
lationships. When we reward or threaten we refer to a future instant of time where the
reward or threat will be effective, its scope goes beyond the current negotiation round.

P. Garcı́a Bringas et al. (Eds.): DEXA 2010, Part II, LNCS 6262, pp. 126–140, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This paper is in the area labelled: information-based agency [7]. An information-
based agent has an identity, values, needs, plans and strategies all of which are ex-
pressed using a fixed ontology in probabilistic logic for internal representation and in
an illocutionary language for communication. We assume that such an agent resides in
a electronic institution [8] and is aware of the prevailing norms and interaction proto-
cols. An information-based agent makes no a priori assumptions about the states of the
world or the other agents in it — these are represented in a world model, Mt, that is in-
ferred solely from the messages that it receives. The intuition behind information-based
agency is that all illocutionary acts give away (valuable) information.

An agent’s world model, Mt, is a set of probability distributions for a set of random
variables each of which represents the agent’s expectations about some point of interest
about the world or the other agents in it. Each incoming utterance is translated into a set
of (linear) constraints on one or more of these distributions, and then the posterior state
of the world model is estimated using entropy-based inference. These distributions are
the foundation for the agent’s reasoning.

A pair of agents interact by passing messages to each other. We assume that they
share a common ontology and that their interactions are organised into dialogues, where
a dialogue is a finite sequence of inter-related utterances. A commitment is a conse-
quence of an utterance by an agent that contains a promise that the world will be in
some state in the future. A contract is a pair of commitments exchanged between a
pair1 of agents. The set of all dialogues between two agents up to the present is their
relationship. This discussion is from the point of view of an information-based agent α
in a multiagent system where α interacts with negotiating agents, βi, information pro-
viding agents, θj , and an institutional agent, ξ, that represents the institution where we
assume that all interactions happen [8]: {α, β1, . . . , βo, ξ, θ1, . . . , θt}.

Our communication model is described in Section 2. Relationships are formalised
in Section 3, and the agent architecture in Section 4. Section 6 describes an elaborate
means of measuring the intimacy — degree of closeness — and balance – degree of
fairness — that are based on measures of the information in any utterance. Section 7
describes the argumentation framework, and Section 8 concludes.

2 Communication Model

The communication language is detailed below; we assume that utterances in the
communication language may be classified into unique illocutionary categories2 L =
{li}L

i=1. In order to structure agent dialogues we also need an ontology that includes a
(minimum) repertoire of elements: a set of concepts (e.g. quantity, quality, material) or-
ganised in a is-a hierarchy (e.g. platypus is a mammal, Australian-dollar is a currency),
and a set of relations over these concepts (e.g. price(beer,AUD)).3 We model ontologies
following an algebraic approach [9] and an ontology is a tupleO = (C, R,≤, σ) where:

1 Sets of commitments between more than two agents are not considered here.
2 In a simple bargaining scenario these utterances could be: “propose”, “accept” and “reject”.
3 Usually, a set of axioms defined over the concepts and relations is also required. We will omit

this here.
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1. C is a finite set of concept symbols (including basic data types);
2. R is a finite set of relation symbols;
3. ≤ is a reflexive, transitive and anti-symmetric relation on C (a partial order)
4. σ : R → C+ is the function assigning to each relation symbol its arity

where ≤ is the traditional is-a hierarchy. To simplify computations in the computing of
probability distributions we assume that there is a number of disjoint is-a trees covering
different ontological spaces (e.g. a tree for types of fabric, a tree for shapes of clothing,
and so on). R contains relations between the concepts in the hierarchy, this is needed
to define ‘objects’ (e.g. deals) that are defined as a tuple of issues. We then analyse
dialogues in terms of the dialogical framework L×O.

The semantic distance between concepts within an ontology depends on how far
away they are in the structure defined by the ≤ relation. Semantic distance plays a
fundamental role in strategies for information-based agency. How signed contracts,
Commit(·), about objects in a particular semantic region, and their execution, Done(·),
affect our decision making process about signing future contracts in nearby semantic re-
gions is crucial to modelling the common sense that human beings apply in managing
trading relationships. A measure [10] bases the semantic similarity between two con-
cepts on the path length induced by≤ (more distance in the ≤ graph means less seman-
tic similarity), and the depth of the subsumer concept (common ancestor) in the shortest
path between the two concepts (the deeper in the hierarchy, the closer the meaning of
the concepts). Semantic similarity is then defined as:

δ(c, c′) = e−κ1l · eκ2h − e−κ2h

eκ2h + e−κ2h

where e = 2.71828, l is the length (i.e. number of hops) of the shortest path between the
concepts, h is the depth of the deepest concept subsuming both concepts, and κ1 and
κ2 are parameters scaling the contributions of the shortest path length and the depth
respectively.

The shape of the language that α uses to represent the information received and
the content of its dialogues depends on two fundamental notions. First, when agents
interact within an overarching institution they explicitly or implicitly accept the norms
that will constrain their behaviour, and accept the established sanctions and penalties
whenever norms are violated. Second, the dialogues in which α engages are built around
two fundamental actions: (i) passing information, and (ii) exchanging proposals and
contracts. A contract δ = (a, b) between agents α and β is a pair where a and b represent
the actions that agents α and β are responsible for respectively. Contracts signed by
agents and information passed by agents, are similar to norms in the sense that they
oblige agents to behave in a particular way, so as to satisfy the conditions of the contract,
or to make the world consistent with the information passed. Contracts and Information
can thus be thought of as normative statements that restrict an agent’s behaviour.

Norms, contracts, and information have an obvious temporal dimension. Thus, an
agent has to abide by a norm while it is inside an institution, a contract has a validity
period, and a piece of information is true only during an interval in time. The set of
norms affecting the behaviour of an agent defines the context that the agent has to take
into account.
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α’s communication language has two fundamental primitives: Commit(α, β, ϕ) to
represent, in ϕ, the world that α aims at bringing about and that β has the right to
verify, complain about or claim compensation for any deviations from, and Done(μ) to
represent the event that a certain action μ4 has taken place. In this way, norms, contracts,
and information chunks will be represented as instances of Commit(·) where α and β
can be individual agents or institutions. C is:

μ ::= illoc(α, β, ϕ, t) | μ; μ |
Let context InμEnd

ϕ ::= term | Done(μ) | Commit(α, β, ϕ) | ϕ ∧ ϕ |
ϕ ∨ ϕ | ¬ϕ | ∀v.ϕv | ∃v.ϕv

context ::= ϕ | id = ϕ | prolog clause | context; context

where ϕv is a formula with free variable v, illoc is any appropriate set of illocutionary
particles, ‘;’ means sequencing, and context represents either previous agreements, pre-
vious illocutions, the ontological working context, that is a projection of the ontological
trees that represent the focus of the conversation, or code that aligns the ontological dif-
ferences between the speakers needed to interpret an action a. Representing an ontology
as a set predicates in Prolog is simple. The set term contains instances of the ontology
concepts and relations.5

For example, we can represent the following offer: “If you spend a total of more than
e100 in my shop during October then I will give you a 10% discount on all goods in
November”, as:

Offer( α, β,spent(β, α, October, X) ∧ X ≥ e100 →
∀ y. Done(Inform(ξ, α, pay(β, α, y), November))→

Commit(α, β, discount(y,10%)))

ξ is an institution agent that reports the payment.

3 Relationships

There is evidence from psychological studies that humans seek a balance in their ne-
gotiation relationships. The classical view [11] is that people perceive resource alloca-
tions as being distributively fair (i.e. well balanced) if they are proportional to inputs or
contributions (i.e. equitable). However, more recent studies [12,13] show that humans
follow a richer set of norms of distributive justice depending on their intimacy level:
equity, equality, and need. Equity being the allocation proportional to the effort (e.g. the
profit of a company goes to the stock holders proportional to their investment), equality
being the allocation in equal amounts (e.g. two friends eat the same amount of a cake
cooked by one of them), and need being the allocation proportional to the need for the

4 Without loss of generality we will assume that all actions are dialogical.
5 We assume the convention that C(c) means that c is an instance of concept C and
r(c1, . . . , cn) implicitly determines that ci is an instance of the concept in the i-th position
of the relation r.
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resource (e.g. in case of food scarcity, a mother gives all food to her baby). For instance,
if we are in a purely economic setting (low intimacy) we might request equity for the
Options dimension but could accept equality in the Goals dimension.

The perception of a relation being in balance (i.e. fair) depends strongly on the na-
ture of the social relationships between individuals (i.e. the intimacy level). In purely
economical relationships (e.g., business), equity is perceived as more fair; in relations
where joint action or fostering of social relationships are the goal (e.g. friends), equal-
ity is perceived as more fair; and in situations where personal development or personal
welfare are the goal (e.g. family), allocations are usually based on need.

We believe that the perception of balance in dialogues (in negotiation or otherwise)
is grounded on social relationships, and that every dimension of an interaction between
humans can be correlated to the social closeness, or intimacy, between the parties in-
volved. According to the previous studies, the more intimacy across the illocutionary
categories the more the need norm is used, and the less intimacy the more the equity
norm is used. This might be part of our social evolution. There is ample evidence that
when human societies evolved from a hunter-gatherer structure6 to a shelter-based one7

the probability of survival increased when food was scarce.
In this context, we can clearly see that, for instance, families exchange not only

goods but also information and knowledge based on need, and that few families would
consider their relationships as being unbalanced, and thus unfair, when there is a strong
asymmetry in the exchanges (a mother explaining everything to her children, or buying
toys, does not expect reciprocity). In the case of partners there is some evidence [14] that
the allocations of goods and burdens (i.e. positive and negative utilities) are perceived
as fair, or in balance, based on equity for burdens and equality for goods. See Table 1
for some examples of desired balances along five illocutionary categories.

Table 1. Some desired balances (sense of fairness) for five illocutionary categories

Illoc. Category A new trading partner my butcher my boss my partner my children
Legitimacy equity equity equity equality need
Options equity equity equity mixeda need
Goals equity need equity need need
Independence equity equity equality need need
Commitment equity equity equity mixed need

a equity on burden, equality on good

The perceived balance in a negotiation dialogue allows negotiators to infer infor-
mation about their opponent, about its stance, and to compare their relationships with
all negotiators. For instance, if we perceive that every time we request information it
is provided, and that no significant questions are returned, or no complaints about not

6 In its purest form, individuals in these societies collect food and consume it when and where
it is found. This is a pure equity sharing of the resources, the gain is proportional to the effort.

7 In these societies there are family units, around a shelter, that represent the basic food sharing
structure. Usually, food is accumulated at the shelter for future use. Then the food intake
depends more on the need of the members.
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receiving information are given, then that probably means that our opponent perceives
our social relationship to be very close. Alternatively, we can detect what issues are
causing a burden to our opponent by observing an imbalance in the information or util-
itarian senses on that issue.

4 Agent Architecture

A multiagent system {α, β1, . . . , βn, ξ, θ1, . . . , θt}, contains an agent α that interacts
with other argumentation agents, βi, information providing agents, θj , and an institu-
tional agent, ξ, that represents the institution where we assume the interactions happen
[8]. The institutional agent reports promptly and honestly on what actually occurs af-
ter an agent signs a contract, or makes some other form of commitment. In Section 5
this enables us to measure the difference between an utterance and a subsequent obser-
vation. Agents have a probabilistic first-order internal language L used to represent a
world model,Mt. A generic information-based architecture is described in detail in [7].

The agent architecture is shown in Figure 1. Agent α acts in response to a need that
is expressed in terms of the ontology. Needs trigger α’s goal/plan proactive reasoning,
while other messages are dealt with by α’s reactive reasoning.8 Each plan prepares
for the negotiation by assembling the contents of a ‘briefcase’ that the agent ‘carries’
into the negotiation9. The relationship strategy determines which agent to negotiate
with for a given need; it uses risk management analysis to preserve a strategic set of
trading relationships for each mission-critical need — this is not detailed here. For each
trading relationship this strategy generates a relationship target that is expressed in the
dialogical framework as a desired level of intimacy to be achieved in the long term.

Each negotiation consists of a dialogue, Ψ t, between two agents with agent α con-
tributing utterance μ and the partner β contributing μ′. Each dialogue, Ψ t, is evaluated
using the dialogical framework in terms of the value of Ψ t to both α and β — see Sec-
tion 6.2. The negotiation strategy then determines the current set of offers {δi}, and
then the tactics, guided by the negotiation target, decide which, if any, of these offers
to put forward and wraps them in argumentation dialogue — see Section 7. We now
describe two of the distributions in Mt that support offer exchange.

Pt(acc(α, β, χ, δ)) estimates the probability that α should accept proposal δ in sat-
isfaction of her need χ, where δ = (a, b) is a pair of commitments, a for α and b for
β. α will accept δ if: Pt(acc(α, β, χ, δ)) > c, for level of certainty c. This estimate is
compounded from subjective and objective views of acceptability. The subjective esti-
mate takes account of: the extent to which the enactment of δ will satisfy α’s need χ,
how much δ is ‘worth’ to α, and the extent to which α believes that she will be in a
position to execute her commitment a [7]. Sα(β, a) is a random variable denoting α’s
estimate of β’s subjective valuation of a over some finite, numerical evaluation space.

8 Each of α’s plans and reactions contain constructors for an initial world model Mt. Mt is
then maintained from percepts received using update functions that transform percepts into
constraints on Mt — for details, see [7].

9 Empirical evidence shows that in human negotiation, better outcomes are achieved by skewing
the opening offer in favour of the proposer. We are unaware of any empirical investigation of
this hypothesis for autonomous agents in real trading scenarios.
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The objective estimate captures whether δ is acceptable on the open market, and vari-
able Uα(b) denotes α’s open-market valuation of the enactment of commitment b, again
taken over some finite numerical valuation space. We also consider needs, the variable
Tα(β, a) denotes α’s estimate of the strength of β’s motivating need for the enactment
of commitment a over a valuation space. Then for δ = (a, b): Pt(acc(α, β, χ, δ)) =

P
t

((
Tα(β, a)
Tα(α, b)

)h

×
(

Sα(α, b)
Sα(β, a)

)g

× Uα(b)
Uα(a)

≥ s

)
(1)

where g ∈ [0, 1] is α’s greed, h ∈ [0, 1] is α’s degree of altruism, and s ≈ 1 is derived
from the stance10 described in Section 7. The parameters g and h are independent. We
can imagine a relationship that begins with g = 1 and h = 0. Then as the agents share
increasing amounts of their information about their open market valuations g gradually
reduces to 0, and then as they share increasing amounts of information about their needs
h increases to 1. The basis for the acceptance criterion has thus developed from equity
to equality, and then to need.

Pt(acc(β, α, δ)) estimates the probability that β would accept δ, by observing β’s
responses. For example, if β sends the message Offer(δ1) then α derives the constraint:
{Pt(acc(β, α, δ1)) = 1} on the distribution Pt(β, α, δ), and if this is a counter offer
to a former offer of α’s, δ0, then: {Pt(acc(β, α, δ0)) = 0}. In the not-atypical special
case of multi-issue bargaining where the agents’ preferences over the individual issues
only are known and are complementary to each other’s, maximum entropy reasoning
can be applied to estimate the probability that any multi-issue δ will be acceptable to β
by enumerating the possible worlds that represent β’s “limit of acceptability” [16].

10 If α chooses to inflate her opening offer then this is achieved in Section 7 by increasing the
value of s. If s 
 1 then a deal may not be possible. This illustrates the well-known ineffi-
ciency of bilateral bargaining established analytically by [15].
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5 Updating the World Model Mt

α’s world model consists of probability distributions that represent its uncertainty in
the world state. α is interested in the degree to which an utterance accurately describes
what will subsequently be observed. All observations about the world are received as
utterances from an all-truthful institution agent ξ. For example, if β communicates the
goal “I am hungry” and the subsequent negotiation terminates with β purchasing a
book from α (by ξ advising α that a certain amount of money has been credited to α’s
account) then α may conclude that the goal that β chose to satisfy was something other
than hunger. So, α’s world model contains probability distributions that represent its
uncertain expectations of what will be observed on the basis of utterances received.

We represent the relationship between utterance, ϕ, and subsequent observation, ϕ′,
by Pt(ϕ′|ϕ) ∈ Mt, where ϕ′ and ϕ may be ontological categories in the interest of
computational feasibility. For example, if ϕ is “I will deliver a bucket of fish to you
tomorrow” then the distribution P(ϕ′|ϕ) need not be over all possible things that β
might do, but could be over ontological categories that summarise β’s possible actions.

In the absence of in-coming utterances, the conditional probabilities, Pt(ϕ′|ϕ),
should tend to ignorance as represented by a decay limit distribution D(ϕ′|ϕ). α may
have background knowledge concerning D(ϕ′|ϕ) as t → ∞, otherwise α may assume
that it has maximum entropy whilst being consistent with the data. In general, given a
distribution, Pt(Xi), and a decay limit distribution D(Xi), Pt(Xi) decays by:

P
t+1(Xi) = Δi(D(Xi), Pt(Xi)) (2)

where Δi is the decay function for the Xi satisfying the property that limt→∞ P
t(Xi) =

D(Xi). For example, Δi could be linear: Pt+1(Xi) = (1− νi)×D(Xi)+ νi ×Pt(Xi),
where νi < 1 is the decay rate for the i’th distribution. Either the decay function or the
decay limit distribution could also be a function of time: Δt

i and Dt(Xi).
Suppose that α receives an utterance μ = illoc(α, β, ϕ, t) from agent β at time t.

Suppose that α attaches an epistemic belief Rt(α, β, μ) to μ — this probability takes
account of α’s level of personal caution. We model the update of Pt(ϕ′|ϕ) in two cases,
one for observations given ϕ, second for observations given φ in the semantic neigh-
bourhood of ϕ.

First, if {ϕ1, ϕ2, . . . , ϕm} is the set of all possible observations and ϕk is observed
then α may set Pt+1(ϕk|ϕ) to some value d. We estimate the complete posterior dis-
tribution Pt+1(ϕ′|ϕ) by applying the principle of minimum relative entropy as follows.
Let p(μ) be the distribution: arg minx

∑
j xj log xj

Pt(ϕ′|ϕ)j
that satisfies the constraint

p(μ)k = d. Then let q(μ) be the distribution:

q(μ) = R
t(α, β, μ) × p(μ) + (1− R

t(α, β, μ)) × P
t(ϕ′|ϕ)

and then let:

r(μ) =

{
q(μ) if q(μ) is more interesting than Pt(ϕ′|ϕ)
Pt(ϕ′|ϕ) otherwise

A measure of whether q(μ) is more interesting than Pt(ϕ′|ϕ) is: K(q(μ)‖D(ϕ′|ϕ)) >
K(Pt(ϕ′|ϕ)‖D(ϕ′|ϕ)), where K(x‖y) =

∑
j xj ln xj

yj
is the Kullback-Leibler distance

between two probability distributions x and y.
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Finally incorporating Equation 2 we obtain the method for updating a distribution
Pt(ϕ′|ϕ) on receipt of a message μ:

P
t+1(ϕ′|ϕ) = Δi(D(ϕ′|ϕ), r(μ)) (3)

This procedure deals with integrity decay, and with two probabilities: first, the proba-
bility z in the utterance μ, and second the belief Rt(α, β, μ) that α attached to μ.

Second we consider the update of Pt(φ′|φ) given ϕ. Given μ = illoc(α, β, ϕ, t) and
the observation ϕk we define the vector t by

ti = P
t(φi|φ) + (1− | Sim(ϕk, ϕ)− Sim(φi, φ) |) · Sim(ϕk, φ)

with {φ1, φ2, . . . , φp} the set of all possible observations in the context of φ and i =
1, . . . , p. t is not a probability distribution. The multiplying factor Sim(ϕ′, φ) limits the
variation of probability to those formulae whose ontological context is not too far away
from the observation. The posterior P

t+1(φ′|φ) is obtained with Equation 3 with r(μ)

defined to be the normalisation of t.

6 Measuring the Confidence in a Relationship

A dialogue, Ψ t, between agents α and β is a sequence of inter-related utterances in
context. A relationship, Ψ∗t, is a sequence of dialogues. We first measure the confidence
that an agent has for another by observing, for each utterance, the difference between
what is said (the utterance) and what subsequently occurs (the observation). Second
we evaluate each dialogue as it progresses in terms of the dialogical framework —
this evaluation employs the confidence measures. Finally we define the intimacy of a
relationship as an aggregation of the value of its component dialogues.

6.1 Confidence

Confidence measures generalise what are commonly called trust, reliability and repu-
tation measures [17] into a single computational framework that spans the illocutionary
categories C. In Section 6.2 confidence measures are applied to valuing fulfilment of
promises, to the execution of commitments, and to valuing dialogues.

Ideal observations. Consider a distribution of observations that represent α’s “ideal”
in the sense that it is the best that α could reasonably expect to observe. This distri-
bution will be a function of α’s context with β denoted by e, and is Pt

I(ϕ
′|ϕ, e). Here

we measure the relative entropy between this ideal distribution, Pt
I(ϕ

′|ϕ, e), and the
distribution of expected observations, Pt(ϕ′|ϕ). That is:

C(α, β, ϕ) = 1−
∑
ϕ′

P
t
I(ϕ

′|ϕ, e) log
Pt

I(ϕ
′|ϕ, e)

Pt(ϕ′|ϕ)
(4)

where the “1” is an arbitrarily chosen constant being the maximum value that this mea-
sure may have. This equation measures confidence for a single statement ϕ. It makes
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sense to aggregate these values over a class of statements, say over those ϕ that are in
the ontological context o, that is ϕ ≤ o:

C(α, β, o) = 1−
∑

ϕ:ϕ≤o P
t
β(ϕ) [1− C(α, β, ϕ)]∑
ϕ:ϕ≤o Pt

β(ϕ)

where Pt
β(ϕ) is a probability distribution over the space of statements that the next

statement β will make to α is ϕ. Similarly, for an overall estimate of β’s confidence in
α:

C(α, β) = 1−
∑

ϕ

P
t
β(ϕ) [1− C(α, β, ϕ)]

Preferred observations. The previous measure requires that: Pt
I(ϕ

′|ϕ, e), has to be
specified for each ϕ. Here we measure the extent to which the observation ϕ′ is prefer-
able to the original statement ϕ. Given a predicate Prefer(c1, c2, e) meaning that α
prefers c1 to c2 in environment e. Then if ϕ ≤ o:

C(α, β, ϕ) =
∑
ϕ′

P
t(Prefer(ϕ′, ϕ, o))Pt(ϕ′|ϕ)

and:

C(α, β, o) =

∑
ϕ:ϕ≤o Pt

β(ϕ)C(α, β, ϕ)∑
ϕ:ϕ≤o Pt

β(ϕ)

Certainty in observation. Here we measure the consistency in expected acceptable
observations, or “the lack of expected uncertainty in those possible observations that
are better than the original statement”.

If ϕ ≤ o let: Φ+(ϕ, o, κ) = {ϕ′ | Pt(Prefer(ϕ′, ϕ, o)) > κ} for some constant κ,
and:

C(α, β, ϕ) = 1 +
1

B∗ ·
∑

ϕ′∈Φ+(ϕ,o,κ)

P
t
+(ϕ′|ϕ) log P

t
+(ϕ′|ϕ)

where Pt
+(ϕ′|ϕ) is the normalisation of Pt(ϕ′|ϕ) for ϕ′ ∈ Φ+(ϕ, o, κ),

B∗ =

{
1 if |Φ+(ϕ, o, κ)| = 1
log |Φ+(ϕ, o, κ)| otherwise

As above we aggregate this measure for observations in a particular context o, and
measure confidence as before.

Computational Note. The various measures given above involve extensive calcula-
tions. For example, Equation 4 contains

∑
ϕ′ that sums over all possible observations

ϕ′. We obtain a more computationally friendly measure by appealing to the structure of
the ontology described, and the right-hand side of Equation 4 may be approximated to:

1−
∑

ϕ′:Sim(ϕ′,ϕ)≥η

P
t
η,I(ϕ

′|ϕ, e) log
P

t
η,I(ϕ

′|ϕ, e)
Pt

η(ϕ′|ϕ)
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where Pt
η,I(ϕ

′|ϕ, e) is the normalisation of Pt
I(ϕ

′|ϕ, e) for Sim(ϕ′, ϕ) ≥ η, and sim-
ilarly for Pt

η(ϕ′|ϕ). The extent of this calculation is controlled by the parameter η. An
even tighter restriction may be obtained with: Sim(ϕ′, ϕ) ≥ η and ϕ′ ≤ ψ for some ψ.

6.2 Valuing Negotiation Dialogues

Suppose that a negotiation commences at time s, and by time t a string of utterances,
Φt = 〈μ1, . . . , μn〉 has been exchanged between agent α and agent β. This negotiation
dialogue is evaluated by α in the context of α’s world model at time s, Ms, and the
environment e that includes utterances that may have been received from other agents
in the system including the information sources {θi}. Let Ψ t = (Φt,Ms, e), then α
estimates the value of this dialogue to itself in the context of Ms and e as a 2×L array
Vα(Ψ t) where:

Vx(Ψ t) =
(

I l1
x (Ψ t) . . . I lL

x (Ψ t)
U l1

x (Ψ t) . . . U lL
x (Ψ t)

)
where the I(·) and U(·) functions are information-based and utility-based measures
respectively as we now describe. α estimates the value of this dialogue to β as Vβ(Ψ t)
by assuming that β’s reasoning apparatus mirrors its own.

In general terms, the information-based valuations measure the reduction in uncer-
tainty, or information gain, that the dialogue gives to each agent, they are expressed in
terms of decrease in entropy that can always be calculated. The utility-based valuations
measure utility gain are expressed in terms of “some suitable” utility evaluation func-
tion U(·) that can be difficult to define. This is one reason why the utilitarian approach
has no natural extension to the management of argumentation that is achieved here by
our information-based approach.

The balance in a negotiation dialogue, Ψ t, is defined as: Bαβ(Ψ t) = Vα(Ψ t) �
Vβ(Ψ t) for an element-by-element difference operator � that respects the structure of
V (Ψ t). The intimacy between agents α and β, I∗t

αβ , is the pattern of the two 2 × L

arrays V ∗t
α and V ∗t

β that are computed by an update function as each negotiation round

terminates, I∗t
αβ =

(
V ∗t

α , V ∗t
β

)
. If Ψ t terminates at time t:

V ∗t+1
x = ν × Vx(Ψ t) + (1− ν)× V ∗t

x (5)

where ν is the learning rate, and x = α, β. Additionally, V ∗t
x continually decays by:

V ∗t+1
x = τ × V ∗t

x + (1 − τ) × Dx, where x = α, β; τ is the decay rate, and Dx is a
2 × L array being the decay limit distribution for the value to agent x of the intimacy
of the relationship in the absence of any interaction. Dx is the reputation of agent x.
The relationship balance between agents α and β is: B∗t

αβ = V ∗t
α � V ∗t

β . In particular,
the intimacy determines values for the parameters g and h in Equation 1. As a simple
example, if both IO

α (Ψ∗t) and IO
β (Ψ∗t) increase then g decreases, and as the remaining

information-based components increase, h increases.
The notion of balance may be applied to pairs of utterances by treating them as de-

generate dialogues. In simple multi-issue bargaining the equitable information revela-
tion strategy generalises the tit-for-tat strategy in single-issue bargaining, and extends to
a tit-for-tat argumentation strategy by applying the same principle across the dialogical
framework.
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7 Strategies and Tactics for Building Relationships

Each negotiation has to achieve two goals. First it may be intended to achieve some
contractual outcome. Second it will aim to contribute to the growth, or decline, of the
relationship intimacy.

We now describe in greater detail the contents of the “Negotiation” box in Figure 1.
The negotiation literature consistently advises that an agent’s behaviour should not be
predictable even in close, intimate relationships. The required variation of behaviour
is normally described as varying the negotiation stance that informally varies from
“friendly guy” to “tough guy”. The stance is shown in Figure 1, it injects bounded
random noise into the process, where the bound tightens as intimacy increases. The
stance, St

αβ , is a 2× L matrix of randomly chosen multipliers, each ≈ 1, that perturbs
α’s actions. The value in the (x, y) position in the matrix, where x = I, U and y ∈ L,
is chosen at random from [ 1

l(I∗t
αβ ,x,y)

, l(I∗t
αβ , x, y)] where l(I∗t

αβ , x, y) is the bound, and

I∗t
αβ is the intimacy.

The negotiation strategy is concerned with maintaining a working set of proposals. If
the set of proposals is empty then α will quit the negotiation. α perturbs the acceptance
machinery (see Section 4) by deriving s from the St

αβ matrix. In line with the comment
in Footnote 9, in the early stages of the negotiation α may decide to inflate her opening
offer. This is achieved by increasing the value of s in Equation 1. The following strategy
uses the machinery described in Section 4. Fix h, g, s and c, set the Proposals to the
empty set, let Dt

s = {δ | Pt(acc(α, β, χ, δ) > c}, then:

– repeat the following as many times as desired: add δ=argmaxx{Pt(acc(β, α, x)) |
x ∈ Dt

s} to Proposals, remove {y ∈ Dt
s | Sim(y, δ) < k} for some k from Dt

s

By using Pt(acc(β, α, δ)) this strategy reacts to β’s history of Propose and Reject ut-
terances.

Negotiation tactics are concerned with selecting some offers and wrapping them in
argumentation. Prior interactions with agent β will have produced an intimacy pattern

expressed in the form of
(
V ∗t

α , V ∗t
β

)
. Suppose that the relationship target is (T ∗t

α , T ∗t
β ).

Following from Equation 5, α will want to achieve a negotiation target, Nβ(Ψ t) such
that: ν ·Nβ(Ψ t) + (1− ν) · V ∗t

β is “a bit on the T ∗t
β side of” V ∗t

β :

Nβ(Ψ t) =
ν − κ

ν
V ∗t

β ⊕ κ

ν
T ∗t

β (6)

for small κ ∈ [0, ν] that represents α’s desired rate of development for her relationship
with β. Nβ(Ψ t) is a 2×L matrix containing variations in the dialogical framework’s di-
mensions that α would like to reveal to β during Ψ t (e.g. I’ll pass a bit more information
on options than usual, I’ll be stronger in concessions on options, etc.). It is reasonable
to expect β to progress towards her target at the same rate and Nα(Ψ t) is calculated by
replacing β by α in Equation 6. Nα(Ψ t) is what α hopes to receive from β during Ψ t.
This gives a negotiation balance target of: Nα(Ψ t) � Nβ(Ψ t) that can be used as the
foundation for reactive tactics by striving to maintain this balance across the dialogical
framework. A cautious tactic could use the balance to bound the response μ to each
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utterance μ′ from β by the constraint: Vα(μ′)� Vβ(μ) ≈ St
αβ ⊗ (Nα(Ψ t)�Nβ(Ψ t)),

where ⊗ is element-by-element matrix multiplication, and St
αβ is the stance. A less

neurotic tactic could attempt to achieve the target negotiation balance over the antici-
pated complete dialogue. If a balance bound requires negative information revelation in
one dialogical framework category then α will contribute nothing to it, and will leave
this to the natural decay to the reputation D as described above.

The following are a list of components that we have described that could be com-
bined into an agent’s negotiation strategy. These components all constrain the agent’s
actions. We assume that they are all soft constraints and that they operate together with
a hard constraint Ct(α, β, xt) on the message xt that α may send to β at time t.

Information-based strategies. Every communication gives away information and so
has the potential to contribute to the intimacy and balance of a relationship. Information-
based strategies manage the information revelation process. Let M t

αβ be the set of time-
stamped messages that α has sent to β, and M t

βα likewise both at time t. Mt is α’s
world model at time t and consists of a set of probability distributions. xt denotes a
message received at time t. It(α, β, xt) is the information gain — measured as the re-
duction of the entropy of Mt — observed by α after receiving message xt. It(β, α, xt)
is α’s estimate of β’s information gain after receiving message xt from α.

The complete information history of both the observed and the estimated information
gain, Gt(α, β), is:

Gt(α, β) = {(xs, Is(α, β, xs)) | xs ∈ M t
βα} ∪

{(xs, Is(β, α, xs)) | xs ∈ M t
αβ}

respectively.
In [7] we described to the model that α constructs of β. In general α can not be ex-

pected to guess β’s world model,Mt
β , unless α knows what β’s needs are — even then,

α would only knowMt
β with certainty if it knew what plans β had chosen. However, α

always knows the private information that it has sent to β — for example, in Propose(·)
and Reject(·) messages. Such private information could be used by β to estimate α’s
probability of accepting a proposal: Pt

β(acc(α, β, χ′, z)), where χ′ is the need that β
believes α to have.

α’s information-based strategies constrain its actions, xt, on the basis of It(β, α, xt)
and its relation to Gt(α, β). For example, the strategy that gives β greatest expected
information gain:

argmax
z
{ I

s
β(β, α, z) | Ct(α, β, z)}

More generally, for some function f :

argmax
z
{ f(Is

β(β, α, z), Gt(α, β)) | Ct(α, β, z)}

the idea being that the f ‘optimises’ in some sense the information gain taking account
of the interaction history.
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Ontology-based strategies. The structure of the ontology may be used to manage
the information revelation process in particular strategic areas. For example, α may
prefer to build a relationship with β in the context of the supply of particular goods
only [9]. The structure of the ontology is provided by the Sim(·) function. Given two
contracts δ and δ′ containing concepts {o1, . . . , oi} and {o′1, . . . , o′j} respectively, the
(non-symmetric) distance of δ′ from δ is the vector

Γ (δ, δ′) = (dk : o′′k)i
k=1

where dk = minx{Sim(ok, o′x) | x = 1, . . . , j}, o′′k = sup(arg minx{Sim(ok, x) |
x = o′1, . . . , o

′
j}, ok) and the function sup(·, ·) is the supremum of two concepts in the

ontology. Γ (δ, δ′) quantifies how different δ′ is to δ and enables α to “work around” or
“move away from” a contract under consideration. In general for some function g;

arg max
z
{ g(Γ (z, xs)) | xs ∈ M t

αβ ∪M t
βα ∧ Ct(α, β, z)}

the idea being that the g ‘optimises’ in some sense the ontological relationship with the
interaction history.

8 Discussion

The ability of agents to conduct business relies on their ability to build business relation-
ships with each other. In this paper we have introduced a novel approach to negotiation
that incorporates a rich model of relationships that is dimensioned by the structure of the
ontology and a set of illocutionary categories. It is grounded on business and psycho-
logical studies and introduces the concepts of intimacy and balance as key elements in
understanding what is a negotiation strategy and tactic. Relationships are strengthened
by managing the agent’s dialogical moves. Each dialogical move produces a change in
an array structure. The current balance and intimacy levels and the desired, or target,
levels are then used by the tactics to determine what to say next. The architecture is sim-
ple and the implementation of the agents straightforward using tools from information
theory.

We are currently exploring the use of this model as an extension of a currently
widespread eProcurement software commercialised by a spin-off company of the labo-
ratory of one of the authors. This tool has only a utilitarian modelling of the negotiation
interactions and has motivated some criticisms from its users about the lack of mod-
elling of long-lasting relationships that our model could solve.
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Abstract. We researched to try to find a way to reduce the cost of nearest
neighbor searches in metric spaces. Many similarity search indexes recur-
sively divide a region into subregions by using pivots, and construct a tree
structure index. A problem in the existing indexes is that they only focus
on the pruning objects and do not take into consideration the tree balanc-
ing. The balance of the indexes depends on the data distribution and the
indexes don’t reduce the search cost for all data. We propose a similar-
ity search index called the Partitioning Capacity Tree (PCTree). PCTree
automatically optimizes the pivot selection based on both the balance of
the regions partitioned by a pivot and the estimated effectiveness of the
search pruning by the pivot. As a result, PCTree reduces the search cost
for various data distributions. Our evaluations comparing it with four in-
dexes on three real datasets showed that PCTree successfully reduces the
search cost and is good at handling various data distributions.

Keywords: Similarity Search, Metric Space, Indexing.

1 Introduction

Finding similar objects in a large dataset is a fundamental process of many
applications, such as image completion [7]. These applications can be speeded
up by reducing the query execution cost of a similarity search.

Similarity search indexes are used for pruning objects dissimilar to a query,
and reduce the search cost, such as the distance computations and the disk
accesses. Most indexing schemes use pivots, which are reference objects. They
recursively divide a region into subregions by using pivots, and construct a tree
structure index. They prune some of the subregions by using the triangle in-
equality while searching. That is, the methods of selecting pivots and dividing
up the space by using these pivots determine the index structure and prun-
ing performance. The existing pivot selection studies have mainly focused on
increasing the number of pruned objects at a branch in the tree [2]. However,
most previous works do not take into account the balance of the tree. It is well
known that a reduction in the tree height reduces the average search cost. Thus,
even if the pivots of the methods are enough good for pruning objects at the
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branch, they may not reduce the average search cost for every data distribution.
Therefore, we developed a new pivot selection for optimizing both the pruning
and the balancing.

The main contributions of this paper are as follows.

– We propose a new information theoretic criterion called the Partitioning
Capacity (PC) for pivot selection. The PC takes both the object pruning
effect and index tree balance into account.

– We developed a metric space index called the Partitioning Capacity Tree
(PCTree). The PCTree provides the necessary functions for constructing an
index tree based on PC and for efficiently retrieving similar objects using
the index tree.

– We show the efficiency of PCTree empirically through the results from sev-
eral experiments where we compared the PCTree with several metric space
indexes using three real datasets.

2 Related Work

Let M = (D, d) be a metric space defined for a domain of objects D and a
distance function d : D×D �→ R. M satisfies the postulates, such as the triangle
inequality. Our index deals with the space and the distance.

The early indexing schemes of similarity searches used balanced tree struc-
tures. Vantage Point Tree (VPT) divides a region into two subregions based on
the distance from a pivot [15]. Its distance is set for equally partitioning the
objects in the region, so that the two subregions contain the same number of
objects. Thus, VPT is a completely balanced binary tree. However, the early
indexes are weak at pruning objects while searching. Their pivots are selected
by using simple statical features, such as the variance. As a result, they require
a huge search cost because they have to traverse many nodes in the tree.

The recent indexing schemes focus on pruning dissimilar objects rather than
balancing the tree. Some schemes use other partitioning techniques instead of
Ball partitioning. Vantage Point Forest (VPF) [16] and D-Index [6] divide a
region into three sub-regions according the distance from the pivot. They aim
to exclude the middle area in the region because it is difficult to judge whether
objects in this area are similar or dissimilar to a query. Generalized Hyper-plane
Tree (GHT) [14] divides the space by using a hyper-plane equidistant from the
two pivots.

Other schemes improve the pivot selection. Many studies have attempted to
select pivots that are distant from the other objects and other pivots [15, 2].
These methods used the mean [6], the variance [15], and the sum [5]. iDistance
[8] selects pivots based on the clustering result and reduces the number of re-
gions accessed during a search. OMNI-Family [10] chooses a set of pivots based
on the minimum bounding region. MMMP [12] has a pivot selection based on
the maximal margin, and it classifies dense regions. Moreover, some methods
combine different pivot selection techniques [17].
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Table 1. Notation

Notation Meaning

D domain of objects
d distance function
R region
S object set

SR object set in R
SR,sub subset of SR

m sampling parameter for SR,sub
Sp pivot candidate set
s sampling parameter for Sp

p pivot
rp partitioning distance of p
q query

ro,k,S distance between o and
o’s k-nearest neighbor in S

PC pivot capacity
Xi,p,rp partitioning distribution

Yi,p,rp pruning distribution

Sr result set
k # results
rq query range

Fig. 1. Labels for measuring the PC

Still other schemes propose various index structures. Fixed Queries Array [3]
is an array of distances between objects and pivots and it is used to save mem-
ory. List of Clusters (LC) [4] is a list of compact regions. It recursively divides
the space into a compact region. iDistance consists of a list of pivots and a set
of B+-trees for storing objects. Thus, its index structure is partially balancing.
Although the B+-trees are balanced, the pivots are linearly accessed. Spatial
Approximation Tree (SAT) [13] approximates a graph and uses pivots for ap-
proaching the query spatially. M-Tree [5] is a dynamic tree structure with object
insertion and deletion. Slim-Tree [11] minimizes the overlap space managed by
node in M-Tree.

As mentioned above, Almost all the recent methods do not take into consid-
eration the tree balancing as VPT proposed. Our index thus aims to reduce the
search cost by taking into account both the object pruning and tree balance.

3 Partitioning Capacity Tree

This section proposes PCTree, a similarity search index for a metric space. The
index is designed for nearest neighbor searches and aims at reducing the search
cost for various data distributions. Its indexing method selects pivots that opti-
mize pruning objects and balance the index tree. Table 1 summarizes the symbols
used in this article.

3.1 Partitioning Capacity

PC is a measure of the balance of the regions partitioned by a pivot and the esti-
mated effectiveness of the pruning by the pivot. It represents the expected index
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performance for a given query distribution. We assume that both the queries
and objects in the database are drawn from the same probability distribution.

For a metric space M = (D, d) and a region R ⊆ D in the space, suppose that
a pivot p and its partitioning distance rp divide R into two subregions:

R1(p, rp) = {o ∈ R | d(o, p) ≤ rp}, R2(p, rp) = {o ∈ R | d(o, p) > rp} .

We respectively refer to R1(p, rp) and R2(p, rp) as an inside region and an outside
region with respect to pivot p and distance rp.

For a query q, let X be the random variable that represents the region in
which q is included, that is,

X =

{
X1,p,rp if q ∈ R1(p, rp)
X2,p,rp if q ∈ R2(p, rp) .

(1)

We call P (X) a partitioning distribution. Since we assume a query is drawn from
the same distribution as the database, we estimate the partitioning distribution
as

P (X1,p,rp) =
|SR1(p,rp)|

|SR|
, P (X1,p,rp) =

|SR2(p,rp)|
|SR|

, (2)

where SR denote the set of database objects that are in the region R.
Similarly, we define the pruning distribution of the query. For a set S of objects

in the database and an object o in the region R, let ro,k,S denote the distance
between o and o’s kth nearest neighbor in S. Let us consider the following three
regions:

R′
1(p, rp, k) = {o ∈ R | d(o, p) + ro,k,S ≤ rp} , (3)

R′
2(p, rp, k) = {o ∈ R | d(o, p)− ro,k,S > rp} , (4)

R′
3(p, rp, k) = R−R′

1(p, rp, k)−R′
2(p, rp, k) . (5)

Intuitively, R′
1(p, rp, k) is the set of the objects whose k-nearest neighbor ob-

jects are within R1(p, rp). This means that, if a query q belongs to the re-
gion R′

1(p, rp, k), we can prune R2(p, rp) when executing the k-nearest neighbor
search. Similarly, R′

2(p, rp, k) is the set of the objects whose k-nearest neighbor
objects are within R2(p, rp). We respectively refer to R′

1(p, rp, k), R′
2(p, rp, k),

and R′
3(p, rp, k) as an inside-safe region, an outside-safe region, and a boundary

region w.r.t the pivot p, the distance rp, and the number k of nearest neighbors.
Let Y be a random variable that represents the region in which the k-nearest
neighbor ranges of q is included, that is,

Y =

⎧⎪⎨
⎪⎩

Y1,p,rp if q ∈ R′
1(p, rp, k) ,

Y2,p,rp if q ∈ R′
2(p, rp, k) ,

Y3,p,rp if q ∈ R′
3(p, rp, k) .

(6)
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We call P (Y ) a pruning distribution. We estimate the distribution as

P (Y1,p,rp,k) =
|SR′

1(p,rp)|
|SR| , (7)

P (Y2,p,rp,k) =
|SR′

2(p,rp)|)
|SR| , (8)

P (Y3,p,rp,k) =
|SR′

3(p,rp)|
|SR| . (9)

By using the two random variables X and Y , the PC for a pivot p is defined
as

PCk(p)
≡ max

rp

I(X ; Y )

= max
rp

(∑
i

∑
j

(
P (Xi,p,rp , Yj,p,rp,k) · log

(
P (Xi,p,rp , Yj,p,rp,k)

P (Xi,p,rp)P (Yj,p,rp,k)

)))
,(10)

where I(·; ·) is the mutual information. We choose the object p (resp. distance
rp) that maximizes Eq. (10) as a pivot (resp. partitioning distance).

The PC represents the mutual dependence of the random variables for the
partitioning and the pruning distributions. We regard the value of the PC as the
reduction in uncertainty when knowing either the partition or the pruning effect.
That is, it is the amount of information shared by the partition and the pruning
effect. The PC is less than the entropy of the partitioning distribution and that of
the pruning distribution because of the mutual information theory. Partitions are
effective for the search pruning result for a large PC value. Balanced partitions
also tend to increase the PC value. The PC is almost the same as the channel
capacity of a binary erasure channel in the information and coding theory [9].

3.2 PCTree Construction

PCTree has a tree consisting of internal nodes and leaves. An internal node is
associated with one pivot and its partitioning distance whereas a leaf node is
associated with one pivot and the objects.

We first select the most effective pivot candidates Sp because a database usu-
ally contains large amount of objects and calculating PC for all these objects is
computationally infeasible. We select pivot candidates such that they are sepa-
rated from each other by a certain distance dp. We set dp to be dave · s, where
dave is the approximate average distance between objects and s is a parameter.
The approximate average distance is calculated by using randomly sampled ob-
jects. Let N (resp. n) denote the number of objects in the dataset (resp. pivot
candidates), the cost is at most O(N ·n). Note that the pivot candidate selection
is done once before constructing an index.

Then, PCTree recursively divides a region into subregions by using pivots as
well as VPT [15]. Each pivot is selected from the candidates Sp according to the
criterion PC (Sec. 3.1 for details) for the predefined number m of samples from
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the region. When the PCs of the pivot candidates in a region are less than the
minimum PC, the partitioning finishes and the region is set as a leaf node in the
tree. we set the minimum PC as

MinimumPC(S) = − 1
|S| · log 1

|S| −
|S|−1
|S| · log |S|−1

|S| , (11)

where S is the object set. The minimum PC represents the effect of the linear
scan method. we regard the method as that in which all the objects in the
dataset are pivots and each pivot prunes itself while searching. The indexing
cost is O(N2) at most.

The PCTree requires three parameters during indexing. One parameter k is
for calculating the PC in Eqs. (3), (4) and (5), and the other parameters s and
m are for sampling objects. From preliminary experiments, we decided to set k,
s, and m to 1, 0.8, and 500, respectively, in the index performance evaluations.

3.3 k-Nearest Neighbor Search

For the k-Nearest Neighbor searching, the PCTree receives a query q and the
number of results k. The search procedure is almost the same as for VPT [15].
First, it creates an empty set as a result set Sr and sets the query range rq to be
∞. It starts the search from the root node in the PCTree and recursively accesses
the nodes. If the node is a leaf, it finds the objects whose distance to q are within
rq in the node while using the object-pivot distance constraint, and adds them
to Sr. Then, it updates rq to be the k-nearest neighbor radius of q in Sr. If the
node is an internal node, it reads the pivot p and its partitioning distance rp

associated to the node. Then, if the inequality d(p, q) ≤ rp is satisfied, it accesses
the child node for the inside region and updates rq. After this, if the inequality
d(p, q) + rq > rp is satisfied, it accesses the other child node and updates rq.
Similarly, if the inequality d(p, q) ≥ rp is satisfied, it accesses the child node for
the outside region and updates rq. After this, if the inequality d(p, q)− rq ≤ rp

is satisfied, it accesses the other child node and updates rq. Finally, it answers
the k closest objects. The search cost is O(log N) at best.

4 Performance Evaluation

We implemented PCTree on the Metric Space Library [1]. It provides several
indexing algorithms, metric spaces, and datasets. We compared PCTree with
GHT [14], MVP [15, 2], LC [4], and SAT [13], which are also in the library. As
in the related work [13], the indexes were evaluated in terms of the distance
computations. We measured the percentage of objects examined by the total
number of distance calculations during the search. In the evaluation, 100 % of
objects examined represents the cost of the linear scan algorithm. We conducted
the experiment on a Linux PC equipped with an Intel(R) Quad Core Xeon(TM)
X5492 3.40GHz CPU and that had 64GB of memory.
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(a) Nasa (b) Color histograms (c) English dictionary

Fig. 2. Index Performance on Real Datasets

We used the following datasets.

Nasa is a set of feature vectors made by NASA [1]. It consists of 40, 150 vectors
in a 20-dimensional feature space.

Color histograms are the color histograms of 112, 544 images represented by
vectors in 112-dimensional space [1].

English dictionary consists of 69, 069 English words in the form of strings and
that was generated by [1].

For each real dataset, we randomly selected 1, 000 objects for the queries and
conducted the k-nearest neighbor queries on the remaining objects. All the real
datasets are available from the Web.

We compared the PCTree with other methods for the real datasets. Figure 2
shows the index performances for the real dataset. The vertical axis represents
the number of distance computations for the k-nearest neighbor queries where
k ranges from 1 to 20. The horizontal axis is k.

The PCTree outperforms the other methods for the two vector datasets
whereas it outperforms the others except for LC on the English dictionary
dataset. Compared with the other methods, the PCTree is better than the other
methods on a wide range of data distributions. For example, MVP is good for
the NASA and Color histograms, but is weak for the English dictionary. On the
other hand, LC is good for the English dictionary, but is weak for the NASA
and Color histograms. We think that the PCTree automatically optimizes the
index structure according the data distribution.

We guessed that the PCTree would need more samples for calculating the PC
for English dictionary. Therefore, we plotted the search costs for the PCTrees and
without sampling in Figure 2 (d). The figure shows that the search cost without
sampling is close to that of the LC. It is difficult to determine the appropriate
parameters without more knowledge about the data distribution. The parameter
tuning of the PCTree remains a future topic of study.

5 Conclusion

We presented a similarity search index named PCTree. PCTree is based on maxi-
mizing both the pruning and balance. We defined the Partitioning Capacity (PC)
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for selecting a pivot and its partitioning in PCTree. By using the PC, PCTree
automatically optimizes the index structure according to the data distribution
and reduces the search cost when using the PC.

We are currently attempting to improve the sampling scheme for pivot candi-
dates. Having more pivot candidates can help to reduce the search cost. However,
as the number of candidates increases, the indexing cost also increases. We have
to reduce the indexing cost of PCTree before we can use it in practical situations.
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Abstract. Given a spatio-temporal network whose edge properties vary
with time, a time-sub-interval minimum spanning tree (TSMST) is a col-
lection of minimum spanning trees where each tree is associated with one
or more time intervals; during these time intervals, the total cost of this
spanning tree is the least among all spanning trees. The TSMST prob-
lem aims to identify a collection of distinct minimum spanning trees
and their respective time-sub-intervals. This is an important problem in
spatio-temporal application domains such as wireless sensor networks
(e.g., energy-efficient routing). As the ranking of candidate spanning
trees is non-stationary over a given time interval, computing TSMST
is challenging. Existing methods such as dynamic graph algorithms and
kinetic data structures assume separable edge weight functions. In con-
trast, we propose novel algorithms to find TSMST for large networks by
accounting for both separable and non-separable piecewise linear edge
weight functions. The algorithms are based on the ordering of edges in
edge-order-intervals and intersection points of edge weight functions.

1 Introduction

Given a spatio-temporal (ST) network, a time-sub-interval minimum spanning
tree (TSMST) is a collection of distinct minimum spanning trees, where each
tree is associated with one or more time intervals. During these time intervals,
the total cost of this spanning tree is the least among all possible spanning trees.
TSMST computation is important in ST network application domains such as
wireless sensor networks. For example, energy-efficient transmission paths can be
modeled as minimum spanning trees [1,2]. In many applications, the nodes are
not stationary, i.e., they change their physical location with time, (e.g., sensor
network among robots on a reconnaissance mission [3]). Usually in such scenar-
ios, the sensor nodes physically move on a predetermined trajectory to collect
data from an observation field. This network of sensors can be represented as
a ST network where a sensor is represented as a node and the communication
link between any two sensors is represented as an edge (see Figure 1(a)). Time
dependent edge weights represent the cost of packet transmission between the
sensors. Since the sensors are moving, the distance between two nodes changes
with time. Since the energy required to transmit data from one node to another
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Fig. 1. Spatio-temporal network and its corresponding MSTs at various times

is directly proportional to the square of distance [1] between them, even a small
change in the distance affects the cost of transmission significantly. The solution
to the TSMST problem effectively determines the energy-efficient communica-
tion paths among these sensor nodes.

However, computing TSMST is expensive because of the non-stationary rank-
ing of candidate spanning trees in a ST network. This is illustrated in Figure 1.
Figure 1(b) shows the minimum spanning trees (MSTs) at different time instants
for the ST network shown in Figure 1(a).

1.1 Related Work

Traditional methods for computing MSTs [4,5] developed for static networks as-
sume stationary ranking of candidate trees, i.e., they assume that mutual rank-
ing (on the basis of total cost) among the spanning trees does not change with
time. Consequently, classical greedy algorithms (e.g., Kruskal’s [5] and Prim’s
[5]) cannot be applied to TSMST problem on spatio-temporal networks.

Dynamic graph algorithms [6,7] and kinetic algorithms [8,9,10] incorporate
non-stationary candidate ranking by making use of structures such as topology
trees [6] and dynamic trees [11]. However, these dynamic data structures can
model discrete changes such as single edge insertion, deletion or weight modifi-
cation [6,7], but cannot handle piecewise linear edge weight functions.

Moreover, work done in field of non-stationary candidate ranking assume sep-
arable edge weights, i.e, they assume that there is no correlation between the
different weights of an edge at different time instants. Due to this assumption
the kinetic algorithms do not address the situation when change points and in-
tersection points overlap. Change points are those time instants where an edge
weight function changes its slope and intersection points are those time instants
where two or more edge functions intersect, i.e., they have same edge weight.
For example, in Figure 2 edge (3,5) has change points at t = 3 and t = 2 and
edge weight functions of (1,3) and (2,4) intersect at t = 1.5, whereas the weight
functions of edges (1,3) and (2,3) both change and intersect at the same point.
At such points the MST cannot be changed even if it is required.
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Our contributions: In this paper, we present the problem of time-sub-interval
minimum spanning trees (TSMST) in a spatio-temporal network. We propose
two algorithms to find the TSMST, and provide running time analyses. The
algorithms allow the ST network to have both separable as well as non-separable
edge weight functions.

The rest of the paper is organized as follows. Section 2 defines the basic
concepts before presenting the formal problem definition. In Section 3, two algo-
rithms for solving the problem of TSMST are described. We present the asymp-
totic complexity analysis of the algorithms in Section 4. Section 5 presents the
experimental results before Section 6 concludes.

2 Basic Concepts and Problem Definition

This paper models a ST network as a time-aggregated-graph (TAG) [12,13]. A
TAG is a graph in which each edge is associated with a edge weight function.
These functions are defined over a time horizon and are represented as a time
series. For instance, edge (3,5) of the graph shown in Figure 1(a) has been
assigned a time series [4 3 5 2]; this implies that the weight of the edge at time
instants t=1, 2, 3, and 4 are 4, 3, 5, and 2 respectively. The edge weight is
assumed to vary linearly between two time instants. We also assume that no
two edge weight functions have same values for two or more consecutive time
instants of their time series. If such a case occurs, then the values of any one
of the edges are increased (or decreased) by a small quantity ε to make them
distinct. The time instant at which the weight function of an edge changes its
slope called a change point and where two edge weight functions meet is called



152 V. Gunturi, S. Shekhar, and A. Bhattacharya

2

MST(I) for time [1 1.5]

MST(IV) for time (3.66 4]

4 5

3

1

2

4 5

3

1

2

4 5

3

1

MST(III) for time (2.6 3.6]

2

4 5

3

1

MST(II) for time (1.5 2.6]

Fig. 3. TSMST for network shown in Figure 1(a)

an intersection point. The edge weight functions of the graph in Figure 1(a) are
shown in Figure 2.

Definition 1 (Time-sub-interval). A time-sub-interval, τ = (τs, τe), is a
maximal sub interval of time horizon [1, K] that has a unique MST, i.e., the
MST does not change during this time interval.

Definition 2 (Edge-order-interval). An edge-order-interval, ω = (ωs, ωe), is
a sub interval of time horizon [1, K] during which there is a clear ordering of
edge weight functions, i.e., none of the edges intersect with each other.

Figure 3 shows the four time-sub-intervals and the corresponding MSTs. An
edge-order-interval is guaranteed to have a unique MST (see [14] for detailed
proof). Two or more consecutive edge-order-intervals may have the same MST.
A time-sub-interval is usually composed of one or more edge-order-intervals. For
example, in Figure 2, the interval (2.66 3.0) is an edge-order-interval whereas the
interval (2.66 3.66] is a time-sub-interval which is a union of three consecutive
edge-order-intervals (2.66 3.0), (3.0 3.5) and (3.5 3.66).

Problem Definition: Given an undirected ST network G = (V, E) where V
is the set of vertices of graph, E is the set of edges, and each edge e ∈ E has
a weight function associated with it. The weight function is defined over the
time horizon [1, K]. The problem of TSMST is to determine the set of distinct
minimum spanning trees, TMSTi, and their respective time-sub-intervals.

The total cost of TMSTi is least among all other spanning trees over its
respective time-sub-intervals. We assume that for all edges e ∈ E, the edge
weight function is defined for the entire time interval [1, K]. The weight of an
edge is assumed to vary linearly between any two time instants of time series. The
full version of the paper [14] describes how to relax the edge presence assumption.

In our example of an energy efficient communication network maintained by
a group of sensors, the communication network is represented as a ST network
shown in Figure 1(a). The collection of distinct minimum spanning trees and
their corresponding time-sub-intervals is shown in Figure 3.

3 TSMST Computation Algorithms

Here we present two algorithms for computing the TSMST of a spatio-temporal
network. Consider again the sample network shown in Figure 1(a) and its edge-
weight function plot in Figure 2. The following observations can be inferred from
edge weight function plot.
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Observation 1. Consider any two consecutive (with respect to time coordinate)
intersection points of the edge weight functions. These time coordinates form an
edge-order-interval. Within this time interval all the edge weight functions have
a well defined order.

Observation 2. Using the ordering of edge weights within an edge-order-interval,
an MST for this interval can be built using a standard greedy algorithm such as
Kruskal’s or Prim’s.

Observation 3. There will be a single MST for the entire edge-order-interval.

3.1 Time Sub-Interval Order (TSO) Algorithm

The time sub-interval order (TSO) algorithm is designed using the three previous
observations. It starts by determining all edge-order-intervals by computing all
the intersection points of the edge weight functions. The intersection points
are then sorted with respect to time. Next, the algorithm computes a MST at
each of these intersection points and outputs the set of distinct MSTs and their
corresponding time-sub-intervals. The detailed pseudo code of the algorithm
appears in the full version of the paper [14].

3.2 Edge Intersection Order (EIO) Algorithm

The TSO algorithm incurs an unnecessary overhead of computing a MST for each
intersection point even if the MST does not change at a intersection point. This
can happen when only tree or only non-tree edge weight functions intersect at
a point. Moreover, if the edges involved in the intersection are from different bi-
connected components, the MST will not change.1 Furthermore, if only one tree
and one non-tree edge (belonging to the same fundamental cycle) are involved
in an intersection, we can exchange these edges in the tree provided they do not
belong to any other fundamental cycle.2 For example, in Figure 4, the MST for
time t > 1.5 can be obtained by exchanging the edges involved in intersection in
current MST. These ideas are presented formally in the following propositions.
The proofs of these propositions appear in [14].

Proposition 1. The intersection of the edge weight functions of two non-tree
edges at any time instant will not affect the MST.

Proposition 2. The intersection of the edge weight function of two tree edges
at any time instant will not affect the MST.

Proposition 3. The intersection of the edge weight functions of two edges be-
longing to different bi-connected components will not affect the MST.
1 A bi-connected component of a connected graph is a maximal set of edges such that

the corresponding subgraph cannot be disconnected by deleting any vertex.
2 Given a spanning tree and a non-tree edge, a fundamental cycle is the cycle created

by adding the non-edge to the spanning tree.
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The above propositions are used in designing an incremental algorithm for
computing the TSMST. The algorithm is called edge intersection order (EIO)
algorithm. EIO starts by computing the MST of the network at time t = 1
and then continues to update the tree, only if necessary, at each intersection
point. Through preprocessing, some additional information about the edges is
stored while computing the MST at time t = 1. This information is used to save
some computation while updating the MST for later intersection points. The
modified reverse-delete algorithm (pseudo code in [14]) is used to compute the
MST at time t = 1. The algorithm first computes the depth first search (DFS)
tree [5] of the given ST network. A non-tree edge ne = (fs, fe), where fe is
the ancestor of fs, is chosen. Now, edge ne and edges seen while following the
parent pointers from node fs to fe and ne form a cycle. The heaviest edge of
this cycle is deleted. This cycle and its member edges are stored to save some
computation while updating the MST at the intersection points. A DFS tree
of the remaining edges is computed. A non-tree edge is again picked up and
the heaviest edge in its cycle is deleted. This process continues until only n− 1
edges are left in the network. At this point there will no non-tree edges after
constructing the DFS tree, i.e., all edges are tree edges. These edges form the
MST of the network (proof in [14]). The bi-connected component information of
all the edges is determined using the algorithm given in [15].

While considering an intersection point, two levels of filters are applied to
prune the intersection point which cannot cause any change in MST. If all the
edges involved in an intersection are either non-tree edges or tree edges, then it
can be pruned using Proposition 1 and Proposition 2. Similarly, if all the edges
involved in an intersection belong to different bi-connected components, then it
can be pruned using Proposition 3. After applying these filters, the edges are
grouped by their bi-connected component. Now, within each group (i.e., each
bi-connected component), if the edges are only tree edges or non-tree edges,
they can be again pruned using Proposition 1 and Proposition 2. After applying
these filters, we check if the relative orders of edge weights before and after the
intersection point are same. If so, again, the intersection point can be pruned.

If an intersection point is not pruned after applying all the filters, then a new
MST is made by making changes to the previous MST. If only two edges (per
bi-connected component) are involved in the intersection and they are part of
only one common cycle, i.e., they are not part of any cycle except the one which
is common, then we can directly exchange the edges in the tree, i.e., make the
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heavier edge as non-tree edge and the lighter edge as tree edge. The information
regarding the cycles is collected while computing the MST at time t = 1. Note
that in the two-edge intersection case discussed above, adding the non-tree edge
to the tree and deleting the heaviest edge from its fundamental cycle would still
give the correct MST. The information gathered while constructing the MST at
t = 1 is used to save this unnecessary re-computation. In all other cases, we add
each of the non-tree edges involved in the intersection to the MST and delete
the heaviest edge from their respective fundamental cycles. The start time of
the time-sub-interval of the new MST and end time of the time-sub-interval of
previous MST are set to the time coordinate of intersection point at which the
MST changed. The pseduo code of the EIO algorithm is presented in [14].

4 Analytical Evaluation

The correctness proofs of the TSO and the EIO algorithm appears in the full
version of the paper [14].

Asymptotic Analysis of TSO: Since the edge weight is assumed to vary
linearly between any two time instants in a time series, there can be at most
O(m2) (where m is the number of edges) intersections among the edge weight
functions. If this happens between all time instances in the entire time horizon
[1, . . .K], the total number of intersections is O(m2K). The time needed to sort
all the intersection points is O(m2K log(m2K)). For each intersection point,
TSO recomputes the MST in O(m log m) time. Thus, the total time complexity
of the TSO algorithm is O(m3K log m + m2K log(m2K)).

Asymptotic Analysis of EIO: The running time of the EIO algorithm is
sensitive to the number of intersection points and number of edges involved per
intersection point. Here, we consider two kinds of intersection points: (i) where
all the edges are involved and (ii) where only two edges are involved.

First, consider the case of a two-edge intersection. The number of two-edge
intersections between a pair of consecutive time instants is O(m2). All the fil-
tering steps take O(1) time. Similarly, sorting of edges involved in intersection
(to check whether there is a change in relative order of edges) would take only
constant time as there are only two edges. Finding the heaviest edge in the fun-
damental cycle of a non-tree edge can take O(n) time for a graph of n nodes in
the worst case (when the fundamental cycle involves all the nodes of the graph).
Thus, the two-edge intersection case would take O(m2n) in the worst case for
one consecutive pair of time instances. This can happen for a maximum of O(K)
times, once between every two time instances of the time series.

Next, consider the case when O(m) edges intersect at a single point. Sorting
these edges takes O(m log m) time. This kind of intersection would involve a
maximum of O(m − n + 1) non-tree edges. Thus, finding the heaviest edge in
the fundamental cycle would take O(n) per non-tree edge, thereby incurring a
total cost of O(mn+m log m) time in the worst case. Intersection of O(m) edges
can happen O(K) times. This is because the edge weight functions vary linearly
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between two time instances of the time series, and thus they can all meet at only
one point between two time instants of the time series.

Suppose for a time interval of length K, two-edge intersections occur K1 times
and O(m) edge intersections occur K2 times. Here, K1 + K2 = K. The time
required to sort the intersection points in two-edge intersection case is bounded
by O(m2K1 log(m2K1)), whereas it would take O(K2 log K2) time to sort when
O(m) edges are involved in the intersection. Therefore, the total time required
for sorting all the intersection points is O((m2K1 +K2) log(m2K1 +K2)). Thus,
the total worst case time required by the EIO algorithm is the sum of times
spent on two-edge intersections, O(m)-edge intersections, and the time required
to sort all the intersection points. Hence, the overall time complexity of EIO is
O(m2nK1 + mnK2 + K2m logm + (m2K1 + K2) log(m2K1 + K2)).

5 Experimental Analysis

We conducted experiments on both TSO and EIO algorithms in order to compare
them as well as to see the effect of the different parameters on the running time.
The experiments were run on synthetic graphs generated randomly (the details
are in [14]). The experiments were conducted on an Intel Xeon workstation
running Linux with 2.40GHz CPU, 8GB RAM.

Effect of length of time series: Figure 5(a) shows the performance of EIO
and TSO algorithms as the length of the time series increases. The superior
performance of the EIO algorithm over the TSO algorithm is due to the increase
of intersection points that occurs with the increase in the length of time series.

Effect of number of edges: Figure 5(b) shows the performance of the algo-
rithms as the number of edges increase. As expected, the execution time of TSO
increases much more rapidly than EIO.
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Fig. 6. Effect of filters on number of intersection points

Effect of filters: The next experiment measures the effect of the different filters.
Figure 6 shows the total number of the intersection points and the number of
intersection points pruned by the EIO algorithm. A large number of intersection
points were pruned by the EIO algorithm, thereby clearly showing the superior
performance of the filters used in the algorithm.

6 Conclusions

The time-sub-interval minimum spanning tree (TSMST) problem is a key com-
ponent in various spatio-temporal applications. The paper proposes two novel
algorithms for TSMST computation. The time sub-interval algorithm (TSO)
computes the TSMST by recomputing the MST at all time points where there is
a possible change in the ranking of candidate spanning trees (i.e., it recomputes
MST at all the intersection points of edge weight functions) and then outputs
the set of distinct MSTs along with their respective time-sub-intervals. The edge
intersection order algorithm (EIO), on the other hand, updates the MST only
if necessary at these time points. Complexity analysis shows that EIO is faster
than TSO algorithm by a factor of almost O(m). Experiments validate that EIO
is faster than TSO algorithm by orders of magnitude. We plan to extend the
algorithms to provide optimal solutions when the edge weight function is not
constrained to be linear, but can be polynomial in nature.
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Abstract. Traditional data warehouses are built in an off-line periodic
fashion which makes them less valuable in applications where the most
up-to-date data is required. For these applications, data should be incor-
porated in the warehouse and made available as soon as possible in “Real
Time Data Warehouse”. In this paper we propose an indexing model
named TiC-Tree, in order to simultaneously index and store multidi-
mensional detailed and aggregated data. Our contribution exploits the
temporal nature of data and focuses on range and/or group-by queries.
We evaluate our proposal with the synthetic data set Star Schema Bench-
mark and advocate it in comparison with other existing solution.

Keywords: Data warehouse, OLAP, Real Time data, Graph based
index.

1 Introduction and Motivation

The maintenance of data warehouse is usually carried out in an off-line fashion,
after the facts are inserted via bulk incremental operations. This restriction
makes them unsuitable for certain applications such as monitoring systems for
natural risk management, traffic surveillance systems etc., that require the data
to be always up to date. This type of applications raises the need of what can
be called as Real Time Data Warehouses (RTDW), Active Data Warehouses [1]
or Zero Latency Data Warehouses [2]. The main challenge is to integrate new
data in the cube and make it available as soon as possible. Due to the type of
application domain, query response time is of course a decisive key. Temporal
OLAP analysis, i.e. drilling and slicing over time dimension, is of major interest.
In this work: First, we propose a cubing model named TiC-Tree that provides fast
update at arrival of each new fact and improves the response time of OLAP range
and group-by queries over time dimension. The TiC-Tree indexes and stores
detailed and aggregated data in the same structure and favors the grouping
of data representing chronologically closed events even if the data delivery is
delayed. Then, we implement our proposition and evaluate its performance with
the synthetic data set Star Schema Benchmark [3] with slight modification, i.e.
the addition of hierachy level hour in Time dimension. We examine the different
cases when the input data set is chronologically ordered and when some of the
data arrives with a delay.

P. García Bringas et al. (Eds.): DEXA 2010, Part II, LNCS 6262, pp. 159–167, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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2 Related Works

Cubing operation raises considerable challenges related to the complexity of cal-
culation and storage of the data. An on-going and active research area includes
numerous works that aim at defining strategies for selecting subsets of views to
be materialized and efficient computation methods for the aggregates [4]. Graph
based methods, such as Cubetrees [5] propose an alternative approach exploring
hierarchical storage structures for the cube that may eventually be compressed
(Dwarf [6], QC-Tree [7]). On the other hand, R-tree and variants [8,9] are widely
used to index spatial and/or temporal data. These techniques are based on iden-
tification of Minimum Bounding Rectangle (MBR) for space partitioning. How-
ever, none of these methods support neither pre-defined dimension hierarchies
nor pre-aggregation. Indices proposed in the special context of data warehouses
include multidimensional array based methods, bit mapped indices, hierarchical
and spatial indexing techniques based methods [10,5]. Among these, the DC-
Tree[11] supports both pre-aggregation and pre-defined hierarchies and is based
on X-Tree where MBR are replaced by MDS (Minimum Describing Sequence).
Indeed, the use of MBR assumes that data is totally ordered in the referenced
multidimensional space, while MDS uses the partial ordering of members induced
by the dimension hierarchies.

3 Contribution

Time is a peculiar dimension of data warehouses. It is usually the only dimen-
sion whose instances grow continuously while all other dimensions are generally
either static or slowly changing dimensions. Its members are naturally and to-
tally ordered at each level of hierarchy, however, in context of real-time systems,
this chronological order may be disregarded at the time of insertion because of
network delays or system downtime. In this paper, we propose to take these
features of time into consideration and propose a solution for cubing temporal
data warehouses, thanks to a tree structure named TiC-Tree that uses a tailored
definition of MDS with special handling for time dimension.

3.1 Multidimensional Model

Let D be a set of n dimensions D1, D2, . . .Dn of a multidimensional model. Each
dimension Di has a totally ordered set Li of levels. A dimension hierarchy can
be viewed as a directed acyclic graph of levels. We note lk+1

i ↑ lki the existing
edge between 2 levels lk+1

i , lki ∈ Li and 1 ≤ k ≤ |Li|. An instance of a dimension
Di is defined by a set of values over

⋃
domain(lki ), and a parent/child relation

noted ⇑ between the members of levels such as lk+1
i ↑ lki . A dimension instance

can be viewed as a directed acyclic graph of members. If a path exists from n
to m in the graph of members, then m is said to be an ancestor of n. Each
dimension Di contains a top most level ALL such that domain(ALL) = {all}.
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Example 1. For time dimension Dt we define an ordered set of levels Lt as: Lt

= {ALL, year, month, day, hour} and |Lt| = 5 and All ↑ year ↑ month ↑ day ↑
hour and 2008 ⇑ March 2008 ⇑ 12 March 2008.

Definition 1. (Fact Table) A fact table TF (l11, l12, . . . , l1n) of a multidimen-
sional model is a table with tuples < x1, x2, . . . xn, m1, m2, . . . , mp > where
xi ∈ domain(l1i ) i.e. is a member of the lowest level of each dimension hier-
archy and mj is a numeric value called measure of the fact.

Definition 2. (Aggregate Table) An aggregate table TA(lk1
1 , lk2

2 , . . . lkn
n ) of a

multidimensional model is a table with tuples < x′
1, x

′
2, . . . x

′
n, a1, a2, . . . , ap >

where x′
i ∈ domain(lki

i ) and ∃i|ki > 1 and aj is an aggregate measure value
obtained by some aggregation function.

Table 1. Extracted tuples of the Fact Table with 4 dimensions and one measure value

ID Customer Supplier Part Time Quantity
t1 Customer234 Supplier329 Part3432 04:00 05/03/1999 15
t2 Customer103 Supplier1023 Part862 12:00 23/04/2000 60
t3 Customer20 Supplier19 Part1322 17:00 11/07/1999 20
t4 Customer20 Supplier1360 Part1322 02:00 18/11/1999 15
t5 Customer293 Supplier1870 Part94 10:00 03/06/2000 10
t6 Customer293 Supplier329 Part94 13:00 13/02/1999 30
t7 Customer923 Supplier1870 Part647 03:00 13/12/1999 45

Definition 3. (MDS) A Minimum Describing Sequence M(lk1
1 , lk2

2 , . . . , lkn
n ) is

a sequence [S1, S2, . . . , Sn] of n sets where Si ⊂ domain(lki

i ) and n is the number
of dimensions.

Two MDS M(lk1
1 , lk2

2 , . . . , lkn
n ) and N(lk

′
1

1 , l
k′
2

2 , . . . , l
k′

n
n ) are considered to be at

same level if ∀i = 1, 2, . . . n ki = k′
i, i.e. the corresponding sets have their mem-

bers at the same levels of dimension hierarchies. An MDS can be regarded as
a minimal representation of hyper-rectangle of members, in an n-dimensional
space.

Example 2. M=[{Europe},{USA},{Part342},{1999}] and L=[{Europe},{USA,
France}, {MFGR#5113}, {‘Apr99’,‘Jul99’}] are 2 MDS at different levels.

3.2 The TiC Tree

The TiC-Tree stores and indexes MDSs with associated aggregate or detailed
values. Leaves of the tree are tuples of the fact table whereas internal nodes
are aggregates computed on stored facts. Unlike the DC-Tree, the TiC-Tree
processes the temporal data so as to help the grouping of closer values together.
We define a set of metrics which are used to build, update and query the tree
and allow optimization of MDS distribution in the nodes. These metrics take
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the totally ordered nature of time into account and facilitate this grouping. This
grouping strategy will facilitate time range and group-by queries. For all non-
temporal dimensions, the calculation of these metrics is based on the cardinality
of dimension sets in the MDS, while for the temporal one these are calculated
on the basis of time duration covered by the MDS.

Let M and N be two MDS with sequence [S1, S2, . . . , Sn] and [T1, T2, . . . , Tn]
respectively. For time dimension Dt, we note:

int(St) = [ min
mi∈St

(mi), max
mi∈St

(mi)] .

Definition 4. (Contains) M contains N is true if ∀i 
= t : Ti ⊂ Si or ∀n ∈
Ti, ∃m ∈ Si |mis ancestorofn and fori = t : int(Tt) ⊂ int(St)or∀n ∈ Tt, ∃m ∈
St | m is ancestor of n.

MDS M contains another MDS N if: (1) for all non-temporal dimensions, all
the sequence sets of N are included in those of M, or made of children of the
members of the sequence sets of M, and (2) the time interval covered by N is
contained in the interval covered by M.

Example 3. Let M=[{France},{USA},{Part342},{2001,2002}]; N=[{USA},
{USA},{Part342},{2000,2002}]; O=[{Europe},{USA},{Part342},{2001,2005}
then:

¬(M contains N) and (O contains M)

Definition 5. (Overlap) The overlap of M and N denoted by overlap(M, N)
is defined for 2 MDS at the same level of hierarchy, as:

overlap(M, N) =

⎧⎪⎨
⎪⎩

0 if int(St) ∩ int(Tt) = ∅
n∏

i=1,i�=t

|Si ∩ Ti| else

The overlap determines the volume of intersection between two MDSs. The over-
lap between two MDSs can be calculated, if and only if the MDSs are at same
level.

Example 4. overlap(M,N) = 0*1*1=0 ; overlap(M,O) : Cannot be calculated.

Definition 6. (Extension) The extension of M to accommodate N denoted
by extension(M |N) is defined for 2 MDS at the same level of hierarchy, as:
extension(M |N) =

∑n
i=1,i�=t |Ni −Mi|+ dfl + dfu where:

dfl =

⎧⎨
⎩

0 if min
mi∈St

(mi) − min
ni∈Tt

(ni) < 0

min
mi∈St

(mi) − min
ni∈Tt

(ni) else and dfu =

⎧⎨
⎩

0 if max
ni∈Tt

(ni) − max
mi∈St

(mi) < 0

max
ni∈Tt

(ni) − max
mi∈St

(mi) else

Extension of an MDS determines the enlargement needed in order to accommo-
date the newly coming MDS. Like overlap, extension also requires MDSs to be
at same levels.

Example 5. extension(M|N)=1+0+0+1=2.
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Tree Elements. TiC-Tree is composed of three different types of nodes, i.e. Data
Nodes, Directory Nodes and Super Nodes. Let M be a MDS M(lk1

1 , lk2
2 , . . . , lkn

n )
of sequence [S1, S2, . . . , Sn].

Definition 7. (Data Node) A data node Ndata of the TiC-Tree is a tuple<
M, a1, a2, . . . ap >where |Si| = 1 and ki = 1, ∀i = 1, 2 . . . n and each aj is a
measure value of the node.

Definition 8. (Directory Node) A directory node Ndir of the TiC-Tree is a
tuple< M, E , a1, a2, . . . ap >,E is a set of pointers to other nodes whose MDS are
contained in the MDS M. Size of E is limited and constant and determines the
capacity of the node. Each aj represents an aggregate measure value of the node.

Definition 9. (Super Node) A super node Nsuper of the TiC-Tree is a tuple<
M,F , a1, a2, . . . ap >where F is a set of pointers to other nodes whose MDSs
are contained in the MDS M, and size of F is unlimited. Each aj represents an
aggregate measure value of the node.

Figure 1 shows the TiC-Tree constructed with directory node capacity of 3. The
leaves represent data nodes, while the rest are directory nodes. A data node
encapsulates an MDS together with an associated measure value and represents
a tuple of the fact table. A directory node, on the other hand, encapsulates an
MDS and associated aggregate measure values of its children. This is also to be
noted that the root of the TiC-Tree is always a directory node with MDS at level
ALL for all the dimensions.

Tree Maintenance. In this section we illustrate the algorithms necessary for
TiC tree maintenance. As the data warehouses do not generally have delete or
update queries, we discuss only Insert and Search algorithms. Due to the lack
of space, we donot give split and group-by query algorithms here. However we
explain their working through the running example.

Insert. At the beginning, the tree has only one directory node called root. On
arrival of a new fact, the data is packed into a data node and inserted into the
root. The insert algorithm (see Algorithm 1) starts with updating the aggregate
measure value of the node, and then searches for the node for subsequent inser-
tion among its entries. This search is based on the metrics Contain, Overlap and
Extension in order. This process continues recursively unless a directory or super
node with entries of type “Data Node” is reached. Once the node for insertion is
located, the data node is added to its entries (following the extension of the MDS
of the directory/super node, if required). In case the directory node capacity is
reached, an overflow occurs which induces the split of the directory node. This
split may cause the parent node to overflow which will result in another split.

The split method of a directory node starts with selection of a split dimension
and split level that are chosen on the basis of hierarchy level and cardinality of
dimensions in the MDS. For example, in the MDS [{Europe}, {USA, France},
{MFGR#13}, {2000}], hierarchy level of Supplier and Part dimensions is 3 while
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Algorithm 1. Insert Algorithm
TiCTDirectoryNode::Insert(TiCTDataNode *dataNode) {
/*Insert dtataNode into a Directory node “thisNode” */
update Aggregate Measure Value of thisNode;
followNode = ChooseSubTree(dataNode);
if (followNode != thisNode) then followNode.Insert(dataNode);
else {

if (thisNode’s Entries Type is “DataNode”) then
if (Number of thisNode’s Entries < Maximum Entries Allowed) then add dataN-

ode into the Entries
else thisNode.Split(dataNode);

else extend thisNode’s MDS to accommodate dataNode and add it into the Entries}}

it’s value is 4 for Customer and Time dimensions (see SSB [3]). First, the decision
is taken on the basis of hierarchy level and one with the highest value is selected
(in this example Customer and Time). In case of tie, the dimension with the
higher cardinality is chosen as split dimension, which in our example is Supplier.
After selecting the split dimension, hierarchy level of MDSs of all entries of the
node and the node to split are adapted to splitLevel, two directory nodes are
created and the entries are distributed in these newly created nodes on the basis
of the metrics. If the overlap of the two MDSs exceeds the predefined limit, a
new dimension is chosen for split. This process continues until a suitable split
dimension is found; otherwise the overflowing node is adapted to a super node.

As a running example, the insertion of t5 (see Table 1) in figure 1(a), starts
with the packing of t5 into a new data node and update of N1’s aggregate
measure. N3 is chosen for following insertion which requires zero extension as
compared to 1 for N2. The data node is added to N3 and its aggregate measure

Fig. 1. TiC-Tree Updation: Insertion of tuples (a) t1, t2, t3 and t4 (b) t5 (c) t6 (d) t7
(e) MDSs corresponding the nodes
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Algorithm 2. Range Query Algorithm
int TiCTNode::RangeQuery(range_MDS){
/*Query a node “thisNode” against a rangeMDS*/
result=0;
foreach dimension

if(rangeMDS and thisNode’s MDS are not at same level) then adapt MDS with
lower level to the one with higher level;
if (Overlap(rangeMDS,thisNode.MDS)>0) then {

if (thisNode’s MDS is contained in rangeMDS) then re-
sult+=thisNode.AggregateMeasureValue;

else if (thisNode.NodeType == “SuperNode” or “DirectoryNode”)
foreach “entry” in thisNode, result+=entry.RangeQuery(range_MDs); } return

result; }

is updated. Subsequent insertion of t6 causes a split of N2 and produces the
resulting tree structure shown in figure 1(c). Insertion of t7 results in the splitting
of N’2 and consequently N1 that results in the final tree shown in figure 1(d).

Query. A range query is represented by an MDS that we call rangeMDS. For
example, the query “Number of Parts sold tothe customers of Europe during the
years 2000 to 2002” is represented by the rangeMDS [{Europe},{all},{all},{2000
,2001,2002}]. The algorithm (see Algorithm 2) for range query takes a rangeMDS
as input and queries the node, starting from the root. If the node’s MDS is
contained in the range_MDS, the node’s aggregate value is added to the result.
Else if node’s MDS and rangeMDS overlap and the node is not a Data Node,
then same algorithm is run recursively for all entries of the node.

For example, let us query the TiC-Tree in fig. 1(d) against above rangeMDS.
The root’s MDS is not contained in rangeMDS and overlap between them is
greater than zero. Therefore, the algorithm continues searching the entries of
N’1. MDSs of both the entries are not contained in rangeMDS and the overlap
between the MDS of N6 and rangeMDS is also zero. However, N7’s MDS and
rangeMDS have overlap value greater than zero, and so as N3. The MDS of
t2 is contained in the range MDS, so its measure value is added to the result
while t5’s MDS is not contained in the rangeMDS. As the leaves of the tree are
reached, and no overlapping part of the tree is left, the method returns the result
i.e. 60. The algorithm for group by query is almost the same, the only differ-
ence is in the input MDS. Group by query’s MDS contains only one attribute
per dimension at a time, e.g. “Number of Parts sold by region where region in
(Europe, America)” is translated to group-by MDSs [{Europe},{all},{all},{all}]
and [{America},{all},{all},{all}].

4 Experimentation and Results

In order to evaluate the performance, we developed the TiC-Tree as well as the
DC-Tree. A ‘csv’ file containing the tuples of the fact table serves as input for
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Fig. 2. Response time for: (a) Bulk Insertion (b) Single Record Insertion (c) Range
Query (d) Group-by Query; on chronologically ordered data

these applications. All the tests were carried out on a system with 2.0 GHz
Processor and 2GB RAM and evaluate the performance on the basis of insertion
and query response time. The data warehouse schema for experimentation and
performance evaluation is based on the Star Schema Benchmark. We use a fact
table with 10,000 to 1,000,000 tuples, ordered chronologically and another data
sets where some of the facts (5%, 10%,...) arrive out of time order, with the
intention of studying the effect of these postponement. We execute a set of 100
range and group-by queries, for different levels (selected randomly) of dimension
hierarchy on each state of the index resulting from the above insertion, average
query execution time beeing recorded as result.

Figure 2(a and b) shows the comparitive results for bulk and single record
insertion time, respectively, in DC-Tree and the TiC-Tree. In these cases, both
indices show almost similar performance. Figure 2(c and d) summarizes the
results of query response time for queries. In both cases TiC-Tree exhibits better
performance than the DC-Tree. All the driven tests show that delay affects
the insertion and query time only to a small extent and does not have any
considerable effect on the performance of the index.

5 Conclusion

In this research work, we propose an index structure to store detailed and aggre-
gated multidimensional data. In real time temporal data warehouses, members
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of time dimension grow rapidly over time, and we believe the TiC-Tree can be
a solution for handling this special case. We propose to use and redefine Mini-
mum Describing Sequences, in order to take advantage of special nature of time
dimension and special nature of temporal OLAP queries. We propose to keep
temporally close values together in tree nodes in order to facilitate range searches
and group-by. Performance evaluation tests show a significant improvement for
range and group-by queries, as compared to the reference index. TiC-Tree pro-
vides an idea of considering the nature of dimensions for data indexing, in our
case, the total ordering of temporal data. The TiC-Tree shows performance im-
provement in query response time but it is still unable to deal with the costly
split algorithm that will need futher investigation.
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Abstract. The problem of regression is to estimate the value of a de-
pendent numeric variable based on the values of one or more independent
variables. Regression algorithms are used for prediction (including fore-
casting of time-series data), inference, hypothesis testing, and modeling
of causal relationships. Although this problem has been studied exten-
sively, most of these approaches are not generic in that they require the
user to make an intelligent guess about the form of the regression equa-
tion. In this paper we present a new regression algorithm PAGER – Pa-
rameterless, Accurate, Generic, Efficient kNN-based Regression. PAGER
is also simple and outlier-resilient. These desirable features make PAGER
a very attractive alternative to existing approaches. Our experimental
study compares PAGER with 12 other algorithms on 4 standard real
datasets, and shows that PAGER is more accurate than its competitors.

Keywords: Regression, prediction, K-nearest neighbours, Parameter-
less, Accurate.

1 Introduction
Regression analysis has been studied extensively in statistics [5, 4], there have
been only a few studies from the data mining perspective. The algorithms studied
from a data mining perspective mainly fall under the following broad categories -
Decision Trees [7], Support Vector Machines [12], Neural Networks [13], Nearest
Neighbour Algorithms [18] [19], Ensemble Algorithms [16] [17] among others. It
may be noted that most of these studies were originally for classification, but
have later been modified for regression [1].

In this paper we present a new regression algorithm PAGER – Parameterless,
Accurate, Generic, Efficient kNN-based Regression, has the following features:

1. Parameterless: The parameterless nature of PAGER removes the burden
from the user of having to set parameter values – a process that typically
involves repeated trial-and-error for every application domain and dataset.

2. Accurate: Our experimental study in Section 4 shows that PAGER provides
more accurate estimates than its competitors on several datasets. Among the
algorithms we included for comparison are the best available algorithms from
the Weka toolkit [1].

P. Garćıa Bringas et al. (Eds.): DEXA 2010, Part II, LNCS 6262, pp. 168–176, 2010.
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3. Generic: Our approach assumes that dependent variable changes smoothly
with change in independent variable, an assumption which is valid for most
real-life datasets. Hence, it will work “out-of-the-box” and doesn’t require
to be tinkered with for every application domain and dataset.

4. Efficient: PAGER is based on the nearest neighbour (k-NN) approach and
is thereby equally efficient, provided there are indexes available for easily
finding the k nearest neighbours [2].

5. Simple: The design of PAGER is simple, as it is based on the k-NN ap-
proach. This makes it easy to implement, maintain, embed and modify as
and when the situation demands.

6. Outlier Resilient: The output of PAGER for a particular input record R
is dependent only on the nearest neighbours of R and is therefore insensitive
to far-away outliers.

The remainder of the paper is organized as follows: In Section 2 we discuss related
work and present the PAGER algorithm in Section 3. Then, in Section 4 we
experimentally evaluate our algorithm and show the results. Finally, in Section 5,
we summarize the conclusions of our study and identify future work.

2 Related Work

Traditional statistical approaches: Most existing approaches [4] [5] follow a
“curve fitting” approach that requires the form of the curve in advance. Another
problem with the curve fitting approaches is outlier (extreme cases) sensitivity
which bias the results by pulling or pushing the regression curve in a particular
direction. In addition to this they fit the regression equation to the entire plane
and hence are unlikely to capture inherent relationships.

Global fitting methods: Generalized Projection Pursuit regression [6] is a
statistical method which constructs a regression surface by estimating the form
of the function in such a manner that it best fits the dataset without using any
parameter. Lagrange by Dzeroski et. al. [9] generates the best fit equation over
the observational data by constructing a large number of equation alternatives.
Due to huge search space the approaches are computationally expensive. La-
gramge [8], is a modification of Lagrange in which grammars of equations are
generated from domain knowledge and the best-fit equations are determined by
filtering the forms using the generated grammar. However, the algorithm re-
quires prior domain knowledge. Support vector machine [12] (SVM) is involves
complex abstract mathematics and thus resulting in techniques that are more
difficult to implement, maintain, embed and modify as the situation demands.
Neural networks are another class of approaches that have been used for regres-
sion [13] and dimensionality reduction as in Self Organizing Maps [15]. However,
neural networks are complex “black box” models and hence an in depth analysis
of the results obtained is not possible. Data mining applications typically de-
mand an “white box” model where the prediction can be explained to the user,
since it is to be used for decision support. Ensemble based learning [16] [17] is
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a new approach to regression where a number of machine learning algorithms
are combined to build a learner having an accuracy better than the individual
learners. A major problem associated with ensemble based learning is to deter-
mine the relative importance of each individual learner which is usually done by
assigning weights to individual learners, where a high weight implies a higher
relative However, all these algorithms suffer from the problem that they try to fit
the entire data to a particular structure and and hence cannot capture inherent
relationships in different localities of the dataset.

Decision Trees: Regression trees [7], are a variation of decision trees where the
predicted output values are stored at the leaf node. These nodes are finite and
hence the predicted output is limited to a finite set of values which is in contrast
with the problem of predicting a continuous variable as required in regression.

k-Nearest Neighbour: Another class of data mining approaches that have
been used for regression include nearest neighbour techniques [18] [19]. These
algorithms are known to be simple and reasonably outlier resistant. Although
these approaches have the desirable property of simplicity, they have relatively
low accuracy because of the problem of determining the correct number of neigh-
bours and the fact that they assume that all dimensions contribute equally. This
is often not the case as some features may have a higher degree of correlation
and some may not.

In this paper, we enhance the power of nearest neighbour predictors which
intrinsically handle local variations. We eliminate the problems associated with
nearest neighbour methods like choice of number of neighbours and difference in
importance of dimensions. We use a novel weighting criterion which determines
the relative importance of dimensions. This is used in combination with a unique
stability criterion which determines the appropriate number of neighbours.

3 The PAGER Algorithm

In this section we present our algorithm.In section 3.1 we describe the regression
problem and the variables used in 3.3, followed by the presentation of the
pseudo-code for PAGER and a discussion of the same.

3.1 Problem Formulation and Definitions

Formally, the input to the problem consists of:

• A vector of d feature variables X = (x1, . . . , xd), forming an d-dimensional
space

• A numeric target response variable y
• A training set of n data samples D = {(X1, y1), . . . , (Xn, yn)}, where Xi

are points in X-space and yi are the corresponding values of the response
variable.
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The output is an estimate of the value of y for new input points in X-space.

• Training Data: It is used for training the model. The training data has d-
dimensions with feature variables (A1, . . . , Ad) and the value of the feature
variable Aj corresponding to the ith tuple (tuple-id i) can be accessed as
Data[i][j]. The value of the dependant variable of the training tuple corre-
sponding to id i, can be accessed as y[i].

• Test Tuple: The test tuple consists of values of d-dependant variables where
the value of feature variable Ai can be accessed as Ti.

3.2 Design of PAGER

The design of PAGER is based on the assumption that value of the dependant
variable varies smoothly with the variation in values of dependant variable. Now,
every smooth curve can be modelled to be a combination of piecewise linear
curves. This intuition becomes the basis of our paper, where the task at hand is
determining the nature of linearity in the locality of the test tuple. The approach
to solving this problem is to construct a line using the two closest neighbours of
the input tuple and thus approximating the linearity of the regression curve in
this region to the linearity given by the line so constructed.

It may be noted that a standard kNN algorithm bounds values i.e. the val-
ues output by a kNN-algorithm are always between the minimum and max-
imum in the dataset. Our algorithm alleviates this problem by constructing a
1-dimensional predictor and hence approximates the linearity in the given region
thus giving more accurate estimates. Now, corresponding to each dimension we
have a separate line and hence there can be d different predictions for the out-
put variable corresponding to each dimension. Assigning weights to predictors is
thus the crux of the problem. Given a predictor, we determine mean error if the
predictor was used in prediction of the k-neighbours (As their real dependant
variable values are already known). If the mean error is large, the predictor for
this dimension does not fit the neighbourhood well and hence should be labelled
poor. We thus assign weights to be inversely proportional to the mean error. Af-
ter this step the value that is predicted is the weighted sum of the value output
by individual predictors. However, the task that now remains is determining the
optimal k. A too small value of k may not capture the true nature of neighbour-
hood and hence may result in biased weights while an estimate using a large
value of k may lose the local context. We thus get weighted predictions for all
k−2 neighbours (the first two neighbours are used for drawing the line and hence
error will be 0 and are skipped) and determine the mean error of prediction for
these k neighbours. We call this error the Overall Mean Error. A low mean error
is an indication that the local information has been properly encoded and hence
we iterate on a range of k and then chose a k corresponding to minimum Overall
Mean Error.

3.3 Pseudo-Code

The pseudo code for PAGER is as follows:
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Algorithm 1. Pseudo Code
1: MinimumError ← ∞; OutputV alue ← 0;
2: for k = min to max do
3: ErrorUsingK ← 0 Count ← 0;

//Mean error in prediction using k − neighbours
4: ClosestNeighbours ← GetNeighbours

(Data, k, T ) //Returns id of k − closest neighbours of T.
5: Inline 1-Dimensional Predictor ;Weighting dimensions;Inline d-Dimensional

Predictor
6: ErrorUsingK ← ErrorUsingK

Count
;

// Mean error in prediction of k-neighbours when k-neighbours used
7: if MinimumError > ErrorUsingK then
8: OutputV alue ← PredictV al; MinimumError ← ErrorUsingK;
9: LIndex ← k // Value of k at which minimum is found

10: end if
11: if (k − LIndex) > log(n)2 then
12: break
13: end if
14: end for
15: return OutputV alue;

Discussion of PAGER: For determining the correct value of number of neigh-
bours (k) for a given test tuple T , we use an iterative procedure which takes three
optional parameters, Error Threshold, lower (min) and upper bound (max) of
k as input. However these parameters are optional and can be set to their op-
timal values automatically. The correct choice of k is a result of an exhaustive
search in between min and max. If the parameters are not set, the algorithm au-
tomatically sets min to a sufficiently low value (about five), max to a sufficiently
high value (tuples in training data/2) and Error Threshold as ∞.

In Line 5 we build 1-dimensional predictors, which are d predictors, where each
one is a line passing through the nearest two neighbours in one of the d dimen-
sions. In line 6 we compute mean error for prediction of the k neighbours using
these predictors and assign weights. In line 7, we predict the value of the depen-
dant variable as a weighted sum of 1-dimensional predictors for the test tuple as
well as the k neighbours. The sum of Overall Mean Errors for the k neighbours
is assigned to ErrorUsingK. If we do not get a minimum for a relatively large
run we stop the procedure in Line 14. The predicted value corresponding to the
minimum ErrorUsingK is then output as the predicted value.

4 Experimental Study

In this section, we evaluate the proposed PAGER algorithm. We describe the ex-
perimental setting and performance metrics in Section 4.1 and the experimental
results in Section 4.2. The comparative results are shown in Table 3.
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4.1 Experimental Settings

We compare our algorithm against 12 algorithms on 4 datasets. One of them is
the weighted k-NN based approach [18,19]. The remaining eleven are available in
the Weka toolkit [1] namely Additive Regression, Gaussian Regression, Isotonic
Regression, Least Median Square Regression (LMS), Linear Regression, Multi
Layer Perceptron based Regression (MLP), Pace Regression, RBF Regression,
Simple Linear Regression, SMO Regression, and SVM Regression. Details of
datasets are show in Table 1. Experiments have been done using the leave one
out comparison technique which is a specific case of n-folds cross validation.
Metrics used for comparison are RMSE (Root Mean Square Error) and ABME
(Absolute Mean Error). The k-NN technique of [18, 19] was run on number-of-
neighbours=10. The algorithms in Weka were run with the parameters as can
be found in Table 3. The parameters of Weka are not described here due to lack
of space and are available in [1].

Table 1. Dataset Description

Dataset Number of tuples Number of attributes Source

CPU 299 6 [1]
Housing 506 13 [20]
Concrete 1030 8 [20]
BodyfatCPU 252 14 [21]

Table 2. Experimental Settings

Algorithm Parameter settings

Additive Regression [22] (AdditiveRegression -S 1.0 -I 10 -W trees.DecisionStump)
Gaussian Process (GaussianProcesses -L 1.0 -N 0 -K supportVec-

tor.RBFKernel -C 250007 -G 0.5”)
Isotonic Regression (IsotonicRegression)
Least Median Square Regression [5] (LeastMedSq -S 4 -G 0)
Linear Regression (LinearRegression -S 0 -R 1.0E-8)
Multi Layer Perceptron [13] [14] (MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20

-H a)
Pace Regression [3] [4] (PaceRegression -E eb)
RBF Network (RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1)
Simple Linear Regression (SimpleLinearRegression)
SMOreg Regression [10] [11] (SMOreg -S 0.001 -C 1.0 -T 0.001 -P 1.0E-12 -N 0 -K sup-

portVector.PolyKernel -C 250007 -E 1.0)
SVMReg Regression [10] [11] (SVMreg -C 1.0 -N 0 -I supportVector.RegSMOImproved

-L 0.001 -W 1 -P 1.0E-12 -T 0.001 -V -K supportVec-
tor.PolyKernel -C 250007 -E 1.0)

4.2 Results

In this section, we report the experimental results obtained for each dataset as
can be seen in Table. 4. The bold figures indicate the best performers on the
given dataset.
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Table 3. Experimental Results on CPU, Housing, Concrete and Bodyfat Dataset

Regression CPU Dataset Housing Dataset Concrete Dataset Bodyfat Dataset
Algorithm ABME RMSE ABME RMSE ABME RMSE ABME RMSE
PAGER 9.28 31.04 2.10 3.47 5.87 7.71 0.38 0.49

Additive 25.46 59.06 3.35 4.86 6.67 8.45 0.53 0.64
Gaussian 15.08 81.57 2.58 3.89 6.07 7.82 0.42 0.56
Isotonic 23.93 51.98 3.81 5.32 10.84 13.52 0.55 0.69
LMS 33.60 107.55 3.36 5.40 9.28 16.55 0.43 0.55
Linear 34.61 55.22 3.37 4.84 8.29 10.46 0.42 0.54
MLP 6.28 16.70 3.10 4.64 6.58 8.61 0.50 0.70
Pace 34.83 56.12 3.36 4.82 8.32 10.52 0.41 0.53
RBF 52.25 119.28 6.05 8.19 13.43 16.67 0.61 0.77
Simple Linear 43.13 70.46 4.52 6.23 11.87 14.50 0.50 0.62
SMO 20.70 64.22 3.25 5.09 8.23 10.97 0.43 0.56
SVM 20.71 64.24 3.24 5.08 8.23 10.97 0.43 0.56
kNN 18.92 74.83 2.97 4.63 6.55 8.57 0.45 0.58

4.3 Discussion of Results

From the experimental results it is evident that on the CPU dataset PAGER
outperforms all other algorithms except the regression algorithm based on Mul-
tilayer Perceptron. The reason for this is analyzed in detail below. On the other
three datasets i.e. the Housing Dataset, BodyFat Dataset and the Concrete
Dataset, PAGER outperforms all other algorithms. It is particularly notewor-
thy that our algorithm performs very well on the Concrete Dataset which was
claimed to be a challenging, highly non-linear function of its attributes. The suc-
cess of our algorithm is due to our very valid assumption that the data variation
may not be linear throughout but is usually linear in a very small neighbour-
hood of the given input tuple. This assumption is true for majority of the real
life datasets as variations of the dependent variable based on variations in the
values of independent variables typically show a smooth transition.

A positive point in this algorithm that is evident through the pseudo code is
its simplicity and generic nature. The parameterless nature of this code makes
it easy to apply it to any domain even if sufficient domain knowledge is not
available. However, it should be noted that our algorithm works only for numeric
data with no missing values.

5 Conclusions

In this paper we have presented and evaluated PAGER, a new algorithm for
regression based on nearest neighbour methods. Evaluation was done against
12 competing algorithms on 4 standard real-life datasets. Although simple, it
outperformed all competing algorithms on all datasets but one. Unlike most other
algorithms, PAGER can be used “out-of-the-box” without having to extensively
tune or tweak it for each application domain and dataset.
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Future work includes determining high quality neighbours and the correct
number of neighbours. Another future direction is to construct a curve or the
closest fitting line from k neighbours instead of a line which is presently con-
structed from the two neighbours. It is also of interest to design algorithms that
work when the independent variables are categorical, or come from a mixture of
categorical and numeric domains.
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Abstract. In this paper B2R algorithm that converts Bayesian networks
into sets of rules is proposed. It is tested on several data sets with var-
ious configurations and results show that accuracy is similar to original
Bayesian networks even after pruning a high number of rules. It allows
to exploit advantages of both knowledge representation techniques.

1 Introduction

Bayesian models provide very well founded uncertainty representation. If a knowl-
edge base is created manually, tuning a set of rules takes a lot of time. However, if
a knowledge base is generated automatically from data, it is not a problem. An-
other issue is the accuracy of the generated models. Probabilistic classifiers may
be better than rule based ones, but the difference is usually small.

In many application domains, such as security systems, medical diagnosis,
etc. very important issue is understanding of the knowledge, especially if it is
generated automatically. In such domains, before the knowledge is used, it should
be verified by a human expert. It is difficult to verify a knowledge that is in a form
difficult to grasp. Next, generated classifiers are often used with a supervision
of a human. To verify a decision of the system, the supervisor should have a
possibility to check and understand the justification of the answer. What is
also very important, using machine learning one can discover a new domain
knowledge. This can not be done without feedback from a human expert. To
make it possible, the knowledge generated has to have a form that is easy to
interpret. Rules seem to correspond to human way of thinking very well [1].

To exploit advantages of both knowledge representation techniques, it would
be good to have tools, which are able to transform knowledge between these
formalisms. Such a conversion can be used for a knowledge visualization purposes
and also to generate knowledge bases for diagnostic systems. It can be also
considered as a pruning method, which may decrease complexity of the model.

This paper is a continuation of [2], in which a method for Näıve Bayes models
was proposed. In this paper conversion algorithm is generalized, it takes as an
input classifier that is a Bayesian network and a selected class node. As a result
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178 B. Śnieżyński, T. �Lukasik, and M. Mierzwa

we obtain a set of labeled rules that can be used to classify examples or visu-
alize knowledge. This paper is based on [3], where idea of algorithm (without
experimental results) was proposed.

In the following sections the conversion algorithm is described, its applica-
tion example is shown. Next experimental results with use of several data sets
and various configurations are presented. Next section discuses related works.
Conclusions and plans of the future research conclude the paper.

2 B2R Conversion Algorithm

A Bayesian network is a pair (G, P ), where G is a structure graph, which is
directed and acyclic, and P is a set of local, conditional probability distributions
between variables and its parents. Variables are denoted by X1, X2, ..., Xn. Set of
parents of Xi is a denoted by parents(Xi), and set of children by children(Xi).
Domains of the variables are denoted by DX1 , DX2 , . . . , DXn . In this paper we
assume that all domains are finite. We also assume, that the Bayesian network
is used for classification. Therefore we distinguish one of the variables as a class
variable. It is denoted by Y .

We begin the description of a conversion algorithm for Näıve Bayes (NB),
which is a special case of a Bayesian network. It has a very simple structure:
variable Y is connected to every variable X1, X2, ..., Xn. Such a network is used
to predict value of root-variable (Y ).

NB can be transformed into a set of rules by generating |DY | rules for every
value of every Xi variable. Let us call this procedure A-transformation. Rules
would have the following form:

Xi = xi
j → Y = yk, (1)

where xi
j ∈ DXi , yk ∈ DY are variable values. Similar technique can be used

for the structure obtained from NB by reversing the direction of dependen-
cies. In this case Y is a children of X1, X2, . . . , Xn. For every yk ∈ DY and
(x1

j1
, x2

j2
, . . . xn

jn
) ∈ DX1 ×DX2 × ...×DXn – value combination of Xi variables

we get a rule

X1 = x1
j1 ∧X2 = x2

j2 ∧ . . . ∧Xn = xn
jn
→ Y = yk. (2)

Let us call this procedure B-transformation.
Generated rules have various strength, therefore we need a way to represent

it. Similarly, variable values can be inferred with various certainty. It can be
represented by labeling rules and variable assignments. Choosing appropriate
labels is very important, because it has a strong influence on the rule-based
classifier performance. The choice can be formalized by defining a label algebra
and a function transforming conditional probabilities into labels.

Label algebra can be defined as the following triple: L = (L, �,#), where L is
a set of labels with linear order (to choose the highest value during classification
of examples), � : L2 → L is a rule aggregation operator, which is used during
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the classification, if two (or more) rules with the same consequence match the
example. In such a case, rules are aggregated. # : L2 → L is also used during
classification to calculate a label of conjunction of conditions. � and # should be
associative and commutative to make the result of rule application independent
from the rule and condition order, therefore � and # can be extended to operate
on a set of labels.

Labeled rule is a pair r : l, where r is a rule defined above, and l ∈ L. Labeled
variable assignment is a triple Xi = xj : l, where Xi is a variable, xj ∈ DX1 , and
l ∈ L. Rule labels are calculated using transformation function f : [0, 1] → L.
Rule Xi = xi

j → Y = yk has a label l = f(P (Xi = xi
j |Y = yk)) and rule

X1 = x1
j1
∧ X2 = x2

j2
∧ . . . ∧ Xn = xn

jn
→ Y = yk has label l = f(P (Y =

yk|X1 = x1
j1 , X2 = x2

j2 , . . . , Xn = xn
jn

)). If some variables are eliminated from
the set of parents of Y during rule construction, conditional probability in label
definition is derived from original probability distribution by eliminating the
same variables. Variable assignment labels are calculated during rule application.
See below for details.

Simple examples of algebras are: continuous ([0, 1], ·, min) and discrete ({0, 1},
·, min), where · is a classical multiplication. Consequently, two transformation
functions are defined: f1(p) = p (identity), and f2(p) = round(p). The use of
other algebras is also possible. One of the solutions is to scale probability values
into the range [−1, 1] and apply Certainty Factors style of aggregation.

The conversion described above has a serious drawback – it does not de-
crease model’s complexity. To overcome this shortcoming, we introduce pruning
to eliminate rules with low significance.

Let us start with rules obtained by A-transformation. A method of pruning
in the case of |DXi | = 2 is very simple: probabilities P (Xi = xi

j |Y = yk) close to
0.5 have lower influence on the hypothesis than ones with value close to 1 or 0.
Therefore we can create rules for these probabilities, which have distance from
0.5 greater than a given threshold. If |DXi | > 2 we can use Entropy measure.
It can be defined for a bunch of rules. The bunch of rules Bik is a set of rules
with the same variables in the premise and the same consequence: Bik = {Xi =
xi

j → Y = yk : l}j=1,2,...,|DXi
|. Entropy E is defined as follows:

E(Bik) =
|DXi

|∑
j=1

−P (Xi = xi
j |Y = yi) log2 P (Xi = xi

j |Y = yi). (3)

If P (Xi = xi
j |Y = yi) = 0 we assume that P (Xi = xi

j |Y = yi) log2 P (Xi =
xi

j |Y = yi) = 0. To have normalized values, the normalized Entropy En(Bik)
is defined: En(Bik) = En(Bik)/Emax(|DXi |), where Emax(n) is a maximal En-
tropy for a domain of size n.

High values of the normalized Entropy mean a high disorder and low informa-
tion, therefore rules that belong to a bunch with such values of En are pruned.
In order to have similar meaning of the threshold value t as in [4], i.e. to repre-
sent a low pruning by values close to 0 and a strong pruning by values close to
1, rules from Bik are pruned if En(Bik) > (1− t).
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When rules are obtained using B-transformation, the bunch consists of rules
with the same premise and various values of the consequence variable:

Bj1,j2,...jn = {X1 = x1
j1 ∧X2 = x2

j2 ∧ . . . ∧Xn = xn
jn
→ Y = yk : l}k=1,2,...,|DY |.

(4)
Entropy E is then defined as follows:

E(Bj1,j2,...jn) =
|DY |∑
k=1

−Pk,j1,j2,...jn log2 Pk,j1,j2,...jn , (5)

where Pk,j1,j2,...jn = P (Y = yk|X1 = x1
j1

, X2 = x2
j2

, . . . , Xn = xn
jn

).
The transformation defined above does not include probability distribution of

variables, which have no parent nodes and are not observed. It can be taken into
account by completing the set of rules with default rules of the form → Xi =
xi

j : lij , where xi
j ∈ DXi , and lij = P (Xi = xi

j). These rules have an empty
premise part and they always match examples during classification. � operator
domain should be extended to cover the [0, 1] range.

B2R Algorithm for conversion of Bayesian Networks into a set rules is pre-
sented in Fig. 1. Input data consists of a network to convert, and a class variable.
After conversion rules with significance lower than a given threshold t should be
eliminated, and default rules should be added. The algorithm always stops, be-
cause in every recursive execution one node is removed from the network.

Set of labeled rules produced (KB) can be used to calculate value of the class
variable for example e = (Xl1 = el1 , Xl2 = el2 , . . . , Xln = eln), where {Xli} is a
subset of variables. A version of backward chaining can be used for this purpose.
Rules with the class variable in a consequence are selected. If values of their
premise variables are known, rules are fired, and value of the class variable is
calculated in the following way:

Y = arg max
yk

�{l ·
n⊙

i=1

lki

|Xk1 = ek1 : lk1 ∧ . . . ∧Xkn = ekn : lkn → Y = yk : l ∈ KB}. (6)

It is assumed that if variable value is known, label for the appropriate assignment
is equal to maximal possible value (representing full certainty). If some variable

convert(Y – selected class node, Net – Bayesian network);
begin

if Net is empty then return;
p := parents(Y ); c := children(Y );
generate rules for structure Y ∪ c using A-transformation;
generate rules for structure Y ∪ p using B-transformation;
foreach X ∈ p ∪ c do convert(X, Net − Y )

end

Fig. 1. B2R algorithm for converting a Bayesian network to a set of rules
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Table 1. Performance of Bayesian Networks classifiers on the training data and number
of generated rules (without pruning)

Data set accuracy #rules Data set accuracy #rules
iris2 82.3 51 wine2 82.5 373
iris4 90.1 147 wine4 95.0 351
wbc2 94.5 4678 voting 98.6 199478
wbc4 95.7 746

value is not known, a rule application procedure is executed recursively. Default
rules are always fired if its conclusion variable is not known and is needed. They
can be considered as initial labeling of variable assignments.

The following label algebras are used in the experiments: L1 = ([0, 1], ·, min),
L2 = ([0, 1],⊕, min), L3 = ([0, 1], max, min). Symbol · is a standard multiplica-
tion, and ⊕ is a Certainty Factors style of aggregation: l1 ⊕ l2 = l1 + l2 − l1 · l2.

Let us call Mi a method of rule application using backward chaining and Li

label algebra. In method M3, � = max operation is done only on the top level of
inference, for class variable. On the rest of levels, aggregation is not performed.
Many different premise proofs are generated. Additionally, before calculating rule
label, it is checked if premise proofs are contradictory (if for the same variable
they assume different values). If they are, the label is not calculated and the
next combination of premise proofs is taken into account. There is one more
method used in the experiments. It also applies algebra L3, but with a greedy
approach. Proving the hypothesis, the rules with this hypothesis in a conclusion
are selected from the knowledge base and ordered by decreasing value of the
label. Then they are sequentially tried to be fired (including recursion) until the
first successful attempt. Let us call this method Mg

3 .

3 Experiments

The following data sets were used in experiments: Iris, Wisconsin Breast Can-
cer (WBC), Wine and Voting. All data sets were obtained from UCI Machine
Learning Repository [5].

Continuous attributes of multivariate data sets were discretized (with equal
width method) into domains with 2 and 4 values. These sets are respectively
denoted by: iris2, iris4, wbc2, wbc4, wine2 and wine4. This transformation was
performed using Weka data-mining software [6]. This package was also used to
generate Bayesian Networks and test their performance. Accuracy measures of
generated networks are presented in Tab. 1.

Generated networks were converted into sets of rules with continuous labels
(f(p) = p) with defaults, using the pruning threshold value t changing from 0 to
1. Then the resultant rule sets were tested on the training data with four rule
application methods. Results of the experiments and complexity of generated
classifiers, measured in number of rules before pruning, are shown in Fig. 2.
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Fig. 2. Dependency of the performance of rule based classifiers and the number of
rules generated form Bayesian Networks models from the threshold; bars (�) represent
the relative number of rules (the number of rules generated with the given pruning
threshold divided by the original number); the other symbols represent the accuracy
of used reasoning methods: pluses (+) - Mg

3 , exes (×) - M3, circles (◦) - M2, squares
(�) - M1
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Generally, results of experiments show the advantage of methods M1 and
M2 over the others. These methods take into account the whole rule set in the
reasoning process and · aggregation operator used corresponds well to the way
how probability is calculated in Bayesian networks. The M3 method is not much
worse, but it is more sensitive to the number of ranges of discretization. The
accuracy of classifiers using this rule application is therefore much higher for
data sets known for their linear separability (like iris). As expected, the simplest
method Mg

3 had the lowest accuracy of all tested rule application methods.
In most cases the pruning with threshold between 0.1 and 0.3 narrowly in-

creased the performance of classifiers. However the higher pruning largely de-
creases the accuracy. The results of classification with Bayesian network and
M1/M2 classifiers are comparable – the difference for pruning threshold from
0.1 to 0.3 is about ±5%. This is a very good result, especially if we take into
account the fact that for threshold t = 0.3 pruning eliminates about 80% of
rules. Accuracy of M1 and M2 methods for text data sets are also comparable
with Bayesian network classifiers but the general performance of both was about
50%-60%. Unfortunately, because of the lack of space these results can not be
presented here.

The relative number of rules drops significantly in range of pruning threshold
0.0 to 0.1 and asymptotically to 0 with its higher values. Exponential function
seems to be a reasonable approximation of this relation.

4 Related Research

The most related paper to this research is [7], where possibility of using Certainty
Factor model to represent Bayesian networks is analyzed. Methods for Noisy-OR,
Noisy-AND, Noisy-MIN, Noisy-MAX and propagation of evidence are presented.
It appears that many solutions used in practical applications of probabilistic
models correspond to methods invented by Buchanan and Shortliffe.

The second closely related work is [8]. Experimental results of classification
with belief networks (generated directly from data) and belief rules (generated
from networks) are presented there.

Another interesting work is [9], where conversion of Bayesian networks into
probabilistic horn abduction language is proposed. However, this formalism is
more complicated than decision rules and resulting knowledge bases are not so
easy to interpret.

Knowledge conversion methods in the opposite direction (from rule-based sys-
tems into probabilistic models) were investigated in a number of publications
(e.g. [10,11]). There are also several works that aim at exploring problems that
appear in probabilistic interpretation of Certainty Factor model (e.g. [12]).

5 Conclusions and Further Research

Transforming probabilistic models into decision rules can be very useful for vi-
sualization purposes. It allows to extract strong patterns appearing in a proba-
bilistic models and present it in a user friendly way. These rules can be examined
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by the user or used for classification. One of the potential areas of application is
a public security domain.

In the near future, we would like to make more experiments on a number of
problem domains to compare accuracy of Bayesian networks and generated rule
sets. Next task is to test several other label algebras, especially discrete ones,
and with other # operation definitions. Also, other rule application algorithms
should be examined.

Acknowledgments. The research leading to the results described in this paper
has received funding from the Polish Ministry of Science and Higher Education
Project number R00 0032 06.
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2. Śnieżyński, B.: Converting a näıve bayes models with multi-valued domains into
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Abstract. Nano-technology is the study of matter behaviour on atomic
and molecular scale (i.e. nano-scale). In particular, carbon black is a nano-
material generally used for the reinforcement of rubber compounds. Nev-
ertheless, the exact reason behind its success in this concrete domain
remains unknown. Characterisation of rubber nano-aggregates aims to
answer this question. The morphology of the nano-aggregate takes an
important part in the final result of the compound. Several approaches
have been taken to classify them. In this paper we propose the first auto-
matic machine-learning-based nano-aggregate morphology categorisation
system. This method extracts several geometric features in order to train
machine-learning classifiers, forming a constellation of expert knowledge
that enables us to foresee the exact morphology of a nano-aggregate. Fur-
thermore, we compare the obtained results and show that Decision Trees
outperform the rest of the counterparts for morphology categorisation.

Keywords: aggregate morphology classifying, image processing,
machine-learning, carbon black.

1 Introduction

Matter behaviour on nano-scale is subject to quantum mechanics where mi-
croscopic and macroscopic theories are no longer applicable [1]. On this scale,
nano-technology is the science that studies the comportment of the matter. This
science has experienced a great development in the last years. In fact, they are
considered to be the basis for the next industrial revolution since they have been
applied to different areas such as energy, health care, chemical industry and
material production [2]. Therefore, these processes are leading material manu-
facturers to a new generation of nano-material based products [2].

In the particular case of rubber compounds, reinforced materials with nano-
particles, such as carbon black, are of great interest to the material industry.
Concretely, the latter modifies the mechanical and electrical properties of the
former [3]. Although this process has been used in industrial production of rubber
reinforced with carbon black [4] for the last years, the internal mechanisms that
make that happen are not completely known.
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In this way, there have been several studies about the morphology and micro-
structure of carbonaceous particles, such as the ones produced by diesel combus-
tion [5]. This engine-emitted particles were studied with the purpose of assessing
their climate impact. Likewise, the waste-water treatment includes similar steps
to the ones needed for carbon black characterization: microscopic image process-
ing, object segmentation, morphological characterisation and fractal analysis [6].
Similarly, with CAT (Computerized Axial Tomography) scans the same proce-
dure has been applied to evaluate the rank of a tumour [7]. Still, these methods
are performed in a semi-automatic or manual way with the consequent time and
resource consumption.

Against this background, we present the first automatic machine-learning-
based nano-aggregate morphology categorisation method. This method, based
upon geometrical and fractal features is able to train several machine-learning
algorithms in order to correctly determine the morphology of these aggregates.
Specifically, we contribute to the state of the art in two main ways. Firstly, it
consists in automatically segmenting and characterising the carbon black aggre-
gates within an image. This technique makes the geometrical characterisation of
carbon black and other nano-particles easy and fast. Secondly, a machine learn-
ing based classifier sorts carbon black aggregates according to their morphology.

2 Carbon Black

As we mentioned before, one of the principal carbon black applications is the
reinforcement of rubber. This process creates a material with notably increased
tensile strength and better tear and abrasion resistance (i.e. the capacity of a
material to withstand different forces). These changes are conditioned by molec-
ular, chemical and rheological attributes of the elastomer, on the filler charac-
teristics and on the mixing process and technology [8]. In addition, carbon black
primary particles seem to be spherical, blended together forming aggregates[9].
Following the Van der Waals forces, aggregates connect forming agglomerates
[9]. Fig. 1 shows a graphic representation of the size of particles, aggregates and
agglomerates.

Fig. 1. Carbon black: a)particles; b)aggregate; c)agglomerate

Furthermore, the structure of carbon black particles ranges from crystalline
to amorphous materials. Crystallite flat surfaces and amorphous carbon surfaces
are less energetic areas, whereas crystallite edges are the most energetic ones [10].
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Commonly, the aggregates can be divided into four different types of mor-
phologies [11] (shown on Fig. 2). To this end, an estimation for discerning be-
tween the four categories is to calculate the aggregate length/width ratio and
aggregate irregularity, however, this method is not an exact classification and
includes a difficult value to measure: irregularity [11]:

– Spheroidal: Aggregates with a L/W ratio lower than 1.5 can be classified
as spheroidal.

– Ellipsoidal: Aggregates with a L/W ratio between 2 and 3.5 can be classi-
fied as ellipsoidal.

– Linear: Linear ones have a L/W ratio greater than 3.5 and have low irreg-
ularity due to having elongated chains with few branches.

– Branched: Branched aggregates have also a L/W ratio greater than 3.5 but
are highly irregular as a result of having more branches.

Fig. 2. Morphological categories for carbon black aggregates

Moreover, fractal dimension can also describe the aggregate structure [12].
Specifically, a fractal is a morphology that can be split into small copies of the
whole [13]. To this end, Kaye [14] was the first one to apply fractal analysis
to carbon black aggregates. He determined a perimeter fractal based upon the
perimeter-area relationship of Mandelbrot [15] (shown on equation 1):

P ∼ ADp/2 (1)

where P is defined as the projected aggregate perimeter, A as the projected area
and Dp as the perimeter fractal. The greater the irregularity, the greater the Dp,
however, highly acicular particles with a smooth perimeter may also give a high
perimeter fractal [4].

Considering the scale of carbon black aggregates, electron microscopes are
needed to analyse them. There are several types of microscope techniques based
on the use of a particle beam of electrons such as Transmission Electron Mi-
croscopy (TEM) and Scanning Electron Microscopy (SEM).
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3 Image Feature Extraction

Specifically, the aim of this treatment is to segment the aggregates and to ex-
tract several geometric features from them. Not only basic ones, such as area
or perimeter, are considered but also more complex ones like perimeter fractal.
Thereby, machine-learning classifiers will determine the morphology of unclas-
sified aggregates using these features. Our algorithm follows the operations re-
quired by the Standard Test Method for Carbon Black [16] for analysing images
captured by electron microscopes: background/noise elimination, thresholding,
erosion and dilation.

In order to conduct the binarization, we start applying a Gaussian smoother
[17], a 2-D convolution operator used to remove detail and noise. Second, we esti-
mate a threshold for aggregate-background discrimination using Otsu’s method
[18]. We adjust this threshold to be more adequate for SEM images. We generate
a binary image considering that pixels with value below the threshold correspond
to background and pixels above it are part of the aggregate area.

Although we accomplish a smoothing process for noise reduction in the bi-
narization phase, undesired elements may still be present in the image. These
elements can be easily confused with the desired aggregates, thus, it is mandatory
to eliminate them. To this end, we begin deleting minor areas and we continue
filling holes inside aggregates. Moreover we improve the edge quality by dilating
and eroding it with a disk shape morphological structuring element and we end
deleting incomplete aggregates touching the edge of the image. Besides, we iden-
tify aggregates segmenting from the image the regions that surpass an specified
area.

Based on the output image from the previous phase, we extract some geo-
metric features, the ones marked with an ‘*’ are the required ones according to
the Standard Test Method for Carbon Black [16]. These parameters are mea-
sured in nm and when necessary estimated using stereological principles (i.e.
the three-dimensional interpretation of two-dimensionally observed objects). To
start with, the common ones are: perimeter*, area*, area-perimeter ratio, equiv-
alent diameter, aggregate and particle volume, axis ratio, number of particles
per aggregate, occlusion factor, absorption and circularity. In the second place
are the parameters that require an explanation:

– Feret diameters*: A Feret diameter is defined as the distance between two
tangents on opposite sides of the particle profile that are parallel to some
fixed direction. So as to obtain valuable information related to the form of
the particle, we extract 16 Ferets [16] separated by 11.5 degrees choosing the
biggest (Major Feret), the smallest (Minor Feret) and the perpendicular one
to the biggest.

– Major and minor axis length: Scalars specifying the length of the major
and minor axis of the ellipse that have the same normalized second central
moments as the region.

– Centroid: The center of mass of the region. It is formed by 2 values (x and
y coordinates) normalized to the size of the bounding box, defined as the
smallest rectangle containing the region.
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– Convex area: The area of the convex hull, which is the smallest convex
polygon that can contain the region.

– Eccentricity: The eccentricity is the ratio of the distance between the foci
of the ellipse (i.e. the two points from which the distance to every point of
the ellipse is constant) and its major axis length, taking values between 0
and 1.

– Length-width ratio: This ratio is computed with the maximum Feret and
with the perpendicular Feret to the latter. Thereby, this commonly used
parameter [11] is normalized.

– Maximum Feret - minimum Feret ratio: This ratio is similar to the
previous one. However, considering that length and width are always or-
thogonal, it gives some extra information.

– Area - convex area ratio: Relation between the real area of the aggre-
gate and the area of the convex hull. The smaller the ratio, the bigger the
irregularity of the aggregate.

– Extent: Defined as the real area divided by the area of the bounding box.
– Perimeter Fractal: Determined by P ∼ ADp/2 as explained in section 2.
– Aggregation factor: Defined by 13.092(P 2

A )−0.92 where P is the perimeter
and A is the area. If lower than 0.4 then it is equal to 0.4.

Finally, we generate a training vector v = (v1, v2, ..v13) per aggregate contain-
ing all these characteristics. Concretely, each position vn in the vector represents
a geometric feature and has up to 6 decimals. The collection of vectors forms
the corpus I, which provides the learning dataset for the classification system.

4 Experimental Evaluation

Initially, we obtained several images with three electron microscopes on different
magnification scales. Thirteen images with 2 SEM microscopes, Hitachi S-3400N
and Hitachi S4800, and eleven with a Transmission Electron Microscope, the
Philips EM208S. After performing a preliminary evaluation of the aggregate
segmenting process, we chose the second Scanning Electron Microscope (SEM).

In this way, we collected 102 images of carbon black aggregates with a Hitachi
S-4800 Scanning Electron Microscope. Images were captured at 30000x magni-
fication with an average of 3 aggregates per image resulting in 266 correctly
segmented aggregates that have formed the case of study.

We segmented all the aggregates from the images, then we labelled them
and finally, we generated a Comma-Separated Values (CSV) file with all the
characteristics and finally we performed machine learning studies to classify the
aggregates.

In these experiments, we extracted 26 variables from each aggregate. The
dataset was not balanced for the four existing classes due to scarce data. Specif-
ically, 9 aggregates were of type spheroidal, 86 ellipsoidal, 51 linear and 120
branched. To address both problems (scarce and unbalanced data) we applied
Synthetic Minority Over-sampling TEchnique (SMOTE) [19], which is a combi-
nation of over-sampling the less populated classes and under-sampling the more
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populated ones. Nevertheless, the over-sampling is performed by creating syn-
thetic minority class examples. In this way, instances were still unique and classes
became more balanced.

More accurately, we conducted the next methodology in order to test the
suitability of each machine-learning algorithm:

– SMOTE: We built a dataset that contains the result of applying SMOTE to
the original dataset in order to compare the results of the machine-learning
classifiers with and without this technique.

– Cross validation: This method is generally applied in machine-learning
evaluation [20]. In our experiments, we performed a K-fold cross validation
with k = 10. In this way, our dataset is 10 times split into 10 different sets
of learning (90 % of the total dataset) and testing (10 % of the total data).

– Learning the model: For each fold, we accomplished the learning step of
each algorithm using different parameters or learning algorithms depending
on the specific model. In particular, we used the following models:
• Bayesian networks (BN): With regards to Bayesian networks we uti-

lize different structural learning algorithms: K2 [21], Hill Climber [22]
and Tree Augmented Näıve (TAN) [23]. Moreover, we also performed
experiments with a Näıve Bayes Classifier [20].

• Support Vector Machines (SVM): We performed experiments with a
polynomial kernel [24], a normalized polynomial Kernel [25] and Pearson
VII function-based universal kernel [26].

• K-nearest neighbour (KNN): We performed experiments with k = 1,
k = 5, k = 10, k = 15, k = 20 and k = 25.

• Decision Trees (DT): We performed experiments with J48(the Weka [27]
implementation of the C4.5 algorithm [28]) and Random Forest [29], an
ensemble of randomly constructed decision trees.

– Testing the model: We evaluated the percent of correctly classified in-
stances and the area under the ROC curve (AUC) that establishes the rela-
tion between false negatives and false positives [30].

Table 1 shows the obtained results in terms of accuracy percent. In this way,
regarding the results without the use of SMOTE, most of the classifiers obtained
only medium results, with the exception of Näıve Bayes method, which was the
worst, with results lower than 50 %. Otherwise, when SMOTE technique was
applied, every classifier improved its accuracy in a significant manner. Specially,
Näıve Bayes increased its accuracy in more than 20 %. Furthermore, Random
Forest, a type of Decision Tree, outperformed the rest of the classifiers with an
accuracy of 83.61 %.

Nevertheless, focusing only on accuracy may be misleading and, therefore, we
performed an analysis of the AUC. To this extent, Table 2 shows the results in
terms of AUC. As occurred with accuracy, when SMOTE is omitted from the
methodology the results are quite modest. Näıve Bayes was also the worst this
time with an AUC of 0.81. Notwithstanding, we observed the same improvement
using SMOTE, increasing the AUC of every classifier. Random Forest was also
the best classifier in terms of AUC with a value of 0.94.
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Table 1. Results of the machine-learning classifiers with regards to accuracy (%)

Machine-learning Model Original Dataset With SMOTE
DT: J48 69.04 79.77 �
DT: RandomForest with 1000 trees 73.40 83.61 �
SVM: Polynomial Kernel 68.21 78.27 �
SVM: Normalized Polynomial Kernel 67.30 75.68 �
SVM: Pearson VII universal kernel 68.48 80.24 �
KNN K=1 63.58 77.30 �
KNN K=5 66.13 78.23 �
KNN K=10 64.75 76.01 �
KNN K=15 66.52 76.57 �
KNN K=20 68.09 76.57 �
KNN K=25 68.39 75.92 �
Näıve Bayes 48.99 70.32 �
BN: K2 56.37 77.33 �
BN: Hill Climber 56.37 77.33 �
BN: TAN 68.60 79.03 �
�, x, − statistically significant improvement, degradation or non significant change

Table 2. Results of the machine-learning classifiers with regards to AUC

Machine-learning Model Original Dataset With SMOTE
DT: J48 0.76 0.81 −
DT: RandomForest with 1000 trees 0.89 0.94 −
SVM: Polynomial Kernel 0.82 0.91 �
SVM: Normalized Polynomial Kernel 0.81 0.90 �
SVM: Pearson VII universal kernel 0.81 0.90 �
KNN K=1 0.70 0.71 −
KNN K=5 0.82 0.88 −
KNN K=10 0.83 0.90 −
KNN K=15 0.85 0.92 �
KNN K=20 0.86 0.93 �
KNN K=25 0.86 0.93 �
Näıve Bayes 0.81 0.90 �
BN: K2 0.85 0.92 �
BN: Hill Climber 0.85 0.92 �
BN: TAN 0.84 0.91 �
�, x, − statistically significant improvement, degradation or non significant change

Summarizing, by means of machine learning algorithms we were able to ac-
complish aggregate morphology classification. Besides, with the help of synthetic
re-sampling more data was produced and the four classes became more balanced.
Thereby, we overcame the imbalance problem without merging the dataset, an
inappropriate option due to the size of our dataset.

5 Conclusions and Future Work

Nano-technologies have suffered a great development in the last years. Since
nano-particles are able to modify the mechanical and electrical properties of
materials [3], manufacturers have been led to a new generation of nano material-
based production. Moreover, depending on the aggregate type [11,31] and the
mixing process the obtained product varies [8].

In this paper, we have proposed the first automatic machine-learning-based
nano-aggregate morphology categorisation method. This technique correctly de-
termined the morphology of nano-aggregates, based on the use of geometrical
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and fractal characteristics as features for the training of several machine-learning
classifiers. Furthermore, the empirical validation showed that this method is ca-
pable of classifying the morphology of aggregates with an accuracy of over 80%.

Future work will compare results based on original samples with the present
results obtained with SMOTE re-sampling [19]. To this end, we will acquire more
SEM images in order to generate a larger training dataset. In addition, we are
planning to improve the image-processing algorithm so as to work with TEM
images. On the other hand, we will focus on developing a 3-dimensional tool in
order to accomplish skeletonization and 3D modelling of the aggregates.
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Abstract. Periodic-Frequent patterns are an important class of regular-
ities that exist in a transactional database. A pattern is periodic-frequent
if it satisfies both minimum support (minsup) and maximum periodicity
(maxprd) constraints. Minsup constraint controls the minimum number
of transactions that a pattern must cover in a database. Maxprd con-
straint controls the maximum duration between the two transactions
below which a pattern should reoccur in a database. In the literature
an approach has been proposed to extract periodic-frequent patterns us-
ing single minsup and single maxprd constraints. However, real-world
databases are mostly non-uniform in nature containing both frequent
and relatively infrequent (or rarely) occurring items. Researchers are
making efforts to propose improved approaches for extracting frequent
patterns that contain rare items as they contain useful knowledge. For
mining periodic patterns that contain frequent and rare items we have
to specify low minsup and high maxprd. It is difficult to mine periodic-
frequent patterns because the low minsup and high maxprd can cause
combinatorial explosion. In this paper we propose an improved approach
which facilitates the user to specify different minsup and maxprd values
for each pattern depending upon the items within it. Also, we present
an efficient pattern growth approach and a methodology to dynamically
specify maxprd for each pattern. Experimental results show that the
proposed approach is efficient.

Keywords: Data mining, frequent pattern, rare periodic-frequent pat-
tern, multiple constraints.

1 Introduction

Periodic-frequent patterns [3] are an important class of regularities that exist
in a database. In many real-world applications, these patterns provide useful
information regarding the patterns which are not only occurring frequently, but
also appearing periodically (or regularly) throughout a transactional database.
The basic model of periodic-frequent patterns is as follows [3].

Let I = {i1, i2, · · · , in} be a set of items. A set X = {ij, · · · , ik} ⊆ I, where
j ≤ k and j, k ∈ [1, n], is called a pattern (or an itemset). A transaction
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t = (tid, Y ) is a tuple, where tid represents a transaction-id (or a timestamp)
and Y is a pattern. A transactional database T over I is a set of transactions, T =
{t1, · · · , tm}, m = |T |, where |T | is the size of T in total number of transactions.
If X ⊆ Y , it is said that t contains X or X occurs in t and such transaction-id
is denoted as tXj , j ∈ [1, m]. Let T X = {tXk , · · · , tXl } ⊆ T , where k ≤ l and
k, l ∈ [1, m] be the ordered set of transactions in which pattern X has occurred.
Let tXj and tXj+1, where j ∈ [k, (l−1)] be two consecutive transactions in T X . The
number of transactions or time difference between tXj+1 and tXj can be defined as
a period of X , say pX . That is, pX = tXj+1− tXj . Let PX = {pX

1 , pX
2 , · · · , pX

r }, be
the set of periods for pattern X . The periodicity of X , denoted as Per(X) =
max(pX

1 , pX
2 , · · · , pX

r ). The support of X , denoted as S(X) = |T X |. The pattern
X is said to be periodic-frequent pattern, if S(X) ≥ minsup and Per(X) ≤
maxprd, where minsup and maxprd are user-specified minimum support and
maximum periodicity constraints. Both periodicity and support of a pattern can
be described in percentage of |T |.

Table 1. Transaction database. Transac-
tions are ordered based on timestamp.

TID Items TID Items
1 bread, jam, pencil 7 bread, jam,
2 ball, bat, pen ball, bat
3 bread, jam, ball 8 bed, pillow
4 bed, pillow 9 bread, jam
5 bread, jam 10 ball, bat
6 ball, bat pencil

Table 2. Periodic-Frequent patterns
having support≥ 2 and periodicity ≤ 4

Pattern S P Pattern S P
bread 5 2 {bread,ball} 2 4
ball 5 3 {bread, jam} 5 2
jam 5 2 {ball,bat} 4 4
bat 4 4 {bed, pillow} 2 4
bed 2 4
pillow 2 4

Example 1. Consider the transactional database shown in Table 1. Each trans-
action in it is uniquely identifiable with a transactional-id (tid) which is also a
timestamp of that transaction. Timestamp indicates time of occurrence of the
transaction. The set of items, I = {bread, jam, ball, bat, bed, pillow, pencil, pen}.
The set of bread and jam i.e., {bread, jam} is a pattern. This pattern occurs in
tids of 1, 3, 5, 7 and 9. Therefore, T {bread,jam} = {1, 3, 5, 7, 9}. Its support count
(or support), S(bread, jam) = |T {bread,jam}| = 5. The periods for this pattern
are 1(= 1 − ti), 2(= 3− 1), 2(= 5 − 3), 2(= 7 − 5), 2(= 9 − 7) and 1(= tl − 9),
where ti = 0 represents the initial transaction and tl = 10 represents the
last transaction in the transactional database. The periodicity of {bread, jam},
Per(bread, jam) = maximum(1, 2, 2, 2, 2, 1) = 2. If the user-specified minsup =
4 and maxprd = 2, the pattern {bread, jam} is a periodic-frequent pattern be-
cause S(bread, jam) ≥ minsup and Per(bread, jam) ≤ maxprd.

For this model, an efficient pattern growth approach based on a tree-structure,
called Periodic-Frequent tree (PF-tree) was also discussed to discover complete
set of periodic-frequent patterns [3]. The structure of PF-tree is different from
the FP-tree [2]. It is because FP-tree was not proposed to consider the periodicity
of a pattern.
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Using only a single minsup and single maxprd constraints, it is easy to dis-
cover periodic-frequent patterns consisting of frequent items. However, real-world
databases are mostly non-uniform in nature containing both frequent and rela-
tively infrequent (or rarely) occurring items. More important, periodic-frequent
patterns consisting of rare items i.e., rare periodic-frequent patterns can provide
useful information.

Example 2. Generally in a supermarket, the set of items bed and pillow are
rarely purchased than the set of items bread and jam. Also, the duration of
two consecutive purchases of ‘bed and pillow’ is relatively longer than the two
consecutive purchases of ‘bread and jam’. However, the former set of items is
more interesting as it generates more revenue per unit as in this case.

Rare periodic-frequent patterns have relatively low support (or frequency) and
high periodicity (due to their sporadic nature). It is difficult to mine these pat-
terns with a “single minsup and single maxprd model” because this model suf-
fers from “rare item problem.” That is, to mine rare periodic-frequent patterns,
one has to specify low minsup and high maxprd. This may cause combinatorial
explosion, producing too many periodic-frequent patterns, because, those fre-
quent items will be associated with one another in all possible ways and many
of them are uninteresting. Uninteresting periodic-frequent patterns are the pat-
terns having low support and/or high periodicity and consist of only frequent
items.

Example 3. Consider the transactional database shown in Table 1. To mine
periodic-frequent patterns consisting of the rare items (bed and pillow), one
has to set low minsup and high maxprd. Let minsup = 2 and maxprd = 4.
Table 1 presents the discovered periodic-frequent patterns. It can be observed
that along with the interesting patterns {bread, jam} and {bed, pillow}, the un-
interesting patterns i.e., {bread, ball} and {ball, bat} (patterns represented in
bold letters) have also been generated as periodic-frequent patterns. The pat-
terns {bread, ball} and {ball, bat} are uninteresting because they contain only
frequent items and have low support and/or high periodicity. These patterns
can be considered as interesting if they have satisfied high minsup and low
maxprd, say minsup = 4 and maxprd = 2. Like, the periodic-frequent pattern
{bread, jam}.
In the literature, “rare item problem” was also confronted while mining frequent
patterns using “single minsup model.” Efforts are being made to propose im-
proved approaches using “multiple minsup model” [4,5,6,7,8]. In this model,
each item is specified with a support constraint, called minimum item support
(MinIS), and minsup of a pattern is represented with the minimal MinIS value
among all its items. Thus, each pattern can satisfy a different minsup depending
upon the items within it. In [4,6], methodologies have been discussed to specify
items’ MinIS values depending upon their respective supports.

In this paper, we extend the existing “multiple minsup model” to “multi-
ple minsup and multiple maxprd model” to efficiently mine periodic-frequent
patterns consisting of both frequent and rare items. In the proposed model,
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each pattern can satisfy a different minsup and maxprd values depending upon
the items within it. Specifically, the user specifies two types of constraints: (i)
support constraint, called minimum item support (MinIS) and (ii) periodicity
constraint, called maximum item periodicity (MaxIP ). Thus, different patterns
may need to satisfy different minsup and maxprd values depending upon the
items within it.

The periodic-frequent patterns mined using the proposed model do not sat-
isfy downward closure property. That is, not all non-empty subsets of a periodic-
frequent pattern need be periodic-frequent. This increases the search space to dis-
cover complete set of periodic-frequent patterns. However, we propose an efficient
pattern growth approach, which uses various techniques to minimize the search
space for efficient mining of periodic-frequent patterns. Experimental results on
both synthetic and real-world databases show that the proposed approach effi-
ciently discover periodic-frequent patterns consisting of both frequent and rare
items. However, it requires more runtime because the periodic-frequent patterns
mined using the proposed model do not satisfy downward closure property.

The rest of the paper is organized as follows. In Section 2, we introduce the
extended model of mining periodic-frequent patterns. For the proposed model,
a pattern-growth approach based on a tree structure, called Multi-Constraint
Periodic-Frequent tree (MCPF-tree) has been discussed in Section 3. We report
our experimental results in Section 4. Finally, Section 5 concludes the paper.

2 The Extended Model

In the new model, each item in a transactional database has two types of con-
straints: a support constraint, called minimum item support (MinIS) and a
periodicity constraint, called maximum item periodicity (MaxIP ). A pattern is
periodic-frequent if it satisfies lowest MinIS and maximum MaxIP values of
all the items within it.

Continuing with the basic model of periodic-frequent patterns, let MinIS(ij)
and MaxIP (ij) be the minimum item support and maximum item periodicity
specified for an item ij ∈ I. Then, a pattern X = {i1, i2, · · · , ik} ⊆ I is periodic-
frequent if:

S(X) ≥ minimum(MinIS(i1), MinIS(i2), · · · , MinIS(ik)) (1)
and

Per(X) ≤ maximum(MaxIP (i1), MaxIP (i2), · · · , MaxIP (ik))

Minimum item supports and maximum item periodicities enable us to achieve
the goal of specifying higher minsup and lower maxprd for patterns that only
involve frequent items, and specifying lower minsup and higher maxprd for
patterns involving rare items.

2.1 Specifying MaxIP for an Item

If there exists numerous items within a transactional database, it will be very
difficult for the user to manually specify MinIS and MaxIP values for every
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item. In the literature (multiple minsup based frequent pattern mining), there
exists methodologies to specify items’ MinIS values dynamically depending
upon their respective supports [4,6]. In this paper, we propose a methodology to
specify items’ MaxIP values dynamically depending upon their support values.
The methodology is as follows:

mip(ij) = β × S(ij) + Permax

MaxIP (ij) = mip(ij) if mip(ij) ≥ Permin (2)
= Permin otherwise

where, S(ij) is the support of the item ij , Permax and Permin are the user-
specified maximum and minimum periodicities such that Permax ≥ Permin and
β ∈ [−1, 0] is a user-specified constant. The above methodology has the following
three properties.

Property 1. If β = 0 and Permax > Permin, each items’ MaxIP value will be
equal to Pmax. In such a scenario, the proposed model is same as mining periodic-
frequent patterns with a single maxprd constraint, where maxprd = Permax.

Property 2. If Permax = Permin, each items’ MaxIP value will be equal to
Permax or Permin. The proposed model is same as mining periodic-frequent
patterns with a single maxprd constraint, where maxprd = Permax = Permin.

Property 3. It is an order-reversing function. That is, in I, if S(i1) ≤ S(i2) ≤
· · ·S(in), then MaxIP (i1) ≥ MaxIP (i2) ≥ · · · ≥ MaxIP (in). Thus, as com-
pared with frequent items, rare items will have high MaxIP values.

2.2 Nature of the Periodic-Frequent Patterns

The periodic-frequent patterns mined using “single minsup and single maxprd
model” satisfy downward closure property. That is, all non-empty subsets of a
periodic-frequent pattern are periodic-frequent. However, the periodic-frequent
patterns mined using the proposed model do not have to satisfy downward closure
property.

Example 4. Let a, b and c be the three items in a transactional database. The
user-specified MinIS values for these items be 10, 9 and 3 respectively. The
user-specified MaxIP values for these items be 5, 6 and 5 respectively. After
scanning the database, let the support of these respective items be 9, 8 and
4. Let the periodicity of these items be 4, 4 and 6 respectively. Clearly, the
items a, b and c are non-periodic-frequent items (or 1-patterns) because S(a) <
MinIS(a), S(b) < MinIS(b) and P (c) > MaxIP (c). However, their superset
i.e., {a, b, c} with support=3 and periodicity=6 can be still be generated as a
periodic-frequent pattern because supports of a, b and c are greater than or equal
to MinIS(c) and periodicities of a, b and c are less than or equal to MaxIP (b).
So, if we do not discard these non-periodic-frequent items, the downward closure
property is lost.
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2.3 Problem Definition

Given a transactional database T , items’ MinIS and MaxIP values, discover
complete set of periodic-frequent patterns that satisfy lowest MinIS and maxi-
mum MaxIP values of all the items within the respective pattern.

3 MCPF-Tree: Design, Construction and Mining

In this section, we describe the structure, construction and mining of periodic-
frequent patterns using Multi-ConstraintPeriodic-FrequentPattern-tree (MCPF-
tree).

3.1 Structure of MCPF-Tree

The MCPF-tree consists of two components: MCPF-list and a prefix-tree. MCPF-
list is a list with four fields: item, support (S), periodicity (P ), MinIS (mis) and
MaxIP (mip). The node structure of prefix-tree in MCPF-tree is same as the
prefix-tree in PF-tree [3], which is as follows.

The prefix-tree in MCPF-tree explicitly maintains the occurrence information
for each transaction in the tree structure by keeping an occurrence transaction-id
list, called tid-list, only at the last node of every transaction. Two types of nodes
are maintained in a MCPF-tree: ordinary node and tail-node. The ordinary
node is similar to the nodes used in FP-tree, whereas the latter is the node that
represents the last item of any sorted transaction. The structure of a tail-node
is N [t1, t2, ..., tn], where N is the node’s item name and ti, i ∈ [1, n], (n be the
total number of transactions from the root up to the node) is a transaction-id
where item N is the last item. Like the FP-tree [2], each node in a MCPF-tree
maintains parent, children, and node traversal pointers. However, irrespective of
the node type, no node in a MCPF-tree maintains support count value in it. We
now explain construction and mining of MCPF-tree.

3.2 Constructing MCPF-Tree

Let idl be a temporary array to record the tids of the last occurring transactions
of all items in the MCPF-list. Let tcur and pcur respectively denote the tid of
current transaction and the most recent period for an item ij ∈ I. The MCPF-
tree is, therefore, maintained according to the process given in Algorithm 1.

Consider the transactional database shown in Table 1. Let the user-specified
MinIS values for the items bread, ball, bat, jam, bed, pillow, pen and pencil be 4,
4, 4, 4, 2, 2, 2 and 2, respectively. Let the user-specified MaxIP values for these
items be 2, 2, 2, 2, 4, 4, 4 and 4, respectively. Then, L = {bread, ball, bat, jam,-
bed, pillow, pen, pencil}.

In Fig. 1, we show how the MCPF-list is populated for the transactional
database shown in Table 1. Fig. 1(a) shows the MCPF-list populated after in-
serting items in L order (Line 1 of Algorithm 1). Fig. 1(b), Fig. 1(c) and Fig. 1(d)
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Algorithm 1. MCPF-tree (T : Transactional database, I: set of items, MinIS:
items’ minimum item support, MaxIP : items’ maximum item periodicity)
1: Sort the items in descending order of their MinIS values. Let this order of items be

L. In L order, insert each item ij ∈ I into the MCPF-list with S(ij) = 0, P (ij) = 0,
mis(ij) = MinIS(ij) and mip(ij) = MaxIP (ij).

2: for each transaction tcur ∈ T do
3: for each ij ∈ tcur do
4: S(ij) + +; pcur = tcur − idl(ij);
5: if (pcur > P (ij)) then
6: P (ij) = pcur;
7: end if
8: end for
9: end for

10: At the end of T , calculate pcur for each item by considering tcur equal to the tid
of the last transaction in T , and update their respective p value if pcur ≥ P . The
purpose of this step is to reflect correct periodicity of each item in the MCPF-list.

11: repeat
12: Let ik ∈ I be the item having lowest MinIS (MISmin) value among all frequent

items.
13: for each item ij in MCPF-list do
14: if (S(ij) < MISmin) then
15: Remove ij from the MCPF-list.
16: end if
17: end for
18: Let il ∈ I be the periodic item that has maximum MaxIP (MIPmax) value

among all the remaining items.
19: for each item ij in MCPF-list do
20: if ((P (ij) > MIPmax) then
21: Remove ij from the MCPF-list.
22: end if
23: end for
24: until MCFP-list does not contain ik
25: /* The above repeat step is necessary because ik can be pruned if its periodicity

is greater than the MIPmax value. */
26: Let L′ be the sorted list of items in MCPF-list.
27: for each transaction t ∈ T do
28: Sort the items in L′ order and create a branch in MCPF-tree as in PF-tree.
29: end for
30: For tree-traversal, maintain node-links in MCPF-tree as in PF-tree.
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show the MCPF-list generated after scanning first (i.e., tcur = 1), second (i.e.,
tcur = 2) and every transaction (i.e., tcur = 10), respectively (lines 2 to 9 in
Algorithm 1). To reflect the correct periodicity for each item in the MCPF-tree,
the whole MCPF-list is refreshed as mentioned in line 10 of Algorithm 1. The
resultant MCPF-tree is shown in Fig. 1(e). In this figure, it can be observed that
the periodicity of pen is changed from 2 to 8 as it did not appear in the database
after tid = 2.

The periodic-frequent patterns mined using the proposed model do not satisfy
downward closure property. This increases the search space for mining these
patterns. To minimize the search space, we explore Lemma 1 and Lemma 2.
The lowest MinIS value (MISmin) among all frequent items in the MCPF-list
is 2 (Line 12 in Algorithm 1). The item that has MISmin value is pencil. Using
MISmin = 2, pen is pruned from the MCPF-list because its support is less than
the MISmin value (Line 13 to 17 in Algorithm 1). Among the remaining items,
the periodic items are bread, jam, ball, bat, bed and pillow. The maximum
MaxIP value (MIPmax) among all these items is 4 (Line 18 in Algorithm 1).
Using MIPmax = 4, pencil is pruned from the MCPF-list because its periodicity
is greater than MISmin (Line 19 to 23 in Algorithm 1). As the item pencil that
represents the frequent item having lowest MinIS is pruned, the above steps of
finding new MinIS is repeated (Line 14 in Algorithm 1). The new MISmin is
2. The item pillow has MISmin among all the remaining frequent items. Every
item in MCPF-list has support than or equal to MISmin. Therefore, no item is
pruned from the MCPF-list. The MIPmax value among the remaining in MCPF-
list is 4. Every item in the MCPF-list satisfies MIPmax. Therefore, no item is
pruned from the MCPF-list. As the item pillow that represents the item having
MISmin is not pruned from the MCPF-list, the pruning process is completed.
The resultant (compact) MCPF-list is shown in Fig. 1(f). Let L′ be the new list
of items in MCPF-list that are sorted in descending order of their MIS values.

Using L′, perform second scan on the transactional database to construct
prefix-tree in MCPF-tree. The construction of prefix-tree in MCPF-tree is same
as the construction of prefix-tree in PF-tree (or FP-tree). Figure 2(a), Figure
2(b) and Figure 2(c) show the construction of MCPF-tree after scanning first,
second and every transaction in the transactional database. In MCPF-tree, node-
links are maintained as in FP-growth. For simplicity of figures, we are omitting
them.

Lemma 1. An item is frequent if its support is greater than or equal to its
MinIS value. Any item which has support less than the lowest MinIS value
among all frequent items cannot generate any periodic-frequent pattern.

Proof. In the proposed model, an item which has the lowest MinIS value within
a periodic-frequent pattern is a frequent item (apriori property [1]). Therefore,
every periodic-frequent pattern will have support greater than or equal to the
lowest MinIS value among all frequent items. Thus, any item which has support
less than the lowest MinIS value among all frequent items cannot generate any
periodic-frequent pattern.
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item S P MIS MIP

bread 0 0 4 2

jam

ball

bat

bed

pillow

pencil

pen

0 0 4 2

0 0 4 2

0 0 4 2

0 0 2 4

0 0 2 4

0 0 2 4

0 0 2 4

a) Before scanning the 
   transactional dataset

ldl
0

0

0

0

0

0

0

0

item S P MIS MIP

bread 1 1 4 2

jam

ball

bat

bed

pillow

pencil

pen

1 1 4 2

0 0 4 2

0 0 4 2

0 0 2 4

0 0 2 4

1 1 2 4

0 0 2 4

ldl
1

1

0

0

0

0

1

0

b) After scanning first
   transaction

item S P MIS MIP

bread 1 1 4 2

jam

ball

bat

bed

pillow

pencil

pen

1 1 4 2

1 2 4 2

1 2 4 2

0 0 2 4

0 0 2 4

1 1 2 4

1 2 2 4

ldl
1

1

2

2

0

0

1

2

c) After scanning second
   transaction

item S P MIS MIP

bread 5 2 4 2

jam

ball

bat

bed

pillow

pencil

pen

5 2 4 2

5 3 4 2

4 4 4 2

2 4 2 4

2 4 2 4

2 9 2 4

1 2 2 4

ldl
9

9

10

10

8

8

10

2

d) After scanning last 
   transaction

item S P MIS MIP

bread 5 2 4 2

jam

ball

bat

bed

pillow

pencil

pen

5 2 4 2

5 3 4 2

4 4 4 2

2 4 2 4

2 4 2 4

2 9 2 4

1 8 2 4

e) Updated the MCPF-list

item S P MIS MIP

bread 5 2 4 2

jam

ball

bat

bed

pillow

5 2 4 2

5 3 4 2

4 4 4 2

2 4 2 4

2 4 2 4

f) Final MCPF-list

Fig. 1. Construction of MCPF-list

Lemma 2. An item is periodic if its periodicity is less than or equal to its
MaxIP value. Let I ′ be the set of items which have support greater than or equal
to lowest MinIS value among all frequent items. Any item which has periodicity
greater than the maximum MaxIP value among all periodic items in I ′ cannot
generate any periodic-frequent pattern.

Proof. In the proposed model, an item which has maximum MaxIP value in
a periodic-frequent pattern is a periodic item (apriori property). Therefore, ev-
ery periodic-frequent item will have periodicity less than or equal to maximum
MaxIP of all periodic items in I ′. Hence, any item which has periodicity greater
than the maximum MaxIP value among all periodic items in I ′ cannot generate
any periodic-frequent pattern.

The correctness of MCPF-tree is based on Property 4 and Lemma 3.

Property 4. A tail-node in MCPF-tree maintains the occurrence information for
all the nodes in the path (from that tail-node to the root) at least in the trans-
actions in its tid-list.

Lemma 3. Let P = {i1, i2, · · · , in} be a path in a MCPF-tree where node in
is the tail-node carrying the tid-list of the path. If the tid-list is pushed-up to
node in−1, then in−1 maintains the appearance information of the path P ′ =
{i1, i2, · · · , in−1} for the same set of transactions in the tid-list without any loss.

Proof. Based on Property 4, in maintains the occurrence information of the path
P ′ at least in the transactions in its tid-list. Therefore, the same tid-list at node
in−1 exactly maintains the same transaction information for P ′ without any loss.
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{}null

bread

jam

pencil:1

{}null

bread

jam

pencil:1

ball

bat

pen:2

{}null

bread

jam:1,5,
    9

ball

bat:2,6,
    10

ball:3

bat:7

bed

pillow:4,8

item S P MIS MIP

bed 2 2 4 2

{}null

bed:4,8

item S P MIS MIP

bread 5 2 4 2

jam

ball

bat

bed

5 2 4 2

5 3 4 2

4 4 4 2

2 4 2 4

{}null

bread

jam:1,5,
    9

ball

bat:2,6,
    10

ball:3

bat:7

bed:4,8

(a) (b) (c) (d) (e)

Fig. 2. Construction and mining MCPF-tree. (a) Prefix-tree after scanning first trans-
action (b) Prefix-tree after scanning second transaction (c) Prefix-tree after scanning
every transaction (d) PTpillow and CTpillow and (e) MCPF-tree after pruning item
pillow.

3.3 Mining of MCPF-Tree

Consider the bottom-most item, say i, of the MCPF-list. For i, construct a prefix-
tree, say PTi by accumulating only the prefix sub-paths of nodes i. Since i is
the bottom-most item in the MCPF-list, each node labeled i in the MCPF-tree
must be a tail-node. While constructing the PTi, based on Property 4 we map
the tid-list of every node of i to all items in the respective path explicitly in a
temporary array (one for each item). It facilitates the periodicity and support
calculation for each item in the MCPF-list of PTi.

Lemma 4. Let Si(j) be the support of an item j in PTi. If Si(j) < MinIS(i),
j cannot generate any periodic-frequent pattern in PTi.

Proof. The MCPF-tree is constructed in MinIS descending order of items. So,
all items in PTi will have MinIS values greater than or equal to the MinIS of
i. Thus, based on apriori property, an item j having Si(j) < MinIS(i) cannot
generate any periodic-frequent pattern in PTi.

Lemma 5. In PTi, let I ′′ be the set of items which have their support greater
than or equal to MinIS of i. In I ′′, any item which has periodicity greater
than the maximum MaxIP value among all {I ′′ ∪ i} items cannot generate any
periodic-frequent pattern in PTi.

Proof. Any periodic-frequent pattern that can be generated from PTi cannot
have periodicity greater than the maximum MaxIP value among the set of
{I ′′∪ i}. Therefore, any item in I ′′, which has periodicity greater than maximum
MaxIP value among all {I ′′ ∪ i} items cannot generate any periodic-frequent
pattern in PTi (apriori property).

Using Lemma 4 and Lemma 5, the conditional tree CTi for PTi is constructed
by removing all those items which have support less than the MinIS of i (say,
minsupi) or periodicity greater than the maximum MaxIP of all items in {PTi∪
i} (say, maxprdi). If a deleted node is a tail-node, its tid-list is pushed-up to
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its parent node. The contents of temporary array for the bottom item j in the
MCPF-list of CTi represents T ij (i.e., set of all tids where items i and j occur
together). From T ij, it is a simple calculation of S(ij) and Per(ij) for the pattern
{i, j}.

1. If S(ij) ≥ minsupi and Per(ij) ≤ maximum(MaxIP (i), MaxIP (j)), then
{i, j} is considered as a periodic-frequent pattern and the same process of
creating prefix-tree and its corresponding conditional tree is repeated for
further extensions of “ij”.

2. Else, we will verify whether S(ij) ≥ MinIS(i) and Per(ij) ≤ maxprdi. If
the above condition is satisfied, then the same process of creating prefix-tree
and its corresponding conditional tree is repeated for further extensions of
“ij” even though it is a non-periodic-frequent pattern. It is because higher
orders of {i, j} can still be periodic-frequent.

Next, i is pruned from the original MCPF-tree. (The procedure for pruning
i is same as pruning non-periodic-frequent items in earlier steps.) The whole
process of mining each item is repeated until MCPF-list 
= ∅. The correctness of
this procedure is based Property 4 and Lemma 3.

Consider the item pillow, which is the last item in MCPF-tree of Fig. 1(f).
The PTpillow generated from MCPF-tree is shown in Fig. 2(d). Since, there is
only one item bed, which is satisfying MinISpillow and MaxIPbed(= minimum(-
MaxIPpillow , MaxIPbed)), CTpillow = PTpillow. From T {bed,pillow}, the pattern
{bed, pillow} will be generated a periodic-frequent pattern. The MCPF-tree gen-
erated after pruning pillow is shown in Fig. 2(e). Similar process is repeated for
other items in the MCPF-tree. Finally, the set of periodic-frequent patterns gen-
erated are {{bread}, {jam}, {bed}, {pillow}, {bread, jam}, {bed, pillow}}. The
patterns {bread, ball} and {ball, bat}, which are generated as periodic-frequent
patterns at low minsup and high periodicity (minsup = 2 and maxprd = 4) in
Example 3 have failed to be periodic-frequent patterns in the proposed model.
It is because they failed to satisfy minsup = 4 and maxprd = 2.

In this way the proposed model is able to efficiently address rare item problem
while mining rare periodic-frequent patterns.

One can assume that the structure of a MCPF-tree may not be memory
efficient, since it explicitly maintains tids of each transaction. It was proven
in [3] that such a tree achieves the memory efficiency by keeping transaction
information only at the tail-nodes and avoiding the support field at each node.

3.4 Relationship among the Patterns Generated in Various Models

For a given transactional database T , let F be the set of frequent patterns
generated at minsup = x%. Let PF be the set of periodic-frequent patterns
generated at minsup = x% and maxprd = y%. Let MCPF be the set of set of
periodic-frequent patterns generated in the proposed model when items’ MinIS
values were greater than or equal to x% and MaxIP values were less than or
equal to y%. The relation between these patterns is MCPF ⊆ PF ⊆ F .
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4 Experimental Results

In this section, we present the performance comparison of the proposed model
against basic model discussed in [3]. All programs are written in C + + and
run with Ubuntu 8.1 on a 2.66 GHz machine with 2GB memory. The runtime
specifies the total execution time.

The experiments are pursued on two types of datasets: synthetic dataset
(T 10I4D100k) and real-world datasets (retail and mushroom). T 10I4D100k [1]
is a large sparse dataset with 100,000 transactions and 870 distinct items. The
mushroom dataset is a dense dataset containing 8,124 transactions and 119 dis-
tinct items. The retail dataset [9] is also a large sparse dataset with 88,162
transactions and 16,470 items. All of these datasets are available at Frequent
Itemset MIning (FIMI) repository (http://fimi.cs.helsinki.fi/data/).

To specify items’ MaxIP values we used the methodology discussed in Equa-
tion 2. To specify items’ MinIS values we used the methodology proposed in
[4]. It is as follows:

MinIS(ij) = maximum(γ × S(ij), LS) (3)

where, LS is the user-specified lowest minimum item support allowed and γ ∈
[0, 1] is a parameter that controls how the MinIS values for items should be
related to their supports.

4.1 Experiment 1

In synthetic, retail and mushroom datasets, both minsup and LS values are fixed
at 0.1%, 0.1% and 25% respectively. With γ = 1

α , and varying α, we present the
number of periodic-frequent patterns generated in these databases at different
maxprd (maxprd = Pmax = Pmin = x%) values in Fig. 3(a), Fig. 3(b) and
Fig. 3(c) respectively.
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Fig. 3. Periodic-Frequent patterns generated at different MinIS values

It can be observed that the number of periodic-frequent patterns significantly
reduced by our model when α is not too large. When α becomes larger, the
number of periodic-frequent patterns found by our model gets closer to that
found by the traditional model (single minsup-maxprd model). The reason is
because when γ becomes larger more and more items’ MinIS values reach LS.
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4.2 Experiment 2

In synthetic, retail and mushroom datasets, minsup and LS values are fixed at
0.1%, 0.1% and 25% respectively. Next, γ was set at 0.5%. With β = − 1

α and
varying α from 0 to 20, we present the number of periodic-frequent patterns
generated in these databases at different maxprd values in Fig. 4(a), Fig. 4(b)
and Fig. 4(c) respectively.

(c) Mushroom dataset(b) Retail dataset(a) T10I4D100K dataset
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Fig. 4. Periodic-Frequent patterns generated at different MaxIP values

It can be observed that the number of periodic-frequent patterns significantly
reduced by our model when α is small. When α becomes larger, the number of
periodic-frequent patterns found by our model gets closer to that found by the
traditional model (single minsup-maxprd model). The reason is because when
α increases more and more items’ MaxIP values reach Pmax.

Fig. 5(a), Fig. 5(b) and Fig. 5(c) show the runtime taken by both of these
approaches at different MaxIP values. It can be observed that the runtime
taken by the proposed approach to generate periodic-frequent patterns increases
with increase in α value. It is because of the increase in number of periodic-
frequent patterns. (Similar observations can also be drawn for the previous ex-
periments. Due to page limitations, we are not discussing them in this paper.)
Also, it can be observed that the proposed approach requires more runtime to
find periodic-frequent patterns. The reason is due to the increased search space
as periodic-frequent patterns mined using the proposed model do not follow
downward closure property.
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Fig. 6. Scalability of MCPF-tree. (a) Runtime requirements of MCPF-tree and (b)
Memory requirements of MCPF-tree.

4.3 Experiment 3: Scalability Test

We studied the scalability of our MCPF-tree on execution time and required
memory by varying the number of transactions in a database. We use real
kosarak dataset for the scalability experiment, since it is a huge sparse dataset
with 990,002 transactions and 41,270 distinct items. We divided the dataset into
five portions of 0.2 million transactions in each part. Then we investigated the
performance of MCPF-tree after accumulating each portion with previous parts
and performing periodic frequent itemset mining each time. For calculation of
items’ MinIS values in each experiment, the LS and γ values are fixed at 2%
and 0.5%, respectively. Similarly, items’ MaxIP value, Pmin, Pmax and β values
are fixed as 20%, 50% and −0.1 respectively. The experimental results are shown
in Figure 6. The runtime and memory in y-axes of Figure 6(a) and Figure 6(b)
respectively specify the total memory and execution time with the increase in
database size. It is clear from the graphs that as the database size increases,
overall tree construction and mining time, and memory requirement increase.
However, MCPF-tree shows stable performance of about linear increase in run-
time and memory consumption with respect to the database size. Therefore,
it can be observed from the scalability test that MCPF-tree can mine periodic-
frequent itemsets over large datasets and distinct items with considerable amount
of runtime and memory.

5 Conclusion

In many real-world applications, rare periodic-frequent patterns can provide use-
ful information. It is difficult to mine rare periodic-frequent patterns with a
“single minsup and single maxprd model” due to rare item problem. In this
paper, we have proposed an improved model to extract rare periodic-frequent
patterns. In the proposed model each pattern can satisfy different minsup and
maxprd values depending upon the items within it. For this model, we have
also proposed an efficient pattern growth approach based on a tree structure,
called MCPF-tree. As the periodic-frequent patterns mined using the proposed
model do not satisfy downward closure property, the proposed pattern growth
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approach uses various other techniques to minimize the search space. We have
also discussed a methodology to specify maxprd for each pattern dynamically.
The experimental results demonstrate that the proposed approach efficiently
finds periodic-frequent patterns consisting of frequent and rare items. However,
it requires more runtime than single minsup and maxprd model, because the
periodic-frequent patterns mined using the proposed model do not satisfy down-
ward closure property.

References

1. Agrawal, R., Imielinski, T., and Swami, A.: Mining association rules between sets
of items in large databases. In: SIGMOD, pp. 207-216 (1993)

2. Jiawei, H., Jian, P., Yiwen, Y., and Runying, M.: Mining Frequent Patterns without
Candidate Generation: A Frequent-Pattern Tree Approach*. In: ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 53-87
(2004)

3. Tanbeer, S. K., Ahmed, C. F., Jeong, B., and Lee, Y.: Discovering Periodic-
Frequent Patterns in Transactional Databases. In: Pacific Asia Knowledge Discovery
in Databases (2009)

4. Liu, B., Hsu, W., and Ma, Y.: Mining Association Rules with Multiple Minimum
Supports In: Knowledge Discovery and Databases, pp. 337–241 (2009)

5. Hu, Y.-H., Chen, Y.-L.: Mining Association Rules with Multiple Minimum Sup-
ports: A New Algorithm and a Support Tuning Mechanism. Decision Support Sys-
tems 42(1), 1–24 (2006)

6. Uday Kiran, R., Krishna Reddy, P.: An Improved Multiple Minimum Support Based
Approach to Mine Rare Association Rules. In: IEEE Symposium on Computational
Intelligence and Data Mining (2009)

7. Uday Kiran, R., Krishna Reddy, P.: An Improved Frequent Pattern-growth Ap-
proach to Discover Rare Association rules. In: International Conference on Knowl-
edge Discovery and Information Retrieval (2009)

8. Uday Kiran, R., Krishna Reddy, P.: Mining Rare Association Rules in the Datasets
with Widely Varying Items’ Frequencies. In: Kitagawa, H., Ishikawa, Y., Li, Q.,
Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 49–62. Springer, Heidel-
berg (2010)

9. Brijs, T., Swinnen, G., Vanhoof, K., Wets, G.: The use of association rules for
product assortment decisions - a case study. In: Knowledge Discovery and Data
Mining (1999)



Lag Patterns in Time Series Databases

Dhaval Patel1, Wynne Hsu1, Mong Li Lee1, and Srinivasan Parthasarathy2

1 National University of Singapore
2 Ohio State University

{dhaval,whsu,leeml}@comp.nus.edu.sg, srini@cse.ohiostate.edu

Abstract. Time series motif discovery is important as the discovered motifs gen-
erally form the primitives for many data mining tasks. In this work, we examine
the problem of discovering groups of motifs from different time series that ex-
hibit some lag relationships. We define a new class of pattern called lagPatterns
that captures the invariant ordering among motifs. lagPatterns characterize lo-
calized associative pattern involving motifs derived from each entity and explic-
itly accounts for lag across multiple entities. We present an exact algorithm that
makes use of the order line concept and the subsequence matching property of the
normalized time series to find all motifs of various lengths. We also describe a
method called LPMiner to discover lagPatterns efficiently. LPMiner utilizes
inverted index and motif alignment technique to reduce the search space and im-
prove the efficiency. A detailed empirical study on synthetic datasets shows the
scalability of the proposed approach. We show the usefulness of lagPatterns dis-
covered from a stock dataset by constructing stock portfolio that leads to a higher
cumulative rate of return on investment.

1 Introduction

Time series motif discovery is an active research topic [1,8,11,12]. Time series motifs
are the recurring patterns in single time series. Attempts have been made to general-
ize the notion of motifs from single time series to multi-dimensional time series data
[16,10,13,14]. This generalization allows the handling of real world applications in-
volving several data sources such as activity discovery using wearable sensor data, gene
expression data showing the expression levels of multiple genes, stock market data giv-
ing the stock prices of diverse companies. However, none of these methods considers
the ordering among the motifs in such an environment.

Fig. 1 shows the time series of QLogic, Intel and JP Morgan stocks. Motifs m1 =
{s11, s12, s13}, m2 = {s21, s22, s23} and m3 = {s31, s32, s33} are highlighted in the
time series of QLogic, Intel and JP Morgan stocks respectively. A closer examination
of the motifs in Fig. 1 reveals that the subsequences from one motif occurs at a consis-
tent lag relative to subsequences from other motifs. For example, s21 occurs with lag 6
relative to s11 while s31 occurs with lag 7 relative to s11. This pattern is repeated for
(s12, s22, s32) and (s13, s23, s33). In short, the lag relationship among the subsequences
are repeated. The existence of such invariant ordering among the motifs suggests that
there may exist some hidden relationships. Further investigation1 reveals that QLogic

1 Yahoo Finance - http://finance.yahoo.com

P. Garcı́a Bringas et al. (Eds.): DEXA 2010, Part II, LNCS 6262, pp. 209–224, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Lag relationships among motifs m1, m2 and m3 reflecting competitor/co-operative be-
havior

stock is competitor of Intel stock,while JP Morgan stock gives higher rating for invest-
ment in Intel Stock. Moreover, our experiments reveal that stock portfolio based on lag
relationships leads to increase in the cumulative rate of return on investment.

In this paper, we define a new class of pattern called lagPatterns to capture the order-
ings among motifs from different time series. Unlike existing multi-dimensional motifs,
lagPattern explicitly accounts for lags and the ordering among the multi-dimensional
motifs. Finding lagPattern patterns involves two main steps:

1. Identify all motifs of various length in single time series.
2. Discover groups of multi-dimensional motifs with invariant orderings.

Both steps are computationally expensive. A time series of length L, without dis-
cretization, would have O(L2) subsequences of various length and hence O(L2) mo-
tifs. Thus, the naive enumeration based method for the first step is quadratic. With N
time series, we would have O(L2N ) possible lagPatterns. As a result, an exhaustive
search for lagPatterns is exponential. Here, we describe an efficient and scalable ap-
proach to prune the search space for both steps. The key contributions of this work are
summarized as follows:

1. We define a new class of patterns to capture orderings among multi-dimensional
motifs and prove that lagPatterns satisfy the anti-monotonic property. This prop-
erty allows us to prune the search space in the generation of lagPatterns. We de-
sign an efficient algorithm called LPMiner that first aligns the motifs and utilizes
an inverted index to quickly find multi-dimensional motifs with invariant orderings.

2. We extend the exact motifs discovery algorithm in [12] to discover motifs of all
lengths. We take advantage of order line concept and subsequence matching prop-
erty of normalized time series to reduce over 60% of the distance computations.
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3. We evaluate the algorithms on both synthetic and real world datasets. Our experi-
mental results show that the proposed approach is scalable. We show the usefulness
of lagPatterns discovered from a stock dataset by constructing stock portfolio that
leads to a two-fold increase in the cumulative rate of return on investment compared
to the traditional mean variance analysis(MVA) portfolio selection strategy.

2 Preliminaries

Definition 1. A time series T = {v[1], v[2], ..., v[n]}with length |T | = n is a sequence
of regularly sampled real value observations where v[i] is observation value at time i.

Definition 2. A subsequence of a time series, denoted as T [i, j], is a subset of contigu-
ous observations starting at time i and ending at time j and has a length of |T [i, j]| =
j − i + 1.

Definition 3. A subsequence T [i, j] is similar to another subsequence T [p, q] if they
have the same length and dist(T[i,j], T[p,q]) ≤ δ, where dist(.) is Euclidian distance
and δ is a user-defined distance threshold.

Table 1. Running example

Time Series Motifs m (correlation coefficient coef = 0.95)

T1 m11 = {T1[14, 17], T1[1, 4], T1[6, 9], T1[22, 25]}
m12 = {T1[22, 25], T1[3, 6], T1[14, 17]}
m13 = {T1[12, 14], T1[1, 3], T1[22, 24]}
m14 = {T1[6, 9], T1[14, 17], T1[21, 24]}

T2 m21 = {T2[15, 17], T2[2, 4], T2[7, 9], T2[23, 25]}
m22 = {T2[17, 20], T2[6, 9]}

T3 m31 = {T3[19, 22], T3[6, 9], T3[11, 14]}
m32 = {T3[4, 7], T3[9, 12], T3[17, 20]}

T4 m41 = {T4[20, 23], T4[7, 10], T4[12, 15]}
T5 m51 = {T5[20, 23], T5[3, 6], T5[7, 10], T5[14, 17]}

Definition 4. Given a time series T , a time series motif mT [i,j], having T [i, j] as anchor
subsequence, is the set of non-overlapping subsequences2 from T that are similar to
anchor subsequence. For simplicity, we will use m in place of mT [i,j] where T [i, j] is
obvious. The size of motif m, denoted as |m|, is the number of subsequences in m.

Definition 5. The support of time series motif m with anchor subsequence T [i, j],
denoted as mSup(m), is defined as

mSup(m) =
|T [i, j]| ∗ |m|

|T | (1)

For example, Table 1 shows a subset of motifs for five time series of length 25.
The anchor subsequence in each motif is underlined. The support of m11 is given by
mSup(m11) = (4 ∗ 4)/25 = 0.64.

2 We can use the optimal greedy-activity-selector solution in [2] to discover the maximum set
of non-overlapping subsequences.
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Definition 6. Given N time series T1, T2, · · · , TN , let Mi be the set of motifs from
time series Ti. A lagPattern of length k is a pattern template consisting of k motifs
from different time series and their lags. Formally,

p = ({my1 , my2 , · · · , myk
}, {ly1, ly2 , · · · , lyk

}), myi ∈ Myi

yi 
= yj for i 
= j and myi lags my1 by lyi , yi, yj ∈ [1, N ] and i, j ∈ [1, k].
For example, p1 = ({m11, m21, m41},{0,1,6}) is a lagPattern of length 3 but p2 =

({m11, m12},{0,8}) is not a lagPattern as both motifs are from the same time series T1.
Note that, the lag between two motifs in lagPattern is a lag between their respective
anchor subsequences.

Definition 7. A lagPattern p1 is a sub-pattern of another lagPattern p2 if all motifs in
p1 also occurs in p2 with the same invariant ordering. For example, p1 = ({m11, m41},
{0,6}) is a sub-pattern of p2 = ({m11, m21, m41},{0,1,6}).

Definition 8. The support of a lagPattern p = ({m1, m2, · · · , mk}, {l1,l2,· · · ,lk}),
denoted as pSup(p), is the size of the set {s1 ∈ m1, s2 ∈ m2, · · · , sk ∈ mk | sy lags
s1 by ly, 1 ≤ y ≤ k}.

For example, consider p = ({m11, m21},{0,1}). We observe that T2[7, 9] ∈ m21

lags T1[6, 9] ∈ m11 by 1. Similarly, T2[23, 25] ∈ m21 lags T1[22, 25] ∈ m11 by 1,
T2[2, 4] ∈ m21 lags T1[1, 4] ∈ m11 by 1 and T2[15, 17] ∈ m21 lags T1[14, 17] ∈ m11

by 1. Hence, they support the lagPattern p. In this case, the support of p, pSup(p), is 4.

Definition 9. Given a lagPattern p, the participation ratio of p is defined as

pRatio(p) =
pSup(p)

maxm∈p{|m|} (2)

For example, the pRatio of p = ({m11, m21},{0,1}) = 4
max{4,4} = 1. The pRatio is a

variant of the well-known All confidence measure [5] in association-based correlation
analysis. The pRatio measure is anti-monotonic. This property allows us to prune away
a large part of the search space.

Theorem 1. The participation ratio measure of a lagPattern is anti-monotonic, that
is, if a lagPattern p satisfy pRatio(p) ≥ min ratio, then any sub-pattern p′ of p also
satisfies pRatio(p′) ≥ min ratio.

Proof. Let a length k lagPattern p = ({m1, m2, · · · , mk}, {l1,l2,· · · ,lk}). We have

pRatio(p) =
pSup(p)

maxm∈p(|m|)

Assume lagPatternp′ is a sub-pattern of lagPatternp. It is obvious thatpSup(p′)≥
pSup(p). Also, maxm′∈p′ (|m′|) ≤ maxm∈p(|m|). Hence, pRatio(p′) ≥ pRatio(p).

This implies we do not need to generate p if any sub-pattern p′ of p does not satisfy the
min ratio constraint.

Definition 10. Given min sup and min ratio, a lagPattern p is valid if pRatio(p) ≥
min ratio and for all motifs m, m ∈ p, mSup(m) ≥ min sup.



Lag Patterns in Time Series Databases 213

Problem Statement. Given min sup and min ratio, the problem of mining interest-
ing lagPatterns across N time series is to discover all valid lagPatterns of length k, 2
≤ k ≤ N.

3 Discover Lag Patterns

The discovery of lagPatterns involves two main steps. We need to first identify all the
motifs of various length in each time series, and then determine groups of motifs from
different time series having invariant orderings. Algorithm 1 summarizes our overall
approach to mine lagPatterns. We call Algorithm FindMotifs for each time series to
find all its motifs(Line 4). Note that Mi denotes the set of motifs generated from time
series Ti. Lines 6-8 remove motif m if it does not satisfy the minimum support. Oth-
erwise, we align m to a reference time point and insert it into an inverted index(Lines
9-10). Next, we invoke Algorithm LPMiner to obtain the valid lagPatterns (Line 14).
We will discuss the details of each algorithm in the following subsections.

Algorithm 1. Discover lagPatterns

Input: N , L, min sup, min ratio, coef , minLen, maxLen
Output: LP = set of lagPatterns

1: LP = φ, invIndex = φ;
2: M = φ; // sets of motifs
3: for i = 1 to N do {// N = Number of time series}
4: Mi = FindMotifs(Ti, coef , minLen, maxLen);
5: for each motif m in Mi do
6: if mSup(m) < min sup then
7: Mi = Mi - {m};
8: else
9: align m to a reference time point tp;

10: insert m into invIndex;
11: end if
12: end for
13: end for
14: LP = LPMiner(N, L, min sup, min ratio, M ); // L = Length of time series
15: return LP

3.1 Find All Motifs in a Time Series

To find all motifs from T , we consider each subsequence of length between minLen
and maxLen from T as an anchor subsequence and discover it’s similar subsequences
from T . Here, we describe a method that uses order line[12,4] and subsequence match-
ing property[9] to find all motifs. We use normalized time series subsequence[6].

Given a set D of normalized subsequences of length len from time series T
and a pivot subsequence sp ∈ D. We obtain an order line by sorting the subse-
quences in D according to their distance similarity from sp. Recall, subsequence s1



214 D. Patel et al.

Table 2. (a) dataset of two-dimensional subsequences, (b) an ordering of subsequences with their
distance value from subsequence 2 (c) distances of all subsequences from subsequence 7
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is similar to subsequence s2 if dist(s1, s2) ≤ δ. Since we consider anchor subse-
quences of various lengths, this δ threshold should be length-invariant. Here we uti-
lize the results in [17] which states that the Euclidian distance δ between two normal-
ized time series of length len depends on their correlation coefficient coef , that is,
δ =

√
2 ∗ (len− 1) ∗ (1 − coef). With this equation, we are able to employ the Eu-

clidean measure in the similarity computation by setting the appropriate δ for varying
length, given a fixed value of coef .

Table 2(a) shows the distribution of subsequences of length 2 in a two-dimensional
space. Assuming that the subsequence 2 is pivot subsequence, Table 2(b) shows the
order line. The number above the order line shows the subsequence id while the number
below gives it’s euclidian distance from pivot subsequence 2. Now, we discover similar
subsequences for each anchor subsequence.

We traverse the order line (with pivot subsequence sp) from left to right. Given a
distance threshold δ, suppose si is the next subsequence on the order line. We deter-
mine the similar subsequences of si by checking all the subsequences that fall within δ
distance from si on the order line. This is due to the reverse triangular inequality which
states that dist(si, sj) ≤ δ if and only if |dist(sp, si)− dist(sp, sj)| ≤ δ.

Consider Table 2(b). Let the subsequence we encounter be s1 whose distance from
the pivot subsequence s2 is 2.24. If δ = 2, then a subsequence s is similar to subsequence
s1 if dist(s2, s) falls within [2.24-δ, 2.24+δ], that is, [0.24, 4.24]. Hence, the set of
candidate similar subsequences for s1 is cs1 = {s5, s8}. We compute the actual distances
between s1 and each subsequences in cs1 to obtain the final set of subsequences that are
similar to s1(i.e., a motif having anchor subsequence s1).

Similarly, the set of candidate similar subsequences for s5, cs5 = {s1, s8, s4}.
Note that, we do not need to compute the actual distance between s5 and s1 since
dist(s5, s1) = dist(s1, s5) and we have already obtained dist(s1, s5) previously if s1

and s2 are similar. In other words, when traversing the order line from left to right, we
need to perform the actual distance computations only for those candidates to its right.

Another observation is that multiple order lines can prune more candidates. Sup-
pose we have a second order line with pivot subsequence s7 (see Table 2(c)). Using
the first order line(Table 2(b)), we have the set of candidate similar subsequences for
s5, cs5 = {s1, s8, s4}. From the second order line, we observe that dist(s7, s8) = 6



Lag Patterns in Time Series Databases 215

and dist(s7, s5) = 11.18. Hence, dist(s8, s5) ≥ 5.18 which is more than δ. The same
process is repeated for subsequence s4. Thus, applying triangular inequality, we elim-
inate s8 and s4 from cs5 without performing any distance computation. In summary,
the first order line is used to obtain initial candidate set of similar subsequences for any
subsequence while remaining order lines are used for further pruning.

The order line based algorithm efficiently finds all similar subsequences for a fixed
length subsequences. In order to find similar subsequences for subsequence of length
between minLen to maxLen, we need to iterate the algorithm (maxLen - minLen
+ 1) times. We utilize the subsequence matching property[9] and reduce the number of
iterations by 50%. The subsequence matching property states that,

dist(T [i, j + 1], T [i1, j1 + 1]) ≤ ε ⇒ dist(T [i, j], T [i1, j1]) ≤ ε′

where, ε′ =

√√√√2ω − 2

√
ω2 − ω.ε2.

σ2(T [i,j+1])
σ2(T [i,j])

, ω = |T [i, j]|.

This property is based on the observation that the occurrences of subsequences simi-
lar to T [i, j + 1] coincides with the occurrences of subsequences similar to T [i, j] most
of the time. Hence, we can discover the candidate set of subsequences similar to sub-
sequence T [i, j + 1] while discovering set of subsequences similar to T [i, j] by setting
the appropriate distance threshold given by maximum{δ, ε′}. With this, we present an
exact algorithm FindMotifs(See Algorithm 2).

FindMotifs finds similar subsequences of subsequence T [i, j] of various length in a
time series T . At each iteration, we set δ and prepares a database D(Lines 3-4). Line
5 prepares order lines. Next, it invokes GenerateMotif to obtain all matches of every
anchor subsequences of length len as well as the candidate sets for anchor subsequences
of length len+1. Line 10 prepares a database of subsequences of length len+1. Finally,
we call RefineMotif to eliminate the false matches found in the candidate sets obtained
by GenerateMotif for length len + 1(Line 11).

The GenerateMotif procedure discovers similar subsequences of length len subse-
quence, that is, T [i, i+ len− 1]. At the same time, we also keeps track of the candidate
sets for subsequences of length len + 1, that is, T [i, i + len]. We use sj to denote the
jth subsequence along the order line I . Next, we determine ε′ and set the new distance
threshold as newδ(Lines 20-21). For each subsequence sj on I , we obtain it’s candidate
set of subsequence similar to sj using I(Line 22). Line 23 implements the triangular
inequality based pruning and refine canSet. Finally, we compute the dist(sj ,sk), sk ∈
canSet. If dist(sk, sj)≤ δ, we add sk to the set of subsequence similar to sj(i.e., msj )
and add sj to msk

due to the symmetry property. In addition, if dist(sk, sj) ≤ ε′, then
we add sk to the candidate set csj . Once all subsequences from I are processed, we
return msj and csj discovered for all subsequences from D.

The RefineMotif procedure finds all similar subsequences for length len + 1. Again,
we traverse the order line I from left to right(Line 34). To find subsequences simi-
lar to sj , we use the candidate set csj obtained by GenerateMotif. Line 37 calculates
dist(sj ,s), s in csj . If distance dist(sj ,s) ≤ δ, we add s to msj and sj to ms.
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Algorithm 2. FindMotifs
Input: T , coef , minLen, maxLen, numOrderLine;
Output: M = set of motifs in T ;

1: Set M = φ and len = minLen;
2: while len ≤ maxLen do
3: δ =

√
2 ∗ (len − 1) ∗ (1 − coef);

4: D ← {normalized subsequences of length len from T};
5: Prepare numOrderLine order lines O;
6: Let I denotes the first order line in O;
7: [Mlen, C] = GenerateMotif (D, I,O, len, δ);
8: Set M = M ∪ Mlen and len = len + 1;
9: δ =

√
2 ∗ (len − 1) ∗ (1 − coef);

10: D ← {normalized subsequences of length len from T};
11: [Mlen] = RefineMotif (D, I,C, δ);
12: Set M = M ∪ Mlen and len = len + 1;
13: end while
14: return M ;

Procedure GenerateMotif(D, I, pivotDist, len, δ)
15: Let M be the set of motifs ms for all s ∈ D;
16: Let C be the set of candidate subsequences for all s ∈ D;
17: Set m = φ and c = φ for all m ∈ M and c ∈ C;
18: for j = 1 to |I | do
19: select sj ∈ D as an anchor subsequence;
20: Determine ε′ using len + 1 and sj ;
21: newδ = max{ε′ , δ};
22: canSet = {candidate similar subsequences of sj using I w.r.t. newδ}
23: canSet = Refine canSet using remaining orderlines
24: for sk ∈ canSet do
25: if dist(sk,sj) ≤ δ then
26: Add (sk to msj ) and (sj to msk )
27: end if
28: if dist(sk,sj) ≤ ε′ then Add (sk to csj ) end if
29: end for
30: end for
31: return M and C;

Procedure RefineMotif(D, I, C, δ)
32: Let M = {ms∀s ∈ D};
33: Set m to φ for m ∈ M ;
34: for j = 1 to |I | do
35: if sj ∈ D then
36: for each subsequence s in csj ∈ C do
37: if s ∈ D and dist(s, sj) ≤ δ then
38: Add (s to msj ) and (sj to ms)
39: end if
40: end for
41: end if
42: end for
43: return M ;
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3.2 Align Motifs

Having found the sets of motifs from each time series, the next step is to discover valid
lagPatterns. A naive approach is to enumerate all possible combinations of motifs
across multiple time series. Recall, this approach has an exponential time complexity.
The anti-monotonic property of pRatio that we have proved in Section 2 allows us to
perform early elimination of lagPatterns that cannot be valid.

In order to compute the pRatio of a lagPattern p, we need to obtain the pSup(p).
We can speed up the computation of pSup(p) for all patterns by aligning the motifs
to some reference time point tp. Aligning motif m means aligning it’s anchor subse-
quence to tp and shifting all it’s similar subsequences accordingly. We set tp to be the
length of time series minus minLen(i.e., minimum length of motif). The alignment of
motifs provides us with information on which combination of motifs are likely to form
lagPatterns that can satisfy the min ratio.

In our example, we choose tp = 22. Figures 2(a) and 2(b) show the anchor subse-
quences and its similar subsequences before and after alignment. The circled points
denote the anchor subsequences. After alignment, each time point will show a list of
motifs. We observe that the motifs, denoted by the symbols 
, � and∇, occur together
at time points 9, 14, and 22. In other words, the pSup(m21, m31, m41, {0, 4, 5}) is 3.
The pRatio of this pattern is 3

max{4,3,3} = 0.75.
To facilitate the support counting of lagPattern, we construct an inverted index for

the motifs occurring at each time point. Fig. 3 shows the inverted index obtained from
Fig. 2(b). Note that, at time point tp(=22), all the motifs are present. In other word,
all lagPatterns are exists at time point tp. We utilize this fact while calculating the
support of lagPatterns. Following the alignment, our method called LPMiner utilizes
the inverted index and search for valid lagPatterns.

3.3 Algorithm LPMiner

Method LPMiner processes each motif and generates all length 2 lagPatterns as fol-
lows. For each motif m, we obtain the start times of its similar matches after alignment.
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Fig. 2. Motifs before and after alignment
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Fig. 3. Inverted index for motifs in Fig. 2(b)

These start times are used to probe the inverted index and to obtain all candidate mo-
tifs m′. Next, we form a lagPattern between m and each candidate motif m′, i.e.,
p = ({m, m′},{l1,l2}). We also record the time points of the inverted index where the
lagPattern p is generated. Those lagPatterns that satisfy the min sup and min ratio
are valid and form the set of candidate patterns to generate longer lagPatterns (since
lagPatterns are anti-monotonic).

Consider the motif m11. After alignment, the start times of its matches are {9, 14,
22, 30} (see Fig. 2(b)). We probe the inverted index at time points 9, 14 and 30 respec-
tively and obtain candidate motifs. In this case, the set of candidate motifs are canSet
= {m21, m31, m41, m51}3. Note that, there is no need to probe inverted index at the
reference time point 22 since all motifs are aligned at this time point. In other word,
any lagPattern p is exists at this time point. The possible lagPatterns are ({m11,
m21},{0,1}), ({m11, m31},{0,5}), ({m11, m41},{0,6}) and ({m11, m51},{0,6}). For
each lagPattern, we have recorded the time points of the inverted index from where it
is generated. For example, the pattern p = ({m11, m21},{0,1}) occurs at time points
{9,14,22,30}. This implies pSup(p) is 4. If min ratio = 0.60, then pRatio(p) =

4
max{4,4} = 1 ≥ min ratio. Hence, it can be used to generate the longer patterns.
Note that, all lagPatterns except ({m11,m51}, {0,6}) satisfy min ratio constraints.

Let us consider the length 2 lagPattern p = ({m11, m21}, {0,1}). For this pattern,
we again probe the inverted indexes at time points {9, 14, 30}(again no need to probe
inverted index at time point 22) and obtain the candidate motif m′ from time series T ′

with T ′ > T2 for extension. In this case, the set of candidate motifs canSet = {m31,
m41}. Note that, motif m51 is not in canSet as lagPattern ({m11,m51},{0,6}) does
not satisfy the min ratio. Hence, the possible length 3 lagPatterns are ({m11, m21,
m31}, {0,1,5}) and ({m11, m21 , m41}, {0,1,6}) both of which are generated from
time points {9, 14, 22} and satisfy the min ratio. The process is repeated until no new
pattern is obtained.

3 Without alignment method, all motifs from time series T2, T3, T4 and T5 are in canSet for
motif from time series T1.
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Algorithm 3. LPMiner
Input: N , L, min sup, min ratio, M
Output: LP = set of lagPattern = φ

1: for i = 1 to N − 1 do
2: motifSet = {motifs from Mi};
3: extSet = {time series from Ti+1 to TN};
4: for each motif m in motifSet do
5: Mine({m}, extSet);
6: end for
7: end for
8: return LP ;

Procedure Mine(p, extSet)
9: probeSet = {starting time points of p after alignment};

10: canSet = φ;
11: for each time point t in probeSet do
12: for each m′ in invIndex[t] do
13: canSet = canSet ∪ {m′, time point t};
14: end for
15: end for
16: extPattern = φ, newExtSet = φ;
17: for each entry m′ ∈ canSet do
18: p′ = form lagPattern between p and m′ ;
19: if pRatio(p′) ≥ min ratio then
20: LP = LP ∪ p′;
21: newExtSet = newExtSet ∪ time series of m′;
22: extPattern = extPattern ∪ p′;
23: end if
24: end for
25: for each lagPattern lp ∈ extPattern do
26: Mine(lp, newExtSet);
27: end for

Algorithm 3 shows the details of LPMiner. Line 2 obtains all the motifs from Mi.
extSet maintains the list of time series from which the candidate motifs are obtained for
extension(Line 3). For each motif m, we call procedure Mine to discover lagPatterns.
The Mine procedure recursively extends the given lagPattern p. Line 9 obtains the
time points of p to probe the inverted index. Lines 11-15 obtain all candidate motifs in
canSet. Lines 17-24 generate the candidate lagPattern between pattern p and each
motif in canSet. The patterns satisfying min ratio are stored in LP (Line 20) and
extPattern (Line 22). The Mine procedure is called recursively for each generated
pattern in extPattern (Line 26).

Algorithm LPMiner utilizes the anti-monotone property and inverted index to speed
up the generation of lagPatterns. We derive an upper bound estimate of the partici-
pation ratio to further improve efficiency of LPMiner by pruning infeasible candidate
patterns early.
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Optimization. This optimization uses |mT [i,j]| to estimate the maximum pRatio of a
lagPattern p = ({m1, m2, ..., mk}, {l1,l2,...,lk}). Since pSup(p) must be less than or
equal to minm∈p{|m|}, the maximum pRatio(p) ≤ minm∈p{|m|}

maxm∈p{|m|} .
Consider lagPattern p = ({m11, m31}, {0,5}). We have |m11| = 4 and |m31| =

3. Suppose the min ratio is 0.80. Then the pRatio(p) is min{3,4}
max{3,4} = 0.75 (< 0.80).

Thus, this candidate is infeasible and can be removed from consideration for generating
candidate lagPatterns.

For simplicity, LPMiner looks for exact lag among motifs. However, we can intro-
duce a slack variable to relax this requirement. For example, LPMiner accesses inverted
index at time points 11 and 32 to obtain candidates for m13. However, with a slack value
of 2, we now obtain possible candidates by accessing inverted index at time points
{9,10,11,12,13} and {30,31,32,33,34}. In this case, the pattern ({m13, m21}, {0,3})
will be in the output (See Fig. 2(b)).

4 Experimental Evaluation

We implement all our algorithms in C (compiled with GCC -O2). Our hardware config-
uration consists of a 3.2 MHz processor with 3GB RAM running Windows. We use syn-
thetic datasets to verify the scalability of the proposed approach and real world datasets
to demonstrate the usefulness of lagPatterns. A random walk generator [12,2] is used
to generate synthetic datasets D with N=25 and L=100000.

4.1 Efficiency Experiments

FindMotifs Algorithm. We select one time series from dataset D and apply FindMotifs
algorithm to find all the motifs. We compare the performance of FindMotifs with algo-
rithm OrderLine. The OrderLine algorithm uses only order line concept. The number
of order lines is 5[12]. Fig. 4(a) shows the results of varying L from 5000 to 100000.
We set minLen = 99, maxLen = 110 and coef = 0.95. We observe that FindMotifs
outperforms OrderLine, and the gap widens as the length of the time series increases.

Next, we set L = 20000 and vary the correlation coefficient coef from 0.60 to 0.99.
Fig. 4(b) shows the results in log scale. We observe that FindMotifs is much faster than
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Fig. 5. Evaluation of LPMiner on dataset D

OrderLine. In particular, when the correlation coefficient is greater than 0.9, FindMotifs
is at least 50% faster than OrderLine. However, the gap narrows as coef decreases. This
is because FindMotifs estimates newδ(≥ δ) in order to apply the subsequence matching
property [9]. For low value of coef , newδ is much higher than δ resulting in a larger
set of candidate subsequences for distance computation.

LPMiner Algorithm. Now, we report the results of our experiments on the datasets
D. Unless otherwise stated, we set coef = 0.95, min sup = 0.05, min ratio = 0.80,
N = 10, L = 10000, Min Len = 99 and Max Len = 110. Fig. 5 shows the results.
Note that, running time does not include time required by FindMotifs algorithm. We
observe that increasing L and N leads to an exponential increase in the runtime of
LPMiner. This is expected since more lagPatterns will be generated with a large L and
N. However, our optimization strategy is effective in cutting down the runtime. We also
evaluate LPMiner by varying min sup (see Fig. 5(d)) and min ratio (see Fig. 5(c)).
Increasing min sup reduces the number of subsequences and results in smaller inverted
lists. Hence, the runtime decreases. Increasing min ratio reduces the total number of
possible valid lagPatterns, hence the runtime also decreases. Also, LPMiner takes less
than one second to build an inverted index in all experiments. We also observed similar
trends of LPMiner algorithm on real stock dataset.

4.2 Effectiveness Experiments

In this section, we mine lagPatterns from real dataset and discuss usability of the dis-
covered patterns. We use S&P100 stock dataset(http://biz.swcp.com/stocks/, N=100,
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Fig. 6. Usability of lagPatterns discovered from real world dataset

L=250) to find interesting localized associations among stock movements. Fig. 6(a)
and Fig. 1 show examples of the discovered patterns. We observe that there is cooper-
ative behavior among Nvidia, Novellus and SanDisk stocks. All these stocks are from
semiconductor industry and none of them are competitor of each other. We use Yahoo
Finance to verify competitor/co-operative behavior. To obtain these results, we set coef
= 0.90, min sup = 0.10, min ratio = 0.75, Min Len = 6 and Max Len = 21.

To further validate the effectiveness and utility of the discovered patterns, we con-
struct a portfolio of equities selected from Morgan Stanley Capital International G7
(MSCI-G7) Index(www.mscibarra.com). We use the equity indices of seven countries
(Canada, France, Germany, Japan, Singapore, UK and USA) recorded daily over a 5
year period from March 2005 to October 2009(N=7, L=1260). The objective of a port-
folio construction is to achieve a higher rate of return over a period of time (cumulative
rate of return). Existing methods such Mean Variance Analysis(MVA) determine the
investment weight for each equity indices from historical data.

Recently, an alternative method that updates the investment weights based on ana-
lyzing the co-movements of equities (COM) has been reported[15]. In order to leverage
the lagpatterns, we first use the co-movement model to set the initial weights and
subsequently utilize our lagPatterns to update the investment weights as described in
[15]. Our lagPatterns are obtained using LPMiner with coef = 0.95, min sup = 0.10,
min ratio = 0.80, minLen = 3, maxLen = 10, N = 7 and L = 240(one year window).

We construct the portfolio for each month (March 2006 to October 2009) based on
the data from the previous 12 months. We consider four week as one month. Fig. 6(b)
presents the cumulative monthly rate of returns for MVA, COM and LPMiner. We ob-
serve that the cumulative rate of returns (over a period of 3 years) for LPMiner, COM
and MVA is 26.64%, 22.26% and 11.41% respectively. It is also important to note that
this trend is observed across the board for most time points. The more than two-fold
increase of LPMiner over MVA highlights the utility of our approach.
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Significance of lagPatterns. Now, we verify the significance of lagPatterns by shuf-
fling the time series data using Fisher-Yates shuffle method [2]. The lagPatterns are
mined from the original dataset and shuffled dataset for the same set of parameters (See
Table 3). We observe that, introducing randomness in the data significantly reduce the
number of motifs and or lagPatterns. This shows that the discovered motifs and lag-
Pattern are not due to random chance, but that they are meaningful patterns from the
original time series, as we have significantly fewer number of patterns in the shuffled
data. Similar observation is also found for the other parameters and datasets.

Table 3. The number of Motifs and lagPatterns

Dataset # Motifs # lagPatterns
Original Data Shuffled Data Original Data Shuffled Data

S&P100 stock 110862 9166 2145943 1321
MSCI-G7 index 3535 2100 22 0

5 Related Work

Existing motif discovery approaches in time series are either approximate[1,16,10,14]
or exact[8,12,11]. In approximate motif discovery, time series is discretized into sym-
bolic sequences and most recurring subsequences is discovered using variation of ran-
dom projection based method[1]. Lin. et. al. in [8] introduces the notion of K-motifs,
that is, a motif having Kth highest count of non-overlapping occurrences. The pro-
posed algorithm hashes all subsequences into a table using their SAX word and then
the promising buckets are processed to discover K-motifs. These works differ from ours
in that they are approximate and dealing with fixed length motifs.

Recently, Mueen et. al. in [12,11] propose algorithm to find the exact motifs effi-
ciently by limiting the motifs to just pairs of time series that are very similar to each
other. Both algorithms use order line and triangular inequality to reduce the distance
computations. Their methods discover motifs of the given length. These works differ
from ours in that their motif is pair of most similar subsequence.

There are also works that extends [1] to discover approximate multi-dimensional mo-
tifs from multiple time series [16,10,13,14]. However, none of them consider time lag
and invariant ordering among motifs. Further, we do not adapt time series subsequences
clustering method[3] to discover lagPattern, since clustering time series subsequence
is meaningless as suggested in [7]. Our work aims to discover groups of motifs that
exhibit some invariant ordering among the motifs within each group and explicitly cap-
ture the lag among them. To the best of our knowledge, none of the existing methods
are able to discover the lagPattern as motivated in our introduction.

6 Conclusion

In this paper, we have introduced new class of patterns called lagPatterns and presented
an efficient solution to discover them. Our proposed approach extracts motifs from each
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time series, then aligns and index them. We have described an algorithm LPMiner to
mine lagPatterns. Our experimental results demonstrate that the proposed approach is
scalable and meaningful patterns can be discovered from real world dataset.
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Abstract. Although the problem of computing frequent queries in re-
lational databases is known to be intractable, it has been argued in our
previous work that using functional and inclusion dependencies, com-
puting frequent conjunctive queries becomes feasible for databases op-
erating over a star schema. However, the implementation considered in
this previous work showed severe limitations for large fact tables. The
main contribution of this paper is to overcome these limitations using
appropriate auxiliary tables. We thus introduce a novel algorithm, called
Frequent Query Finder (FQF), and we report on experiments showing
that our algorithm allows for an effective and efficient computation of
frequent queries.

Keywords: Frequent Queries, Functional Dependencies, Inclusion De-
pendencies, Query Comparison, Star Schemas.

1 Introduction

The problem of discovering frequent patterns in a (relational) database is one
of a main topics in data mining. However, even when patterns are restricted to
conjunctive queries, this problem is known to be intractable, because the size
of the search space is exponential in the size of the database. Nonetheless, it is
argued in [9,10] that mining all frequent conjunctive queries (i.e., conjunctive
queries whose answers have a cardinality greater than or equal to a predefined
threshold) becomes tractable if the underlying database operates over a star
schema, and if constraints such as functional and inclusion dependencies, are
taken into account.

Indeed, it has been shown in [9,10] that such dependencies allow for comparing
queries according to a pre-ordering with respect to which the support measure
is anti-monotonic (the support of a query being the number of tuples in the
answer of that query). As a consequence, a level-wise algorithm such as Apriori
([1]) can be used, with the basic additional feature that the considered pre-
ordering induces an equivalence relation for which two equivalent queries have
the same support. Consequently, one computation per equivalence class allows
to determine the support of all queries of this class.
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In the present paper, similarly to [10], we consider a relational database oper-
ating over a star schema and we follow the approach of [10] for mining frequent
projection-selection-join queries in which joins are performed along keys and for-
eign keys. In this setting, our contribution is to provide an efficient computation
of such frequent queries.

Indeed, it is shown in [10] that the number of scans of the database in our
algorithms is in O(N ×|U |) (where N is the number of dimensions of the under-
lying star schema and |U | is the number of attributes in this schema), and that,
in order to have an efficient implementation, an appropriate indexing technique
should be used to count the supports safely. The problem to solve is finding an
at most linear technique for counting only once the duplicates occurring in the
answers to projection queries; a problem which basically requires a quadratic
scan of the table. Unfortunately, as such an indexing technique must work for
all possible attribute sets, no solution could be found. In fact, in the implemen-
tation of [10], auxiliary data are stored in main memory, so as to keep track of
the tuples computed so far for a given query. Therefore, this technique is still
quadratic (since duplicates are still checked against the auxiliary data), and more
importantly, experiments result in main memory overflow for large fact tables.

In order to cope with this important limitation, we propose a novel efficient
and scalable algorithm, called Frequent Query Finder (FQF), for the computa-
tion of frequent queries. According to FQF, every table r to be mined is associ-
ated with an auxiliary table AUX(r), whose role is to associate every tuple t of
r with all attribute sets S such that t.S = t′.S for some tuple t′ occurring in r
before t, with respect to the scanning order of r. Assuming that these auxiliary
tables are computed, it turns out that counting the supports becomes linear in
the size of the table to be mined. We are thus provided with an efficient and
scalable implementation, in the sense that runtime keeps very low and that no
main memory overflow occurs, even for large datasets (up to 100,000 tuples in
our experiments). We refer to Section 5 for experiments.

We also emphasize that, although the computation of an auxiliary table
AUX(r) is still quadratic in the size of r, our experiments show that our new
implementation, even when involving the computation of the auxiliary tables,
outperforms that of [10] (when the comparison is possible). Moreover, it is also
argued in the end of the paper that the computation of the auxiliary tables can
be seen as a pre-processing phase, when mining frequent queries.

The paper is organized as follows: In Section 2, we briefly overview related
work, and in Section 3, we recall from [10] the basic definitions and properties
of our approach. Then, in Section 4, we present our algorithm FQF for mining
conjunctive queries and in Section 5, we report on experiments showing that our
algorithms are efficient. Section 6 concludes the paper and discusses future work.

2 Related Work

Early approaches dealing with frequent queries [2,3,8,12] consider a fixed set
of “objects” to be counted when computing supports, meaning that in these
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approaches, all queries of interest are projections over a fixed attribute set. More-
over, apart from [4], none of these approaches consider constraints on the data,
such as functional dependencies, for optimizing the computation. In [4], equiv-
alent attribute sets with respect to functional dependencies are used for query
optimization, based on materialized views, which is not the case in our approach.

To the best of our knowledge, [5] is the first approach for mining frequent
queries in the general context where the set of objects to be counted is not
fixed. However, in [5], equivalent queries are generated, which can not be tested
efficiently (a problem that does not exist in our approach); and moreover, data
dependencies are not taken into account.

The work of [6], dealing with mining tree queries in a graph, is also closely
related to ours. Indeed, in [6], a graph is seen as a binary relation, and frequent
tree queries are expressed as SQL projection-selection-join queries. This work is
somehow generalized in [7] to the case of projection-selection-join queries, with
the restriction that a given relation cannot occur more than once in the joins.
Queries considered in [7] are more general than ours, since (i) all possible joins
in which base relations occur at most once are considered in [7], whereas we only
consider such joins along keys and foreign keys, and (ii) selection conditions of
the form (Y = Y ′) where Y and Y ′ are relation schemas are allowed in [7], which
is not the case in our approach. However, in [7], dependencies are not taken into
account, thus resulting in redundant computations.

In our previous work [9,10,11], we have considered conjunctive query mining
in a star schema, focussing successively on projection queries ([11]), projection-
selection queries ([9]), and projection-selection-join queries ([10]). The main con-
tribution of this previous work is to show that taking dependencies into account
in query comparison results in an efficient computation of frequent conjunctive
queries. In particular, in [10], it is shown that if the database schema is a star
schema, then the problem of mining frequent projection-selection-join queries
where joins are performed along keys and foreign keys becomes tractable. How-
ever as previously mentioned, in [10], experiments show severe limitations, and
the contribution of this paper is to propose an efficient and scalable implemen-
tation that overcomes these limitations.

3 Formal Model

3.1 Queries

We first recall that a database Δ over a star schema consists of a distinguished
table ϕ with schema F , called the fact table, together with a set of other tables
δ1, . . . , δN with schemas D1, . . . , DN , called the dimension tables, such that:

1. If K1, . . . , KN are the (primary) keys of δ1, . . . , δN , respectively, then, de-
noting by K the union of these keys (i.e., K = K1 . . . KN ), K is the key of
ϕ. In other words, for every i = 1, . . . , N , δi satisfies Ki → Di and ϕ satisfies
K → F . We denote by F the set of these functional dependencies.
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2. For every i = 1, . . . , N , πKi(ϕ) ⊆ πKi(δi) (thus each Ki is a foreign key in
the fact table ϕ). The attribute set M = F \K is called the measure of the
star schema.

As usual, we denote by F+ the set of all functional dependencies that can be
inferred from F , using the Armstrong’s axioms, and we denote by X+ the set of
all attributes A such that X → A is in F+ ([13]).

In what follows, we consider a fixed database Δ = (δ1, . . . , δN , ϕ), along with
projection-selection-join queries with the following specificities:

– the tuple in selection condition is either the empty tuple, denoted by ' (in
which case all tuples are selected), or a tuple y over Y (in which case all
tuples t such that t.Y = y are selected);

– the joins are performed along keys and foreign keys, that is, either the join
is reduced to a single table, or it involves the fact table ϕ.

Definition 1. Let Δ = (δ1, . . . , δN , ϕ) be a database over a star schema. The
considered set of queries, denoted by Q, is the set of all queries of the form
q = πX(σy(r)), or more simply πXσy(r), such that XY ⊆ R (R denotes the
schema of r), and where:

– r is either a table in Δ or a join of such tables containing ϕ;
– y is either the empty tuple 'or a tuple over relation schema Y .

For every query q in Q, the support of q in Δ, denoted by sup(q), is the cardi-
nality of the answer to q. Given a support threshold min-sup, a query q is said
to be frequent if sup(q) ≥ min-sup.

We illustrate our approach using the following example, borrowed from [10], and
that we shall use as a running example throughout the paper.

Example 1. Consider the database Δ consisting of three tables and a set of
functional and inclusion dependencies, as shown in Figure 1. The meaning of
the attributes is as follows:

– Cid, Cname and Caddr stand for Customer Identifier, Customer Name and
Customer Address,

– Pid and Ptype stand for Product Identifier and Product Type,
– Qty stands for Quantity (i.e., number of products sold).

The schema of Δ is clearly a star schema, with Sales as its fact table, and Cust
and Prod as its dimensional tables.

The queries q1 = πCidσParis(Cust) and q2 = πCidσParis beer(Cust �� Prod ��

Sales) are inQ, the answers of which being {c1, c2, c3} and {c1, c2}, respectively.
Thus, if min-sup = 2, these queries are frequent.

On the other hand, πCid(Cust) and πCid(Cust �� Sales) are also in Q, and
are written as πCidσ
(Cust) and πCidσ
(Cust �� Sales), respectively. Their
answers are respectively {c1, c2, c3, c4} and {c1, c2}.
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Cust Cid Cname Caddr

c1 John Paris

c2 Mary Paris

c3 Jane Paris

c4 Anne Tours

Prod P id P type

p1 milk

p2 beer

Sales Cid P id Qty

c1 p1 10

c2 p2 5

c2 p1 1

c1 p2 10

F : Cid → CnameCaddr
P id → Ptype
CidP id → Qty

I : πCid(Sales) ⊆ πCid(Cust)
πPid(Sales) ⊆ πPid(Prod)

Fig. 1. The database of the running example

3.2 Query Comparison

Definition 2. Let q = πXσy(r) and q1 = πX1σy1(r1) be queries in Q. q1 is said
to be more specific than q in Δ, denoted by q � q1, if one of the following holds:

1. y1 
∈ πY1(r1)
2. y ∈ πY (r), y1 ∈ πY1(r1), and Y1 → X1 ∈ F+

3. All of the following hold:
(a) either r = r1 or r1 involves the fact table ϕ,
(b) y ∈ πY (r), y1 ∈ πY (r1), Y1 → X1 
∈ F+,
(c) XY1 → X1 ∈ F+ and Y1 → Y ∈ F+,
(d) yy1 ∈ πY Y1(r �� r1).

Example 2. In the context of Example 1, consider again the queries q1 =
πCidσParis(Cust) and q2 = πCidσParis beer(Cust �� Prod �� Sales). Referring
to Definition 2.3, we have: (a) Cust �� Prod �� Sales involves the fact table
Sales, (b) Paris ∈ πCaddr(Cust), Parisbeer ∈ πCaddr Ptype (Cust �� Prod ��

Sales) and Caddr P type → Cid 
∈ F+, (c) CidCaddr P type → Cid ∈ F+,
Caddr P type → Caddr ∈ F+, and (d) Paris beer ∈ πCaddr Ptype(Cust ��

Prod �� Sales). Therefore, q1 � q2.
Consider now q′2 = πCnameσc2 beer(Cust �� Prod �� Sales). Then, by Defini-

tion 2.2, q1 � q′2, because Paris ∈ πCaddr(Cust), c2 beer ∈ πCid Ptype(Cust ��

Prod �� Sales) and CidPtype → Cname ∈ F+.
For q3 = πCid Cnameσ
(Cust �� Sales), as above, q3 � q2 holds. For q′3 =

πCid Cname Caddrσ
(Cust �� Prod �� Sales), applying again Definition 2.3, it
can be seen that q3 � q′3 and q′3 � q3 hold.

For q4 = πQtyσbeer 15(Prod �� Sales), by Definition 2.1, we find q1 � q4,
q2 � q4 and q3 � q4, because beer15 
∈ πPtype Qty(Prod �� Sales).

For q5 = πQtyσbeer 5(Prod �� Sales), we have q1 � q5, q2 � q5 and q3 � q5.
Indeed, by Definition 2.2, Paris ∈ πCaddr(Cust), beer 5 ∈ πPtype Qty(Prod ��

Sales) and Ptype Qty → Qty ∈ F+. By Definition 2.1, we also have q5 � q4.
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It has been shown in [10] that the relation � is indeed a pre-ordering (i.e.,
reflexive and transitive), with respect to which the support is anti-monotonic,
i.e., (∀q, q1 ∈ Q)(q � q1 ⇒ sup(q1) ≤ sup(q)).

Clearly, this property is required when mining patterns according to a level-
wise algorithm, such as Apriori ([1]). Moreover, the pre-ordering � induces an
equivalence relation defined as follows: two queries q and q1 in Q are said to be
equivalent, denoted by q ≡ q1, if q � q1 and q1 � q hold. The equivalence class
of a query q is denoted by [q].

Referring back to Example 2, the queries q3 and q′3 are equivalent, since it has
been seen that q3 � q′3 and q′3 � q3 both hold.

As a consequence of the anti-monotonicity property mentioned above, equiva-
lent queries have the same support. Therefore, instead of computing the supports
of individual queries, we consider one query per equivalence class.

The pre-ordering � is extended to the set of equivalence classes C, and then
becomes an ordering (i.e., reflexive, anti-symmetric and transitive) over C. More-
over, a class [q] is said to be frequent if its support (i.e., the support of all queries
in [q]) is greater than or equal to min-sup.

It is easy to see that all queries q = πXσy(r) in Q such that y 
∈ πY (r) are
equivalent and have a support equal to 0, a value meant to be less than the
support threshold min-sup. Similarly, all queries q = πXσy(r) in Q such that
y ∈ πY (r) and Y → X ∈ F+ are equivalent, and have a support equal to 1,
another value meant to be less than min-sup. Thus, these equivalence classes,
respectively denoted by C0 and C1, are not considered in the computation of
frequent queries.

Equivalence classes different than C0 and C1, whose set is denoted by C∗, have
been characterized in [10]. We simply recall that, given a query q = πXσy(r) such
that [q] is in C∗, we consider the representative q+ = πX′σy′(r′) of [q] such that:

1. X ′ = (XY )+ and Y ′ = Y +,
2. r′ = r if r is a dimension table, otherwise, r′ = J where J is the join of all

tables in Δ,
3. y′ is the tuple over Y + such that y is a subtuple of y′ and y′ ∈ πY +(r′).

In the remainder of the paper, all considered queries are assumed to satisfy the
properties above, and stand for their equivalence classes.

Example 3. In Example 1, we have J = (Cust �� Prod �� Sales). As seen in
Example 2, q3 = πCid Cnameσ
(Cust �� Sales) and q′3 = πCid Cname Caddrσ
(J)
are equivalent. As (Cid Cname)+ = (Cid Cname Caddr) and ∅+ = ∅, [q3] is
represented by q′3. It can be seen that [q3] is the set of all queries πXσ
(r) such
that Cid ⊆ X ⊆ (CidCname Caddr), and either r = J or r = (Cust �� Sales).

For q = πCname Ptypeσp2(J), we have (Cname PidP type)+ = (Cname
PidP type), Pid+ = (PidP type), and p2 beer ∈ πPid Ptype(J). Thus, [q] is rep-
resented by πCname Pid Ptypeσp2 beer(J), and this class is the set of all queries
πXσy(r) such that Cname ⊆ X ⊆ (Cname PidP type), and
− either y = p2 and r = (Cust �� Sales) or r = J
− or y = p2 beer and r = J .
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Algorithm FQF

Input: The database Δ associated to an N-dimensional star schema and
a support threshold min-sup.
Output: The set Freq of all frequent classes.
Method:
Freq = ∅
for i = 1, . . . , N do

mine(δi, Freq(δi))
Freq = Freq ∪ Freq(δi)

compute J = δ1 �� . . . �� δN �� ϕ
mine(J , Freq(J))
Freq = Freq ∪ Freq(J)
return Freq

Fig. 2. The main algorithm FQF

4 Algorithms

4.1 Main Algorithm: FQF

As in [10], frequent classes in C∗ are computed by a level-wise algorithm, called
Frequent Query Finder (FQF), whose main steps are shown in Figure 2: all
dimension tables are first mined, and then the join J of all tables in Δ is mined.
Moreover, as in [10], we define the notion of generic class to avoid generating
classes that are processed in the same way.

Definition 3. Given a class q = πXσy(r) in C∗, the generic class associated to
q, denoted by 〈X, Y, r〉, is the set of all classes πXσy′(r) in C∗ such that y′ is a
tuple in πY (r), i.e., 〈X, Y, r〉 = {πXσy′(r) ∈ C∗ | y′ ∈ πY (r)}.
Algorithm mine, shown in Figure 3, follows a level-wise strategy ([1]). Namely,
starting with the less specific generic class, that is r, the following steps are
iterated until no frequent classes are generated:

1. Generate and prune the set C of candidate generic classes, based on the
current set L of frequent generic classes (see [10]);

2. Compute the supports of all classes associated with the remaining candidate
generic classes in C;

3. Discard all classes whose support is less than the support threshold;
4. Assign L to the set of all generic classes that contain at least one frequent

class.

However, the steps above require more attention than in Apriori, because (i)
we are dealing with equivalence classes, instead of individual itemsets, (ii) the
ordering over C∗ is more difficult to handle than set inclusion, and (iii) computing
the supports requires to efficiently scan the database.

Consequently, the main difficulties are first, generating and pruning generic
classes, and second, computing efficiently the supports of classes in C∗. The first
point has been addressed in [10] (see Proposition 7 in [10]), but not the second
one, which is the main contribution of the present paper.
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Algorithm mine

Input: A table r (either a dimension table δi or the join J) defined over R.
Output: The set Freq(r) of all frequent classes in C∗ of the form πXσy(r).
Method:
if |r| < min-sup then

//no computation since, for every q in C∗ of the form πXσy(r), |r| ≥ sup(q)
Freq(r) = ∅

else //the computation starts with the generic class 〈R, ∅, r〉
L = {〈R, ∅, r〉} ; Freq(r) = {πRσ�(r)}
while L �= ∅ do

//L is the set of frequent generic classes from the previous level
C = generate(L, r)
C = prune(C, L, r)
scan(C, AUX(r), L, LF req(r))
//L contains all frequent generic classes of the current level, and
//LF req(r) is the corresponding set of frequent classes
Freq(r) = Freq(r) ∪ LF req(r)

return Freq(r)

Fig. 3. Computing frequent queries on a table r

4.2 Algorithm scan

When scanning a given table r, the main difficulty is that every tuple in the
answer to a query must be counted only once, whereas, due to projection, it might
occur several times when scanning r. In order to cope with this difficulty, it is
argued in [10] that indexing techniques are required. Unfortunately, considering
such indexing techniques, which have to work for all possible attribute sets, is
not realistic. In order to cope with this problem, in [9,10], each scan is associated
with huge volumes of auxiliary data, resulting in main memory overflow for large
fact tables.

Instead, in the present paper, before scanning r, we build an auxiliary table,
denoted by AUX(r), as follows. Assuming that r contains n tuples t1, . . . , tn, the
first row AUX(r)[1] of AUX(r) is set to the empty set, and for every i = 2, . . . , n,
the ith element of AUX(r), denoted by AUX(r)[i], contains all maximal (with
respect to set inclusion) attribute sets S for which there exists j < i such that
tj .S = ti.S. Therefore, when considering ti during a scan of r, knowing that S
is in AUX(r)[i] ensures that for every X ⊆ S, ti.X has already been processed.

The corresponding algorithm is shown in Figure 4, where match(ti, tj) stands
for the set of all attributes A such that ti.A = tj .A. We note that computing
match(ti, tj) amounts to compare ti and tj , which does not require any index.

Example 4. We illustrate the construction of the auxiliary table AUX(J) in the
context of Example 1, for J = Cust �� Prod �� Sales. The tables J and AUX(J)
are shown in Figure 5.

Since match(t2, t1) = Caddr, we obtain AUX(J)[2] = Caddr. Similarly, since
match(t3, t1) = (PidCaddr P type) and match(t3, t2) = (Cid Cname Caddr),
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Algorithm aux

Input: A table r to be scanned containing tuples t1, . . . , tn.
Output: The table AUX(r).
Method:
AUX[1] = ∅
for each i = 2, . . . , n do

AUX(r)[i] = ∅
for each j = 1, . . . , i − 1 do

compute match(ti, tj)
if AUX(r)[i] contains no super set of match(ti, tj) then

AUX(r)[i] = AUX(r)[i] ∪ match(ti, tj)
return AUX(r)

Fig. 4. Computing the auxiliary table AUX(r)

AUX(J)[3] is the set of these two attribute sets. The computation for AUX(J)[4]
is similar, but although match(t4, t3) = Caddr, this schema does not appear in
AUX(J)[4]. This is so because Caddr is a subset of (CidCname Caddr Qty) and
(PidCaddr P type) that both belong to AUX(J)[4].

J Cid P id Cname Caddr P type Qty

t1 c1 p1 John Paris milk 10

t2 c2 p2 Mary Paris beer 5

t3 c2 p1 Mary Paris milk 1

t4 c1 p2 John Paris beer 10

AUX(J) i AUX(J)[i] (1 ≤ i ≤ 4)
1 ∅
2 Caddr
3 (Pid Caddr P type), (CidCname Caddr)
4 (Cid Cname Caddr Qty), (Pid Caddr P type)

Fig. 5. The table J and the associated table AUX(J) of Example 1

Now, given a table r and assuming that AUX(r) has been computed, the sup-
ports of equivalence classes over r are computed through parallel scans of r and
AUX(r). The corresponding algorithm scan is shown in Figure 6. The input of
Algorithm scan is a set C of candidate generic classes of the form 〈X, Y, r〉 for
which r contains the tuples t1, . . . , tn. All frequent classes associated with all
generic candidate classes in C are computed as follows: For every i = 1, . . . , n,
the following actions are performed, for every 〈X, Y, r〉 in C:

1. If AUX(r)[i] contains a super schema of X , then ti.X has been encountered
for some j < i. Thus ti.X has already been processed for all classes with
a projection over X . Otherwise, ti.X is encountered for the first time, and
thus, has to be processed.
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Algorithm scan

Input: The set C of candidate generic classes, the table AUX(r).
Output: The set L of frequent generic classes in C, and the associated frequent classes
LF req(r).
Method:
L = ∅ ; LF req(r) = ∅
for each 〈X, Y, r〉 ∈ C do

L(〈X, Y, r〉) = ∅
for each i = 1, . . . , n do //r contains tuples t1, . . . , tn

for each 〈X, Y, r〉 ∈ C do

if ∃ X ′ ∈ AUX(r)[i] such that X ⊆ X ′ then
//ti.X has been encountered before, and thus has been counted
nothing to do

else

if ∃ Y ′ ∈ AUX(r)[i] such that Y ⊆ Y ′ then
//πXσti.Y (r) has already been encountered, thus
//ti.X must be counted for the support of πXσti.Y (r)
sup(πXσti.Y (r)) = sup(πXσti.Y (r)) + 1

else

//πXσti.Y (r) has not been encountered before,
//thus either prune it or initialize its support
if not(pruneQuery(πX σti.Y (r))) then

sup(πXσti.Y (r)) = 1
L(〈X, Y, r〉) = L(〈X, Y, r〉) ∪ {πXσti.Y (r)}

for each 〈X, Y, r〉 ∈ C do

L(〈X, Y, r〉) = L(〈X, Y r〉)\ {πXσy(r) | sup(πXσy(r)) < min-sup}
if L(〈X, Y, r〉) �= ∅ then

LF req(r) = LF req(r) ∪ L(〈X, Y, r〉)
L = L ∪ {〈X, Y, r〉}

return L and LF req(r)

Fig. 6. Scanning the table r

2. In the latter case, ti.X has to be counted for the support of q = πXσti.Y (r).
Two cases are then possible:
(a) If AUX(r)[i] contains a super schema of Y then q has been processed

previously, and thus is already associated with 〈X, Y, r〉. In this case, the
support of q is incremented.

(b) Otherwise, q is processed for the first time, and so, is not associated with
〈X, Y, r〉. In this case, we check if q can be pruned (see below), and if
not, its support is initialized to 1 and q is associated with 〈X, Y, r〉.

Once these actions are performed, all supports of all classes that have to be
computed are known. All classes whose support is greater than or equal to min-
sup are put in LFreq(r) and the set L of frequent generic classes is output.

In our algorithms, pruning is performed at two distinct levels: for generic
classes in Algorithm mine, and for classes in Algorithm scan. In Algorithm mine,
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a generic class 〈X, Y, r〉 is pruned if at least one of its predecessors (according
to �) contains no frequent classes, which entails that no class in 〈X, Y, r〉 can
be frequent. However, if 〈X, Y, r〉 is not pruned, it may happen that a particular
class πXσy(r) of 〈X, Y, r〉 can be pruned. This is checked in Algorithm scan (see
item 2(b)), according to Algorithm pruneQuery shown in Figure 7.

It is important to note that Proposition 7 of [10] shows that this latter pruning
is partial, in the sense that not all predecessors of the class πXσy(r) are tested. We
opted for such a partial pruning for efficiency reasons, as processing a complete
pruning would damage performance.

Algorithm pruneQuery

Input: A class q = πXσy(r).
Output: boolean.
Method:
if there exist A ∈ Y and a ∈ dom(A) such that

q = πXσy′(r) /∈ LF req(r) and y = y′a then

return true;
return false;

Fig. 7. Class Pruning

Fig. 8. Runtime over the size of the fact table for FQF and the implementation of [10]

5 Experiments

We performed experiments on an Pentium Duo Core with 2Go main memory
running on Ubuntu Linux 2.6. The algorithms are implemented in Java using
JDBC to communicate with MySql. Datasets have been generated using our own
generator, adapted from the IBM data generator (www.almaden.ibm.com).
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Fig. 9. Runtime over the size of the fact table

Fig. 10. Runtime over the number of dimensions

The generated databases over star schemas are denoted by dbdDaTtMm where
d is the number of dimensions, a is the total number of attributes, t is the number
of tuples in the fact table, and m is the number of measure attributes. In all our
experiments, except those reported in Figures 11 and 12, the support threshold
is set to 0.6 times the number of tuples in the fact table, that is 0.6× t. We also
mention that all runtimes reported below include the computation time of the
construction of auxiliary tables. In Figures 8 and 9, the runtimes excluding the
computation of the auxiliary tables are also shown.

Figure 8 shows the runtimes of FQF compared to those presented in [10]
for db2D12TtM1, with t between 50 and 5000. Clearly, FQF outperforms our
previous implementation presented in [10]: the reduction of runtime between the
implementation in [10] and FQF is always greater than 33%. It should also be
noticed from Figure 8 that the runtime for only mining frequent classes is very
low, since less than 40 seconds.



An Efficient Computation of Frequent Queries in a Star Schema 237

Fig. 11. Runtime over support

Similarly, as shown in Figure 9, the time spent in mining the frequent classes
for the databases db2D12TtM1 with t between 10,000 and 90,000 is very low
compared to that for calculating the auxiliary tables. Moreover, this runtime
increases slowly with the size of the fact table. We also emphasize that, in these
experiments, we had no main memory overflow, contrary to what happened with
the previous implementation presented in [10], when t exceeds 5000.

Figure 10 reports on runtime over the number of dimensions, for the databases
dbdD12TtM1 where d ranges from 2 to 5 and for t equal to 2000, 5000 and
10,000. This figure clearly shows that the time spent for mining frequent classes
decreases significantly when the number of dimensions increases. This is so be-
cause, given a number of attributes (12 in our case), when d increases, more
functional dependencies are available, and so, less classes have to be processed.
It is important to note that, according to our previous statement that the number
of scans of the database is in O(N × |U |) (where N is the number of dimensions
and |U | the total number of attributes), one would rather expect an increase
of runtime when N increases. However, what these experiments show is that,
although the increase of the number of dimension tables entails more scans, this
is compensated by a drastic reduction of the number of generic classes.

Figure 11 shows the runtime over the support threshold (expressed as a ratio
of the size of the fact table), for databases db5D25TtM1 with t equal to 2000,
5000 and 10,000. Clearly, runtime decreases rapidly when the support increases.

We recall from Section 2 that the only other work aiming at mining all fre-
quent queries from a relational database is that in [7], and thus, we could com-
pare our algorithm only to the Conqueror algorithm ([7]). This has been done
using the IMDB database (http://www.imdb.com), for various support thresh-
olds (expressed in numbers of tuples). To do so, we first transformed the IMDB
database into a star schema having 3 dimensions, 6 attributes and no measure.
In this experiment, the fact table contains 158,441 tuples.
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Fig. 12. FQF versus Conqueror

As shown in Figure 12, our algorithm performs better than the Conqueror
algorithm. This is so because, in [7], functional and inclusion dependencies are
not taken into account, as we do in our approach. However, we recall in this
respect that selection conditions of the form Y = Y ′ (where Y and Y ′ are
attribute sets) are considered in [7], which is not the case in our approach.

We end this section by two important remarks regarding the computation of
the auxiliary tables.

1. The computation of auxiliary tables can be seen as a pre-processing, be-
cause it has to be computed only once for all runs of FQF, provided that,
meanwhile, the database has not been updated. This remark is important re-
garding runtime, because, as shown in Figures 8 and 9, when auxiliary tables
are available, the runtime of FQF is very low even for large fact tables.

2. When a database table r is updated, maintaining up to date the associated
auxiliary table AUX(r) can be achieved efficiently. Indeed, in the case of
insertion of a new tuple t in r, and assuming that t becomes the last tuple of
r, a new row is added to AUX(r) and the associated schemas are obtained
through one scan of r. If a tuple ti is deleted from r, then AUX(r)[i] must
be deleted from AUX(r), and only the rows AUX(r)[j] such that j > i and
match(tj , ti) ∈ AUX(r)[j] have to be updated.

6 Conclusion and Further Work

We presented new algorithms for mining frequent queries in databases over a
star schema, based on theoretical results introduced in our previous work [10].
We showed through experiments that, in this particular case, mining frequent
conjunctive queries becomes tractable. Our approach relies on the computation
of auxiliary tables that can be seen as a pre-processing phase. An important
point in this respect is that, assuming these auxiliary tables are available, the
time for mining frequent queries becomes very low, as shown in our experiments.
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Future work consists in processing further tests and optimizing our algorithms.
We plan to generalize our approach to database schemas other than star schemas,
and to study the rules that can be obtained based on frequent queries.
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Abstract. A number of existing approaches attempt to reduce ambiguity of 
user’s keyword queries by translating them to structured database queries. This 
disambiguation process relies on a proper assessment of whether a structured 
query represents the intent behind the keyword query. In this paper we system-
atically analyze a number of intuitive statistical measures that can potentially be 
used in this disambiguation process. We evaluate the impact of these measures 
through experiments on real-world data. 

Keywords: entity search, keyword query disambiguation, statistical analysis. 

1   Introduction 

Online databases have been increasingly used to collect and disseminate information 
about real-world entities, such as people, products, publications and genes. Users of 
these databases need effective solutions to retrieve the desired entities quickly and 
accurately [2, 3, 7]. Keyword search has been widely used for this purpose, on ac-
count of its usability and efficiency. However, as a keyword search interface may not 
offer sufficient expressiveness for users to precisely specify their informational needs, 
it may return a large number of irrelevant results, which prohibit users from retrieving 
desired entities. 

To cope with the limitations of keyword search, some recent work [1, 4, 5, 6, 10] 
proposed to perform keyword query disambiguation before retrieving entities from 
databases. The disambiguation process aims at translating a keyword query to a struc-
tured database query, which accurately expresses the user’s informational need. The 
structured query can then be executed to retrieve the exact information desired by the 
user from the database. Due to the ambiguity of a keyword query, there usually exist a 
large number of structural queries as its possible interpretations. A crucial step of 
keyword query disambiguation is to assess the likelihood of the possible interpreta-
tions and pick the most probable ones to be executed against the database. In practice, 
a variety of statistics related to keywords, database and query logs can be utilized to 
make such assessment. Although some of the statistical parameters, such as TF/IDF 
scores, keyword frequency and length of the join path in a structured query, have been 
used by existing ranking functions [4, 6, 10] or probabilistic models e.g. [5], they are 
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far from exhaustive. Many intuitive and relevant parameters remain uninvestigated. 
Moreover, as the number of parameters increases, exhaustive tuning is required to 
compose them into an optimal estimation function. There is no systematical study for 
evaluating and comparing the impact of the various parameters in keyword query 
disambiguation. 

In this paper, we present and evaluate a set of generic statistical parameters for 
keyword query disambiguation in the context of entity centric search. Our study was 
conducted over a heterogeneous real-world dataset with 13 entity types and five mil-
lion data instances. We show the significance of each individual parameter in key-
word query disambiguation, as well as the effects of their linear aggregation.  

2   Parameters for Keyword Query Disambiguation 

We view a database as a set of entities. Each entity is represented as a set of attribute-
value pairs, each mapping a set of keywords to the value of an attribute. For example, 
“name:{Hanks,Tom}” is an attribute-value pair representing that an entity’s “name” is 
“Tom Hanks”.  

Keyword Query: A keyword query is entity centric, such that each keyword is sup-
posed to occur in an attribute of the desired entity. Some examples of keyword que-
ries are K1=“tom hanks” and K2=“hanks 2001”.  

Query Interpretation: To construct a structured query from keywords, we first inter-
pret each keyword to an attribute-value pair, and then connect the resulting pairs to 
build a conjunctive Boolean query, which we call query interpretation. For example, 
“name:Tom AND name:Hanks” is an interpretation of the keyword query K1=“Tom 
Hanks”, which searches for an entity having both keywords, “Tom” and “Hanks”, in 
the attribute “name”. As another example, “actor:Hanks AND year:2001” is an inter-
pretation of K2=“Hanks 2001”, which retrieves Hanks’ movies in 2001.  A keyword 
query K can have a number of valid interpretations in the database, constituting the 
interpretation space of K. 

As an interpretation space of a single keyword query is usually large, the objective 
of keyword query disambiguation is to quickly identify the most likely interpretation 
desired by the user. In what follows, we introduce a number of statistics that can po-
tentially be used to assess this likelihood.  

2.1   Keyword Specific Parameters 

A number of existing approaches considers each keyword in a keyword query inde-
pendently of other keywords and aims to assess the likelihood of each attribute-value 
pair given a keyword, i.e. L(Aj:ki | ki) for every ki∈K and Aj∈DB. A number of statis-
tics can be used to assess this likelihood. 

 

Attribute Specific Keyword Frequency (AKF). This parameter assumes that the 
formation of a keyword interpretation can be modeled as a random process. For an 
attribute Aj, this process randomly picks one of its instances aj and randomly picks a  
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keyword ki from that instance to form a keyword interpretation Aj:ki. Then, the likeli-
hood of a attribute-value pair, is the likelihood that Aj:ki is formed through this ran-
dom process. This likelihood can be estimated using Equation 1: 
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where |Aj| is the number of instances of the attribute Aj and | Aj : ki∈Aj| is the number of 
instances of Aj containing ki. 

Attribute Specific Keyword Selectivity (AKS). Most probabilistic IR models con-
sider Inverse Document Frequency (IDF) as an important parameter for ranking 
documents, such that a more selective keyword is usually given a higher weight [8]. 
To apply the same principle to keyword query disambiguation, we should assign a 
higher likelihood to an attribute-value pair that has higher selectivity in the database: 
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It is obvious that AKF is inversely proportional to the AKS. 
 

Keyword Closeness (KCL). When a user issues a keyword query, the keywords in 
that query are usually highly correlated. Therefore, it is more likely that these key-
words occur in a small number of attributes than being spread over many attributes. 
We measure KCL as an average number of keywords per attribute.  
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where |Aj∈Q| is the number of distinct attributes in the structured query Q. 

Interpretation Completeness (ICP). As we consider each keyword in a keyword 
query to be meaningful, we prefer a complete query interpretation that includes all the 
keywords to an incomplete interpretation with only a subset of the user’s keywords. 
We measure completeness of a query interpretation by the proportion of the query 
terms it includes: 
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2.2   Database Specific Parameters 

Apart from the properties of keywords, the likelihood of a structured query can also 
be influenced by the database in use. For example, a person’s name can be used more 
frequently than a person’s age in users’ queries. We consider such structural patterns 
as relevant parameters to assess the likelihood of a query interpretation.  

Entity Type Popularity (EPL and EPD). If a database possesses a representative 
query log, given a query Q, we can access the popularity of the target entity type of Q, 
which is an indicator of the likelihood of Q. This popularity can be measured by: 
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where QT is a query to retrieve an entity of type T . If the database maintains a query 
log, L represents the query log. In this case, this parameter is called EPL. If a query 
log is not available, we can approximate the popularity of an entity type as its fre-
quency in the database. In this case, L represents the database, and the parameter is 
called EPD.  
 
Attribute Popularity (APL and APD). Similar to the entity type, popularity of at-
tributes is also an indicator of the relevance of a query interpretation. If a database 
possesses a representative query log, we can access the popularity of an attribute as 
the frequency of its usage in the predicates of all logged queries (APL). Alternatively, 
we can approximate attribute popularity using the frequency of the attribute’s occur-
rences in database entities (APD). Attribute popularity can be calculated as: 

popularity(A) =
A ∈ L

L
. (6) 

Average Attribute Cardinality (AAC). Given an entity, some of its attributes have 
only singular values, such as a movie’s title, while some other attributes may have 
multiple values, such as movie’s actors. Average attribute cardinality (AAC) repre-
sents the average number of values an attribute can have. Normally, an attribute with 
a lower cardinality is used more often to identify an entity than an attribute with a 
higher cardinality. Thus, we can use the cardinality to assess the likelihood of a struc-
tured query. AAC of an attribute is calculated as: 

AAC(A) = 1

log(1+
Count(A)

entities
∑

Contain(A)
)

, 

(7) 

where Count(A) is the number of instances of the attribute A in an entity and 
|Contain(A)| is the total number of entities containing the attribute A. As the deviation 
of AAC is usually very large, we use log() to normalize it. 

3   Evaluation 

Our evaluation was conducted in two steps. In the first phase, we studied if each rank-
ing parameter can contribute to keyword query disambiguation, in other words, if 
there is a significant correlation between a parameter and the likelihood of a query 
interpretation. To this end we used Spearman's rank correlation coefficient [9]. 

In the second phase of our evaluation, we studied how the ranking parameters can be 
combined to amplify their effectiveness. A straight-forward approach is to apply a linear 
combination of the parameters and focus on determining the optimal weight of each 
parameter. While this approach assumes a linear dependence among the parameters, this  
 

 



244 E. Demidova et al. 

 

is a frequently used model [11]. Basically, the score of the query interpretation is calcu-
lated using Formula 8:   

( ) nni fwfwfwQscore ⋅++⋅+⋅= ...2211  , (8) 

where Qi is a query interpretation, fi is a normalized value of the ranking parameter i 
and wi is a weight of this parameter i. Our experiments applied linear regression [12] 
to obtain the weights.  

3.1   Dataset and Queries 

In our experiments we used an entertainment subset of the freebase dataset 
(www.freebase.com). Freebase is a typical example of an online database with a big 
number of textual attributes. The entertainment subset of freebase is heterogeneous, 
including 13 entity types such as film, tv program, music track, book, comic, video-
game, opera, play, and artwork, with approximately five million entities in total. The 
number of attributes for each entity type ranges from 11 to 44 with an average of 24.  

As freebase does not provide an associated query log, we extracted 6,800 keyword 
queries from a query log of the MSN search engine, such that each extracted query 
has a target URL to a Wikipedia article and this Wikipedia URL identifies an entity in 
our dataset. The lengths of the keyword queries range from 2 to 6. To identify the 
intended interpretation (i.e. structured query) for a keyword query we applied a semi-
automatic disambiguation procedure. For every keyword query we fetched the corre-
sponding database entity, as identified by its Wikipedia URL. For each keyword, we 
created its interpretation by mapping it to the attribute where it occurs most fre-
quently. We then aggregated these keyword interpretations in a query interpretation. 
Finally, we manually evaluated a sample of 200 interpretations and concluded that 
they all had reasonable semantics. 

3.2   Significance of the Disambiguation Parameters 

In the first set of experiments, we assessed the correlation between the value of each 
disambiguation parameter and the relevance of query interpretation. For each key-
word query in the query set, we used two of its interpretations. One was the user  
intended interpretation, which was identified through the procedure introduced in 
Section 3.1. We assigned this query interpretation the relevance score 1.0, indicating 
that it is the user intended structured query. The other interpretation was a randomly 
selected query interpretation that was maximally different from the user intended 
interpretation (with a totally different set of attribute-value pairs). We assigned this 
interpretation with the score 0.0, indicating that it is highly unlikely to be intended by 
user. This resulted in 13K query interpretations as a test set. For every query interpre-
tation in the test set, we computed the score of each disambiguation parameter pre-
sented in Section 2. Finally, we computed the correlation coefficient between the 
score of each parameter and the relevance score of the query interpretation over the 
13K interpretations. Table 1 presents the results. 
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Table 1. Correlation coefficient between the parameter score and score of the intended query 
interpretation 

 AKF AAC APL EPL ICP EPD AKS APD KCL 
Correlation 
Coefficient 

0.483 0.236 0.724 0.589 -0.015 -0.01 0.043 0.512 0.436 

 
As presented in Table 1, apart from ICP, EPD and AKS, the rest of the query dis-

ambiguation parameters are significantly and positively correlated with the relevance 
scores of query interpretations. There is a strong correlation between the attribute / 
entity type popularity in query log and the relevance score of the interpretation. This 
is expected, as the majority of the tested queries targeted on a small number of entity 
types and attributes, following the Pareto Distribution. Attribute popularity in the 
database, attribute specific keyword frequency and keyword closeness are important 
query disambiguation factors too. When attribute specific keyword frequency per-
forms well, it is natural that attribute specific keyword selectivity will be insignifi-
cant, as these two parameters are inversely proportional. The insignificance of ICP is 
due to the fact that we ignored incomplete queries when picking the test examples, 
such that majority of the target query interpretations in our query set are complete. 
Entity type popularity in database (EPD) does not seem to be correlated with the score 
of the interpretation. This shows that the number of existing entities in a database 
does not necessarily correspond to the frequency of their usage. In contrast, attribute 
popularity in database exhibits a strong correlation with the relevance score. We be-
lieve this reflects the usage of freebase, i.e., the more often an entity is used, the more 
attributes of it are filled by the users. 

3.3   Combination of the Disambiguation Parameters 

In the second set of experiments, we studied how to combine the disambiguation 
parameters to amplify their effects. As stated before, we focused on using linear com-
bination to form a ranking function (Formula 8). We considered three scenarios. In 
the first scenario, we assume a newly created database without a query log. The at-
tribute popularity in the database also does not reflect its usage. In this case, the best 
combination of parameters is AKF, AAC and KCL. In the second scenario, we as-
sume a user created database (i.e. freebase) without a representative query log. In this 
case, the best combination is AKF, AAC, KCL and APD. Finally, we assume a data-
base with a representative query log, for which the best combination is AKF, KCL 
and APL (AAC and APD are completely dominated by the other parameters). Using 
the same training set, we performed linear regression on the three combinations of 
parameters and obtained the ranking functions in Table 2.  

Table 2. Three multi-parameter ranking functions 

Ranking Functions Accuracy on Test Sets

Combi_1 =1.05 × AKF +0.86 × AAC +1.14 × KCL 0.5901

Combi_2 =2.97 × APD + 0.78 × KCL + 0.75 × AKF + 0.056 × ACC 0.6713
Combi_3 =2.03 × APL + 0.44 × KCL + 0.24 × AKF 0.715
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3.4   Application to Keyword Query Disambiguation 

We applied all the disambiguation parameters as individual ranking functions, to-
gether with the three ranking functions in Table 2, to the disambiguation of 6,800 test 
keyword queries. Fig. 1 and Fig. 2 show the results. 
 

 
Fig. 1. Median rank & standard deviation of the correct query interpretation 

 

 
Fig. 2. Disambiguation effectiveness: result within the top-k interpretations 

 

Fig. 1 presents the median rank and standard deviation of the correct query inter-
pretation obtained using each ranking function. For instance, using the APL ranking 
function to rank possible query interpretations, the median rank of the first correct 
query interpretation over the query set is six with standard deviation of 8,303. Fig. 2 
shows the faction of keyword queries whose correct interpretations can be found 
within the top-k results of keyword disambiguation. For each keyword query, we 
computed the best rank that can be achieved by all the individual factors. We denote  
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it by minimum and plot it on the right of Fig. 1 and Fig. 2. Both figures (especially 
Fig. 2) show that the multi-parameter ranking functions outperform each individual 
parameter. However, the best rank of a query given by one of the individual parame-
ters (represented by minimum) is better than the multi-parameter functions. This indi-
cates that, although each individual parameter is important for the disambiguation, a 
linear combination might be not the optimal way to aggregate the effects of all the 
parameters. Further investigation is required to explore more complex relationships 
between the parameters. 

4   Conclusion 

In this paper we studied a set of statistical parameters for keyword query disambigua-
tion in database entity search. Our experiments show that some parameters are highly 
relevant, while the others do not seem to contribute much. We also show that a linear 
combination of these parameters can achieve improved effectiveness. Nevertheless, 
keyword query disambiguation is a difficult problem, especially for large databases. 
Our study was limited to linear models, i.e., correlation coefficient and linear regres-
sion. Further investigation is required to explore more complex relationships between 
the parameters.  
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Abstract. Searching images from the World Wide Web in order to know what
an object looks like is a very common task. The best response for such a task is
to present the most typical image of the object. Existing web-based image search
engines, however, return many results that are not typical. In this paper, we pro-
pose a method for obtaining typical images through estimating parameters of a
generative model. Specifically, we assume that typicality is represented by com-
binations of symbolic features, and express it using the aspect model, which is a
generative model with discrete latent and observable variables. Symbolic features
used in our implementation are the existences of specific colors in the object re-
gion of the image. The estimated latent variables are filtered and the one that best
expresses typicality is selected. Based on the proposed method, we implemented
a system that ranks the images in the order of typicality. Experiments showed the
effectiveness of our method.

Keywords: Image retrieval, Typicality, Bag-of-features, Generative model.

1 Introduction

One important use of web-based image search is to know the visual characteristics
of an object. In such a case, what the user wants is the most “typical” look of the
object. In existing web image search engines, however, the set of high ranked search
results contain images that are not typical. The goal of this paper is to propose and
evaluate a method that extracts typical images from the result of web image search by
applying a generative model, a type of probabilistic model. Although typicality is a
difficult concept to capture, but in this paper we define it as follows:

Definition: An image I is a typical image for query Q if the word Q is an appropriate
label for I , given that the evaluator has enough knowledge on the object referred by Q.

Our proposed method estimates “aspects” expressed in a set of images, and select an
aspect assumed to express typicality. We then rank images using conditional probabil-
ity. One of the characteristics of our method is that it expresses typicality using dis-
crete probabilistic variable. Many models for classification and dimension reduction
use continuous variables, including k-means and PCA (principal component analysis).
Our model consists of discrete variables only. In this sense it is an intrinsically symbolic
approach. The method can be used to obtain a large set of images with labels. The set
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has a wide range of applications. For example, it can be used to create a general use
visual encyclopedia. It can also be utilized in a car navigation system by providing the
user with the exterior image of the destination.

One of the future goals is to build a general task image recognition engine, which
gives the name of an object when an arbitrary image is given. Attaching correct labels
to a large set of images obtained from the Web would contribute in building such sys-
tem. Based on our proposed method, we implemented a system and named it “Typi”
after “typicality”. The paper consists of the following sections. Section 2 gives related
work. Section 3 describes our method in detail. Section 4 illustrates implementation,
and section 5 describes the result of evaluation. Section 6 is the conclusion.

2 Related Work

There are a number of web-based image search engines available now, for example
Google Image Search, Yahoo! Image Search, and Bing Images. There have also been
works of applying object identification to images on the Web, for example WebSeek by
Smith and Chang[1].

Recently, bag-of-features approach, originated from bag-of-words approach used in
text information retrieval, is gaining much attention. Vogel and Schiele used combina-
tion of local features to represent higher order concepts such as objects, and evaluated
precisions of image retrieval methods[2]. Fei-Fei and Perona used a generative model
used in text analysis to classify natural scene images[3].

There has been some research on finding typical images of objects. Kennedy and
Naaman proposed a method of extracting typical images of landmarks[4]. In addition to
using visual features, their method used geotags, location metadata attached to images
contributed on image sharing sites. In contrast, our method relies on visual features
alone. Wu and Yang proposed a system for finding street landmarks such as signs based
on extracting object fingerprints from images[5].

3 Method

In this section, we describe our proposed method. Figure 1 shows the flow of the system.
Our previous paper describes the methods of extracting object regions in more

details[6]. The rest of the section mainly describes the method of selecting the “top
aspect” assumed to express typicality.

Fig. 1. System flow for extracting typical images
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3.1 Aspect Model

The result of web image search usually contains various objects that are relevant to the
query. For example, for a query “iris”, search results would contain a type of wildflow-
ers and a part of eyeball. Also, there are irises with various colors, ranging from purple
to yellow. There are also images that show a field with iris or a part of iris. Such variety
can be well expressed using a mixture model, which is a part of probabilistic models.

We use the aspect model, a model consisting of discrete observable and latent vari-
ables. The reason for applying this model is that we assume typicality to be expressed
by a mixture of typical features. In the case of iris, for example, object region can be
purple, yellow, or a mixture of red and white.

The aspect model[7] is a model that assumes an observed pair of discrete features
(x, y) (dyadic data) is conditionally independent under a discrete latent variable z. Its
graphical model is illustrated in Figure 2.

Fig. 2. Graphical model for aspect model

x and y are observable variables, and z is a latent variable. Both are discrete. Ob-
served data consists of pairs (x, y), which is called dyadic data. N is the size of data.
Based on the graphical model, we obtain the following conditional independence. It can
be considered as the generative model of (x, y).

p(x, y, z) = p(x|z)p(y|z)p(z) (1)

An aspect z is the first variable to be generated in the model. x and y are generated
under conditioned probability p(x|z) and p(y|z).

If we express the observed frequency of the pair (x, y) by n(x, y), the log-likelihood
of the dyadic data L(x, y) is expressed as ln

∏
x,y p(x, y)n(x,y). Based on the above

mentioned conditional independence, we can transform the equation as follows. We
maximize L(x, y) using the EM algorithm.

L(x, y) =
∑
x,y

n(x, y) ln p(x, y) =
∑
x,y

n(x, y) ln
∑

z

p(x|z)p(y|z)p(z) (2)

One practical example where the aspect model is used is on analyzing a set of docu-
ments covering different topics. When a term t appears on a document m, it is consid-
ered as a dyadic data (t, m). The data is generated from the latent variable z, which
expresses the topics.

In this paper, x indicates an image and y indicates and image feature described in the
next subsection.
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3.2 Image Features

In our proposed method, we model typicality as a mixture of image features. In this
paper, we focus on color features, but in the future work it would be extended to other
features such as textures and shapes. In order to express features as a vector, we divide
color space into color regions. From now on, we refer to each color region as a “color”.
Similar colors are grouped into a component of the vector. Hue is divided into finer
details, since it is usually intrinsic to the object, while brightness and saturation varies
depending on lighting. Colors with low brightness is considered as black, and those
with low saturation is considered as either dark gray, light gray, or white.

For each color, the system counts how many pixels exist with that color, and create
an HSV vector having the numbers as its components. The fact that an image feature
y appeared in the object region of an image x is considered to be an observed datum
(x, y). The object region is extracted using border tracing.

3.3 Extracting an Aspect Expressing Typicality

An aspect z with higher p(z) is more likely to be observed, therefore considered to be
more important in the image set. p(y|z) indicates the probability that an image feature
y is generated from an aspect z.

If the aspect captures the typical characteristics of an object, it is likely to consist
of several colors, rather than of a single color. In a pre-experiment, we observed that
aspects with high probability on a single color are less likely to express typicality. On
the other hand, if it generates all colors equivalently, it does not have any characteris-
tics, and is not appropriate as an expression of typicality, even if it has high p(z). We
therefore introduce entropy H [p(y|z)] for filtering such inappropriate color. Aspects are
sorted by H [p(y|z)], and those that comes below or over threshold ranks are removed.
This filtering can be expressed as follows.

α|Z| < rank(H [p(y|z)]) < β|Z| (3)

|Z| is the number of the aspects, rank(H [p(y|z)]) is the rank of an aspect z when
sorted by the decreasing order of entropy H [p(y|z)]. 0 ≤ α, β ≤ 1 are the coefficients
for determining the range that the aspects are used.

From the set of aspects that fulfilled the condition on entropy indicated by Expression
3, we select the aspect with the highest p(z) as the “top aspect”. Using this aspect, the
“typicality” of an image is calculated as follows.

typicality(x, m) =
∑
zm

p(x|zm)p(zm) (4)

p(x|z) indicates the probability that an image x is created from an aspect z. p(z) is the
probability that the aspect z appears. zm refers to the m-th aspect when sorted in the
decreasing order of p(z). p(y|z) indicates the probability that an image feature y occurs
from an aspect z.

4 Implementation

In this section, we describe implementation of “Typi”, a typical image retrieval system
based on our proposed method.
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4.1 System Structure

Typi was implemented using C#. It consists of modules for image collection, feature ex-
traction, parameter estimation, and evaluation. API for Google Image Search[8] is used
for collecting images. Since the API provides the search engine’s ranking on images,
we use it to compare with our method in the evaluation section.

4.2 Parameters

We have used the following parameters for implementation. Colors black, dark gray,
light gray, and white is defined using brightness V and saturation S. If the brightness
is below 0.2, it is considered black. In the region that the saturation is below 0.2, if
the brightness is between 0.2 and 0.6, it is dark gray. If the brightness is between 0.6
and 0.8, it is light gray. If the brightness is over 0.8, it is white. For the remaining
region, brightness is divided into 3, saturation into 3, and hue into 18. The resulting
HSV vector has (18× 3× 3)+ 4 = 166 components. We have chosen these parameters
after empirical tests on various possibilities.

For filtering aspects using entropy, we used α = 1
2 and β = 4

5 . The number of
values that the aspect z can take is 10. This is set based on a pre-experiment indicating
that when 100 images obtained as search results were clustered, the number of groups
consisting of more than 2 elements are usually less than 10.

Criteria for judging convergence are that the difference is below 10−5, or repeated
the process over 300 times. Since the aspect model has local maxima, we do 5 trials
starting from different initial values. We use the set of parameters with the highest log-
likelihood.

4.3 Interface

Figure 3 is a system snapshot. Results of search engine’s ranking and of our method are
presented. Figure 4 is the mode for evaluation. The evaluator can click on the images
and classify them into correct and incorrect ones, enabling evaluation with fewer loads.

Fig. 3. Snapshot of “Typi” interface Fig. 4. Interface for evaluation
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5 Evaluation

5.1 Evaluation Method and Target

For performing experiments, we used 20 queries from a category “wildflowers”. 100
images were collected for each query, resulting in 2,000 images in total. We evalu-
ated averaged and individual top-k precisions. Table 1 illustrates the queries used in the
experiment. In case of query consisting of two or more words (such as “scarlet pimper-
nel”), the query was put into double quotes, enabling phrase search.

Table 1. Queries used for experiments

dandelion, daisy, buttercup, iris, water arum, hawkweed,
calliopsis, columbine, searocket, pale flax, harebell, wild radish, scarlet pimpernel,
lady’s slipper, baby blue eyes, chinese houses, ice plant, franciscan wallflower,
clematis, forget me nots

Since objects referred by these queries have typical shapes and colors, it is easy
to judge correct and incorrect images in the evaluation. In order to reduce processing
time, the system uses scaled down images provided by the search engine, rather than
the original images available on the Web. Therefore the maximum size of the images is
150× 150 pixels.

5.2 Evaluation Criteria

In order to judge whether an image is typical or not, we need a unified criterion. As
mentioned in Section 1, we defined “a typical image I of a query Q” by “the term Q
is an appropriate label for the image I”. Therefore, it is a necessary condition that the
object specified by the query appears in the image.

If an image contains more than one object and it is not sufficient in knowing the
object’s visual characteristics, we considered it to be incorrect image. For example, in
case of a query “dandelion”, the image should have a dandelion of large enough size that
the evaluator can identify it as a dandelion. In evaluation, we assume that the evaluator
has enough knowledge on the object being queries.

5.3 Ranking Example

In this subsection, we exemplify the top-ranked images by the rankings of a search
engine and the top aspect. In the figures 5-8, images are ordered from top-left, going
right and then down. We added “x” beside images that were judged to be incorrect under
our evaluation scheme.

Figures 5-6 are the results for a query “iris”. Since iris also means a part of an eyeball,
top ranked images by search engines contained these pictures (10th and 15th images).
This is one weakness of the text-based ranking mechanism used by the image search
engine. The images obtained by our method contain more correct images. The precision
is higher than that of the search engine.
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Fig. 5. Search engine ranking for “iris”

Fig. 6. Top aspect ranking for “iris”

We explain evaluation scheme described in subsection 5.2 using this example. The
4th image in Figure 5 is a collection of flowers. Attaching a label “iris” to it is not
appropriate, so we consider it as an incorrect image. The 10th image has a flower bed,
but since the label “iris” is not appropriate for it either, so we judge it to be an incorrect
image.

Figures 7-8 are the results for a query “chinese houses”. Since “chinese houses” can
refer to Chinese buildings, the result of search engine contains many such images. On
the other hand, the ranking by the top aspect contains flowers mainly, resulting in a high
precision.

5.4 Top-k Precision by Categories

We performed experiments using 100 images obtained by an existing web image search
engine. Using the search engine’s ranking and our proposed method, we evaluated the
top-k precisions. We used the result of Google Image Search for obtaining the search
engine’s ranking [9]. The result is illustrated in Figure 9.

Since the original set consists of 100 images for each query, top-100 precision is the
ratio of correct images to the whole set. In this case, the value is 0.58. While the top-5
precision of the search engine’s ranking is 70%, the ranking by the top aspect has 79%.
For top-30 precision, the search engine’s ranking has 66% and our method has 76%.
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Fig. 7. Search engine ranking for “chinese houses”

Fig. 8. Top aspect ranking for “chinese houses”

The dotted line in Figure 9 indicates the top-k precision of the ranking obtained from
the aspect with highest p(z). The graph also shows that the proposed method has higher
precision than the method that does not filter aspects by entropy in the way indicated
by Expression 3.

One strong point of our approach is that it is based on the probability theory. For
example, since all values are actually parameters of distributions, threshold values can
be set with a probabilistic basis.

5.5 Processing Time

We have measured processing time necessary for the extraction of object region and
the construction of feature vectors. We used Intel Core2 Duo 2.00GHz 2GB RAM for
the experiment. Figures 10 - 11 are histograms indicating how many images required a
certain amount of time for processing. The unit is in milliseconds. For the object region
extraction, the mode is at around 40 milliseconds. There are some outliers, but they fall
within triple the time of the mode. For the construction of feature vectors, the mode is at
around 25 milliseconds. Outliers fall within double the time of the mode. The average
time required for learning the aspect model for 100 images was 71.1 milliseconds.
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Fig. 9. Average top-k precisions for 20 queries

Fig. 10. Time for region extraction Fig. 11. Time for feature vector construction

6 Conclusion

In this paper, we proposed a method that ranks web image search result in the order of
typicality, by extracting the top aspect. Our present implementation uses color features
only, but we plan to use more complex image features in future work.

In the evaluation, we used wildflowers, which are objects that have strong color
characteristics. There are also objects that do not have strong color features. In the
future work, we plan to use shapes and textures in addition to color, to deal with such
objects.
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Abstract. Recently, users can find various kinds of information in the
Web. When a user browses information, he/she sometimes wants to
browse more desirable information by adding/deleting few more. How-
ever, there is no service to browse such desirable information from current
information. We focused on such users’ browse/search intention. Here,
each information consists of some elements such as ingredients, persons,
and places. We call the information “collective Web object”. In this work,
we propose a method to enable users to browse from current collective
Web object to desirable collective Web object by adding one element into
it or deleting one element from it. In addition, we introduce the concept
of structural stability of collective Web object based on constructing
elements and apply our method to recipe search. We implemented a pro-
totype system and performed experiments to evaluate the usefulness and
the applicability of our method.

Keywords: Collective Web object, structure, stability, typicality.

1 Introduction

Recently, the amount of Web information and the number of Web services have
been increasing rapidly. People can obtain various kinds of information, such as
recipes about pot-au-feu, sightseeing places in Spain, or information of Liga Es-
panola, by searching and browsing Web pages. When a user browses information,
he/she sometimes wants to browse more desirable information as follows.

– A user plans to cook a pot-au-feu and the user reached a recipe of simple
pot-au-feu. However, the user was not satisfied with the ingredients used in
it because this recipe is very typical and simple. So, the user wants to know
what the user should add one ingriedent to it and such desirable recipe.

– A user plans to visit Spain for sightseeing and reached a Web page that
introduces a tour which contains Madrid, Barcelona, Bilbao and Andalusia.
The user is interested in this tour and all places. However, the user does not
have enough time to visit all places, and it is difficult for the user to decide
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to remove one place from them. Then, the user wants to be recommended
one place to remove by a system and to browse a page which contains all
but the removed place.

There are many other situations except for the ones described above. There is,
however, no conventional Web service that enables users to navigate from the
current information to another desirable one by adding an element to the infor-
mation that the user is interested in or deleting an element from the information
that the user is not interested in. In addition, there is no service to support to
find more typical information or more atypical information from current infor-
mation. In this paper, we focused on such user’s browsing/searching intention.

Here, the information consists of some elements such as ingredients, sight-
seeing places, and so on. In addition, each information is characterized by such
elements. We define such information as “collective Web object”. The objec-
tive of our work is to enable users to obtain a desired collective Web object by
changing constructing elements.

In order to realize such system, we introduce the concept of structural stability
of collective Web object and propose a method to calculate the stability by using
the combination of constructing elements. The stability of a collective Web object
is higher if it is typical. The stability of a collective object is lower if it is not
typical. The user will be able to reach desirable Web object by checking the
stability by using our system. There are many researches about recommendation
of Web pages[2][3] and ingredients[4]. But in these researches, a user can not
obtain eccentric items. Yoshida et al.[5] proposed a method to enable users to
add or delete queries when they browse. However, they did not take care of the
structure and its stability. In this study, we apply our method to recipe search.
In the recipe search, a recipe is a collective Web object, and an ingredient is an
element. We implemented the prototype system and showed the usefulness of
our system by evaluation tests.

2 Collective Web Object

When a user searches about “sightseeing in Spain”, there are countless sightsee-
ing courses such as “visiting major cities in Spain”, “visiting world heritages in
Spain”, “visiting little-known sightseeing spots in Spain”. Regarding many sight-
seeing spots in Spain like “Madrid”, “Barcelona”, “Bilbao”, and “Andalusia” as
elements, sightseeing courses which are based on each viewpoint are changed by
the combination of the elements. Moreover, the combination of each sightseeing
spot is included in the same category of “sightseeing in Spain”. Even if they
belong to the same category, the nature of them changes by the combination of
sightseeing spots. In the same way, about the recipes of “pot-au-feu”, there are
variations such as “Japanese style pot-au-feu”, “Italian pot-au-feu”, or “typical
pot-au-feu”, and each of them changes by the combination of ingredients such
as carrot, potato, wiener, onion, tomato, or lotus root (Figure 1).

As mentioned above, an object that a user finally obtains such as “a typical
sightseeing course in Spain” or “Japanese style pot-au-feu” belongs to a category
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pot-au-feu

typical japanese italian

wiener onion lotus root carrot tomato

Fig. 1. Collective Web objects in the
category of “pot-au-feu”

category

O1 O2 O3
・・・

object

e1 e2 e3 e4 e5 ・・・

element

Fig. 2. Model of general collective
Web objects

like “sightseeing in Spain” or “pot-au-feu”, and changes its nature by the combina-
tion of elements like “Madrid” or “potato”. We define such an object as
a collective Web object. We show the model of this in Figure 2. That is, if we set
a category, there are countless collective Web objects in the category, and each
of them is constituted by some elements. Furthermore, the nature of a collective
Web object is defined by the elements.

A collective Web object consists of two kinds of elements: Essential elements
included in almost all collective Web objects in a category and not-essential
elements included in some objects. For example, in the category of “pot-au-feu”,
there are many kinds of pot-au-feu such as “Japanese style pot-au-feu”, “Italian
pot-au-feu” or “typical pot-au-feu”, but ingredients like “carrot” or “onion” are
essential in any kind of pot-au-feu.

In this study, therefore, we define that a collective Web object has two layers
which are constituted by elements. The two layers are a base layer and an upper
layer of the base. We regard that essential elements constitute the base layer of
collective Web objects and not-essential elements constitute the upper layer of
them. In the category of pot-au-feu, for example, “carrot” or “onion” is the base
elements because they are essential in any kinds of pot-au-feu, and “lotus root”,
“tomato”, or “bacon” is those which constitute the upper layer because they are
not necessary in all kinds of pot-au-feu.

We can say that a collective Web object that includes all base elements has the
stable structure and a collective Web object that includes partial base elements
has the unstable structure. Here, we classify the structure of objects into the
following four types (see Figure 3).

(a)A collective Web object whose base and upper layer are stable: This
object includes all base elements and typical elements of the upper layer. The
structure is the most stable. In the example of pot-au-feu, “typical pot-au-feu”
corresponds to this type.
(b)A collective Web object whose base is stable but upper layer is
unstable: This object includes all base elements and atypical elements of the
upper layer. In the example of pot-au-feu, “Japanese style pot-au-feu” and “Ital-
ian pot-au-feu” correspond to this type.
(c)A collective Web object whose base is unstable but upper layer is
stable: This object includes few base elements but includes typical elements of
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（a） （b） （c） （d）

Fig. 3. Various structures of collective Web objects

the upper layer. In the example of pot-au-feu, “pot-au-feu of my home” that
does not include an onion corresponds to this type.
(d)A collective Web object whose base and upper layer are unstable:
This object includes few base elements and includes atypical elements of the
upper layer. The structure is the most unstable. In the example of pot-au-feu,
“creative Italian pot-au-feu” that does not include carrot or onion but includes
a tomato and an apple corresponds to this type.

In this study, we seek base and upper elements and calculate structual stability
by collecting collective Web objects in a category on a large scale.

When a user adds an element to a collective Web object or delete an element
from it, the stability of the structure changes. So, in this study, we calculate the
structure and the stability of an object a user is interested, and add/delete an
element focusing on the stability after adding/deleting it. The user can change
a collective Web object to a more typical or atypical one.

3 Constructing Structure and Calculating Stability of
Collective Web Object Based on Typicality

The system recommends an addition/deletion element to/from a collective Web
object a user is interested. The flow is as follows:

(1) The system seeks a category that includes the collective Web object the user
is interested in.

(2) The system collects the set of collective Web objects included in the category
seeked in (1).

(3) The system extracts elements that constitute each collective Web object.
(4) Based on (2) and (3), the system judges whether each element constitutes

the base or upper layer, and seeks the most stable structure.
(5) Based on (2), (3), and (4), the system calculates the structure and stability

of the collective Web object the user is interested.
(6) The system recommends an addition/deletion element to/from the object.

In this study, we especially focus on (4), (5), and (6), and propose a method.

3.1 Constituting Structure of Collective Web Object

In order to analyze the structure of a collective Web object, first we have to
divide each element in a category into two groups: elements that constitute
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the base layer and elements that constitute the upper layer. Then we find the
elements that constitute the most typical collective Web object in the category
to calculate the stability of the collective Web object the user is interested.

To detect the base elements, the system chooses the element which is included
in the most collective Web objects in the category, and classifies it to the set
of base elements B. Then the system finds the element which has the highest
co-occurrence with B, and adds it to B when the co-occurence is higher than
a threshold. The system repeats this step until the co-occurence becomes less
than the threshold. As for the most typical set of elements T in the category,
the system finds them in the same way.

3.2 Calculating Stability of Collective Web Object

In this study, we use the difference between the set of elements included in the
target collective Web object and those which constitute the typical collective
Web object in the category, in order to calculate the stability of a collective Web
object. We define the stability of the most typical one as 1. That is, the nearer to
1 the stability is, the more stable the structure is, and the smaller the stability
is, the more unstable it is. We define the set of elements included a collective
Web object o as Eo = {e1, e2, ..., el} (l means the number of elements included
in the target collective Web object). We define Stability(Eo) as follows:

Stability(Eo) = affinity(Eo)− δ · difference(Eo) (1)

where affinity(Eo) means the value of affinity between all elements in Eo and
difference(Eo) means the value of difference between Eo and T . The way to
calculate these values is as follows.

The value of affinity(Eo) is that of co-occurrence between all elements in Eo,
and can be calculated in the following equation:

affinity(Eo) =
1

|Eo|C2

∑
ei,ej∈Eo

co1(ei, ej) (2)

where co1(ei, ej) is defined as follows:

co1(ei, ej) =

{
1 |R(ei)∩R(ej)|

min(|R(ei)|,|R(ej)|) > θ

0 otherwise
(3)

That is, the more the number of elements with bad affinity in Eo is, the smaller
the value of affinity(Eo) becomes. where R(e) means the set of collective Web
objects that include e.

The value of difference(Eo) can be calculated in the following equation:

difference(Eo) =
1
2

{
(1− μ)

∑
ei∈Eo−T

1−R′(ei)
|Eo − T | + μ

∑
ei∈T−Eo

R′(ei)∑
ei∈T R′(ei)

}
(4)

where R′(e) is defined as R′(e) = |R(e)|
|R(emax)| . In equation (4), the first member has

the value from 0 to 1 when there are elements which are included in Eo but not
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in T . The value becomes large as there are many elements with low occurrence
rate in Eo − T . That is, the more there are rare elements in Eo, the larger the
gap with T becomes. The second member has the value from 0 to 1 when there
are elements which are included in T but not in Eo. The value becomes large as
there are many essential elements in Eo−T . That is, the fewer there are essential
elements in Eo, the larger the gap with T becomes.

3.3 Extracting Addition/Deletion Element

We recommend addition elements that can change the current collective Web
object into more typical or atypical one. That is, in the category which includes
the collective Web object a user is interested, we recommend elements each of
which changes a collective Web object so that it has the maximum or minimum
stability after adding it. However, we remove the elements which change the
stability to too low from additional candidate elements.

In addition, we recommend deletion elements from the collective Web object
a user is interested. Each of elements is not the base elements and changes the
collective Web object so that it has the maximum or minimum stability after
deleting it.

4 Experiments and Discussions

When we regard a recipe as a collective Web object, the category name cor-
responds to the general name of the dish, and the elements correspond to in-
gredients. Therefore, in order to evaluate the utility of our method, we eval-
uated whether a user can change a recipe to more typical or atypical one by
adding/deleting ingredients recommended by the system. In the experiments,
we chose six categories from COOKPAD[1]: “carbonara”, “neapolitan”, “pork
miso soup”, “minestrone”, “tomato salad”, and “tuna salad”. The number of
recipes included in each category was 73, 59, 141, 76, 80, and 85.

4.1 Evaluating Addition/Deletion Ingredients

To evaluate the appropriateness of addition/deletion ingredients recommended
by the system, we inspected to what extent they were accepted by users. First
we extracted twenty recipes at random from each category. Then we showed
subjects three recipes in each category. About following four items, the subjects
chose a more suitable ingredient in each item recommended by the proposed
method and the baseline method.

(1) An ingredient that puts close typical recipe by adding it.
(2) An ingredient that puts close atypical recipe by adding it.
(3) An ingredient that puts close typical recipe by deleting it.
(4) An ingredient that puts close atypical recipe by deleting it.
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Table 1. Percentage of ingredients chosen by subjects in each category

addition
typical

addition
atypical

deletion
typical

deletion
atypical

proposed method 100.0% 55.6% 66.7% 0.0%
carbonara baseline 100.0% 33.3% 44.4% 0.0%

unchosen 0.0% 11.1% 11.1% 100.0%
proposed method 100.0% 44.4% 55.6% 44.4%

neapolitan baseline 88.9% 44.4% 55.6% 55.6%
unchosen 0.0% 11.1% 22.2% 33.3%

proposed method 88.9% 55.6% 77.8% 44.4%
pork miso soup baseline 77.8% 44.4% 55.6% 55.6%

unchosen 0.0% 0.0% 11.1% 44.4%
proposed method 88.9% 77.8% 77.8% 22.2%

minestrone baseline 88.9% 22.2% 22.2% 0.0%
unchosen 0.0% 0.0% 0.0% 77.8%

proposed method 66.7% 44.4% 44.4% 22.2%
tomato salad baseline 55.6% 55.6% 55.6% 33.3%

unchosen 0.0% 0.0% 22.2% 66.7%
proposed method 55.6% 33.3% 55.6% 22.2%

tuna salad baseline 77.8% 66.7% 66.7% 22.2%
unchosen 0.0% 0.0% 33.3% 66.7%

proposed method 83.4% 51.9% 63.0% 25.9%
average baseline 81.5% 44.4% 50.0% 27.8%

unchosen 0.0% 3.7% 16.7% 64.8%

To recommend ingredients by proposed method in each item, we first extracted
the ingredients that can be added to/deleted from a recipe by the method men-
tioned in section 3.4. Then we recommended the ingredient which had the high-
est/lowest stability in the recipe after adding in the additional candidates to
(1)/(2). Similarly, we recommended the ingredient which had the highest/lowest
stability in the recipe after deleting in the deletion candidates to (3)/(4).

As a baseline method, we first extracted the ingredients that the number of
recipes using was more than a threshold in the category which included the
recipe to evaluate, and removed the ingredients used in the target recipe from
them. Then, from the candidate ingredients, we recommended the ingredient
that was used by the most recipes to (1), and the fewest to (2). Moreover, from
the set of ingredients which were not the base ingredients in the category and
were used in the target recipe, we recommended the ingredient that was used by
the fewest recipes to (3), and the most to (4). When there were some candidates,
we chose one ingredient at random and recommended it.

When the same ingredients were recommended by both the proposed method
and the baseline method, a subject chose both of them if he/she thought they
were appropriate, and did not choose when he/she thought they were not. The
result of the experiment conducted by three subjects is shown in Table 1.

Overall, it often occurred that the same ingredients are recommended by
both the proposed method and the baseline method in (1) and (4). This is
because when there is an ingredient that is used in many recipes in the can-
didate ingredients to add/delete, the stability often became the highest/lowest
by adding/deleting it. The ingredients which were recommended to put close
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an atypical recipe by deleting them were seldom chosen because the subjects
thought that the recipe was not formed as a dish if they deleted the ingredient.
Moreover, it is one of the reasons that generally users do not think they want to
put close an atypical recipe by deleting an ingredient. In the category of “tomato
salad” and “tuna salad”, the different ingredients were often recommended as
those which can put close a typical recipe by adding it in two methods, but there
was not difference between two methods. That is because the degree of freedom
of ingredients was high and the ingredients which can put close a typical recipe
were greatly different between subjects.

In the category of “minestrone”, there was large difference between two
methods about the ingredient that can put close an atypical/typical recipe by
adding/deleting it. The reason is that, in the category of minestrone, not only
some kinds of meats and vegetables but also seasonings such as sugar, soy sauce,
and ketchup are used. So, seasonings were recommended more often than pork
miso soup. When it comes to seasonings, the balance of a recipe sometimes col-
lapses by the combination of them, so it can be thought that the ingredients
recommended by the proposed method were chosen more often.

5 Conclusion

In this paper, we proposed a method to browse from a collective Web object
to another one by adding or deleting an element. To achieve it, we defined the
structual stability of a collective Web object based on the typicality of construct-
ing elements. We especially focused on a recipe as a collective Web object and
enabled a user to obtain a desired recipe (Web object) by adding/deleting an
ingredient. By experiments, we found that the proposed method works well in
the category in which there is affinity between elements.

We plan to visualize a structure of a collective Web object. In this paper,
we targeted a recipe because we can easily collect a category, Web objects, and
elements from the Web. We are planning to target a general Web object in the
future. To realize this, the system must extract elements a user is interested in
the Web page and estimate which category the topic of the page belongs to.
Moreover, the system also must collect the Web objects which belong to the
category. This is very difficult to solve but very interesting issue.
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Abstract. During the past decade, information retrieval techniques
have been augmented in order to search for experts and not just doc-
uments. This is done by searching document collections for both query
topics and associated experts. A typical approach assumes that expert
candidates are authors of intranet documents, or that they engage in
social writing activities on blogs or online forums. However, in many or-
ganizations, the actual experts, i.e., the people who work on problems
in their day-to-day work, rarely engage in such writing activities. As
an alternative, we turn to structured corporate data—transactions of
working hours provided by an organization’s ERP system—as a source
of evidence for ranking experts. We design an expert finding system for
such an enterprise and conclude that it is possible to utilize such trans-
actional data, which is a result of required daily business processes, to
provide a solid source of evidence for expert finding.

Keywords: Expert Finding, Information Retrieval, Enterprise Resource
Planning, ERP.

1 Introduction

In many information-intensive organizations, one of the most prominent organi-
zational challenges is the management of knowledge, and the ability to locate the
appropriate experts for any given information need is essential. In small organi-
zations, locating an expert may be a simple matter of asking around. However,
in large organizations with several specialized departments, which may even be
geographically scattered, this approach becomes infeasible.

A traditional solution is to maintain a database of employees and skills where
each employee fills in his or her experience, skills, and fields of specialization [7].
This approach has some rather demotivating disadvantages. First, it requires a
great deal of resources to maintain. Each employee will often be responsible for
updating his or her profile in order to keep it current, which requires a very
dedicated organization staff. Second, because of this human factor, the system
is subject to imprecision, partly due to employees’ over- or underrating of their
skills, and partly due to a mismatch in granularity between profile descriptions,
which tend to be mostly general, and queries, which tend to be specific.
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During the past decade, expert finding systems have emerged. The purpose
of such a system is to automate the process of associating people with topics
by analyzing information that is published within the organization, such as task
descriptions, reports, and emails. From a user point of view, it typically is a
variant of a traditional search engine; the user inputs a query topic, but instead
of retrieving a set of relevant documents, it retrieves a set of relevant people—
supposedly experts on the topic suggested by the query.

An important aspect of expert finding systems is the association between
documents and expert candidates. Existing expert finding approaches typically
assume variations on the following points: 1) candidates write textual content
such as papers or forum posts; 2) if the name, email address, or other identi-
fier of a candidate appears in such a document, then that document is related
to the candidate. In short, they assume that expert candidates are creators of
information.

However, such assumptions can be problematic. E.g., the overview of workshop
[2] states, among other things, that when “looking at the chain of emails in which
a request for expertise is passed from one person to another, it is also clear that
mere candidate mentions do not necessarily imply expertise.”

Furthermore, in many organizations, the actual experts, i.e., the people who
work on problems in their day-to-day work, are too busy to engage in such writing
activities. In these settings, expert finding approaches such as those mentioned
above are of limited use. In [8], for instance, it is noted that less than 10% of
a workforce studied were engaged in writing blogs. Though this figure has been
increasing, it likely has a natural limit far below 100%. Nevertheless, employees
are expert candidates even if they are not active creators of textual information,
and it would be useful to capture their expertise to facilitate expert finding.
In this paper, we therefore disregard the assumptions above, noting that certain
types of documents are written without direct candidate annotation. Instead, we
turn to other means of forming associations between documents and candidates.

We explore the potential of enterprise resource planning (ERP) systems, such
as Microsoft Dynamics AX, as a source of expertise evidence. Many organizations
maintain enormous amounts of transactional data in such ERP systems. To
each record of transactional data it is possible to attach textual documents, but
such documents often do not contain candidate information within their textual
contents. Reasons for this include: 1) context is captured by the structured data
that surrounds the documents in the ERP system; 2) documents are initially
written without any specific people in mind, and then later different people
are associated with the documents through the organization’s various business
processes.

Our enterprise setting is that of thy:data,1 a Danish software consulting and
development company within the area of business solutions primarily based on
Microsoft’s ERP system Dynamics AX.2 thy:data employs Dynamics AX for
project management, and this system acts as our case in this paper. We believe

1 http://www.thydata.dk
2 http://www.microsoft.com/dynamics/ax

http://www.thydata.dk
http://www.microsoft.com/dynamics/ax
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that thy:data is representative of many companies dealing with similar consulting
and development services.

We focus on transactions of hours worked on projects by candidates as our
evidence of expertise. To our knowledge, this is the first work to exploit trans-
actional data from ERP systems as expertise evidence for expert finding. We
employ two methods for ranking candidates; one based on the classic TF-IDF
ranking approach, and the other based on language modeling approaches [3].

One of the major benefits of our approach is that we do not depend on active
knowledge-sharing from the employees because we leverage information that is
created by required daily business processes within the organization, namely reg-
istration of working hours spent on activities. This is in contrast to other sources
of evidence, such as corporate blogs and discussion forums, which require that
expert candidates engage in knowledge-producing activities of a more voluntary
nature, as is used in most previous work (e.g., [1, 3,8, 13]).

From a more pragmatic point of view, our work in this paper shows good
opportunities for implementing expert finding systems that integrate directly
with modern ERP systems. This could be done by developing an expert finder
as an integral module of an ERP system. Such an effort would provide several
benefits including: 1) direct access to all ERP data for establishing expertise
evidence; 2) easy integration with human resource modules, task management
modules, etc.; 3) easy access to expert finding for all daily users of the ERP
system, thus boosting their productivity with minimal extra effort.

2 Related Work

The expert finding task introduced in the TREC3 Enterprise Track [5] in 2005
has generated a lot of interest in expert finding, and a number of approaches
have been developed. One of the central issues is how to establish a connection
between candidates and topics. Usually, expertise evidence is found by analyzing
documents that somehow relate to the expert candidates.

The P@NOPTIC system [6] presents a simple approach in which this connec-
tion is established by building an expert index, which consists of employee doc-
uments—one document is created for each employee. The employee document
representing a given employee is the concatenated text of all intranet documents
in which that employee’s name occurs. With the employee documents in place,
the system can match queries against the expert index using any standard infor-
mation retrieval technique, and retrieve in ranked order the employee documents
that match. With the one-to-one correspondence between employee documents
and employees, it is easy to go from matching employee document to relevant
employee.

Nearly all systems that took part in the 2005 and 2006 editions of the expert
finding task at TREC adopted a language modeling approach (e.g., [9]), first
introduced by Balog et al. [3]. Based on the idea in [10] of applying language

3 Text REtrieval Conference: http://trec.nist.gov

http://trec.nist.gov
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modeling to information retrieval, Balog et al. rank candidates by their proba-
bilities of generating a given query.

The association between candidates and documents can be refined in various
ways. E.g., instead of capturing associations at document level, they may be
estimated at snippet level around occurrences of candidate identifiers. Such use
of proximity-based evidence has been found to achieve better precision in general.
However, Balog et al. [4] note that “the mere co-occurrence of a person with a
topic need not be an indication of expertise of that person on the topic.” E.g.,
the name of a contact person may be mentioned in many documents and thus
frequently co-occur with many topics, but the contact person is not necessarily
an expert on the topics.

Recently, “Web 2.0 data,” such as that provided by blogs and discussion fo-
rums, has been incorporated into expert finding systems based on the assumption
that documents that generate much Web 2.0 data due to user activity are more
interesting than documents that spawn only little activity, and that the users
who exhibit activity around a document are related to the document [1, 8, 13].
As is also pointed out in [1], these systems cannot retrieve candidate experts
who have never blogged or commented on another user’s activity.

Apparently, there has not been much research that disregards the presump-
tion that experts—in one way or another—are authors of document content.
Furthermore, to our knowledge, neither has transactional context provided by
ERP systems been the subject of expert finding research in the past. In this
paper, we aim to capture the expertise of people who do not directly produce
textual content by utilizing structured data from the organization’s ERP system.

3 Corporate Transactional Data

We want to utilize transactional data to form document-candidate associations,
and we will completely disregard the fact that candidate information may exist
within the documents. Thus, document content is only used for matching query
topics, just as in a traditional information retrieval system. When finding related
experts, we want to rely entirely on transactional data from an ERP system.

Many companies maintain structured information about their employees, in-
cluding how many hours they have spent working on different activities. If hours
worked on activities can be allocated to documents, then this would seem a
good starting point for establishing document-candidate associations necessary
for expert search. Let us consider what it means when an employee has worked
a large number of hours on some task. We can interpret this fact in at least
two ways: 1) The task requires much work, and this employee has developed
a valuable degree of expertise within the topics of the task. Thus, we assume
that people who work on a task become knowledgeable on topics relevant to the
task. This way we capture expertise even if the experts are too busy to write and
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publish their knowledge. We use this assumption in our basic models. 2) The
employee has had difficulty completing the task because he is not an expert on
the topic. The employee still may be a relevant person because he has spent time
on the task and may have some valuable insight on the problems. However, if
much of our evidence falls into this category, we may have to adjust the models.
Therefore, after having presented the basic models, we propose an extension to
take this potential shortcoming into account.

3.1 Enterprise Data Setting

At thy:data, they store task descriptions in a Dynamics AX-based task manage-
ment system. These documents contain specifications for desired software func-
tionality. Typically, a document describes one well-defined function of a larger
system and represents a single unit of work that usually can be completed by
one or two employees. The task descriptions are written by consultants, and
afterwards a software developer must be assigned to the task. The employees
who work on a task register their work hours in the system. Thus, the opera-
tional task management system contains both structured data (hours worked)
and unstructured data (task descriptions).

All of thy:data’s activities are organized into a project hierarchy. There is a
number of top-level projects, and each project contains a number of sub-projects,
which in turn can contain sub-projects themselves, etc. Each project can have a
number of activities associated with it. An activity usually represents a certain
well-defined task such as a software development task. The activities have various
textual data associated with them. This includes descriptions of the task that
the activity represents, as well as notes written by the people who have worked
on the activity. The textual data can be stored directly in dedicated fields in the
database or in elaborate documents outside of the database. Besides textual data,
activities have transactions associated with them. Such a transaction represents
a number of working hours that a certain employee has spent on the activity.

3.2 A Model of the Data

We can view the activities as constituting a central entity that ties together
employees and documents. The employees are connected to the activities via
transactions, and the activities are connected to the documents. We can view
the hours worked measure on the transactions as an indicator of how strongly a
given employee is associated with a given document.

These entities can be modeled as a weighted bipartite graph with two disjoint
sets of vertices: a set of documents and a set of employees. Weighted edges
between the two sets are derived from the activity and transaction entities. An
example of this is shown in Figure 1. Here we see that document d1 is associated
with employee e1 because e1 has worked 60 hours on the activity to which d1 is
attached.



272 L.K. Schunk and G. Cong

Fig. 1. Hours worked as a weighted bipartite graph with documents and employees

4 Method Design

We propose two basic models for ranking candidates based on the hours worked
measure described in Section 3. The two models are variations on two well-known
approaches, namely the TF-IDF approach and the document language modeling
approach. Both of our models rely on document-candidate associations, so this
aspect will be discussed first.

4.1 Document-Candidate Associations

A central part of the document language model described in [3] are the document-
candidate associations, which provide a measure of how strongly a candidate is
associated with a document. Given a collection of documents D and a collection
of candidates C, to each pair (d, ca), where d ∈ D and ca ∈ C, a non-negative
association score a(d, ca) must be assigned such that a(d, ca1) > a(d, ca2) if
candidate ca1 is more strongly associated with document d than candidate ca2.

Balog et al. provide an a(d, ca) measure by using a named entity (NE) ex-
traction procedure that matches identification information of candidate ca with
document d. E.g., if ca’s email address occurs in d, then a(d, ca) > 0.

We want to replace this a(d, ca) measure with one that takes hours worked
into account instead of using NE extraction. To do this, we formalize the model
of the hours worked that was developed in an intuitive manner in Section 3.2.
Let D be the set of documents, and C the set of candidates. Let G = (V, E) be
a bipartite graph where V = D ∪ C is the set of vertices and E = {{d, ca} | d ∈
D and ca ∈ C} is the set of edges. To each edge {d, ca} ∈ E we assign weight
w(d, ca) as follows:

w(d, ca) = total number of hours worked on d by ca (1)

Now we can introduce a simple document-candidate association measure a(d, ca)
in place of the one that was presented in [3]:

a(d, ca) =
{

w(d, ca) if {d, ca} ∈ E
0 otherwise (2)
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4.2 Modifying the TF-IDF Approach

In the classic TF-IDF approach used in traditional information retrieval, we
calculate the relevance r(d, Q) of a document d to a query Q as follows:

r(d, Q) =
∑
t∈Q

TF (d, t)IDF (t) (3)

where TF (d, t) is the term frequency of term t in document d and IDF (t) is the
inverse document frequency of term t [11].

Now we modify this measure so that we can rank candidates. We want to
establish a measure of the relevance r(ca, Q) of a candidate ca to a query Q,
much like the measure r(d, Q) above. Suppose we have found the one and only
document d that is relevant to the query Q. Then we can define the relevance of
candidate ca to Q like this:

r(ca, Q) = a(d, ca) (4)

The candidate who has worked the most hours on document d will be the top
ranked candidate in terms of relevance to Q. However, many documents may
be relevant to Q, some more than others. If we use the relevance of documents
r(d, Q) as weights on the document-candidate associations, we have the following
definition of r(ca, Q):

r(ca, Q) =
∑
d∈D

r(d, Q)a(d, ca) (5)

where D is the set of all documents in the collection. The more relevant docu-
ments that a candidate has worked on, the more likely it is that he is a relevant
candidate, which we take into account by summing over all documents.

4.3 Modifying the Document Language Modeling Approach

In the document language modeling approach introduced in [3], the ranking of a
candidate is calculated as the probability of that candidate generating a query.
This is expressed as follows:

P (Q|ca) =
∑

d∈DQ

P (Q|d)P (d|ca) (6)

where
P (Q|d) =

∏
t∈Q

((1− λ)Pmle(t|d) + λP (t|D)) (7)

is the probability of the query Q given document d’s language model by employ-
ing the Jelinek-Mercer smoothing method [12], and

P (d|ca) =
a(d, ca)∑

d′∈D a(d′, ca)
(8)
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is the probability of document d given candidate ca. Put simply, given candidate
ca, the document d with highest probability P (d|ca) will be the document with
which ca is most strongly associated.

We can tailor this approach to the present setting by simply replacing the
document-candidate association measure a(d, ca) with another one that relies
on hours worked instead of the rule-based method using NE extraction. Having
provided such a substitute in Section 4.1, it is straightforward to plug this into
the document language model.

4.4 Extending the Basic Models

Now that the basic models are in place, we will consider some possible exten-
sions. One could imagine some adjustments to the document-candidate associa-
tion measure presented in Section 4.1. Consider the following scenario. Suppose
that, given a query Q, the set DQ are deemed relevant documents. Furthermore,
candidates ca1 and ca2 are deemed relevant candidates. ca1 has worked hundreds
of hours on just one relevant document while ca2 has worked moderate numbers
of hours, say 10–20, on several relevant documents. Which candidate is more
relevant? By Equation 5, ca1 is likely to score higher because the hundreds of
hours worked on one document will boost his score significantly. But the work
on this single document may represent an exception. In contrast, if someone
has worked moderate numbers of hours on several relevant documents, this may
reflect the fact that he actually is an expert who completes his tasks quickly.

To take this into account, we introduce another measure, document count,
denoted by dc(ca, DQ), which is the number of relevant documents in DQ to
which candidate ca is associated:

dc(ca, DQ) = |{d | d ∈ DQ and a(d, ca) > 0}| (9)

We can extend Equation 5 with the document count measure:

r(ca, Q) = dc(ca, DQ)
∑

d∈DQ

r(d, Q)a(d, ca) (10)

Likewise, we can extend Equation 6:

P (Q|ca) =
dc(ca, DQ)

|DQ|
∑

d∈DQ

P (Q|d)P (d|ca) (11)

where the document count has been converted to a probability.
Applying these to the example scenario above would boost ca2’s relevance

score to reflect the fact that he has worked on several relevant tasks even if the
total hours worked are less than those of ca1.

5 Evaluation

As identified in workshop [2], a major challenge in expert finding research is
obtaining real data for evaluation purposes. Currently, existing data sets are built
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from publicly accessible pages of organizational intranets [2]. These collections
do not contain alternative non-textual sources of evidence such as transactional
data from ERP systems used in our work, so they are not applicable to our
evaluation purposes. The lack of both annotated resources and relevant queries
renders the evaluation of our approaches particularly challenging.

For now, our prototype works on a document collection from the Aalborg
department of thy:data, which consists of 1319 documents and 28 employees.
To get an idea of the effectiveness of the system, we interviewed some key em-
ployees, posed a set of ten expertise queries, and noted the corresponding expert
employees. We fed the queries to the system and observed how well the candi-
date experts ranked at different cutoff points. The results are shown in Table 1
for P@1, P@3, and P@5 (precision at rank 1, 3, and 5, respectively). For the
language modeling approach, we set λ = 0.5 by following previous work [3]. We
tested the TF-IDF approach both with and without the document count (DC)
extension described in Section 4.4.

Generally, these results indicate that the system is fairly accurate with most
results being above 70%. The table also shows a slight improvement when we
apply the document count extension to the TF-IDF approach. It may seem
surprising that the TF-IDF approach performs slightly better than the language
modeling approach because the latter is generally considered superior. We note
that this is not a full-scale evaluation, which to this point has not been feasible for
this project. However, the primary objective of this work was to facilitate expert
finding when expertise evidence is not available within documents. This objective
has been fulfilled. The approaches taken are based on previous results that have
performed well in full-scale empirical studies. This constitute the “subjective”
aspect of this work. By augmenting these approaches to take hours worked into
account, we have added an “objective” aspect. Given the assumption that hours
worked are correlated with level of expertise, we can safely incorporate this
measure when ranking the employees.

Table 1. P@1, P@3, and P@5 for TF-IDF and language modeling approaches

Approach P@1 P@3 P@5
Lang. Model without DC 0.700 0.733 0.665
TF-IDF without DC 0.900 0.833 0.670
TF-IDF with DC 1.000 0.867 0.710

6 Conclusion and Future Work

We proposed an approach for capturing expertise of people when we cannot
rely on the assumption that expert candidates are creators of information. Com-
panies often maintain structured data that may indicate associations between
documents and candidates. We utilized one such type of structured data, namely
hours worked, so that we no longer need to rely on the assumption that candi-
date information exists within documents, an assumption that may not always
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be warranted. Our basic models are simple and apparently effective. Because
registration of hours worked is a required daily business process, it becomes a
solid source of evidence, which even captures expert candidates who may never
have written a single document.

We discussed potential shortcomings of using hours worked as expertise evi-
dence, and we proposed one extension to account for these. We can think of more
ways to improve precision of expert finding by using structured ERP data. E.g.,
measures such as employee seniority or salary class may be used as weights on the
hours worked, assuming that hours worked by experienced employees are more
indicative of expertise than hours worked by newcomers. Furthermore, we may
consider the recency of hours worked, assuming that recent transactions imply
recently applied expertise, whereas very old transactions may be ignored. Finally,
the approach presented here could be combined with traditional approaches in
order to increase general expert finding effectiveness.
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Abstract. Due to the recent advancement in observation technologies
and progress in information technologies, the total amount of earth sci-
ence data has increased at an explosive pace. However, it is not easy
to search and discover earth science data because earth science requires
high degree of expertness. In this paper, we propose a retrieval method
for earth science data which can be used by non-experts such as scien-
tists from other field, or students interested in earth science. In order to
retrieve relevant data sets from a query, which may not include technical
terminologies, supplementing terms are extracted by utilizing knowledge
bases; Wikipedia and domain ontology. We evaluated our method using
actual earth science data. The data, the queries, and the relevance assess-
ments for our experiments were made by the researchers of earth science.
The results of our experiments show that our method has achieved good
recall and precision.

1 Introduction

Due to the recent advancement in observation technologies and progress in in-
formation technologies, the total amount of data related to earth science has
increased at an explosive pace. Furthermore, with advanced methods of data
visualization and data publication, such data are expected to be shared and
utilized among different disciplines and enhance earth science education.

There are two major demands in using earth science data. The first is the de-
mand for a more sophisticated method of outreach by data providers. The second
is the demand for better methods of utilizing data from different fields. However,
these demands have not been satisfied, and only a few scientists has managed to
utilize multi-discipline data sets. This is because each of the fields within earth
science requires high degree of expertness, and even between the nearest fields,
there exists a huge gap. This gap between each field invokes problems in data
discovery and data utilization.

To overcome these problems, there are several approaches to create metadata
for earth science data. Metadata portals, such as the GCMD(Global Change
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Master Directory)1, are attempting to solve the data discovery problem by col-
lecting metadata of diverse data sets, written in a standard form. However, data
retrieval against such metadata requires knowledge of technical terminology, and
it is difficult to retrieve data from another field of study. Some other approaches
to solve the data utilization problem is the annotation of metadata against data
formats. These approaches, such as netCDF(network Common Data Form)2 and
GrADS(Grid Analysis and Display System)3, can define what a portion of data
describes. However, it is difficult to utilize them among several data sets in an
integrated manner since vocabularies are not uniformed.

So far, the data discovery problem, and the data utilization problem remain
unresolved. In our research, however, we will address only the data discovery
problem by proposing a data retrieval method which can be used by non-experts
such as scientists from other fields, or students interested in earth science.

The goal of our research is to design a portal for retrieval of earth science
data where non-experts can access to the desired data. We considered keyword
searches are suitable for non-experts. Previous works such as GeoNetwork4 and
Gfdnavi[1] are assumed to be used by experts, thus are designed to achieve high
precision against the queries. However, our data retrieval method is assumed to
be used by non-experts, and is aimed to achieve high recall by supplementing
expertise in queries by utilizing knowledge bases. Therefore, even if a technical
terminology cannot be specified in a query, relevant data set can be discovered
from keywords, such as “Aurora”, “Great Hanshin Earthquake” etc.

There are three elements to specify a portion of earth science data: data
set(what), spatial condition(where), and temporal condition(when). We think
it is necessary to support specifying the data set, that is supporting what is
most important for the promotion of utilization of the earth science data. Spec-
ifying the time and space where the phenomenon is likely to occur also requires
expertise, but we think the necessity of such expertise is relatively low, because
many visualization method can be used to overcome the difficulty. By utilizing
our proposed method to support specifying the data sets, users can query by
using limited vocabularies. For example, input query “Aurora” will return not
only satellite images of aurora but also geomagnetism data.

When our proposal system receives a query q, it returns the subset D′ of the
target data sets D, which is associated with the query q. The query process starts
from extracting the article corresponding to q using Wikipedia. The articles in
Wikipedia covers wide variety of concepts. Therefore some bridge connecting
common concept to academic concept are necessary to obtain the earth scientific
data set di from D. We chose the domain ontology as the bridge data. The
domain ontology is a kind of ontology which is specialized to an academic area.
In this research, we used SWEET(Semantic Web for Earth and Environmental
Terminology) as the domain ontology, which is a kind of geosciences ontology

1 http://gcmd.nasa.gov/
2 http://www.unidata.ucar.edu/software/netcdf/
3 http://www.iges.org/grads/
4 http://www.fao.org/geonetwork/
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Fig. 1. The graph made from the query “Aurora”

made by NASA. We connect Wikipedia to the domain ontology so that the
process is able to obtain the data set di associated with q. Finally, the extracted
data sets are ranked by the relevance scores which are calculated using relevance
degrees between articles of Wikipedia.

For example, Figure 1 shows the graph outputted as the result of query “Au-
rora”. The graph is made based on Wikipedia and SWEET ontology. The start
point of the graph is the article in Wikipedia. Our system chooses the article
by comparing titles of Wikipedia articles with the given query “Aurora”. The
system firstly obtains the article “Aurora (astronomy)” by using language links
of Japanese article “Aurora”. Then it gathers articles linked by and high related
to the article “Aurora (astronomy)”. From these articles, it obtains vocabulary
which is also in SWEET ontology and related with the query. The association
of SWEET vocabulary and data sets are made by experts in advance. Therefore
the system is able to obtain the data sets related to the given query. Finally,
our system ranks the retrieved data sets by the relevance degrees from the start
point.

2 Retrieval Method for Earth Science Data

We obtain data sets Ds relevant to an input query q by the following procedure:

1. Search for a Wikipedia article Ws corresponding to q. If the retrieved article
is not in English, we retrieve the English edition of the article by using the
interlanguage link of Wikipedia.

2. Retrieve articles W1...Wn relevant to Ws, and measure the relevance degrees
between Wi and Ws for i = 1...n.

3. Do the string matching between article titles of W1...Wn, Ws and the SWEET
ontology. If the title of an article matches any term within the SWEET
ontology, the article will be assumed to be an article related to earth science.

4. For every article related to earth science, we obtain the data sets Ds associ-
ated to the term in the SWEET ontology.
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When the input query consists of multiple terms, the system collects relevant
data sets for all terms. In the following subsections, we describe each steps of
the procedure for obtaining Ds in detail.

2.1 Retrieval of a Source Wikipedia Article

We obtain a Wikipedia article Ws relevant to q by the following procedure. First,
we compare q with every titles of Wikipedia articles by the string matching. If
multiple results are found, we assume that the first article retrieved is the relevant
article Ws. At this point, the system can also show the candidates to users, and
users can choose some other article as Ws. If the chosen Ws is not an English
article, we obtain the English edition of the article by using the interlanguage
link.

Most earth science data and scientific articles are available in English. How-
ever, non-experts may want to search data by using their mother language, and
our system supports other languages than English. Since the English edition
of Wikipedia has the largest number of articles among all language editions of
Wikipedia, we can consider that the English edition of Wikipedia comprehend
large number of articles related to earth science. In fact, within the 2995 terms
included in the SWEET ontologies, 2130 terms are available as articles of the
English edition of Wikipedia. Within the 2130 articles, only 812 of them are
available in Japanese. For these reasons, we translate any non-English query
into English by using the interlanguage link, and search for relevant articles
from the English edition of Wikipedia.

2.2 Retrieval of Relevant Wikipedia Articles

In order to retrieve articles W1...Wn relevant to Ws, we used pfibf [2], which is a
method to calculate relevance between articles, proposed by Nakayama et al. We
used the relevance degrees between articles as the factor to decide which data set
is more relevant. We limited the maximum number of relevant articles to 300,
and the relevance degrees take values between 0 and 1. In our implementation,
we used Wikipedia API5 which is external system to obtain relevance degrees
between Wikipedia articles.

Because quantifying the strength of relevance between Wikipedia articles is a
classical and active research area in Wikipedia mining, there are some researches
other than pfibf and it is possible to use them alternatively. In the study by Ito
at el. [3], a method calculating relevance between concepts based co-occurrence
of links in articles was proposed. The accuracy is as high as pfibf and the
algorithm complexity is lower than pfibf . Ollivier at el. [4] experimented for
Wikipedia using GreenMeasure based on Markov chain.

In order to improve the recall, it is possible to retrieve further articles relevant
to W1...Wn. In our preliminary experiments, we found that retrieving relevant
articles within two steps is effective.

5 http://wikipedia-lab.org/en/index.php/Wikipedia API
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2.3 Integration of Wikipedia and Domain Ontology

Wikipedia has various articles that cover various domains from general event
to specific domain. On the other hand, domain ontology is specialized in dis-
cipline. In this paper, we use SWEET ontology as domain ontology to extract
articles related to earth science from Wikipedia. The matching between articles
in Wikipedia and vocabularies in SWEET is detected by string matching.

We extract earth scientific articles from English version of Wikipedia. There
are 2,995 terms registered in SWEET. Though the coverage of SWEET is so
wide as to include mathematical terms as well as earth scientific terms, we
consider these terms as earth scientific terms. We can get 2,130 articles from
6,723,158 articles in English version of Wikipedia as a counterpart of SWEET
ontology.

2.4 Retrieval and Ranking of Relevant Data Sets

Every available data sets are associated to one terminology in the SWEET on-
tologies in advance. This association will be made by experts such as the data
providers, and we assume that this association is legitimated. By using this as-
sociation, we can associate data sets with q. According to the characteristics of
the target data sets, we can choose any other domain ontologies to associate
with the target data sets. In this research, we used Dagik(DAta-showcase sys-
tem for Geoscience In Kml)6 [5] data sets as the target data sets, which covers
wide range of fields in earth science. Therefore, we use SWEET as the domain
ontology due to its high generality in earth science.

We used the relevance degrees between Wikipedia articles to rank the retrieved
data sets for q. If a data set can be retrieved via multiple articles, we summarize
every relevance degrees on the route and used it as the score for the data set.
The score SDi of a data set Di is calculated as below.

SDi = StDi + SwDi + Sh1Di + Sh2Di

1. When the title of Di matches with q, StDi = k. Otherwise, StDi = 0.
2. When Di can be obtained from the associated term of the domain ontology,

which corresponds to an Wikipedia article Ws relevant to q, SwDi = 1.
Otherwise, SwDi = 0.

3. When Di can be obtained from the associated terms of the domain ontology,
which corresponds to Wikipedia articles W1...Wi...Wn, which are relevant to
the article Ws by the relevance degrees r1...ri...rn, and is accessible with one
step, Sh1Di =

∑
ri. Otherwise, Sh1Di = 0.

4. When Di can be obtained from the associated terms of the domain ontology,
which corresponds to Wikipedia articles W1...Wj ...Wm, which are relevant
to the article Ws by the relevance degrees r1...rj ...rm, and is accessible with
two steps, Sh2Di =

∑
rj . Otherwise, Sh2Di = 0.

6 http://dagik.org/index.html.en
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3 Experiments

In this section, we evaluate our retrieval method. Our approach is a recall-
oriented approach, which retrieves relevant data sets as much as possible. On
the other hand, existing retrieval methods for earth science data are designed to
be used by experts, and they are precision-oriented approaches.

In this experiment, we evaluated our approach using 58 data sets of Dagik[5].
Also, we used SWEET as a domain ontology. The mapping between data sets
of Dagik and SWEET ontologies is many-to-one reference.

We show the retrieval results of the following typical 4 queries; q1: Aurora, q2:
Aurora ∧ Radar, q3: Geomagnetism ∧ Earthquake, q4: JAXA. These queries and
relevance assessments for each query are created by an expert of earth science.
In the following, we describe the results and discussion for each query. Tables
1 to 4 show top 10 results obtained by our method for each query. The values
in the Score columns are calculated by the procedure in Section 2.4. In the Rel.
columns, we show the assessments by the expert; ◦© means highly relevant, ©
means moderately relevant, and no symbol means irrelevant. Note that we used
short names for some of the data set names.

q1 Aurora. The intention of q1 is to find data sets concerning Aurora which is
the general term. For q1, there are 3 highly relevant data sets and 16 moderately
relevant data sets in Dagik. Highly relevant data sets are image data of aurora
and data of “REIMEI” which is an aurora observation satellite. Solar wind,
plasma, and electric density in the atmosphere are related to occurrence of an
aurora closely. As a result, the data sets observing those are moderately relevant.

We obtained 30 data sets using our method. Among those 30 data sets, the
top 10 results are shown in Table 1. We obtained data sets such as image data of
aurora and solar wind, which we can not obtain without expert knowledge. Thus,
our approach satisfies a request of query. Our approach was unable to obtain
data sets of geomagnetism and ion density, which are moderately relevant. In this
experiments, we used Wikipedia API to obtain the relevance degrees between
Wikipedia articles. However, Wikipedia API does not cover whole Wikipedia
articles, and sometimes it can not obtain the relevant articles. This problem will
be resolved by implementing pfibf in our local database.

q2 Aurora ∧ Radar. This query is intended to find out data sets about aurora
which are observed by radar. For q2, there are 2 highly relevant data sets and
6 moderately relevant data sets in Dagik. Highly relevant data sets are ground
radars to observe ionospheric plasma. The occurrence of the aurora and iono-
spheric plasma is closely related. Moderately relevant data sets are ground-based
observations and satellite data sets. We could obtain all relevant data sets using
our method as shown in Table 2.

q3 geomagnetism ∧ Earthquake. This query is intended to retrieve the geo-
magnetic disturbance caused by the earthquake based on the expert knowledge.
For q3, there are 8 highly relevant data sets and 4 moderately relevant data sets
in Dagik. There are some data sets related to aurora in the highly relevant data
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Table 1. Top 10 results for q1

Data set name Score Rel.
IMAGE satellite FUV 23.61 ◦©
Quick look AE index 23.61 ©
REIMEI MAC 23.61 ◦©
THEMIS 23.61 ◦©
ACE solar wind 11.55 ©
Solar wind: OMNI-2 11.55 ©
Solar wind: OMNI 11.55 ©
HINODE XRT 9.48
SOHO EIT 19.5nm image 9.48
SOHO LASCO C3 image 9.48

Table 2. Top 10 results for q2

Data set name Score Rel.
ESR radar 55.61 ©
Ground Scatter 55.61 ◦©
Ionospheric Scatter 55.61 ◦©
KST UHF radar 55.61 ©
NICT ionosondes 55.61 ©
IMAGE satellite FUV 23.88 ©
Quick look AE index 23.88
REIMEI MAC 23.88 ©
THEMIS 23.88 ©
ACE solar wind 12.02

Table 3. Top 10 results for q3

Data set name Score Rel.
Earthquake by USGS 49.01 ◦©
Plate motion 9.76 ©
HINODE XRT 5.36
SOHO EIT 19.5nm image 5.36
SOHO LASCO C3 image 5.36
YOHKOH SXT Daily image 5.36
ACE solar wind 3.63
Solar wind: OMNI 3.63
Solar wind: OMNI-2 3.63
IMAGE satellite FUV 3.48

Table 4. Top 10 results for q4

Data set name Score Rel.
HINODE XRT 3.71
SOHO EIT 19.5nm image 3.71
SOHO LASCO C3 image 3.71
YOHKOH SXT Daily image 3.71
ACE solar wind 1.72
Solar wind: OMNI 1.72
Solar wind: OMNI-2 1.72
ESR radar 0.85
Ground Scatter 0.85
Ionospheric Scatter 0.85

sets because the occurrence of the earthquake leads to the occurrence of aurora.
Moderately relevant data sets are geomagnetism and plate motion data sets.

We obtained 24 data sets using our method. Table 3 shows top 10 results ob-
tained by our method. The data sets related to earthquake such as “Earthquake
by USGS” and “Plate motion” obtained high score. We obtained only about
30% of relevant data sets. This is because we could not obtain geomagnetism
data sets from the articles related to earthquake. This problem depends on the
completeness of Wikipedia articles, and will be resolved by appending references
to the geomagnetic field in the articles related to earthquakes.

q4 JAXA. JAXA is an institute name, which is short for Japan Aerospace
Exploration Agency, and this query is intended to find out data sets provided
by JAXA. For q4, there are 2 highly relevant data sets in Dagik. “REIMEI” and
“GEOTAIL” are satellites managed by JAXA.

We obtained 30 data sets using our method. Table 4 shows top 10 results
obtained by our method. We could not obtain relevant data sets in the top 10
results. The Wikipedia article of JAXA covers various topics and our method
did not work well on such an article with diversity. In such a particular case
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that we want to search data sets using a condition about data provider, retrieval
based on metadata will be more useful than our approach.

Our approach depends on the description of Wikipedia articles. There are
about 6,700,000 articles in the English edition of Wikipedia, and there is a
diversity in the quantity and the quality of the description for each article. As
a solution for this problem, it will be possible to integrate Wikipedia and more
specialized knowledge bases such as scientific papers.

4 Conclusions

In this paper, we proposed a retrieval method for earth science data. There were
difficulties in discovery of earth science data because earth science requires high
degree of expertness. To solve this problem, we proposed a scheme for retrieval
of earth science data where non-experts can access to the desired data. Our data
retrieval method is assumed to be used by non-experts, and is aimed to achieve
high recall by supplementing expertise in queries by utilizing knowledge bases.
We used SWEET as domain ontology to extract the articles related to earth
science from Wikipedia. We implemented our approach and evaluated by using
actual earth science data sets of Dagik. The experimental results show that our
method achieved good recall and precision.

We are now planning to implement our method in the portal web site of Dagik.
Developing user interfaces is one of our future works. Because the system can be
used by non-experts, it can be used for educational purpose. It will also facilitate
active research collaborations between different fields of earth science.
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Abstract. A framework for computing consistent answers to boolean aggregate
queries in numerical databases violating a given set of aggregate constraints is
introduced. Both aggregate constraints and queries are aggregation expressions
consisting of linear inequalities on aggregate-sum functions. In particular, our ap-
proach works for a specific but expressive form of aggregation expressions (called
steady aggregation expressions) and computes consistent answers by solving In-
teger Linear Programming (ILP) problem instances.

1 Introduction

A great deal of attention has been recently devoted to the problem of extracting reli-
able information from data inconsistent w.r.t. integrity constraints. Most of the work
dealing with this problem is based on the notions of repair and consistent query answer
(CQA) introduced in [1]. A repair of an inconsistent database is a new database instance,
on the same scheme as the original database, satisfying the given integrity constraints
and which is “minimally” different from the original database instance (the minimality
criterion aims at preserving the information in the original database as much as possi-
ble). Thus, an answer of a given query posed on an inconsistent database is said to be
consistent if the same answer is obtained from every possible repair of the database.
Based on the notion of CQA, several works investigated the problem of querying in-
consistent data considering different classes of queries and constraints. Most of these
works deal with “classical” integrity constraints (such as keys, foreign keys, functional
dependencies). Indeed, these kinds of constraint often do not suffice to manage data
consistency, as they cannot be used to define algebraic relations between stored values.
In fact, this issue frequently occurs in several scenarios, such as scientific databases, sta-
tistical databases, and data warehouses, where numerical values in some tuples result
from aggregating values in other tuples. In our previous work [13], we introduced a new
form of integrity constraint, namely aggregate constraint, which enables conditions to
be expressed on aggregate values extracted from the database. In that work, we charac-
terized the computational complexity of the CQA problem for atomic ground queries
in the presence of aggregate constraints. In this paper, we consider a more expressive
form of queries (namely, boolean aggregate queries), consisting of linear inequalities
on aggregate-sum functions. For these queries, we devise a strategy for computing con-
sistent answers. Before presenting our contribution in detail, we provide an example
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Table 1. A cash budget

Year Section Subsection Type Value

t1 2008 Receipts beginning cash drv 50

t2 2008 Receipts cash sales det 100

t3 2008 Receipts receivables det 120

t4 2008 Receipts total cash receipts aggr 250

t5 2008 Disbursements payment of accounts det 120

t6 2008 Disbursements capital expenditure det 20

t7 2008 Disbursements long-term financing det 80

t8 2008 Disbursements total disbursements aggr 220

t9 2008 Balance net cash inflow drv 30

t10 2008 Balance ending cash balance drv 80
· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·
t11 2009 Receipts beginning cash drv 80

t12 2009 Receipts cash sales det 100

t13 2009 Receipts receivables det 100

t14 2009 Receipts total cash receipts aggr 200

t15 2009 Disbursements payment of accounts det 130

t16 2009 Disbursements capital expenditure det 40

t17 2009 Disbursements long-term financing det 20

t18 2009 Disbursements total disbursements aggr 120

t19 2009 Balance net cash inflow drv 10

t20 2009 Balance ending cash balance drv 90

describing the application scenario of our work, and make the reader acquainted with
the notions of aggregate constraint and aggregate query.

Example 1. Table 1 represents a two-year cash budget of a company, that is a summary
of cash flows (receipts, disbursements, etc.). Values ‘det’, ‘aggr’ and ‘drv’ in column
Type stand for detail, aggregate and derived, respectively. Specifically, an item is ag-
gregate if it is obtained by aggregating items of type detail of the same section, whereas
a derived item is an item whose value can be computed using the values of other items
of any type and belonging to any section.

A cash budget must satisfy the following integrity constraints:

κ1 : for each section and year, the sum of the values of all detail items must be equal
to the value of the aggregate item of the same section and year;

κ2 : for each year, the net cash inflow must be equal to the difference between total
cash receipts and total disbursements;

κ3 : for each year, the ending cash balance must be equal to the sum of the beginning
cash and the net cash inflow.

Table 1 was acquired by means of an OCR (Optical Character Recognition) tool from a
paper document. The original cash budget was consistent, but some symbol recognition
errors occurred during the digitizing phase, as constraints κ1, κ2 and κ3 are not satisfied
on the acquired data:

i) for year 2008, in section Receipts, the aggregate value of total cash receipts is not
equal to the sum of detail values of the same section: 100 + 120 
= 250;

ii) for year 2009, in section Disbursements, the aggregate value of total disbursements
is not equal to the sum of detail values of the same section: 130 + 40 + 20 
= 120;

iii) for year 2009, the value of net cash inflow is not equal to the difference between
total cash receipts and total disbursements: 10 
= 200− 120.

The automatic acquisition of cash budget data from paper documents is often performed
as the preliminary phase of the decision making process, as it yields data prone to be
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analyzed by suitable tools for discovering information of interest. In fact, the analysis of
company cash budgets is extremely important for both stock and bond investors, since
it allows potential liquidity problems to be detected, thus determining the company
financial reliability as well as its ability to satisfy financial obligations. Examples of
queries which can support this kind of analysis are:

q1 : for each year, is the value of net cash inflow greater than a given threshold, say 20?
q2 : for years 2008 and 2009, is the sum of receivables greater than payment of

accounts?
q3 : is the sum of incomings in cash sales for both years 2008 and 2009 sufficient to

cover the expenses for long-term financing of year 2009?

Obviously, since the available data are inconsistent, the mere evaluation of these queries
on the data may yield a wrong picture of the real world. Hence, in order to support any
analysis task, it is mandatory to retrieve consistent answers to these queries even if the
data are inconsistent. �

Besides the typical scenario of numerical inconsistencies due to OCR recognition er-
rors, the problem of extracting reliable aggregate information from data inconsistent
w.r.t. the same kind of constraints used in Example 1 arises in several scenarios, such as
sensor networks, where errors in the collected data can be due to wrong sensor readings.

In this context, our contribution is a technique for computing consistent answers to
boolean aggregate queries (such as queries q1, q2, q3 of the example above) on data
which are not consistent w.r.t. aggregate constraints (such as κ1, κ2, κ3 in the same
example). Our work builds on the strategy proposed in [13] for repairing data inconsis-
tent w.r.t. a given set of aggregate constraints. According to this approach, reasonable
repairs (namely, card-minimal repairs) are those obtained through sets of updates mak-
ing the database consistent and having minimum cardinality. Correspondingly, consis-
tent answers are those that can be obtained from every possible card-minimal repair.
Specifically, our contribution consists in showing that consistent answers of boolean
aggregate queries can be evaluated without computing every possible card-minimal re-
pair, but only solving a pair of Integer Linear Programming (ILP) instances. Thus, our
approach enables the computation of consistent query answers by means of well-known
techniques for solving ILP problems.

Related Work. The notion of CQA adopted in this paper was introduced in [1]. In that
paper, a query rewriting technique was proposed which enables the evaluation of con-
sistent answers of quantifier-free conjunctive queries under binary universal constraints.
This approach was extended in [16,15] to work on particular conjunctive queries with
existential quantification under key constraints, and these results were further general-
ized in [21].

Starting from the notion of CQA of [1], several works investigated the problem of
querying inconsistent data in the presence of more expressive classes of queries and
constraints. The computational complexity of the CQA problem was investigated for
union of conjunctive queries under functional and inclusion dependencies in [8], and for
several classes of queries under denial constraints and inclusion dependencies in [10].
Several works [2,4,5,17] exploited logic-based frameworks for investigating the prob-
lem of computing repairs and evaluating consistent query answers. In [9] a framework
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for computing consistent query answers was presented, which supports projection-free
relational algebra queries in the presence of denial constraints. The CQA problem for
aggregate queries was first studied in [3] in the presence of functional dependencies, and
further investigated in [15] for aggregate queries with grouping under key constraints.

All the above-cited approaches assume that tuple insertions and deletions are the
basic primitives for repairing inconsistent data. In [6,7,14,20], repairs consisting of also
value-update operations were considered. In particular, [20] was the first investigating
the complexity of the CQA problem in a setting where the basic primitive for repairing
data is the attribute-value update.

However, none of these works investigated the problem of computing consistent an-
swers to aggregate queries in the presence of aggregate constraints. The first work ad-
dressing aggregate constraints on numerical data is [19], where the consistency prob-
lem of very general forms of aggregation was considered, but no issue related to data-
repairing was investigated. The form of aggregate constraints considered in this paper
was introduced in [13], where the complexity was characterized of several problems
regarding the extraction of reliable information from inconsistent numerical data (i.e.
repair existence, minimal repair checking, as well as consistent query answer for atomic
ground queries). In [11], the architecture of a tool for acquiring and repairing numerical
data inconsistent w.r.t. a restricted form of aggregate constraints was presented, along
with a strategy for computing reasonable repairs, whereas in [12] the problem of com-
puting reasonable repairs w.r.t. a set of both strong and weak aggregate constraints was
addressed.

2 Preliminaries

We assume classical notions of database scheme, relation scheme, and relation in-
stances. Relation schemes will be represented by means of sorted predicates of the
form R(A1 :Δ1, . . . , An :Δn), where R is said to be the name of the relation scheme,
A1, . . . , An are attribute names (composing the set denoted as AR), and Δ1, . . . , Δn

are the corresponding domains. Each Δi can be either S (strings) or Z (signed integers).
Attributes [resp. constants] defined over Z will be said to be numerical attributes [resp.
constants]. The assumption that the numerical domain is Z yields no loss of generality,
as our framework can be easily extended to the case of the rational attributes.

A tuple over a relation scheme R(A1 :Δ1, . . . , An :Δn) is a member of Δ1 × · · · ×
Δn. A relation instance of R is a set r of tuples over R. A database scheme D is a set
of relation schemes, and a database instance D of D is a set of relation instances of the
relation schemes of D. Given a tuple t, the value of attribute A of t will be denoted as
t[A].

On each relation scheme R, a key constraint is assumed. Specifically, we denote as
KR the subset of AR consisting of the names of the attributes which are a key for R.
For instance, in “Cash budget” example, KR = {Year, Subsection }. Given a relation
scheme R, we will denote the set of its numerical attributes representing measure data
as MR (namely, Measure attributes). That is, MR specifies the set of attributes rep-
resenting measure values, such as weights, lengths, prices, etc. For instance, in “Cash
budget” example, MR consists of attribute Value only. Throughout this paper, we as-
sume that KR∩MR = ∅, i.e., measure attributes of a relation scheme R are not used to
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identify tuples belonging to instances of R. Although this assumption leads to a loss of
generality, it is acceptable from a practical point of view, since the situations excluded
by this assumption are unlikely to occur often in real-life scenarios. As a matter of fact,
it was used in [6,13] and it holds in our “Cash budget” example.

Given a boolean formula β consisting of comparison atoms of the form X *Y , where
X , Y are either attributes of a relation scheme R or constants, and * is a comparison
operator in {=, 
=,≤,≥, <, >}, we say that a tuple t over R satisfies β (denoted as
t |= β) if replacing the occurrences of each attribute A in β with t[A] makes β true.

2.1 Aggregation Expressions

Aggregation expressions consist of linear inequalities on aggregate-sum functions de-
fined on numerical databases, and will be used to express both aggregate constraints
and boolean aggregate queries.

Given a relation scheme R, an attribute expression e on R is either a constant or a
numerical attribute of R. Given an attribute expression e on R and a tuple t over R, we
denote as e(t) the value e, if e is a constant, or the value t[e], if e is an attribute.

Given a relation scheme R and a sequence y of variables, an aggregation function
χ(y) on R is a triplet 〈R, e, α(y)〉, where e is an attribute expression on R and α(y)
is a (possibly empty) boolean combination of atomic comparisons of the form X * Y ,
where X and Y are constants, attributes of R, or variables in y, and * is a comparison
operator in {=, 
=,≤,≥, <, >}. When empty, α will be denoted as ⊥.

Given an aggregation function χ(y) = 〈R, e, α(y)〉 and a sequence a of constants
with |a| = |y|, χ(a) maps every instance r of R to

∑
t∈r∧t|=α(a) e(t), where α(a)

is the (ground) boolean combination of atomic comparisons obtained from α(y) by
replacing each variable in y with the corresponding value in a. We assume that, in the
case that the set of tuples selected by the evaluation of an aggregation function χ is
empty, χ evaluates to 0.

Example 2. The following aggregation functions are defined on the relational scheme
CashBudget(Year, Section, Subsection, Type, Value) of Example 1:

χ1(x, y, z) = 〈CashBudget, Value, (Section=x∧ Year=y∧ Type=z 〉
χ2(x, y) = 〈CashBudget, Value, (Subsection=x)∧ Year=y 〉
χ3(x) = 〈CashBudget, Value, (Subsection=x) 〉

Basically, these aggregation functions are equivalent to the following SQL queries:

χ1(x, y, z) = χ2(x, y) = χ3(x) =
SELECT sum (Value)
FROM CashBudget

WHERE Section=x

AND Year=y

AND Type=z

SELECT sum (Value)
FROM CashBudget

WHERE Subsection=x

AND Year=y

SELECT sum (Value)
FROM CashBudget

WHERE Subsection=x

Function χ1 returns the sum of Value of all the tuples having Subection x, Year y, and
Type z. For instance, χ1(‘Disbursements’, 2008, ‘det’) returns 120 + 20 + 80 = 220, and
χ1(‘Receipts’, 2009, ‘aggr’) returns 200. In our running example, as Year, Subsection is a
key for CashBudget, the sum returned by χ2 is an attribute value of a single tuple. For
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instance, χ2(2008, ‘cash sales’) = 100, and χ2(2008, ‘receivables’) = 120. Aggrega-
tion function χ3 returns the sum of Value of all the tuples having Subection x. Hence,
χ3(‘cash sales’) returns 100 + 100 = 200. ��

Definition 1 (Aggregation expression). Given a database scheme D, an aggregation
expression on D is of the form: ∀x (φ(x) =⇒

∑n
i=1 ci · χi(yi) ≤ K), where:

1. n is a positive integer, and c1, . . . , cn, K are constants in Z;
2. φ(x) is a (possibly empty) conjunction of atoms constructed from relation names,

constants, and all the variables in x;
3. each χi(yi) is an aggregation function, where yi is a list of variables and constants,

and every variable that occurs in yi also occurs in x.

The assumption that the constants in aggregation expressions are integers yields no loss
of generality, as the case of rational constants is easily reducible to this case. A database
D satisfies an aggregation expression ae, denoted D |= ae, if, for all the substitutions
θ of the variables in x with constants making φ(θ(x)) true, the inequality

∑n
i=1 ci ·

χi(θ(yi)) ≤ K holds on D. For a set of aggregation expressions E , D satisfies E
(denoted as D |= E) if D |= ae for each ae ∈ E .

Example 3. The following aggregation expression is defined on the relational scheme
CashBudget of Example 1 and exploits aggregation function χ1 defined in Example 2:

∀ y, x, z, v CashBudget(y, x, z, v) =⇒ χ1(x, y, ‘det’)− χ1(x, y, ‘aggr’) ≤ 0

An instance of the CashBudget scheme satisfies the condition expressed by this aggre-
gation expression if, for each section and year, the sum of the values of all detail items
is less than the value of the aggregate item of the same section and year. ��

We now introduce a restricted but expressive form of aggregation expressions,
namely steady aggregation expressions. Let R(A1, . . . , An) be a relation scheme and
R(x1, . . . , xn) an atom, where each xj is either a variable or a constant. For each
j ∈ [1..n], we say that the term xj is associated with the attribute Aj . Moreover, we
say that a variable xi is a measure variable if it is associated with a measure attribute.

Definition 2 (Steady aggregation expression). An aggregation expression ae on a
given database scheme D is steady if:
1. for every aggregation function 〈R, e, α〉 on the right-hand side of ae, no measure

attribute occurs in α;
2. measure variables occur at most once in ae;
3. no constant occurring in the conjunction of atoms φ on the left-hand side of ae is

associated with a measure attribute.

Example 4. It is easy to see that the aggregation expression of Example 3 is steady.
In fact: (i) the formula α of the aggregation function χ1 on the right-hand side of the
constraint contains no measure attribute; (ii) the unique measure variable v does not
occur as argument of χ1 and it does not appear in any other conjunct on the left-hand
side of the constraint; (iii) no constant is associated with a measure attribute on the left-
hand side of the constraint. ��
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Observe that aggregate constraints enable equalities to be expressed as well, since an
equality can be viewed as a pair of inequalities.

In the following, for the sake of brevity, equalities will be written explicitly. More-
over, universal quantification will be omitted and variables in φ which do not occur in
any aggregation function will be replaced with the symbol ‘ ’.

2.2 Aggregate Constraints

Aggregate constraints are defined by aggregate expressions as follows.

Definition 3 ( Aggregate constraint). An aggregate constraint on a database scheme
D is an aggregation expression on D, and it is steady if defined by a steady aggregation
expression.

Given a database D and a set of aggregate constraints AC, we say that D is consistent
[resp. inconsistent] w.r.t. AC if D |= AC [resp. D 
|= AC].

Example 5. Constraints κ1, κ2 and κ3 of Example 1 can be expressed as follows:

κ1 : CashBudget(y, x, , ) =⇒ χ1(x, y, ‘det’)− χ1(x, y, ‘aggr’) = 0
κ2: CashBudget(y, , , ) =⇒ χ2(‘net cash inflow’, y)−

(χ2(‘total cash receipts’, y)− χ2(‘total disbursements’, y)) = 0
κ3: CashBudget(y, , , ) =⇒ χ2(‘ending cash balance’, y)−

(χ2(‘beginning cash’, y) + χ2(‘net cash balance’, y)) = 0
Reasoning as in Example 4, it is easy to see that also κ2 and κ3 are steady. �

2.3 Repairing Inconsistent Databases

Updates at attribute-level will be used as the basic primitives for repairing data.

Definition 4 (Atomic update). Let t=R(v1, . . . , vn) be a tuple on the relation scheme
R(A1 : Δ1, . . . , An : Δn). An atomic update on t is a triplet < t, Ai, v

′
i >, where

Ai ∈MR and v′i is a value in Δi and v′i 
= vi.

Update u =< t, Ai, v
′
i > replaces t[Ai] with v′i, thus yielding the tuple u(t) =

R(v1, . . . , vi−1, v
′
i, vi+1, . . . , vn). We denote the pair < tuple, attribute > updated by

an atomic update u as λ(u). For instance, performing u =< t2, Value, 130 > in the
case of our running example, results in the tuple: u(t2) = CashBudget(‘Receipts’,
‘cash sales’, ‘det’, 130), and λ(u) =< t2, V alue >.

Definition 5 (Consistent database update). Let D be a database and U =
{u1, . . . , un} be a set of atomic updates on tuples of D. The set U is said to be a
consistent database update iff ∀ j, k ∈ [1..n] if j 
=k then λ(uj) 
= λ(uk).

Informally, a set of atomic updates U is a consistent database update iff for each pair
of updates u1, u2 ∈ U , either u1 and u2 do not work on the same tuple, or they change
different attributes of the same tuple. The set of pairs < tuple, attribute > updated by
a consistent database update U will be denoted as λ(U) = ∪ui∈U{λ(ui)}. We will
denote as U(D) the database resulting from performing all the atomic updates in U on
the database D.
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Definition 6 (Repair). Let D be a database scheme, AC a set of aggregate constraints
on D, and D an instance of D such that D 
|= AC. A repair ρ for D is a consistent
database update such that ρ(D) |= AC.

Example 6. A repair ρ1 for CashBudget w.r.t.AC = {κ1, κ2, κ3} consists of increasing
attribute Value in the tuples t2 and t18 up to 130 and 190 respectively, that is, ρ1 = {<
t2, Value, 130 >, < t18, Value, 190 >}. ��
In general, given a database D inconsistent w.r.t. a set of aggregate constraints AC,
different repairs can be performed on D yielding a new consistent database. Indeed,
they may not be considered “reasonable” the same. For instance, if a repair exists for
D changing only one value in one tuple of D, any repair updating all the values in
the tuples of D can be reasonably disregarded. To evaluate whether a repair should
be considered “relevant” or not, we use the ordering criterion stating that a repair ρ1

precedes a repair ρ2 if the number of changes issued by ρ1 is less than ρ2.

Example 7. Another repair for CashBudget is: ρ′ = {< t2, Value, 130 >, <
t15, Value, 120 >, < t16, Value, 50 >, < t18, Value, 190 >}. However ρ′ consists
of more atomic updates than ρ1, where ρ1 is the repair defined in Example 6. ��
Definition 7 (Card-minimal repair). Let D be a database scheme, AC a set of ag-
gregate constraints on D, and D an instance of D. A repair ρ for D w.r.t. AC is a
card-minimal repair iff there is no repair ρ′ for D w.r.t. AC such that |λ(ρ′)| < |λ(ρ)|.
Example 8. In our running example, the set of card-minimal repairs is {ρ1, ρ2},
where ρ1 is the repair defined in Example 6 and ρ2 = { < t3, Value, 150 >,
< t18, Value, 190 >}. ��

2.4 Boolean Aggregate Queries

Aggregate queries are defined starting from aggregate expressions as follows.

Definition 8 (Boolean Aggregate Query). A boolean aggregate query q on a database
scheme D is an aggregation expression on D, and it is steady if it is defined by a steady
aggregation expression. The answer of q over a database D instance of D is true if
D |= q, false otherwise.

Given an aggregate query q, we define ¬q as the aggregation expression
∀x (φ(x) =⇒

∑n
i=1 ci · χi(yi) ≥ K + 1).

Example 9. Queries q1, q2 and q3 defined in Example 1 can be expressed as follows:

q1 : CashBudget(y, , , ) =⇒ χ2(‘net cash inflow’, y) ≥ 20
q2 : CashBudget( , , , ) =⇒ χ3(‘receivables’) ≥ χ3(‘payment of accounts’)
q3 : CashBudget( , , , ) =⇒ χ3(‘cash sales’)≥χ2(‘long-term financing’, 2009).
It is easy to see that all the above queries are steady. ��
We adapt the notion of consistent query answer introduced in [1] to our setting.

Definition 9 (Consistent query answer). Let D be a database scheme, D an instance
of D, AC a set of aggregate constraints on D and q an aggregate query over D. The
consistent query answer to q on D w.r.t. AC, denoted as CQAD,AC,q(D), is true iff, for
each card-minimal repair ρ for D w.r.t. AC, it holds that ρ(D) |= q.
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3 Query Answering

In this section, we define a strategy for computing consistent answers of boolean steady
aggregate queries in the presence of steady aggregate constraints. Before describing our
approach, we characterize the complexity of the CQA problem.

Theorem 1. Let D be a fixed database scheme, AC a fixed set of aggregate constraints
on D, q a fixed aggregate query over D, and D an instance of D. Deciding whether
CQAD,AC,q(D) is true is Δp

2[log n]-complete, even if both AC and q are steady.

Although steady aggregation expressions are less expressive than (general) aggregation
expressions, Theorem 1 states that the consistent query answer problem is hard also
when both the aggregate constraints and the query are steady. From a practical stand-
point, the loss in expressiveness is not dramatic, as steady aggregate constraints (resp.,
steady aggregate queries) are expressive enough to model conditions ensuring data con-
sistency (resp., to check conditions on aggregate data) in several real-life contexts. In
fact, all the constraints and queries used in our running example are steady.

Our technique for computing consistent answers of steady aggregate queries under
steady aggregate constraints is based on a translation of the CQA problem into the In-
teger Linear Programming (ILP) problem [18], thus allowing us to exploit well-known
techniques for solving ILP problems to compute consistent query answers. Our tech-
nique exploits the restrictions imposed on steady aggregation expressions. As explained
later, this approach does not work for constraints and queries defined by (general) ag-
gregation expressions.

3.1 Expressing Steady Aggregation Expressions as a Set of Inequalities

Given a database scheme D, a set of steady aggregation expressions E on D, and an
instance D of D, we show how the triplet 〈D, E , D〉 can be translated into a set of
linear inequalities S(D, E , D) such that every solution of S(D, E , D) corresponds to a
database update U such that U(D) |= E .

We first describe the translation for a single steady aggregation expression ae
(which has the form: ∀x φ(x) =⇒

∑n
i=1 ci · χi(yi) ≤ K , where ∀i ∈ [1..n],

χi(y) = 〈Ri, ei, αi(yi)〉). The translation results from the following three steps (for
every relation scheme R� in D, we will denote its instance in D as r�):

1) Associating variables with pairs 〈tuple, measure attribute〉:
For each tuple t of a relation instance r� in D and measure attribute Aj ∈ MR�

,
we create the integer variable zt,Aj ;

2) Translating each χi into sums of variables and constants:
Let Θ(ae) be the set of the ground substitutions of variables in x with constants
such that ∀θ ∈ Θ(ae) φ(θx) is true on D. For every ground substitution θ ∈ Θ(ae)
and every χi, we denote as Tχi(θ) the set of tuples involved in the evaluation of χi

w.r.t. θ, that is Tχi(θ) = {t : t ∈ ri ∧ t |= αi(θyi)}, where ri is the instance in
D of the relation scheme Ri in χi.
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Then, for every ground substitution θ ∈ Θ(ae), we define the translation of χi w.r.t.
θ as:

P(χi, θ) =

{∑
t∈Tχi

(θ) zt,Aj if ei is the measure attribute Aj ;∑
t∈Tχi

(θ) ei(t) otherwise.

3) Translating ae into a set of linear inequalities:
The expression ae is translated into the set S(D, ae, D) of linear inequalities
containing, for every ground substitution θ ∈ Θ(ae), the inequality

∑n
i=1 ci ·

P(χi, θ) ≤ K .

The system of linear inequalities S(D, E , D) (which takes into account all the aggrega-
tion expressions in E) is then defined as S(D, E , D) = ∪ae∈E S(D, ae, D).

For the sake of simplicity, in the following we assume that the pairs 〈t, Aj〉, where
Aj is the name of a measure attribute of tuple t, are associated with distinct integer
indexes (the set of these indexes will be denoted as I). Therefore, being i the integer
associated with the pair 〈t, Aj〉, the variable zt,Aj will be denoted as zi.

Example 10. In “Cash budget” example, we associate each pair 〈ti, V alue〉 with the
integer i, thus I = {1, . . . , 20}. The translation of the aggregation expressions of Ex-
ample 4, which are the constraints κ1, κ2, κ3 of our running example, is the following
(we explicitly write equalities instead of inequalities):{

z2 + z3 = z4; z5 + z6 + z7 = z8; z12 + z13 = z14; z15 + z16 + z17 = z18;
z4 − z8 = z9; z14 − z18 = z19; z1 + z9 = z10; z11 + z19 = z20.

�
3.2 Computing Consistent Answers to Boolean Aggregate Queries

Our approach for computing consistent query answers is based on the resolution of
specific ILP problems, defined starting from the ILP problem introduced below.

Definition 10 (ILP(D, E , D)). Given a database scheme D, a set E of steady aggre-
gation expressions onD, and an instance D of D, ILP(D, E , D) is an ILP of the form:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A × z ≤ B;
wi = zi − vi ∀ i ∈ I;
zi −M ≤ 0; −zi −M ≤ 0; ∀ i ∈ I
wi −Mδi ≤ 0; −wi −Mδi ≤ 0; ∀ i ∈ I;
zi, wi ∈ Z; δi ∈ {0, 1}; ∀ i ∈ I;

where:
(i) A × z ≤ B is the set of inequalities S(D, E , D) (z is the vector of variables zi

with i ∈ I);
(ii) for each i ∈ I, vi is the database value corresponding to the variable zi, that is,

if zi is associated with the pair 〈t, Aj〉, then vi = t[Aj ];
(iii) M = n · (ma)2m+1, where: a is the maximum among the modules of the coeffi-

cients in A and of the values vi, and m = |I|+ r, and n = 2 · |I|+ r, where r is
the number of rows of A.
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Basically, for every solution of ILP(D, E , D), the variables zi are assigned values
which satisfy A × z ≤ B (that is, S(D, E , D)). Hence, the variables zi of a solution
of ILP(D, E , D) take values which, once assigned to the corresponding pairs tuple,
attribute, make the database satisfy the aggregate expressions E .

In the definition above, each variable wi represents the difference between the vari-
able zi associated with a pair 〈t, Aj〉 and the original database value vi = t[Aj ]. The
constant M is introduced for a twofold objective: considering solutions of the first two
inequalities with polynomial size1 w.r.t. the database size, and building a mechanism for
counting the number of variables zi which are assigned a value different from the origi-
nal value of the corresponding pair tuple, attribute. The value of M derives from a well-
known general result shown in [18] regarding the existence of bounded solutions of sys-
tems of linear equalities. In our case, this result implies that, if the first two (in)equalities
of ILP(D, E , D) have at least one solution, then they admit at least one solution where
(absolute) values are less than M . Hence, the inequalities of ILP(D, E , D) where M
occurs entail that:
– ILP(D, E , D) has solution iff the first two inequalities have a solution. In particular,

each solution of ILP(D, E , D) can be obtained by taking any solution of the first
two inequalities with values less than M and then properly adjusting each δi;

– every solution of ILP(D, E , D) is of polynomial size w.r.t. the size of the database.
In fact, solutions of the first two inequalities with values larger than M do not cor-
respond to solutions of ILP(D, E , D), as, if |wi| > M , there is no way of choosing
δi to satisfy both wi −Mδi ≤ 0 and −wi −Mδi ≤ 0.

– for every solution of ILP(D, E , D), the sum of the values assigned to variables δi is
an upper bound on the number of variables zi different from the corresponding vi. In
fact, if wi has a value different from 0 (meaning that zi has a value different from the
“original” vi) then δi is assigned 1. It is easy to see that the vice versa does not hold,
thus this sum does not represent the exact number of variables zi different from the
original values.

For any solution s of ILP(D, E , D), the value taken by variable z in s will be denoted
as s[z]. The above-mentioned properties of ILP(D, E , D) are stated in the theorem
below.

Theorem 2. Every solution s of an instance of ILP(D, E , D) one-to-one corresponds
to a consistent database update U for D such that:

(i) for each zi associated with the pair 〈t, Aj〉 and such that s[zi] 
= t[Aj ], U con-
tains the atomic update 〈t, Ai, s[zi]〉;

(ii) ∀ i ∈ I, it is the case that −M ≤ s[zi] ≤ M ;
(iii) U(D) |= E;
(iv) |U | ≤

∑
i∈I s[δi].

Thus, every solution of ILP(D, E , D) corresponds to a consistent database update U
making D satisfy E . We point out that removing the steadiness restriction from aggre-
gation expressions may result in breaking this correspondence. Intuitively, this derives

1 Observe that the size of M is polynomial in the size of the database, as it is bounded by
log n + (2 · m + 1) · log(ma).
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from the fact that, in the presence of non-steady aggregation expressions, applying to D
the set of updates corresponding to a solution of ILP(D, E , D) may trigger violations
of some aggregation expressions in E which were not encoded in ILP(D, E , D).

It is worth nothing that, since aggregate constraints are aggregation expressions, the
above result can be also read as follows: given a set of aggregate constraints AC on
D and a database D instance of D, the consistent database update defined by a so-
lution of ILP(D,AC, D) is a repair for D w.r.t. AC whose cardinality is bounded
by
∑

i∈I δi and whose atomic updates assign values bounded by M . The following
corollary strengthens this result, as it states that the minimum of

∑
i∈I δi among all the

solutions of ILP(D,AC, D) is the cardinality of any card-minimal repair.

Corollary 1. Let D be a database scheme, AC a set of steady aggregate constraints on
D, and D an instance of D. A repair for D w.r.t. AC exists iff ILP(D,AC, D) has at
least one solution, and the optimal value of the optimization problem:

OPT (D,AC, D) := minimize
∑
i∈I

δi subject to ILP(D,AC, D)

coincides with the cardinality of any card-minimal repair for D w.r.t. AC.

We now show how the solution of OPT (D,AC, D) can be exploited to compute con-
sistent query answers. Let q be an aggregate query over D. Consider the ILP prob-
lem CQAP(D,AC, q, D) obtained by assembling the inequalities in ILP(D,AC ∪
{¬q}, D) with the equality λ =

∑
i∈I δi, where λ is the value returned by

OPT (D,AC, D). The following theorem states computing the consistent query an-
swer of q is equivalent to deciding whether CQAP(D,AC, q, D) has solution.

Theorem 3. Let D be a database scheme, AC a set of steady aggregate constraints on
D, q a steady aggregate query on D, and D an instance of D. The consistent query
answer to q over D w.r.t. AC is true iff CQAP(D,AC, q, D) has no solution.

The result above derives from these facts:

- the solutions of ILP(D,AC ∪ {¬q}, D) correspond to repairs for D w.r.t. AC such
that q evaluates to false on the repaired databases;

- adding the equality λ =
∑

i∈I δi means considering card-minimal repairs only.

Hence, CQAP(D,AC, q, D) has a solution iff there is a card-minimal repair for D
w.r.t. AC such that q evaluates to false on the repaired databases, i.e., the consistent
answer to q is false.

Example 11. The ILP problem CQAP(D,AC, q, D) for our running example is shown
in Fig. 1. Herein, AC = {κ1, κ2, κ3}, q is the aggregate query q3, λ = 2 (as shown in
Example 8), and the inequality z2+z12 ≤ z17 encodes¬q3, whereas the other equalities
on variables zi encode the aggregate constraints κ1, κ2, and κ3. It is easy to see that
there is no solution for the problem shown in Fig. 1. Hence, according Theorem 3, the
consistent answer of q3 is true. ��
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 =
∑

i=∈I δi

z2 + z3 = z4

z5 + z6 + z7 = z8

z12 + z13 = z14

z15 + z16 + z17 = z18

z4 − z8 = z9

z14 − z18 = z19

z1 + z9 = z10

z11 + z19 = z20

z2 + z12 ≤ z17

w1 = z1 − 50
w2 = z2 − 100

w3 = z3 − 120
w4 = z4 − 250
w5 = z5 − 120
w6 = z6 − 20
w7 = z7 − 80
w8 = z8 − 220
w9 = z9 − 30
w10 = z10 − 80
w11 = z11 − 80
w12 = z12 − 100
w13 = z13 − 100
w14 = z14 − 200

w15 = z15 − 130
w16 = z16 − 40
w17 = z17 − 20
w18 = z18 − 120
w19 = z19 − 10
w20 = z20 − 90
wi − Mδi ≤ 0 ∀i ∈ I
−wi − Mδi ≤ 0 ∀i ∈ I
zi − M ≤ 0 ∀ i ∈ I
−zi − M ≤ 0 ∀ i ∈ I
zi, wi ∈ Z ∀i ∈ I
δi ∈ {0, 1} ∀i ∈ I

Fig. 1. Instance of CQAP(D,AC, q, D) obtained for the running example

3.3 Reducing the Size of ILPs

We now show that the size of the two ILP problems OPT (D,AC, D) and
CQAP(D,AC, q, D) to be solved for computing the consistent answer can be reduced
in the number of both variables and (in)equalities, thus improving performance.

We first consider the case of OPT (D,AC, D), which is built starting from
ILP(D,AC, D). The latter consists of the inequality A × z ≤ B augmented with fur-
ther inequalities involving new variables δi and wi. The number of these variables and
inequalities depends on the number of variables occurring in A × z ≤ B: the presence
of a variable zi entails the presence of a pair of variables wi, δi, as well as 5 inequalities.
Hence, a remarkable reduction in size of ILP(D,AC, D) can be obtained by reducing
the number of variables occurring in A × z ≤ B.

A classical strategy for reducing the size of a set of inequalities consists of remov-
ing linearly dependent columns or rows of the coefficient matrix. Although the pres-
ence of redundant columns is unlikely to occur on the coefficient matrix of the whole
ILP(D,AC, D), the presence of this kind of columns in the matrix A is a frequent
situation in our scenario. For instance, consider the “Cash budget” example: all the
variables zi corresponding to detail items of the cash budget appear in exactly one in-
equality (i.e., the inequality encoding the constraint that the sum of detail items for each
section must be equal to the aggregate item in the same section). It is easy to see that
the columns of A corresponding to these variables are linearly dependent. Removing
linearly dependant columns is the same as replacing linear combinations of variables
with new variables. For instance, consider the inequality A × z ≤ B in Example 10,
which is a subset of the inequalities of the instance of CQAP(D,AC, q, D) of Fig. 1. It
is easy to see that the columns corresponding to the variables z5, z6, z7 are linearly de-
pendent, thus these variables can be replaced with the unique variable z5,6,7. Reasoning
analogously on the other variables, the inequality A × z ≤ B in Example 10 becomes:{

z2,3 = z4; z5,6,7 = z8; z12,13 = z14; z15,16,17 = z18;
z4 − z8 = z9; z14 − z18 = z19; z1 + z9 = z10; z11 + z19 = z20.
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Correspondingly, the reduced ILP(D,AC, D) consists of 8+14×5 = 78 inequalities
on 14 × 3 = 42 variables, instead of 8 + 20 × 5 = 108 inequalities on 20 × 3 = 60
variables.

An analogous reduction can be applied to reduce the size of CQAP(D,AC, q, D):
in this case, the inequality A × z ≤ B on which the reduction is applied encodes
both the constraints AC and the negated query ¬q. The reduced version of the instance
CQAP(D,AC, q, D) of Fig. 1 is reported in Fig. 2. In this case, z5, z6, z7 have been
grouped into z5,6,7, while z15, z16, z17 into z15,16,17. In this figure, the set of the indices
of the variables zi occurring in the reduced version of CQAP(D,AC, q, D) is denoted
as Ired. Observe that Ired = I \ I ∪ Inew, where I = {5, 6, 7, 15, 16, 17} are the
indices of variables zi grouped in some new variables and Inew are the indices of the
new variables grouping old ones.

It is worth noting that the elimination of linearly dependent columns yields no re-
duction of size when applied on the whole coefficient matrixes of ILP(D, E , D) or
CQAP(D,AC, q, D): it is easy to see that the inequalities different from A × z ≤ B
make all the columns of the coefficient matrixes linearly independent. Hence, it is
mandatory that linearly dependent columns in A × z ≤ B are removed before gen-
erating ILP(D, E , D) and CQAP(D,AC, q, D).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 =
∑

i∈Ired δi

z2 + z3 = z4

z5,6,7 = z8

z12 + z13 = z14

z15,16,17 = z18

z4 − z8 = z9

z14 − z18 = z19

z1 + z9 = z10

z11 + z19 = z20

z2 + z12 ≤ z17

w1 = z1 − 50

w2 = z2 − 100
w3 = z3 − 120
w4 = z4 − 250
w5,6,7 = z5,6,7 −120 −20 −80
w8 = z8 − 220
w9 = z9 − 30
w10 = z10 − 80
w11 = z11 − 80
w12 = z12 − 100
w13 = z13 − 100
w14 = z14 − 200
w15,16,17 = z15,16,17 −130 −40 −20

w18 = z18 − 120
w19 = z19 − 10
w20 = z20 − 90
wi − Mδi ≤ 0 ∀i ∈ Ired

−wi − Mδi ≤ 0 ∀i ∈ Ired

zi − M ≤ 0 ∀ i ∈ Ired

−zi − M ≤ 0 ∀ i ∈ Ired

zi, wi ∈ Z ∀i ∈ Ired

δi ∈ {0, 1} ∀i ∈ Ired

Fig. 2. Reduced-size instance of CQAP(D,AC, q, D) obtained for the running example

4 Conclusions

We have introduced a framework for computing consistent answers to boolean aggregate
queries in numerical databases violating a given set of aggregate constraints, which ex-
ploits a transformation into integer linear programming (ILP), thus allowing us to exploit
well-known techniques for solving ILP problems. Further work will be devoted to de-
vising strategies for computing consistent answers to more expressive forms of queries.
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Abstract. Significant research efforts have recently been dedicated to
modeling and querying uncertain data. In this paper, we focus on skyline
analysis of uncertain data, modeled as uncertain objects with probability
distributions over a set of possible values called instances. Computing
the exact skyline probabilities of instances is expensive, and unnecessary
when the user is only interested in instances with skyline probabilities
over a certain threshold. We propose two filtering schemes for this case:
a preliminary scheme that bounds an instance’s skyline probability for
filtering, and an elaborate scheme that uses an instance’s bounds to filter
other instances based on the dominance relationship. We experimentally
demonstrate the effectiveness of our filtering schemes on both real and
synthetic data sets and show the efficiency of our schemes compared with
other algorithms.

1 Introduction

Skyline analysis is widely used in multi-criteria decision making applications
where different criteria often conflict with each other [2]. Given a set of points
in data space D, we say point p1 dominates p2 if p1 is no worse than p2 in all
dimensions and better than p2 in at least one dimension. The skyline analysis
then returns all points that are not dominated by any other point in the data
set, known as “skyline points” [4].

In applications where uncertainty is inherent, such as sensor networks, data
integration, and location based applications, the skyline analysis needs to be per-
formed on uncertain data. It was [16] that first proposed probabilistic skylines for
uncertain data modeled as uncertain objects with probability distributions over
a set of possible values called instances. Unlike the traditional skyline analysis,
with uncertain data many points can represent mutually exclusive instances of
the same object, and each instance is now associated with a skyline probability:
the probability that the instance (i) is the one that occurs among the mutually
exclusive set of instances (i.e., the object) to which it belongs, and (ii) is not
dominated by any occurring instance of another object. The skyline probability
of an object is the sum of the skyline probabilities of its instances.
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While skyline results in [16] are objects with skyline probabilities over a
given threshold, [2] computes skyline probabilities for all instances by moti-
vating instance-level probabilistic skylines with no threshold. Following [2], in
this paper, we study the instance-level probabilistic skylines when thresholds are
available. Our goal is to leverage the threshold to efficiently identify instances
whose skyline probabilities meet the threshold by designing a scheme that quickly
filters instances out while minimizing the number of the expensive skyline proba-
bility computations. The key idea of filtering is that the determination of “above
threshold” or “below threshold” of an instance’s skyline probability is done us-
ing computations that are less expensive than the full-blown computation of
its exact skyline probability. These easier-to-compute values fall into two cat-
egories: upper bounds on the exact skyline probabilities, and lower bounds. If
an instance’s upper bound is shown to be below the threshold, its exact skyline
probability is guaranteed to be below the threshold, i.e., the instance is “uninter-
esting”; we call this “negative filtering”. Conversely, if an instance’s lower bound
is shown to be above or equal to the threshold, then its exact skyline probability
is guaranteed to meet the threshold, i.e., the instance is “interesting”; we call
this “positive filtering”. Our main contributions are summarized as follows:

i) We propose an instance-level probabilistic skyline problem for identifying in-
stances with skyline probabilities over a given threshold.
ii) We present two instance-level filtering schemes:

Preliminary filtering scheme: Techniques for avoiding the expensive compu-
tation of exact skyline probabilities by bounding them with easier-to-compute
values for comparing to the threshold.

Elaborate filtering scheme: Techniques for massive filtering through inter-
instance comparisons that leverage one instance’s bounds to filter other instances
based on the dominance relationship.

iii) Our experimental results on both real and synthetic data sets show that our
algorithm is highly effective in filtering out unqualified instances. In addition,
we show the efficiency of this new algorithm over our previous algorithm in [2]
by comparing their respective time costs.

The rest of the paper is organized as follows: Section 2 formally defines our
problem. Section 3 introduces probabilistic range trees for bounding skyline prob-
abilities. Section 4 and Section 5 present our two filtering schemes as well as the
final algorithm for probabilistic skylines. Section 6 discusses our experimental
study on both real and synthetic data sets. Section 7 reviews the related work,
and Section 8 concludes our work.

2 Problem Definition

Our probabilistic skyline problem uses the same uncertain data model as in [2],
where uncertain data is modeled as uncertain objects with probability distribu-
tions over a set of possible values called instances. An example is given in Fig. 1.
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Fig. 1. Probabilistic skylines with three objects and eight instances

Notice that object O2 does not exist with probability 0.2, since the probabilities
of its three instances sum up to 0.8 < 1.

Generally, we consider each instance as a d-dimensional point in data space
D. The dominance relationship “≺” between such points (i.e. instances) is the
same as the dominance relationship between points for certain data: Given a
set S of n d-dimensional data points: p1, · · · , pn in D (D1, · · · ,Dd), point pi

is said to dominate point pj (i.e., pi ≺ pj) if ∀k ∈ [1, d], pi.Dk ≤ pj .Dk and
∃l ∈ [1, d], pi.Dl < pj .Dl. The transitivity of the dominance relationship holds
between instances [16], i.e. if p1 ≺ p2, p2 ≺ p3, then p1 ≺ p3.

Definition 1. The skyline probability of an instance p, i.e., Prsky(p), is the
probability that p exists and no instance of other uncertain objects that dominates
p exists. Let m be the total number of uncertain objects and let p ∈ Ok, we have:

Prsky(p) = Pr(p) ·
m∏

i=1,i�=k

(1−
∑

q∈Oi,q≺p

Pr(q)) (1)

The skyline probability of an uncertain object is the sum of the skyline probabil-
ities of all its instances.

We denote the upper bound of Prsky(p) as Pr+
sky(p), and the lower bound as

Pr−sky(p). In Fig. 1, for p6 to be a skyline point, none of the instances: p1, p3, p4, p7

should exist. Since p6 and p4 both belong to O2, the existence of p6 guarantees
that p4 does not exist (instances of the same uncertain object are mutually
exclusive). Hence Prsky(p6) = Pr(p6) ∗ (1 − Pr(p1) − Pr(p3)) ∗ (1− Pr(p7)) =
0.2 ∗ 0.3 ∗ 0.8 = 0.048.

The probabilistic skyline problem we study in this paper is defined as follows:

Definition 2. Given a data set S of n instances that belong to m uncertain ob-
jects and a probability threshold θ, the instance-level probabilistic skyline analysis
returns all instances with skyline probabilities at least θ, i.e., return the skyline
set Ssky such that: Ssky = {p ∈ S|Prsky(p) ≥ θ}.

3 Probabilistic Range Trees

We propose two indexing structures based on the range tree [21] to facilitate
bounding and computing skyline probabilities. We augment the original range
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Fig. 2. A two-dimensional probabilistic range tree

trees with additional probabilistic information stored at the internal nodes, which
can be leveraged when querying the trees to quickly bound the skyline proba-
bility of a given instance p (the query instance). We call such trees probabilistic
range trees (PRT). Section 3.2 introduces a general PRT built upon all n in-
stances with probabilistic information. A similar indexing structure is described
in Section 3.3, which is built for every uncertain object and has different proba-
bilistic information. Our algorithms for the preliminary filtering use both trees,
as we will see later in Section 4.

3.1 Overview

We explain the construction of a PRT on n two-dimensional points (representing
all instances in the data set S): A complete binary tree T is built on top of the
points sorted according to dimension D1. Each internal node v of T points to an
info-list Lv that contains the points at the leaves of the subtree of T rooted at
v, sorted according to their D2 dimension. Therefore, if v has children u and w,
then Lv is the merge of Lu and Lw; we assume that every element of Lv stores
its rank in each of the lists Lu and Lw (which implies that once a search item’s
position has been located in Lv it can be located in Lu and Lw in constant time).
The space is obviously O(n log n). We also assume a derived probability (defined
later in Section 3.2 and Section 3.3) is associated with every element of Lv.

Fig. 2 illustrates a two-dimensional PRT built on top of the eight instances in
Fig. 1. The leaves of the PRT are the instances sorted by the first dimension. Each
of the internal nodes v1 to v7 points to an info-list that contains instances sorted
by the second dimension. For example, v2’s info-list (Lv2) has four instances
p1, p7, p4, p5 sorted by the second dimension, which are leaves of the subtree
rooted at v2.

A d-dimensional PRT is built inductively using d − 1 dimensional PRTs: A
complete tree T is built whose leaves are the n points sorted according to dimen-
sion D1, and each internal node v of T points to a d− 1 dimensional PRT that
contains the elements at the leaves of the subtree of T rooted at v, organized
according to the remaining d− 1 dimensions (i.e., ignoring D1). The space com-
plexity is O(n(log n)d−1). Note that our construction ensures that the points in
the info-lists are always sorted according to the last dimension.
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3.2 General Probabilistic Range Tree

To bound and compute skyline probabilities, we build the general probabilistic
range tree (general-PRT, denoted as Tg) on all n instances in the data set S.

Definition 3. Let p be the k-th instance in an info-list L in Tg (p ∈ Oi, 1 ≤ i ≤
m). let L̂ be the list of the first k instances in L, then the probability associated
with p (denoted as βp) in L is defined as:

βp =
m∏

i=1

(1−
∑

q∈L̂,q∈Oi

Pr(q)) (2)

In other words, the probability βp is the probability that no instance in L̂ exists,
i.e., the probability that p does not exist and no instance before p in L exists.
Given a set of instances, we can create an info-list L by adding each instance to
L and then sort all instances by their d-th dimension values. Then we compute
the probabilistic information βp for each p in L as follows: We use si to record
the current probability sum for object Oi that has appeared in L. As we go
through the instances in L, we update the corresponding probability sum, and
compute βp based on the β of the instance immediately before p in L (see our
technical report [18] for the detailed algorithm). The time needed to compute
all β′s for an info-list L is O(|L|).

3.3 Colored Probabilistic Range Trees

Besides the general-PRT built upon all n instances in S, we also have m specific
PRTs, each built upon the instances of the corresponding object. If we render
each instance with a color that indicates the source of the instance and match
color i to object Oi, then each of these specific PRTs has only one color. Hence
we call these trees colored-PRTs. For the rest of the paper, whenever we say
“instance p of color i”, we mean “instance p that belongs to object Oi”.

Unlike the info-lists of the general-PRT, an info-list of a colored-PRT is asso-
ciated with probability sums for each instance in the list. For the k-th instance p
in an info-list L of a colored-PRT, its probability sum σp =

∑
q∈L̂ Pr(q) where L̂

is the list of the first k instances in L. To compute all σ’s, we simply go through
L and accumulate the probability sum. The time complexity is O(|L|).

4 A Preliminary Filtering Scheme

Now that we have introduced both the general-PRT and the m colored-PRTs,
we can use them to compute the bounds of the skyline probabilities for filtering.

4.1 An Upper Bound

Given a query instance p, we can obtain Pr+
sky(p) by querying the general-PRT

Tg as follows: We begin with the base case of d = 2, as shown in Fig. 3. Given
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Input: the general PRT Tg and a query instance p
Output: an upper bound of Prsky(p)
1. binary search for p.D1 to find the search path P
2. binary search for p.D2 in Lroot, let the position be k
3. upperBound = 1
4. v = root //walk along P starting from root
5. while current node v is not a leaf do
6. if the next node w ∈ P is v.rightChild then
7. k′ = Lv[k].rankL
8. u = v.leftChild
9. β = Lu[k′].beta // read β from v’s left child
10. upperBound = upperBound ∗β
11. k = Lv[k].rankR // locate the position in Lw

12. else // w is a left child of v
13. k = Lv[k].rankL // locate the position in Lw

14. end if
15. v = w // go one level down
16. end while
17. return upperBound

Fig. 3. Compute an upper bound of Prsky(p)

the two-dimensional query p = (p.D1, p.D2), we first locate the search path (call
it P) in Tg from the root to the position of the value p.D1 among the leaves,
then do one binary search for p.D2 in the info-list Lroot of the root of Tg. We
record the position (rank) k of p.D2 in Lroot and call it the search position in
Lroot. We use Lv[k] to denote the k-th instance (let it be q) in the info-list of the
node v and Lv[k].rankL, Lv[k].rankR to denote the rank of q in the info-lists of
v’s left child and right child respectively. These ranks are stored so that given
the position of q in Lv, we can locate its position in info-lists of v’s children in
constant time. Starting from the root, we can obtain the search positions in the
successive nodes as we walk down the search path P .

We define the left fringe nodes of the PRT given the query instance p as the left
children of the nodes on the search path P that are not nodes on P themselves.
For example, in Fig. 2, the search path P for p6 is v1 → v3 → v7 → p6. The
corresponding left fringe nodes are v2 and v6, who are left children of v1 and v3

respectively. The leaf p6 is on P , so it is not a left fringe node despite the fact
that it is a left child of v7 on P .

We use L̂v to denote the truncated info-list of node v (Lv) with instances up
till the search position in Lv. If v is a left fringe node, we call such L̂v a qualified
info-list . Fig. 2 highlights two qualified info-lists for the query p6: One contains
the first three instances of Lv2 and the other contains the first instance of Lv6 .

When we reach the leaf at the end of the query, the variable upperBound in
Fig. 3 is the product of all β’s we read along P . It is indeed an upper bound of
Prsky(p), as we will see shortly. The time complexity for such a query is O(log n).
In the example of Fig. 2, the upper bound that we get for Prsky(p6) is βp4 ∗βp3,
where p4 and p3 are the last instances of the two qualified info-lists.
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We can extend the above the algorithm to case d > 2. The details can be found
in our technical report [18]. The lemma below states that the set of all instances
in qualified info-lists (L̂’s) is the set of all instances in S that dominate p, which
can be easily proved from the search process and the definition of the general-
PRT. Note that the notation L̂i in the lemma is the i-th qualified info-list, not
the qualified info-list at node i.

Lemma 1. Let L̂1 · · · L̂t be the qualified info-lists for query p. Let SL̂ = ∪t
i=1SL̂i

,
where SL̂i

is the set of instances in L̂i. Then we have: 1) ∀q ∈ SL̂, q ≺ p; 2)
∀q′ ∈ S − SL̂, q′ 
≺ p.

For every L̂i, let βi be the β associated with the last instance in L̂i, i.e., βi is
the probability that none of the instances in L̂i exists. The theorem below shows
that although we cannot compute Prsky(p) directly from βi’s, we can compute
the upper bound Pr+

sky(p) from them.

Theorem 1. Let βi be the probability associated with the last instance in L̂i(1 ≤
i ≤ t) where L̂i is a qualified info-list for query p, then

∏t
i=1 βi ≥ Prsky(p).

The proof is available in our technical report [18]. Theorem 1 shows that
∏t

i=1 βi

is indeed a Pr+
sky(p). This directly points out a way for filtering the query in-

stance: Given a threshold θ, as soon as we see the current product of β’s fall
below θ, we can stop and declare that p is not in the skyline, since Prsky(p) < θ
must also hold.

4.2 A Tighter Upper Bound

While using the general-PRT alone gives us an upper bound of the skyline prob-
ability, a tighter upper bound can be achieved by using both the general-PRT
and the colored-PRTs. Therefore, we can compute the tighter upper for filtering
if the upper bound computed in Section 4.1 fails to filter instances.

Let p ∈ Ok. We prove the following in our technical report [18]:

t∏
i=1

βi ≥
∏t

i=1 βi · Pr(p)
1−

∑
q∈Ok,q≺p Pr(q)

≥ Prsky(p)

i.e.
∏t

i=1 βi ·Pr(p)/
(
1−

∑
q∈Ok,q≺p Pr(q)

)
is a tighter upper bound of Prsky(p)

than
∏t

i=1 βi. We know Pr(p) and
∏t

i=1 βi from querying the general-PRT, to
obtain this tighter upper bound, the only part we need to know is

∑
q∈Ok,q≺p

Pr(q), which is a probability sum that can be obtained by querying the PRT of
color k. The algorithm for computing this sum given a query instance p is the
same as computing the upper bound with the general-PRT in Fig. 3 except this
time we carry a sum instead of a product along the search path: Whenever a
new probability σ is read from a qualified info-list, we add it to the current sum.
The final sum is then the sum of all σ’s we read as we walk along the path.
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The corollary below for querying colored-PRTs can be derived immediately
from Lemma 1, which proves that the probability sum returned by querying the
PRT of color k is indeed

∑
q∈Ok,q≺p Pr(q):

Corollary 1. The set of instances in all qualified info-lists obtained by querying
the PRT of color k is the set of all instances of color k in S that dominate p.

4.3 A Lower Bound

We start with d = 2. For every instance (x, y), we define siL(x) (resp., siB(y))
to be the sum of the probabilities of instances of color i that are to the left of
x (resp., below y). It is straightforward to preprocess the n instances so that a
query that asks for siL(x) or siB(y) can be processed in O(log ni) time, where ni

is the number of instances of color i: Simply x-sort (resp., y-sort) the instances
of color i and store in that sorted list the prefix sums of the probabilities. For
each instance p in the list, the prefix sum of p is the sum of probabilities of all
instances in the list up till p. Then we process a siL(x) (resp., siB(y)) query by
locating x (resp., y) in that list and reading the relevant prefix sum. Doing such
preprocessing for all m colors takes O(

∑m
i=1 ni log ni) = O(n log n). Then we can

compute in O(n log n) time for all n instances the following lower bound:

Pr(p) ·max

⎧⎨
⎩

m∏
i=1,i�=k

(1− siL(p.D1)) ,

m∏
i=1,i�=k

(1− siB(p.D2))

⎫⎬
⎭

The above lower bound can be easily extended to d > 2 by computing the
sums of probabilities for each dimension.

5 An Elaborate Filtering Scheme

Recall that the preliminary filtering tries to filter out instances by bounding their
respective skyline probabilities. The improved filtering scheme of the present
section adds inter-instance comparisons to achieve wholesale filtering (positive or
negative), i.e., it considers the impact of one instance’s elimination or survival on
other instances related to it by the dominance relationship. Therefore, the order
in which instances are processed (individually, by bounding skyline probabilities
as in the preliminary scheme) becomes crucial.

5.1 Filtering Rationale

Before presenting our elaborate filtering scheme, we first define a ratio called the
“key ratio” for an instance p:

Definition 4. For any instance p ∈ Ok, p’s key ratio rp = Pr(p)
1−∑p′∈Ok,p′≺p Pr(p′) .

If rp ≥ 1
2 , we call p a “target instance”.
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Input: data set S, threshold θ
Output: the candidate list Cand after filtering
1. create the initial Cand from S //Section 5.2
2. for each instance p in Cand do
3. compute Pr+

sky(p) // Section 4.1 and 4.2
4. if Pr+

sky(p) < θ then

5. remove p from Cand
6. get the set of instances in Cand dominated by p
7. for each instance q in the set do
8. if p is a target instance then
9. remove q from Cand
10. else
11. if p, q are of the same color and Pr(p) ≥ Pr(q) do
12. remove q from Cand
13. end if
14. end if
15. end for each
16. end if
17. end for each
18. return Cand

Fig. 4. Algorithm for negative filtering in the elaborate filtering scheme

rp can be easily computed in O(log n) by querying the PRT of color k to get the
probability sum

∑
p′∈Ok,p′≺p Pr(p′). The following theorem states the conditions

for negative filtering (see our technical report [18] for detailed proof):

Theorem 2. Given instances p ≺ q (p ∈ Ok, q ∈ Ol). If Prsky(p) < θ, then:
1) k 
= l: If p is a target instance, then Prsky(q) < θ.
2) k = l: If p is a target instance or if Pr(p) ≥ Pr(q), then Prsky(q) < θ.

We call instances satisfying the above conditions “killers” – the elimination of
themselves causes the massive extinction of others from the skyline result set. In
contrast, the corollary below states the conditions for instances to be “saviors” –
the survival of themselves causes the survival of others in the final skyline result.
The proof of this corollary depends on the proof of Prsky(p) ≥ Prsky(q), which
is exactly the same as the proof for Theorem 2 given in [18].

Corollary 2. Given instances p ≺ q (p ∈ Ok, q ∈ Ol). If Prsky(q) ≥ θ, then:
1) k 
= l: If p is a target instance, then Prsky(p) ≥ θ.
2) k = l: If p is a target instance or if Pr(p) ≥ Pr(q), then Prsky(p) ≥ θ.

5.2 Instance Scheduling and Elaborate Filtering

The theorem and corollary in the previous section together point out a way
of filtering instances massively based on a single instance’s skyline probability.
As we have mentioned earlier, the order in which instances are processed is
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crucial. The goal of our elaborate filtering scheme is to maximize both negative
filtering (“killing”) and positive filtering (“saving”) as we process the candidate
list so that the number of the PRT queries (either for bounding or computing
the exact skyline probability) is minimized. We propose the following heuristic
for scheduling instances to achieve this goal: Using the standard dominance
counting techniques [17], we preprocess all n instances in O(n log n) time to
compute two quantities count+(p) and count−(p) for every instance p, where
count+(p) is the number of instances dominated by p and count−(p) is the
number of instances that dominate p. We first sort the instances according to
count+ in the descending order. The list then becomes our initial candidate list
for computing the skyline results. Suppose that instances p ≺ q. If p is not
a skyline result and is also a target instance, p can kill all instances that it
dominates (the number of such instances is count+(p)), i.e., p kills q. On the
other hand, if q is a skyline result, q can save all target instances that dominate
it (the number of such instances is ≤ count−(q)), i.e., q saves p if rp ≥ 1

2 .
The algorithm for the elaborate filtering first does the negative filtering, then

the positive filtering. After scheduling all n instances to form the initial candidate
list, we process each instance p in the candidate list in order by upper bounding
Prsky(p) (using the techniques in the preliminary filtering scheme). Then we do
the negative filtering as shown in Fig. 4. In line 6, we obtain the set of instances
that are dominated by p by querying a mirror of our general-PRT (i.e. instead
of returning instances that dominate p, it returns instances that are dominated
by p). The order that we process instances guarantees that the current instance,
if turned out to be a killer, can kill the largest number of instances (because its
count+ is the biggest among the unprocessed candidates).

After the candidate list has been exhausted, i.e. all killings have been done, we
sort the remaining instances in the list by their count− in the descending order.
We then process each instance q in this new candidate list in order by computing
Pr−sky(q) and compare it with the threshold θ to see whether q survives as a
skyline result. If it survives, we move it from the candidate list to the skyline
result Ssky . The rest of the algorithm is similar to the one in Fig. 4. Notice that
we do negative filtering (killing) first, followed by positive filtering (saving). This
is because killing and saving are NOT symmetric: A killer p kills all instances
dominated by p, whereas a savior q only saves a portion of all instances that
dominate q — only the target instances among them can be saved. Hence killing
filters more than saving. It should come before saving to minimize the number
of instances that need to be processed or further evaluated.

Our final algorithm for probabilistic skylines consists of two stages:

1. Filtering stage:

1) Initialize the skyline result Ssky to an empty set
2) Initialize the candidate list to be all n instances in the data set S
3) Use the elaborate filtering scheme to reorder the candidate list, eliminate

instances with skyline probabilities below the threshold θ, and move those with
skyline probabilities at least θ to Ssky .
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2. Refining stage:

1) For each remaining instance p in the candidate list, compute the exact
Prsky(p) by querying the general PRT: From qualified info-lists (L̂’s) for query
p (see Section 4.1), we obtain all instances in S that dominate p, from which we
can compute the exact Prsky(p) according to Equation 1

2) Add p to Ssky if Prsky(p) ≥ θ
3) Return the final Ssky as the set of skyline results

6 Experimental Results

We evaluate the effectiveness and the efficiency of our algorithm on both real
and synthetic data sets on a MAC with Intel T2500 2GHz CPU and 2GB main
memory. All algorithms are implemented in C++.

6.1 Data Sets

In our experiments, we use the real data set: the NBA data set as in [16], kindly
provided to us by the authors of [16]. We treat each player as an uncertain object
and the records of the player as the instances of the object with three dimensions:
number of points, number of assists, and number of rebounds. We assign random
probabilities to instances of the same object such that the probabilities sum up
to 1. We also use a data generator same as in [2] to generate synthetic data
sets.The default values for parameters used in our experiments are: number of
uncertain objects m = 20, 000, number of instances for an object uniformly dis-
tributed in the range [1, 30], number of dimensions d = 3 and threshold θ = 0.01.
Although the absolute value of θ seems small, it is already highly selective for
instance-level skyline probabilities. This is because an uncertain object may have
many instances, resulting in small occurrence probabilities for these instances to
begin with before bounding/computing their skyline probabilities.

6.2 Effectiveness of Filtering

The effectiveness of our schemes is measured by the percentage of instances
filtered in the schemes (i.e. filtering percentage).

Effectiveness of the Preliminary Scheme – We evaluate the filtering per-
centage by upper and lower bounds in our preliminary scheme on the synthetic
data set with m = 2000. We also evaluate the filtering capabilities of upper
bounds (Section 4.1) and the corresponding tighter upper bounds (Section 4.2)
respectively. The results are shown in Fig. 5. We can see that the two upper
bounds filter much more than the lower bounds, due to small instance skyline
probabilities on randomly generated synthetic data sets.

Effectiveness of the Elaborate Scheme – We evaluate the effectiveness of
our elaborate filtering on both the real NBA data set and the synthetic data sets.
The filtering percentage after “killing” and that after “saving” are shown in Fig. 6
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Fig. 5. Filtering percentage by upper and lower bounds
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Fig. 8. NBA skyline set

for the NBA data with a varying threshold. The same plot for the synthetic data
is shown in the first chart of Fig. 7. For both data sets, killing filters instances
massively while saving contributes a much smaller portion to the final filtering
percentage. This demonstrates our earlier statement that killing and saving are
not symmetric (Section 5.2). In addition, the filtering percentage on both data
sets increases as the threshold increases. We also plot the filtering percentage
against the data set size (i.e., m, number of objects) on the synthetic data in
Fig. 7. As the number of objects increases, the filtering percentage increases in
general: With more instances present to compete with each other, instances are
likely to be dominated by more, resulting in smaller skyline probabilities.

The final skyline result set consists of two parts: the instances that are filtered
by saving (“saved” ones), and those whose exact skyline probabilities are verified
to meet the threshold ( “refined” ones). In Fig. 8 for the skyline set on NBA
data, saved instances are a much smaller portion in the final skyline set than
the refined ones. As the threshold increases, less instances are saved as the lower
bound of an instance’s skyline probability is unlikely to be above the threshold.

Fig. 9 shows how filtering and time cost change with respect to dimensions
and the number of instances per object. With increasing dimensions, filtering
percentage decreases because an instance p is less likely to be dominated by
another instance q that has values better than or equal to p’s own values in every
dimension. Increasing dimensions also bring increasing overhead in constructing
and querying PRT’s, resulting in higher total time cost. We also evaluate the
effect of the number of instances per object in the third chart of Fig. 9. The x-
axis represents the maximum number of instances an uncertain object can have,
e.g., 90 means the instance count per object is generated uniformly between 1
and 90. We fixed the total number of instances to 20,000 while changing the
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range of the instance count per object from [1, 30] to [1, 150]. More instances
per object suggests that each instance now has a smaller probability to occur in
the first place, resulting in its smaller skyline probability. Therefore, the filtering
percentage increases, as the number of interesting instances decreases.

To show that our algorithm (call it FilterSchemes) is efficient in leveraging
the threshold for filtering, we implement the näıve approach (call it Naı̈ve) for
probabilistic skylines for benchmarking, which uses a nested loop to compute the
exact skyline probability of an instance by looking at all other instances. We also
compare FilterSchemes with the algorithm we proposed earlier for computing
all skyline probabilities [2] (call it ComputeAll) to see how our new algorithm
with filtering schemes reduces time cost by leveraging the threshold. The time
cost of the three algorithms are shown in Fig. 10 for d = 2. For the second chart,
we fix the total number of instances to be 20,000 while changing the instance
count per object. We observe that FilterSchemes performs significantly better
than Naı̈ve and ComputeAll, and the advantage of FilterSchemes becomes
even bigger as the data set size grows, thanks to our effective filtering schemes
that exploit the threshold for massive filtering. Moreover, the time cost of both
FilterSchemes and Naı̈ve are insensitive to the number of instances per object,
while the performance of ComputeAll is greatly affected: the more instances
objects have, the slower ComputeAll runs. The reason for this is that ComputeAll
combines weighted dominance counting (WDC) algorithm with the grid method
and the decision on which algorithm to use is based on whether an object is a
“frequent” object [2]. With more instances per object, there are more frequent
objects, suggesting that the expensive WDC algorithm has to be run more times.

Fig. 11 provides a detailed view on how the time cost of our algorithm breaks
down to three parts: the time cost for constructing PRT’s (the general-PRT and
the colored-PRT’s), and the time cost for killing, saving and refining. We fix the
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instance count per object to be 30 while varying the number of total instances.
In Fig. 11, although refining takes little time, it is only because there is a small
percentage of instances left to be further evaluated – most of instances have
already been filtered either by killing or saving.

Since our algorithms are designed specifically for the instance-level filtering
with a more general uncertain model than the one in [16] (but same as the one in
[2]), while [16] focuses on the object-level filtering for probabilistic skylines, we
do not think a comparison of the two will yield convincing results when either
their algorithms or our algorithms have to be specifically modified and optimized
in order to suit the other’s case and become comparable.

7 Related Work

Many studies have been conducted to design efficient skyline algorithms for
large data sets [4,15,9,13]. Various kinds of skyline analysis have been proposed
for different settings [20,23,12], but they all focus on certain data. Recently,
much research has been done in querying [5,7,3,19,10,8] and indexing uncertain
data [6,11,1]. Advanced data analysis with uncertain data such as probabilistic
skyline analysis has also been studied [2,14,22]. [16,2] are closest to our work. The
goal in [16] was to find all uncertain objects with skyline probabilities greater
than or equal to a given threshold. Two algorithms (top-down and bottom-up)
were proposed to efficiently compute the skyline results by leveraging upper
and lower bounds of the objects’ skyline probabilities to avoid the expensive
computations of the exact skyline probabilities. In contrast, [2] took a different
approach by motivating the problem of computing skyline probabilities for all
instances and proposed a sub-quadratic algorithm for doing so. It also removed
the two assumptions made in [16] that the instances of the same object has equal
probabilities and the probabilities of the instances sum up to 1. Our work in this
paper follows [2] in studying instance-level probabilistic skylines. However, we
now aim at minimizing the number of exact skyline probability computations by
introducing a threshold and designing algorithms to leverage the threshold for
filtering. Our filtering schemes enable us to quickly identify interesting instances
whose skyline probabilities meet the given threshold.

8 Conclusions

In this paper, we study the problem of computing the probabilistic skylines at
the instance level for uncertain objects with multiple instances. We propose two
filtering schemes to avoid the expensive skyline probability computations by
leveraging a given threshold. In our preliminary filtering scheme, we design in-
dexing structures to facilitate bounding of a query instance’s skyline probability.
Our more elaborate filtering scheme uses the preliminary scheme, and further
explores the dominance relationship between instances for massive filtering. Our
experiments show that our algorithm effectively reduces the search space and
efficiently identifies instances with skyline probabilities above or equal to the
threshold.
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4. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE (2001)
5. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving

object environments. In: TKDE (2004)
6. Cheng, R., Xia, Y., Prabhakar, S., Shah, R., Vitter, J.S.: Efficient indexing methods

for probabilistic threshold queries over uncertain data. In: VLDB (2004)
7. Cheng, R., Xia, Y., Prabhakar, S., Shah, R., Vitter, J.S.: Probabilistic verifiers:

Evaluating constrained nearest-neighbor queries over uncertain data. In: ICDE
(2008)

8. Cormode, G., Li, F., Yi, K.: Semantics of ranking queries for probabilistic data
and expected ranks. In: ICDE (2009)

9. Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets.
In: VLDB (2005)

10. Hua, M., Pei, J., Zhang, W., Lin, X.: Ranking queries on uncertain data: A prob-
abilistic threshold approach. In: SIGMOD (2008)

11. Kanagal, B., Deshpande, A.: Indexing correlated probabilistic databases. In: SIG-
MOD (2009)

12. Kossmann, D., Ramsak, F., Rost, S.: An online algorithm for skyline queries. In:
VLDB (2002)

13. Lee, K.C.K., Zheng, B., Li, H., Lee, W.-C.: Approaching the skyline in z order. In:
VLDB (2007)

14. Lian, X., Chen, L.: Monochromatic and bichromatic reverse skyline search over
uncertain databases. In: SIGMOD (2008)

15. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: SIGMOD (2003)

16. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In:
VLDB (2007)

17. Preparata, F., Shamos, M.: Computational Geometry: An Introduction. Springer,
Heidelberg (1985)

18. Qi, Y., Atallah, M.: Identifying interesting instances for probabilistic skylines
(longer version of the present submission). Purdue Technical Report (2009),
http://www.cs.purdue.edu/homes/yqi/research.html

19. Soliman, M.A., Ilyas, I.F., Chang, K.C.-C.: Urank: formulation and efficient eval-
uation of top-k queries in uncertain databases. In: SIGMOD (2007)

20. Vlachou, A., Doulkeridis, C., Kotidis, Y., Vazirgiannis, M.: Skypeer: Efficient sub-
space skyline computation over distributed data. In: ICDE (2007)

21. Willard, D.E.: New data structures for orthogonal range queries. SIAM J. Comput.
(1985)

22. Zhang, W., Lin, X., Zhang, Y., Wang, W., Yu, J.: Probabilistic skyline operator
over sliding windows. In: ICDE (2009)

23. Zhu, L., Zhou, S., Guan, J.: Efficient skyline retrieval on peer-to-peer networks.
Future Generation Communication and Networking (2007)

http://www.cs.purdue.edu/homes/yqi/research.html


GPU-WAH: Applying GPUs to Compressing
Bitmap Indexes with Word Aligned Hybrid�

Witold Andrzejewski and Robert Wrembel
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Abstract. Bitmap indexes are one of the basic data structures applied
to query optimization in data warehouses. The size of a bitmap index
strongly depends on the domain of an indexed attribute, and for wide do-
mains it is too large to be efficiently processed. For this reason, various
techniques of compressing bitmap indexes have been proposed. Typi-
cally, compressed indexes have to be decompressed before being used
by a query optimizer that incurs a CPU overhead and deteriorates the
performance of a system. For this reason, we propose to use additional
processing power of the GPUs of modern graphics cards for compressing
and decompressing bitmap indexes. In this paper we present a modifi-
cation of the well known WAH compression technique so that it can be
executed and parallelized on modern GPUs.

1 Introduction

A data warehouse architecture has been developed for the purpose of integrating
data from multiple storage systems within an enterprise. The integrated data
are stored in a central database, called a data warehouse. Data stored there are
analyzed by OLAP queries, for the purpose of discovering trends, anomalies,
hidden dependencies between, and predicting trends. OLAP queries typically
access, filter, aggregate large volumes of data. Efficient processing of OLAP
queries is often supported by the so-called bitmap indexes [21].

A bitmap index, in the simplest form, is composed of the collection of bitmaps
(cf. Section 2). A bitmap is a vector of bits. Each bit is mapped to a row in an
indexed table. One bitmap Bv is created for one value v of an indexed attribute.
If the value of a bit in Bv is equal to 1, then a row corresponding to this bit has
value v.

Queries whose predicates involve attributes indexed by bitmap indexes can
be answered fast by performing bitwise AND, or OR, or NOT operations on
bitmaps, that is a big advantage of bitmap indexes. Unfortunately, the size of a
bitmap index increases when the cardinality of an indexed attribute increases.
Thus, for attributes of high cardinalities (wide domains) bitmap indexes be-
come very large. As a consequence, they cannot fit in main memory and the
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P. Garćıa Bringas et al. (Eds.): DEXA 2010, Part II, LNCS 6262, pp. 315–329, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



316 W. Andrzejewski and R. Wrembel

efficiency of accessing data with the support of such indexes deteriorates [29].
In order to improve the efficiency of accessing data with the support of bitmap
indexes defined on attributes of high cardinalities various bitmap index com-
pression techniques have been proposed in the research literature (cf. Section 3).
Typically, compressed indexes have to be decompressed before being used by a
query optimizer that incurs a CPU overhead and deteriorates the performance
of a query.

Paper Contribution. In this paper we propose an extension to the well-
known Word Aligned Hybrid (WAH) bitmap compression technique that has
been reported to provide the shortest query execution time [25,26]. Our exten-
sion, called GPU-WAH, allows to parallelize compressing and decompressing
steps of WAH and execute them on Graphics Processing Units (GPU). In our
implementation (cf. Section 5) we take advantage of the fact, that modern GPUs
may process up to 240 threads in parallel, to obtain blazingly fast compression
and decompression as well as possible massively parallel comparison of multiple
bitmaps. In our experiments we compared the performance of standard WAH
run on a CPU with the performance of GPU-WAH. The results show (cf. Section
6) that GPU-WAH significantly reduces compression/decompression time.

2 Definitions

A bitmap is a vector of bits. Bitmap literals will be denoted as a string of ones
and zeros starting with the most significant bit, and finished with letter “b”, e.g.,
111000b. Each bit in a bitmap is assigned a unique, consecutive number starting
with 0. The i-th bit of bitmap B is denoted as Bi. The number of bits stored in
bitmap B is called a bitmap length and it is denoted as ‖B‖. We define operation
concatenation of two bitmaps, denoted as +, that creates a new bitmap such that
it contains all bits of the first bitmap, followed by all bits of the second bitmap.
Formally, given bitmaps A and B, their concatenation creates new bitmap C
such that: ‖C‖ = ‖A‖+ ‖B‖∧ ∀i=0...‖A‖−1Ci = Ai ∧ ∀i=‖A‖...‖C‖−1Ci = Bi−‖A‖
(e.g., 01b + 10b = 1001b; this stems from the fact, that the second operand of
operator + consists of the bits that will be more significant in the result).

A subbitmap of B is any subvector of B that may be created by removing
some of the bits from the beginning and from the ending of B. A subbitmap of
bitmap B, such that it contains bits from i to j is denoted as Bi→j . Formally,
for a given bitmap B, subbitmap C = Bi→j must satisfy the condition: j <
‖B‖ ∧ ∀k=i...jBk = Ck−i.

Substitution is an operation that replaces a subbitmap of a given bitmap with
another bitmap. Given bitmaps B and C, substituting subbitmap Bi→j with
C is denoted as Bi→j ← C, and is formally defined as: B ← B0→i−1 + C +
Bj+1→‖B‖−1.

We distinguish two special bitmaps: 1x and 0x which are composed of x ones
or x zeros respectively. We assume all bitmaps to be divided into 32bit sub-
bitmaps called words. Given bitmap B, we denote the i-th word by B(i) (0
based). Formally, B(i) ≡ Bi∗32→i∗32+31. In case, where the length of B is not
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the multiplication of 32, we assume the missing trailing bits to be 0. We distin-
guish several classes of words. Any word whose 31 less significant bits equal 1
is called a pre-fill full word. Any word whose 31 less significant bits equal 0 is
called a pre-fill empty word. Any word D such, that D30→31 = 10b, and the rest
of the bits encode a number is called a fill empty word. Any word D such, that
D30→31 = 11b, and the rest of the bits encode a number is called a fill full word.
Any word D such that D31 = 0b and the rest of the bits are zeros and ones, is
called a tail word.

Given any array A of numbers we define operation exclusive scan that creates
array SA of the same size as A, such that ∀k>0SA[k] =

∑k−1
i=0 A[i] ∧ SA[0] = 0.

A graphics card hardware (GPU, memory) will be called a device. The com-
puter hardware (CPU, memory, motherboard), which sends tasks and data to
the device, will be called a host. A function which is run concurrently in many
threads on a device will be called a kernel. The subset of data stored in a database
will be called a query. The process of finding data specified in a query by means
of compressed bitmap indexes will be called query processing. During a query ex-
ecution, bitmaps have to be decompressed and processed by bitwise operations.

3 Related Work

Multiple bitmap compression techniques have been proposed in the research
literature. Some of them are based on the the run-length encoding, e.g., BBC [2],
WAH [25,27,28], PLWAH [7], and some combine the run-length encoding with the
Huffman compression, e.g., RL-Huffman [18], RLH [24]. The run-length encoding
consists in representing a continuous vector of bits having the same value (either
“0” or “1”) as: (1) the common value of all bits in the vector and (2) the length
of the vector. A bitmap is divided into words before being encoded. Words that
include all ones or all zeros are compressed (they are called fills). Words that
include intermixed zeros and ones cannot be compressed (they are called tails).
Words are organized into runs that typically include a fill and a tail.

BBC divides bit vectors into 8-bit words, WAH and PLWAH divide them into
31-bit words, whereas RLH uses words of a parameterized length. PLWAH is
the modification of WAH. PLWAH improves compression if tail T that follows
fill F differs from F on few bits only. In such a case, the fill word encodes the
difference between T and F on some dedicated bits. Moreover, BBC uses four
different types of runs, depending on the length of a fill and the structure of a
tail. WAH, PLWAH, and RLH use only one type of a run.

The compression techniques proposed in [18] and [24] additionally apply the
Huffman compression [16] to the run-length encoded bitmaps. The main differ-
ences between [18] and [24] are as follows. First, in [18] only some bits in a bit
vector are of interest, the others, called “don’t cares” can be replaced either by
zeros or ones, depending on the values of neighbor bits. In RLH all bits are of
interest and have their exact values. Second, in [18] the lengths of homogeneous
subvectors of bits are counted and become the symbols that are encoded by the
Huffman compression. RLH uses run-length encoding for representing distances
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between bits having value 1. Next, the distances are encoded by the Huffman
compression.

Utilizing GPUs in database applications is as of yet not a very well researched
field of computer science. Most of the research is being focused on such areas, as:
advanced rendering, image and volume processing as well as scientific computa-
tions (e.g., numerical algorithms and simulation). The application of GPUs to
the compression of images has been presented in [9]. A few papers on increasing
the processing power of typical database operations by means GPUs have been
proposed so far. They mainly focus on efficient sorting (cf. [11,13,5]), evaluation
of query predicates and computing aggregates (cf. [12]), query execution with
the support of GPUs and processing indexes (R-trees [17], hash [10], inverted
lists [8]). Some approaches to accelerating data mining techniques on GPUs
have also been proposed (cf. [3,4,1,23]). None of the aforementioned approaches
applies GPUs to compressing and decompressing bitmap indexes.

4 Algorithms

In this section we present three algorithms: an algorithm for extending an input
bitmap (denoted as Algorithm 1), an algorithm for compressing an extended
input bitmap (Algorithm 2) and an algorithm for decompressing of a compressed
bitmap to its extended version (Algorithm 3). We also present several suggestions
on query processing scheme using bitmap indexes and a device.

As the first step of compression, bitmaps are extended by Algorithm 1, which
appends a single 0 bit after each consecutive 31bit subbitmap. The algorithm
starts with appending zeros to the end of input bitmap B, so that its length is
a multiplication of 31 (line 1). Next, the number n of 31bit subbitmaps of B is
calculated. Once the value n is calculated, it is possible to find the size of the
output bitmap E (32∗n) and allocate it (line 3). Given E, the algorithm, obtains
subbitmaps of B, appends a 0 bit and stores the results in the appropriate words
of E. Notice that each operation of storing refers to a different word of the output
bitmap, and therefore each word may be computed in parallel.

Algorithm 1. Parallel extension of data
Require: : Input bitmap B
Ensure: : Extended input bitmap E
1: B ← B + 031−‖B‖mod 31
2: n ← ‖B‖/31
3: Create bitmap E filled with zeros, such that ‖E‖ = 32 ∗ n
4: for i ← 0 to n − 1 in parallel do
5: E(i) ← Bi∗31→(i+1)∗31−1 + 01
6: end for
7: E contains the extended bitmap B

Extended bitmaps are compressed by Algorithm 2. It is composed of five
stages. Executions of stages must be sequential, however each of these stages is
composed of operations that may be executed in parallel.
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The first stage (lines 2–7) determines classes of each of the words in the input
bitmap E (whether each of the words is either a tail word or a pre-fill word).
The most significant bit in each of the words is utilized to store the word class
information. If the word is is a pre-fill word, we store 1 in the most significant bit.
If the word is a tail word, we leave it without change as the most significant bit
is zero by default (cf. Algorithm 1). To distinguish between a full and empty pre-
fill word, one just needs to check the second most significant bit. Let us notice,
that tail words already have the final form, consistent with the WAH algorithm.
Pre-fill words also have correct two the most significant bits, but they are not yet
rolled into a single word and their 30 less significant bits do not encode counters
(i.e., they are not yet fill words). This will be achieved in the subsequent stages.
Notice, that each word in this stage is processed independently and therefore all
of the words may be calculated in parallel.

The second stage (lines 8–15) divides the input bitmap into blocks of words
of a single class, where each block will be compressed (in the subsequent stages)
into a single fill or tail word. To store the information about ending positions of
the aforementioned blocks we use array F . F has the size equal to the number of
words in the input bitmap E. The array stores 1 at position i if the corresponding
word E(i) in the bitmap is the last word of the block. Otherwise, the array
stores 0. Word number i is the last word of the block if is a tail word (the most
significant bit is equal to zero), or the word number i + 1 a pre-fill word of a
different class (the words differ on the two most significant bits). This stage may
also be easily parallelized, as each of the positions in array F may be calculated
independently.

The third stage (line 16) performs an exclusive scan on array F and stores
the result int array SF . The result of this operation is directly tied to storing
compression results. As each block found in the previous stage will result in a
single word in the compressed bitmap, we know that the algorithm will output as
many words, as there are ones in array F . It is easy to notice, that for consecutive
indexes i such that F [i] = 1, values SF [i] will be consecutive natural numbers
starting with zero. Such values, may therefore be used as the output indexes into
the output compressed bitmap. Moreover, it is possible to obtain the number of
ones in array F by summing the last value stored in array SF with last value in
array F (notice, that the last value in F is always equal to 1). Efficient, parallel
algorithms for performing the scan operation have been proposed in the research
literature (cf. [15,22]).

The fourth stage (lines 18–23) prepares array T of the size equal to the number
of words in the output bitmap. For each word E(i), for which value F [i] is equal
to 1 (last words of the blocks) the algorithm stores, in array T at the position
SF [i], the number of words in all of the blocks up to, and including the considered
word. The aforementioned number of words is equal to i + 1. Values stored in
T are used by the last compression stage for calculating the numbers of words
in blocks as well as they allow to retrieve words from the input bitmap E. This
stage may be easily parallelized, as all of the writes are independent and may
be performed in any order.
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The last, fifth stage (lines 24–36) generates the final compressed bitmap. Com-
putations performed in previous stages, allow to compute each word of the com-
pressed bitmap in parallel and independently on the other words. The stage
starts with obtaining the preprocessed words from bitmap E, from the posi-
tions, where array F stores ones (using the indexes stored in array T ). Each of
these words is a representative for its block. If the retrieved word is a tail word,
it is stored in the output bitmap C in its original state. If the retrieved word is
a pre-fill word, two operations are performed. First, the number of words in the
corresponding block is calculated using the data stored in array T . The number
of words in block i is equal to T [i]− T [i− 1], except for i = 0 where it is equal
to T [0]. Second, the calculated number of words is encoded on 30 less significant
bits of the retrieved pre-fill word (which creates a new fill word). Regardless of
the class of the obtained word, it is stored in the output, i.e., compressed bitmap
C. Once these operations are finished, bitmap C contains the compressed result.
This stage may be easily parallelized as well, as all of the output words are
computed independently.

Let us now analyze Algorithm 3 that implements decompression. It is com-
posed of several stages, each of which must be completed, before the next one is
started, however each stage may process input data in parallel.

The first stage (lines 1–9) creates array S of the size equal to the number
of words in the compressed bitmap C. For every word C(i) in the compressed
bitmap, the algorithm calculates the number of words that should be generated
in the output decompressed bitmap, based on the data contained in word C(i),
and store the calculated value in array S at position i. This stage is just a
prerequisite for the next stage. Notice that this stage may be easily parallelized,
as each value of S may be calculated independently.

The second stage (line 10) performs an exclusive scan on array S and stores
the result in array SS. The result of this operation is directly tied to storing
decompression results. Notice that after exclusive scan, for each word C(i), array
SS at position i stores the number of the word in the output decompressed
bitmap at which decompression of the considered word should start. Based on
the results of the exclusive scan one may also calculate the size of the output
decompressed bitmap. This size is equal to the sum of the last values in arrays
S and SS.

The third stage (lines 11–15) creates array F , whose size is equal to the number
of words in the output decompressed bitmap. The array initially contains only
zeros. Next, for each position SS[i] stored in array SS we store 1 in array F at
position SS[i]− 1. We omit position stored in SS[0] as it is always equal to 0,
and there are no entries of negative positions. The aim of this stage is to create
an array, where 1 marks the end of the block into which some fill or tail word
is extracted. Each assignment in this stage may be executed in parallel, as each
assignment targets a different entry in array F .

The fourth stage (line 16) performs an exclusive scan on array F and stores
the result in array SF . Once this stage is completed, array SF contains at each
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Algorithm 2. Parallel compression of extended data
Require: : Extended input bitmap E
Ensure: : Compressed Bitmap C
1: n ← ‖E‖/32
2: Create an array F of size n {0 based indexing}
3: for i ← 0 to n − 1 in parallel do
4: if E(i) = 032 or E(i) = 131 + 01 then
5: E(i)31 ← 1b
6: end if
7: end for
8: for i ← 0 to n − 2 in parallel do
9: if E(i)30→31 �= E(i + 1)30→31 or E(i)31 = 0 then

10: F [i] ← 1
11: else
12: F [i] ← 0
13: end if
14: end for
15: F [n − 1] ← 1
16: SF ← exclusive scan on the array F
17: m ← F [n − 1] + SF [n − 1] {m is the number of words in the compresed bitmap}
18: Create an array T of size m {0 based indexing}
19: for i ← 0 to n − 1 in parallel do
20: if F [i] = 1 then
21: T [SF [i]] ← i + 1
22: end if
23: end for
24: Create a bitmap C such, that ‖C‖ = m ∗ 32
25: for i ← 0 to m − 1 in parallel do
26: j ← T [i] − 1
27: X ← E(j)
28: if X31 = 1b then
29: count ← j + 1
30: if i �= 0 then
31: count ← count − T [i − 1]
32: end if
33: X ←30bit representation of count + X30→31
34: end if
35: C(i) ← X
36: end for
37: C contains the compressed bitmap E

position i the number of the word in the input compressed bitmap C, which
should be used to generate output word E(i).

Fifth stage (lines 17–29) performs the final decompression. For each word
E(i) in the output bitmap, the algorithm performs the following tasks. First, the
number of the word in compressed bitmap C which should be used to generate
word E(i) is retrieved from array SF , from position i. Second, the word of the
retrieved number is read from compressed bitmap C, and based on its type, value
E(i) is derived. If the retrieved word is a tail word, it is inserted into E(i) without
any further processing. If the retrieved word is a fill word, depending on whether
it is an empty or full word, 032 or 131 + 01 is inserted into E(i), respectively.
Once the last stage is finished, E contains the decompressed bitmap. As all of
the output words are calculated independently, calculation of each word may be
run in parallel.

Compressing/decompressing bitmaps using a GPU requires data transfer be-
tween the host memory and the device memory. This transfer is done by means of
the PCI-Express x16 bus. The transfer is very slow as compared to the internal
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Algorithm 3. Parallel decompression of compressed data
Require: : Compressed Bitmap C
Ensure: : Extended input bitmap E
1: m ← ‖C‖/32
2: Create an array S of size m
3: for i ← 0 to m − 1 in parallel do
4: if C(i)31 = 0b then
5: S[i] ← 1
6: else
7: S[i] ← the value of count encoded on bits C(i)0→30
8: end if
9: end for

10: SS ← exclusive scan on the array S
11: n ← SS[m − 1] + S[m − 1] {n contains the number of words in a decompressed bitmap}
12: Create an array F of size n filled with zeroes {0 based indexing}
13: for i ← 1 to m − 1 in parallel do
14: F [SS[i] − 1] ← 1
15: end for
16: SF ← exclusive scan on the array F
17: Create a bitmap E of length ‖E‖ = n ∗ 32
18: for i ← 0 to n − 1 in parallel do
19: D ← C(SF [i])
20: if D31 = 0b then
21: E(i) ← D
22: else
23: if D30 = 0b then
24: E(i) ← 032
25: else
26: E(i) ← 131 + 01
27: end if
28: end if
29: end for
30: E contains a decompressed bitmap C

Algorithm 4. Extension and checking of classes of words
1: start=i*31;
2: off=start&31; // %32
3: start>>=5; // /32
4: result=(B[start]>>off)&BM31;
5: result|=(B[start+1]<<(32-off))&BM31;
6: test=(result==0 || result==BM31);
7: result=result | (-test & BMMSB);

Algorithm 5. Calculating of the number of words to be extracted from a com-
pressed word
1: bool test=(data&BMMSB)!=0;
2: res=(!test)|((data&BM30)&(-test));

Algorithm 6. Deriving of the output word based on the compressed word
1: bool testCase1=((data&BM2MSB)!=BMMSB);
2: bool testCase2=((data&BM2MSB)==BM2MSB);
3: res=(data&(-testCase1))|(-testCase2);
4: res=res&BM31
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device memory bandwidth [20]. This problem can be partially eliminated by
processing all of the query on the device. There are several benefits of such
an approach: (1) there is no need to download decompressed bitmaps from the
device, (2) only compressed bitmaps need to be uploaded that are small and
the transfer may be performed in parallel with computations performed on the
device, (3) the computing power of the device can be used in order to perform
bitwise operations. The only task of the host during the query processing should
be to initiate data transfers when needed and to start kernels on the device.
Other than that, the host is free to do any other tasks. The device should de-
compress the received bitmaps and perform bitwise operations on them. Once all
of the calculations are finished, the final bitmap should be transfered from the
device to the host. This last stage is unfortunately very slow as the device→host
transfers are the slowest. Moreover, the resulting bitmap is decompressed, and
therefore very large. Nonetheless it is beneficial, as we only need to transfer
one such bitmap (we would have to download every decompressed bitmap if the
query was performed on the host).

5 Implementation

The algorithms presented in the previous section were implemented in C++ and
C for CUDA using the NVIDIA CUDA platform [6]. In this section we outline
their implementations and focus on the implementation details that allowed us
to remove almost all of branching (alternative flows of control, e.g. if-then-else
structures) from the kernel code.

In our implementation we used a straightforward storage model for bitmaps.
Each bitmap is represented as an array of 32bit unsigned integers. The same
representation is used on the device and the host. For the exclusive scan opera-
tion on the CUDA platform we use a very efficient implementation, which is a
part of the CUDPP library [14].

The code fragments, presented in the following paragraphs, utilize several con-
stants: BM31, BMMSB, and BM30. All of these constants are 32bit unsigned integers
and contain values 0x7fffffff, 0x80000000, and 0x3fffffff respectively.

In our implementation we have created two compression procedures, where one
of them incorporates the extension algorithm and the other does not. The first
of these two implementations integrates the extension algorithm with the first
stage of compression. Let us consider the aforementioned, integrated portion of
the source code (cf. Algorithm 4). This code performs two operations: it extracts
31 bit subbitmap from the input bitmap and appends either 0 or 1 depending
on whether the retrieved 31 bit subbitmap contains only the same bits (a pre-fill
word) or both values of bits (a tail word).

The next source code is a fragment of the implementation of the decompression
algorithm (cf. Algorithm 5). This fragment calculates the number of words that
should be generated from the given fill or tail word stored in variable data, and
it roughly corresponds to the lines 4–8 of the algorithm 3. It does not require
any if-the-else structures.
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The last fragment of the source code (cf. Algorithm 6) also represents the
implementation part of the decompression algorithm. This code derives, based
on the given fill or tail word (stored in data), a word that should be stored into
the output decompressed bitmap, and it roughly corresponds to the lines 20–28
of the algorithm 3. It does not require any if-the-else structures as well.

6 Experiments

Experiments were performed on an Core i7 2.8GHz CPU and NVIDIA Geforce
285 GTX graphics card. Their aim was to measure:

– compression, decompression, and recompression (applied to an extended
bitmap, cf. Algorithm 1) time using CPU,

– compression, decompression, and recompression time using GPU,
– time of uploading the input bitmap to the graphics cards memory (for each

type of operation separately),
– time of downloading the output bitmap from the graphics cards memory (for

each type of operation separately).

Each of the tested input bitmaps was composed of 96 ∗ 107 bits. In the exper-
iments we used bitmaps with their densities varying from 0.5 to 1/65536 (1/2i

where i = 1, 2, . . . , 16). The bits whose values were set to 1 were randomly se-
lected. We generated 10 instances of each of the bitmaps for each experiment.
The execution times discussed below represents averages of 10 experiments.

The results of the experiments for compression and recompression are pre-
sented in Figures 1 and 2, respectively. Both of these figures are very similar,
as essentially both of them present results from measuring the same algorithm.
The only difference is that the compression includes the extension algorithm and
the recompression does not. While comparing these two charts one may notice,
that the extension algorithm requires about 70ms on host for the tested bitmaps,
and indeed the difference between compression and recompression time is about
57ms in the best case and 115ms and the worst case. The same difference on the
device is much smaller: 0.85ms in the best case and 1,12ms in the worst case.

While analyzing Figures 1 and 2 one may also notice that the compression is
about 16–24 times faster on the device, than it is on the host. Unfortunately, if
we include the transfer times, the difference in speed is reduced to 3.6–5.8 times
faster than host. The similar numbers calculated for recompression are 12.4–21
times faster on device without data transfers and 2.6–4 times faster on device
with data transfers. One may also notice, that the device→host transfer times
monotonically depend on the bitmap density as the less dense the bitmap is, the
smaller the compression (recompression) result.

Let us now consider Figure 3 that presents comparison of the decompression
times on the device and the host. The decompression on the device is 4.75–
10 times faster than on the host. Unfortunately, after decompression, one must
transfer the large decompressed bitmap from the device to the host memory over
the slow PCI-Express x16 bus. Moreover, graphics cards are designed to opti-
mize the host→device transfers rather then back. This results in large transfer
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Fig. 1. Compression and data transfer times for bitmaps of varying density

Fig. 2. Recompression and data transfer times for bitmaps of varying density

Fig. 3. Decompression and data transfer times for bitmaps of varying density
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times that consume all of the benefit from performing the decompression on the
device. From Figure 3 we can observe that the whole process of transferring and
decompressing a bitmap may be even slower on the device, than it is on the host.
We may also notice, that host→device transfer times depend monotonically on
the bitmap density, similarly as observed for the device→host transfers during
compression/recompression of data. In this case, the same data is sent back to
the device in order to be decompressed.

Let us consider the observed problem of large data transfer times between the
device and the host. Let us notice, that even when the total decompression time
is a bit slower on the device we still benefit from the fact, that the host is free
and may in the same time perform other tasks. Moreover, we may also utilize
the fact, that data transfers and computations on the device may be performed
in parallel. However, as was suggested in the section 4, by performing the whole
query on the device, we may be able to accelerate query processing, while still
freeing the host from most of the work and removing the need for the costly
device→host transfers.

As an example, let us consider an attribute whose domain cardinality is equal
to 1024. As shown in Figure 3 total decompression time on the device and host
are almost equal. The decompression on the host requires 66.42ms, whereas the
decompression on the device requires 66.64ms, where the host→device transfer
took 1.64ms, the transfer device→host took 53.46ms and the decompression
itself took 11.54ms. To analyze the query performance time we also need the
times of performing bitwise operations on bitmaps. The time of performing a
bitwise operation on two bitmaps of size 96 ∗ 107 bits on the device consumes
about 2.79ms. The same time on the host consumes about 62.67ms. Let us also
assume, that the buffer for the compressed bitmaps on the device may contain at
most two compressed bitmaps. Let us now consider a hypothetical query which
requires 3 bitmaps to be decompressed and processed.

Figure 4 illustrates the hypothetical query processing in the Gannt chart.
The query processing starts with the DMA data transfer of the first compressed
bitmap C1 from the host to the device. Once the transfer is finished, the device
may start decompression of the transfered data (the result is stored in bitmap
E1). Meanwhile, the transfer of the second compressed bitmap C2 is started.
Once the bitmap C1 is decompressed, it may be discarded and the transfer of
the last compressed bitmap C3 may start. While bitmap C3 is transfered, the
device may decompress bitmap C2 and store the decompression result in E2.
Once bitmaps C1 and C2 are decompressed, the device may perform an in-place
bitwise operation on their decompressed versions (E1 and E2), and store the
result in E1. Bitmap E2 may now be discarded, and the decompression of the
compressed bitmap C3 may start (the result is stored in E3). Once bitmap C3
is decompressed, the device may perform an in-place bitwise operation between
bitmaps E1 and E3, storing the result in E1. E1 now stores a decompressed
bitmap with the results of the query and may therefore be sent to the host. The
whole query processing time, including transfers, takes 95.61ms. Notice, that
the query is performed only on the device, and data transfers are performed by
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Fig. 4. Gannt chart showing the query processing on the GPU

the DMA. The only work performed by the host is the initialization of DMA
transfers and starting of kernels.

Let us now consider the same query, but performed entirely on the host. We
need to perform 3 decompressions and 2 bitwise operations on the decompressed
bitmaps, which gives the total time equal to 3*66.42ms+2*62.67ms=324.6ms.
Notice, that for such a simple case, we have processed a query over 3 times
faster on the device, than on the host. The more bitmaps are used, the higher
the speedup is. Moreover, while the device processes a query, the host is free to
do any other tasks.

We would also like to address the strange, non-monotonic compression and de-
compression times dependency on the bitmap density. They are probably caused
by an increased number of misses in the branch prediction. Notice, that the
worst processing time appears for bitmaps of density 1/32 and similar. For such
bitmaps, there is a high probability of interleaving of fill and tail words. In
our implementation, different parts of code are used for each type of word. We
count the words sequentially, and therefore some optimizations presented in the
previous sections do not apply here. As there is a high probability that the
next generated word will be a different than the previous one, it may cause the
branch prediction algorithm to give inaccurate results and lead to the decreased
efficiency of data processing.

7 Summary

In this paper we presented an extension, called GPU-WAH, of the WAH com-
pression/decompression technique. GPU-WAH allows to parallelize compressing
and decompressing steps and to execute them on the graphics processing units
on the CUDA platform. We also discussed the implementation of GPU-WAH
and presented its experimental comparison to the standard CPU-based WAH.
As the experiments showed, GPU-WAH performs 3.6-5.8 times faster than the
CPU-based WAH. We concluded that the decompression is several times faster
on a GPU than on the CPU, but the data transfer between GPU memory and
computer memory is a bottleneck. Nonetheless, we have presented a query pro-
cessing scheme which may reduce query processing time by several times.
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Future work will focus on: (1) implementing on the CUDA platform other
compression techniques including BBC, PLWAH, RLH-n, and comparing their
efficiency, (2) implementing query processing technique according to the pro-
posed scheme and test whether its performance is consistent with the theoreti-
cal results, (3) applying several optimizations dedicated to given graphics cards
computing capabilities, including the upcoming FERMI architecture[19].
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Abstract. We consider the containment problem for conjunctive queries with
atomic negation. Firstly, we refine an existing algorithm based on homomorphism
checks, which itself improves other known algorithms in databases, and analyze
it experimentally. Secondly, we present a new algorithm based on the translation
of the containment problem into the problem of checking the unsatisfiability of
a propositional logical formula, which allows us to use a SAT solver, and we
experimentally compare both algorithms.

1 Introduction

The query containment problem is a fundamental problem in databases. It takes two
queries q1 and q2 as input, and asks if q1 is contained in q2 (noted q1 . q2), i.e. if
the set of answers to q1 is included in the set of answers to q2 for all databases (e.g.
[AHV95]). Algorithms based on query containment can be used to solve various prob-
lems, such as query evaluation and optimization [CM77][ASU79], rewriting queries
using views [Hal01], detecting independence of queries from database updates [LS93],
etc. In this paper, we consider the problem of deciding on containment for conjunc-
tive queries with atomic negation (denoted CQC¬ hereafter). The so-called (positive)
conjunctive queries form a class of natural and frequently used queries and are consid-
ered as the basic database queries [CM77]. Conjunctive queries with negation extend
this class with negation on atoms. Note that CQC¬ is equivalent to important prob-
lems in artificial intelligence, such that: checking entailment / deduction between two
first-order logic clauses (without function); query answering with boolean conjunctive
queries with negation on a knowledge base composed of a set of positive and negative
factual assertions (while making the open-world assumption).

When only positive conjunctive queries are considered, query containment checking
is NP-complete [AHV95]. When atomic negation is considered, the problem becomes
much more complex: it is πP

2 -complete1 [FNTU07][CM09] and very few algorithms
for solving it can be found in the literature.

This paper is devoted to refining and proposing algorithms solving CQC¬ and test-
ing them experimentally. An algorithm scheme was introduced in [LM07], which itself
improves the previous proposals in [Ull97] and [WL03]. All three algorithms use homo-
morphism as a core notion. We first compare experimentally several heuristics, which

1 πP
2 = (co-NP )NP .

P. Garcı́a Bringas et al. (Eds.): DEXA 2010, Part II, LNCS 6262, pp. 330–345, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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allows to refine this algorithm scheme. We then propose another approach, which con-
sists of building a propositional logical formula from the queries q1 and q2, such that q1

is contained in q2 if and only if this formula is valid, i.e. always true. Equivalently, the
negation of this formula is unsatisfiable, which allows to use a SAT solver (SAT is the
problem of deciding whether a given propositional formula is satisfiable) and benefit
from practical improvements achieved in this domain [Sai08]. However, the translation
of the queries into the propositional formula is generally exponential in the size of the
queries. Thus the question is whether –or when– the second algorithm can be better
than the first one. We provide first experimental answers to this question.

Due to the lack of benchmarks or real-world data available for CQC¬, we built a ran-
dom generator. We analyzed the influence of several parameter values on the problem
instance difficulty in order to define difficult instances, on which the algorithms were
run. In databases, conjunctive queries with negation are generally imposed to be safe,
i.e. all variables in the query must occur in at least one positive subgoal. Hence, even
if all of our results hold for general conjunctive queries with negation, we restrict the
experiments to safe queries in this paper.

Paper layout. Section 2 recalls the framework of [LM07] and expresses previously pro-
posed algorithm schemes in this framework. In Section 3, we present our experimental
methodology and use it to compare several heuristics, which leads to propose a refined
algorithm. The second approach is presented and compared to the refined algorithm in
4. Section 5 outlines the prospects of this work.

2 Framework

We recall here some basic definitions about queries with Datalog-like notations. More
details can be found in [AHV95] for instance. A conjunctive query with negation (CQ¬)
is of the form: q = ans(x1 . . . xq) ← p1, . . . , pn, n1, . . . , nm, where each pi (resp. ni)
is a positive (resp. negative) subgoal, 1 ≤ n + m, and ans is a special relation (which
defines the answer part of the query). The left part of the query is called its head and
the right part is its body. Each subgoal is of form r(t1, . . . , tk) (positive subgoal) or
¬r(t1, . . . , tk) (negative subgoal) where r is a relation and t1, . . . , tk is a tuple of terms
(i.e. variables or constants). All variables x1 . . . xq occur at least once in the body of
the query. Without loss of generality, we assume that the same subgoal does not appear
twice in the body of the query. A CQ¬ is boolean if it has no variable in its head (we
note ans()). A CQ¬ is positive if it has no negative subgoal (m = 0). A CQ¬ is safe if
each variable occurring in a negative subgoal also occurs in a positive one.

In the following, we will focus on boolean queries because having a non-empty ans
part can only make the query containment problem easier. For the same reason, we can
consider that queries contain no constants. Note however that the framework and all
results hold for general CQ¬.

In [LM07], CQ¬ are seen as labeled graphs. This allows to rely on graph notions
that have no simple equivalent in logic (such as pure subgraphs, see later). More pre-
cisely, a CQ¬ q is represented as a bipartite, undirected and labeled graph Q, called
polarized graph (PG), with two kinds of nodes: term nodes and relation nodes. Each
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term of the query becomes a term node, that is unlabeled if it is a variable, otherwise
it is labeled by the constant itself. A positive (resp. negative) subgoal with relation r
becomes a relation node labeled +r (resp. −r) and it is linked to the nodes assigned to
its terms. The labels on edges correspond to the position of each term in the subgoal
(see Figure 1 for an example). For simplicity, the subgraph corresponding to a subgoal,
i.e. induced by a relation node and its neighbors, is also called a subgoal. We note it
+r(t1, . . . , tk) (resp. −r(t1, . . . , tk)) if the relation node has label +r (resp. −r) and
list of neighbors t1, . . . , tk. We note ∼r(t1, . . . , tk) a subgoal that can be positive or
negative, i.e. ∼ ∈ {+,−}. Subgoals +r(t1, . . . , tk) and −r(u1, . . . , un) with the same
relation but different signs are said to be opposite. Opposite Subgoals +r(t1, . . . , tk)
and −r(t1, . . . , tk) with the same list of arguments are said to be contradictory. Given
a relation node label (resp. subgoal) l, l denotes the complementary relation node label
(resp. subgoal) of l, i.e. it is obtained from l by reversing its sign. Queries are denoted by
small letters (q1 and q2) and the associated graphs by the corresponding capital letters
(Q1 and Q2). We note Q1 . Q2 iff q1 . q2. A PG is consistent if it does not contain
two contradictory subgoals.

Homomorphism is a core notion in this work. A homomorphism h from a PG Q2 to
a PG Q1 is a mapping from nodes of Q2 to nodes of Q1, which preserves bipartition
(the image of a term -resp relation- node is a term -resp. relation- node), preserves
edges (if rt is an edge with label i in Q2 then h(r)h(t) is an edge with label i in Q1),
preserves relation node labels (a relation node and its image have the same label) and
can instantiate term node labels (if a term node is labeled by a constant, its image has
the same label, otherwise there is no constraint on the label of its image). Note that this
notion corresponds exactly to the well-known query homomorphism defined on positive
conjunctive queries; it can be seen as an extension of query homomorphism to negative
subgoals.

When there is a homomorphism h from Q2 to Q1, we say that Q2 maps to Q1 by h.
Q2 is called the source graph and Q1 the target graph. If Q2 and Q1 have only positive
subgoals, Q1 . Q2 iff Q2 maps to Q1. When we also consider negative subgoals, only
one side of this property remains true: if Q2 maps to Q1 then Q1 . Q2 ; the converse
is false, as shown in Example 1.

Example 1. See Figure 1: Q2 does not map to Q1 but Q1 . Q2. Indeed, if we complete
q1 w.r.t. relation p, we obtain the union of four queries q1,1 = ans() ← p(t)∧ s(t, u)∧
s(u, v)∧s(v, w)∧¬p(w)∧p(u)∧p(v), q1,2 = ans() ← p(t)∧s(t, u)∧s(u, v)∧s(v, w)∧
¬p(w)∧¬p(u)∧p(v), q1,3 = ans() ← p(t)∧s(t, u)∧s(u, v)∧s(v, w)∧¬p(w)∧p(u)∧
¬p(v) and q1,4 = ans() ← p(t)∧s(t, u)∧s(u, v)∧s(v, w)∧¬p(w)∧¬p(u)∧¬p(v).
Each of the queries is a way of completing q1 w.r.t. p. Q2 maps to each of the graphs
associated with them. Thus q1 is contained in q2.

One way to solve CQC¬ is therefore to generate all “complete” PGs obtained from Q1

using relations appearing in Q1, and then to test if Q2 maps to each of these graphs.

Definition 1 (Complete graph and completion). Let Q be a consistent PG. It is com-
plete w.r.t. a set of relations P , if for each p ∈ P with arity k, for each k-tuple of
term nodes (not necessarily distinct) t1, . . . , tk in Q, it contains +p(t1, . . . , tk) or
−p(t1, . . . , tk). A completion Q′ of Q is a PG obtained from Q by repeatedly adding
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q1 = ans() ← p(t) ∧ s(t, u) ∧ s(u, v) ∧ s(v, w) ∧ ¬p(w)
q2 = ans() ← p(x) ∧ s(x, y) ∧ ¬p(y)

Fig. 1. Polarized graphs associated with q1 and q2

new relation nodes (on term nodes present in Q) without yielding inconsistency. Each
addition is a completion step. A completion of Q is called total if it is a complete graph
w.r.t. the set of relations considered, otherwise it is called partial.

Theorem 1. [LM07] Let Q1 and Q2 be two PGs (Q1 consistent), Q1 . Q2 iff Q2

maps to all total completions of Q1 w.r.t. the set of relations appearing in Q1.

We can further restrict the set of relations considered to those appearing in opposite
subgoals both in Q2 and in Q1 [LM07]. In the sequel, this set is called the completion
vocabulary of Q2 and Q1 and denoted V .

Let us outline previous algorithmic proposals for checking containment of CQ¬

queries in this framework. Although it is expressed in a different framework, the first
proposal [Ull97] can be recast as follows (see [LM07] for more details): it consists
of computing the set of total completions of Q1 and checking the existence of a ho-
momorphism from Q2 to each of them (say Qc

1). The complexity of this algorithm
is prohibitive: O(2(nQ1 )k×|V| × hom(Q2, Q

c
1)), where nQ1 is the number of term

nodes in Q1, k is the maximum arity of a relation, V is the completion vocabulary
and hom(Q2, Q

c
1) is the complexity of checking the existence of a homomorphism2

from Q2 to Qc
1.

Two kinds of improvements are defined in [WL03] and [LM07]: first, some neces-
sary conditions for containment are exhibited, which can be used to tentatively detect a
failure before generating completions; secondly, completions can be incrementally built
and checked.

In [WL03], the following necessary but not sufficient condition for containment is
exhibited (for safe queries but it remains true for general CQ¬): if Q1 . Q2 then
there must be a homomorphism, say h, from the positive part of Q2, say Qp

2, to Q1;
moreover, this homomorphism should not contradict the negative subgoals of Q2: for
all subgoals −r(t1, . . . , tk) in Q2, Q1 should not contain +r(h(t1), . . . , h(tk)). This
property can be used as a filter: if there is no such homomorphism from Qp

2 to Q1,
then Q1 
. Q2. It is generalized in [LM07] with the notion of pure subgraphs and
compatible homomorphism, as detailed below. Then we have: if Q1 . Q2 then, for
each pure subgraph Q′

2 of Q2, there must be a compatible homomorphism from Q′
2 to

2 Homomorphism checking is NP-complete. A brute-force algorithm solves it in O(n
nQ2
Q1

),
where nQ2 is the number of term nodes in Q2.
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Q1 w.r.t. Q2. In the following definitions, we add some notions and notations that we
will use in the sequel of this paper.

Definition 2 (pure subgraph). A PG is said to be pure if it does not contain opposite
subgoals (i.e. each relation appears only in one form, positive or negative). A pure sub-
graph of Q2 is a subgraph of Q2 that contains all term nodes in Q2 (but not necessarily
all relation nodes)3 and is pure.

We will use the following notations for pure subgraphs of Q2:

– Qmax
2 denotes a pure subgraph that is maximal for inclusion;

– Q+
2 is the Qmax

2 with all positive relation nodes in Q2;
– Q−

2 is the Qmax
2 with all negative relation nodes in Q2;

– QMax
2 denotes a Qmax

2 of maximal cardinality.

Note that if a relation label +r or−r in Q2 does not appear in Q1 then Q1 
. Q2. Thus,
we assume in the following that all relation labels in Q2 appear in Q1, which implies
that the subgraph induced by the relations not in V is pure, and all Qmax

2 contain it.
Hence, we have Qp

2 (the positive part of Q2) ⊆ Q+
2 but the contrary is generally false.

Example 2. See Figure 1: there are two Qmax
2 (which are also of maximal cardinality):

the first one is Q+
2 , which contains +p(x) and +s(x, y), and the second one is Q−

2 ,
which contains −p(x) and +s(x, y) (because V = {p}, thus s 
∈ V).

Intuitively, a homomorphism from a pure subgraph of Q2 to Q1 is “compatible” if it
can be extended to a homomorphism from Q2 to a total completion of Q1.

Definition 3 (Border, Compatible homomorphism). Let Q2 and Q1 be two PGs and
Q′

2 be a pure subgraph of Q2. The relation nodes of Q2 \ Q′
2 are called border rela-

tion nodes of Q′
2 w.r.t. Q2. A homomorphism h from Q′

2 to Q1 is said to be compatible
w.r.t. Q2 if, for each border relation node inducing the subgoal ∼ r(t1, . . . , tk), the
opposite subgoal ∼r(h(t1), . . . , h(tk)) is not in Q1 and for each pair of opposite bor-
der relation nodes respectively on (c1, . . . , ck) and (d1, . . . , dk), (h(c1), . . . , h(ck)) 
=
(h(d1), . . . , h(dk)).4

Now, let us consider the search space leading from Q1 to its total completions and
partially ordered by the relation “subgraph of”. In [LM07], this space is explored as a
binary tree with Q1 as root. The children of a node are obtained by adding, to the graph
associated with this node (say Q′

1), a relation node in positive and negative form (each
of the two new graphs is thus obtained by a completion step from Q′

1). The aim is to find
a set of partial completions covering the set of total completions of Q1, i.e. the question
becomes: “is there a set of partial completions {Q1,1, . . . , Q1,n} of Q1 such that (1) Q2

3 Note that this subgraph does not necessarily correspond to a set of subgoals because some term
nodes may be isolated.

4 The last condition is necessary to ensure that a compatible homomorphism from Q′
2 to Q1

can be extended to a homomorphism from Q2 to a total completion of Q1. However, it is
necessarily satisfied if Q′

2 is a pure subgraph that is maximal for inclusion. We only need it for
the second approach presented in this paper.
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maps to each Q1,i for i = 1 . . . n; (2) each total completion Qc
1 of Q1 is covered by a

Q1,i (i.e. Q1,i is a subgraph of Qc
1) ?”. After each completion step, it is checked whether

Q2 maps to the current partial completion: if yes, this completion is one of the sought
Q1,i, otherwise the exploration continues. Figure 2 illustrates this method on the very
easy Example 1. Two graphs Q1,1 and Q1,2 are built from Q1, respectively by adding
+p(v) and −p(v). Q2 maps to Q1,1, thus there is no need to complete Q1,1. Q2 does
not map to Q1,2: two graphs Q1,3 and Q1,4 are built from Q1,2, by adding +p(u) and
−p(u) to Q1,2. Q2 maps to Q1,3 and to Q1,4, respectively. Finally, the set proving that
Q1 is included in Q2 is {Q1,1, Q1,3, Q1,4} (and there are four total completions of Q1

w.r.t. p). Algorithm 1 implements this method (the numbers in the margin are relative
to the refinements studied in Section 3.2).

1,1Q Q1,2

Q1,3 Q1,4

Q1

+p(v) −p(v)

+p(u) −p(u) +p(u) −p(u)

Fig. 2. The search tree of Example 1. Each black dot represents a Qc
1 and each square a Q1,i.

Algorithm 1. recCheck(Q1)
Input: a consistent PG Q1

Data: Q2, V
Result: true if Q1 . Q2, false otherwise
begin

if there is a homomorphism from Q2 to Q1 then return true ;
if Q1 is complete w.r.t. V then return false ;

(3) \*** Filtering step ***\
(1) Choose r ∈ V and t1, . . . , tk in Q1 such that +r(t1, . . . , tk) 
∈ Q1 and

−r(t1, . . . , tk) 
∈ Q1 ;
Let Q′

1 be obtained from Q1 by adding +r(t1, . . . , tk) ;
Let Q′′

1 be obtained from Q1 by adding −r(t1, . . . , tk) ;
(2) return recCheck(Q′

1) AND recCheck(Q′′
1 ) ;

end

The algorithm proposed in [WL03] can be seen as exploring the same space of graphs
but in a radically different way. At each step, it generates all homomorphisms from
Qp

2 to the current Q1. Then, for each compatible homomorphism in this set, say h,
and for each negative subgoal −p(t1, . . . , tk) in Q2 that cannot be mapped to Q1 by
extending h, a new query to test is generated from Q1 by adding the positive sub-
goal +p(h(t1), . . . , h(tk)); intuitively, the idea is that each total completion of Q1

contains either +p(h(t1), . . . , h(tk)) or −p(h(t1), . . . , h(tk)); if −p(h(t1), . . . , h(tk))
were present, then h could be extended to −p(h(t1), . . . , h(tk)), thus it remains to test
the +p(h(t1), . . . , h(tk)) case. In Example 1 (see also Figure 1), only one homomor-
phism can be found at each step: the homomorphism {x �→ t, y �→ u} from Qp

2 to Q1
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leads to Q′
1 obtained by adding +p(u); at the next step, {x �→ u, y �→ v} from Qp

2 to
Q′

1 leads to Q′′
1 obtained by adding +p(v); finally, there is a homomorphism from Qp

2

to Q′′
1 that can be extended to the negative subgoal, thus no new graph is generated.

This algorithm can be seen as developing an and/or tree: a homomorphism h leads to
success if all queries Q′

i directly generated from it lead to containment; a query Q′
i

leads to containment if there is a homomorphism from Qp
2 to Q′p

i leading to success.
The and/or tree is traversed in a breadth-first manner. Contrarily to Algorithm 1, partial
completions built by this algorithm do not partition the space (basically because only
positive subgoals are generated), which leads to the problem of detecting that a newly
generated graph is not the same as a graph already generated (see the discussion in
[LM07] for more details). In this paper, we focus in refining the algorithm in [LM07].
The experimental comparison of both ways of exploring the space of graphs remains to
be done.

3 Experimental Methodology and Algorithm Refinements

In this section, we briefly present our experimental methodology, then we propose and
analyze three refinements of Algorithm 1.

3.1 Methodology

Due to the lack of benchmarks or real-world data available for the studied problem, we
built a random generator of polarized graphs. The chosen parameters are as follows:

– the number of term nodes (i.e. the number of terms in the associated query)5;
– the number of distinct relations;
– the arity of these relations (set at 2 in the following experiments);
– the density per relation, which is, for each relation r, the ratio of the number of

subgoals with relation r in the graph to the number of subgoals with relation r in a
total completion of this graph w.r.t. {r}.

– the percentage of negation per relation, which is, for each relation r, the percentage
of negative subgoals with relation r among all subgoals with relation r.

An instance of CQC¬ is obtained by generating a pair (Q1, Q2) of PGs corresponding
to safe queries. In this paper, we chose the same number of term nodes and the same
percentage of negation for both graphs. In the sequel we adopt the following notations:
nbT represents the number of term nodes, nbR the number of distinct relations and
SD (resp. TD) the Source (resp. Target) graph Density per relation. The difficulty of the
problem led us to restrict the value of nbT to between 5 and 8 (5 for the first experiments,
8 after improvement 1 which greatly decreases the running time).

In order to discriminate between different techniques, we first experimentally studied
the influence of the parameters on the “difficulty” of instances. We measured the diffi-
culty in three different ways: the running time, the size of the search tree and the num-
ber of homomorphism checks (see [BLM10] for more details). Concerning the negation

5 We do not generate constants; indeed, constants tend to make the problem easier to solve be-
cause there are fewer potential homomorphisms; moreover, this parameter does not influence
the studied heuristics.
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percentage, we checked that the maximal difficulty is obtained when there are as many
negative relation nodes as positive relation nodes. One can expect that increasing the
number of relations occurring in graphs increases the difficulty, in terms of running
time as well as the size of the searched space. Indeed, the number of completions in-
creases exponentially (there are (2nQ1

2
)nbR total completions for nbR binary relations).

These intuitions are only partially validated by the experiments: see for instance Table
1, which shows, for each number of relations, the density values at the difficulty peak.
We observe that the difficulty increases up to a certain number of relations (3 here, with
a CPU time of 14809 and a Tree size of 216911) and beyond this value, it continu-
ously decreases. Moreover, the higher the number of relations, the lower the SD that
entails the greatest difficulty peak, and the higher the difference between SD and TD
at the difficulty peak. In following experiments, we always take the SD and TD values
corresponding to a difficulty peak.

Table 1. Influence of the number of relations (nbT=5)

nbR SD TD CPU time (ms) Tree size
1 0.24 0.24 19 82
2 0.12 0.24 7168 111540
3 0.08 0.4 14809 216911
4 0.08 0.68 12793 119911
5 0.08 0.8 4556 42566

For each value of the varying parameter, we considered 500 instances and computed
the mean search cost of the results on these instances (with a timeout set at 5 min-
utes). The program is written in Java. The experiments were performed on a Sun fire
X4100 Server AMD Opteron 252, equipped with a 2.6 GHz Dual-Core CPU and 4G of
RAM, under Linux. In the sequel we only show the CPU time when the three difficulty
measures are correlated.

3.2 Refinements

We now analyze three refinements of Algorithm 1, which concern the following aspects:

1. the choice of the next subgoal to add;
2. the choice of the child to explore first;
3. dynamic filtering at each node of the search tree.

1. Since the search space is explored in a depth-first manner, the choice of the next sub-
goal to add, i.e. ∼r(t1, . . . , tk) in Algorithm 1 (Point 1), is crucial. A brutal technique
consists of choosing r and t1, . . . , tk randomly. Our proposal is to guide this choice by
a compatible homomorphism, say h, from a Qmax

2 to the current Q1. More precisely,
the border relation nodes ∼r(e1, . . . , ek) w.r.t. this Qmax

2 can be divided into two cate-
gories. In the first category, we have the border nodes s.t. ∼r(h(e1), . . . , h(ek)) ∈ Q1,
which can be used to extend h; if all border nodes are in this category, h can be
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extended to a homomorphism from Q2 to Q1. The choice of the subgoal to add is
based on a node ∼r(e1, . . . , ek) in the second category: r is its relation symbol and
t1, . . . , tk = h(e1), . . . , h(ek) are its neighbors (note that neither∼r(h(e1), . . . , h(ek))
nor ∼r(h(e1), . . . , h(ek)) is in Q1 since ∼r(e1, . . . , ek) is in the second category and
h is compatible). Intuitively, the idea is to give priority to relation nodes potentially
able to transform this compatible homomorphism into a homomorphism from Q2 to a
(partial) completion of Q1, say Q′

1. If so, all completions including Q′
1 are avoided.

Figure 3 shows the results obtained with the following choices:

– random choice;
– random choice + filter: random choice and Q+

2 as filter (i.e. at each recCheck
step a compatible homomorphism from Q+

2 to Q1 is looked for: if none exists, the
false value is returned);

– guided choice: Q+
2 used both as a filter and as a guide.

Fig. 3. Influence of the completion choice : nbT=5, nbR=2, SD=0.12

Note that the guided choice comes with an implicit filter: indeed, when a compatible
homomorphism from Q+

2 to a partial completion of Q1 (say Q′
1) is sought, the false

value is returned if none exists (since Q′
1 
. Q2). In order to only discriminate choice

heuristics, we also considered a random choice with a filter. As expected, the guided
choice is always much better than the random choice (with or without filter).

2. Experiments have shown that the order in which the children of a node, i.e. Q′
1

and Q′′
1 in Algorithm 1 (Point 2), are explored is important. Assume that Point 1 in

Algorithm 1 relies on a guiding subgraph. Consider Figure 4, where Q+
2 is the guiding

subgraph (hence the border is composed of negative relation nodes), “Extension” means
“Q′′

1 first” and “Contradiction” means the reverse order: we see that it is always better to
explore Q′

1 before Q′′
1 . If we take Q−

2 as the guiding subgraph, then the inverse order is
better. More generally, let ∼r(e1, . . . , ek) be the border node that defines the subgoal to
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add. Let us call h-extension (resp. h-contradiction) the graph built from Q1 by adding
∼r(h(e1), . . . , h(ek)) (resp. ∼r(h(e1), . . . , h(ek))). See Example 3. It is better to first
explore the child corresponding to the h-contradiction. Intuitively, by contradicting the
compatible homomorphism found, this gives priority to failure detection.

Example 3. See Figure 1. Q+
2 = {+p(x), +s(x, y)}. Let Q+

2 be the guiding subgraph.
The only border node of Q+

2 w.r.t. Q2 is −p(y). h = {x �→ t, y �→ u} is the only
compatible homomorphism from Q+

2 to Q1. The h-extension (resp. h-contradiction) is
obtained by adding +p(u) (resp. −p(u)).

Fig. 4. Influence of the exploration order : nbT=8, nbR=3, SD=0.06

3. The last improvement consists of performing dynamic filtering at each node of the
search tree. Once again, the aim is to detect a failure sooner. More precisely, we consider
a set of Qmax

2 and check if there is a compatible homomorphism from each element in
this set to the newly generated graph. Table 2 shows the obtained results (at a difficulty
peak) with the following configurations:

– Max: QMax
2 as guide and no filter (other than QMax

2 );
– Max-Max: QMax

2 as guide and QMax
2 (the subgraph on the relation nodes in Q2 \

QMax
2 ) as filter;

– Max-all: QMax
2 as guide and all Qmax

2 as filters.

Unsurprisingly, the stronger the dynamic filtering, the smaller the size of the search
tree. The CPU time is a bit higher for Max-all but this configuration checks much more
homomorphisms than the others. Since our current algorithm for (compatible) homo-
morphism checking can be considerably improved, these results show that Max-all is
the best choice.

The algorithm finally obtained is called recCheckPlus and it is shown in Algo-
rithm 2. It is initially called with (Q1, ∅). The second parameter is used to memorize
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Table 2. Influence of the dynamic filtering: nbT=8, nbR=3, SD=0.06, TD=0.54

Configuration CPU time (ms) Tree size Hom check
Max 7404 3810 5539

Max-Max 7421 3765 6209
Max-all 8427 2249 13331

the compatible homomorphism found for the father of the current node, in the case
where this node is an h-extension of its father (see Q′′

1 in the algorithm); otherwise,
the compatible homomorphism for its father has been contradicted and a new one has
to be computed, which is done in the chooseCompletionSubgoal subalgorithm. More
precisely, this subalgorithm returns a completion literal as explained in Point 1 and a
new compatible homomorphism h if needed.

Algorithm 2. recCheckPlus(Q1, h)
Input: a consistent PG Q1 and a compatible homomorphism h from the guiding subgraph

to the father of Q1 (empty for the root)
Data: Q2, V
Result: true if Q1 � Q2, false otherwise
begin

if there is a homomorphism from Q2 to Q1 then return true ;
if Q1 is complete w.r.t. V then return false ;

(3) if dynamicFiltering(Q1) = failure then return false ;
(1) l, h ← chooseCompletionSubgoal(Q1, h) ;

Let Q′
1 be obtained from Q1 by adding l ;

Let Q′′
1 be obtained from Q1 by adding l ;

(2) return recCheckPlus(Q′
1, ∅) AND recCheckPlus(Q′′

1 , h) ;
end

4 Second Approach

In this section, we present the second method, which consists of translating the CQC¬

problem into the problem of checking unsatisfiability of a propositional formula in con-
junctive normal form (i.e. a conjunction of disjunctions of propositional literals), called
the UNSAT problem. This method is then experimentally compared torecCheckPlus.

4.1 Method

Let us first explain the main ideas of this method. Instead of exploring the space of
graphs in a depth-first manner in order to find a set of partial completions that covers all
total completions, a candidate covering set is built at once; it is built from all compatible
homomorphisms from a specific pure subgraph of Q2 to Q1; this candidate is indeed
a covering set if and only if a formula built from it is valid; this formula is built by
considering for each compatible homomorphism the relation nodes that should be added
to Q1 to obtain a homomorphism from Q2. More specifically, we proceed in three steps:
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1. Compute all compatible homomorphisms from Q′
2 (the special subgraph of Q2) to

Q1;
2. Build a propositional formula Fprop, that is the disjunction of, for each compatible

homomorphism h of Step 1, the conjunction C of missing subgoals in Q1 for h to
be a homomorphism from Q2 to Q1 ∧ C;

3. Check if Fprop (an UNSAT instance) is unsatisfiable: if yes, then Q1 . Q2, other-
wise Q1 
. Q2.

Step 1: Compute the candidate covering set. The method is based on a specific pure
subgraph of Q2, which necessarily maps to the Q1 part of each total completion of Q1

when Q1 . Q2 (note that this is not true for all pure subgraphs of Q2).

Definition 4 (Stable subgraph). The stable subgraph of Q2, denoted Qs
2, contains all

term nodes in Q2 and all subgoals in Q2 with a relation that does not appear in the
completion vocabulary of Q1 and Q2 (note that Qs

2 is included in all Qmax
2 ).

Since the stable subgraph does not contain relations belonging to subgoals added to Q1

during completion, we have the desired property:

Property 1. Let Q1 and Q2 be two PGs. If h is a homomorphism from Q2 to a total
completion of Q1, then h is a compatible homomorphism from Qs

2 to Q1.

Furthermore, we can replace, without incidence on the CQC¬ problem, each variable
in Q1 by a new constant. This modification preserves all homomorphisms to Q1. In
the sequel, we consider that Q1 contains only constants. In particular, the query q1 in
Example 1 becomes: q1 = ans() ← p(a) ∧ s(a, b) ∧ s(b, c) ∧ s(c, d) ∧ ¬p(d)). This
will allow to obtain a propositional formula in Step 2.

Example 4. Let Q1 and Q2 be PGs of Figure 1. Qs
2 = s(x, y). There are 3 compatible

homomorphisms from Qs
2 to Q1 : h1 = {x �→ a, y �→ b}, h2 = {x �→ b, y �→ c} and

h3 = {x �→ c, y �→ d}.

Step 2: Build the propositional formula. With each compatible homomorphism com-
puted at Step 1, we build a conjunction of the “missing” subgoals in Q1. Each partial
completion of Q1 obtained by adding these subgoals to Q1 is an element of the candi-
date covering set.

Definition 5 (Minimal conjunction). The minimal conjunction of Q1 w.r.t. a com-
patible homomorphism h, denoted Cm, is the conjunction composed of the atom �6

and the subgoals ∼ r(h(t1), . . . , h(tk)) such that ∼ r(t1, . . . , tk) ∈ (Q2 \ Qs
2) and

∼r(h(t1), . . . , h(tk)) 
∈ Q1.

Example 5. For h1 : Cm
1 = ¬p(b) ; for h2 : Cm

2 = p(b) ∧ ¬p(c) ; for h3 : Cm
3 = p(c).

Then we build the entire formula, which is the disjunction of all minimal conjunctions:

6 � is the tautology: it is necessary when h is a homomorphism from Q2 to Q1, otherwise the
conjunction would be empty.
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Definition 6 (Disjunction of Stable Minimal Conjunctions (DSMC)). We call
DSMC(Q2, Q1) the disjunction of the atom �7 and all minimal conjunctions w.r.t.
the compatible homomorphisms from Qs

2 to Q1 (i.e. � ∨ Cm
1 ∨ . . . ∨ Cm

i , denoted∨
Cm).

Example 6. DSMC(Q2, Q1) = ¬p(b) ∨ (p(b) ∧ ¬p(c)) ∨ p(c).

The theorem validating this approach is the following (Q1 is assumed to be consistent):

Theorem 2. Q1 . Q2 iff DSMC(Q2, Q1) is valid.

The following definitions and lemmas are used to prove the theorem.

Definition 7 (Total conjunction). Let Qc
1 be a total completion of Q1. The total con-

junction of Qc
1, denoted C, is the conjunction of all subgoals ∼r(t1, . . . , tk) ∈ (Qc

1 \
Q1).

Definition 8 (Disjunction of Total Conjunctions (DT C)). We call DT C(Q1) the dis-
junction of all total conjunctions of Q1 (i.e. C1 ∨ . . . ∨ Cj).

Lemma 1. DT C(Q1) is valid.

Lemma 2. If Q1 . Q2 then for all C ∈ DT C(Q1), there is a Cm ∈ DSMC(Q2, Q1)
such that Cm ⊆ C (i.e. all subgoals in Cm are also in C).

Property 2. Let Cm be a minimal conjunction of Q2 w.r.t. a compatible homomorphism
from Qs

2 to Q1. Q1 ∧ Cm . Q2.

Proof of Theorem 2:
⇐= SinceDSMC(Q2, Q1) is valid, Q1 ≡ Q1∧

∨
Cm ≡

∨
(Q1 ∧ Cm). According

to Property 2,
∨

(Q1 ∧Cm) . Q2. Thus Q1 . Q2.
=⇒ Let Q1 . Q2. According to Lemma 2, for all C ∈ DT C(Q1), there is Cm ∈

DSMC(Q2, Q1) s.t. C = Cm ∧C′ where C′ is a conjunction of subgoals. By absurd:
AssumeDSMC(Q2, Q1) is not valid. Then there is an interpretation I s.t. for all Cm ∈
DSMC(Q2, Q1), I |= ¬Cm.Thus for all C ∈ DT C(Q1), I |= ¬C.Thus DT C(Q1) is
not valid, which contradicts Lemma 1. Hence DSMC(Q2, Q1) is valid. ��

Step 3: Translate into UNSAT. The negation of DSMC(Q2, Q1) is a propositional
conjunctive normal form, which enables us to use a SAT solver.

Example 7. CF = DSMC(Q2, Q1) = p(b) ∧ (¬p(b) ∨ p(c)) ∧ ¬p(c). CF is unsatis-
fiable, thus DSMC(Q2, Q1) is valid and Q1 . Q2.

4.2 Algorithm and Experiments

Algorithm 3 implements this method. The UNSAT call uses the well-known Sat4J
solver8.

7 � is the absurd literal: it is necessary when there is no compatible homomorphism from Qs
2 to

Q1, otherwise the disjunction would be empty.
8 http://www.sat4j.org/
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Algorithm 3. UNSATCheck(Q1)
Input: a consistent PG Q1

Data: Q2, Qs
2

Result: true if Q1 � Q2, false otherwise
begin

DSMC(Q2, Q1) ← � ;
h1, . . . , hn ← findAllCompatibleHomomorphisms(Q2, Q

s
2, Q1) ;

foreach hi, i = 1...n do
foreach border node ∼r(t1, . . . , tk) ∈ Q2 \ Qs

2 do
Cm

i ← � ;
if ∼r(hi(t1), . . . , hi(tk) �∈ Q1 then

Cm
i ← Cm

i ∧ ∼r(hi(t1), . . . , hi(tk)) ;

DSMC(Q2, Q1) ← DSMC(Q2, Q1) ∨ Cm
i ;

return UNSAT(DSMC(Q2, Q1))
end

To compare UNSATCheck and recCheckPlus, we used the size of the vocabu-
lary completion (directly correlated with the size of the stable subgraph) as the varying
parameter. Indeed, this parameter is crucial for UNSATCheck (note that this param-
eter has also an influence for recCheckPlus): the bigger the stable subgraph, the
lower the number of compatible homomorphisms and then the size of the obtained
formula. We built 1000 random instances for each value of |V| (for each relation, the
percentage of negation is equal to 0%, 50% or 100%) and compared UNSATCheck and
recCheckPlus on them: see Table 3.9

Table 3. Detailed comparison of the two algorithms : nbT=8, nbR=3, SD=0.06, TD=0.51

Size of V Size of the stable subgraph recCheckPlus CPU time UNSATCheck CPU time
Total 1st step 2nd step 3rd step

3 0 6482 27038 10541 15378 1119
2 6 800 444 172 229 43
1 12 5 20 9 2 9
0 18 1 2 2 0 0

We observe that for both algorithms the maximal difficulty is for |V| = 3. Then
UNSATCheck is the worst because the stable subgraph contains only term nodes, thus
the number of compatible homomorphisms and then the size of the obtained formula are
exponential in the sizes of the initial queries. As expected, the increase of the size of the
stable graph makes the algorithms better. For |V| = 2, UNSATCheck is a little better
than recCheckPlus. When the size of the stable graph is the highest, the results for
both algorithms are similar. These results show that the choice of an algorithm rather
than another depends on the size of the stable graph. These are only preliminary results,
further experiments are needed to refine this choice.

9 Note that 8 term nodes is the highest value that UNSATCheck can deal with (with |V| = 3
and our implementation): beyond 8, the memory space explodes.
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5 Perspectives

In this paper, we have refined the algorithm proposed in [LM07] and checked experi-
mentally several choices. These refinements heavily rely on special subgraphs, called
pure subgraphs. Using pure subgraphs of maximal cardinality as guiding and filtering
graphs seems a good choice. However, the size of pure subgraphs is not the “ultimate”
criterion, as shown in Figure 5: for each instance, we ran recCheckPlus with all
possible QMax

2 (they all have the same size). The Maximum (resp. Minimum) curve
is obtained by choosing, for each instance, the worst (resp. best) QMax

2 , i.e. that leads
to the highest (resp. lowest) CPU time. We conclude that the choice of the QMax

2 used
to guide among all QMax

2 is a determining step. However, finding criteria allowing to
better discriminate between pure graphs is an open issue.

Fig. 5. Comparison between the worst and the best choice of QMax
2 : nbT=8, nbR=3, SD=0.06

In [WL03] another way of exploring the query space is proposed. The associated
algorithm is much more complex to follow and implement than recCheck. Further-
more, some parts were not specified (for instance how to avoid generating a query that
was already generated). We are currently implementing this algorithm, while integrat-
ing the improvements designed for recCheck.
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Abstract. There has been a great deal of interest in recent years on ranking 
query results in relational databases. This paper presents a novel method to rank 
objects (e.g., tuples) by exploiting the correlations among their attribute values. 
Given a query, each attribute value is assigned a score according to mutual  
occurrences with the query and its distribution status in the columns of the 
attribute. These attribute value scores are aggregated to get a final score for an 
object. Furthermore, a concept vector is proposed to provide a synopsis of the 
attribute value in a given database. A concept vector is utilized to get the similar 
objects. Experimental results demonstrate the performance of our ranking me-
thod, RAVC (Ranking with Attribute Value Correlation), in terms of search 
quality and efficiency. 

Keywords: Ranking function for structured data, attribute value correlation,  
attribute importance. 

1   Introduction 

Relational databases, which follow the Boolean retrieval model, have to be queried 
with conditions that exactly match the information needs of the user. Users have suf-
fered from formulating the search conditions that give satisfactory results for their 
needs. In this setting, the users may face the following two problems [2]. 

Empty answers problem. If a query has conditions that are too selective, the answers 
may be empty or too limited. In this case, the conditions of the original query have to 
be rewritten into less restrictive ones. 

Many answers problem. If the conditions of a query are not discriminative enough in 
selecting answers, too many answers are retrieved. In this case, it is desirable to order 
the answers by quantitative measures that present the relevance to the information 
needs of the user. 

Our methods resolve above two problems by proposing a relevance-based retrieval 
model for relational databases. Our intuition is as follows: data statistics, such as 
                                                           
*  This research was supported by the MKE(The Ministry of Knowledge Economy), Korea, under 

the ITRC(Information Technology Research Center) support program supervised by the NI-
PA(National IT Industry Promotion Agency). (grant number NIPA-2009-C1090-0902-0031). 
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value correlation (e.g., mutual occurrence) and deviation (e.g., entropy), are useful to 
estimate the relevance of an object to a given query. Main focuses of this paper are as 
follows: 

1) We introduce a novel ranking method that utilizes the database statistics to im-
prove the retrieval effectiveness. Developing an effective ranking function is crucial 
to solve the many answers problem. We note that the statistical relationships between 
attribute values reside in the underlying databases could be useful to rank tuples since 
a tuple is an instance of generalized binary relations of attribute values. In our me-
thod, tuples are ranked based on the aggregated correlations of their attribute values 
because the correlations reflect the implicit information of statistical relationships for 
the tuples.This paper speculates on how much an attribute value correlates to the 
user’s query based on the mutual occurrences over the underlying database. Each 
attribute value in a tuple is assigned corresponding scores from the quantified correla-
tions. Moreover, each attribute for a relation is assigned a weight by analyzing the 
attribute value distribution status in columns of the attributes. Each score of the 
attribute value is then aggregated as a final ranking score for each tuple.  

2) We propose a concept vector to alleviate the empty answers problem. The intui-
tion is similar to the semantics of the ranking function; a synopsis of a concept is 
summarized by the group of statistically related attribute values. It can be utilized to 
expand the scope of the Boolean query results. The synopsis of objects specified by 
the query is summarized as a concept vector, which is the form of a weighted vector 
of all the common attribute values and their frequencies. Each dimension of the vector 
is represented as an attribute value, not an attribute. We give illustrative examples in 
the following section. 

Table 1. Examples of used car tuples 

 Year Make Model Color Style 

t1 2008 Toyota Camry Silver Sedan 

t2 2009 Toyota Camry Silver Sedan 

t3 2008 Toyota Camry Black Sedan 

t4 2008 Toyota Camry Blue Sedan 

t5 2008 Toyota Camry Gold Coupe 

t6 2008 Honda Accord Silver Sedan 

1.1   Illustrative Examples 

Table 1 illustrates a used car database D with a single table in which the car instances 
are stored as tuples with various attributes such as Year, Make, Model, Color, and 
Style. Each tuple ti in D represents a used car for sale. The set of tuples t1~t5 
represents Boolean query results for the query ‘Camry’. Ranking is not provided by 
the traditional Boolean retrieval model. Given a tuple ti, we assign a Score(ti) based 
on the correlations of its attribute values. In this unordered set of tuples, we find the 
mutual occurrences of attribute values for the given query ‘Camry’. In the column of 
the attribute Make, every attribute value is Toyota. This is one of the simple examples 
that we realize the correlation between these two attribute values (Camry and Toyota) 
represent the strong statistical relationships. Basic intuition for this study is that the 
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correlation is interpreted as a relevance that is measured by the ratio of the mutual 
occurrences of the attribute values. In the given set of tuples, the attribute value Toyo-
ta is most relevant to the query, and the attribute value Silver is relatively less rele-
vant. This evidence of relevance can be naturally interpreted to the semantics of our 
ranking function. Analogously, we determine the relevance of attributes as well as the 
relevance of attribute values. Based on the value distribution within a column of an 
attribute, we can determine which attribute correlates more to the query. It is meas-
ured by the expected value of mutual occurrences. We realize the attribute Model 
correlates to the attribute Make and Style given query ‘Camry’. For the corresponding 
attributes, we assign weights representing the importance of the attribute for a given 
query based on its distribution status. Several approaches [10, 5, 13, 9] have been 
proposed to assign weights for attributes to relax search conditions based on the data 
distributions. However, there is no clear idea how to decide how much the attribute is 
important for a given query. We note that the difference of attribute value deviations 
within columns represent the importance of an attribute for a query. Intuitively, the 
attribute Color is less important to the query ‘Camry’ since the values binding to the 
attribute Color are highly distributed. Our approach is similar to the way of capturing 
important information about random variables in descriptive statistics. 

Assuming the Boolean query results, t1~t5, are too small. Our method provides ad-
ditional results that are similar to the original query results. Although the tuple t6 does 
not match the query keyword ‘Camry’, the tuple t6 is added because it is similar to the 
synopsis of Camry which is represented by the tuples t1~t5. It is beneficial to identify 
the similar objects, such as Accord, to expand the results set. The synopsis of Camry 
can be summarized by the several properties of tuples t1~t5, such as attribute values 
and their frequencies. The model Camry is Sedan style car made by Toyota. Four cars 
produced in year of 2008 and one car in year of 2009. The synopsis is modeled as a 
weighted vector, concept vector. 

1.2   Contributions 

The contributions of this paper are follows: 

1) A novel method is presented to rank the tuples in the query results while analyz-
ing the data statistics of the attribute values. We provide an effective ranking 
function without any prior knowledge, such as user feedbacks or query workloads 
to learn evidences from user interventions. 

2) A concept vector is proposed to extend the limited result set by identifying the 
similar tuples for a query. This can be utilized in various extensions associated to 
the metrics of object similarity (or relevance) in relational databases.  

1.3   Organization 

This paper is organized as follows. Section 2 reviews some related works. Section 3 
proposes the method for tuple ranking based on the data statistics: data correlation and 
data distribution status. Section 4 describes how to expand the result set by adding 
similar tuples. In Section 5, we discuss several research dimensions for the generali-
zation of this work. The experimental results are presented in Section 6. The paper is 
concluded in Section 7. 



 Ranking Objects Based on Attribute Value Correlation 349 

2   Related Work 

Ranking query results in relational databases has been actively investigated in recent 
years. Many approaches have been proposed to deal with the empty answers problem 
and the many answers problem. Traditional approaches [15, 14] have focused  
on employing relevance-feedback techniques for developing ranking function. In 
contrast, our method requires no training data such as query feedbacks. The articles 
[11, 1, 3, 6] empowering users to access databases using simple keywords to tackle 
these problems; developing ranking function is an important component in tuple re-
trieval in relational databases. A major concern of this paper is developing ranking 
method only based on data statistics. Recent approaches [10, 5, 13, 9] have focused 
on the ranking tuples based on the data frequency within the specified attributes and 
the reduction of the search conditions in the original query statement in order to ex-
pand the scope of the query. TF-IDF concept from Information Retrieval (IR) is ex-
tended to a database containing a mix of categorical as well as numerical data in [3, 
2]. Approximate Functional Dependency (AFD) is used to answer typed keyword 
queries over web databases in [10]. AFD captures the relationships between attributes 
of a relation and can be used to determine the degree to which a change in the binding 
value of an attribute influences other attributes. Authors assume the AFD as a meas-
ure of the importance of an attribute value to the query keywords. In [9], the contex-
tual preferences are exploited to rank the query result. It also uses the query workload 
in the pre-processing step. In [4], the principle of the probabilistic model from the IR, 
which is the Probabilistic Information Retrieval (PIR) model [8], is adapted into 
structured data ranking while considering the data dependencies. This approach con-
siders the ranking function based on the dependency between the two types of 
attributes, which are the specified and unspecified attributes in a structured query. 
However, this ranking approach can potentially lead to unintuitive results, for exam-
ple, by ranking higher the high-priced items of low-quality because they consider that 
the tuples with infrequent combinations of values should be ranked higher. Several 
techniques [6, 4] have been proposed to support top-k query processing in score-based 
ranking approach. However, efficient top-k query processing is not a main focus of 
this paper. The Entropy measure is adopted from the Information Theory field for the 
purpose of this study and to show how a novel weighting scheme can be used to 
measure the importance of an attribute. 

The work most related to this study is [13], which assigns a score to a tuple based 
on the attribute value distribution in an e-commerce context. This paper has differenc-
es in the following aspects: 

1) The attribute weight assignment only considers the distribution difference be-
tween the database and the query results. This study assigns a weight to an 
attribute based on the attribute value distribution status. 

2) Authors assume a domain-specific knowledge involved to derive a ranking func-
tion: “Lower price is more desirable than the higher price for selecting items in 
e-commerce context.” Our method only considers the data statistics only, but 
performs better in several contexts.  
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3   Ranking Objects 

This section defines the problem in ranking database query results (e.g., a set of 
tuples) and presents the relevance-based ranking function considering the correlation 
between the attribute values. 

3.1   Problems Formulation  

Consider a database table D with n tuples T = {t1, t2, …, tn} with attributes A =  
{A1, A2, …, Am} and a query Q over D with a conjunctive selection condition of the 
form “SELECT * FROM D WHERE A1 = x1 AND A2 = x2 … AND As = xs”, where 
each Ai is an attribute that contains the value matching the attribute value xi, which is 
the term specified in the parameterized query. The set of attributes X = {A1, A2, …, As} 
⊆ A is known as the set of specified attributes by the query keywords. The query Q is 
represented by a set of keywords K = {x1, x2, …, xs}. The goal is to develop a scoring 
function Score(Q,t) that captures the strength of the relevance between the tuple ti and 
the query Q. 

,ܭሺݎݎ݋ܥ ሻݐ ൌ ෍ ෍ ஺ೠܧሺܨ ൈ ,௨ሿܣሾݐ ஺ି௑א௜ሻ஺ೠݔ
௦
௜ . (1)

Corr(K, t) indicates the score that captures the extent the attribute values t[Au] in tuple 
t correlates to the keywords xi. Let function F(x, y) return a value indicating the de-
gree to which x is relevant for y. K is a set of query keywords binding to the attributes 
in X. Au is an attribute that is not specified in the parameterized query. Let weight E 
be associated with all values binding attribute Au based on the value distribution status 
in the column of attribute Au.  ܵ݅݉ሺܭ, ሻݐ ൌ ܸܵ݅݉ሺ ௄ܸ, ௧ܸሻ. (2)

VSim(x, y) returns a value in [0...1] indicating how similar vector x to vector y. VK and 
Vt are vector representations of the objects specified by the query K and the tuple t, 
respectively. The similarity between the tuple t and the synopsis VK specified by the 
query K are measured by vector similarity function. The dimensions of the vector VK 
is determined by attribute values in the Boolean query results. Each dimension of the 
vector VK is assigned weight according to the frequencies of attribute values occurred 
in the original query results. 

Our ranking function for conjunctive query is as follows: ܵܿ݁ݎ݋ሺܳ, ሻݐ ൌ ܵ݅݉ሺܭ, ሻݐ ൈ ,ܭሺݎݎ݋ܥ ሻ. (3)ݐ

The above explanations represent only the simple problem instances. A point query is 
assumed as a basic setting. In more general settings, a query may contain the range 
conditions for numerical values, the disjunctive operator, and the NULL values. 
While our method can be extended to all these general capabilities, the focus of this 
paper is on ranking tuples of conjunctive keywords on a single categorical table. 
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3.2   Attribute Value Correlation 

The correlation of an attribute value with a given query (which is represented as a set 
of attribute values) is computed as the ratio of co-occurred tuples to a given tuple set. 
Table 1 shows the attribute value Toyota is most co-occurred for the given query 
‘Camry’. On the other hand, the attribute values binding the attribute Color are distri-
buted well and it means that all the colors equally correlate to the query, although the 
quantities are small. That is, database statistics (e.g., correlation) infer that the relev-
ance of the color Blue is not significant as that of the make Toyota to Camry. ܲሺݒ, ሻݍ ൌ ݃݋݈ ௩ܦ| ת |௤ܦ||௤ܦ . (4) 

P denotes the measure of mutual occurrence for an attribute value v given a query q. 
Di represents a set of tuples contains the attribute value v. This study defines max(P(v, 
q)) as the correlation of the corresponding attribute. The existing approach [10] meas-
ure the importance of an attribute based on the most frequent values, argmax(P(v, q)) 
for relaxing query conditions. Our method differs from [10], we focus on the attribute 
values itself.  

For the attribute weight E, we define a measure called data skewness. The follow-
ing example provides a clear exposition of data skewness for weighting an attribute. 

 
Data Skewness. The importance of a tuple can be computed using Equation 4 addi-
tively. However, it can be argued that the increase of the relevance is not proportional 
only to the number of co-occurrences. We need to assign the weight E (in Equation 1) 
on each attribute Au based on the expected value of the statistical relationships be-
tween associated values. From Table 1, the attribute value Sedan is skewed for the 
query ‘Camry’ in a given column; it means the attribute is (almost) dependent to the 
value Camry. Therefore, it is reasonable that the skewed values in the results are con-
sidered to be important for the query because the answers in the skewed column of 
attribute are more predictable. On the other hand, the attribute values for Colors are 
not skewed as much as values for the attribute Style or Make. As an extreme case, this 
skewness identifies the soft (functional) dependency between attributes. In this paper, 
the skewness will be quantified by entropy, which is a well known measure to esti-
mate the asymmetry in data distribution. The relevance of the attribute value Gold and 
Coupe is not equal even though they have the same frequencies since the attribute 
Style is more dependent to the query ‘Camry’ than the attribute Color. This relevance 
measure for attributes, data skewness, utilizes the semantics of underlying data sche-
ma for ranking tuples effectively. 

3.3   Entropy-Based Attribute Weight Assignment 

There are many methods to assess the data skewness (or deviation) in categorical 
data. The best approach is the information theoretical method, using the model of 
Shannon’s entropy [12]. The entropy is the measure of expected value of the informa-
tion of the distribution. The entropy is formally defined as follows: 
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Entropy. A measure of the average information content one is missing when the 
value of the random variable is unknown. Let V be a discrete random variable on a 
finite set V = {v1, v2, …, vn}, with probability distribution function p(v) = Pr(V=v). 
The entropy E(A) of V is defined as 

ሻܣሺܧ ൌ  െ ෍ ௜ሻ௡ݒሺ݌௕݃݋௜ሻ݈ݒሺ݌
௩೔א௧೔ሾ஺ሿ . (5)

We assume that the occurrences of an attribute value are independent to other values 
in the same column. The attribute values can be seen as independent random values of 
V. The frequencies of each attribute value can vary along with results from the differ-
ent probabilities of the value occurrences. High entropy means V is from a uniform 
(or well-distributed) distribution. Low entropy means V have samples that would be 
more predictable based on the high probability. Therefore, the attribute of a high 
probability of occurrence will have low entropy. The weight for the attribute value 
will be higher according to the value of 1/E. 

The final score for attribute value is as follow. 

,ܭሺݎݎ݋ܥ ሻݐ ൌ ෍ ෍ 11 ൅ ௨ሻܣሺܧ ܲሺݐሾܣ௨ሿ, ,௨ሿܣሾݐሺܲሺݔሻ݉ܽܭ ஺ି௑אሻ஺ೠܭ
௦
௜  (6)

Intuitively, the reciprocal of function E determines the predictability of a certain 
attribute. Consequently, a ranking score Corr(K,t) is derived for object t given a key-
word query K by aggregating all the attribute value scores. 

4   Finding Similar Objects 

A concept vector is proposed to describe a synopsis for a set of objects in a relational 
database. Similar tuples can be identified by measuring the similarity to the synopsis 
of a certain topic specified by the query. 

4.1   Concept Vector  

A synopsis over the database instance is indicated by a set of attribute values that 
represent a certain topic. We assume that values are related if they occur in the same 
tuple. A synopsis is created by gathering the related attribute values for a given con-
cept specified by the query. For example, the synopsis of the concept Camry is de-
scribed by pairs of the common attribute value and its frequency in the tuple t1~t5 in 
Table 1. For a common attribute value Toyota, its frequency is 5. The vector represen-
tation of this synopsis for Camry is as follows: [(2008,3), (2009,1), (Toyota,5), (Sil-
ver,2), (Black,1), (Blue,1), (Gold,1), (Sedan,4), (Coupe,1)]. The vector representation 
summarizes the retrieved objects by the query “Camry”. This vector is denoted as a 
concept vector, and it will be used for assigning the weight Sim(K,t) for the score 
Corr(K,t)in Equation 3. For any relevant tuples identified by concept vector similarity 
are assigned a damping factor, which is the weight, Sim(K,t)<1. If a tuple t already  
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Table 2. Synopsis of concept Camry 

 Freq. E 

2008 3 0.87 

2009 1 0.12 

Toyota 5 1.0 

Silver 2 0.28 

Black 1 0.28 

Blue 1 0.28 

Gold 4 0.28 

Sedan 4 0.87 

Coupe 1 0.12 

resides in the original results, Sim(K,t) is 1. Table 2 describes the synopsis of Camry. 
In Table 1, the tuple t6 of car model Accord is added to the original query results t1~t5 
since it has certain similarity for the synopsis of Camry. 

4.2   Similarity Measure for Concept Vector  

Each dimension of the concept vector is weighted by the E from the Equation 1 ac-
cording to a query. The weighted cosine similarity coefficient is used to determine the 
similarity between two vectors. The cosine similarity is defined as the normalized dot-
product of the two corresponding vectors. The model is refined by scaling each com-
ponent with the assigned weight E of the corresponding attribute values. Intuitively, 
the tuples similar to the synopsis specified by the attribute value c, which can be 
represented as an attribute value, will have small differences in attribute values of the 
least weight. The following is the similarity between the synopsis specified by the 
attribute value c and the tuple t. 

ܸܵ݅݉ሺܿ, ሻݐ ൌ  ∑ ሾ݅ሿܧ ൈ ܿሾ݅ሿ ൈ ሾ݅ሿܧሾ݅ሿඥ∑ሺݐ ൈ ܿሾ݅ሿሻଶ ൈ ∑ሺܧሾ݅ሿ ൈ ሾ݅ሿሻଶ. (7)ݐ

The underlying motivation is to identify tuples that are most similar to the synopsis 
specified by the attribute value c. Tuples are selected by the ratio of similarity. For 
limited number of exact matches, the similar tuples compensate as a relevant result. 
The expanded query results contain tuples directly related to the query selection and 
tuples implicitly related to them in various properties. This relevance model can be 
useful in many applications and can provide the user more information. 

5   Generalizations 

In this section, we describe how to extend our methods to deal with several generali-
zations: joining multiple tuples and discretizing numerical data. 
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5.1   Joining Multiple Tuples  

Given a set of query terms, a relational database returns a set of tuples that contains 
all the keywords. Identifying tables that contain at least one tuple that matches at least 
a keyword is a challenging issue in keyword search over relational databases; the 
tables are connected with primary key to foreign key relationships. The set of tuples 
may contain inter-connected tuples that have no matches to query keywords. To find 
optimal set of tuples, we have to deal with the complex graph problem, which is NP-
hard. Several approaches to enable keyword search in relational databases are focused 
on this problem [1, 3, 6]. Our work focuses on a complementary problem: How to 
rank a join tuples after joining the multiple tuples? A join tuples express the graph as 
a flat representation. That is, we can simply consider the join tuples as a tuple of 
many attributes after the joins. 

5.2   Dealing with Numerical Values  

For more general database instances, we have to consider database of numerical 
attributes. Recent approaches such as [2] discretize the numerical values to apply 
same ranking technique. However, ranking heterogeneous type of data is challenging 
issue. Since numerical values have inherent ordering, we can consider it as search 
condition. We can provide range search predicate, such as Mileage >2000, which is 
one of the important settings in database query processing. By analyzing numerical 
values for our correlation based ranking, we can adopt the well studied correlation 
measures, such as Pearson’s correlation coefficient, into our method. In our experi-
ments, we discretized the numeric attribute values into pre-assigned buckets, and then 
it should be treated as a categorical value. 

6   Experiments 

This section describes the experimental evaluations for our ranking method. The 
evaluation results focus on the retrieval quality and the computational efficiency. 

6.1   Experimental Setup  

For the experimental dataset, a used car database CarDB (Make, Model, Year, Color, 
Style, Price, Mileage, Location) is set up containing 15955 tuples extracted from 
Yahoo! Autos [16]. In this database, each tuple represents a car for sale, and each 
column represents an attribute of the car. Since our ranking method only focuses on 
categorical data, the attributes Price and Mileage (which are numerical values) are 
discretized into categorical data (5 buckets: p1~p5 and m1~m5). MySQL Server 5.0. 
RDBMS is used on a system with an AMD Athlon 64 processor 3.2 GHz PC with 2 
GB of RAM for the environment of the experiments. Algorithms are implemented in 
JAVA and connected to the RDBMS through JDBC interface. 

Two other ranking methods are implemented to compare with our method, RAVC. 

RANDOM. The query results are presented in a random order in this ranking model. 
This model provides a baseline method. 
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QRRE. A Query Result Ranking over E-commerce (QRRE) model [13] has been 
successfully used for ranking objects and addresses the same problems as our method 
(RAVC). In QRRE, given a tuple t, its ranking score is calculated based on the 
distribution difference of attributes in query results and in a database using the 
Kullback-Leiber distance measure. 

The entire tuple scoring is indexed for up to 3-words query for all instances in the da-
tabase at preprocessing time because the attribute value distribution analysis time is too 
long compared to the query processing time. For pragmatic use of this method, many 
query optimization issues such as a large storage overhead or frequent database updates 
should be presented; however, the issues are not the focus of this paper. At the query 
time, the query keywords are joined to find the intersection of the matched tuples.  

The search quality evaluation was accomplished using surveys from 14 graduate 
students from our respective universities and institutions. Users were requested to 
behave like a used-car dealer customer. We solicited 10 typical queries that represent 
heterogeneous mix of different profiles of positional car buyers. Since it is not prac-
tical to ask participants to select the whole query result for a specific query, we con-
duct a comparative study for our purpose. We collected the first 10 tuples produced 
for each implemented ranking methods, and 30 tuples were collected in total. If there 
is overlap among the resulted tuples from different methods, more tulpes are extracted 
using the RANDOM algorithm so that 30 unique tuples are collected in total. Next, 
for each of the queries, each user was asked to rank the top 10 tuples as the relevant 
tuples that they preferred most from the 30 unique tuples collected for each query. 
This strategy can evaluate the average precision for each ranking method. 

6.2   Implemented Algorithm 

The entire object scoring is indexed for every match in the database instances in a 
preprocessing time because the attribute value distribution analysis time needs high 
cost of repeatable database scans. At the query time, only the query keywords are 
joined to find the intersection of the matched objects. We assume that the number of 
query matches is at least 1 in D for a given query. We built a preliminary index struc-
ture, D-table, which describes the data statistics in D for efficient ranking process. It 
is possible to avoid repetitive calculation for deriving a final score for a given query at 
online stage. D-table maintains the mutual occurrence values and the entropy value 
for each column in the database D. D-table construction algorithm is as follows. 

D-table construction 

program constructDtable (input:D) 
  {tuple score R={(scorei, tuplei)|i<n}, attribute-value 
weight A={(attributej, valuej, freqj, entropyj|j<m)}}; 
  for each j in 1,..., m do 
    for each i in 1,..., n do 

freqj := |ti| / Count(argmax(|ti|)); 

entropyj := probe ti to derive (-|ti|log2|ti|); 

end 

update Aj : (attributej, valuej, freqj, entropyj);     

end 
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6.3   Evaluation Results  

The quality of query result
average recall. The Precisio
captured by the different ra
the number of retrieved tupܲ݊݋݅ݏ݅ܿ݁ݎ ൌ  |
The Recall metric is used t
ranking, which utilizes the 
number of retrieved tuples tܴ݈݈݁ܿܽ ൌ ݁ݎ| 
The overall search quality o
RAVC effectively distingui
system. Also, our method c
ing the original query resul
in the model of relevance-b
cussions with illustrative fig

Average Precision. Figure
methods for each query. On
setting of this study; this m
show that RAVC generally 

ts is evaluated with a two metrics: average precision 
on metric is used to evaluate how well the user intentio
anking models. Precision is the ratio obtained by divid
les that are relevant to the total number of retrieved tuplݐ݊ܽݒ݈݁݁ݎ ݏ݈݁݌ݑݐ ת ݀݁ݒ݅ݎݐ݁ݎ ݀݁ݒ݁݅ݎݐ݁ݎ||ݏ݈݁݌ݑݐ |ݏ݈݁݌ݑݐ . 
to evaluate the quality of the relevance-based query re
concept vector. Recall is the ratio obtained by dividing 
that are relevant to the total number of relevant tuples. ݈݁݁ݐ݊ܽݒ ݏ݈݁݌ݑݐ ת ݀݁ݒ݅ݎݐ݁ݎ ݐ݊ܽݒ݈݁݁ݎ||ݏ݈݁݌ݑݐ |ݏ݈݁݌ݑݐ . 
of the RAVC ranking method is higher than that of QRR
ish the tuples of the same ranking score in QRRE rank

clearly outperforms QRRE in the recall metric. By expa
lts based on similarity, we progressively improve the re
based retrieval in relational databases. Followings are 
gures. 

e 1 shows the average precision of the different rank
nly the top 10 results are considered to be evaluated in 
measure is precision at 10. The results of the experime
produces rankings of higher quality compared to QRRE

Fig. 1. Average precision 

and 
on is 
ding 
les. 

(8)

esult 
the 

(9)

RE. 
king 
and-
ecall 
dis-

king 
the 

ents 
E. 

  



 

For most of the queries,
that of QRRE. The query r
method. The reason is that 
logs but these terms were 
method focus on the datab
database cannot be used as 
sion of RAVC is 0.15 highe

Average Recall. The avera
2. The recall of RAVC is co
set. Averagely, 14 tuples a
RAVC is 0.07 higher than
number of relevant docum
relational databases, the ave

Execution Time. A prepro
the query time for efficien
such as data correlation an
remains constant over time.
attribute value weight selec
three computation modules
has a time complexity of O
stage is O(nlogn). Figure 3 
ber of tuples in the query r
number of tuples in the que
able amount of time to rank

Ranking Objects Based on Attribute Value Correlation 

, there is some overlap between the results of RAVC 
results for q7 and q8 lost in precision compared to QR
the terms that were very commonly surfaced in the qu
not popular terms for the car sales databases. Since 

base statistics only, the vocabularies not appeared in 
supports for ranking tuples. For 8 of 10 queries, the pr

er than that of QRRE method on average. 

age recall of answers for each algorithm is shown in Fig
onsistently higher than QRRE because it expands the re
are expanded for the query set. The average recall of 
n that of the QRRE. Recall increases with an increas

ments retrieved. By expanding the relevant set of tuples
erage precision does not deteriorate at each recall point. 

Fig. 2. Average recall 

ocessed index table, D-table, should be constructed bef
nt processing. The index table contains the data statis
nd value distribution status. The construction time usua
. The query result ranking in the online processing inclu
ction, tuple score computation, and the sorting tuples. T
 have a time complexity of O(n) and the sorting algorit

O(nlogn). The time complexity of our method in the onl
shows the online execution time as a function of the nu
result. The execution time grows almost linearly with 

ery result. This result illustrate our method spends a reas
k objects even for a large size of the query results.  

357 

and 
RRE 
uery 
our 
the 

eci-

gure 
esult 

the 
sing 
s in 

 

fore 
stics 
ally 

udes 
The 
thm 
line 
um-
the 

son-



358 J. Park and S.-g. Lee 

6.4   Summary 

Overall search quality of the RAVC ranking method is higher than that of QRRE. 
They perform better than the RANDOM model. The RAVC is an effective ranking 
method for several reasons: 

1) Users will have more specifically ordered query results because the RAVC can 
effectively distinguishes the tuples of same ranking score in QRRE ranking sys-
tem by assigning a single score to represent the importance of each of the tuples.  

2) Our method clearly outperforms QRRE in recall metric. The expanded query 
results based on the similarity measure will meet the needs of the user in the 
framework of ranking in relational databases.  

 

Fig. 3. Execution time 

7   Conclusion 

We presented a novel method to rank objects in relational databases. Based on the 
attribute value correlation and its distribution status, a score is assigned to a tuple for 
ranking. For limited results, similar tuples are added to the Boolean query results 
based on the concept vector. No domain knowledge or user feedback is required in the 
whole process. Experimental results showed the search performance and the efficien-
cy of our method, RAVC. The experiments on a real dataset identified that RAVC 
improves the performance of the existing approach QRRE [13], which is the well-
known technique tried to resolve the same problem. 

Future plans are to investigate ways to minimize the size of the structure to store 
the pre-computed data structure by sampling databases. Comprehensive experimental 
evaluation should be conducted to prove the performance improvement in more prin-
cipled ways. A large, comprehensive benchmark should be built to extensively eva-
luate the query result ranking system for future research. 
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Abstract. Ontologies are being progressively used to capture the se-
mantics of information from various sources. They have wide area of
usage ranging from artificial intelligence, natural language processing to
web content and biology. This paper proposes the problem of finding sim-
ilar objects that have been defined as a set of terms from an ontology.
We consider tree-based ontologies where a node represents a term and an
edge weight defines the distance or dissimilarity between corresponding
terms. For object distance, Earth Mover’s Distance (EMD) is used as
it outperforms other distance measures like average and minimum pair-
wise distance. EMD, however is highly computationally intensive as it
involves solution to linear programming (LP) problem. We propose an
efficient lower bound on computing EMD by aggregating the terms in the
ontology at the first level of the tree. This reduces the number of terms,
thereby decreasing the number of flow variables and making it computa-
tionally faster. Range queries that use the lower bound runs faster by up
to a factor of 20, as approximately 97% percentage of database objects
are pruned, thereby saving expensive EMD calculations.

Keywords: Ontologies, Similarity Search, Range queries, Earth Mover’s
Distance.

1 Introduction

Ontologies can be defined as explicit formal specification of terms in a particular
domain and relationships among them [6]. It is used to share information by
people, applications and databases. Examples of ontology includes WordNet (an
electronic lexical database) [9], Semantic Web (defined as meaningful web) which
is developed to provide semantics for web resources [10].

Ontologies can be represented by directed acyclic graphs (DAG) since they
comprise a generalization hierarchy. The nodes of the graph represent the con-
cepts and edges represent the relationship (hierarchical) between the concepts.
By DAG representation of the ontology the degree of similarity between two
terms can be estimated. In this paper ontology is assumed as tree.

It is assumed that each object has been labeled with one or more terms (which
form an ontology tree) that define the properties of the object. Terms can be

P. Garćıa Bringas et al. (Eds.): DEXA 2010, Part II, LNCS 6262, pp. 360–374, 2010.
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mapped to objects as many-to-one mapping. Since ontology as a tree are con-
sidered, the distance d(ti, tj) between two terms ti and tj is defined as length
of the shortest path between them on ontology tree. The degree to which two
terms are similar depends on location of the terms in hierarchy. The lower in
hierarchy the more similar the terms or feature are.

Using similarity search (range search), the distance measure finds objects from
the given database set which are within a range from the query object.This paper
presents an approach to use ontologies to find similar objects.

In literature many type of distances are used to find dissimilar objects. We
compared different distance measures like average pairwise distance, minimum
pairwise distance and Earth Mover’s distance to find dissimilar objects whose
terms form an ontology tree. As EMD is highly computationally expensive lower-
bound is derived to efficiently find similar objects using the given ontology tree.

The rest of the paper is organized as follows. Section 2 discusses and com-
pares various distance measures where the terms of objects form an ontology
tree. Section 3 introduces lower bound approach to speed up similarity search.
Section 4 analyzes effect of varying different parameters on range queries for
similarity search of objects. Finally, Section 5 concludes the paper.

2 Comparison of Various Distance Measures

This section compares different distance measure (minimum pairwise distance,
average pairwise and EMD), given an ontology tree with a set of terms as nodes
where the terms are defined as attributes or feature of the objects. The edge
distances between each term pair is given in the ontology tree which serves as
the measure of dissimilarity. It is assumed, with the increase in level of tree the
edge distance decreases by half since as we go deeper in hierarchy, the terms are
more similar to each other than the terms at upper level. The distance d(ti, tj)
between two terms ti and tj is defined as length of shortest path between them on
ontology tree. Since there is only one path between two terms it can be shown
from properties of shortest path, that this distance is a metric distance [5].
Different distance measures are defined between the objects using these term
distances.

Figure 1 illustrates a particular instance of the problem. An ontology tree is
given, which shows the terms and distance between them. The distance decreases
exponentially as the level increases. In this example, O1 = {t1}, O2 = {t2, t3},
O3 = {t3, t4, t5}, O4 = {t3, t5}, O5 = {t2, t5}, O6 = {t1, t6} and query object
Q = {t1, t7}.

2.1 Minimum Pairwise Distance

The minimum pairwise distance between two objects is defined as minimum
pairwise distance between their corresponding set of terms.

The minimum pairwise distance between two objects Oi and Oj is defined as

dmin(Oi, Oj) = ti ∈ Oi, tj ∈ Ojmin{d(ti, tj)} (1)
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Fig. 1. Running example

The distance is useful when searching objects that have similar terms (con-
cepts). For example, even though a single biological document may contain ref-
erences to different terms like photoreceptor cells and ganglion cells, it is useful
to be able to retrieve it when another document that describes photoreceptor
cells is queried.

Table 1. Minimum pairwise distance for the example

O1 O2 O3 O4 O5 O6 Q

Q 0.0 0.5 0.5 0.5 0.5 1.0 0.0

Table 1 shows the minimum pairwise distances of the query object to other
objects in Figure 1. It can be verified, that dmin distance is not a metric distance,
since it does not follow triangular inequality. For example, for the objects O1, O3

and O6 triangular equality is not maintained as dmin(O1, O6) + dmin(O6, O3) =
0.0 + 0.5 < 1.0 = dmin(O1, O3).

2.2 Average Pairwise Distance

The average pairwise distance between two objects is defined as average pairwise
distance between their corresponding set of terms. The average pairwise distance
between two objects Oi and Oj is defined as

davg(Oi, Oj) =
1

|Oi|.|Oj |
∑

ti∈Oi,tj∈Oj

d(ti, tj) (2)
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where |Oi| and |Oj | denote the number of terms describing Oi and Oj respec-
tively. The average is useful in cases where objects are not precisely defined. For
example, among genes whose functions are not known with certainty but can be
described using some general function terms, the average distance can be used
to query all gene pairs with similar function profiles. It can be used when objects
are defined using multiple attributes, the similarity among the objects will be
based on all its attributes. Table 2 shows the average distance among objects for
the example in Figure 1. As can be seen average distance is symmetric since

∀i, j davg(Oi, Oj) = davg(Oj , Oi)

For example davg(Q, O6) = davg(O6, Q) = 1.0.

Table 2. Average pairwise distance for the example

O1 O2 O3 O4 O5 O6 Q

Q 0.75 1.25 1.75 1.5 2.0 1.0 0.75

If the term distance is metric, the avg distance follows the triangle inequality
property. Assume any three objects A, B and C. We need to prove davg(A, B)+
davg(B, C) ≥ davg(C, A).

Brameier et al. [4], used minimum pairwise distance to group yeast genes
(Saccharomyces cerevisiae) according to expression profile and Gene Ontology
annotations. Genes with similar expression profiles are more likely to have similar
biological function. Minimum pairwise distance dGO(g1, g2) was used to compute
GO (Gene Ontology) distance between two pair of genes g1 and g2 and average
pairwise distance dGO(g, Ci) computes gene-cluster distance between gene g and
genes that have been assigned to cluster Ci, excluding g if it is in Ci. To explore
the relation between gene evolutionary rates and functional similarity, Leonardo
et al. [8] used average pairwise distance. They performed evaluation of evolution-
ary rates and functional annotations for the yeast (Saccharomyces cerevisiae).
Non-synonymous (dN) and synonymous (dS) substitution rates were calculated
for gene sets common to S.cerevisiae and other yeast species. Comparison be-
tween evolutionary rates between pair of genes (� dN and � dS) and functional
similarity sGO (measured using Gene Ontology) was made. For any gene pair
ij, all term-term similarity values were aggregated at the level of gene products
to yield sGOij using average pairwise distance. It was found � dN and sGO
had significant correlation.

2.3 Earth Mover’s Distance

The Earth Mover’s Distance (EMD) was introduced by Rubner et al. [11] to
overcome the inconsistencies with perceptual similarity as observed in other dis-
similarity measures like Minkowski-form distance, Kullback-Leibler divergence,



364 M. Saraswat

Histogram intersection, Jeffrey Divergence, χ2 statistics. EMD between two ob-
jects is computed by adopting the definition as given in [7]. Suppose that objects
A and B are annotated with n and m terms respectively. The ground distance
cij = d(ti, tj) between two terms ti in object A and tj in object B is defined as
the length of the shortest path between them on the ontology tree. The feature
values indicate the presence or absence of the term and are, hence, 1 for the
terms present and 0 otherwise. Normalizing with the number of terms yields
ai = 1

n for all i = 1, · · · , n and bj = 1
m for all j = 1, · · ·m. Computing the

EMD involves finding a flow matrix F = {fij}, where each flow fij denotes the
amount of feature or mass to be moved from term ti in A to term tj in B such
that object A is transformed into object B. Note that both F and C = {cij}
are matrices of size n×m where n and m are number of feature values of object
A and B. The cost of moving mass fij from term ti to term tj is the ground
distance of ti to tj multiplied by the mass to be moved, or cij × fij . The EMD,
which is the minimum cost of transforming object A into object B is defined as

EMD(A, B) = Fmin
n∑

i=1

m∑
j=1

cijfij subject tofij ≥ 0,
m∑

j=1

fij =ai

n∑
i=1

fij =bj(3)

∀i ∈ {1, · · · , n}, ∀j ∈ {1, · · · , m}

The EMD measures the effort to match one object against the other. Similar
objects will cause less effort to be transferred to entries in other at minimal cost.
EMD is a metric distance. The proof for the same is given in [7].

Table 3. EMD for the example

O1 O2 O3 O4 O5 O6 Q

Q 0.75 0.75 1.417 1.0 2.0 0.5 0.0

Table 3 shows the EMD between the query object and all other objects for
the example in Figure 1.

2.4 Quality Experiment

This section investigates the qualitative properties of the different distance mea-
sures, Minimum pairwise distance (MPD), Average pairwise distance (APD)
and Earth Mover’s distance (EMD) by finding similar documents using nearest
neighbor search. Real-life datasets MESH (Medical Subject Heading) ontology
and Ohsumed Test Collection are used.

MeSH is the vocabulary thesaurus of National Library of Medicine’s (NLM) [2]
consisting of sets of medical terms in a hierarchical structure. Experiments were
conducted using 49,714 terms from mesh 2009.
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The Ohsumed test collection was created to assist information retrieval re-
search [3]. It is a clinically-oriented MEDLINE subset, consisting of large number
of references, covering all references from different medical journals over a five-
year period (1987-1991). MEDLINE is the National Library of Medicine’s (NLM)
bibliographic database covering various fields like medicine, dentistry, nursing,
veterinary medicine etc.

There are different datafiles associated with Oshumed. There are a set of 63
different Ohsumed case (query-topics) each pertaining to some particular medical
case like “30 year old with fever, lymphadenopathy, neurological changes and
rash”. There is year wise test collection of ohsumed documents from year (88-
91) each having various fields like doc-id, abstract, MESH terms, author, source,
publication. A file containing truth dataset with fields like the case number
(varying from 1-63) and the doc-id, which are relevant/similar to particular
case.

The first document for each of the case is considered to be query document.
All other documents within the same case are similar, while documents within
other case are dissimilar to the query document. We arbitrarily chose 10 cases
and 15 documents for each case, which totaled to 150 documents pertaining to
various cases. Then 10 query document (1 from each case) are chosen and each
is compared with all documents in the collection. This is done by extracting
the MESH terms from each of the documents and using MESH ontology for
finding the average pairwise, EMD and minimum pairwise distances of all the
documents from the selected query document. From the ranked list of (top-10,
top-5 and top-2 nearest neighbor) documents which fall into same case as the
given query document are counted for each distance measure. For the minimum
case if there is a common MESH term, the distance is zero. So there are number
of documents which have distance of 0.0 from query object. For this case we
counted the number of objects having 0.0 distance from query object. The results
are shown and compared in Table 4. It can be seen EMD based similarity measure
outperforms other distance measure.

Table 4. Number of similar documents

Top-10 Top-5 Top-2 Zero distances
APD 2.0 1.0 0.5 0.0
EMD 4.1 2.6 1.4 0.0
MPD − − − 38.8

As can be seen EMD provides more accurate results than the other two. So
we chose EMD in our work to find similar objects.

2.5 Computational Complexity

As seen from equation 4, EMD is a large linear programming problem since
a flow matrix that will minimize the flows between terms in objects need to
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be found. To get the flow matrix, GNU Linear Programming Kit (GLPK) is
used [1]. The number of flow variables in linear programming increases with the
number of terms (features) by which an object is defined. Complexity of simplex
is exponential in number of variables. Number of terms by which an object is
identified cannot be changed as the object is defined by its terms. This increases
the running time for each distance computation.
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Fig. 2. An ontology tree

3 Using Lower Bound to Speed Up Similarity Search

The running time to solve the linear programming for computing EMD increases
with the number of terms in each object. Reducing the number of terms, gives
a lower bound bound which will make EMD computation efficient. This section
describes how a lower bound for the distance calculation with large number of
terms can be computed using lesser number of terms. This changes the object
description. Ljosa et al. [7] have used lower bound to speed up similarity search
for images.

For reducing the number of terms, all terms of a subtree are aggregated to
the ancestor at level 1. Aggregating a subtree rooted at node T ′ at level 1 in the
ontology tree implies changing all the nodes in the subtree to T ′. Computation
of distance between the nodes of subtree is done with respect to T ′. This implies
that the distance between nodes belonging to same subtree is zero, distance be-
tween a node in the subtree and T ′ is zero and distance between an external node
(not belonging to the same subtree) and a node in the subtree is same as dis-
tance of external node and node T ′. This aggregation of terms slightly decreases
the distance between terms but not much difference is there, since the distance
at each level goes on decreasing exponentially. General idea of aggregation is
depicted through Figure 3 which shows an aggregated ontology tree transformed
from the given ontology tree as depicted in Figure 2. The dashed triangle shows
all the terms of the subtree which are aggregated to the respective ancestor at
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Fig. 3. Aggregating the terms of Ontology tree at level 1

level 1. As seen in Figure 3, t2 is substituted for all terms in the leftmost subtree,
t3 for all terms in middle subtree and t4 with all terms in rightmost subtree.
Object description changes by introducing the lower bound. For example if object
O = {t2, t5, t8, t15, t16, t18, t20, t22} has 8 terms, after aggregating the terms at
level 1, O = {t2, t3, t4} will have 3 terms.

3.1 Computing Lower Bound EMD

Suppose object A has n terms Tn = {1, · · · , n} and ai is the feature value of
term ti. Given n′ ≤ n, we change the object description of A to A′ by changing
Tn (set of n terms) into T ′

n (set of n′ terms) where n′ ≤ n by aggregating the
terms to their respective ancestors. Given m′ ≤ m, B′ is defined similarly for
object B.

The feature value a′
i of object A′ will be sum of the feature values of all the

terms that are aggregated to the same ancestor at level 1.

a′
i =

∑
j∈t′i

aj (4)

Feature values for object O = {0.125, 0.125, 0.125, 0.125, 0.125, 0.125, 0.125,
0.125} for the above example. After aggregating to their ancestor at level 1 the
feature values of object O = {0.625, 0.250, 0.125} for terms t2, t3, t4 respectively.
Lower bound for EMD between two objects A and B is the EMD between their
summaries A′ and B′ where the ground distance cij defined on n×m matrix is
modified to another ground distance c′ij defined on n′ ×m′ .

The d′ij distance between two terms t′i and t′j (terms at level 1) is never more
than the dij distance between any term corresponding to ti and tj . Reduction
in the number of terms, reduces the size of ground distance matrix as well as
flow matrix. Now the linear programming problem for lower bound EMD can be
solved.
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LEMD(A, B) = F ′min

n′∑
i=1

m′∑
j=1

c′ijf
′
ij

subject tof ′
ij ≥ 0,

m′∑
j=1

f ′
ij = a′

i

n′∑
i=1

f ′
ij = b′j ,

∀i ∈ {1, · · · , n′}, ∀j ∈ {1, · · · , m′} (5)

The number of variables in LP problem for object A and B is reduced by a
factor of (n/n′)(m/m′) making it less computationally demanding. For instance,
as shown in example for Figure 3 if 8 terms are aggregated to 3 terms in both
object and Query, the number of variables are reduced by a factor of around 7.
For finding similar objects to a given query object (range queries) using lower
bound EMD computation to speed up similarity search, first only lower bound
EMD is computed. For each object and query, the terms and their feature value
is found. These terms are aggregated to the ancestor of the subtree at level 1 and
their feature values added. This reduces the number of terms in each object since
many terms are substituted by only the terms at level 1. Then distance matrix
c′ij is computed. We then find the flow matrix and compute EMD. This is lower
bound EMD since we changed the object description by reducing the number
of terms. For similarity search lower bound EMD of each object is compared to
given range. If lower bound EMD is less then the given range, actual EMD need
to be computed. Objects whose lower bound EMD is greater than the given
range are pruned since their actual EMD will be more than the lower bound
EMD. Again the actual EMD is compared to range, if it is less we get similar
the objects within a range to a given query object.

4 Experimental Results

This section presents the results of our proposed lower bound algorithm for com-
puting EMD for similarity search. We compared the performance by introducing
lower bound on EMD, with actual EMD calculations based on changing various
parameters of the given ontology tree, in order to understand the effects of them.

Experiments were conducted using synthetic datasets and the effect of varying
different parameters like number of objects, number of terms per object and
branching factor is analyzed. Synthetic datasets are generated randomly with
uniform distribution to construct artificial ontology tree. The number of terms
and number of objects are varied through order of dimensions, starting from
small datasets of size 300 to large datasets of size 105. Similarly number of terms
per object and branching factor are varied from 3 to 100. For the experiments for
similarity search (range search), range is varied from 0.125 to 2.0. An average over
different query objects is taken for finding results since the dataset is random.

The terms and objects are randomly generated as per parameters given.
We have implemented the code in C, both for actual EMD and lower bound
EMD similarity search and used GLPK-4.25 [1], for solving linear programming
equations.
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4.1 Parameters of Comparison

Results are compared based on following parameters.

1. Comparison of running time of lower bound EMD with actual EMD for range
search
In case of similarity search without using lower bound, actual EMD is directly
computed for all objects from query object. In case of similarity search using
lower bound, first lower bound EMD for all objects from query object is
computed. Actual EMD for only those objects whose lower bound EMD is
less than the given range are computed.

Equations below show the relation between pruning ratio and the ratio
of lower bound and actual EMD time. Let us consider n objects and average
time to compute EMD is E for each object from query object. Let g be
number of objects left after pruning. Time for computing lower bound is E′.

Total time for computing EMD for finding similar objects:

T1 = n× E

Total time for computing EMD using lower bound:

T2 = (n× E′) + (g × E)

If we want incorporating lowerbound to be beneficial then:

T2 < T1

or (n ×E′) + (g × E) < n × E
or nE′ + gE < nE
or gE < n(E − E′)
or (n − g)E > nE′

or (n−g)
n

> E′

E

Theoretically it shows pruning ratio should be greater than the ratio of lower
bound EMD to actual EMD for making lower bound to be beneficial. This
is because it has to cope with the extra overhead of computing lower bound.
Equation 1 signifies the importance of lower bound. It should be such that
will prune more objects, reducing the actual EMD computations. Pruning
ratio should be more than 25% to get E′

E to 0.25. Practically it is found for
value of E = 27.34 sec, E′ = 2.73 sec i.e E′

E = 0.1 pruning ratio =77%. So
performance is better. For range 2.0 no objects get pruned so pruning ratio
is zero, signifying the lower bound is not beneficial.

2. Comparison of Pruning Ratio
It determines the ratio of objects pruned (n− g) to total number of objects
(n). The more the ratio, the better is our algorithm for lower bound EMD
since less actual EMDs’ need to be computed.
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3. Tightness
Tightness is the value of ratio of lower bound EMD with actual EMD. We
calculated tightness taking average EMD and lower bound EMD of all ob-
jects from different query objects. As it is the distance it does not vary with
range.
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Fig. 4. Comparison of running time over different ranges with number of objects

Variation in number of objects. The figure show the effect of varying the
number of objects keeping other parameters i.e branching factor of ontology tree,
number of terms and number of terms per object constant.
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Figure 4 compares the time taken for finding similar objects over different
ranges by varying number of objects keeping other parameters constant. With
the increase in number of objects the time for similarity search also increases,
since more number of objects need to be compared.

The time also varies with the given range. As the range increases from 0.125
to 2.0, the time also increases since lower bound becomes less tighter.
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With increase in number of objects Pruning ratio remains nearly constant as
shown in figure 5. The ratio decreases with range as lowerbound gets less tighter.

Table 5. Comparison of tightness with increase in number of objects

No. of Objects 300 1000 3000 10000 30000

Tightness 0.33 0.32 0.31 0.31 0.30

Table 5 compares the tightness by varying the number of object. It does not
vary with increase in the number of object.
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Fig. 6. Comparison of running time over different ranges with branching factor

Variation in branching factor of ontology tree. Figure 6 compares the
running time for finding similar objects over different ranges with increase in
branching factor of the given ontology tree. With increase in branching factor,
the running time increases till 10, since level 1 terms will first increase to 10
(branching factor) which will increase the number of variables for computation.
This is because all terms of objects will be aggregated at level 1 while finding
lower bound EMD. Running time decreases after that as the height of tree de-
creases, making lower bound tighter. So more objects get pruned decreasing the
running time. After that it is nearly constant as the distance decreases exponen-
tially.

As shown in figure 7, Pruning ratio of object increases with the increase in
branching factor of ontology tree since the height of ontology tree decreases and
lower bound becomes tighter. As branching factor increases, tightness increases
as depicted in Table 6 since the height of tree decreases, decreasing the ground
distance cij and thus the actual EMD, increasing the tightness.
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Table 6. Comparison of tightness with increase in branching factor

Branching factor 5 10 25 50 100

Tightness 0.28 0.33 0.43 0.5 0.53
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Fig. 8. Comparison of running time over different ranges with number of terms per
object

Variation in number of terms per object. Figure 8 shows time taken for
finding similar objects over different ranges with increase in the number of terms
per object. As the number of terms per object increases, the time also increases
since, more are the number of variables to be solved in linear programming, thus
increasing the computation time.

As seen from figure 9 with increase in the number of terms per object, more
terms aggregates to their ancestors at level 1, decreasing the EMD distance for
more number of objects, making the lower bound less tight thus decreasing the
pruning ratio.
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Tightness decreases with increase in the number of terms per object as de-
picted in Table 7 since more terms will be aggregated to the ancestor at level
1 (where maximum terms are 10), decreasing the number of terms (variables to
solve LP) at level 1 and also the ground distance cij will decrease, making lower
bound EMD to be less than actual EMD, hence decreasing tightness.

Table 7. Comparison of tightness with increase in number of terms per object

Terms per object 5 10 25 50 100

Tightness 0.38 0.33 0.28 0.25 0.20

5 Conclusion

The work in the paper was focused on designing and implementing an efficient
algorithm that will find similar objects in a given ontology tree. The work consid-
ered the problem of speeding up the computation of spatially-sensitive distance
measures between objects whose terms come from an ontology tree. Different
distance measures are compared using real datasets (average pairwise, minimum
pairwise and EMD) and found EMD outperforms other. But since it is compu-
tationally hard, we developed a lower bound for computing it. Through a series
of experiments by varying different parameters the lower bound approach is jus-
tified and results in substantial performance enhancements. Following results
through the experiments are justified:-

– EMD outperforms average and minimum pairwise distance as a distance
measure for finding similar objects.

– Algorithm proposed provides a low cost approach to similarity search in
ontology tree. With less range the algorithm is highly efficient as compared
to higher ranges.
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– The reduction in running time by incorporating lower bound, is as high as
20 times as approximately 97%objects are pruned. Reduction in cost is a
huge gain as this is important for practical problems.
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Abstract. To extract and restructure information in XML documents,
various query languages have been proposed in the past decade. These
languages take navigational or pattern-based approach to data extraction
and often claim to be declarative. However, declarativeness in them is
not as prominent as in SQL because they often exhibit a procedural style
in handling heterogeneity and presenting tree-like document structure.

In this paper, a new XML query language called XTQ is proposed
to address this challenge. XTQ is a pattern-based language which intro-
duces disjunction as well as conjunction operators in composing tree-like
patterns named LXT (Logic XML Tree) for data extraction. LXT can
expressively handle heterogeneity common in XML queries. Based on
a hierarchically structured pattern with considerate restructuring rules,
XTQ deploys a flexible hierarchically grouping mechanism in data con-
struction so that complex tree-like structure can be intuitively presented.
Examples from common query request show that XTQ can present XML
queries more declaratively than existing studies.

1 Introduction

XML documents, a kind of hierarchical documents with user-defined tags, have
widely spread over the Internet since the end of last century. All kinds of data are
migrated to XML documents to be machine-readable and exchangeable. XML
query, which extracts data from and constructs them into XML documents, thus
becomes an important and interesting topic in utilizing XML documents.

Many languages have been proposed to query XML documents, such as
XPath[1], XQuery[2], XDuce[3], Xcerpt[4] and TQL[5]. To be convenient and user-
friendly, most XML query languages claim to be “declarative”. Being “declara-
tive” means that the language can enable users to focus on presenting the purpose
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of computation and seldom need to consider the procedures to fulfill the purpose,
in other words, describes what to do without specifying how to do. Designers of
database query languages like SQL usually pursue declarativenss of the language
because database users often don’t wish to consider the underlying mechanisms
in processing query. Unfortunately, this feature is not as prominent in XML query
languages as it was in SQL due to the tree-like structure of XML documents.

How to present the purpose of XML query and then to resolve and accom-
plish it are key to declarativeness of XML query language. We have studied com-
mon data manipulation requirements of XML queries and found some issues key
to declarativeness in presenting XML query. a) Separating data extraction
and data construction can enable users to explicitly describe the purpose of
query with a global sketch of data extraction and construction. b) Structurally
composing global data extraction based on local ones can enable users
intuitively describe data extraction requests by specifying structural relation-
ship of the data to be extracted. c) Flexibly presenting data construction
and deductively resolving data restructuring process based on extracted
data structure enable users specify various construction requests coherent to
extracted data without describing the data transformation procedures. d) Co-
herently handling heterogeneity is of special importance in XML query in
that heterogeneous data are often to be gathered and processed homogeneously
and homogeneous data are to be separated and processed heterogeneously, be-
cause of the semi-structured characteristics of XML documents. Unfortunately,
existing XML query languages haven’t addressed the above issues as a whole.

In this paper, we propose a new XML query language called XTQ standing for
XML Tree Query. XTQ is a pattern-based functional language which meets all
the requirements above. XTQ is distinct from existing studies in three aspects:
a)XTQ adopts an expressive tree shape pattern named Logical XML Tree(LXT)
which enables disjunction as well as conjunction operators for composing pat-
terns. The disjunctively composite patterns greatly enhances the flexibility of
data extraction and enables declaratively handling heterogeneity in both data
extraction and data construction. b) XTQ uses a pattern expression named
variable pattern together with proper semantic model to coherently specify the
hierarchical structure and instance of the extracted data. c) XTQ adopts a flex-
ible and deducible restructuring mechanism to present data restructuring and
construction, which enables the declarativeness of data construction.

The rest of the paper is organized as follows. Section 2 introduces the re-
lated works in more detail. Section 3 describes the pattern-based mechanisms of
data manipulation in XTQ. Section 4 illustrates the outline, the usage and the
advantages of XTQ with certain typical examples. Section 5 makes a conclusion.

2 Related Works

The studies of XML query language can be roughly classified based on their data
extraction mechanisms as the navigational ones and the positional ones[6].

Early navigational XML query languages such as Lorel[7] use the “.” notation
denoting the parent-child relationships as major navigation operator, and the
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Kleene closure operator is also allowed for expressing navigation through recur-
sively defined data structures to enhance the expressive power. Later studies
such as XQL[8] and XPath propose and optimize new navigational mechanisms
specifically for XML document query. For example, XQL uses the notations
“/” and “//” representing the parent-child and ancestor-descendant relation-
ships for navigation, and it also proposes filtering the navigation results with
predicates. Furthermore, XPath deploys the “step” functions instead of nota-
tions for navigation and data extraction. The “step” function, in the form of
“axis::nodetest[predicate]”, is composed of a location function called “axis” and
a node test optionally with predicates to filter the results. The “axis”, indicating
the relative positions such as “child”, “descendant” and “parent” can navigate
forward or backward along the hierarchical path and access the siblings. To
make the path expression more expressive, the logic language XPathLog[9] ex-
tends XPath by binding multiple variables to the query terms in predicate, which
records the “route” of navigation. The full-fledged navigational language, e.g.,
XQuery or XSLT, deploys the XPath expression to extract data and uses certain
statements like FLWOR expression for result construction.

Navigational languages are easy to understand and to use for most program-
mers. However, the programs in navigational languages are seldom “declarative”
enough, because there is a fundamental gap between data extraction and data
construction. Navigation expression like XPath navigates document tree and
extracts a flat set of homogeneous data as its navigation target indicates, but
XML queries usually are required to output XML document fragments. There-
fore, certain control flows like for loops, nested queries and sometimes condi-
tional statements are necessary to construct hierarchical document. To iterate
the elements from XPath expressions and further fetch the data deeply inside,
multiple for and let statements have to be involved in complex variable bind-
ing, which segments the original tree structure and reduces program readability.
Therefore, users usually have to write XQuery program in a lengthy and nesting
style, and data extraction and construction are often intertwined to describe the
procedures of extracting data and constructing results.

The positional or, pattern-based, XML query languages utilize tree- or graph-
shaped patterns as sketch of the data of interest. The design of the patterns,
especially the composition of the patterns, shows the designers’ preference and
background. In the database field, studies often use structural composition, that
is, complex pattern is composed of simpler ones according to document structure.
Early studies such as UnQL[10] and StruQL[11] use simple structural patterns.
The patterns in these languages are of simple syntax and semantics and thus triv-
ial in presenting query request, which makes the program lengthy to write and
hard to read. More considerate pattern-based languages such as XTreeQuery[12]
and Xcerpt propose new structural pattern expression to present the patterns
compactly. In comparison with early pattern-based languages, the tree-shape
patterns are much more intuitive and compact. However, the composite pat-
tern in them only implicitly describes the conjunctive relationships among frag-
ments, and there is no inherent restructuring mechanism for data transformation.
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Therefore, the patterns are often rigid and the languages are not expressive
enough to meet the requirements of handling heterogeneity and declaratively
presenting data construction.

Another pattern-based approach to XML query deploys type systems for XML
documents, e.g. regular expression type system[3], in static typed XML process-
ing languages like XDuce and CDuce[13]. Since the regular expression types for
XML data allow various kinds of type composition, e.g., concatenation, union,
and recursion, the patterns constructed based on the compound types are pow-
erful and flexible. However, the type-based patterns can only work with con-
ventional functional language core and thus is not convenient for common users
who prefer to use query languages. Additionally, type-based pattern is only fit
for the XML document fragments with predefined schema, and is not suitable
for querying common XML documents.

Logic plays an important role in data query because users tend to consider
their query request in a logic way. In data query languages, logic is often used to
filter data and deduce results. For example, SQL adopts logic connectives, e.g.,
“and”, “or” and “not”, in combining conditions for data filtering, and DataLog,
the deduction database language, uses logic rules for data declaration and query
deduction. As for XML query languages, XPath and XQuery use logic connec-
tives for data filtering; XML-RL[14], XPathLog and Xcerpt use logic deduction in
presenting complex query procedures. However, although logic is popularly used
in XML query languages, its use is still limited to the ways in conventional data
query. Studies seldom concern the use of logic in presenting query requirements
on XML document structure. Existing pattern-based languages, e.g., Xcerpt, of-
ten implicitly indicate that the patterns are composed conjunctively, but these
languages seldom explore the features of logic in designing patterns syntactically
or semantically, and thus lose the valuable expressive power of logic in present-
ing queries. An exception is TQL which adopts Ambient logic[15], a modal logic
describing spatial relations, to form logic-based patterns. TQL inherits many
syntactic and semantic features from Ambient logic, which makes it very ex-
pressive but relatively complicated and thus hardly accepted by common users
having no such backgrounds.

3 Data Manipulation in XTQ

3.1 Logic XML Tree

Logical XML Tree (LXT) is a tree-like pattern expression with logic composition
operators. LXT pattern is built based on atomic patterns which carries out basic
form of pattern matching. Atomic patterns in LXT include constant values, i.e.,
XML elements in the form of the pair “tagname⇒content”, variables like “$x”
prefixed with “$”, and expressions substituting one or both sides of the element
pair with variable or the wild-card notation “*”, e.g., “title⇒$t”, “$n⇒$c” and
“title⇒*”. Matching an atomic pattern with document fragments can result in
variable bindings like “$x �→v” or Boolean values true and false. For example,
matching the pattern “title⇒$t” with a fragment “title⇒‘TCP/IP Illustrated’”
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would result in the binding “$t �→ ‘TCP/IP Illustrated’” whereas matching the
constant value pattern “title⇒‘Unix’” with the fragment would result in false. A
special kind of patterns are the ones with the wild-card “*”, e.g., “title⇒*”. It
would match any title element and result in true, for other elements the result is
false. Besides, a variable can be directly used as an atomic pattern, indicating that
it can be bound to any document fragment under certain context.

Definition 1. An LXT (Logical XML Tree) is a pattern expression inductively
defined as follows:

1. An element pattern composed of a location prefix and an atomic pattern
is an LXT pattern. A location prefix can be “/”, “//” or “@”, which respectively
indicates a child, a descendant, or an attribute.

2. A tree pattern composed of an element pattern “p1” and an LXT pattern
“p2”, denoted by “p1 p2”, is an LXT pattern.

3. A conjunctive pattern composed of a sequence of LXT patterns, denoted
by “(p1, p2, . . . , pn)”, is an LXT pattern.

4. A disjunctive pattern composed of a sequence of LXT patterns which
either all contain variable(s) or all contain no variable(s), denoted by “(p1 || p2

|| . . . || pn)”, is an LXT pattern.
5. A negative pattern composed of an LXT pattern p which contains no

variable, denoted by “not(p)”, is an LXT pattern.

An LXT is often of a tree-like shape because the tree pattern “p1 p2” is composed
of an element pattern p1 as root and an arbitrary LXT p2 as branch. The patterns
in p2 are imposed on the contents of the element matching p1. This tree-like
composition enables LXT pattern to sketch the outline of XML documents as
structural pattern does. LXT supports conjunctive, disjunctive and negative
compositions which are named after common logic operators since they play
similar functions in pattern matching. A typical example is as follows:

//book=>*((/author=>$a/email=>$em || /editor=>$e/email=>$em),

/title=>$t, not(/price=>*))

This tree pattern indicates to find all book elements and then bind certain val-
ues in the books’ content to the variables in the branch pattern. It is composed
of the root element pattern “//book ⇒*” and the branch pattern consisting
of compound compositions of the element patterns, “/author⇒$a/email⇒$em”,
“/editor⇒$e/email⇒$em”, “title⇒$t”, and “/not (price⇒*)”. The branch pat-
tern is a compound of conjunctive pattern, disjunctive pattern and negative
pattern. The negative pattern “/not(price⇒*)” indicates that the book element
should not contain any price sub-element; the disjunctive composition indicates
that the content of the author or the editor sub-element in the book element
would be bound to $a or $e respectively if any, and further their email sub-
elements would be bound to $em; the conjunctive composition indicates that
the content of the title sub-element would be bound to $t and associated with
the value of $a or $e.

LXT is distinct from previous studies in that it introduces the disjunctive pat-
tern composition into data manipulation besides the conventional conjunctive
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pattern composition. A disjunctive pattern containing no variables are treated
as a disjunctive proposition which would yield “true” or “false” for matching or
mismatching in data extraction. A disjunctive pattern containing variables plays
an analogous role as the disjoint sum type in type system. It is used to consti-
tute a disjoint union of the data extracted by the subordinate LXT patterns.
This disjoint union has a special two-facet feature: on one hand, the elements
in the union can be regarded as same kind against the outside conjunctive con-
text; on the other hand, the elements can be treated separately since they are
disjoint. That means, through the disjunctive pattern we can either extracted
heterogenous data and treat them homogeneously, or separate homogeneous data
and treat them heterogeneously. For example, the LXT pattern “(/author⇒$a
|| /editor⇒$e)” indicates that the heterogeneous data, i.e., the content of the
authors and the editors, are extracted respectively and can be treated homo-
geneously with respect to the title; the pattern “(/author⇒$a || /author⇒$e)”
indicates that the the content of the authors would be extracted and bound to $a
and $e respectively, and $a and $e can be restricted and used in different ways.
Especially, when we want to directly use heterogenous data homogeneously, we
can use the same variable in different patterns composed disjunctively. For exam-
ple, “(/author⇒$a || /editor⇒$a)” would automatically merge the disjunctive
union as a single set of bindings of $a.

Negative pattern is used as auxiliary proposition to simplify presentation. It
doesn’t contain variable because “negative variable” is not intuitively sound and
would involve semantic problems when considering restrictions on conjunctive
variables. A negative pattern can often be treated as a simplified quantifica-
tion indicating that every element in current context doesn’t satisfy the restric-
tion. For example, “not(/price⇒*)” means there is not a price element, and
“not(/author⇒*(not(/email⇒*)))” means there is not an author without email,
i.e., every author has email.

Some syntactic sugars of LXT expressions are provided for programming with
XTQ. The parentheses can often be omitted if incurs no misunderstanding. The
atomic pattern “name⇒*” specifying the existence of certain element can be
simply abbreviated as “name”, e.g. “/author” or “@year”. Additionally, the
common branches of the tree patterns composed disjunctively can be extracted
out. Thus we get the previous example after applying the syntactic sugars as

//book((/author=>$a||/editor=>$e)/email=>$em, /title=>$t, not(/price))

3.2 Data Extraction

The objective of LXT pattern is to extract and organize the data satisfying the
constraints indicated by the pattern when it is bound to a data source. As atomic
pattern does, an LXT pattern also indicates a proposition that certain values in
the current document context match the pattern, thus matching an LXT with a
document fragment is to list the values in the document as proofs satisfying the
proposition. Those proofs constitute the data extracted from documents against
the LXT pattern, which are often associated with each other and exhibits a
coherent structure.
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For example, for a simple element pattern “/author⇒$a” all the authors of
a book can match it and thus generate a set of proofs, which is named as a
group, matching $a; for a disjunctive pattern “(/author⇒$a || /editor⇒$e)”
all the authors and editors of a book can match it and generate a disjunctive
union, which is also named as enumeration, consisting of the two groups of $a
and $e; for a conjunctive pattern “(/title⇒$t, /author⇒$a)” the proof group is
composed of the conjunctive tuples of proofs of “/title⇒$t” and “/author⇒$a”
respectively. Actually, we would rather treat this group as a variation of a tuple
composed of the groups respectively matching $t and $a.

When we consider complicated situations such as matching the tree-like pat-
tern “//book((/author⇒$a || /editor⇒$e),/title⇒$t)” with a set of books in
a bookstore, the groups, enumerations and tuples are naturally hierarchically
composed accordingly. To explicitly specify the complicated hierarchical struc-
ture of the data extracted with LXT patterns, we introduce variable pattern as
described in the rest of this subsection.

Definition 2. A variable pattern is an expression defined inductively as fol-
lows:

1. Any variable “$x” is a variable pattern. “ε” is a variable pattern.
2. For a variable pattern p, a group (pattern) denoted by “{p}” is a variable

pattern.
3. For variable patterns p1, p2, . . . , pn, a tuple (pattern) denoted by “(p1,

p2, . . . , pn)” is a variable, an option (pattern) denoted by “p1 || p2 || . . . || pn”
is a variable pattern, and an enumeration (pattern) denoted by “<p1 || p2 ||
. . . || pn >” is a variable pattern.

Variable pattern is an expression to sketch data structure in XTQ. A variable
pattern can be a simple variable or a compound expression using the operators
“,”, “||”, “{ }” and “<>” to compose variables or subordinate variable patterns.
We introduce ε as an intermediate variable pattern indicating the void pattern
which can be omitted in further processing. We directly inherit the “,” and “||”
operators from LXT to present tuple and option patterns, and introduce new
notations of “{ }”, “<>” to present group and enumeration.

Based on variable pattern, the structure of extracted data with an LXT pat-
tern is specified by its raw pattern.

Definition 3. The raw pattern of an LXT l is a variable pattern denoted by
vp(l), inductively defined as follows:

1. For an element pattern l, vp(l) = {(var(l))} where (var(l)) is the tuple of
variables in the pattern l.

2. For a tree pattern l = rp(bp), vp(l) ={ (var(rp), vp(bp))} or especially
{vp(bp)} if vp(rp) is ε.

3. For a conjunctive pattern l = (p1, . . . , pn), vp(l) = (vp(p1), . . . , vp(pn)).
4. For a disjunctive pattern l = (p1 || . . . || pn), vp(l) = <vp(p1) || . . . ||

vp(pn)>.
5. For a negative pattern l, vp(l) is ε.
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For the example LXT in the previous subsection, the simple element pattern
“/email⇒$em” would yield the raw pattern “{$em}” indicating that the data
bound to $em under certain context, e.g., an author or an editor, are naturally
grouped together; the tree pattern “/author⇒$a/email⇒$em” would yield the
raw pattern “{($a, {$em})}” indicating that the data bound to author, a tuple
consisting of an author and the associated group of emails, are grouped together;
the disjunctive pattern “(/author⇒$a/email⇒$em || /editor⇒$e/email⇒$em)”
would yield the raw pattern “<{($a, {$em})} || {($e, {$em})}>” indicating that
the group of authors and the group of editors are gathered in an enumeration;
for the whole LXT pattern, the corresponding raw variable pattern is “{(<{($a,
{$em})} || {($e, {$em})}>, {$t})}”. This pattern actually specifies the structure
of extracted data through a hierarchically compound group.

The semantics of data extraction is specified based on a hierarchically struc-
tured model named and-or-set which is the instance of variable pattern. For the
details of and-or-set and the associated operational semantic rules please refer
to the full specification of the language[17].

3.3 Data Restructuring and Construction

Variable pattern can not only be used to specify the original data structure but
also be flexibly restructured so as to meet various requests of data construction.
These requests are presented by restructured patterns which are variants of
variable patterns appending certain information on structure manipulation.

Definition 4. A restructured pattern is an expression defined as follows:
1. A variable pattern is a restructured pattern.
2. A restructured group denoted by “{p}ql” is a restructured pattern. Here

p is a restructured pattern, ql is a variable pattern list named index pattern list
in the form of “ql1 sep . . . sep qln” where qli is a variable pattern or a index
pattern list and sep can be “;” “|” or “:”. For convenience, group pattern {p} is
also denoted as restructured group {p}ε.

3. For two restructured patterns p and q, the folded group denoted by
“{p}q%” is a restructured pattern.

4. For a restructured group {p}ql that is a sub-pattern of a group or a tuple,
the flattened group denoted by “ˆ{p}ql” is a restructured pattern.

5. For two restructured pattern p and q, the hidden tuple denoted by “p/q”
is a restructured pattern. Here p and q satisfy that there is not a variable pattern
r which occurs both in p and in q.

6. For two restructured patterns p and q, the eliminated option denoted by
“p\q” is a restructured pattern.
XTQ deploys two term rewriting systems on restructured pattern, defined by
the restructuring rules “p ↪→ q” and the reduction rules “p ⇒ q” as shown in
Fig.1, to specify data restructuring and construction. The rule “p ↪→ q” indicates
the restructuring process that the pattern p is to be directly restructured to the
pattern q, while the rule “p ⇒ q” indicates the restructuring result that the data
being restructured to the pattern p has a structure indicated by the pattern q.
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Tuple-related rules
(p, p’)↪→ (p’, p) (tpl- comm) ((p, p’), p”) ↪→ (p, (p’, p”)) (tpl-assoc)
(p, p’)↪→ p / p’ ⇒ p if var(p)∩ var(p’) = φ (tpl-hid) p ↪→ (p, p) (tpl-dupl)
(p, {p’}ql) ↪→ {(p, p’)}p′;ql if var(p)∩ var(p’) = φ (grp-distr)
(ˆ{p}ql, p1) ⇒ ˆ{(p, p1)}ql, (p2,ˆ{p}ql) ⇒ ˆ{(p2,p)}ql (flatten-tpl-red) †

(p, <p’ || p”>) ↪→ <(p, p’) || (p, p”)> if var(p)∩ (var(p’)∪ var(p”)) = φ (enum-distr)
(p, p’ || p” ) ↪→ (p, p’) || (p, p”) if var(p)∩ (var(p’)∪ var(p”)) = φ (opt-distr)
Group-related rules
{p}ql ↪→ ˆ{p}ql (flatten-intro) {ˆ{p}ql}ql′ ↪→(⇒) {p}ql′ :ql (flatten-grp-red)
{(p, p’)}ql ↪→ {{(p, p’)}p%}ql ↪→ {({(p, p’)}, p%)}ql (grp-tpl-fold) ‡

Enumeration&option-related rules
p||p’ ↪→ p’||p (opt-comm) <<p||p’> ||p”> ↪→ <p|| <p’||p”>> (enum-assoc)
<{p}ql ||{p’}ql′> ↪→ {p || p’}ql|ql′ (grp-merge) {p||p’}ql ↪→ <{p}ql||{p’}ql> (grp-split)
<{p}ql || {p}ql > ⇒ {p}ql (id-grp-merge) † < p || . . . || p > ⇒ {p} (id-enum-fold) †

p || p’ ↪→ p \ p’ ⇒ p (opt-elim) <p> ⇒ p if p is not option (enum-red)
{<p> || p’}ql ⇒ {p || p’}ql p’ can be ε (grp-enum-red)
† The rule can be used to preprocess the raw pattern.
‡ A folded group {{p}q%}ql cannot be further flattened.

Fig. 1. Restructuring and reduction rules of variable pattern

In Fig.2 we use previous LXT pattern as an example to briefly illustrate
concrete pattern restructuring. We start from the raw pattern P0 and illustrate
the restructuring process from P1 through P11. P1 hides the pattern “{$em}” in
both tuples using the tpl-hid rule which projects the tuple to desired sub-patterns
and thus hides undesired sub-element in tuples. P2 duplicates the pattern “{$t}”
in P1 using the tpl-dupl rule which can duplicate the specified pattern in the
tuple so as to provide multiple copies of original data for different use. P3 is
restructured from P1 with the enum-distr rule and be further restructured to

Ex. //book ((/author=>$a || /editor=>$e) /email=>$em, /title=>$t)
P0. { ( < { ( $a, {$em} ) } || { ($e, {$em} ) } >, {$t} ) }
P1. { ( < { $a / {$em} } || { $e / {$em} } >, {$t} ) }
P2. { ( < { $a / {$em} } || { $e / {$em} } >, {$t}, {$t} ) }
P3. { < ( { $a / {$em} }, {$t} ) || ( { $e / {$em} }, {$t} ) >}
P4. { < {( { $a / {$em} }, $t)}$t || { ( $e / {$em} , {$t} ) }$e/{$em} >}
P5. {< {{($a/{$em}, $t)}$a/{$em}}$t || {{($e/{$em}, $t)}$t}$e/{$em} >}
P6. {<{ˆ{($a/{$em}, $t)}$a/{$em}}$t || {ˆ{($e/{$em}, $t)}$t}$e/{$em} >}
P7. {<{($a/{$em}, $t)}$t:$a/{$em} || {ˆ{($e/{$em}, $t)}$t}$e/{$em} >}
P8. {<{{($a/{$em}, $t)}$t%}$t:$a/{$em} ||{ˆ{($e/{$em}, $t)}$t}$e/{$em}>}
P9. {{{($a/{$em},$t)}$t% || ˆ{($e/{$em}, $t)}} ($t:$a/{$em})|($e/{$em}) }
P10. {<{{($a/{$em},$t)}$t%}($t:$a/{$em})|($e/{$em}) ||

{ˆ{($e/{$em}, $t)}$t}($t:$a/{$em})|($e/{$em}) >}
P11. {<{{($a/{$em}, $t)}$t%}$t:$a/{$em} \ {ˆ{($e/{$em}, $t)}$t}$e/{$em}>}
P12. {{{($a,$t)}$t%}$t:$a}

Fig. 2. Examples of pattern restructuring
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P4 and P5 with the grp-distr rule. These distributive rules are used to extend
the scope of group or enumeration by distributing the elements in group or
enumeration to the remainder of the outside tuple. For a tuple “(p,{p’}q)”, as
the grp-distr rule shows, the elements in the group “{p’}” are coupled with the
element of the pattern p as new tuples and thus a new group pattern “{(p,
p’)}p′;q” is formed. Here the index pattern “p’” indicates how the distributive
group is formed, and the index pattern list “p’;q” denotes the provenance of
applying the grp-distr rule. The enum-distr rule is similar to the grp-distr rule
by replacing the elements in the group with the ones in the enumeration. In P6
the group flatten operator “ˆ” is inserted to certain groups. A flattened groups
like “{ˆ{p}}” can be reduced to “{p}”, as shown in P7, indicating that the el-
ements of the inner groups are to be directly gathered in the outer group. In
P8 the grp-tpl-fold rule is used to introduce a new group layer in the group
“{($a/{$em}, $t)}$t:$a/{$em}” by classifying the elements on the distinct values
of $t, and result in the new folded group “{{($a/{$em}, $t)}$t%}$t:$a/{$em}”. To
avoid ambiguity in resolving restructuring process, folded group has a restriction
on further restructuring that a folded group cannot be merged, flattened or dis-
tributed, and the group containing the folded group cannot be flattened either.
That is, none of “ˆ({(p, p’)}p%”, “{(q,p’)}p′;p%” and “ˆ{{(p, p’)}p%}” is valid.
P8 can be restructured to P9 and further to P10 following the grp-merge and
grp-split rules in sequential. The grp-merge rule merges the groups disjunctively
combined in an enumeration and thus form a larger group, indicating the ele-
ments in original groups are to be treated homogeneously. In contrast to group
merging, the grp-split rule indicates that a group containing the elements of two
patterns can be split into an enumeration consisting of two groups each of which
contains the elements of an original sub-pattern. P8 can also be restructured to
P11 by eliminating a subpattern in the option, following the opt-elim rule.

Reduction rules specify a convergent rewriting system of restructured patterns
whose normal form is a variable pattern with certain restructuring provenance.
For example, P11 can be eventually reduced to P12 in which the major body
“{{{($a,$t)}}}” is a variable pattern indicating the final restructured data struc-
ture and the index patterns “$t%” and “$t:$a” indicate the restructuring prove-
nance. Since each restructuring rule maintains the restructuring provenance such
as group index pattern and each reduction rule maintains the full information
on the parts being of interested, the restructuring process from a raw pattern to
a restructured pattern can be figured out unambiguously.

XTQ specifies data construction with construct pattern which is a hybrid of
restructured pattern and constant values in a “tag⇒content” form. The key-
words groupby, hid and elim are introduced to signify the group index, the
symbol “/” and the symbol “\” respectively, and a keyword orderby is intro-
duced to sort the tuple values in a group according to certain element in the tuple.
For example, P12 can be embedded the construct pattern “results⇒{bookinfo⇒
{pairs⇒{(author⇒$a,title⇒$t)} orderby $a groupby $t% } groupby $t:$a}” is
supposed to construct a document fragment in which the root tag is “results”,
the content is composed of bookinfo elements containing pairs of authors and
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titles. The pairs are firstly grouped by the distinct values of $t and then be
ordered by the value of $a.

However, a fully specified restructured pattern is often too trivial and complex
for users to present data construction easily. XTQ adopts some syntax sugars and
guidelines for users to facilitate presenting data construction in practice. These
mechanisms are helpful to presenting the queries neatly and intuitively in most
cases. Firstly, group flattening is introduced into LXT pattern for preprocess-
ing the raw pattern. An element LXT pattern such as “/name⇒$x”, is allowed
to be extended with a flattening prefix “ˆ”, i.e.,“ˆ/name⇒$x” which would
force the reduction rules to be applied to raw pattern, i.e., reducing “ˆ{$x}”
to “$x”, before resolving the restructuring process. Secondly, a construct
pattern can be simplified by abbreviating group index pattern lists so that only
partial information of group restructuring is maintained for resolving provenance.
Thirdly, XTQ parser would deploy an out-left-matching policy to choose
a restructuring provenance if multiple possibilities occur due to insufficient prove-
nance information in a simplified. That is, for multiple patterns being able
to be restructured to the construct pattern, the one is preferred if it has more
group layers outside, e.g., the pattern “{{p}}” corresponds to “{{ˆ{p}}}” rather
than “{ˆ{{p}}}”; for two patterns with the same outside group layers, the
one is preferred if its top level group index pattern occurs closer to the left in
the backbone than the other. For example, a construct pattern for the sample
LXT, “results⇒{authorsbytitle⇒(title⇒$t%, {author⇒$a })}”, would be re-
solved as “results⇒{authorsbytitle⇒(title⇒$t%,{author⇒$a elim $t} groupby
$t%)}ε:$a:$t”, which would gather all the authors and then group them by the
distinct values of book titles.

4 XTQ Language with Examples

XTQ adopts QWC expression, composed of the three clauses query, where and
construct, as its major body. To make the program clear and neat, XTQ uses
functions instead of nested query. Functions are declared with QWC expressions
and are invoked in the where and the construct clauses. To make the language
Turing-complete, function can be recursively declared.

The query clause uses LXT pattern with data sources to extract data. Flatten
operator can be embedded in the LXT patterns as previously mentioned. The
data source in the query clause is a function to get document from certain URL,
e.g., doc(), or a bound variable. In query clause multiple data sources with LXT
patterns can be combined conjunctively or disjunctively, resulting in an extended
variable pattern.

The where clause uses conditions to filter extracted data. Conditions are
boolean functions using fragments of fully specified construct pattern as ar-
guments. The extracted data matching the argument pattern of a condition
would be tested with the condition function and only those enabling the con-
dition would be maintained. The filtered results of conditions are gathered and
processed for data construction. The quantifiers “foreach” and “forsome” are
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introduced into conditions to form restrictions on groups. Conditions can be
combined not only with the common logic connectives “and”, “or” and “not”
but also with the special connectives “||” and “with”. The filtering on conditions
combined with “and” or “or” are processed respectively and then the filtered
results are combined. The connective “||” is special to restrict the disjunctive
patterns in parallel. The connective “with” is introduced for combining the con-
ditions to be processed sequentially. The syntax and semantics of conditions is
much more subtle than it looks like, and details can refer to [17].

The construct clause uses construct patterns for data construction based on
filtered data.

In this section, we use some typical queries instead of syntax description to
illustrate the features of XTQ language. Some queries adopts the W3C XML
query use case XMP [16] which is often used as a benchmark by XML query
languages, and in [17] we list those queries in XQuery and Xcerpt for a com-
parison as well as the formal syntax and semantics of XTQ. Other examples
are picked out to show the advantages of XTQ in presenting practical queries
involving complicated data processing. Readers are encouraged to implement
these examples in other languages for a further comparison.

Example 1. The bibliography document “bib.xml” contains book records within
the “book” elements. A book record includes a title, one or more authors, one
or more editors, a publisher and a price. For each author in the “bib.xml”, list
the author’s name and the titles of all books by that author, grouping inside
a “result” element. The result would be ordered with last name and then first
name. (XMP Q4)

query doc("bib.xml")//book(/title=>$t,/author=>$a)

construct {result=>(author=>$a%,{title=>$t})} orderby $a%/last;$a%/first

This simple example shows the convenience of using simplified restructured pat-
terns in declaratively presenting data construction. The parser would resolve the
simplified pattern as “{{($a%,{$t})}ε:$a:$t”.

Example 2. For each book with an author, return the book with its title and
authors. For each book with an editor, return a reference with the book title
and the editor’s affiliation. (XMP Q11)

query doc("bib.xml")//book(/title=>$t, (/author=>$a || /editor=>$e))

where notnull($a) || notnull($e)

construct {(book=>(title=>$t, {author=>$a})||(reference=>(title=>$t,

affiliation=>{$e/affiliation}))}

This example shows the basic usage of disjunctive pattern in handling hetero-
geneity. The disjunctive pattern and the restructuring mechanism facilitates
declaratively extracting and constructing heterogeneous data, which make the
program clear and compact.

Example 3. A document “reviews.xml” also contains book records within “en-
try” element. For each book found at both “bib.xml” and “reviews.xml”, list the
title of the book and its price from each source (XMP Q5).



Towards a “More Declarative” XML Query Language 387

query doc("book.xml")//book(^/title=>$tb, ^/price=>$pb),

doc("review.xml")//entry(^/title=>$te, ^/price=>$pe)

where $tb = $te

construct {book_with_prices=>(title=>$tb, price_b=>$pb, price_e=>$pe)}

This example illustrates the join operation carried out by restrictions on con-
junctive pattern. Especially, we use flattened LXT patterns to facilitate resolving
pattern restructuring process.

Example 4. For each book that has at least one author, list the title and first
two authors, and an empty “et-al” element if the book has additional authors
(XMP Q6).

query doc("bib.xml")//book(/title=>$t, (/author=>$a || /author=>$b))

where ({$a}.count>0 and {$a}.count<=2) || {$b}.count>2

construct bib=>{book=>(title=>$t,

<{author=>$a}||({author=>$b}.[1..2],et-al=>~)>)}

This example shows the common approach to heteorgenously handling homoge-
nous data in XTQ. The XTQ program utilizes a disjunctive pattern to separately
extract homogeneous data, e.g., “author” elements, restrict them simultaneously
with different conditions combined disjunctively and then process them hetero-
geneously. In the query, the group selector function .[i..j] fetches the elements in
the range specified by i and j, and the symbol “˜” signifies an empty content.
Other languages often resort to procedural mechanishm, such as the “if-then-
else” expression in XQuery, to handle such heteorgeneity, which reduces the
declarativeness of the program.

Example 5. Gather the names of the authors of each book and label them with
a sequence number following their document order.

declare addnumber($group, $tag) as (

query $group/item=>$it, type()/int^/item=>$i

where $i >= 0 and $i < {$it}.count()

construct {(number=>$i, $tag=>{$it}.($i))} )

query doc("bib.xml")//book/author=>$a

construct {bookinfo=>addnumber({item=>$a}, "author")}

This example shows the usage of functions in XTQ. Here the function addorder de-
ploys a data source “type()” to return a virtual XML document comprising the
primitive data types with data instances. That is, the query clause “type()/intˆ/
item⇒$i” would extract the data from a virtual “int” branch of the virtual
document, which denotes the integers, and thus $i would indicate the integers cor-
responding to the number of the group items after proper restriction in the where
clause. This example also exemplifies that elements enumeration usually imple-
mented with loops can also be simulated in XTQ in a declarative way.

Example 6. Find the minimal prices of the books in three bookstores. Suppose
each bookstore has a document like “bs?.xml” which contains a “storename”
element indicating the name and a series of book records extends the ones in
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“bib.xml” with a balance element indicating the store balance of the book in
the store. Suppose each book can be identified by its title. The result should
contain the book title, the minimal price and the corresponding bookstore name
list which is ordered by the stock balance.

query (doc("bsa.xml")||doc("bsb.xml")||doc("bsc.xml"))

(//storename=>$n,//book(/title=>$t, /price=>$p, /balance=>$b))

construct {(bookinfo=>(title=>$t%,map(key=>{$p}.min(),

{mapping=>(key=>$p%,content=>(price=>$p%,

{name=>$n}order by $b))}))}

declare map ($key, $mappings) as

(query $key/key=>$kf, $mappings/mapping(/key=>$ks, /content=>$c)

where $kf = $ks

construct {$c} )

This query request is common in practice since various XML documents are often
required to be gathered, grouped, analyzed and processed. The query clause
utilizes disjunctively combined data sources to extract and process heterogeneous
data homogenously. The construct clause declaratively presents the purpose of
data construction, i.e., the data structure for output, and leaves the restructuring
process for the parser. As the construct pattern shows, the extracted data are
to be grouped in two layers. The outer layer is indexed by book values, i.e., the
tuple of book’s title and publisher. The inner layer is indexed by book price but
only the store information with the minimal price would be output. We also list
the definition of the standard XTQ function map.

Example 7. Find the books each of which has at least 3 people, including authors
and editors, whose email addresses all end with “edu”, and return those people.

query doc("bib.xml")//book((/author=>$p || /editor=>$p)/email=>$em)

where (foreach $em, endWith($em, "edu")) with count({$p})>2

construct results=>{book=>{people=>$p}}

This example shows the usage of the condition connective ‘‘with”. A compond
condition “c1 with c2” indicates that c1 is subordinate to c2 and thus the two
conditions are supposed to be processed sequentially. In the example, the first
condition restricts the values of the group {$em} to be the ones whose elements
all end with “edu”. The second condition restricts the number of the people to
be larger than 2. {$em} is subordinate to {($p,{$em})} and thus “with” is used
here to signify that the two conditions be processed one by one. That means, we
should count the people only if their email addresses satisfy the first condtion.

5 Conclusion

Existing XML query language often lack a proper declarativeness in presenting
complex queries. The navigational languages are often clumsy in constructing tree-
structure documents from flat navigation result, and pattern-based languages are
not expressive enough due to the simple and rigid pattern structure.
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Table 1. Comparison of XML Query Languages

In this paper, we introduced XTQ, a new XML query language which can
declaratively and expressively presenting complex queries. XTQ introduces some
coherent mechanisms to meet specific requirements of XML query. XTQ uses LXT
pattern, a tree-like pattern expression with conjunctive and disjunctive operators,
to present composite data extraction and handle heterogeneity. It adopts a hier-
archical pattern structure which coherently reflects the data hierarchy and sup-
ports data restructuring. It deploys a set of restructuring rules so that complex
data construction can be declaratively presented without specifying the restruc-
tured process. These features makes XTQ more declarative than other languages.
In the summary Table 1, we list the issues key to declarativeness of XML query
language and make a comparison for XTQ and some representative studies.

The full specification of syntax and semantics of XTQ can refer to [17], and
the core of XTQ has been implemented based on the operational semantics. Now
we are going to extend XTQ for distributed XML data processing. The flexible
structure manipulation in XTQ program is promising in specifying uniform views
for heterogeneous data in XML integration, and the composition and deduction
of the views based on LXT pattern and restructuring mechanism are practical
and interesting problems to study. Additionally, fragmenting and distributing
big XML documents becomes a practical issue in XML data processing. How
to adapt XTQ to fit for manipulating various kinds of distributed document
fragments is also an interesting problem we concern.
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Abstract. ID/IDREF is an important and widely used feature in XML
documents for eliminating data redundancy. Most existing algorithms
consider an XML document with ID references as a graph and perform
graph matching for queries involving ID references. Graph matching nat-
urally brings higher complexity compared with original tree matching
algorithms that process XML queries. In this paper, we make use of seman-
tics of ID/IDREF to reduce graph matching to tree matching to process
queries involving ID references. Using our approach, an XML document
with ID/IDREF is not treated as a graph, and a general query with ID
references will be decomposed and processed using tree pattern matching
techniques, which are more efficient than graph matching. Furthermore,
our approach is able to handle complex ID references, such as cyclic ref-
erences and sequential references, which cannot be handled efficiently by
existing approaches. The experimental results show that our approach is
20-50% faster than MonetDB, an XQuery engine, and at least 100 times
faster than TwigStackD, an existing graph matching algorithm.

1 Introduction

Because XML is an important standard format for data exchange over the In-
ternet, it is important to remove redundant data from documents, which uses
unnecessary storage and adds extra cost during data transfer. Consider the ex-
ample shown in Fig. 1(a). Since both part A and part B are supplied by the
same supplier, the information about supplier s001 is repeated twice. The most
common way to reduce redundancy is to introduce ID and IDREF attributes
[20]. ID and IDREF can be likened to primary key and foreign key constraints
in relational databases. Using ID/IDREF, each object is stored once under the
document root with a unique ID. A new structure for the document tree in Fig.
1(a) with data redundancies removed is shown in Fig. 1(b). The dotted arrows
represent the references from IDREF value to the referenced object which will
have the same value as its ID.

Despite the importance of ID/IDREF for good XML design, existing algo-
rithms that process queries involving ID references in XML are still not efficient.
To the best of our knowledge, all the existing algorithms consider both XML
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purchase

part part 

purchaser  purchaser name name supplierprice

s_no location phone “A” “John” 100 

quantity

100 “B” “John” 

supplierprice

s_no location 150

quantity

20 phone 

“s001” “s001” “Roma” “Roma” “62309” “62309” 

…

…

(a) XML tree with data redundancies

purchase

part

name supplierRef 

“A”

quantity

100

supplier

s_no location phone 

“s001”

“s001” “Roma” “62309” 

…
by_purchaser

“John” price

100

part

name supplierRef 

“B”

quantity

20 “s001”

price

150

…

person

(b) XML tree after reducing redundancies

Fig. 1. Example XML document in two schemas, with and without data redundancies

documents with ID/IDREF and XML queries with ID references as digraphs,
and perform graph matching to process queries. It is true that an XML document
is modeled as a digraph if we consider the ID references as directed edges. How-
ever, transforming tree pattern matching to graph pattern matching naturally
brings much higher complexity, because graph matching is more costly than tree
matching with the same size input [12]. A simple question is whether we have to
abandon many efficient tree pattern matching approaches (for XML and queries
without ID references), and invent new, but less efficient graph pattern matching
algorithms to process such queries with ID references. Fortunately, the answer
is no. Unlike the graph model for social networks or other graph databases, ID
reference in an XML document is not a random link between nodes. It has strong
semantics, which always starts at an IDREF value and references an object with
a same ID value. Surprisingly, no existing algorithm captures this semantics
during query processing. They normally focus on how to enhance the efficiency
of graph matching, but ignore the fact that using the semantic information of
ID/IDREF, graph matching can be reduced to a less complex tree matching.

This paper focuses on incorporating semantics of ID/IDREF to reduce graph
matching to tree matching to process XML queries with ID references. Besides
significantly reducing the pattern matching complexity, our approach also makes
all existing efficient tree pattern matching algorithms feasible for queries with ID
references. The rest of the paper is organized as follows. We revisit some related
work in XML query processing in Section 2. Our semantic approach to processing
queries with ID references is presented in Section 3. Section 4 discusses how to
handle special references in documents and queries. We present experimental
results in Section 5 and conclude our paper in Section 6.

2 Related Work

XML query processing has been studied for many years. Since in most XML
query languages (e.g. [4][5]) queries are expressed as twig patterns, finding all
occurrences of a twig pattern in an XML document is a core operation for XML
query processing. In the early stage, a lot of work focused on storing and querying
XML data using mature relational database systems [10][21][27][26]. Generally
they shred XML data into relational tables, and convert XML queries into SQL
to query the database. The advantage of these relational approaches is that they
can manage and operate on values efficiently, e.g. performing range search for
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predicates, and they can make use of existing relational query optimizers to
optimize SQL-style XML queries. However, the drawback of the relational ap-
proaches is also obvious. A twig pattern XML query may involve many table
joins, which are costly. Sometimes it is not easy to decide what tables are to be
joined and how many times to join them particularly for queries with “//”-axis
(ancestor-descendant axis). Later how to process twig pattern queries natively
without using relational databases became a hot topic. The structural join based
approach is the most efficient native approach accepted by researchers. In par-
ticular, TwigStack [6] and subsequent work [9][15][19][8] bring in the idea of
holistic structural join, which makes structural join very efficient. Finally, [25]
complements structural join based approaches by introducing relational tables
to process content search and content extraction.

When XML documents and queries involve ID references, most twig pattern
matching based algorithms cannot handle the references between nodes. Many
works focus on how to efficiently perform graph matching for such documents
and queries that are modeled as graphs. Some traditional approaches [22] gen-
erate all possible mappings between each pair of nodes in two graphs and check
for correctness. However, this sort of graph matching problem is NP-complete
generally [12]. Moreover, these graph matching algorithms can hardly support
“//”-axis queries. Later, [23] and [7] consider the structure of XML documents
with ID/IDREF as a directed acyclic graph (DAG) and proposes algorithms to
process queries on DAGs. However, XML documents with ID/IDREF may be a
cyclic graph [13]. Recently, [17] and [16] extend twig pattern query to support
queries involving ID references, and propose techniques to solve the extended
twig. [24] proposes a new labeling scheme for document graph so that parent-
child and ancestor-descendent relationships can be identified and thus queries
can be processed. However, all these attempts consider ID references as a random
link between nodes and match random graph queries to the document graph. As
mentioned in Section 1, graph matching is normally more expensive than tree
matching, thus this paper proposes a method to reduce graph matching to much
less complex tree matching for XML queries.

3 Semantic Approach for Queries with ID References

3.1 Reference Pattern Query

Twig pattern, or tree pattern, is considered the core XML query pattern when ID
reference is ignored in documents and queries. We first extend the twig pattern
expression to express ID references in a query, and propose a semantic approach
based on this approach. Our extension mainly includes two parts: explicitly
marking output nodes and introducing ID reference edges.

Definition 1. (Output node) Output nodes in a twig pattern query are defined
as a group of nodes in the twig pattern such that the query aims to find values
for them, based on conditions on other nodes.
Every query must contain at least one output nodes. For example, in the query
shown in Fig. 2(a), s no is an output node since we aim to find the value for c for
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each supplier that is located in ‘Roma’. Besides noting output node, we also note
the ID reference within a query. For example a query to find the value for quantity
of part B which is purchased by John and supplied by some supplier located in
‘Roma’ is issued on the document shown in Fig. 1(b). From the document, we
can see that full information about a certain supplier is stored separately from
the object part and that an IDREF property supplierRef is used to reference
the corresponding supplier. By considering both output node and ID reference,
we propose the notion of reference pattern query. The above query can be issued
as a reference pattern query as shown in Fig. 2(b).

supplier

s_no location

“Roma”

(a) Query without ID reference

part

name

“B”

quantity supplierRef

supplier

location

“Roma”

by_purchaser 

person

“John”

(b) Example reference pattern query

Fig. 2. Example twig pattern query and reference pattern query

Definition 2. (Reference pattern query) Reference pattern query general-
izes twig pattern query to express ID references between twigs using a dotted
referencing arrow. In a reference pattern query, the main body where the ref-
erencing arrow starts is called the referencing part, and the part to which the
referencing arrow points is called the referenced part. The referenced part nor-
mally corresponds to an object with an ID value. The output nodes in a reference
pattern query are marked by underlining them.

Note that a query issuer is expected to have some schematic information of the
underlying XML document. Otherwise, she has no way to compose a structured
query expression. Similarly, a query processor is also aware of the document
structure. Although sometimes there is no formal schema available for a docu-
ment, by parsing the document a program can easily summarize its structure.
With such requirements, we assume that a user should be able to issue a refer-
ence pattern query, and the system can interpret the query, even if the query
contains implicit ID references across a “//” relationship. For example, to pro-
cess the query shown in Fig. 3(a) which finds all locations where John purchases
things, the system will identify the ID reference across the “//” edge by consult-
ing the document structural summary, and rewrite the query to be a reference
pattern query as shown in Fig. 3(b). Sometimes, an object class may have a
recursive reference, e.g. a paper cites another paper. This case is similar to ele-
ment recursion in DTDs. The work in [18][11] discussed how to translate queries
involving recursive elements into SQL. Since in our work, we use SQL to handle
ID reference, these works can be adopted to solve recursive ID references.
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by_purchaser

person location

“John” 

(a) Original query

by_purchaser 

person supplierRef

supplier

location

“John” 

(b) Reference pattern query

Fig. 3. Case that “//” relationship contains ID reference

3.2 Parsing XML Document with ID References

The hierarchical structure of XML data is normally modeled as a tree. However,
when there are references from tree node to tree node, the data model is consid-
ered as a graph. Most existing algorithms handle XML queries over documents
with ID reference in a graph matching manner, e.g. using an extra index to record
ID references between nodes or inventinga new labeling scheme for graphs. As
mentioned in Section 1, compared with tree matching, graph matching naturally
brings higher complexity. ID reference in an XML document is not a random
link between nodes. It always starts from an IDREF attribute and points to an
object with the same ID value. If we use the semantics to avoid treating a docu-
ment as a random graph, the performance could be improved. First, we present
how our approach parses an XML document with ID references.

Most XML query processing algorithms assign a label to each document node,
so that the parent-child or ancestor-descendant relationship between each pair of
document nodes can be easily determined by their labels during query processing.
In our approach, we ignore the ID references, and only label property nodes,
object nodes and other internal nodes, but not value nodes. IDREF is an internal
node, but its value is a value node (as shown in Fig. 4).

Definition 3. (Object, property) In an XML document, the parent node (ei-
ther an attribute or an element) of each value is a property. We consider the
parent node of a property node (including IDREF node) as an object1.

In the document in Fig. 1(b), the nodes name, quantity and supplierRef are all
properties as they have value children, and each supplier and part are objects as
they are parents of certain properties. When we ignore the ID reference and the
values, the label assignment of the document in Fig. 1(b) is shown in Fig. 4.

The labeled document nodes are organized as inverted lists based on different
tags, which is the same as other approaches; whereas, the values that are not
labeled are stored in object-oriented relational tables. In particular, for each
object class there is a table, whose schema includes a label field to store the
label of each object in this class, and a set of property fields to store the values
of each property for a certain object. During this process, both ID value and
IDREF value are treated in the same way as other properties. The reference
between them is ignored, thus these indexes only keep the tree like nature of the
document. The example object tables for supplier and part are shown in Fig.
5, in which the ID and IDREF attributes are stored in the same way as other
1 It may not be semantically true for all cases, but it will not affect the correctness of

query processing.
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purchase

part

name supplierRef 

“A”

quantity

100

supplier

s_no location phone 

“s001”

“s001” “Roma” “62309” 

…by_purchaser

“John” price

100

part

name supplierRef 

“B”

quantity

20 “s001” 

price

150

…

(1:1000,1)

(2:23,2) (81:88,2)

(5:14,3)

(6:7,4) (8:9,4) (10:11,4) (12:13,4) (16:17,4) 

(15:24,3)

(18:19,4) (20:21,4) (22:23,4) 

(82:83,3) (84:85,3) (86:87,3) 
person
(3:4,3)

Fig. 4. The purchase document with internal nodes labeled

Rsupplier

Label S_no Location Phone 

(81:88,2) s001 Roma 62309 

… … … … 

(a) Supplier table

Rpart

Label Name Quantity Price SupplierRef 

(3:12,3) A 100 100 s001 

(13:22,3) B 20 150 s001 

… … … … … 

(b) Part table

Fig. 5. Example object tables during document parsing

properties. Note that the IDREF attribute supplierRef in the XML document
in Fig. 4 is represented directly with the same value in the attribute supplierRef
in the part table. There is no redundancy or duplicated data in the tables.

The implementation details of object table construction and the solution to
some potential problems of object tables, e.g., how to store multi-valued prop-
erty, are discussed in our previous report [25].

3.3 Query Processing with Tree Matching

The ID reference in a reference pattern query is reflected by a dotted arrow.
Such a dotted arrow always corresponds to an ID reference in the document,
which makes the document a graph structure. During pattern matching, most
algorithms consider ID references in both documents and queries as a normal
edge, thus they have to perform graph matching. In our approach, we try to re-
duce the graph matching to a simple tree matching, to improve pattern matching
performance. To do this, we treat a document as a tree, as mentioned in the pre-
vious section, and also ignore the dotted arrow in a reference pattern query when
we perform pattern matching. However, the ID reference is a part of the query
constraint which cannot be ignored. Our solution transforms the ID reference in
a query to a table join, because (1) the semantics of ID/IDREF are such that
all the ID references must be between ID and IDREF attributes, and they are
not a random link, and (2) both the corresponding ID value and IDREF value
are stored in relevant object tables and the reference between them is the same
as the equi-join of the two tables.

The general idea of our approach is to decompose a reference pattern query into
a referencing part and a referenced part (the two parts are defined in Definition
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2). The query is processed by a tree matching of the referencing part, with any
existing twig pattern matching algorithms, and a join between the referencing part
and the referenced part. In more detail, the join between the referencing
part and the referenced part is eventually performed by a table join between two
object tables with ID and IDREF attributes. In fact, a tree matching is a series of
structural joins between each adjacent query node. In our heuristic we try to per-
form the join between the referencing part and the referenced part first, as this op-
eration normally results in high selectivity due to the constraints in the referenced
part. However, if the referencing part has no output node, the whole referencing
part becomes a predicate, then we match the referencing part first before joining
with the referenced part where output nodes are involved. The detailed query pro-
cessing algorithm is presented in Algorithm 1, in which we suppose o and obj are
two objects in the referencing part and referenced part of a reference pattern query
respectively. First, we only consider the basic reference pattern querywith only one
referencing part and one referenced part.

Algorithm 1. Query processor
1: if there is no output node in the referencing part then
2: match the referencing part to the document tree, to find the set S of distinct values of the

IDREF attribute
3: join S with Robj for the referenced part, based on the condition S.IDREF=Robj .ID
4: select values for the output node in the joined result, based on other constraints under obj.
5: else
6: Join Robj and Ro based on the condition Robj .ID=Ro.IDREF, and select the labels of o

based on the predicates under obj and o
7: create a new inverted list To′ for o and put the selected labels into To′
8: rewrite the referencing part by changing o to o′, which corresponds to To′
9: match the rewritten referencing part to the document tree with To′ for o′ to find values of

the output nodes in the referencing part
10: if there are output nodes in the referenced part then
11: find the set S of distinct values of the IDREF attribute from the tree matching result
12: join S with Robj for the referenced part, based on the condition S.IDREF=Robj .ID
13: select values for the output node in the joined result, based on constraints under obj.
14: end if
15: end if

There are three cases of reference pattern query, with respect to the position
of output nodes: Case (1) output nodes reside in the referencing part, Case (2)
output nodes reside in the referenced part and Case (3) output nodes reside in
both the referencing part and referenced part. Now we use examples to illustrate
our approach for the three cases.

Example 1. Consider the Case (1) query shown in Fig. 2(b). The query asks
for the quantity of part B which is purchased by John and supplied by some
supplier in ‘Roma’. In this query, only the referencing part contains an output
node, quantity. The two objects involved in the ID reference are part and sup-
plier. Using the algorithm, we join Rpart and Rsupplier (as shown in Fig. 5) based
on s no=SupplierRef, filter the results by the predicate part.name=‘B’ and sup-
plier.location=‘Roma’, and select the labels for part. These labels are put into a
new inverted list for part and the referencing part is rewritten as shown in Fig.
6(a). In the new query, the subscript of node part′ explains that this node cor-
responds to the new inverted list of parts, whose name is ‘B’ and has a supplier
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by_purchaser

part’name=‘B’ &s_no=SupplierRef
&supplier.location=‘Roma’

quantity

person

“John”

(a) Rewritten query for
Example 1

part

name

“B”

supplierRef

supplier

location

“Roma”

by_purchaser

person

phone“John”

(b) Query for Example 2

…

s001

Supplier

(c) IDREF values for
Example 2

Fig. 6. Figures for Example 1 and 2

located in ‘Roma’. The final step is to match the tree pattern referencing part
with the new inverted list for part′ to the document tree.

Example 2. Consider the Case (2) query shown in Fig. 6(b), in which only the
referenced part has an output node, phone. By the algorithm, we first match the
referencing part to the document tree, to find the labels of each matched part
object. Then using these labels we can find the distinct values of supplierRef in
Rpart. The result is shown in Fig. 6(c). We join these tuples with table Rsupplier

and select phone in Rsupplier based on location=‘Roma’.
Example 3. Consider the Case (3) query in Fig. 7(a). In this query both the
referencing part and the object contain output nodes. We first join tables Rpart

and Rsupplier based on the equality of supplierRef and s no, and select part
labels based on the conditions that part’s name is ‘B’ and supplier is in ‘Roma’.
Then a new inverted list Tpart′ for part is constructed with the selected labels.
The referencing part is rewritten by renaming the node part to be part′ so
that the new inverted list will take effect (shown in Fig. 7(b)). Using any tree
matching algorithm to process the rewritten referencing part, we can find the
labels for matched part. Then in Rpart we can extract values for supplierRef and
the output node quantity. To find the value for the other output node phone, we
join the distinct values of supplierRef with the table Rsupplier , and select the
phone value based on the condition that location equals ‘Roma’.

During query processing, any reference pattern query requiring graph matching
on the document is eventually processed by tree pattern matching and table
joins. Furthermore, the tree pattern to be matched is normally much simpler
than the original query pattern with references. Since most relational systems
can perform selection and join very efficiently with B+ tree indexes, the overhead

part

name

“B”

supplierRef

supplier

location

“Roma”

by_purchaser

person

phonequantity“John”

(a) Example query

 

(b) Rewritten query

Fig. 7. Figures for Example 3
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on table operations will not affect the benefit of reducing graph matching to tree
matching. Our experiments also prove this. In particular, when the referenced
part of a reference pattern query is in a complex pattern, e.g. enclosing other
objects, we can perform pattern matching on the referenced part, before joining
with the referencing part.

3.4 Correctness

The basic query processing idea in our approach is to replace the structural join
using ID references, which is used in other algorithms, with a table join. Actually,
an ID reference means the involved IDREF attribute has the same value as the
ID attribute. On the one hand, we can visualize such a reference using a graph
edge and perform a structural join; on the other hand, we can push the equality
of IDREF and ID values to a table join. In this regard, both structural join and
table join have the same effect of solving the constraints of ID references.

4 Special References

ID/IDREF in XML documents may lead to very complex patterns. In this sec-
tion, we introduce two special cases of ID/IDREF and explain how our algorithm
handles queries involving these cases.

4.1 Cyclic Reference

ID references in an XML document may cause cycles if we consider parent-child
relationships and ID references as directed edges in a document graph. Consider
a document which contains such cycles, as shown in Fig. 8. In this document, Roy
chooses Lisa as his first partner, while Lisa chooses Roy as her second partner. Then
the references between member Roy and Lisa generate a cycle. When we process a
query containing a reference cycle, e.g. the query shown in Fig. 9(b), many DAG-
based graph matching algorithms, e.g. [23][7], are no longer effective. In our ap-
proach, two query objects involved in a reference cycle, i.e. two member nodes in
this case,playbotha referencingpart anda referencedpart.Thuswe ignore the con-
straints under both of them during pattern matching, and handle these constraints
by table joins. For the query in Fig. 9(b), we first match a rewritten query as shown

dancing_club

venue member 

ID

(2:1001,2)

(3:4,3) (5:18,3) 

(6:7,4)
name
(8:9,4)

sex
(10:11,4) 

age
(12:13,4)

first_partner
(14:15,4)

second_partner
(16:17,4)

“city”

member

ID

(19:32,3)

(20:21,4)
name

(22:23,4)
sex

(24:25,4)
age

(26:27,4)
first_partner

(28:29,4)
second_partner

(30:31,4)

01 “Roy” “M” 26 02 09 02 “Lisa” “F” 24 03 01 

…

clubs
(1:10000,1)

…

Fig. 8. XML document with cyclic reference
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Rmember

Label ID Name Sex Age First_partner Second_partner 

(5:18,3) 01 Roy M 26 02 09 

(19:32,3) 02 Lisa F 24 03 01 

… … … … … … … 

(a) Table for member

member

name sex first_partner 

member

second_partner

“M”

dancing_club

venue

“city”

(b) Example query

member

dancing_club

venue

“city” name

(c) Rewritten query

Fig. 9. Example query involving cyclic reference

in Fig. 9(c) to the document tree to get the labels of all satisfied members. By join-
ing the result with itself through the member table (shown in Fig. 9(a)) twice, we
can easily handle the cyclic situation, and output the desired values.

4.2 Sequential Reference

Sequential references happen when one object references another object, while
that object also references a third object. One example document with sequen-
tial references is shown in Fig. 10. In this research community document, each
seminar has a chair whose detailed information is stored in some other part of
the document; and each people’s affiliation is also stored in detail separately.
The ID/IDREFs between seminar, people and affiliation form a set of sequen-
tial references. A reference pattern query with a sequential reference is shown in
Fig. 11(b). In this query, we try to find the topic of a seminar in the ‘database’
research area, which is chaired by a people from ‘NUS’.

Processing queries involving sequential references in an XML document in-
creases the complexity in many traditional subgraph matching algorithms. Se-
quential references lead to more cycles if we do not consider the directions of each
reference. As we know, in traditional approaches, subgraph matching is done by
generating all possible maps between nodes in two graphs and then filtering out

research community

research area

“database”

seminar

serial topic chair

people

pid name affiliation

university

uid name contact

(1:1000,1)

(2:13,2)

(5:12,3)

(6:7,4) (8:9,4) (10:11,4)

(233:240,2)

(234:235,3)(236:237,3)(238:239,3)

(821:828,2)

(822:823,3) (824:825,3) (826:827,3)

… … …

1 “xml” 2

2 “Ling” 9 9 65166666“NUS”

…name
(3:4,3)

Fig. 10. XML document with sequential reference
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Rseminar

Label Serial Topic Chair

Rpeople

Label Pid Name Affiliation

Runiversity

Label Uid Name Contact

(5:12,3) 1 XML 2

… … … …

(233:240,2) 2 Ling 9

… … … …

(821:828,2) 9 NUS 65166666

… … … …

(a) Tables involved

research area

seminar people university

topic affiliation namechair

name

“database”

“NUS”

(b) Original query

research area

seminar’chair.affiliation.name=“NUS”name

topic“database”

(c) Rewritten query

Fig. 11. Example query involving sequential reference

incorrect answers. With more cycles, incorrect mappings cannot be pruned as
early as that in graphs with fewer cycles. In our approach, we do not need to
consider this aspect. For the query in Fig. 11(b), we just perform selection and
join between tables for seminar, people and university (shown in Fig. 11(a)).

The selected label values for seminar will be used to construct a new inverted
list for query node seminar. Then the original query is rewritten to a new query
as shown in Fig. 11(c) by removing references and some other query nodes.

4.3 Complex Reference

Theoretically, a general reference pattern query can be very complex with cyclic
and sequential ID references. The last two sections show that table join is pow-
erful to handle both kinds of references between two twig parts. When we deal
with a reference pattern query with complex references, we simply decompose
the query into twig parts, each of which contains an object referencing or be-
ing referenced by other parts. The reference between different parts is solved by
table join, and when a twig part is complex itself, we can perform a pattern
matching to solve it. We will further research on query optimization on queries
with complex reference.

5 Experiments

In this section, we present experimental results, comparing our approach with
an XQuery engine [2] and TwigStackD [7], which is a stack based approach for
XML query processing involving ID/IDREF, which has proven more efficient
than traditional graph matching methods. For convenience, we name our table
based method as TBM. Another recent work on XML graph matching [24] may
not be correct when it models a graph pattern query. Thus we do not do a
comparison with it2.
2 More explanations are available at

http://www.comp.nus.edu.sg/∼wuhuayu/problem.pdf
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5.1 Experimental Settings

Implementation: We implemented all algorithms in Java. The experiments
were performed on a 3.0GHz Pentium 4 processor with 1G RAM.

XML Data Sets: We used three XML data sets for our experiments: Gene on-
tology data, purchase data and XMark data. Gene ontology data is a 70MB
real-life data set, which is taken from a Gene Ontology Project [1]. Purchase
data is a 12MB synthetic data set generated by our data generator. The
schema of this document is similar to the schema of our example document
shown in Fig. 1(a). The characteristics of this document is a large number of
ID references, as every part has a supplier reference. We also use 9 XMark
benchmark [3] documents with the size varying from 11MB to 111MB to
compare document parsing time, and use one of them (23MB) to test exe-
cution time. XMark documents contain multiple types of ID references.

Queries: We randomly selected five meaningful queries with ID references for
each data set. The queries are shown in Fig. 12. The last element in each
query expression is the output node. We only consider the first two cases
where the output node resides in either the referencing part or the referenced
part in each query. The third case is just a combination of the first two cases.
ID references in queries are denoted by ‘→’, and some queries (Q1, Q5, Q11,
Q15) contain sequential references.

Query Data Set Path Expression

Q1 Gene //term[n_associations=0][isa/resource term/isa/resource 
term/name=‘molecular_function’]/accession

Q2 Gene //term[accession=‘GO0016329’]/isa/resource 
term/association/evidence/evidence_code

Q3 Gene //term[name=‘anticoagulant’]/isa/resource 
term/dbxref[reference]/database_symbol

Q G // ‘GO ’ ‘ f ’ //Q4 Gene //term[accession=‘GO0016172’][name=‘antifreeze’][//resource
term/dbxref[reference]]/about

Q5 Gene //term[n_associations=0][isa/resource term/isa/resource 
iterm/isa/resource iterm/dbxref[reference]]/accession

Q6 Purchase //part[name=‘phone’][supplierRef supplier/location=‘Sydney’]/priceQ6 Purchase //part[name= phone ][supplierRef supplier/location= Sydney ]/price

Q7 Purchase //department[part[name=‘PC’]/supplierRef supplier/phone=‘345’]/head

Q8 Purchase //department[head=‘Fione’]/part[name=‘sofa’]/supplierRef
supplier/location

Q9 Purchase //department[head]/part/supplierRef supplier[location=‘London’]/phoneQ9 Purchase //department[head]/part/supplierRef supplier[location= London ]/phone

Q10 Purchase //department[name=‘R&D’]//supplierRef supplier/location

Q11 XMark //open_auction[itemref item[location=‘United States’]/incategory
category/name=‘Seeming mingle teach’]/current

Q12 XM k //bidd [d t ’11/13/2001’]/ fQ12 XMark //bidder[date=’11/13/2001’]/personref
person[address/city=‘Birmingham’][profile/gender=‘male’]/phone

Q13 XMark //person[profile[education=‘High School’]/age=38][watches/watch
open_auction/initial=71.36]/name

Q14 XMark //closed auction[buyer/person person[address/province=‘Haban’]][seller/Q14 XMark //closed_auction[buyer/person person[address/province= Haban ]][seller/
person person[address/city=‘Lisbon’]]/price

Q15 XMark //bidder[increase=‘21’][personref person[age=’35’][//watch
open_auction/reserve=50.84]]/date

Fig. 12. Experimental queries
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Q11:
FOR $o IN doc("XMark.xml")//open_auction
FOR $i IN doc("XMark.xml")//

item[location="United States"]
FOR $c IN doc("XMark.xml")//

category[name="Seeming mingle teach"]
WHERE $o/itemref/@item=$i/@id AND

$i/incategory/@category=$c/@id
RETURN <open_auction current={$o/current}/>

(a) Q11 in XQuery
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(b) Result for Q11-Q15

100000

1000000

100000

1000000

1000000

10000000

250

300

300

350

10

100

1000

10000

Ti
m

e 
(m

s)

10

100

1000

10000

Ti
m

e 
(m

s)

10

100

1000

10000

100000

Ti
m

e 
(m

s)

50

100

150

200

Ti
m

e 
(m

s)

50

100

150

200

250

Ti
m

e 
(m

s)

1
Q1 Q2 Q3 Q4 Q5

Queries
TwigStackD TBM

1
Q11 Q12 Q13 Q14 Q15

Queries
TwigStackD TBM

1
Q6 Q7 Q8 Q9 Q10

Queries
TwigStackD TBM

0
Q11 Q12 Q13 Q14 Q15

Queries
MonetDB TBM

0
CQ1 CQ2 CQ3 CQ4 CQ5

Queries
MonetDB TBM

(c) Result for cyclic cases

Fig. 13. Query performance comparison between MonetDB and TBM

5.2 Experimental Results and Analysis

Comparison with XQuery engine. This experiment is done using MonetDB
[2], which is a well known memory-based XQuery engine, and a relatively small
XMark document (11MB) so that all the processing can be done in memory.
MonetDB uses an optimized node-based relational approach [14] to process XML
queries. First using MonetDB and TBM, we process the queries Q11-Q15 which
include sequential reference cases.The XQuery expression of Q11 is shown in Fig.
13(a). Other queries can also be expressed as XQuery expressions in a similar
way. Due to the space limitations, we do not show the XQuery expression of every
query. The experimental result is shown in Fig. 13(b). In the second step, we
test queries with cyclic references. In XMark data, we observe that each person
has several watches, each watch contains an open auction, each open auction has
bidders, and each bidder is a person. We randomly compose five queries within
this cycle and the execution time for the two methods is shown in Fig. 13(c).

TBM outperforms MonetDB for all the queries by 20-50%. The reason is
that XQuery cannot express queries involving ID references using a single path.
Instead, XQuery has to do a multiple retrieval for the referencing part and the
referenced part of the query, and then do a join between the retrieved results.
However, using our method, we handle the reference separately, solving the ref-
erence constraint, and also simplifying the query structure and search space.

Comparison with TwigStackD. Our experiments mainly compare the query
processing time and document parsing time between TwigStackD and our table
based methods (TBM ). We used B+ trees to organize inverted lists for both
approaches to ensure high performance of inverted list accessing. The execution
time for TBM includes the time of processing ID reference with table joins and
the time of structural joins during tree pattern matching. The results of execution
time are shown in Fig. 14 (the Y-axis is in logarithmic scale). From the results,
we can see for all queries the performance of TBM is more than 100 times faster
than TwigStackD. The reason why TwigStackD is worse is that their approach
uses graph matching rather than tree matching. As a result, in TwigStackD they
maintain an index to store position relationships between nodes. Each time they
process a query, partial solutions are expanded based on the index. This stage
is very costly and seriously affects the performance.
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Fig. 14. Execution time by TwigStackD and TBM

In the purchase document, the schema is simple but contains lots of refer-
ences between part and supplier. When TwigStackD expands partial solutions
in a pool, the pool size and amount of checking is very large. That is why the
execution time of TwigStackD in purchase document is much greater than that
in the other two documents where fewer references are involved. The XMark
document contains four types of ID/IDREF on objects item, category, person
and open auction. Due to the complex references, the index in TwigStackD is
very large (nearly 3 times greater than the original document size) and it takes
quite a long time to build such an index.

Finally we conducted experiments on document parsing time between TBM
and TwigStackD. This parsing time includes node labeling, inverted list con-
structing and other index building. All these operations are required for struc-
tural join based native XML query processing algorithms. In our experiment, we
took 12 XMark documents with different numbers of nodes. The results given
in Fig. 15, show that when the size of the document grows, the parsing time
for TwigStackD increases quickly, while using our approach the parsing time is
more acceptable for different document sizes.
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Fig. 15. Document parsing time comparison

6 Conclusions and Further Work

In this paper we analyze the drawbacks of existing work for query processing in
XML documents with ID/IDREF. In particular, most existing algorithms con-
sider XML documents and queries as graphs, and perform graph matching to
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process queries. However, graph matching is generally believed to be less efficient
than tree matching, which is a widely accepted approach to process XML queries
without considering ID references. Motivated by this finding, we propose a table
based semantic approach to reduce graph matching to tree matching to process
XML queries involving ID references. When we parse an XML document, we
only consider the native hierarchical structure, and do not treat it as a graph
with ID references. We build relational tables for each object that may contain
ID or IDREF attributes. During query processing, we decompose a reference
pattern query into a referencing part and a referenced part using the ID refer-
ence involved. Now the referencing part will be a simple tree structure that can
be matched to the document tree. The reference between the referencing part
and the referenced part is eventually transformed to a table join between the two
parts. The experimental results show that our approach is 20-50% more efficient
than MonetDB and more than 100 times faster than TwigStackD, a structural
join based graph matching algorithm. Furthermore, our approach can also han-
dle complex ID/IDREF relationships such as cyclic references and sequential
references, which are bottlenecks for many existing works.

For further work, we will further investigate how to generate a better query
plan when dealing with both tree pattern matching and table joins.
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Abstract. The problems of finding alternative clusterings and avoid-
ing bias have gained popularity over the last years. In this paper we
put the focus on the quality of these alternative clusterings, proposing
two approaches based in the use of negative constraints in conjunction
with spectral clustering techniques. The first approach tries to introduce
these constraints in the core of the constrained normalised cut clustering,
while the second one combines spectral clustering and soft constrained
k-means. The experiments performed in textual collections showed that
the first method does not yield good results, whereas the second one
attains large increments on the quality of the results of the clustering
while keeping low similarity with the avoided grouping.

1 Introduction

Data analysis plays nowadays a central role in several fields of science, industry
and business. With the ever-growing size of the data collections being compiled
and used by public institutions and private firms alike a great need for auto-
matic data analysis tools has arisen, in order to provide a way to exploit those
collections in an effective and timely manner.

Clustering is the most popular non-supervised automatic data analysis tool.
Given a data collection, the clustering algorithms try to form a meaningful group-
ing of the data, categorising the data instances (text documents, in our case) in
various groups (clusters), such that the instances in the same cluster bear high
similarity between them and low similarity with the instances that have been
put in the other clusters.

Unfortunately, the concepts of “meaningful grouping” and “high” and “low”
similarity are very subjective. Sometimes, and even though the grouping of the
data found by a certain clustering algorithm can make sense from a purely math-
ematical point of view, it might be completely useless or even meaningless to the
user. Gondek and Hofmann illustrate in [1] several examples this situation, such
as the clustering of news corpora which have been already annotated by a certain
criterion (such as region) or the clustering of users’ data with gender or income
information. The outcome of the algorithm might reflect a grouping of the data
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which is well known, or which would be easy to find with a manual examination.
Consequently, it will be of little use to the user of the data analysis tool.

Thus, sometimes mechanisms are needed to find alternative clusterings to
the one proposed by the clustering algorithm. If we are trying to avoid the
tendency (bias) of the clustering algorithm to fall in a certain grouping of the
data that is being clustered the task is called Avoiding Bias. This problem has
been tackled by several authors in the last years, which have proposed a wide
range of approaches, ranging from distance learning [2] to using constraints [3].
However, it should be underlined that avoiding bias is still a clustering process,
where the main focus is providing the user with a meaningful grouping of the
data. For instance, the easiest way to find a very different grouping from the
one given would be assigning randomly documents to clusters, which would be
obviously a very bad solution in terms of clustering quality. Thus, a compromise
has to be reached between the quality of the clustering and the distance to the
avoided grouping when devising an avoiding bias algorithm.

In this paper we study various ways to obtain an alternative clustering with
high quality while keeping the objective of avoiding the known clustering. Con-
cretely, we test two different approaches which use a strategy similar to the one
in [3] (using negative constraints to steer the clustering process away from the
known clustering), making use of spectral clustering techniques to try to attain
that high quality. The first one is introducing negative constraints in the con-
strained normalised clustering approach proposed by Ji et al. in [4]. The second
one is introducing the soft constrained k-means algorithm proposed by Ares et
al. in [3], which has been shown to have good results, in the second phase of a
normalised cut clustering algorithm [5]. The experiments carried out with these
approaches showed that, while the first approach does not yield good results,
the combined one (normalised cut plus soft constrained k Means) outperforms
soft constrained k-means in terms of quality of the results while keeping a good
avoidance of the known clustering.

This paper is organised as follows: in Section 2 the clustering algorithms on
top of which the proposed approaches are built are introduced. In Section 3 we
tackle the problem of introducing negative constraints in normalised cut, while in
Section 4 we introduce the experiments which were carried out and their results.
Finally, Sections 5 and 6 are respectively devoted to the related work and the
conclusion and future works.

2 Clustering Algorithms

In this section we describe the clustering approaches which we have used in
the methods proposed in this paper. Firstly, we survey normalised cut, a very
effective spectral clustering algorithm introduced by Shi and Malik in [5], and
its constrained counterpart, constrained normalised cut, introduced by Ji et al.
in [4]. Afterwards, we outline soft constrained k-means, a constrained clustering
algorithm based on k-means introduced by Ares et al. in [3].
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2.1 Normalised Cut

The spectral clustering algorithms [6,7] are a family of algorithms which use
results from graph spectral theory to perform the clustering of data. Concretely,
normalised cut tries to tackle a clustering problem by transforming it into a
graph cut problem.

The first step is creating a graph G = (V, E, W ) in which the documents
to be clustered are the vertices (V = {v1, v2, ..., vn}), and the weights (W =
{w1,1, w1,2, ..., wn,n}) of the edges (E) are related to the similarity between the
documents joined by each edge, such that the more similar the documents are,
the higher the weight of the edge. Hence, the aim of the clustering process,
creating groups of documents such that the documents in the same cluster are
very similar and documents in different clusters have low similarity, can be re-
formulated as cutting this new graph G in connected components in a way that
the weights of the edges which join vertices in different connected components
are low and the ones of the edges which join vertices in the same connected
component are high.

To measure this, Shi and Malik introduced the normalised cut (NCut) value
of a cut of a graph in [5]. For a graph G = (V, E, W ) and a cut {A1, A2, ...Ak}
of that graph, NCut is defined as:

NCut(A1, ...Ak) =
k∑

i=1

cut(Ai, Āi)
vol(Ai)

(1)

cut(A, B) =
∑

i∈A,j∈B

wij (2)

vol(A) =
∑
i∈A

n∑
j=1

wij (3)

where wij is the weight of the edge that joins vertices i and j, and Āi are the
vertices which are not included in Ai (i.e., Āi = V \ Ai).

As it follows from (1), the NCut of a graph cut is minimised when the sum of
the weights of the edges joining documents in different connected components
are low, while keeping the sizes of the different connected components, which
are measured using their volume, as high as possible. This last condition tries
to ensure a certain balance between the connected components, to avoid trivial
solutions with connected components comprising only very few vertices. Thus, a
graph cut with a low NCut value would fulfil the requisites of a good clustering.

Finding a cut {A1, A2, ..., Ak} of a certain graph G which minimises the NCut
value can be transformed [7] into a trace minimisation problem (4), where H
is a n × k matrix (where n is the number of documents to be clustered) which
encodes the membership of vertices to connected components as indicated in (5),
D = (dij), is a diagonal matrix with dii = degree(vi) and L is the Laplacian
matrix (L = D − W ) of G.

minA1,...Ak
Tr(HT LH) subject to HT DH = I (4)
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H = (hij) =

{
1√

vol(Aj)
if vertex i ∈ Aj

0 else
(5)

Unfortunately, the condition imposed by (5) on the values of H makes the min-
imisation in (4) NP-hard. If that discreteness condition is dropped and a simple
variable substitution is performed (Y = D

1
2 H), the minimisation can be rewrit-

ten in the standard form of a trace minimisation problem (6):

minY ∈Rn×kTr(Y T
[
D− 1

2 LD− 1
2

]
Y ) subject to Y T Y = I (6)

It can be shown that (6) is minimised by the matrix Y which contains as columns
the eigenvectors corresponding to the smallest eigenvalues of D− 1

2 LD− 1
2 . How-

ever, as the values of Y are not constrained, this matrix is no longer composed
of indicator vectors for the connected components. Instead, each of the docu-
ments has been projected into Rk, and a further step has to be taken (such as
applying a clustering algorithm like k-means) in order to find a discrete segmen-
tation of the points in that space. Once this segmentation has been found, we
can transpose it to the original documents, providing a clustering of the original
collection.

2.2 Constrained Normalised Cut

Based on the same principles of normalised cut, Ji et al. proposed in [4] a con-
strained clustering algorithm which makes some changes in the function to be
minimised in order to introduce a priori knowledge in the clustering process,
specifically which pairs of documents the user wants to be grouped by the clus-
tering algorithm into the same cluster.

To achieve this, they introduced a new matrix U with n columns and a row
for each constraint used in the algorithm. Thus, a constraint which establishes
that data points i and j should be in the same cluster will be encoded as a
row of zeroes with the exception of positions i and j, which will be set to 1
and -1 (or vice-versa, as these constraints are non-directional). If membership
to connected components is encoded in a matrix H as in (5), the Frobenius
norm of the product of matrices U and H will be smaller as more constraints
are respected in the clustering, with a minimum of zero when none of them is
disregarded. Thus, a new minimisation problem can be written involving both
NCut and the supplied constraints:

minA1,...Ak
(NCut(A1, ..., Ak) + ||βUH ||2) (7)

where β > 0 is a parameter which controls the degree of enforcement of the
constraints. The higher that β is, the tighter the enforcement of the constraints
is. This minimisation problem, following a derivation similar to the one used in
the non constrained case, can be written as:

minY ∈RTr(Y T
[
D− 1

2 (L + βUT U)D− 1
2

]
Y ) (8)
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again subject to Y T Y = I. As this problem is in the standard form of a trace
minimisation problem, the same theoretical result used in the unconstrained case
can be used here. Thus, this equation is minimised by a matrix Y which contains
as columns the eigenvectors which correspond to the smallest eigenvalues of
matrix D− 1

2 (L + βUT U)D− 1
2 . Again, these columns are not proper indicator

vectors, so a segmentation of the projected data points has to be performed in
order to produce a clustering of the data.

2.3 Soft Constrained k-Means

Batch k-means [8] is one of the most popular flat clustering algorithms. The first
step of the algorithm is the initialisation, where some points in the representation
space are taken as seeds of the clustering process. Typically these seeds are chosen
randomly between the documents to be clustered. Afterwards, the main core of
the algorithm is a loop in which documents are assigned to clusters depending
on its similarity with clusters’ centroids. Once all of them have been assigned
the centroids are recalculated and the process starts again. This loop is repeated
until a given convergence condition is met (typically when the change in the
centroids between a iteration and the next is very small).

Based on batch k-means skeleton, Wagstaff et al. introduced in [9] a con-
strained clustering algorithm which enables the use of domain knowledge in the
clustering process. This domain knowledge can be introduced in the form of two
kinds of instance level pairwise constraints: Must-links, which indicate that two
documents must be in the same cluster, and Cannot-links, to indicate that two
documents must be in different clusters. To honour these constraints they mod-
ified the cluster assignment policy, assigning the documents to the closest (most
similar) centroid such that this assignment does not violate any constraints.
That is, if a document with which the document being assigned has a Must-link
constraint has been assigned to a cluster in the current iteration, the document
will be assigned directly to that cluster. Otherwise, the document is assigned to
the cluster with the closest centroid, excluding those containing documents with
which the document being assigned has a Cannot-Link constraint, in order to
enforce that kind of constraints. In that paper, the authors show that these con-
straints can effectively affect the clustering process, leading it towards a better
solution. On the other hand, the authors admit as well that the absolute nature
of the proposed constraints can make sometimes the presence of this constraints
harmful. For instance, Cannot links can lead the clustering process to a dead
end, if a document has a Cannot link with at least one document in each cluster.

In order to address these limitations, Ares et al. introduced in [3] two kinds
of non absolute constraints: May-Links and May-Not-Links, which indicate that
two documents are, respectively, likely or not likely to be in the same cluster.
The implementation of these constraints alters again the assignment process of
the documents. After the absolute constraints introduced by Wagstaff et al. are
accounted for, each cluster is given a score which is initialised with the similarity
between the document and its centroid. Then, the score of a given cluster will be
increased in a certain factor w for each document with which that document has a
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May-Link and was last assigned to that cluster. Conversely, the score of a cluster
will be decreased by the same factor for each document with which the document
has a May-Not-Link and was last assigned to the cluster. The authors claim
that these new constraints overcome the drawbacks of the absolute constraints,
while maintaining good effectiveness. Namely, the May-Not-Links are shown to
be effectively better than their absolute counterparts (Cannot-links), because
their efficacy seems to be similar and the May-Not-Links are not affected by the
dead end problem, as it is always possible to find a suitable cluster for all the
data points. Anyway, the algorithm proposed in the paper allows as well the
introduction of domain knowledge in form of absolute constraints, following the
same strategy proposed by Wagstaff et al.

3 Negative Constraints in Normalised Cut

As it was previously explained, Ji et al. proposed in [4] an addition to normalised
cut which allowed introducing domain knowledge in the clustering process. How-
ever, the method that they propose only allows the introduction of positive in-
formation, i.e., pairs of documents that the user thinks that they ought to be in
the same cluster. But this is not the only kind of information that a user might
have available about the documents to be clustered. For instance, it is also very
likely that the user has some intuition about which pairs of documents might
not (or must not) be in the same cluster (this is what we will call negative infor-
mation). Actually, this negative information is less informative to the clustering
algorithm than the positive constraints, as with the positive information we are
actually providing the algorithm with fragments of the desired final grouping (or
at least we hope to be doing so). However, is precisely this lesser informativeness
(and the less restrictions that they impose on the algorithm) which makes the
negative constraints more likely to be elicited from the domain knowledge, or
even the only information that can be provided, in cases where the nature of the
task being tackled does not allow the obtaining of positive information at all.
For instance, this is the case of the Avoiding Bias task, which is the main focus
of this paper.

In the Avoiding Bias task, the only information available is the grouping of
the documents that we are trying to avoid. We can not obtain any positive clues
from it, as neither the fact that two documents are in the same cluster, nor the
fact that they are in different ones gives us any positive evidence about if they
should be in the same cluster in an alternative grouping.

However, if two documents are in the same cluster in the grouping that we
are trying to avoid, it is sensible to make some indication (using non absolute
negative constraints) to the clustering algorithm that these documents might not
be in the same cluster in other grouping, expecting that the distorsion induced by
these constraints is on the one hand enough to break the bias of the algorithm
to fall in the avoided clustering and on the other hand not strong enough to
break completely the structure of the similarities between documents, so that
the final clustering of the data is still meaningful. This is precisely the intuition
that sustains Ares et al. Avoiding Bias approach in [3].
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Obviously, the same point could be made about using positive non absolute
constraints on documents which are not in the same cluster in the avoided group-
ing. However, bringing closer these documents will not have the effect of avoiding
the bias of the clustering algorithm to fall in the given grouping. To do so, these
constraints should be very strong, but this will likely compress the representation
space too much, providing clusters of bad quality.

In this section we will tackle the problem of introducing the negative con-
straints into the normalised cut clustering algorithm.

3.1 Negative Constraints in Constrained Normalised Cut

In Sect. 2.2 we have explained the approach used by Ji et al. [4] to transform
the classic normalised cut algorithm into a constrained clustering one, allowing
the use of positive constraints. Intuitively, a similar scheme could be used to try
to introduce negative information as well.

In their paper, the authors introduce a matrix U which encodes the positive
constraints, such that the Frobenius norm of the product of that matrix and the
indicator matrix is in inverse proportion with the number of constraints which
are respected by the clustering represented by the indicator matrix, having a
minimum of zero when all of them are honoured. Thus, introducing this factor
into the function minimised at the core of the normalised cut algorithm (7,8)
causes a change in the nature of the solution, now having to find a cluster-
ing of good quality (minimising NCut) while respecting as well the constraints
(minimising the new term). The influence of the constraints is controlled by a
parameter (β), being the enforcement of the constraints greater as the value of
β increases, with a minimum in β = 0, where the the constraints are not taken
into account at all.

With that in mind, an apparently easy and intuitive way to introduce the
negative constraints would be using a new matrix UN , which would encode the
negative constraints in the same way as the positive ones were encoded in U .
Again, the Frobenius norm of the product of UN with the indicator matrix will
be lower as more of the pairs of documents linked by a constraint are in the same
cluster, and, vice versa, higher as more of them are not in the same cluster, which
is precisely the objective of the negative information. In order to introduce this
new term in the minimisation a new parameter (βN ) is needed to control the
enforcement of the negative constraints. As this new factor is in direct proportion
to the number of negative constraints which are respected in the clustering, it
must be introduced in the formula with a minus sign (9,10). Again, the value of
βN is equal or greater than 0, with a harder enforcement of the constraints as
its value increases.

minA1,...Ak
(NCut(A1, ..., Ak) − ||βNUNH ||2) (9)

minY ∈RTr(Y T
[
D− 1

2 (L − βNUN
T UN)D− 1

2

]
Y ) (10)
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Even though this approach seems theoretically sound, it does not yield good
results in the Avoiding Bias task. Our explanation about why this happens is
given in Sect. 4.5.

3.2 Combining Soft Constrained k-Means and Normalised Cut

As it has been previously explained (Subsect. 2.1), the normalised cut algorithm
is based on transforming the clustering problem into a graph cut problem. The
aim of the process is finding a cut of the graph which minimises its normalised
cut value. Being this a NP-hard problem, a certain relaxation of the conditions
imposed on the solution has to be performed in order to reduce its complexity
and make it computationally accessible. Thus, the outcome of this minimisation
is a projection of the data points into Rk, instead of the grouping itself, and a
last step should be performed to reach the final clustering of the data. In order to
perform this last phase, Shi and Malik propose using k-means on the projected
data points.

Our proposal in this paper is using the soft constrained k-means algorithm
proposed by Ares et al. instead of batch k-means, enabling the introduction of
domain knowledge in form of absolute (Must and Cannot-Link) and non-absolute
(May and May-Not-Link) constraints. Even though they would be defined over
the initial documents, the one to one correspondence between them and the
projected documents (the document which was represented by the vertex vi of
the graph is now encoded in the ith row of matrix Y ) enables us to apply these
same instance level constraints over the corresponding projected documents.

From the point of view of soft constrained k-means, the normalised cut acts as
a kind of document preprocessing phase, where the documents are transformed
from the chosen document representation to a representation in R

k based on
the normalised cut criterion. The effect of this “preprocessing” is twofold: not
only we are benefiting from the increment of cluster quality caused by using the
normalised cut algorithm, but also we are likely to experiment an increase in the
effect of the pairwise constraints. As documents which are close to constrained
ones are affected as well by the changes in the destination of the later ones in-
duced by the constraints, our intuition is that the effectiveness of the constraints
in this new data space is increased, as similar documents (over which the same
constraints tend to be true) are brought together and dissimilar ones are sep-
arated (thus avoiding some non desired “interferences” of the constraints over
non related documents).

In terms of performance, the computational cost of this combined approach
is the same of that of the normalised cut algorithm, as the cost of the soft con-
strained k-means and of batch k-means is the same. Consequently, being the
costliest operation of the whole algorithm still by a wide margin the calculation
of eigenvectors, the total cost will depend on the method chosen to perform
that calculus. This cost can be kept fairly moderated if a standard algorithm
is used. For instance, using Lanczos algorithm, the time complexity would be
O(kNLanczosnnz(M)), where k is the desired number of clusters (i.e. of eigen-
vectors), NLanczos is the number of iteration steps of the algorithm and nnz(M)
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is the number of non zero elements of the matrix D− 1
2 LD− 1

2 (see Sect. 2.1),
whose eigenvectors are being calculated.

4 Experiments

4.1 Methodology

In order to test the practical behaviour of the algorithms we have set an avoiding
bias experiment following the standard methodology of the papers on that sub-
ject. Thus, we will use text document collections in which documents have been
categorised according to two different criteria. Using the standard methodology
of avoiding bias experiments, we will assume alternatively that one of them is
the known grouping and we will try to avoid it, evaluating the results of the
process comparing the resulting grouping with both the known one (to assess
the avoidance that has been achieved) and the “unknown” one (as a way to
measure the quality of the results).

We have used as baseline the original soft constrained k-means approach to
Avoiding Bias introduced by Ares et al. in [3], where the authors show that it
improves an algorithm specially tailored for Avoiding Bias such as Conditional
Information Bottleneck [1]. Thus, we have replicated the same experimental
conditions used in that paper. The set of constraints was created introducing
a constraint for each pair of documents which are in the same cluster in the
known grouping of the data (the only a priori information available). In the
case of the baseline and of the combined (NC+SCKM) approach, which support
bidirectional and unidirectional constraints, we have used the bidirectional ones.
Moreover, we will assume that the number of clusters is known, setting it to
the number of clusters of the non avoided grouping of the data. Finally, as
the clustering seeds were also chosen randomly from the documents, and the
outcome of the processes is really dependant on the quality of the initial seeds,
several repetitions of the clustering process have to be performed in order to
have a faithful representation of the performance of the algorithms. We report
the average of these initialisations.

Following this approach, the only parameters which should be initially set are
w, the strength of the constraints in the baseline and in the approach based on
the combination of normalised cut and soft constrained k-means and βN , the
tightness of the observance of the negative constraints in the approach based on
constrained normalised cut. Besides, in our experiments we have detected that
the clustering algorithms yielded better results when the number of dimensions
of the projection of the documents performed in the spectral phase is greater
than the wanted number of clusters. Typically, the best performance was ob-
tained when the number of eigenvectors ranged from 10 to 20 (in opposition to
the number of desired clusters, which ranges from 2 to 5), a fact that is likely
caused by the combination of two circumstances. Firstly, the high topicality of
the collection compared with the number of expected clusters, and, secondly, this
relatively small number of desired clusters, which would cause a great loss of in-
formation in the projection if we take the same number of eigenvectors. However,
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taking too many dimensions could result in adding noise to the documents, which
would worsen the quality of the clustering. Thus, after some preliminary tests,
we have used to create the projection of the documents the first 15 eigenvectors,
a value which we have found that performs well in all collections.

4.2 Datasets

To perform the experiments we have used the two datasets used in the baseline
experiments, which were originally defined in [1].

Dataset (i) was created from WebKB’s Universities Dataset, which was made
collecting webpages from the websites of different U.S. universities (Cornell,
Texas, Washington, Wisconsin and others). These webpages have been manually
tagged according to two aspects: university and topic (“course”, “department”,
“faculty”, “project”, “staff”, “student” and “other”). The dataset used in the
experiments is created taking the documents from the Universities of Cornell,
Texas, Washington and Wisconsin which were as well tagged as “course”, “fac-
ulty”, “project” “staff”, “student”, which yields a total of 1087 documents.

Dataset (ii) was created from Reuters RCV-1, a huge document collection
composed of about 810,000 news stories from Reuters, one of the most important
news agencies. These documents have been manually tagged according to three
aspects: topic, geographical area and industry. The dataset used in the experi-
ments is created taking the documents with have been labelled with respectively
only one topic and region label and whose topic is “MCAT” or “GCAT” and
whose region is “UK” or “INDIA”. This yields a total of 1600 documents.

4.3 Document Representation

As in the baseline experiments, we have used Mutual Information as the original
representation of the documents (i.e., the one used to build the graph G), as
it has been shown to perform consistently better than other tf · idf approaches
[10]. Thus, the representation of a document d in a collection of m terms and d
documents is a vector (11) where the components are the mi values of the terms
(12),13), calculated used the frequency of the each term t in the document d
(tf(d, f)).

mi(d) = [mi(d, t1); mi(d, t2); . . . ; mi(d, tm)] (11)

mi(d, t) = log (1 +
tf(d,t)

N∑D
i tf(di,t)

N ×
∑m

j tf(d,tj)

N

) (12)

N =
∑

i

∑
j

tf(di, tj) (13)

The similarity between two documents d1 and d2 was computed using the cosine
distance between their vectors, which was also also the distance function used
to compare the projected documents after the spectral phase.



Improving Alternative Text Clustering Quality in the Avoiding Bias Task 417

4.4 Metrics

In order to evaluate the results of our tests we have used two different metrics,
which compare the clustering of a collection of n documents yielded by the
algorithm Ω = {ω1, ω2, ...ωk} with a certain ground truth C = {c1, c2, ...cj}.

Purity (P) [11] measures how well the clustering outcome matches the target
split in average. Higher Purity values mean more similarity between Ω and C.

P(Ω, C) =
1
n

∑
k

max
j

|ωk ∩ cj | (14)

On the other hand, Mutual Information (MI) [12] measures how much informa-
tion about a grouping is conveyed by another. Again, higher values of Mutual
Information mean more agreement between Ω and C.

MI(Ω; C) =
∑

k

∑
j

|ωk ∩ cj |
n

log
N |ωk ∩ cj |
|ωk||cj |

(15)

4.5 Results

In order to set the parameters of the algorithms we have used a crossvalidation
strategy. This strategy involved tuning the value of these parameters in one of
the avoiding bias problems, specifically in collection (i) avoiding the grouping
by “Topic”, and using that value in the other problems. The value w chosen for
the baseline (soft constrained k-means) was 0.0025, the value which obtained
the best compromise between quality and avoidance. In the combined approach
(NC+SCKM), as the focus of this paper is improving the quality of the grouping,
the value (w = 0.05) was chosen as the one which yielded the best similarity (MI)
with the non avoided grouping of the documents (“University”) while maintain-
ing a similarity with the avoided grouping (“Topic”) less or equal to the one
achieved by the baseline, which was itself quite low. As for the constrained nor-
malised cut with negative constraints, the tuning process showed poor quality
values and a great instability of the algorithm with respect to the values of βN .
Our explanation about why this happens is given at the end of this section.

The results of the performed experiments are shown in Table 1. As in the
experiments in [3] and in [1], for each dataset and avoided grouping we report
the values of Mutual Information (MI) with the avoided and the non-avoided
groupings, to see to which of them the outcome of the clustering process is mostly
leaning, and Purity (P) with the non-avoided grouping, to measure the quality of
the clustering. Hence, a good result would have high values of MI and P with the
non-avoided grouping and a low value of MI with the avoided one. The results
reported are the average of the ten different initialisations of seeds and document
inspection order tested in each combination of dataset and avoided grouping.

As a preliminary note, it is worth remarking that the results show the ex-
pected increase in the quality of clustering of normalised cut with respect to
batch k-means. Moreover, they also point out a tendency in the non constrained
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Table 1. Results for the avoiding bias experiment with the defined datasets for batch k-
means, soft constrained k-means (SCKM), normalised cut and the combined approach
(NC+SCKM)

Dataset (i) Avoiding Topic (k=4) Avoiding University (k=5)
MI(Topic) MI(Univ.) P(Univ.) MI(Univ.) MI(Topic) P(Topic)

Batch k-means 0.5069 0.2304 0.4364 0.2972 0.5682 0.6874
SCKM (w = 0.0025) 0.0052 0.2789 0.4772 0.0031 0.4499 0.6484

Normalised cut 0.4801 0.4097 0.4994 0.5822 0.5606 0.6794
NC+SCKM (w = 0.05) 0.0032 0.9340 0.7684 0.0011 0.6569 0.7163

Dataset (ii) Avoiding Topic (k=2) Avoiding Region (k=2)
MI(Topic) MI(Region) P(Region) MI(Region) MI(Topic) P(Topic)

Batch k-means 0.0075 0.0874 0.8253 0.1400 0.0093 0.9838
SCKM (w = 0.0025) 0.0003 0.1194 0.8253 0.0004 0.0075 0.9838

Normalised cut 0.0075 0.1510 0.8253 0.1862 0.0106 0.9838
NC+SCKM (w = 0.05) <0.0001 0.1643 0.8253 <0.0001 0.0164 0.9838

algorithm (in our case, normalised cut) to fall in one of the two groupings of the
collections, even though this tendency is sometimes less clear than in the case
of the batch k-means.

The similarity of the outcome of the proposed algorithm (NC+SCKM) with
the non avoided clustering (which, as it has been said before, is used as a indica-
tion of the quality of the clustering) is in all cases greatly increased over the soft
constrained k-means results. Moreover, the results show how the introduction
of this constrained phase has not any detrimental effect over the quality of the
normalised cut results, and in fact improves them in all cases. As for the avoided
grouping, the similarity of the results of our technique is still reduced, keeping
it in values equal or less than those of the baseline, which were already low.

It should be also noted that the reason for the repeated values of P for the
four methods in dataset (ii) is the structure of the dataset, where in each of the
possible groupings one of the clusters is much bigger than the other (still, the
MI values for that dataset attest the improvements attained using the combined
method). Finally, it is also worth remarking that further tests on the training
collection have shown that the parameter w of this combined approach is quite
stable. This can be seen in Fig. 1(a), which shows that the MI with the avoided
and non-avoided groupings are not affected to a greater extent by wide variations
around the chosen value of 0.05.

The results of the tests performed with the approach introduced in Sect.
3.1 (which introduces the negative constraints in the core of the constrained
normalised cut algorithm) are not included in Table 1 as the quality values
achieved were poor and the value of the parameter βN was very unstable. This
is shown in Fig. 1(b): for almost all values of the parameter the similarity with
the avoided grouping is much higher than with the non-avoided one, and for
the values of βN in which the two similarities come closer the quality of the
result is very low and a small variation of the parameter produces an abrupt
change in the quality values. Our intuition is that the cause of this behaviour
has to do with the function which is minimised. With positive constraints, the
function in (7) has its lower bound in zero, a value which, if obtained, would
mean both that the clustering has good quality (NCut = 0) and that all the
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(b) CNC with negative constraints

Fig. 1. Stability of the parameters of the two proposed algorithms in the training
collection (Dataset (i), avoiding TOPIC)

constraints are respected (||βUH ||2 = 0). However, this is not what happens
in the minimised function when negative constraints are involved (9). Here, a
low value can be obtained if all the constraints are respected, regardless of the
quality of the clustering, as one value is subtracted from the other. This makes
tuning the value of βN very hard, as a small change can alter dramatically the
balance between those two factors.

5 Related Work

In the constrained clustering field [13], the problems of avoiding bias and finding
alternative clusterings have gained popularity in the last years, with several
authors looking into them and proposing different approaches. Bae and Bailey
proposed in [14] a method similar to the one used in this paper, using negative
constraints to try to steer the clustering away from the avoided grouping. They
incorporate these constraints in a Average Link clustering algorithm, controlling
with a parameter the compromise between obtaining a clustering of quality and
honouring the constraints. However, they only report results in synthetic and
numeric data collections with a very limited number of features.

Gondek and Hoffman introduced in [1] another strategy to find alternative
clusters using Conditional Information Bottleneck clustering. Their approach
tries to optimise an objective function which combines the objectives of yielding
clusters of good quality and which should be different from the given clustering.
To do so they need the complete distribution of each variable, which is one of
the main drawbacks of the method.

In [15], Davidson and Qi present an approach to finding alternative cluster-
ing which also uses constraints, in this case to characterise the grouping to be
avoided. A distance function matrix is learnt from these constraints, which is
decomposed afterwards using Singular Value Decomposition (SVD). Finally, the
matrices yielded by SVD are used to build an alternative distance function that
is used to created transformed versions of the original data points, over which



420 M.E. Ares, J. Parapar, and Á. Barreiro

the clustering algorithm would be applied. Thus, this method has the advantage
of being quite general, not being tied to any clustering clustering. Again, they
tested their approach only in non-textual collections.

Cohn et al. introduced in [16] an algorithm to iteratively alter the grouping
found by a clustering process according to the user feedback. They incorporate
the user preferences altering the KL-divergence measure between the documents
marked by the user, introducing a new factor to measure the importance of a
term for distinguishing the documents. Even though they conduct their tests
over textual documents, the collections are again very small.

Obviously, the avoiding bias method which is most related to the ones pro-
posed in this paper is the one introduced by Ares et al. [3], which uses the soft
constrained k-means algorithm, described in Sect. 2.3. It was used as baseline
in our experiments (Sect. 4.5), and in one of the approaches proposed in this
paper we have combined it with normalised cut 3.2. Another general constrained
clustering algorithm which is also related to this paper is constrained normalised
cut by Ji et al. [4], as it is the core of one of the Avoiding Bias methods proposed
in this paper (Sect. 3.1). The unsuitability of that algorithm for the Avoiding
Bias problem was discused in Sect. 4.5.

6 Conclusions

In this paper we have studied two approaches based on the use of negative con-
straints in conjunction with spectral clustering techniques to tackle the Avoiding
Bias problem. While one of them, based in introducing the negative constraints
in the core of constrained normalised clustering, did not yield good results, the
second one, which combines normalised clustering and soft constrained cluster-
ing gave very good results in the experiments carried out, as it increased (in some
cases dramatically) the quality of the clustering while maintaining a good avoid-
ance of the known grouping. On a more general level, it should be noted that
the possible fields of application of this approach are not limited to the Avoiding
Bias problem on text. This algorithm can be applied in any general constrained
clustering situation, where, opposed to constrained normalised cut (which would
only allow the use of one kind of information), it lets the user use different kinds
of knowledge (negative and positive, absolute and non absolute,. . . ).
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TIN2008-06566-C04-04 and 07SIN005206PR and FPU grant AP2007-02476.

References

1. Gondek, D., Hofmann, T.: Non-redundant data clustering. In: ICDM 2004: Pro-
ceedings of the Fourth IEEE International Conference on Data Mining, pp. 75–82.
IEEE Computer Society, Los Alamitos (2004)

2. Davidson, I., Qi, Z.: Finding alternative clustering using constraints. In: ICDM
2008: Proceedings of the 2008 Eighth IEEE International Conference on Data Min-
ing. IEEE Computer Society, Los Alamitos (2008)



Improving Alternative Text Clustering Quality in the Avoiding Bias Task 421

3. Ares, M.E., Parapar, J., Barreiro, A.: Avoiding bias in text clustering using con-
strained k-means and may-not-links. In: Azzopardi, L., Kazai, G., Robertson, S.,
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Abstract. Given a large collection of objects, finding all pairs of similar
objects, namely similarity join, is widely used to solve various problems
in many application domains.Computation time of similarity join is criti-
cal issue, since similarity join requires computing similarity values for all
possible pairs of objects. Several existing algorithms adopt prefix filter-
ing to avoid unnecessary similarity computation; however, existing algo-
rithms implementing the prefix filtering have inefficiency in filtering out
object pairs, in particular, when aggregate weighted similarity function,
such as cosine similarity, is used to quantify similarity values between
objects. This is mostly caused by large prefixes the algorithms select.
In this paper, we propose an alternative method to select small prefixes
by exploiting the relationship between arithmetic mean and geometric
mean of elements’ weights. A new algorithm, MMJoin, implementing
the proposed methods dramatically reduces the average size of prefixes
without much overhead. Finally, it saves much computation time. We
demonstrate that our algorithm outperforms a state-of-the-art one with
empirical evaluation on large-scale real world datasets.

1 Introduction

Similarity join is an operation that finds all pairs of similar objects from given
datasets. It is widely used to solve various problems in many application domains,
such as data integration and cleansing [1,2], duplicate Web documents detection
[3,4] and information retrieval [5].

More formally, similarity join can be defined as an operation that finds all
pairs of objects whose similarity value quantified by the given similarity func-
tion is above the given threshold from the dataset. One issue of similarity join is
how to quantify similarity values between objects. Various similarity functions,
such as Jaccard-coefficient, cosine similarity, and edit similarity, are used to
quantify similarity values between objects. In general, what similarity function
to use depends on application domains and there is no best similarity function
that works better than any other functions in all application domains. In [6],
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Chandel et al. grouped similarity functions into five classes, and showed accu-
racy and performance of similarity functions with various experimental analyses
on textual data. From the results, aggregate weighted similarity function, such
as cosine similarity showed comparatively good accuracy and performance in de-
tecting errors from textual data. Also it was shown that cosine similarity produce
high quality results across several domains [5,7,8,9]. In this paper, we focus on
similarity join that uses cosine similarity to quantify similarity values between
objects, especially when weights of elements need to be considered.

Another issue of similarity join is the computation time, since similarity join
requires computing similarity values for all possible pairs of objects. Many of
past researches used approximation techniques to reduce the running time of
the operation, while undertaking some loss of expected answers; however, recent
trend is to find all pairs of similar objects without any false drop. Many of
recent works [4,10,11,12] in this trend adopt filtering techniques, such as prefix
filtering and positional filtering, to avoid unnecessary similarity computation;
however, positional filtering is not available when we should consider weights
of elements. In addition, existing algorithms implementing the prefix filtering
have inefficiency in filtering out object pairs, when weights of elements should
be considered.

To our best knowledge, previously proposed All-Pairs algorithm, one of prefix
filtering based methods, showed the best performance among algorithms appli-
cable to our case [4]. From re-implementing the algorithm and analyzing ex-
perimental results with several datasets, we found out that prefix size strongly
affects the running time of similarity join and All-Pairs has inefficiency in select-
ing prefixes. Therefore, we focused on how to select small prefixes, and finally,
contrived an alternative prefix selection method by exploiting the relationship
between arithmetic mean and geometric mean of elements’ weights. A new al-
gorithm, MMJoin, implementing the proposed prefix selection method reduces
average prefix size without further overhead. Reduction of prefix size brings
much more reduction of candidates, and finally saves much computation time.
We demonstrate that MMJoin outperforms All-Pairs with empirical evaluation
on large-scale real-world datasets.

The rest of the paper is organized as follows: Section 2 presents the problem
definition with formal notations. Section 3 reviews an existing filtering-based
approach. Section 4 describes our prefix selection method and similarity join
algorithm. In Sect. 5, we demonstrate experimental results on large-scale real
world datasets and give analyses about the results. Related work is covered in
Sect. 6 and Sect. 7 concludes the paper.

2 Problem Statement

Given a set of objects D, a similarity function sim(x, y), and a similarity thresh-
olds t, similarity join is defined as an operation that finds all pairs (x, y) such
that x, y ∈ D and sim(x, y) ≥ t, which is similarity predicate. We assume the
similarity function is commutative. Thus, if the pair (x, y) satisfies the predicate,
so does (y, x), and we need to include only one of them in the result.
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According to the similarity function used to quantify similarities between ob-
jects, each object needs to be represented in a proper form. For example, set for
overlap similarity, Jaccard coefficient and Dice coefficient, vector for cosine simi-
larity and Tanimoto coefficient, and sequence for edit similarity. In this paper, we
focus on aggregate weighted similarity function, particularly cosine similarity.
Therefore, all objects are assumed to be weight vectors on pre-defined dimensions
and denoted without right-pointing arrow in the rest of the paper. In addition,
by default, sim(x, y) denotes cosine similarity between vectors x and y, unless
otherwise stated. For simplicity, we assume all vectors have unit length. Then,
given two vectors x = 〈x[1], . . . , x[m]〉 and y = 〈y[1], . . . , y[m]〉, cosine similarity
is a dot product of two vectors as:

sim(x, y) =
∑m

i=1 x[i] · y[i]
‖x‖‖y‖ = dot(x, y) =

m∑
i=1

x[i] · y[i], (1)

where x[i] and y[i] are x’s and y’s weights on ith dimension respectively, and
m is the total number of dimensions.

For many problem domains, especially those involving textual data, objects
are sparse vectors where a vast majority of vector weights are 0. A sparse vector
representation for a vector x is the set of all pairs (i, x[i]) such that x[i] > 0
over all i = 1, . . . , m. Such pairs are called features of vector x. If there is a
global ordering scheme O on dimensions U , the sorted list of features is another
representation of sparse vector. The size of a vector x, denoted by |x|, is the
number of x’s features. Vector size should not be confused with vector length, or
magnitude, which is denoted by ‖x‖.

For a given vector x, we denote the maximum value x[i] over all i as maxw(x).
For a given dimension i, we denote the maximum value x[i] over all vectors x
in the dataset D as maxwi(D). Let us consider an example dataset X shown in
Fig. 1. X contains five weight vectors on dimensions U = {A, . . . , O}. In Fig. 1,
we can see weights of five vectors (blanks mean zero weight), but also additional
column and row for maxwi(X ) and maxw(x) respectively.

Given a set of sparse vectors D, an inverted index for the set consists of m
lists I1, I2, . . . , Im (one for each dimension), where list Ii, we simply refer inverted
list for dimension i, includes pairs (x, x[i]) such that x ∈ D and x[i] > 0. For
example, IA = {(o1, 0.46), (o2, 0.46), (o5, 0.15)}.

U A B C D E F G H I J K L M N O maxw(x)
o1 0.46 0.31 0.31 0.31 0.62 0.31 0.15 0.62
o2 0.46 0.31 0.31 0.31 0.31 0.62 0.15 0.62
o3 0.33 0.17 0.33 0.33 0.33 0.50 0.50 0.17 0.50
o4 0.55 0.18 0.18 0.37 0.18 0.37 0.18 0.37 0.18 0.37 0.55
o5 0.15 0.30 0.30 0.61 0.46 0.46 0.61

maxwi(X ) 0.46 0.55 0.30 0.31 0.37 0.33 0.33 0.61 0.33 0.62 0.50 0.46 0.18 0.46 0.37

Fig. 1. Example dataset X
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For a given vector x, let dim(x) denote a set of all dimensions i such that i ∈ U
and x[i] > 0. For example, dim(o3) = {B, D, F, G, I, J, K, M}. For given two
vectors x and y, if dim(x)∩dim(y) �= ∅, then there exists at least one dimension i
such that x[i] > 0 and y[i] > 0, which is equivalent to the predicate dot(x, y) > 0.
For example, dim(o2) ∩ dim(o3) = {B, D, J} �= ∅ and dot(o2, o3) = 0.465 > 0,
and dim(o3) ∩ dim(o5) = ∅ and dot(o3, o5) = 0.

For a given vector x, let the prefix of the vector be the first several features
of x and denote it as x′, and the suffix of the vector be the remaining features
and denote it as x′′. Accordingly, it is obvious that x′ and x′′ are also vectors,
as x′ = 〈x[1], . . . , x[p], 0, . . . , 0〉 and x′′ = 〈0, . . . , 0, x[p+1], . . . , x[m]〉, where p is
the last dimension on which x′’s weight is nonzero. Prefix and suffix satisfy the
followings;

– x′ + x′′ = x,
– |x′| + |x′′| = |x|,
– ‖x′‖2 + ‖x′′‖2 = ‖x‖2, and
– dot(x′, y) + dot(x′′, y) = dot(x, y) = sim(x, y).

3 Filtering-Based Methods

A näıve approach to obtain similarity join result is to enumerate all possible pairs
of vectors using nested loops, compute similarities of generated pairs, which we
call candidates, and discard those whose similarity value is below the threshold.
This approach generates total n(n−1)

2 candidates. Obviously, this approach is not
feasible for large datasets due to the huge amount of comparisons.

An alternative approach may improve the performance of the similarity join
by using inverted index used in IR community. We call this InvertedIndexJoin
and its pseudo code is shown in Algorithm 1. While scanning each vector, In-
vertedIndexJoin dynamically constructs inverted index and accumulate similar-
ity values in hash-based map by scanning the inverted index. This brings two
benefits: this 1) guarantees that only one pair of (x, y) and (y, x) is considered,
since each input vector is compared with vectors that had already been indexed
in inverted lists and 2) reduces the overhead of scanning inverted lists, since size
of inverted lists remains small in the early stage of the operation; however, still
this approach is not feasible for large datasets, because this approach requires
huge memory to keep the hash-based map for accumulating similarity values of
candidates and yields much overhead to scan all inverted lists for each vector.
Several existing algorithms improved the performance of InvertedIndexJoin by
exploiting the threshold during matching and indexing.

For an input vector x, InvertedIndexJoin incrementally scans inverted lists
from 1 to m such that x[i] > 0 (see line 6 - 8 of Algorithm 1.) Suppose that
the operation is on dimension p and let x′ and x′′ denote the corresponding
prefix and suffix for x, then sim(x, y) = dot(x′, y) + dot(x′′, y). 1 If sim(x, y) ≥ t
and dot(x′′, y) < t, then dot(x′, y) > 0, that is x′ and y share at least one
1 x′ = 〈x[1], . . . , x[p], 0, . . . , 0〉 and x′′ = 〈0, . . . , 0, x[p + 1], . . . , x[m]〉.
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Algorithm 1. InvertedIndexJoin(D, t)
Input: a set of vectors D, similarity threshold t
Output: {(x, y)|x, y ∈ D ∧ sim(x, y) ≥ t}
1: O ← ∅
2: I1, . . . , Im ← ∅
3: for each x ∈ D do
4: C ← empty map from id to weight
5: for i = 1 to m such that x[i] > 0 do
6: for each (y, y[i]) ∈ Ii do
7: C[y] ← C[y] + x[i] · y[i]
8: end for
9: Ii ← Ii ∪ {(x, x[i])}
10: end for
11: for each y ∈ C do
12: if C[y] ≥ t then
13: O ← O ∪ {(x, y)}
14: end if
15: end for
16: end for
17: return O

dimension. This is similar to the prefix filtering principle proposed in [2], which
is based on the intuition that if two canonicalized objects are similar, some
fragments of them should overlap with each other, otherwise the two objects
cannot have enough overlap; however, the overlap-based prefix filtering principle
does not cover aggregate weighted similarity functions, such as cosine similarity.
Therefore, it needs to be extended to cover cosine similarity. Although Bayardo
et al.[4] did not note explicitly that they used prefix filtering principle, their
approach is on the similar intuition as the prefix filtering principle and we can
extend the prefix filtering principle based on the notion used in [4]. An extended
version of prefix filtering principle for aggregate weighted similarity functions is
formalized in Lemma 1.

Lemma 1. (Aggregate Weighted Prefix Filtering Principle)
Consider two objects x and y, each of which is weight vector on dimension U ,
which follows an ordering scheme O. If dot(x, y) ≥ t, then any x′ and y′, such
that dot(x′′, y) < t and dot(x, y′′) < t, share at least one dimension.

3.1 All-Pairs Algorithm

For a vector x, if we can determine the prefix x′ such that dot(x′′, y) < t for
all y in the dataset, we do not need to condier ys not observed until probing
inverted lists Ii such that i ∈ dim(x′). Also we only need to index x in inverted
lists Ii such that i ∈ dim(x′). Bayardo et al. used maxwi(D) to calculate the
upper-bound of dot(x′′, y) for all y in the dataset as shown in (2).
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dot(x′′, y) =
m∑

i=p+1

x[i] · y[i] ≤
m∑

i=p+1

x[i] · maxwi(D) (2)

Based on the InvertedIndexJoin, they devised an algorithm, All-Pairs,
not only employing prefix filtering but also exploiting other factors affecting the
performance. We rewrite the final version of All-Pairs as shown in Algorithm 2
and 3. Let us see briefly how they improved the performance of similarity join
in addition to prefix filtering.

Algorithm 2. All-Pairs(D, t)

Input: a set of vectors D, similarity threshold t
Output: {(x, y)|x, y ∈ D ∧ sim(x, y) ≥ t}
1: Reorder the dimension 1 . . .m such that dimension with the least non-zero entries

in D appear first.
2: Denote the max. of x[i] over all x ∈ D as maxwi(D).
3: Denote the max. of x[i] for 1 . . .m as maxw(x).
4: O ← ∅
5: I1, I2, . . . , Im ← ∅
6: for each x ∈ D in decreasing order of maxw(x) do
7: O ← O ∪ Find-Matches(x, I1, I2, . . . , Im, t)
8: b ← 0
9: for i = m to 1 such that x[i] > 0 do
10: b ← b+ x[i] ·min(maxw(x),maxwi(D))
11: if b ≥ t then
12: Ii ← Ii ∪ {(x, x[i])}
13: end if
14: end for
15: end for
16: return O

Exploiting Specific Sort Order. Vectors are sequentially accessed in the
algorithm. Suppose that vectors are sorted in decreasing order of maxw(x) and
accessed in that order. For a vector x, x is compared with indexed vectors before
indexing it. After indexing x, vectors that are not accessed and indexed yet will
be compared with x. Such vectors have smaller maximum weight maxw(y) than
x. Therefore, we can tighten the upper-bound of dot(x′′, y) for such ys that are
not indexed yet as

∑m
i=p+1 x[i] · min(maxw(x), maxwi(D)) (line 11 of Algorithm

2.) We can determine prefix for x based on such upper-bound and the indexed
amount for x can be reduced (line 9 - 15 of Algorithm 2.)

Size Filtering in Matching Phase. For two vectors x and y, if we know
|x|, |y|, maxw(x) and maxw(y), we can obtain the upper-bound of dot(x, y) as
dot(x, y) ≤ min(|x|, |y|) ·maxw(x) ·maxw(y) ≤ |y| ·maxw(x). From this, we can
obtain |y| · maxw(x) < t ↔ |y| < t

maxw(x) → dot(x, y) < t. Finally, when we
probe inverted lists, we can remove y such that |y| < t

maxw(x) from the inverted
lists, since all remaining vectors to be compared with y have smaller or equal
maximum weight over all dimensions than x (line 6 of Algorithm 3.)
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Algorithm 3. Find-Matches(x, I1, I2, . . . , Im, t)

Input: a vector x, inverted lists I1, I2, . . . , Im, similarity threshold t
Output: {(x, y)|(y, y[i]) ∈ Ii ∧ sim(x, y) ≥ t}
1: O ← ∅
2: C ← empty map from id to weight
3: b ← ∑m

i=1
x[i] ·maxwi(D)

4: minsize ← t
maxw(x)

5: for i = 1 to m such that x[i] > 0 do
6: Remove (y, y[i]) from Ii s.t. |y| < minsize
7: for each (y, y[i]) ∈ Ii do
8: if b ≥ t or C[y] > 0 then
9: C[y] ← C[y] + x[i] · y[i]
10: end if
11: end for
12: b ← b− x[i] ·maxwi(D)
13: end for
14: for each y ∈ C do
15: if C[y] + min(|x|, |y′′|) ·maxw(x) ·maxw(y′′) ≥ t then
16: if C[y] + dot(x, y′′) ≥ t then
17: O ← O ∪ {(x, y)}
18: end if
19: end if
20: end for
21: return O

Size Filtering in Verification Phase. Let x be input vector, y be one of
indexed vectors and y′ be indexed part, that is, prefix for y, then dot(x, y′)
is obtained in C[y] after probing inverted lists (line 9 of Algorithm 3.) Then
we can obtain sim(x, y) by adding dot(x, y′′) to C[y], where y′′ is un-indexed
part, that is, suffix for y. Before calculating dot(x, y′′), we may avoid unneces-
sary computation for dot(x, y′′) by calculating the upper-bound of dot(x, y′′) as
min(|x|, |y′′|) · maxw(x) · maxw(y′′) (line 15 of Algorithm 3.)

4 MMJoin

In this section, we describe what mostly affects the performance of All-Pairs and
how we improved the performance of All-Pairs.

4.1 Effects of Filtering Techniques on Candidates Size

To see how each technique used in All-Pairs affects the performance of the algo-
rithm, we implemented four versions of All-Pairs:

– All-Pairs-0 implements basic prefix filtering method.
– All-Pairs-1 exploits sort order of vectors based on All-Pairs-0.
– All-Pairs-2 adopts size filtering in matching phase based on All-Pairs-1.
– All-Pairs adopts size filtering in verification phase based on All-Pairs-2.
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We ran each version of All-Pairs over two datasets with varying the threshold
(Details about the datasets are described in Sect. 5) and measured the total
number of candidates each algorithm generates to see how much reduction of
candidates is made by applying each technique.
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Fig. 2. Effect of each technique on the number of candidates

In general, as shown in Fig. 2, exploiting the specific sort order of vectors
brings more performance gain than others. Size filtering in matching phase has
almost no effect on reducing candidate size. Although size filtering in verification
phase reduces the number of candidates, we cannot except it brings as much
reduction of time as candidates, since it needs overhead to compute upper-bound
for all vectors remains until verification phases.

Besides, we measured average prefix size of All-Pairs-0 and could make an
interesting observation about the relationship between average prefix size and
the number of candidates All-Pairs-0 generates. In general, cube (or forth power)
of average prefix size is almost proportional to the total number of candidates as
shown in Fig. 3. This means that if we reduce average prefix size even a little, we
will obtain much performance improvements. Therefore, we focused on reducing
the size of prefixes.
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Fig. 3. Effects of average prefix size on total number of candidates
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4.2 Tightening Similarity Upper-Bound

If we do not consider weights of elements for quantifying similarity values be-
tween objects, prefix size is determined by only the given threshold based on the
overlap-based prefix filtering principle [2]; however, when we consider weights of
elements, prefix size varies according to how we calculate the upper-bound of
dot(x′′, y) for all y following the Lemma 1.

In All-Pairs, for a vector x, maxw(x) and maxwi(D) is used to calculate the
upper-bound of dot(x′′, y) for all y to be compared with x. Let M(x) be a vector
whose ith weight is min(maxw(x), maxwi(D)). Accordingly, dot(x′′, M(x)) =
dot(x, M(x)) − dot(x′, M(x)), and it can be thought that prefix for a vector is
determined by adding feature one by one until dot(x, M(x))−dot(x′, M(x)) < t.
From this, we can suppose that if dot(x, M(x)) is big, many features need to be
included in prefix to fufill the predicate. As a result, prefix becomes large. This
situation is easy to happen when the size of a vector is large. To overcome the
weakness of All-Pairs’s prefix selection, we contrived an alternative method to
calculate the upper-bound of dot(x′′, y) by exploiting the arithmetic mean and
geometric mean of elements’ weights.

Once again, recall that sim(x, y) = dot(x′, y)+dot(x′′, y). Let y′ and y′′ be the
prefix and the suffix of y, each of which corresponds to x′ and x′′ respectively.
Then, obviously, dot(x′′, y) = dot(x′′, y′′). dot(x′′, y′′) can be rewritten as:

dot(x′′, y′′) = x[p + 1] · y[p + 1] + . . . + x[m] · y[m]. (3)

By using the relationship between arithmetic mean and geometric mean of ele-
ments’ weights, we can obtain the upper-bound of dot(x′′, y′′) as shown in (4).

x[p + 1] · y[p + 1] + . . . + x[m] · y[m]

≤ x[p + 1]2 + y[p + 1]2

2
+ . . . +

x[m]2 + y[m]2

2

=
x[p + 1]2 + . . . + x[m]2

2
+

y[p + 1]2 + . . . + y[m]2

2

=
‖x′′‖2 + ‖y′′‖2

2
(4)

With ‖x‖2 = ‖x′‖2 + ‖x′′‖2 = 1 and ‖x‖2 ≥ 0 for all vectors, the upper-bound
of dot(x′′, y′′) can be calculated as (5).

dot(x′′, y′′) ≤ ‖x′′‖2 + ‖y′′‖2

2
= 1 − 1

2
‖x′‖2 − 1

2
‖y′‖2

≤ 1 − 1
2
‖x′‖2 (5)

Let ubdot(x′′) denote upper-bound of dot(x′′, y) for all y to be compared with
x. Then ubdot(x′′) = min(dot(x, M(x)) − dot(x′, M(x)), 1 − 1

2‖x′‖2).
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4.3 MMJoin Algorithm

Our algorithm is almost same with All-Pairs and still exploits its merits, because
we only changed the way of selecting prefixes as shown in line 8-14 of Algo-
rithm 4. Code for selecting prefix in matching phase of MMJoin-Find-Matches
is almost same except that

∑m
i=p+1 x[i] · maxwi(D) is used as M(x) instead of∑m

i=p+1 x[i] · min(maxw(x), maxwi(D)). Therefore we omit MMJoin-Find-
Matches in this paper.

Algorithm 4. MMJoin(D, t)

Input: D = {o1, o2, . . . , on}, similarity threshold t
Output: {(x, y)|x, y ∈ D ∧ sim(x, y) ≥ t}
1: Reorder the dimension 1 . . .m such that dimension with the least non-zero entries

in D appear first
2: Denote the max. of x[i] over all x ∈ D as maxwi(D)
3: Denote the max. of x[i] for 1 . . .m as maxw(x)
4: O ← ∅
5: I1, I2, . . . , Im ← ∅
6: for each x ∈ D in decreasing order of maxw(x) do
7: O ← O ∪ MMJoin-Find-Matches(x, I1, I2, . . . , Im, t)
8: b1 ← ∑m

i=1
x[i] ·min(maxwi(D),maxw(x))

9: b2 ← 1
10: for i = 1 to m s.t. x[i] > 0 while min(b1, b2) ≥ t do
11: b1 ← b1 − x[i] ·min(maxw(x),maxwi(D))
12: b2 ← b2 − 1

2
x[i]2

13: Ii ← Ii ∪ {(x, x[i])}
14: end for
15: end for
16: return O

5 Experimental Evaluation

In this section, we compare the performance of MMJoin with All-Pairs. We do
not compare with other algorithms, since All-Pairs shows the best performance
among previous algorithms applicable to our cases[4,8].

5.1 Experimental Setup

We implemented all algorithms in Java 1.6 and used the standard java libraries
to implement several data structures used in algorithms. All experiments were
performed on a server with 2.83 GHz Intel Core2 Quad, 8 Gbytes of RAM and
two 7200 RPM SATA II-IDE hard drives. The operating system is Windows
Server 2003.
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We ran two algorithms on five real world datasets to cover a wide spectrum of
different characteristics. Some important statistics of datasets are summarized
in Table 1.

Table 1. Statistics of Datasets

Dataset n avg len |U| avg DF

DBLP 1,298,016 8.6 381,450 29.3
DBLP 4GRAM 23.9 135,204 224.5
LAST.FM

134,949
4.8 47,295 13.8

LAST.FM 4GRAM 11.2 44,272 34.3
TREC 348,566 77.1 298,302 90.1

DBLP is a snapshot of the bibliography records from the DBLP Web site2. It
contains almost 1.3M records; each record is a concatenation of author name(s)
and the title of a publication. We tokenized each record using white spaces
and punctuations. The same DBLP dataset (with smaller size) was also used in
previous studies [11,4,12,10,13].

TREC is from TREC-9 Filtering Track Collections3. It contains 0.35M ref-
erences from the MEDLINE database. We extracted author, title, and abstract
fields from records. Records are subsequently tokenized as in DBLP.

LAST.FM was gathered from last.fm web site4. It contains 0.13M randomly
selected music tracks including artists and title. Each track is subsequently to-
kenized as in DBLP.

We made two additional datasetsDBLP4GRAM andLAST.FM4GRAM,
which are tokenized into 4-grams from DBLP and LAST.FM respectively. In par-
ticular, we extracted each 4-gram from tokens that had already been extracted
with spaces and punctuations. After extracting tokens, we assigned weights on to-
kens based on tf-idf weighting scheme[14].

5.2 Experimental Results and Analysis

We ran All-Pairs and MMJoin over five datasets with varying thresholds from
0.70 to 0.95 by 0.05. We ran in-memory algorithm over LAST.FM, LAST.FM
4GRAM, and DBLP datasets; however, we could not use in-memory algorithm
over DBLP 4GRAM and TREC in spite of we ran algorithms with excessive
memory. Therefore, we ran disk-resident algorithm over DBLP 4GRAM and
TREC. Disk resident version of All-Pairs and MMJoin were implemented in the
same manner proposed in [4].

As discussed in Sect. 4.1, average prefix size affects the most on the candidate
size. Also most time for similarity join is spent for calculating similarity values of
candidates. Therefore, we focused on seeing these sequential effects by measuring
2 Available at http://dblp.uni-trier.de/xml/
3 Available at http://trec.nist.gov/data/t9 filtering.html
4 http://www.last.fm/
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average prefix size, total number of candidates, and total running time (see
Fig. 4.) We can observe expected results in all datasets and parameters. Simple
analyses about the experimental results is presented in following sub-sections.

Prefix Size. It is observed that the average prefix size increases when the
threshold decreases(See Fig. 4a to 4c.) The average prefix size of MMJoin grows
faster than that of All-Pairs when threshold decreases; however, the starting
point of the MMJoin’s average prefix size is much smaller than All-Pairs, espe-
cially when the average vector size is larer. In addition, MMJoin never generate
bigger prefixes than All-Pairs as proved in Sect. 4.2.

Candidate Size and Time. Figure 4d to 4i shows the number of candidates
generated by the algorithms and the time to complete the similarity join with
varying the thresholds. We can make identical observations that had been made
in previous work; the size of the join result grows modestly when the similarity
threshold decreases, and all algorithms generate more candidate pairs with the
decrease of the similarity threshold. Besides, time to complete the similarity
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Fig. 4. Experimental Results
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join mostly depends on the candidate size. This means that time to generate
candidates do not occupy much portion of total running time in both algorithms.
In all situations, MMJoin generates much smaller candidates than All-Pairs.

Performance Differences. MMJoin shows better performance than All-Pairs.
It is much strongly observed when the average length of vectors is larger and the
threshold is greater as shown in Fig. 5. Even in the case of TREC with threshold
0.95, speed-up of MMJoin is about 166x. This is exactly what we expected in
Sect. 4.2.
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Fig. 5. Performance differences between All-Pairs and MMJoin with varying threholds

6 Related Work

Early studies in similarity join were limited to binary similarity functions for
sets including strict containment [15,16,17], equality [16], and non-zero over-
lap joins [16]. There are found several recent work that covers various partial
overlap predicates using a variety of similarity functions including Jaccard co-
efficient, cosine similarity, edit distance, Hamming distance and their variants
[4,12,10,13]. Similarity join in multi-dimensional non-binary space has also been
studied[18,1]. [6] compared a large number of similarity functions experimentally
with an evaluation on their performance and accuracy.

There is extensive related work in the IR community on designing efficient
methods for indexing and compressing textual data [19] viewed as a set. Re-
cent studies showed that this approach is effective to design efficient algorithms
realizing similarity join [11,12,10,13]. Most of them use small part of object to
reduce the number of objects that have to be fully compared with input ob-
ject. Sarawagi et al. proposed a simple prefix filtering based algorithms with
fully constructed inverted index[12]. Bayardo et al. improved the prefix filtering
by dynamically constructing inverted index as well as considering other fac-
tors affecting the performance [4]. Recently proposed positional filtering shows
remarkable performance improvements on similarity join with set-based similar-
ity functions including Jaccard coefficient, overlap distance, and edit distance
[10,13]; however positional filtering is not applicable to weighted cases, since
they directly change positional information to measure similarities. To the best
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of our knowledge, All-Pairs is the best algorithm that is applicable to weighted
similarity measures. We extended and improved the All-Pairs adapting a novel
prefix selection method.

Our algorithm solves the similarity join problem with assuring that all similar
pairs satisfying the given constraints are detected. Another line of work is to
solve the similarity join problem with approximation. Locality Sensitive Hashing
(LSH) [20] that is widely used in nearest neighbor search can be adapted to
similarity join [11,4]. In [4], shingle-based technique was used to detect near
duplicated web pages. Several alternatives are proposed to improve hash-based
approaches [6].

7 Conclusion

Similarity join has been used in a wide range of application domains such as data
integration and cleaning, pattern recognition, and information retrieval. Various
similarity functions are used to define join conditions of similarity join. In this
paper, we focused on an efficient algorithm for similarity join with cosine similar-
ity predicate. We analyzed the previous algorithms and found out that the most
critical process that affects the performance of similarity join is prefix selection.
We contrived a novel prefix selection method that efficiently reduces the amount
of indexed prefix size by exploiting the relationship between arithmetic mean
and geometric mean of elements’ weights. We proposed an algorithm, MMJoin,
that implements our prefix selection method. Although we refined small part of
previous algorithm, we obtained much performance gain through it. We demon-
strated that the proposed algorithm outperforms state-of-the-art algorithm with
empirical evaluation on large-scale real-world datasets.
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Abstract. The variants of similarity queries have been widely studied in recent
decade, such as k-nearest neighbors (k-NN), range query, reverse nearest neigh-
bors (RNN), an so on. Nowadays, the reverse furthest neighbor (RFN) query is
attracting more attention because of its applicability. Given an object set O and
a query object q, the RFN query retrieves the objects of O, which take q as their
furthest neighbor. Yao et al. proposed R-tree based algorithms to handle the RFN
query using Voronoi diagrams and the convex hull property of dataset. However,
computing the convex hull and executing range query on R-tree are very expen-
sive on the fly. In this paper, we propose an efficient algorithm for RFN query with
metric index. We also adapt the convex hull property to enhance the efficiency,
but its computation is not on the fly. We select external pivots to construct metric
indexes, and employ the triangle inequality to do efficient pruning by using the
metric indexes. Experimental evaluations on both synthetic and real datasets are
performed to confirm the efficiency and scalability.

Keywords: Similarity search, Reverse furthest neighbors, Metric index, Convex
hull.

1 Introduction

Similarity search has been well studied in the past decade, with its emerging application
to the scientific researches and developments, such as pattern recognition [1,2], image
retrieval [3], time-series matching [4] and the like. The variants of similarity queries in-
clude k-nearest neighbors (k-NN), range query, reverse nearest neighbors (RNN), and
so on. Driven by the emerging requirement, a large number of techniques are devel-
oped for these query types to enhance the processing efficiency on the fly. They can
be roughly divided into three categories, space-partitioning methods (e.g., grid-file [5]),
data-indexing methods (e.g., R-tree [6]), and efficient methods for sequential scan (e.g.,
VA-file [7]). The authors usually perform their experimental evaluations, and naturally
correspond to the opposite query type — “furthest” version as extension or future work.
To the best of our knowledge, throughout the recent decade, the query type of reverse
furthest neighbors (RFN) was out of concentration.

P. Garcı́a Bringas et al. (Eds.): DEXA 2010, Part II, LNCS 6262, pp. 437–451, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Yao et al. fully identified the RFN query in [8]. For a large object set O and any ran-
dom query object q (q may not belong to O), they formally retrieve the set of objects in
O, which take q as their furthest neighbors among all objects in O, i.e., the reverse fur-
thest neighbors (RFN). The variants of RFN queries are categorized as monochromatic
reverse furthest neighbors (MRFN) query (i.e., RFN), and bichromatic reverse furthest
neighbors (BRFN) query. The bichromatic version can be simply described as follows.
Given a query set Q, a specified query q ∈ Q and an object set O, the BRFN query is
to retrieve the set of objects o ∈ O that take q as their furthest neighbors, comparing
to the other objects in Q. R-tree based algorithms are proposed to challenge the MRFN

and BRFN problems in [8].

(a) MRFN

o1

o2
o3

o4

o5

o6

o7

q
O={o1,o2,...,o7}, q

(b) BRFN

o1

o2
o3

o4

o5

o6

o7

q1

q3

q2

O={o1,o2,...,o7}, Q={q1,q2,q3}

Fig. 1. Query examples of (a) MRFN, and (b) BRFN

In (a) of Figure 1, given the object set O and the query object q, then the answer
to the RFN of q is {o3, o4}. Simply, the processing computes all the pairs of distances
between q and oi. As illustrated by the dotted lines, the objects o3 and o4 hold the
furthest distance to q than other objects in O thus are included in the answer set.

The query example of BRFN is illustrated in (b) of Figure 1. The object set O is the
same as in (a), but a different query object set Q = {q1, q2, q3} is given. Then the BRFN

query returns the answer set corresponding to each q ∈ Q. For instance, pick up q2,
the the answer to its BRFN is {o1, o2, o6, o7}. In the figure, the dotted lines indicate the
furthest distances from o ∈ O to q2 by comparing to the other q ∈ Q. Similarly, q3’s
BRFN is {o3, o4, o5}. However, the answer to q1’s BRFN becomes empty in this example,
because all the object o ∈ O does not take q1 as their furthest neighbor w.r.t Q.

To give clear introduction to the RFN problems, besides the query examples repro-
duced above, we extend and emphasize the real applications as well, based on [8].

Application 1: Consider the application to tourism. The tourist would like to go
shopping around their visiting sites. Usually, they firstly choose the nearest places un-
less for special reason. In this case, as the owner of a shop, he/she certainly hopes to be
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accessed by as many visitors as possible. Therefore, he/she should make more efforts
to advertise his/her shop at the places (i.e., its reverse furthest neighbors), where the
tourist most unlikely to visit his/her shop.

Application 2: In the approving authority of the government, e.g., the urban plan-
ning department, the officials have to approve the building applications from different
industries. For instance, suppose that a building plan of constructing a chemical factory
is submitted. The government must consider the hazardous influence to the local citi-
zen. In this case, the potential locations are given as Q, and the residential location set
O are known in hand. It is necessary to approve such a location q ∈ Q that the citizen
are far away from as many as possible. The decision comes to the location q ∈ Q which
has the maximum number of reverse furthest o ∈ O.

Application 3: The RFN query can be also applied to mine the correlations between
customers and business companies. For example, the PC makers would make special
marketing strategies to enlarge their profit. Given the customer set O who are the poten-
tial customer of their products, and the company set Q are the PC makers. Assume there
is a quantized distance measure for the feedback from the customers to the makers. To
sale more PCs, it is important for each maker to know potential customers who dislike
their PC, and then carry out special strategy towards those customers. Here, the BRFN

query helps to solve this problem for the PC makers.
Following Yao et al.’s concentration on the RFN problems, in this work, we motivate

to enhance the processing efficiency against their algorithms. To make the improvement
simple and understandable, we only focus on the MRFN query type in this paper. Indeed,
the improved algorithm for MRFN can be easily applied to BRFN query. The main
contributions of this work are as follows.

1. We analyze the expensive cost in the algorithms proposed in [8].
2. We summarize and extend the special properties of RFN query, and de-

velop theoretical filtering.
3. Based on the properties, we design an efficient algorithm for RFN query,

using the selected pivots with their metric indexes.
4. We perform extensive experiments on both synthetic and real data to eval-

uate the efficiency and I/O cost for the proposed algorithm.

The paper is organized as follows. Section 2 surveys the related work and analyze the
expensive cost against the proposed algorithms for RFN query. Then we summarize
the special properties of RFN query proposed in [8], and extend convex hull property
for our approach in Section 3. Based on the properties, we propose a novel algorithm to
enhance the processing efficiency for RFN query in Section 4. Experimental evaluations
to confirm the efficiency and I/O cost are performed in Section 5. Section 6 comes to
conclude this work and go into perspective of the future work.

2 Related Work

Techniques for similarity search have been extensively studied in the literature
[7,9,10,11]. The similarity query types close to this work can be briefly classified in the
following three categories: (k-)nearest neighbor(s) (NN, or k-NN), reverse (k-)nearest
neighbors (RNN, or RkNN), and reverse furthest neighbors (RFN).
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NN query. The early work proposed depth-first search based [12,13] and best-first
search based [14] algorithms to answer a (k)NN query on a R-tree [6] indexed dataset.
In these algorithms, the main idea is to determine whether the node should be visited
according to the minimum distance between the query q and a R-tree node (MBR, or a
data object). Due to the application value, various methods are still developed to speed
up NN query in latest work like [15,16]. Athitsos et al. [15] proposed a space-indexing
method using distance-based hashing to achieve efficient approximate nearest neighbor
retrieval. Tao et al. [16] propose a new access method LSB-tree to enable fast high-
dimensional nearest neighbor search with excellent quality.

RNN query. As an interesting type close to NN query, the RNN query is also at-
tracted much attention [17,18,19,20,21,22,23,24]. The RNN query is firstly introduced
by Korn and Muthukrishnan [17], who proposed the RNN-Tree to facilitate the query
processing. Then, RdNN-Tree [18], TPL algorithm [21], MRkNNCop-Tree [22] are
proposed to efficiently answer the RNN query. Many applications of RNN query are
reported in [17,19,20,23]. Coming to the state of the art, Wu et al. [24] proposed the
FINCH method to apply any RkNN algorithm to query processing, and evaluated RkNN
queries on location data as well.

RFN query. The work most closely related to this paper is the recent work [8],
which originally defined two RFN query types, MRFN and BRFN. The authors proposed
the progressive furthest cell (PFC) algorithm and the convex hull furthest cell (CHFC)
algorithm to handle RFN query. Both adopting R-tree index, and using the furthest
Voronoi cell (fvc) to determine whether the points o ∈ O are q’s RFN. The fvc(q, O)
is to define a convex polygon w.r.t the query q in the given space of dataset O. To
compute the fvc(q, O), firstly draw the bisector line of each line segment oq (o ∈ O),
then the space is separated into two subspaces, the fvc(q, O) takes the intersection of
all subspaces far away from the query q. The fvc(q, O) strictly limits the answer set if
and only if the point o ∈ fvc(q, O). Straightforwardly, the authors proposed the PFC
algorithm to compute fvc(q, O) with the R-tree for each given query q on the fly. They
also pointed out that the post-processing of PFC algorithm is expensive, so that they
designed the faster one (CHFC) by deriving the important convex hull property of RFN
query. The CHFC algorithm is represented in Figure 2.

Algorithm: CHFC(Query q; R-tree T )
1 Compute CP with T using either the distance-priority or the depth-first algorithm;
2 if q ⊂ CP then return ∅;
3 else {
4 Compute CP∗ using CP ∪ {q};
5 Set fvc(q, P ∗) equal to fvc(q, CP∗);
6 Execute a range query using fvc(q, P ∗) on T ;
7 }

Fig. 2. CHFC algorithm

In spite of the improvement against PFC, the CHFC algorithm is still expensive, be-
cause it has to compute the convex hull for each query q (line 1 and 4). The computation
for executing a range query on R-tree (line 6) is expensive as well. These complaint can
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be confirmed by the illustration in Figure 6(a) based on our experiment result. Moti-
vated by this, we propose a novel method 1) to avoid all the computation for convex
hull, 2) to avoid executing range query on R-tree, 3) to reduce the distance computation
on the fly as much as possible.

3 Theoretical RFN Filtering

In this section, we formally define the RFN query, summarize its special properties,
and extend the convex hull property to explain our approach as well. As mentioned in
Section 2, the furthest Voronoi cell (fvc(q, O)) is one of the properties that can tightly
determine whether the points o ∈ O are the answer to q’s RFN. The other is the convex
hull property of RFN query, which is explained by several lemmas in [8]. To re-use this
property for our approach, we briefly conclude it as a basic Theorem 1. The complete
proof of Theorem 1 can be confirmed in [8].

Definition 1. Given an object set O and a query q, the answer to q’s reverse furthest
neighbors is defined by RFN(q) = {o|o ∈ O ∧ ∀p ∈ O, dist(o, q) > dist(o, p)}.

Theorem 1. Given an object set O, its convex hull CO , and an arbitrary query q, the
answer set to q’s RFN is empty, if q is inside CO .

Theorem 1 essentially tells that only if q is on the boundary of, or outside the convex
hull CO , the answer to q’s RFN maybe found. Along this property, we can perform
powerful filtering to avoid range query using R-tree and hence reduce much distance
computation. To achieve these purposes, we extend Theorem 1 to derive two filtering
techniques as described in Lemma 1 and Lemma 2.

We assume that all vertices of the convex hull CO are selected into a pivot set Spiv .
By Theorem 1, only the objects p ∈ Spiv have potential reverse furthest neighbors
corresponding to O. In this case, p’s RFN is the set of objects o ∈ O such that o takes p
as its furthest neighbor. The distance measure is on the Euclidean space, and dist(·, ·)
denotes the distance function throughout this paper.

First of all, the filtering is based on the following baseline property:

∀o ∈ O, if dist(o, q) < maxpi∈Spiv{dist(o, pi)} then o is not included in the an-
swer to q’s RFN. On the other hand, if dist(o, q) > maxpi∈Spiv{dist(o, pi)} then o is
included in the answer to q’s RFN.

The baseline property is easy to understand. For the former, because pi is also a
element of the dataset, dist(o, q) < maxpi∈Spiv{dist(o, pi)} means that there is at
least one object further than q from o. In other words, o will never take q as its furthest
neighbour. The latter is similar.

Now, the problem is how to use this property to enhance the efficiency. It is mean-
ingless if we have to calculate the dist(o, q) and maxpi∈Spiv{dist(o, pi)} whenever
the query is issued. Rather all, we develop two techniques to avoid this calculation. To
avoid the calculation of distances between o and pi, we design a metric index which
will be explained in the following section. To avoid the calculation of distance between
o and q we develop the upper bound and lower bound as in the following two lemmas
adopting the triangle inequality. Before formal description, a simple example is given
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(a)
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(b)
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p4p5
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o

Spiv={p1,p2,p3,p4,p5}

Fig. 3. Illustration for (a) Lemma 1 and (b) Lemma 2

in Figure 3. In (a), o can be safely excluded from q’s RFN because the upper bound of
dist(o, q) (i.e.,dist(p1, q) + dist(o, p1)), is under dist(o, p3). In other words, at least
o will take p3 instead of q as its furthest neighbour. In (b), o is in the answer set be-
cause even the lower bound of dist(o, q) (i.e., |dist(p1, q)− dist(o, p1)|), is larger than
dist(o, p3). Since dist(o, p3) is the largest distance among dist(o, pi), we assure that
no object o′ exists such that dist(o, o′) > dist(o, p3). In other words, for all object o′,
dist(o, o′) ≤ dist(o, p3) < dist(o, q) which means that q is the furthest neighbour of o.

Lemma 1. Given an object set O = {o1, · · · , on}, suppose its convex hull is CO and
the pivot set Spiv = {p1, · · · , pm} represents the vertices of CO . Given query q, for any
object o ∈ O, o is not in the answer set of q’s RFN if o satisfies the following Inequality 1

minpi∈Spiv{dist(o, pi) + dist(pi, q)} < maxpi∈Spiv{dist(o, pi)} (1)

Proof. As illustrated in Figure 3(a), by the triangle inequality, we have

dist(o, q) ≤ dist(o, pi) + dist(pi, q).

The exact distance dist(o, q) is unknown and we want to give answer before calculating
it. For all pairs of distance combinations dist(o, pi) + dist(pi, q), the upper bound of
the distance between o and q can be achieved by

Ubound(dist(o, q)) = minpi∈Spiv{dist(o, pi) + dist(pi, q)}.

On the other hand, the right hand side of Inequality 1 indicates that the object o takes
such a pivot pi ∈ Spiv holding the maximum distance to o as o’s furthest neighbor, i.e.,
o is pi’s reverse furthest neighbor. If Inequality 1 is satisfied, we have

Ubound(dist(o, q)) < maxpi∈Spiv{dist(o, pi)},

that means the distance from o to q is always smaller than the distance to the furthest
pivot pi ∈ Spiv . Consequently, the object o is impossible to become q’s reverse furthest
neighbor. This completes the proof.
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Lemma 2. Given an object set O = {o1, · · · , on}, select all vertices on its convex hull
CO as a pivot set Spiv = {p1, · · · , pm}. When an arbitrary query q is given, for any
object o ∈ O, if the next Inequality 2 is satisfied, the object o absolutely becomes q’s
reverse furthest neighbor.

maxpi∈Spiv{|dist(o, pi) − dist(pi, q)|} > maxpi∈Spiv{dist(o, pi)} (2)

Proof. Similar to Lemma 1, by the reverse triangle inequality, we have

dist(o, q) ≥ |dist(o, pi) − dist(pi, q)| .

Similarly, for all pairs of distance differences |dist(o, pi)−dist(pi, q)|, the lower bound
of the distance between o and q can be achieved by

Lbound(dist(o, q)) = maxpi∈Spiv{|dist(o, pi) − dist(pi, q)|}.

In the same way, if Inequality 2 is satisfied, we have

Lbound(dist(o, q)) > maxpi∈Spiv{dist(o, pi)},

that indicates the distance from o to q is always bigger than the distance to the furthest
pivot pi ∈ Spiv . This results in that all the pivots on the convex hull CO cannot be q’s
reverse furthest neighbor because dist(o, q) is bigger. Therefore, the current object o
safely becomes q’s reverse furthest neighbor. The proof is completed.

Improvement for Computation

In the lemmas proofed above, the conditions for upper and lower bounds are very strict
in terms of theory. However, for the computation in algorithm design, the inequality
conditions can be improved as much as possible. Corresponding to Lemma 1, the In-
equality 1 can be rewritten as

∃pi, dist(o, pi) + dist(pi, q) < maxpi∈Spiv{dist(o, pi)}. (3)

For the judgement to discard the false positive which is impossible to become q’s reverse
furthest neighbor, the computation can be simplified to the examination of whether there
is such a pivot pi satisfying the Inequality 3, instead of checking all the combinations
for all pivots in Spiv . If such a pivot satisfying this condition exists, then we are sure
that the real distance between o and q is smaller than the distance from o to its furthest
pivot pi ∈ Spiv . In other words, o has no chance to take into account q’s reverse furthest
neighbor, hence o can be safely discarded by this simplified condition.

Similarly, the Inequality 2 can be simplified to

∃pi, |dist(o, pi) − dist(pi, q)| > maxpi∈Spiv{dist(o, pi)}, (4)

which guarantees that at least one combination of the lower bound is bigger than the
distance from o to its furthest pivot pi ∈ Spiv . In this case, o can be safely included
in the answer set of q’s reverse furthest neighbor. To confirm this improvement for
computation, we report the comparison result in the experimental evaluation.
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4 Searching RFN with Metric Index

Based on the two Lemmas, we can speed up the RFN query on the fly, without using R-
tree to execute range query. The cost for distance computation can be reduced as much
as possible as well.

Regarding the assumption for Lemma 1 and 2, we pre-compute the convex hull CO

w.r.t the object set O, then use its vertices as the pivot set Spiv to prune the false positive
and account the true positive. Naturally, we need to design metric indexes to store all
the distances used by the lemmas. We design two hash tables as metric indexes in the
following subsection. In addition, the distances between query q and all pivots p ∈ Spiv

can be easily computed on the fly.

4.1 Metric Indexes

For the maxpi∈Spiv{dist(o, pi)}, we use a hash table MetricIndex-A to store all the
tuples (oid,maxm

i=1{dist(o, pi)}), where m is the number of pivots pi ∈ Spiv . For the
pairwise distance between each pivot pi ∈ Spiv and an object o ∈ O, we have to store
a large matrix such as Figure 4. Instead of considering the storage for this large matrix,
we map each value in the matrix into a hash table MetricIndex-B using the pair of (pid,
oid) as the key. Due to these simple metric indexes using hash structure, all the distances
can be fetched fast in cost O(1). Since the memory ability is very large nowadays, we
keep these two metric indexes in memory on the fly to reduce the I/O cost of reads from
and writes to the disk. As the indexes are constructed by key-value hash tables, it is easy
to store them to sequential record files. The overhead of this approach is the secondary
storage space of O(mN) times the size of an object ID.

Besides the construction, it is also very convenient to update the index tables when
the dataset is updated. There are three situations when the update happens. The added/
removed object is 1) inside the convex hull CO (i.e., pivot set Spiv), or 2) on the bound-
ary of the convex hull, or 3) outside the convex hull. For the first case, the pivot set does
not change, therefore only one insertion/deletion to table MetricIndex-A, and only
pairwise operations for each pivot can be processed on table MetricIndex-B within the
complexity O(m). It should be pointed out that the size of pivot set m is often much
smaller than the size of the dataset N . For the last two cases, the convex hull has to
be reconstructed. Although recomputation happens, the reconstruction only results in
several insertions/deletions (� m), which is the same as the first case since m � N .

MetricIndex-A
oid maxpi∈Spiv{dist(o, pi)}
1 d1

2 d2

...
...

n dn

MetricIndex-B

⎛
⎜⎜⎜⎝

o1 o2 · · · on

p1 d11 d12 · · · d1n

p2 d21 d22 · · · d2n

...
...

...
. . .

...
pm dm1 dm2 · · · dmn

⎞
⎟⎟⎟⎠

Fig. 4. Metric indexes for storing distances
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Moreover, the lemmas introduced above strictly follow the inequality property of
metric space, this approach is applicable to all metric spaces.

4.2 Algorithm

Combining the Lemma 1 and 2, their improvements and the metric indexes mentioned
above, we propose a complete algorithm (shortly named PIV) to handle RFN query
efficiently. The Algorithm PIV is divided into two phases, the filtering processing (line
2-16), and the refinement processing (line 17-24). In the filtering phase, all the process-
ing strictly conforms the theorem and lemmas mentioned before. Line 2 determines
whether the query q is inside the convex hull by Theorem 1. O is scanned one pass
from line 8 to 16. If Lemma 1 is satisfied, the current object o is safely discarded. Oth-
erwise, Lemma 2 will be checked again, if satisfied, then object o should be added to
the answer set Answ, otherwise it is inserted into the candidate set Cand. After the fil-
tering processing, a few objects are remained in Cand. In the refinement phase, the real
distance from each potential candidate to q should be computed to confirm if it can
become q’s RFN.

5 Experimental Evaluation

To confirm the efficiency of the proposed algorithm, we perform extensive experiments
for evaluation. All the experiments are executed on an Intel-based computer and Linux
OS. The CPU is Intel(R) Xeon (R) 2.83 GHz and the amount of main memory is
16.0GB. The programs are implemented in C++ language, using the open-source li-
braries: Spatial Index Library1 and CGAL Library2. For taking into account IOs, the
page size is set to 4KB.

In order to make the experimental comparison as fair as possible, we use the same
datasets as that of the related work [8]. Two kinds of datasets are used for experiments:
three synthetic datasets and a real dataset. One of the synthetic datasets is conform-
ing Uniform distribution (UN), the other one is Random-Cluster distribution (RC),
and the third is Correlated Bivariate (CB) (in Figure 5). The real dataset is obtained
from the digital chart of the world server3. The real dataset contains 3 kinds of 2-
D point data defining the road networks for California (CA) and its interest points,
San Francisco (SF) and USA (US). As the same settings with [8], we also merge
them into one dataset (named Map) after normalizing all the data points into the space
L = (0, 0) × (100000, 100000). Totally, the Map dataset contains 476,587 points.

For the performance measurement, we compare our proposed algorithm (PIV) to the
other two algorithms (CHFC, and BFS — Brute-Force Search). The implementation of
CHFC and BFS is also following their original descriptions in [8]. For all algorithms,
we measure their CPU cost and the number of I/O cost. The final results are reported
on the average for one query after issuing 100 queries. Because the area of the convex
hull containing the dataset is almost touch the boundaries of the space L, we randomly

1 http://research.att.com/˜marioh/spatialindex/
2 http://www.cgal.org/
3 http://www.cs.fsu.edu/˜lifeifei/SpatialDataset.htm
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Algorithm: PIV( Query q, Pivots Spiv , Dataset O )
1 Initialize candidate set Cand← ∅, answer set Answ← ∅;
2 if (is query inside convex hull(q, Spiv) == TRUE) {
3 return ∅;
4 }
5 Compute each distance pair dist(q, p), p ∈ Spiv ;
6 foreach o ∈ O {
7 if (∃pi, dist(o, pi) + dist(pi, q) < maxpi∈Spiv{dist(o, pi)}) {
8 // Discard o by Lemma 1;
9 } else {
10 if (∃pi, |dist(o, pi) − dist(pi, q)| > maxpi∈Spiv{dist(o, pi)}) {
11 Insert o into Answ; //o is one of the answer by Lemma 2;
12 } else {
13 Insert o into Cand; // objects need to be checked further;
14 } //end if
15 } //end if
16 } //end foreach
17 foreach o ∈Cand {
18 Compute real distance dist(o, q);
19 if (dist(o, q) < maxpi∈Spiv{dist(o, pi)}) {
20 Discard o;
21 } else {
22 Insert o into Answ;
23 } //end if
24 } //end foreach
25 return Answ;

generate the queries from the space L′, the area of which is 2 times of L. This setting
guarantees the selection of queries is fair, which makes the possibility of having answers
or no answers to RFN query equal to each other. For the extensive comparison, we also
randomly generate different sizes of sub datasets: 10K, 50K, 100K, 200K, 300K, and
400K, as input to the programs.

5.1 Cost Analysis

Responding to the complaint mentioned in Section 2, we perform experiments to com-
pare the partial cost in CHFC algorithm with our PIV algorithm. As shown in Figure
6(a), it is clear to confirm that the “hull” and “range query” phases in CHFC algorithm
occupy very high CPU cost. However, our PIV algorithm much outperforms the CHFC.
Moreover, it is exact to confirm that any one of the two most expensive phases in CHFC
is over the total CPU cost of PIV.

Meanwhile, for confirming the improvement for computation mentioned in Section
3, we illustrates the CPU cost comparison between the naive and improved PIV algo-
rithms. In the naive PIV algorithm, we use Inequality 1 and 2 different from improved
PIV algorithm (line 7 and 10). As shown in Figure 6(b), the result confirms that the
improved pruning conditions (Inequality 3 and 4) are more efficient than the naive but
tight conditions.
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Fig. 5. Synthetic datasets: (a) Random-Cluster (RC), (b) Correlated Bivariate (CB), (c) Uniform
distribution (UN), (d) Query objects
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Fig. 7. (a) Pruning power of filtering phase in PIV algorithm; (b) Pruning power comparison with
different conditions in PIV algorithm

On the other hand, the pruning power of the filtering phase mostly influences the
cost of PIV algorithm. Thus we examine the full pruning power for the filtering phase
by different datasets, and report the different pruning rates by real dataset when dif-
ferent filter conditions are employed. In Figure 7(a), it is confident that the pruning
power reaches very high percentage. For the synthetic datasets (UN,RC,CB), the prun-
ing power is over 90%, even close to 100%. The real dataset (MAP) also performs the
high pruning power about 85%. As shown in Figure 7(b), the result indicates that the
pruning power of Lemma 1 employing the upper bound is greater than Theorem 1 and
Lemma 2. However, Lemma 2 performs the worst with extremely low pruning rate. The
reason for such low rate is because the searching space is very limited (only 2L) where
the queries are generated from. Suppose if the space is unlimited, when a query q is very
far from the dataset, Lemma 2 will work well, safely including almost all the objects
into the answer set of q’s RFN. Oppositely, Lemma 1 will become the worst and hardly
discard fewer objects in this case. The result in Figure 7(b) still implies that the total
power to prune the false positives is not equal the sum of the other three independent
pruning rates. It is because there is overlapping effect between Theorem 1 and Lemma
1 when a query q is inside the convex hull CO. In this case, all the objects will be dis-
carded only by Theorem 1. Nevertheless, only using Lemma 1 without Theorem 1 is
still possible to discard many objects that are false positives.

After all, according to analysis derived from the extensive experiments above, it is
clear to understand the cost of proposed PIV algorithm and its efficiency.

5.2 Comparison Results

Finally, we examine the efficiency and scalability of the proposed algorithm PIV, com-
paring with CHFC and BFS. As illustrated in Figure 8 and 9, the experiment results are
reported for the comparison on real data (MAP) and synthetic data (RC). It is obvious
that no matter the execution on real data or synthetic data, the PIV algorithm outper-
forms the other two algorithms in terms of either CPU cost or I/O cost. To the exact
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quantity, it is easy to find that the PIV algorithm is about 10 times faster than the CHFC
algorithm on CPU cost, and can save about 5 times of I/O cost than the CHFC algo-
rithm. Beside, the cost of the PIV algorithm is without quick increase against the CHFC
and BFS algorithms, which verifies the stable scalability of the PIV algorithm.

6 Conclusion and Future Work

This work analyzes the expensive cost in the related algorithm CHFC, and quantizes the
internal cost for each phase of CHFC by experiment. The special property — convex
hull of RFN problem is summarized and extended to derive two lemmas. Based on
the lemmas, a novel algorithm for RFN query is proposed. The extensive experiments
confirm its efficiency and scalability scientifically. As the perspective of future work,
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we are planning to extend this work to answer RFN query for high-dimensional data,
and put efforts to apply this work to the real applications such as company marketing
strategy mentioned in the introduction. Finally, the lemmas derived in this work still
can make much stricter to enhance the pruning power for the PIV algorithm.
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Abstract. There has been a great interest in publish/subscribe systems in recent 
years.  This interest, coupled with the pervasiveness of light-weight electronic 
devices, such as cellular phones and PDAs, has opened a new arena in pub-
lish/subscribe networks.  Currently, many broker overlay networks are static 
and rarely change in structure.  Often, a network overlay structure is predefined 
or manually modified.  We present a dynamic broker network for disseminating 
XML data. Our work builds upon previous network optimization research on 
ad-hoc publish/subscribe networks. Our framework utilizes user-defined cost 
functions to satisfy quality of service (QoS) constraints.  We reduce the broker 
network optimization problem to an incremental search problem to generate 
low cost network configurations with respect to the provide cost functions.  We 
also address certain reliability issues by providing a scheduling algorithm to se-
lectively retransmit information and handle broker connectivity failures. 

Keywords: Publish/Subscribe, Broker Overlay Network. 

1   Introduction 

Many stream-oriented applications have emerged, such as financial quote tickers, and 
sensor monitors, which require the data to be delivered to a large number of clients 
continuously. The traditional method of accomplishing this is to use the pull-based 
dissemination paradigm.  In this paradigm, each individual client sends a request to the 
server to retrieve the required data.  The server then sends a response to each client 
separately. Each client request has a measurable cost in both bandwidth and CPU  
processing. The server uses unnecessary CPU and IO resources by processing each 
client request individually instead of taking advantage of the similarities across client 
requests.  Publish subscribe systems are push-based alternatives for disseminating data. 

In publish subscribe systems, subscribers express the desired content by using a high-
level specification language such as XPath.  A content-based publish/subscribe system 
is generally more effective than a pull-based system with respect to network bandwidth 
usage and client filtering costs for massive data dissemination.  Publisher/subscribe 
technology is widely used in message-oriented middleware systems [2]. 

In the most basic and common form of publish subscribe systems, a single machine 
can be used to filter data from the publisher and subsequently route it to interested 
clients.  This is a viable solution for trivial scenarios where there is little resource 
demand on the broker.  However, this solution does not scale well for larger number 
of clients and profiles.  To accommodate large number of diverse profiles, several 
machines can cooperate to distribute the filtering and routing tasks. This network of 
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computers is called a broker network [1].  In a broker network, each individual ma-
chine is a broker.  A broker’s primary tasks are to filter data from publishers and route 
them to interested parties.  The interested parties are either subscribers or other inter-
mediary brokers in the network.   

Current systems predominantly utilize a static network topology.  Some systems al-
low for manual modifications of the network.  In this paper, we introduce a frame-
work for a self-organizing topology management system (TMS) that disseminates 
XML data.  Our proposed broker network system extends our previous work on XML 
fragmentation to disseminate XML [3].  The unit of broadcast in our system is an 
XML fragment. 

The broker network is constructed in an ad hoc fashion by adding brokers ran-
domly to the network.  A new broker joins the network by designating an existing 
broker to server as its parent.  These simple rules lead to the formation of a broker 
network on top of a tree overlay.  Subscribers connect with a random known broker in 
the network.  Over time, the network degrades to a higher cost state determined by 
relevant QoS requirements such as bandwidth usage.  To combat this, we employ 
various transformation operations to small localized parts of the network.  We intend 
to show that over time, these small transformations will improve the overall fitness of 
the broker network.  We also differentiate our work putting forth a mechanism to 
address broker failures in the self organizing network. 

2   Related Work 

This paper draws from prior works on publish/subscribe systems.  Publish/Subscribe 
systems route data from publishers to subscribers based on profiles.  Earlier works were 
limited to subject-based routing.  In recent years, more work has been done on content-
based routing, which allows for richer client profiles in terms of expressiveness. ONYX 
[1] and SemCast [5] introduced content-based publish/subscribe using XML data and 
XPath profiles.  These works are purely event-based and transfer the message filtering 
overhead and routing documents to clients.  Many earlier systems do not support self-
organization [10].  XPORT tackles incremental optimization of profile driven distrib-
uted systems [4].  However, XPORT does not address broker failures which we propose 
a solution to.  A crash resilient topology was put forth in [11] by maintaining a list of all 
neighboring brokers in the event of a failure.  Our approach does not maintain such an 
extensive list.  Instead, each broker knows only about its parent and grandparent.  There 
is also a lookup service for locating random brokers.  [15] Puts forth a heuristic based 
approach to optimizing the network using a training and reconfiguration phase.  Our 
work differs allowing for more flexibility in configuring the heuristic functions.  [7] 
proves that finding an optimal configuration for the broker network is NP-hard.  There-
fore, the goal of our framework is to incrementally increase the fitness of the network.  
Our findings show improvements over a static broker network. 

Peer-to-peer (P2P) systems have received much attention lately [6].  They allow 
the distribution of resources among many peers.  This allows systems to scale fairly 
well since the load is better balanced.  A P2P system is also not sensitive to poor 
network connectivity of peers, which is desirable in some publish/subscribe environ-
ments.  Our work follows a different network topology.  We put forth a tree based 
topology in our framework. 
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3   Preliminaries 

The scheduling of repeating fragments to be multicast is addressed by using algo-
rithms from packet fair queueing [8].  Each fragment is treated as a data item.  As the 
number of fragments increase, the expected delay also increases.  To decrease this 
delay, multiple schedules can be utilized to decrease the overall expected delay of 
fragments.  Table 1 shows the description of the symbols used throughout this section. 

Table 1. Descriptiojn of symbols 

Description Symbol 

Total number of clients N 

A particular client/subscriber Ci 

An XPath query belonging to a client’s (Ci) profile.  Pi is the set of all 
XPath queries belonging to a client (Ci). 

Pij 

A particular fragment specification (fragment spec).  A fragment spec 
is specified as an XPath indicating the fragmentation point.  Fragment 
specs are ideally derived from client profiles. 

Fi 

The weight of a given fragment specification (Fi) Wi 

Timestamp for a particular query within a client’s (Ci) profile (Pij) Tij 

Computes the dampening factor for a particular timestamp.  Queries 
with older timestamps have less impact than newer queries. 

D(Tij) 

Computes the relevance of Pij to Fk R(Pij, Fk) 

Initial weight of all fragments K 

 

A fragment is the unit of broadcast in our system [3].  Given an XML fragment Fi, 
to compute its weight Wi, we need to determine how relevant this fragment is to all 
the profiles.  Fragments with a higher relevance with respect to the profiles are dis-
seminated to the clients more frequently than those with a lower relevance.  The for-
mula for computing a fragment’s (Fk) weight (Wk) is: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑ ∑

= =

N

i

P

j
kijk NFPRKW

i

1 1

/,

( ) ( ) ( )ijkkijkij TDFFPFPR */, ∩=
 

(1) 

That is, a fragment’s weight is the sum of all the profiles it satisfies.  All profiles 
have an equal effect on a matching fragment so that a single client cannot boost the 
weight of a particular fragment by registering a profile with multiple queries targeted 
at the same fragment.  Fragments that do not match any profiles are given a small 
fixed weight so they will be included in the schedule. 
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Fig. 1. A sample XML document 

Below, we show the computation of fragment weights.  Figure 1 shows a simple 
XML document.  The document is broken up into five fragments as shown in Table 2.  
The fragmentation points are expressed using XPath. 

Table 2. Fragment and associated computed weights 

ID Fragment Spec # Covered 
profiles 

Weight 

1 /stocks 0 1 
2 /stocks/stock[name=”MSFT”] 0 1 
3 /stocks/stock[name=”MSFT”]/price 1 2 
4 /stocks/stock[name=”GOOG”] 1 2 
5 /stocks/stock[name=”GOOG”]/price 2 3 

4   The Broker Network 

In this section, we put forth the various QoS and privacy constraints that must be 
addressed in a broker network.  We classify the costs into structural or behavioral.  
Structural costs are based on the profile distribution which, impacts the route table 
construction.  Behavioral costs are influenced by the way the system interacts with its 
environment.  This paper will focus on the structural network characteristics. 

4.1   Network Construction 

The broker network is first created in an ad hoc fashion.  Initially, there is only a sin-
gle broker.  This broker will serve as the root of the entire network overlay tree.  Ad-
ditional brokers are added to the network by specifying the connection endpoint of an 
arbitrary existing broker in the network to serve as their parent.  A broker lookup 
service can be used to locate an existing broker.  Following these simple rules, the 
network forms a tree topology, since a broker registers with a single parent.  Brokers 
are added randomly to the network without regard for optimization.  Over time, the 
network will be optimized incrementally using the heuristic functions discussed in 
detail in the following sections. 

stocks

price 

stock

name

MSFT 25.51

price 

stock

name

GOOG 532.32
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Subscribers register their profiles with any known broker using the broker lookup 
service.  No initial effort is made to find the optimal broker for a given subscriber.  
The system relies upon incremental optimization to eventually migrate the client to a 
broker who best suits its specified interests. 

4.2   Privacy and Security 

Special consideration must be taken into account for both privacy and security.  
Transport Layer Security (TLS) is used in bilateral mode to maintain the integrity and 
confidentiality of data in the transport layer.  TLS allows clients and servers to com-
municate in such a way as to prevent eavesdropping, tampering, and message forgery 
[13].  Bilateral mode ensures that both broker and clients cannot misrepresent them-
selves.  The TLS protocol encrypts data across the network.  This thwarts network 
sniffer attacks.  Phishing is prevented by utilizing TLS in bilateral mode and verifying 
the certificates of both communicating parties [14]. 

5   Centralized Optimization Strategy 

Given sufficient processing power, bandwidth, and memory, a centralized optimiza-
tion strategy can be used to optimize the broker network.  The coordinator must have 
knowledge of all the brokers’ route tables and statistics.  Each broker must transmit 
the required information to the coordinator, who must then use a brute force algorithm 
to iterate every possible network configuration and select the best one for a given set 
of weighted cost functions.  The routing permutations problem on trees has been 
shown to be NP-hard [9].  Upon selecting the optimal configuration, the coordinator 
transmits the changes that each broker must perform to its route table to transform the 
overall network configuration.  Thus, for this centralized approach, the process of 
reconfiguring the network requires a lot of inter-process communication (IPC) and is 
very CPU intensive.  The amount of time to compute the optimal configuration is 
prohibitively expensive in a dynamic environment. 

6   Distributed Optimization Strategy 

In broker networks, where brokers have limitations in processing capabilities and 
memory, an alternative optimization strategy is necessary.  Our framework builds on 
related work [4] by using a distributed incremental optimization strategy to converge 
the network structure to a low cost state for a given load.  We further supplement [4] 
by increasing the search depth per transformation.   In order to narrow the search 
space, the unit of transformation is limited to three levels within a tree: 1) a local 
coordinator, 2) its children, and 3) its grandchildren.  Any broker with at least two 
descendants has an opportunity to become a coordinator.  A coordinator is responsible 
for initiating a local transformation.  The transformations are termed local since trans-
formations to the local unit have no impact on connectivity outside of the transforma-
tion unit. 

Once a broker has been validated to become a coordinator, it immediately notifies 
all of its children that it is the coordinator of the transformation unit in order to lock 



 A Scalable and Self-adapting Notification Framework 457 

them into the unit.  The coordinator’s children in turn notify their children to lock 
them into the transformation unit.  The coordinator evaluates alternative network 
configurations based on the finite transformation functions discussed below.  Each 
possible configuration is given a cost based upon a cost function or group of cost 
functions.  The configuration with the smallest cost above a specified delta threshold 
is chosen and the coordinator informs the rest of the unit how to reconfigure itself. 

To avoid falling into a local minimum, the cost function may include an element of 
randomness.  This randomness makes our transformation similar in many ways to the 
mutation operator in genetic algorithms [12].  We use three primary transformations: 
upgrading, downgrading, and shifting transformations.  Figure 2 through 4 illustrate 
the various transformations. 

 

 

 

Fig. 4. Shift transformation 

7   Broker Failures 

It is imperative that the problem of broker failure be addressed for many systems.  
Current research in this area does not fully address this issue.  A lot of research per-
taining to the publish/subscribe broker networks use a tree overlay to organize the 
brokers.  The disadvantage of this topology is that trees contain single-points of fail-
ures.  The loss of a critical broker can bring down the entire network.  We can address 
this issue by introducing a protocol for orphan brokers to rejoin the network. 

The first issue to address is how to detect broker failures.  Since our framework 
does not mandate an established connection amongst connected brokers, we cannot 
rely on detecting a closed socket connection.  Polling can be used as a viable solution 
to detect broker failures.  However, polling brokers to determine if they are alive uses 
unnecessary bandwidth which we strive to conserve.  It takes at least one complete 
round trip message to determine if a broker is alive. 

 

Fig. 2. Upgrade transformation 

 

Fig. 3. Downgrad transformation 
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We put forth using a push-based mechanism for determining if a broker is alive.  
We accomplish this by using heartbeats.  Brokers periodically send heartbeats to the 
brokers they are connected to.  If a broker does not send a heartbeat within a certain 
timeout period, it is assumed to be down and necessary actions take place to maintain 
the integrity of the network. 

In the event that a broker goes down, all its children are regarded as orphans.  Each 
orphaned broker reestablishes connectivity with the rest of the network by requesting 
a non-descendant broker to adopt it.  An orphan pushes up its profiles to its new found 
parent using the broker registration process.  If the root broker fails, one of the or-
phans will serve as the new root for the network overlay. 

8   Evaluating a Network 

A particular network configuration is evaluated based on cost functions.  There are 
several costs that a network may choose to minimize.  In many situations, these costs 
have conflicting requirements.  For example, minimizing message hops leads to de-
creasing the overall depth of the broker network.  However, this conflicts with the 
goal of distributing workload.  Distributing the workload based on profiles promote 
having similar size route tables amongst the brokers. 

In real world scenarios, we have to balance these conflicting costs based on the ap-
plication requirements.  Our framework provides a mechanism for combing cost func-
tions.  Each individual cost function is assigned a weight which determines its overall 
impact on the overall cost.  To evaluate the cost of a particular structure, the frame-
work contains several built-in evaluation operations.  Statistics are maintained by the 
brokers in order to evaluate the behavioral dependent costs. 

We uniformly spread share profiles among brokers by employing the Distribute-
WorkloadCost function (DWC).  This cost function takes a transformation unit as its 
input and computes the standard deviation among the route table lengths.  The size of 
the route table |R| is equivalent to the number of profiles registered at the broker.  The 
cost is calculated as follows. 
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For some requirements, we need to minimize the cumulative size of the route ta-
bles.  This will push the broker network to group similar profiles together.  The 
framework can accomplish this with the following MinimizeRouteTableCost function 
(MRTC). 
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Multiple cost functions, h, are chained together by assigning a weight to each indi-
vidual cost function and summing them together.  The weights should sum to 1.  The 
assigned weight impacts the influence of the cost function on the overall cost. 

MRTCwDWCwh ×+×= 21  (4) 

9   Experiments 

We implemented our framework simulation using Java.  We created several random 
network topologies varying in size to determine the impact of the network size on the 
transformations.  In particular, we wanted to determine how many transformations it 
took to converge to an optimal configuration.  The factors we consider are the broker 
network size, client population size, and query population.  We used an average of 
three profiles per client.  Brokers are selected randomly to act as local coordinators of 
an optimization unit.  The configuration with the lowest cost is chosen and the others 
in the search space are discarded.  Over the course of these local transformations, the 
broker network decreases its cost.  We present our findings below.  The results show 
how many transformations occurred before the system eventually stabilized to a lower 
cost state.  The number of transformations required to reach this state is directly pro-
portional to the number of brokers and profiles.  It is worth noting that performing 
optimizations in parallel decreases the overall time to converging on optimal solution. 

Table 3. Effects of network size on optimization 

# Brokers # Clients Average Transformations 
100 1000 54 
200 2000 115 
300 3000 147 
400 4000 196 

 

We evaluated various broadcast schedules to evaluate the mean inter-arrival time of 
relevant fragments.  The fragment specification probabilities follow a ZipF distribu-
tion.  The client interests on the fragments follow the same distribution.  The document 
is broken up into 1,000 fragments.  We use a schedule length of 10,000 data items and 
vary the number of clients.  The experiment results are shown in table 3. We are pri-
marily interested in the mean inter-arrival metric.  This metric shows how long a client 
has to wait for a fragment that it is interested in.  The smaller the inter-arrival time, the 
more frequently the client receives updates to satisfy its queries. 

We tested three schedulers.  The first scheduler creates a random schedule for the 
fragments.  The second scheduler orders the fragments in descending order according 
to the probability of the fragment.  The final scheduler uses the single channel frag-
ment broadcast algorithm based on [8].  The results show that our single channel 
fragment broadcast algorithm performs the best in terms of mean inter-arrival time.  
The mean inter-arrival time of the other schedules is roughly equal to the number of 
fragments in the system. 
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Effect of Client Count on Mean Interarrival Time
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Fig. 5. The effect of client count on mean inter-arrival time per time unit (milliseconds) 

10   Conclusion 

In this paper, we present a generalized framework for incrementally optimizing an ad 
hoc publish/subscribe network.  Our framework utilizes user-defined heuristic func-
tions to achieve QoS constraints.  Our experiments demonstrated that the system 
eventually converges to a significantly lower cost state over time in comparison to a 
static broker network.  The integrity of the system is also maintained, which is not the 
case in a comparable tree-based static topology.  The experiments also illustrate the 
advantages of using a single channel scheduler for retransmitting repeating fragments.  

References 

1. Diao, Y., et al.: Towards an Internet-Scale XML Dissemination Service. In: VLDB (2004) 
2. Tian, F., DeWitt, D., Pirahesh, H., Reinwald, B., Mayr, T., Myllymaki, J.: Implementing a 

Scalable XML Publish/Subscribe System Using a Relational Database System. In: Proc. of 
SIGMOD 2004 (2004) 

3. Fegaras, L., Levine, D., Bose, S., Chaluvadi, V.: Query Processing of Streamed XML 
Data. ACM, New York (2002) 

4. Papaemmanouil, O., Ahmad, Y., Cetintemel, U., Jannotti, J., Yildirim, Y.: Extensible Op-
timization in Overlay Dissemination Trees. SIGMOD (2006) 

5. Papaemmanouil, O., Cetintemel, U.: SemCast: Semantic Multicast for Content-Based 
Stream Dissemination. In: ICDE (2005) 

6. Terpstra, W., Behnel, S., Fiege, L., Zeidler, A., Buchmann, A.: A Peer-to-Peer Approach 
to Content-Based Publish Subscribe. ACM, New York (2003) 

7. Jaeger, M., Parzyjegla, H., Muhl, G., Herrmann, K.: Self Organizing Broker Topologies 
for Publish/Subscribe Systems. ACM, New York (2007) 

8. Hameed, S., Vaidya, N.: Log-time Algorithms for Scheduling Single and Multiple Channel 
Data Broadcast, pp. 90–99. ACM, New York (1997) 

9. Barth, B., Corteel, S., Denise, A., Gardy, D., Valencia-Pabon, M.: On the Complexity of 
Routing Permutations on Trees by Arc-Disjoint Paths. Theoretical Informatics, 308–317 
(2000) 



 A Scalable and Self-adapting Notification Framework 461 

10. Carzaniga, A., Rosenblum, D., Wolf, A.: Design and Evaluation of a Wide-Area Notifica-
tion Service. ACM Transactions on Computer Systems, 332–338 (2001) 

11. Baldoni, R., Beraldi, R., Querzoni, L., Virgillitom, A.: A self-organizing crash-resilient to-
pology management system for content-based publish/subscribe. In: 3rd International 
Workshop on Distributed Event-Based Systems (DEBS). IEEE, Los Alamitos (2004) 

12. Mei-yi, L., Zi-xing, C., Guo-yun, S.: An Adaptive Genetic Algorithm with Diversity-
Guided Mutation and its Global Convergence Property. Journal of Central South Univer-
sity of Technology, 323–327 (2004) 

13. Dierks, T., Allen, C.: The TLS Protocol Version 1.0, RFC Editor (1999) 
14. Oppliger, R., Gajek, S.: Effective protection against phishing and web spoofing. In: Ditt-

mann, J., Katzenbeisser, S., Uhl, A. (eds.) CMS 2005. LNCS, vol. 3677, pp. 32–42. 
Springer, Heidelberg (2005) 

15. Nitto, E., Dubois, D., Mirandola, R.: Overlay self-organization for traffic reduction in 
multi-broker publish-subscribe systems. In: International Conference on Autonomic Com-
puting (2009) 

 



Enrichment of Raw Sensor Data to Enable
High-Level Queries�

Kenneth Conroy1 and Mark Roantree2

1 CLARITY: Centre for Sensor Web Technologies, School of Computing,
Dublin City University

{kconroy,mark}@computing.dcu.ie
2 Interoperable Systems Group, School of Computing, Dublin City University

Abstract. Sensor networks are increasingly used across various appli-
cation domains. Their usage has the advantage of automated, often con-
tinuous, monitoring of activities and events. Ubiquitous sensor networks
detect location of people and objects and their movement. In our re-
search, we employ a ubiquitous sensor network to track the movement
of players in a tennis match. By doing so, our goal is to create a de-
tailed analysis of how the match progressed, recording points scored,
games and sets, and in doing so, greatly reduce the effort of coaches and
players who are required to study matches afterwards. The sensor net-
work is highly efficient as it eliminates the need for manual recording of
the match. However, it generates raw data that is unusable by domain
experts as it contains no frame of reference or context and cannot be an-
alyzed or queried. In this work, we present the UbiQuSE system of data
transformers which bridges the gap between raw sensor data and the
high-level requirements of domain specialists such as the tennis coach.

1 Introduction

Many new applications employ sensors or networks of sensors to automatically
monitor and generate reports and analysis across domains. Increasingly, elite
sports men and women are monitored to determine the effects of various exercises
on their bodies. In almost every case, sports coaches will watch video record-
ings of previous matches to look for player faults and determine strengths and
weaknesses. The problem with this effort is that it is extremely time-consuming
as the coach must search for key moments in the match. In the case of tennis,
this problem is exacerbated as matches can be up to five hours in length, and
coaches will often have many players in their charge. What these coaches require
is an automatic analysis of tournament and practice matches with the possibil-
ity to query to retrieve key segments. In more advanced scenarios, they require
data mining functionality to analyze matches based on duration of points and
games, analysis of defensive against attacking play; and details on games where
the player had service. Our research involves a collaboration with tennis coaches
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in Ireland to determine if it was possible to capture game analysis automatically
and provide some form of query interface for coaches, to facilitate extracting the
type of information described above. In a generic sense, we present a framework
and methodology for automated processing of wireless sensor data so that it can
be queried using a standard query language. The major benefit of our research
is to provide queryable information to knowledge or domain workers using the
sensed data. Our contribution is in the development of a framework and data
management layer, with algorithms, to automate the analysis of a ubiquitous
sensing environment.

In a ubiquitous computing environment we have a space and a selection of
basic sensor data. Our space is equipped with a Ubisense [3] setup, where sensors
are fitted on all sides of the space. Portable ubitags are then held by a partici-
pant and the sensors track its movement through the space. The raw data output
is primitive, consisting of only three distinct properties: Ubitag ID, timestamp
and 3D location (x,y,z). There is a significant gap between the raw sensor data
generated by the ubiquitous environment and the query and analysis needs of
the coach/domain specialist. To bridge this gap, a system of both generic and
domain-specific layers is required to provide meaning to the data and solve com-
plex queries. This system uses generic functions to first allow basic queries in
XPath/XQuery[12], the query languages for XML, and then allow an interac-
tion between structurally enriched sensor data and a domain specific context
database. The system consists of three layers, the sensing layer which provides
the raw data, the process layer which applies the data processing; and the storage
layer where context is provided and enriched files are stored. To test our system
in a real-world scenario, we collaborated with Tennis Ireland [2], the governing
body of tennis in Ireland, deploying Ubisense on an indoor tennis court, and
worked with a national coach to meet their analytical requirements after tennis
matches. The sport coaches need to query the data for certain events, such as a
players serve, a point being scored or the end of a particular game. The system
developed allows the coaches to request a breakdown of the entire match, in
terms of its different states (games, points, serves).

This setup illustrates a real-world application where there is a substantial
gap between the raw data sensed and the query requirements of the coaches.
At present, event detection techniques in both tennis and other sports is pri-
marily tackled by video and audio recognition techniques. These are generally
computationally expensive and inaccuracies can develop when players leave the
line-of-sight of the camera, as well as poor picture quality and the inclusion of
graphics, replays and advertisements on broadcast media. The Ubisense system
uses ubitag IDs to ensure no mix up in identification, and the static nature of
the environment provides an ideal training environment where complex actions
can be detected without noisy data.

2 The UbiQuSE Architecture

In this section we present the Ubiquitous Query Sensing Environment (UbiQuSE)
architecture which was designed to facilitate both live and offline queries, for both
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Fig. 1. UbiQuSE in the Tennis Domain

tracking and context purposes. The architecture consists of three broad layers:
Sensing, Process and Storage. However, it is the processors of the Process Layer
that merit detailed discussion. Figure 1 illustrates the UbiQuSE architecture in
the tennis domain.

The sensing layer contains the devices which generate the raw data in a sensing
environment. The hardware platform for our current domain application is the
Ubisense network. Ubisense generates data based on a participants movement,
specifically tracking position in space using triangulation of ultra-wide band
(UWB) radio waves. When a participant carrying a ubitag moves, Ubisense
detects the movement and the timestamp and location of the ubitag, in (x,y,z)
coordinates, are transmitted. Essentially, this is the hardware layer for UbiQuSE
and provides the raw sensor data.

The process layer contains the main processing algorithms and reduces the
gap between user query requirements and raw sensor data. There are three pro-
cessors which when used together will transform the data into an XML format,
which users can query using XQuery expressions. The Structural Transformation
(ST) and Contextual Transformation (CT) processors are generic and remain
unchanged across application scenarios. A separate Domain Knowledge Enrich-
ment (DKE) processor is required as UbiQuSE is used in different environments.

ST Processor: Structural Transformation. The role of the Structural Trans-
formation processor is to convert the sensor data from an unstructured stream
of data to a structurally enriched XML format. The basic conversion wraps the
Ubisense sensor data into <x>,<y>, <z>, <player>, and <timestamp> tags which
are generic to any Ubisense environment. Very basic queries, limited to the exact
position of a player in space can be determined using XQuery following enrichment.

CT Processor: Contextual Transformation. Our vision for ubiquitous com-
puting is that all sensed data is associated with a specific Zone (as part of a
Smart Space). Each activity may have a series of States and in the case of a
tennis match, these states will be Game Number, Set Number etc. The combi-
nation of these Zones and States provide a powerful enrichment to basic sensed
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data as it permits us to make certain assumptions with varying degrees of confi-
dence. Furthermore, with our metamodel approach, the application of Zone and
State information is performed in a generic fashion, standard to any activity
that required Zones and/or States.

The Contextual Transformation processor provides contextual enrichment for
sensed data. This processor is not domain specific but the UbiQuSE frame-
work can still add Zone and State information using the metamodel approach
illustrated in Fig. 2. Both the Zone and State elements have templates to suit
application scenarios so that the system remains unchanged as it moves from
domain to domain. The zones are contained within newly created <zone> tags,
which appear as children to each <location> element in the sensor data file. In
our tennis case study, the context specific zonal tags include <special zone>
and <side>. A further generic operation - addStates - is carried out during this
stage. This function adds domain tags relevant to future enrichment of the data.
The exact tags created depends on the domain, in the case of tennis <game>,
<serve>, <point>, <hit>, <receive>, <duration>, <change side> are added.

UbiSensorData
Xvalue : Float
Yvalue : Float
Zvalue : Float
ID : String
TimeStamp : Time
DateStamp : Date

1..*1..*

Product
ProductID : String
Description : String

1..*1

Building
ID : String
Name : String
SpaceCount : Integer
Spaces[ ] : Space

1..*
Zone

ZoneID : String
Description : String
BeginX : Float
EndX : Float
BeginY : Float
EndY : Float
BeginZ : Float
EndZ : Float
Status : Enum
Products[ ] : Product
Services[ ] : Product

GetLeft( )
GetRight( )
GetTop( )
GetBottom( )

1..*1..*

1

1..*

Sensor
SensorID : String
SensorType : Enum1..*

Space
RoomID : String
Name : String
Length : Float
Width : Float
Height : Float
Zones[ ] : Zone
Sensors[ ] : Sensor

1..*1

1..*
1

1..*1..*

Fig. 2. SmartSpace Metamodel

DKE Processor: Domain Knowledge Enrichment. The role of the Domain
Knowledge Enrichment processor is to apply the rules of the particular domain
(or sport) to the sensor data to allow the user the ability to return the required
query results. The input to this processor is the output from the CT processor.
The output is a fully enriched XML file on which XPath/XQuery expressions
can be used to detect complex domain specific states and events. It provides the
final step in providing a complete break down of the domain into its constituent
states. As this processor changes from domain to domain, we focus a detailed
discussion of the tennis match case study in the following section.

The storage layer contains both the context repository and the final XML
output following enrichment, available for querying. The context repository is
accessed throughout processing in order to identify the space being used, its
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corresponding zonal information and the domain specific rules or expectancies
of the scenario being recorded.

3 Tennis Match Case Study

In tennis, the zones originate from the actual structure of the tennis court, as
illustrated in previous works [4] [5]. The game itself has a rigid structure: when
a player is serving, the receiving player is usually beyond the baseline on the
opposite side of the court. However in practice, the receiver can be closer to
the net, or within the baseline, which requires flexibility in our zoning rules.
To improve accuracy, the boundaries of the special zones(<special zone>) were
altered and a new receiver zone was defined. By zoning the court, we can use the
rules of tennis to define a rule set to deduce probable actions during the match.

We applied the rules of tennis [1] to our system and as required by the do-
main specialists, the complete breakdown of a tennis match was automatically
computed based solely on the Ubisense data. Serves, points and games are the
key aspects of tennis that were identified by our system. The functions used are
detectServes, applyPointBoundaries and applyGameBoundaries, the logic
for identifying each of these is explained below.

1. detectServes - We know that if we can detect when a new player is serv-
ing, then the match has changed state (a new game or possibly set has
commenced). Accuracy in detecting this change in serve is crucial to provid-
ing correct results. Thus, the special zones mentioned above were created.
The algorithm consists of examining the position of both players for a spe-
cific time period. A lack of consecutive serve event detections by the same
player indicates a false positive which is then dropped.

2. applyPointBoundaries - Point scoring is identified by checking multiple
instances of serves by the same player. As stated in the rules of tennis [1],
players who serve from one side of the baseline must serve from the other side
following a point being scored (by either player), providing the point does
not also result in the end of a game - in which case players switch service.
The duration of a point and the time between each point can be calculated
by examining the timestamps of the current and preceding points.

3. applyGameBoundaries - The game boundaries are based on which side of
the court a player stands as well as when each player switches serve. The
rules state that every odd-numbered game (1,3,5...) of a set is followed by a
change of side and all games are followed by a change of service (from one
player to the other).

4 Experimental Data

After the sensor data is processed by the UbiQuSE processors, data in the XML
database is sufficiently transformed to enable querying using the XQuery lan-
guage. An example of some of the queries are expressed in XQuery and presented
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Table 1. XQuery implementations of required queries

Query

1 let $c := collection(’db/ubisense/trainingFeb10’) return $c//player[@id=1]

/UbiQuSE/state[game=1]/hit

2 let $c := collection(’db/ubisense/trainingFeb10’) return $c//state[game=1]/point

3 let $c := collection(’db/ubisense/trainingFeb10’) return $c//player[@id=1]

/UbiQuSE/location[@timestamp=8000]/zone

in Table 1. More complex queries are presented in the Technical Report [6]. In
fact, the enrichment of the XML requires simple query expressions to return
previously complex requirements. In this section, we report on the accuracy of
our results as our algorithms make many assumptions based on player location
and movement, combined with the semantics of the sport of tennis. In order to
identify the accuracy of the Ubisense system, we took a sample set and examined
player positions during a number of games. In our setup, inaccuracy of Ubisense
is confined to a maximum error of 15cm with the greater inaccuracies occur on
the periphery of the Ubisense space. Other researchers have shown inaccura-
cies of up to 48cm on the periphery of their setup [8]. We have taken Ubisense
inaccuracy into account when devising our algorithms.

The focus of our experiments was on determining the accuracy of the UbiQuSE
algorithms in the Domain Knowledge Enrichment processor which detects the
key events in a tennis match. In particular, we examine how the system performs
in detecting player serves, points scored, and game boundaries. Our experimental
data consisted of a number of best-of-5-set training matches between two elite
tennis players playing in a competitive manner. We randomly selected one of
the sets for experimental evaluation, used UbiQuSE to enrich the raw data,
and visually inspected the video recording to time the exact occurrence for all
serves, points and game boundaries. These manual records and then compared
with events identified by UbiQuSE, the results of which are summarised below.

– Out of a total of 72 serves made in the set, 70 were correctly detected by our
system, representing 97% of the total. Apart from the 2 undetected serves,
we had 9 false positives where we believed serves to be taking place. End-
users reported a preference for serve detection over the low number of false
positives as these can easily be ignored.

– Regarding point detection, a total of 44 points were scored in the set we
examined. All but one of these were detected by applyPointBoundaries.
As a result 98% of points are correctly identified by the system.

– Game detection is built on the previous algorithms for point and serve de-
tection and can be affected by poor accuracy. In our experiments, UbiQuSE
determined all six games in the set were correctly identified by our system.

5 Related Research

A general model to represent semantics of a smart space based on lower-level
location contexts is provided by [7]. Several sensor types, including Ubisense,
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generate sensor data which is combined with a time factor and a conditional
confidence value factor to identify valid contexts for that situation. Context is
described using an RDF triple. Like UbiQuSE, space is limited to where the sen-
sors (Ubisense) can get a signal. However, we have built a model where we can
change zonal boundaries depending on a changing domain, or apply to another
Ubisense setup. A formal structured format for representing contextual informa-
tion of a smart space environment is outlined by [9]. They use RDF to define
context ontologies, and provide a generic querying mechanism to infer high-level
contexts based on rules. While this approach does define an infrastructure for
smart spaces and represents contexts as easily interpreted semantic markups
from which higher-level contexts can be inferred, the context is generally pro-
vided by external sensing sources. This is in contrast to our approach where
we take previously meaningless raw data from one source (Ubisense) and trans-
form it structurally and semantically in order to allow the detection of complex
actions and events.

The identification of events in sports, and in tennis in particular are mainly
based on video analysis [10][11]. Approaches make use of audiovisual data to
extract relevant features of a video clip. These features when combined with
the semantic concepts and game structure, can identify the required events. In
[10] ace detection has an accuracy of 93%, however, a net approach in the same
system has an accuracy of only 50%. Our system has an accuracy of 100% when
detecting net approaches. Video recognition can suffer from poor camera angles,
poor conditions and is usually very expensive computationally to perform.

6 Conclusions

In this paper, we presented the UbiQuSE system which provides a data man-
agement layer for sensor networks. It contains two generic processors, the Struc-
tural Transformation and Contextual Transformation processors, that operate
on any sensor network that captures location and movement within a smart
space. These processors take the raw sensor data and provide both structure
and basic semantic enrichment as they place each player movement within some
context. The third processor, the Domain Knowledge Enrichment processor, dif-
fers across domains, and is used to populate generic data structures and provide
higher levels of enrichment. Our goal in creating UbiQuSE was to provide the
missing data management layer that bridges the gap between raw data and the
high-level query expressions of specialist users. To demonstrate the effectiveness
of UbiQuSE, we took a query set specified by the domain specialist (in this case
a tennis coach) and expressed them using XQuery, the standard XML language.
In our experiment, these expressions generated the required results after the
sensor data was passed through UbiQuSE. Our experiments focused on the ac-
curacy of our algorithms in detecting key events in the sensed data and results
are reported and discussed in this paper. Future work is focused both on im-
proving the accuracy of our event detection algorithms and widening the scope
of the coaches requirements to include doubles matches and the complexities of
the tie-break in tennis.
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Abstract. In many textual repositories, documents are organized in a
hierarchy of categories to support a thematic search by browsing topics
of interests. In this paper we present a novel approach for automatic
classification of documents into a hierarchy of categories that works in
the transductive setting and exploits relevant example selection. While
resorting to the transductive learning setting permits to classify repos-
itories where only few examples are labelled by exploiting information
potentially conveyed by unlabelled data, relevant example selection per-
mits to tame the complexity of the task and increase the rate of learning
by focusing only on informative examples. Results on real world datasets
show the effectiveness of the proposed solutions.

1 Introduction

Transductive learning is an inference mechanism adopted from several classifi-
cation algorithms capable of exploiting, as in semi-supervised learning, infor-
mation potentially conveyed by unlabelled data to better estimate the data
distribution when making predictions. However, transductive learning differs
from semi-supervised learning since, instead of learning a function to be used to
make predictions on any possible example, it is only possible to make predic-
tions for the given set of unlabeled data. This means that transductive learning
needs no general hypothesis and appears to be an easier problem than both
semi-supervised learning and classical inductive learning.

Several transductive learning methods have been proposed in the literature
for classification tasks. They exploit SVMs ([1] [9] [12] [5]), k-NN classifiers ([13])
and even general classifiers ([14]). However, a common problem in this learning
setting comes from the high dimensionality of unlabeled data and labeled data
that have to be simultaneously analyzed during learning. In order to face this
problem, two orthogonal directions can be exploited: the first direction aims at
simplifying the classification process by considering that categories can be orga-
nized hierarchically. The second direction aims at simplifying the classification
process by considering only a subset of relevant examples for learning (relevant
examples selection).

Indeed, both directions can be profitably pursued in the context of document
categorization [22] that we consider in this paper. In fact, Hierarchical text cate-
gorization, that is, the process of automatically assigning one or more predefined
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categories to text documents where the pre-defined categories are organized in a
tree-like structure, has received increasing attention in the last years [17,18,7,21].
From an information retrieval viewpoint, this hierarchical arrangement is essen-
tial when the number of categories is high, since thematic search is made easier
by browsing topics of interests. Yahoo, Google Directory, Medical Subject Head-
ings (MeSH), Open Directory Project and Reuters Corpus Volume I provides
typical examples of organization of documents in topic hierarchies.

The hierarchical structure of categories may help to simplify the classification
process: while in flat classification a given example is assigned to a category on
the basis of the output of one or a set of classifiers, in hierarchical classification
the assignment of a document to a category can be done on the basis of the
output of multiple sets of classifiers, which are associated to different levels
of the hierarchy and distribute example among categories in a top-down way.
The advantage of this hierarchical view of the classification process is that the
problem is partitioned into smaller subproblems, each of which can be effectively
and efficiently managed [4].

As for relevant example selection, in [2], the authors observed that there are
at least three reasons for selecting examples to be used during the learning pro-
cess: i) the learning process is computationally intensive, ii) the cost of manual
labelling is high, iii) it is necessary to increase the rate of learning by focus-
ing only on informative examples. In this context, all these motivations make
relevant example selection particularly suited. Surprisingly, there is not much
research on relevant example selection for text classification. The issue is mostly
addressed either with the traditional statistical approach of sampling [27] or by
more elaborate, but sometimes heuristic, approaches. For Instance, in [26] the
problem is addressed using a distance measure. In essence instances that are
”closer” to each other tend to bear overlapping information; therefore, some of
them can be discarded.

In this paper, we investigate the use of transductive learning by exploiting
both hierarchical classification and relevant example selection. At this aim, we
exploit a modified version of an inductive hierarchical learning framework that
permits to classify examples (documents) in internal and leaf nodes of a hi-
erarchy of categories. The learner is asked to take into account only a subset
of the original documents. This way it is possible to speed up learning times
without loosing in accuracy. Transductive learning exploits the Spectral Graph
Transducer (SGT) [13], in the context of a hierarchical classification framework.
Experimental results on real world datasets are reported.

This paper is organized as follows. The problem to solve and the background
work are introduced in the next section. The proposed solution is described in
Sections 3 and 4. Experimental results on real world datasets are reported in
Section 5 while conclusions are drawn in Section 6.

2 Preliminaries

The problem we intend to solve can be formalized as follows:



472 M. Ceci

Let D be a set of documents and Ψ : D → Y be an unknown target function,
whose range is a finite set Y = {C1, C2, . . . , CL} where {C1, C2, . . . , CL} are cate-
gories organized according to a tree-like structure such that ∀i = 2, . . . , L ∃| j =
1, . . . , L, i 
= j such that Ci is a subcategory of Cj (C1 is the root category).
Then, the transductive classification problem can be defined as follows:

Given:
– a training set TS of pairs (di, yi) where di represents a document and yi ∈ Y

represents the class (label)
– a working set WS of unlabelled documents;

Find : a prediction of the class value of each document in the working set WS
which is as accurate as possible.

The learner receives full information (including labels) on the documents in
TS and partial information (without labels) on the documents in WS and is
required to predict the class values only of the examples in WS.

The hierarchical organization of categories adds additional sources of com-
plexity to the transductive learning problem. First, documents can either be
associated to the leaves of the hierarchy or to internal nodes. Second, the set
of features selected to build a classifier can either be category specific or the
same for all categories (corpus-based). Third, the training set associated to each
category may or may not include training documents of subcategories. Fourth,
the classifier may or may not take into account the hierarchical relation between
categories. Fifth, a stopping criterion is required for hierarchical classification
of new documents in non-leaf categories. Sixth, performance evaluation criteria
should take into account the hierarchy when considering classification errors.

We face such complexity by resorting to solutions investigated in a previ-
ous work done on hierarchical classification in the classical inductive setting [4].
Those solutions have been implemented in the system WebClass. In WebClass,
the search proceeds top-down from the root to the leaves according to a greedy
strategy. When the document reaches an internal category C, it is represented
on the basis of the feature set associated to C. The classifier of category C
returns a score for each direct subcategory. Score thresholds, which are auto-
matically determined for all categories, are used to filter out the set of candidate
subcategories. If the set is empty, then search is stopped, otherwise the sub-
category corresponding to the highest score is selected and the (greedy) search
recursively proceeds with that subcategory (if not leaf). The last crossed node in
the hierarchy is returned as the candidate category for document classification
(single-category classification). If the search stops at the root, then the document
is considered unclassified. An example is illustrated in Figure 1.

Each document is represented at decreasing levels of abstraction by consid-
ering features selected according to the maxTF × DF 2 × ICF [4]. According
to the definition of such measure, features tend to be more specific for lower
level categories. These different representations of a document make the classi-
fication scores incomparable across different nodes in the hierarchy and prevent
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Fig. 1. Classification of a new document. On the basis of the scores returned by the
first classifier (associated to the category science) the document is passed down to
math. The scores returned by the second classifier (associated to the category math),
are not high enough to pass down the document to either trigonometry or geometry.
Therefore, the document is classified in the math category.

the correct application of an exhaustive search strategy instead of the proposed
greedy strategy.

During learning, for each internal category C of the hierarchy and for each
document in WS to be classified, the decision on which category C′ among the
direct subcategories of C is the most appropriate to receive the document has
to be taken. In general, however, a document should not be necessarily passed
down to a subcategory of C. This makes sense in the case that the document to
be classified deals with a general rather than a specific topic, or in the case that
the document to be classified belongs to a specific category that is not present in
the hierarchy and it makes more sense to classify the document in the “general
category” rather than in a wrong category.

To support the classification of documents also in the internal categories of the
hierarchy, it is necessary to compute the thresholds that represent the “minimal
score” (returned by the classifier), such that a document can be considered to
belong to a direct subcategory. More formally, let γC→C′ (d) denote the score
returned by the classifier associated to the internal category C when the decision
of classifying the document d in the subcategory C′ is made. Thresholds are used
to decide if a new testing document is characterized by a score that justifies
the assignment of such a document to C′. Formally, a new document d ∈ WS
temporary assigned to a category C will be passed down to a category C′ if
γC→C′ (d) > ThC(C′), where ThC(C′) is the score threshold.

The algorithm for the automated determination of thresholds ThC(C′) is
based on a bottom-up strategy and minimizes a measure based on a tree
distance[4].
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3 Relevant Example Selection

When working in the transductive setting, we do not distinguish between learn-
ing and classification steps. However, the hierarchical organization of categories
requires a preliminary step during which thresholds are automatically identi-
fied. Later on, in a second stage, the transductive classification is performed.
Indeed, the two phases are not completely independent each other since the al-
gorithm for automatic threshold identification estimates thresholds on the basis
of a simulation of the classification step on the training set. Relevant example
selection is performed both in the automatic threshold determination and in the
transductive classification task. In particular, while in automatic threshold de-
termination relevant examples are determined from the training set TS for each
internal category C of the hierarchy, in the classification case, both examples in
TS and examples in WS are analyzed for each internal category C of the hier-
archy. Transductive classification of relevant examples in WS is then extended
to other examples in WS by means of a K-NN label propagation by means of
the classical K-NN classifier.

For relevant example selection, we consider two different approaches: the first
approach reduces the number of documents by exploiting clustering algorithms,
while the second approach identifies and keeps only documents that are at the
boundary of the class. Before describing how relevant documents are selected,
we present details on their representation.

3.1 Document Representation

Document representation depends on a preprocessing step which aims at:

1. Removing stopwords, such as articles, adverbs, prepositions and other fre-
quent words.

2. Determining equivalent stems (stemming) by means of Porter’s algorithm
for English texts [20].

After these preprocessing steps, documents are represented by means of a feature
set which is determined on the basis of some statistics whose formalization is
reported below. Let

• C be an internal node in the hierarchy of categories,
• C′ a direct subcategory of C,
• d a training document from C′,
• w a token of a stemmed (non-stop)word in d,
• TFd(w) the relative frequency of w in d,
• Training(C) ⊆ TS the set of documents in C and its subcategories,
• TFC′(w) = maxd∈Training(C′)TFd(w) the maximum value of TFd(w) on all
training documents d of category C′,
• DFC′(w) = |{d∈Training(C′)| w occurs in d}|

|Training(C′)| the percentage of documents of
category C′ in which w occurs,
• CFC(w) the number of subcategories C′′ ∈ DirectSubCategories(C) such
that w occurs in a document d ∈ Training(C′′).
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Then the following measure: vi = TFc′(wi)×DF 2
c′(wi)× 1

CFc(wi)
is used to select

relevant tokens for the representation of documents in C.
Tokens that maximize vi (maxTF×DF 2×ICF criterion) are those commonly

used in documents of category C′ but not in its sibling categories. The category
dictionary of C′, DictC′, is the set of the best ndict terms with respect to vi,
where ndict is a user defined parameter.

For each learning task, the following feature set is used:

FeatSetC =
⋃

C′∈DirectSubCategories(C)

DictC′ (1)

and documents are represented according to the classical TF × idf measure [22].

3.2 Clustering-Based Relevant Example Selection

This approach follows the main idea of cluster sampling where the goal is to
sample a set S documents into l subsets N1, N2, . . . , Nl respectively. These sub-
sets (called strata) are non-overlapping, and together they comprise the whole
of the data set (i.e., ∪i=1..lNi = N). When the strata have been determined, a
sample is drawn from each stratum. Drawings are performed independently in
different strata. Cluster sampling is often used in some applications where we
wish to divide a heterogeneous data set into subsets, each of which is internally
homogeneous [15].

For relevant examples selection, we consider the simple k-means [16] clustering
algorithm for the identification of strata.

Once the strata have been identified, each cluster is represented by means of
its surrogate. In our approach, as in the case of the Rocchio classifier [22], the
surrogate of the cluster is its centroid d′(i):

d′(i) =
∑

dj∈Ni

dj

|Ni|
(2)

We also evaluate the opportunity of considering, in alternative to the centroid a
representative example, that is, the example in Ni that appears to be closer to
the cluster centroid. Formally:

d′′(i) = argmindj∈Ni
d1(dj , d

′(i)) (3)

where d1(·, ·) is the euclidean distance measure between document vectors.
For example reduction purposes, for each internal category C of the hierarchy,

both documents in TS and in WS are represented according to features in
FeatSetC and according to the TF × idf measure.

3.3 Class Border Identification for Relevant Example Selection

In this alternative approach to example reduction, the main idea is that of ex-
ploiting support vectors extracted by support vector machines [24] in order to
identify the class border.
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Indeed, in this case, the class is associated to the learning task that per-
mits to establish whether an example should be passed down from a category
C to its descendant category C′ or not. This means that we extract a set of
relevant examples by considering as positive examples the documents that be-
long to Training(C′) and as negative examples the documents that belong to
Training(C)− Training(C′).

As in the case of clustering-based relevant example selection, this approach
permits to reduce examples both in TS and in WS.

Let ({x1,y1), (x2,y2), . . . , (xN ,yN)} be the set of training documents in
Training(C) such that xi ∈ R|FeatSetC | (xi is a document vector) and yi = +1 if
xi ∈ Training(C′) and yi = −1 if xi ∈ Training(C)− Training(C′). An SVM
identifies the hyperplane in R|FeatSetC | that linearly separates positive and neg-
ative examples with the maximum margin (optimal separating hyperplane). In
general, the hyperplane can be constructed as the linear combination of all train-
ing examples, however, only some examples, called support vectors, do actually
contribute to the optimal separating hyperplane which can be represented as:

f(x) =
N∑

i=1

yiαixi · x + b (4)

Indeed, we are only interested in identifying support vectors, that is, vectors for
which αi 
= 0 (see Figure 2a).

The coefficients of the linear combination αi and b are determined by solving a
large-scale quadratic programming (QP) problem, for which efficient algorithms
that find the global optimum exist.

The linear separability appears to be a strong limitation, however, as ex-
perimentally observed by [11], most text categorization problems are linearly
separable.

SVMs are based on the Structural Risk Minimization principle: a function
that can classify training data accurately and which belongs to a set of functions

Fig. 2. a) Support vectors (examples on the dashed lines). b) Relevant examples selec-
tion from WS.
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with the lowest capacity (particularly in the VC-dimension) [24] will generalize
best, regardless of the dimensionality of the feature space |FeatSetC|. Therefore,
SVMs can generalize well even in large feature space, such as those used in text
categorization. In the case of the separating hyperplane, minimizing the VC-
dimension corresponds to maximizing the margin.

The SVM we use in the identification of support vectors is a modified version
of the Sequential Minimal Optimization classifier (SMO) [19] with linear kernels.
SMO is very fast and is based on the idea of breaking a large QP problem down
into a series of smaller QP problems that can be solved analytically. This allows
us to directly identifying document vectors xi for which αi 
= 0.

Let D(C, C′) = {xi|xi ∈ Training(C), αi} be the set of support vectors that
have been identified, they are used in order to identify the subset of documents
in WS to be considered in the classification phase. In particular, we are only
interested in keeping the most discriminative p% documents from WS according
to the score function score : WS → R defined as follows:

score(d) = min
xi∈Training(C′); xj∈Training(C)−Training(C′)

d1(d, xi)+d1(d, xj) (5)

Intuitively, we only consider examples in WS that are close to both positive and
negative class margins.

4 SGT Hierarchical Classifier

In this section, the proposed learning method is described in detail. In particular,
we first introduce the hierarchical transductive classification, and, then, we detail
the application of SGT.

4.1 Hierarchical Transductive Classification

We assume that a classifier returns a numerical score γC→C′(d) that expresses a
“belief” that a document d belonging to C also belongs to a direct subcategory
C′. The document d is passed down if γC→C′(d) is greater than a threshold, which
is automatically determined for each class by an algorithm that minimizes, on
the training set, a tree distance. This distance measures the number of edges in
the hierarchy of categories between the actual class of a document and the class
returned by the hierarchical classifier [8].

As in [4], the computation proceeds bottom-up, from leaves to the root. The
difference is that in this work we learn, for each internal category C, m two-class
classifiers, one for each subcategory C′ and compare the scores. This is quite differ-
ent from what proposed in [4], where a 1-of-m classifier is learnt for each internal
node. This would permit us to exploit two-class classifiers and avoid computa-
tional problems coming from a subsequent pair-wise coupling classification [10].

The classifier used to classify examples belonging to internal nodes of the hi-
erarchy is based on the Spectral Graph Transducer algorithm (SGT) proposed



478 M. Ceci

in [13] that works in the transductive setting. Although, in its final formulation
SGT returns hard class assignments, we use the SGT algorithm in order to
compute the scores γC→C′(d). This way, the algorithm can be used both to
compute thresholds and to classify examples in the working set. The problem
solved by each application of SGT can be formalized as follows:

Given:
– An internal category C;
– A direct subcategory C′ of C;
– A set of l relevant labeled examples (documents) belonging to C and its de-

scendants (identified as specified in the previous section). Positive examples
(labeled with +1) refer to documents in Training(C′) and all its descen-
dands, while negative examples (labeled with -1) refer to all other examples
in categories descendants of C (in Training(C)− Training(C′));

– A set of relevant unlabeled examples (possibly) belonging to C and its de-
scendants;

the task of the transductive algorithm is to compute the score γC→C′(d) for
each relevant document d in the training or in the working set such that error
is minimized.

4.2 Application of SGT Algorithm

The algorithm builds a nearest neighbor graph G = (N, E), with labeled and
unlabeled examples as vertexes, and dissimilarity measure (d2(di, dj)) between
the neighboring examples as edge weights. SGT assigns labels to unlabeled ex-
amples by cutting G into two subgraphs G− and G+, and tags all examples
corresponding to vertexes in G− (G+ ) with -1 (+1). To give a good prediction
of labels for unlabeled examples, SGT chooses the cut of G that maximizes the
normalized cut cost.

max
y

cut(G+, G−)
|{i|yi = +1}||{i|yi = −1}| (6)

where y = [yi]{i=1,..,n} is the prediction vector (where n is the number of both
labeled and unlabeled relevant examples), and cut(G+, G−) is the sum of the
weights of all edges that cross the cut (i.e., edges with one end in G− and the
other in G+). The optimization is subjected to the following constraints: (i)
yi ∈ {−1, +1} and (ii) labels for labeled training examples must be correct,
i.e., vertexes corresponding to positive (negative) labeled relevant training ex-
amples must lie in G+ (G−). As this optimization is NP-hard, SGT performs
approximate optimization by means of a spectral graph method which solves the
following problem [6]:

min
Z

ZT LZ + c(Z − y)T C(Z − y) (7)

such that ZT 1 = 0 and ZT Z = n
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where

– Z is the transformed prediction vector with comparable scores,
– L is computed as the Laplacian matrix L = (B − A) in the case of RATIO

CUT or, alternatively, as the normalized Laplacian matrix obtained as L =
B−1(B − A) in the case of NORMALIZED CUT [23];

– A = [ai,j ]{i,j=1,..,n} = [a′
i,j + a′

j,i]{i,j=1,..,n} where a′
i,j = d2(di, dj);

– B = [bi,j ]{i,j=1,..,n} is the diagonal matrix such that bi,i =
∑

j ai,j ;
– c is a user-defined parameter;
– C = [ci,j ]{i,j=1,..,n} is a diagonal cost matrix with ci,i = l/(2l+) for positive

relevant examples, ci,i = l/(2l−) for negative and ci,i = 0 for unlabelled
relevant examples;

– l+ (l−)is the number of positive (negative) relevant labeled examples and
l ≤ n is the number of relevant labelled examples;

– γ = [γi]{i=1,..,n} is a vector with γi =
√

l − /l+ for positive examples, γi =√
l + /l− for negative examples and γi = 0 for unlabelled examples.

This minimization problem leads to compute

Z∗ = V (M − λ∗I)−1b (8)

where V is the matrix with all eigenvectors of L except the smaller; b = CV T Cγ;
M = (D + cV T I); D is the diagonal matrix with the square of all eigenvalues of

L except the smaller; λ∗ is the smaller eigenvalue of
[

M −I
−1
n bbT M

]
.

The vector Z∗ = [z∗i ]{i=1,..,n} is then used to compute the score γC→C′(di).
In particular:

γC→C′(di) = (z∗i − min
j

z∗j )/(max
j

z∗j − min
j

z∗j ) (9)

The dissimilarity measure d2(·, ·) used in this work is the cosine dissimilarity
computed as follows:

d2(di, dj) = 1 − di · dj

‖di‖2 ‖dj‖2

(10)

where di (dj) represents the TF × idf representation of di (dj).

5 Experiments

To evaluate the applicability of the proposed approach, we performed experi-
ments on distinct experimental settings involving two distinct datasets. As base-
line we considered the Hierarchical SGT transductive classifier that do not ex-
ploit relevant example selection [3].

Results are obtained with the following parameters: c = 104 as proposed in
[13]; ndict=100; α = 0.4; K used in the K-NN label propagation is set to the
highest odd integer such that K ≤

√
n (according to [25]) where n is the total

number of both labelled and unlabelled examples that (possibly) belong to the
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processed category C; ns = 5%×n; p% = 5%. Values of ndict and α are estimated
after an empirical evaluation. Values of ns and p% are set in order to make the
comparison between relevant example selection algorithms fair.

Results obtained with the different experimental settings aim at comparing
the trasductive algorithm without example reduction (that we indicate in these
experiments as HSGT- Hierarchical SGT) with the trasductive algorithm with
relevant example selection based on k-means clustering and d′(·) cluster repre-
sentation (KmSGT), the trasductive algorithm with relevant example selection
based on k-means clustering and d′′(·) cluster representation (SelectSGT) and
the trasductive algorithm with relevant example selection based on support vec-
tors (SVSGT).

5.1 Datasets

Reuters Corpus Volume I (RCV1). RCV1 is a benchmark dataset widely
used in text categorization and in document retrieval1. It consists of over 800,000
newswire stories, collected by the Reuters news and information agency. The sto-
ries have been manually coded using three orthogonal hierarchical category sets.
In our study, similarly to other authors [28], we use topic codes for categorization.
Topics hierarchy consists of a set of 104 categories organized in 4-levels.

We pre-processed documents as proposed by Lewis et al. and, in addition, we
considered only documents associated to a single category. This selection is due
to the fact that in this study we are interested in investigating single category
assignment [4]. We separated the training set and the testing set using the same
split adopted by Lewis et al. In particular, documents published from August
20, 1996 to August 31, 1996 (document IDs 2286 to 26150) were included in
the training set, while documents published from September 1, 1996 to August
19, 1997 (document IDs 26151 to 810596) were included in the working set.
The result was a split of the 804,414 documents into 23,149 training documents
and 781,265 working documents. After multiple-label document removal, we had
150,765 documents, (4,517 training documents and 146,248 testing documents).

In our experiments we analyze three large subsets of RCV1: A subset rooted
in the category “C3” (1,647 training documents, 50,345 working documents); a
subset rooted in the category “C18” (1,438 training documents, 44,148 working
documents); a subset rooted in the category “MCAT” (10,715 training docu-
ments, 163,592 working documents).

Dmoz dataset. Dmoz data is obtained from the documents referenced by the
Open Directory Project (ODP) (www.dmoz.org)2. We extracted all actual Web
documents referenced at the top five levels of the Web directory rooted in the
branch “Health\Conditions and Diseases\”. Empty documents, documents con-
taining only scripts, and documents whose size is less than 3Kb are removed. At
the end, the dataset contains 3,668 documents organized in 203 categories.
1 The dataset cannot be made available on-line without maintainers authorization.
2 The dataset is available at http://www.di.uniba.it/%7ececi/micFiles/

dmoz health conditions and diseases docs.zip.



Transductive Learning from Textual Data with Relevant Example Selection 481

The dataset is analyzed by means of a 3-fold cross-validation (CONDITION).
Two subset of this dataset rooted in the category “Cancer” and in the category
“Cardiovascular disorders” respectively are also analyzed by means of a 3-fold
cross-validation. It is noteworthy that, differently from usual, in this paper the
t-fold cross-validation uses in turn one fold for training and the remaining t− 1
folds as working set. This is coherent with principles motivating the transductive
approach where the working set is generally larger than the training set.

5.2 Results

Accuracy results3 are reported in Tables 1 and 2. In particular, results in
Table 1 show that relevant example selection permits to obtain classification
accuracies that are generally comparable with those obtained with HSGT. By an-
alyzing results in Table 2 it is possible to see that when considering only relevant

Table 1. Average accuracies obtained with HSGT, KmSGT, SelectSGT and SVSGT.
Thresholds are obtained on the whole set of training examples.

DATASET cut HSGT KmSGT SelectSGT SVSGT

CANCER RATIO 64% 62% 55% 29%
NORMALIZED 60% 56% 53% 32%

CARDIOVASCULAR RATIO 63% 61% 53% 31%
NORMALIZED 60% 55% 47% 42%

CONDITION RATIO 37% 29% 26% 12%
NORMALIZED 34% 23% 26% 12%

C3 RATIO – 30% 32% 32%
NORMALIZED – 29% 7% 29%

C18 RATIO – 65% 68% 49%
MCAT RATIO – 49% 50% %5

Table 2. Average accuracies obtained with HSGT, KmSGT, SelectSGT and SVSGT.
Thresholds are obtained on the set of relevant training examples.

DATASET cut HSGT KmSGT SelectSGT SVSGT

CANCER RATIO 64% 65% 59% 32%
NORMALIZED 60% 60% 54% 28%

CARDIOVASCULAR RATIO 63% 64% 57% 33%
NORMALIZED 60% 60% 51% 34%

CONDITION RATIO 37% 39% 36% 13%
NORMALIZED 34% 37% 32% 14%

C3 RATIO – 31% 28% 18%
NORMALIZED – 31% 12% 29%

C18 RATIO – 69% 77% 70%
MCAT RATIO – 49% 50% 5%

3 Due to space complexity problems, it was not possible to run HSGT on the datasets
C3, C18 and MCAT.
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examples in automatic threshold determination, accuracy significantly increases.
In fact, in most of cases KmSGT outperforms HSGT even if it works on smaller
set of examples. A possible reason can be found in the fact that, in this way,
the classification performed by SGT is coherent with the automatic threshold
determination phase.

By comparing results obtained with relevant example selection, we can see
that the clustering algorithm permits to identify a good representative set of
examples to be used during the learning phase. We cannot draw the same con-
clusion for SVSGT that, as SMO [19], suffers from the high imbalanced distribu-
tion of examples. In fact, for C3 and C18, where categories are almost uniformly
distributed SVSGT provides interesting results.

It is also noteworthy that the RATIO CUT outperforms the NORMALIZED
CUT both in terms of accuracy and efficiency (for this reason we do not report
NORMALIZED CUT results for C18 and MCAT). This means that the use of
a normalized cut in transductive learning is not as beneficial as in the case of
image processing [23].

Finally, results reported in Table 3 give a clear perspective of the learning time
reduction obtained with relevant example selection. As expected, this advantage
is more clear when the automatic threshold determination algorithm works only
on relevant examples.

Table 3. (Average) classification times with Ratio cut (in secs.). NS refers to thresh-
olds obtained on the whole set of training examples. S refers to thresholds obtained on
the set of relevant training examples.

DATASET HSGT KmSGT SelectSGT SVSGT

NS S NS S NS S
CANCER 64 56 50 53 49 45 42

CARDIOVASCULAR 63 51 43 41 40 41 42
CONDITION 58803 19939 10482 16200 6971 11685 7800

C3 – 35991 16541 12581 16881 12354 30762
C18 – 25801 35000 15440 16671 4853 3203

MCAT – 413548 253410 168962 175239 234431 62072

6 Conclusions

In this paper, we present a novel approach for automatic classification of doc-
uments into a hierarchy of categories that exploits relevant example selection
and works in the transductive setting. The proposed approach is based on a
framework that exploits the SGT classifier in internal nodes of the hierarchy.
This way, it can pass down examples to more specific categories on the basis
of scores returned by the classifier. Documents can also be classified in internal
nodes of the hierarchy according to some automatically learned thresholds. The
SGT algorithm is used both for learning thresholds and for classifying examples.



Transductive Learning from Textual Data with Relevant Example Selection 483

Relevant example selection is performed according to two different approaches:
the first approach reduces the number of documents by exploiting clustering al-
gorithms, while the second approach identifies and keeps only documents that
are at the boundary of the class. Results empirically prove that relevant exam-
ple selection based on clustering algorithms permits to tame the computational
complexity and, at the same time, permits to increase predictive capabilities of
the learning algorithm.

For future work, we intend to exploit the proposed transductive learning in
a multi-label classifier that permits to classify documents by considering more
than one classification dimension.
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Abstract. This paper proposes a new discretization algorithm for uncertain 
data. Uncertainty is widely spread in real-world data. Numerous factors lead to 
data uncertainty including data acquisition device error, approximate measure-
ment, sampling fault, transmission latency, data integration error and so on. In 
many cases, estimating and modeling the uncertainty for underlying data is 
available and many classical data mining algorithms have been redesigned or 
extended to process uncertain data. It is extremely important to consider data 
uncertainty in the discretization methods as well. In this paper, we propose a 
new discretization algorithm called UCAIM (Uncertain Class-Attribute Interde-
pendency Maximization). Uncertainty can be modeled as either a formula based 
or sample based probability distribution function (pdf). We use probability car-
dinality to build the quanta matrix of these uncertain attributes, which is then 
used to evaluate class-attribute interdependency by adopting the redesigned 
ucaim criterion. The algorithm selects the optimal discretization scheme with 
the highest ucaim value. Experiments show that the usage of uncertain informa-
tion helps UCAIM perform well on uncertain data. It significantly outperforms 
the traditional CAIM algorithm, especially when the uncertainty is high. 

Keywords: Discretization, Uncertain data. 

1   Introduction 

Data discretization is a commonly used technique in data mining. Data discretization 
reduces the number of values for a given continuous attribute by dividing the range of 
the attribute into intervals. Interval labels are then used to replace actual data values. 
Replacing numerous values of a continuous attribute by a small number of interval 
labels thereby simplifies the original data. This leads to a concise, easy-to-use, knowl-
edge-level representation of mining results [32]. Discretization is often performed 
                                                           
* Please note that the LNCS Editorial assumes that all authors have used the western naming 

convention, with given names preceding surnames. This determines the structure of the 
names in the running heads and the author index. 
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prior to the learning process and has played an important role in data mining and 
knowledge discovering. For example, many classification algorithms as AQ [1], CLIP 
[2], and CN2 [3] are only designed for category data, therefore, numerical data are 
usually first discretized before being processed by these classification algorithms. 
Assume A is one of the continuous attributes of a dataset, A can be discretized into n 
intervals as D = {[d0, d1), [d1, d2),…, [dn-1, dn]}, where di is the value of the endpoints 
in each interval. Then D is called as a discretization scheme on attribute A. A good 
discretization algorithm not only produces a concise view of continuous attributes so 
that experts and users can have a better understanding of the data, but also helps ma-
chine learning and data mining applications to be more effective and efficient [4]. A 
number of discretization algorithms have been proposed in literature, most of them 
focus on certain data. However, data tends to be uncertain in many applications [9], 
[10], [11], [12], [13]. Uncertainty can originate from diverse sources such as data 
collection error, measurement precision limitation, data sampling error, obsolete 
source, and transmission error. The uncertainty can degrade the performance of vari-
ous data mining algorithms if it is not well handled. In previous work, uncertainty in 
data is commonly treated as a random variable with probability distribution. Thus, 
uncertain attribute value is often represented as an interval with a probability distribu-
tion function over the interval [14], [15].  

In this paper, we propose a data discretization technique called Uncertain Class-
Attribute Interdependency Maximization (UCAIM) for uncertain data. It is based on 
the CAIM discretization algorithm and we extend it with a new mechanism to process 
uncertainty. Probability distribution function (pdf) is commonly used to model data 
uncertainty and pdf can be represented as either formulas or samples. We adopt the 
concept of probability cardinality to build the quanta matrix for uncertain data. Based 
on the quanta matrix, we define a new criterion value ucaim to measure the interde-
pendency between uncertain attributes and uncertain class memberships. The optimal 
discretization scheme is determined by searching the one with the largest ucaim value. 
In the experiments, we applied the discretization algorithm as the preprocessing step 
of an uncertain naïve Bayesian classifier [16], and measured the discretization quality 
by its classification accuracy. Results illustrated that the application of the UCAIM 
algorithm as a front-end discretization algorithm significantly improve the classifica-
tion performance.  

The paper is organized as following. In section 2, we discuss related work. Section 
3 introduces the model of uncertain data. In section 4, we present the ucaim algorithm 
in detail. The experiments results are shown in section 5, and section 6 concludes the 
paper. 

2   Related Work 

Discretization algorithms can be divided into top-down and bottom-up methods ac-
cording to how the algorithms generate discrete schemes [6]. Both top-down and 
bottom-up discretization algorithms can be further subdivided into unsupervised and 
supervised methods [17]. Equal Width and Equal Frequency [5] are well-known un-
supervised top-down algorithms, while the supervised top-down algorithms include 
MDLP [7], CADD (class-attribute dependent discretize algorithm) [18], Information 
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Entropy Maximization [19], CAIM (class-attribute interdependent maximization 
algorithm) [8] and FCAIM (fast class-attribute interdependent maximization algo-
rithm) [20]. Since CAIM selects the optimal discretization algorithm that has the 
highest interdependence between target class and discretized attributes, it is proven to 
be superior to other top-down discretization algorithms in helping the classifiers to 
achieve high classification accuracy [8]. FCAIM extends CAIM by using a different 
strategy to select fewer boundary points during the initialization, which speeds up the 
process of finding the optimal discretization scheme.  

In the bottom-up category, there are widely used algorithms such as ChiMerge 
[21], Chi2 [22], Modified Chi2 [23], and Extended Chi2 [24]. Bottom-up method 
starts with the complete list of all continuous value of the attribute as cut-points, so its 
computational complexity is usually higher than the top-down method [29]. Algo-
rithms like ChiMerge require users to provide some parameters such as significant 
level and minimal/ maximal interval numbers during the discretization process. [25] 
illustrates that all these different supervised discretization algorithms can be viewed 
as assigning different parameters to a unified goodness function, which can be used to 
evaluate the quality of discretization algorithms. There also exist some dynamic dis-
cretization algorithms [26] which are designed for particular machine learning algo-
rithms such as decision tree and naïve Bayesian classifier. 

All the algorithms mentioned above are based on certain datasets. To the best of 
our knowledge, no discretization algorithm has been proposed for uncertain data that 
are represented as probability distribution functions. In the recent years, there have 
been growing interests in uncertain data mining. For example, a number of classifica-
tion algorithms have been extended to process uncertain datasets, as uncertain support 
vector machine [27], uncertain decision tree [28], uncertain naïve Bayesian classifier. 
It is extremely important that data preprocessing techniques like discretization prop-
erly handle this kind of uncertainty as well. In this paper, we propose a new discreti-
zation algorithm for uncertain data. 

3   Data Uncertainty Model 

When the value of a numerical type attribute A is uncertain, the attribute is called an 
uncertain attribute (UNA), denoted by Aun  [29]. In uncertain dataset D, each tuple ti is 
associated with a feature vector Vi = (fi,1, fi,2, …, fi,k) to model its uncertain attributes. 
fi,j is a probability distribution function (pdf) representing the uncertainty of attribute 
Aij

un in tuple ti. Meanwhile, a probability distribution ci is assigned to the ti’s uncertain 
class label Ci as class membership.  

In practice, uncertainties are usually modeled in forms of Gaussian distributions, 
and parameters such as mean μ and standard variance σ are used to describe the Gaus-
sian distributed uncertainty. In this case, uncertain attribute Aij

un has a formula based 
probability representation over the interval [Aij

un.l, Aij
un.r] as  

 = ..
( )

.
.  
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Here pij is the probability distribution of uncertain attribute Aij
un which can be seen 

as a random variable. 
In case that the uncertainty cannot be modeled by any mathematical formula ex-

pression, a sample based method is often used to model the probability distribution: 
 = { |( : ), ( : ), … ( : ), … , ( : )} . 
 

Where, X = {x1, x2… xi …xn} is the set of all possible values for attribute Aij
un, and pi is 

the probability that Aij
un = xi. 

Not only can the attributes be uncertain, class labels may also contain uncertainty. 
Instead of having the accurate class label, a class membership may be a probability 
distribution as following: 

 = { |( : ), ( : ), … , ( : )}  
 

Here, {c1, c2,…, cn} is the set containing all possible class labels, and pi is the prob-
ability that this instance ti belongs to class ci. 

Table 1 shows an example of an uncertain database. Both attributes and class labels 
of the dataset are uncertain. Their precise values are unavailable and we only have 
knowledge of the probability distribution. For attribute 1, its uncertainty is repre-
sented as a Gaussian distribution with parameters (μ, σ) to model the pdf. For attribute 
2, it lists all possible values with their corresponding probabilities for each instance. 
Note that the uncertainty of class label is always represented in the sample format as 
the values are discrete. 

Table 1. An example of uncertain dataset 

ID Class Type Attribute 1  Attribute 2 
1 T: 0.3, F :0.7 (105, 5) (100: 0.3, 104: 0.6, 110:0.1) 
2 T: 0.4, F:0.6 (110,10) (102:0.2, 109: 0.8) 
3 T: 0.1, F:0.9 (70,10) (66: 0.4, 72:0.4, 88:0.2) 

4   UCAIM Discretization Algorithm 

4.1   Cardinality Count for Uncertain Data 

According to the uncertainty models, an uncertain attribute Aij
un is associated with a 

pdf either in a formula based or sample based format. The probability that the value of 
Aij

un falls in a partition [left, right] is: 
For formula based pdf: 
 

                
= . ( )

                                            (1) 
 

Where, Aij
u

n .f(x) is the probability density distribution function of Aij
un. 
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For sample based pdf: 

                
=  .. [ , ]                                       (2) 

 

Where, Aij
un .xk is the possible value of Aij

un, and Aij
un.pk is the probability that Aij

un= xk. 
We assume that class uncertainty is independent to the probability distributions of 

attribute values. Thus, for a tuple ti belonging to class C, the probability that its attrib-
ute value Aij

un falls in the interval [left, right] is:  
 

             [ , ], = = ( = )               (3) 
 is defined in formula (1) and (2)  and p(ci = C) is the probability that ti belongs to 

class C. 
For each class C, we compute the sum of the probabilities that an uncertain attrib-

ute Aij
u falls in partition [left, right] for all the tuples in dataset D. This summation is 

called probabilistic cardinality. For example, the probability cardinality of partition 
P= [a,b) for class C is calculated as: 

 

             
( ) =  [ , ) ( = ) 

                        (4) 

Probability cardinalities provide us valuable insight during the discretization proc-
ess and it used to build the quanta matrix for uncertain data, as shown in the next 
section. 

4.2   Quanta Matrix for Uncertain Data 

The discretization algorithm aims to find the minimal number of discrete intervals 
while minimizing the loss of class-attribute interdependency. Suppose F is a continu-
ous numeric attribute, and there exists a discretization scheme D on F, which divides 
the whole continuous domain of attribute F into n discrete intervals bounded by the 
endpoints as: 

 

            D: {[d0, d1), [d1, d2), [d2, d3),…, [dn-1,dn] }                              (5) 
 

where d0 is the minimal value and dn is the maximal value of attribute F; d1, d2,…, dn-1 
are cutting points arranged in ascending order.  

For certain dataset, every value of attribute F is precise; therefore it will fall into 
only one of the n intervals defined in (5). However, the value of an uncertain attribute 
can be an interval or a series of values with associated probability distribution. There-
fore, it could fall into multiple intervals. The class membership for a specific interval 
in (5) varies with different discretization scheme D. 

The class variable and the discretization variable of attribute F are treated as two 
random variables defining a two-dimensional quanta matrix (also known as the con-
tingency table). Table 2 is an example of quanta matrix. 

In Table 2, qir is the probability cardinality of the uncertain attribute AF
un which be-

longs to the ith class and has its value within the interval [dr-1, dr]. Thus, according to 
formula (4), qir can be calculated as: 

 

                   
= ( = , [ , ])

                                 (6) 
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Table 2. Quanta matrix for uncertain attribute AF
un and discretization scheme D 

Interval class 
[d0,d1) … [dr-1,dr) … [dn-1,dn] 

Class    
Total 

C1 q11 … q1r … q1n M1+ 
: … … … … …  

Ci qi1 … qir … qin Mi+ 
: … … … … …  

Cs qs1 … qsr … qsn Ms+ 
Interval Total M+1 M+r  M+n M 

 
Mi+ is the sum of the probability cardinality for objects belonging to the ith class, 

and M+r is the total probability cardinality of uncertain attribute AF
un that are within 

the interval [dr-1, dr], for i = 1, 2… S, and r= 1, 2… n. 
The estimated joint probability that uncertain attribute values AF

un is within the in-
terval Dr= [dr-1, dr], and belong to class Ci can be calculated as: 

 

                   
= , =

                                                (7) 

4.3   Uncertain Class-Attribute Interdependent Discretization 

We first introduce the Class-Attribute Interdependency Maximization (CAIM) discre-
tization approach. CAIM is one of the classical discretization algorithms. It generates 
the optimal discretization scheme by quantifying the interdependence between classes 
and discretized attribute, and its criterion is defined as following: 

 

                   
, =

                                             (8) 
 

Where n is the number of intervals, r iterates through all intervals, i.e. r=1, 2,…, n, 
maxr is the maximum value among all qir values (maximum value within the rth col-
umn of the quanta matrix), i = 1,2,…,S, M+r is the total probability of continues values 
of attribute F that are within the interval Dr= [dr-1, dr].  

From the definition, we can see that caim value increases when the values of maxi 
grow, which corresponds to the increase of the interdependence between the class 
labels and the discrete intervals. Thus CAIM algorithm finds the optimal discretiza-
tion scheme by searching the scheme with the highest caim value. Since the maximal 
value maxr is the most significant part in the definition of CAIM criterion, the class 
which maxr corresponds to is called main class and the larger maxr the more interde-
pendent between this main class and the interval Dr= [dr-1, dr]. 

Although CAIM performances well on certain datasets, it encounters new chal-
lenges in uncertain case. For each interval, CAIM algorithm only takes the main class 
into account, but does not consider the distribution over all other classes, which leads 
to problems when dealing with uncertain data. In an uncertain dataset, each instance 
no longer has a deterministic class label, but may have a probability distribution over 
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all possible classes and this reduces the interdependency between attribute and class. 
We use the probability cardinality to build the quanta matrix for uncertain attributes, 
and we observe that the original caim criterion causes problems when handling uncer-
tain quanta matrix. Below we give one such example. Suppose a simple uncertain 
dataset containing 5 instances is shown in Table 3. Its corresponding quanta matrix is 
shown in Table 4.  

Table 3. An example of uncertain dataset 

Attribute (x: px) Class (label: probability) 
(0.1:0.3), (0.9: 0.7) 0: 0.9, 1: 0.1 

 (0.1:0.2), (0.9: 0.8) 0: 0.9, 1: 0.1 
  (0.9: 1.0) 0: 1.0, 1: 0.0 

 (0.2:0.7), (0.8: 0.3) 0: 0.1, 1: 0.9 
(0.1:0.7), (0.8: 0.2), (0.9:0.1) 0: 0.1, 1: 0.9 

 
From table 3, we can calculate the probability distribution of attribute values x each 

class as following: 
 
P(x=0.1, C=0) = 0.3*0.9 + 0.2*0.9 + 0.7*0.1 = 0.52 
P(x=0.1, C=1) = 0.3*0.1 + 0.2*0.1 + 0.7*0.9 = 0.68 
P(x=0.2, C=0) = 0.7*0.1 = 0.07  
P(x=0.2, C=1) = 0.7*0.9 = 0.63 
P(x=0.8, C=0) = 0.3*0.1 + 0.2*0.1 = 0.05 
P(x=0.8, C=1) = 0.3*0.9 + 0.2*0.9 = 0.45 
P(x=0.9, C=0) = 0.7*0.9 + 0.8*0.9 + 0.1*0.1 +1.0*1.0= 2.36  
P(x=0.9, C=1) = 0.7*0.1 + 0.8*0.1 + 0.1*0.9 = 0.24 

Table 4. Quanta Matrix for the uncertain dataset 

Interval class 

[0, 1] 
0 3 

1 2 

 
According to formula (8), the caim value for the quanta matrix in table 4 is: caim = 

32/(3+2) = 1.8. From the distribution of attribute values in each class, we can see the 
attribute values of instances in class 0 have a high probability around x = 0.9; and 
those for instances in class 1 are mainly located in the small end around x=0.1 and 
0.2. Obviously, x = 0.5 is a reasonable cutting point to generate the discretization 
scheme {[0, 0.5) [0.5, 1]}. After the splitting, the quanta matrix is shown in table 5, 
whose corresponding caim value is:  

38.1
2

69.041.2
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Table 5. Quanta Matrix after splitting at x = 0.5 

Interval class 
[0, 0.5) [0.5, 1] 

0 0.59 2.41 
1 1.31 0.69 

 
The goal of the CAM algorithm is to find the discretization scheme with highest 

caim value, so {[0, 0.5) [0.5, 1]} will not be accepted as a better discretization 
scheme, because the caim value decreases from 1.8 to 1.38 after splitting at x = 0.5. 

Data uncertainty obscures the interdependence between classes and attribute values 
by flatting the probability distributions. Therefore, when the original CAIM criterion 
is applied to uncertain data, it results in two problems. First, it usually does not create 
enough intervals in the discretization scheme or it stops splitting too early, which 
causes the loss of much class-attribute interdependence. Second, in order to increase 
the caim value, it is possible that the algorithm generates intervals with very small 
probability cardinalities, which reduces the robustness of the algorithm.  

For uncertain data, the attribute-class interdependence is in form of a probability 
distribution. The original caim definition as in formula (8) ignores this distribution, 
and only considers the main class. Therefore, we need to revise the original definition 
to handle uncertain data. Now that uncertainty blurs the attribute-class interdepend-
ence and reduces the difference between the main class and the rest of the classes, we 
try to make the CAIM value more sensitive to change of values in quanta matrix. We 
propose the uncertain CAIM criterion UCAIM, which is defined as follows: 
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In formula (9), maxr is the maximum value among all qir values (maximum value 
within the rth column of the quanta matrix), i = 1, 2,…, S, M+r is the total probability of 
continues values of attribute F that are within the interval Dr= [dr-1, dr]. Offsetr defined 
in (10) is the average of the offsets or differences for all other qir values to maxr.  

Because the larger the attribute-class interdependence, the larger the value 
maxr/M+r, CAIM therefore uses it to identify splitting points in formula (8). In the 
UCAIM definition we proposed, Offsetr shows how significant the main class is, 
compared to other classes. When Offsetr is large, it means that within interval r, the 
probability an instance belongs to the main class is much higher than the other 
classes, so the interdependence between interval r and the main class becomes is also 
high. Therefore, we propose the ucaim definition in formula (9) for the following 
reasons: 
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1) Compared with maxr/M+r, we multiply it with the factor Offsetr to make the 
value Offsetr*maxr/M+r more sensitive to interdependence changes, which are usually 
less significant for uncertain data.  

2) The value maxr/M+r may be large merely because M+ris small, which happens 
when there are not many instances falling into interval r. However, Offsetr does not 
have such this problem, because it measures the relative relationship between main 
class and other classes.  

Now we apply the new definition to the sample uncertain dataset in Table 3. For 
the original quanta matrix as in Table 4, the ucaim value is  

 

8.1
5

)23(32

=−×=ucaim  

 

For the quanta matrix after splitting as in Table 5, we have 
 

S1 = 1.31-0.59 = 0.72; S2 = 2.41-0.69 = 1.72 
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Since ucaim value increases after the splitting, the cutting point x = 0.5 will be ac-
cepted in the discretization scheme. We can see in this example that ucaim is more 
effective in finding the interdependence between attribute and class, compared to the 
original approach. 

Table 6. UCAIM discretization algorithm 

Algorithm  
1. Find the maximal and minimal possible values of the uncertain attribute AF

un, 
recorded as d0, dn. 

2. Create a set B of all potential boundary endpoints. For uncertain attribute 
modelled in sample based pdf, simply sort all distinct possible values and use them 
as the set; for uncertain data modelled as formula based pdf, we use the mean of 
each distribution to build the set.  

3. Set the initial discretization scheme as D:{[d0, dn]}, set GlobalUCAIM = 0 
4. initialize k=1; 
5. tentatively add an inner boundary, which is not already in D, from B and cal-

culate corresponding UCAIM value 
6. after all the tentative additions have been tested, accept the one with the high-

est value of UCAIM 
7. if UCAIM > GlobalUCAIM or k<S, update D with the accepted boundary and 

set GlobalUCAIM = UCAIM, else terminate 
8. set k=k+1 and go to 5 
Output: D 
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4.4   Uncertain Discretization Algorithm 

The Uncertain Discretization algorithm is shown in table 6. It consists of two steps: 
(1) initialization of the candidate interval boundaries and the initial discretization 
scheme; (2) iterative additions of new splitting points to achieve the highest value of 
the UCAIM criterion. 

The time complexity of ucaim algorithm is similar to caim algorithm. For a single 
attribute, in the worst case, the running time of caim is O(Mlog(M)) [8], and M is the 
number of distinct values of the discretization attributes. In ucaim algorithm, the addi-
tional computation is to calculate Sr, whose time complexity is O(C*M). C is the 
number of classes, and usually very small comparing with M. Therefore, the addition 
in time complexity is O(M), and the final running cost of ucaim is still O(Mlog(M)).  
Please note that this algorithm works on certain data as well since certain data can be 
viewed as a special case of uncertain data.  

5   Experiments 

In this section, we present the experimental results of ucaim discretization algorithm 
on eight datasets. We compare our technique with the traditional CAIM discretization 
algorithm, to show the effectiveness of UCAIM algorithm on uncertain data. 

5.1   Experiment Setup 

The datasets selected to test the ucaim algorithm are: Iris Plants dataset (iris), Johns 
Hopkins University Ionosphere dataset (ionosphere), Pima Indians Diabetes dataset 
(pima), Glass Identification dataset (glass), Wine dataset (wine), Breast Cancer Wis-
consin Original dataset (breast), Vehicle Silhouettes dataset (vehicle), Statlog Heart 
dataset (heart).  All these datasets were obtained from UCI ML repository [30], and 
their detailed information is shown in table 7.  

Table 7. Properties experimental datasets 

Datasets # of class # of instance # of attribute # of continues attribute 
iris 3 1 150 4 
ionosphere 2 351 34 34 
pima 2 768 8 8 
glass 7 214 10 10 
wine 3 178 13 13 
breast 2 699 10 10 
vehicle 4 846 18 18 

 
These datasets are made uncertain by adding a Gaussian distributed noise as in 

[31][9][14]. For each attribute, we add a Gaussian noise with a zero mean, and a stan-
dard variance drawn from the unification distribution [0, 2*f*Sigma]. Here, Sigma is 
the standard variance of the attribute values, and f is an integer parameter used to de-
fine different uncertain level. The value of f is selected from the set {1, 2, 3}. For class 
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label uncertainty, we assume the original class for each instance is the main class, and 
assign it a probability pmc, and there is a uniform distribution over all other classes. As 
a comparison, assume the real data does not center in the original position, but sit in 
the noised value, and the noises are in the same distribution as those described above. 

We use the accuracy of uncertain naïve Bayesian classifier to evaluate the quality 
of discretization algorithms. As the purpose of our experiment is to compare discreti-
zation algorithms, when we build the classifier, we ignore nominal attributes. In the 
experiments, we first compare our UCAIM algorithm for uncertain data with the 
original algorithm CAIM-O which does not take the uncertainty into account. We also 
compare the UCAIM with a discretization algorithm named CAIM-M which simply 
applies CAIM-O algorithm on uncertain quanta matrix (without using the Offset). 

5.2   Experiment Results 

The accuracy of uncertain naïve Bayesian classifier on these 8 dataset is shown in 
table 8. Table 9 shows the average classification accuracy under different uncertain 
level for all three discretization algorithms. Figure 1 shows detailed performance 
comparison of these algorithms at each uncertain level.  

Table 8. Accuracies of the uncertain Naïve Bayesian classifier with different discretization 
algorithms 

dataset uncertain level UCAIM CAIM-M CAIM-O 
iris f=1, pmc=0.9 88.67% 81.67% 80.58% 
 f=2, pmc=0.8 76.67% 73.33% 69.56% 
 f=3, pmc=0.7 72.66% 71.33% 63.85% 
wine f=1, pmc=0.9 96.07% 94.38% 85.39% 
 f=2, pmc=0.8 93.09% 89.32% 85.39% 
 f=3, pmc=0.7 88.44% 73.59% 77.53% 
glass f=1, pmc=0.9 61.07% 57.94% 47.66% 
 f=2, pmc=0.8 57.94% 53.27% 37.07% 
 f=3, pmc=0.7 50.93% 43.92% 35.98% 
ionosphere f=1, pmc=0.9 74.09%# 81.26% 76.31% 
 f=2, pmc=0.8 78.34% 77.13% 72.17% 
 f=3, pmc=0.7 77.20% 75.88% 69.66% 
pima f=1, pmc=0.9 77.13% 75.74% 71.35% 
 f=2, pmc=0.8 72.32% 70.89% 63.97% 
 f=3, pmc=0.7 70.45% 68.66% 62.33% 
breast f=1, pmc=0.9 95.42% 94.27% 93.36% 
 f=2, pmc=0.8 90.70% 87.83% 87.14% 
 f=3, pmc=0.7 87.83% 83.12% 80.68% 
vehicle f=1, pmc=0.9 61.22% 55.39% 50.13% 
 f=2, pmc=0.8 57.44% 52.12% 44.72% 
 f=3, pmc=0.7 53.19% 43.61% 37.87% 
Heart f=1, pmc=0.9 82.59% 78.88% 75.33% 
 f=2, pmc=0.8 78.19% 72.16% 70.15% 
 f=3, pmc=0.7 73.63% 69.95% 67.76% 
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Fig. 1. Classification accuracies with different discretization methods under different uncertain level 
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Table 9. Average classification accuracies with different discretization methods under different 
uncertain level 

Uncertain 
level 

UCAIM CAIM-M CAIM-O 

f=1, pmc=0.9 79.53% 77.44% 72.51% 
f=2, pmc=0.8 78.19% 72.16% 70.15% 
f=3, pmc=0.7 71.79% 66.26% 61.96% 

 
From table 8, table 9 and figure 1, we can see that UCAIM outperforms the other 

two algorithms in most cases. Particularly, UCAIM has a more significant perform-
ance improvement for datasets with higher uncertainty. That is because UCAIM util-
izes extra information such as probability distribution of uncertain data, and employs 
the new criterion to retrieve the class-attribute interdependency which is not obvious 
when data is uncertain. Therefore, the discretization process of UCAIM is more so-
phisticated and comprehensive, and the discretized data can help data mining algo-
rithms such as Naïve Bayesian classifier to gain a higher accuracy. 

6   Conclusion 

In this paper, we propose a new discretization algorithm for uncertain data. We em-
ploy both the formula based and sample based probability distribution function to 
model data uncertainty. We use probability cardinality to build the uncertain quanta 
matrix, which is then used to calculate ucaim to find the optimal discretization 
scheme with highest class-attribute interdependency. Experiments show that our algo-
rithm can help the naïve Bayesian classifier to reach higher classification accuracy. 
We also observe that the proper use of data uncertainty information can significantly 
improve the quality of data miming results and we plan to explore more data mining 
approaches for various uncertain models in the future. 
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Guisado-Gámez, Joan I-231
Gu, Jun I-385
Gu, Yu I-167
Gunturi, Viswanath II-149
Guraya, Teresa II-185

Härder, Theo I-183
He, Zhenying I-298
Hitzler, Pascal I-503
Hossain, Shahriyar I-349



502 Author Index

Hsu, Meichun I-306
Hsu, Wynne II-209
Hu, Hao I-298
Hu, Tianlei I-198
Hu, Wei I-198

Iftikhar, Nadeem II-111
Iqbal, Ahmad Ali I-512

Jacobi, Jonas I-261
Jamil, Hasan I-349
Javier Zarazaga-Soria, F. I-495
Jen, Tao-Yuan II-225
Jensen, Claus A. I-137
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