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IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is in information may apply to be-
come a full member of IFIP, although full membership is restricted to one society
per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for asso-
ciate or corresponding membership. Associate members enjoy the same benefits
as full members, but without voting rights. Corresponding members are not rep-
resented in IFIP bodies. Affiliated membership is open to non-national societies,
and individual and honorary membership schemes are also offered.
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IFIP World Computer Congress 2010 
(WCC 2010) 

Message from the Chairs 

Every two years, the International Federation for Information Processing (IFIP) hosts a 
major event which showcases the scientific endeavors of its over one hundred technical 
committees and working groups. On the occasion of IFIP’s 50th anniversary, 2010 saw 
the 21st IFIP World Computer Congress (WCC 2010) take place in Australia for  
the third time, at the Brisbane Convention and Exhibition Centre, Brisbane, Queensland, 
September 20–23, 2010. 

The congress was hosted by the Australian Computer Society, ACS. It was run as a 
federation of co-located conferences offered by the different IFIP technical commit-
tees, working groups and special interest groups, under the coordination of the Inter-
national Program Committee.  

The event was larger than ever before, consisting of 17 parallel conferences, focusing 
on topics ranging from artificial intelligence to entertainment computing, human choice 
and computers, security, networks of the future and theoretical computer science. The 
conference History of Computing was a valuable contribution to IFIPs 50th anniversary, 
as it specifically addressed IT developments during those years. The conference  
e-Health was organized jointly with the International Medical Informatics Association 
(IMIA), which evolved from IFIP Technical Committee TC-4 “Medical Informatics”. 

Some of these were established conferences that run at regular intervals, e.g.,  
annually, and some represented new, groundbreaking areas of computing. Each con-
ference had a call for papers, an International Program Committee of experts and a 
thorough peer reviewing process of full papers. The congress received 642 papers for 
the 17 conferences, and selected 319 from those, representing an acceptance rate of 
49.69% (averaged over all conferences). To support interoperation between events, 
conferences were grouped into 8 areas: Deliver IT, Govern IT, Learn IT, Play IT, 
Sustain IT, Treat IT, Trust IT, and Value IT. 

This volume is one of 13 volumes associated with the 17 scientific conferences. 
Each volume covers a specific topic and separately or together they form a valuable 
record of the state of computing research in the world in 2010. Each volume was 
prepared for publication in the Springer IFIP Advances in Information and Communi-
cation Technology series by the conference’s volume editors. The overall Publications 
Chair for all volumes published for this congress is Mike Hinchey.  

For full details of the World Computer Congress, please refer to the webpage at 
http://www.ifip.org. 

 
 

June 2010 Augusto Casaca, Portugal, Chair, International Program Committee 
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Foreword

This volume contains the invited and regular papers presented at TCS 2010, the 6th IFIP
International Conference on Theoretical Computer Science, organised by IFIP Techni-
cal Committee 1 (Foundations of Computer Science) and IFIP WG 2.2 (Formal De-
scriptions of Programming Concepts) in association with SIGACT and EATCS. TCS
2010 was part of the World Computer Congress held in Brisbane, Australia, during
September 20–23, 2010 (��������������	
�
���).

TCS 2010 is composed of two main areas: (A) Algorithms, Complexity and Models
of Computation, and (B) Logic, Semantics, Specification and Verification.

The selection process led to the acceptance of 23 papers out of 39 submissions,
each of which was reviewed by three Programme Committee members. The Programme
Committee discussion was held electronically using Easychair.

The invited speakers at TCS 2010 are:

Rob van Glabbeek (NICTA, Australia)
Bart Jacobs (Nijmegen, The Netherlands)
Catuscia Palamidessi (INRIA and LIX, Paris, France)
Sabina Rossi (Venice, Italy)

James Harland (Australia) and Barry Jay (Australia) acted as TCS 2010 Chairs.
We take this occasion to thank the members of the Programme Committees and the

external reviewers for the professional and timely work; the conference Chairs for their
support; the invited speakers for their scholarly contribution; and of course the authors
for submitting their work to TCS 2010.

May 2010 Cristian S. Calude
Vladimiro Sassone
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Convexity, Duality and Effects

Bart Jacobs

Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands

www.cs.ru.nl/B.Jacobs

Abstract. This paper describes some basic relationships between math-
ematical structures that are relevant in quantum logic and probability,
namely convex sets, effect algebras, and a new class of functors that we
call ‘convex functors’; they include what are usually called probability
distribution functors. These relationships take the form of three adjunc-
tions. Two of these three are ‘dual’ adjunctions for convex sets, one time
with the Boolean truth values {0, 1} as dualising object, and one time
with the probablity values [0, 1]. The third adjunction is between effect
algebras and convex functors.

1 Introduction

A set X is commonly called convex if for each pair of elements x, y ∈ X and
each number r ∈ [0, 1] in the unit interval of real numbers the ‘convex’ sum
rx + (1 − r)y is again in X . Informally this says that a whole line segment is
contained in X as soon as the endpoints are in X . Convexity is of course a well-
established notion that finds applications in for instance geometry, probability
theory, optimisation, economics and quantum mechanics (with mixed states as
convex combinations of pure states). The definition of convexity (as just given)
assumes a monoidal structure + on the set X and also a scalar multiplication
[0, 1]×X → X . People have tried to capture this notion of convexity with fewer
assumptions, see for instance [25], [27] or [12]. We shall use the latter source that
involves a ternary operation 〈−,−,−〉 : [0, 1]×X ×X → X satisfying a couple
of equations, see Definition 3. We first recall (see e.g. [28, 8, 20, 6, 11]) that
such convex structures can equivalently be described uniformly as algebras of a
monad, namely of the distribution monad D, see Theorem 4. Such an algebra
map gives an interpretation of each formal convex combination r1x1+ · · ·+rnxn,
where r1 + · · · + rn = 1, as a single element of X . This algebraic formulation
of convexity yields a description of a familiar embedding construction as an
adjunction between convex sets and modules, see Proposition 2 below.

The main part of this paper concerns duality for convex spaces. We shall
describe two dual adjunctions:

PreFrm

Hom(−,{0,1})
��

⊥ Convop

Hom(−,{0,1})
��

Hom(−,[0,1])

��⊥ EA

Hom(−,[0,1])
��

(1)

namely in Theorems 9 and 17. This diagram involves the following structures.

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 1–19, 2010.
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2 B. Jacobs

• The category Conv of convex sets, with as special objects the two element
set 2 = {0, 1} of Booleans and the unit interval [0, 1] of probabilities—where
[0, 1] ∼= D(2).

• The category PreFrm of preframes: posets with directed joins and finite
meets, distributing over these joins, see [19]. These preframes are slightly
more general than frames (or complete Heyting algebras) that occur in the
familiar duality with topological spaces, see [18].

• The category EA of effect algebras (from [9], see also [7] for an overview):
effect algebras have arisen in the foundations of quantum mechanics and
are used to capture quantum effects, as studied in quantum statistics and
quantum measurement theory, see e.g. [4].

The diagram (1) thus suggests that convex sets form a setting in which one can
study both Boolean and probabilistic logics. It opens up new questions, like:
can the adjunctions be refined further so that one actually obtains equivalences,
like between Stone spaces and Boolean algebras or between compact Hausdorff
spaces and commutative C∗-algebras (see [18] for an overview). This is left to
future work. Dualities are important in algebra, topology and logic, for transfer-
ring results and techniques from one domain to another. They are used in the
semantics of computation (see e.g. [1, 29]), but are relatively new in a quantum
setting. They may become part of what is called in [2] an “extensive network of
interlocking analogies between physics, topology, logic and computer science”.

In addition to the adjunctions in (1) another adjunction involving effect alge-
bras is presented, namely a coreflection:

EA

D
��

⊥ Conv(Sets)
F �→F (2)

�� (2)

between effect algebras and what we call convex endofunctors. These functors
capture the essentials of the probability distribution functor (or monad), which
is generalised here from taking probability values in [0, 1] to taking values in an
arbitrary effect algebra. We expect that the adjunction (2) can be used to build
a “triangle of adjunctions” in the style of [5], relating scalars (or probabilities),
convex monads, and Lawvere theories with partially additive structure.

The paper starts with a section on multiset and distribution monads over
semirings, including an adjunction between their categories of algebras. Section 3
recalls in Theorem 4 how (real) convex sets can be described as algebras of the
distribution monad. Subsequently, Section 4 describes the adjunction on the left
in (1) between convex sets and preframes, via prime filters in convex sets and
Scott-open filters in preframes. Both can be described via homomorphisms to the
dualising object {0, 1}. The adjunction on the right in (1) requires that we first
sketch the basics of effect algebras. This is done in Section 5. The unit interval
[0, 1] now serves as dualising object, where we note that effect algebra maps
E → [0, 1] are commonly studied as states or measures in a quantum system.
The paper concludes in Section 7 with the adjunction (2) between effect algebras
and convex functors.
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2 Multiset and Distribution Monads

This section describes the multiset monad MS , for a semiring S, and the dis-
tribution monad D. The main result is an adjunction, in Proposition 2, between
their categories of algebras. It is assumed that the reader is familiar with the
basics of the theory of monads and their algebras. More information may be
found in for instance [24, 3, 23].

Let S be a semiring, consisting of a commutative additive monoid (S, +, 0) and
a multiplicative monoid (S, ·, 1), where multiplication distributes over addition.
One can define a “multiset” functor MS : Sets → Sets by:

MS(X) = {ϕ : X → S | supp(ϕ) is finite},

where supp(ϕ) = {x ∈ X | ϕ(x) �= 0} is the support of ϕ. For a function
f : X → Y one defines MS(f) : MS(X) →MS(Y ) by:

MS(f)(ϕ)(y) =
∑

x∈f−1(y) ϕ(x). (3)

Such a multiset ϕ ∈ Ms(X) may be written as formal sum s1x1 + · · · + skxk

where supp(ϕ) = {x1, . . . , xk} and si = ϕ(xi) ∈ S describes the “multiplicity”
of the element xi. This formal sum notation might suggest an order 1, 2, . . .k
among the summands, but this sum is considered, up-to-permutation of the
summands. Also, the same element x ∈ X may be counted multiple times, but
s1x + s2x is considered to be the same as (s1 + s2)x within such expressions.
With this formal sum notation one can write the application of MS on a map
f as MS(f)(

∑
i sixi) =

∑
i sif(xi).

This multiset functor is a monad, whose unit η : X →MS(X) is η(x) = 1x,
and multiplication μ : MS(MS(X)) →MS(X) is μ(

∑
i siϕi)(x) =

∑
i si ·ϕi(x).

For the semiring S = N one gets the free commutative monoid MN(X) on
a set X . And if S = Z one obtains the free Abelian group MZ(X) on X . The
Boolean semiring 2 = {0, 1} yields the finite powerset monad Pfin =M2.

An (Eilenberg-Moore) algebra α : MS(X) → X for the multiset monad corre-
sponds to a monoid structure on X—given by x+y = α(1x+1y)—together with
a scalar multiplication • : S ×X → X given by s • x = α(sx). It preserves the
additive structure (of S and of X) in each coordinate separately. This makes X
a module, for the semiring S. Conversely, such an S-module structure on a com-
mutative monoid M yields an algebra MS(M) → M by

∑
i sixi �→

∑
i si • xi.

Thus the category of algebras Alg(MS) is equivalent to the category ModS of
S-modules.

Analogously one defines the distribution monad D as:

D(X) = {ϕ : X → [0, 1] | supp(ϕ) is finite and
∑

x∈X ϕ(x) = 1}. (4)

Elements of D(X) are convex combinations s1x1 + · · ·+ skxk, where the prob-
abilities si ∈ [0, 1] satisfy

∑
i si = 1. In Section 7 we shall see how one can

generalise the set of probabilities from the unit interval [0, 1] to an arbitrary
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effect algebra. Unit and multiplication making D a monad can be defined as for
MS . This multiplication is well-defined since:∑

x μ(
∑

i siϕi)(x) =
∑

x

∑
i si · ϕi(x) =

∑
i si ·

(∑
x ϕi(x)

)
=
∑

i si = 1.

The inclusion maps D(X) ↪→MR≥0(X), sending distributions to multisets over
the non-negative real numbers R≥0, are natural and commute with the units
and multiplications of the two monads, and thus form an example of a “map of
monads”.

We continue this section with a basic results, which is stated without proof,
but with a few subsequent pointers.

Theorem 1. For a monad T on Sets, the category Alg(T ) of algebras is:

1. both complete and cocomplete, so has all limits and colimits;
2. symmetric monoidal closed in case the monad T is “commutative”. �

A category of algebras is always “as complete” as its underlying category, see
e.g. [23, 3]. Since Sets is complete, so is Alg(T ). Cocompleteness is special for
algebras over Sets and follows from a result of Linton’s, see [3, § 9.3, Prop. 4].

Monoidal structure in categories of algebras goes back to [22, 21]. Each monad
on Sets is strong, via a “strength” map st : X × T (Y ) → T (X × Y ) given as
st(x, v) = T (λy. 〈x, y〉)(v). There is also a swapped version st′ : T (X) × Y →
T (X × Y ) given by st′(u, y) = T (λx. 〈x, y〉)(u). The monad T is called commu-
tative if the two resulting maps T (X)× T (Y ) ⇒ T (X × Y ), obtained by either
doing first st and st′ or first st′ and then st, are equal.

The multiset monad MS is commutative if S is a (multiplicatively) commu-
tative semiring. The distribution monad D is always commutative.

The next construction goes back to [27] and occurs in many places (see e.g. [26,
20]) but is usually not formulated in the following way. It can be understood as a
representation theorem turning a convex set into a module over the nonnegative
reals.

Proposition 2. The functor ModR≥0 = Alg(MR≥0)
U−→ Alg(D), induced by the

map of monads D ⇒MR≥0, has a left adjoint.

Proof . We turn an algebra α : D(X) → X and into a module F (X), where:

F (X) = {0}+ R>0 ×X,

with addition for u, v ∈ F (X), in trivial cases given by u + 0 = u = 0 + u and:

(s, x) + (t, y) = (s + t, α( s
s+tx + t

s+ty))

A scalar multiplication • : R≥0 × F (X) → F (X) is defined as:

s • u =

{
0 if u = 0 or s = 0

(s · t, x) if u = (t, x) and s �= 0.
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This makes F (X) a module over R≥0. Next we show that F is left adjoint to
U : Alg(MR≥0) → Alg(D), via the following bijective correspondence.

X
f �� U(Y ) in Alg(D)

============
F (X) g

�� Y in Alg(MR≥0)

It works as follows.

• Given f : X → U(Y ) in Alg(D) define f : F (X) → Y by f(0) = 0 and
f(r, x) = r • f(x) where • is scalar multiplication in Y . This yields a homo-
morphism of modules, i.e. a homomorphism of MR≥0-algebras.

• Conversely, given g : F (X) → Y take g : X → U(Y ) to be g(x) = g(1, x).
This yields a map of D-algebras.

Finally we check that we actually have a bijective correspondence:

f(x) = f(1, x) = 1 • f(x) = f(x).

Similarly, g(0) = 0 and:

g(r, x) = r • g(x) = r • g(1, x) = g(r • (1, x)) = g(r, x). �

3 Convex Sets

This section introduces convex structures—or simply, convex sets—as described
in [12] and recalls that such structures can also be described as algebras of the
distribution monad D.

Definition 3. A convex set consists of a set X together with a ternary operation
〈−,−,−〉 : [0, 1]×X ×X → X satisfying the following four requirements,

〈r, x, x〉 = x 〈r, x, y〉 = 〈1 − r, y, x〉
〈0, x, y〉 = y 〈r, x, 〈s, y, z〉〉 = 〈r + (1− r)s, 〈 r

(r+(1−r)s) , x, y〉, z〉,

where r ∈ [0, 1] and x, y, z ∈ X, and (r + (1 − r)s) �= 0 in the last equation.
A morphism of convex structures (X, 〈−,−,−〉X) → (Y, 〈−,−,−〉Y ) consists

of an “affine” function f : X → Y satisfying f(〈r, x, x′〉X) = 〈r, f(x), f(x′)〉Y ,
for all r ∈ [0, 1] and x, x′ ∈ X. This yields a category Conv.

A convex set is sometimes called a barycentric algebra, using terminology from
[27]. The tuple 〈r, x, y〉 can also be written as labeled sum x +r y, like in [20],
but the fourth condition becomes a bit difficult to read with this notation.

The next result recalls an alternative description of convex structures and their
homomorphisms, namely as algebras of a monad. It goes back to [28] and also
applies to compact Hausdorff spaces [20] or Polish spaces [6]. For convenience, a
proof sketch is included.
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Theorem 4. The category Conv of convex sets is isomorphic to the category
Alg(D) of Eilenberg-Moore algebras of the distribution monad.

Proof . Given an algebra α : D(X) → X on a set X one defines an operation
〈−,−,−〉 : [0, 1]×X ×X → X by 〈r, x, y〉 = α(rx + (1− r)y). It is not hard to
show that the four requirements from Definition 3 hold.

Conversely, given a convex set X with ternary operation 〈−,−,−〉 one defines
a function α : D(X) → X inductively by:

α(r1x1 + · · ·+ rnxn)

=

{
x1 if r1 = 1, so r2 = · · · = rn = 0

〈r1, x1, α( r2
1−r1

x2 + · · ·+ rn

1−r1
xn)〉 otherwise, i.e. r1 < 1.

(5)

Repeated application of this definition yields:

α(r1x1 + · · ·+ rnxn)

= 〈r1, x1, 〈 r2
1−r1

, x2, 〈 r3
1−r1−r2

, x3, 〈. . . , 〈 rn−1
1−r1−···−rn−2

, xn−1, xn〉 . . .〉〉〉〉.
(6)

One first has to show that the function α in (5) is well-defined, in the sense that
it does not depend on permutations of summands, see also [27, Lemma 2]. Via
some elementary calculations one checks that exchanging the summands rixi

and ri+1xi+1 produces the same result. In a next step one proves the algebra
equations: α ◦ η = id and α ◦ μ = α ◦ D(α). The first one is easy, since
α(η(a)) = α(1a) = a, directly by applying (5). The second one requires more
work. Explicitly, it amounts to:

α
(∑

i≤n riα(
∑

j≤mi
sijxij)

)
= α

(∑
i≤n

∑
j≤mi

(risij)xij

)
. (7)

For the proof the following auxiliary result is convenient. It handles nested tuples
in the second argument of a triple 〈−,−,−〉, just like the fourth equation in
Definition 3 deals with nested structure in the third argument. In a general
convex structure one has 〈r, 〈s, x, y〉, z〉 = 〈rs, x, 〈 r(1−s)

1−rs , y, z〉〉, assuming rs �= 1.
The rest is then left to the reader. �

This theorem now allows us to apply Theorem 1 to the category Conv of (real)
convex structures. First we may conclude that it is both complete and cocom-
plete; also, that the forgetful functor Conv → Sets has a left adjoint, giving
free convex structures of the form D(X). And since D is a commutative monad,
the category Conv is symmetric monoidal closed: maps X ⊗ Y → Z in Conv
correspond to functions X × Y → Z that are “bi-homomorphisms”, i.e. homo-
morphisms of convex structures in each variable separately. In this special case
the tensor unit is the final (singleton) convex set, since D(1) ∼= 1. Hence one has
“tensors with projections”, see [15]. Closedness means that the functors (−)⊗Y
have a right adjoint, given by Y � (−). Moreover, D(A × B) ∼= D(A) ⊗ D(B),
for sets A, B.
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Remark 5. We shall later use that a meet semilattice (L,∧, 0) can be under-
stood as a convex set D(L) → L via:

r1x1 + · · ·+ rnxn �−→ x1 ∧ · · · ∧ xn,

where it is (implicitly) assume that ri �= 0. This can be extended to a functor
MSL → Conv. In particular, the two-element set 2 = {0, 1} of Booleans is a
convex set.

Remark 6. The adjunction Conv = Alg(D) � Sets induces a comonad on
the category Conv, which is also written as D. An Eilenberg-Moore coalgebra
X → D(X) of this comonad can be understood as spectral decomposition: it
maps an element x in a convex set X to a formal convex combination

∑
i rixi,

which, when interpreted in X, is equal to x. For instance, the density matrices
on a finite dimensional Hilbert space form a convex set and carry such a spectral
decomposition coalgebra (depending on a choice of basis). See also [14] for similar
decompositions involving atoms and compact elements in ordered sets captured
via the comonad induced on a category of algebras.

4 Prime Filters in Convex Sets

The next definition follows [8], but uses filters instead of ideals.

Definition 7. Let α : D(X) → X be an algebra of the distribution monad D,
making X a convex set. We write (

∑
i≤n sixi) ∈ D(X), with si �= 0, for an

arbitrary formal convex combination. A subset U ⊆ X is called a:

• subalgebra if ∀i≤n. xi ∈ U implies α(
∑

i sixi) ∈ U ;
• filter if α(

∑
i sixi) ∈ U implies xi ∈ U , for each i;

• prime filter if it is both a subalgebra and a filter.

It is not hard to see that subalgebras are closed under arbitrary intersections and
under directed joins. Hence one can form the least subalgebra V ⊆ X contain-
ing an arbitrary set V ⊆ X , by intersection. Filters are closed under arbitrary
intersections and joins, hence also prime filters are closed under arbitrary inter-
sections and directed joins. We shall write pFil(X) for the set of prime filters in
a convex set X , ordered by inclusion.

Lemma 8. Assume X is a convex set. A subset U ⊆ X is a prime filter if
and only if it is the “true kernel” f−1(1) of a homomorphism of convex sets
f : X → {0, 1}. It yields an order isomomorphism:

pFil(X) ∼= Hom(X, {0, 1}).

Here we consider {0, 1} as meet semilattice as described in Remark 5.
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Proof . Let α : D(X) → X be an algebra on X . Given a prime filter U ⊆ X ,
define fU (x) = 1 iff x ∈ U . This yields a homormophism of algebras/convex sets,
since for a convex sum

∑
i sixi with si �= 0,

(fU ◦ α)(
∑

i sixi) = 1 ⇐⇒ α(
∑

i sixi) ∈ U

⇐⇒ ∀i. xi ∈ U since U is a prime filter

⇐⇒ ∀i. fU (xi) = 1

⇐⇒
∑

i sifU (x) =
∧

i fU (xi) = 1

⇐⇒ (β ◦ DS(fU ))(
∑

i sixi) = 1,

where β : D({0, 1}) → {0, 1} is the convex structure induced by the meet semi-
lattice structure of {0, 1}. Similarly one shows that such homomorphisms induce
prime filters as their true-kernels. �

We write PreFrm for the category of preframes. They consist of a poset L with
directed joins

∨↑ and finite meets (1,∧) distributing over these joins: x ∧
∨↑

i yi =∨↑
i x ∧ yi. Morphisms in PreFrm preserve both finite meets and directed joins.

The two-element set {0, 1} is obviously a preframe. Homomorphisms of preframes
L → {0, 1} correspond (as true-kernels) to Scott-open filters U ⊆ L, see [29].
They are upsets, closed under finite meets, with the property that if

∨↑
i xi ∈ U

then xi ∈ U for some i.
We have seen so far that taking prime filters yields a contravariant functor

pFil = Hom(−, {0, 1}) : Conv = Alg(D) → PreFrm. The main result of this
section shows that this forms actually a (dual) adjunction.

Theorem 9. There is a dual adjunction between convex sets and preframes:

Convop

Hom(−,{0,1})
		⊥ PreFrm

Hom(−,{0,1})
��

Proof . For a preframe L the homset Hom(L, {0, 1}) of Scott-open filters is closed
under finite intersections: if

∨↑
i xi ∈ U1 ∩ · · · ∩ Um, then for each j ≤ m there is

an ij with xj ∈ Uij . By directedness there is an i with xi ≥ xij for each j, so
that xi is in each Uj. Hence, Hom(L, {0, 1}) carries a D-algebra structure.

For a convex set X we need to construct a bijective correspondence:

X �� Hom(L, {0, 1}) in Conv
====================
L �� Hom(X, {0, 1}) in PreFrm

It is given in the usual way by swapping arguments. �

Homomorphisms from convex sets to the set of Boolean values {0, 1} capture
only a part of what is going on. Richer structures arise via homomorphisms to
the unit interval [0, 1]. They give rise to effect algebras, instead of preframes, as
will be shown in the next two sections.
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5 Effect Algebras

This section recalls the basic definition, examples and results of effect algebras.
To start, we need the notion of partial commutative monoid (PCM). It consists of
a set M with a zero element 0 ∈ M and a partial binary operation � : M×M →
M satisfying the three requirements below—involving the notation x ⊥ y for:
x � y is defined.

1. Commutativity: x ⊥ y implies y ⊥ x and x � y = y � x;
2. Associativity: y ⊥ z and x ⊥ (y � z) implies x ⊥ y and (x � y) ⊥ z and also

x � (y � z) = (x � y) � z;
3. Zero: 0 ⊥ x and 0 � x = x;

When x ⊥ y we say that elements x, y are orthogonal. More generally, a
subset of a PCM is called orthogonal if all its elements are pairwise orthogonal.
In writing x � y it is usually implicitly assumed that x � y is defined, i.e. that
x, y are orthogonal.

An example of a PCM is the unit interval [0, 1] of real numbers, where � is the
partially defined sum +. The notation � for the sum might suggest a join, but
this is not intended, as the example [0, 1] shows. We wish to avoid the notation
⊕ (and its dual ⊗) that is more common in the context of effect algebras because
we like to reserve these operations ⊕,⊗ for tensors on categories.

As an aside, for the more categorically minded, a PCM may also be understood
as a monoid in the category of sets and partial functions. However, we shall use
total maps as morphisms between PCMs (and effect algebras).

The notion of effect algebra is due to [9], see also [7] for an overview.

Definition 10. An effect algebra is a partial commutative monoid (E, 0, �) with
an orthosupplement. The latter is a unary operation (−)⊥ : E → E satisfying:

1. x⊥ ∈ E is the unique element in E with x � x⊥ = 1, where 1 = 0⊥;
2. x ⊥ 1 ⇒ x = 0.

Example 11. We briefly discuss several classes of examples.
(1) A singleton set forms an example of a degenerate effect algebra, with 0 = 1.

A two element set 2 = {0, 1} is also an example.
(2) A more interesting example is the unit interval [0, 1] ⊆ R of real numbers,

with r⊥ = 1− r and r � s is defined as r + s in case this sum is in [0, 1]. In fact,
for each positive number M ∈ R the interval [0, M ]R = {r ∈ R | 0 ≤ r ≤ M} is
an example of an effect algebra, with r⊥ = M − r.

Also the interval [0, M ]Q = {q ∈ Q | 0 ≤ q ≤ M} of rational numbers, for
positive M ∈ Q, is an effect algebra. And so is the interval [0, M ]N of natural
numbers, for M ∈ N.

The general situation involves so-called “interval effect algebras”, see e.g. [10]
or [7, 1.4]. An Abelian group (G, 0,−, +) is called ordered if it carries a partial
order ≤ such that a ≤ b implies a+ c ≤ b+ c, for all a, b, c ∈ G. A positive point
is an element p ∈ G with p ≥ 0. For such a point we write [0, p]G ⊆ G for the
“interval” [0, p] = {a ∈ G | 0 ≤ a ≤ p}. It forms an effect algebra with p as top,
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orthosupplement a⊥ = p− a, and sum a + b, which is considered to be defined in
case a + b ≤ p.

(3) A separate class of examples has a join as sum �. Let (L,∨, 0, (−)⊥) be an
ortholattice: ∨, 0 are finite joins and complementation (−)⊥ satisfies x ≤ y ⇒
y⊥ ≤ x⊥, x⊥⊥ = x and x ∨ x⊥ = 1 = 0⊥. This L is called an orthomodular
lattice if x ≤ y implies y = x ∨ (x⊥ ∧ y). Such an orthomodular lattice forms
an effect algebra in which x � y is defined if and only if x ⊥ y (i.e. x ≤ y⊥, or
equivalently, y ≤ x⊥); and in that case x � y = x ∨ y. This restriction of ∨ is
needed for the validity of requirements (1) and (2) in Definition 10.

In particular, the lattice KSub(H) of closed subsets of a Hilbert space H is an
orthomodular lattice and thus an effect algebra. This applies more generally to the
kernel subobjects of an object in a dagger kernel category [13]. These kernels can
also be described as self-adjoint endomaps below the identity, see [13, Prop. 12]—
in group-representation style, like in the above point 2.

(4) Since Boolean algebras are (distributive) orthomodular lattices, they are
also effect algebras. By distributivity, elements in a Boolean algebra are orthog-
onal if and only if they are disjoint, i.e. x ⊥ y iff x ∧ y = 0. In particular,
the Boolean algebra of measurable subsets of a measurable space forms an effect
algebra, where U � V is defined if U ∩ V = ∅, and is then equal to U ∪ V .

An obvious next step is to organise effect algebras into a category EA.

Definition 12. A homomorphism E → D of effect algebras is given by a func-
tion f : E → D between the underlying sets satisfying f(1) = 1, and if x ⊥ x′ in
E then both f(x) ⊥ f(x′) in D and f(x � x′) = f(x) � f(x′).

Effect algebras and their homomorphisms form a category, called EA.

Homomorphisms are like measurable maps. Indeed, for the effect algebra Σ
associated in Example 11 (4) with a measureable space (X, Σ), effect algebra
homomorphisms f : Σ → [0, 1] satisfy f(U ∪ V ) = f(U) + f(V ) in case U, V
are disjoint—because then U � V is defined and equals U ∪ V . In general, effect
algebra homomorphisms E → [0, 1] to the unit interval are often called states.

Homomorphisms of effect algebras preserve all the relevant structure.

Lemma 13. Let f : E → D be a homomorphism of effect algebras. Then:

f(x⊥) = f(x)⊥ and thus f(0) = 0.

Proof . From 1 = f(1) = f(x � x⊥) = f(x) � f(x⊥) we get f(x⊥) = f(x)⊥ by
uniqueness of orthosupplements. Hence: f(0) = f(1⊥) = f(1)⊥ = 1⊥ = 0. �

Example 14. It is not hard to see that the one-element effect algebra 1 is final,
and the two-element effect algebra 2 is initial.

Orthosupplement (−)⊥ is an isomorphism E
∼=→ Eop in EA, namely from

(E, 0, �, (−)⊥) to Eop = (E, 1, �, (−)⊥), where x�y = (x⊥ �y⊥)⊥. This makes
EA and involutive category, see [16].
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An element (or point) x ∈ E of an effect algebra E can be identified with a
homomorphism 2× 2 → E in EA, as in:

2× 2 = MO(2) =

(
1

• •⊥
0

�� ��
�� ��

)
x �� E.

In [17] it shown that the category EA is complete and cocomplete, and has a
symmetric monoidal structure.

6 Effect Algebras and Convex Sets

The aim in this section is to establish the dual adjunction between convex sets
and effect algebras on the right in the diagram (1) in the introduction. As we
have seen, the unit interval [0, 1] of real numbers is a prime example of a convex
set. The set of states of an effect algebra—consisting of maps into [0, 1]—is also
convex, as noticed for instance in [10].

Lemma 15. Taking states yields a functor S = Hom(−, [0, 1]) : EA → Convop.

Proof . Let E be an effect algebra with states fi : E → [0, 1] and ri ∈ [0, 1]
with

∑
i ri = 1, then we can form a new state f = r1f1 + · · ·+ rnfn by f(x) =∑

i ri ·fi(x), using multiplication · in [0, 1]. This yields a homomorphism of effect
algebras E → [0, 1], since:

– f(1) =
∑

i ri · fi(1) =
∑

i ri · 1 =
∑

i ri = 1;
– if x ⊥ x′ in E, then in [0, 1]:

f(x � x′) =
∑

i ri · fi(x � x′) =
∑

i ri · (fi(x) + fi(x′))

=
∑

i ri · fi(x) + ri · fi(x′)

=
∑

i ri · fi(x) +
∑

i ri · fi(x′)

= f(x) + f(x′).

Further, for a map of effect algebras g : E → D the induced function S(g) =
(−) ◦ g : Hom(D, [0, 1]) → Hom(E, [0, 1]) is a map of convex sets:

S(g)(
∑

i rifi) = λx. (
∑

i rifi)(g(x))

= λx.
∑

i ri · fi(g(x))

= λx.
∑

i ri · S(g)(fi)(x)

=
∑

i ri(S(g)(fi)). �

A set of state S(E) = Hom(E, [0, 1]) is thus convex, but it does not have an
underlying scalar multiplication • : [0, 1]×S(E) → S(E), since r • f = λx. r·f(x)
need not be a map of effect algebras: (r • f)(1) = r · f(1) = r · 1 = r �= 1, in
general.

Interestingly, there is also a Hom functor in the other direction.
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Lemma 16. For each convex set X the homset Hom(X, [0, 1]) of homomor-
phisms of convex sets is an effect algebra. In this way one gets a functor Hom(−,
[0, 1]) : Convop → EA.

Proof . Let X be a convex set. We define effect algebra structure on the homset
Hom(X, [0, 1]) in a pointwise manner. There is an obvious zero element, namely
the zero function λx. 0. A partial sum f + f ′ is defined as (f + f ′)(x) = f(x) +
f ′(x), provided f(x) + f ′(x) ≤ 1 for all x ∈ X . It is easy to see that this f + f ′

is again a map of convex sets. Similarly, one defines f⊥ = λx. 1− f(x), which is
again a homomorphism since:

f⊥(r1x1 + · · ·+ rnxn) = 1− f(r1x1 + · · ·+ rnxn)

= (r1 + · · ·+ rn)− (r1 · f(x1) + · · ·+ rn · f(xn))

= r1 · (1− f(x1)) + · · ·+ rn · (1 − f(xn))

= r1 · f⊥(x1) + · · ·+ rn · f⊥(xn).

Functoriality is easy: for a map g : X → Y of convex sets we obtain a map of
effect algebras (−) ◦ g : Hom(Y, [0, 1]) → Hom(X, [0, 1]) by precomposition. �

The next result is now an easy combination of the previous two lemmas.

Theorem 17. There is a dual adjunction between convex sets and effect
algebras:

Convop

Hom(−,[0,1])

��⊥ EA

S=Hom(−,[0,1])
��

Proof . We need to check that the unit and counit

E
η �� Hom(S(E), [0, 1]) X

ε �� S(Hom(X, [0, 1]))

x � �� λf. f(x) x � �� λf. f(x)

are appropriate maps. First we check that η is a morphism of effect algebras:

• η(1) = λf. f(1) = λf. 1 = 1;
• and if x ⊥ x′ in E, then:

η(x � x′) = λf. f(x � x′) = λf. f(x) + f(x′)

= λf. η(x)(f) + η(x′)(f)

= η(x) + η(x′).

Similarly ε is a map of convex sets:

ε(r1x1 + · · ·+ rnxn) = λf. f(r1x1 + · · ·+ rnxn)

= λf. r1 · f(x1) + · · ·+ rn · f(xn)

= λf. r1 · ε(x1)(f) + · · ·+ rn · ε(xn)(f)

= r1ε(x1) + · · ·+ rnε(xn). �
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7 Effect Algebras and Convex Functors

Let A be an arbitrary category with finite limits and finite coproducts (0, +)
which are disjoint and universal. This means that coprojections κi are monic and
form pullback squares as on the left below, and additionally that in a square as
on the right below, the induced map Z1 + Z2 → Z is an isomorphism.

0
�� ��





Y



κ2



Z1 ��




�� Z





Z2��





��

X ��
κ1

�� X + Y X ��
κ1

�� X + Y Y��
κ2

��

In this setting one can prove that diagrams of the form below are pullbacks.

X
κ1 ��

f 


�� X + Z

f+g



X + W
��

id+g 



f+id �� Y + W
id+g



Y κ1
�� Y + Z X + Z

f+id
�� Y + Z

(8)

The final object 1 ∈ A can be used to obtain (representations of) natural num-
bers n ∈ A, for n ∈ N. One simply puts:

0 = 0 and n + 1 = n + 1.

We shall use these “numbers” n ∈ A with coprojections κi : 1 → n for 1 ≤ i ≤ n.
The following maps will be useful.

n + 1 ∇i �� 2 where ∇i ◦ κj =

{
κ1 if i = j

κ2 otherwise
(9)

(where 0 ≤ i ≤ n and 0 ≤ j ≤ n + 1). Writing the underlining gets tedious, so
we often drop it when no confusion arises.

In Sets we identify n (to be more precise: n) with the set {1, 2, . . . , n}. The
coprojection κi : 1 → n is then simply i. The maps ∇i : n + 1 → 2 from (9), for
1 ≤ i ≤ n, satisfy ∇i(j) = 1 if i = j and ∇i(j) = 2 if i �= j.

We are now ready to introduce a new notion of convex functor. What we
present is finitary version, because in the present context we only consider fi-
nite convex combinations, and correspondingly, finite (partial) sums in effect
algebras.

Definition 18. Let A be a category with disjoint and universal finite coproducts,
and finite limits (as above). A functor F : A → A will be called convex if it
satisfies the following three requirements.

1. F (1)
∼=−→ 1;

2. F preserves the following three pullbacks, which are special instances of (8).

n
��

κ1 ��

! 



n + 1
!+id



1
��

κ1 �� 1 + n
id+ !



n + m
��

id+ ! 



!+id �� 1 + m
id+ !



1 κ1
�� 1 + 1 = 2 1 κ1

�� 1 + 1 = 2 n + 1
!+id

�� 1 + 1 = 2
(10)
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3. the following tuple is monic, involving the maps ∇i from (9).

F (n + 1)
〈F (∇1),...,F (∇n)〉 �� F (2)× · · · × F (2). (11)

We shall write CNV(A) for the category of convex endofunctors on A, and
natural transformations between them.

Convexity can in principle also be defined for functors A → B between different
categories, but such generality is not needed here. A functor F satisfying the
first requirement F (1) ∼= 1 is sometimes called affine, see e.g. [21, 15].

Example 19. We shall shortly see a general construction to obtain convex func-
tors in the form of probability distribution functors. But it is instructive to see
a non-example first. The non-empty powerset functor P+ : Sets → Sets is a
possible candidate for a convex functor because P+(1) ∼= 1. We shall skip the
second condition in Definition 18 and show why the third one fails. The maps
P+(∇i) : P+(n + 1) → P+(2) are given by:

P+(∇i)(U) = {1 | i ∈ U} ∪ {2 | U − i �= ∅}.

If U, V ∈ P+(n + 1) satisfy P+(∇i)(U) = P+(∇i)(V ), then we have i ∈ U ⇔
i ∈ V for 1 ≤ i ≤ n. But we have no information about whether or not n + 1 is
in U or V . Hence we don’t have enough information to conclude U = V .

The following construction gives an important class of examples of convex func-
tors on the category of sets. It generalises the construction of the distribution
functor D in (4) from the unit interval [0, 1] to an arbitrary effect algebra.

Definition 20. For an effect algebra E define a functor DE : Sets → Sets by:

DE(X) = {ϕ : X → E | supp(ϕ) is finite and orthogonal, and �
x∈E

ϕ(x) = 1}.

For a function f : X → Y one gets DE(f) : DE(X) → DE(Y ) by:

DE(f)(ϕ)(y) = �
x∈f−1(y)

ϕ(x).

Proposition 21. Functors DE are convex, and satisfy DE(2) ∼= E. The map-
ping E �→ DE yields a functor EA → Conv(Sets).

Proof . We begin by describing what the sets DE(1) and DE(2) are. An element
ϕ ∈ DE(1) is a map ϕ : {1} → E with �x∈{1}ϕ(x) = 1. Hence ϕ is completely
determined as ϕ(1) = 1. Thus DE(1) ∼= 1, making DE an affine functor.

An element ϕ ∈ DE(2) is a map ϕ : {1, 2} → E satisfying ϕ(1) ⊥ ϕ(2) and
ϕ(1) � ϕ(2) = 1. Hence ϕ(2) = ϕ(1)⊥, so that ϕ is determined by ϕ(1) ∈ E.
Thus DE(2) ∼= E.

If we have two elements ϕ, ψ ∈ DE(n+1) satisfying DE(∇i)(ϕ) = DE(∇i)(ψ),
for 1 ≤ i ≤ n, then ϕ(i) = DE(∇i)(ϕ)(1) = DE(∇i)(ψ)(1) = ψ(i). But then
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ϕ = ψ, as required in point 3 in Definition 18, since the remaining value at n+1
is determined by the others (unlike in Example 19):

ϕ(n + 1) =
(
ϕ(1) � · · ·� ϕ(n)

)⊥ =
(
ψ(1) � · · ·� ψ(n)

)⊥ = ψ(n + 1).

We turn to point 2 and check that the functor DE preserves the three pull-
backs (10). For the first one, assume ϕ ∈ DE(n + 1) satisfies DE(! + id)(ϕ) =
DE(κ1)(∗), where κ1 : 1 → 1 + 1 and ∗ is the single element ∗ = λx. 1 ∈ DE(1).
This means that ϕ(1) � · · · � ϕ(n) = DE(! + id)(ϕ)(1) = DE(κ1)(∗)(1) = 1,
and thus ϕ(n + 1) = 0. Hence there is a unique element ϕ′ ∈ DE(n) with
DE(κ1)(ϕ′) = ϕ, namely ϕ′(i) = ϕ(i) for 1 ≤ i ≤ n.

Preservation of the second pullback is left to the reader. For the third one, as-
sume ϕ ∈ DE(n+1) and ψ ∈ DE(1+m) satisfying DE(!+id)(ϕ) = DE(id+ !)(ψ).
This means:

ϕ(1) � · · ·� ϕ(n) = ψ(1) ϕ(n + 1) = ψ(2) � · · ·� ψ(m + 1).

The χ ∈ DE(n + m) that we are looking for must satisfy ϕ = DE(id+ !)(χ) and
ψ = DE(! + id)(χ). That is:

ϕ(i) = χ(i), for 1 ≤ i ≤ n, ϕ(n + 1) = χ(n + 1) � · · ·� χ(n + m)

ψ(1) = χ(1) � · · ·� χ(n) ψ(j + 1) = χ(n + j − 1), for 2 ≤ j ≤ m + 1.

Hence there is a precisely one choice for such a χ, so that DE applied the last
pullback in (10) is again a pullback.

Finally we have to check that the mapping E �→ DE is functorial. Given a
map g : E → D in EA, there is a natural transformation g ◦ (−) : DE ⇒ DD,
that is well-defined and natural because g is a homomorphism. �

The next step is to show that, in the reverse direction, a convex functor (on
Sets) gives rise to an effect algebra.

Proposition 22. Let F : Sets → Sets be a convex functor. Then F (2) is an
effect algebra, with the following structure:

0 =
(
1

∼= �� F (1)
F (κ2) �� F (2)

)
1 =

(
1

∼= �� F (1)
F (κ1) �� F (2)

)
(−)⊥ =

(
F (2)

F ([κ2,κ1])
∼=

�� F (2)
) (12)

For a, b ∈ F (2) we say a ⊥ b if there is a ‘bound’ β ∈ F (3) such that F (∇1)(β) =
a and F (∇2)(β) = b, with ∇i as in (9). In that case we define:

a � b = F (! + id)(β) ∈ F (2),

where ! + id : 2 + 1 → 2 sends 1, 2 �→ 1 and 3 �→ 2.
Further, the mapping F �→ F (2) yields a functor CNV(Sets) → EA.
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It may be instructive to see what this partial sum � on F (2) means for the
convex functors F = DE from Proposition 21. So assume ϕ, ψ ∈ DE(2) have
bound β ∈ DE(3). The equations ϕ = F (∇1)(β) and ψ = F (∇2)(β) yield:

ϕ(1) = β(1) ϕ(2) = β(2) � β(3) ψ(1) = β(2) ψ(2) = β(1) � β(3).

In particular, the elements ϕ(1), ψ(1) can be added, since ϕ(1)�ψ(1)�β(3) = 1.
Thus, the sum ϕ � ψ = DE(! + id)(β) ∈ DE(2) satisfies:

(ϕ � ψ)(1) = β(1) � β(2) = ϕ(1) � ψ(1)

(ϕ � ψ)(2) = β(3) = (β(1) � β(2))⊥ = (ϕ(1) � ψ(1))⊥ = (ϕ � ψ)(1)⊥.

Proof . We check some of the requirements that must hold for effect algebras.
The partial sum � is commutative, since if β ∈ F (3) is a bound for a, b ∈ F (2),

then β′ = F ([κ2, κ1] + id) ∈ F (3) is a bound for b, a, with the same sum:

b � a = F (! + id)(β′) = F ((! + id) + ([κ2, κ1] + id))(β) = F (! + id)(β) = a � b.

The 0 defined in (12) is a zero element for �, since for an arbitrary element
a ∈ F (2) there is a bound α = F (κ2)(a) ∈ F (1 + 2) for 0, a with sum a.

Associativity of � requires more work. Assume a, b, c ∈ F (2) are given with
a ⊥ b, say with bound α ∈ F (3), and (a � b) ⊥ c, with bound β ∈ F (3). The
latter means F (∇1)(β) = a � b = F (! + id)(α). Thus we have a situation:

F (2 + 2)
��

F (id+ !) ��

F (!+id) 



F (2 + 1) � α

F (!+id)


β ∈ F (1 + 2)

F (id+ !)=F (∇1)
�� F (2)

Because this is a pullback that is preserved by F , see (10), there is a (unique)
element γ ∈ F (2+2) with F (id+ !)(γ) = α and F (!+id)(γ) = β. We first consider
the function h : 4 → 3 given by h(1) = h(4) = 3, h(2) = 1, and h(3) = 2. It
yields γ′ = F (h)(γ) ∈ F (3), which is a bound for b, c with sum b � c. We next
take the function k : 4 → 3 defined by k(1) = 1, k(2) = k(3) = 2, and k(4) = 3.
Now γ′′ = F (k)(γ) ∈ F (3) is a bound for a and b � c. Finally we get:

a � (b � c) = F (! + id)(γ′′) = F ((! + id) ◦ k)(γ)

= F ((! + id) ◦ (! + id))(γ)

= F (! + id)(β) = (a � b) � c.

The equation a⊥ � a = 1 can be proven via the bound α = F (h)(a) ∈ F (3) for
h : 2 → 3 defined by h(1) = 2 and h(2) = 1.

We leave it to the reader to check that a⊥ is the only element b ∈ F (2) with
b � a = 1, and proceed by showing 1 ⊥ a ⇒ a = 0. Assume thus 1 ⊥ a, say via
a bound α ∈ F (3) satisfying F (∇1)(α) = 1 = F (κ1)(∗) and F (∇2)(α) = a. The
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first equation allows us to use preservation by F of the second pullback in (10),
since ∇1 = id+ !. Hence we get α = F (κ1)(∗) for κ1 : 1 → 1 + 2, and thus:

a = F (∇2)(α) = F (∇2 ◦ κ1)(∗) = F (κ2)(∗) = 0.

Finally we have to prove functoriality of the mapping F �→ F (2). If we have
a natural transformation σ : F ⇒ G between convex functors F, G, then the
component σ2 : F (2) → G(2) is a map of effect algebras. It is easy to see that
it preserves 0, 1 ∈ F (2). Next, assume a, b ∈ F (2) are orthogonal, via bound
α ∈ F (3) satisfying F (∇1)(α) = a and F (∇2)(α) = b. Then σ3(α) ∈ G(3) is a
bound for σ2(a), σ2(b) ∈ G(2) by naturality. Hence σ2(a) ⊥ σ2(b). Further,

σ2(a) � σ2(b) = G(! + id)(σ3(α)) = σ2(F (! + id)(α)) = σ2(a � b). �
The main result is then the adjointness of these functors between effect algebras
and convex functors.

Theorem 23. The functor EA → CNV(Sets) from Proposition 21 given by
E �→ DE is left adjoint to the functor F �→ F (2) from Proposition 22.

Proof . For an effect algebra E and a convex endofunctor F on Sets we have
to prove that there is a bijective correspondence:

E
f �� F (2) in EA

============
DE σ

�� F in Conv(Sets)

The upward direction is easy: one maps σ : DE ⇒ F to:

σ =
(
E

∼= �� DE(2)
σ2 �� F (2)

)
It is not hard to see that this is a map of effect algebras.

The other direction requires more work. So suppose we have f : E → F (2)
in EA. We have to define a natural transformation f : DE ⇒ F . So assume
ϕ ∈ DE(X), say with supp(ϕ) = {x1, . . . , xn}. The elements ϕ(xi) ∈ E are
pairwise orthogonal, and thus so are f(ϕ(xi)) ∈ F (2). This means that there is
a (unique) bound β ∈ F (n + 1) with F (∇i)(β) = f(ϕ(xi)), and also:

F (! + id)(β) = �if(ϕ(xi)) = f(�iϕ(xi)) = f(1) = 1 = F (κ1)(∗).

Now we need to use that pullbacks of the following form are preserved by F .

n
��

! 



κ1 �� n + 1
!+id



1 κ1
�� 1 + 1 = 2

This yields a unique β′ ∈ F (n) with F (κ1)(β′) = β. Finally we put:

fX(ϕ) =
(
F (n

[x1,...,xn] �� X)(β′)
)
∈ F (X).

Remaining details are left to the reader. �
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An obvious next step is to extend this result to an adjunction between effect
algebras with multiplication—like [0, 1] has—and convex monads. It can form
part of a “triangle of adjunctions”, like in [5]. This will be elaborated elsewhere.

Acknowledgements. Thanks to Dion Coumans, Chris Heunen, Bas Spitters
and Jorik Mandemaker for feedback and/or helpful discussions.
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Abstract. We present CMN#, a process calculus for formally model-
ling and reasoning about Mobile Ad Hoc Networks (MANETs) and their
protocols. Our calculus naturally captures essential characteristics of
MANETs, including the ability of a MANET node to broadcast a mes-
sage to any other node within its physical transmission range, and to
move in and out of the transmission range of other nodes in the network.
In order to reason about cost-effective ad hoc routing protocols, we also
allow unicast and multicast communications as well as the possibility
for a node to control the transmission radius of its communications. We
show how to use our calculus to prove some useful connectivity properties
which can be exploited to achieve low-cost routing solutions.

1 Introduction

A Mobile Ad Hoc Network (MANET) is a self-configuring network of mobile
devices connected by wireless links. Each device in a MANET is free to move
independently in any direction, and will therefore change its links to other devices
frequently. Each node must forward traffic unrelated to its own usage, and then
be a router. The primary challenge in building a MANET is equipping each de-
vice to continuously maintain the information required to properly route traffic.
The devices communicate with each other via radio transceivers through the
protocol IEEE 802.11 (WiFi) [9]. This type of communication has a physical
scope, because a radio transmission spans over a limited area. Different protocols
are evaluated based on the packet drop rate, the routing overhead, the power
control, and other measures.

As mobile ad hoc networks communicate in a self organized way without
depending on any fixed infrastructure, they are the best solution for various
applications, ranging from the monitoring of herds of animals to supporting
communications in military battlefields and civilian disaster recovery scenarios.
Many of these applications require that nodes be mobile and be deployed with
little network planning. The mobility of nodes limits their size, which in turn
limits the energy reserves available to them. Moreover, in wireless networks,
bandwidth is precious and scarce. Thus energy and bandwidth conservation is a
key requirement in the design of MANETs.

Routing in ad hoc networks faces extreme challenges due to node mobil-
ity/dynamics and limited communication resources (energy and bandwidth).

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 20–31, 2010.
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Table 1. Syntax

Networks Processes

M,N ::= 0 Empty network P,Q,R ::= 0 Inactive process
|M1|M2 Parallel composition | c(x̃).P Input
| (νc)M Channel restriction | c̄L〈w̃〉.P Output
| n[P ]μl,r Node (or device) | [w1 = w2]P, Q Matching

| A〈w̃〉 Recursion

The routing protocols for mobile ad hoc networks have to adapt quickly to
frequent and unpredictable topology changes and must be parsimonious of com-
munication and processing resources. Moreover, since radio signals are likely to
overlap with others in a geographical area, a straightforward broadcasting by
flooding is usually very costly and will result in serious redundancy, contention,
and collision. For this reason, modern ad hoc routing protocols use unicast and
multicast communications to reduce the number of control packets (see, e.g.,
[1,2,7]). In addition, power aware protocols reduce the total energy consumption
by adjusting each node’s transmission power (e.g., radius) just enough to reach
up to the intended receivers only (see, e.g., [10]).

In this paper we present a calculus, named CMN#, for formally modelling and
reasoning about mobile ad hoc networks and their protocols. This is an extension
of CMN (Calculus of Mobile Ad Hoc Networks), proposed by Merro in [4]. It
naturally captures essential characteristics of MANETs, including the ability of
a MANET node to broadcast a message to any other node within its physical
transmission range, and to move in and out of the transmission range of other
nodes in the network. In our model the connectivity of a node is represented by
a location and a transmission radius. Broadcast communications are limited to
the transmission cell of the sender. Unicast and multicast communications are
modelled by specifying, for each output action, the addresses of the intended
recipients of the message. Moreover, the arbitrary and unexpected connections
and disconnections of nodes as well as the possibility for a node to dynamically
adjust its transmission power are represented by enabling nodes to modify the
corresponding transmission radius through internal actions.

We show how to use our calculus to prove some useful connectivity proper-
ties of MANETs which can be exploited to control power/energy consumption.
For instance, we can determine the minimum transmission radius ensuring the
connectivity of a node with all the intended recipients of its transmissions, thus
reducing power consumption.

2 The Calculus

We introduce the language CMN#, an extension of CMN (Calculus of Mobile
Ad Hoc Networks) [4], that models mobile ad hoc networks as a collection of
nodes, running in parallel, and using channels to broadcast messages. Our calcu-
lus extends CMN to support multicast and unicast communications. Moreover,
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it allows one to model the arbitrary and unexpected connections and disconnec-
tions of nodes in a network as well as the possibility for a node to administrate
power control by choosing the optimal transmission radius to communicate with
the desired receivers.

We use letters c and d for channels; m and n for nodes; l, k and h for locations;
r for transmission radii; x, y and z for variables. Closed values contain nodes,
locations, transmission radii and any basic value (booleans, integers, ...). Values
include also variables. We use u and v for closed values and w for (open) values.
We denote by ṽ, w̃ tuples of values.

The syntax of CMN# is shown in Table 1. This is defined in a two-level
structure: the lower one for processes, the upper one for networks. Networks
are collections of nodes (which represent devices), running in parallel, using
channels to communicate messages. As usual, 0 denotes the empty network and
M1|M2 represents the parallel composition of two networks. The restriction in
(νc)M acts as the standard CCS restriction (i.e., it does not perform any channel
creation). Processes are sequential and live within the nodes. Process 0 denotes
the inactive process. Process c(x̃).P can receive a tuple w̃ of (closed) values via
channel c and continue as P{w̃/x̃}, i.e., as P with w̃ substituted for x̃ (where
|x̃| = |w̃|). Process c̄L〈w̃〉.P can send a tuple of (closed) values w̃ via channel
c and continue as P. The tag L is used to maintain the set of locations of the
intended recipients: L = ∞ represents a broadcast transmission, while a finite set
of locations L denotes a multicast communication (unicast if L is a singleton).
Syntactically, L may be a variable, but it must be a set of locations when the
output prefix is ready to fire. Process [w1 = w2]P, Q behaves as P if w1 = w2,
and as Q otherwise. We write A〈w̃〉 to denote a process defined via a (possibly
recursive) definition A(x̃) def= P , with |x̃| = |w̃|, where x̃ contains all channels
and variables that appear free in P .

Each node, if connected, has a location and a transmission radius. Nodes
cannot be created or destroyed. We write n[P ]μl,r for a node named n (this is
the logic location of the device in the network), located at l, with transmission
radius r, mobility tag μ, and executing a process P . The tag μ is m for mobile
nodes, and s for stationary nodes; l denotes the physical location of the node.
To each node n is associated a maximum transmission radius rn; nodes may
control power consumption by dynamically adjusting their transmission radius
r provided that r ∈ [0, rn]. Notice that if r = 0 then the node is disconnected.

In the process c(x̃).P , the tuple x̃ is bound in P ; while in (νc)M , the channel
name c is bound in M . We denote by fv(·) and fc(·) free variables and channels,
respectively, and identify processes and networks up to α-conversion. Parallel
composition of networks has lower precedence with respect to restriction. We
denote by

∏
i∈IMi the parallel composition of networks Mi, for i ∈ I. We write

(νc̃)M as an abbreviation for (νc1)...(νck)M . To denote unicast communication,
we write cl for c{l}. We write c̄L〈w〉 for c̄L〈w〉.0, 0 for n[0]μl,r and [w1 = w2]P
for [w1 = w2]P,0. We assume that there are no free variables in a network
(while there can be free channels). Moreover, we assume that networks are well-
formed, i.e., each node identifier is unique and the corresponding transmission
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Table 2. Structural Congruence

n[[v = v]P, Q]μl,r ≡ n[P ]μl,r (Struct Then)
n[[v1 = v2]P, Q]μl,r ≡ n[Q]μl,r v1 �= v2 (Struct Else)

n[A〈ṽ〉]μl,r ≡ n[{ṽ/x̃}P ]μl,r if A(x̃) def= P ∧ |x̃| = |ṽ| (Struct Rec)
M |N ≡ N |M (Struct Par Comm)
(M |N)|M ′ ≡ M |(N |M ′) (Struct Par Assoc)
M |0 ≡M (Struct Zero Par)
(νc)0 ≡ 0 (Struct Zero Res)
(νc)(νd)M ≡ (νd)(νc)M (Struct Res Res)
(νc)(M |N) ≡ M |(νc)N If c /∈ fc(M) (Struct Res Par)
M ≡M (Struct Refl)
N ≡ M if M ≡ N (Struct Symm)
M ≡M ′′ if M ≡ M ′ ∧M ′ ≡M ′′ (Struct Trans)
M |M ′ ≡ N |M ′ ∀M ′ if M ≡ N (Struct Cxt Par)
(νc)M ≡ (νc)N ∀c if M ≡ N (Struct Cxt Res)

radius is compatible with the node’s power capacity. Formally, a network M ≡
n1[P1]

μ1
l1,r1

| n2[P2]
μ2
l2,r2

... | nk[Pk]μk

lk,rk
is well-formed if for i, j ∈ {1, . . . , k} it

holds that ni �= nj when i �= j and ri ∈ [0, rni ].

Reduction Semantics. The dynamics of the calculus is specified by the reduction
relation over networks (−→), described in Table 3. As usual, it relies on an auxili-
ary relation, called structural congruence (≡), defined in Table 2. We assume the
possibility of comparing locations in order to determine whether a node lies or
not within the transmission cell of another node. This is done through function
d(·, ·) which takes two locations and returns their distance.

Rule (R-Bcast) models the transmission of a tuple ṽ through a channel cL.
The set L associated to channel c indicates the locations of the intended recipi-
ents, even if broadcast communications are indeed performed. If L = ∞ then the
recipients set is the whole network (broadcast transmission), while a finite set L
(resp., a singleton) is used to denote a multicast (resp., a unicast) communicati-
on. In our calculus transmission is a non-blocking action: transmission proceeds
even if there are no nodes listening for messages. The messages transmitted will
be received only by those nodes which lie in the transmission area of the sender. It
may occur that some receivers within the range of the transmitter do not receive
the message. This may be due to several reasons that concern the instability
and dynamism of the network. In terms of observation this corresponds to a
local activity of the network which an observer is not party to. Rule (R-Rad)
models the possibility for a node n to control power consumption by changing
its transmission radius r into r′ provided that r′ ∈ [0, rn]. Rule (R-Move) models
arbitrary and unpredictable movements of mobile nodes. δ denotes the maximum
distance that a node can cover in a computational step. Notice that a node is
disconnected when its radius is set to 0. We denote by −→∗ the reflexive and
transitive closure of −→.
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Table 3. Reduction Semantics

(R-Bcast)
r �= 0, ∀i ∈ I.d(l, li) ≤ r, ri �= 0, |x̃i| = |ṽ|

n[c̄L〈ṽ〉.P ]μl,r |
∏

i∈Ini[c(x̃i).Pi]
μi

li,ri
−→ n[P ]μl,r |

∏
i∈Ini[Pi{ṽ/x̃i}]μi

li,ri

(R-Rad)
r′ ∈ [0, rn]

n[P ]μl,r −→ n[P ]μl,r′
(R-Move)

d(l, k) ≤ δ

n[P ]ml,r −→ n[P ]mk,r

(R-Par)
M −→ M ′

M |N −→ M ′|N
(R-Res)

M −→ M ′

(νc)M −→ (νc)M ′

(R-Struct)
M ≡ N N −→ N ′ N ′ ≡ M ′

M −→ M ′

Behavioral Semantics. The central actions of our calculus are transmission and
reception of messages. However, only the transmission of messages (over un-
restricted channels) can be observed. An observer cannot be sure whether a
recipient actually receives a given value. Instead, if a node receives a message,
then surely someone must have sent it. As usual, we adopt the term barb as a
synonymous of observable. In our definition of barb a transmission is consid-
ered an observable action only if at least one location in the set of the intended
recipients is able to receive the message.

Definition 1 (Barb). We write M ↓c if M ≡ (νd̃)(n[c̄L〈ṽ〉.P ]μl,r|M ′), with
c /∈ d̃ and ∃k ∈ L ∧ d(l, k) � r. We write M ⇓c if M −→∗ M ′ ↓c.

Notice that, if M ≡ (νd̃)(n[c̄L〈ṽ〉.P ]μl,r|M ′) and M ↓c then at least one of the
locations in L is actually able to receive the message.

To define our observation equivalence we will ask for the largest relation which
satisfies the following properties. Let R be a relation over networks:
Barb preservation. R is barb preserving if M RN and M ↓c implies N ⇓c.
Reduction closure. R is reduction closed if M RN and M −→ M ′ implies that
there exists N ′ such that N−→∗N ′ and M ′RN ′.
Contextuality. R is contextual if M RN implies C[M ]RC[N ] for any context
C[·], where a context is a network term with a hole [·] defined by:

C[·] ::= [·] | [·]|M | M |[·] | (νc)[·]

Definition 2 (Reduction barbed congruence). Reduction barbed congru-
ence, written ∼=, is the largest symmetric relation over networks, which is reduc-
tion closed, barb preserving, and contextual.
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Table 4. LTS rules for Processes

(Output)
−

c̄L〈ṽ〉.P
c̄Lṽ−−→ P

(Input)
−

c(x̃).P cṽ−→ P{ṽ/x̃}

(Then)
P

η−→ P ′

[ṽ = ṽ]P, Q
η−→ P ′

(Else)
Q

η−→ Q′ ṽ1 �= ṽ2

[ṽ1 = ṽ2]P, Q
η−→ Q′

(Rec)
P{ṽ/x̃} η−→ P ′ A(x̃) def= P

A〈ṽ〉 η−→ P ′

3 Bisimulation-Based Proof Method

In this section we develop a proof technique for the relation ∼=. More precisely,
we define a LTS semantics for CMN# terms, which is built upon two sets of
rules: one for processes and one for networks. Table 4 presents the LTS rules for
processes. Transitions are of the form P

η−→ P ′, where η ranges over input and
output actions of the form cṽ and c̄Lṽ, respectively. Table 5 presents the LTS
rules for networks. Transitions are of the form M

γ−→ M ′, where γ is as follows:

γ ::= c?ṽ@l | cL!ṽ[l, r] | c!ṽ@K | τ.

Rules for processes are simple and they do not need deeper explanations. Let us
illustrate the rules for networks. Rule (Snd) models the sending, with transmis-
sion radius r, of the tuple ṽ through channel c to a specific set L of recipients,
while rule (Rcv) models the reception of ṽ at l via channel c. Rule (Bcast) models
the broadcast message propagation: all the nodes lying within the transmission
cell of the sender may receive the message, regardless of the fact that they are
in L. Rule (Obs) models the observability of a transmission: every output action
may be detected (and hence observed) by any node located within the transmis-
sion cell of the sender. The action c!ṽ@K represents the transmission of the tuple
ṽ of messages via c to a set K of recipients in L, located within the transmission
cell of the transmitter. When K �= ∅ this is an observable action corresponding
to the barb ↓c. Rule (Lose) models both message loss and a local activity of the
network which an observer is not party to. As usual, τ -transitions are used to
denote non-observable actions. Rule (Move) models migration of a mobile node
from a location l to a new location k, where δ represents the maximum distance
that a node can cover in a single computational step. Rule (Rad) models the
possibility for a node n to change its transmission radius, provided that it is
within [0, rn]. Finally (Par) and (Res) are standard. Notice that since we do not
transmit channels, in our calculus there is no scope extrusion.

The following relationships between the LTS semantics and the reduction one
hold.
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Table 5. LTS rules for Networks

(Snd)
P

c̄Lṽ−−→ P ′

n[P ]μl,r
cL!ṽ[l,r]−−−−−→ n[P ′]μl,r

r �= 0 (Rcv)
P

cṽ−→ P ′

n[P ]μl,r
c?ṽ@l−−−−→ n[P ′]μl,r

r �= 0

(Bcast)
M

cL!ṽ[l,r]−−−−−→ M ′ N
c?ṽ@l′−−−−→ N ′ d(l, l′) ≤ r

M |N cL!ṽ[l,r]−−−−−→ M ′|N ′

(Obs)
M

cL!ṽ[l,r]−−−−−→ M ′ K ⊆ {k : d(l, k) ≤ r ∧ k ∈ L} K �= ∅
M

c!ṽ@K−−−−→ M ′

(Lose)
M

cL!ṽ[l,r]−−−−−→ M ′

M
τ−→ M ′ (Move)

d(l, k) ≤ δ

n[P ]ml,r
τ−→ n[P ]mk,r

(Rad)
r′ ∈ [0, rn]

n[P ]μl,r
τ−→ n[P ]μl,r′

(Par)
M

γ−→ M ′

M |N γ−→ M ′|N
(Res)

M
γ−→ M ′ c /∈ fc(γ)

(νc)M
γ−→ (νc)M ′

Lemma 1. Let M be a network.

1. If M
c?ṽ@l−−−−→ M ′, then there are n, P , μ, l, r, M1 and d̃, with c /∈ d̃, such

that M ≡ (νd̃)(n[c(x̃).P ]μl,r|M1) and M ′ ≡ (νd̃)(n[P{ṽ/x̃}]μl,r|M1).

2. If M
cL!ṽ[l,r]−−−−−→ M ′, then there are n, P , μ, l, r, M1, I (possibly empty),

and d̃, with c /∈ d̃, and ni, Pi, μi, li, ri, with d(l, li) ≤ r for all i ∈
I, such that: M ≡ (νd̃)(n[c̄L〈ṽ〉.P ]μl,r|

∏
i∈I ni[c(x̃i).Pi]

μi

li,ri
|M1) and M ′ ≡

(νd̃)(n[P ]μl,r|
∏

i∈I ni[Pi{ṽ/x̃i}]μi

li,ri
|M1).

Lemma 2. Let M be a network. It holds that (i) M ↓c if and only if M
c!ṽ@K−−−−→

for some tuple of values ṽ and set of locations K; (ii) if M
τ−→ M ′ then M −→M ′;

(iii) if M −→ M ′ then M
τ−→≡ M ′.

We now introduce a labelled bisimilarity that is a complete characterization
of our notion of reduction barbed congruence. We adopt the metavariable α to
range over those actions that will be used in the definition of labelled bisimilarity:

α ::= c?ṽ@l | c!ṽ@K | τ .

Since we are interested in weak behavioral equivalences, that abstract over τ -
actions, we introduce the notion of weak action. We denote by ⇒ the reflexive and
transitive closure of τ−→; we use c?ṽ@l=⇒ to denote ⇒ c?ṽ@l−−−−→⇒; we use c?ṽ@F=⇒ to denote
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Fig. 1. A mobile ad hoc network in an earthquake area

c?ṽ@l1=⇒ . . .
c?ṽ@ln=⇒ for F = {l1, . . . , ln}; we use c!ṽ@K=⇒ to denote c?ṽ@F1=⇒ c!ṽ@K1−−−−−→c?ṽ@F ′

1=⇒
. . .

c?ṽ@Fn=⇒ c!ṽ@Kn−−−−−→c?ṽ@F ′
n=⇒ for K =

⋃n
i=1 Ki, F =

⋃n
i=1(Fi ∪ F ′

i ) and F ∩K = ∅;
finally, α̂=⇒ denotes ⇒ if α = τ and α=⇒ otherwise.

Notice that c!ṽ@K=⇒ means that a distributed observer receiving an instance of
message ṽ, at each location in K, in several computational steps, cannot assume
that those messages belong to the same broadcast transmission, but they may
be different transmissions of the same message. The presence of the weak input
actions c?ṽ@Fi=⇒ are due to the fact that we want to ignore all the inputs executed
by each location which is not included in the set of the intended receivers.

Definition 3 (Labelled bisimilarity). A binary relation R over networks is
a simulation if MRN implies:

- If M
α−→ M ′, α �= c?ṽ@l, then there exists N ′ such that N

α̂=⇒ N ′ with
M ′RN ′;

- If M
c?ṽ@l−−−−→ M ′ then there exists N ′ such that either N

c?ṽ@l=⇒ N ′ with M ′RN ′

or N ⇒ N ′ with M ′RN ′.

We say that N simulates M if there is some simulation R such that MRN . A
relation R is a bisimulation if both R and its converse are simulations. Labelled
bisimilaty, written ≈, is the largest bisimulation over networks.

Labeled bisimilarity is a valid proof method for reduction barbed congruence.

Theorem 1. Let M and N be two well-formed networks. Then, M ∼= N if and
only if M ≈ N .

4 Properties of Mobile Ad Hoc Networks

In this section we use CMN# to define and prove some useful properties of mobile
ad hoc networks.
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We consider a running example, depicted in Figure 1, describing the case of
an emergency due to an earthquake. The hospital (H) sends three ambulances
(A1, A2, A3) to the emergency area. An ad hoc network is installed to manage
the communication between the ambulances, placing a router near the epicenter
(e) of the earthquake.

We assume that for each process P executed by a network node, it is possible
to identify the set of all the intended recipients that may appear in an output
action performed by P . We denote by rcv(P ) the minimum set of locations
ensuring that for each output action c̄L〈w̃〉 performed by P it holds that L ⊆
rcv(P ). Indeed, the tag L associated to an output action occurring in P can be
either a variable or a set of locations, then we are not able to statically calculate
rcv(P ). However, since an ad hoc network is usually designed to guarantee
the communications within a specific area, we can reasonably assume that the
underling protocol will always multicast messages to recipients located within the
interested area and we can abstractly represent them by a finite set of locations.

Radius of maximum observability. We can define a “radius of maximum observ-
ability”, that is a radius ensuring the correct reception of a message from all
the locations in the recipients set. In particular, we define the “minimum ra-
dius of maximum observability”, which corresponds to the distance between the
sender of the message and the most distant recipient. Clearly, this property is
relevant only for stationary nodes, since mobile nodes can always move within
the transmission cell of the transmitter to receive the communication.

Consider two different static devices lying at the same location and execut-
ing the same code, but with different power capacities. The behaviour of those
devices will be different only if they are able to reach distinct sets of intended
receivers. The next theorem shows that if a device can reach all its intended
receivers, then it behaves as every other device lying at the same location and
executing the same code, but with a larger transmission radius.

Theorem 2 (Radius of maximum observability). Let n[P ]sl,r be a station-
ary node located at l such that rcv(P ) = L and d(l, k) � rn for all k ∈ L. Then
n[P ]sl,r ≈ m[P ]sl,r′ for every node m such that rm ≥ rn. In this case, we say that
rn is a radius of maximum observability for n[P ]sl,r.

The minimum radius of maximum observability can be defined as the smallest
radius a node can choose in order to reach all its intended recipients.

Definition 4 (Minimum radius of maximum observability). Let n[P ]sl,r
be a stationary node such that rcv(P ) = L and rn is a radius of maximum
observability for n[P ]sl,r. A radius r′ is said the minimum radius of maximum
observability for n[P ]sl,r if r′ ≤ rn and for all k ∈ L it holds that d(l, k) ≤ r′ and
for all r′′ < r′ there exists k′ ∈ L such that d(l, k′) ≥ r′′.

In our example, we can assume that the earthquake has damaged a delimited
area and the rescuers need to communicate only within this emergency area. We
can then determine the minimum transmission radius which ensures the central
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server of the hospital to be able to communicate with the ambulances sent for
assistance in the disaster area.

The notion of minimum radius of maximum observability is relevant when
dealing with the problem of power saving, since it provides us a with way of
reducing the transmission power of a node without loosing connectivity within
the whole network.
Simulation of stationary nodes in different locations. The tag L associated to
each output action allows us to express a property of simulation for stationary
devices in different locations. Indeed, two stationary nodes, placed at different
locations (with therefore different neighbors), but communicating with the same
set of intended recipients, result to be observational equivalent.

Theorem 3 (Simulation of stationary nodes at different locations). Let
n[P ]sln,r and m[P ]slm,r′ be two stationary nodes located at ln and lm, respectively.
Assume rcv(P ) = L, K = {k | d(ln, k) ≤ rn ∧ k ∈ L} and K ′ = {k | d(lm, k) ≤
rm ∧ k ∈ L}. It holds that

1. If K ′ ⊆ K, then n[P ]sln,r simulates m[P ]slm,r′ ;
2. If K = K ′, then n[P ]sln,r ≈ m[P ]slm,r′ .

This property is useful, e.g., to minimize the number of routers within a network
area while ensuring the correct communication between a given set of locations.
If two different routers result to exhibit the same behaviour, then one of them
can be turn off, thus allowing us to save both power and physical resources.
Range repeaters. Range repeaters are devices which regenerate a network signal
in order to extend the range of the existing network infrastructure. Here we gene-
ralize the definition of repeater given in [4] and introduce a notion of complete
range repeater. We consider range repeaters with both one and two channels.

Definition 5. Let c and d be two channels, lrr be a fixed location, rrr be a
transmission radius and L be a set of locations. A repeater with two channels
relative to L is a stationary device, denoted by rr[c ↪→L d]slrr ,r, where c ↪→L d is
the recursive process defined by:

c ↪→L d
def= c(x).d̄L〈x〉.c ↪→L d.

A range repeater with two channels receives values through the input channel
and retransmits them through the output channel. A range repeater with one
channel operates likewise, but input and output channels coincide.

Range repeaters are usually exploited to enlarge the transmission cell of a
stationary node and, if such a node always communicates with the same set of
devices, each time through the same channel, by using a range repeater we can
simulate the presence of the sender in the location of the repeater. In our running
example, if we consider the distance between the hospital and the earthquake
area, we may have that this is too large to guarantee the correct communication
with the ambulances running up in the emergency area. It could be necessary to
employ a range repeater powerful enough to cover all the area and, at the same
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Fig. 2. A range repeater in the earthquake area

time, to be reachable by the central server of the hospital. If the earthquake
epicenter is too distant from the hospital we can install a series of consecutive
repeaters, which will connect the central server to the disaster area.

Theorem 4 (Range repeaters with one channel). Let n[P ]sl,r be a sta-
tionary node such that fc(P ) ⊆ {c} for some channel c and rcv(P ) = L. Let
rr[c ↪→L c]slrr ,r′ be a range repeater with d(l, lrr) ≤ rn ≤ rrr. Then:

n[P ]sl,r | rr[c ↪→L c]slrr,r′ simulates n[P ]slrr ,r.

The simulation just described can be realized also with a two-channels range
repeater. Using two channels, however, two range repeaters are needed, one for
input (in[d ↪→L c]sl,r′) and one for output (out[c ↪→L d]sl,r′′) management.

Theorem 5 (Range repeaters with two channels). Let n[P ]sl,r be a sta-
tionary node such that fc(P ) ⊆ {c} for some channel c and rcv(P ) = L. Let
in[d ↪→L c]sk,r′ and out[c ↪→L d]sk,r′′ be two range repeaters with d(l, k) ≤ rin ≤
rn ≤ rout. Then:

n[P ]sl,r | in[d ↪→L c]sk,r′′ | out[c ↪→L d]sk,r′ simulates n[P{d/c}]sk,r.

We introduce the notion of complete range repeater, that is a repeater which has
a radius large enough to reach all its intended recipients.

Definition 6 (Complete range repeater). A range repeater rc[c ↪→L c]slrc,r

is said complete with respect to L if L ⊆ K where K = {k : d(lrc, k) � rrc}.

Consider our running example and suppose that a repeater is installed to allow
the central server of the hospital to communicate with the ambulances dispatched
in the emergency area (see Figure 2). The repeater can be chosen in such a way to
guarantee that its transmission radius covers the complete area of the disaster.
This is an example of a complete range repeater, whose radius is a radius of
maximum observability for the entire earthquake area.
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Theorem 6 (Complete range repeaters). Let n[P ]sl,r be a stationary node
such that fc(P ) ⊆ {c} for some channel c and rcv(P ) = L. Let rc[c ↪→L c]slrc,r′

be a complete range repeater with respect to L and d(l, lrc) ≤ rn. Then all the
recipients in L are reachable by n, i.e., ∀k ∈ L, it holds that d(k, l) � (rn + rrc).

5 Conclusion

Ad hoc networks is a new area of mobile communication networks that has
attracted significant attention due to its challenging research problems. Many
researchers have proposed formal models, such as a process calculus, in order to
reason on their properties and problems (see, e.g., [8,3,5,6]).

In this paper we extended CMN by associating a tag to each transmission;
the tag represents a set of nodes (message receivers) and enables us to prove
some important properties concerning the observability of transmissions. For
example we have defined the minimum radius of maximum observability, that
is the minimum radius ensuring that a packet is reachable by all its receivers;
moreover we proved that, under some specific conditions, stationary nodes lying
in different locations might have the same behavior. Such properties can be used
to reduce the transmission power of a node without loosing connectivity within
the whole network.
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Abstract. This paper characterises the coarsest refinement preorders
on labelled transition systems that are precongruences for renaming and
partially synchronous interleaving operators, and respect all safety, live-
ness, and conditional liveness properties, respectively.

1 Introduction

The goal of this paper is to define and characterise certain semantic equivalences
≡ and refinement preorders � on processes. The idea is that p ≡ q says, essen-
tially, that for practical purposes processes p and q are equally suitable, i.e. one
can be replaced for by the other without untoward side effects. Likewise, p � q
says that for all practical purposes under consideration, q is at least as suitable
as p, i.e. it will never harm to replace p by q. Thus, one should have that p ≡ q
iff both p � q and q � p.

Naturally, the choice of ≡ and � depends on how one models a process, and
what range of practical purposes one considers. I this paper I restrict myself
to one of the most basic process models: labelled transition systems. I study
processes that merely perform actions a, b, c, . . . which themselves are not subject
to further investigations. These actions may be instantaneous or durational, but
they may not last forever; moreover, in a finite amount of time only finitely
many actions can be carried out. I distinguish between visible actions, that can
be observed by the environment of a process, and whose occurrence can be
influenced by this environment, and invisible actions, that cannot be observed
of influenced. Since there is no need to distinguish different invisible actions,
I can just as well consider all of them to be occurrences of the same invisible
action, which is traditionally called τ . Furthermore, I abstract from real-time
and probabilistic aspects of processes.

This choice of process model already rules out many practical purposes for
which one process could be more suitable than another. I can for instance not
compare processes on speed, since this is an issue that my process model has
already abstracted from. In fact, the only aspects of processes that are captured
by such a model and that may matter in practical applications, are the sequences
of actions that a process may perform in a, possibly infinite, run, performed
in, or in collaboration with, a certain environment. As the invisible action is
by definition unobservable, it moreover suffices to consider sequences of visible
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actions. A sequence of visible actions that a process p may perform is called a
trace of p; it is a complete trace if it is performed during a maximal run of p,
one that cannot be further extended. Obviously, the traces of p are completely
determined by the complete traces of p, namely as their prefixes.

Based on the considerations above, it is tempting to postulate that the rele-
vant behaviour of a process, as far as discernible in terms of labelled transition
systems, is completely determined by its set of complete traces; hence two pro-
cesses should be equivalent if they have the same competed traces. However, this
argument bypasses the role of the environment in influencing the behaviour of a
process. Often, one allows the actions a process performs to be synchronisations
with the environment, and the environment can influence the course of action
of a process by synchronising with some actions but not with others. Therefore,
a safe over-approximation of the relevant behaviour of a process is not merely
its set of complete traces, but rather its set of complete traces obtained as a
function of the environment the process is running in.

In this paper I consider a neutral environment in which all courses of action
are possible and the behaviour of a process is indeed determined by its complete
traces. All other ways in which the environment may influence the behaviour of
a process are given in terms of contexts build from other processes and certain
composition operators. It could for instance be that in the neutral environment
there is no way to tell the difference between processes p and q; maybe be-
cause they have the same set of complete traces. However, for a suitable parallel
composition operator ‖ and other process r it may be that there is a manifest
practical difference between p‖r and q‖r, so that one has p‖r �≡ q‖r. Now that
fact alone is taken to be enough reason to postulate that p �≡ q. Namely the
difference between p and q can be spotted by placing them in a context ‖r.
This context can be regarded as an environment in which the behaviours of p
and q differ.

Following this programme, a suitable semantic equivalence on processes is
defined in terms of two requirements. First of all the behaviour of processes is
compared in the neutral environment. This entails isolating a class C of properties
ϕ of processes that are deemed relevant in a given range of applications. One
then requires for p ≡ q to hold that p and q have the same properties from this
class:

p ≡ q ⇒ ∀ϕ ∈ C. (p |= ϕ ⇔ q |= ϕ) (1)

where p |= ϕ denotes that process p has the property ϕ. An equivalence ≡
that satisfies this last requirement is said to respect or preserve the properties
in C. The second requirement entails selecting a class O of useful operators for
combining processes. One then requires that for any context C[ ] (such as ‖r)
built from operators from O and arbitrary processes, that

p ≡ q ⇒ C[p] ≡ C[q]. (2)

An equivalence ≡ that satisfies this last requirement is called a congruence for O.
For the sake of intuition it may help to consider the contrapositive formulation of
these implications: if there exists a property ϕ in C that holds for p but not for q,
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or vice versa, then p and q cannot be considered equivalent. Likewise C[p] �≡ C[q]
implies p �≡ q.

These two requirements merely insist that the desired equivalence ≡ does not
identify processes that in some context differ on their relevant properties. They
are satisfied by many equivalence relations, including the identity relation, that
distinguishes all processes. In order to characterise precisely when two systems
have the same relevant properties in any relevant context, one takes the coarsest
equivalence satisfying (1) and (2); the one making the most identifications. This
equivalence is called fully abstract w.r.t. C and O. It always exists, and, as is
straightforward to check, is characterised by

p ≡ q ⇔ ∀O-context C[ ]. ∀ϕ ∈ C. (C[p] |= ϕ ⇔ C[q] |= ϕ).

When, for a certain application, the choice of C and O is clear, the unique
equivalence relation that is fully abstract w.r.t. C and O is the right semantic
equivalence for that application. However, when the choice of C and O is not
clear, or when proving results that may be re-used in future applications that
may call for extending C or O, it is better to err on the side of caution, and
use equivalences that satisfy (1) and (2) but need not be fully abstract; instead
the finest equivalence ≡fine for which a result p ≡fine q can be proved is often
preferable, because this immediately entails that p ≡ q for any coarser equiva-
lence relation ≡, in particular for an ≡ that may turn out to be fully abstract
for some future choice of C and O. It is for this reason that much actual verifica-
tion work employes the finest equivalences that lend themselves for verification
purposes, such as the various variants of bisimulation equivalence [12], see e.g.
[1]. Nevertheless, this paper is devoted to the characterisation of fully abstract
equivalences, and preorders, for a few suitable choices of C and O.

The programme for refinement preorders proceeds along the same lines, but
here it is important to distinguish between good and bad properties of processes.
The counterpart of (1) is

p � q ⇒ ∀ϕ ∈ G. (p |= ϕ ⇒ q |= ϕ) (3)

where G is the set of good properties within C, those that for some applications
may be required of a process. If this holds, � respects or preserves the properties
in G. When dealing with bad properties, those that in some applications should
be avoided, the implication between p |= ϕ and q |= ϕ is oriented in the other
direction. Since every bad property ϕ can be reformulated as a good property
¬ϕ, there is no specific need add a variant of (3) for the bad properties. The
counterpart of (2) is simply

p � q ⇒ C[p] � C[q]. (4)

and a preorder � that satisfies this requirement is called a precongruence for
O. Now the preorder that is fully abstract w.r.t. G and O always exists, and is
characterised by

p � q ⇔ ∀O-context C[ ]. ∀ϕ ∈ G. (C[p] |= ϕ ⇒ C[q] |= ϕ).
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It is the coarsest precongruence for O that respects the properties in G. A char-
acterisation of the preorder � that is fully abstract w.r.t. a certain G and O
automatically yields a characterisation of the equivalence ≡ that is fully ab-
stract w.r.t. G and O, as one has p ≡ q iff both p � q ∧ q � p.

In this paper I will propose three main candidates for the set G of good prop-
erties: safety properties in Section 3, liveness properties in Section 4 and condi-
tional liveness properties in Section 5. For the sake of theoretical completeness
I moreover address general linear time properties in Section 6.

In Section 2 I will define my model of labelled transition systems and propose
a class of C of operators that appear useful in applications to combine processes.
My favourite selection contains

• the partially synchronous interleaving operator of CSP [15],
• abstraction or concealment [3,15]
• and the state operator [2],

or any other basis that is equally expressive. With each of the four choices for G this
set of operators determines a fully abstract preorder, which will be characterised
in Sections 3, 4, 5 and 6. It turns out that the resulting preorders are somewhat
robust under the precise choice of operators for which one imposes a precongruence
requirement: the same ones are obtained already without using concealment, and
using merely injective renaming instead of the more general state operator. In the
other direction, I could just as well have used all operators of CSP.

2 Labelled Transition Systems and a Selection of
Composition Operators

Let Σ∗ denote the set of finite sequences over a given set Σ, and Σ∞ the set
of infinite ones; Σω := Σ∗ ∪ Σ∞. Write ε for the empty sequence, σρ for the
concatenation of sequences σ ∈ Σ∗ and ρ ∈ Σω, and a for the sequence consisting
of the single symbol a ∈ Σ. Write σ ≤ ρ for “σ is a prefix of ρ”, i.e. “ρ = σ ∨
∃ν ∈ Σ∗.σν = ρ”, and ρ < σ for “σ ≤ ρ and σ �= ρ”.

I presuppose an infinite action alphabet A, not containing the silent action τ ,
and set Aτ = A ∪ {τ}.

Definition 1. A labelled transition system (LTS) is a pair (IP,→), where IP is
a class of processes or states and → ⊆ IP ×Aτ × IP is a set of transitions, such
that for each p ∈ IP and α ∈ Aτ the class {q ∈ IP | (p, α, q) ∈→} is a set.

Assuming a fixed transition system (IP,→), I write p α−→ q for (p, α, q) ∈ →;
this means that process p can evolve into process q, while performing the action
α. The ternary relation =⇒ ⊆ IP×A∗ × IP is the least relation satisfying

p
ε=⇒ p ,

p τ−→ q

p
ε=⇒ q

,
p a−→ q, a �= τ

p
a=⇒ q

and
p

σ=⇒ q
ρ

=⇒ r

p
σρ
=⇒ r

.

This enables a formalisation of the concepts of traces and complete traces from
the introduction.
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Definition 2. Let p ∈ IP.
• p is deterministic if, for any σ ∈ A∗, p

σ=⇒ q1 and p
σ=⇒ q2 implies that

q1 = q2 and q1 �τ−→ r.
• p deadlocks, notation p �→, if there are no α ∈ Aτ and q ∈ IP with p

α−→ q.
• p is locked if it can never do a visible action, i.e. if p

a=⇒ q for no a ∈A and
q ∈ IP.

• p diverges, notation p⇑, if there are pi ∈ IP for all i > 0 such that p
τ−→

p1
τ−→ p2

τ−→ · · ·.
• a1a2a3 · · · ∈ A∞ is an infinite trace of p if there are p1, p2, . . . ∈ IP such that

p
a1=⇒ p1

a2=⇒ p2
a3=⇒ · · ·.

• inf (p) denotes the set of infinite traces of p.
• ptraces(p) := {σ ∈ A∗ | ∃q. p

σ=⇒ q} is the set of partial traces of p.
• traces(p) := inf (p) ∪ ptraces(p) is the set of traces of p.
• deadlocks(p) := {σ ∈ A∗ | ∃q. p

σ=⇒ q �→} is the set of deadlock traces of p.
• diverg(p) := {σ ∈ A∗ | ∃q. p

σ=⇒ q⇑} is the set of divergence traces of p.
• CT (p) := inf (p)∪diverg (p)∪deadlocks (p) is the set of complete traces of p.

Note that traces(p) = {σ ∈ Aω | ∃ρ ∈ CT (p). σ ≤ ρ}.
To justify that CT (p) is indeed a correct formalisation of the set of complete

traces of p, I postulate that in a neutral environment, if a process p ∈ IP has any
outgoing transition p α−→ q, then within a finite amount of time it will do one
its outgoing transitions. This is called a progress property; it says that a process
will continue to make progress if possible.

As explained in the introduction, whether a fully abstract equivalence identi-
fies processes p and q may depend on the existence of a third process r such that
p‖r can be distinguished from q‖r. When restricting attention to a particular
labelled transition system (IP,→) it might happen that a perfectly reasonable
candidate r happens not to be a member of IP, and thus that the conclusion
p ≡ q is arrived at solely as a result underpopulation of IP. To obtain the most
robust notions of equivalence, I therefore assume my LTS to be universal, in the
sense that up to isomorphism it contains any process one can imagine.

Definition 3. An LTS (IP,→IP) is universal if for any other LTS (Q,→Q) there
exists an injective mapping f : Q → IP, called an embedding, such that, for any
q ∈ Q and p′ ∈ IP one has f(q) α−→IP p′ iff p′ ∈ IP has the form f(q′) for some
q′ ∈ Q with q α−→Q q′.

The existence of a universal LTS has been established in [7]. Here one needs IP
to be a proper class. All preorders � that I consider in this paper are defined
on arbitrary LTSs and have the property that q � q′ ⇔ f(p) � f(q′), for any
embedding f . This means that they are precongruences for isomorphism, and
only take into account the future behaviour of processes, i.e. in determining
whether p � q transitions leading to p or q play no rôle. Thus, a definition of
such a preorder on a universal LTS, implicitly also defines it on any other LTS.

I will now do a proposal for the set O that will be my default choice in this
paper. It consists of three operators for combining processes that appear useful
in practical applications.



The Coarsest Precongruences Respecting Safety and Liveness Properties 37

Table 1. Partially synchronous interleaving, abstraction, and the state operator

p
α−→ p′

p‖Sq
α−→ p′‖Sq

(α�∈S)
q

α−→ q′

p‖Sq
α−→ p‖Sq′

(α�∈S)
p

a−→ p′ q
a−→ q′

p‖Sq
a−→ p‖Sq′

(a∈S)

p
α−→ p′

τI(p) α−→ τI(p
′)

(α�∈I)
p

a−→ p′

τI(p) τ−→ τI(p
′)

(a∈I)

p
τ−→ p′

λm
s (p) τ−→ λm

s (p′)

p
a−→ p′

λm
s (p) −−a(m,s)−→ λm

s(m,a)(p
′)

The first is the partially synchronous interleaving operator of CSP [15]. It
is parametrised with a set S ⊆ A of visible actions on which it synchronises:
the composition p‖Sq can perform an action from S only when both p and q
perform it. All other actions from p and q are interleaved: whenever one of the
two components can perform such an action, so can the composition, while the
other component doesn’t change its state. Formally, for any choice of S ⊆ A,
‖S : IP × IP → IP is a binary operator on IP such that a process p‖Sq can make
an α-transition iff this can be inferred by the first three rules of Table 1 from
the transitions that p and q can make. Here a ranges over A and α over Aτ .

A context ‖Sr is widely regarded as a plausible way of modelling an envi-
ronment that partially synchronises with processes under investigation. It is for
this reason I include it in O. This argument does not hold for many other pro-
cess algebraic operators, such as the choice operator + of CCS [12]. This is an
example of an operator that is useful for describing particular processes, but a
context +r does not really model a reasonable environment in which one wants
to run processes under investigation. For reasons of algebraic convenience, being
a precongruence for the + is an optional desideratum of refinement preorders,
but it is not such an overriding requirement as being a precongruence for ‖S .

The second operator nominated for membership of O is the unary abstraction
operator τI of ACPτ [3], also known as the concealment operator of CSP [4,15].
This operator models a change in the level of abstraction at which processes are
regarded, by reclassifying visible actions as hidden ones. It is parametrised with
the set I ⊆ A of visible actions that one chooses to abstract from, and formally
defined by the next two rules of Table 1. Abstraction from internal actions by
such a mechanism is an essential part of most work on verification in a process
algebraic setting, and a context τI( ) represents a reasonable environment in
which to evaluate processes.

My final nominee for the set O of useful composition operators is the state
operator λm

s of [2]. This unary operator formalises an interface between a pro-
cess and its environment that is able to rename actions: if its argument process
performs an action b, the interface λm

s ( ) may pass on this action to the envi-
ronment as c, thereby opening up the possibility of synchronisation with another
occurrence of c when using a composed context λm

s ( )‖Sr. Furthermore, the in-
terface may remember the actions that have been performed to far, and make
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its renaming behaviour dependent on this history. For instance, if its argument
p performs two a-actions in a row, λm

s (p) may pass these on to the environment
as a1 and a2, respectively.

The state operator λm
s is parametrised with an interface specification

m = (S,action, effect), consisting of set S of internal states, and functions
action : S ×A → A and effect : S ×A → S, as well as a current state s ∈ S.
Here action is a function that renames actions performed by an argument pro-
cess p into actions performed by the interface λm

s (p); the renaming depends on
the internal state of the state operator, and thus is of type S ×A → A. effect

specifies the transformation of one internal state of the state operator into an-
other, as triggered by the the encounter of an action of its argument process;
it thus is of type S × A → S. Traditionally, one writes a(m, s) for action(s, a)
and s(m, a) for effect(s, a). So a(m, s) denotes the action a, as modified by the
interface m in state s, whereas s(m, a) denotes the internal state s, as modified
by the occurrence of action a of the argument process within the scope of the
interface m. With this notation, the formal definition of the state operator is
given by the last two rules of Table 1.

The special case of a state operator with a singleton set of internal states is
known as a renaming operator. Renaming operators occur in the languages CCS
[12] and CSP [4,15]. Here I denote a renaming operator as λm, where the re-
dundant subscript s is omitted, and m trivialises to a function action : A → A.
I speak of an injective renaming operator if action(a) = action(b) implies
a = b. For any injective renaming operator λm there exists an inverse renaming
operator λ−m (not necessarily injective) such that for all p ∈ IP, the process
λ−m(λm(p)) behaves exactly the same as p—they are equivalent under all no-
tions of equivalence considered in this paper.

3 Safety Properties

A safety property [9] is a property that says that

something bad will never happen.

To formulate a canonical safety property, assume that my alphabet of visible
actions contains one specific action b, whose occurrence is bad. The canonical
safety property now says that b will never happen.

Definition 4. A process p satisfies the canonical safety property, notation
p |= safety(b), if no trace of p contains the action b.

To arrive at a general concept of safety property for labelled transition systems,
assume that some notion of bad is defined. Now, to judge whether a process
p satisfies this safety property, one should judge whether p can reach a state
in which one would say that something bad had happened. But all observable
behaviour of p that is recorded in a labelled transition system until one comes
to such a verdict, is the sequence of visible actions performed until that point.
Thus the safety property is completely determined by the set sequences of visible
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actions that, when performed by p, lead to such a judgement. Therefore one can
just as well define the concept of a safety property in terms of such a set.

Definition 5. A safety property of processes in an LTS is given by a set B ⊆ A∗.
A process p satisfies this safety property, p |= safety(B), when ptraces(p)∩B = ∅.

This formalisation of safety properties is essentially the same as the one in [9]
and all subsequent work on safety properties; the only, non-essential, difference is
that I work with transition systems in which the transitions are labelled, whereas
[9] and most related work deals with state-labelled transition systems.

A property is called trivial if it either always holds or always fails. Trivial
properties are respected by any equivalence. The sets B := ∅ and B := {ε}
specify trivial safety properties.

Theorem 1. A precongruence for the state operator respects every safety prop-
erty iff it respects the canonical safety property.

Proof: “Only if ” follows because the canonical safety property is in fact a safety
property, namely the one with B being the set of those sequences that contain
the action b.

“If ”: I use here a state operator that remembers exactly what sequence of
actions has occurred so far. Thus the set of internal states of its interface speci-
fication m is A∗, and furthermore σ(m, a) := σa for all σ ∈ A∗ and a ∈ A. Now
given a safety property B ⊆ A∗, let b ∈ A be the special “bad” action, and d ∈ A

be a different “neutral” action. Define a(m, σ) :=
{

b if σa ∈ B
d otherwise.

Then λm
ε (p) |= safety(b) iff p |= safety(B). Thus, if p � q and p |= safety(B),

then λm
ε (p) � λm

ε (q) and λm
ε (p) |= safety(b). Hence λm

ε (q) |= safety(b), so
q |= safety(B). �

Being locked (see Definition 2) is a safely property, namely with B the set of all
sequences over A∗ of length 1. It can be understood this way by regarding any
occurrence of an action as bad.

Theorem 2. A precongruence for abstraction that respects the property of be-
ing locked, respects the canonical safety property.

Proof: Let � be a precongruence for abstraction that respects the property
of being locked, and suppose that p � q. Let I := A \ {b}. Then τI is an
operator that renames all actions other than b into τ ; thus if a process of the
form τI(r) ever performs a visible action, it must be b. Now p |= safety(b) ⇔
τI(p) |= safety(b) ⇔ τI(p) is locked ⇒ τI(q) is locked ⇔ τI(q) |= safety(b) ⇔
q |= safety(b). �

By combining Theorems 1 and 2 one obtains:

Corollary 1. A precongruence for abstraction and for the state operator that
respects the property of being locked, respects all safety properties.
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Theorem 3. Any precongruence for O that respects a single nontrivial safety
property, respects every safety property.

Proof: Let � be a precongruence for O that respects safety(B), where B ⊆ A∗,
B �= ∅ and ε �∈ B. Let σ ∈ A∗ and a ∈ A be such that σa ∈ B, and no prefix
ρ ≤ σ of σ is in B. Let safety(a) be the canonical safety property, but with
a playing the role of b. Naturally, Theorem 1 holds for this renamed canonical
safety property as well. Hence it suffices to show that � respects the property
safety(a). Let I := A\{a}. Then τI is an operator that renames all actions other
than a into τ ; thus if a process of the form τI(s) ever performs a visible action,
it must be a. Let rσ be a process with CT (r) = {σ} and rσa be a process with
CT (r) = {σa}. Then, for any choice of s ∈ IP, (τI(s)‖∅rσ)‖Arσa is a process
all of whose traces are prefixes of σa, with σa ∈ ptraces((τI(s)‖∅rσ)‖Arσa) iff
a ∈ ptraces(τI(s)), which is the case iff s �|= safety(a). Suppose p � q. Then
(τI(p)‖∅rσ)‖Arσa � (τI(q)‖∅rσ)‖Arσa and

p |= safety(a) ⇔ (τI(p)‖∅rσ)‖Arσa |= safety(B) ⇒
(τI(q)‖∅rσ)‖Arσa |= safety(B) ⇔ q |= safety(a). �

Let �safety denote the preorder that is fully abstract w.r.t. the class of safety
properties and O. The following, well-known, theorem characterises this preorder
as reverse partial trace inclusion.

Theorem 4. p �safety q ⇔ ptraces(p) ⊇ ptraces(q).

Proof: Define reverse partial trace inclusion, �−1
T , by p �−1

T q iff ptraces(p) ⊇
ptraces(q).

“⇐”: It suffices to establish that �−1
T is a precongruence for O that respects

all safety properties.
That �−1

T is a precongruence for O follows immediately from the following
observations:

ptraces(p‖Sq) = {σ ∈ ν‖Sξ | ν ∈ ptraces(p) ∧ ξ ∈ ptraces(q)}
ptraces(τI(p)) = {τI(σ) | σ ∈ ptraces(p)}

ptraces(λm
s (p)) = {λm

s (σ) | σ ∈ ptraces(p)}.

Here ν‖Sξ denotes the set of sequences of actions for which is it possible to
mark each action occurrence as left, right or both, obeying the restriction that
an occurrence of action a is marked both left and right iff a ∈ S, such that the
subsequence of all left -labelled action occurrences is ν and the subsequence of
all right -labelled action occurrences is ξ. Furthermore, the operators τI and λm

s

on A∗ are uniquely determined by

τI(ε) = ε τI(aσ) =
{

τI(σ) if a ∈ I
aτI(σ) otherwise

λm
s (ε) = ε λm

s (aσ) = a(m, s)λm
s(m,a)(σ).

To show that �−1
T respects all safety properties, let B ⊆ A∗, p �−1

T q, and
suppose p |= safety(B). Then ptraces(q) ⊆ ptraces(p) and ptraces(p) ∩ B = ∅.
Thus ptraces(q) ∩B = ∅, i.e. q |= safety(B), which had to be shown.



The Coarsest Precongruences Respecting Safety and Liveness Properties 41

“⇒”: Let � be any precongruence for O that respects all safety properties,
and suppose p � q. I have to establish that p �−1

T q. Let B := A∗ \ ptraces(p).
Then p |= safety(B). Thus q |= safety(B), i.e. ptraces(q) ∩ (A∗ \ ptraces(p)) = ∅.
This yields ptraces(q) ⊆ ptraces(p). �

The above characterisation as reverse partial trace inclusion of the coarsest con-
gruence forO that respects all safety properties, is rather robust under the choice
of O. It holds already for the empty class of operators, and it remains true when
adding in all operators of CSP [4], CCS [12] or ACPτ [3], as �−1

T is known to be
a precongruence for all of them.

By Theorem 3, the characterisation also remains valid when requiring respect
for one arbitrary safety property only, instead of all of them, but to this end
all three operators of O are needed. If we just retain the state operator, by
Theorem 1 it suffices to require respect for the canonical safety property only.

4 Liveness Properties

A liveness property [9] is a property that says that

something good will eventually happen.

To formulate a canonical liveness property, assume that the alphabet A contains
one specific action g, whose occurrence is good. The canonical liveness property
now says that g will eventually happen.

Definition 6. A process p satisfies the canonical liveness property, notation
p |= liveness(g), if every complete trace of p contains the action g.

To arrive at a general concept of liveness property for labelled transition systems,
assume that some notion of good is defined. Now, to judge whether a process
p satisfies this liveness property, one should judge whether p can reach a state
in which one would say that something good had happened. But all observable
behaviour of p that is recorded in a labelled transition system until one comes to
such a verdict, is the sequence of visible actions performed until that point. Thus
the liveness property is completely determined by the set sequences of visible
actions that, when performed by p, lead to such a judgement. Therefore one can
just as well define the concept of a liveness property in terms of such a set.

Definition 7. A liveness property of processes in an LTS is given by a set
G ⊆ A∗. A process p satisfies this liveness property, notation p |= liveness(G),
when each complete trace of p has a prefix in G.

This formalisation of liveness properties is essentially different from the one in
[9] and most subsequent work on liveness properties; this point is discussed in
Section 6.

Just as for safety properties, the sets G := ∅ and G := {ε} specify trivial
liveness properties.
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Theorem 5. A precongruence for the state operator respects every liveness
property iff it respects the canonical liveness property.

Proof: Just like the proof of Theorem 1. �

A process p has the initial progress property if it cannot immediately diverge or
deadlock, i.e. if ε �∈ diverg(p) ∪ deadlocks(p). This is a liveness property, namely
with G the set of all sequences over A∗ of length 1. It can be understood this
way by regarding any occurrence of an action as good.

Theorem 6. A precongruence for abstraction that respects the initial progress
property, respects the canonical liveness property.

Proof: Just like the proof of Theorem 2. �

By combining Theorems 5 and 6 one obtains:

Corollary 2. A precongruence for abstraction and for the state operator that
respects the initial progress property, respects all liveness properties.

Conjecture 1. Any precongruence for O that respects a single nontrivial live-
ness property, respects every liveness property.

Let �liveness denote the preorder that is fully abstract w.r.t. the class of liveness
properties and O. I will proceed to characterise �liveness as the preorder �⊥

FDI

based on failures, divergences and infinite traces that is also used in the work
on CSP [15]. Failures of a process p are defined below; they are pairs 〈σ, X〉
such that p can perform the sequence of visible actions σ and then reach a state
in which no further progress can be made in case the environment allows only
those visible actions to occur that are listed in X . The preorder �⊥

FDI does not
take into account any information about the behaviour of processes that can
be thought of as taking place after a divergence. One of the ways to erase this
information from the set of failures, divergences and infinite traces of a process
is by means of flooding. Flooded sets of failures, divergences and infinite traces
are indicated by the subscript ⊥.

Definition 8. Let p ∈ IP.
• initials(p) := {α ∈ Aτ | ∃q. p

α−→ q}.
• failures(p) := {〈σ, X〉 ∈ A∗×P(A) | ∃q. p

σ=⇒ q∧initials(q)∩(X∪{τ}) = ∅}.
• diverg⊥(p) := {σρ | σ ∈ diverg(p) ∧ ρ ∈ A∗}.
• inf (p) ∪ {σρ | σ ∈ diverg(p) ∧ ρ ∈ A∞}.
• failures(p) ∪ {〈σρ, X〉 | σ ∈ diverg(p) ∧ ρ ∈ A∗ ∧X ⊆ A}.

So deadlocks(p) = {σ | 〈σ, A〉 ∈ failures(p)}
and ptraces(p) = diverg(p) ∪ {σ | 〈σ, ∅〉 ∈ failures(p)}.

Theorem 7. p �liveness q ⇔ diverg⊥(p) ⊇ diverg⊥(q) ∧
inf⊥(p) ⊇ inf⊥(q) ∧

failures⊥(p) ⊇ failures⊥(q).
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Proof: Let �⊥
FDI be the preorder defined by: p �⊥

FDI q iff the right-hand side
of Theorem 7 holds.

“⇐”: It suffices to establish that �⊥
FDI is a liveness respecting precongruence.

To show that �⊥
FDI respects liveness, let G ⊆ A∗, p �⊥

FDI q, and suppose
p |= liveness(G). I need to show that q |= liveness(G). So suppose σ ∈ CT (q).
Then either σ ∈ diverg(g) ⊆ diverg⊥(g) ⊆ diverg⊥(p) or σ ∈ inf (q) ⊆ inf⊥(q) ⊆
inf⊥(p) or 〈σ,A〉 ∈ failures(q) ⊆ failures⊥(q) ⊆ failures⊥(q). In the first case
ρ ∈ diverg(p) ⊆ CT (p) for some ρ ≤ σ; in the second case either σ ∈ inf (p) ⊆
CT (p) or ρ ∈ diverg(p) ⊆ CT (p) for some ρ < σ; and in the third case either
〈σ,A〉 ∈ failures(p) or ρ ∈ diverg(p) ⊆ CT (p) for some ρ ≤ σ. In all three cases
ρ ∈ CT (p) for some ρ ≤ σ. Since p |= liveness(G), there must be a ν ≤ ρ with
ν ∈ G. As ν ≤ σ it follows that q |= liveness(G).

That �⊥
FDI is a precongruence for ‖S and τI has been established in [15] by

means of the following observations:

diverg⊥(p‖Sq) = {σρ | ∃〈ν, X〉 ∈ failures⊥(p), ξ ∈ diverg⊥(q).
σ ∈ ν‖Sξ ∧ ρ ∈ A∗}

∪ {σρ | ∃ν ∈ diverg⊥(p), 〈ξ, X〉 ∈ failures⊥(q).
σ ∈ ν‖Sξ ∧ ρ ∈ A∗}

inf⊥(p‖Sq) = {σ | ∃ν ∈ inf⊥(p), ξ ∈ inf⊥(q). σ ∈ ν‖Sξ} ∪
{σ | ∃〈ν, X〉 ∈ failures⊥(p), ξ ∈ inf⊥(q). σ ∈ ν‖Sξ} ∪
{σ | ∃ν ∈ inf⊥(p), 〈ξ, X〉 ∈ failures⊥(q). σ ∈ ν‖Sξ} ∪
{σρ | σ ∈ diverg⊥(p‖Sq) ∧ ρ ∈ A∞}

failures⊥(p‖Sq) = {〈σ, X ∪ Y 〉 | ∃〈ν, X〉 ∈ failures⊥(p), 〈ξ, Y 〉 ∈ failures⊥(q).
X \ S = Y \ S ∧ σ ∈ ν‖Sξ}

∪ {〈σ, X〉 | σ ∈ diverg⊥(p‖Sq) ∧X ⊆ A}.
diverg⊥(τI(p)) = {τI(σ)ρ | τI(σ), ρ ∈ A∗ ∧ σ ∈ inf⊥(p) ∪ diverg⊥(p)}

inf⊥(τI(p)) = {τI(σ) | τI(σ) ∈ A∞ ∧ σ ∈ inf⊥(p)}
∪ {σρ | σ ∈ diverg⊥(τI(p)) ∧ ρ ∈ A∞}

failures⊥(τI(p)) = {〈τI(σ), X〉 | 〈σ, X ∪ I〉 ∈ failures⊥(p)}
∪ {〈σ, X〉 | σ ∈ diverg⊥(τI(p)) ∧X ⊆ A}.

Here τI(σ) for σ ∈ A∞ is the supremum, w.r.t. the prefix order ≤ on Aω, of the
set {τI(ρ) | ρ < σ}.

Likewise, �⊥
FDI is a congruence for λm

s :

diverg⊥(λm
s (p)) = {λm

s (σ)ρ | σ ∈ diverg⊥(p) ∧ ρ ∈ A∗}
inf⊥(λm

s (p)) = {λm
s (σ) | σ ∈ inf⊥(p)}

∪ {σρ | σ ∈ diverg⊥(λm
s (p)) ∧ ρ ∈ A∞}

failures⊥(λm
s (p)) = {〈λm

s (σ), X〉 | 〈σ, λ−m
s (X)〉 ∈ failures⊥(p)}

∪ {〈σ, X〉 | σ ∈ diverg⊥(λm
s (p)) ∧X ⊆ A}.

Here λ−m
s (X) := {a ∈ A | a(m, s) ∈ X}.

“⇒”: Let � be any liveness respecting precongruence, and suppose p � q. I
have to establish that p �⊥

FDI q. W.l.o.g. I may assume that neither p nor q has
any trace containing the action g. For let λm be an injective renaming operator
such that g is not in the image of λm. Then λm(p) � λm(q). Suppose one can
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establish λm(p) �⊥
FDI λm(q). Since �⊥

FDI is a precongruence for renaming, this
yields p ≡⊥

FDI λ−m(λm(p)) �⊥
FDI λ−m(λm(p)) ≡⊥

FDI q.
Suppose diverg⊥(p) �⊇ diverg⊥(q); say σ ∈ diverg⊥(q) \ diverg⊥(p). So there

is no ρ ≤ σ with ρ ∈ diverg(p). Let r be a deterministic process such that
CT (r) = {ρg | ρ ≤ σ}. Then each complete trace of p‖gr contains g. Here I
write ‖g for ‖A\{g}, the interleaving operator that synchronises on all visible
actions except g. As � is a precongruence, p � q implies p‖gr � q‖gr, and since
� respects the canonical liveness property, I obtain that each complete trace of
q‖gr must contain g. However, ρ ∈ diverg(q) for some ρ ≤ σ. So ρ ∈ CT (q‖gr),
although ρ does not contain g.

Suppose inf⊥(p) �⊇ inf⊥(q); say σ ∈ inf⊥(q) \ inf⊥(p). So σ �∈ inf (p) and
there is no ρ < σ with ρ ∈ diverg(p). Let r be a deterministic process such
that CT (r) = {ρg | ρ < σ} ∪ {σ}. Then each complete trace of p‖gr contains
g. As � is a precongruence, p � q implies p‖gr � q‖gr, and since � respects
the canonical liveness property, I obtain that each complete trace of q‖gr must
contain g. However, either σ ∈ inf (q) or ρ ∈ diverg(q) for some ρ < σ. So either
σ ∈ CT (q‖gr) or ρ ∈ CT (q‖gr), and neither σ nor ρ contains g.

Suppose failures⊥(p) �⊇ failures⊥(q); say 〈σ, X〉 ∈ failures⊥(q) \ failures⊥(p).
So 〈σ, X〉 �∈ failures(p) and there is no ρ ≤ σ with ρ ∈ diverg(p). Let r be a
deterministic process with CT (r) = {ρg | ρ < σ} ∪ {σa | a ∈ X}, and consider
the liveness property given by G := {ρg | ρ < σ} ∪ {σa | a ∈ X}. Then p‖gr |=
liveness(G). As � is a precongruence, p � q implies p‖gr � q‖gr, and since �
respects liveness properties, also q‖gr |= liveness(G). However, either 〈σ, X〉 ∈
failures(q) or there is an ρ ≤ σ with ρ ∈ diverg(q). So either σ ∈ CT (q‖gr) or
ρ ∈ CT (q‖gr) for some ρ ≤ σ, contradicting that q‖gr |= liveness(G). �

The standard refinement preorder used in CSP is in fact the failures-divergences
preorder�FD , defined exactly like�⊥

FDI , but abstracting from the infinite traces.
As remarked in [15], this can be done because in CSP one normally restricts at-
tention to processes p with the property that for any σ ∈ A∗ either σ ∈ diverg⊥(p)
or there are only finitely many processes q with p

σ=⇒ q. For such processes the
set inf⊥(p) is, with Königs Lemma, completely determined by failures⊥(p) and
diverg⊥(p), and thus need not be explicitly recorded. When extending CSP to
processes not having this property, the component inf⊥ should be added to the
semantics of processes [15]. In fact, �⊥

FDI is the coarsest precongruence for O
contained in �FD : if p, q and r are the processes used in the inf⊥-case of the
above proof, and I := A \ {g}, then ε ∈ diverg⊥(τI(q‖gr)) \ diverg⊥(τI(p‖gr)).

The above characterisation as �⊥
FDI of the coarsest congruence for O that

respects all liveness properties, is somewhat robust under the choice of O. It
holds already with just ‖g and injective renaming (for these are the only two
operators that are used in the proof), and it remains true when adding in all
operators of CSP [4], as �⊥

FDI is known to be a precongruence for all of them
[15].

By Corollary 2, the above characterisation also remains valid when requiring
respect for the initial progress property only, but to this end all three operators
of O are needed. This result has in essence been obtained already by Bill Roscoe
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in [15]. The state operator does not feature in [15]; its rôle in this full abstraction
result is taken over by a renaming operator that allows renaming an action a into
a choice between two actions b and c. When ignoring this difference in syntax,
Theorem 7 can be obtained as an immediate corollary of Corollary 2 and that
result. The main reason for using the above proof instead is to show that the
concealment or abstraction operator is not needed here.

By Theorem 5, �⊥
FDI is even fully abstract w.r.t. the partially synchronous

interleaving and state operators, and the canonical liveness property. This result,
like the full abstraction result of [15], does not hold without the state operator,
or something equally powerful, even if renaming and abstraction is allowed to be
used. Namely, as pointed out by Antti Puhakka [13], one would fail to distinguish
the following two processes:

τ

a• a �≡liveness

τ

a• a

a

5 Conditional Liveness Properties

Figure 1 presents two processes that have the same liveness properties in any
CSP-context. The fact that only the left-hand process can do something good
doesn’t matter here, as neither of the two processes is guaranteed to do some-
thing good: they may never proceed beyond their initial τ -loops. Nevertheless,
from a practical point of view, the difference between these two processes may
be enormous. It could be that the action c comes with a huge cost, that is only
worth making when something good happens afterwards. Only the right-hand
side process is able to incur the cost without any benefits, and for this reason
it lacks an important property that the left-hand process has. I call such prop-
erties conditional liveness properties [6,11]. A conditional liveness property is a
property that says that

under certain conditions something good will eventually happen.

To formulate a canonical conditional liveness property, assume that the alphabet
A contains two specific action c and g, where the occurrence of c is the condition,
and the occurrence of g is good. The canonical conditional liveness property now
says that if c occurs then g will eventually happen.

•

τ

c g ≡liveness •

τ

c

Fig. 1. Two processes with the same liveness properties but different conditional live-
ness properties
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Definition 9. A process p satisfies the canonical conditional liveness property,
notation p |= livenessc(g), if every complete trace of p that contains the action
c also contains the action g.

To arrive at a general concept of conditional liveness property for labelled tran-
sition systems, assume that some condition, and some notion of good is defined.
Now, to judge whether a process p satisfies this conditional liveness property, one
should judge first of all in which states the condition is fulfilled. All observable
behaviour of p that is recorded in a labelled transition system until one comes to
such a verdict, is the sequence of visible actions performed until that point. Thus
the condition is completely determined by the set sequences of visible actions
that, when performed by p, lead to such a judgement. Next one should judge
whether p can reach a state in which one would say that something good had
happened. Again, this judgement can be expressed in terms of the sequences of
visible actions that lead to such a state.

Definition 10. A conditional liveness property of processes in an LTS is given
by two sets C, G ⊆ A∗. A process p satisfies this conditional liveness property,
notation p |= livenessC(G), when each complete trace of p that has a prefix in
C, also has prefix in G.

For the sake of added generality, one could make the notion of success dependent
on the particular sequence of actions that fulfilled the condition. This would make
G a function from C to P(A∗) and the requirement would be that each complete
trace of p that has a prefix σ ∈ C, also has prefix in G(σ). However, such a
generalised conditional liveness property can be expressed as a conjunction of
standard ones, and a preorder that respects a given collection of properties also
respects their conjunction.

Theorem 8. A precongruence for the state operator respects every conditional
liveness property iff it respects the canonical conditional liveness property.

Proof: “Only if ” follows because the canonical conditional liveness property is
in fact a conditional liveness property, namely the one with C being the set of
those sequences that contain the action c, and G the set of those sequences that
contain the action g.

“If ”: Again I use a state operator that remembers exactly what sequence
of actions has occurred so far. Thus the set of internal states of its interface
specification m is A∗, and σ(m, a) := σa for all σ ∈ A∗ and a ∈ A. Note that the
properties livenessC(G) and livenessC\G(G) are satisfied by the same processes,
so w.l.o.g. I may restrict attention to properties livenessC(G) with C ∩ G = ∅.
Given such a property, define

a(m, σ) :=

⎧⎨⎩
c if σa ∈ C
g if σa ∈ G
d otherwise.
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Then λm
ε (p) |= livenessc(g) iff p |= livenessC(G). Thus, if p � q and p |=

livenessC(G), then λm
ε (p) � λm

ε (q) and λm
ε (p) |= livenessc(g). Hence λm

ε (q) |=
livenessc(g), so q |= livenessC(G). �

An element σ ∈ diverg(p) ∪ deadlocks(p) is called a deadlock/divergence trace
of a process p. For any σ ∈ A∗, not having a deadlock/divergence trace σ is a
conditional liveness property, namely with C := {σ} and G := {σa | a ∈ A}.
Using similar techniques as for Corollary 1, one can establish:

Corollary 3. A precongruence for abstraction and for the state operator that
respects the property of having no deadlock/divergence trace c, respects all live-
ness properties.

Let �cond. liveness denote the preorder that is fully abstract w.r.t. the class of
conditional liveness properties and O. Furthermore, write �d/d for the coarsest
precongruence for O such that q �d/d p implies deadlocks(q) ∪ diverg(q) ⊆
deadlocks(p) ∪ diverg(p).

Corollary 4. p �cond. liveness q iff q �d/d p.

Proof: “If ” follows immediately from Corollary 3. “Only if ” follows from the
observation that the absence of any deadlock/divergence trace σ is a conditional
liveness property. �

Antti Puhakka [13] has given a characterisation of the coarsest congruence that
preserves deadlock/divergence traces, ≡d/d . His arguments easily extend to a
characterisation of �d/d and hence, using Corollary 4, of �cond. liveness . Below
I will give a direct proof of the same result. It shows that this characterisation
is already valid when merely requiring the precongruence property for ‖S and
injective renaming.

As for �liveness , the characterisation of �cond. liveness is in terms of failures,
divergences and infinite traces, and again some information needs to be erased,
but less than in the case of �liveness . This time we need to forget about failures
〈σ, X〉 ∈ failures(p) such that σ ∈ diverg(p), and about infinite traces of p that
have arbitrary long prefixes in diverg(p). In [13] this is achieved by removal of
such failures and infinite traces; here, in order to stress the similarity with the
refinement preorder of CSP, I equivalently apply the method of flooding.

Definition 11. Let p ∈ IP.
• infd(p) := inf (p) ∪ {σ ∈ A∞ | ∀ρ < σ∃ν ∈ diverg(p). ρ ≤ ν < σ}.
• failuresd(p) := failures(p) ∪ {〈σ, X〉 | σ ∈ diverg(p) ∧X ⊆ A}.

Theorem 9. p �cond. liveness q ⇔ diverg(p) ⊇ diverg(q) ∧
infd(p) ⊇ infd(q) ∧

failuresd(p) ⊇ failuresd(q).

Proof: Let �d
FDI be the preorder defined by: p �d

FDI q iff the right-hand side
of Theorem 7 holds.
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“⇐”: It suffices to establish that �d
FDI is a precongruence for O that respects

all conditional liveness properties.
To show that �d

FDI respects conditional liveness properties, let C, G ⊆ A∗,
p �d

FDI q, and suppose p |= livenessC(G). I need to show that q |= livenessC(G).
So suppose σ ∈ CT (q) and ρ ∈ C for some prefix ρ ≤ σ. Then one out of
three possibilities must apply: either σ ∈ diverg(g) ⊆ diverg(p) or σ ∈ inf (q) ⊆
infd(q) ⊆ infd(p) or 〈σ,A〉 ∈ failures(q) ⊆ failuresd(q) ⊆ failuresd(p). In the
first and last case, one has σ ∈ CT (p). Since p |= livenessC(G), there must
be a ξ ≤ σ with ξ ∈ G, which had to be shown. In the second case either
σ ∈ inf (p) ⊆ CT (p), in which case the argument proceeds as above, or ∃ν ∈
diverg(p) ⊆ CT (p) with ρ ≤ ν < σ. In the latter case, there must be a ξ ≤ ν
with ξ ∈ G, and as ν < σ it follows that q |= livenessC(G).

That �d
FDI is a precongruence for ‖S , τI and λm

s follows from the following
observations:

diverg(p‖Sq) = {σ | ∃〈ν, X〉 ∈ failuresd(p), ξ ∈ diverg(q). σ ∈ ν‖Sξ} ∪
{σ | ∃ν ∈ diverg(p), 〈ξ, X〉 ∈ failuresd(q). σ ∈ ν‖Sξ}

infd(p‖Sq) = {σ | ∃ν ∈ infd(p), ξ ∈ infd(q). σ ∈ ν‖Sξ} ∪
{σ | ∃〈ν, X〉 ∈ failuresd(p), ξ ∈ infd(q). σ ∈ ν‖Sξ} ∪
{σ | ∃ν ∈ infd(p), 〈ξ, X〉 ∈ failuresd(q). σ ∈ ν‖Sξ} ∪
{σ ∈ A∞ | ∀ρ < σ∃ν ∈ diverg(p‖Sq). ρ ≤ ν < σ}

failuresd(p‖Sq) = {〈σ, X ∪ Y 〉 | ∃〈ν, X〉 ∈ failuresd(p), 〈ξ, Y 〉 ∈ failuresd(q).
X \ S = Y \ S ∧ σ ∈ ν‖Sξ}

∪ {〈σ, X〉 | σ ∈ diverg(p‖Sq) ∧X ⊆ A}.
diverg(τI(p)) = {τI(σ) | τI(σ) ∈ A∗ ∧ σ ∈ infd(p) ∪ diverg(p)}

infd(τI(p)) = {τI(σ) | τI(σ) ∈ A∞ ∧ σ ∈ infd(p)}
∪ {σ ∈ A∞ | ∀ρ < σ∃ν ∈ diverg(τI(p)). ρ ≤ ν < σ}

failuresd(τI(p)) = {〈τI(σ), X〉 | 〈σ, X ∪ I〉 ∈ failuresd(p)}
∪ {〈σ, X〉 | σ ∈ diverg(τI(p)) ∧X ⊆ A}

diverg(λm
s (p)) = {λm

s (σ) | σ ∈ diverg(p)}
infd(λm

s (p)) = {λm
s (σ) | σ ∈ infd(p)}

∪ {σ ∈ A∞ | ∀ρ < σ∃ν ∈ diverg(λm
s (p)). ρ ≤ ν < σ}

failuresd(λ
m
s (p)) = {〈λm

s (σ), X〉 | 〈σ, λ−m
s (X)〉 ∈ failuresd(p)}

∪ {〈σ, X〉 | σ ∈ diverg(λm
s (p)) ∧X ⊆ A}.

“⇒”: Let � be any precongruence for O that respects conditional liveness prop-
erties, and suppose p � q. I have to establish that p �d

FDI q. W.l.o.g. I may
assume that neither p nor q has any trace containing the actions c or g. The
argument for this is as in the proof of Theorem 7.

Suppose diverg(p) �⊇ diverg(q); say σ ∈ diverg(q) \ diverg(p). Let r be a
deterministic process such that CT (r) = {σcg}. Then each complete trace
of p‖c,gr that contains c also contains g. Here I write ‖c,g for ‖A\{c,g}, the
interleaving operator that synchronises on all visible actions except c and g.
As � is a precongruence, p � q implies p‖c,gr � q‖c,gr, and since � re-
spects the canonical conditional liveness property, I obtain that each complete
trace of q‖c,gr that contains c must also contain g. However, as σ ∈ diverg(q),
σc ∈ diverg(q‖c,gr) ⊆ CT (q‖c,gr), although σc does not contain g.
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Suppose infd(p) �⊇ infd(q); say σ ∈ infd(q) \ infd(p). So σ �∈ inf (p) and there is
a ρ < σ such that ρ ≤ ρν < σ for no sequence ρν ∈ diverg(p). Let r be a deter-
ministic process such that CT (r) = {ρcνg | ρν < σ} ∪ {σ}. Then each complete
trace of p‖gr that contains c, must also contain g. As � is a precongruence, p � q
implies p‖c,gr � q‖g,cr, and since � respects the canonical conditional liveness
property, I obtain that each complete trace of q‖c,gr that contains c must also
contain g. However, either σ ∈ inf (q) or ρν ∈ diverg(q) for some ρ ≤ ρν < σ. In
each case q‖c,gr has a complete trace that contains c but not g.

Suppose failuresd(p) �⊇ failuresd(q); say 〈σ, X〉 ∈ failuresd(q) \ failuresd(p).
So 〈σ, X〉 �∈ failures(p) and σ �∈ diverg(p). Let r be a deterministic process
with CT (r) = {σca | a ∈ X}, let C be the set of sequences containing c,
and consider the conditional liveness property given by C and G := {σca |
a ∈ X}. Then p‖cr |= livenessC(G). As � is a precongruence, p � q implies
p‖cr � q‖cr, and since � respects conditional liveness properties, also q‖gr |=
livenessC(G). However, either 〈σ, X〉 ∈ failures(q) or σ ∈ diverg(q). So σc ∈
CT (q‖gr), contradicting that q‖cr |= livenessC(G). �

In [14], Bill Roscoe has shown that �d
FDI is a precongruence for all operators

of CSP; he also developed a new fixed point theory that shows that it is a
congruence for recursion as well.

6 Linear Time Properties

Safety, liveness, and conditional liveness properties, as studied in the previous
sections, are special cases of linear time properties. A linear time property can
be thought of as any requirement on the observable content of the runs of a
process. The property is satisfied by a process when the observable content of all
its maximal runs satisfy this requirement. Hence a linear time property can be
formalised by the set of sequences over Aω that, when performed in a maximal
run of a process, meet the requirement.

Definition 12. A linear time property of processes in an LTS is given by a set
P ⊆ Aω. A process p satisfies this property, notation p |= P , when CT (p) ⊆ P .

A safety property is a special kind of linear time property, namely safety(B) =
{σ ∈ Aω | ¬∃ρ ∈ B. ρ ≤ σ}. Likewise, liveness(G) = {σ ∈ Aω | ∃ρ ∈ G. ρ ≤ σ},
and livenessC(G) = {σ ∈ Aω | (∃ρ ∈ C. ρ ≤ σ) ⇒ (∃ν ∈ G. ν ≤ σ)}.

In [9] and most subsequent work, liveness properties are formalised in a differ-
ent way than in this paper. For the canonical liveness property it is fundamen-
tally impossible to ever tell that it is not going to be satisfied when one has only
observed a finite prefix of a maximal run of a process. For if “something good”
is promised to happen, it is always possible to assume it will be further in the
future. In [9], this is taken to be the defining characteristic of liveness properties,
and a property P is called a liveness property iff ∀ρ ∈ A∗.∃σ ∈ P. ρ ≤ σ.

The property liveness(G) with G = {a} for instance says that the first visible
action of a process should be an a. It is a liveness property in my sense, since
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the first action being an a can be thought of as a good thing that happened
eventually; here the requirement that it has to happen as first action could be
part of one’s concept of good. However, it is not a liveness property as formalised
in [9] and subsequent work, since the occurrence of a b �= a as first action proves
that the property will never be satisfied.

The property that from some point onwards all visible actions a process per-
forms should be g’s, is an example of a liveness property in the sense of [9] that
is not a liveness property in my sense. Namely, at no point can one ever tell that
something good has happened.

A well know theorem [9] says that any linear time property P can be written as
the conjunction safety(B)∩Pliveness of a safety property and a liveness property
in the sense of [9]. Namely,

B := {ρ ∈ A∗ | ¬∃σ ∈ P. ρ ≤ σ} and Pliveness := P ∪ (Aω \ safety(B)).

Such a theorem does not hold for my liveness properties.
My characterisation of �liveness would still be valid if I would have taken as

class of liveness properties the intersection of mine and the ones from [9]. This
follows immediately from Theorem 5, as the canonical liveness property is in
this intersection. So the extra generality in my definition is harmless. However,
the extra restriction makes a difference, as the canonical conditional liveness
property, for instance, is a liveness property in the sense of [9].

Liveness properties in the sense of [9] are studied because proving them re-
quires a different tool set than proving safety properties. However, as far as
practical applications are concerned, one is mostly interested in conjunctions of
safety and liveness properties, i.e. general linear time properties. I will there-
fore not try to characterise coarsest congruences that respect just the liveness
properties in the sense of [9].

The coarsest congruence respecting all linear time properties has been char-
acterised as NDFD-equivalence by Roope Kaivola and Antti Valmari in [8]; this
results extends to preorders in a straightforward way. The NDFD preorder can
be defined just like �d

FDI , except that inf( ) is used instead of inf⊥( ). In fact,
this result can also be obtained as corollary of what we have seen so far.

Theorem 10. p �lt-properties q ⇔ diverg(p) ⊇ diverg(q) ∧
inf (p) ⊇ inf (q) ∧

failuresd(p) ⊇ failuresd(q).

Proof: Let �NDFD be the preorder defined by: p �NDFD q iff the right-hand
side of Theorem 10 holds.

“⇐”: It suffices to establish that�NDFD is a precongruence forO that respects
all linear time properties.

To show that �NDFD respects linear time properties, let P ⊆ Aω, p �NDFD q,
and suppose p |= P . I need to show that q |= P . So suppose σ ∈ CT (q). Then
either σ ∈ diverg(g) ⊆ diverg(p) or σ ∈ inf (q) ⊆ inf (q) or 〈σ,A〉 ∈ failures(q) ⊆
failuresd(q) ⊆ failuresd(p). In the last case, one has either 〈σ,A〉 ∈ failures(p) or
σ ∈ diverg(p). So in all cases σ ∈ CT (p). Since p |= P , it must be that σ ∈ P . It
follows that CT (q) ⊆ P , i.e. q |= P .
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That �d
FDI is a precongruence for ‖S , τI and λm

s follows from similar, but
simpler, observations as in the proof of Theorem 9.

“⇒”: Let � be any precongruence for O that respects linear time proper-
ties, and suppose p � q. I have to establish that p �NDFD q. That diverg(p) ⊇
diverg(q) and failuresd(p) ⊇ failuresd(q) follows immediately from Theorem 9, us-
ing that conditional liveness properties are linear time properties. That inf (p) ⊇
inf (q) follows immediately by considering the linear time property CT (p). �

To obtain this result it suffices to define �lt-properties as the coarsest precongru-
ence w.r.t. ‖S and injective renaming that respects all linear time properties.
However, it happens to also be a precongruence for all operators of CSP.

Linear time properties do not capture the entire observable behaviour or pro-
cesses in the neutral environment. Orthogonal to them are possibility properties,
such as: a process may do an action g. As argued by Leslie Lamport, “verifying
possibility properties tells you nothing interesting about a system” [10]. Nev-
ertheless, it is not hard to characterise the coarsest precongruence for O that
respects linear time properties as well as all possibility properties, and thereby
arguably the entire observable behaviour of a processes in a neutral environment.
It is ≡NDFD , the symmetric closure of �NDFD .

7 Concluding Remark

The methodology of the paper is close in spirit to the work on testing equiv-
alences by Rocco De Nicola and Matthew Hennessy [5], and the results in
Sections 3 and 4 are comparable as well. The notion of must testing of [5] could
be reinterpreted as a way to test liveness properties, and hence, unsurprisingly,
my preorder �liveness is exactly the must-testing preorder of [5]. However, my
safety preorder is exactly the inverse of the may testing preorder of [5]. This can
be explained by thinking, in the context of may testing, of the “success”-action
ω as marking a state of failure, rather than one of success. Now the property of
whether a process may reach ω is exactly the negation of whether it will always
avoid ω. This turns may-testing around, from testing certain possibility proper-
ties, to testing safety properties. It remains to elaborate a theory of testing that
captures the concept of conditional liveness.
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In recent years, there has been a growing interest in considering the quantitative
aspects of Information Flow, partly because often the a priori knowledge of the
secret information can be represented by a probability distribution, and partly
because the mechanisms to protect the information may use randomization to
obfuscate the relation between the secrets and the observables.

Several works in literature use an Information Theoretic approach to model
the problem and define the leakage in a quantitative way, see for example
[17,4,9,10,13,12,2]. The idea is that the system is seen as a channel. The input
represents the secret, the output represents the observable, and the correlation
between the input and output (mutual information) represents the information
leakage. The worst case leakage corresponds then to the capacity of the channel,
which is by definition the maximum mutual information that can be obtained
by varying the input distribution.

In the works mentioned above, the notion of mutual information is based on
Shannon entropy, which (because of its mathematical properties) is the most es-
tablished measure of uncertainty. From the security point of view, this measure
corresponds to a particular model of attack and a particular way of estimating
the security threat (vulnerability of the secret). Other notions have been consid-
ered, and argued to be more appropriate for security in certain scenarios. These
include: Rényi min-entropy [1,16], Bayes risk [3], guessing entropy [11], and
marginal guesswork [14]. Köpf and Basin discuss the relation between brute-
force guessing attacks and entropy in [8], in the context of information flow
induced by a deterministic program, and define the information leakage as dif-
ference between the input entropy and the conditional one, namely the entropy
based on the a priori input distribution, and the entropy of the a posteriori dis-
tribution (i.e. after observing teh output), respectively. One of their main results
is that, in their framework, the notion of leakage under the various notions of
attacks considered in their paper is always non-negative.

In this talk, we extend the analysis of Köpf and Basin to the probabilistic
scenario, and we consider also other notions of entropy, including the family
of entropies proposed by Rényi [15]. We argue that in the probabilistic case
the notion of information leakage needs to be revised. In fact, when the same
secret can give different observables (according to a probability distribution),
the difference between a priori and a posteriori entropy may be negative. This
is due to the fact that the notion of entropy uses the probability distribution in
two different ways: for averaging and for representing the belief of the attacker.
While the leakage should depend on the difference induced by the belief change
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due to the observation, the averaging probability should remain the same. (A
similar concern has also inspired the works of [5] and [7].) In order to avoid
the unnatural consequence of a negative leakage, we propose to base the notion
of leakage directly on the (more primitive) notion of mutual information. We
consider some cases of entropy, in particular the Rényi’s entropies, for which the
corresponding notion of mutual information has been investigated in [6], and we
show that in this way the property of non-negativeness is ensured.
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Abstract. In the field of Security, process equivalences have been used to char-
acterize various information-hiding properties (for instance secrecy, anonymity
and non-interference) based on the principle that a protocol P with a variable x
satisfies such property if and only if, for every pair of secrets s1 and s2, P [s1/x]
is equivalent to P [s2/x]. We argue that, in the presence of nondeterminism, the
above principle relies on the assumption that the scheduler “works for the ben-
efit of the protocol”, and this is usually not a safe assumption. Non-safe equiv-
alences, in this sense, include complete-trace equivalence and bisimulation. We
present a formalism in which we can specify admissible schedulers and, corre-
spondingly, safe versions of these equivalences. We prove that safe bisimulation
is still a congruence. Finally, we show that safe equivalences can be used to es-
tablish information-hiding properties.

1 Introduction

One of the fundamental problems in computer security is the protection from informa-
tion leaks, namely how to make sure that a system does not reveal, by observations that
can be made during the execution, some information that we wish to maintain secret.

One way to prevent an attacker to infer the secret from the observables is to create
noise, namely to make sure that for every execution in which a given secret produces
a certain observable, there is at least another execution in which a different secret pro-
duces the same observable. In practice this is often done by using randomization, see
for instance the DCNet [10] and the Crowds [23] protocols.

In the literature about the foundations of Computer Security, however, the quantita-
tive aspects are often abstracted away, and probabilistic behavior is replaced by non-
deterministic behavior. Correspondingly, there have been various approaches in which
information-hiding properties are expressed in terms of equivalences based on nonde-
terminism, especially in a concurrent setting. For instance, [24] defines anonymity as
follows1: A protocol S is anonymous if, for every pair of culprits a and b, S[a/x] and
S[b/x] produce the same observable traces. A similar definition is given in [1] for se-
crecy, with the difference that S[a/x] and S[b/x] are required to be bisimilar. In [13],
an electoral system S preserves the confidentiality of the vote if for any voters v and
w, the observable behavior of S is the same if we swap the votes of v and w. Namely,
S[a/v |b /w] ∼ S[b/v |a /w], where∼ represents bisimilarity.

1 The actual definition of [24] is more complicated, but the spirit is the same.
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These proposals are based on the implicit assumption that all the nondeterministic
executions present in the specification of S will always be possible under every imple-
mentation of S. Or at least, that the adversary will believe so. In concurrency, however,
as argued in [8], nondeterminism has a rather different meaning: if a specification S
contains some nondeterministic alternatives, typically it is because we want to abstract
from specific implementations, such as the scheduling policy. A specification is consid-
ered correct, with respect to some property, if every alternative satisfies the property.
Correspondingly, an implementation is considered correct if all executions are among
those possible in the specification, i.e. if the implementation is a refinement of the spec-
ification. There is no expectation that the implementation will actually make possible
all the alternatives indicated by the specification.

We argue that the use of nondeterminism in concurrency corresponds to a demonic
view: the scheduler, i.e. the entity that will decide which alternative to select, may try
to choose the worst alternative. Hence we need to make sure that “all alternatives are
good”, i.e. satisfy the intended property. In the above mentioned approaches to the for-
malization of security properties, on the contrary, the interpretation of nondeterminism
is angelic: the scheduler is expected to actually help the protocol to confuse the adver-
sary and thus protect the secret information.

There is another issue, orthogonal to the angelic/demonic dichotomy, but relevant
for the achievement of security properties: the scheduler should not be able to make
its choices dependent on the secret, or else nearly every protocol would be insecure,
i.e. the scheduler would always be able to leak the secret to an external observer (for
instance by producing different interleavings of the observables, depending on the se-
cret). This remark has been made several times already, and several approaches have
been proposed to cope with the problem of full-information scheduler (aka almighty,
omniscient, clairvoyant, etc.), see for example [6,7,9,8,3].

The risk of a naive use of nondeterminism to specify a security property, is not only
that it may rely on an implicit assumption that the scheduler behaves angelically, but
also that it is clairvoyant (fully-informed), i.e. that it peeks at the secrets (that it is not
supposed to be able to see) to achieve its angelic strategy.

Example 1. Consider the following system, in a CCS-like syntax: S
def= (c)(A ‖ H1 ‖

H2 ‖ Corr ), with A
def= c〈sec〉, H1

def= c(s).out〈a〉, H2
def= c(s).out〈b〉, Corr def=

c(s).out〈s〉. Here ‖ is the parallel operator, c〈sec〉 is a process that sends sec on channel
c, c(s).P is a process that receives s on channel c and then continues as P , and (c) is the
restriction operator, enforcing synchronization on c. The name sec represents a secret.

It is easy to see that we have S [a/sec] ∼ S
[
b/sec

]
. Note that, in order to simulate the

third branch in S [a/sec], the process S
[
b/sec

]
needs to select its first branch. Viceversa,

in order to simulate the third branch in S
[
b/sec

]
, the process S [a/sec] needs to select

its second branch. This means that, in order to achieve bisimulation, the scheduler needs
to know the secret, and change its choice accordingly.

This example shows a system that intuitively is not secure, because the third compo-
nent, Corr , reveals whatever secret it receives. However, according to the equivalence-
based notions of security discussed above, it is secure. But it is secure thanks to a
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scheduler that angelically helps the system to protect the secret, and it does so by mak-
ing its choices dependent on the secret. We consider these assumptions on the scheduler
excessively strong.

We do not claim, however, that we should rule out the use of angelic nondeterminism
in security: on the contrary, angelic nondeterminism can be a powerful specification
concept. We only advocate a cautious use of this notion. In particular, it should not be
used in a context in which the scheduler may be in collusion with the attacker. The
goal of this paper is to define a framework in which we can combine both angelic
and demonic nondeterminism in a setting in which also probabilistic behavior may be
present, and in a context in which the scheduler is restricted (i.e. not fully-informed). We
define “safe” variant of typical equivalence relations (complete traces and bisimulation),
and we show how to use them to characterize information-hiding properties.

1.1 Contribution

The main novelties of our work can be articulated as follows:

• We propose a formalism for concurrent systems which accounts for both probabilis-
tic and nondeterministic behaviour, and in which the latter is of two kinds: global
and local. The first represents the possible interleavings produced by the parallel
components, which may be influenced by the attacker. The second is associated to
the possible choices internal to each component, which may depend on the secrets
or other unknown parameters, not controlled by the attacker. Correspondingly, we
split the scheduler in two constituents: global and local. The latter is actually a tuple
of local schedulers, one for each component of the system.

• We propose a notion of admissible scheduler for the above systems, in which the
global constituent is not allowed to see the secrets, and each local constituent is
not allowed to see any information about the other components. We then generalize
the standard definition of strong (probabilistic) information hiding (such as no-
interference and strong anonymity) to the case in which also nondeterminism is
present, under the assumption that the schedulers are admissible.

• We use admissible schedulers to define safe versions of complete-trace equivalence
and bisimilarity especially tuned for security (in this paper we often refer to com-
plete traces as simply traces). This means that we account for the possibility that the
global constituent of the scheduler is in collusion with the attacker, and therefore
does not necessarily help the system to obfuscate the secret. We show that the latter
is still a congruence, like in the classical case.

• We finally show that our notions of safe trace equivalence and bisimilarity imply
strong information hiding in the above sense.

2 Probabilistic Automata

In this section we gather preliminary notions and results related to probabilistic
automata [26,25].
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A function μ : Q → [0, 1] is a discrete probability distribution on a set Q if the
support of μ is countable and

∑
q∈Q μ(q) = 1. The set of all discrete probability distri-

butions on Q is denoted by D(Q).
A probabilistic automaton is a quadruple M = (Q, Σ, q̂, α) where Q is a countable

set of states, Σ a finite set of actions, q̂ the initial state, and α is a transition function α :
Q → P(Σ×D(Q)). HereP(X) is the set of all finite subsets of X . If α(q) = ∅ then q is
a terminal state. We write q

a→ μ for (a, μ) ∈ α(q). Moreover, we write q
a→r whenever

q
a→ μ and μ(r) > 0. A fully probabilistic automaton is a probabilistic automaton

satisfying |α(q)| ≤ 1 for all states. In case α(q) �= ∅ in a fully probabilistic automaton,
we will overload notation and use α(q) to denote the distribution outgoing from q. A
path in a probabilistic automaton is a sequence σ = q0

a1→ q1
a2→ · · · where qi ∈ Q,

ai ∈ Σ and qi
ai+1−→qi+1. A path can be finite in which case it ends with a state. A path is

complete if it is either infinite or finite ending in a terminal state. Given a path σ, first(σ)
denotes its first state, and if σ is finite then last(σ) denotes its last state. Let Pathsq(M)
denote the set of all paths, Paths�

q(M) the set of all finite paths, and CPathsq(M) the
set of all complete paths of an automaton M , starting from the state q. We will omit q
if q = q̂. Paths are ordered by the prefix relation, which we denote by ≤. The trace of
a path is the sequence of actions in Σ∞ = Σ∗ ∪ Σω obtained by removing the states,
hence for the above path σ we have trace(σ) = a1a2 . . .. We denote by Traces(M) the
complete traces of M , i.e. Traces(M) def= {trace(σ) | σ ∈ CPaths(M)}. If Σ′ ⊆ Σ,
then traceΣ′(σ) is the projection of trace(σ) on the elements of Σ′.

Let M = (Q, Σ, q̂, α) be a (fully) probabilistic automaton, q ∈ Q a state, and let
σ ∈ Paths�

q(M) be a finite path starting in q. The cone generated by σ is the set of
complete paths 〈σ〉 = {σ′ ∈ CPathsq(M) | σ ≤ σ′}. Given a fully probabilistic
automaton M = (Q, Σ, q̂, α) and a state q, we can calculate the probability value,
denoted by Pq(σ), of any finite path σ starting in q as follows: Pq(q) = 1 and Pq(σ

a→
q′) = Pq(σ)·μ(q′), where last(σ) a→ μ. Let Ωq

def= CPathsq(M) be the sample space,
and let Fq be the smallest σ-algebra generated by the cones. Then Pq induces a unique
probability measure on Fq (which we will also denote by Pq) such that Pq(〈σ〉) =
Pq(σ) for every finite path σ starting in q. For q = q̂ we write P instead of Pq̂ .

A scheduler for a probabilistic automaton M is a function ζ : Paths�(M) → (Σ ×
D(Q)∪ {⊥}) such that for all finite path σ, if α(last(σ)) �= ∅ then ζ(σ) ∈ α(last(σ)),
and ζ(σ) = ⊥ otherwise. Hence, a scheduler ζ selects one of the available transitions in
each state, and determines therefore a fully probabilistic automaton, obtained by prun-
ing from M the alternatives that are not chosen by ζ. A scheduler is history dependent
since it takes into account the path and not only the current state. It may be partial, i.e.
it may halt the execution at any time 2.

3 Systems

In this section we describe the kind of systems we are dealing with. We start by intro-
ducing a variant of probabilistic automata, that we call Tagged Probabilistic Automata

2 In this paper, however, we will consider only total schedulers, to be more in line with the
standard semantics of CCS.
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(TPA). These systems are parallel compositions of probabilistic processes, called com-
ponents. Each component is equipped with a unique identifier, called tag. Whenever
a component (or a pair of components in case of synchronization) makes a step, the
corresponding transition will be decorated with the associated tag (or pair of tags).

Similar systems have been already introduced in [3]. The main differences are that
here the components may contain nondetermism, and a secret can label any transition.

3.1 Tagged Probabilistic Automata

We now formalize the notion of TPA.

Definition 1. A Tagged Probabilistic Automaton is a tuple (Q, L, Σ, q̂, α), where Q
is a set of states, L is a set of tags, Σ is a set of actions, q̂ ∈ Q is the initial state,
α : Q → P(L×Σ ×D(Q)) is a transition function.

In the following we write q
l:a−→ μ for (�, a, μ) ∈ α(q), and we use enab(q) to denote

the tags of the components that are enabled to make a transition. Namely, enab(q) def=
{� ∈ L | there exists a ∈ Σ, μ ∈ D(Q) such that q

l:a−→ μ}. In these systems, we can
decompose the scheduler in two: a global scheduler, which decides which component
or pair of components makes the move next, and a local scheduler, which solves the
internal nondeterminism of the selected component.

We assume that the local scheduler can only select enabled transitions, and that the
global scheduler can only select enabled components. This means that the execution
does not stop unless all components are blocked. This is in line with the tradition of pro-
cess algebra and of Markov Decision Processes, but contrasts with that of Probabilistic
Automata [26]. However, the results in this paper do not depend on this assumption.

Definition 2. Let M = (Q, L, Σ, q̂, α) be a Tagged Probabilistic Automaton.

• A global scheduler for M is a function ζ : Paths�(M) → (L ∪ {⊥}) such that for
all finite paths σ, if enab(last(σ)) �= ∅ then ζ(σ) ∈ enab(last(σ)), and ζ(σ) = ⊥
otherwise.

• A local scheduler for M is a function ξ : Paths�(M) → (L ×Σ × D(Q) ∪ {⊥})
such that, for all finite paths σ, if α(last(σ)) �= ∅ then ξ(σ) ∈ α(last(σ)), and
ξ(σ) = ⊥ otherwise.

• A global scheduler ζ and a local scheduler ξ for M are compatible if, for all finite
paths σ, ξ(σ) = (�, a, μ) implies ζ(σ) = �, and ξ(σ) = ⊥ implies ζ(σ) = ⊥.

• A scheduler is a pair (ζ, ξ) of compatible global and local schedulers.

3.2 Components

We are going to use a simple probabilistic process calculus (a sort of probabilistic ver-
sion of CCS [20,21]) to specify the components.

We assume a set of actions or channel names Σ with elements a, a1, a2, · · · , includ-
ing the special symbol τ denoting a silent step. Except τ , each action a has a co-action
ā ∈ Σ and we assume ¯̄a = a. Components are specified by the following grammar:

q ::= 0 | a.q | q1 + q2 |
∑

i

pi : qi | q1|q2 | (a)q | A
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The constructs 0, a.q, q1 + q2, q1|q2 and (a)q represent termination, prefixing, non-
deterministic choice, parallel composition, and the restriction operator, respectively.∑

i pi : qi is a probabilistic choice, where pi represents the probability of the i-th
branch and must satisfy 0 ≤ pi ≤ 1 and

∑
i pi = 1. The process call A is a simple

process identifier. For each identifier, we assume a corresponding unique process dec-
laration of the form A

def= q. The idea is that, whenever A is executed, it triggers the
execution of q. Note that q can contain A or another process identifier, which means
that our language allows (mutual) recursion. We will denote by f n(q) the free channel
names occurring in q, i.e. the channel names not bound by a restriction operator.

Components’ semantics: The operational semantics consists of probabilistic transitions
of the form q

a→μ where q ∈ Q is a process, a ∈ Σ is an action and μ ∈ D(Q) is a
distribution on processes. They are specified by the following rules:

PRF
a.q

a→ δq

NDT
q1

a→ μ

q1 + q2
a→ μ

PRB ∑
i pi : qi

τ→ ◦
∑

i pi · δqi

PAR
q1

a→ μ

q1 | q2
a→ μ | q2

CALL
q

a→ μ

A
a→ μ

if A
def= q COM

q1
a→ δr1 q2

ā→ δr2

q1 | q2
τ→ δr1|r2

RST
q

a→ μ

(b)q a→ (b)μ
a,ā�=b

We assume also the symmetric versions of the rules NDT, PAR and COM. The symbol
δq is the delta of Dirac, which assigns probability 1 to q and 0 to all other processes. The
symbol ◦

∑
i is the summation on distributions. Namely, ◦

∑
i pi · μi is the distribution μ

such that μ(x) =
∑

i pi · μi(x). The notation μ | q represents the distribution μ′ such
that μ′(r) = μ(q′) if r = q′ | q, and μ′(r) = 0 otherwise. Similarly, (b)μ represents the
distribution μ′ such that μ′(q) = μ(q′) if q = (b)q′, and μ′(q) = 0 otherwise.

3.3 Systems

A system has the form (A) q1 ‖ q2 ‖ · · · ‖ qn, where the qi’s are components and
A ⊆ Σ. The restriction on A enforces synchronization on the channel names belonging
to A, in accordance with the CCS spirit.

Systems’ semantics The semantics of a system gives rise to a TPA, where the states
are terms representing systems during their evolution. A transition now is of the form
q

�:a−→ μ where a ∈ Σ, μ ∈ D(Q), and � ∈ L is either the tag of the component
which makes the move, or a (unordered) pair of tags representing the two partners of a
synchronization. We can simply define L as L = I ∪ I2 where I = {1, 2, . . . , n}.

Interleaving
qi

a→ ◦
∑

j pj · δqij

(A) q1 ‖ · · · ‖ qi ‖ · · · ‖ qj ‖ · · · ‖ qn
i:a−→ ◦

∑
j pj · δ(A)q1‖···‖qij‖···‖qn

a�∈A
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where i is the tag indicating that the component i is making the step. Note that we
assume that probabilistic choices are finite. This implies that every transition q

�:a−→ μ
can be written q

�:a−→ ◦
∑

i pi · δqi , and justifies the notation used in the interleaving rule.

Synchronization
qi

a→ δq′
i

qj
ā→ δq′

j

(A) q1 ‖ · · · ‖ qi ‖ · · · ‖ qj ‖ · · · ‖ qn
{i,j}:τ−→ δ(A)q1‖···‖q′

i‖···‖q′
j‖···‖qn

here {i, j} is the tag indicating that the components making the step are i and j. Note
that it is an unordered pair. Sometimes we will write i, j instead of {i, j}, for simplicity.

Example 2. Consider the systems of Example 1. Figures 1(a) and 1(b) show the TPAs
of S [a/sec] and of S

[
b/sec

]
respectively. For simplicity we do not write the restriction

on channels c and out, and the termination symbol 0. We use ’−’ to denote a component
that is stuck. The corresponding tags are indicated in the figure with numbers above the
components. The set of enabled transitions should be clear from the figures. For in-
stance, we have enab(S

[
b/sec

]
) = {{1, 2}, {1, 3}, {1, 4}} and enab( − || out〈a〉 || −

|| − ) = {2}. The scheduler ζ defined as

ζ(σ) def=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{1, 4} if σ = S [a/sec] ,

2 if σ = S [a/sec]
1,2:τ−→ ( − || out〈a〉 || − || − ),

3 if σ = S [a/sec]
1,3:τ−→ ( − || − || out〈b〉 || − ),

4 if σ = S [a/sec]
1,4:τ−→ ( − || − || − || out〈a〉 ),

⊥ otherwise,

is a global scheduler for S [a/sec].

1 2 3 4
c〈a〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈a〉

− || − || − || − − || − || − || − − || − || − || −

{1, 2} :τ
{1, 3} :τ

{1, 4} :τ

2 :out〈a〉 3:out〈b〉 4 :out〈a〉

1(a)

1 2 3 4
c〈b〉 || c(s).out〈a〉 || c(s).out〈b〉 || c(s).out〈s〉

− || out〈a〉 || − || − − || − || out〈b〉 || − − || − || − || out〈b〉

− || − || − || − − || − || − || − − || − || − || −

{1, 2} :τ
{1, 3} :τ

{1, 4} :τ

2 :out〈a〉 3:out〈b〉 4 :out〈b〉

1(b)

Fig. 1. Automata S [a/sec] and S
[
b/sec

]
4 Admissible Schedulers

In this section we restrict the discerning power of the global and local schedulers in
order to avoid the problem of the information leakage induced in security by clairvoyant
schedulers. We impose two kinds of restrictions: For the global scheduler, following
[3], we assume that it can only see, and keep memory of, the observable actions and
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the components that are enabled, but not the secret actions. As for the local scheduler,
we assume that the local nondeterminism of each component is solved on the basis of
the view of the history local to that component, i.e. the projection of the history of the
system on that component. In other words, each component has to make decisions based
only on the history of its own execution; it cannot see anything of the other components.

4.1 Restricting Global Schedulers

We assume that the set of actions Σ is divided in two parts, the secret actions S and
the observable actions O. The secret actions are supposed to be invisible to the global
scheduler. Formally, this can be achieved using a function sift with sift(a) equals τ if
a ∈ S and equals a otherwise. Then, we restrict the power of the global scheduler by
forcing it to make the same decisions on paths he cannot tell apart.

Definition 3. Given a TPA M , a global scheduler ζ for M is admissible if for all paths

σ1 and σ2 we have t(σ1) = t(σ2) implies ζ(σ1) = ζ(σ2), where t
(
q̂

l1:a1−→ q1
l2:a2−→ · · ·

ln:an−→ qn+1

)
def=(enab(q̂), sift(a1), l1)(enab(q1), sift(a2), l2)· · ·(enab(qn), sift(an), ln).

The idea is that t sifts the information of the path that the scheduler can see. Since sift
“hides” the secrets, the scheduler cannot take different decisions based on secrets.

4.2 Restricting Local Schedulers

The restriction on the local scheduler is based on the idea that a step of the component i
of a system can only be based on the view that i has of the history, i.e. its own history. In
order to formalize this restriction, it is convenient to introduce the concept of i-view of
a path σ, or projection of σ on i, which we will denote by σ�i. We define it inductively:

(σ �:a−→ μ)�i =

⎧⎪⎨⎪⎩
σ�i

i:b−→ δqi if � = {i, j} and μ = δ(A) q1‖...‖qi‖...‖qj‖...‖qn

σ�i
i:a−→ μ if � = i

σ�i otherwise

In the above definition, the first line represents the case of a synchronization step involv-
ing the component i, where we assume that the premise for i is of the form q′i

b−→ δqi .
The second line represents an interleaving step in which i is the active component. The
third line represents step in which the component i is idle.

The restriction to the local scheduler can now be expressed as follows:

Definition 4. Given a TPA M and a local scheduler ξ for M , we say that ξ is admissible
if for all paths σ and σ′, if ξ(σ) = (�, a, μ), and ξ(σ′) = (�′, a′, μ′) we have:

• if � = �′ = i and σ�i = σ′
�i, then ξ(σ) = ξ(σ′),

• if � = �′ = {i, j}, σ�i = σ′
�i, and σ�j = σ′

�j then ξ(σ) = ξ(σ′).

A pair of compatible schedulers (ζ, ξ) is called admissible if ζ and ξ are admissible.
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5 Safe Equivalences

In this section we revise process equivalence notions to make them safe for security.

5.1 Safe Complete Traces

We define here a safe version of complete-trace semantics. The idea is that we compare
two processes based not only on their traces, but also on the choices that the global
scheduler makes at every step. We do this by recording explicitly the tags in the traces.

Definition 5

• Given a TPA M = (Q, L, Σ, q̂, α), the (complete) safe traces of M , denoted here
by Tracess, are defined as the probabilities of sequences of tags and actions corre-
sponding to all possible complete executions, i.e.

Tracess(M)= {f : (L×Σ)∞→ [0, 1] |
there exists an admissible scheduler (ζ, ξ) s.t.∀t ∈ (L×Σ)∞

f(t) = PM,ζ,ξ({σ ∈ CPaths(M) | traces(σ) = t}) }

where PM,ζ,ξ is the probability measure in M under (ζ, ξ), and traceta extracts
from a path the sequence of tags and actions, i.e. traceta(ε) = ε (on the empty path
traceta gives the empty string) and traceta(q �:a−→ σ) = � : a · traceta(σ).

• We denote by Tracess(q) the safe traces of the automaton associated to a system q.
• Two systems q1 and q2 are safe-trace equivalent, denoted by q1  s q2, if and only

if Tracess(q1) = Tracess(q2).

The following example points out the difference between  s and the standard (com-
plete) trace equivalence.

Example 3. Consider the TPAs of Example 2. The two TPAs have the same complete
traces. In fact Traces(S [a/sec]) = {τ · out〈a〉 , τ · out〈b〉} = Traces(S

[
b/sec

]
). On

the other hand, we have Tracess(S [a/sec]) = {f1, f2, f3} where f1({1, 2} : τ · 2 :
out〈a〉) = f2({1, 3} : τ · 3 : out〈b〉) = f3({1, 4} : τ · 4 : out〈a〉}) = 1, and fi(t) = 0
otherwise (for i ∈ {1, 2, 3}), while Tracess(S

[
b/sec

]
) = {f1, f2, f4} with f1, f2 as

above, and f4({1, 4} : τ · 4 : out〈b〉) = 1, f4(t) = 0 otherwise.

5.2 Safe Bisimilarity

In this section we propose a security-safe version of strong bisimulation, that we call
safe bisimulation. This is an equivalence relation stricter than safe-trace equivalence,
with the advantage of being a congruence. Since in this paper schedulers can always
observe which component is making a step (even a silent step), it does not seem natural
to consider weak bisimulation.
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We start with some notation. Given a TPA M = (Q, L, Σ, q̂, α), and a global sched-
uler ζ, we write q

a−→ζ μ if there exists σ ∈ Paths�(M) such that ζ(σ) �= ⊥,
(ζ(σ), a, μ) ∈ α(q), and q = last(σ). Note that the restriction to ζ still allows non-
determinism, i.e. there may be μ1, μ2, such that q

a1−→ζ μ1 and q
a2−→ζ μ2 (with either

a1 = a2 or a1 �= a2).
We now define the notion of safe bisimulation. The idea is that, if q and q′ are bisim-

ilar states, then every move from q should be mimicked by a move from q′ using the
same (admissible) scheduler.

Definition 6. Given a TPA M = (Q, L, Σ, q̂, α), we say that a relation R ⊆ Q × Q
is a safe bisimulation if, whenever q1R q2, then enab(q1) = enab(q2), and for all
admissible global schedulers ζ for M such that ζ(σ1) = ζ(σ2) whenever last(σ1) = q1
and last(σ2) = q2:

• if q1
a−→ζ μ1, then there exists μ2 such that q2

a−→ζ μ2 and μ1Rμ2, and

• if q2
a−→ζ μ2, then there exists μ1 such that q1

a−→ζ μ1 and μ1Rμ2,

where μ1Rμ2 means that for all equivalence classes X ∈ QR̂, we have μ1(X) =
μ2(X), where R̂ is the smallest equivalence class induced byR.

The following result is analogous to the case of standard bisimulation:

Proposition 1. The union of all the safe bisimulations is still a safe bisimulation.

Therefore the largest safe bisimulation exists, and coincides with the union of all safe
bisimulations. We call it safe bisimilarity, and we denote it by ∼s.

Given two TPAs on the same L and Σ, M1 = (Q1, L, Σ, q̂1, α1) and M2 = (Q2, L,
Σ, q̂2, α2), we can define bisimulation and bisimilarity across their states, i.e. as rela-
tions on (Q1 ∪Q2), in the obvious way, by constructing the TPA M with a new initial
state q̂ and two transitions to δq̂1 and to δq̂2 , respectively.

Given two components or systems, q1 and q2, we will say that q1 and q2 are safely
bisimilar, denoted by q1 ∼s q2, if the initial states of the corresponding TPAs are safely
bisimilar. Note that q1 ∼s q2 is possible only if q1 and q2 have the same number of
active components, where “active”, for a component, means that during the execution
of the system it will make at least one step. Note that in the case of components, or
of systems constituted by one component only, safe bisimulation and safe bisimilarity
coincide with standard bisimulation and bisimilarity (denoted by ∼), respectively. This
is not the case for systems, as shown by the following example:

Example 4. Consider again the TPAs of Example 2. As pointed out in the introduction,
we have S [a/sec] ∼ S

[
b/sec

]
. However S [a/sec] �∼s S

[
b/sec

]
. To show this, let us

construct a new TPA (as described before) with initial state q̂ such that q̂
�:τ−→ S [a/sec]

and q̂
�:τ−→ S

[
b/sec

]
. Now consider the (admissible) global scheduler ζ such

that
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ζ(σ) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if σ = q̂,

{1, 4} if σ = q̂
�:τ−→ S [a/sec] ,

2 if σ = q̂
�:τ−→ S [a/sec]

1,2:τ−→ ( − || out〈a〉 || − || − ),

3 if σ = q̂
�:τ−→ S [a/sec]

1,3:τ−→ ( − || − || out〈b〉 || − ),

4 if σ = q̂
�:τ−→ S [a/sec]

1,4:τ−→ ( − || − || − || out〈a〉 ),

{1, 4} if σ = q̂
�:τ−→ S

[
b/sec

]
,

2 if σ = q̂
�:τ−→ S

[
b/sec

] 1,2:τ−→ ( − || out〈a〉 || − || − ),

3 if σ = q̂
�:τ−→ S

[
b/sec

] 1,3:τ−→ ( − || − || out〈b〉 || − ),

4 if σ = q̂
�:τ−→ S

[
b/sec

] 1,4:τ−→ ( − || − || − || out〈b〉 ),
⊥ otherwise.

It is easy to see that S
[
b/sec

]
cannot mimic the transition 4 : out〈a〉 produced by

S [a/sec] using the same scheduler ζ.

It turns out that safe bisimulation is a congruence with respect to all the operators of our
language, as expressed by the following theorem. (Statements 2(a) and 2(b) are just the
standard compositionality result for probabilistic bisimulation.)

Theorem 1

1. ∼s is an equivalence relation.
2. Let a ∈ Σ and A, B, B′ ⊆ Σ. Let p1, . . . , pn be probability values, and let

q, q1, q2, . . . , qn, q′1, q
′
2, . . . , q

′
n be components.

(a) If q1 ∼s q2, then a.q1 ∼s a.q2, q1 + q ∼s q2 + q, (a)q1 ∼s (a)q2,
and q1 | q ∼s q2 | q.

(b) If q1 ∼s q′1, . . . , qn ∼s q′n , then
∑

i pi : qi ∼s

∑
i pi : q′i.

(c) If (B) q1 ‖ . . . ‖ qn ∼s (B′) q′1 ‖ . . . ‖ q′n, and f n(q) �∈ B ∪B′, then

(A ∪B) q1 ‖ . . . ‖ q ‖ . . . ‖ qn ∼s (A ∪B′) q′1 ‖ . . . ‖ q ‖ . . . ‖ q′n.

The following property shows that bisimulation is stronger than safe-trace equivalence,
like in the standard case.

Proposition 2. If q1 ∼s q2 then q1  s q2.

Like in the standard case, the vice-versa does not hold, and safe-trace equivalence is not
a congruence3.

6 Safe Nondeterministic Information Hiding

In this section we define the notion of information hiding under the most general hy-
pothesis that the nondeterminism is handled partly in a demonic way and partly in an

3 This is because we are considering the complete traces.
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angelic way. We assume that the demonic part is in the realm of the global scheduler,
while the angelic part is controlled by the local scheduler. The motivation is that in a
protocol the local components can be thought of as programs running locally in a single
machine, and locally predictable and controllable, while the network can be subject to
attacks that make the interactions unpredictable.

We recall that, in a purely probabilistic setting, the absence of leakage, such as no-
interference and strong anonymity, is expressed as follows (see for instance [5]). Given
a purely probabilistic automaton M , and a sequence ã = a1a2 . . . an, let PM ([ã])
represent the probability measure of all complete paths with trace ã in M . Let S be
a protocol containing a variable action secr , and let s be secret actions. Let Ms be
the automaton corresponding to S[s/secr ]. Define Pr(ã | s) as PMs([ã]). Then S is
leakage-free if for every observable trace ã , and for every secret s1 and s2, we have
Pr(ã | s1) = Pr(ã | s2).

In a purely nondeterministic setting, on the other hand, the absence of leakage has
been characterized in the literature by the property S[s1/secr ] ∼= S[s2/secr ], where ∼=
is an equivalence relation like trace equivalence, or bisimulation. As we have argued in
the introduction, this definition assumes an angelic interpretation of nondeterminism.

We want to combine the above notions so to cope with both probability and nonde-
terminism. Furthermore, we want to extend it to the case in which part of the nondeter-
minism is interpreted demonically. Let us first introduce some notation.

Let S be a system containing a variable action secr . Let s be a secret action. Let
Ms be the TPA associated to S[s/secr ] and let (ζ, ξ) be a compatible pair of global and
local schedulers for Ms. The probability of an observable trace ã given s is defined as
Prζ,ξ(ã | s) = PMs,ζ,ξ([ã]).

The global nondeterminism is interpreted demonically, and therefore we need to en-
sure that the conditional of an observable, given the two secrets, are calculated with re-
spect to the same global scheduler. On the other hand, the local scheduler is interpreted
angelically, and therefore we can compare the conditional probabilities generated by
the two secrets as sets under different schedulers. In other words, we have the freedom
to match conditional probability from the first set with one of the other set, without
requiring the local scheduler to be the same.

Either angelic or demonic, we want to avoid the clairvoyant schedulers, i.e. a sched-
uler should not be able to use the secret information to achieve its goals. For this pur-
pose, we require both the global and the local scheduler to be admissible.

Definition 7. A system is leakage-free if, for every secrets s1 and s2, every admissi-
ble global scheduler ζ, and every observable trace ã, {Prζ,ξ(ã | s1) | ξ admissible
and compatible with ζ} = {Prζ,ξ(ã | s2) | ξ admissible and compatible with ζ}.

The safe equivalences defined in Section 5 imply the absence of leakage:

Theorem 2. Let S be a system with a variable action secr and assume S[s1/secr ]  s

S[s2/secr ] for every pair of secrets s1 and s2. Then S is leakage-free.

Note that the vice versa is not true, i.e. it is not the case that the leakage-freedom of S
implies S[s1/secr ]  s S[s2/secr ]. This is because in the definition of safe-trace equiv-
alence we compare the set of probability functions (determined by the schedulers) on
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traces, while in the definition of leakage-freedom we compare the set of probabilities of
each trace, which may come from different functions. This additional degree of freedom
generated by the local scheduler helps the system to obfuscate the secret, and provides
further justification for the adjective “angelic” for the local nondeterminism.

From the above theorem and from Proposition 2, we also have the following corollary
(with the same premises as the previous theorem):

Corollary 1. If S[s1/secr ] ∼s S[s2/secr ] for every pair of secrets s1 and s2, then S is
leakage-free.

7 Related Work

The problem of deriving correct implementations from secrecy specifications has re-
ceived a lot of attention already. One of the first works to address the problem was
[18], which showed that the fact that an implementation is a consistent refinement w.r.t.
a specification does not imply that the (information-flow) security properties are pre-
served. More recently, [2] has proposed a notion of secrecy-preserving refinement, and
a simulation-based technique for proving that a system is the refinement of another.
[11] argues that important classes of security policies such as noninterference and aver-
age response time cannot be expressed by traditional notion of properties, which consist
of sets of traces, and proposes to use hyperproperties (sets of properties) instead. [14]
addresses the problem of supervisory control, i.e, given a critical system G that may
leak confidential information, how to design a controller C so that the system G|C dos
not leak. An effective algorithm is presented to compute the most permissible controller
such that the system is still opaque w.r.t. a secret.

Concerning angelic and demonic nondeterminism, there are various works which in-
vestigate their relation and possible combination. In [4] it is shown that angelic and
demonic nondeterminism are dual. [19] uses multi-relations to express specifications
involving both angelic and demonic nondeterminism. There are two kinds of agents, de-
monic and angelic ones, and there is the point of view of the internal system and the one
of the external adversary. [22] considers the problem of refining specifications while
preserving ignorance. While the focus is on the reduction of demonic nondeterminism
of the specification, the hidden values are treated essentially in a angelic way.

The problem of the leakage caused by full-information schedulers has also been
investigated in literature. [6] and [7] work in the framework of probabilistic automata
and introduce a restriction on the scheduler to the purpose of making them suitable to
applications in security protocols. Their approach is based on dividing the actions of
each component of the system in equivalence classes (tasks). The order of execution
of different tasks is decided in advance by a so-called task scheduler, which is history-
independent and therefore much more restricted than our notion of global scheduler.
[3] proposes a notion of system and admissible scheduler very similar to our notion of
system and admissible global scheduler. The main difference is that in that work the
components are deterministic and therefore there is no notion of local scheduler.
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The work in [9,8] is similar to ours in spirit, but in a sense dual from a technical point
of view. Instead of defining a restriction on the class of schedulers, they provide a way to
specify that a choice is transparent to the scheduler. They achieve this by introducing la-
bels in process terms, used to represent both the states of the execution tree and the next
action or step to be scheduled. They make two states indistinguishable to schedulers,
and hence the choice between them private, by associating to them the same label. We
believe that every scheduler in our formalism can be expressed in theirs, too. In [8] they
also consider the problem of defining a safe version of bisimulation for expressing se-
curity properties. They call it demonic bisimulation. The main difference with our work
is that we consider a combination of angelic and demonic nondeterminism, and this
affects also the definition of bisimulation. Similarly, our definition of leakage-freedom
reflects this combination. In [8] the aspect of angelicity is not considered, although they
may be able to simulate it with an appropriate labeling.

The fact that full-information schedulers are unrealistic has also been observed in
fields other than security. First attempts used restricted schedulers in order to obtain
rules for compositional reasoning [12]. The justification for those restricted schedulers
is the same as for ours, namely, that not all information is available to all entities in the
system. However that work considers a synchronous parallel composition, so the setting
is rather different from ours. Later on, it was shown that model checking is unfeasible in
its general form for the restricted schedulers in [12] (see [16] and, more recently, [15]).
Despite of undecidability, not all results concerning such schedulers have been negative
as, for instance, the technique of partial-order reduction can be improved by assuming
that schedulers can only use partial information [17].

8 Conclusion and Future Work

We have observed that some definitions of security properties based on process equiva-
lences may be too naive, in that they assume the scheduler to be angelic, and, worse yet,
to achieve its angelic strategy by peeking at the secrets. We have presented a formalism
allowing us to specify a demonic constituent of the scheduler, possibly in collusion with
the attacker, and an angelic one, under the control of the system. We have also consid-
ered restrictions on the schedulers to limit the power of what they can see, and extended
to our nondeterministic framework the (probabilistic) information-hiding properties like
non interference and strong anonymity. We then have defined “safe” equivalences. In
particular we have defined the notions of safe trace equivalence and safe bisimilarity,
and we have shown that the latter is still a congruence. Finally, we have shown that the
safe equivalences can be used to prove information-hiding properties.

For the future, we plan to extend our framework to quantitative notions of informa-
tion leakage, possibly based on information theory. We also plan to implement model
checking techniques to verify information hiding properties for our kind of systems. A
natural candidate for the implementation would be PRISM. Of course, we would need
to restrict the class of schedulers in PRISM so to meet the admissibility criteria.

Acknowledgement. The authors wish to thank the anonymous reviewers for their use-
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Abstract. This paper presents simulation-based relations for probabilis-
tic game structures. The first relation is called probabilistic alternating
simulation, and the second called probabilistic alternating forward simu-
lation, following the naming convention of Segala and Lynch. We study
these relations with respect to the preservation of properties specified in
probabilistic alternating-time temporal logic.

1 Introduction

Simulation relations [15] have proved to be useful for comparing the behavior of
concurrent systems, which can be formally interpreted as labeled transition sys-
tems. The study of logic characterization of simulation is to build its connection
to a modal or temporal logic which can be used to formulate some interest-
ing properties. Soundness of logic characterization requires simulation preserve
the satisfaction of logic formulas, while completeness shows the relation has the
same strength as the logic. Intuitively, the fact that one state s1 simulates an-
other state s2 can be used to establish the relation that any possible behavior
of s1 is also possible on s2. Thus it can preserve certain desirable properties
formulated in temporal logics like CTL [11]. Simulation relations have set up
the foundations for constructing correct abstractions.

Related work. Segala and Lynch [21] extend the classical notions of simulation
for probabilistic automata [20], a general extension of labeled transition systems
which admits both probabilistic and nondeterministic behaviors. Their main
idea is to relate probability distributions over states, instead of relating individ-
ual states. They show soundness of the logical characterization of probabilistic
simulation, which preserves probabilistic CTL formulas [12] without negation
and existential quantification. Segala introduces probabilistic forward simula-
tion, which relates states to probability distributions over states and is sound
and complete for trace distribution precongruence [19,13]. Logic characterization
of strong and weak probabilistic bisimulation has been studied in [10,17].

Alur, Henzinger and Kupferman [1,2] define ATL (alternating-time temporal
logic) to generalize CTL for game structures by requiring each path quantifier
to be parametrized with a set of agents. Game structures are more general than
LTS, in the sense that they allow both collaborative and adversarial behaviors
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c© IFIP International Federation for Information Processing 2010



72 C. Zhang and J. Pang

of individual agents in a system, and ATL can be used to express properties
like “a set of agents can enforce a specific outcome of the system”. Alternating
refinement relations, in particular alternating simulation, are introduced later
in [3]. Alternating simulation is a natural game-theoretic interpretation of the
classical simulation in two-player games. Logic characterization of this relation
concentrates on a subset of ATL� formulas where negations are only allowed at
proposition level and all path quantifiers are parametrized by a predefined set of
agents A. This sublogic of ATL� contains all formulas expressing the properties
that agents in A can enforce no matter what the other agents do. Alur et al. [3]
have proved both soundness and completeness of their characterization.

Our contribution. Extending game structures with probabilistic behaviors of
players gives rise to a more expressive framework for modeling (open) systems.
Mixed strategies, which allow for players to randomly select their actions, are
often necessary for the players to achieve their expected rewards [16]. As the
papers [3,2] only focuse on pure strategies, it is a natural step to study the
corresponding notion of simulation in a probabilistic game-based setting.

In this paper, we introduce two notions of simulation for probabilistic game
structures — probabilistic alternating simulation and forward simulation, fol-
lowing the aforementioned results [19,21,3]. We prove the soundness of logical
characterization of probabilistic alternating simulation relations, by showing that
they preserve a fragment of a probabilistic extension of ATL.

Outline. The rest of the paper is organized as follows. We briefly explain some
basic notations that are used throughout the paper in Sect. 2. Sect. 3 introduces
the notion of probabilistic game structures and the definition of probabilistic ex-
ecutions. In Sect. 4 we present PATL an extension of the alternating-time tem-
poral logic [2] for probabilistic systems, and roughly discuss its model checking
problem. We define probabilistic alternating simulation and forward simulation
in Sect. 5, and show their soundness for preserving properties specified in PATL
in Sect. 6. Probabilistic alternating bisimulation is shortly discussed in Sect. 7.
We conclude the paper with some future research topics in Sect. 8.

2 Preliminaries

This section contains basic notions that are used in the technical part. Let S
be a set, then a discrete probabilistic distribution Δ over S is a function of
type S → [0, 1], satisfying

∑
s∈S Δ(s) = 1. We write D(S) for the set of all

such distributions. For a set S′ ⊆ S, define Δ(S′) =
∑

s∈S′ Δ(s). Given two
distributions Δ1, Δ2 and p ∈ [0, 1], Δ1 ⊕p Δ2 is a function of type S → [0, 1]
defined as Δ1 ⊕p Δ2(s) = p · Δ1(s) + (1 − p) · Δ2(s) for all s ∈ S. Obviously,
Δ1 ⊕p Δ2 is also a distribution. We further extend this notion by combining a
set of distributions {Δi}i∈I ordered by an indexed set {pi}i∈I into a distribution∑

i∈I piΔi, where pi ∈ [0, 1] for all i ∈ I and
∑

i∈I pi = 1. s is called a point
distribution satisfying s(s) = 1 and s(t) = 0 for all t �= s. Let Δ ∈ D(S), write
!Δ" for the support of Δ as the set {s ∈ S | Δ(s) > 0}.
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Let S = S1 × S2 × · · · × Sn, then s ∈ S is a vector of length n. We may
also write s = 〈s1, s2, . . . , sn〉, with s(i) = si ∈ Si. Given a finite sequence
α = s1s2 . . . sn ∈ S∗, write last(α) for sn. Let S′ ⊆ S, then α | S′ is a subsequence
of α with exactly the elements not in S′ removed. Given L ⊆ S∗, write L | S′

for the set {(α | S′) | α ∈ L}.

3 Probabilistic Game Structures

Assume a set of players Σ = {1, 2, . . . , k}. A probabilistic game structure (PGS)
G is defined as a tuple 〈S, s0,L, Act, δ〉, where

– S is a finite set of states, with s0 the initial state,
– Act = Act1× Act2× · · ·× Actk is a set of joint actions, where Acti is the set

of actions for player i = 1, . . . , k,
– L : S → 2Prop is the labeling function,
– δ : S × Act → D(S) is a transition function.

A play ρ is a (finite or infinite) sequence s0a1s1a2s2 . . ., such that ai ∈ Act and
δ(si−1, ai)(si) > 0 for all i. Write |ρ| for the length of a run ρ, which is the number
of transitions in ρ, and |ρ| = ∞ if ρ is infinite. We write ρ(i) for the i-th state in ρ
starting from 0, and ρ[i, j] for the subsequence starting from i-th state and ending
at the j-th state, provided 0 ≤ i ≤ j ≤ |ρ|. Note that the players choose their
next moves simultaneously, but their moves may or may not be cooperative.
If on state s each player i performs action ai, then δ(s, 〈a1, a2, . . . ak〉) is the
distribution for the next reachable states. In the following discussion, we fix a
probabilistic game structure G.

We assume that the transition function δ is total on the set Act. Note that
this does not pose any limitation on the expressiveness of the model. If an action
c ∈ Acti of player i is not supposed to be enabled on state s for player i, we
may find another action c′ ∈ Acti and define c to have the same effect as c′

on s. Since player i knows the current state, he also knows the set of actions
available to him, so that as a rational player he will not choose actions that are
not enabled. This allows such models to express systems in which on some states
the available (joint) actions are proper subsets of Act.1 We may even disable a
particular player on a state. A player i is disabled on s if δ(s, a) = δ(s, a′) for
all action vectors a, a′ ∈ Act satisfying a(j) = a′(j) for all j �= i. A PGS is
turn-based if all but one player is disabled on s for all s ∈ S.

A strategy of a player i ∈ Σ is a function of type S+ → D(Acti). We write
ΠG

i for the set of strategies of player i in G. A play ρ is compatible with an
i-strategy πi, if ak(i) ∈ !πi(ρ[0, k − 1]|S)" for all k ≤ |ρ|. Given a vector of
strategies π ∈ ΠG

1 ×ΠG
2 × · · · ×ΠG

|Σ|, a run ρ is compatible with π if ak(i) ∈
!π(i)(ρ[0, k − 1]|S)" for all k ≤ |ρ| and i = 1, . . . , k. Write G(π, s) for the set
of infinite plays compatible with every strategy in π starting from s ∈ S, and
G∗(π, s) the set of finite plays in G that are compatible with π starting from s.
1 In the literature some authors encode available actions for player i as a function of

type S → 2Acti \ {∅}.
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The set of finite plays compatible to strategy vector π is also called a set of
cones [20], with each finite play α representing the set of infinite plays prefixed
by α. Given a state s0 ∈ S, we can derive the probability for every member in S+

compatible with π, by recursively defining a function PrG(π,s0) from S+ to [0, 1]
as follows. This function PrG(π,s0) can be further generalized as the probability
measure to the σ-field FG,π,s0 ⊆ G(π, s0) which is a unique extension from the
set of cones G∗(π, s) closed by countable union and complementation, in a way
similar to [20]:

– PrG(π,s0)(s0) = 1,
– PrG(π,s0)(α · s) = PrG(π,s0)(α) · δ(last(α), 〈π(1)(α), π(2)(α), . . . , π(k)(α)〉)(s),

where δ(s, 〈Δ1, Δ2, . . . , Δk〉) is a distribution over states derived from δ and the
vector of action distributions defined by

δ(s, 〈Δ1, . . . , Δk〉) =
∑

i∈{1,...,k},ai∈�Δi�
Δ1(a1) · . . . ·Δk(ak) · δ(s, 〈a1, . . . , ak〉).

Given A ⊆ Σ, sometimes we write π(A) for a vector of |A| strategies {πi}i∈A,
and Π(A) for the set of all such strategy vectors. Write A for Σ \ A. Given
A ∩A′ = ∅, strategy vectors π ∈ Π(A) and π′ ∈ Π(A′), π ∪ π′ is the vector of
strategies {πi}i∈A ∪ {π′

j}j∈A′ that combines π and π′.
We also define strategies of finite depth by restricting the size of their domains,

by writing π ∈ ΠG,n
i as a level-n strategy, i.e., π is a function from traces of

states with length up to n (i.e., the set
⋃

m∈{1,2,...,n} Sm) to D(Acti). Given a
set of strategies {πi}i∈I of the same domain, and {pi}i∈I with

∑
i∈I pi = 1, let

π =
∑

i∈I pi · πi be a (combined) strategy, by letting π(γ) =
∑

i∈I pi · πi(γ) for
all γ in the domain.

We overload the function δ as from a state in S and a vector of strategies
(of any depth n) π ∈ ΠG,n

1 ×ΠG,n
2 × · · · ×ΠG,n

|Σ| to D(S), by δ(s, π) = δ(s, a),
where a(i) = π(i)(s) for all i ∈ Σ. Note each a(i) is a distribution over Acti. We
further lift δ to be a transition function from state distributions and strategy
vectors to state distributions, by

δ(Δ, π) =
∑

s∈�Δ�
Δ(s) · δ(s, π)

Probabilistic Executions
We settle the nondeterminism in a probabilistic game structure by fixing the
behaviors of all players represented as strategies. Let G = 〈S, s0,L, Act, δ〉 be a
PGS, define a probabilistic execution E as in the form of 〈E, Δ,LE , δE〉, where

– E ⊆ S+ is the set of finite plays starting form a state in the initial dis-
tribution and compatible with δE , i.e., s0s1 . . . sn ∈ E if s0 ∈ !Δ", and
δE(s0 . . . si)(s0 . . . si+1) > 0 for all 0 ≤ i < n,

– Δ ∈ D(S) an (initial) distribution,



On Probabilistic Alternating Simulations 75

– LE is the labeling function defined as LE(e) = L(last(e)) for all e ∈ E,
– δE : E → D(E) is a (deterministic) transition relation, satisfying for all

e ∈ E there exists a (level 1) strategy vector πe, such that δE(e)(e · t) =
δ(last(e), πe)(t) if t ∈ !δ(last(e), πe)", and 0 otherwise.

A probabilistic execution of G can be uniquely determined by a strategy vector
π and a state distribution. Given Δ ∈ D(S), define E(G, π, Δ) as the proba-
bilistic execution 〈Eπ, Δ,Lπ, δπ〉, with Eπ =

⋃
s∈�Δ� G∗(π, s) | S for the set

of compatible finite plays, Lπ defined as Lπ(e) = L(last(e)) for all e ∈ Eπ,
and δπ(e) = δ(last(e), πe) for all e ∈ Eπ, where πe(i) = π(i)(e) for all i ∈ Σ.
Intuitively, a probabilistic execution resembles the notion of the same name pro-
posed by Segala and Lynch [20,21], and in this case the strategies of the players
altogether represent a single adversary of Segala and Lynch.

4 Probabilistic Alternating-Time Temporal Logic

In this section we introduce a probabilistic version of alternating-time tempo-
ral logic [2], which focuses on the players ability to enforce a property with an
expected probability. Let Prop be a nonempty set of propositions. Probabilis-
tic alternating-time temporal logic (PATL) was initially proposed by Chen and
Lu [7]. Here we show its original syntax can be slightly simplified. PATL formulas
are defined as follows.

φ := p | ¬φ | φ1 ∧ φ2 | 〈〈A〉〉��αψ

ψ := ©φ | φ1U
≤kφ2

where A ⊆ Σ is a set of players, ��∈ {<, >,≤,≥}, k ∈ N ∪ {∞}, p ∈ Prop, and
α ∈ [0, 1]. We also write ψ1U ψ2 for ψ1U≤∞ψ2 as ‘unbounded until’. The symbols
φ, φ1, φ2 are state formulas, and ψ is a path formula. We omit the syntactic
sugars in our definition, such as true ≡ p ∨ ¬p and false ≡ p ∧ ¬p for some
p ∈ Prop, φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) for state formulas. The path modality R
can be expressed by U without introducing negations into path formulas, as we
will show later in this section. One may also define �≤kψ ≡ false R≤kψ, and
�≤kψ ≡ true U≤kψ, where k ∈ N∪{∞}. The set of PATL formulas L are the set
of state formulas as defined above. We have the semantics of the path formulas
and the state formulas defined as follows.

– ρ |= φ iff G, ρ(0) |= φ where φ is a state formula,
– ρ |= ©φ iff ρ(1) |= φ,
– ρ |= φ1U≤kφ2 iff there exists i ≤ k such that ρ(j) |= φ1 for all 0 ≤ j < i and

ρ(i) |= φ2,
– G, s |= p iff p ∈ L(s),
– G, s |= ¬φ iff G, s �|= φ,
– G, s |= φ1 ∧ φ2 iff G, s |= φ1 and G, s |= φ2,
– G, s |= 〈〈A〉〉��α ψ iff there exists a vector of strategies π ∈ Π(A), such that for

all vectors of strategies π′ ∈ Π(A) for players in A, we have PrG(π∪π′,s)({ρ ∈
G(π ∪ π′, s) | ρ |= ψ}) �� α,
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where ρ is an infinite play in G, α ∈ [0, 1], φ, φ1, φ2 are state formulas, and ψ
is a path formula. Equivalently, given S the state space of a probabilistic game
structure G, we write �φ� for {s ∈ S | s |= φ} for all PATL (state) formulas
φ. For Δ ∈ D(S), we write Δ |= φ iff !Δ" ⊆ �φ�. Intuitively, G, s |= 〈〈A〉〉≥αψ
(G, s |= 〈〈A〉〉≤αψ) describes the ability of players in A to cooperatively enforce
ψ with probability at least (at most) α in s.

The following lemma is directly from the PATL semantics. If a group of users
A can enforce a linear-time temporal logic formula ψ to hold with probability at
least α with strategies π ∈ Π(A), then at the same time π enforces the formula
¬ψ to hold with probability at most 1− α. To simplify the notation, we let ‘∼’
denote changes on directions of the symbols in {<, >,≤,≥}, e.g., symbol ≥̃ for
≤, ≤̃ for ≥, >̃ for <, and <̃ for >.

Lemma 1. G, s |= 〈〈A〉〉��αψ iff G, s |= 〈〈A〉〉�̃�1−α¬ψ

Therefore, the path quantifier R (release) can be expressed by the existing PATL
syntax, in the way that 〈〈A〉〉��αφ1R≤kφ2 ≡ 〈〈A〉〉�̃�1−α(¬φ1)U≤k(¬φ2), where both
¬φ1 and ¬φ2 are state formulas.

On Model Checking of PATL
In this section we briefly survey the results in the literature related to PATL
model checking. Given a PATL formula in the form of 〈〈A〉〉��αψ(φ1, . . . , φn), a
standard way to solve this problem is to determine the maximal or minimal
probability that the players in A can enforce the LTL formula ψ(φ1, . . . , φn). In
the following we write ψ for ψ(φ1, . . . , φn) without further confusions.

LTL properties are special cases of ω-regular winning objectives [22] in two-
player concurrent (zero-sum) games [9,6]. In such games one may group a set of
players A ⊆ Σ into a single protagonist and A into a single antagonist. Given an
ω-regular winning objective ξ and starting from a state s ∈ S, the protagonist
plays with a strategy trying to maximize the probability for a play to satisfy
ξ while the antagonist tries to minimize the probability. In such a game there
always exists a unique value in [0, 1], on which both players have strategies
to guarantee (or infinitely approach) their best performances, regardless of the
strategies played by their opponents. Such a supremum value (or infinum value,
as for the antagonist) is called the value of the game [14,9]. In a probabilistic
multi-player game, we let a group of players A ⊆ Σ be a single player, and A
be the other, and the supremal probability for A to enforce an LTL formula ψ
starting from a given state s ∈ S can be uniquely determined, as defined by

〈A〉ψ(s) =
⊔

π∈Π(A)

�
π′∈Π(A)

PrG(π∪π′,s)({ρ ∈ G(π ∪ π′, s) | ρ |= ψ})

A vector of strategies, which does not necessarily exist, is optimal for a group of
players, if it enforces the value of the game for that group.

Example 1. Fig. 1 gives a PGS with two players {I, II}, initial state s0, ActI =
{a1, a2} and ActII = {b1, b2}. Note that this PGS is deterministic, i.e, no prob-
abilities in its transitions. We assume that the only available transitions from
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Fig. 1. An example showing that player I can guarantee to satisfy �φ with probability
α for all 0 ≤ α < 1, but he cannot ensure that property with probability 1

s1 and s2 are self-loops, and the other transition relations are as depicted in
the graph. Suppose player I wants to maximize the probability to enforce the
property �φ, and player II aims to minimize it.

Since the strategies applied on s1 and s2 do not matter, we focus on the choices
of actions from both players on s0. We first focus on memoryless strategies, and
let player I’s strategy π1 gives π1(γ)(a1) = p and π1(γ)(a2) = 1 − p for all
γ ∈ S+. Similarly we let II assign probability q to b1 and 1 − q to b2 all the
time. This produces an infinite tree, on which we write xs0(I) for the actual
probability I can achieve �φ from s0, given the above memoryless strategies.
(Note that xs1(I) = 0 and xs2 (I) = 1 in all cases.) This establishes an equation
which further derives xs0 (I) = (1−p)+(2p−1)q

(1−p)+pq . A simple analysis shows that when
p approaches 1, the minimal value of xs0(I) approaches 1 as well, for all choices
of q. That is, there exists a strategy for player I to enforce �φ with probability
1 − ε for all ε > 0. However, if player I chooses p = 1, player II may set q = 0
so that a play will be trapped in s0 for ever that yields xs0(I) = 0. The result
of [9] shows that in this case player I cannot do better even with general (history
dependent) strategies. In fact there are no strategies for player I to enforce �φ
with probability 1. $%

Indeed, 〈A〉ψ(s) can be almost the best, i.e., we have G, s |= 〈〈A〉〉≥ 〈A〉ψ(s)−εψ for
all ε > 0 [8]. Nevertheless, the quantitative version of determinacy [14] ensures
that for all LTL formulas ψ and s ∈ S, we have

〈A〉ψ(s) + 〈A〉¬ψ(s) = 1

The PATL model checking problems can be solved by calculating the values
〈A〉ψs(s) for each state s, where each local objective ψs related to s might be
distinct. The algorithms of [9] define monotonic functions of type (S → [0, 1]) →
(S → [0, 1]) to arbitrarily approach a vector {〈A〉ψs(s)}s∈S in a game struc-
ture with finite state space S with respect to an ω-regular winning objective ψ.
Within each step one has to go through O(|S|) matrix games, and each iteration
produces a unique fixed point. The algorithms on safety and reachability objec-
tives are special cases of solving stochastic games [18]. More complex properties
can be expressed as nested fixed points [9]. Therefore, the upper bound complex-
ities become exponential to the size of the winning objectives translated from
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LTL formulas. More recently, alternative algorithms proposed in [6] prove that
for quantitative games with ω-regular winning objectives expressed as parity
conditions, whether the values of a game is within [r− ε, r+ ε] can be decided in
NP ∩ coNP for all rational r ∈ [0, 1] and ε > 0, which improves the theoretical
upper bound for estimating the optimal values.

It has been shown in [9] that for safety games there always exist optimal
strategies for the protagonists, however for reachability games it is not always
the case. We generalise results on the existence of optimal strategies for PATL
path formulas as follows. Note that the result for unbounded release R has not
been studied in the literature, to the authors’ knowledge, and the rest of the
lemma is derivable from [9].

Lemma 2. Let s be a state, ψ be a path formula, and A the set of protagonists.

1. If ψ is of the form©φ, φ1U
≤kφ2, φ1R≤kφ2, or φ1Rφ2 with k ∈ N, there always

exists a joint optimal strategy for A that enforces ψ on s with probability at
least 〈A〉ψ(s).

2. If ψ is of the form φ1Uφ2, there always exists a joint ε-optimal strategy for
A that enforces ψ on s with probability at least 〈A〉ψ(s) − ε, for all ε > 0.

The next results prove the existence of a joint A strategy to enforce an PATL
path formula with probability greater than α if there exists a joint strategy to en-
force that formula with probability greater than α against an optimal A strategy.
These two lemmas are essential for the proof of the main result (Theorem 1).

Lemma 3. Let ψ be a PATL path formula and π′ be a joint optimal strategy for
the antagonists A on state s, if there exists a joint strategy π for the protagonists
A such that PrG(π∪π′,s)({ρ ∈ G(π ∪ π′, s) | ρ |= ψ}) > α, then G, s |= 〈〈A〉〉>αψ.

Proof. Since π′ is the optimal strategy for the antagonists, we have for all joint
strategies π′′, PrG(π′′∪π′,s)({ρ ∈ G(π′′ ∪ π′, s) | ρ |= ψ}) ≤ 〈A〉ψ(s), then we
have 〈A〉ψ(s) > α. If there exists an optimal joint strategy for A then we have
s |= 〈〈A〉〉≥〈A〉ψ(s)ψ, which implies s |= 〈〈A〉〉>αψ. Otherwise by Lemma 2 there
exists an ε-optimal joint strategy for A with small ε > 0 to enforce ψ with
probability at least 〈A〉ψ(s) − ε > α. This also gives us s |= 〈〈A〉〉>αψ. $%

This result does not hold if we replace the operator “>” by “≥” for unbounded
until U. This is because if there does not exist a joint optimal strategy for A to
enforce φ1Uφ2 with probability ≥ α, we have no space to insert a tiny ε > 0 as we
did in the above proof. For the fragment of path formulas without unbounded
until, we extend the results for ≥, by the fact that optimal joint strategies for A
always exist for these path modalities, as stated by the following lemma.

Lemma 4. For path formulas ψ in the form of ©φ or φ1U
≤kφ2 and optimal

strategies π′ of A for the antagonists A on state s, if there exists a joint strategy
π for the protagonists A such that PrG(π∪π′,s)({ρ ∈ G(π ∪ π′, s) | ρ |= ψ}) �� α,
then G, s |= 〈〈A〉〉��αψ, where k ∈ N and ��∈ {>,≥}.



On Probabilistic Alternating Simulations 79

A-PATL
We define a sublogic of PATL by focusing on a particular set of players. Similar to
the approach of [3], we only allow negations to appear on the level of propositions.
Let A ⊆ Σ, an A-PATL formula φ is a state formula defined as follows:

φ := p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈〈A′〉〉��α © φ | 〈〈A′〉〉��αφ1U
≤kφ2 | 〈〈A′〉〉>αφ1Uφ2

where k ∈ N, ��∈ {>,≥} and A′ ⊆ A. Write LA for the set of A-PATL formulas.
An A-PATL formula describes a property that players in A are able to ensure
with a minimal expectation by their joint strategies. Note that we only allow
‘> α’ in the construction of unbounded until.

5 Probabilistic Alternating Simulation Relations

We define probabilistic versions of alternating simulation [3]. An alternating
simulation is a two-step simulation. For a sketch, suppose state s is simulated
by state t. In the first step the protagonists choose their actions on t to simulate
the behavior of the protagonists on s, and in the second step the antagonists
choose actions on s to respond to the behavior of the antagonists on t. This
somehow results in a simulation-like relation, so that for a certain property the
protagonists can enforce on s, they can also enforce it on t. To this end we
split Σ into two groups of players — one group of protagonist and the other
group of antagonist. Subsequently, we consider only the two-player case in a
probabilistic game structure — player I for the protagonist and player II for the
antagonist, since what we can achieve in the two-player case naturally extends to
a result in systems with two complementary sets of players, i.e., A∪A = Σ. For
readability we also write the transition functions as δ(s, a1, a2) and δ(s, π1, π2)
for δ(s, 〈a1, a2〉) and δ(s, 〈π1, π2〉), respectively.

Let S, T be two sets and R ⊆ S × T be a relation, then R ⊆ D(S)×D(T ) is
defined by ΔRΘ if there exists a weight function w : S × T → [0, 1] satisfying

–
∑

t∈T w(s, t) = Δ(s) for all s ∈ S,
–
∑

s∈S w(s, t) = Θ(t) for all t ∈ T ,
– sR t for all s ∈ S and t ∈ T with w(s, t) > 0.

Based on the notion of lifting, we define the probabilistic alternating simulation
relation for player I that extends the alternating simulation relation of [3]. The
definition for player II can be made in a similar way.

Definition 1. Consider G,G′ as two probabilistic game structures. A probabilis-
tic alternating I-simulation �⊆ S × S′ is a relation satisfying if s � s′, then

– L(s) = L′(s′),
– for all π1 ∈ ΠG,1

I , there exists π′
1 ∈ ΠG′,1

I , such that for all π′
2 ∈ ΠG′,1

II , there
exists π2 ∈ ΠG,1

II , such that δ(s, π1, π2)� δ′(s′, π′
1, π

′
2).
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Note we use level-1 strategies instead of actions (or distributions on actions)
on establishing simulations, as in a game structure it is more natural to define
simulation in a behavior -based way. Also note that a distribution on level-1
strategies yields a level-1 strategy.

Next we propose the notion of probabilistic alternating forward simulation,
as per Segala [19], which relates a state to a distribution of states. This requires
a different way of lifting. Let R ⊆ S × D(S) be a relation, write R for the
smallest relation satisfying ΔRΘ if there exists an index set {pi}i∈I satisfying
Σi∈Ipi = 1, such that Δ = Σi∈Ipi · si, Θ = Σi∈Ipi ·Θi and siRΘi for all i. Now
we define the probabilistic alternating forward simulation relation for player I,
and the definition for player II can be made in a similar way.

Definition 2. Consider two probabilistic game structures G = 〈S, s0,L, Act, δ〉
and G′ = 〈S′, s′0,L′, Act′, δ′〉. A probabilistic alternating forward I-simulation
�f⊆ S ×D(S′) is a relation satisfying if s �f Δ′, then

– L(s) = L′(s′) for all s′ ∈ !Δ′",
– for all π1 ∈ ΠG,1

I , there exists π′
1 ∈ ΠG′,1

I , such that for all π′
2 ∈ ΠG′,1

II , there
exists π2 ∈ ΠG,1

II , such that δ(s, π1, π2)�f δ′(Δ′, π′
1, π

′
2).

Lemma 5. s � t implies s �f t.

This lemma says that every probabilistic alternating simulation is a probabilis-
tic forward simulation with a point distribution on the right hand side of the
relation. The other way does not hold, i.e., probabilistic alternating forward
simulation relates strictly more game structures than probabilistic alternating
simulation. In Fig. 2 (which is essentially of [20]), we assume ActI and ActII are
both singleton sets. One may find that there are no states in the set {s′2, s′3, s′4, s′5}
in Fig. 2(b) that can simulate states s3 and s5 in Fig. 2(a). Therefore, we can-
not establish a probabilistic alternating simulation from s1 to s′1. However, s1 is
related to s′1 by probabilistic alternating forward simulation, since s3 (s5) can
be related to a uniform distribution over s′2 and s′3 (s′4 and s′5). The next result
shows that the definition of forward simulation also works on the lifted relation.

Lemma 6. If Δ�fΘ, then for all π1 ∈ ΠG,1
I , there exists π2 ∈ ΠG′,1

I , such that
for all π′

2 ∈ ΠG′,1
II , there exists π′

1 ∈ ΠG,1
II , such that δ(Δ, π1, π

′
1)�f δ(Θ, π2, π

′
2).

Consequently, we are able to show that lifted probabilistic alternating forward
simulations are transitive.

Corollary 1. (Transitivity of alternating forward simulation) Let �f be a prob-
abilistic alternating forward I-simulation, then Δ1�fΔ2 and Δ2�fΔ3 implies
Δ1�fΔ3.

6 Forward I-Simulation Is Sound for I-PATL

This section establishes the main result of the paper: a relationship between
probabilistic forward I-simulation and I-PATL formulas. Recall that a I-PATL
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Fig. 2. An example showing that probabilistic alternating forward simulation is strictly
weaker than probabilistic alternating simulation

formula has only strategy modalities 〈〈I〉〉 and 〈〈∅〉〉, and negations are only al-
lowed to appear immediately before the propositions. For readability we write
〈〈I〉〉 for 〈〈{I}〉〉. Let G and G′ be two PGSs, Δ ∈ D(S) and Δ′ ∈ D(S′) such that
Δ�fΔ

′ by a probabilistic alternating forward I-simulation. We need to show
that Δ |= φ implies Δ′ |= φ for all I-PATL formula φ.

Our proof relies on the existence of player II’s optimal strategies for path
formulas as winning objectives (as shown in Sect. 4). Suppose π1 is a I strategy
that enforces φ, we construct another I strategy π′

1 that simulates π all along
the way, in the sense that provided the optimal II strategy π′

2 there exists an-
other II strategy π2 such that the probabilistic execution E(G, 〈π1, π2〉, Δ) will
be “simulated” by the probabilistic execution E(G′, 〈π′

1, π
′
2〉, Δ′). Since π1 en-

forces φ, E(G, 〈π1, π2〉, Δ) satisfies φ, and we show that it is also the case of
E(G′, 〈π′

1, π
′
2〉, Δ′).

Let E = 〈E, Δ,LE , δE〉 and E ′ = 〈E′, Δ′,LE′
, δE′〉 be probabilistic executions

of G and G′, respectively. Also let �f⊆ S ×D(S′) be a probabilistic alternating
forward I-simulation. We say the pair (E , E ′) is an instance of simulation, by
writing E � E ′, if there exists a (simulation) relation �′⊆ E ×D(E′), such that

– Δ�′
Δ′,

– if e �′ Θ then last(e) �f last(Θ),
– if e �′ Θ then δE(e)�δE

′
(Θ),

where last(Θ) is a distribution satisfying last(Θ)(s) =
∑

last(e)=s Θ(e). A few
properties of the relation �′ are as follows.

Lemma 7. 1. Δ�′
Θ implies δE(Δ)�′

δE
′
(Θ).

2. Δ�′
Θ and Δ = Δ1 ⊕α Δ2 with α ∈ [0, 1], then there exist Θ1, Θ2 such that

Δ1�
′
Θ1, Δ2�

′
Θ2, and Θ = Θ1 ⊕α Θ2.

Let Δ be a state distribution of G, Δ′ be a state distribution of G′, and Δ�fΔ
′.

Suppose π1 is a I strategy in G that enforces φ with probability at least α, and π′
2
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is a II strategy in G′, step-by-step we establish a I strategy π′
1 and a II strategy

π2, so that the probabilistic executution decided by π1 and π2 from Δ will be
simulated by the probabilistic executution decided by π′

1 and π′
2 from Δ′.

Lemma 8. Let G = 〈S, s0,L, Act, δ〉 and G′ = 〈S′, s′0,L′, Act′, δ′〉 be two PGSs.
If Δ�fΔ

′, then for all π1 ∈ ΠG
I and π′

2 ∈ ΠG′
II , there exists π′

1 ∈ ΠG′
I and

π2 ∈ ΠG
II, such that E(G, 〈π1, π2〉, Δ) � E ′(G′, 〈π′

1, π
′
2〉, Δ′).

In order to measure the probability of a path formula to be satisfied when the
strategies from both player I and player II are fixed, we define a relation |=��α

for probabilistic executions.

Definition 3. Let G be a probabilistic game structure, E(Δ) = 〈E, Δ,LE , δE〉 a
probabilistic execution determined by a vector πE , and ψ a path formula, define

E(Δ) |=��α ψ iff PrΔ
E ({ρ ∈

⋃
s∈�Δ�

G(πE , s) | ρ |= ψ}) �� α

It is conceivable that in a probabilistic execution every finite or infinite trace
in E∗ ∪ Eω maps to a trace in G, in the way that ρ = e1e2e3 . . . is a trace in
E implies that proj(ρ) = last(e1)last(e2)last(e3) . . . is a play in G, where the
function proj projects every finite sequence of states in E into its last state in S.
Consequently, we let PrΔ

E be a probabilistic measure over Eω, such that for the
cone sets (of finite traces), we have PrΔ

E (e) = Δ(last(e)), and PrΔ
E (γ · e1 · e2) =

PrΔ
E (γ · e1) · δE(e1)(e2), for γ ∈ E∗ and e1, e2 ∈ E. Let ρ be an infinite trace

in E , we write ρ |= ψ iff proj(ρ) |= ψ. Similarly, for a state formula φ and
e ∈ E, write e ∈ �φ� iff last(e) ∈ �φ�. In the following we study the properties of
the satisfaction relation for a probabilistic execution to satisfy a I-PATL path
formula by means of unfolding.

Lemma 9. Let φ, φ1 and φ2 be I-PATL (state) formulas, and ��∈ {>,≥} then

1. E(Δ) |=��α ©φ iff there exists α′ �� α, such that δE(Δ) = Δ1 ⊕α′ Δ2 with
!Δ1" ∩ !Δ2" = ∅, and Δ1 |= φ.

2. E(Δ) |=��α φ1U
≤kφ2 iff there exists a finite sequence of triples {〈(Δi,0, αi,0),

(Δi,1, αi,1), (Δi,2, αi,2)〉}0≤i≤j for some j ≤ k, with !Δi,�" ∩ !Δi,�′" = ∅ for
all distinct �, �′ ∈ {0, 1, 2} and 0 ≤ i ≤ j, such that

(1)
∑

i∈[0...j]

⎛⎝αi,1 ·
∏

i′∈[0...i−1]

αi′,0

⎞⎠ �� α,

(2) Δ =
∑

�∈{0,1,2} α0,� ·Δ0,�, and δE(Δi,0) =
∑

�∈{0,1,2} αi+1,� · Δi+1,� for
all 0 ≤ i < j, (3) Δi,0 |= φ1 and Δi,1 |= φ2 for all 0 ≤ i ≤ j.

3. E(Δ) |=��α φ1U φ2 iff there exists a finite or infinite sequence of triples
{〈(Δi,0, αi,0), (Δi,1, αi,1), (Δi,2, αi,2)〉}0≤i<j for some j ∈ N+ ∪ {∞}, with
!Δi,�" ∩ !Δi,�′" = ∅ for all distinct �, �′ ∈ {0, 1, 2} and 0 ≤ i < j, such that

(1)
∑

0≤i<j

⎛⎝αi,1 ·
∏

i′∈[0...i−1]

αi′,0

⎞⎠ �� α,
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(2) Δ =
∑

�∈{0,1,2} α0,� ·Δ0,�, and δE(Δi,0) =
∑

�∈{0,1,2} αi+1,� · Δi+1,� for
all 0 ≤ i < j, (3) Δi,0 |= φ1 and Δi,1 |= φ2 for all 0 ≤ i < j.

Theorem 1. Let G = 〈S, s0,L, Act, δ〉 and G′ = 〈S′, s′0,L′, Act′, δ′〉 be two
PGSs, �f⊆ S×D(S′) a probabilistic alternating forward I-simulation. If Δ�fΔ

′,
then G, Δ |= φ implies G′, Δ′ |= φ for all φ ∈ LI.

Proof. (sketch) We prove by induction on the structure of a I-PATL formula φ.
Base case: suppose Δ |= p, then s |= p for all s ∈ !Δ". By Δ�fΔ

′, there exists
an index set {qi}i∈I satisfying

∑
i∈I qi = 1, Δ =

∑
i∈I qisi, Δ′ =

∑
i∈I qiΔi,

and si �f Δi. Therefore L(si) = L′(t) for all t ∈ !Δi". So t |= p for all t ∈ !Δi"
for all i. Therefore Δ′ |= p. The case of ¬p is similar.

We show the case when φ = 〈〈I〉〉>αφ1Uφ2, and the proof methods for the
other PATL path constructors are similar. Since for all t ∈ !Δ′" there exists an
optimal strategy πt for the winning objective ¬φ1R¬φ2 by Lemma 2(1), and we
combine these strategies into a single strategy π′

2 satisfying π′
2(t · α) = πt(t · α)

for all t ∈ !Δ′" and α ∈ S∗. Then π′
2 is optimal for ¬φ1R¬φ2 on Δ′. Then

by Lemma 8, there exist π2 ∈ ΠG
II and π′

1 ∈ ΠG′
I such that E(G, 〈π1, π2〉, Δ) �

E ′(G′, 〈π′
1, π

′
2〉, Δ′). Since π1 enforces φ1Uφ2 with probability greater than α,

we have E(Δ) |=>α φ1Uφ2. By Lemma 9(3) there exists a sequence of triples
{〈(Δi,0, αi,0), (Δi,1, αi,1), (Δi,2, αi,2)〉}0≤i<j for some j ∈ N+ ∪ {∞} satisfying
the properties as stated in Lemma 9(3). By repetitively applying Lemma 7 we es-
tablish another sequence of triples {〈(Δ′

i,0, αi,0), (Δ′
i,1, αi,1), (Δ′

i,2, αi,2)〉}0≤i<j ,
such that (1)

∑
0≤i<j(αi,1 ·

∏
i′∈[0...i−1] αi′,0) > α, (2) Δ′ =

∑
�∈{0,1,2} α0,� ·Δ′

0,�,
and δE(Δ′

i,0) =
∑

�∈{0,1,2} αi+1,� · Δ′
i+1,� for all 0 ≤ i < j, (3) Δi,0�fΔ

′
i,0 and

Δi,1�fΔ
′
i,1 for all 0 ≤ i < j. By induction hypothesis we have Δ′

i,0 |= φ1 and
Δ′

i,1 |= φ2 for all 0 ≤ i < j. Therefore E(Δ′) |=>α φ1Uφ2 by Lemma 9(3). Since
π′

2 is an optimal strategy of II, we have Δ′ |= 〈〈I〉〉>αφ1Uφ2 by Lemma 3.
For a formula 〈〈∅〉〉��αψ we apply the same proof strategies as for 〈〈I〉〉��αψ,

except that player I does not need to enforce ψ with a certain probability �� α
since every probabilistic execution generated by a pair of I and II strategies will
enforce ψ with that probability. $%

7 Probabilistic Alternating Bisimulation

If a probabilistic alternating simulation is symmetric, we call it a probabilistic
alternating bisimulation.

Definition 4. Consider two probabilistic game structures G = 〈S, s0,L, Act, δ〉
and G′ = 〈S′, s′0,L′, Act′, δ′〉. A probabilistic alternating I-bisimulation  ⊆ S ×
S′ is a symmetric relation satisfying if s  s′, then

– L(s) = L′(s′),
– for all π1 ∈ ΠG,1

I , there exists π′
1 ∈ ΠG′,1

I , such that for all π′
2 ∈ ΠG′,1

II , there
exists π2 ∈ ΠG,1

II , such that δ(s, π1, π2) δ′(s′, π′
1, π

′
2),
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where  is a lifting of  by weight functions.

Since every probabilistic alternating I-simulation is also a probabilistic alternat-
ing forward I-simulation by treating the right hand side state as a point dis-
tribution (Lemma 5), the lifted probabilistic alternating I-simulation is also a
lifted probabilistic alternating forward I-simulation. This fact extends for bisim-
ulation. A probabilistic alternating I-bisimulation also preserves formulas in LI.
Moreover, we write L+

I for the set of formulas defined as follows, which allows
negations to appear anywhere in a formula, and further we are able to show that
probabilistic alternating bisimulation preserves all properties expressed in L+

I .

φ := p | ¬φ | φ1 ∧ φ2 | 〈〈A′〉〉��α © φ | 〈〈A′〉〉��αφ1U
≤kφ2 | 〈〈A′〉〉>αφ1Uφ2

Theorem 2. Let G = 〈S, s0,L, Act, δ〉 and G′ = 〈S′, s′0,L′, Act′, δ′〉 be two
PGSs,  ⊆ S × S′ is a probabilistic alternating I-bisimulation. For all s ∈ S
and s′ ∈ S′ with s  s′ and φ ∈ L+

I , we have G, s |= φ iff G′, s′ |= φ.

The proof methodology basically follows that of Theorem 1, besides that when-
ever Δ Δ′ and Δ |= ¬φ, we show that if there were s′ ∈ !Δ"′ such that G′, s′ |= φ
then we would also have G, s |= φ for some s ∈ !Δ", which is a contradiction.
And from that we have Δ′ |= ¬φ as well.

8 Conclusion and Future Work

We report our first results on probabilistic alternating simulation relations. We
have introduced two notions of simulation for probabilistic game structures —
probabilistic alternating simulation and probabilistic alternating forward simu-
lation, following the seminal works of Segala and Lynch [19,21] on probabilistic
simulation relations and the work of Alur et al. [3] on alternating refinement re-
lations for non-probabilistic game structures. Our main effort has been devoted
to a logical characterization for probabilistic alternating simulation relations, by
showing that they preserve a fragment of PATL formulas. It is worth noting that
on our way to the main result, we find that the proof strategy accommodated
in [3] no longer applies, due to the failure in reconstructing a strategy from sub-
strategies when the system transitions become probabilistic. We circumvent this
problem by incorporating the results of probabilistic determinacy [14] and the
existence of optimal strategies [9] in stochastic games. A full version of the paper
is available as a technical report [23].

There are several ways to proceed. We want to study the completeness of
logical characterization for probabilistic alternating forward simulation. It is also
of our interest to investigate the complexity for checking probabilistic alternating
simulation relations by studying the results in the literature [3,5]. Our work was
partially motivated by the paper [4], where PATL is used to formalize a balanced
property for a probabilistic contract signing protocol. Here, a balanced protocol
means that a dishonest participant never has a strategy to unilaterally determine
the outcome of the protocol. It is interesting to see how much the development
of simulation relations for probabilistic game structures can help the verification
of such kind of security protocols.
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Abstract. In this paper we present a probabilistic broadcast calculus for mobile
and wireless networks whose connections are unreliable. In our calculus, broad-
casted messages can be lost with a certain probability, and due to mobility the
connection probabilities may change. If a network broadcasts a message from a
location, it will evolve to a network distribution depending on whether nodes at
other locations receive the message or not. Mobility of nodes is not arbitrary but
guarded by a probabilistic mobility function (PMF), and we also define the no-
tion of a weak bisimulation given a PMF. It is possible to have weak bisimular
networks which have different probabilistic connectivity information. We further-
more examine the relation between our weak bisimulation and a minor variant of
PCTL∗ [1]. Finally, we apply our calculus on a small example called the Zeroconf
protocol [2].

1 Introduction

Mobile and wireless networks have gained in popularity in recent years, and the appli-
cation area is broad, spanning from ambient intelligence, wireless local area networks,
sensor networks, and cellular networks for mobile telephony. The key communication
primitive in wireless communication is message broadcast but, differently from wired
local area networks, broadcast in wireless networks is local, hence only nodes within
the communication range of the emitting node can receive the message, and due to
mobility the communication area may change over time.

Mobility and local wireless broadcast has been studied in the calculi: CBS�[3], the
ω-calculus[4], CMN[5], RBPT[6], and CMAN[7,8]. All these calculi only deal with
connectivity in two modes: either two nodes are connected or disconnected. It is often
assumed that when a node at location l is within the transmission range of another
node at location k, then the node at l can receive messages broadcasted from k with
probability 1, otherwise with probability 0. Here we refine this assumption and equip a
connection with a probability, since in an unreliable medium we cannot guarantee that
the broadcasted messages will always be received even within the transmission range.
For example, in Fig. 1 the dashed circle denotes the transmission range of k, every node
at a location within the circle, such as l and m, may receive the messages broadcasted
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Fig. 1. Connectivity example Fig. 2. Equivalent connection probabilities

from k, but the node at n outside the circle cannot. Intuitively, although both l and m are
in the transmission range of k, it is more reasonable to let nodes there receive messages
from k with different probabilities since m is further away from k than l. In our calculus,
the connectivity of this network can be denoted as {{(0.9, l), (0.5,m), (0, n)} �−→ k} if
nodes at l,m, n can receive messages from k with probability 0.9, 0.5, and 0 respectively.

In order to model mobility we let connection probabilities between locations change,
and the changes are also probabilistic. For instance, the nodes at location m in Fig. 1
may move closer to location k with a certain probability in which case the nodes at m
will be able to receive messages from k with a higher probability.

In practice, when verifying properties of a mobile network it will be reasonable to
assume that mobility within a network is not arbitrarily but respects certain rules or
distributions. Therefore we introduce a probabilistic mobility function (PMF) which
defines the mobility rules of all the connections. A PMF returns the probability for a
connection evolving from one value into another. For example, if in a PMF the connec-
tion probability from l to k is given by Fig. 2, then we know that it can change to 0.8
with probability 0.7 or stay at 0.9 with probability 0.3, that is:

{{(0.9, l), (0.5,m), (0, n)} �−→ k} −→
⎧
⎪⎪⎨
⎪⎪⎩

0.7 : {{(0.8, l), (0.5,m), (0, n)} �−→ k}
0.3 : {{(0.9, l), (0.5,m), (0, n)} �−→ k}

Hence we equip mobility with probabilities, and after each mobility action the network
will evolve into a distribution with the probabilities specified by the given PMF. We
expect that usually a PMF can be obtained based on measurement of case studies.

Our network calculus consists of concurrent processes (nodes) communicating in-
ternally over channels at (logical) locations and broadcasting messages to processes at
neighboring locations over probabilistic connections that may change probabilistically
over time as outlined above. The semantics is a combination of probability, concurrency,
and non-determinism. Formally the labeled transition system semantics gives rise to a
simple probabilistic automata as outlined in [9], which allows us to use a labeled vari-
ant of PCTL∗[1] to reason about properties of networks specified in our calculus. We
also define a (weak) bisimulation along the lines of [1] and show that it is sound and
complete for our version of PCTL∗. In our bisimulation, we abstract from mobility as
in the other calculi for mobile and wireless systems mentioned above.
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As a novelty a bisimulation is parameterized by a PMF, and since we abstract from
mobility we consider two probabilities of a connection to be equivalent if they can
evolve into each other eventually with probability 1 after a number of mobility steps.
Intuitively, it means that a connection due to mobility can take any of the equivalent
probabilities. For example, given the PMF in Fig. 2 the state 0.8 can evolve into 0.9
with probability 1 after an infinite number of steps. Furthermore, two locations l and
m are considered equivalent if any other location k is connected to them by equivalent
probabilities, because then nodes at k can with probability 1 receive messages from l
and m with the same probability.

Another important contribution is the introduction of unknown probabilities. Since
we are dealing with open systems where contexts may contain new nodes and informa-
tion about connection probabilities, we cannot in a network expect to know the proba-
bility of all possible connections. We integrate unknown probabilities in our theory to
deal with these cases. Intuitively a connection with an unknown probability means that
the probability for the connection can be any value.

The paper is organized as follows: the syntax of our calculus is presented in the next
section and in Section 3 we give the Labeled Transition System for it. In Section 4 a
weak bisimulation is defined and we also prove it to be a congruence. PCTL∗ and its
relation with weak bisimulation is given in Section 5. We illustrate the application of
our calculus with a simple protocol called Zeroconf in Section 6. Finally, we end by a
conclusion and future works.

2 The Calculus

Before introducing our calculus, we first give the following general definitions. A prob-
ability space is a triplet P = (Ω, F, η) where Ω is a set, F is a collection of subsets of Ω
closed under complement and countable union that includesΩ. η : F → [0, 1] is a prob-
ability distribution such that η(Ω) = 1, and for any collection {Ci}i of at most countably
many pairwise disjoint elements of F, η(∪iCi) =

∑

i η(Ci). A probability space (Ω, F, η)
is discrete if Ω is countable and F = 2Ω, and hence abbreviated as (Ω, η). Given prob-
ability spaces {P = (Ωi, ηi)}i∈I and weights wi > 0 for each i such that

∑

i∈I wi = 1,
the convex combination

∑

i∈I wiPi is defined as the probability space (Ω, η) such that
Ω =
⋃

i∈I Ωi and for each set Y ⊆ Ω, η(Y) =
∑

i∈I wiηi(Y ∩Ωi). We let {ρi : Ni}i∈I denote
the discrete probability space ({Ni∈I }, η) where η({Ni}) = ρi.

We presuppose a countably infinite set N of names, ranged over by x, y, z and a finite
set L of location names, ranged over by k, l,m, n. The variables k̃, l̃ . . . are used to denote
a set of locations. In addition, we also suppose a finite set of probabilities ℘ including
0 and 1 ranged over by ρ, ρ′, ρ1 . . .. We define a location connection set, ranged over by
L,K . . ., as a subset of {(ρ, l) | ρ ∈ ℘, l ∈ L}. We use l(L) = {l | (ρ, l) ∈ L} to denote all
the locations in L. The syntax of processes is defined by the following grammar:

p, q ::= 0 | Act.p | if (x = y) then p else q | νxp | p||q | !p

Act ::= 〈x〉 | ȳ〈x〉 | (x) | y(x)

Action 〈x〉 represents broadcasting a message x, while the reception of a broadcasted
message is denoted by (x); ȳ〈x〉 denotes sending a message x via the channel y and in
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Table 1. Structural congruence

0�l ≡ 0 !p�l ≡ p||!p�l νxE||E′ ≡ νx(E||E′ ), if x � fn(E
′
)

E||0 ≡ E p||q�l ≡ p�l||q�l if (x = x) then p else q�l ≡ p�l
νx.p�l ≡ νxp�l (E||E′ )||E′′ ≡ E||(E′ ||E′′ ) if (x = y) then p else q�l ≡ q�l, x � y

νxνyE = νyνxE E||F ≡ F||E {L1 �−→ k}||{L2 �−→ k} ≡ {L1 ∪ L2 �−→ k}, l(L1) ∩ l(L2) = ∅

contrast y(x) represents receiving a message x on channel y. Process 0 is the deadlocked
process; Act.p is the process that can perform action Act and then behave as p; if (x =
y) then p else q behaves as p if names x and y match and as q otherwise; νxp means
that name x is bounded in the process p; in composition p||q, the processes p and q
can proceed in parallel and can also interact via shared names; !p means an unbounded
number of parallel compositions of process p. As usual we often leave out a trailing 0.

The set of networksN is defined by the grammar:

E, F ::= 0 | p�l | {L �−→ l} | νxE | E||F
Here p�l is a process p at location l; νxE and E||F are restriction and parallel com-
position respectively which have the standard meaning; {L �−→ l} denotes connection
information, i.e. if (ρ, k) ∈ L, the node at location k is connected to l and can receive
messages from l with probability ρ. We use E, F,G . . . to range overN .

We define a network distribution as a probability space E = {(ρi : Ei)}i∈I meaning
that a network can evolve into Ei with probability ρi. We use E, F,G . . . to range over
network distributions ND. If a network distribution consists of a single network, such as
{(1 : E)}, then we denote it as E directly. Parallel composition of network distributions
is defined by:

E||F = {(ρ × ρ′ : E||F) | (ρ : E) ∈ E, (ρ′ : F) ∈ F}
A substitution {y/x} can be applied to a node, network or network distribution. When
applied to a network distribution, it means applying this substitution to each network
within this distribution. The set of free names and bound names in E, denoted by fn(E)
and bn(E) respectively, are defined as expected. Structural congruence, ≡, is the least
equivalence relation and congruence closed by the rules in Table 1 and α-conversion. ≡
is extended to network distributions as expected.

In the following, we use ρk �−→l as an abbreviation of the probability from which k can
receive messages from l. As mentioned, we assume that mobility is not arbitrary but
respects certain rules. These rules are given by a function pf : L× L×℘×℘→ ℘ called
a probabilistic mobility function (PMF), the probability for ρk �−→l changing from ρ to
ρ′ is given by pf (k, l, ρ, ρ′). Let Gpf

k �−→l be the underlying directed graph for ρk �−→l given
pf , where vertices are possible values of ρk �−→l and where there is an edge from state ρ
to ρ′ iff pf (k, l, ρ, ρ′) ∈ (0, 1], and we ignore nodes with 0 in-degree and 0 out-degree.
Without causing any confusion, sometimes we also use Gpf

k �−→l to denote the set of nodes

in the graph called the support of ρk �−→l. A PMF pf is valid if for all Gpf
k �−→l, Gpf

k �−→l � ∅
and for each ρ ∈ Gpf

k �−→l,
∑

ρ′∈Gpf
k �−→l

pf (k, l, ρ, ρ′) = 1. In the following, we only consider
valid PMFs.
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A well-formed network under a given pf is defined inductively by: 0 and p�l are
well-formed, and νxE is well-formed if E is well-formed; {L �−→ l} is well-formed if
all location names in L are distinct and for each (ρ, k) ∈ L, ρ ∈ Gpf

k �−→l; E||F is well-
formed if both E, F are well-formed and for any l, k ∈ L with l � k, there does not
exist E′, F′ such that E ≡ {{(ρ, k)} �−→ l}||E′ and F ≡ {{(ρ′, k)} �−→ l}||F′. In the sequel
given a pf we only consider the set of well-formed networksNpf . We assume that every
node can receive messages broadcasted by itself with probability 1, but for simplicity
we often denote this implicitly.

We use ρk �−→l(E) to denote the connection probability from k to l in network E, when
the requested probability occurs in E it returns this value otherwise it returns θk �−→l to
denote an unknown probability, i.e.

ρk �−→l(E) =

⎧
⎪⎪⎨
⎪⎪⎩

ρ if there exists E
′

s.t. E ≡ {L �−→ l}||E′ and (ρ, k) ∈ L
θk �−→l otherwise

We use Dl(E) to denote the set of all connection probabilities from some locations to l
in E, that is Dl(E) is the smallest set such that (ρk �−→l(E), k) ∈ Dl(E) if ρk �−→l(E) ∈ ℘.

We generalize network distributions to contain unknown probabilities. Let θ̂k �−→l de-
note θk �−→l or 1 − θk �−→l. We let ρ range over generalized probabilities, i.e. expressions
being a finite sequence θ̂k0 �−→l0 × ... × θ̂ki �−→li × ρ. We say that a generalized probabil-
ity θ̂k0 �−→l0 × ... × θ̂ki �−→li × ρ is 0 if ρ = 0. A generalized network distribution, GND,
is defined inductively as follows: A network distribution is a GND, if G = {(ρi : Ei)}i∈I
is a GND then (θk �−→l×G)+((1−θk �−→l)×G) = {(θk �−→l×ρi : Ei), (1−θk �−→l×ρi : Ei)}i∈I is
a GND. We may substitute unknown probabilities in a GND with known probabilities,
e.g. E ◦ Dl(E) means replacing each unknown probability θk �−→l in E with the known
probability ρk �−→l(E) if (ρk �−→l(E), k) ∈ Dl(E).

3 Label Transition System

In this section we introduce the labeled transition system semantics for our calculus;
the semantics is parameterized by a given PMF which is denoted by pf and left implicit
throughout the rest of this section.

First we define a set of actionsA, ranged over by α, by:

α ::= νx̃〈x,K〉@l | (x,K) � l | νx̃ȳ〈x〉@l | y(x)@l | τ
νx̃〈x,K〉@l denotes that a node at location k receives the message x broadcasted from l
with probability ρ if (ρ, k) ∈ K; (x,K) � l means that the node at location k receives the
message x from location l with probability ρ if (ρ, k) ∈ K; νx̃ȳ〈x〉@l means sending x
on channel y at the location l (i.e.unicast), on the contrary y(x)@l means that x can be
received on the channel y at location l. x̃ is either a singleton set {x} or empty, if x̃ is
empty then x is free else it is bounded.

The labeled transition system is defined in Table 2; notice that the semantics is late,
i.e. the bound names of an input become instantiated only when inferring a communi-
cation. Rules out, in, com, par, res, open, str are either standard or trivial and need no
more comments; brd means that a process at a location can broadcast a message to the
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Table 2. Labeled transition system

(par)
E

α−→ E
E||F α−→ E||F

α � ((x) � l, νx̃〈x〉@l), bn(α) ∩ fn(F) = ∅

(out)
ȳ〈x〉.p�l ȳ〈x〉@l−−−−→ p�l

(open)
E

α−→ E′
νxE

νxα−−→ E′
α ∈ {ȳ〈x〉@l, 〈x〉@l}, x � y

(in)
y(x).p�l y(x)@l−−−−→ p�l

(com)
E

νz̃ȳ〈z〉@l−−−−−−→ E′ F
y(x)@l−−−−→ F′

E||F τ−→ νz̃(E′||F′{z/x})
z̃ ∩ fn(F) = ∅

(res)
E

α−→ E′
νxE

α−→ νxE′
x � n(α) (pro)

{K �−→ k} (x,K)�k−−−−−→ {K �−→ k}
(los)

Act.p�k (x,∅)�l−−−−→ Act.p�k
Act � (y) and x � fn(Act.p�k)

(rec1)
(x).p�k (x,∅)�l−−−−→ {(θk �−→l : p�k), (1 − θk �−→l : (x).p�k)}

(brd)
〈x〉.p�l 〈x,∅〉@l−−−−−→ p�l

(rec2)
E

(x,L)�l−−−−→ E F
(x,K)�l−−−−→ F

E||F (x,L∪K)�l−−−−−−→ (E ◦Dl(F))||(F ◦Dl(E))

(syn)
E

νỹ〈y,L〉@l−−−−−−→ E F
(x,K)�l−−−−→ F

E||F νỹ〈y,L∪K〉@l−−−−−−−−−→ ((E ◦Dl(F))||(F{y/x} ◦Dl(E)))
ỹ ∩ ({x} ∪ fn(F)) = ∅

(con)
{{(ρ, l)} �−→ k} τ−→ {pf (l, k, ρ, ρ′) : {{(ρ′, l)} �−→ k}}

(str)
E ≡ F

α−→ F ≡ E
E

α−→ E

network it belongs to; rec1 states that nodes might evolve with unknown probability
when they are ready to receive messages; rec2 allows to combine two networks which
can receive a broadcasted message in parallel, and notice that unknown probabilities
may be substituted by known ones. The union L∪K denotes that in a parallel composi-
tion the message can arrive at locations in both L and K with specific probabilities; syn
deals with synchronization and broadcast, in that a network can broadcast a message
to any neighbor network where each location may receive with a certain probability.
For the same reason as in rec2, the location connection set in the resulting action is the
union of the two location connection sets in the synchronizing actions. Notice that some
processes must discard broadcasted messages as explained by the rules los.

In the rules rec2 and syn, we have that when parallelizing two networks, they can
get connection information from each other and update the correspondent unknown
probabilities. Note here that when there is a message broadcasted from l, we only need
to update possibly unknown probabilities with probabilities from connections to l, that
is why we only needDl(E) andDl(F) to update the unknown probabilities in rec2 and
syn. The rule con changes the connection probabilities in a network depending on the
PMF parameterizing the semantics, and the rule pro contributes by revealing the current
probabilistic connectivity information.
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Fig. 3. A mobility transition Fig. 4. A bottom strongly connected component

Example 1. Suppose we have a network E with ρl�−→k(E) = 0.8 and we also know from
the given PMF pf that pf (l, k, 0.8, 0.9) = 0.3, pf (l, k, 0.8, 0.7) = 0.2 and pf (l, k, 0.8, 0.8)
= 0.5, then we have the derivation in Fig. 3 with ρl�−→k(E1) = 0.9, ρl�−→k(E2) = 0.7.

4 Weak Bisimulation

In this section we provide a weak bisimulation for our calculus.
A broadcast action, 〈x,K〉@l, contains the name of the broadcasting location, the

broadcasted message, and a location connection set which denotes locations receiving
the message with specific probabilities. We want to allow a network to simulate such
an action by 〈x,K〉@m, if l and m are mobility equivalent. Intuitively, two locations are
mobility equivalent if any of their connection probabilities, say ρk �−→l and ρk �−→m, are
able to evolve into each other eventually with probability 1, in which case the node at
location k can with probability 1 receive messages from l and m with the same probabil-
ity. For example, if the mobility of ρk �−→l = 0.8 and ρk �−→m = 0.9 is given by Fig. 4, then
ρk �−→l can evolve into ρk �−→m and vice versa. Otherwise, if the mobility of ρk �−→l = 0.6
and ρk �−→m = 0.5 is given by Fig. 5 then ρk �−→m may evolve into ρk �−→l but not the other
way around.

The following definitions are used to define mobility equivalence between two loca-
tions in their respective networks.

A subgraph SG of Gpf
l�−→k is called strongly connected if for each pair (ρ, ρ′) of states

in SG there exists a path fragment ρ0ρ1 . . . ρi such that ρ j ∈ SG and pf (l, k, ρ j, ρ j+1) > 0
for 0 ≤ j < i with ρ = ρ0 and ρ′ = ρi. A strongly connected component (SCC) denotes a
strongly connected set of states such that no proper superset of it is strongly connected.
A bottom SCC (BSCC) is an SCC from which no state outside this SCC is reachable.
If probabilities are in the same BSCC, they can for sure evolve into each other, or in
probabilistic terms they can evolve into each other eventually with probability 1. For
example, Fig. 4 is a BSCC whereas Fig. 5 and 6 are not. If two probabilities ρ and ρ′
are in the same BSCC within Gpf

l�−→k, then we write pf (l, k, ρ, ρ′)∗ = 1.
The eventual support of ρl�−→k under a given PMF pf , denoted by ES pf (l, k), is the

set of all nodes (probabilities) which belong to a BSCC in Gpf
l�−→k.
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Fig. 5. A non-SCC Fig. 6. A non-BSCC

Definition 1. ES pf (l, k) is consistent if Gpf
l�−→k is a BSCC.

In the following, we use �ρ�ES pf (l,k) to denote the set of nodes of the BSCC of Gpf
l�−→k

which contains the node ρ if ρ ∈ ES pf (l, k), here �θl�−→k�ES pf (l,k) = ES pf (l, k) if ES pf (l, k)
is consistent, otherwise �θl�−→k�ES pf (l,k) = {θl�−→k}.
Definition 2. Let pf be a PMF, then l in E and m in F are mobility equivalent, de-
noted by lE �pf mF, if for any k ∈ L, either i) l = m with ρk �−→l(E) = ρk �−→m(F),
or ii) ρk �−→l(E) ∈ ES pf (k, l) ∪ {θk �−→l} and ρk �−→m(F) ∈ ES pf (k,m) ∪ {θk �−→m} such that
�ρk �−→l(E)�ES pf (k,l) = �ρk �−→m(F)�ES pf (k,m).

That is, two locations l and m in E and F respectively are mobility equivalent if either
a) the locations are identical and all other locations are connected to them in E and F
with the the same (possibly unknown) connection probabilities, b) the probability for
a connection to l belongs to a BSCC and the probability for the similar connection to
m belongs to a BSCC with the same probabilities, if the probability for the connection
to m is unknown in F, the eventual support for the connection must be consistent, or
c) the probability for a connection to l is unknown in E, the eventual support ES for
the connection is consistent, and the probability for the corresponding connection to m
belongs to a BSCC with the same values as in ES . Intuitively, for the cases b) and c)
it means that even though the connection probabilities for connections to l and m are
not the same, then they eventually with probability 1 can evolve into each other by a
number of mobility steps.

Example 2. Suppose the mobility rules for ρl�−→k and ρm �−→k are given by Fig. 6 and 4
respectively and let all other connection probabilities be permanently 1. Assume we
are given two networks E and F such that ρl�−→k(E) = 0.9, ρm �−→k(F) = θm �−→k. Then
lE �pf mF , but if ρl�−→k(E) = 0.3 then lE �pf mF , since there is no way for ρm �−→k(F) to
become 0.3.

It follows immediately from the definition of �pf that it is an equivalence relation. Ob-
serve also that whenever ES pf (l, k) is consistent, then the unknown connection proba-
bility θl�−→k can be assigned with any value in ES pf (l, k) while still preserving mobility
equivalence.
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In our weak bisimulation equivalence, we as usual abstract from internal steps which
in our case also involve the probabilistic mobility steps changing connection proba-
bilities. In order to capture that a connection probability for sure (with probability
1) can evolve into another, we introduce the relation →. Let → be the least relation
closed by parallel composition, restriction and structural congruence and such that
{{(ρ, l)} �−→ k} → {{(ρ′, l)} �−→ k} if pf (l, k, ρ, ρ′)∗ = 1.

We use E
α
=⇒ E to denote that a distribution E is reached through a finite sequence

of steps some of which are internal. Formally
α
=⇒ is the least relation such that, E

α
=⇒ E

iff (i) α = τ and E = E, (ii) α = τ and E → E, or (iii) there exists a step E
β−→ E′ such

that E =
∑

(ρ:E′ )∈E′ ρEE′ , where E
′ τ
=⇒ EE′ if β = α, otherwise E

′ α
=⇒ EE′ and β = τ.

Since there might occur unknown probabilities during the evolution of networks, we
have to resolve this in order to define our bisimulation. For that we introduce a set of
networks denoted by Σpf and ranged over by σpf . The networks in Σpf only contain
connection information for a given pf and it is defined by:

Σpf = { ||
l∈L
{{(ρ, k) | k ∈ L} �−→ l} | ρ ∈ Gpf

k �−→l}

We write E • σpf to denote a network behaving like E but obtaining new connection
information from σpf , that is,

E • {∅ �−→ l} = E

E • {{(ρ, k)} ∪ L �−→ l} =
⎧
⎪⎪⎨
⎪⎪⎩

E • {L �−→ l} ρk �−→l(E) � θk �−→l

(E||{{(ρ, k)} �−→ l}) • {L �−→ l} otherwise

The importance of mobility equivalence can be illustrated by the following lemma.

Lemma 1. For each σpf ∈ Σpf , if E •σpf (x,K)�l−−−−−→ E and lE �pf mE then E •σpf
(x,K)�m
=⇒ E.

We lift the notion of equivalence relation to distributions in the usual way.

Definition 3. Let R be an equivalence relation over Npf . Two (non-generalized) net-
work distributions E1 = (Npf , η1) and E2 = (Npf , η2) are R-equivalent, written E1 R E2,
if η1(C) = η2(C) for each equivalence class C inNpf /R.

Below follows our definition of weak bisimulation.

Definition 4. Given a PMF pf , an equivalence relation S ⊆ Npf × Npf is a weak
bisimulation under pf if E S F implies lE �pf lF for any l ∈ L and for each σpf ∈ Σpf

whenever E • σpf α−→ E then:

1. if α = y(x)@l then there exists F • σpf α
=⇒ F s.t. for each z ∈ N, E{z/x} S F{z/x}.

2. if α = (x,L) � l then there exists F •σpf
(x,L)�m
=⇒ F s.t. for each z ∈ N, E{z/x} S F{z/x}

and lE �pf mF.

3. if α = 〈x,L〉@l then there exists F • σpf 〈x,L〉@m
=⇒ F s.t. E S F and lE �pf mF.

4. otherwise there exists F • σpf α
=⇒ F and E S F.
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Fig. 7. Network derivations

Two networks E and F are weak bisimular under a given PMF pf , written E ≈pf F, if
E S F for some weak bisimulation S under pf .

Clauses 1 and 4 in Definition 4 are standard. Clause 2 requires that if nodes at loca-
tions l(L) in network E can receive a message from location l with specific probabilities,
then nodes at locations l(L) in F must be able to receive the same message from some
location m with the same probabilities which is mobility equivalent to l. Clause 3 means
that if E can broadcast a message from l with receivers at locations l(L), then F can also
broadcast the same message from some location m to l(L) with the same probabilities.
In addition, l and m are required to be mobility equivalent. Notice that none of the re-
sulting distributions in a bisimulation contains unknown probabilities because of σpf ,
and observe that all possible σpf are taken into account and hence all possible values of
otherwise unknown connection information are considered.

Theorem 1. ≈pf is a congruence.

To illustrate our weak bisimulation we give the following example.

Example 3. Suppose two nodes A = 〈x〉�l, B = (y).〈y〉�k and connection information:
P1 = {{0.8, k} �−→ l}, P2 = {{0.9, k} �−→ l}, P3 = {{1, k} �−→ l}. Let the mobility of ρk �−→l

be given by pf in Fig. 6. It is then not hard to see that A||B||P1 ≈pf A||B||P2 ≈pf A||B||P3.
The derivation is shown in Fig. 7 where we only show the essential transitions and omit
others. Observe that in each of the three networks B can always receive the message
from A with probability 0.8, 0.9, or 1.

5 Characterization

In this section we will examine the relation between our calculus and a variant of PCTL∗
[1] which is a standard modal logic used for expressing properties of probabilistic sys-
tems. We use E(E) to denote the probability of the equivalence class which contains E
in a distribution E and define the (weak) infinite paths of a network E under a given pf
by: 1

ΩE = {E0α0E1 . . . | ∃σpf .E0 = E • σpf ∧ ∀i ≥ 0 ∃Ei+1. Ei
αi
=⇒ Ei+1 ∧ Ei+1(Ei+1) � 0}

1 Notice that no path from a network E needs to be finite.
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For ω = E0α0E1α1... ∈ ΩE we denote by ω|i the finite path E0α0E1...αi−1Ei in which
case we let ω|i = Ei, and we define ΩE |i = {ω|i | ω ∈ ΩE}. Notice that as usual due
to non-determinism we cannot define a probability measure on ΩE . To resolve this we,
like in e.g.[9,10], define a policy. An i-level policy for ΩE is a partial function

πi : ΩE |i ×A ↪→ ND

defined by πi(ω|i, α) = E if there exists ω|i α
=⇒ E. A policy π for ΩE is a pair consisting

of a tuple of i-level policies one for each i ≥ 0 and σpf ∈ Σpf . It defines a subset of ΩE

denoted by Ωπ
E such that

Ωπ
E = {ω ∈ ΩE•σpf | ∀i ≥ 0 ∃E, α, E. πi(ω|i, α) = E ∧ E(E) � 0 ∧ ω|i+1 = ω|iαE}

where π = ((π0, π1, . . .), σpf ). The probability of a path E0α0E1α1 . . . ∈ Ωπ
E is defined

by ρ0×ρ1× . . .where for all i, πi(E0α0E1α1 . . . Ei, αi) = E for some E and ρi = E(Ei+1).
Let BπE be the smallest algebra of subsets of Ωπ

E that contains all the basic cylinder
sets {ω ∈ Ωπ

E | ω|0 = E0 ∧ ... ∧ ω|i = Ei} for all i ≥ 0 that is closed under complement
and countable unions. 2 The measure on paths of Ωπ

E , written as μπ,E , gives a unique
measure on BπE .

Below we give the syntax and the semantics for our logic.

Syntax. There are two kinds of formulas: state formulas Stat ranged over by φ, φ
′

and
sequence formulas Seq ranged over by ψ, ψ

′
. The grammar is as follows:

φ ::= � | a | ¬φ | φ ∧ φ′ | ∃ψ | P��qψ

ψ ::= α | φ | ¬ψ | ψ ∧ ψ′ | ©ψ | ψUψ′
In the above, �� stands for one of =,≤,≥, <, >, q is a rational in [0,1] and α ∈ A.
a ∈ AP where AP is the set of atomic propositions. Here we omit the details of AP
and only assume that weak bisimular networks satisfy the same atomic propositions.
These atomic propositions should also cover the connectivity of networks and be able
to distinguish networks with non-equivalent connectivity. For example, if we have a
network E such that ρl�−→k(E) = 0.8 then we could say that E satisfy proposition ρl�−→k =

0.8.

Semantics. For a formula φ ∈ Stat, we indicate by E |=pf φ its satisfaction on network
E, and for ψ ∈ Seq its satisfaction on the path ω is denoted by ω |=pf ψ under a given
PMF pf . The semantics of the logical connectives are defined in the usual way; the
semantics of the remaining operators is defined below:

ω |=pf α iff ω = E0α0E1 . . . ∧ α0 =pf α

ω |=pf ©ψ iff ω = E0α0E1 . . . ∧ E1α1 . . . |=pf ψ

ω |=pf ψUψ′ iff ω = E0α0E1 . . . ∧ ∃i ≥ 0.(Eiαi . . . |=pf ψ
′ ∧ ∀0 ≤ j < i.E jα j . . . |=pf ψ)

E |=pf ∃ψ iff ∃π, ω ∈ Ωπ
E . ω |=pf ψ

E |=pf P��qψ iff ∀π. μπ,E({ω ∈ Ωπ
E | ω |=pf ψ}) �� q

2 By standard measure theory this algebra is the Borel σ-algebra and all its elements are the
measurable sets of paths.
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Fig. 8. A home network

In the above 〈x,L〉@l =pf 〈x,L〉@m iff l �pf m, it is similar for receptions. Intuitively,
E |=pf P��qψ denotes the probability for the path from E satisfying ψ is �� q. With this we
can express many kinds of properties such as greatest and lowest bounds and intervals.
For example, P≥qψ can be used to denote that the lowest bound is q while P≥q1ψ∧P<q2ψ
guarantees that the probability is in interval [q1, q2) with q1 < q2.

The following are the main results of this section which show the soundness and
completeness of weak bisimulation with respect to PCTL∗.

Theorem 2. If E ≈pf F then for all φ ∈ Stat, E |=pf φ iff F |=pf φ.

Theorem 3. If for all φ ∈ Stat, E |=pf φ iff F |=pf φ, then E ≈pf F.

6 The Zeroconf Protocol

The Zeroconf protocol is designed for self-configuring home local networks. For exam-
ple, Fig. 8 gives a typical home local network which contains four nodes: PC1, PC2,
Laptop, and PDA. The arrows indicate that PC1, PC2, and Laptop can receive messages
from PDA with probability 0.9, 1, and 0.8 respectively. Here we assume that all other
connections have probability 1.

In order to ensure mutual communication, each node must have an unique IP address,
so when a new node joins a network it must be assigned an unused IP address. The
Zeroconf protocol solves this in the following way:

1. The new node selects an IP address out of all available IP addresses randomly;
2. It broadcasts a message to other nodes to probe if the selected IP address is in use

or not;
3. If the new node receives a message indicating the IP address is already taken, then

it returns to step 1 and restarts the process;
4. Due to unreliable connections, messages can be lost with a certain probability. To

increase the reliability of the protocol, the new node is required to send several
probes for the same IP address;

5. If no error message has been received after these probes, the selected IP address
will be used by the new node.
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Table 3. The Zeroconf protocol

oldnodeip =!((x).(if x = ip then 〈error〉 else 0))
newnodep

i = 〈p〉.waitawkp
i

newnodep
0 = 〈success〉

waitawkp
i = (x).(if x = error then newnode else waitawkp

i ) + newnodep
i−1

newnode = νy(y(p).〈p〉.waitawkp
pn||
∏

ip∈IP ȳ〈ip〉)

Note that after running the protocol it is indeed possible for a new node to use an IP
address that is already used by another node. This is called address collision and is
highly undesirable.

In the following, we model and analyse the Zeroconf protocol, the model of the
protocol is given in Table 3.3 We use oldnodeip to denote an existing network node, i.e. a
process with IP address ip running at a location; oldnodeip repeatedly receives messages
and compare these messages with its own IP address ip. If a message is identical to ip,
it will broadcast an error message, error, informing the new node that the selected IP
address is being used already; newnodep

i denotes a process which will probe i times
before assuming that the selected IP address p is not used by other nodes. It will evolve
into process waitawkp

i after broadcasting a probe. newnodep
0 is a special process which

denotes that the protocol succeeded in finding an unused IP address p (although this
might not be true with a certain probability); waitawkp

i waits for the responses from
other nodes. If it receives an error message because the selected IP address is not valid,
it will restart the whole process, otherwise it will recurse and become waitawkp

i again.
The summation here is used to denote timeout from waiting for responses and then start
a new round of probing. newnode starts the protocol by selecting an IP address from IP
randomly, here IP is the set of all available addresses and

∏
means parallel composition

of processes. In the above, we use pn to denote the maximum number of probes for the
same IP address.

The behavior of the network in Fig. 8 can be represented as follows:

E = newnode�k || oldnodeip1
�l || oldnodeip2

�m || oldnodeip3
�n

We assume Laptop, PC1, and PC2 are existing nodes which are located at l, m, and n
respectively, and PDA at k is a node that wants to join the network; here ip1, ip2, and ip3
are used to denote IP addresses in IP already in use. Concerning mobility we assume
a PMF pf such that the mobility rules of ρk �−→l and ρk �−→m are given by Fig. 4 and the
mobility rule of ρk �−→n is given by Fig. 6, in addition all the other connections are always
equal to 1.

In the following, we use 〈x〉@l̃ as a shorthand of ∨l∈l̃〈x,L〉@l where L ranges over
all the location connection sets. With the PCTL∗ logic introduced in the above section,
we can denote the obvious property that ”if an unused IP address is selected by the new
node then the probability of this IP address being allocated to the new node is equal to
1”, formally we have:

φ = P=1(∨ip∈IP\{ip1,ip2,ip3}〈ip〉@k → ♦(¬〈error〉@{l,m, n} ∧ 〈success〉@k))

3 Summation is defined by: P + Q = νx(x̄〈y〉||x(y).P||x(y).Q).
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letting ♦ψ de f
= �Uψ. Clearly E |= φ. We may also specify the property: ”if an used IP

address is selected by the new node then the probability of address collision is less than
q”. Formally we have:

φq = P≤q(∨i∈{1,2,3}〈ipi〉@kU ∨i∈{1,2,3} 〈ipi〉@k → ♦(¬〈error〉@{l,m, n} ∧ 〈success〉@k))

Assuming the maximum number of probes pn to be 3 it turns out that E �|= φ0.001 while
E |= φ0.008. Intuitively, if the new node selects an used IP address such as ip1, then
among all policies to consider there exists a worst case policy under which oldnodeip1

may fail to receive the probe from the new node for three times with probability (1 −
0.8)3 = 0.008.

In order to illustrate analysis through the use of weak bisimulation we may define

F ≡ newnode�k || oldnodeip1
�l || oldnodeip3

�m || oldnodeip2
�n

i.e. compared to E in the network F the two old nodes PC1 and PC2 have swapped their
locations m and n. Further let

E′ ≡ {{(k, 0.8)} �−→ l}||{{(k, 1)} �−→ m}||{{(k, 0.9)} �−→ n}
and let

F′ ≡ {{(k, 1)} �−→ l}||{{(k, 0.9)} �−→ m}||{{(k, 0.8)} �−→ n}
then because mE′ �pf nF′ we infer

E||E′ ≈pf F ||F′

Intuitively, by the given pf locations m and n are mobility equivalent and furthermore
they can always receive messages from other locations with the same probability. If
the new node selecting an used IP address such as ip2 broadcasts a probe, then the
node at location m in E can receive it with probability 1 and then broadcast an error
message. The node at location n in F can simulate this by performing the same actions
in addition with some mobility transitions. In both E and F, the newnode can receive the
error message with the same probability. A similar argument holds for other transitions.

7 Conclusion and Future Works

The main contribution of this paper is the development of a probabilistic broadcast cal-
culus for mobile and wireless networks with unreliable connections in that broadcasted
messages can be lost with a certain probability. Moreover, due to a probabilistic mobil-
ity function connections between locations may change with certain probabilities.

We have given a labeled transition system semantics for our calculus on which we
define a probabilistic weak bisimulation equivalence parameterized by a probabilistic
mobility function. Two bisimular networks need not have the same connectivity infor-
mation and also they may broadcast the same messages from different locations. To the
best of our knowledge, the integration of bisimulation, probabilistic loss of broadcasted
messages, and probabilistic mobility functions is a novel contribution. Also, we have
characterized our weak bisimulation by a variant of PCTL∗.
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A number of further developments are possible. One of them is that we could en-
rich the calculus by adding probability at the process level. This would allows to model
e.g. randomized backoff protocols for wireless systems. Also the Zeroconf protocol
example could be improved by having a randomized timeout instead of just using non-
determinism. Since time is important for wireless network, another extension is to con-
sider a timed version of our calculus like in [11].
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Abstract. This paper continues the study of the the allocation of mem-
ory to processors in a pipeline problem. This problem can be modeled
as a variation of bin packing where each item corresponds to a differ-
ent type and the normalized weight of each item can be greater than 1,
which is the size of a bin. Furthermore, in this problem, items may be
split arbitrarily, but each bin may contain at most k types of items, for
any fixed integer k ≥ 2. The case of k = 2 was first introduced by Chung
el al. who gave a 3/2-approximation asymptotically. In this paper, we
generalize the result of Chung et al. to higher k. We show that NEXT
FIT gives a

(
1 + 1

k

)
-approximation asymptotically, for k ≥ 2. Also, as a

minor contribution, we rewrite the strong NP-hardness proof of Epstein
and van Stee for this problem for k ≥ 3.

1 Introduction

An important issue in parallel processing is the allocation of memory to proces-
sors. In principle, each processor should have enough memory with little memory
waste. In 2006, Chung et al. [1] studied this problem in the context of designing
fast IP lookup schemes where the processors are arranged as a pipeline. Knowing
that most existing IP lookup schemes traverse some kind of a tree [6] (lookup
time is proportional to the height of the tree), a simple way to statically pipeline
a tree is to place all nodes at height i in memory unit i which is then made
accessible only to processor numbered i. Obviously, while this design prevents
memory contention, it is not very efficient in terms of memory utilization. The
question at hand then is how to assign memory to processors so that both mem-
ory contention and memory waste are minimized. According to [1], this problem
was first raised and left as an open problem in [7]. To deal with this problem,
the authors of [1] proposed to allocate memory dynamically rather than stati-
cally. Consequently, they proposed an architecture that connects processors to
multiple two-port memories using a crossbar switch interconnection network [2].
This allows each processor to be connected to multiple memories, but allows at
most two processors to be connected to a single memory. As observed in [1], the
crossbar needs only be configured at allocation time, which is generally orders
of magnitude less stringent than lookup times. The formulation of the problem
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as proposed by Chung et al. gives the following definition, which we term the
two-port memory allocation problem:

The Two-Port Memory Allocation Problem:
INPUT: A number of processors n, a number of memories m, and a collection
of memory requests per processor.
OUTPUT: A way to satisfy each processor’s request such that no more than two
processors are allocated to any one memory.

The authors of [1] abstracted this problem as a variant of bin packing, where
the bins are the memories and the items to be packed are the memory require-
ments of the processors, where each processor corresponds to a different type.
Thus, the two-port constraint is abstracted as a two-type constraint. Moreover,
since processors may require memory of any size (its normalized value can be
larger than 1, which is the size of a bin), this version of bin packing allows items
to be split arbitrarily, but each bin may contain at most two types of items. The
authors of [1] showed that this problem is NP-hard in the strong sense. They
used a reduction from the 3-Partition problem [4]. They also gave a O(n) time
3/2-approximation asymptotically. Moreover, this approximation is optimal if
m > n.

In 2007, Epstein and van Stee proposed a generalization of the solution pro-
posed by Chung et al. In particular, they proposed to allow each memory to
be accessed by at most k processors, for any fixed integer k ≥ 2. We term this
generalization the k-port Memory Allocation Problem, which can be similarly
defined.

The k-Port Memory Allocation Problem:
INPUT: A number of processors n, a number of memories m, and a collection
of memory requests per processor.
OUTPUT: A way to satisfy each processor’s request such that no more than k
processors are allocated to any one memory. Here, k is any fixed integer greater
than or equal to 2.

Modeled as a bin packing problem, this generalization still allows items to
be split arbitrarily, but now each bin may contain at most k types of items for
any fixed integer k ≥ 2. The authors of [3] showed that this generalization is
also NP-hard in the strong sense. They used a reduction from the 3-Partition
problem. They also showed that a straightforward generalization of NEXT FIT
gives a

(
2− 1

k

)
-approximation.

In this paper, we generalize the approximation result of Chung et al. to the
k-Port Memory Allocation Problem. We show that NEXT FIT gives a

(
1 + 1

k

)
-

approximation asymptotically, for k ≥ 2. Also, we rewrite the NP-hardness proof
of Epstein and van Stee for this problem for k ≥ 3.

The rest of the paper is organized as follows. Section 2 reviews basic defini-
tions and relevant results from the literature. Our contributions are included in
sections 3. Section 4 is the conclusion.
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2 Preliminaries

Let P be a minimization problem and let I be an instance of P . Let A be an
algorithm for P and let A(I) be the cost of algorithm A on the input I. Let
OPT (I) be the cost of an optimal algorithm for P on the input I. We define the
approximation ratio RA(I) by

RA(I) =
A(I)

OPT (I)
.

The absolute approximation ratio RA for the algorithm A for P is given by [4]

RA = inf{r ≥ 1 : RA(I) ≤ r, ∀I}.

Thus, for all inputs I of P , A(I) ≤ RA ·OPT (I). In this case, the algorithm A is
called an RA-approximation for P . This means that the algorithm A guarantees
a solution for P that is within a factor of RA of the optimum.

We next give the definitions of five problems:

The Partition Problem. Given a set of items of total size B, the partition
problem asks for a way to partition these items into two subsets of size B/2.
This problem is known to be NP-hard [4].

The 3-Partition Problem. Given a set of 3m positive numbers s1, s2, . . . , s3m

such that
∑3m

j=1 sj = mB and each si satisfies B/4 < si < B/2, the 3-partition
problem asks for a way to partition the 3m numbers into m sets of size 3 such
that the sum of the elements of each set is exactly B. This problem is known to
be NP-hard in the strong sense [4].

The Classical Bin Packing Problem. Given an infinite number of bins each
of capacity 1, and a list of items of weights {w1, w2, . . . , wn}, where wi ∈ (0, 1],
the classical bin packing problem asks for a way to pack these items into a
minimum number of bins. A simple reduction from the 3-partition problem shows
that bin packing is NP-hard. This reduction also shows that no polynomial-time
algorithm for bin packing can have an approximation ratio better than 3/2 unless
P=NP [4]. A simple online 2-approximation for bin packing is NEXT FIT [5].
Recall that in the NEXT FIT heuristic, an item is placed in the current bin
if it fits. If the item does not fit, the current bin is closed, and another bin is
considered.

The 2-Way Splittable Bin Packing Problem. In [1], the authors introduced
a variation of bin packing, where each item corresponds to a different type and
the normalized weight of each item can be greater than 1, which is the size
of a bin. Furthermore, in this problem, items may be split arbitrarily, but each
bin may contain at most two types of items. Hereafter, we refer to this problem as
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the 2-way Splittable Bin Packing problem (2-SBP for short). The authors of [1]
showed that 2-SBP is NP-hard in the strong sense. They used a reduction from
the 3-partition problem. They also gave a 3/2-approximation, asymptotically,
for 2-SBP. In particular, the approximation ratio of Chung et al.’s algorithm for
2-SBP is 3

2 (1 + o(1)) as the sum of weights of the items tends to infinity.

The k-Way Splittable Bin Packing Problem. In [3], the authors introduced
a generalization of 2-SBP, where items can still be split arbitrarily, but each bin
may contain at most k types of items, for any fixed integer k ≥ 2. We refer
to this problem as k-SBP. Epstein and van Stee [3] showed that k-SBP is NP-
hard in the strong sense. They used a reduction from the 3-partition problem.
They also showed that a straightforward generalization of NEXT FIT gives a
(2− 1/k)-approximation for k-SBP.

3 Our Contribution

3.1 A Generalization of the Result of Chung et al.

The following generalization of NEXT FIT for k-SBP is quoted from [3]: An
item is packed (partially) in the current bin if the bin is not full and the bin
contains less than k types of items so far. If the item does not fill entirely in the
current bin, the current bin is filled, closed, and as many new bins are opened
as necessary to contain the item.

We prove the following theorem:

Theorem 1. The approximation ratio of NEXT FIT for k-SBP is 1 + 1
k

asymptotically.

Proof. This proof is inspired by the proof of Theorem 2 from [1]. Let the sizes
of the items to be packed be W = {w1, w2, . . . , wn} with the understanding that
wi is the size of the item of type i (1 ≤ i ≤ n). Recall that each item corresponds
to a different type. Let w =

∑n
i=1 wi and w∗ =

∑n
i=1!wi". Let NF and OPT

denote the number of bins needed in NEXT FIT and the optimum packing,
respectively. We develop our proof in three steps.

Lemma 1. For k ≥ 2,
OPT ≥ max{w, w∗/k}.

Proof. Clealy, OPT ≥ w. It remains to show that OPT ≥ w∗/k. For each item
i, there are at least !wi" parts of item i. Since, there can be at most k parts of
items per bin, it follows that

OPT ≥ 1
k

n∑
i=1

!wi" = w∗/k.
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Lemma 2. For k ≥ 2,

w + w∗ + k − 1
k

≤
(

1 +
1
k

)
(1 + o(1))max{w, w∗/k}

as w → ∞.

Proof. We consider two cases:
Case a: If w ≤ w∗/k, then w+w∗+k−1

k ≤ (1+k)w∗+k2−k
k2 =

(
1 + 1

k

)(
1 + k(k−1)

(k+1)w∗

)
w∗
k

=
(
1 + 1

k

)
(1 + o(1))w

∗
k , as w → ∞.

Case b: If w∗/k < w, then w+w∗+k−1
k < (k+1)w+k−1

k =
(
1 + 1

k

) (
1 + k−1

(k+1)w

)
w=(

1 + 1
k

)
(1 + o(1))w, as w → ∞.

Lemma 3. For any k ≥ 2,

NF ≤ w + w∗ + k − 1
k

.

Proof. First, we show that we may assume that each bin completely filled by
NEXT FIT contains exactly k types of items for any k ≥ 2.

Our proof proceeds by induction on NF . Suppose that NEXT FIT has a bin B
which is completely filled with at most α types of items for 1 ≤ α ≤ k−1. Denote
these types of items by t1, t2, . . . , tα. W.l.o.g., assume that these types appear
in B in the order t1, t2, . . . , tα with the (part of) item of type t1 at the bottom
of B and the (part of) item of type tα on top of B. Observe that items of types
t2, . . . , tα−1 are not split by NEXT FIT. Let s1 and sα denote the sizes of the
(parts of) items of types t1 and tα in B, respectively. Let W ′ denote a variation
of W in which the items of types t2, . . . , tα−1 are removed, and the items of types
t1 and tα have their sizes reduced by s1 and sα, respectively. Let NF ′ denote
the number of bins needed in NEXT FIT to pack W ′. Let w′ =

∑
i∈W ′ wi and

w′∗ =
∑

i∈W ′!wi". Recall that w =
∑

i∈W wi and w∗ =
∑

i∈W !wi". We have

w′ = w −

⎛⎝α−1∑
j=2

wtj

⎞⎠− s1 − sα = w − 1.

This is true because
∑α−1

j=2 wtj + s1 + sα = 1.
Also, we have

w′∗ ≤ w∗ −
α−1∑
j=2

!wtj " ≤ w∗ − (α − 2) ≤ w∗ + 1.

In this equation, we used the fact that !w′
t1" ≤ !wt1", since 0 < s1 < 1 (and

similarly for w′
tα

) and the fact that α ≥ 1.
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Now, since the packing of instance W ′ uses a smaller number of bins (NF ′ =
NF − 1), by the induction hypothesis, we have

NF ′ ≤ w′ + w′∗ + k − 1
k

.

Since NF ′ = NF − 1, w′ = w − 1 and w′∗ ≤ w∗ + 1, we have

NF ≤ w + w∗ + k − 1
k

.

This completes the proof that each bin completely filled by NEXT FIT may be
assumed to contain exactly k types of items.

Next, and following [3], we define a block as a maximal set of bins which were
consecutively filled by NEXT FIT in which each pair of consecutive bins contains
parts of the same item. Denote the list of blocks by {B1, B2, . . . , Bm}, and let
bi denote the number of bins in block Bi (1 ≤ i ≤ m). As observed in [3], in
each block, all bins are completely filled except perhaps for the last bin, which
contains k (parts of) items (except perhaps for block Bm). For a given block
Bj (1 ≤ j ≤ m), we use the notation

∑
i∈Bj

wi to indicate the sum of weights
of the items packed in bins pertaining to block Bj . Let wBj =

∑
i∈Bj

wi and
w∗

Bj
=
∑

i∈Bj
!wi". To prove Lemma 3, it is enough to show that the number of

bins bj in block Bj is at most
wBj

+w∗
Bj

+k−1

k , for 1 ≤ j ≤ m.
First, we consider blocks Bj , for 1 ≤ j ≤ m− 1. Here, we consider two cases.

First, we consider the case where the last bin of Bj is full. In this case,

bj = wBj (1)

Let nj denote the total number of items in bins 1, . . . , bj of block Bj . Then

w∗
Bj

=
∑
i∈Bj

!wi" ≥ nj .

Since we may assume that each bin in Bj contains exactly k types of items, we
have the following about block Bj :

– There are exactly k− 1 unsplit items in each of the bins numbered 1 and bj

of Bj .
– There are exactly k−2 unsplit items in each of the bins numbered 2, . . . , (bj−

1) of Bj .
– There are exactly bj − 1 items whose parts extend bin i into bin (i + 1) of

Bj for 1 ≤ i ≤ bj − 1.

Thus, the total number of items in Bj is

nj = 2(k − 1) +
bj−1∑
i=2

(k − 2) + bj − 1.
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Thus
w∗

Bj
≥ nj = kbj − bj + 1 (2)

Equations 1 and 2 imply

wBj + w∗
Bj
≥ bj + kbj − bj + 1 = kbj + 1.

Thus

bj ≤
wBj + w∗

Bj
− 1

k
≤

wBj + w∗
Bj

+ k − 1

k
.

Next, we consider the case where the last bin of Bj , which contains k types of
items, is partially filled. In this case, we have

wBj ≥ bj − 1 (3)

This is true since there are at least bj − 1 filled bins in Bj . Equations 2 and 3
imply

wBj + w∗
Bj
≥ bj − 1 + kbj − bj + 1 = kbj.

Thus

bj ≤
wBj + w∗

Bj

k
≤

wBj + w∗
Bj

+ k − 1

k
.

This is true because k ≥ 2. This completes the proof for all blocks Bj , for
1 ≤ j ≤ m− 1.

Next, we consider the case of block Bm. The last bin of this block may not
contain any unsplit items at all. That is, the last bin of Bm may contain only a
part of item that was extended into it from the previous bin. In this case, the
total number of items in block Bm is

nm ≥ kbm − bm + 1− (k − 1).

Thus
w∗

Bm
≥ nm = kbm − bm − k + 2 (4)

Equations 1 and 4 imply

wBm + w∗
Bm

≥ bm − 1 + kbm − bm − k + 2 = kbm − k + 1.

Thus

bm ≤
wBj + w∗

Bj
+ k − 1

k
.

This completes the proof of Lemma 3.

Finally, putting Lemmas 1, 2, and 3 together gives, as w → ∞

NF ≤ w + w∗ + k − 1

k
≤
(
1 +

1

k

)
(1+o(1))max{w,w∗/k} ≤

(
1 +

1

k

)
(1+o(1))·OPT.

This completes the proof of Theorem 1.
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3.2 The NP-Hardness Proof of k-SBP Revisited

The Original Proof: The following theorem appears in [3]:

Theorem 2. Packing splittale items with a cardinality constraint of k parts of
items per bin is NP-hard in the strong sense for any fixed k ≥ 3.

Proof. Given an instance of 3-partition and a fixed k ≥ 3, an instance of k-SBP
is constructed as follows. There are m(k − 3) items, called padding items, all of
size 3k−1

3k(k−3) (for k = 3, no items are defined at this point). In addition, there are
3m items, called adapted items, where item j has size sj/(3kB) (for k = 3, the
size is defined to be sj/B). The goal is to find a packing with exactly m bins.
Since there are mk items, a solution in m bins contains exactly k items per bin.
Since the sum of items is exactly m, all bins in such a solution are completely
filled.

(only if) If there exists a partition of the numbers into m sets of sum B each,
then there is a partition of the adapted items into m sets of sum 1/(3k) each
(the sum is 1 for k = 3). Each bin is packed with k − 3 padding items and one
such triple of adapted items, giving m sets of k items, each set of sum exactly 1.

(if) If there is a packing into exactly m bins, no items are split and each bin must
contain exactly k items. It is shown that for k ≥ 4 each bin contains exactly k−3
padding items, and therefore contains exactly 3 adapted items, whose total size
is exactly 1/(3k) (the sum is 1 for k = 3). These three adapted items correspond
to three numbers in the instance of the 3-partition problem whose sum is exactly
B. Thus, a solution in m bins implies a partition.

Our Version of the Proof: Given an instance of the 3-partition problem and
a fixed k ≥ 3, we define an instance of k-SBP as follows. There are m(k − 3)
items, called padding items, all of size 1/k. In addition, there are 3m items, called
adapted items, where item j has size 3sj/(kB). The goal is to find a packing with
exactly m bins. Since there are mk items, a solution in m bins contains exactly k
items per bin. Since the sum of items is exactly m (= m(k−3) · (1/k)+3/(kB) ·
mB), all bins in such a solution are completely filled. Next, we show that there
is a partition if and only if there is a solution in m completely occupied bins.

(only if) If there exists a partition of the numbers into m sets of sum B each,
then there is a partition of the adapted items into m sets of sum 3/k each. Each
bin is packed with k − 3 padding items and one such triple of adapted items,
giving m sets of k items, each set of sum exactly 1 (= (k − 3) · (1/k) + 3/k).

(if) If there is a packing into exactly m bins, no items are split and each bin
must contain exactly k items. If k = 3, then the k-SBP instance has no padding
items. Each bin contains exactly 3 adapted items, whose total size is exactly 1.
These three adapted items correspond to three numbers in the instance of the
3-partition problem whose sum is exactly B. Thus, a solution in m bins implies
a partition. Consider the case of k ≥ 4. First, we prove that each bin contains
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exactly k − 3 padding items. For 1 ≤ i ≤ m, let xi
a and xi

p be the numbers of
adapted and padding items in the ith bin, respectively. Moreover, for 1 ≤ j ≤ xi

a,
let aij be the size of the jth adapted item in the ith bin. By construction, we
have the following, for all 1 ≤ i ≤ m:

xi
a + xi

p = k (5)

xi
a∑

j=1

aij +
xi

p

k
= 1 (6)

3xi
a

4k
<

xi
a∑

j=1

aij <
3xi

a

2k
(7)

Equation 5 states that the total number of items per bin is exactly k. Equation 6
states that the total size of adapted and padding items per bin is exactly 1.
Equation 7 enforces proper bounds on the total size of adapted items per bin.
These bounds are due to the bounds defined on the numbers in the instance of
the 3-partition problem. Solving equations 5, 6, and 7 gives xi

a ≤ 2k/3 and xi
p ≥

k/3 ≥ 1, since k ≥ 4. Thus, for k ≥ 4, each bin must contain at least 1 padding
item. Given this information, the problem now reduces to packing 3m adapted
items and m(k − 4) padding items into exactly m bins where each bin contains
exactly k − 1 items whose total size is exactly 1 − 1/k. Repeating the above
calculations on this new instance gives xi

a ≤ 2(k− 1)/3 and xi
p ≥ (k− 1)/3 ≥ 1,

since k − 1 ≥ 4. Thus, each bin in this new instance must contain at least 1
padding item. Repeating this argument again and again (as long as the exact
number of items to be packed per bin is ≥ 4) distributes the m(k − 3) padding
items of the original instance evenly across the m bins. Thus, each bin contains
exactly k − 3 padding items. Equivalently, each bin contains exactly 3 adapted
items, whose total size is exactly 1 − k−3

k = 3/k. These three adapted items
correspond to three numbers in the instance of the 3-partition problem whose
sum is exactly B. Thus, a solution in m bins implies a partition.

4 Conclusion

In this paper, we continued the study of the the allocation of memory to proces-
sors in a pipeline problem. This problem is modeled as a variant of bin packing
named k-way splittable bin packing (k-SBP for short). In k-SBP, each item cor-
responds to a different type and items may be split arbitrarily but each bin may
contain at most k types of items, for any fixed integer k ≥ 2. We generalized
the result of Chung et al. for 2-SBP to k-SBP. In particular, we showed that
a straightforward generalization of NEXT FIT gives a

(
1 + 1

k

)
-approximation

asymptotically. Also, we rewrote the NP-hardness proof of Epstein and van Stee
for k-SBP for k ≥ 3.
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Abstract. Most highly dynamic infrastructure-less networks have in common
that the assumption of connectivity does not necessarily hold at a given instant.
Still, communication routes can be available between any pair of nodes over time
and space. These networks (variously called delay-tolerant, disruptive-tolerant,
challenged) are naturally modeled as time-varying graphs (or evolving graphs),
where the existence of an edge is a function of time. In this paper we study deter-
ministic computations under unstructured mobility, that is when the edges of the
graph appear infinitely often but without any (known) pattern. In particular, we
focus on the problem of broadcasting with termination detection. We explore the
problem with respect to three possible metrics: the date of message arrival (fore-
most), the time spent doing the broadcast (fastest), and the number of hops used
by the broadcast (shortest). We prove that the solvability and complexity of this
problem vary with the metric considered, as well as with the type of knowledge a
priori available to the entities. These results draw a complete computability map
for this problem when mobility is unstructured.

1 Introduction

1.1 The Framework

The past few years have seen increasing research efforts devoted to the study of
infrastructure-less highly dynamic networks, whose topologies change as a function
of time. Most of these networks, variously called delay-tolerant, disruptive-tolerant,
challenged, opportunistic, have in common that the assumption of connectivity does
not necessarily hold at a given instant. The network may even be disconnected at ev-
ery time instant. Still, communication routes can be available over time and space, and
make broadcast and routing feasible. Indeed an extensive amount of research has been
devoted, mostly by the engineering community, to the problems of broadcast and rout-
ing in such highly dynamical environment (e.g. [3,4,14,15,16,20,22,23,24,25]).

The highly dynamic features of these networks can be described by means of time-
varying graphs (also called evolving graphs), where links exist only at some times, a
priori unknown to the algorithm designer (see [2,8,10,13]). Thus, in these graphs, the
set of edges existing at a given time might not form a connected graph. Due to the

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 111–124, 2010.
c© IFIP International Federation for Information Processing 2010
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complexity of these systems, it is not surprising that very few analytical results exist,
all obtained under a set of restrictive assumptions that make the investigated problems
amenable to analysis. An example of basic assumption is that the existence of these
graphs is continuous over time; that is, the network does not suddenly cease forever to
exist.

Almost all the work in this area considers these computations in time-varying graphs
from a probabilistic standpoint [7,8,9,17], assuming e.g. that the edge schedule obeys a
Markovian process. The design and analysis of deterministic solutions has been carried
out under very strong assumptions. For example, knowing the complete edge schedule
ahead of time in a central entity allows to compute optimum solutions to the broadcast
and routing problems [2]. Intermediate assumptions have been investigated, such as the
fact that the network is always connected [21]. A hierarchy of basic assumptions for
distributed algorithms in dynamic networks is discussed in [5].

Clearly any a-priori knowledge about the edge schedule can be employed in the
design and analysis of (possibly deterministic) solutions. This is also true from a prac-
tical point of view, and indeed an intensive investigation exists on mobility patterns
[1,19,18,11]. Some classes of infrastructure-less networks have indeed specific mobility
patterns. For example, in networks such as public transports with fixed timetables, low
earth orbiting (LEO) satellite systems, security guards’ tours, etc. the edge-schedule is
periodic, and deterministic protocols for routing and exploration of such networks have
been devised (e.g., [13,12,20]). Periodicity is interesting not only because it models sev-
eral classes of dynamic systems, but also because the infinite mobility pattern defining
it is highly structured. The existing results show that the existence of such a structure
allows the development of deterministic solutions to fundamental problems.

The question immediately arises of what happens when the mobility is unstructured.
More precisely, what happens if encounters between mobile entities occur infinitely
often but without any (known) pattern? what happens if there is no known pattern but
there is a time bound on the re-appearance of edges? What can be done deterministically
in such cases?

In this paper we address these questions and provide some answers on the com-
putability and complexity aspects with regards to the basic problem of broadcasting
with termination detection.

1.2 Problems and Contributions

Consider the class R of recurrent time-varying graphs whose edges appear infinitely
often; that is if an edge (x, y) between nodes x and y exists at time t (i.e., entities x and
y are able to communicate at time t), then there exists a time t′ > t when (x, y) also
exists (let us assume the set of apparition of a given edge as enumerable). Let B ⊂ R
be the class of time-bounded recurrent time-varying graphs, where two successive ap-
pearance of a same edge is bounded by some duration. We consider the basic problem
of broadcasting with termination detection in R and in B: there is a node (the source,
also called emitter) that has a message that must be distributed to all other nodes; the
source must be notified when the entire process has been completed. This problem is
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more difficult than simple broadcast, and is required in more complex operations, e.g.
sequence transmission, where the i-th sequence item must only be transmitted after the
(i− 1)th item has been received by all nodes.

Table 1. Summary of contributions - Solvability

Metric Class Knowledge Feasibility
Foremost R ∅ no

n yes
B ∅ no

n yes
Δ yes

Metric Class Knowledge Feasibility
Shortest R ∅ no

n no
B ∅ no

n no
Δ yes

Fastest R or B n or Δ no

Table 2. Summary of contributions - Complexity (for solvable cases)

Metric Class Knowl. Time Info. msgs Control msgs Info. msgs Control msgs
(1st run) (1st run) (next runs) (next runs)

Foremost R n unbounded O(m) O(n2) O(m) O(n)
B n O(nΔ) O(m) O(n2) O(m) O(n)

Δ O(nΔ) O(m) O(n) O(m) 0
n&Δ O(nΔ) O(m) 0 O(m) 0

Shortest B Δ O(nΔ) O(m) O(n) : 2n − 2 O(n) 0

either of { n&Δ O(nΔ) O(m) O(n) : n − 1 O(n) 0
n&Δ O(nΔ) O(m) 0 O(m) 0

We explore the problem with respect to the three possible metrics discussed in [2]:
the date of message arrival (foremost); the number of hops used (shortest); and the time
spent doing the effective broadcast (fastest). Interestingly, the solvability and complex-
ity of the problem vary with the type of metric considered, as well as with the knowledge
available to the nodes. Note that broadcasting with termination detection involves two
processes: the actual dissemination of information achieved by exchange of information
messages, and termination detection achieved by exchange of (typically smaller) con-
trol messages. In the paper we make a distinction between these two types of messages
and we analyze them separately. Also notice that a byproduct of a broadcast algorithm
might be the construction of a (delay-tolerant) spanning tree of the underlying graph,
which could possibly be reused for subsequent broadcasts, sometimes for the dissem-
ination process (thus reducing the information messages), sometimes for termination
detection (impacting the number of control messages), or for both. In each setting we
discuss also the consequences on subsequent broadcasts in order to highlight the varia-
tion of benefits in reusability.

We first provide some impossibility results showing that broadcasting with termina-
tion detection cannot be solved in R without any knowledge of the underlying graph,
nor in B without either the same knowledge or a bound on the recurrence time. We then
analyze solvability and complexity of the problem in the various settings providing al-
gorithms when it can be solved. The solvability results are summarized in Table 1 and
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the complexity results in Table 2, where n is the number of nodes, and Δ a bound on
the recurrence time. Due to space limitations some proofs are sketched, some omitted.
The interested reader is refered to [6] for more details.

2 Model and Basic Properties

2.1 Definitions and Terminology

Consider a system composed of a set of entities V that interact with each other over
a (possibly infinite) time interval T, called lifetime of the system (a subset of either
Z (discrete time) or R (continuous time); our results hold in either case). The set of
the times when the entities are in contact defines a time-varying graph (TVG, for short)
G = (V,E, ρ), with E ⊆ V ×V being the set of intermittently available edges such that
(u, v) ∈ E ⇔ u and v have at least one contact overlapping with T, and ρ : E × T →
{0, 1} indicates whether a given edge is present at a given time. In the following the
terms entity and node will be used interchangeably.

This model is equivalent in substance to that of evolving graphs [10], where G is rep-
resented by the sequence of graphs G1, G2, ..., Gi, ... each providing a snapshot of the
system whenever a change (edge appearance/disappearance) takes place. In compari-
son, the definition used in this paper offers an interaction-centric view of the network
evolution (the evolution of each edge can be considered irrespective of the global time
sequence), which proves more convenient to express several properties.

An edge e ∈ E is said to be recurrent if it appears infinitely often; that is, for any
date t, ρ(e, t) = 0 =⇒ ∃t′ > t | ρ(e, t′) = 1. When all the edges of a TVG G are
recurrent, we say that G is recurrent. Let R denote the class of recurrent TVGs. The
recurrence of an edge e is said to be time-bounded (or simply bounded), if there exists
a constant Δ(e) such that the time between any two successive appearances of e is at
most Δ(e). When the recurrence of all the edges of a graph G is time-bounded, we say
that G is time-bounded recurrent, call Δ(G) = max{Δ(e) : e ∈ E}, and denote by
B ⊂ R the class of time-bounded recurrent TVGs.

Given a TVG G = (V,E, ρ), the underlying graph G = (V,E) is assumed simple
(no self-loop nor multiple edges) and connected1. Each node v has a local function λv

associating labels (or port numbers), to its incident edges (or ports). For each edge e
there are two labels: λu(e) local to u and λv(e), local to v. These labels are locally
unique and do not change from one appearance to another. The set of edges being
incident to a node u at time t is noted It(u) (or simply It, when the node is implicit).
Finally, we note G[ta,tb) the temporal subgraph of a TVG G with restricted lifetime
[ta, tb).

When an edge e = (x, y) appears, the entities x and y can communicate. The time ζ
necessary to transmit a message on any edge is called crossing delay, and is known by
the nodes. The TVGs in the rest of this paper are assumed to have recurrent edges with
a minimal duration of 2× ζ for every edge presence (long enough for a back and forth
exchange of message). This last assumption implies that

1 Broadcast, as well as any other global computation, would be impossible otherwise.
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Property 1

1. If a message is sent just after an edge has appeared, the message and a potential
answer are guaranteeed to be successfully transmitted.
2. If the recurrence of an edge is bounded by some Δ, then this edge cannot disappear
for more than Δ− 2× ζ.

The appearances and disappearances of edges are instantaneously detected by the two
adjacent nodes (they are notified of such an event without delay). If a message is sent
less than ζ before the disappearance of an edge, the message is lost. However, since the
disappearance of an edge is detected instantaneously, and the crossing delay ζ is known,
the sending node can locally determine whether the message has arrived or not. We thus
authorize the special primitive send retry as a facility to specify that if the message is
lost, then it is automatically re-sent on the next appearance of the edge, and this sending
is necessarily successful (Property 1). Note that nothing precludes this primitive to be
called while the corresponding edge is absent.

A sequence of couple J = {(ea, ta), (eb, tb), ...}, with ei ∈ E and ti ∈ T for all i,
is called a journey in G iff {ea, eb, ...} is a walk in G and for all ti, ρ(ei)[ti,ti+ζ) = 1
and ti+1 ≥ ti + ζ, where ζ is the time required to transmit a message on an edge, called
crossing delay. Journeys can be thought of as paths over time from a source node to a
destination node (if the journey is finite). Let us denote by J ∗

G the set of all possible
journeys in a graph G. We will say that G admits a journey from a node u to a node
v, and note ∃J(u,v) ∈ J ∗

G , if there exists at least one possible journey from u to v in
G. Note that the notion of journey is asymmetrical (∃J(u,v) ∈ J ∗

G � ∃J(v,u) ∈ J ∗
G ),

regardless of whether edges are directed or undirected.
Because no end-to-end connectivity is assumed, the very notion of distance must

incorporate the time factor. In fact, at least three notions of length can be defined for
journeys (adapted from [2]): the hop-count, the arrival date, and the duration of a jour-
ney. Given a journey J = {(e1, t1), (e2, t2) . . . , (ek, tk)}, its hop-count |J |h, is the
number of couples in J (that is, k). The arrival date of J , noted |J |a, is tk + ζ. Fi-
nally, the duration of J , noted |J |t, is |J |a − t1. Each of these metrics gives rise to a
distinct definition of distance in G.

– The topological distance between a node u and a node v, noted dh(u, v), is defined
as min{|J(u,v)|h : J(u,v) ∈ J ∗

G }. A journey J(u,v) whose length is dh(u, v) is
qualified as shortest ;

– The earliest arrival date betweenu andv, notedda(u, v) is defined asmin{|J(u,v)|a :
J(u,v) ∈ J ∗

G }. A journey J(u,v) whose arrival date is da(u, v) is qualified as
foremost ;

– Finally, the smallest delay between u and v, noted dt(u, v) is min{|J(u,v)|t :
J(u,v) ∈ J ∗

G }, and a journey J(u,v) whose duration is dt(u, v) is qualified as
fastest.

The eccentricity of a node u is defined as max{dx(u, v) : v ∈ V }, where x is either
h, a, or t, depending on the type of distance considered, and noted εh(u), εa(u), and
εt(u), respectively. Similarly, three notions of diameter of a graph G = (V,E, ρ) can
be defined as max(dx(u, v) : u, v ∈ V ), and noted Dh(G), Da(G), or Dt(G). Notice
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that Dh is closer to the usual notion of diameter (in hop-count) than Da or Dt, which
are both in the temporal domain. Observe also that all these notions are time-dependent
in the sense that they may vary according to the time when they are considered.

2.2 Problems and Basic Limitations

The problem of broadcast with termination detection, TDBroadcast, requires all
nodes to receive a message with some information initially held by a single node x,
called source or emitter, and the source to enter a terminal state after all nodes have re-
ceived the information, within finite time. A protocol solves TDBroadcast in G ∈ R
if it solves it for any source x ∈ V and time t. We say that it solves TDBroadcast in
R if it solves TDBroadcast for any G ∈ R.

We are interested in three variations of the TDBroadcast problem, following the
notions of distance defined above: TDBroadcast[foremost], where each node must
receive the information at the earliest possible date following its creation at the emitter;
TDBroadcast[shortest], where each node must receive the information within a min-
imal number of hops from the emitter, and TDBroadcast[fastest], where each node
must receive the information at the earliest possible date following the beginning of its
emission. For each of these problems, we require that the emitter detects termination,
but this detection is not subjected to the same foremost, shortest, or fastest constraint.

Some knowledge of G, the underlying graph, is necessary even for simple broadcast
in recurrent TVGs. In fact we have:

Theorem 2. Without any knowledge of the underlying graph, TDBroadcast in R
cannot be solved.

Proof. By contradiction, let A be a algorithm that solves TDBroadcast in R. Con-
sider an arbitrary G = (V,E, ρ) ∈ R and x ∈ V . Execute A in G starting at time t0
with x as the source. Let tf be the time when the source terminates (and thus all nodes
have received the information). Let G′ = (V ′, E′, ρ′) ∈ R such that V ′ = V ∪ {u},
E′ = E ∪ {(u, v) : v ∈ V }, ρ′(e, t) = ρ(e, t) for all e ∈ E, t ∈ T, ρ′((u, v), t) = 0
for all t0 ≤ t < tf , and ρ′((u, v), t) = 1 for t > tf . Consider the execution of A in G′

starting at time t0 with x as the source. Since (u, v) does not appear from t0 to tf , the
execution of A at every node in G′ will be exactly as at the corresponding node in G. In
particular, node x will have entered a terminal state at time tf with node v not having
received the information, contradicting the correctness of A.

Indeed, as we will discuss later, some metric knowledge such as knowing the number
of nodes n = |V | or, in the case of bounded TVGs (class B), knowing an upper bound
Δ on the recurrence time Δ(G), can play an important role.

Theorem 3. Without any knowledge of the underlying graph nor of Δ,
TDBroadcast in B cannot be solved.

Finally, let us conclude with a general impossibility result for fastest broadcast with
termination, which cannot be solved even if both n and Δ are known.
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Theorem 4. TDBroadcast[fastest] is not solvable in R, nor in B, regardless of the
fact that n or Δ are known.

Because of the impossibility of fastest broadcast, the rest of the paper focuses on
TDBroadcast[foremost] and TDBroadcast[shortest] only, and on the impact on
solvability and complexity of being in R or B, and knowing n or Δ (if in B).

3 TDBroadcast[foremost]

The objective is to have all the nodes receive the information at the earliest possible
date following its creation at the emitter (foremost broadcast), then have the emitter
detect termination. Clearly, achieving a foremost broadcast requires to use a flooding-
based mechanism. Indeed, the very fact of probing a neighbor to determine whether
it already has the information compromises the possibility of sending it in a foremost
fashion (in addition to risking the disappearance of the edge between the probe and
the real sending). The problem thus comes to minimize the number of messages and
detect when all the nodes are informed. As we have seen in Theorem 2, the problem
cannot be solved without any metric knowledge. We show that it becomes possible in
the general class R if the number of nodes n = |V | is known. Knowing n is however
not required in the more specific case of B, where the knowledge of an upper bound Δ
on the recurrence time Δ(G) can also be used to solve the problem. If both n and Δ
are known in B, the termination detection can even become implicit, thereby saving a
number of control messages.

3.1 TDBroadcast[foremost] in R

In this section we discuss only knowledge of n since Δ cannot be known being the
recurrent time unbounded by definition.

The problem is solvable when n is known, by using Algorithm 1, informally de-
scribed as follows. Every time a new edge appears locally to an informed node, the node
sends the information on this edge and remembers it. The first time a node receives the
information, it chooses the sender as parent, transmits the information on its available
edges, and sends back a notification message to the parent. Note that these notifications
create a parent-relation and thus a converge-cast tree. The notification messages are sent
using the special primitive send retry discussed in Section 2.1, to ensure that the par-
ent eventually receives it even if the edge disappears during the first attempt. Each no-
tification is then individually forwarded in the converge-cast tree using the send retry
primitive, and eventually collected by the emitter. When the emitter has received n− 1
notifications, it knows that all the nodes are informed (and the next broadcast can start,
for example).

Theorem 5. When n is known,TDBroadcast[foremost] can be solved inR exchang-
ing O(m) information messages and O(n2) control messages, in unbounded time. (We
call m the number of edges |E|).
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Algorithm 1. Foremost broadcast in R, knowing n

1: Edge parent ← nil // edge the information was received from (for non-emitter nodes).
2: Integer nbNotifications ← 0 // number of notifications received (for the emitter).
3: Set<Edge> informedNeighbors ← ∅ // neighbors known to have the information.
4: Status myStatus ← ¬informed // status of the node (informed or non-informed).

5: initialization:

6: if isEmitter() then
7: myStatus ← informed

8: send(information) on Inow() // sends the information on all its present edges.
9: onAppearance of an edge e:

10: if myStatus == informed and e /∈ informedNeighbors then
11: send(information) on e
12: informedNeighbors ← informedNeighbors ∪ {e} // (see Prop. 1).

13: onReception of a message msg from an edge e:

14: if msg.type == Information then
15: informedNeighbors ← informedNeighbors ∪ {e}
16: if myStatus == ¬informed then
17: myStatus ← informed

18: parent ← e
19: send(information) on Inow() � informedNeighbors // propagates.
20: send retry(notification) on e // notifies that a new node got the info.

(this message is to be resent upon the next appearance, in case of failure).
21: else if msg.type == Notification then
22: if isEmitter() then
23: nbNotifications ← nbNotifications + 1
24: if nbNotifications == n − 1 then
25: terminate // at this stage, the emitter knows that all nodes are informed.
26: else
27: send retry(notification) on parent

Proof sketch. Since a node sends the information to each new appearing edge, it is
easy to see, by connectivity of the underlying graph, that all nodes will receive the in-
formation. As for termination detection: every node identifies a unique parent and a
converge-cast spanning tree directed towards the source is implicitly constructed; since
every node notifies the source (through the tree) and the source knows the total number
of nodes, termination is guaranteed. Since information messages might traverse every
edge in both directions, and an edge cannot be traversed twice in the same direction,
we have that the number of information messages is in the worst case 2m. Since every
node but the emitter induces a notification that is forwarded up the converge-cast tree to
the emitter. The number of notification messages is the sum of distances in converge-
cast tree between all nodes and the emitter,

∑
v∈V �{emitter} dh tree(v, emitter). The

worst case is when the graph is a line where we have n2−n
2 control messages. Note that
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the dissemination of information itself is performed in optimal time: εa(emitter) in
G[t,+∞), because the information is either directly relayed on edges that are present, or
sent as soon as a new edge appears. However, since the recurrence of the edges is un-
bounded, this time, as well as the time required for termination detection, is necessarily
unbounded.

Reusability for the subsequent broadcasts. By nature, a foremost tree is transient and
cannot be re-used as such in subsequent broadcasts. However, it can be re-used by
subsequent broadcasts as a converge-cast tree for the notification process where, instead
of sending a notification as soon as a node is informed, each node notifies its parent in
the converge-cast tree if and only if it is itself informed and has received a notification
from each of its children. This would allow to reduce the number of control messages
from O(n2) to O(n), having only one notification per edge of the converge-cast tree.

3.2 TDBroadcast[foremost] in B

If the recurrence is bounded, then either the knowledge of n or an upper bound Δ on
the recurrence time Δ(G) can be used to detect termination.

3.2.1 Knowledge of n
Using the same algorithm as for class R (Algorithm 1) we can obviously solve the
problem in B with the same message complexity, but bounded time. Moreover, the
same observations regarding reusability for the subsequent broadcasts apply.

Theorem 6. When n is known, TDBroadcast[foremost] can be solved in B exchang-
ing O(m) information messages and O(n2) control messages, in O(nΔ) time.

Proof sketch. The arrival-date-based eccentricity of the emitter (εa(emitter) inG[t,+∞)),
which is itself bounded by the arrival-date-based diameter of the graph (Da(G[t,+∞))),
is now clearly bounded by Δ(n− 1) (the worst case is when the foremost tree is a line).
The detection of termination by the emitter may require an additional Δ(n− 1) for the
propagation of the last notification. The overall time required for the emitter to detect
termination is thus at mostεa(emitter) in G[t,+∞) +Δ(n−1), bounded by Δ(2n−2).

3.2.2 Knowledge of Δ
The information dissemination is performed as in Algorithm 1, termination detection is
however achieved differently and is based on knowledge of Δ.

Due to the time-bounded recurrence, no node can discover a new neighbor after a
duration of Δ. Knowing Δ can thus be used by the nodes to determine whether they
are a leaf in the broadcast tree (if they have not informed any other node after the date
they were informed at, plus Δ). This allows the leaves to terminate spontaneously while
notifying their parent, which recursively terminate as they receive the notifications from
all their children. Everytime a new edge appears locally to an informed node, this node
sends the information on this edge, and remembers it. The first time a node receives
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the information, it chooses the sender as parent, memorizes the current time (say, in
a variable firstRD), transmits the information on its available edges, and returns an
affiliation message to its parent using the send retry primitive (starting to build the
converge-cast tree). This affiliation message is not relayed upward in the tree, but only
intended to inform the direct parent about the existence of a new child (so that it knows
it will have to wait for a notification by this node during the hierarchical notification).
If an informed node has not received any affiliation message after a duration of Δ + ζ
it sends a notification message to its parent using the send retry primitive. If a node
has one or several children, it waits until having received a notification message from
each of them, then notifies its parent in the converge-cast tree in turn (using send retry
again). When the emitter has received a notification from each of its children, it knows
that all nodes have received the information.

Theorem 7. When Δ is known, TDBroadcast[foremost] can be solved in B ex-
changing O(m) information messages and O(n) control message, in O(nΔ) time.

Proof sketch. Correctness follows the same lines of the proof of Theorem 5, where
however the correct construction of a converge-cast spanning tree is guaranteed by
knowledge of Δ (the leaves of the tree recognize to be so because no new edges ap-
pear within Δ time) and where notification starts from the leaves and is aggregated
before reaching the source. The number of information messages is O(m) as the ex-
change of information messages is the same as in Algorithm 1. However, the number
of notification and affiliation messages decrease to 2(n− 1). Each node but the emitter
sends a single affiliation message; as for the notification messages, instead of sending a
notification as soon as it is informed, each node notifies its parent in the converge-cast
tree if and only if it has received a notification from each of its children resulting in
one notification message per edge of the tree. The time complexity of the dissemination
itself is the same as for the version where n is known, that is, optimal with εa(emitter)
in G[t,+∞). The time required for the emitter to subsequently detect termination is an
additional Δ + ζ + Δ(n − 1) (the value Δ + ζ corresponds to the time needed by the
last informed node to detect that it is a leaf, and Δ(n−1) corresponds to the worst case
of the notification process, chained from that node to the emitter).

Reusability for the subsequent broadcasts. Clearly, the number of nodes n, which is
not apriori known here, can be obtained through the notification process of the first
broadcast (by having nodes reporting their number of descendants in the tree, while
notifying hierarchically). All subsequent broadcasts can thus behave as if both n and
Δ were known, which is discussed next and allows solving the problem with O(m)
information messages and no control messages.

3.2.3 Knowledge of Both n and Δ
In this case, the emitter knows an upper bound on the broadcast termination date; in
fact, the broadcast cannot last longer than nΔ (the worst case is when the foremost tree
is a line). The termination detection can thus become implicit after this amount of time,
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which allows us to do without any control message (whether of affiliation or notification
kinds). Note that subsequent broadcasts will have the same complexity.

Theorem 8. When Δ and n are known, TDBroadcast[foremost] can be solved in B
exchanging O(m) info. messages and no control messages, in O(nΔ) time.

4 TDBroadcast[shortest]

The objective is to have all nodes receive the information within a minimal number of
hops from the emitter (shortest broadcast), then have the emitter detect termination. We
show below that contrarily to the foremost case, knowing n is not enough to perform a
shortest broadcast (even in B). Considering only the two kind of knowledge we consid-
ered in this paper, it requires Δ to be known (and thus also to be in B). In the following
we then consider only the case of B. Note that, contrarily to the foremost case, if a
given tree is shortest for some particular emission date, then it is also shortest for any
other emission dates (thanks to the recurrence of edges). Put it differently, the shortest
quality of a tree is not time-dependent in recurrent TVGs. This allows shortest trees to
be reused as is in subsequent broadcasts.

4.1 TDBroadcast[shortest] in B

We first show that knowledge of n is not sufficient to perform shortest broadcast with
termination detection in B; and we then describe how to solve the problem when Δ is
know, and when both n and Δ are.

4.1.1 Knowledge of n

Theorem 9. If n is the only knowledge available TDBroadcast[shortest] cannot be
solved in B.

Proof. By contradiction, let A be a algorithm that solves TDBroadcast[shortest]
in B with knowledge of n only. Consider an arbitrary G = (V,E, ρ) ∈ R and x ∈ V .
ExecuteA in G starting at time t0 with x as the source obtaining a shortest tree T . Let tf
be the time when the algorithm terminates and all nodes have entered the terminal state.
Let G′ = (V ′, E′, ρ′) ∈ R such that V ′ = V , E′ = E ∪ {(x, v) : v ∈ V, (x, v) /∈ E},
ρ′(e, t) = ρ(e, t) for all e ∈ E, t ∈ T, ρ′((u, v), t) = 0 for all t0 ≤ t < tf , and
ρ′((u, v), t) = 1 for t > tf . Consider the execution of A in G′ starting at time t0 with
x as the source. Since (u, v) does not appear from t0 to tf , the execution of A at every
node in G′ will be exactly as at the corresponding node in G and terminate with v having
received the information in more than one hop, contradicting the correctness of A.

4.1.2 Knowledge of Δ
The idea is to propagate the message along the edges of a breadth-first spanning tree of
the underlying graph. Assuming that the message is created at some date t, the mech-
anism consists of authorizing nodes at level i in the tree to inform new nodes only
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between time t+ iΔ and t+(i+1)Δ (doing it sooner would lead to a non-shortest tree,
while doing it later is pointless because all the edges have necessarily appeared within
one Δ). So the broadcast is confined into rounds of duration Δ as follows: whenever a
node sends the information to another, it sends a time value that indicates the remaining
duration of its round, that is, the starting date of its own round plus Δ minus the current
time minus the crossing delay, so that the receiving node knows when to start informing
new nodes in turn (if it had not the information yet). If a node has not informed any
other node during its round, it notifies its parent. When a node has been notified by
all its children, it notifies its parent. Note that this requires parents to keep track of the
number of children they have, and thus children need to send affiliation messages when
they select a parent. Finally, when the emitter has been notified by all its children, it
knows that the broadcast is terminated.

Theorem 10. When Δ is known, TDBroadcast[shortest] can be solved in B ex-
changing O(m) info. messages and O(n) control messages, in O(nΔ) time.

Reusability for subsequent broadcasts. Since shortest trees remain shortest regard-
less of the emission date, all subsequent broadcasts can be performed within the tree
built during the first broadcast, which reduces the number of information message from
O(m) to O(n) in these subsequent broadcasts (assuming the nodes memorized the set
of their children during the first broadcast). Moreover, if the depth d of the tree is re-
ported through the first notification process, then all subsequent broadcasts can have an
implicit termination detection which is optimal in time (after dΔ time), and no control
message is needed.

4.1.3 Knowledge of n and Δ
When both n and Δ are known the same dissemination procedure as in the previous
section can be applied and, since nΔ is an upper bound on the termination time, an
implicit termination detection can be used. This allows the nodes to exchange no control
messages at all.

Theorem 11. When n and Δ are known, TDBroadcast[shortest] can be solved in B
exchanging O(m) info. messages and no control messages, in O(nΔ) time.

Reusability for subsequent broadcasts. Note that the solution discussed above offers
no gain on the number of information messages in the subsequent broadcasts. An alter-
native solution would be to achieve explicit termination for the first broadcast in order
to build a reusable broadcast tree (and learn its depth d in the process). In this case,
dissemination is achieved with O(m) information messages, termination detection is
achieved similarly to the algorithm where only Δ is known with O(n) control mes-
sages (where however affiliation messages are not necessary, and the number of control
messages would decrease to n − 1). In this way the control messages would increase,
but subsequent broadcasts could reuse the tree for dissemination with O(n) informa-
tion messages, and termination detection could be implicit with no exchange of control
message at all after dΔ time. The choice of either solution may depend on the size of
an information message and the expected number of broadcasts planned.
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Abstract. Program slicing is a reduction technique that removes irrelevant parts
of a program automatically, based on dependencies. It is used in the context of
documentation to improve the user’s understanding as well as for reducing the
size of a program when analysing. In this paper we describe an approach for slic-
ing not program code but models of software or systems written in the graphical
Behavior Tree language. Our focus is to utilise this reduction technique when
model checking Behavior Tree models. Model checking as a fully automated
analysis technique is restricted in the size of the model and slicing provides one
means to improve on the inherent limitations. We present a Health Information
System as a case study. The full model of the system could not be verified due
to memory limits. However, our slicing algorithm renders the model to a size for
which the model checker terminates. The results nicely demonstrate and quantify
the benefits of our approach.

1 Introduction

Detecting problems early in the software life cycle, in the modelling and design phase,
would greatly reduce the costs involved. Formal models of systems allow for rigor-
ous analyses to be conducted. The Behavior Tree graphical modelling language [1, 2],
which has a formal semantics, has been proposed as a support for engineers handling the
complexity of large systems. Behavior Tree models maintain a strong connection with
the original textual requirements of the system. Behavior Trees can be automatically
translated into model checking languages for verification [3–5].

Model checking [6] is an automated verification technique that exhaustively searches
the state space to determine whether or not a given property holds for the system. A
major limitation of model checking is what is known as the state explosion problem. It
refers to the possibly exponential number of states produced from even a small number
of system components. This prevents model checking from being applied to larger sys-
tems. The model checker may run out of memory resources before providing a result,
or may take a prohibitively large amount of time to solve the verification problem.

This paper describes a technique for reducing Behavior Tree models prior to model
checking, in order to reduce the time and memory resources required. We propose using
a technique known as slicing [7], which has been traditionally applied to programs
to aid in understanding and debugging (see [8] and [9] for comprehensive surveys).
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The objective of this technique is to eliminate those parts of the program that are not
relevant in the current context. In doing so slicing can significantly reduce the size of
the investigated program.

Although most applications of slicing have been programs, slicing has also been
applied to specifications. In particular, slices have been created from Z specifications
[10, 11], hierarchical state machines in the RSML specification language [12] and
Extended Finite State Machines [13]. The aim of these approaches is to support
understanding.

Slicing in the context of automated analysis aims at eliminating those parts of the
model that have no effect on whether the property to be checked is satisfied by the
model or not. Thus, the approach requires a new type of slicing criterion which is
derived from the property, often given as a temporal logic formula. This criterion may
not refer to a specific program statement; instead several statements could be the slicing
targets. In [14], Hatcliff et al. present the foundations of “property-directed” slicing in
which formulas given in linear temporal logic (LTL) [15] without using the next state
operator provide the slicing criteria.

Whereas Hatcliff et al. apply their technique to Java code, other approaches pro-
pose slicing for models of software or systems given in, e.g., the SPIN input language
Promela [16], the SAL language [17] and timed automata as used by the UPPAAL tool
[18]. Leuschel et al. [19] apply slicing to CSP models and Brückner and Wehrheim [20]
investigate models written in CSP-OZ-DC, a language that combines Communicating
Sequential Processes, Object-Z and Duration Calculus. Each of these approaches caters
for the intricacies of the given modelling language. In our approach the characteristics
of Behavior Trees define the avenue of how slicing can be defined such that proper-
ties are preserved. A major benefit of slicing is that it requires very little computational
resources, as the slicing algorithm runs in close to linear time.

We have applied our slicing algorithm to the Behavior Tree model of a Health In-
formation System in order to evaluate its effectiveness. The results are presented in this
paper in the following way: Section 2 provides the reader with preliminaries on the
Behavior Tree notation and on slicing in general. In Section 3 we define the main ingre-
dients for Behavior Tree slicing. We introduce our case study in Section 4 and present
the results of Behavior Tree slicing and the improvements gained when model checking
in Section 5. Section 7 summarises and gives an outlook on future work.

2 Preliminaries

2.1 Behavior Trees

The Behavior Tree (BT) notation [1, 2] is a graphical notation to capture the functional
requirements of a system provided in natural language. The strength of the BT nota-
tion is two-fold: Firstly, the graphical nature of the notation provides the user with an
intuitive understanding of a BT model - an important factor especially for use in indus-
try. Secondly, the process of capturing requirements is performed in a stepwise fashion.
That is, single requirements are modelled as single BTs, called individual requirements
trees. In a second step these individual requirement trees are composed into one BT,
called the integrated requirements tree. Composition of requirements trees is done on
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the graphical level: an individual requirements tree is merged with a second tree (which
can be another individual requirements tree or an already integrated tree) if its root node
matches one of the nodes of the second tree. Intuitively, this merging step is based on
the matching node providing the point at which the preconditions of the merged re-
quirement trees are satisfied. This structured process provides a successful solution for
handling very large requirements specifications [1, 21].

The syntax of the BT notation comprises nodes and edges. A node can be either a
state realisation describing a state change of a component or one of its attributes, or a
selection, guard, or event, guarding the control flow within the BT. A node is specialised
by its Component name C, Behavior B, Type, and set of Flags.

The Behavior is an identifier (describing a state, an event, or a channel name), or an
expression (referring to component attributes).

Fig. 1. Different node types of the BT syntax

The Type of a BT node can be (c.f., Figure 1)

(a) a state realisation, modelling C being in a state if B is a state name, or updating
C’s attribute if B is an update expression over the attribute;

(b) a selection (or condition) on C’s state if B is a state name, or a selection on the
state of one of C’s attributes if B is an expression over the attribute; in both cases,
the control flow terminates if the condition is not satisfied;

(c) a guard; the control flow can pass the guard when C is in state B if B is a state
name, or when the expression B over one of C’s attributes is satisfied if B is
an expression over the attribute; otherwise it is blocked until the state realisation
occurs;

(d-e) an internal event modelling communication and data flow between components
within the system, where B specifies an event; the control flow can pass the inter-
nal input/output event node when the event occurs (the message is sent), otherwise
it is blocked until it occurs;

(f-g) an external event modelling communication and data flow between the system and
its environment, where B specifies an event; the control flow can pass the external
input/output event node when the event occurs (the message is sent), otherwise it
is blocked until it occurs.

The control flow of the system is modelled by either a normal or a branching edge.
A normal arrowed edge models sequential flow between two steps. If two nodes are
connected by a line without an arrow head the two steps occur together atomically.
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Fig. 2. Branching structures in the BT syntax

Figure 2 shows the two types of branching edges: concurrent and alternative. Con-
current branching (Figure 2a) models threads running in parallel. As an example the
threads in the figure start with a guard node. The branches, however, can start with any
node type. We show only two sub-trees in the branching, although in general there may
be more.

In alternative branching (Figure 2b), the control flow follows only one of the bran-
ches. Alternative branches can comprise either selections only (for example, as shown
in Figure 2b) or only other node types but no selections. Alternative branching over
selections operates as a non-deterministic choice over the branches with a satisfied se-
lection condition Bi. If none of the selections is satisfied the behaviour terminates.
Alternative branching over non-selections behaves like a non-deterministic choice that
is unguarded.

Flags in a BT node can specify: (a) a reversion node, marked by ‘ ’̂, if the node is
a leaf node, indicating that the control flow loops back to the closest matching ancestor
node (a matching node is a node with the same component name, type and behaviour)
and all behaviour started after the matching ancestor node is terminated; (b) a referring
node, marked by ‘=>’, indicating that the flow continues from the matching node; (c)
a thread kill node, marked by ‘−−’, which kills the thread that starts with the matching
node, or (d) a synchronisation node, marked by ‘=’, where the control flow waits until
all other threads with a matching synchronisation node have reached the synchronisa-
tion point.

As described in [22], the BT syntax also includes notation for standard set operations,
some of which are shown in Figure 3 on page 128 (for a complete description of the
syntax see [23]): Assume C has an attribute S which is a set, then a) models adding

Fig. 3. Set Operations and Parametrisation of BTs
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element x to S, b) removing element x from S, c) queries the cardinality of S, and d)
queries membership of x in S. Union, difference and intersection of two sets S and T
can be specified using the following syntax:S := S+T ,S := S−T , andS := S >< T .

In addition to standard set operations, the syntax also provides constructs for para-
meterisation such that a sub-BT is to be performed on all members or one member of a
reference set S. Figure 3d) models execution of a sub-tree BT(x) for all members x of
set S, and Figure 3e) models execution of BT(x) for some member x of set S (where
x is chosen non-deterministically). These constructs are referred to as do-forall and
do-forone, respectively. The component name can also be omitted.

Type declarations and other structural information about the system model are cap-
tured in a Composition Tree (CT). We do not introduce the notion of CTs here but refer
the interested reader to [23].

The semantics of BTs is formalised in [24] using CSPσ [25] which is an extension
of CSP with state. An automated translation [3, 4] provides an interface to the model
checker SAL [26], allowing for fully automated analysis of BT models.

2.2 Program Slicing

Program slicing is a technique which removes irrelevant parts of a program based on
the dependencies between the program statements. The program is first transformed
into a Control Flow Graph (CFG). The nodes in the CFG represent the program state-
ments and the edges correspond to control flow. There is a single entry node and a
single exit node for each graph. Branching statements, such as if or while statements,
are represented as nodes in the CFG with two successors representing the true and false
paths. All other statements are represented as nodes with a single successor. In many ap-
proaches to slicing, a structure known as a Program Dependence Graph (PDG) [27, 28]
is then created using the CFG. The PDG is a directed graph with vertexes representing
program statements and edges representing dependencies, such as control-flow and data
dependencies. To determine the set of statements that may directly or indirectly affect a
specified criterion, a simple reachability analysis is performed on the graph. The state-
ments that were found to be irrelevant to the criterion can then be removed, producing
the slice. The slice will always be a subset of or equal to the original program.

A formal foundation of control dependencies and slicing correctness can be found in
the work by Ranganath et al. [29].

3 Slicing of Behavior Trees

Slicing of BTs is performed in a similar manner as program slicing. We utilise this
technique to reduce the size of a BT model when applying model checking. Model
checking is a fully automated process which, in our case, checks whether a BT model
satisfies a given temporal logic property. We assume the property is specified in LTLX

[6], which is linear temporal logic (LTL) [15] minus the next step operator X . A slice
of a model wrt. a given property is created in such a way that it preserves the property.
Assuming this, it suffices to model check the smaller slice instead of the full model.

The first step in the overall slicing process is to create a Behavior Tree Dependence
Graph (BTDG) from the given BT. The BTDG indicates all the dependencies that



130 N. Yatapanage, K. Winter, and S. Zafar

exist between the nodes of the BT. Each BT will have only one general BTDG which
is independent of the property to be verified but covers all dependencies between all
components and attributes. Therefore this step only needs to be performed once per BT
and the resulting BTDG can be used for creating slices for any LTLX property as well
as for any other analysis technique that relies on dependency graphs. The set of nodes
that are relevant for a specific property are then identified using the BTDG. Finally,
these nodes are re-formed into a tree, producing the BT slice for the given property.

3.1 Creating the BT Dependence Graph

The BTDG is similar to a Program Dependence Graph [27, 28]. Each node in a BTDG
represents a node in the BT and each edge represents a dependency between two nodes.
There are several types of dependencies that might be present in a BT, specifically:
control, data, interference, synchronisation, message and alternative choice branching
dependencies.

A BTDG is created not from the BT directly but from the control flow graph of a BT
(CFG-BT). In the context of program slicing, a control flow graph indicates the flow of
control between single program statements. A BT is almost a like a control flow graph
as it shows the flow of control via sequential and branching edges. However, some parts
of the control flow are denoted by boxes rather than edges, e.g. reversion and reference
nodes. These have to be replaced by edges linking the predecessor node in the BT with
its successor node. Moreover, selection, guard and (internal/external) input event nodes
in a BT do not explicitly show the flow of control in the case where this respective
condition fails (i.e., the behaviour in the negative case). We add edges to represent
these cases: (a) each selection node has an additional outgoing edge to a terminal node
representing termination when the selection condition is not satisfied, (b) guard and
input event nodes have an additional edge that loops back to itself representing blocking
behaviour (i.e., waiting) in the case where the guard or event is not available.

A path in a CFG-BT is a sequence of nodes. Let Path(p, q) represent the path from
node p to node q. If k ∈ Path(p, q), then k is a node on the path. A path is called
maximal if it either terminates (i.e. it has no successors) or contains an infinite loop
(this definition was adapted from [29]).

We call two nodes p and q matching, denoted as Matching(p, q), if they have the
same component name, behavior and type. If Concurrent(p, q) then nodes p and q
are in concurrent threads of the CFG-BT. If Alternate(p, q) then nodes p and q are in
alternate branches of the same thread of the CFG-BT.

We now define the notion of definition set and reference set for BT nodes which are
used to define dependencies between nodes. Intuitively, if a node updates/queries a com-
ponent or attribute, the component or attribute is a member of the definition/reference
set for that node. Assume in the following that C is a component, a and b are attributes
of the component, s is a behavior, g is a guard, S and T are sets, x denotes an element
of S, and m is a natural number.

Definition 1. (Definition Set)
DEF (n) represents the set of components and attributes defined at noden. Specifically,
if n is of the form
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(a) (state-realisation) C[s] then C ∈ DEF (n),
(b) (state-realisation of attributes) C[a := s] then a ∈ DEF (n),
(c) (adding/removing an element from a set) C[S := S + x] or C[S := S - x] then

S ∈ DEF (n),
(d) (union, subtraction, intersection of sets) C[S := S + T] or C[S := S - T] or C[S :=

S >< T] then S ∈ DEF (n).

Definition 2. (Reference Set)
Let REF (n) represent the set of components and attributes referenced at node n.
Specifically, if n is of the form

(a) (selection/guard) C?g? or C???g??? then C ∈ REF (n),
(b) (selection/guard over attributes) C?a = exp? or C???a = exp??? where exp is an

expression or a behavior, then a ∈ REF (n),
(c) (state-realisation of attribute) C[a := f(b)], where f(b) is an expression over b, then

b ∈ REF (n),
(d) (selection over set predicates) C?x : S? or C?S = {}? or C?|S| �� m? where ��∈

{=, <,>,<=, >=}, then S ∈ REF (n).

Based on these preliminary definitions we now define various types of dependencies
between BT nodes from which the BTDG is built.

Control dependencies arise if a BT node controls the execution of another node. A
node p in a BT is control-dependent on a node q if and only if there are two possible
outcomes after executing node p: in one scenario all paths of execution lead to q and in
the other scenario, there exists a path on which node q is never executed. This situation
occurs when node p is either a guard, a selection or an external input event. For instance,
in the case of a selection, if the selection is satisfied then the control flow proceeds to
subsequent nodes, but if the selection is not satisfied then the control flow terminates.
Thus, the execution of the subsequent nodes are controlled by the selection node. We
exclude dependencies between nodes from alternative and concurrent branches as those
are handled separately.

Definition 3. (Control Dependency)
For two nodes p and q in a CFG-BT, node q is control-dependent on node p, denoted as

p
cd−→ q, iff:

(i) node p has at least two successors m and n, where NOT(Alternate(m, n)) and
NOT(Concurrent(m, n)),

(ii) for all maximal paths from node m, node q always occurs and
(iii) there exists a maximal path from node n on which node q never occurs.

If a node q in a BT queries the state of a component or attribute, it is data-dependent on
any node p that updates the state of that component or attribute. That is, if for a node
p a component or attribute c is in REF (p), then p is data-dependent on a node q for
which c is a member of DEF (q), assuming c is not re-defined by another node on the
path between p and q. This dependency occurs within a single thread as well as between
parallel threads. In the latter case it is often also referred to as interference dependence.
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These two dependencies are differentiated because interference dependency is in-
transitive (in contrast to all other dependencies). This results in slices that are not opti-
mal as they contain nodes that are not relevant for the property and could have been
sliced away. Krinke in [30] introduces the notion of threaded witness to determine
whether a path in the dependency graph shows a true dependency. In our approach
it remains future work to include a strategy for optimising the slicing algorithm that
handles this problem.

The following definition combines data and interference dependency as both no-
tions differ only in one condition: NOT (Concurrent(p, q) for data dependency and
Concurrent(p, q) for interference dependency.

Definition 4. (Data and Interference Dependency)
For two nodes p and q in a CFG-BT, node q is data- or interference-dependent on node

p, denoted as p
dd/id−−−→ q, iff:

(i) ∃c ∈ DEF (p) such that c ∈ REF (q) and
(ii) ∀k ∈ Path(p, q), c /∈ DEF (k).

Message dependence is similar to data dependence. All internal input nodes are message-
dependent on internal output nodes with the same message name. (Note that for external
input/output nodes we do not have a similar dependency as the sender/receiver of the
message is outside the scope to the system (i.e., external).)

Definition 5. (Message Dependency)
For two nodes p and q in a CFG-BT, node q is message-dependent on node p, denoted

as p
md−−→ q, iff:

(i) Type(p) = InternalOutput and Behavior(p) = m and
(ii) Type(q) = InternalInput and Behavior(q) = m.

All sets of synchronising nodes are dependent on each other, because each node must
wait for all the others before proceeding.

Definition 6. (Synchronisation Dependency)
For two nodes p and q in a CFG-BT, node q is synchronisation-dependent on node p,

denoted as p
sd−→ q, iff:

(i) Flag(p) = Synchronisation and Flag(q) = Synchronisation and
(ii) Matching(p, q).

For BTs an extra dependency type arises that is not normally found in program slicing.
A BT can have alternative choice branching points. At each of these points, each branch
is dependent on whether or not the other branches have executed. If one branch executes
then all others are terminated. Therefore, there is a dependency between the root nodes
of all branches in an alternative branching construct.

Definition 7. (Alternative Dependency)
For two nodes p and q in a CFG-BT, node q is alternative-dependent on node p, denoted

as p
ad−→ q, iff nodes p and q:
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(i) have the same parent node and
(ii) are connected by an alternative choice branching point.

Note that synchronisation as well as alternative dependency are symmetrical relations
between BT nodes.

3.2 Creating the Slice

After the BTDG has been created for a given BT, it can be used to create the slice for
any given LTLX property. The slicing criterion consists of all state-realisation nodes
which update the state of one of the components or attributes mentioned in the temporal
logic property. If we lift the notion of reference set to temporal logic formulas such that
for any formula p, REF (p) denotes the set of components and component attributes
that are mentioned in p, then the set of nodes building the slicing criterion for p is
characterised as SliceCrit(p) = {n : BTNode | ∃c ∈ REF (p) · c ∈ DEF (n)}.
Starting from each of these nodes in SliceCrit, the BTDG is traversed in reverse,
collecting every node that is encountered via dependency edges. During the traversal
we check if a node has been visited already in order to avoid an infinite traversal due
to symmetric or circular dependencies. The algorithm is in most cases linear and in the
worst, but unrealistic, case quadratic in the number of nodes of the BTDG. Any nodes
that were not encountered during the traversals can be removed from the BT, because
they are irrelevant for the property.

The final set of relevant nodes is often a disjoint set of sub-trees. These must be re-
formed into a tree. Every node that is missing its parent node is joined to its closest
remaining ancestor, becoming one of its children. However, if the node was originally
part of an alternative or concurrent branch and one or more of the other branches are
still present in the tree, then the root nodes of each branch are joined to a blanknode. A
blanknode is a place-holder for the concurrent or alternative branching construct of the
original BT and is used in order to preserve the structure. The blanknode then becomes
a child of the closest remaining ancestor of the branching nodes.

The reversion and reference nodes are then added back to the slice. These nodes
represent jumps to other locations in the tree. The nodes are placed at the bottom of the
same threads that they belonged to in the original BT. However, if an entire sub-tree no
longer exists in the slice, then any reversions/reference nodes in that sub-tree are left
out.

If the BT contains do-forall and do-forone nodes, then these are added back to the
slice, unless these nodes are no longer relevant. The nodes become obsolete if the sub-
tree below no longer mentions the member of the reference set (i.e., the parameter).

The final slice can only be used in place of the original BT for model checking the
desired property if our slicing algorithm, which is based on the above definitions, is
correct. We have formally proved the correctness of our approach and summarise the
proof idea in the following. Similar to [29] we base our proof on the notion that nodes
in the slicing criterion of a property p, SliceCrit(p), are observable steps whereas
nodes not in the slicing criterion are silent or stuttering steps. The idea of our proof is
to show that our algorithm produces a slice that is stuttering-equivalent to the original
BT. We base our proof on the theorem on stutter equivalence and LTLX equivalence
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([6], chapter 7) which states that for any paths σ1, σ2 and any LTLX formula ϕ (over
the same set of atomic propositions) σ1 =̂ σ2 =⇒ σ1 |= ϕ iff σ2 |= ϕ, where =̂
denotes stuttering equivalence between two paths. That is, if two models are stuttering
equivalent we can imply that both of them satisfy or dissatisfy the same properties.

Using these results it suffices in our context to show that for any behaviour in the
original BT there exists a stuttering equivalent behaviour in the slice that is generated
wrt. a formula ϕ. With the definitions as given in Section 3.1 a proof by contradiction
provides the desired result. We assume that there exists an execution trace in the original
BT for which there does not exist a stuttering-equivalent trace in the slice. Therefore the
trace of the original BT must at some point contain an observable node that is not able to
execute at the equivalent point in any of the traces of the slice. However, we have shown
that such a node cannot exist according to the definitions of slicing and dependencies.
We then assume that the converse is true: that there exists an execution trace in the
slice that does not have a stuttering-equivalent trace in the original BT. We have also
shown this to be impossible. Thus, a generated slice is always stuttering-equivalent to
the original BT.

4 Case Study: The e-Health System

The e-Health system presented here has been adapted from a real case study presented
in [31]. It is based on the automation requirements for an aged care facility. The facil-
ity provides accommodation and care for elderly residents. The facility is administered
by a manager. The residents are visited by doctors regularly. Managers, residents and
doctors can view and edit relevant electronic records. The resident’s data is made up
of the following elements. (1) At the time of admission the personal details of the res-
idents are entered. These details include basic personal data (name, sex, etc.), medical
details (blood group, allergies, etc.) and details of any nominated responsible person.
(2) Before admission a legal agreement must also be signed electronically. (3) A care
plan is initiated after he/she has been admitted to the facility. (4) Past medical records
are entered by the manager of the facility. After each examination the doctor adds an
entry to the medical records of the residents. The doctor can also add private notes to
the medical records.

We have created a BT model of the e-Health system. Fig 4 shows an overview of
the model, which is too large to be shown in further detail here. The BT describes
the behaviour of the nominated responsible people, the managers, the doctors and the
residents, each in a separate thread. A responsible person can give consent to add a
doctor or sign an agreement on behalf of the patient. A manager can perform various
tasks, including adding or viewing a patient’s personal details, managing care plans,
adding medical records and deleting data. A doctor can view or add medical records if
he/she has permission to do so. Doctors, residents and temporary doctors can be added
to the various access control lists, thereby granting them access to a patient’s files.

In order to provide the reader with an idea of the structure of the tree, a section of
the manager thread is shown in greater detail in Figure 5. The manager thread begins
with “for all managers”, “choose a resident”, followed by “choose a data set”. At this
point there is an alternative choice between each of the possible actions that a manager
can perform. We show only the action of the manager viewing personal details. If the
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Fig. 4. Overview of the e-Health System BT

current data belongs to the current resident, then the man-
ager can view the data. The behaviour then reverts to a
higher node, to allow managers to perform other actions.

A number of access control requirements have been de-
fined for the security of electronic records and to ensure
the privacy of the residents. We have formulated these re-
quirements as LTL theorems, shown below. To comply with
different regulations, the resident records must be kept for a
period of nine years. After the completion of the nine year
period the record can be deleted. This requirement is for-
malised as theorem 1. The LTL operator, G(p), is used to
state that p is always true. The second requirement concerns
the ability of managers to add medical records. To protect
the privacy of the residents, the access to medical records
is limited only to the residents themselves or to the nom-
inated doctors. However, the manager is allowed to enter
past medical records at the time of admission to the facility.
After the admission, the manager is not allowed to add or
view the records. The formula states that medical records
can only be added by a manager if the patient associated
with the data has not yet been admitted. The last property
states that a resident can view his/her private notes only if
he/she has been assigned to the record’s access control list Fig. 5. Manager thread

(ViewNotesACL).

1. Data can only be deleted by the manager if its leave date is greater than nine years.
∀d : data, ∀m : managers,
G ((d.deleted = true ∧ m.state = deletingData)

=⇒ d.leaveDate = greaterThanNineY ears)
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2. Medical records can only be added by the manager if the patient associated with
the data has not yet been admitted. ∀d : data, ∀m : managers,
G ((d.medicalRecords = added ∧ m.state = addingMedicalRecords)

=⇒ d.admitted = false)

3. A resident can only view his/her private notes if he/she is in the set ViewNotesACL.
∀d : data, ∀r : residents,
G ((d.privateNotes = viewed ∧ r.state = viewingPrivateNotes)

=⇒ (r : d.V iewNotesACL).

5 Slicing the Model of the e-Health System

In this section we compare the execution times for model checking the e-Health system
BT with the slices for each property listed in Section 4. First, the BTDG for the e-Health
system is created, according to the procedure outlined in Section 3. This BTDG is then
used for creating each of the slices. The slicing criterion for each case is derived from
the variables mentioned in the property. For example, the slicing criterion for theorem
1 is the set {d.deleted,m.state, d.leaveDate | d ∈ data ∧m ∈ manager}. Starting
from each of the state-realisation nodes that involve these components/attributes, the
BTDG is traversed in reverse, collecting all relevant nodes.

The size of the resulting slices varies depending on the property. The only relevant
part for theorem 1 is the manager’s behaviour, so a significant proportion of the BT
can be sliced away. The other two properties involve several parts of the BT, so the
corresponding slices are larger than for theorem 1. For example, theorem 3 involves the
set ViewNotesACL. This set is referred to in several places in the resident behaviour
thread. However, the set is updated in the doctor behaviour thread, so the validity of the
property is dependent on both parts of the BT. Table 1 lists the number of nodes in each
of the slices compared to the original BT.

Table 1. Number of nodes in the original BT and each slice

Original BT Slice Th1 Slice Th2 Slice Th3

No. of nodes 125 36 116 73

The e-Health system BT utilises set constructs, so the BT is expanded before model
checking. Whenever a do-forall or do-forone node is encountered, its sub-tree is repli-
cated for each element in the set. We have compared the execution times for model
checking the original BT vs. the slices, for increasing cardinality of the sets. The results
are presented in Table 2. The system maintains sets of doctors, residents, responsible
persons, managers, data and logs.

The checks were run on a 1.2GHz UltraSPARC processor with 24GB of RAM, run-
ning Solaris 10. The original model could not be verified. Even with only a single user
in each set, i.e. the smallest possible model, the model checker ran out of memory
before providing a result. However, using the slices, verification was possible. For all
three theorems, the model checker provided a result in only seconds when the sets con-
tained one element each. As the number of elements were increased, the execution times
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Table 2. Execution times for model checking the original BT and slices, where: MEM = out
of memory, n All = n elements in each user set, 2 D = 2 doctors, 2 R = 2 residents, 2 M = 2
managers, 2 RP = 2 responsible people, 1 data = 1 data set and 1 log, 2 data = 2 data sets and 2
logs; and if a set is not specified then it contained 1 element.

1 All 2 D 2 M 2 R 2 RP 2 D, 2 M

Original Th1 MEM - - - - -

Slice Th1 2.2s 2.4s 11.4s 8.7s 2.4s 11.4s

Original Th2 MEM - - - - -

Slice Th2 70.8s 10.6hrs 35.4mins 1.2hrs 16.9mins MEM

Original Th3 MEM - - - - -

Slice Th3 10.7s 6.2mins 1.1min 8.9mins 19.4s 31.6mins

2D, 2 R 2 M, 2 R 2 All, 1 data 2 All, 2 data 3 All, 1 data

Original Th1 - - - - -

Slice Th1 9.0s 1.4mins 1.8mins 23.5mins 2.1hrs

Original Th2 - - - - -

Slice Th2 MEM MEM MEM - -

Original Th3 - - - - -

Slice Th3 MEM 4.1hrs 18.6hrs - -

increased, but a result could still be obtained for most combinations in which there were
two elements in one or more of the sets.

The slice for theorem 1 did not contain any nodes involving doctors or responsible
persons, so increasing these sets did not affect the execution time. When the number
of managers and residents were increased, the execution time increased, reaching 11
seconds with 2 managers and 1-2 minutes with 2 managers and 2 residents. Even with
3 elements in each of the sets a result was obtained in 2 hours.

The size of the slice for theorem 2 is almost the same as the original BT. However,
there was still significant improvement in model checking. It was possible to obtain a
result with one element in each set in only 71 seconds. With two elements in a set, the
execution times varied between 17 minutes for 2 responsible persons and 10.6 hours
for 2 doctors. If two sets contained two elements, such as 2 doctors and 2 residents, the
model checker ran out of memory.

Model checking the slice for theorem 3 took only 11 seconds for one element in each
set and less than 10 minutes for two elements in a set. With 2 elements in each of the
user sets, the model was still able to be verified although the execution time reached
18.6 hours.

6 Discussion

Slicing can be considered to be complementary to other state-space reduction tech-
niques. The low computational cost needed for slicing makes it ideal to be performed as
an initial step prior to applying other reduction techniques. The extent to which slicing
can reduce the verification time depends on both the model and the property. The more
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dependencies that exist between the components in the formula, the larger the slice.
Despite this, in many cases slicing can improve the verification time. In particular, in
concurrent models it is often the case that each thread represents a separate component
that operates independently. In such cases, slicing is very effective as it reduces the
parallelism in the model, which is one of the most computationally expensive aspects
in model checking. Due to the low cost for applying slicing, it is worthwhile to try it,
especially if the model is infeasible for a model checker.

7 Conclusion

We have developed a method for automatically reducing Behavior Tree models using
the slicing. Slices of a BT model can be used for aiding in understanding and also for
reducing models prior to verification. The case study we have presented in this paper
demonstrates the benefits of slicing a model before model checking. The results show
the improvements in execution time and memory usage. This enables the verification of
models for which model checking was previously infeasible. Although the shape and
size of a slice depend on the property to be checked, the low computational resources
needed to compute a slice makes it ideal for aiding in model checking.

For future work, we plan to extend the slicing procedure to enable slicing wrt. full
LTL (including X operator) and to explore further optimisations which could produce
greater reductions in the model size.
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Abstract. In this paper, extended approach to Gaussian kernel algo-
rithm for text segmentation, reference text line and skew rate extractions
is presented. It assumes creation of boundary growing area around text
based on Gaussian kernel algorithm extended by anisotropic approach.
Those boundary growing areas form control image with distinct objects
that are prerequisite for text segmentation. After text segmentation, text
parameters such as reference text line and skew rate are calculated based
on numerical method. Algorithm quality is examined by experiments. Re-
sults are evaluated by RMS method. Obtained results are compared with
isotropic Gaussian kernel method. All results are examined, analyzed and
summarized. Furthermore, optimal parameter values are suggested lead-
ing to anisotropic kernel optimization.

Keywords: Image processing, Document image processing, OCR, Text
segmentation, Text parameters extraction, Isotropic Gaussian kernel.

1 Introduction

Printed and handwritten text is characterized by its attributes and features
diversity. Hence, text parameter extraction procedure can be quite dissimilar
one. However, its algorithm should be valid for printed as well as for handwritten
text. To finish the task efficiently algorithm should be robust enough as well.

Prior to text parameters extraction, text line segmentation should be done.
It is an important step in document processing. Although some text line detec-
tion techniques are successful in printed documents, processing of handwritten
documents has remained a key problem in optical character recognition (OCR)
[1,2]. Most text line segmentation methods are based on the assumptions that
distance between neighboring text lines is significant as well as that text lines
are reasonably straight. However, these assumptions are not always valid for
handwritten documents. Hence, text line segmentation is a leading challenge in
document image analysis [3].

Later, text parameters extraction from scanned documents is primary OCR
goal. Reference text line and skew rate identification is mandatory. Their validity
is of major importance for OCR process. Various reasons exist for appearance of
multi-skewed lines in text, but two are most common [1]. Firstly, during scan-
ning a misalignment degrees of the document made is unavoidable. All printed
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c© IFIP International Federation for Information Processing 2010



Optimization of the Anisotropic Gaussian Kernel 141

text lines in the scanned document are uniformly skewed. Secondly, text lines in
original document are differently skewed due to individual handwriting. Hence,
text lines are made under different orientation. To enhance the ability of doc-
ument analysis system, robust algorithm for text segmentation and parameters
extraction is needed.

Previous work on text line segmentation can be categorized in few directions
[2]: histogram analysis, k -nearest neighbor clustering, projection profile, Fourier
transform, cross-correlation and other models.

In [1] is mentioned previously proposed and accepted technique of reference
line extraction based on identifying valleys of horizontal pixel density histogram.
It failed due to multi skewed text lines. Hence, it is not suitable for handwriting
text.

K -nearest neighbor clustering method [2] is by product of a larger page layout
analysis system, which assumed only text is being processed. The connected
components formed by the nearest neighbors clustering are characters based
only. Method is suitable for finding skew angle, but it is limited to Roman
languages [2].

Method in [4] deals with ”simple” multi skewed text. It uses as a basis Hough
transform for straight lines. But, it is too specific and computationally expensive.

Method of identifying words contour area as a start of detecting baseline
is proposed in [5]. The assumptions made on the word elements definition are
specific.

Method [1] hypothetically assumed a flow of water in a particular direction
across image frame in a way that it faces obstruction from the characters of the
text lines. This method is adopted in [6]. To be totally robust it needs some
further adaptation.

Algorithm proposed by [7] model text line detection as an image segmentation
problem by enhancing text line structure using a Gaussian window and adopt-
ing the level set method to evolve text line boundaries. Method is specified as
robust, but rotating text by an angle of (from -10◦ to 10◦) has significant impact
on it. In the paper, modification of this method is proposed, analyzed [8] and
compared. Algorithm is evaluated by different sample text examples. Further-
more, optimal parameter values are suggested leading to anisotropic Gaussian
kernel optimization.

Organization of the paper is as follows. In Section 2 information on proposed
Gaussian kernel algorithm is given. In Section 3 experiments are described. Ob-
tained results are analyzed, examined and discussed as well. In Section 4 con-
clusion is made.

2 Proposed Algorithm

Although document conversion system incorporates scanning, binarization, re-
gion segmentation, text recognition and document analysis, its procedure can be
divided into three main stages as shown in Fig. 1.

In the first stage, algorithm for document text image binarization and normal-
ization is applied. After preprocessing stage, text is prepared for segmentation,
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Fig. 1. Document text image identification procedure

feature extraction and character recognition. During the second stage, algorithm
for text segmentation as well as for skew and reference text line identification
is enforced. Also, reference text based on skew and stroke angle, is straightened
and repaired. Finally, in third stage character recognition process is applied. As
a result of scanning process, document text image is obtained. It is an input of
text grayscale image described by following intensity matrix [9]:

D(i, j) ∈ [0, . . . , 255] , (1)

where i ∈ [1, . . . ,M ] and j ∈ [1, . . . , N ]. After applying intensity segmentation
with binarization, intensity function is converted into binary form given by:

X(i, j) =
{

1 for D(i, j) ≥ Dth
0 for D(i, j) < Dth ,

(2)

where Dth is given by Otsu algorithm [10]. It represents the threshold sensitivity
decision value.

Document text image is black and white image represented by matrix X. Each
character or word consists of the only black pixels. Hence, every point X(i, j)
i.e. Xi,j is represented by number of coordinate pairs (0, 1), where i = 1, . . . ,M ,
and j = 1, . . . , N of matrix X [9]. It is represented by document text image
fragment as in Fig. 2.
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Fig. 2. Document text image fragment represented by matrix X

2.1 Morphological Preprocessing

Prior to processing stage, document text image needs additional preparation.
It is assumed text area is extracted by any appropriate method. Further, mor-
phological preprocessing is performed to make document text image ”noiseless”.
The morphological preprocessing was defined in [11] by following steps:

– Document image erosion by X� S1,
– Document image opening by X ◦ S1,
– Dilatation of the opening the document image by (X ◦ S1)� S1,
– Closing of the opening the document image by (X ◦ S1) • S1.

For the above operations, structuring element S1 dimension 3x3 is used [9].

2.2 Linear Bounding Containers

All text parameters extraction algorithms more or less depend on resolution and
size of text letters. Consequently, algorithm’s parameters are closely related to
it. To be efficient, algorithm should choose optimal parameters from the entire
set. Linear containers or its modifications are one of the tools for letter size
estimation [11].

Linear container and its interior are specified by a finite number of linear
inequalities. In our case linear container is assumed to be special case of the
convex polygon i.e. bounding box. Special case of the box is a rectangular region
whose edges are parallel to the coordinate axes. Furthermore, it is defined by its
maximum and minimum extents for all axes. Hence, each pixel Xi,j belonging
to box is given by:

xmin ≤ i ≤ xmax , (3)

and
ymin ≤ j ≤ ymax . (4)

Hence, bounding box is defined by its endpoints xmin, xmax, ymin, ymax. Inclusion
of the point Xi,j in a box is tested by verifying these four inequalities. If any
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one of them fails, then the point is not inside. Bounding box definition is given
in Fig. 3.

The bounding box is the computationally simplest of all linear containers.
Hence, it is one of the most frequently used in many applications due to its
simplicity and computationally inexpensiveness [12]. Although the bounding box
is not precise method for letter size estimation, it is simple and in many cases
adequate to evaluate those values. All text elements like letters, part of words or
words are surrounded by bounding boxes. Their heights represent the height of
letters. To reduce the error, median height of all bounding boxes is used. Median
is the middle value in a set of values. Hence, it is less sensitive to extreme values.
Boundary box objects are defined by Ou, where u = 1, . . . , V and V is the total
number of boundary box objects over sample text. If V is the number of objects
and u is object index, reorder initial set of values hu so that g1 < g2 < < gu

and currently gu is called u-th order statistic [13]. Hence, following is valid:
g1 ≡ min(hu) and g

V
≡ min(hu). Median is defined by [13] as:

hmedian =

⎧⎨⎩
g (u+1)

2
if u is odd

1
2 (gu

2
+ g1+ u

2
) if u is even ,

(5)

After hmedian of the letter heights set is obtained, typical letter height is anno-
tated. It is prerequisite for algorithm’s parameter optimization decision.

2.3 Anisotropic Gaussian Kernel

For the processing stage Gaussian kernel algorithm is used. It is based on two-
dimensional Gaussian function given by [14]:

f(x, y) = Ae
− (x−bx)2+(y−by)2

2σ2
, (6)

where bx is shift along x-axis, by is shift along y-axis, σ is standard deviation
defining curve spread parameter and A is the amplitude of the function given as
A = 1/(2πσ2)

1
2 . From (10) it is obvious that curve spread parameter σ is equal

for x as well for y-axis. This way, Gaussian function is isotropic. Converting
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Gaussian function into point spread function, Gaussian kernel is obtained. Hence,
algorithm using Gaussian kernel expands black pixel area by scattering every
black pixel in its neighborhood. Around every black pixel new pixels are non-
uniformly dispersed. These pixels have lower intensity of black. Hence, they are
grayscale. Their intensity depends on position or distance from original black
pixel. Now, document image matrix is represented as grayscale image. Intensity
pertains in level region (0− 255). Our black pixel of interest has coordinate Xi,j

and intensity of 255, while neighbor pixels have intensity smaller than 255. So,
after applying Gaussian kernel, equal to 2R + 1 in x-direction as well as in y-
direction, text is scattered forming enlarged area around it. Converting all non
black pixels in the same area, as well as inverting image, forms the black pixel
expanded areas. Those areas named boundary growing areas.

In our case isotropic approach is less efficient. Alternatively in some cases, it is
not suitable due to its possibility of merging different text lines. Using different
curve spread parameter σ in x and y direction i.e. σx and σy respectively, extends
(10) as follows [13,14]:

f(x, y) = Ae
−
[
(x−bx)2

2σ2
x

+
(y−by )2

2σ2
y

]
. (7)

This extension of the previous i.e. isotropic Gaussian function lead to image
kernel equal to 2S + 1 in x-direction and 2R+ 1 in y-direction. Due to relations
R �= S, Gaussian kernel is anisotropic [8]. Additionally, ratio parameter λ = S/R
completely defines Gaussian anisotropic condition. Example of the isotropic and
anisotropic Gaussian kernel for R = 10, λ = 1 and λ = 5 is given in Fig. 4.

Fig. 4. Gaussian kernel: isotropic (left), anisotropic ⇒ λ > 1 (right)

Created boundary growing areas form control image with objects that are
prerequisite for document image text segmentation [8]. These black objects rep-
resent different text lines needful for text segmentation. Hence, their basic task
is text lines splitting. Example of the boundary growing areas is given in Fig. 5.

2.4 Reference Text Line

After text segmentation, primary task is reference text line and skew rate ex-
traction. Their identification is based on information obtained from black pixel
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Fig. 5. Boundary growing areas over text: isotropic (left), anisotropic (right)

contained in boundary growing areas. Reference text line estimation is average
position calculation of black pixels in every column of document image. It is
calculated as [1,9]:

xi =

L∑
j=1

yj

L
i=1,...,K , (8)

where xi is point position of calculated reference text line, i is number of column
position of calculated reference text, yj is position of black pixel in column j and
L is sum of black pixel number in specified column j of an image.

After calculation, sub-image matrix with only one black pixel per column is
obtained. This black pixel defines estimated reference text line. Such reference
text line forms continuous or discontinuous line partly ”representing” reference
text line. To form continuous reference text line, some numerical method could
be used.

3 Experiments, Results and Discussion

Algorithm quality evaluation consists of two text experiments. First experiment
represents text segmentation estimation. It is inevitable in algorithm segmenta-
tion quality assessment. Consequently, it is prerequisite for obtaining other text
parameters. If segmentation experiment miscarry, other examination process will
be meaningless. Hence, its importance is critical. Second experiment is mainly
concerned with skew rate identification. Its task is algorithm performance eval-
uation of the skew rate tracking succeed. This experiment is primarily based on
printed text, but it is good prerequisite for testing handwritten text. Obtained
results are linked.

3.1 Text Segmentation Experiment and Results

In the first experiment text segmentation quality is examined. For this purpose
multi line text is used. It is given in Fig. 6.
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Fig. 6. Sample text for text segmentation experiment

Number of existing text objects relate to text segmentation quality success.
Hence, the less objects the better segmentation process, except the number may
not be less than text lines number. The quality is measured by RMSseg calcu-
lated as [13,14]:

RMSseg =

√√√√ 1
Q

Q∑
i=1

(Oi,ref −Oi,est)2 , (9)

where i = 1, . . . , Q is the number of examined text samples, Oi,ref is number of
referent objects in text i.e. number of text lines, and Oi,est is number of obtained
objects in text by the applied algorithm for each examined text sample.

Character height Hch ≈ 100 pixels (px) obtained as hmedian is assumed. From
[11] parameter R value may not exceed 20% of Hch. In fact, bigger R could
lead to text lines merging. Hence, algorithm is examined for R = (5, 10, 15, 20).
First part of experiment examined text segmentation through RMSseg for angle
range (0◦ − 30◦), while further angle range (0◦ − 80◦) is used. Results are given
in Table 1 and Table 2.

Table 1. Text segmentation results: RMSseg1 for angle range (0◦ − 30◦) (less values
are better ones)

Angle Range λ R

0◦ − 30◦ S/R 5 10 15 20
Isotropic 1 180.36 65.77 36.00 32.82

Anisotropic 2 79.86 48.15 3.63 0.00
3 63.01 14.68 0.44 -
4 55.40 9.21 - -
5 40.73 8.70 - -
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Table 2. Text segmentation results: RMSseg2 for angle range (0◦ − 80◦) (less values
are better ones)

Angle Range λ R

0◦ − 80◦ S/R 5 10 15 20
Isotropic 1 181.05 59.22 36.00 33.01

Anisotropic 2 105.34 42.52 20.87 6.90
3 70.07 25.18 9.20 -
4 59.18 15.70 - -
5 48.94 11.34 - -

From Table 1 and 2, it is obvious that anisotropic approach is advantageous.
Nevertheless, it is true for λ > 1. Under this condition, kernel is stretched in x-
direction by parameter λ. Furthermore, segmentation experiment proved to be
eligible for optimal parameters selection such as R and λ. This way, each parame-
ter R can be paired with optimal parameter λ. From the above tables those pairs
(R, λ) are following: (5, 5), (10, 5), (15, 3), (20, 2) as well as (5, 4), (10, 4), (10, 3),
and (15, 2). However, the best choice is (20, 2) from Table 1. All listed paired val-
ues are invaluable for further examination process i.e. for other text experiments.

3.2 Skew Rate Text Experiment and Results

Second experiment is mainly concerned with text skew rate. It examines algo-
rithm quality to follow text skewing. In this case, sample printed text rotated
by angle β up to 80◦ by step of 5◦ around x-axis is used. This is given in Fig. 7.

Skew rate test
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�

Fig. 7. Sample text rotating for the angle β up to 80◦

Reference line of the sample text is represented by:

y = ax + b . (10)

After applying algorithm to sample text, reference text line is calculated by (8).
To achieve continuous linear reference text line, least square method is used.
Function approximation by first degree polynomial is given as:

y = ax′ + b′ . (11)



Optimization of the Anisotropic Gaussian Kernel 149

Then number of data points i.e. ndp is used and the slope a′, and the y-intercept
b′ are calculated as [14]:

a′ =
∑

y
∑

xy − ndp
∑

xy

(
∑

x)2 − ndp
∑

x2 , (12)

and

b′ =
∑

x
∑

xy −
∑

y
∑

x2

(
∑

x)2 − ndp
∑

x2 . (13)

Further, referent line hit rate i.e. RLHR is defined as [8]:

RLHR = 1− βref − βest

βref
, (14)

where βref is arctangent from origin (10) i.e. a and βest is arctangent from
calculated i.e. estimated (11) i.e. a′. Then, RMSskew values are calculated by
[13,14]:

RMSskew =

√√√√ 1
P

P∑
i=1

(xi,ref − xi,est)2 , (15)

where i = 1, . . . , P is number of examined text rotating angles up to 80◦, xi,ref
is RLHR for βest equal to βref , due to normalization equal to 1, and xi,est is
RLHR.

Again, Hch ≈ 100 px is assumed. Algorithm is examined for R = (5, 10, 15, 20)
and λ = (1, 2, 3, 4, 5). Quality of skew rate identification is obtained by RLHR
value as in (14). Furthermore, level of spreading results is obtained by RMSskew
value given in (15) for two angle ranges: (0◦ − 30◦) and (0◦ − 80◦). These re-
sults are given in Fig. 8. Isotropic results are given on the left side of the chart
on Fig. 8 - 11. Unlike, anisotropic results are shown in the rest of the each
chart.

It can be noted, anisotropic approach leads to quite better results. Still,
it should be cautious on interpreting presented results. Namely, high S val-
ues should be avoided. These values contribute to faulty text segmentation
process. So, it is recommended to match results from this experiment and pre-
vious one. This way, parameter pairs (R, λ) obtained from previous experi-
ments is optimized ones. Still, from the optimized parameter pairs, set members
(R, λ) = (15, 45) and (20, 40) are the best ones for Hch ≈ 100 px. Hence, from
the previous statements and claims, it can be concluded on optimal parameter
values of R and λ. These optimal values are K ≈ 15-20% of Hch as well as λ ≈
2-3, leading to anisotropic approach.
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Fig. 8. Skew rate test for R=5, λ=(1, . . . , 8): RLHR (top), RMSskew (bottom)

Fig. 9. Skew rate test R=10, λ=(1, . . . , 8): RLHR (top), RMSskew (bottom)
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Fig. 10. Skew rate test R=15, λ=(1, . . . , 8): RLHR (top), RMSskew (bottom)

Fig. 11. Skew rate test R=20, λ=(1, . . . , 8): RLHR (top), RMSskew (bottom)
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4 Conclusions

Anisotropic Gaussian kernel algorithm proved to be advanced in the domain of
text segmentation, which is of primary importance. Due to isotropic approach
faulty results from segmentation experiment, all it’s slightly better results in skew
rate experiments are completely irrelevant. Still, text segmentation is primary
goal. It is prerequisite for reference text line and skew rate identification. Slightly
weaker results of anisotropic approach in some part of text parameter estimation
are in the background. This way, anisotropic Gaussian kernel and its optimized
parameter pairs proved to be useful and robust method which is promising.
Consequently, for higher angles some modification of the anisotropic approach
is recommended.
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Abstract. We consider the online multiple-pattern matching problem
for streams of XML documents, when the patterns are expressed as linear
XPath expressions containing child operators (/), descendant operators
(//) and wildcards (∗) but no predicates. For each document in the
stream, the task is to determine all occurrences in the document of all the
patterns. We present a general multiple-pattern-matching algorithm that
is based on a backtracking deterministic finite automaton derived from
the classic Aho–Corasick pattern-matching automaton. This automaton
is of size linear in the sum of the sizes of the XPath patterns, and the
worst-case time bound of the algorithm is better than the time bound
of the simulation of linear-size nondeterministic automata. In addition
to the worst-case-efficient general solution we present an algorithm with
a simple backtracking mechanism that works extremely well for cases in
which the backtracking stack remains low. Our experiments show that,
when applied to filtering, this simple algorithm scales well as regards the
number of patterns (or filters) and is competitive with YFilter, a widely
accepted software for XML filtering.

1 Introduction

String-pattern matching with wildcards has been considered in various contexts
and for various types of wildcards in the pattern [1,2,3,4,5,6]. The simplest ap-
proach is to use the single-character wildcard (∗), a character that can appear
in any position of the string pattern and matches any character of the input
alphabet Σ. Generalizations of this are the various ways in which “variable-
length gaps” in the patterns are allowed, implemented, for example, by the
single-character wildcard and by Σ∗ that denotes an unlimited gap [4,5].

Our goal in this article is to transfer the methodology of efficient string-
pattern matching with wildcards and gaps to matching tree-structured text,
especially one composed of a stream of XML documents. The patterns are given
as linear XPath expressions with child operators (/), descendant operators (//),
and wildcards (∗), defined on paths of XML-document trees. Here the child
and descendant operators correspond, respectively, to the concatenation and
unlimited-gap operators of linear text.

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 153–164, 2010.
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Given a set of linear XPath expressions without predicates (the patterns)
and a stream of XML documents (the input documents), we determine, for each
document in the stream, all occurrences of all the patterns in an online fashion.
Each matched occurrence is identified by the pattern and its last element position
in the document. Because of the descendant operator “//”, there can be more
than one, actually an exponential number of occurrences of the same pattern at
the same element position, but we avoid this possible explosion of the number
of occurrences by reporting only one occurrence in such situations.

Our pattern-matching algorithm performs a single left-to-right scan of each
document and reports each pattern occurrence once its end position is reached.
Our strategy here is that we decompose each pattern into “keywords” that are
maximal substrings of XML elements only containing child operators “/”. Then
we are able to consider the patterns as sequences composed of keywords and gaps
that are maximal sequences of wildcards “∗” and descendant operators “//”. The
basic idea of our algorithm is to recognize the keywords of the patterns using
the Aho–Corasick pattern-matching automaton [7], and to build matches of the
patterns upon these occurrences. The key feature of our algorithm is that we
do not recognize those keyword occurrences about which we know that there
cannot be a matching prefix with this keyword occurrence. Moreover, because
matching of the patterns is performed against paths of the trees induced by
XML documents, we need a backtracking mechanism in order to avoid repeated
traversals of common path prefixes.

Our algorithm can also be used for filtering, in which only the first occurrence
of each pattern needs to be reported. Related approaches to filtering are those
of the NFA-based XFilter by Altinel and Franklin [8] and YFilter by Diao et
al. [9,10], and the lazy DFA construction by Green et al. [11], only to mention
the best-known ones. Compared to these methods our algorithm has a superior
worst-case time bound. However, for practical XML documents, the tree paths
remain quite short implying that our general approach with a worst-case-efficient
backtracking strategy is slower than the above mentioned filtering algorithms.
We noticed this when we performed our experimental comparisons with YFilter,
which is a widely accepted software for filtering and transformation for high-
volume XML-message brokering [9]; YFilter has been programmed with Java,
as is our system.

Because of the inefficiency of the general approach we also designed a sim-
ple backtracking strategy, which allows the matching algorithm to return to a
previous state at the end of the current path by just popping a state from the
backtracking stack. This approach implies a higher worst-case time bound, but
indeed makes our approach competitive with YFilter. Moreover, our algorithm
outperforms YFilter in the case of data whose XML schema or DTD is not
heavily recursive.

The contributions of the present paper are essential extensions of our previous
results [12], where a worst-case-efficient algorithm was presented in the case in
which descendant operators, but no wildcards, were allowed in the patterns.
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2 Linear XML Patterns with Gaps and Wildcards

The problem of online dictionary matching of XML is stated as follows: Given a
set of linear XPath expressions without predicates (the patterns) and a stream
of XML documents (the input documents), the task is to determine, for each
document in the stream, all occurrences of all the patterns. An occurrence is
reported by the pattern number and the element position of its last element
in the current document. Different instances of the same pattern at the same
position are reported as a single occurrence.

We decompose each pattern into keywords and gaps as follows. First, we
remove all child operators “/” from the pattern. Then we define the keywords of
the pattern to be maximal substrings consisting of XML elements only. The gaps
of the patterns are defined to be maximal substrings consisting of descendant
operators “//” and wildcards “∗”. If the pattern ends at a nonempty gap, then
we assume that the last keyword of the pattern is the empty string ε. Each
pattern is considered to begin with a gap, which thus may be ε.

We number the patterns and their gaps and keywords consecutively, so that
the ith pattern Pi can be represented as

Pi = gap(i, 1)keyword(i, 1) . . . gap(i,mi)keyword(i,mi),

where gap(i, j) denotes the jth gap and keyword(i, j) denotes the jth keyword of
pattern Pi. For example, the pattern //a/b/∗/c//∗/d/∗/∗ consists of four gaps,
namely //, ∗, //∗, and ∗∗, and of four keywords, namely ab, c, d, and ε. The
pattern /a/b/∗/c//∗/d consists of three gaps, namely ε, ∗, and //∗, and three
keywords, namely ab, c, and d.

For pattern Pi, we denote by mingap(i, j) and maxgap(i, j), respectively, the
minimum and maximum lengths of element strings that can be matched by
gap(i, j). The length of the jth keyword of pattern Pi is denoted by length(i, j).
We also assume that #keywords(i) gives mi, the number of keywords in pattern
Pi, and that #keywords denotes the number of keywords altogether.

For example, if the pattern //a/b/∗/c//∗/d/∗/∗ is the ith pattern, we have

mingap(i, 1) = 0, maxgap(i, 1) = ∞, length(i, 1) = 2,
mingap(i, 2) = 1, maxgap(i, 2) = 1, length(i, 2) = 1,
mingap(i, 3) = 1, maxgap(i, 3) = ∞, length(i, 3) = 1,
mingap(i, 4) = 2, maxgap(i, 4) = 2, length(i, 4) = 0.

If the pattern /a/b/∗/c//∗/d is the ith pattern, we have

mingap(i, 1) = 0, maxgap(i, 1) = 0, length(i, 1) = 2,
mingap(i, 2) = 1, maxgap(i, 2) = 1, length(i, 2) = 1,
mingap(i, 3) = 1, maxgap(i, 3) = ∞, length(i, 3) = 1.

In the case of XPath patterns, we have, for all i and j, either mingap(i, j) =
maxgap(i, j) or maxgap(i, j) = ∞, because in any XPath expression the number
of wildcards is fixed. However, as will be evident from the presentation be-
low, our algorithm can also handle any variable-length gaps with mingap(i, j) <
maxgap(i, j) <∞.
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3 The Matching Algorithm

For the set of all keywords in the patterns, we construct a backtracking Aho–
Corasick pattern-matching automaton [7] with a dynamically changing out-
put set current-output containing tuples of the form (q, i, j, b, e), where q =
state(keyword(i, j)), the state reached from the initial state upon reading the
jth keyword of pattern Pi, and b and e are the earliest and latest element posi-
tions on a path in the input document at which some partial match of pattern Pi

up to and including the jth keyword can possibly be found. The latest possible
element position e may be ∞, meaning the end of the path.

Initially, the set current-output contains all output tuples for the first key-
words in the patterns, that is, tuples (q, i, 1, b, e), where q is the state reached
from the initial state upon reading the first keyword of pattern Pi,

b = mingap(i, 1) + length(i, 1), and
e = maxgap(i, 1) + length(i, 1)

Here e = ∞ if maxgap(i, 1) = ∞.
The operating cycle of the PMA is given as Alg. 1. The SAX-parser [13]

call scan-next(token) returns the next XML token from the input stream. The
functions goto and fail are the goto and fail functions of the standard Aho–
Corasick PMA, that is, goto(state(y), a) = state(ya), where ya is a prefix of
some keyword and a is an XML element, and fail(state(uv)) = state(v), where
uv is a prefix of some keyword and v is the longest proper suffix of uv such that
v is also a prefix of some keyword.

Denote by string(q) the unique element string y with state(y) = q. The func-
tion output-fail(q) used in Alg. 3 to traverse the output path for state q is defined
by: output-fail(q) = failk(q), where k is the greatest integer less than or equal
to the length of string(q) such that string(failm(q)) is not a keyword for any
m = 1, . . . , k − 1. Here failm denotes the fail function applied m times. Thus,
the output path for state q includes those states in the fail path from q that have
a nonempty set of output tuples.

The backtracking stack contains information about states visited and output
tuples inserted into and deleted from the current output during traversing a
root-to-leaf path in the current input document. The PMA backtracks when an
end-element tag is scanned; then elements from the stack are popped, insertions
and deletions of output tuples are undone, and the control of the PMA is returned
to the state that was entered when scanning the previous start-element tag (see
the procedure backtrack given as Alg. 4).

When visiting state q, the current output of the PMA is checked for possible
matches of keywords in the procedure call traverse-output-path(q) (see Alg. 3).
A current output tuple (q, i, j, b, e) is found to represent a match of the jth
keyword of pattern Pi, if b ≤ path-length ≤ e, where path-length is a global
variable that maintains the number of elements scanned from the current path
in the input document. Now if the jth keyword is the last one in pattern Pi,
then this indicates a match of the entire pattern Pi. Otherwise, an output tuple
(q′, i, j + 1, b′, e′) for the (j + 1)st keyword of pattern Pi is inserted into the set
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current-output, where q′ is the state reached from the intitial state upon reading
the (j + 1)st keyword of pattern Pi,

b′ = path-length + mingap(i, j + 1) + length(i, j + 1), and
e′ = path-length + maxgap(i, j + 1) + length(i, j + 1).

Here e′ = ∞ if maxgap(i, j + 1) = ∞. If e′ = ∞, we could delete from current-
output all output tuples (q′′, i, j′′, b′′, e′′) with j′′ ≤ j. However, since tuples
(q′′, i, j′′, b′′, e′′) with e′′ < path-length are eventually deleted by the procedure
clean-current-output (see Alg. 2), we only delete here tuples (q′′, i, j′′, b′′,∞) with
j′′ ≤ j (which can be done efficiently, see below).

The set of current output tuples is organized as two balanced binary search
trees, both containing exactly the same information, namely, the current output
tuples (q, i, j, b, e). One of the search trees is indexed by ordered triples (e, i, j),
so that the node for key value (e, i, j) contains a pointer to a list of tuples (q, b).
The other search tree is indexed by ordered pairs (q, b), so that the node for key
value (q, b) contains a pointer to a list of tuples (e, i, j).

In the procedure clean-current-output, outdated output tuples (q, i, j, b, e) with
e < path-length are first located and deleted from the former search tree, and
then sorted by (q, b) and deleted from the latter search tree, in both cases using
a bulk-deletion algorithm.

In the procedure traverse-output-path, when visiting state q, the latter search
tree is used to locate the output tuples (q, i, j, b, e) with b ≤ path-length ≤ e.
Deletions of tuples (q′′, i, j′′, b′′,∞) with j′′ ≤ j are first performed on the latter
search tree, and then sorted by (q′′, b′′) and deleted from the former search tree,
again using a bulk-deletion algorithm. Every insertion into current-output goes
to both search trees.

For pattern Pi, #maxmatches(i) denotes the maximum number of matches
searched for i; this is specified by the user and may be a positive integer or∞. For
example, if we wish to solve only the filtering problem, we set #maxmatches(i) =
1 for all patterns Pi. The counter #matches(i) records the number of matches
found for pattern Pi.

4 Correctness and Complexity

Whenever a prefix Pi,j of Pi that ends with keyword(i, j) has been recognized
at some element position (indicated by the variable element-count in the algo-
rithm), a new output tuple (q′, i, j + 1, b′, e′) will be inserted into the current
output in Alg. 3. We have:

Lemma 1. At the point when a new tuple (q′, i, j + 1, b′, e′) will be inserted
into the current output in Alg. 3, an occurrence of a pattern prefix Pi,j has been
recognized. Conversely, for each occurrence of Pi,j , j < mi, a tuple (q, i, j, b, e)
with b ≤ path-length ≤ e is found in the current output and a new tuple (q′, i, j+
1, b′, e′) is inserted into the current output.

For a set S of keywords or pattern prefixes, denote by occ(S) the number of
occurrences in the input document of elements of S. Lemma 1 implies that
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Algorithm 1. Operating cycle of the backtracking PMA
document-count ← 0
element-count ← 0
scan-next(token)
while token was found do

element-count ← element-count + 1
if token is a start-document tag then

document-count ← document-count + 1
initialize()
path-length ← 0
state ← initial-state
push-onto-stack(state)
traverse-output-path(state)

else if token is an end-document tag then
element-count ← 0

else if token is the start-element tag of element E then
path-length ← path-length + 1
push-onto-stack(state)
while goto(state, E) = fail do

state ← fail(state)
end while
state ← goto(state, E)
traverse-output-path(state)
clean-current-output()

else if token is an end-element tag then
backtrack()
path-length ← path-length − 1

end if
scan-next(token)

end while

Algorithm 2. Procedure clean-current-output()
for all tuples (q, i, j, b, e) ∈ current-output with e < path-length do

delete (q, i, j, b, e) from current-output
if #matches(i) < #maxmatches(i) then

push-onto-stack(deleted〈q, i, j, b, e〉)
end if

end for

the algorithm has the lower time bound Ω(occ({Pi,j | i ≥ 1, j ≥ 1})). Moreover,
processing the input document requires additionally at most O(K ·n) time, where
n is the length of the input document and K denotes the maximum number of
proper suffixes of any keyword that are also keywords. The multiplier K is due
to the fact that tuples to be inserted into the current output are created only
for states state(keyword(i, j)) and thus all states in the output path must be
traversed in order to check all possibilities to continue the currently matched
pattern prefix. Observe that the backtracking approach using a stack allows to
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Algorithm 3. Procedure traverse-output-path(state)
q ← state
traversed ← false
while not traversed do

for all (q, i, j, b, e) ∈ current-output with b ≤ path-length ≤ e do
if #matches(i) = #maxmatches(i) then

delete (q, i, j, b, e) from current-output
else if j = #keywords(i) then

report a match of pattern Pi at position element-count in document
document-count
#matches(i) ← #matches(i) + 1
if #matches(i) = #maxmatches(i) then

delete (q, i, j, b, e) from current-output
for all (q′, i, j′, b′,∞) ∈ current-output do

delete (q′, i, j′, b′,∞) from current-output
end for

end if
else

q′ ← state(keyword(i, j + 1))
b′ ← path-length + mingap(i, j + 1) + length(i, j + 1)
e′ ← path-length + maxgap(i, j + 1) + length(i, j + 1)
insert (q′, i, j + 1, b′, e′) into current-output
push-onto-stack(inserted〈q′, i, j + 1, b′, e′〉)
if e′ = ∞ then

for all (q′′, i, j′′, b′′,∞) ∈ current-output with j′′ ≤ j do
delete (q′′, i, j′′, b′′,∞) from current-output
push-onto-stack(deleted〈q′′, i, j′′, b′′,∞〉)

end for
end if

end if
end for
if q = initial-state then

traversed ← true
else

q ← output-fail(q)
end if

end while

Algorithm 4. Procedure backtrack()
pop the topmost element s from the stack
while s is not a state do

if s is inserted〈q, i, j, b, e〉 then
delete (q, i, j, b, e) from current-output

else if s is deleted〈q, i, j, b, e〉 then
insert (q, i, j, b, e) into current-output

end if
pop the topmost element s from the stack

end while
state ← s
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relate the processing time to input length even though patterns are matched
against tree paths. Some extra cost is due to maintaining the set current-output.
Lemma 1 implies:

Lemma 2. The outermost for loop of Alg. 3 will be performed as many times as
there are different occurrences of nonempty prefixes Pi,j of pattern Pi, j < mi,
for all i. Moreover, for each iteration of the while loop, when performing the
for loop of Alg. 3, the condition of the for loop will be tested unsuccessfully
only once.

Output tuples (q, i, j, b, e) created in Alg. 3 become outdated when path-length
advances beyond e, and should then be deleted. This is performed by the pro-
cedure clean-current-output (see Alg. 2). Also we have:

Lemma 3. After inserting tuple (q′, i, j + 1, b′,∞) into the current output it is
correct to delete all tuples of the form (q′′, i, j′′, b′′,∞), where j′′ ≤ j.

Lemmas 1 and 3 imply:

Theorem 1. The multiple-pattern-matching algorithm given as Algs. 1–4 cor-
rectly reports all occurrences in the input document of all patterns Pi.

By Lemmas 1 and 2, and the discussion above we conclude:

Theorem 2. Excluding preprocessing that includes the construction of the Aho–
Corasick PMA and only takes time linear in the total size of the patterns, the
multiple-pattern-matching algorithm given in the previous section as Algs. 1–4
runs in time

O(K × n + log(L×#keywords)× occ({Pi,j | i ≥ 1, j ≥ 1})),

where n denotes the number of XML elements in the input document, K is the
maximum number of proper suffixes of a keyword that are also keywords, and
L is the depth of input document, that is, the maximum length of a path in the
input document.

The logarithm term in the time bound of Theorem 2 is due to maintaining the
binary trees as defined at the end of Sec. 3. The extreme worst case of the time
bound occurs when all keywords that appear in the patterns are the same and
all pattern prefixes match at every position in the input text. However, when
the number of patterns is large we can safely assume that such a situation is
very rare. If, on the contrary, #keywords = cN , where N denotes the number
of different keywords and c is a constant, the bound takes the form O(Kn ×
log(L×#keywords)).

5 Fast Backtracking

Our experiments have shown that in practice the tasks involved in backtracking
the PMA constitute a performance bottleneck of our general algorithm presented
in Sec. 3. The paths in XML documents tend to be quite short, so that back-
tracking happens often, and output tuples inserted into the current output and
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recorded into the backtracking stack are soon deleted from the current output
because the path ends and backtracking must be performed.

We now present an organization for the current output tuples that allows for
very fast backtracking. The current output set is stored in a stack of blocks,
where each block is an array of #states entries, one for each state. The stack
grows and shrinks in parallel with a stack used to store the states entered when
reading start-element tags from the input document. The stack may grow up to
a height of maxdepth blocks, where maxdepth is the length of the longest path
in any input document in the stream. The block at height h stores the output
tuples inserted when h = path-length. Memory for the stack of blocks is allocated
dynamically, so that maxdepth need not be known beforehand. Backtracking now
involves only popping a state from the stack of states and forgetting the topmost
block of the stack of blocks of output tuples.

The stack of blocks is implemented as a single dynamically growing array
current-output of at most O(#states × maxdepth) entries, so that the index of
the entry for state q in block h is obtained as k = (h− 1)×#states+ q (states q
are numbered consecutively 1, 2, . . . ,#states). The array entry current-output [k]
stores a tuple (t, d, v), where t is (a pointer to) a balanced binary search tree
(a red-black tree) of output tuples (q, i, j, b, e) inserted into the current output
when path-length = h, document-count = d, and element-count = v. The binary
search tree is indexed by the element positions b.

The pairs (d, v) act as version numbers of the entries in the array current-
output and they relieve us from the need to deallocate an entire block when
backtracking and from the need to reinitialize a block whose space is reused.
When inserting a new output tuple (q, i, j, b, e) into the binary search tree t
given in the entry current-output[k] = (t, d, v), we first check whether or not
d = document-count and v = element-count; if not, the entry contains outdated
information and hence must be reinitialized: the tree rooted at t is forwarded to
a garbage collector, t is initialized as empty, and d and v are set to the current
values of document-count and element-count. When traversing an output path
and finding out which output tuples for state q stored in block h match, we first
check whether or not d = document-count and v = element-count for the entry in
current-output ; if so, the entry is current and the output tuples (q, i, j, b, e) stored
in the search tree of the entry are checked for the condition b ≤ path-length ≤ e.

The backtracking stack that in the algorithm of Sec. 3 contained, besides
states pushed there when reading start-element tags, also logging information
about output tuples inserted or deleted from the current output, is now reduced
to a stack of pairs (q, v), where q is the state and d is the value of element-count
that were current at the time the pair was pushed onto the stack.

A downside of this algorithm is that the current output for state q is now
dispersed in h blocks, where h is path-length, the length of the current path. The
traversal of the output path for a state involves searches on h×K different search
trees, where K is the length of the output path. This means that the term K×n
in the complexity bound stated in Theorem 2 is changed to maxdepth ×K × n.
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6 Experimental Analysis

We have implemented (in Java) various versions of our pattern-matching algo-
rithm, including the one described in Sec. 5 and denoted by “PMA2” in Fig. 1.
The performances of PMA2 and YFilter [10] were evaluated with sets of patterns
generated for two publicly available data sets: the slightly recursive NASA data
set [14] and the highly recursive NewsML [15] data set. We also experimented
with the basic version of our algorithm described in Sec. 3, whose asymptotic
complexity is lower than that of the PMA2 version, but as its performance turned
out to be inferior to that of PMA2, we only report results for PMA2 here.

Workloads of 10 000 to 100 000 linear XPath patterns without predicates were
generated using the XPath query generator described by Diao et al. [10], param-
eterized with the maximum depth of XPath patterns and with the probabilities
of the occurrences of the descendant operator (prob(//)) and of the wildcard
(prob(∗)). For each pattern workload the maximum depth of XPath patterns
was set to the depth of the XML input document, that is, 8 for the 23.8 MB
NASA document and 10 for the 2.6 MB NewsML document. For 10 000 pat-
terns, our PMA has 671 states in the case of NASA and 1576 states in the case
of NewsML.

All our tests were run on a Dell PowerEdge SC430 server with 2.8 GHz Pen-
tium 4 processor, 3 GB of main memory, and 1 MB of on-chip cache. The com-
puter was running the Debian Linux 2.6.18 operating system with the Sun Java
virtual machine 1.6.0 16 installed. In the tests the input document was read
from the disk, but the overhead of the disk operations should be fairly small.
The disk-read speed of the test hardware is more than 50 MB/sec. The through-
put of the Java JAXP SAX parser (run in non-validating mode) on the input
documents was 25–28 MB/sec.

Fig. 1 shows the running times of PMA2 and YFilter on the NASA and
NewsML data sets for the filtering problem (that is, #maxmatches(i) = 1 for
each pattern Pi). The workloads of 10 000 to 100 000 linear XPath patterns
without predicates were generated with prob(∗) = prob(//) = 0.2. As is seen
from the graphs, our algorithm clearly outperforms YFilter in the case of the

 0

 20

 40

 60

 80

 100

 120

 140

 10  20  30  40  50  60  70  80  90  100

W
al

l-c
lo

ck
 ti

m
e 

[s
ec

]

XPath filter count [1k filters]

PMA2
YFilter

(a) NASA

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 10  20  30  40  50  60  70  80  90  100

W
al

l-c
lo

ck
 ti

m
e 

[s
ec

]

XPath filter count [1k filters]

PMA2
YFilter

(b) NewsML
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workloads for the slightly recursive NASA data set, but for NewsML workloads
greater than 50 000 filters, our algorithm is slightly inferior to YFilter.

Besides these filtering tests we also run with our algorithm some tests in which
all occurrences of all patterns were determined. Tests with the two data sets and
with 10 000 or 20 000 patterns show that the running time of PMA2 is 5.7- to 6.2-
fold for the NASA data and 1.7-fold for the NewsML data when compared to the
time spent on determining only the first occurrences. When all the occurrences
are stored, the space consumption is 290-fold and 7-fold, respectively. The high
space consumption and speed degradation in the case of the NASA data set is
mainly due to the great number of pattern occurrences.

7 Conclusion

Our main contribution is a new algorithm for online multiple-pattern matching
of tree-structured text, where the patterns are given as path expressions com-
posed of keywords and variable-length gaps. When applied to streams of XML
documents, the patterns are linear XPath expressions without predicates, the
keywords are maximal substrings of XML elements and child operators “/”, and
the gaps are maximal substrings of descendant operators “//” and wildcards “∗”.

Our algorithm is based on methodology previously applied to dictionary match-
ing of linear text. We construct the Aho–Corasick pattern-matching automaton
for the set of all keywords in the patterns, and we use this automaton for recogniz-
ing the occurrences of the keywords. From these we build occurrences of prefixes
of patterns by checking that a candidate continuation of an already found prefix
yields a new longer prefix, until an occurrence of a complete pattern is found. Our
algorithm avoids recognizing occurrences of keywords that do not yield a proper
continuation of any already found occurrence of a prefix of a pattern.

The use of the designed algorithm for matching patterns on paths of XML-
document trees implies that a backtracking mechanism must be included, so
that common prefixes of paths need not be traversed several time. However,
worst-case-efficient backtracking, when tree paths are short as in typical XML
documents, did not give good performance in practice. Therefore, we also de-
signed a very simple backtracking strategy, which is not as good in the worst case,
but allows for a considerable performance gain when tree paths remain short.
We compared this simplified algorithm, when applied to filtering (in which only
the first occurrences of the patterns are determined) with YFilter [10]. Our con-
clusion was that our method is better than YFilter, when the XML documents
are not, as is usual in practice, deeply recursive.
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Abstract. We review the relationship between abstract machines for (call-by-
name or call-by-value) λ-calculi (extended with Felleisen’s C) and sequent cal-
culus, reintroducing on the way Curien-Herbelin’s syntactic kit of the duality of
computation. We provide a term language for a presentation of LK (with conjunc-
tion, disjunction, and negation), and we transcribe cut elimination as (non conflu-
ent) rewriting. A key slogan, which may appear here in print for the first time, is
that commutative cut elimination rules are explicit substitution propagation rules.
We then describe the focalised proof search discipline (in the classical setting),
and narrow down the language and the rewriting rules to a confluent calculus (a
variant of the second author’s focalising system L). We then define a game of
patterns and counterpatterns, leading us to a fully focalised finitary syntax for a
synthetic presentation of classical logic, that provides a quotient on (focalised)
proofs, abstracting out the order of decomposition of negative connectives.

1 Introduction

This paper on one hand has an expository purpose and on the other hand pushes further
the syntactic investigations on the duality of computation undertaken in [3].

Section 2 discusses the relation between abstract machines for the λ-calculus (ex-
tended with control) and (classical) sequent calculus. Section 3 presents a language
(with a one-to-one correspondence between well-typed terms and proof trees) for a ver-
sion of LK in which we choose to give a dissymetric presentation for the conjunction on
the left and for the disjunction on the right, anticipating a key ingredient of focalisation.
We recall the non-confluence of unconstrained classical cut-elimination.

In Section 4, we present the focalised proof search discipline (for classical logic),
and adapt the syntactic framework of Section 3 to get a confluent system whose normal
forms are precisely the terms denoting (cut-free) focalised proofs. The system we arrive
at from these proof-search motivations is (a variant of) the second author’s focalising
system L (Lfoc) [19] We prove the completeness of Lfoc with respect to LK for provability.
In Section 5, we define some simple encodings having Lfoc as source or target, indicating
its suitability as an intermediate language.

Finally, in Section 6, further reinforcing of the focalisation discipline leads us to
synthetic system L (Lsynth), a logic of synthetic connectives in the spirit of Girard’s
ludics and Zeilberger’s CU, for which we offer a syntactic account based on a simple
game of patterns and counterpatterns. We show that the synthetic system L is complete
with respect to focalising system L.

Notation. We shall write t{v/x} the result of substituting v for x at all (free) occur-
rences of x in t, and t[v/x] for an explicit operator (as in [1]) added to the language
together with rules propagating it.

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 165–181, 2010.
c© IFIP International Federation for Information Processing 2010
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2 Abstract Machines and Sequent Calculus

In this section, we would like to convey the idea that sequent calculus could have arisen
from the goal of providing a typing system for the states of an abstract machine for the
“mechanical evaluation of expressions” (to quote the title of Landin’s pioneering [15]).

Here is Krivine machine, a simple device for call-by-name λ-calculus [13]:

〈MN |E〉 → 〈M |N ·E〉 〈λx.M |N · E〉 → 〈M{N/x} |E〉

A state of the machine is thus a pair 〈M |E〉 where M is “where the computation is
currently active”, and E is the stack of things that are waiting to be done in the future, or
the continuation, or the evaluation context. In λ-calculus litterature, contexts are more
traditionally presented as terms with a hole: with this tradition, 〈M |E〉 (resp. M · E)
reads as E[M ] (resp. E[[]M ]), or “fill the hole of E with M (resp. []M )”.

How can we type the components of this machine? We have three categories of terms
and of typing judgements:

Expressions Contexts Commands
M ::= x |λx.M |MM E ::= [ ] |M ·E c ::= 〈M |E〉

(Γ �M : A) (Γ |E : A � R) c : (Γ � R)

where R is a (fixed) type of final results. The type of an expression (resp. a context) is
the type of the value that it is producing (resp. expecting). The typing rules for contexts
and commands are as follows:

Γ | [ ] : R � R

Γ �M : A Γ |E : B � R

Γ |M ·E : A→ B � R

Γ �M : A Γ |E : A � R

〈M |E〉 : (Γ � R)

and the typing rules for expressions are the usual ones for simply typed λ-calculus.
Stripping up the term information, the second and third rules are rules of sequent cal-
culus (left introduction of implication and cut).

We next review Griffin’s typing of Felleisen’s control operator C. As a matter of fact,
the behaviour of this constructor is best expressed at the level of an abstract machine:

〈C(M) |E〉 → 〈M |E∗ · [ ]〉 〈E∗ |N · E′〉 → 〈N |E〉

The first rule explains how the continuation E gets captured, and the second rule how it
gets restored. Griffin [9] observed that the typing constraints induced by the well-typing
of these four commands are met when C(M) and E∗ are typed as follows:

Γ �M : (A→ R) → R

Γ � C(M) : A
Γ |E : A � R

Γ � E∗ : A→ R

These are the rules that one adds to intutionistic natural deduction to make it classical, if
we interpret R as ⊥ (false), and if we encode ¬A as A→ R. Hence, Griffin got no less
than Curry-Howard for classical logic! But how does this sound in sequent calculus
style? In classical sequent calculus, sequents have several formulas on the right and
Γ � Δ reads as “if all formulas in Γ hold, then at least one formula of Δ holds”.
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Then it is natural to associate continuation variables with the formulas in Δ: a term will
depend on its input variables, and on its output continuations. With this in mind, we
can read the operational rule for C(M) as “ C(M) is a map E �→ 〈M |E∗ · [ ]〉”, and
write it with a new binder (that comes from [23]): C(M) = μβ.〈M |β∗ · [ ]〉, where [ ]
is now a continuation variable (of “top-level” type R). Likewise, we synthesise E∗ =
λx.μα.〈x |E〉, with α, x fresh, from the operational rules for E∗ and for λx.M .

The typing judgements are now: (Γ � M : A |Δ), (Γ |E : A � Δ), c : (Γ � Δ).
The two relevant new typing rules are (axiom, right activation):

Γ |α : A � α : A,Δ

c : (Γ � α : A,Δ)
Γ � μα.c : A |Δ

plus a reduction rule: 〈μα.c |E〉 → c{E/α}.
Note that in this setting, there is no more need to “reify” a context E into an expres-

sion E∗, as it can be directly substituted for a continuation variable.
Similarly, we can read off a (call-by-name) definition of MN from its operational

rule: MN = μβ.〈M |N.β〉. Hence we can remove application from the syntax and
arrive at a system in sequent calculus style only (no more elimination rule). This yields
Herbelin’s λμ-calculus [10]:

Expressions Contexts Commands
M ::= x |λx.M |μα.c E ::= α |M · E c ::= 〈M |E〉

which combines the first two milestones above: “sequent calculus”, “classical”.

Let us step back to the λ-calculus. The following describes a call-by-value version
of Krivine machine:

〈MN | e〉 → 〈N |M � e〉 〈V |M � e〉 → 〈M |V · e〉

(the operational rule for λx.M is unchanged)1. Here, V is a value, defined as being
either a variable or an abstraction (this goes back to [24]). Again, we can read M � e
as “a map V �→ 〈M |V · e〉”, or, introducing a new binder μ̃ (binding now ordinary
variables): M�e = μ̃x.〈M |x · e〉. The typing rule for this operator is (left activation):
c : (Γ, x : A � Δ)
Γ | μ̃x.c : A � Δ

, and the operational rule is 〈V | μ̃x.c〉 → c{V/x} (V value).

Finally, we get from the rule for MN a call-by-value definition of application:
MN = μα.

〈
N
∣∣ μ̃x.〈M |x · α〉

〉
.

We have arrived at Curien and Herbelin’s λμμ̃Q-calculus [3]:

Expressions Values Contexts Commands
M ::= V ♦ |μα.c V ::= x |λx.M e ::= α |V · e | μ̃x.c c ::= 〈M | e〉
Γ �M : A |Δ Γ � V : A ; Δ Γ | e : A � Δ c : (Γ � Δ)

with a new judgement for values (more on this later) and an explicit coercion from
values to expressions. The syntax for contexts is both extended (μ̃x.c) and restricted
(V · e instead of M · e). The reduction rules are as follows:

〈(λx.M)♦ |V · e〉 → 〈M{V/x} | e〉
〈μα.c | e〉 → c{e/α} 〈V ♦ | μ̃x.c〉 → c{V/x}

1 The reason for switching notation from E to e will become clear in Section 5.
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3 A Language for LK Proofs

In this section, we use some of the kit of the previous section to give a term language
for classical sequent calculus LK, with negation, conjunction, and disjunction as con-
nectives. Our term language is as follows:

Commands c ::= 〈x |α〉 | 〈v |α〉 | 〈x | e〉 | 〈μα.c | μ̃x.c〉
Expressions v ::= (μ̃x.c)• | (μα.c, μα.c) | inl(μα.c) | inr(μα.c)
Contexts e ::= μ̃α•.c | μ̃(x1, x2).c | μ̃[inl(x1).c1|inr(x2).c2]

(In 〈v |α〉 (resp. 〈x | e〉), we suppose α (resp. x) fresh for v (resp. e).) A term t is a
command, an expression, or a context. As in section 2, we have three kinds of sequents:
(Γ � Δ), (Γ � A |Δ), and (Γ |A � Δ). We decorate LK’s inference rules with terms,
yielding the following typing system (one term construction for each rule of LK):

(axiom and cut/contraction)

〈x |α〉 : (Γ, x : A � α : A,Δ)

c : (Γ � α : A, Δ) d : (Γ, x : A � Δ)

〈μα.c | μ̃x.d〉 : (Γ � Δ)

(right)
c : (Γ, x : A � Δ)

Γ � (μ̃x.c)• : ¬A |Δ
c1 : (Γ � α1 : A1, Δ) c2 : (Γ � α2 : A2, Δ)

Γ � (μα1.c1, μα2.c2) : A1 ∧ A2 |Δ

c1 : (Γ � α1 : A1, Δ)
Γ � inl(μα1.c1) : A1 ∨ A2 |Δ

c2 : (Γ � α2 : A2, Δ)
Γ � inr(μα2.c2) : A1 ∨ A2 |Δ

(left)
c : (Γ � α : A,Δ)
Γ | μ̃α•.c : ¬A � Δ

c : (Γ, x1 : A1, x2 : A2 � Δ)
Γ | μ̃(x1, x2).c : A1 ∧ A2 � Δ

c1 : (Γ, x1 : A1 � Δ) c2 : (Γ, x2 : A2 � Δ)
Γ | μ̃[inl(x1).c1|inr(x2).c2] : A1 ∨ A2 � Δ

(deactivation)

Γ � v : A |Δ
〈v |α〉 : (Γ � α : A, Δ)

Γ | e : A � Δ

〈x | e〉 : (Γ, x : A � Δ)

Note that the activation rules are packaged in the introduction rules and in the cut rule.
As for the underlying sequent calculus rules, we have made the following choices:

1. We have preferred additive formulations for the cut rule and for the right intro-
duction of conjunction (to stay in tune with the tradition of typed λ-calculi) over
a multiplicative one where the three occurrences of Γ would be resp. Γ1, Γ2, and
(Γ1, Γ2) (idem for Δ). An important consequence of this choice is that contraction
is a derived rule of our system, whence the name of cut/contraction rule above2:

Γ,A � A,Δ Γ,A,A � Δ

Γ,A � Δ

Γ � A,A,Δ Γ,A � A,Δ

Γ � A,Δ

2 In usual syntactic accounts of contraction, one says that if, say t denotes a proof of Γ, x :
A, y : A � Δ, then t[z/x, z/y] denotes a proof of Γ, z : A � Δ. Note that if this substitution
is explicit, then we are back to an overloading of cut and contraction.
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2. Still in the λ-calculus tradition, weakening is “transparent”. If c : Γ � Δ is well-
typed, then c : (Γ, Γ ′ � Δ,Δ′) is well-typed (idem v, e). (Also, we recall that all
free variables of c are among the ones declared in Γ,Δ.)

3. More importantly, we have adopted irreversible rules for right introduction of dis-
junction. On the other hand, we have given a reversible rule for left introduction of
conjunction: the premise is derivable from the conclusion. This choice prepares the
ground for the next section on focalisation.3

The relation between our typed terms and LK proofs is as follows.
- Every typing proof induces a proof tree of LK (one erases variables naming assump-
tions and conclusions, terms, the distinction between the three kinds of sequents, and
the application of the deactivation rules).
- If bound variables are explicitly typed (which we shall refrain from doing in the se-
quel), then every provable typing judgement, say Γ | e : A � Δ, has a unique typing
proof, i.e. all information is in Γ , A, Δ, e.
- If Π is an LK proof tree of (A1, . . . , Am � B1, . . . , Bn), and if names x1, . . . , xm,
α1, . . . , αn are provided, then there exists a unique command c : (x1 : A1, . . . , xm :
Am � α1 : B1, . . . , αn : Bn), whose (unique) typing proof gives back Π by erasing.

With this syntax, we can express the cut-elimination rules of LK as rewriting rules:
Logical rules (redexes of the form

〈
μα.〈v |α〉

∣∣ μ̃x.〈x | e〉〉):〈
μα.〈(μ̃x.c)• |α〉

∣∣ μ̃y.〈y | μ̃α•.d〉
〉
→ 〈μα.d | μ̃x.c〉

(similar rules for conjunction and disjunction)

Commutative rules (going “up left”, redexes of the form
〈
μα.〈v |β〉

∣∣ μ̃x.c〉):〈
μα.〈(μ̃y.c)• |β〉

∣∣ μ̃x.d
〉
→

〈
μβ′.

〈
(μ̃y.〈μα.c | μ̃x.d〉)•

∣∣ β′〉 ∣∣∣ μ̃y.〈y |β〉
〉

(¬ right)
(similar rules with the other right introduction rules and with the left introduction rules)〈
μα.

〈
μβ.〈y |β〉

∣∣ μ̃y′.c
〉 ∣∣∣ μ̃x.d

〉
→

〈
μβ.〈y | β〉

∣∣ μ̃y′.〈μα.c | μ̃x.d〉
〉

(contraction right)〈
μα.

〈
μβ′.c

∣∣ μ̃y.〈y |β〉
〉 ∣∣∣ μ̃x.d

〉
→

〈
μβ′.〈μα.c | μ̃x.d〉

∣∣ μ̃y.〈y |β〉
〉

(contraction left)〈
μα.

〈
μα′.c

∣∣∣ μ̃x′.〈x′ |α〉
〉 ∣∣∣∣ μ̃x.d

〉
→

〈
μα.〈μα′.c | μ̃x.d〉

∣∣∣ μ̃x.d
〉

(duplication)〈
μα.〈y |β〉

∣∣ μ̃x.d
〉
→ 〈y |β〉 (erasing)

Commutative rules (going “up right”, redexes of the form
〈
μα.c

∣∣ μ̃x.〈y | e〉〉 ): similar.

The (only?) merit of this syntax is its tight fit with proof trees and traditional cut
elimination defined as transformations of undecorated proof trees. If we accept to losen
this, we arrive at the following more “atomic” syntax:

Commands c ::= 〈v | e〉 | c[σ]
Expressions v ::= x |μα.c | e• | (v, v) | inl(v) | inr(v) | v[σ]
Contexts e ::= α | μ̃x.c | μ̃α•.c | μ̃(x1, x2).c | μ̃[inl(x1).c1|inr(x2).c2] | e[σ]

where σ is a list v1/x1, . . . , vm/xm, e1/α1, . . . , en/αn. In this syntax, activation be-
comes “first class”, and two versions of the axiom are now present (x, α, which give
back the axiom of the previous syntax by deactivation). The typing rules are as follows

3 For the same reason, we have three connectives instead of just, say, ∨ and ¬, because in the
focalised setting ¬(¬A ∨ ¬B) is only equivalent to A ∧ B at the level of provavility.
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(we omit the rules for μ̃x.c, μ̃α•.c, μ̃(x1, x2).c, μ̃[inl(x1).c1|inr (x2).c2], which are
unchanged):

Γ , x : A � x : A |Δ Γ |α : A � α : A , Δ

Γ � v : A |Δ Γ | e : A � Δ

〈v | e〉 : (Γ � Δ)

c : (Γ , x : A � Δ)
Γ | μ̃x.c : A � Δ

c : (Γ � α : A , Δ)
Γ � μα.c : A |Δ

Γ | e : A � Δ

Γ � e• : ¬A |Δ
Γ � v1 : A1 |Δ Γ � v2 : A2 |Δ

Γ � (v1, v2) : A1 ∧ A2 |Δ
Γ � v1 : A1 |Δ

Γ � inl(v1) : A1 ∨ A2 |Δ
Γ � v2 : A2 |Δ

Γ � inr(v2) : A1 ∨ A2 |Δ

c : (Γ, x1 : A1, . . . , xm : Am � α1 : B1, . . . , αn : Bn)
. . . Γ � vi : Ai |ΔΓ | ej : Bj � Δ . . .

c[v1/x1, . . . , vm/xm, e1/α1, . . . , en/αn] : (Γ � Δ) (idem v[σ], e[σ])

Note that we have now explicit substitutions t[σ], which feature a form of (multi-)cut
where the receiver t’s active formula, if any, is not among the cut formulas, in contrast
with the construct 〈v | e〉 where the cut formula is active on both sides.

It is still the case that, by erasing, a well-typed term of this new syntax induces a
proof of LK, and that all proofs of LK are reached (although not injectively anymore),
since all terms of the previous syntax are terms of the new syntax. The rewriting rules
divide now in three groups:

(control) 〈μα.c | e〉 → c[e/α] 〈v | μ̃x.c〉 → c[v/x]
(logical) 〈e• | μ̃α•.c〉 → c[e/α] 〈(v1, v2) | μ̃(x1, x2).c〉 → c[v1/x1, v2/x2]

〈inl(v1) | μ̃[inl(x1).c1|inr(x2).c2]〉 → c1[v1/x1] (idem inr)
(commutation) 〈v | e〉[σ] → 〈v[σ] | e[σ]〉

x[σ] → x (x not declared in σ) x[v/x, σ] → v (idem α[σ])
(μα.c)[σ] → μα.(c[σ]) (idem (μ̃x.c)[σ]) (capture avoiding)
(etc, no rule for composing substitutions)

The control rules mark the decision to launch a substitution (and, in this section, of the
direction in which to go, see below). The logical rules provide the interesting cases of
cut elimination, corresponding to cuts where the active formula has been just introduced
on both sides. The commutative cuts are now accounted for “trivially” by means of
the explicit substitution machinery that carries substitution progressively inside terms
towards their variable occurrences. Summarising, by liberalising the syntax, we have
gained considerably in readability of the cut elimination rules4.

Remark 1. In the “atomic” syntax, contractions are transcribed as terms of the form
〈v |β〉 (resp. 〈x | e〉) where β (resp. x) occurs free in v (resp. e). If β (resp. x) does not
occur free in v (resp. e), then the command expresses a simple deactivation.

4 The precise relation with the previous rules is as follows: for all s1, s2 such that s1 → s2 in
the first system, there exists s such that s1 →∗ s and s2 →∗ s in the new system.
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The problem with classical logic viewed as a computational system is its wild non
confluence, as captured by Lafont’s critical pair [6,4], for which the μμ̃ kit offers a
crisp formulation. For any c1, c2 both of type (Γ � Δ), we have (with α, x fresh for
c1, c2, respectively): c1 ∗← 〈μα.c1 | μ̃x.c2〉 →∗ c2. So, all proofs are identified...
Focalisation, discussed in the next section, will guide us to solve this dilemma.

4 A Syntax for Focalised Classical Logic

We adapt the focalisation discipline (originally introduced by [2] in the setting of linear
logic) to LK. A focalised proof search alternates between right and left phases:

- Left phase: Decompose (copies of) formulas on the left, in any order. Every decompo-
sition of a negation on the left feeds the right part of the sequent. At any moment, one
can change the phase from left to right.

- Right phase: Choose a formula A on the right, and hereditarily decompose a copy of
it in all branches of the proof search. This focusing in any branch can only end with
an axiom (which ends the proof search in that branch), or with a decomposition of a
negation, which prompts a phase change back to the left. Etc. . .

Note the irreversible (or positive, active) character of the whole right phase, by the
choice of A, by the choice of the left or right summand of a disjunction. One takes the
risk of not being able to eventually end a proof search branch with an axiom. In contrast,
all the choices on the left are reversible (or negative, passive). This strategy is not only
complete (see below), it also guides us to design a disciplined logic whose behaviour
will not collapse all the proofs.

To account for right focalisation, we introduce a fourth kind of judgement and a
fourth syntactic category of terms: the values, typed as (Γ � V : A ; Δ) (the zone
between the turnstyle and the semicolon is called the stoup, after [7]). We also make
official the existence of two disjunctions (since the behaviours of the conjunction on the
left and of the disjunction on the right are different) and two conjunctions, by renaming
∧,∨,¬ as ⊗,⊕,¬+, respectively. Of course, this choice of linear logic like notation is
not fortuitous. Note however that the source of distinction is not based here on the use
of resources like in the founding work on linear logic, which divides the line between
additive and multiplicative connectives. In contrast, our motivating dividing line here is
that between irreversible and reversible connectives, and hopefully this provides addi-
tional motivation for the two conjunctions and the two disjunctions. Our formulas are
thus defined by the following syntax:

P ::= X |P ⊗ P |P ⊕ P |¬+P

These formulas are called positive. We can define their De Morgan duals as follows:

P1 ⊗ P2 = P1�P2 P1 ⊕ P2 = P1�P2 ¬+P = ¬−P

These duals are negative formulas: N ::= X |N�N |N�N |¬−N . They restore the
duality of connectives, and are implicit in the presentation that follows (think of P on
the left as being a P in a unilateral sequent � Γ ,Δ).
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Γ , x : P � x : P ; Δ Γ |α : P � α : P , Δ

Γ � v : P |Δ Γ | e : P � Δ

〈v | e〉 : (Γ � Δ)

c : (Γ , x : P � Δ)
Γ | μ̃x.c : P � Δ

c : (Γ � α : P , Δ)
Γ � μα.c : P |Δ

Γ � V : P ; Δ

Γ � V ♦ : P |Δ

Γ | e : P � Δ

Γ � e• : ¬+P ; Δ

Γ � V1 : P1 ; Δ Γ � V2 : P2 ; Δ

Γ � (V1, V2) : P1 ⊗ P2 ; Δ

Γ � V1 : P1 ; Δ

Γ � inl(V1) : P1 ⊕ P2 ; Δ

c : (Γ � α : P, Δ)

Γ | μ̃α•.c : ¬+P � Δ

c : (Γ, x1 : P1, x2 : P2 � Δ)
Γ | μ̃(x1, x2).c : P1 ⊗ P2 � Δ

c1 : (Γ, x1 : P1 � Δ) c2 : (Γ, x2 : P2 � Δ)
Γ | μ̃[inl(x1).c1|inr(x2).c2] : P1 ⊕ P2 � Δ

c : (Γ . . . , q : P, . . . � Δ, . . . , α : Q, . . .)
. . . Γ � V : P ; Δ . . . Γ | e : Q � Δ . . .

c[. . . , V/q, . . . , e/α] : (Γ � Δ) (idem v[σ], V [σ], e[σ])

Fig. 1. System LKQ

We are now ready to give the syntax of our calculus, which is a variant of the one
given by the second author in [19]5.

Commands c ::= 〈v | e〉 | c[σ]
Expressions v ::= V ♦ |μα.c | v[σ]
Values V ::= x | (V, V ) | inl(V ) | inr (V ) | e• |V [σ]
Contexts e ::= α | μ̃x.c | μ̃α•.c | μ̃(x1, x2).c | μ̃[inl(x1).c1|inr (x2).c2] | e[σ]

The typing rules are given in Figure 1. Henceforth, we shall refer to the calculus of this
section (syntax + rewriting rules) as Lfoc, and to the typing system as LKQ (after [4]).
Here are examples of proof terms in LKQ.

Example 1. (� (μ̃(x, α•).〈x♦ |α〉)• : ¬+(P ⊗ ¬+P ) ; ), where μ̃(x, α•).c is an
abbreviation for μ̃(x, y).〈y♦ | μ̃α•.c〉.〈
inr((μ̃x.〈inl(x)♦ |α〉)•)♦

∣∣α〉 : (� α : P ⊕ ¬+P ).
( | μ̃(x2, x1).〈(x1, x2)♦ |α〉 : P2 ⊗ P1 � α : P1 ⊗ P2).

Proposition 1. If Γ � Δ is provable in LK, then it is provable in LKQ.

5 The main differences with the system presented in [19] is that we have here an explicit syntax
of values, with an associated form of typing judgement, while focalisation is dealt with at the
level of the reduction semantics in [19]. Also, the present system is bilateral but limited to
positive formulas on both sides, it thus corresponds to the positive fragment of the bilateral
version of Lfoc as presented in [19][long version, Appendix A].
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(control) 〈μα.c | e〉 → c[e/α] 〈V ♦ | μ̃x.c〉 → c[V/x]
(logical) 〈(e•)♦ | μ̃α•.c〉 → c[e/α] 〈(V1, V2)♦ | μ̃(x1, x2).c〉 → c[V1/x1, V2/x2]

〈inl(V1)♦ | μ̃[inl(x1).c1|inr(x2).c2]〉 → c1[V1/x1] (idem inr)
(commutation) 〈v | e〉[σ] → 〈v[σ] | e[σ]〉 etc . . .

Fig. 2. Cut eliminition in Lfoc

PROOF. We translate the syntax given in section 3 into the focalised one. All cases are
obvious except for the introduction of⊗ and⊕ on the right. We define (μα1.c1, μα2.c2)

as (Γ � μα.
〈
μα2.c2

∣∣∣ μ̃x2.
〈
μα1.c1

∣∣ μ̃x1.〈(x1, x2)♦ |α〉
〉〉

: P1 ⊗ P2 |Δ). � 
We make two observations on the translation involved in the proof of Proposition 1.

Remark 2. The translation introduces cuts: in particular, a cut-free proof is translated to
a proof with cuts. It also fixes an order of evaluation: one should read the translation of
right and introduction as a protocol prescribing the evaluation of the second element of
a pair and then of the first (the pair is thus in particular strict, as observed independently
in [27] and [19]). An equally reasonable choice would have been to permute the two
μ̃s: that would have encoded a left-to-right order of evaluation. This non-determinism
of the translation has been known ever since Girard’s seminal work [7].

We move on to cut elimination, which (cf. Section 3) is expressed by means of three
sets of rewriting rules, given in Figure 2. Note that we now have only one way to re-
duce 〈μα.c1 | μ̃x.c2〉 (no more critical pair). As already stressed in Section 3), the com-
mutation rules are the usual rules defining (capture-avoiding) substitution. The overall
operational semantics features call-by-value by the fact that variables x receive values,
and features also call-by-name (through symmetry, see the logic LKT in Section 5) by
the fact that continuation variables α receive contexts.

The reduction system presented in Figure 2 is confluent, as it is an orthogonal system
in the sense of higher-order rewriting systems (left-linear rules, no critical pairs) [21].

Remark 3. About μ: we note that μβ.c is used only in a command 〈μβ.c | e〉, and in
such a context it can be expressed as 〈(e•)♦ | μ̃β•.c〉, which indeed reduces to c[e/β].
However, using such an encoding would mean to shift from a direct to an indirect style
for terms of the form μβ.c.

Proposition 2. Cut-elimination holds in LKQ.

PROOF. This is an easy consequence of the following three properties:

1) Subject reduction. This is checked as usual rule by rule.

2) Weak normalisation. As for LK, or for simply typed λ-calculus.

3) Characterisation of normal forms. A command in normal form has one of the fol-
lowing shapes (all contractions):

〈V ♦ |α〉 〈x♦ | μ̃α•.c〉 〈x♦ | μ̃(x1, x2).c〉 〈x♦ | μ̃[inl(x1).c1|inr(x2).c2]〉 � 
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Corollary 1. Every sequent Γ � Δ that is provable in LK admits a (cut-free) proof
respecting the focalised discipline.

PROOF. Let π be a proof of Γ � Δ. By Propositions 1 and 2, one obtains a term
denoting a focalised, cut-free proof of Γ � Δ. � 
We can add η-equivalences (or expansion rules, when read from right to left) to the
system, as follows (where all mentioned variables are fresh for the mentioned terms):

μα.〈v |α〉 = v μ̃(x1, x2).〈(x1, x2)♦ | e〉 = e

μ̃x.〈x♦ | e〉 = e μ̃[inl(x1).〈inl(x1)♦ | e〉|inr(x2).〈inr(x2)♦ | e〉] = e

μ̃α•〈(α•)♦ | e〉 = e

The rules on the left column allow us to cancel a deactivation followed by an activation
(the control rules do the job for the sequence in the reverse order), while the rules in the
right column express the reversibility of the negative rules.

We end the section with a lemma that will be useful in Section 6.

Lemma 1. – If Γ, x : ¬+P | e : Q � Δ, then Γ | e{α•/x} : Q � α : P,Δ.
– If Γ, x : P1 ⊗ P2 | e : Q � Δ, then Γ, x1 : P1, x2 : P2 | e{(x1, x2)/x} : Q � Δ.
– If Γ, x : P1 ⊕ P2 | e : Q � Δ, then Γ, x1 : P1 | e{inl(x1)/x} : Q � Δ and

Γ, x2 : P2 | e{inr(x2)/x} : Q � Δ.
(and similarly for c, V, v).

5 Encodings

Encoding CBV λ(μ)-calculus into LKQ. We are now in a position to hook up with
the material of Section 2. We can encode the call-by-value λ-calculus, by defining the
following derived CBV implication and terms:

P →v Q = ¬+(P ⊗ ¬+Q)
λx.v = ((μ̃(x, α•).〈v |α〉)•)♦ v1v2 = μα.

〈
v2
∣∣ μ̃x.〈v1 | ((x, α•)♦)�〉

〉
where μ̃(x, α•).c is the abbreviation used in Example 1 and where V � stands for
μ̃α•.〈V ♦ |α〉. The translation extends to (call-by-value) λμ-calculus [22], and factors
though λμμ̃Q-calculus (cf. Section 2), defining V · e as (V, e•)�. The translation makes
also sense in the untyped setting, as the following example shows.

Example 2. Let Δ = λx.xx. We have [[ΔΔ]]+v = μγ.c, and c→∗ c, with

c =
〈
(e•)♦ ∣∣ μ̃z.〈(e•)♦ | (z, γ•)�〉

〉
and e = μ̃(x, α•).

〈
x♦ ∣∣ μ̃y.〈x♦ | (y, α•)�〉

〉
Encoding CBN λ(μ)-calculus. What about CBN? We can translate it to LKQ, but at the
price of translating terms to contexts, which is a violence to our goal of giving an intu-
itive semantics to the first abstract machine presented in Section 2. But keeping the same
term language, we can type sequents of the form (. . . , α : N, . . . � . . . , x : N, . . .),
giving rise to a dual logic LKT, renaming the metavariables for expressions, values, and
contexts as e (now contexts), E (now covalues, also called applicative contexts in [3]),
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Translation of formulas:

Xcps = X (¬+P )cps = RPcps

(P ⊗ Q)cps = (Pcps) × (Qcps) P ⊕ Qcps = Pcps + Qcps

Translation of terms:

〈v | e〉
cps

= (vcps)(ecps) (V ♦)cps = λk.k(Vcps) (μα.c)cps = λkα.(ccps) = μ̃α•.ccps

xcps = x (V1, V2)cps = ((V1)cps , (V2)cps) inl(V1)cps = inl((V1)cps) (e•)cps = ecps

αcps = kα (μ̃x.c)cps = λx.(ccps) (μ̃(x1, x2).c)cps = λz.(ccps [fst(z)/x1, snd(z)/x2])
(μ̃[inl(x1).c1|inr(x2).c2])cps = λz.case z [inl(x1) �→ (c1)cps , inr(x2) �→ (c2)cps ]

Fig. 3. Translation of LKQ into the λ-calculus / NJ

and v (now expressions). For example the rules for left introduction of � and of right
introduction for � are as follows:

Γ ; E1 : N1 � Δ

Γ ; inl(E1) : N1�N2 � Δ

Γ ; E2 : N2 � Δ

Γ ; inr(E2) : N1�N2 � Δ

c : (Γ � x1 : N1 , x2 : N2 , Δ)
Γ � μ̃(x1, x2).c : N1�N2 |Δ

In what follows, it will be handier (and closer to the tradition of CBN λμ-calculus) to
use x̃ (resp. α̃) instead of a negative variable α (resp. continuation variable x).

We would have arrived to this logic naturally if we had chosen in Section 3 to present
LK with a reversible disjunction on the right and an irreversible conjunction on the left,
and in Section 4 to present a focalisation discipline with focusing on formulas on the
left. In LKT we can define the following derived CBN implication and terms:

M →n N = (¬−M) � N

λx.v = μ̃(x̃•, α̃).〈v | α̃♦〉 v1v2 = μα̃.〈v1 | (v•2 , α̃)〉

The translation extends to λμ-calculus [23] and factors though the λμμ̃T -calculus of
[3], defining v ·E as (v•, E). Note that the covalues involved in executing call-by-name
λ-calculus are just stacks of expressions (cf. Section 2).

Translating LKQ into NJ. Figure 3 presents a translation from LKQ to intuitionistic
natural deduction NJ, or, via Curry-Howard, to λ-calculus extended with products and
sums. In the translation,R is a fixed target formula (cf. Section 2). We translate (¬+ ) as
“ implies R” (cf. [12,14]). We write BA for function types / intuitionistic implications.
The rules of Lfoc are simulated by β-reductions. One may think of the source Lfoc terms
as a description of the target ones “in direct style” (cf. [5]).

Proposition 3. Let Γcps = {x : Pcps | x : P ∈ Γ}, RΔcps = {kα : RPcps | α : P ∈ Δ}.
We have:

C : (Γ � Δ) ⇒ Γcps , R
Δcps � Ccps : R

Γ � V : P ; Δ⇒ Γcps , R
Δcps � Vcps : Pcps

Γ � v : P |Δ ⇒ Γcps , R
Δcps � vcps : RRPcps

Γ | e : P � Δ ⇒ Γcps , R
Δcps � ecps : RPcps

Moreover, the translation preserves reduction: if t→ t′, then tcps →∗ (t′)cps .
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6 A Synthetic System

In this section we pursue two related goals.

1. We want to account for the full (or strong) focalisation (cf. [25]), which consists in
removing the use of contractions in the negative phases and carrying these phases
maximally, up to having only atoms on the left of the sequent. The positive phases
are made also “more maximal” by allowing the use of the axiom only on posi-
tive atoms X . This is of interest in a proof search perspective, since the stronger
discipline further reduces the search space.

2. We would like our syntax to quotient proofs over the order of decomposition of neg-
ative formulas. The use of structured pattern-matching (cf. Example 1) is relevant,
as we can describe the construction of a proof of (Γ, x : (P1⊗P2)⊗(P3⊗P4) � Δ)
out of a proof of c : (Γ, x1 : P1, x2 : P2, x3 : P3, x4 : P4 � Δ) “synthetically”,
by writing 〈x♦ | μ̃((x1, x2), (x3, x4)).c〉, where μ̃((x1, x2), (x3, x4)).c stands for
an abbreviation of either of the following two commands:〈

x♦
∣∣∣∣ μ̃(y, z).

〈
y♦

∣∣∣ μ̃(x1, x2).〈z♦ | μ̃(x3, x4).c〉
〉〉

〈
x♦

∣∣∣∣ μ̃(y, z).
〈
z♦

∣∣∣ μ̃(x3, x4).〈y♦ | μ̃(x1, x2).c〉
〉〉

The two goals are connected, since applying strong focalisation will forbid the for-
mation of these two terms (because y, z are values appearing with non atomic types),
keeping the synthetic form only... provided we make it first class.

We shall proceed in two steps. The first, intermediate one, consists in introducing
first-class counterpatterns and will serve goal 1 but not quite goal 2:

Simple commands c ::= 〈v | e〉 Commands C ::= c | [C q,q C]
Expressions v ::= V ♦ |μα.C Values V ::= x | (V, V ) | inl(V ) | inr(V ) | e•
Contexts e ::= α | μ̃q.C Counterpatterns q ::= x |α• | (q, q) | [q, q]

The counterpatterns are to be thought of as constructs that match patterns (see below).
In this syntax, we have gained a unique μ̃ binder, but the price to pay is that now

commands are trees of copairings [ q1,q2 ] whose leaves are simple commands.
The typing discipline is restricted with respect to that of Figure 1 (and adapted to

the setting with explicit counterpatterns). Let Ξ = x1 : X1, . . . , xn : Xn denote a left
context consisting of atomic formulas only. The rules are as follows:

Ξ , x : X � x : X ; Δ

C : (Ξ , q : P � Δ)
Ξ | μ̃q.C : P � Δ

C : (Ξ � α : P , Δ)
Ξ � μα.C : P |Δ

C : (Γ � α : P , Δ)

C : (Γ , α• : ¬+P � Δ)
C : (Γ , q1 : P1 , q2 : P2 � Δ)

C : (Γ , (q1, q2) : P1 ⊗ P2 � Δ)

C1 : (Γ , q1 : P1 � Δ)C2 : (Γ , q2 : P2 � Δ)
[C1

q1,q2 C2] : (Γ , [q1, q2] : P1 ⊕ P2 � Δ)

(all the other rules as in Figure 1, with Ξ in place of Γ )



The Duality of Computation under Focus 177

Our aim now (second step) is to get rid of the tree structure of a command. Indeed, if
cij : (Γ, xi : Pi, xj : Pj �S Δ) (i = 1, 2, j = 3, 4), we want to identify

[[c13
x3,x4 c14] x1,x2 [c23

x3,x4 c24]] and [[c13
x1,x2 c23] x3,x4 [c14

x1,x2 c24]] .

To this effect, we need a last ingredient. We introduce a syntax of patterns, and we
redefine the syntax of values, as follows:

V ::= x | e• V ::= p 〈Vi/i | i ∈ p〉 p ::= x |α• | (p, p) | inl(p) | inr(p)

where i ∈ p is defined by:

x ∈ x α• ∈ α•
i ∈ p1

i ∈ (p1, p2)
i ∈ p2

i ∈ (p1, p2)
i ∈ p1

i ∈ inl(p1)
i ∈ p2

i ∈ inr (p2)

Moreover, Vi must be of the form y (resp. e•) if i = x (resp. i = α•).
Patterns are required to be linear, as well as the counterpatterns, for which the def-

inition of “linear” is adjusted in the case [q1, q2], in which a variable can occur (but
recursively linearly so) in both q1 and q2.

We can now rephrase the logical reduction rules in terms of pattern/counterpattern
interaction (whence the terminology), resulting in the following packaging of rules:

V = p 〈. . . y/x, . . . , e•/α•, . . .〉 C[p/q] →∗ c

〈V ♦ | μ̃q.C〉 → c{. . . , y/x, . . . , e/α, . . .}

where c{σ} is the usual, implicit substitution, and where c (see the next proposition) is
the normal form of C[p/q] with respect to the following set of rules:

C[(p1, p2)/(q1, q2), σ] → C[p1/q1, p2/q2, σ] C[β•/α•, σ] → C[β/α, σ]
[C1 q1,q2 C2][inl(p1)/[q1, q2], σ] → C1[p1/q1, σ] (idem inr)

Logically, this means that we now consider each formula as made of blocks of synthetic
connectives.

Example 3
– Patterns for P = X ⊗ (Y ⊕¬+Q). Focusing on the right yields two possible proof

searches:
Γ � x′{Vx′} : X ; Δ Γ � y′{Vy′} : Y ; Δ

Γ � (x′, inl(y′)){Vx′,Vy′} : X ⊗ (Y ⊕ ¬+Q) ; Δ

Γ � x′{Vx′} : X ; Δ Γ � α′•{Vα′•} : ¬+Q ; Δ

Γ � (x′, inr(α′•)){Vx′,Vα′•} : X ⊗ (Y ⊕ ¬+Q) ; Δ

– Counterpattern for P = X ⊗ (Y ⊕ ¬+Q). The counterpattern describes the tree
structure of P :

c1 : (Γ , x : X , y : Y � Δ) c2 : (Γ , x : X , α• : ¬+Q � Δ)

[c1 y,α•
c2] : (Γ , (x, [y, α•]) : X ⊗ (Y ⊕ ¬+Q) � Δ)
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c ::= 〈v | e〉 v ::= V ♦ |μα.c

V ::= p 〈Vi/i | i ∈ p〉 V ::= x | e• p ::= x |α• | (p, p) | inl(p) | inr(p)
e ::= α | μ̃q.{p �→ cp | q ⊥ p} q ::= x |α• | (q, q) | [q, q]

(μ̃+) 〈(p 〈. . . , y/x, . . . , e•/α• . . .〉)♦ | μ̃q.{p �→ cp | q⊥ p}〉
→ cp {. . . , y/x, . . . , e/α, . . .〉}

(μ) 〈μα.c | e〉 → c{e/α}

Typing rules: the old ones for α, x, e•, c, plus the following ones:

. . . Γ � Vi : Pi ; Δ ((i : Pi) ∈ Γ (p,P )) . . .

Γ � p 〈Vi/i | i ∈ p〉 : P ; Δ

. . . cp : (Γ , Γ (p,P ) � Δ) (q⊥ p) . . .

Γ | μ̃q.{p �→ cp | q ⊥ p} � Δ

where Γ (p,P ) must be successfully defined as follows:

Γ (x,X) = (x : X) Γ (α•,¬+P ) = (α• : ¬+P )
Γ ((p1, p2), P1 ⊗ P2) = Γ (p1, P1) , Γ (p2, P2) Γ (inl(p1), P1 ⊕ P2) = Γ (p1, P1) (idem inr)

Fig. 4. The syntax and reduction semantics of Lsynth

We observe that the leaves of the decomposition are in one-to-one correspondence with
the patterns p for the (irreversible) decomposition of P on the right:

[c1 y,α•
c2][p1/q] = c1{x′/x, y′/y} [c1 y,α•

c2][p2/q] = c2{x′/x, α′/α}

where q = (x, [y, α•]) , p1 = (x′, inl(yk′)) , p2 = (x′, inr(α′•)).

This correspondence is general. We define two predicates c ∈ C and q⊥ p (“q is or-
thogonal to p”) as follows:

c ∈ c

c ∈ C1

c ∈ [C1 q1,q2 C2]
c ∈ C2

c ∈ [C1 q1,q2 C2]

x⊥ x α•⊥α•
q1⊥ p1 q2⊥ p2

(q1, q2)⊥ (p1, p2)
q1⊥ p1

[q1, q2]⊥ inl(p1)
q2⊥ p2

[q1, q2]⊥ inr(p2)

We can now state the correspondence result.

Proposition 4. Let C : (Ξ , q : P � Δ) (as in the assumption of the typing rule for
μ̃q.C), and let p be such that q is orthogonal to p. Then the normal form c of C[p/q] is
a simple command, and the mapping p �→ c (q, C fixed) from {p | q⊥ p} to {c | c ∈ C}
is one-to-one and onto.

Thanks to this correspondence, we can quotient over the “bureaucracy” of commands,
and we arrive at the calculus described in Figure 4, together with its typing rules,
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which we call synthetic system L, or Lsynth. The μ̃ construct of Lsynth is closely related
to Zeilberger’s higher-order abstract approach to focalisation in [27]: indeed we can
view {p �→ c | q⊥ p} as a function from patterns to commands. We actually prefer
to see here a finite record whoses fields are the p’s orthogonal to q. There are only two
reduction rules in Lsynth. the μ-rule now expressed with implicit substitution and the μ̃+-
rule, which combines two familiar operations: select a field p (like in object-oriented
programming), and substitute (like in functional programming). The next proposition
relates Lsynth to Lfoc.

Proposition 5. The typing system of Lsynth is complete with respect to LKQ.

PROOF. The completeness of Lsynth with respect to the intermediate system above is an
easy consequence of Proposition 4. In order to prove the completeness of the interme-
diate system, we define the following rewriting relation between sets of sequents:

(Γ, x : ¬+P � Δ),S � (Γ � α : P,Δ),S
(Γ, x : P1 ⊗ P2 � Δ),S � (Γ, x1 : P1, x2 : P2 � Δ),S
(Γ, x : P1 ⊕ P2 � Δ),S � (Γ, x1 : P1 � Δ), (Γ, x2 : P2 � Δ),S

(where α, x1, x2 are fresh). One proves the following properties together:

1) if c : (x1 : P1, . . . , xm : Pm � Δ), then there exist q1, . . . , qm and C such that
C : (q1 : P1, . . . , qm : Pm �S Δ),
2) if Ξ | e : P � Δ, then there exists e′ such that Ξ | e′ : P �S Δ (and similarly for
expressions v),

where �S (resp. �) refers to the intermediate system (resp. to Lfoc). The proof of 1) goes
as follows. Using Lemma 1 and induction, we get simple commands ci proving all the
sequents in the normal form of (x1 : P1, . . . , xm : Pm � Δ) w.r.t. the above rewriting
rules. One can then assemble the ci’s to form a command C as in the statement. � 
Putting together Propositions 1 and 5, we have proved that Lsynth is complete with re-
spect to LK for provability.

Remark 4. In the multiplicative case (no C, inl(V ), inr (V ), [q1, q2]), there is a unique
p such that q⊥ p, namely q, and the syntax boils down to:

V ::= x | e• V ::= p 〈Vi/i | i ∈ p〉 v ::= x | μ̃q.{c} c = 〈V ♦ |α〉

Compare with Böhm trees: M ::=

e︷ ︸︸ ︷
λx. P︸︷︷︸

c

P ::= y

V︷︸︸︷
M1 . . .

V︷︸︸︷
Mn︸ ︷︷ ︸

V

.

7 Conclusion

We believe that Curien-Herbelin’s syntactic kit, which we could call system L for short,
provides us with a robust infrastructure for proof-theoretical investigations, and for ap-
plications in formal studies in operational semantics. Thus, the work presented here
is faithful to the spirit of Herbelin’s Habilitation Thesis [11], where he advocated an
incremental approach to connectives, starting from a pure control kernel.
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The good fit between abstract machines and our syntax Lfoc makes it a good candidate
for being used as an intermediate language appropriate to reason about the correctness
of abstract machines (see also [18]). In this spirit, in order to account for languages with
mixed call-by-value / call-by-name features, one may give a truly bilateral presentation
of Lfoc that freely mixes positive and negative formulas like in Girard’s LC[7].6 Such a
system is presented in the long version of [19].

We wish to thank R. Harper, H. Herbelin, and O. Laurent for helpful discussions.
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Abstract. We present a restriction of Resolution modulo where the
rewrite rules are such that clauses rewrite to clauses, so that the reduct
of a clause needs not be further transformed into clause form. Restrict-
ing Resolution modulo in this way requires to extend it in another and
distinguish the rules that apply to negative and positive atomic proposi-
tions. This method can be seen as a restriction of Equational resolution
that mixes clause selection and literal selection restrictions. Unlike many
restrictions of Resolution, it is not an instance of Ordered resolution.

1 Introduction

Deduction modulo is an extension of first-order predicate logic where axioms, for
instance P ⇔ (Q ⇒ R), are replaced by rewrite rules, for instance P −→ (Q ⇒
R). These rules define an equivalence relation and, in a proof, a proposition can
be replaced by an equivalent one at any time.

A motivation for introducing Deduction modulo was its applications to auto-
mated theorem proving. Together with Thérèse Hardin and Claude Kirchner, we
have defined a proof search method called Extended Narrowing and Resolution,
or Resolution modulo, that extends first-order Resolution to handle such rewrite
rules [8]. The term rewrite rules define an equivalence relation on terms that
is used by the unification algorithm, but the proposition rewrite rules, such as
P −→ (Q ⇒ R), are used, in a different way, to directly rewrite, or more gen-
erally narrow, the clauses. For instance, with the rewrite rule above, the clause
P, S narrows to Q⇒ R,S.

The proof-search method obtained this way is complete provided the theory
defined by the rewrite rules has the cut elimination property. Moreover this
completeness theorem has a converse: if Resolution modulo is complete, then
the theory has the cut elimination property [9]. More generally, whether the
theory has the cut elimination property or not, the method proves exactly the
propositions that have a cut free proof.

Resolution modulo is more efficient than Resolution used with axioms. For
instance, a naive search for a Resolution proof of a contradiction with the axiom
∀x (P (x) ⇔ P (f(x))) generates an infinite search space. But attempting to prove
a contradiction with Resolution modulo the rule P (x) −→ P (f(x)) generates an
empty search space. Besides this trivial example, Simple type theory can be

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 182–196, 2010.
c© IFIP International Federation for Information Processing 2010
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expressed in Deduction modulo and applying Resolution modulo to this theory
yields a step by step simulation of Higher-order resolution [1,10], that generates
an empty search space when attempting to prove a contradiction in this theory.

Yet, a problem with Resolution modulo is that narrowing the clause P, S
yields the set of propositions Q ⇒ R,S that is not a clause, and this set needs
to be further transformed into clause form: ¬Q,R, S. In the general case, this
transformation includes skolemization. For instance, with the rule P (x) −→
∀y Q(x, y), the clause P (X), S narrows to Q(X,Y ), S but the clause ¬P (X), S
narrows to ¬Q(X, f(X)), S where f is a new Skolem symbol. This dynamic
skolemization is an unpleasant feature of Resolution modulo that is cumbersome
to implement and that complicates the completeness proof.

To address this problem, we restrict, in this paper, Resolution modulo to
clausal rewrite systems, defined in such as way that a clause always narrows
to a clause. However, restricting Resolution modulo this way requires to extend
it in another. Indeed, the rule P −→ (Q ⇒ R) must be replaced by the rule
P −→ (¬Q ∨ R) when applied to the literal P , but it must be replaced by
the rules P −→ ¬Q and P −→ ¬¬R when applied to the literal ¬P . Thus,
negative and positive occurrences of atomic propositions must be rewritten in a
different way, like in the so-called Polarized deduction modulo [5], hence the name
Polarized resolution modulo for the method. Like Resolution modulo, Polarized
resolution modulo proves a proposition if and only if this proposition has a cut
free proof. Thus, it is complete if and only if the theory defined by the rewrite
rules has the cut elimination property.

Another advantage of Polarized resolution modulo over the original formula-
tion is that the Extended Narrowing rule can be seen as a particular case
of the Resolution rule with extra clauses added to the problem. Indeed, in-
stead of using the rewrite rule P −→ (¬Q∨R) to transform the clause P, S into
¬Q,R, S, we may as well add an extra clause ¬P ,¬Q,R and derive ¬Q,R, S
with the Resolution rule from P, S and this new clause. However, the use of
this new clause is restricted in such a way that the resolved literal in this clause
must always be ¬P . We shall call such a literal selected and a clause with an
selected literal a one-way clause. A further restriction is that the Resolution
rule cannot be applied to two one-way clauses.

Thus, Polarized resolution modulo appears to be a restriction of Equational
resolution, that combines two types of restrictions used in resolution based proof
methods: clause selection restrictions like in the Set of support method [14] and in
Semantic resolution [13] and literal selection restrictions like in Ordered resolution
[2], preserving completeness, provided the theory defined by the rewrite rules has
the cut elimination property. Yet, it is more restricted than each of these meth-
ods. In particular, together with Guillaume Burel [4], we have proved that, unlike
many other restrictions of Resolution, it is not an instance of Ordered Resolution.
Indeed, Polarized resolution modulo fails in finite time when attempting to prove
a contradiction in Simple type theory. Thus, its completeness implies the consis-
tency of Simple type theory, and, from Gödel’s second incompleteness theorem,
the completeness of this method cannot be proved in Simple type theory, while
the completeness of all instances of Ordered resolution can.
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This also simplifies the implementation of the method and unlike Resolution
modulo, that has never been fully implemented, there is an implementation
of Polarized resolution modulo, that gives very promising first results [3], in
particular for Simple type theory.

2 Polarized Deduction Modulo

2.1 Polarized Deduction Modulo

Definition 1 (Polarized rewrite system). A polarized rewrite system is a
triple R = 〈E ,R−,R+〉 where E is a set of equations between terms, R− and
R+ are sets of rewrite rules whose left hand sides are atomic propositions and
right hand sides are arbitrary propositions. The rules of R− are called negative
rules and those of R+ are called positive rules.

Definition 2 (Polarized rewriting). Let R = 〈E ,R−,R+〉 be a polarized
rewrite system. We define the equivalence relation =E as the congruence on
terms generated by the equations of E. We then define the one step negative and
positive rewriting relations −→− and −→+ as follows.

– If ti =E u then both P (t1, . . . , ti, . . . , tn) −→− P (t1, . . . , u, . . . , tn) and
P (t1, . . . , ti, . . . , tn) −→+ P (t1, . . . , u, . . . , tn).

– If P −→ A is a rule of Rs and σ is a substitution then σP −→s σA, where
s is either − or +.

– If A −→s A′ then ¬A −→s ¬A′, where . swaps − and +.
– If (A −→s A′ and B = B′) or (A = A′ and B −→s B′), then

A ∧B −→s A′ ∧B′ and A ∨B −→s A′ ∨B′.
– If (A −→s A′ and B = B′) or (A = A′ and B −→s B′), then

A⇒ B −→s A′ ⇒ B′.
– If A −→s A′ then ∀x A −→s ∀x A′ and ∃x A −→s ∃x A′.

We define the sequent one step term rewriting relation −→ as follows.

– If A −→− A′ then (Γ,A � Δ) −→ (Γ,A′ � Δ).
– If A −→+ A′ then (Γ � A,Δ) −→ (Γ � A′, Δ).

As usual, if R is any binary relation, we write R∗ for its reflexive-transitive
closure. The rules of Polarized sequent calculus modulo are those of Figure 1.
Proof checking is decidable when the relations −→∗− and −→∗

+ are. The usual,
non polarized, Deduction modulo can be recovered by taking R− = R+ and
predicate logic by taking E = R− = R+ = ∅.

The following propositions are proved by induction over proof structure.

Proposition 1. If (Γ � Δ) −→∗ (Γ ′ � Δ′) and Γ ′ � Δ′ has a cut free proof
modulo R then Γ � Δ has a cut free proof modulo R of the same size.

Proposition 2. Assume that the language contains a closed term and that Γ �
Δ is a closed sequent. Then, if Γ � Δ has a cut free proof using neither the left
rule of the existential quantifier, nor the right rule of the universal quantifier, it
has a cut free proof where all the sequents are closed.



Polarized Resolution Modulo 185

axiom if A −→∗
− P, B −→∗

+ P and P atomic
A � B

Γ, B � Δ Γ � C, Δ cut if A −→∗
− B, A −→∗

+ C
Γ � Δ

Γ, B, C � Δ contr-left if A −→∗
− B, A −→∗

− C
Γ, A � Δ

Γ � B, C, Δ contr-right if A −→∗
+ B, A −→∗

+ C
Γ � A, Δ

Γ � Δ weak-leftΓ, A � Δ

Γ � Δ weak-right
Γ � A, Δ

�-right if A −→∗
+ �

Γ � A, Δ

⊥-left if A −→∗
− ⊥

Γ, A � Δ

Γ � B, Δ ¬-left if A −→∗
− ¬B

Γ, A � Δ

Γ, B � Δ ¬-right if A −→∗
+ ¬B

Γ � A, Δ

Γ, B, C � Δ ∧-left if A −→∗
− (B ∧ C)

Γ, A � Δ

Γ � B, Δ Γ � C, Δ ∧-right if A −→∗
+ (B ∧ C)

Γ � A, Δ

Γ, B � Δ Γ, C � Δ ∨-left if A −→∗
− (B ∨ C)

Γ, A � Δ

Γ � B, C, Δ ∨-right if A −→∗
+ (B ∨ C)

Γ � A, Δ

Γ � B, Δ Γ, C � Δ ⇒-left if A −→∗
− (B ⇒ C)

Γ, A � Δ

Γ, B � C, Δ ⇒-right if A −→∗
+ (B ⇒ C)

Γ � A, Δ

Γ, C � Δ 〈x, B, t〉 ∀-left if A −→∗
− ∀x B, (t/x)B −→∗

− C
Γ, A � Δ

Γ � B, Δ 〈x, B〉 ∀-right if A −→∗
+ ∀x B, x �∈ FV (ΓΔ)

Γ � A, Δ

Γ, B � Δ 〈x, B〉 ∃-left if A −→∗
− ∃x B, x �∈ FV (ΓΔ)

Γ, A � Δ

Γ � C, Δ 〈x, B, t〉 ∃-right if A −→∗
+ ∃x B, (t/x)B −→∗

+ C
Γ � A, Δ

Fig. 1. Polarized sequent calculus modulo
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2.2 Compatibility

We want to show that rewrite rules build in axioms, i.e. that for each rewrite
system R, there is a set of axioms T such that Γ � Δ is provable modulo R if
and only if there exists a finite subset T ′ of T such that Γ, T ′ � Δ is provable in
predicate logic. As we sometimes want to transform some, but not all, rewrite
rules into axioms, we shall transform the rewrite system R into a pair formed
with a weaker rewrite system R′ and a set of axioms T .

Definition 3 (Compatibility). Let R and R′ be polarized rewrite systems and
T be a set of axioms. The system R is compatible with the pair 〈R′, T 〉 when

1. if A −→∗− B in R′ then A −→∗− B in R and if A −→∗
+ B in R′ then

A −→∗
+ B in R,

2. if A ∈ T , then � A is provable modulo R,
3. if A −→∗

− B in R, then there exists a finite subset T ′ of T such that T ′ �
A⇒ B is provable modulo R′,

4. if A −→∗
+ B in R, then there exists a finite subset T ′ of T such that T ′ �

B ⇒ A is provable modulo R′.

Proposition 3 (Equivalence). Let R be a polarized rewrite system and 〈R′, T 〉
be a pair compatible with R, then the sequent Γ � Δ is provable modulo R, if
and only if there exists a finite subset T ′ of T such that the sequent Γ, T ′ � Δ
is provable modulo R′.

Proof. If Γ, T ′ � Δ is provable modulo R′, it is provable modulo R and each A
of T ′ is provable modulo R. We conclude with the cut rule. The converse is a
simple induction over proof structure.

Two particular cases are useful: R′ = ∅ i.e. all the rewrite rules are transformed
into axioms, and R′ = E , i.e. only proposition rewrite rules are transformed into
axioms.

Proposition 4. For all polarized rewrite systems R, there exists a set of axioms
T such that R and 〈∅, T 〉 are compatible.

Proof. Take the universal closures of all the propositions A ⇒ B such that
A −→∗

− B or B −→∗
+ A.

Proposition 5. For all polarized rewrite systems R = 〈E ,R−,R+〉, there exists
a set of axioms T such that R and 〈E , T 〉 are compatible.

Proof. Take for each rule P −→− A of R− the universal closure of P ⇒ A and
for each rule P −→+ A of R+ the universal closure of A⇒ P .

2.3 Clausal Rewrite Systems

Definition 4 (Literal, Clausal proposition). A proposition is a literal if it
is either atomic or the negation of an atomic proposition. A proposition is clausal
if it is ⊥ or of the form ∀x1 . . . ∀xp (L1 ∨ . . . ∨Ln) where L1, . . . , Ln are literals
and x1, . . . , xp variables.
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Definition 5 (Clausal rewrite system). A rewrite system is clausal if neg-
ative rules rewrite atomic propositions to clausal propositions and positive rules
atomic propositions to negations of clausal propositions.

For instance, the rewrite systemR formed with the negative rule P −→ (¬Q∨R)
and the positive rules P −→ ¬Q and P −→ ¬¬R is clausal. This rewrite system
is compatible with the axiom P ⇔ (Q ⇒ R), in the same way the rule P −→
(Q⇒ R) is in usual Deduction modulo.

Example 1. A presentation of Simple type theory in Deduction modulo has been
given in [7]. To adapt it to Polarized deduction modulo, we just need to duplicate
each rule, but this polarized rewrite system is not clausal. An equivalent one,
that is clausal has been given in [6]. The sorts of this system are simple types
built from two base types ι and o. The language contains

– for each pair of sorts, a constant KT,U of sort T → U → T ,
– for each triple of sorts, a constant ST,U,V of sort (T → U → V ) → (T →

U) → T → V ,
– a constant ∨̇ of sort o→ o→ o,
– a constant ¬̇ of sort o→ o,
– for each sort, a constant ∀̇T of sort (T → o) → o,
– for each pair of sorts, a function symbol αT,U of rank 〈T → U, T, U〉,
– for each sort T , a Skolem symbol HT of sort (T → o) → T ,
– a predicate symbol ε of rank 〈o〉.

As usual, we write (t u) for αT,U (t, u) and (t u1 . . . un) for (. . . (t u1) . . . un).
The rewrite rules are

(KT,U x y) =E x

(ST,U,V x y z) =E (x z (y z))

ε(x ∨̇ y) −→− (ε(x) ∨ ε(y)) ε(x ∨̇ y) −→+ ¬¬ε(x)
ε(x ∨̇ y) −→+ ¬¬ε(y)

ε(¬̇ x) −→− ¬ε(x) ε(¬̇ x) −→+ ¬ε(x)
ε(∀̇T x) −→− ∀y ε(x y) ε(∀̇T x) −→+ ¬¬ε(x HT (x))

This theory does not have the cut elimination property as the sequent ε(x HT (x))
� ∀y ε(x y) has a proof with a cut (on ε(∀̇T x)) but no cut free proofs. Yet, as
proved in [6], for sequents not containing the symbols HT , cut free provability
in this theory characterizes exactly provability in Simple type theory.

The fact that there is an infinite number of objects of type ι can be expressed
by the rules

(Pred (Succ x)) =E x

ε(Null 0) −→+ ¬⊥

ε(Null (Succ x)) −→− ⊥
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The first expresses that the function Succ of type ι→ ι has a left inverse Pred ,
i.e. that it is injective. The two others that 0 is not in its image, i.e. that it is
not surjective.

3 Polarized Resolution Modulo

Definition 6 (Clause, Constraint, Unifier, Constrained clause). A clause
is a finite set of literals. A constraint is a pair of terms or of atomic proposi-
tions, written t = u. A unifier of a constraint t = u is a substitution θ such that
θt =E θu. A constrained clause is a pair U [C] such that U is a clause and C is a
finite set of constraints.

The empty clause is written �. If U is a clause and L is a literal, we write U,L
for the clause U ∪{L}. If A = ∀x1 . . .∀xp (L1∨ . . .∨Ln) is a clausal proposition,
we write |A| for the clause {L1, . . . , Ln}. By convention, |⊥| = �. If ψ is a
constrained clause and Φ a set of constrained clauses, a Φ-renaming of ψ is a
renaming of ψ with variables that do not occur in Φ.

Definition 7 (One-way clause, Selected literal). To each polarized rewrite
system, we associate a set of clauses called the one-way clauses of R. These
clauses have a privileged literal called the selected literal. For each negative rule
P −→ ∀x1 . . . ∀xp (L1∨. . .∨Ln), we take the clause ¬P ,L1, . . . , Ln and, for each
positive rule P −→ ¬∀x1 . . . ∀xp (L1∨ . . .∨Ln), we take the clause P ,L1, . . . , Ln

where the selected literal is the underlined one.

Definition 8 (Polarized resolution modulo). Let Φ be a set of constrained
clauses, we write Φ �→R ψ if the constrained clause ψ can be derived from the
constrained clauses of Φ using finitely many applications of the Resolution and
Extended Narrowing rules described in Figure 2. This means that there exists
a derivation of the clause ψ under the assumptions Φ, i.e. a sequence ψ1, . . . , ψn

such that either n = 0 and ψ is an element of Φ or n ≥ 1, ψn = ψ and
each ψi is derived with a rule of Figure 2 from renamings of clauses of the set
Φ ∪ {ψ1, . . . , ψi−1}.

When R− = R+ = ∅, Polarized resolution modulo boils down to Plotkin’s
Equational resolution [12,11]: the Extended Narrowing rule never applies,
and the only difference with first-order Resolution is that unification is replaced
by equational unification modulo E .

As discussed in the introduction, the Extended Narrowing rule can be seen
as an instance of the Resolution rule where, from an ordinary clause (U,P )[C]
and a one-way clause V,¬Q, we derive the clause (U ∪ V )[C ∪ {P = Q}]. Thus
instead of having the Extended Narrowing rule, we could add the one-way
clauses to the set of clauses to be refuted and restrict Equational resolution in
such a way that the Resolution rule cannot be applied to two one-way clauses
and can be applied to a one-way clause and another clause only if the resolved
literal in the one-way clause is the selected one. Yet, we prefer to distinguish this
Extended Narrowing rule for better clarity.
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(U, P1, . . . , Pn)[C1] (V,¬Q1, . . . ,¬Qp)[C2] Resolution(U ∪ V )[C1 ∪ C2 ∪ {P1 = . . . = Pn = Q1 = . . . = Qp}]
(U, P )[C] if V,¬Q one-way clause of R Extended Narrowing

(U ∪ V )[C ∪ {P = Q}]
(U,¬P )[C] if V, Q one-way clause of R Extended Narrowing

(U ∪ V )[C ∪ {P = Q}]

Fig. 2. Polarized resolution modulo

Example 2. Using the rewrite system presented in Example 1, we get the one
way clauses

¬ε(x ∨̇ y), ε(x), ε(y) ε(x ∨̇ y),¬ε(x)
ε(x ∨̇ y),¬ε(y)

¬ε(¬̇ x),¬ε(x) ε(¬̇ x), ε(x)
¬ε(∀̇T x), ε(x y) ε(∀̇T x),¬ε(x HT (x))

As we shall prove, Polarized resolution modulo with these one-way clauses is a
complete method for Simple type theory, and attempting to prove a contradiction
in this theory with this method yields an empty search space.

An alternative to this method is to transform the rules of R− and R+ into
axioms, with Proposition 3 and 5, add the clause form of these axioms to the
set of clauses to be refuted, and use Equational resolution modulo E . We obtain
this way the same set of clauses, except that they are not one-way clauses:

¬ε(x ∨̇ y), ε(x), ε(y) ε(x ∨̇ y),¬ε(x)
ε(x ∨̇ y),¬ε(y)

¬ε(¬̇ x),¬ε(x) ε(¬̇ x), ε(x)
¬ε(∀̇T x), ε(x y) ε(∀̇T x),¬ε(x HT (x))

equational resolution, modulo SK, with these clauses is a complete proof search
method for Simple type theory, but attempting to prove a contradiction in this
theory with this method yields an infinite search space.

4 Soundness and Completeness

We now want to prove that Polarized resolution modulo is sound and complete,
i.e. that if A1, . . . , An are closed clausal propositions, then |A1|[∅], . . . , |An|[∅]
�→R �[C] for C unifiable if and only if the sequent A1, . . . , An � has a cut free
proof modulo R. As a corollary, Polarized resolution modulo is complete if and
only if the theory defined by the rewrite rules has the cut elimination property.

As usual we introduce an intermediate system that we prove sound and com-
plete and then lift the result to Polarized resolution modulo.

Definition 9 (Polarized extended identical resolution). Let R be a po-
larized rewrite system and K a set of clauses, we write K ↪→R U if the clause
U can be derived from the clauses of K using finitely many applications of the
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U
Instantiation(t/x)U

U if U =E U ′ Conversion
U ′

U, P if P −→− A, V = |A| Reduction
U ∪ V

U,¬P if P −→+ ¬A, V = |A| Reduction
U ∪ V

U, P U ′,¬P
Identical Resolution

U ∪ U ′

Fig. 3. Polarized extended identical resolution (PEIR)

Polarized extended identical resolution (PEIR) rules described in Figure 3. This
means that there exists a derivation of the clause U under the assumptions K,
i.e. a sequence U1, . . . , Un such that either n = 0 and U is an element of K or
n ≥ 1, Un = U and each Ui is derived with a rule of Figure 3 from clauses of
the set K ∪ {U1, . . . , Ui−1}.

Like [9], we prove directly the soundness of the PEIR method with respect to
the cut free sequent calculus.

We write ∀A for the universal closure of A.

Proposition 6. Let A1, . . . , An, B1, . . . , Bn be clausal propositions such that
|A1| = |B1|, . . . , |An| = |Bn|. If Γ,A1, . . . , An � Δ has a cut free proof, then
so does Γ,B1, . . . , Bn � Δ.

Proof. We first prove that Γ,C ∨ D � Δ has a cut free proof if and only if
Γ,C � Δ and Γ,D � Δ do. The result follows by a simple induction on proofs.

Definition 10 (Partial instance). A partial instance of a proposition A is a
reduct for −→∗

− of a proposition of the form ∀x1 . . . ∀xn (σA) for some variables
x1, . . . , xn and substitution σ. The instance is strict if n > 0.

Proposition 7. Let A and B be two propositions and C1, . . . , Cn be partial
instances of A∨B. If the sequent Γ,C1, . . . , Cn � Δ has a cut free proof modulo
R, then so does Γ, ∀(A ∨ P ), ∀(B ∨ ¬P ) � Δ.

Proof. By induction on the structure of the proof of the sequent Γ,C1, . . . , Cn �
Δ. If the last rule is a rule on a proposition of Γ or Δ, a contraction rule, a
weakening rule, or the left rule of the universal quantifier, we just apply the
induction hypothesis. If it is the left rule of the disjunction, say to C1 = A′ ∨B′,
then we have cut free proofs of Γ,A′, C2, . . . , Cn � Δ and Γ,B′, C2, . . . , Cn � Δ,
with σA −→∗− A′ and σB −→∗− B′. By induction hypothesis, we get cut free
proofs of the sequents Γ,A′, ∀(A∨P ), ∀(B∨¬P ) � Δ and Γ,B′, ∀(A∨P ), ∀(B∨
¬P ) � Δ and we build a cut free proof of Γ, ∀(A ∨ P ), ∀(B ∨ ¬P ) � Δ.
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Proposition 8. Let A and B be two propositions and C1, . . . , Cn be partial
instances of A ∨ B. Let P be a proposition such that P −→∗

− ∀x1 . . . ∀xp B
or P −→∗− ¬¬∀x1 . . . ∀xp B where x1, . . . , xp are variables not occurring free in
A. If the sequent Γ,C1, . . . , Cn � Δ has a cut free proof modulo R, then so does
Γ, ∀(A ∨ P ) � Δ.

Proof. By induction on the structure of the proof of the sequent Γ,C1, . . . , Cn �
Δ. If the last rule is a rule on a proposition of Γ or Δ, a contraction rule, a
weakening rule, or the left rule of the universal quantifier, we just apply the
induction hypothesis. If it is the left rule of the disjunction, say to C1 = A′ ∨B′,
then we have cut free proofs of Γ,A′, C2, . . . , Cn � Δ and Γ,B′, C2, . . . , Cn � Δ,
with σA −→∗

− A′ and σB −→∗
− B′. By induction hypothesis, we get cut free

proofs of Γ,A′, ∀(A ∨ P ) � Δ and Γ,B′, ∀(A ∨ P ) � Δ, and we build a cut free
proof of Γ, ∀(A ∨ P ) � Δ.

Proposition 9. Let A be a proposition and C1, . . . , Cn be strict partial instances
of (t/x)A. If the sequent Γ,C1, . . . , Cn � Δ has a cut free proof modulo R, then
so does Γ, ∀A � Δ.

Proof. By induction on the structure of the proof of Γ,C1, . . . , Cn � Δ. If the last
rule is a rule on a proposition of Γ or Δ, a contraction rule, a weakening rule,
or the left rule of the universal quantifier producing a strict partial instance
of (t/x)A, we just apply the induction hypothesis. If it is the left rule of the
universal quantifier, say to C1, producing a reduct A′ of σ(t/x)A, then we have
a cut free proof of Γ,A′, C2, . . . , Cn � Δ and by induction hypothesis we get a
cut free proof of Γ,A′, ∀A � Δ and we build a cut free proof of Γ, ∀A � Δ.

Proposition 10 (PEIR Soundness). Let A1, . . . , An be closed clausal propo-
sitions. If |A1|, . . . , |An| ↪→R �, then A1, . . . , An � has a cut free proof modulo
R.

Proof. By induction on the structure the derivation |A1|, . . . , |An| ↪→R �. If the
derivation is empty, then one of the clauses |Ai| is �. Thus, the proposition Ai is
⊥ and A1, . . . , An � has a cut free proof modulo R. Otherwise, the derivation of
|A1|, . . . , |An| ↪→R � starts by producing a clause U and there is a shorter deriva-
tion of |A1|, . . . , |An|, U ↪→R �. Let A′ be a closed clausal proposition such that
U = |A′|, by induction hypothesis, we have a cut free proof of A1, . . . , An, A

′ �.
We consider four cases, according to the rule used to derive U .

– If this rule is the Identical Resolution rule, then there are two proposi-
tions, say A1 and A2, such that |A1| contains a literal P and |A2| a literal ¬P .
Using Proposition 6, we can consider that A1 = ∀(A′

1∨P ), A2 = ∀(A′
2∨¬P )

and A′ = ∀(A′
1∨A′

2). The proposition A′ is a partial instance of A′
1∨A′

2, thus,
by Proposition 7, we get a cut free proof of the sequent A1, . . . , An, A1, A2 �
and, with a contraction, one of A1, . . . , An �.

– If this rule is the Reduction rule, then there is a proposition, say A1, such
that A1 = ∀(A′

1∨P ) with P −→∗
− ∀x1 . . .∀xp B or P −→∗

− ¬¬∀x1 . . . ∀xp B
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where B is a disjunction of literals, and A′ = ∀(A′
1 ∨B). The proposition A′

is a partial instance of A′
1∨B, thus, by Proposition 8, we get a cut free proof

of the sequent A1, . . . , An, A1 � and, with a contraction, one of A1, . . . , An �.
– If this rule is the Conversion rule, then there is a proposition, say A1 that

is E-equivalent to A′. We have A1 −→∗− A′. By Proposition 1, we get a cut
free proof of the sequent A1, . . . , An, A1 � and, with a contraction, one of
A1, . . . , An �.

– If this rule is the Instantiation rule, then there is a proposition, say A1,
such that A1 = ∀B and A′ = ∀(t/x)B. If the proposition A′ is a strict
partial instance of (t/x)B, then, by Proposition 9, we get a cut free proof of
the sequent A1, . . . , An, A1 � and, with a contraction, one of A1, . . . , An �.
Otherwise, A′ = (t/x)B, and we build a cut free proof of A1, . . . , An �.

We now prove the completeness of the PEIR method.

Proposition 11 (Interpolation). Let P be an atomic proposition and A be a
non atomic one. If P −→∗

− A, then there exists an atomic proposition P ′ and
a non atomic clausal proposition A′ such that P −→∗

− P ′ −→− A′ −→∗
− A. If

P −→∗
+ A, then there exists an atomic proposition P ′ and a clausal proposition

A1 such that P −→∗
+ P ′ −→+ ¬A1 −→∗

+ A.

Proof. Consider a reduction sequence, P = B0, . . . , Bn = A from P to A and
let P ′ be the last atomic proposition in this sequence. As A is not atomic, P ′ is
not the last proposition of the sequence, let A′ be the next proposition in the
sequence. We have P −→∗

− P ′ −→− A′ −→∗
− A. As P ′ reduces to A′ in one

step, A′ is clausal proposition in the first case and it is the negation of a clausal
proposition in the second.

Proposition 12. Let K be a set of clauses and U and V two clauses. If K,U ↪→R
� and K,V ↪→R � then K, (U ∪ V ) ↪→R �.

Proof. By induction on the structure of the derivation of K,U ↪→R �, there
exists a derivation of K, (U ∪ V ) ↪→R � or a derivation of K, (U ∪ V ) ↪→R V . In
the first case we are done, in the second, we use K,V ↪→R � to conclude.

Proposition 13 (PEIR Completeness). Let A1, . . . , An be closed clausal
propositions and P1, . . . , Pm be closed atomic propositions. If A1, . . . , An �
P1, . . . , Pm has a cut free proof then |A1|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R �.

Proof. By Proposition 2, the sequent A1, . . . , An � P1, . . . , Pm has a closed cut
free proof. By induction on the size of this proof.

– If the last rule is an axiom, then n = m = 1, A1 −→∗
− Q and P1 −→∗

+
Q for an atomic proposition Q. Thus, A1 is atomic, |A1| = A1 and, us-
ing the Reduction, Conversion and Identical Resolution rules, we get
|A1|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R �.

– If the last rule is the left contraction rule, then one of the propositions,
say A1, reduces to propositions B and C and B,C,A2, . . . , An � P1, . . . , Pm
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has a smaller cut free proof. By Proposition 1,
A1, A1, A2, . . . , An � P1, . . . , Pm has a cut free proof of the same size. Thus,
by induction hypothesis, |A1|, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R �.

– If the last rule is the right contraction rule, the argument is the same.
– If the last rule is the left weakening rule, then one of the propositions, say

A1, is erased and the sequent A2, . . . , An � P1, . . . , Pm has a smaller cut
free proof. By induction hypothesis, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R � and
thus |A1|, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R �.

– If the last rule is the right weakening rule, the argument is the same.
– If the last rule is the left rule of the disjunction, then one of the propositions,

say A1, reduces to a disjunction B ∨C and B,A2, . . . , An � P1, . . . , Pm and
C,A2, . . . , An � P1, . . . , Pm have smaller cut free proofs. Thus, A1 is either
a disjunction B′ ∨ C′ or an atomic proposition, in which case |A1| = A1,
and, by Proposition 11, there exists an atomic proposition A′ and a clausal
proposition B′∨C′ such that A1 −→∗− A′ −→− B′∨C′ −→∗− B∨C. In both
cases, we have B′ −→∗

− B and C′ −→∗
− C, by Proposition 1, B′, A2, . . . , An �

P1, . . . , Pm and C′, A2, . . . , An � P1, . . . , Pm have cut free proofs of the same
size, by induction hypothesis, |B′|, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R � and
|C′|, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R � and by Proposition 12,
|B′∨C′|, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R �. In the first case, we have A1 =
B′ ∨ C′ and we are done. In the second, we have A1 −→∗− A′ −→− B′ ∨C′,
thus, with the Conversion and Reduction rules,
|A1|, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R �.

– If the last rule is the left rule of the negation, then one of the propositions, say
A1, reduces to a negation ¬B and A2, . . . , An � B,P1, . . . , Pm has a smaller
cut free proof. Thus, A1 is either a negation ¬B′ or an atomic proposition, in
which case |A1| = A1, and, by Proposition 11, there exists an atomic proposi-
tion A′ and a clausal proposition ¬B′ such that A1 −→∗

− A′ −→− ¬B′ −→∗
−

¬B. In both cases, we have B′ −→∗
+ B, by Proposition 1, A2, . . . , An �

B′, P1, . . . , Pm has a cut free proof of the same size, and, by induction hy-
pothesis, |A2|, . . . , |An|,¬B′,¬P1, . . . ,¬Pm ↪→R �. In the first case, we have
A1 = ¬B′ and we are done. In the second, we have A1 −→∗− A′ −→− ¬B′,
thus, with the Conversion and Reduction rules,
|A1|, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R �.

– If the last rule is the left rule of the universal quantifier, then one of the
propositions, say A1, reduces to a universal proposition ∀x B and
(t/x)B,A2, . . . , An � P1, . . . , Pm has a smaller cut free proof. Thus, A1 is
either a universal proposition ∀x B′ or an atomic proposition, in which case
|A1| = A1, and, by Proposition 11, there exists an atomic proposition A′

and a clausal proposition ∀x B′ such that A1 −→∗
− A′ −→− ∀x B′ −→∗

−
∀x B. In both cases, we have (t/x)B′ −→∗

− (t/x)B, by Proposition 1,
(t/x)B′, A2, . . . , An � P1, . . . , Pm has a cut free proof of the same size, by in-
duction hypothesis, |(t/x)B′|, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R � and with
the Instantiation rule, |∀x B′|, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R �. In the
first case, we have A1 = ∀x B′ and we are done. In the second, we have
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A1 −→∗
− A′ −→− ∀x B′, thus, with the Conversion and Reduction rules,

|A1|, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R �.
– If the last rule is the right rule of the negation, then one of the propositions,

say P1, reduces to a negation ¬B and B,A1, . . . , An � P2, . . . , Pm has a
smaller cut free proof. By Proposition 11, there exists an atomic proposition
P ′ and a clausal proposition B′ such that P1 −→∗

+ P ′ −→+ ¬B′ −→∗
+ ¬B.

Thus B′ −→∗− B, by Proposition 1, B′, A1, . . . , An � P2, . . . , Pm has a cut
free proof of the same size, and, by induction hypothesis,
|B′|, |A1|, . . . , |An|,¬P2, . . . ,¬Pm ↪→R �. We have P1 −→∗

+ P ′ −→+ ¬B′,
thus, with the Conversion and Reduction rules,
|A1|, |A2|, . . . , |An|,¬P1, . . . ,¬Pm ↪→R �.

We now lift the soundness and completeness results from the PEIR method to
Polarized resolution modulo.

Definition 11 (Instance). An instance of a constrained clause U [C] is a clause
θU where θ is a unifier of C.

Proposition 14. If the constrained clause ψ is derived with the Resolution
rule from the renamings of two constrained clauses φ1 and φ2, then any instance
of ψ is derived in the PEIR system from instances of φ1 and φ2.

Proof. Let (V1, P1, . . . , Pn)[C1] and (V2,¬Q1, . . . ,¬Qp)[C2] be the renamings of
φ1 and φ2 used to derive ψ. Then, ψ = (V1 ∪ V2)[C1 ∪ C2 ∪ {P1 = . . . = Pn =
Q1 = . . . = Qp}]. Any instance of ψ has the form θ(V1 ∪ V2) for some unifier θ
of C1 ∪C2 ∪{P1 = . . . = Pn = Q1 = . . . = Qm}. The substitution θ is a unifier of
C1, thus θ(V1, P1, . . . , Pn) is an instance of (V1, P1, . . . , Pn)[C1], hence it is also
an instance of φ1. In the same way and θ(V2,¬Q1, . . . ,¬Qp) is an instance of
φ2. And θ(V1 ∪ V2) is derived from these two clauses with the Conversion and
Identical Resolution rules.

Proposition 15. If the constrained clause ψ is derived with the Extended
Narrowing rule from the renaming of a constrained clause φ, then any instance
of ψ is derived in the PEIR system from an instance of φ.

Proof. If the Extended Narrowing rule applied is the negative one, then let
(V1, P )[C] be the renaming of φ and V2,¬Q be the renaming of the one-way
clause of R used to derive ψ. We have ψ = (V1 ∪V2)[C ∪{P = Q}]. Any instance
of ψ has the form θ(V1 ∪V2) for some unifier θ of C ∪{P = Q}. The substitution
θ is a unifier of C, thus θ(V1, P ) is an instance of (V1, P )[C] hence it is also an
instance of φ. There exists a proposition A such that θQ −→ A and |A| = θV2,
thus θ(V1∪V2) is derived from this clause with the Conversion and Reduction
rules. We proceed in the same way for the positive Extended Narrowing rule.

Proposition 16 (Soundness). Let U1, . . . Un be clauses. If U1[∅], . . . , Un[∅]
�→R �[C] where C is a unifiable set of constraints. Then, U1, . . . , Un ↪→R �.

Proof. Let K = {U1, . . . Un} and Φ = {U1[∅], . . . , Un[∅]}. With a simple induc-
tion on the structure of derivations and using Propositions 14 and 15, we get
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that if ψ is a constrained clause such that Φ �→R ψ and U is an instance of ψ,
then there exists a set L of instances of clauses of Φ such that L ↪→R U . Then,
as C is unifiable, the clause � is an instance of �[C], thus there exists a set L
of instances of clauses of Φ, such that L ↪→R �. As each element of L can be
obtained from a clause of K with the Instantiation rule, we get K ↪→R �.

Proposition 17. If the clause V is derived with the Identical Resolution
rule from clauses U1 and U2, E-equivalent to instances of constrained clauses φ1
and φ2, then V is E-equivalent to an instance of a constrained clause derived in
Polarized resolution modulo from renamings of φ1 and φ2.

Proof. As the Identical Resolution rule applies to U1 and U2 we have U1 =
(U ′

1, P ) and U2 = (U ′
2,¬P ), and V = U ′

1 ∪ U ′
2. Consider two renamings W1[C1]

and W2[C2] of φ1 and φ2. The clauses U1 and U2 are instance of W1[C1] and
W2[C2], thus there exist two domain-disjoint unifiers θ1 and θ2 of C1 and C2,
such that θ1W1 =E (U ′

1, P ) and θ2W2 =E (U ′
2,¬P ). The substitution θ = θ1 ∪ θ2

is a unifier of C1 ∪C2 and we have θW1 =E (U ′
1, P ) and θW2 =E (U ′

2,¬P ). Thus,
the clause W1 has the form W ′

1, P1, . . . , Pn and the clause W2 has the form
W ′

2,¬Q1, . . . ,¬Qp with θW ′
1 =E U ′

1, θW
′
2 =E U ′

2, θPi =E P and θQj =E P . The
Resolution rule applies to W1[C1] and W2[C2] and derives the constrained clause
ψ = (W ′

1 ∪W ′
2)[C1 ∪ C2 ∪ {P1 = . . . = Pn = Q1 = . . . = Qp}]. The substitution

θ is a unifier of the constraints of this clause and V = U ′
1 ∪ U ′

2 =E θ(W ′
1 ∪W ′

2).
Thus V is E-equivalent to an instance of ψ.

Proposition 18. If the clause V is derived with the Reduction rule from a
clause U , E-equivalent to an instance of a constrained clause φ, then V is E-
equivalent to an instance of a constrained clause derived in Polarized resolution
modulo from a renaming of φ.

Proof. If the Reduction rule applied is negative, we have U = (U ′, P ), and there
is a negative rule Q −→ A in R and a substitution σ such that P = σQ, V =
U ′∪|σA|. Taking the variables bound in A out of the domain of σ, we have |σA| =
σ|A|. Let Z = |A|. The clause (Z,¬Q) is a one-way clause of R, P = σQ and
V = U ′ ∪ σZ. Consider a renaming W [C] of φ with fresh variables. There exists
a unifier θ0 of C such that θ0W =E (U ′, P ). Thus, the clause W has the form
W ′, P ′

1, . . . , P
′
n and θ0W

′ =E U ′ and θ0P
′
i =E P . Let (Z1,¬Q1), ..., (Zn,¬Qn)

be n renamings of the one-way clause (Z,¬Q) and θ1, ..., θn be domain-disjoint
substitutions such that θiQi = σQ and θiZi = σZ. Let θ = θ0 ∪ θ1 ∪ ...∪ θn, θ is
a unifier of C, θW ′ =E U ′, θP ′

i =E P , θQi = σQ = P and θZi = σZ. Applying
the Extended Narrowing rule n times to W [C] yields the constrained clause
ψ = (W ′ ∪ Z1 ∪ ... ∪ Zn)[C ∪ {P1 = Q1, . . . , Pn = Qn}]. The substitution θ is a
unifier of the constraints of ψ and V = U ′ ∪ σZ =E θ(W ′ ∪ Z1 ∪ ... ∪ Zn). We
proceed in the same way for the positive Reduction rule.

Proposition 19 (Completeness). Let U1, . . . , Un be clauses. If U1, . . . , Un

↪→R � then U1[∅], . . . , Un[∅] �→R �[C], where C is a unifiable set of constraints.
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Proof. Let K = {U1, . . . , Un} and Φ = {U1[∅], . . . , Un[∅]}. With a simple induc-
tion on the structure of derivations and with Propositions 17 and 18, we prove
that if K ↪→R U then there exists a constrained clause ψ such that Φ �→R ψ
and U is E-equivalent to an instance of ψ. Then, if K ↪→R � then there exists a
constrained clause ψ such that Φ �→R ψ and � is E-equivalent to an instance of
ψ. Thus ψ = �[C] where C is a unifiable set of constraints.

Theorem 1. Let A1, . . . , An be closed clausal propositions. Then |A1|[∅], . . . ,
|An|[∅] �→R �[C] for C unifiable if and only if A1, . . . , An � has a cut free proof
modulo R.

Proof. From Propositions 10, 13, 16, and 19.
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Abstract. We introduce a simple logic that allows to quantify over
the subobjects of a categorical object. We subsequently show that, for
the category of graphs, this logic is equally expressive as second-order
monadic graph logic (msogl). Furthermore we show that for the more
general setting of hereditary pushout categories, a class of categories
closely related to adhesive categories, we can recover Courcelle’s result
that every msogl-expressible property is recognizable. This is done by
giving an inductive translation of formulas of our logic into so-called
automaton functors which accept recognizable languages of cospans.

1 Introduction

Regular languages have been studied extensively in computer science and have a
large number of applications, such as model checking [3] and termination analy-
sis [10]. The notions of regularity and finite automata can be straightforwardly
generalized to trees and tree automata, opening the possibility to define regular
tree languages and exploit the convenient closure properties that these languages
enjoy. In recent years, the success of regular languages has sparked interest in ob-
taining a similar notion for other classes of object, in particular graphs. Courcelle
has focused on the notion of recognizability – which is equivalent to regularity in
the case of word languages – in an algebra of graphs with interfaces. It turns out
that recognizable graph languages in this setting can be characterized by locally
finite congruences. Bozapalidis and Kalampakas explored a similar character-
ization based on magmoids [4]. The authors of this paper defined automaton
functors to investigate recognizability in a more category theoretic setting [6].

A common disadvantage of the approaches above, is that it is in general not
possible to describe a recognizable graph language in a finite way, because the
size of the interface of a graph is in principle unbounded. Several solutions for
this problem have been developed, such as monadic second-order graph logic
[7] and graph automata [5]. In both cases, the class of languages described is a
proper subclass of the class of all recognizable graph languages.

In this paper, we develop a logic, similar to monadic second-order graph logic,
which describes properties of objects in a category. We show that – under some
assumptions on the underlying category – every language describable by the logic
is recognizable (the converse does not hold) and that in the category of graphs
our logic has the same expressive power as Courcelle’s monadic second-order
graph logic. This work extends the work of Courcelle in two aspects: First, we
generalize the monadic second-order graph logic of Courcelle to arbitrary cat-
egories. Second, we prove, for hereditary pushout categories in which for each

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 197–212, 2010.
c© IFIP International Federation for Information Processing 2010
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composable pair of arrows there exist finitely many pushout complements (up to
isomorphism), that each language described by a logic formula is recognizable.
We do this by giving an inductive construction (on the structure of the formula),
which is more convenient in practice than the construction given by Courcelle
in [7]. However, another inductive construction has recently been developed in-
dependently from our work [9].

The paper is organized as follows: In §2 we give preliminary definitions and fix
notation. In §3 we present the syntax and semantics of the logic on subobjects.
We continue in §4 to compare the logic to monadic second-order graph logic, and
show that, in the category of hypergraphs, the expressive power of our logic and
monadic second-order logic are the same. Finally, in §5, we show, by constructing
automaton functors from logic formulas, that all languages definable by the logic
on subobjects are recognizable, and in §6 an example of the translation is given.

2 Preliminaries

We assume a basic familiarity with category theory. In the following we fix a cat-
egory C. For a morphism f : A→ B we denote by dom(f) = A the domain and
by cod(f) = B the codomain of f . When f and g are (composable) morphisms,
we write f ; g for the morphism f postcomposed with g, that is f ; g = g ◦ f .

Let f : A � T and g : B � T be monos with the same codomain T . We write
f ! g if there exists an arrow h : A→ B (which is necessarily unique) such that
h ; f = g. The subobject lattice Sub(T ) of an object T is formed by isomor-
phism classes of monos with codomain T , where ! forms the inclusion order. (In
practice, we will take unique representatives of the isomorphism classes.)

In the second half of this paper, we will restrict our attention to so-called
hereditary pushout categories (hpcs) [13], which are related to the well-known
adhesive categories [15]. Most adhesive categories are also hpc, including all
topoi. In particular, the categories Set of sets and Graph of hypergraphs (see
page 199) are hpc. A category C is a hpc if

1. C has pushouts along monos;
2. C has all pullbacks;
3. given a cube diagram as shown on the right, where a, b

and c are monos, the bottom face is a pushout and the
back faces are pullbacks, we have that the top face is a
pushout if and only if the front faces are pullbacks and
d is a mono.

B
A

C
D

B′
A′

C′
D′

b

a

c

d

Different from adhesive categories the vertical arrows in the cube must be mono,
instead of one of the arrows in the lower square.

In [6], the authors of the present paper defined recognizable languages of
arrows by means of finite automaton functors1 (compare also with a similar
notion introduced by Griffing [11]). Let Rel be the category which has sets as
objects and relations between sets as arrows.
1 What we call finite automaton functor here, is simply called automaton functor

in [6].
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Definition 2.1 (Recognizability). Let C be a category. An automaton func-
tor is a functor A : C → Rel which maps each object X of C is to a set
A(X) (called the set of states of X) and each arrow f : X → Y to a relation
A(f) ⊆ A(X)×A(Y ). Additionally, each state set A(X) contains a distinguished
set of start states and a distinguished set of final states as subsets.

An automaton functor is finite if every set in the image of A is finite, and
deterministic if every relation A(f) is functional and every state set contains
exactly one initial state.

Let J,K be two C-objects. The (J,K)-language LJ,K(A) (of arrows from J
to K) is defined as follows: f : J → K is contained in LJ,K(A) if and only if
A(f) relates a start state of A(J) to a final state of A(K).

A language LJ,K of arrows from J to K is recognizable in C if it is the
(J,K)-language of a finite automaton functor A : C → Rel.

This notion of recognizable language is a generalization of finite automata for
word languages. If we take C as a one-object category with all words as arrows
(the free monoid of the alphabet), then a finite automaton is isomorphic to an
automaton functor (mapping the single object to the state set of the automaton
and each arrow to its respective transition relation).

The intuition behind the definition is to have a mapping into a (finite) domain
that respects compositionality and identities, that is, which is a functor. The
functor property ensures that decomposing the arrow in different ways does not
affect acceptance in any way. This is different from the case of words where there
is essentially only one way to decompose a word into atomic components.

Let C be a category with pushouts. A cospan c : D −cL	 E 
cR− F is a pair of
C-arrows with the same codomain. Here, D and F are the domain (or inner
interface) and codomain (or outer interface) of the cospan c, respectively. The
identity cospan for an object E is the cospan consisting of twice the identity
arrow of E. Let c : D −cL	 E 
cR− F and d : F −dL	 G 
dR− H be cospans
(where the codomain of c equals the domain of d). The composition of c and d
is obtained by taking the pushout of cR and dL.

A semi-abstract cospan is an equivalence class of cospans, where we take the
middle object of the cospan up to isomorphism. (In practice, we will choose
unique representatives from each isomorphism class.)

Now, the category Cospan(C) is defined as the category which has the objects
of C as objects, and semi-abstract cospans as arrows. In [6] we have shown that
Courcelle’s notion of recognizable graph language [7,8] coincides with our notion
of recognizability in the category of cospans of graphs when we consider cospans
of the form ∅ → G← ∅.

For the comparison with the monadic second-order logic of Courcelle, and for
most examples, we introduce a category of hypergraphs (just called graphs in
the following). Fix a signature Σ of labels, each element A of which has an arity
ar(A). A graph is a tuple G = 〈VG, EG, attG, labG〉, consisting of a set VG of
vertices (or nodes), a set EG of edges, an attachment function attG : EG → V ∗

G

and a labeling function labG : EG → Σ, such that for each e ∈ EG it holds that
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|attG(e)| = ar (lab(e)). (Here, A∗ is the set of finite sequences over A, and |a|
denotes the length of a sequence a.) A graph is discrete if it has no edges. A
graph morphism is a structure preserving map between graphs. The category
Graph is the category of finite graphs and graph morphisms.

We define the following “special” graphs and morphisms: The graph Disk is
the discrete graph with node set {1, . . . , k}. Furthermore, for each A ∈ Σ, we
define the graph EA, consisting of a single A-labelled edge and adjacent (pairwise
unequal) nodes, and the morphisms ei

A : Dis1 → EA mapping the single node
in Dis1 to the node connected to the i-th port of the single edge e ∈ EA (that
is, to the ith node of attEA(e)). Furthermore, we define EpiA to be the set of
epimorphisms with domain EA, up to isomorphism (in the case of Graph this
set is finite).

For the examples, we will usually consider unlabeled, directed (multi)graphs,
i.e. we take take Σ = {�}, with ar (�) = 2. We define E = E� to be the graph
consisting of a single (directed) edge connecting two nodes, and morphisms src =
e0

� and tgt = e1
�, mapping the node of Dis1 to the source and the target of the

edge in E, respectively.

3 A Logic on Subobjects

In this section we introduce the syntax and semantics of the logic for a fixed
category C. The logic will be used to describe properties of objects of C.

Syntax. Let Var be a (countably infinite) set of variables. A variable typing is a
partial map τ : Var ⇀ Obj (C)∪{Ω}. There are two kinds of variables: first-order
variables of sort T (where T is an arbitrary object of C), representing subobjects
of fixed structure, and second-order variables of sort Ω, representing arbitrary
subobjects.2 Unless otherwise indicated, first-order variables are denoted by low-
ercase letters (x, y, z) and second-order variables by capitals (X,Y, Z).

Subobject expressions are generated by the grammar e := X | f � x, where
X is of sort Ω, x is of sort T and f : T ′ � T is a mono. We then say that the
expression f � x is of sort T ′. (Intuitively f restricts the graph denoted by x to
a subgraph T ′.) Variables of sort Ω cannot be precomposed with monos.

The set Form(τ) of formulas typed by τ is specified by the following grammar:

Form(τ) := e1 ! e2 | Form(τ) ∧ Form(τ) | ¬Form(τ) |
(∃X : Ω)Form(τ [X �→ Ω]) | (∃x : T )Form(τ [x �→ T ]).3

2 Later, in the comparison with msogl, it will become clearer why these types of
variables are called first-order and second-order, respectively.

3 Let f : A → B be a function and let a, b be two elements, which are not necessarily
contained in A or B. Then f [a �→ b] : A∪{a} → B∪{b} denotes the function defined
as follows:

f [a �→ b](a′) =
{

b if a′ = a
f(a′) otherwise



A Logic on Subobjects and Recognizability 201

Note that in a formula of the form e1 ! e2 the two expressions can have arbitrary
sorts. The set of free variables of a formula ϕ, denoted FV (ϕ) is defined as usual.
We also define the abbreviation (x = y) ≡ (x ! y ∧ y ! x). Furthermore, we
use the usual abbreviations for falsity (⊥), disjunction (∨), implication (→) and
universal quantification (∀).
Note that we do not define syntax for defining the morphism f and the object
T in expressions and formulas of the form f � x and (∃ϕ : T ) . The exact syntax
needed for this depends on the category, and falls outside the scope of this paper.

Semantics. Let ϕ be formula typed by variable typing τ and B a C-object. A
B-valuation η for ϕ is a function which assigns:

– to each x ∈ FV (ϕ), with τ(x) = T (where T �= Ω), a mono vx : T � B; and
– to each X ∈ FV (ϕ), with τ(X) = Ω, a mono vX : V � B (where V is

arbitrary).

Now we can define the semantics of formulas of the logic. Let ϕ be a subobject
formula typed by τ and let B be a C-object. We say that B, η |= ϕ, for some
B-valuation η, whenever:

– B, η |= X ! Y if η(X) ! η(Y ).
– B, η |= f � x ! g � y if f ; η(x) ! g ; η(y).
– B, η |= f � x ! Y if f ; η(x) ! η(Y ).
– B, η |= X ! g � y if η(X) ! g ; η(y).
– B, η |= ϕ1 ∧ ϕ2 if B, η |= ϕ1 and B, η |= ϕ2.
– B, η |= ¬ϕ if B, η �|= ϕ.
– B, η |= (∃x : T )ϕ if there is a mono v : T � D such that B, η[x �→ v] |= ϕ.
– B, η |= (∃X : Ω)ϕ if there is a mono v : V � D such that B, η[X �→ v] |= ϕ.

Furthermore, for a closed formula ϕ, we write B |= ϕ whenever B, η |= ϕ for the
empty valuation η. Note that this definition works for any category. However the
results of §5 (translation of formulas into automaton functors) will only be valid
for hereditary pushout categories (which satisfy some additional conditions).

Examples. In an arbitrary category C we can define the following formula:

– The join of two expressions:
(e = e1  e2) := e1 ! e ∧ e2 ! e ∧ (∀X : Ω)

(
(e1 ! X ∧ e2 ! X) → e ! X

)
.

In the next examples we will use the category of unlabeled directed graphs, as
presented on page 200.

– The subgraph X is closed under reachability:
RC (X : Ω) := (∀y : E) (src � y ! X → tgt � y ! X)

– There exists a path from node x to node y (every reachability closed subgraph
containing x also contains y):
Path(x, y : Dis1) := (∀Z : Ω)

(
(id � x ! Z ∧ RC (Z)) → id � y ! Z

)
.
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4 Comparison to Monadic Second-Order Graph Logic

Consider the category Graph as presented on page 199. We show that for this
category the logic on subobjects has the same expressive power as monadic
second-order graph logic [8,7]. We do this by defining translations from monadic
second-order logic to the logic on subobjects and vice versa, and proving that a
graph satisfies a formula if and only if it satisfies the translation of the formula.

4.1 Monadic Second-Order Graph Logic

First we define monadic second-order graph logic (msogl), mainly in order to fix
notation and terminology. This logic is one of the most important specification
logics for graphs. Especially, Courcelle’s theorem says that every graph property
definable in msogl is decidable in linear time on (finite) graphs of bounded
tree-width.

The msogl is a sorted second-order logic with four kinds of variables: first-
order node variables (range over nodes), first-order edge variables (range over
edges), second-order node variables (range over sets of nodes) and second-order
edge variables (range over sets of edges). As a notational convention, first-order
variables will be denoted by lowercase letters (x, y, z) and second-order variables
by capitals (X,Y, Z). The syntax of msogl is given by the following grammar:

ϕ := ϕ1 ∧ ϕ2 | ¬ϕ | (∃X : V )ϕ | (∃X : E)ϕ | (∃x : v)ϕ | (∃x : e)ϕ |
x = y | x ∈ X | edgeA(x, y1, . . . , yar(A)),

where typing must be respected, that is, in formulas of the form x = y both
variables have the same type and in formulas of the form x ∈ X it holds that x
is a first-order node (edge) variable and X a second-order node (edge) variable.
Formulas of the form edgeA(x, y1, . . . , yar(A)) denote that the edge x has label A
and is adjacent to the nodes y1, . . . , yn.

A graph G = 〈VG, EG, attG, labG〉 satisfies a formula ϕ, written G |= ϕ, if
there exists a valuation θ, mapping first-order variables to nodes and edges of
G and second-order variables to sets of nodes and sets of edges of G, such that
G, θ |= ϕ, where:

– G, θ |= x = y if θ(x) = θ(y) and G, θ |= x ∈ X if θ(x) ∈ θ(X).
– G, θ |= edgeA(x, y1, . . . , yn) if labG(θ(x))= A and attG(θ(x))= θ(y1) . . . θ(yn).
– G, θ |= ϕ1 ∧ ϕ2 if G, θ |= ϕ1 and G, θ |= ϕ2.
– G, θ |= ¬ϕ if G, θ �|= ϕ.
– G, θ |= (∃x : v)ϕ if there is a v′ ∈ VG such that G, θ[x �→ v′] |= ϕ.
– G, θ |= (∃x : e)ϕ if there is a e′ ∈ EG such that G, θ[x �→ e′] |= ϕ.
– G, θ |= (∃X : V )ϕ if there is a V ⊆ VG such that G, θ[X �→ V ] |= ϕ.
– G, θ |= (∃X : E)ϕ if there is a E ⊆ EG such that G, θ[X �→ E] |= ϕ.

In [7] an extension to monadic second-order logic is presented which also con-
siders cardinality constraints of the form cardn,p(X), expressing that the set
represented by X contains n elements modulo p, which are omitted here for sim-
plicity. It is currently not entirely clear to us how to integrate a similar predicate
into the logic on subobjects in a natural way.
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4.2 From Monadic Second-Order Logic to the Logic on Subobjects

We define a translation [[·]]S from formulas of msogl to formulas of the logic on
subobjects. For this, we define an edge typing as a map ζ from first-order edge
variables (labelled with A) to epimorphisms (with domain EA). We define the
translation function [[ϕ]]S = [[ϕ]]∅S where, for an edge typing ζ, [[ϕ]]ζS is inductively
defined as follows:

[[¬ϕ]]ζS := ¬[[ϕ]]ζS [[x = y]]ζS := x = y

[[ϕ ∧ ψ]]ζS := [[ϕ]]ζS ∧ [[ψ]]ζS [[x ∈ X ]]ζS := x ! X

[[(∃X : V )ϕ]]ζS := (∃X : Ω) [[ϕ]]ζS [[(∃x : v)ϕ]]ζS := (∃x : Dis1) [[ϕ]]ζS
[[(∃X : E)ϕ]]ζS := (∃X : Ω) [[ϕ]]ζS [[(∃x : e)ϕ]]ζS :=

∨
A∈ζ

∨
f∈EpiA

(∃x : cod(f)) [[ϕ]]ζ[x 	→f ]
S

[[edgeA(x, y1, . . . , yn)]]ζS :=
{∧

1≤i≤ar(A) (ei
A ; ζ(x)) � x = yi if dom(ζ(x)) = EA

⊥ otherwise.

Proposition 4.1. Let G be a graph, and ϕ a closed formula of monadic second
order logic. Then G |=M ϕ if and only if G |= [[ϕ]]S.

4.3 From the Logic on Subobjects to Monadic Second-Order Logic

We define a translation [[·]]M from formulas of our logic to formulas of msogl. The
main difference between the two logics is that in our logic, we can quantify over
arbitrary subobjects, while in msogl we can only quantify over nodes, edges, sets
of nodes and sets of edges. Thus, a single quantification in the logic on subobjects
will in general correspond to more than one quantification in msogl. In order
to make sure that the multiple variables in an msogl-formula evaluate to a
possible subobject, we need to express the following two “consistency properties”
as msogl-formulas (the exact definitions of both formulas is left as an exercise
to the reader):

– Let T be a graph and f : X → (VT ∪ ET ) a bijection between first-order
variables and nodes and edges of T . The formula structf (T ) expresses that
the nodes and edges assigned to the variables in the codomain of f build a
graph isomorphic to T .

– Let XV be a second-order node variable and XE a second-order edge variable.
The formula cons(XE , XV ) expresses that all nodes adjacent to an edge in
XE must be in XV .

A variable mapping ξ is a function which maps:

– each free first-order variable x of type T in the formula over subobjects
to a bijection from a subset of first-order node and edge variables in the
msogl-formula to the nodes and edges of T , and
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– each free second-order variable X of the source formula to a pair of a second-
order node and a second-order edge variable in the target formula.

Now, we define [[ϕ]]M = [[ϕ]]∅M, where [[ϕ]]ξM, parametrized by a variable mapping
ξ, is inductively defined as follows:

[[¬ϕ]]ξM := ¬[[ϕ]]ξM
[[ϕ ∧ ψ]]ξM := [[ϕ]]ξM ∧ [[ψ]]ξM

[[(∃X : Ω)ϕ]]ξM := (∃XE : E) (∃XV : V ) cons(XE , XV ) ∧ [[ϕ]]ξ[X 	→〈XE ,XV 〉]
M

where XE and XV are fresh variables.

[[(∃x : T )ϕ]]ξM := (∃x1, . . . , xm : e) (∃y1, . . . , yn : v) structξ′(x)(T ) ∧ [[ϕ]]ξ
′

M
where T is a graph with m edges (e1, . . . , em) and n nodes
(v1, . . . , vn), the xi and yi are fresh variables, and

ξ′ := ξ[x �→ {x1 �→ e1, . . . , xm �→ em, y1 �→ v1, . . . , yn �→ vn}].

[[X ! Y ]]ξM := (∀x : e)
(
x ∈ XE → x ∈ YE

)
∧ (∀x : v)

(
x ∈ XV → x ∈ YV

)
where (XE , XV ) := ξ(X) and (YE , YV ) := ξ(Y ).

[[f � x ! X ]]ξM := x1 ∈ XE ∧ · · · ∧ xm ∈ XE ∧ y1 ∈ XV ∧ · · · ∧ yn ∈ XV

where (XE , XV ) := ξ(X),
{x1, . . . , xm} := {u | ∃e : 〈u, f(e)〉 ∈ ξ(x)} and
{y1, . . . , yn} := {w | ∃v : 〈w, f(v)〉 ∈ ξ(x)}.

[[X ! f � x]]ξM := (∀x′ : e)
(
x′ ∈ XE → (x′ = x1 ∨ · · · ∨ x′ = xm)

)
∧

(∀y′ : v)
(
y′ ∈ XV → (y′ = y1 ∨ · · · ∨ y′ = yn)

)
where (XE , XV ) := ξ(X),

{x1, . . . , xm} := {u | ∃e : 〈u, f(e)〉 ∈ ξ(x)} and
{y1, . . . , yn} := {w | ∃v : 〈w, f(v)〉 ∈ ξ(x)}.

[[f � x ! g � x′]]ξM := (x1 = x′
1∨· · ·∨x1 = x′

p)∧· · ·∧(xm = x′
1∨· · ·∨xm = x′

p)∧
(y1 = y′1 ∨ · · · ∨ y1 = y′q) ∧ · · · ∧ (yn = y′1 ∨ · · · ∨ yn = y′q)
where {x1, . . . , xm} := {u | ∃e : 〈u, f(e)〉 ∈ ξ(x)},

{y1, . . . , yn} := {w | ∃v : 〈w, f(v)〉 ∈ ξ(x)},
{x′

1, . . . , x
′
p} := {u | ∃e : 〈u, f(e)〉 ∈ ξ(x′)} and

{y′1, . . . , y′q} := {w | ∃v : 〈w, f(v)〉 ∈ ξ(x′)}.

Proposition 4.2. Let G be a graph, and ϕ a closed formula of the logic on
subobjects. Then G |= ϕ if and only if G |=M [[ϕ]]M.

5 Logic and Recognizability

In this section we prove a generalization of Courcelle’s result which says that
every language definable in monadic second-order graph logic is recognizable
[7,8]: we show that every language of objects of a hereditary pushout category
definable by our logic is recognizable in the sense described in [6], by giving
an encoding of a formula into an automaton functor. The resulting automaton
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functor is finite if the category enjoys the property that each composable pair
of arrows has finitely many pushout complements (up to isomorphism). In order
to be able to use structural induction on the logical formula, we need objects
which keep track of the free variables. To this end we introduce a category of
objects with valuations.

We fix a hereditary pushout category C with an initial object 0.4

Definition 5.1 (Object with valuation). Let τ be a variable typing. An ob-
ject with valuation (short: V-object) of type τ is a triple D = 〈BD, ηD, σD〉,
where

– BD (the base object) is a C-object;
– ηD maps each variable x for which τ(x) is defined to a mono ηD(x) : V D

x �
BD (the valuation morphism); and

– σD maps each variable x for which τ(x) is defined and τ(x) �= Ω to an arrow
σD(x) : V D

x → τ(x) (the typing morphism).

We say that D is well-typed whenever all arrows σD(x) are identities.

Let τ be defined only on the variables x1, . . . , xn

and Y1, . . . , Ym, with τ(xi) = Ti and τ(Yj) = Ω
(for 1 ≤ i ≤ n and 1 ≤ j ≤ m). Then a V-object of
type τ is a diagram as shown on the right (where
ti = σD(xi), vi = ηD(xi) and wj = ηD(Yj)).
Note that if D is well-typed (all typing morphisms
are identities), ηD corresponds exactly to a valua-
tion (see §3). For the translation we need to allow BD

V D
x1

V D
xn

V D
Y1

V D
Ym

T1 Tn

· · · · · ·

· · ·
t1 tn

v1

vn w1
wm

typing morphisms which are not identities, however, because some objects of the
category may not contain the type in its entirety.

We introduce the following operators for diagram extension and restriction.
Let D = 〈BD, ηD, σD〉 be a V-object of type τ . By dropx(D) we denote the V-
object of type τ |Var\{x} from which the morphisms and objects associated to x
have been dropped. Furthermore, let v : V � BD and t : V � T be given. Then
addv

y(D) = 〈BD, ηD[y �→ v], σD〉 denotes the V-object of type τ [y �→ Ω], which
is obtained by adding the arrow v (indexed by y) to D. Similarly, addv,t

y (D) =
〈BD, ηD[y �→ v], σD[y �→ t]〉 denotes the V-object of type τ [y �→ T ] which is
obtained by adding the arrows v and t (indexed by y).

We consider the following category of objects with vertical interfaces, some of
which might be typed.

Definition 5.2 (Category of objects with valuations). Let τ be a variable
typing. We define the category VC

τ (or simply Vτ ) as follows.
The objects of VC

τ are the objects with valuation of type τ (see Def. 5.1). An
arrow p : D → E of VC

τ consists of C-arrows αp : BD → BE and νp
x : ηD(x) →

4 We require an initial object since we want to convert an arbitrary object A into
the corresponding cospan 0 → A ← 0. Then the automaton functor recognizes such
cospans by “starting” and “ending” with the initial object.
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ηE(x) (for each x ∈ Var such that τ(x) is defined) such that the square below is
a pullback and the triangle commutes (whenever τ(x) �= Ω):

BD

V D
x

BE

V E
x

(pb)

αp

νp
x

ηD(x) ηE(x)

τ(x)

V D
x V E

x

σD(x) σD(x)

νz
x

The two diagrams above specify the following: the valuation morphisms of D can
be obtained from the valuation morphisms of E by taking a pullback (if αp is
mono this is simply some form of restriction). Furthermore the typing morphisms
must be consistent.

We will consider (semi-abstract) cospans over VC
τ , i.e., we will work with the

category Cospan(VC
τ ). Note that due to Property 3 on page 198 pushouts in VC

τ

– and hence cospan composition in Cospan(VC
τ ) – can be computed component-

wise by taking pushouts of all the component morphisms and obtaining the
morphisms of the resulting diagram as mediating morphisms. In the initial object
0 all objects (apart from the τ(x)) are the initial objects of C. We extend the
operation dropx to VC

τ -cospans in the straightforward way.
Given a Vτ -object D = 〈BD, ηD, σD〉 and a variable x such that τ(x) is

defined, we define the selection morphism selDx (in the case that τ(x) �= Ω
parametrized by a morphism f : V D

x → τ(x)) as follows:

– Suppose τ(x) �= Ω. Let f : S � τ(x). We take the
pullback of σD(x) and f , and obtain an object U and
arrows U → S and g : U → V D

x (see the diagram on the
right). Now we take selDf,x := g ; vD

x .
– Suppose τ(x) = Ω. Then we simply take selDx := ηD(x). BD

V D
x τ(x)

U S

ηD(x)

σD(x)

g f

selDf,x

(pb)

We extend the definition of selection morphism to expressions of subobject logic
in the obvious way, i.e. selDf�x := selDf,x.

We will now present an inductive encoding that takes a formula ϕ ∈ Form(τ)
and translates it into an automaton functor Aϕ

τ (or simply A) for the cate-
gory Cospan(VC

τ ). The definition is divided into four subcases: atomic formulas,
boolean operations, first-order quantification and second-order quantification.

Atomic formulas: Suppose ϕ ≡ e1 ! e2. Since the variables contained in e1, e2
are free and hence the corresponding vertical interfaces are present, it is enough
to just check inclusion of those interfaces. This information is recorded in just
one state � and we produce the empty relation whenever inclusion fails.

Formally, we define the automaton functor Aϕ
τ as follows. To each object D,

Aϕ
τ assigns the one-element set {�} if selDe1

! selDe2
(where � is the initial as well

as the final state), and the empty set otherwise.
For a cospan c : D −l	E 
r− F we define Aϕ

τ (c) = C(l) ; C(r)−1, where, for a
Vτ -arrow p : D1 → D2, we define
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C(p) :=

{
id{�} if selD2

e1
! selD2

e2

∅ otherwise.

Here, id{�} refers to the identity relation on {�} and ∅ to the empty relation. Note
that the empty relation is the identity relation on the empty set, i.e. id∅ = ∅.

Boolean operations: Suppose ϕ ≡ ϕ1 ∧ ϕ2 or ϕ ≡ ¬ϕ. In this case compute
the automaton functors for the subformulas and apply the standard techniques
for intersection or complement to the automaton functors (due to a result of [6]
these operations can be performed on all automaton functors, independent of
the category). In the latter case (negation/complement) it is necessary to first
construct the equivalent deterministic automaton functor.

Second-order quantification: Since the second-order quantification case is
much simpler than the first-order case, we present it first. Suppose ϕ ≡ (∃X : Ω)
ϕ′. Let A′ := Aϕ′

τ ′ , where τ ′ = τ [X �→ Ω], be the automaton functor constructed
for ϕ′.

The domain of the automaton functor for the subformula ϕ′ is a category
of objects with an additional vertical interface. The automaton functor for ϕ
works in the following way: non-deterministically, a satisfying assignment for X
is chosen and then it behaves like the automaton functor for ϕ′.

The automaton functor A for ϕ is formally defined as follows:

A(D) =
⋃

v∈Sub(BD)

A′(addv
X(D)) × {v},

where v ∈ Sub(BD) means that v ranges over representatives of isomorphism
classes of monos into BD. To a cospan c : D−l	E 
r−F we assign the following
relation A(c) ⊆ A(D)×A(F ): 〈q, vD〉 is in relation with 〈q′, vF 〉 whenever there
exists a cospan

c′ : addvD

X (D) → E′ ← addvF

X (F )

of type τ ′ such that dropX(c′) = c and 〈q, q′〉 ∈ A′(c′).
Finally, a state 〈q, v〉 is initial (final) if and only if q is initial (final).

First-order quantification: Suppose ϕ ≡ (∃x : T )ϕ′. Let A′ := Aϕ′
τ ′ , where

τ ′ = τ [x �→ T ], be the automaton functor constructed for ϕ′.
As in the case of second-order quantification, we non-deterministically choose

a satisfying assignment for x. This time, however, we have to track how much
of the sought after subobject (T ) has already been recognized (see explanation
below).

We define the new automaton functor Aϕ
τ as follows:

Aϕ
τ (D) =

⋃
(v : V →BD)∈Sub(BD),

(t : V →T )

A′(addv,t
x (D)) × {〈v, t1, t2〉 | t = t1; t2, poc exists},
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where, by “poc exists” we mean that there exists arrows s1, s2 such that t1; t2 =
s1; s2 and the four arrows form a pushout. In the cases of v and the decomposition
t1 ; t2 we actually take representatives of the respective isomorphism classes.

To a cospan c : D −l	 E 
r− F we assign the following relation Aϕ
τ (c) ⊆

Aϕ
τ (D)×Aϕ

τ (F ): 〈q, vD, tD1 , tD2 〉 is in relation with 〈q′, vF , tF1 , t
F
2 〉 whenever c can

be extended to a cospan

c′ : addvD ,(tD
1 ;tD

2 )
x (D) l′−→ addvE ,tE

x (E) r′
←− addvF ,(tF

1 ;tF
2 )

x (F ),

satisfying the following conditions:

– 〈q, q′〉 ∈ A′(c′) and
– we have the commuting diagram below (on the left), where V F is the pushout

object of tD1 and νl′ .

BD

V D

BE

V E

BF

V F

V D V F

T

αl′

νl′

αr′

νr′

vD vE vF

tD
1

tD
2

tF
1

tF
2

tE

V F

T
V F

FD E

V E

A state 〈q, v, t1, t2〉 is initial if and only if q is initial and t1 is an identity. It
is final if and only if q is final and the arrow t2 is an identity.

The intuition behind the diagram above is the following: we are tracking an
object of type T , while we are reading the “complete” object step by step. The
vertical interface V F (with mono vF ) denotes the part of the outer interface
that corresponds to this object. On the other hand V F (with mapping tF2 into
the type T ) tells which part of the object we have already seen. Finally tF1
relates the part which is currently in the (outer) interface to the part we have
already seen (see image above, on the right). Similar explanations can be given
for vD, tD1 and tD2 . Finally, V F is obtained from V D by gluing those (new) parts
of the tracked object that have been seen in the current cospan, namely V E .
(Additional intuition is provided by the example in §6).

Proposition 5.3. Aϕ
τ , constructed for a formula ϕ and a typing τ as described

above, is a functor, that is, it preserves identities and composition.

Theorem 5.4. Let ϕ be a formula, let τ be a typing and let D = 〈BD, ηD, σD〉 be
a well-typed V-object of type τ . Then BD, ηD |= ϕ if and only if D is contained
in the (0, 0)-language of Aϕ

τ , that is, if there exists an initial state i0 and a
final state f0 with 〈i0, f0〉 ∈ Aϕ

τ (c), where c is the unique cospan of the form
0 → D ← 0.
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Finiteness. Note that so far we did not impose any restrictions on the finiteness
of the state sets. For this we first require that the objects in our category are
finite in the sense that they contain only finitely many subobjects. In the case
of graphs that would be the finite graphs and in the case of sets the finite sets.

However, in addition we need another requirement: in the encoding of first-
order quantification we split a given arrow t into t = t1; t2 such that all pushout
complements for this split exist. In order to guarantee finiteness it is hence
also necessary that a given arrow t only admits finitely many such splits up to
isomorphism.

It is currently not clear to us how subobject finiteness is related to the con-
dition of having finitely many pushout complement splits. Clearly the latter
property implies the former, but the other direction is unclear. In any case, the
category Graph satisfies both requirements.

6 Detailed Example

As an example, we consider (in the category of cospans of unlabeled directed
graphs) the translation into an automaton functor of the formula

¬RC (X) ≡ (∃y : E)
(
src � y ! X ∧ ¬(tgt � y ! X)

)
,

which expresses that the subgraph X is not closed under reachability.
The automaton functor for the atomic formula ϕ2 := tgt � y ! X maps each

graph, in which the target of edge y does not lie in X , to the empty set, and
all other graphs to the state set {�}. It maps a cospan to id{�} if the above also
holds for the middle object of the cospan. The automaton functor of the other
atomic formula, ϕ1 := src � y ! X , is built analogously.

To calculate the negation of ϕ2, we must first make its automaton functor
deterministic by means of the powerset construction (see [6]). Graphs are now
mapped to either the state set {∅, {�}} (where {�} is initial as well as final) or
the state set {∅} (no initial or final states), and cospans are mapped accordingly.
After the negation, final and non-final states are swapped.

To construct the automaton functor for ϕ1∧¬ϕ2, we use a Cartesian product
construction. In the rest of the example, we will restrict our attention to an
object D′ with Aϕ1(D′) = {�} and A¬ϕ2(D′) = {∅, {�}}. For this object D′

we have that Aϕ1∧¬ϕ2(D′) =
{
〈{�}, ∅〉, 〈{�}, {�}〉

}
where 〈{�}, {�}〉 is the initial

and 〈{�}, ∅〉 the final state. By reaching the final state we record that both the
source node of the edge assigned to y is contained in X and the target node is
not contained in X .

Finally, we build an automaton functor A for ϕ ≡ (∃y : E) (ϕ1 ∧¬ϕ2). Recall
that E = ◦ ◦. We obtain a V-object D = dropy(D′). Assume it has base object
BD = Dis2 = ◦ ◦, a two-node discrete graph. States of the new automaton
functor consist of arbitrary monos v : V � BD, allowed decompositions t1, t2
of arbitrary typing morphisms t : V → E, and the states of D extended with
v, t1, t2. Let us list the possible decompositions of the typing morphism for all
22 = 4 possible v into BD:
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– For v : ∅ � BD, there is a single typing morphism,
and two possible decompositions, given by the two
legs of the pushout diagram on the right. The top
leg expresses the situation where no part of the ◦ ◦

◦ ◦

sought after subobject has been encountered yet, whereas the bottom leg
expresses the situation that the entire sought after subobject was already
encountered.

– For v = ◦1 � ◦1 ◦, there are two possible typing morphisms (mapping
the node to the source and the target of the edge, respectively), with two
decompositions each. For v = ◦ 2 � ◦ ◦ 2 , four decompositions are obtained
analogously.5

– Let v = idBD . There are four possible typing mor-
phisms. For t = ◦1 ◦ 2 → ◦1 ◦ 2 there are two
allowed decompositions, which can be read from the
diagram on the right. For t = ◦1 ◦ 2 → ◦1,2 ◦ the

◦1 ◦ 2

◦1 ◦ 2

◦1 ◦ 2

◦1 ◦ 2

allowed decompositions can be read from the pushout diagrams below. Since
two decompositions occur twice, there are four decompositions in total.

◦1 ◦ 2

◦1,2 ◦

◦ 1,2

◦1,2 ◦ ◦1 ◦ 2

◦1,2 ◦

◦1 ◦ 2

◦1,2 ◦ ◦1 ◦ 2

◦1 ◦◦ 2

◦ 1,2

◦1,2 ◦

For t = ◦1 ◦ 2 → ◦2 ◦ 1 and t = ◦1 ◦ 2 → ◦ ◦ 1,2 we symmetrically
obtain five decompositions.

As an example, consider the decomposition ◦1 ◦ 2 → ◦1 ◦ ◦ 2 →
◦1,2 ◦ (the top right in the three diagrams above). This decomposition ex-

presses that both nodes of BD are part of the sought after graph (as source
node), but still need to be merged.

Suppose that for all possible v, t, the object D extended with v, t has the state
set above (2 states). The new automaton functor then has 2 · 20 = 40 states.
Accepting states are the ones which contain an accepting state of the automaton
functor for the subterm, and in which the second part of the decomposition (t2)
is an isomorphism (that is, a subgraph isomorphic to E was found).

The automaton functor works as follows: given a cospan c : D−cL	E
cR−F ,
it non-deterministically chooses what parts of the new information (the parts of
E not in the range of cL) belong to the sought-after type E, and then works the
same as the automaton functor constructed for the subformula.

7 Conclusion and Further Research

We have introduced a logic on subobjects and shown how it is related to monadic
second-order graph logic. Although we are working in a categorical setting our
choice was to focus on a classical logic, quantifying over sets of subobjects,
5 The numbers beside the nodes indicate which nodes are mapped to which.
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and not a categorical logic where the universe is replaced by an object [14,16].
With our current understanding it is not clear to us how to obtain a similar
correspondence of msogl with a categorical logic. For instance, our predicates
on subobjects can not directly be interpreted as subobjects of a product object,
as would be customary for subobject logic. Although our logic falls out of scope
of known categorical logics, we still believe that its intimate connection to msogl

and recognizability makes it an interesting logic to study.
Furthermore it would be interesting to study which kind of equivalences on

objects are induced by the logics in various categories (also in Set). Another
interesting question is to consider in greater detail the relation to the graph
predicates of [17] which are equivalent to first-order graph logic.

Note that although here we focused exclusively on graphs as examples, the
greater generality of the logic allows us to easily talk about all kinds of “graph-
like” structures, such as hierarchical graphs, graphs with scopes, attributed
graphs or graphs with higher-order edges.

We also introduced a procedure for translating formulas of our logic induc-
tively into automaton functors, which are automata for accepting cospans in
hereditary pushout categories, a class of categories which includes all topoi. That
is, we have shown how to convert specifications into algorithms, albeit in a fairly
abstract setting. Other methods for converting msogl-formulas into recognizable
languages which are known to us [7,12] do not follow such an inductive strategy,
but directly specify state sets by forming equivalence classes of logical formulas.
We hope that such an inductive method can help in practice in order to generate
and use automaton functors. In implementations, we can construct the automa-
ton functor only for a restricted set of “atomic” cospans from which all cospans
can be generated by composition. We are especially interested in applications in
verification such as invariant checking [1,2] and termination analysis. Despite the
inductive approach the state sets of automata can still become fairly large, as is
already evident from the detailed example in §6. Our current approach to solve
this problem is to represent automaton functors (which are basically relations)
via binary decision diagrams. Initial experiments have been quite encouraging.

Finally, decomposing a graph into atomic cospans is basically equivalent to
the path decomposition of a graph and checking whether a graph is contained in
the language is hence linear-time for graphs of bounded pathwidth. For efficiency
reasons it would be more suitable to consider generalizations of tree automata
that can handle tree decompositions of graphs, as it is similarly done in the
work by Courcelle. While we think that this should be feasible in principle, we
did not choose to follow this path here since it would have added additional
complexity to the encoding into automaton functors. In the implementation we
will restrict ourselves to discrete interfaces and, out of necessity, to graphs of
bounded pathwidth or treewidth in order to work with finitely many state sets.
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Abstract. We show that the description logic SOQ with number re-
strictions on transitive roles is decidable by a terminating tableau cal-
culus. The language decided by the calculus includes the universal role,
which allows us to internalize TBox axioms. Termination of the system
is achieved through pattern-based blocking.

1 Introduction

Number restrictions on roles are an expressive feature of description logics that
allows to impose counting constraints on the number of objects that are related
via a certain role. Qualified number restrictions [6] correspond to graded modal-
ities [4,3,5] in modal logics. Transitive roles are prominently used in description
logics for representing parthood relationships [21].

Efficient tableau algorithms are available for a wide range of description log-
ics, including logics that contain both transitive roles and number restrictions,
such as SIN [11], SHIF [8,13], SHIQ [12], SHOQ [9], SHOIQ [10], and
SROIQ [7]. In all cases, however, the language is restricted to contain no num-
ber restrictions on complex roles, e.g., on transitive roles, or roles containing
transitive subroles. Although desirable for applications [19], number restrictions
on complex roles lead to undecidability for logics extending SHIN [13]. In the
absence of inverse roles (I), however, the limitation of number restrictions to
simple roles can be significantly relaxed [19]. In particular, the result in [19] im-
plies the decidability of SQ extended by number restrictions on transitive roles.
Obtained via a small model theorem, this decidability result does not yield prac-
tical decision procedures. Nor does it imply the decidability of extensions of SQ
with nominals.

We consider the logic SOQ with number restrictions on transitive roles, and
call it SOQ+. As indicated by its name, SOQ+ extends the basic description
logicALC [23] by primitive transitive roles (S), nominals (O), and qualified num-
ber restrictions (Q), where we allow such restrictions on transitive roles (+). We
show that reasoning in SOQ+ is decidable by giving a terminating tableau cal-
culus for concept satisfiability in SOQ+ extended by the universal role. Having
the universal role in the language allows us to internalize terminological axioms,
reducing reasoning with respect to TBoxes to concept satisfiability [1,22].

� A preliminary version of this work appeared in [17].

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 213–228, 2010.
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For termination, our calculus employs pattern-based blocking. Pattern-based
blocking is introduced in [15,16] for converse-free hybrid logic with global modal-
ities. In [14], the technique is extended to graded logics subsuming SOQ and
SHOQ. To provide a complete treatment of number restrictions on transitive
roles, we extend pattern-based blocking further, incorporating ideas [25,2] used
in tableau systems for propositional dynamic logic and propositional μ-calculus.

2 Preliminaries

Following [15,16,14], our formal presentation is based on simple type theory. No-
tationally, our presentation is based on modal syntax, but can easily be trans-
lated to the traditional DL notation [22]. We start with two base types B and
I. The interpretation of B is fixed and consists of the two truth values. The in-
terpretation of I is a nonempty set whose elements are called individuals. Given
two types σ and τ , the functional type στ is interpreted as the set of all total
functions from the interpretation of σ to that of τ . We write σ1σ2σ3 for σ1(σ2σ3).

We employ three kinds of variables: Nominals x, y, z of type I (we assume
there are infinitely many nominals), propositional variables p, q of type IB, and
role variables r of type IIB. Since the language in question contains no role
expressions other than role variables, we call role variables roles for short. We
use the logical constants ⊥,# : B, ¬ : BB, ∨,∧,→: BBB,

.= : IIB, ∃, ∀ : (IB)B.
Terms are defined as usual. We write st for applications, λx.s for abstractions,
and s1s2s3 for (s1s2)s3. We also use infix notation, e.g., s ∧ t for (∧)st.

Terms of type B are called formulas. We employ some common notational
conventions: ∃x.s for ∃(λx.s), ∀x.s for ∀(λx.s), and x� .=y for ¬(x .=y).

Let us write ∃X.s for ∃x1 . . . xn.s if |X | = n and X = {x1, . . . , xn}. Also,
given a set X of nominals, we use the following abbreviation:

DX :=
∧

x,y∈X
x �=y

x� .=y

We use the following constants, which we call modal operators.

¬̇ : (IB)IB ¬̇p = λx.¬px
∧̇ : (IB)(IB)IB p ∧̇ q = λx. px ∧ qx

∨̇ : (IB)(IB)IB p ∨̇ q = λx. px ∨ qx

〈 〉n : (IIB)(IB)IB 〈r〉np = λx.∃Y.DY ∧ (
∧

y∈Y rxy ∧ py)

[ ]n : (IIB)(IB)IB [r]np = λx.∀Y. (
∧

y∈Y rxy) ∧DY →
∨

y∈Y py

En : (IB)IB Enp = λx.∃Y.DY ∧
∧

y∈Y py

An : (IB)IB Anp = λx.∀Y.DY →
∨

y∈Y py

˙ : IIB ẋ = λy.x
.=y

T : (IIB)B Tr = ∀xyz.rxy ∧ ryz → rxz

where n ≥ 0 and |Y | = n + 1 in all equations
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To the right of each constant is an equation defining its semantics. Formulas of
the form [r]ntx are called box formulas or boxes, and formulas 〈r〉ntx are called
diamond formulas or diamonds. The semantics of boxes and diamonds is defined
following [3,5]. Intuitively, it can be described as follows:

– 〈r〉np: There are at least n + 1 r-successors satisfying p.
– [r]np: All r-successors but possibly n exceptions satisfy p.

Our language does not contain a dedicated symbol for the universal role. Instead,
we use graded global modalities En and An, which are semantically equivalent
to qualified number restrictions on the universal role. So, for instance, E1p holds
if there are at least two distinct states satisfying p. Formulas of the form Tr are
called transitivity assertions. We assume the application of modal operators to
have a higher precedence than regular functional application. So, for instance,
we write ¬̇〈r〉2ẏ ∨̇ p x for ((¬̇(〈r〉2(ẏ))) ∨̇ p)x.

A modal interpretation M is an interpretation of simple type theory that
interprets B as the set {0, 1}, ⊥ as 0 (i.e., false), # as 1 (i.e., true), maps I
to a non-empty set, gives the logical constants ¬, ∧, ∨, →, ∃, ∀, .= their usual
meaning, and satisfies the equations defining the modal operators ¬̇, ∧̇, ∨̇, 〈 〉n,
[ ]n, E, A, ˙ and T . If Mt = 1, we say that M satisfies t. A formula is called
satisfiable if it has a satisfying modal interpretation.

3 Branches

For the sake of simplicity, we will define our tableau calculus T on negation
normal modal expressions, i.e., terms of the form:

t ::= p | ¬̇p | ẋ | ¬̇ẋ | t ∧̇ t | t ∨̇ t | 〈r〉nt | [r]nt | Ent | Ant

A branch Γ is a finite set of formulas s of the form

s ::= tx | rxy | Tr | x .=y | x� .=y | ⊥ | α:[r]ntx

where t is a negation normal modal expression. The new form α:[r]ntx serves
algorithmic purposes. The label α of such label introductions is taken from a
countably infinite set of labels. Formulas of the form rxy are called edges. We
use the formula ⊥ to explicitly mark unsatisfiable branches. We call a branch
Γ closed if ⊥ ∈ Γ . Otherwise, Γ is called open. An interpretation M satisfies
a branch Γ if M satisfies all proper formulas on Γ , i.e., all formulas except for
label introductions. Given a finite set of input formulas (i.e., a branch) Γ0, our
tableau calculus decides if Γ0 is satisfiable. We call Γ0 the initial branch. The
initial branch must contain no edges or label introductions. This restriction is
inessential for the expressiveness of the language since label introductions are
semantically irrelevant, and edges rxy can equivalently be expressed as 〈r〉0ẏx.

Let Γ be a branch. With ∼Γ we denote the least equivalence relation ∼ on
nominals such that x ∼ y for every equation x

.=y ∈ Γ . We define the equational
closure Γ̃ of a branch Γ as
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Γ̃ := Γ ∪ {tx | t modal expression and ∃x′ : x′ ∼Γ x and tx′ ∈ Γ}
∪ {rxy | ∃x′, y′ : x′ ∼Γ x and y′ ∼Γ y and rx′y′ ∈ Γ}.

4 Evidence and Pre-evidence

The proof of model existence for our calculus T proceeds in three stages. Applied
to a satisfiable initial branch, the rules of T (defined in Sect. 5) construct a quasi-
evident branch (defined in Sect. 6). We show that every quasi-evident branch
can be extended to a pre-evident branch, which, in turn, can be extended to an
evident branch. For evident branches, we show model existence.

We write DΓX as an abbreviation for ∀x, y ∈ X : x �= y =⇒ x� .=y ∈ Γ .
A branch Γ is called evident if it satisfies all of the following evidence conditions :

(t1 ∧̇ t2)x ∈ Γ =⇒ t1x ∈ Γ̃ and t2x ∈ Γ̃

(t1 ∨̇ t2)x ∈ Γ =⇒ t1x ∈ Γ̃ or t2x ∈ Γ̃

〈r〉ntx ∈ Γ =⇒ ∃Y : |Y | = n + 1 and DΓY and {rxy, ty | y ∈ Y } ⊆ Γ̃

[r]ntx ∈ Γ =⇒ |{y | rxy ∈ Γ̃ , ty /∈ Γ̃}/∼Γ | ≤ n

Entx ∈ Γ =⇒ ∃Y : |Y | = n + 1 and DΓY and {ty | y ∈ Y } ⊆ Γ̃

Antx ∈ Γ =⇒ |{y | ty /∈ Γ̃}/∼Γ | ≤ n

ẋy ∈ Γ =⇒ x ∼Γ y

¬̇ẋy ∈ Γ =⇒ x �∼Γ y

x� .=y ∈ Γ =⇒ x �∼Γ y

¬̇px ∈ Γ =⇒ px /∈ Γ̃

T r ∈ Γ =⇒ ∀x, y, z : rxy ∈ Γ̃ and ryz ∈ Γ̃ =⇒ rxz ∈ Γ̃

A formula s is called evident on Γ if Γ satisfies the right-hand side of the evidence
condition corresponding to s. For instance, (t1 ∧̇ t2)x is evident on Γ if and only
if {t1x, t2x} ⊆ Γ̃ .

We will now show that evident branches are satisfiable. Given a term t, we
write N t for the set of nominals that occur in t. The notation is extended to
sets of terms in the natural way: NΓ :=

⋃
{N t | t ∈ Γ}.

Given a branch Γ , we construct the interpretation MΓ by taking as the do-
main of S the nominals on Γ , and interpreting propositional variables and roles
as the smallest sets that are consistent with the respective assertions on Γ . To
satisfy the equality constraints on Γ , all nominals that are equivalent modulo
∼Γ are mapped to the same fixed representative.

Let Γ be a branch and let x0 ∈ NΓ . Let ρ be a function from finite sets of
nominals to nominals such that ρX ∈ X whenever X is nonempty. We define
the interpretation MΓ as follows:
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MΓ S := NΓ

MΓx := if x ∈ NΓ then ρ{y ∈ NΓ | y ∼Γ x} else x0

MΓ p := {x ∈ NΓ | px ∈ Γ̃}
MΓ r := {(x, y) ∈ (NΓ )2 | rxy ∈ Γ̃}

Note that in the last two lines of the definition, we interpret the set notation as
a convenient description for the respective characteristic functions.

Theorem 4.1 (Model Existence). If Γ is an evident branch, then MΓ sat-
isfies Γ .

Proof. Let Γ be an evident branch. For every s ∈ Γ , we show that MΓ satisfies
s by induction on s. The details are straightforward. � 

To simplify the treatment of transitivity, we introduce the notion of pre-evidence.
We define the relation 	r

Γ as the least relation such that:

rxy ∈ Γ̃ =⇒ x 	r
Γ y

x 	r
Γ y and y 	r

Γ z and Tr ∈ Γ =⇒ x 	r
Γ z

We write x 
r
Γ y iff x ∼Γ y or x 	r

Γ y.
The pre-evidence conditions are obtained from the evidence conditions by

omitting the condition for transitivity assertions and replacing the condition for
boxes as follows:

[r]ntx ∈ Γ =⇒ |{y |x 	r
Γ y and ty /∈ Γ̃}/∼Γ | ≤ n

Pre-evidence of individual formulas is defined analogously to the correspond-
ing evidence condition. Note that for all formulas but boxes and transitivity
assertions, the notions of evidence and pre-evidence coincide.

We now show that every pre-evident branch can be extended to an evident
branch. Let the evidence closure Γ̂ of a branch Γ be defined as Γ∪{rxy |x 	r

Γ y}.

Proposition 4.1. rxy ∈ Γ̂ ⇐⇒ rxy ∈ ˜̂
Γ ⇐⇒ x 	r

Γ y

Theorem 4.2 (Evidence Completion). Γ pre-evident =⇒ Γ̂ evident

Proof. Since Γ̂ differs from Γ only in that Γ̂ may contain more edges, and Γ is
pre-evident, Γ̂ satisfies all of the evidence conditions but possibly the ones for
boxes and transitivity assertions. The evidence condition for transitivity asser-
tions holds in Γ̂ by Proposition 4.1 since 	r

Γ is transitively closed for every r
such that Tr ∈ Γ . The condition for boxes is immediate by Proposition 4.1. � 

5 Tableau Rules

The tableau rules of our calculus T are defined in Fig. 1. In the rules, we write
∃x ∈ X : Γ (x) for Γ (x1) | . . . | Γ (xn), where X = {x1, . . . , xn} and Γ (x) is
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R∧̇
(s ∧̇ t)x
sx, tx

R∨̇
(s ∨̇ t)x
sx | tx

R♦
〈r〉ntx

∀y∈Y : rxy, ty, ∀z ∈ Y, y �= z : y � .=z

Y fresh, |Y | = n + 1,
〈r〉ntx not quasi-evident on Γ

R�
[r]ntx

∃y, z∈Y, y �= z : y
.=z | ∃y∈Y : ty

Y ⊆ {y |x 	r
Γ y}, |Y | = |Y/∼Γ | = n + 1

RT

Tr, rxy

α:[r]ntx
α fresh, [r]ntx ∈ Γ̃ , [r]ntx not subsumed on Γ

RE

Entx

∀y∈Y : ty, ∀z∈Y, y �= z : y � .=z
Y fresh, |Y | = n + 1, Entx not evident on Γ

RA

Antx

∃y, z ∈Y, y �= z : y
.=z | ∃y∈Y : ty

Y ⊆ NΓ, |Y | = |Y/∼Γ | = n + 1

RN

ẋy

x
.=y

RN̄

¬̇ẋy

x � .=y
R⊥

¬̇
¬̇px

⊥
px ∈ Γ̃ R⊥

� .=
x � .=y

⊥
x ∼Γ y

Γ is the branch to which a rule is applied. “Y fresh” stands for Y ∩ NΓ = ∅.
“α fresh” stands for �t, x : α:tx ∈ Γ

Fig. 1. Tableau rules for T

a set of formulas parametrized by x. In case X = ∅, the notation translates to
⊥. Dually, we write ∀x ∈ X : Γ (x) for Γ (x1), . . . , Γ (xn) (X = {x1, . . . , xn}). If
X = ∅, the notation stands for the empty set of formulas.

The side condition of R♦ uses the notion of quasi-evidence, which we will
introduce in Sect. 6. For now, assume the rule is formulated with the restriction
“〈r〉ntx not evident on Γ”.

A box formula [r]ntx is subsumed on Γ if there is a nominal y and a label α
such that y 
r

Γ x and α:[r]nty ∈ Γ . The rule RT is constrained to be applicable
only to boxes that are not subsumed on Γ . This ensures, in particular, that RT

is applied at most once to each individual box formula on the branch.
A branch Δ is called a proper extension of a branch Γ if Δ ⊇ Γ and Δ̃ � Γ̃ .

Note that if Δ is a proper extension of Γ , then in particular it holds Δ � Γ .
The converse does not hold: Let Γ := {ẋy, x .=z, z

.=y} and Δ := Γ ∪ {x .=y}.
Then Δ � Γ but Δ is not a proper extension of Γ . We implicitly restrict the
applicability of the tableau rules so that a rule R is only applicable to a formula
s ∈ Γ if all of the alternative branches Δ1, . . . , Δn resulting from this application
are proper extensions of Γ .

Proposition 5.1 (Soundness). Let Δ1, . . . , Δn be the branches obtained from
a branch Γ by a rule of T . Then Γ is satisfiable if and only if there is some
i ∈ {1, . . . , n} such that Δi is satisfiable.
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6 Blocking Conditions and Quasi-evidence

The restrictions on the applicability of the tableau rules given by the pre-evidence
conditions are not sufficient for termination. Consider Γ0 := {A0〈r〉0px}. An
application of RA to Γ0 yields Γ1 := Γ0 ∪ {〈r〉0px}, which can be extended
by R♦ to Γ2 := Γ1 ∪ {rxy, py}. Now RA is applicable again and yields Γ3 :=
Γ2 ∪ {〈r〉0py}, which in turn can be extended by R♦, and so ad infinitum.

To obtain a terminating calculus, we restrict the rule R♦ by weakening the
notion of pre-evidence for diamond formulas. The weaker notion, called quasi-
evidence, is then used in the side condition ofR♦ in place of pre-evidence. Quasi-
evidence must be weak enough to guarantee termination but strong enough to
preserve completeness.

The edge graph of a branch Γ is a labelled graph with the nodesNΓ and edges
{(x, y) | ∃r : rxy ∈ Γ}, where a node x is labelled with all expressions t such
that tx ∈ Γ , and an edge (x, y) is labelled with all roles r such that rxy ∈ Γ . A
branch can always be represented graphically through its edge graph.

u: [r]1¬̇p u: [r]1¬̇p

x: 〈r〉0p y: 〈r〉0p v: p x: 〈r〉0p, ¬̇p y: 〈r〉0p x: 〈r〉0p, ¬̇p y: 〈r〉0p, ¬̇p

z: p z: p z: p

a) b) r transitive c) r transitive

rr

rr

rr

r r

rr

Fig. 2. Number restrictions and transitivity

In [14], the notion of quasi-evidence is based on the following observation. Let
Γ be a branch and x, y be nominals such that: (1) x has no r-successor on Γ ,
i.e., there is no z such that rxz ∈ Γ̃ , (2) for every r-diamond or r-box tx ∈ Γ̃ , it
holds ty ∈ Γ̃ , and (3) all r-diamonds and r-boxes sy ∈ Γ̃ are evident on Γ . Then
all r-diamonds and r-boxes sx ∈ Γ̃ can be made evident by extending Γ with
{rxz | ryz ∈ Γ̃}. As an example, consider the edge graph in Fig. 2(a). There,
the formula 〈r〉0px can be made evident by adding the edge rxz (represented
by the dashed arrow) to the branch. In the presence of transitivity, extending
a branch Γ by an edge rxz may destroy the evidence of r-boxes tu such that
u 	r

Γ x (Fig. 2(b)). Note, however, that adding an edge rxz cannot destroy the
evidence of a box tu such that u 	r

Γ x if we already have u 	r
Γ z (Fig. 2(c)).

To deal with non-local constraints introduced by number restrictions on tran-
sitive roles, we refine the notion of a pattern and the quasi-evidence conditions
from [14]. When blocking a nominal x we have to make sure not to violate any
graded boxes at the predecessors of x. To track the relevant boxes we tag them
with labels.
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Given a role r, an r-pattern is a set consisting of modal expressions of the
form μt, where μ ∈ {〈r〉n, [r]n |n ∈ IN}, and labels α, such that, for some n, t, x:
α:[r]ntx ∈ Γ (although not required by the definition, in all cases where patterns
play a role for termination they will contain at least one diamond). We define:

x:Γα ⇐⇒ ∃r, n, t, y : α:[r]nty ∈ Γ and y 	r
Γ x

We write P r
Γx for the largest r-pattern P such that P ⊆ {μt |μtx ∈ Γ̃} ∪

{α |x:Γα}. We call P r
Γx the r-pattern of x on Γ . Looking back at Fig. 2 (b), we

have P r
Γx = {〈r〉0p}, P r

Γu = {[r]1¬̇p}, and P r′
Γ x = ∅ for all r′ �= r. An r-pattern

P is expanded on Γ if there are nominals x, y such that rxy ∈ Γ and P ⊆ P r
Γx.

In this case, we say that the nominal x expands P on Γ .
A diamond 〈r〉nsx ∈ Γ is quasi-evident on Γ if it is either evident on Γ or x

has no r-successor on Γ and P r
Γx is expanded on Γ . The rule R♦ can only be

applied to diamonds that are not quasi-evident. Note that whenever 〈r〉nsx ∈ Γ
is quasi-evident but not evident (on Γ ), there is a nominal y that expands P r

Γx.
The quasi-evidence conditions are obtained from the pre-evidence conditions

by replacing the condition for diamond formulas and adding a condition for
transitivity assertions and label introductions as follows:

〈r〉ntx∈Γ =⇒ 〈r〉ntx is quasi-evident on Γ

Tr∈Γ =⇒ ∀n, t, x : [r]ntx∈ Γ̃ =⇒ ∃z, α : z 
r
Γ x and α:[r]ntz ∈Γ

α:[r]ntx∈Γ =⇒ [r]ntx∈ Γ̃ and ∃y : rxy ∈Γ and ∀s, z : α:sz ∈Γ =⇒ s= [r]nt

Proposition 6.1. If Γ satisfies the quasi-evidence condition for label introduc-
tions and α:[r]ntx ∈ Γ , then for all y, x 	r

Γ y ⇐⇒ y:Γα.

Lemma 6.1. Let Γ be a branch. Let {[r]ntx, [r]nty} ⊆ Γ̃ such that Tr ∈ Γ and
x 
r

Γ y. Then: [r]ntx is pre-evident on Γ =⇒ [r]nty is pre-evident on Γ .

Proof. Let Γ be a branch such that {[r]ntx, [r]nty} ⊆ Γ̃ , Tr ∈ Γ and x 
r
Γ y.

Because 	r
Γ is transitively closed, we have x 	r

Γ z whenever y 	r
Γ z. The claim

follows. � 

Lemma 6.2. Let Γ be a quasi-evident branch. Let 〈r〉nsx ∈ Γ be not evident on
Γ , y be a nominal that expands P r

Γx on Γ , and Δ := Γ ∪{rxz | ryz ∈ Γ̃}. Then:

1. ∀z : rxz ∈ Δ̃ ⇐⇒ ryz ∈ Γ̃ and x 	r
Δ z ⇐⇒ y 	r

Γ z,
2. ∀m, t : 〈r〉mt ∈ P r

Γx =⇒ 〈r〉mtx is evident on Δ,
3. 〈r〉nsx is evident on Δ,
4. ∀r′,m, t, z : 〈r′〉mtz is evident on Γ =⇒ 〈r′〉mtz is evident on Δ,
5. Δ is quasi-evident.

Proof. We begin with (1). Let z be a nominal. We only show rxz ∈ Δ̃ ⇔ ryz ∈
Γ̃ . The other claim follows by induction on the construction of 	r

Γ and 	r
Δ. By

construction, it holds ryz ∈ Γ̃ ⇒ rxz ∈ Δ. The converse implication holds by
the fact that 〈r〉nsx is quasi-evident but not evident on Γ , meaning that x has
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no r-successor on Γ . It remains to show: rxz ∈ Δ ⇔ rxz ∈ Δ̃. The direction
from left to right is obvious. For the other direction, assume rxz ∈ Δ̃. Then there
are x′, z′ such that x′ ∼Γ x, z′ ∼Γ z, and rx′z′ ∈ Δ. Since x has no r-successor
on Γ , neither does x′. Hence, since rx′z′ ∈ Δ− Γ , we must have x′ = x, and so
rxz′ ∈ Δ. But then ryz′ ∈ Γ̃ , and consequently, ryz ∈ Γ̃ . The claim follows by
the definition of Δ.

Now to (2). Let 〈r〉mt ∈ P r
Γx. Since P r

Γ y ⊇ P r
Γx, in particular it holds 〈r〉mty ∈

Γ̃ , i.e., there is some y′ ∼Γ y such that 〈r〉mty′ ∈ Γ . By (1), it suffices to show
that 〈r〉mty is evident on Γ . This is the case since 〈r〉mty′ is quasi-evident on Γ
(as Γ is quasi-evident) and y′ has an r-successor on Γ (as y has one on Γ ).

Claim (3) immediately follows from (2), and (4) is obvious as the evidence of
diamonds on a branch cannot be destroyed by adding edges.

Now to (5). Note that the quasi-evidence condition for transitivity assertions
holds in Δ as 
r

Γ ⊆
r
Δ. The quasi-evidence of diamonds 〈r〉mtx ∈ Δ holds

by (2). So, the only conditions that might in principle be violated in Δ are:

a) the pre-evidence condition for boxes [r]mtx ∈ Δ̃ and
b) the pre-evidence condition for boxes [r]mtz ∈ Δ such that z 	r

Δ x, if Tr ∈ Γ .

For (a), it holds [r]mty ∈ Γ̃ as P r
Γ y ⊇ P r

Γx = P r
Δx. Hence by (1) it suffices to

show that [r]mty is pre-evident on Γ , which is the case since Γ is quasi-evident.
For (b), by the quasi-evidence condition for transitivity assertions, there is a
nominal u and a label α such that u 
r

Γ z and α:[r]mtu ∈ Γ . Since Tr ∈ Γ ,
u 
r

Γ z and z 	r
Δ x, it holds u 	r

Γ x. Then x:Γα and, by the quasi-evidence
condition for label introductions, [r]mtu ∈ Γ̃ . By Lemma 6.1, it suffices to show
that [r]mtu is pre-evident on Δ. Since P r

Γ y ⊇ P r
Γx, we have y:Γα and hence

u 	r
Γ y (Proposition 6.1). So, by (1), x 	r

Δ v implies u 	r
Γ v for all nominals

v, and consequently, ∀v : u 	r
Δ v ⇔ u 	r

Γ v. The claim follows since [r]mtu is
pre-evident on Γ . � 
For an illustration of Lemma 6.2, let the edge graph in Fig. 2(a) (without the
dashed arrow) represent Γ . Then 〈r〉0px is quasi-evident but not evident on Γ ,
and y expands P r

Γx. The graph with the dashed arrow added corresponds to the
branch Δ in the lemma. The five claims for Γ and Δ are easy to verify.

Theorem 6.1 (Pre-evidence Completion). For every quasi-evident branch
Γ there is a pre-evident branch Δ such that Γ ⊆ Δ.

Proof. For every branch Γ , we define: ϕΓ := |{〈r〉nsx | 〈r〉nsx ∈ Γ and 〈r〉nsx is
not evident on Γ}|. Let Γ be quasi-evident. We proceed by induction on ϕΓ . If
ϕΓ = 0, then Γ is pre-evident and we are done. Otherwise, there is a diamond
〈r〉nsx ∈ Γ that is not pre-evident on Γ . Let y be a nominal that expands P r

Γx
on Γ , and let Γ ′ := Γ ∪{rxz | ryz ∈ Γ̃}. By Lemma 6.2(3-5), Γ ′ is quasi-evident
and ϕΓ ′ < ϕΓ . So, by the inductive hypothesis, there is some pre-evident branch
Δ such that Δ ⊇ Γ ′ ⊇ Γ . � 

We write Γ
R→ Δ to denote that Δ is obtained from Γ by a single application of

the rule R. We write Γ → Δ if there is some R such that Γ
R→ Δ. A branch is

called maximal if it cannot be extended by any tableau rule.
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Lemma 6.3. Let Γ be a branch that is obtained from an initial branch. Then
Γ satisfies the quasi-evidence condition for label introductions.

Proof. Let Γ0 → . . .→ Γn be a derivation such that Γ0 is an initial branch and
Γn = Γ . The claim is shown by induction on n. Note that the claim is trivial for
n = 0 since initial branches must contain no edges or label introductions. � 

In conjunction with Theorems 4.1, 4.2 and 6.1, the following theorem shows
that open maximal branches are satisfiable. Taken together with the termination
argument in Section 7, this establishes the completeness of our calculus.

Theorem 6.2 (Quasi-evidence). Every open and maximal branch obtained in
T from an initial branch is quasi-evident.

Proof. Let Γ be an open and maximal branch obtained from an initial branch.
We show that every s ∈ Γ that is not of the form px, rxy or x

.=y is either
pre-evident or quasi-evident on Γ by induction on the size of s. Quasi-evidence
for label introductions follows by Lemma 6.3. � 

7 Termination

We will now show that every tableau derivation is finite. Since the tableau rules
are all finitely branching, by König’s lemma it suffices to show that the con-
struction of every individual branch terminates. Since rule application always
produces proper extensions of branches, it then suffices to show that the size
(i.e., cardinality) of an individual branch is bounded. First, we show that the size
of a branch Γ is bounded by a function in the number of nominals on Γ . Then,
we show that this number itself is bounded, completing the termination proof.

We write SΓ for the set of all modal expressions occurring on Γ , possibly
as subterms of other expressions, and RelΓ for the set of all roles that occur
on Γ . Crucial for the termination argument is the fact the tableau rules cannot
introduce any modal expressions that do not already occur on the initial branch.

Proposition 7.1. If Γ,Δ are branches such that Δ is obtained from Γ by any
rule of T , then SΔ = SΓ .

For every pair of nominals x, y and every role r, a branch Γ may contain an edge
rxy, an equation x

.=y or a disequation x� .=y. For every expression s ∈ SΓ , Γ
may contain a formula sx. The tableau rules can introduce at most one formula
α:[r]ntx for each box expression [r]nt and each nominal x. Finally, a branch may
contain ⊥. So, since the initial branch Γ0 contains no formulas of the form α:tx,
the size of Γ derived from Γ0 is bounded by |RelΓ | · |NΓ |2 + 2|NΓ |2 + 2|SΓ | ·
|NΓ |+1. By Proposition 7.1, we know that |SΓ | and |RelΓ | depend only on Γ0.

By the above, it suffices to show that |NΓ | is bounded in the sum of the sizes
of the input formulas (of which there are only finitely many). We do so by giving
a bound on the number of applications of R♦ and RE that can occur in the
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derivation of a branch, which suffices since the two rules are the only ones that
can introduce new nominals.

For RE , we do so by defining ψEΓ := {Ens ∈ SΓ | ∃x ∈ NΓ : Ensx is not
evident on Γ} and showing that |ψEΓ | decreases with every application of RE

(and is non-increasing otherwise, which is obvious).

Proposition 7.2. Γ
RE→ Δ =⇒ |ψEΓ | > |ψEΔ|

The proof proceeds analogously to the corresponding arguments in [15,16].
Now we show that R♦ can be applied only finitely often. Since RelΓ is

bounded, it suffices to show that R♦ can be applied only finitely often for each
role. SinceR♦ is only applicable to diamonds that are not quasi-evident, we have:

Proposition 7.3. If R♦ is applicable to a formula 〈r〉nsx ∈ Γ , then either

1. x has an r-successor on Γ , or
2. P r

Γx is not expanded on Γ .

Since Γ → Δ implies Γ̃ ⊆ Δ̃, it holds:

Proposition 7.4. Let s ∈ Γ be a diamond formula and Γ → Δ.

1. If s is evident on Γ , then s is evident on Δ.
2. If Δ is obtained from Γ by applying R♦ to s, then s is evident on Δ.

Proposition 7.5. Let Γ → Δ, x ∈ NΓ , and P be an r-pattern.

1. P r
Γx ⊆ P r

Δx.
2. If P is expanded on Γ , then P is expanded on Δ.

In the case of [14], the bound on the number of applications of R♦ for each
role r can be given as |Pat rΓ0| where Γ0 is the initial branch and Pat rΓ :=
P({〈r〉ns | 〈r〉ns ∈ SΓ} ∪ {[r]ns | [r]ns ∈ SΓ}). The present situation is more
complex since now patterns may contain labels in addition to modal expressions.
Unlike SΓ , the set of labels on the branch may grow during tableau construction.
Still, we can bound the number of applications ofR♦ for every given set of labels.

A ruleR is said to be applied to a nominal x ∈ NΓ ifR is applied to a formula
tx ∈ Γ . Given a pattern P , we define AP := {α |α ∈ P}. Let NΓ0

〈r〉 be the number

of distinct r-diamonds occurring on Γ0: NΓ0
〈r〉 := |{〈r〉kt | 〈r〉kt ∈ SΓ0}|. Let Δ be

obtained from Γ by applying R♦ to a formula 〈r〉nsx ∈ Γ such that P r
Γx is not

expanded on Γ . Clearly, P r
Δx must be expanded on Δ. Hence, let us call such

an application of R♦ pattern-expanding.

Lemma 7.1. Let Γ0 be an initial branch and Γ0 → Γ1 → . . . a derivation. Let
r be a role, A a set of labels, and

Ir
A := {i | ∃x : Γi+1 is obtained from Γi by applying R♦ to x and A(P r

Γi
x) = A}

Then |Ir
A| ≤ 2|A| · |Pat rΓ0| ·NΓ0

〈r〉.
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Proof. Let Γ0 → Γ1 → . . . be a derivation, r a role and A a set of labels. We
begin with two observations:

1. For every set B of labels, there are at most |Pat rΓ0| distinct patterns P
such that AP = B. Hence, by Proposition 7.5 (2), for every B there are at
most |Pat rΓ0| pattern-expanding applications of R♦ in the entire derivation,
i.e., at most |Pat rΓ0| indices i ∈ Ir

B such that the application of R♦ to Γi is
pattern-expanding. Let us denote the set of such indices by Jr

B .
2. By Propositions 7.4 and 7.5 (2), every pattern-expanding application of R♦

to a nominal x is followed by at most NΓ0
〈r〉 − 1 applications of R♦ to nominals

that are equivalent to x at the time of the respective application (clearly, none
of these following applications is pattern-expanding).

By definition, every index in Ir
A corresponds to an application of R♦. Let

i ∈ Ir
A and let x be the nominal to which R♦ is applied on Γi. By Proposition 7.3,

either the application is pattern-expanding or x already has a successor on Γi.
In the latter case, the application must be preceded by a pattern-expanding
application of R♦ to some nominal y that is equivalent to x (x ∼Γi y). As for
the index j corresponding to this preceding application, by Proposition 7.5 (1),
we must have j ∈ Jr

B for some B ⊆ A. By the above two observations, we obtain:

|Ir
A| ≤ |Jr

A|+
∑
B⊆A

|Jr
B| · (NΓ0

〈r〉 − 1)

≤ |Pat rΓ0|+ 2|A| · |Pat rΓ0| · (NΓ0
〈r〉 − 1) ≤ 2|A| · |Pat rΓ0| ·NΓ0

〈r〉 � 

A set of labels A is called a pattern space for a role r on a branch Γ if there is
some x ∈ NΓ such that A(P r

Γx) = A. By Lemma 7.1, it suffices to show that
for each role r, the number of pattern spaces created in a derivation is bounded.

Lemma 7.2. Let Γ0 be an initial branch, r a role and A a set of labels. There
is a function f : IN → IN such that, for every derivation Γ0 → Γ1 → . . .:

|{x | ∃i, y : i ≥ 0 and A(P r
Γi
x) = A and rxy ∈ Γi}| ≤ f(|A|)

Proof. Let r and Γ0 → Γ1 → . . . be as required. Let XA := {x | ∃i, y : i ≥ 0
and A(P r

Γi
x) = A and rxy ∈ Γi}. We proceed by induction on n := |A|. For

every x ∈ XA, let ix be the least i such that

1. A(P r
Γi
x) = A, and

2. for some y, rxy ∈ Γi.

Since Γ0 is an initial branch, it contains no edges, and so ix ≥ 1. No single rule
application can make 1 and 2 true at the same time. Hence, for every x ∈ XA

exactly one of the following is true:

Case A(P r
Γix−1

x) � A. Then there is some y such that rxy ∈ Γix−1. So, x ∈ XB

for some proper subset B of A. Clearly, this case is only possible if |A| > 0.
Case �y : rxy ∈ Γix−1. Then A(P r

Γix−1
x) = A. So, ix− 1 belongs to the set Ir

A

from Lemma 7.1. This is the only case possible if |A| = 0.
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By the above, f can be defined as follows:

f0 := |Pat rΓ0| ·NΓ0
〈r〉

fn := 2n · |Pat rΓ0| ·NΓ0
〈r〉 +

n−1∑
k=0

(
n

k

)
· fk if n > 0 � 

We define the level of an r-pattern P on Γ as:

LΓP := |{[r]mt ∈ SΓ | ∃α, y : α ∈ P and α:[r]mty ∈ Γ}|

A label α is said to be generated at level n in a derivation Γ0 → Γ1 → . . . if
there is some i ≥ 0 such that α is generated by an application of RT extending
Γi by a formula α:[r]mtx, and LΓi(P r

Γi
x) = n.

Lemma 7.3. Let Γ0 → Γ1 → . . . be a derivation where Γ0 is initial and Tr ∈ Γ0.
Let x ∈ NΓi. Then every label α ∈ P r

Γi
x is generated at level strictly less than

LΓi(P
r
Γi
x).

Proof. Assume, by contradiction, Γi, r, and x are all as required and there is some
α ∈ P r

Γi
x such that α is generated at level m ≥ LΓi(P r

Γi
x). Then there is some

j < i such that α is generated by an application of RT to some ryz ∈ Γj such
that y 	r

Γi
x and LΓj (P r

Γj
y) = m. Then A(P r

Γj
y) ∪ {α} ⊆ A(P r

Γk
x′) and hence

(by the applicability restriction on RT ) LΓk
(P r

Γk
x′) > m holds for all k ≥ j + 1

and all x′ such that y 	r
Γk

x′. Consequently, LΓi(P r
Γi
x) > m ≥ LΓi(P r

Γi
x).

Contradiction � 

By Lemma 7.3, the number of pattern spaces with level n (i.e., pattern spaces
whose patterns have level n) is bounded from above by 2m, where m is the
number of labels generated at levels less than n. Clearly, the level of r-patterns in
a derivation from Γ0 is bounded by the number NΓ0

[r] of distinct r-boxes occurring

on Γ0 (NΓ0
[r] := |{[r]kt | [r]kt ∈ SΓ0}|). Also, by the applicability restriction onRT

(non-subsumption), no labels can be generated at level NΓ0
[r] . Hence, in order to

show that the number of pattern spaces created during a derivation is bounded,
it suffices to bound the number of labels generated at all levels less than NΓ0

[r] .
A label α is called r-label (in a derivation Γ0 → Γ1 → . . .) if there are i, n, t, x
such that α:[r]ntx ∈ Γi.

Lemma 7.4. Let Γ0 be an initial branch and Tr ∈ Γ0. There is a function
f : IN → IN such that, for every derivation Γ0 → Γ1 → . . . and 0 ≤ n < NΓ0

[r] :
|{α | ∃m < n : α is an r-label generated at level m}| ≤ fn.

Proof. We define f by induction on n. Let Am := {α | ∃k < m : α is an r-label
generated at level k}. Clearly, A0 = ∅. A new label can only be generated by an
application of RT . Therefore, by the applicability condition of RT :

|An| ≤ NΓ0
[r] · |{x | ∃i, y : i ≥ 0 and LΓi(P

r
Γi
x) ≤ n− 1 and rxy ∈ Γi}|



226 M. Kaminski and G. Smolka

By Lemma 7.3, for all n > 0:

|An| ≤ NΓ0
[r] · |

⋃
B⊆An−1

{x | ∃i, y : i ≥ 0 and A(P r
Γi
x) = B and rxy ∈ Γi}|

Then, by Lemma 7.2, there is a function g such that, for all n > 0:

|An| ≤ NΓ0
[r] ·

|An−1|∑
k=0

(
|An−1|

k

)
· gk ≤ NΓ0

[r] · 2
|An−1| · g(|An−1|)

Hence, we can define f0 := 0 and, for n > 0, fn := NΓ0
[r] ·2f(n−1) ·g(f(n−1)) � 

By Lemma 7.1, for every role r the number of applications of R♦ is bounded by∑
A∈Φ 2|A| · |Pat rΓ0| ·NΓ0

〈r〉 where Φ := {A | ∃i ≥ 0: A is a pattern space for r on
Γi}. Using Lemma 7.3, this bound can be approximated from above by |Pat rΓ0|·
NΓ0

〈r〉 · N
Γ0
[r] · (2

2f(NΓ0
[r] )) where f is the function from Lemma 7.4. Since we have

only finitely many roles, together with Proposition 7.2, this gives us a bound
on |NΓ | that we need for termination. Since f is clearly non-elementary in its
argument, the bound is non-elementary.

8 Conclusion

To account for non-local constraints introduced by number restrictions on tran-
sitive roles, the notion of patterns from [14] needs to be extended. The extension
is semantically intuitive and allows for a simple proof of model existence. As it
comes to termination, the reasoning in [14] needs to be refined considerably.

The termination proof establishes a non-elementary complexity bound for the
associated decision procedure. Presently, we do not know if this bound is tight.
The NExpTime completeness result for (nominal-free) graded modal logic over
transitive frames by Kazakov and Pratt-Hartmann [18] gives us a lower bound
for the complexity of SOQ+ and hence of the decision procedure ([19] provides
no complexity bounds). Despite the potentially high worst-case complexity of
our procedure, we believe it to be well-suited for efficient implementation. In
fact, on problems that do not contain number restrictions on transitive roles,
the complexity of the procedure matches the NExpTime bound of [14], which
is even lower than the 2-NExpTime bound established for practically successful
procedures of [8,13,12,9,10].

Schröder and Pattinson [24] show concept satisfiability decidable in the pres-
ence of role hierarchies and number restrictions on transitive roles, provided
the semantics is restricted to tree-like roles. They argue that the resulting logic,
PHQ, may be better suited for modeling parthood relations than the established
logics extending SH. We believe that our current approach for SOQ+ may be
adapted to obtain an efficient tableau calculus for PHQ.

Acknowledgment. We are grateful to our reviewers for their detailed and
constructive comments.
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Abstract. A symbolic-style proof system is presented to reason about
observational equivalence for applied pi-calculus. The proofs of the
soundness and completeness of the system rely on a recently developed
theory of symbolic bisimulation for applied pi-calculus. The completeness
result of the proof system is restricted to the finite fragment of applied
pi-calculus which admits finite partition, and it is demonstrated that
this fragment covers an important subset of applied pi-calculus which is
practically useful for analyzing security protocols.

1 Introduction

The applied pi-calculus is a descendant of the pi-calculus designed for crypto-
graphic applications. It extends pi-calculus with value-passing, primitive func-
tion symbols and equational theory. To capture the knowledge exposed by pro-
cesses to the environment, active substitutions are employed. For example, let
A = νk.(a(x). if dec(x , k) = m then a else c | {enc(m, k)/y}). Process A con-
tains an active substitution {enc(m, k)/y}, where enc(m, k) denotes a ciphertext
obtained by encrypting the plaintext m by the secret key k and y can be regarded
as an alias of the ciphertext. The secret key k in process A is restricted since
we do not wish k to be visible to the environment, while the ciphertext can be
accessed through the alias y. To model the shared-key cryptography, we use the
equation dec(enc(w1, w2), w2) = w1 to decrypt the ciphertext. Thus the equal-
ity test dec(x, k) = m can be satisfied when x takes the value represented by y,
leading to the following transitions in concrete semantics:

A
a(y)−−−→ νk.( if dec(y, k) = m then a else c | {enc(m, k)/y})
≡ νk.( if dec(enc(m, k), k) = m then a else c | {enc(m, k)/y})
τ−→ νk.(a | {enc(m, k)/y})

Security protocols are modeled as processes in the applied pi calculus and secu-
rity properties such as anonymity, privacy and strong secrecy can be expressed
as indistinguishability properties from the view of attackers, formalized by the
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notion of observational equivalence. Two processes are observationally equiva-
lent if they cannot be distinguished in any context. A context models an active
attacker which can intercept and forge messages. The universal quantification
over contexts makes observational equivalence difficult to check, hence an al-
ternative notion of labeled bisimilarity is introduced in [1] which relies on direct
comparison of labeled transitions rather than contexts. However, in labeled tran-
sitional semantics, an input prefix may give rise to infinitely many branches, as

in a(x).P
a(M)−−−→ P{M/x}, for every term M , which hinders computer-assisted

verification. To hurdle this problem, symbolic bisimulations have recently been
advocated for the applied pi-calculus [9] and [15], and the later is shown ex-
actly captures observational equivalence. The aim of this paper is to formulate a
proof system to reason about observational equivalence, based on the symbolic
bisimulation theory of [15].

The statements of our proof system are of the form (D,Φ) � A = B where
(D,Φ) is a constraint consisting of a trail D and a formula Φ. The proof sys-
tem consists of axioms and inference rules. Different from the previous works
[10,16,3,12,14], the basic entities of the proof system are agents of the form
νñ.(P | σ), where σ is a collection of active substitutions, rather than process
P . The reasoning crosses through the frame and directly applies to the process
part, as in the rule

Tau
(D,Φ) � νñ.(P | σ) = νm̃.(Q | θ)

(D,Φ) � νñ.(τ.P | σ) = νm̃.(τ.Q | θ) .

This is because the equality tests in P should be evaluated with the knowl-
edge represented by the “frame” νñ.σ. For example, we can derive (∅, true) �

νs.(a(x).[x = s]b〈c〉 | {s/y}) = νk.(a(x).[dec(x, k) = m]b〈c〉 | {enc(m, k)/y});
However, we cannot derive (∅, true)�a(x).[x = s]b〈c〉 = a(x).[dec(x, k) = m]b〈c〉,
because the equality tests [x = s] and [dec(x, k) = m] cannot be satisfied
at the same time without the knowledge exposed by the frames νs.{s/y} and
νk.{enc(m, k)/y}.

The proof system is for agent equivalence and has to inevitably rely on some
form of reasoning about the underlying equational theories on terms (which are
parameters to applied pi-calculus). We have decided to factor out reasoning on
terms from the proof system, using “semantical judgments” of the form Φ |=D Ψ,
as can be seen in the following rule:

Partition
(D,Φi) � A = B, i = 1, 2, Φ |=D Φ1 ∨ Φ2

(D,Φ) � A = B
.

The rule states that, if we can infer (D,Φ1)�A = B and (D,Φ2)�A = B in the
proof system, and we know, by some means, that Φ semantically implies Φ1∨Φ2
under D, then we can derive (D,Φ) �A = B. One may think of such semantical
judgments as questions about the term domain, to be answered by an “oracle”.
In practice they can be resolved by invoking some decision procedures, like the
one in [2] for instance, or appealing to a separate proof system specially designed
for the underlying equational theories.
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Our proof system is sound in general while complete on a class of finite pro-
cesses on which finite partition on constraint systems always suffices. We will
show that this class of processes covers an important fragment of the applied
pi-calculus termed simple processes, which has been used for describing and an-
alyzing security protocols.

Due to space limitation proofs are sketched. For a complete and rigor-
ous treatment please refer to the full version of this paper, available at
http://lcs.ios.ac.cn/~jliu.

2 Applied Pi Calculus

Applied pi-calculus [1] is an extension of pi-calculus with value-passing, primitive
functions and equational theory. We assume two disjoint, infinite sets N and V of
names and variables, respectively. An implicit sort system, including a base sort
and a channel sort, splits N (resp. V) into base sort Nb (resp. Vb) and channel
sort Nch (resp. Vch). Unless otherwise stated, we will use a, b, c to range over
channel names, s, k over base names, and m,n over names of either sort; we will
also use x, y, z to range over variables, and u, v, w over either names or variables.
Function symbols, such as f, enc, dec etc., are required to take arguments and
produce results of base sort only. Terms, ranged over by M,N , are builded
up from names and variables by function applications. We shall write var (M)
and name(M) for variables and names respectively in M . Extended processes
are created by extending plain processes with active substitutions of the form
{M/x} which is required to be defined on base sort only.

Pr, Qr, Rr ::= plain processes Ar, Br, Cr ::= extended processes
0 Pr

Pr | Qr Ar | Br

!Pr νn.Ar

νn.Pr νx.Ar

if M = N then Pr then Qr {M/x}
u(x).Pr

u〈N〉.Pr

In an extended process, there is at most one substitution for each variable and
exactly one when the variable is restricted. Substitutions are sort-respecting
partial mappings of finite domains. Substitutions of terms for variables, ranged
over by σ, θ, are always required to be cycle-free. The domain and range of σ are
denoted dom(σ) and ran(σ), respectively. Zσ is the result of applying σ to Z.
The null process 0 is identified with the empty substitution. A substitution θ =
{M1/x1, · · · ,Mn/xn} will be identified with the parallel composition {M1/x1} |
· · · | {Mn/xn}, and θσ is defined as {M1σ/x1, · · · ,Mnσ/xn}. A substitution σ
is idempotent if dom(σ) ∩ var (ran(σ)) = ∅. We shall write σ∗ for the result of
iterating σ until reaching idempotence, and use ! to denote one-to-one renaming
of names and variables. To avoid confusion, we write !(Z) for the application of
! to Z, and !(θ) means {!(M1)/!(x1), · · · , !(Mn)/!(xn)}.

http://lcs.ios.ac.cn/~jliu
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We shall write fn(Ar), bn(Ar), fv(Ar) and bv(Ar) for the sets of free and
bound names, free and bound variables, respectively, of Ar. Ar is closed if every
variable in Ar is either bound or defined by an active substitution.

Terms are equipped with an equational theory =E that is an equivalence
relation closed under substitutions of terms for variables, one-to-one renamings,
and term contexts.

Observational equivalence ≈ [1] is a contextual equivalence relation on closed
extended processes such that Ar ≈ Br implies C[Ar] ≈ C[Br] for any context C.
Contexts model active attackers who can intercept and forge messages. Thus ob-
servational equivalence captures security properties in the presence of attackers,
such as anonymity and privacy. Since the universal quantification over contexts
makes ≈ difficult to verify, an alternative characterisation, namely labeled bisimi-
larity, is introduced in [1] which relies on direct comparison of labeled transitions
rather than contexts. To overcome the problem of infinite branching caused by
input transitions in labeled bisimulation, symbolic bisimulations are proposed
in [9] and [15], and the notion of symbolic bisimulation presented in the later
has been shown to be sound and complete w.r.t. ≈. We shall briefly review the
symbolic semantics of [15] in next section.

3 Symbolic Semantics

Language. For technical reasons, symbolic semantics [15] is built up on top of
“intermediate processes”, originally proposed in [9], which is a sufficient subset
of extended processes. For the purpose of axiomatisation we extend the language
of [15] with summation.

S, T ::= true | M = N | ¬S | S ∧ T
π ::= τ | u(x) | u〈M〉 prefix

P,Q,R ::= 0 | Sπ.P | P + Q | P | Q | !Pr plain agents
F,G,H ::= P | {M/x} | F | G framed agents
A,B,C ::= F | νn.A | A + B agents

Here Sπ.P is one-armed conditional, and the two-armed conditional operator
“if M = N then P else Q” of [1] and [15] can be defined as “(M = N)τ.P +
¬(M = N)τ.Q”. We abbreviate true π.P to π.P and ¬(M = N) to M �= N . The
domain of a framed agent F , denoted by dom(F ), is the set of variables x for
which F contains a substitution {M/x}. Each framed agent F is required to be
applied, that is, every variable in dom(F ) occurs only once in F . For example,
a〈k〉 | {k/x} is applied but a〈x〉 | {k/x} is not.

The choice operator + does not appear in the original applied pi-calculus. We
introduce it here in order to axiomatize parallel composition, as in the case of
CCS and pi-calculus. Thus the operator merely serves as a vehicle to achieve
a complete axiomatization, not intended to be used by the users. Since + is
only used when a parallel composition is expanded, it is reasonable to required
dom(A) = dom(B) in a summation A+B, and dom(A+B) is defined as dom(A).
For an agent A, we define the frame ϕ(A) of A as follows:
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ϕ(0) = ϕ(Sπ.P ) = 0 ϕ({M/x}) = {M/x} ϕ(A | B) = ϕ(A) ∪ ϕ(B)

ϕ(A + B) =
{

0 if ϕ(A) = 0 or ϕ(B) = 0
ϕ(A) + ϕ(B) otherwise

ϕ(νn.A) =
∑

i∈I νn.νm̃i.σi where ϕ(A) =
∑

i∈I νm̃i.σi

Constraints. A constraint (D,Φ) is a pair where D is a trail and Φ a formula.
A trail abstractly represents the ability of the attackers to deduce messages from
a given set of messages. We shall use D, E ,F to range over trails.

Formally, a trail is a set of the form {x1 : U1, · · · , x	 : U	} where xi are vari-
ables and Ui are finite sets of channel names and base variables, satisfying:
1. x1, · · · , x	 are pairwise-distinct and do not appear in any Uj , 1 ≤ j ≤ ";
2. for each 1 ≤ i < ", name(Ui) ⊇ name(Ui+1) and var (Ui) ⊆ var (Ui+1).

For a trail D = {xi : Ui}i∈I , let dom(D) = {xi}i∈I and fnv(D) = dom(D) ∪⋃
i∈I Ui. Let A be an agent with ϕ(A) =

∑
j∈J νñj .σj . D is compatible with A if

the following conditions are satisfied:
1. dom(D) ∩ dom(A) = ∅,
2. var (

⋃
i∈I Ui) ⊆ dom(A), fv (A) ⊆ dom(A) ∪ dom(D), and

3. for any xi : Ui and y ∈ Ui with i ∈ I, xi /∈ var (yσj) for every j ∈ J .
Intuitively, the variables xi in D are input variables. The corresponding Ui

records all the variables that can be used by xi and the names that cannot be
used by xi, at the moment when the input action of xi fires.

A substitution θ respects D if
1. dom(θ) = dom(D),
2. for any i ∈ I, var(xiθ) ⊆ Ui and name(xi θ) ∩ Ui = ∅.
Example 1. Let A=c〈x〉 | {h(y)/w1, g(y, z)/w2} andD={x : {c}, y :∅, z :{w1}}.
Then D is a trail which is compatible with A. The substitution
{a/x, h(k)/y, f(k, w1)/z} respects D, while {c/x, h(k)/y, f(w2)/z} does not (be-
cause c cannot be used by x, and w2 cannot be used by z).

Formulas are specified by the following grammar:

Φ, Ψ ::= S | σ � Φ | Φ ∧Ψ | ¬Φ | Hn.Φ

S is a formula as defined in the previous page. In σ � Φ, σ is an idempotent
substitution that represents the environmental knowledge accumulated so far
to define some variables occurring in Φ. Hn.Φ hides n in Φ and n is binding.
We shall identify α-convertible formulas. We write false for ¬true, Φ ∨ Ψ for
¬(¬Φ ∧ ¬Ψ), Φ ⇒ Ψ for ¬Φ ∨Ψ, and Φ ⇔ Ψ for (Φ ⇒ Ψ) ∧ (Ψ ⇒ Φ).

The satisfiability relation |= is defined between idempotent substitutions and
formulas as follows, where the standard clauses for negation and conjunction are
omitted:

θ |= M = N if Mθ =E Nθ
θ |= σ � Φ if θσ is cycle-free and (θσ)∗ |= Φ
θ |= Hn.Φ if ∃m /∈ fn(Hn.Φ) ∪ name(θ) such that θ |= {m/n}Φ

We write Φ |=D Ψ to mean: θ |= Φ implies θ |= Ψ for any θ respecting D.
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Definition 1 (Partition). A collection of formulas Σ is a partition of Φ under
D if for any θ respecting D it holds that θ |= Φ implies θ |= Ψ for some Ψ ∈ Σ.

Example 2. Let D = {x : {y}}, Φ = Hs.({enc(m, s)/y} � dec(x, s) = m) and
Ψ = Hk.({k/y} � x = k), with the equation dec(enc(w1, w2), w2) =E w1.
Then we have {y/x} |= Φ because {enc(m, s)/x} |= dec(x, s) = m. Similarly
{y/x} |= Ψ. Moreover we can deduce that (x = y) |=D Φ ∧Ψ.

Symbolic Semantics. Symbolic semantics will be defined modulo symbolic
structural equivalence ≡s, which is defined by the AC properties of | with neutral
0 and the AC properties of +, such as (a〈b〉 | 0) + c〈k〉 ≡s c〈k〉+ a〈b〉.

Symbolic actions are of the form τ, u(x), u〈v〉 or νw.u〈w〉, where u, v ∈ Nch ∪
Vch and w ∈ Nch ∪ Vb. For two symbolic actions α and β with the same bound
objects, we use [α = β] to denote the formula obtained by comparison of their
subjects and free objects; for instance [u〈w〉 = v〈w′〉] denotes (u = v)∧(w = w′)
and [u(x) = v(x)] denotes u = v .

Symbolic transition relations, { Φ, α−−→| Φ a formula, α a symbolic action }, are
defined on agents by the following typical rules:

S u(x).P
S, u(x)−−−−−→ P S u〈v〉.P S, u〈v〉−−−−→ P

Su〈M〉.P S, νx.u〈x〉−−−−−−→ P | {M/x} !Pr
true, τ−−−−→ νm̃.(P |!Pr)

x ∈ Vb, x /∈ fv(Su〈M〉.P ) Γ (Pr) = νm̃.P

A
Φ, α−−→ A′

n/∈name(α)

νn.A
Hn.Φ, α−−−−−→ νn.A′

A
Φ, u〈c〉−−−−→ A′

u�=c

νc.A
Hc.Φ, νc.u〈c〉−−−−−−−−→ A′

A
Φ, α−−→ A′

A + B
Φ, α−−→ A′

A
Ψ, α−−−→ νñ.F bv(α)∩fv(B)={ñ}∩fn(B)= ∅

A | B Φ, α−−→ νñ.(F | B)
Φ = (σ ∪ ϕ(B)) � S
if Ψ = σ � S, dom(B) ∩ dom(σ) = ∅

Example 3. Let P =[x= s]b〈c〉. Then νc s.(a(x).P |{s/y}) Hc, s.({s/y}�true),a(x)−−−−−−−−−−−−−−−−→
νc s.(P | {s/y}) and νc s.(P | {s/y}) Hc s.({s/y}�x=s),νc.b〈c〉−−−−−−−−−−−−−−−−−→ νs.{s/y}.

After each symbolic transition, we need to update the relevant trail. Let D =
{xi : Ui}i∈I be compatible with A, and A

Φ,α−−→ A′ with bnv(α) ∩ fnv(D) = ∅,
then the result of D updated by this transition is defined thus:

X (α, dom(A),D) �

⎧⎨⎩
D ∪ {x : dom(A)} α is u(x)
{xi : (Ui ∪ {c})}i∈I α is νc. u〈c〉
D otherwise

It can be shown that X (α, dom(A),D) is also a trail and compatible with A′ [15].
Intuitively, it records the current abstract knowledge (i.e. dom(A)) on input and
prevents the prior input variables from using the fresh name (i.e. c) yielded by
the opening of channel name.

Example 4. For the symbolic transitions in Example 3, we haveX (a(x), {y}, ∅) =
{x : {y}} and X (νc.b〈c〉, {y}, {x : {y}}) = {x : {y, c}}.
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Γ (0) = 0 Γ ({M/x}) = {M/x} Γ (u(x).Pr) = νñ.u(x).P, where Γ (Pr) = νñ.P
Γ (!Pr) =!Pr Γ (νn.Ar) = νn.Γ (Ar) Γ (u〈N〉.Pr) = νñ.u〈N〉.P, where Γ (Pr) = νñ.P
Γ (νx.Ar) = Γ (Ar)\x Γ (if M = N then Pr else Qr ) = νñ.νm̃.if M = N then P else Q

where Γ (Pr) = νñ.P, Γ (Qr) = νm̃.Q
Γ (Ar | Br) = νñ.νm̃.(F | G)(ϕ(F ) ∪ ϕ(G))∗, where Γ (Ar) = νñ.F, Γ (Br) = νm̃.G

where Γ (Ar)\x is obtained by replacing {M/x} in Γ (Ar) to 0

Fig. 1. Transformation Γ

Weak symbolic transitions
Φ,γ
=⇒ (γ is α or ε) are generated by absorbing τ tran-

sitions as usual. We write
Φ, α̂
=⇒ to mean

Φ, α
=⇒ if α is not τ and

Φ, ε
=⇒ otherwise.

To capture observational equivalence in applied pi-calculus we also need a
means to compare the environmental knowledge exposed by agents:

Definition 2 (Symbolic Static Equivalence). Let A,B be agents with
ϕ(A) =

∑
i∈I νñi.σi and ϕ(B) =

∑
j∈J νm̃j .θj. We write A ∼(D,Φ) B if

1. D is compatible with A and B
2. dom(A) = dom(B)
3. for some fresh x, y ∈ Vb, it holds that Φ |=E (

∨
i∈I Φi) ⇔ (

∨
j∈J Ψj), where

Φi = Hñi.(σi � x = y),Ψj = Hm̃j .(θj � x = y), i ∈ I, j ∈ J and E =
D ∪ {x : dom(A)} ∪ {y : dom(B)}.

Definition 3 (Symbolic Bisimilarity). {≈(D,Φ)| (D,Φ) a constraint } is the
largest family of symmetric relations on agents such that whenever A ≈(D,Φ) B
then

1. A ∼(D,Φ) B
2. if A

Φ1, α−−−→ A′ with bnv(α) ∩ fnv(A,B,Φ,D) = ∅, let F = X (α, dom(A),D),
then there is a partition Σ of Φ∧Φ1 under F , such that for any Ψ ∈ Σ there

are Φ2, β, B1 satisfying B
Φ2,β̂
=⇒ B1, Ψ |=E [α = β] ∧ Φ2 and A1 ≈(E,Ψ) B1.

To relate symbolic bisimulation to observational equivalence, which is defined
on extended processes in the previous section, we employ the function Γ , as
defined in Fig. 1, to turn extended processes into an agent, by pulling name
binders to the top level, applying active substitutions and eliminating variable
restrictions. For example, Γ (νx.(a〈x〉.νn.a〈n〉 | νk.{k/x})) = νn.νk.(a〈k〉.a〈n〉 |
0). The soundness and completeness of symbolic bisimulation w.r.t. observational
equivalence was shown in [15]:

Theorem 1. Let Ar, Br be closed extended processes. Then Ar ≈ Br iff
Γ (Ar) ≈(∅, true) Γ (Br).

This result was shown in [15] for the applied pi calculus without choice operator
+. As explained before, the choice operator is used in the current work only
for the sake of axiomatization. When starting from a +-free agent, the semantic
constructions defined so far do not introduce this operator. Hence the theorem
also holds here.
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4 Proof System

This section is devoted to presenting a proof system for symbolic bisimulation
and proving its soundness and completeness. The following discussion is con-
fined to the finite fragment of the calculi, namely the fragment which does not
contain replications. Our proof system can be viewed as a general extension of
the previous works [10,16,3,12,14]

The statements of the proof system are of the form (D,Φ) � A = B. The
proof system consists of axioms and inference rules. The axioms are shown in
Fig. 2. Apart from those familiar axioms from CCS and pi-calculus, we have Es
to distribute active substitutions over summation.

The inference rules are presented in Fig. 3. Different from the proof systems
for value-passing CCS [12] or pi-calculus [3,14], the basic entities are of the form
νñ.(P | σ), where P is a plain process, rather than just P . The main reason
is that the evaluation of the equality tests occurred in P may depend on the
knowledge exposed by frame νñ.σ. This will be further explained later. In Par,
the side conditions ensure that the trail E is compatible with the agents in the
derived equation (E ,Φ) � A | C = B | C. Rule Frame relates frames which are
symbolically static equivalent, namely they expose the same knowledge to the
environment. The equation x = y in formula Φi = Hñ.(σi � x = y) abstractly
represents the set of tests {M = N | var(M,N) ⊆ dom(σi) }. Φi holds means
these tests can be satisfied under the knowledge exposed by νñi.σi. When

∨
Φi

is equavelant to
∨

Ψj, the frames
∑

i νñi.σi and
∑

j νm̃j .θj expose the same
knowledge. In Outt, the active substitutions {M/y} and {N/x} in the premise
are eliminated when output prefixes are introduced. This reflects the fact that

active substitutions are generated by output transitions: Su〈M〉.P S, νx.u〈x〉−−−−−−→ P |
{M/x}. The rule Partition permits a case analysis on formula Φ.

The proof system is designed to reason about agent equivalence and has to
inevitably rely on some form of reasoning on the underlying equational theories
on terms, which are taken as parameters to the applied pi-calculus. We have
decided to factor out reasoning on terms and substitutions from the proof system,
using “semantical judgments” of the form Φ |=D Ψ, as can be seen in Frame,
Input, Outt, Outch, and Partition. One may think of these as questions
about the term domain, to be answered by an “oracle”. In practice they can
be resolved by invoking some decision procedures, as the one in [2] for instance,
or appealing to a separate proof system specially designed for the underlying
equational theories. The following lemma is easy to prove (using Guard):

Lemma 1. Assume D is compatible with νñ.(Sπ.P | σ).

1. If Φ |=D Hñ.(σ � S) then � (D,Φ) � νñ.(Sπ.P | σ) = νñ.(π.P | σ).
2. If Φ ∧Hñ.(σ � S) |=D false then � (D,Φ) � νñ.(Sπ.P | σ) = νñ.σ.

Example 5. Assuming dec(enc(w1, w2), w2) =E w1, let us prove:
(∅, true) � νs.a〈s〉.a(x).[x = s]b〈c〉

= νk.a〈enc(m, k)〉.a(x).[dec(x, k) = m]b〈c〉.
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By Outt, it suffices to derive

(∅, true) � νs.(a(x).[x = s]b〈c〉 | {s/y})
= νk.(a(x).[dec(x, k) = m]b〈c〉 | {enc(m, k)/y})

Invoking Input and Partition leads to the following two statements:
(D, x = y) � νs.([x = s]b〈c〉 | {s/y}) = νk.([dec(x, k) = m]b〈c〉 | {enc(m, k)/y})
(D, x �= y) � νs.([x = s]b〈c〉 | {s/y}) = νk.([dec(x, k) = m]b〈c〉 | {enc(m, k)/y})
where D = {x : {y}}.

We continue with the first one and the other is similar. From Example 2, we
know that (x = y) |=D Hs.({s/y} � x = s) ∧ Hk.({enc(m, k)/y} � dec(x, k) =
m), hence by Lemma 1 this statement can be reduced to

(D, x = y) � νs.(b〈c〉 | {s/y}) = νk.(b〈c〉 | {enc(m, k)/y}).
Applying Outch, we are left to show that

(D, x = y) � νs.{s/y} = νk.{enc(m, k)/y}.
By Frame, this leads to the “semantical judgement” (x = y) |=D Hs.({s/y} �
z1 = z2) ⇔ Hk.({enc(m, k)/y} � z1 = z2), which can be easily verified by the
algorithm developed in [2], for instance.

As shown in this example, we can derive (∅, true) � νs.(a(x).[x = s]b〈c〉 |
{s/y}) = νk.(a(x).[dec(x, k) = m]b〈c〉 | {enc(m, k)/y}); However, we cannot de-
rive (∅, true) � a(x).[x = s]b〈c〉 = a(x).[dec(x, k) = m]b〈c〉, because the equality
tests [x = s] and [dec(x, k) = m] cannot be satisfied at the same time without the
knowledge exposed by the frames νs.{s/y} and νk.{enc(m, k)/y}. This explains
why the basic entities of the proof system are agents of the form νñ.(P | σ),
which are plain processes equipped with frames, not just plain processes.

Since weak bisimilarity is not preserved by summation, we need to introduce
a refined equivalence which takes care of initial τ moves. The equivalence is
defined on top of weak bisimilarity as follows:

Definition 4 (Symbolic Congruence). {∼=(D,Φ)| (D,Φ) a constraint } is the
largest family of symmetric relations between agents and whenever A ∼=(D,Φ) B,

1. A ∼(D,Φ) B
2. if A

Φ1, α−−−→ A′ with bnv(α) ∩ fnv(A,B,Φ,D) = ∅, let E = X (α, dom(A),D),
then there is a partition Σ of Φ∧Φ1 under E, such that for any Ψ ∈ Σ there
are Φ2, β, B1 satisfying B

Φ2, β
=⇒ B1, Ψ |=E [α = β] ∧ Φ2 and A1 ≈(E,Ψ) B1.

Theorem 2 (Soundness). If � (D,Φ) � A = B then A ∼=(D,Φ) B.

Soundness ensures correctness of the proof system. It is easy to see that
∼=(D,Φ)⊆≈(D,Φ). Combining with Theorem 1, we know that the proof system is
sound w.r.t observational equivalence.

Now we turn to completeness. Since the rule Partition can only be used
finitely many times in a proof, to capture A ∼=(D,Φ) B by purely syntactical
inferencing requires the partitions in Def. 3 and Def. 4 must be finite. It has
been shown that in the case of value-passing CCS and pi-calculus, such finite
partitions always exist for processes whose symbolic transition graphs are finite
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P1 A = A | 0 S1 A + 0 = A
P2 A | B = B | A S2 A + A = A
P3 (A | B) | C = A | (B | C) S3 A + B = B + A

S4 (A + B) + C = A + (B + C)
R1 νn.A = A if n /∈ fn(A) T1 π.τ.P = π.P
R2 νn.νm.A = νm.νn.A T2 P + τ.P = τ.P
R3 νn.(Sπ.P | σ) = νn.σ if n ∈ sub(π) T3 π.(P + τ.Q) + π.Q = π.(P + τ.Q)
Er νn.(A + B) = νn.A + νn.B Es (A + B) | σ = (A | σ) + (B | σ)

Ep Let P =
∑

i∈I Siπi.Pi and Q =
∑

j∈J Tjπ
′
j .Qj

with bnv(πi) ∩ fnv(Q) = bnv(π′
j) ∩ fnv(P ) = ∅.

P | Q =
∑
i∈I

Siπi.(Pi | Q) +
∑
j∈J

Tjπ
′
j .(P | Qj) +

∑
πi opp π′

j

Si ∧ Tj ∧ (ui = vj)τ.Rij

where πi opp π′
j and Rij are defined as follows

1. πi = ui(x), π′
j = vj〈M〉 with M, x the same sort; then Rij = Pi{M/x} | Qj

2. The converse of the above clause;

where subject of prefix π is sub(τ ) = ∅ and sub(u(x)) = sub(u〈M〉) = {u}.

Fig. 2. The Axioms

[11,14]. However, the situation is less clear in the applied pi-calculus, since here
we have to consider not only dynamic behaviors of processes but also static
equivalence of knowledge, i.e. ∼(D,Φ), which depends on the expressiveness of
the constraint systems [11,4,13]. Let us say that a class of agents admit finite
partition if symbolic equivalences on them can be established when the phrase
“there exists a partition Σ” is replaced by “there exists a finite partition Σ” in
Def. 3 and Def. 4. The completeness of the proof system holds on agents that
admit finite partition. In next section we will demonstrate that a widely used
fragment of applied pi-calculus admits finite partition, hence this restriction is
acceptable in practical applications. In what follows all agents are assumed to
admit finite partition.

The following lemma “lifts” ≈(D,Φ) to ∼=(D,Φ):

Lemma 2 (Lifting). νñ.(P | σ) ≈(D,Φ) νm̃.(Q | θ) iff there exists a finite
partition Σ of Φ under D such that for any Ψ ∈ Σ we have either νñ.(P |
σ) ∼=(D,Ψ) νm̃.(τ.Q | θ), or νñ.(τ.P | σ) ∼=(D,Ψ) νm̃.(Q | θ), or νñ.(P | σ) ∼=(D,Ψ)

νm̃.(Q | θ).

Definition 5 (Normal Forms)

– Agent A is in head normal form if A =
∑

i νñi.(Pi | σi) with each Pi =
Siπi.Qi or 0 and sub(πi) ∩ {ñi} = ∅.

– A head normal form A is a full normal form if A
Φ1,ε
=⇒ Φ2,α−−−→ A′ implies

A
Φ,α−−→ A′ with (Φ1 ∧ Φ2) ⇔ Φ.

The height of an agent A, |A |, is defined inductively thus: | 0 | = | {M/x} | =
0, |Sπ.P | = |P | + 1, |A | B | = |A | + |B |, |A + B | = max (|A | , |B |) and
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Axiom
(D, true) � A = B

A = B is an axiom and D is compatible with A, B

Equiv
(D, Φ) � A = B

(D, Φ) � B = A

(D, Φ) � A = B, B = C

(D, Φ) � A = C

Par
(D, true) � A = B

(E , true) � A | C = B | C
E = {xi : Ui}i is compatible with A | C and B | C

D = {xi : (Ui − dom(C))}i

Frame
Φ |=E (

∨
i Φi) ⇔ (

∨
j Ψj)

(D, Φ) �
∑

i νñi.σi =
∑

j νm̃j .θj

D is compatible with each σi and θj

dom(σi) = dom(θj), Φi = Hñi.(σi � (x = y)), Ψj = Hm̃j .(θj � (x = y))

E = D ∪ { x : dom(σi), y : dom(σi) } for some fresh x, y ∈ Vb.

Tau
(D, Φ) � νñ.(P | σ) = νm̃.(Q | θ)

(D, Φ) � νñ.(τ.P | σ) = νm̃.(τ.Q | θ)

Input
(E , Φ) �

∑
i νñi.(τ.Pi | σi) =

∑
j νm̃j .(τ.Qj | θj), Φ |=D

∧
i,j ui = vj

(D, Φ) �
∑

i νñi.(ui(x).Pi | σi) =
∑

j νm̃j .(vj(x).Qj | θj)
E = D � {x : dom(σi)}, x /∈ fv(D, Φ, {σi, θj}i,j)

var({ui, vj}i,j) ⊆ dom(D), name({ui, vj}i,j) ∩ {ñi, m̃j}i,j = ∅

Guard
(D, Φ ∧ Hñ.(σ � S)) � νñ.(π.P | σ) = A, (D, Φ ∧ Hñ.(σ � ¬S)) � νñ.σ = A

(D, Φ) � νñ.(Sπ.P | σ) = A
var(S) ⊆ dom(D)

Outt
(D, Φ) � νñ.(P | σ | {M/y}) = νm̃.(Q | θ | {N/y}), Φ |=D u = v

(D, Φ) � νñ.(u〈M〉.P | σ) = νm̃.(v〈N〉.Q | θ)
var(u, v) ⊆ dom(D), name(u, v) ∩ {ñ, m̃} = ∅ and y /∈ fv(D, Φ)

Outch
(D, Φ) � νñ.(P | σ) = νm̃.(Q | θ), Φ |=D [u〈w〉 = v〈w′〉]

(D, Φ) � νñ.(u〈w〉.P | σ) = νm̃.(v〈w′〉.Q | θ)
var(u〈w〉, v〈w′〉) ⊆ dom(D), name(u〈w〉, v〈w′〉) ∩ {ñ, m̃} = ∅

Sum
(D, Φ) � Ai = Bi, i = 1, 2

(D, Φ) � A1 + A2 = B1 + B2

Res
(D, Φ) � A = B

(E , Hn.Φ) � νn.A = νn.B
n /∈ fn(Φ) if n /∈ name(D)

E = {xi : (Ui − {n})}i if D = {xi : Ui}i

Partition
(D, Φi) � A = B, i = 1, 2, Φ |=D Φ1 ∨ Φ2

(D, Φ) � A = B

Absurd
(D, false) � A = B

D is compatible with A, B

Fig. 3. The Inference Rules
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| νn.A | = |A |. Every agent can be rewritten to head normal form and full
normal form without increasing its height, as stated in the lemma below.

Lemma 3. For any agent A, there is a head/full normal form B such that, for
any D compatible with A,

1. � (D, true) � A = B, |B | ≤ |A |, fnv(B) ⊆ fnv(A) and dom(B) = dom(A)
2. if A = νñ.F then B has the form

∑
i∈I νñ.(Siπi.Pi | ϕ(F )).

For example, let A = νs.[((a〈s〉 | a(x)) + τ.a〈c〉) | {s/y}]. Then we can deduce a
full normal form for A by the following sequence:

(∅, true) � A = νs.((a〈s〉.a(x) + a(x).a〈s〉+ τ + τ.a〈c〉) | {s/y}) Ep
= νs.((a〈s〉.a(x) + a(x).a〈s〉+ τ + τ.a〈c〉+ a〈c〉) | {s/y}) T2
= νs.(a〈s〉.a(x) | {s/y}) + νs.(a(x).a〈s〉 | {s/y})

+ νs.(τ | {s/y}) + νs.(τ.a〈c〉 | {s/y}) + νs.(a〈c〉 | {s/y}) Er,Es

Theorem 3 (Completeness). If A ∼=(D,Φ) B then � (D,Φ) � A = B.

Proof. The proof proceeds by induction on the joint height |A | + |B |. By
Lemma 3, we rewrite A and B to full normal form

∑
i∈I νñi.(P̂i | σi) and∑

j∈J νm̃j .(Q̂i | θj) respectively, where P̂i = Siπi.Pi or 0 and Q̂j = Tjπ
′
j .Qj

or 0. We group the summands of A according to type γ of πi and write Aγ for
the result. It suffices to show that (D,Φ)�Aγ +B = B and (D,Φ)�Bγ +A = A
for each γ.

We only sketch the proof for the case γ = τ . Assume Aτ =
∑

i νñi.(Siτ.Pi | σi)

and Bτ =
∑

j νm̃j .(Tjτ.Qj | θj). Then A
Φi,τ−−−→ Ai ≡s νñi.(Pi | σi) where

Φi = Hñi.(σi � Si). Since A ∼=(D,Φ) B, there is a finite partition Σ of Φ ∧ Φi

under D, and for each Ψ ∈ Σ, there exist B
Ψj , τ−−−→ Bj ≡s νm̃j .(Qj | θj), such

that Ψ |=D Ψj and Ai ≈(D,Ψ) Bj . By Theorem 2, induction hypothesis, T2
and Partition, we can derive (D,Ψ) � νñi.(τ.Pi | σi) = νm̃j .(τ.Qj | θj). By
Lemma 1.1, we have (D,Ψ) � νñi.(Siτ.Pi | σi) = νm̃j .(Tjτ.Qj | θj), and hence
(D,Ψ) � νñi.(Siτ.Pi | σi) + B = νm̃j .(Tjτ.Qj | θj) + B = B. By Partition,
we obtain (D,Φ ∧ Φi) � νñi.(Siτ.Pi | σi) + B = B. By Lemma 1.2, we have
(D,Φ ∧ ¬Φi)�νñi.(Siτ.Pi | σi) = νñi.σi since we can deduce that ¬Φi∧Hñ.(σi �
Si) |=D false. Adding B to both sides we have (D,Φ ∧ ¬Φi) � νñi.(Siτ.Pi |
σi)+B = B. By Partition again, (D,Φ)�νñi.(Siτ.Pi | σi)+B = B. Finally, by
Sum we obtain (D,Φ)�Aτ+B = B. Similarly we can derive (D,Φ)�Bτ +A = A.

For any extended processes Ar, it is easy to see that Γ (Ar) ≡s νñ.(P | σ) for
some ñ, P, σ. The following theorem is a direct corollary of Theorem 1, 2 and 3,
using Lemma 2 and axiom T1.

Theorem 4. Let Ar, Br be closed extended processes and Γ (Ar) ≡s νñ.(P | σ)
and Γ (Br) ≡s νm̃.(Q | θ). Then Ar ≈ Br iff � (∅, true) � νñ.(τ.P | σ) =
νm̃.(τ.Q | θ).

Thus our proof system is sound and complete w.r.t. observational equivalence
for finite extended processes which admit finite partition.
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5 Finiteness of Partition

In practice we do not always need full applied pi-calculus for describing and ana-
lyzing security protocols. For example, as argued in [7,8], it is generally assumed
that all communications are controlled by the attacker thus private channels be-
tween processes are not accurate. We shall show in this section that a useful frag-
ment of the applied pi-calculus, called “simple processes” [7,8], admit finite par-
tition. Simple processes are built up from “basic processes”. A basic process rep-
resents a session of protocol role which knows exactly what to do next. Simple
processes are used to analyze security protocols whose roles have a deterministic
behavior, such as the protocols in [6]. For simple processes without Else branch
nor replications, it is shown in [8] that symbolic trace equivalence coincides with
observational equivalence. In comparison, we use symbolic bisimilarity to fully
capture observational equivalence, and we will show that finite partitions are suf-
ficient for simple processes, even in the presence of Else branch and replications.

The sets of basic processes B(c, U) with c ∈ Nch and finite U ⊂ Vb are the
least sets of processes such that

1. 0 ∈ B(c, U)
2. if B ∈ B(c, U), var(M) ⊆ U and name(M) ⊂ Nb then c〈M〉.B ∈ B(c, U)
3. if B1, B2 ∈ B(c, U), var(M,N) ⊆ U and name(M,N) ⊂ Nb, then if M =

N then B1 else B2 ∈ B(c,U )
4. if B ∈ B(c, U ( {x}) and x ∈ Vb, then c(x).B ∈ B(c, U).

Let us abbreviate A1 | A2 | · · · | Am to
∏

i∈I Ai. Then simple processes are those
of the form

νñ.(
∏

i∈I
νñi.(Bi | σi) |

∏
j∈J

!(νcj , m̃j).bj〈cj〉.B′
j)

where Bi ∈ B(ai, ∅), B′
j ∈ B(cj , ∅); ai, bj with i ∈ I, j ∈ J are pairwise-distinct

channel names. As argued in [8], the pairwise-distinct channel names for each
basic process correspond to the fact that the attacker is able to schedule the
messages and know which process the message comes from (e.g. via IP addresses).

To cater simple processes, in symbolic semantics it is adequate to consider
simple agents of the form

A ≡s νñ.(
∏

i∈I
Bi |

∏
j∈J

!(νcj , m̃j).bj〈cj〉.B′
j | σ)

where Bi ∈ B(ai, Ui), B′
j ∈ B(cj, ∅); Ui with i ∈ I are pairwise-distinct and σ

is idempotent with dom(σ) ∩
⋃

i∈I Ui = ∅; ai, bj with i ∈ I, j ∈ J are pairwise-
distinct channel names. In what follows we shall use A to range over simple
agents.

For simple agents we do not have to use the rule !Pr
true,τ−−−−→ νm̃.(P |!Pr),

where Γ (Pr) = νm̃.P , to expand replications since replications in simple agents
are always guarded by bound output. Instead, we can use the following simpler
rule (conflicts on m̃ can be avoided by α-conversion):

!(νc, m̃).b〈c〉.B true,νc.b〈c〉−−−−−−−→ νm̃.(B |!(νc, m̃).b〈c〉.B).
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We still use ≈(D,Φ) to denote the symbolic bisimilarity in the resulting symbolic
semantics. Note that the definition of simple agents is closed under

Φ,α−−→.

Theorem 5. For simple agents A and B, A ≈(D,Φ) B can be established when
the phrase “there exists a partition Σ” is replaced by “there exists a finite parti-
tion Σ” in Definition 3.

Proof. To show finite partition always suffices, assume A ≈(D,Φ) B and A
Φ1,α−−−→

A1. Let Σα = {Φ ∧ Φ1 ∧ Ψ1 | B
Ψ1,α̂
=⇒ B1 � τ−→}, where B1 � τ−→ denotes that there

is no Ψ′, B′
1 such that B1

Ψ′,τ−−−→ B′
1. We can verify that Σα is a finite partition

of Φ ∧ Φ1 under E , and A1 ≈(E,Φ∧Φ1∧Ψ1) B1.

Thus, by Theorem 4, our proof system is sound and complete for observational
equivalence on finite fragment of simple processes.

6 Conclusions

We have presented a proof system for observational equivalence in the applied pi-
calculus, and shown its soundness and completeness. The completeness result is
obtained via a recently developed theory of symbolic bisimulation which exactly
captures observational equivalence. This is the first inference system for the
applied pi calculus which makes it possible to reason on security properties by
syntactic manipulations.

As the applied pi-calculus is parameterized on equational theories for cryp-
tographic operations while our proof system mainly concerns with behavioural
properties of processes, “static” reasoning about cryptographic operations has
been factored out from the proof system, as “semantic judgements” of the form
Φ |=D Ψ. The verification of Φ |=D Ψ is a second order E-unification problem.
The reasoning about some special class of the problem is discussed in [2], where
sound and complete transformation rules are proposed to handle the constraint
systems without negation for convergent equational theories, and a decision pro-
cedure for convergent subterm theories. The ongoing work of [5] mainly dedicates
to finding a simpler decision algorithm than [2] for a larger class of equational
theories in the presence of negation.

Our completeness result is confined to finite processes which admit finite par-
tition. This contrasts to the proof systems for value-passing CCS and pi-calculus,
where finite partitions are sufficient for finite processes. The expressiveness of
formulas is highly relevant in this regard. The formula language in this paper
includes two operators σ � Φ and Hn.Φ, which are mainly needed for symbolic

output transitions: νk.(if x = k then P else Q | {k/y}) Hk .({k/y}�x=k),true−−−−−−−−−−−−−−→ P .
When an agent tries to match a symbolic transition from the other, the choices
on the branches are closely dependent on symbolic static equivalence. It is still
unclear whether the expressiveness of the formulas is sufficient to guarantee fi-
nite partitions for symbolic static equivalence, or how to extend the formula
language if not.
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Abstract. Concurrent pattern calculus drives interaction between pro-
cesses by unifying patterns, just as sequential pattern calculus drives
computation by matching a pattern against a data structure. By gener-
alising from pattern matching to unification, interaction becomes sym-
metrical, with information flowing in both directions. This provides a
natural language for describing any form of exchange or trade. Many
popular process calculi can be encoded in concurrent pattern calculus.

1 Introduction

The π-calculus [13] holds a pivotal position among process calculi as it is the sim-
plest that is able to support computation as represented by λ-calculus [1]. How-
ever, pattern calculus [11,9] supports even more computations than λ-calculus
since pattern-matching functions are commonly intensional with respect to their
arguments [10]. For example, the pattern x y can decompose any data structure
in (static) pattern calculus by matching against the internal structure. Hence it
is natural to wonder what a concurrent pattern calculus might look like. In fact
it turns out rather well.

This paper adapts the pattern matching mechanism of the pure pattern calcu-
lus [11,9] to a concurrent process language that supports the standard constructs
of parallel composition, name restriction and replication. This yields a concur-
rent pattern calculus (CPC) where the usual prefixes for input and output can
be combined into patterns; their unification triggers a two-way, or symmetric,
flow of information, as represented by the sole interaction rule

(p→ P | q → Q) �−→ σP | ρQ

where σ and ρ are the substitutions on names resulting from the unification of
p and q.

Its support for structure and symmetry of interaction makes its pattern match-
ing more expressive than several representative approaches in the literature. For
example, checking equality of channel names, as in π-calculus [13], can be viewed
as a trivial form of pattern matching. This can be generalised to match tuples
of names, as in polyadic π-calculus [12], fusion calculus [15] and Linda [4]. Spi
calculus [6] has an even richer collection of patterns, for equality of terms, pairs
of terms, numbers (zero and successors) and encryptions.

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 244–258, 2010.
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More formally, π-calculus, Spi calculus and Linda can all be encoded into CPC
but CPC cannot be encoded in any of them. Although the patterns of fusion
calculus are relatively simple, the peculiarities of name fusion ensure that there
are no encodings of fusion calculus into CPC or conversely, of CPC into fusion
calculus.

A natural objection to CPC is that the unification is too complex to be an
atomic operation. In particular, any limit to the size of communicated messages
could be violated by some match. Also, one cannot, in practice, implement a
simultaneous exchange of information, so that pattern unification must be im-
plemented in terms of simpler primitives.

This objection is similar to those made against λ-calculus, whose substitution
is not atomic either. Even more, the pattern matching of Linda suffers from the
same problems (it cannot be implemented as an atomic action), but there are
many existing programming environments based on it (e.g. [14,16]). Really it
is a question of deciding how granular one wishes to be. CPC may prove to be
a convenient specification language since, if symmetry between processes is to
be taken seriously, there must always be some give and take, some exchange of
information. This is most obvious in the world of trade, where negotiation is
paramount, and the mechanics of settlement are secondary.

To this end, our major example supports a simple negotiation. Buyer and
seller must discover their compatibility in an open environment, establish trust
(through a third party) and then communicate privately.

The structure of the paper is as follows. Section 2 introduces symmetric match-
ing through a concurrent pattern calculus. Section 3 develops a share trading
example. Section 4 formalises the relation of CPC to other process calculi. Sec-
tion 5 concludes and considers future work. Most proofs are omitted from this
paper but can be found on-line [5].

2 Concurrent Pattern Calculus

This section presents a concurrent pattern calculus (CPC) that uses symmetric
pattern matching as the basis of communication. Both symmetry and pattern
matching appear in existing models of concurrency, but in more limited ways.
For example, π-calculus requires a sender and receiver to share a channel, so that
the presence of the channel is symmetric but information flow is in one direction
only. Fusion calculus achieves symmetry by fusing names together but has no
intensional patterns. On the other hand, Spi calculus has intensional patterns,
e.g. for natural numbers, and can check equality of terms (i.e. patterns), but
does not perform matching in general, or support much symmetry.

The expressiveness of CPC comes from extending the traditional names to
a class of patterns and unifying them (symmetrically) rather than matching
them (asymmetrically). This supports equality testing and bi-directional input
and output in a single step. Although the increased expressive power makes it
harder to protect private information, this can be managed by allowing some
names (and patterns) to be protected, in the sense that they can be matched
but not shared.
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2.1 Syntax

The CPC has two syntactic classes, the patterns (meta-variables p, p1, q, q1, . . .)
and the processes (meta-variables P, P ′, P1, Q,Q′, Q1 . . .).

The patterns have the following forms

Patterns p ::= x variable name
�x� protected name
λx binding name
p • p compound.

Variable names x are available for equality, output and substitution. Protected
names �x� are only available for equality and substitution. Binding names λx are
available for input only. A compound combines two patterns into a single one.

Given a pattern p the sets of: variables names, denoted vn(p); protected names,
denoted pn(p); and binding names, denoted bn(p), are as expected with the union
being taken for compounds. The free names of a pattern p, written fn(p), is the
union of the variable names and protected names of p. A pattern is well formed
if each binding name appears exactly once. All patterns appearing in the rest of
the paper are assumed to be well formed.

As the protected names serve to test for equality and the binding names
represent input, neither should be able to be communicated to another process.
Thus, a pattern is communicable if it contains no protected or binding names.

Protection can be extended to a communicable pattern p by defining

�x� = �x� �p • q� = �p� • �q� .

A substitution σ (also denoted σ1, ρ, ρ1, . . .) is defined as a partial function from
names to communicable patterns. These are applied to patterns in the obvious
manner on the understanding that

σ�x� = �σx� if x is in the domain of σ.

The symmetric matching or unification {p||q} of two patterns p and q attempts
to unify p and q by generating substitutions upon their binding names. When
defined, the result is some pair of substitutions whose domains are the binding
names of p and of q. The rules to generate the substitutions are:

{x||x}
{x||�x�}
{�x�||x}
{�x�||�x�}

⎫⎪⎪⎬⎪⎪⎭ = Some ({}, {})

{λx||q} = Some ({q/x}, {}) if q is communicable
{p||λx} = Some ({}, {p/x}) if p is communicable

{p1 • p2||q1 • q2} = Some ((σ1 ∪ σ2), (ρ1 ∪ ρ2))
{
{p1||q1} = Some (σ1, ρ1)
{p2||q2} = Some (σ2, ρ2)

{p||q} = undefined otherwise.
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A name matches against itself when both instances are either variable or pro-
tected. That a protected name �x� unifies with the variable name x means that
a process that protects a name may communicate with one that does not. A
binding name λx binds any communicable pattern p by generating a substitu-
tion {p/x}. If both patterns are compounds and there is some matching for their
respective components, then take the union of the substitutions. Otherwise the
patterns cannot be unified and the matching is undefined.

Lemma 1. If the unification of patterns p and q is defined then any protected
name of p is a free name of q.

The processes of CPC are given by

Processes P ::= 0 zero
P |P parallel composition
!P replication
(νx)P restriction
p→ P case.

The zero, parallel composition, replication and restriction are all familiar. The
traditional input and output primitives are replaced by the case p→ P that has
a pattern p and a body P . The pattern of a case may be considered as a form of
prefix, as commonly used for input or output.

The free names of processes, denoted fn(P ), are defined as usual for all the
traditional primitives and

fn(p→ P ) = fn(p) ∪ (fn(P )\bn(p))

where the binding names of the pattern bind their free occurrences in the body.
The general structural equivalence relation ≡ is defined just as in π-calculus

[12], with α-conversion defined in the usual manner.
The application of a substitution to a process is defined in the usual manner,

to avoid name capture.

2.2 Operational Semantics

CPC has one interaction rule given by

(p→ P | q → Q) �−→ (σP ) | (ρQ) if {p||q} = Some (σ, ρ).

It states that if the unification of two patterns p and q is defined and generates
Some (σ, ρ), then apply the substitutions σ and ρ to the bodies P and Q, re-
spectively. If the matching of p and q is undefined then no interaction occurs.
The interaction rule is then closed under parallel composition, restriction and
structural equivalence in the usual manner. The reflexive, transitive closure of
�−→ is denoted �=⇒. The examples and theorems developed later in the paper
rely on control of interaction, as now defined.
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Definition 1. The processes P and Q do not interact if, whenever P |Q �=⇒ R,
then there are processes P ′ and Q′ such that P �=⇒ P ′, Q �=⇒ Q′ and R ≡ P ′|Q′.

Lemma 2. A process of the form p→ P with a protected name n in the pattern
can only interact with a process Q containing n among its the free names.

3 Trade

This section uses the example of share trading to explore the potential of CPC.
The scenario is that two potential traders, a buyer and a seller, wish to engage in
trade. To complete a transaction the traders need to progress through two stages:
discovering each other and exchanging information. Both traders begin with a
pattern for their desired transaction. The discovery phase can be characterised
as a pattern-unification problem, where traders’ patterns are used to find a
compatible partner. The exchange phase occurs when a buyer and seller have
agreed upon a transaction. Now each trader wishes to exchange information in
a single interaction, preventing any incomplete trades from occurring.

The rest of this section explores three solutions to completing a transaction.
The first demonstrates discovery, the second introduces a registrar to validate
traders, the third extends the second with protected names to ensure privacy.

Solution 1. Consider two traders, a buyer and a seller. The buyer Buy1 with
bank account b and desired shares s can be given by

Buy1 = s • λm → m • b • λx→ B(x) .

The first pattern s • λm is used to match with a compatible seller using share
information s, and to input a name m to be used as a channel to exchange
bank account information b for share certificates bound to x. The transaction
successfully concludes with B(x).

The seller Sell1 with share certificates c and desired share sale s is given by

Sell1 = (νn)s • n→ n • λy • c→ S(y) .

The seller creates a channel name n and then tries to find a buyer for the shares
described in s, offering n to the buyer to continue the transaction. The channel is
then used to exchange billing information, bound to y, for the share certificates
c. The seller then concludes with the successfully completed transaction as S(y).

The discovery phase succeeds when the traders are place in a parallel compo-
sition and discover each other by matching on s

Buy1|Sell1 ≡ (νn)(s • λm → m • b • λx→ B(x) | s • n→ n • λy • c→ S(y))
�−→ (νn)(n • b • λx→ B(x) | n • λy • c→ S(y)) .

The next phase is to exchange billing information for share certificates, as in

(νn)(n • b • λx→ B(x) | n • λy • c→ S(y)) �−→ (νn)(B(c) | S(b)).
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The transaction concludes with the buyer having the share certificates c and the
seller having the billing account b.

This solution allows the traders to discover each other and exchange informa-
tion atomically to complete a transaction. However, there is no way to determine
if a process is a trustworthy trader.

Solution 2. Now add a registrar that keeps track of registered traders. Traders
offer their identity to potential partners and the registrar confirms if the identity
belongs to a valid trader. The buyer is now

Buy2 = s • iB • λj → nB • j • λm→ m • b • λx→ B(x) .

The first pattern now swaps the buyer’s identity iB for the seller’s, bound to
j. The buyer then consults the registrar using the identifier nB to validate j, if
valid the exchange continues as before.

Now define the seller symmetrically by

Sell2 = s • λj • iS → nS • j • λm→ m • λy • c→ S(y) .

Also define the registrar Reg2 with identifiers nB and nS to communicate with
the buyer and seller, respectively, by

Reg2 = (νn)(nB • �iS� • n→ 0 | nS • �iB� • n→ 0) .

The registrar creates a new identifier n to provide to traders who have been
validated; then it makes the identifier available to known traders who attempt
to validate another known trader. Although rather simple, the registrar can
easily be extended to support a multitude of traders.

Running these processes in parallel yields the following interaction

Buy2 | Sell2 | Reg2

≡ (νn)(s • iB • λj → nB • j • λm → m • b • λx→ B(x) | nB • �iS� • n→ 0

| s • λj • iS → nS • j • λm→ m • λy • c→ S(y) | nS • �iB� • n→ 0)
�−→ (νn)(nB • iS • λm→ m • b • λx→ B(x) | nB • �iS� • n→ 0

| nS • iB • λm→ m • λy • c→ S(y) | nS • �iB� • n→ 0) .

The share information s allows the buyer and seller to discover each other and
swap identities iB and iS . The next two interactions involve the buyer and
seller validating each other’s identity and inputting the identifier to complete
the transaction

(νn)(nB • iS • λm→ m • b • λx→ B(x) | nB • �iS� • n→ 0

| nS • iB • λm→ m • λy • c→ S(y) | nS • �iB� • n→ 0)
�−→ (νn)(n • b • λx→ B(x)

| nS • iB • λm→ m • λy • c→ S(y) | nS • �iB� • n→ 0)
�−→ (νn)(n • b • λx→ B(x) | n • λy • c→ S(y)) .
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Now that the traders have validated each other, they can continue with the
exchange step from before

(νn)(n • b • λx→ B(x) | n • λy • c→ S(y)) �−→ (νn)(B(c) | S(b)) .

The traders exchange information and successfully complete with B(c) and S(b).
Although this solution satisfies the desire to validate that traders are legiti-

mate, the freedom of matching allows for malicious processes to interfere. Con-
sider the promiscuous process Prom given by

Prom = λz1 • λz2 • a→ P (z1, z2) .

This process is willing to match any other process that will swap two pieces of
information for some arbitrary name a. Such a process could interfere with the
traders trying to complete the exchange phase of a transaction. For example,

(νn)(n • b • λx→ B(x) | n • λy • c→ S(y)) | Prom

�−→ (νn)(B(a) | n • λy • c→ S(y) | P (n, b))

where the promiscuous process has stolen the identifier n and the bank account
information b. The unfortunate buyer is left with some useless information a and
the seller is waiting to complete the transaction.

Solution 3. The vulnerability of Solution 2 can be repaired by using protected
names. The buyer, seller and registrar can be repaired to

Buy3 = s • iB • λj → �nB� • j • λm → �m� • b • λx→ B(x)
Sell3 = s • λj • iS → �nS� • j • λm→ �m� • λy • c→ S(y)
Reg3 = (νn)(�nB� • �iS� • n→ 0 | �nS� • �iB� • n→ 0) .

Now all communication between the buyer, seller and registrar use protected
identifiers: �nB�, �nS� and �m�. Thus, all that remains is to ensure appropriate
restrictions:

(νnB)(νnS)(Buy3 | Sell3 | Reg3) .

Therefore, other processes can only interact with the traders during the discovery
phase, which will not lead to a successful transaction. The registrar will only
interact with the traders as all the registrar’s patterns have protected names
known only to the registrar and a trader (Lemma 2).

The solution could be extended further: although the share information is
treated as a variable name in the example, it could be represented as a compound
structure with a company code, number of shares and price per share, e.g. ABC•
100 • $0.38. This format allows discovery based on partial share information, for
example: specify a company code and price, but not the number of shares ABC•
λv•$0.38; or specify only the price and accept any company or number of shares
λu • λv • $0.38. The seller could also offer similarly partial share information,
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although this may be a very risky business strategy! Observe that either trader
can protect any component of the pattern if they wish to ensure that the other
party exactly meets that criterion.

Another possibility is to allow for some checking of the integrity of the patterns
being communicated. Given some standard language for the representation of
data, such as XML, this could be checked by the matching. For example, a
valid bank account may be required to have an account number and account
name. Thus, a pattern to input only valid bank accounts, binding the account
number to u, the name to v and using standardised tags accountnumber and
accountname, could be (�accountnumber� • λu) • (�accountname� • λv). Thus, any
pattern that successfully matches must be identically structured and tagged.
Indeed, this could be developed further to account for XML and web services
such as in PiDuce [3].

4 Comparison with Other Process Calculi

This section exploits the techniques developed in [7,8] to formally asses the
expressive power of CPC w.r.t. π-calculus, Linda, Fusion and Spi calculus. After
briefly recalling these models and some basic material from [8], the relation to
CPC is formalised. First, let each model, including CPC, be augmented with a
reserved process ‘

√
’, used to signal successful termination.

4.1 Some Process Calculi

π-calculus [13,12]. The π-calculus processes given by the following grammar:

P ::= 0 | √ | a〈b〉.P | a(x).P | (νn)P | P |Q | !P

and the only reduction rule is

a〈b〉.P | a(x).Q �−→ P | Q{b/x} .

Linda [4]. Consider an instance of Linda formulated to follow CPC’s syntax.

Processes are defined as:

P ::= 0 | √ | 〈b1, . . . , bk〉 | (t1, . . . , tk).P | (νn)P | P |Q | !P

where b ranges over names and t denotes a template field, defined by:

t ::= λx | �b� .

Assume that input variables occurring in templates are all distinct. This assump-
tion rules out template (λx, λx), but accepts (λx, �b�, �b�). Templates are used to
implement Linda’s pattern matching, defined as follows:

Match( ; ) = {} Match(�b�; b) = {} Match(λx; b) = {b/x}

Match(t; b) = σ1 Match(t̃; b̃) = σ2

Match(t, t̃ ; b, b̃) = σ1 ( σ2
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where ẽ denotes a (possibly empty) sequence of entities of kind e (names or
template fields, in our case) and ‘(’ denotes the union of partial functions with
disjoint domains. The interaction rule is given by:

〈̃b〉 | (t̃).P �−→ σP if Match(t̃; b̃) = σ .

The reduction relation is obtained by closing this interaction rule by parallel,
restriction and the same structural equivalence relation defined for CPC.

Fusion [15]. Following the the presentation in [17], processes are defined as:

P ::= 0 | P |P | (νx)P | !P | u〈x̃〉.P | u(x̃).P .

The interaction rule for Fusion is

(νũ)(u〈x̃〉.P | u(ỹ).Q | R) �−→ σP | σQ | σR with dom(σ) ∪ ran(σ) ⊆ {x̃, ỹ}
and ũ = dom(σ) \ ran(σ) and
σ(v) = σ(w) iff (v, w) ∈ E(x̃ = ỹ)

where E(x̃ = ỹ) is the least equivalence relation on names generated by the
equalities x̃ = ỹ (that is defined whenever |x̃| = |ỹ|). Fusion’s reduction relation
is obtained by closing the interaction axiom under parallel, restriction and the
structural equivalence as for CPC.

Spi calculus [6]. This language is unusual as names are now generalised to
terms of the form

M,N ::= n | x | (M,N) | 0 | suc(M) | {M}N

They are rather similar to the patterns of CPC in that they may have internal
structure. Of particular interest are the pair, successor and encryption that may
be bound to a name and then decomposed later by an intensional reduction.

Concerning the operational semantics, we consider a slightly modified version
of Spi calculus where interaction is generalised to

M〈N〉.P |M(x).Q �−→ P | {N/x}Q

where M is any term of the Spi calculus.

4.2 Valid Encodings and Their Properties

An encoding of a language L1 into another language L2 is a pair ([[ · ]], ϕ[[ ]]) where
[[ · ]] translates every L1-process into an L2-process and ϕ[[ ]] maps every source
name into a k-tuple of (target) names, for k > 0. The translation [[ · ]] turns every
source term into a target term; in doing this, the translation may fix some names
to play a precise rôle or it may translate a single name into a tuple of names.
This can be obtained by exploiting ϕ[[ ]] (details in [8]).

Now consider only encodings that satisfy the following properties, that are
justified and discussed at length in [8]. Let a k-ary context C( 1; . . . ; k) be a
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term where k occurrences of 0 are linearly replaced by the holes { 1; . . . ; k}
(every hole must occur once and only once). Moreover, denote with �−→i and
�=⇒i the relations �−→ and �=⇒ in language Li; denote with �−→ω

i an infinite se-
quence of reductions in Li. Moreover, we let *i denote the reference behavioural
equivalence for language Li. Also, let P ⇓i mean that there exists P ′ such that
P �=⇒i P ′ and P ′ ≡ P ′′ | √, for some P ′′. Finally, to simplify reading, let S
range over processes of the source language (viz., L1) and T range over processes
of the target language (viz., L2).

Definition 2 (Valid Encoding). An encoding ([[ · ]], ϕ[[ ]]) is valid if it satisfies
the following five properties:

1. Compositionality: for every k-ary operator op of L1 and for every sub-
set of names N , there exists a k-ary context CN

op( 1; . . . ; k) such that, for
all S1, . . . , Sk with fn(S1, . . . , Sk) = N , it holds that [[ op(S1, . . . , Sk) ]] =
CN

op([[S1 ]]; . . . ; [[Sk ]]).
2. Name invariance: for every S and name substitution σ, it holds that

[[σS ]]
{

= σ′[[S ]] if σ is injective
*2 σ′[[S ]] otherwise

where σ′ is such that ϕ[[ ]](σ(a)) = σ′(ϕ[[ ]](a)) for every name a.
3. Operational correspondence:

– for all S �=⇒1 S′, it holds that [[S ]] �=⇒2*2 [[S′ ]];
– for all [[S ]] �=⇒2T , there exists S′ such that S �=⇒1S

′ and T �=⇒2*2[[S′ ]].
4. Divergence reflection: for every S such that [[S ]] �−→ω

2 , it holds that S �−→ω
1 .

5. Success sensitiveness: for every S, it holds that S ⇓1 if and only if [[S ]] ⇓2.

[8] contains some results concerning valid encodings. In particular, it shows some
proof-techniques for showing separation results, i.e. for proving that no valid
encoding can exist between a pair of languages L1 and L2 satisfying certain
conditions. Here, these languages will be limited to CPC and those introduced
in Section 4.1. Further, the valid encodings considered will be assumed to be
semi-homomorphic, i.e. where the interpretation of parallel composition is via a
context of the form (νñ)( 1 | 2 | R), for some ñ and R that only depend on the
free names of the translated processes.

Proposition 1 (from [8]). Let [[ · ]] be a valid encoding; then, S �−→/ 1 implies
that [[S ]] �−→/ 2.

Theorem 1 (from [8]). Assume that there exists S such that S �−→/ 1, S �⇓1
and S | S ⇓1; moreover, assume that every T that does not reduce is such that
T | T �−→/ 2. Then, there cannot exist any semi-homomorphic valid encoding of
L1 into L2.

To state the following proof-technique, define the matching degree of a language
L, written Md(L), as the least upper bound on the number of names that must
be matched to yield a reduction in L.

Theorem 2 (from [8]). If Md(L1) > Md(L2), then there exists no valid en-
coding of L1 into L2.
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4.3 CPC vs. π-Calculus and Linda

A hierarchy of process calculi with different communication primitives is ob-
tained in [7] by combining four features: synchronism (synchronous vs asyn-
chronous), arity (monadic vs polyadic data exchange), communication medium
(channels vs shared dataspaces), and the presence of a form of pattern match-
ing (that checks the arity of the tuple of names and equality of some specific
names). This hierarchy is built upon a very similar notion of encoding to that
presented in Definition 2 and, in particular, it is proved that Linda [4] (called
L a,p,d,pm in [7]) is more expressive than monadic/polyadic π-calculus [13,12]
(called L s,m,c,no and L s,p,c,no, respectively, in [7]). Thus, it suffices to show
that CPC is more expressive than L a,p,d,pm (this is the language called Linda
in Section 4.1).

First notice that CPC cannot be encoded into L a,p,d,pm: this is a corollary
of Theorem 1. Indeed, consider the self-matching CPC process x → √

: alone
it cannot reduce and cannot report success but, reports success in parallel with
itself. On the contrary, it is easy to prove that every L a,p,d,pm-process that
reduces if put in parallel with itself is such that it reduces in isolation.

The next step is to show a valid encoding of L a,p,d,pm into CPC. The en-
coding is a homomorphism w.r.t. to all operators, with the only two following
exceptions:

[[ 〈̃b〉 ]] def= pat−d(̃b) → 0 [[ (t̃).P ]] def= pat−t(t̃) → [[P ]]

Functions pat−d(·) and pat−t(·) are used to translate data and templates into
CPC patterns; they are defined as follows:

pat−d( ) def= λx pat−d(b, b̃) def= λx • b • pat−d(̃b) for x �∈ bn(pat−d(̃b))
pat−t( ) def= in pat−t(t, t̃) def= in • t • pat−t(t̃)

where in is any name (a symbolic name is used for clarity but no result relies
upon this). Moreover, the function pat−d(·) associates a bound variable to every
name in the sequence; this fact ensures that a pattern that translates a datum
and a pattern that translates a template match only if they have the same length
(this is a feature of L a,p,d,pm’s pattern matching but not of CPC’s). It is worth

noting that the simpler translation [[ 〈b1, . . . , bn〉 ]] def= b1 • . . .•bn → 0 would not
work: the L a,p,d,pm-process 〈b〉 | 〈b〉 does not reduce, whereas such an encoding
(b→ 0 | b→ 0) does. This fact would contradict Proposition 1.

Next is to prove that this encoding is valid. This is an easy corollary of the
following lemma, stating a strict correspondence between L a,p,d,pm’s pattern
matching and CPC’s one (on patterns arising from the translation).

Lemma 3. Match(t̃; b̃) = σ if and only if {pat−t(t̃)||pat−d(̃b)} =
Some(σ, {in/x0, . . . , in/xn}), where {x0, . . . , xn} = bn(pat−d(̃b)) and σ maps
names to names.
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4.4 CPC vs. Fusion

Fusion calculus and CPC are unrelated in that there exists no valid encoding
from one into the other. The impossibility for a valid encoding of CPC into Fusion
is ensured by Theorem 2: the matching degree of Fusion is 1 (only the channel
name is checked for equality in any interaction); by contrast, the matching degree
of CPC is ∞, since any number of name equalities can be checked atomically
in a single CPC interaction. The converse separation result is ensured by the
following theorem.

Theorem 3. There exists no valid encoding of Fusion into CPC.

Proof:(Sketch) The idea is to show that any interaction in Fusion can be ren-
dered only by having: (1) two parallel processes performing an input and an
output on the same channel, and (2) a restriction enclosing them to allow appli-
cation of name fusions. Thus, to yield a reduction three entities have to mutually
cooperate; this ternary interaction cannot be rendered in CPC, and this can be
used to prove that no valid encoding can exist (see the technical report [5] for
full details). �

4.5 CPC vs. Spi

That CPC cannot be encoded into Spi calculus is a corollary of Theorem 1 and
identical to the technique used in Section 4.3. The self-matching CPC process
x→ √

cannot be encoded into Spi.
The remainder of this section develops an encoding of Spi calculus into CPC.

The terms can be encoded as patterns using the reserved names pair, encr, 0 and
suc by

[[n ]] def= n [[ (M,N) ]] def= pair • [[M ]] • [[N ]]
[[x ]] def= x [[ {M}N ]] def= encr • [[M ]] • [[N ]]
[[ 0 ]] def= 0 [[ suc(M) ]] def= suc • [[M ]] .

The tagging is used for safety, as otherwise there are potential pathologies in
the translation: without tags, the representation of a natural number could be
confused with a pair or an encryption.

The processes of the Spi calculus are

P,Q ::= 0 | P |Q | !P | (νm)P | M(x).P | M〈N〉.P
| [M is N ]P | let (x, y) = M in P

| case M of {x}N : P | case M of 0 : P suc(x) : Q .

The nil process, parallel composition, replication and restriction are all familiar.
The input M(x).P and output M〈N〉.P are generalised to allow terms in the
place of channel names and output arguments. The match [M is N ]P determines
equality of M and N . The splitting let (x, y) = M in P decomposes pairs. The
decryption case case M of {x}N : P decrypts M binding the encrypted message
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to x. The integer case case M of 0 : P suc(x) : Q branches according to the
number. Note that the last four can all get stuck if M is an incompatible term.
Further, the last three are intensional, i.e. they depend on the internal structure
of M .

The encoding of the familiar forms are homomorphic as expected. The input
and output both encode as cases:

[[M(x).P ]] def= in • � [[M ]] � • λx→ [[P ]]
[[M〈N〉.P ]] def= λx • � [[M ]] � • ([[N ]]) → [[P ]] x /∈ fn([[P ]], [[M ]], [[N ]]) .

The reserved name in (input) and fresh name x (output) are used to ensure that
encoded inputs will only match with encoded outputs. Observe that in both
processes forms [[M ]] contains no binding names, and so is communicable.

The four remaining process forms all require pattern matching and so trans-
late to cases in parallel. In each encoding a fresh name n is used to prevent
interaction with other processes, see Lemma 2. As in the Spi calculus, the en-
codings will reduce only after a successful matching and will be stuck otherwise.
The encodings are

[[ [M is N ]P ]] def= (νn)(�n� • [[M ]] → [[P ]] | �n� • [[N ]] → 0)

[[ let (x, y) = M in P ]] def= (νn)(�n� • (pair • λx • λy) → [[P ]]
|�n� • [[M ]] → 0)

[[ case M of {x}N : P ]] def= (νn)(�n� • (encr • λx • [[N ]]) → [[P ]]
|�n� • [[M ]] → 0)

[[ case M of 0 : P suc(x) : Q ]] def= (νn)(�n� • 0 → [[P ]]
|�n� • (suc • λx) → [[Q ]]
|�n� • [[M ]] → 0) .

The match [M is N ]P only reduces to P if M = N , thus the encoding creates
two patterns using [[M ]] and [[N ]] with one reducing to [[P ]]. The pair splitting
let (x, y) = M in P encoding creates a case with a pattern that matches a tagged
pair and binds the components to x and y in [[P ]]. This is put in parallel with
another case that has [[M ]] in the pattern. The decryption case case M of {x}N :
P checks whether M is a message encoded with key [[N ]] and retrieves the
value encrypted by binding it to x in the continuation. Lastly the integer case
case M of 0 : P suc(x) : Q translation creates a case for each of the zero and
the successor possibilities. These cases match the tag and the reserved names 0,
reducing to [[P ]], or suc and binding x in [[Q ]]. The term to be compared M is
as in the others.

Theorem 4. The encoding of Spi calculus into CPC is valid.

To conclude, notice that the criteria for a valid encoding does not imply full
abstraction of the encoding (actually, they were defined in [7,8] as an alternative
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to full abstraction). This means that the encoding of equivalent Spi calculus
processes can be distinguished by contexts in CPC that do not result from the
encoding of any Spi calculus context. Indeed, while this encoding allows Spi
calculus to be modelled in CPC, it does not entail that cryptography can be
properly rendered. Consider the pattern encr • λx • λy that could match the
encoding of an encrypted term to bind the message and key, so that CPC can
break any encryption! One solution is to simply add this encryption to CPC, a
topic for future work.

5 Conclusions and Future Work

The concurrent pattern calculus uses patterns to represent input, output and
tests for equality, whose interaction is driven by unification that allows a two-
way flow of information. This symmetric information exchange provides a concise
model of trade in the information age. This is illustrated by the example of
traders who can discover each other in the open and then close the deal in
private.

CPC supports valid encodings of many popular concurrent calculi such as π-
calculus, Spi calculus and Linda as its patterns describe more structures. How-
ever, these three calculi do not support valid encodings of CPC because, among
other things, they are insufficiently symmetric. On the other hand, while fusion
calculus is completely symmetric, it has an incompatible approach to interaction.

Future work may proceed in several directions. Just as pattern calculus ex-
pands upon the expressive power of sequential programming, CPC expands the
expressive power of concurrent programming. The consequences of this remain
to be developed. Possibilities applications include web services based upon sym-
metric information exchange. As first step is to implement the calculus, perhaps
by augmenting the programming language bondi [2] that was built to implement
pattern calculus.

Concurrent pattern calculus supports a generous class of patterns whose in-
teraction is fully symmetric. The implications of this increased expressive power
are worthy of further investigation.

Acknowledgements. Thanks to Eugenio Moggi and the reviewers for their
helpful comments on drafts of this paper.
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Abstract. Schnorr famously proved that Martin-Löf-randomness of a
sequence A can be characterised via the complexity of A’s initial seg-
ments. Nies, Stephan and Terwijn as well as independently Miller showed
that Kolmogorov randomness coincides with Martin-Löf randomness rel-
ative to the halting problem K; that is, a set A is Martin-Löf random
relative to K iff there is no function f such that for all m and all n > f(m)
it holds that C(A(0)A(1) . . . A(n)) ≤ n − m.

In the present work it is shown that characterisations of this style can
also be given for other randomness criteria like strongly random, Kurtz
random relative to K, PA-incomplete Martin-Löf random and strongly
Kurtz random; here one does not just quantify over all functions f but
over functions f of a specific form. For example, A is Martin-Löf random
and PA-incomplete iff there is no A-recursive function f such that for
all m and all n > f(m) it holds that C(A(0)A(1) . . . A(n)) ≤ n − m.
The characterisation for strong randomness relates to functions which
are the concatenation of an A-recursive function executed after a K-
recursive function; this solves an open problem of Nies.

In addition to this, characterisations of a similar style are also given for
Demuth randomness and Schnorr randomness relative to K. Although
the unrelativised versions of Kurtz randomness and Schnorr randomness
do not admit such a characterisation in terms of plain Kolmogorov com-
plexity, Bienvenu and Merkle gave one in terms of Kolmogorov complex-
ity defined by computable machines.

1 Introduction

Kolmogorov complexity [9,13] aims to describe when a set is random in an algo-
rithmic way. Here randomness means that no type of patterns can be exploited by
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an algorithm in order to generate initial segments of the characteristic function
from shorter programs. Randomness notions have been formalised by Martin-Löf
[10], Schnorr [18] and others. A special emphasis was put on describing random-
ness of a setA in terms of the complexity of the initial segmentsA(0)A(1) . . . A(n).
The first important result in that direction was that Schnorr [19] proved that a
set A is Martin-Löf random if and only if for almost all n the prefix free Kol-
mogorov complexity H(A(0)A(1) . . . A(n)) of the (n + 1)-th initial segment is at
least n. It is easy to see that the counterpart of this characterisation is that a
set A is not Martin-Löf random iff there is an A-recursive function f such that
H(A(0)A(1) . . . A(f(m))) ≤ f(m) − m for all m. In other words, one can
find — relative to A — points to witness the non-randomness effectively. It should
be noted that the function f has to be taken relative to A and not relative to
some fixed oracle B independent of A as the sets 2-generic relative to B are not
Martin-Löf random but would not admit a B-recursive function f witnessing the
non-randomness in the way just mentioned.

The scope of the present paper is to study the notions of randomness beyond
Martin-Löf randomness. These are the relativised versions “Kurtz random rela-
tive to K”, “Schnorr random relative to K” and “Kolmogorov random” which
coincides with “Martin-Löf random relative to K” where K is the halting prob-
lem or any other creative set. In addition, the two independently defined notions
of “Demuth random” and “strongly random” are considered. Strong randomness
is by some authors considered to be the next counterpart of Kurtz randomness,
although it is not the relativised version; therefore they call Kurtz random also
“weakly random” and strongly random also “weakly 2-random” [13]. Strong ran-
domness [8,17] has various nice characterisations, in particular the following: A
is strongly random iff A is Martin-Löf random and forms a minimal pair with
K with respect to Turing reducibility [4, Footnote 2]. For these notions, in or-
der to quantify the degree of non-randomness of a sequence, one studies from
which value f(m) onwards all initial segments can be compressed by m bits.
That is, one looks at functions f such that C(A(0)A(1) . . . A(n)) ≤ n−m for all
n > f(m); here f might also be an upper bound of the least possible point with
this property as one might want to have that f is in a certain Turing degree.
This idea is quite natural as Kolmogorov random is just the notion of random-
ness which is defined by the absence of any such f and which coincides with
Martin-Löf random relative to K.

The main results of this article will be that other randomness notions can be
characterised in similar ways. The characterisations of these notions will differ in
how the function f can be computed (e.g., relative to which oracles) and whether
the compressibility condition holds for infinitely many or for all m. Note that
due to finite modifications of f it would be equivalent to postulate the condition
for all m or for almost all m. Several proofs make use of this fact.

Although the unrelativised versions of Kurtz randomness and Schnorr ran-
domness do not admit such a characterisation in terms of plain Kolmogorov
complexity, Bienvenu and Merkle [1] gave one in terms of Kolmogorov complex-
ity defined by computable machines. There is a close connection between the
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plain Kolmogorov complexity C and prefix-free Kolmogorov complexity H . This
is formalised in the following remark and this connection helps to establish many
bounds obtained for C also for H .

Remark 1. If C(x) ≤ |x| − 1 − 3m with a minimal plain code x∗ for x, and if
n∗ and m∗ are minimal prefix-free codes for n := |x| and m, respectively, then
some prefix-free machine can use n∗m∗0k1x∗ as a prefix-free code for x, where
k is chosen such that |0k1x∗| = n− 3m.

It easily follows that there is a constant c such that whenever a set A and a
function f satisfy that C(A(0)A(1) . . . A(n)) ≤ n−3m for all m and all n > f(m),
then A and f also satisfy that for all m > c and all n > f(m) it holds that
H(A(0)A(1) . . . A(n)) ≤ n + H(n)−m.

We will also use the following theorem.

Theorem 2 (Chaitin’s Counting Theorem [3]). There is a constant c such
that for all n and m it holds that

|{σ : |σ| = n + 1 ∧H(σ) ≤ n + H(n)−m}| ≤ 2n−m+c.

For the scientific background of this paper, the reader is referred to the usual
textbooks on recursion theory [15,16,20] and algorithmic randomness [2,9,13].

2 Characterising Strong Randomness

Nies [13, Problem 3.6.23] asks whether one can characterise strong randomness
via the growth of the initial segment complexity. In the present paper, an answer
will be provided, but for that answer the growth-rate depends also on the Turing
degree of the set A for which it is asked whether it is strongly random. After the
characterisation in Theorem 5, it will be shown in two further results that there
is no obvious way to simplify the characterisation.

Remark 3. An open r.e. class Ve consists of sets A such that for each member
A ∈ Ve it is verified in some finite time s that A belongs to Ve; let Ve,s be the
class of all A such that it is verified in time s that A belongs to Ve. Now the
notion is chosen such that whenever A ∈ Ve,s and B(m) = A(m) for all m ≤ s
then B ∈ Ve,s as well. An open r.e. class Ve is called finitely generated iff there
is a step-number s such that Ve,s = Ve.

Furthermore, in the following, let C be the plain and H be the prefix-free Kol-
mogorov complexity. K denotes the halting problem. fs is then the s-th approx-
imation of a K-recursive function f , the mapping x, s �→ fs(x) is recursive in
both inputs. The following notion was originally introduced by Kurtz [8] and is
one of the central notions of this paper.

Definition 4 (Kurtz [8]). A set A is called strongly random iff there is no
uniform sequence V0, V1, V2, . . . of open r.e. classes such that μ(Ve) → 0 for
e→∞ and A ∈

⋂
e Ve.
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The next result gives a characterisation of strong randomness in the desired
form.

Theorem 5. The following are equivalent for a set A.
(a) A is not strongly random.
(b) There is an A-recursive function f and a K-recursive function g such that
for all m and all n ≥ f(g(m)) it holds that C(A(0)A(1) . . . A(n)) ≤ n−m.
(c) There is an A-recursive function f and a K-recursive function g such that for
all m and all n ≥ f(g(m)) it holds that H(A(0)A(1) . . . A(n)) ≤ n + H(n)−m.

Proof. (a) ⇒ (b): Let V0, V1, V2, . . . be the test which witnesses that A is not
strongly random. Now let h(m) be the first index e with μ(Ve) ≤ 2−2m−1 and
let h0, h1, h2, . . . be a recursive approximation to h; this approximation is from
below, as one can define that h0(m) = 0 and

hs+1(m) =

{
hs(m) if μ(Vhs(m),s) ≤ 2−2m−1;
hs(m) + 1 otherwise.

Now let g(m) = 〈m, s〉 for the first s such that hs(m) = h(m). Next define the
A-recursive function f which assigns to 〈m, s〉 the first encountered " > s + m
satisfying

A(0)A(1) . . . A(") · {0, 1}∞ ⊆ Vhs(m).

Now one defines a plain machine M such that, for all m,n with n ≥ 2m+ 1 and
all x ∈ {0, 1}n−1−2m, M(1m0x) is the x-th string y of length n for which it is
verified in time n that y · {0, 1}∞ ⊆ Vhn(m); for small n there might be too many
of these strings y and then only the first 2n−1−2m of them are in the range of
M ; but for n ≥ f(g(m)) it holds that hn(m) = h(m) and that therefore by the
choice of Vh(m) there are at most 2n−1−2m of these strings and each of them
occurs in the range of M . One of these strings is the prefix of length n of A.
Hence, there is a constant c such that for the function m �→ f(g(m + c)) and
every n greater than the value of this function it holds that

C(A(0)A(1) . . . A(n)) ≤ n−m.

(b) ⇒ (c): This follows from Remark 1 and a substitution of g by g̃(m) := g(3m).

(c) ⇒ (a): It follows from Chaitin’s Counting Theorem 2 that if " is sufficiently
large, then for all n there are at most 2n−m+	 strings σ of length n + 1 with
H(σ) ≤ n+H(n)−m. Let g ≤T K and f = ϕA

e be the functions from condition
(c). Without loss of generality fix them such that g is recursively approximable
from below by g0, g1, g2, . . . and that f is monotone. Now define V〈m,n,s〉 as the
class of all sets B satisfying one of the following conditions:

1. ∃t > s[gt(m) �= gs(m) or Ht(n) �= Hs(n)];
2. ϕB

e (gs(m)) ↓> n;
3. H(B(0)B(1) . . . B(n)) ≤ n + Hs(n)−m.
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Note that the first condition ensures that all sets are enumerated into those
classes V〈n,m,s〉 where the parameters are not chosen adequately.

The set A is in every class V〈m,n,s〉 as whenever the first condition and the
second condition do not put A into V〈m,n,s〉 then gs(m) = g(m) and Hs(n) =
H(n) and ϕA

e (g(m)) ≤ n and therefore H(A(0)A(1) . . . A(n)) ≤ n + H(n) −m.
Furthermore, one can for every m choose the n so large compared to m and the
s so large compared to m,n that gt(m) = g(m) and Ht(m) = H(m) for all t ≥ s
and ϕB

e (g(m)) ≥ n only for a class of B of measure below 2−m. It follows then
that μ(V〈m,n,s〉) is at most 2−m +2	−m as the first condition of putting oracles B
into V〈m,n,s〉 does not apply, the second condition contributes a class of oracles
with measure 2−m and the third condition contributes a class of oracles with
measure 2	−m. As " is a constant, one can come as close to measure 0 as desired
by starting off with a sufficiently large m and then choosing n in dependence of
m and s in dependence on m,n as indicated.

From this sequence of the V〈m,n,s〉, one can construct a new sequence of the
form e �→ ∩n≤e,m≤e,s≤eV〈m,n,s〉 which satisfies that the measures of the members
tend to 0 and that each member contains the set A as an element. Hence this
sequence witnesses that A is not strongly random. � 
Note that in the above construction the machine M can be chosen such that its
domain is recursive, that is, M can be chosen as a decidable machine.

The above conditions (b) and (c) contain a function which is a concatena-
tion of an A-recursive and a K-recursive function. One might ask whether this
condition could be simplified by taking only a K-recursive or only an (A ⊕K)-
recursive function. The answer is “no” as these two choices will give rise to other
randomness notions as shown in the next two results.

Theorem 6. The following are equivalent for every set A:
(a) A is not Martin-Löf random relative to K;
(b) There is f ≤T A ⊕ K such that ∀m ∀n > f(m) [C(A(0)A(1) . . . A(n)) ≤
n−m];
(c) There is f ≤T A ⊕ K such that ∀m ∀n > f(m) [H(A(0)A(1) . . . A(n)) ≤
n + H(n)−m].

Proof. If A is Martin-Löf random relative to K then the two conditions (b) and
(c) cannot be satisfied for any function f by known results [11,12,14]. So assume
that (a) holds.

Let UK be a prefix-free universal machine relative to the oracle K and x, s �→
Us(x) be a recursive approximation to this machine such that every Us is prefix-
free. Now there is an A ⊕ K-recursive function which produces for every m a
number f(m) such that there exists z with |z|+ 2m < |UK(z)| ≤ f(m), UK(z)
is a prefix of A and Us(z) ↓= UK(z) for all s ≥ f(m).

Now one can construct a plain machine Ũ which sends every input of the
form xy with x ∈ dom(U|xy|) to U|xy|(x) · y and which is undefined on inputs
which cannot be brought into this form; note that because of prefix-freeness
for each input u the splitting into xy is unique or does not exist. Now for all
m there is a z as above. If UK(z) = A(0)A(1) . . . A(k), then it follows that
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Ũ(zA(k+1)A(k+2) . . . A(n)) = Un+1(z) ·A(k+1) . . . A(n) = A(0)A(1) . . . A(n)
and hence C(A(0)A(1) . . . A(n)) ≤ (k−2m)+ (n−k)+O(1) ≤ n−m for almost
all m and all n > f(m). Note that we can modify f for finitely many m such that
f satisfies the condition (b). Remark 1 establishes that (c) follows from (b). � 

The next result characterises Kurtz randomness relative to K.

Definition 7. A set A is called Kurtz-random iff it is contained in every r.e.
class of Lebesgue measure 1.

Theorem 8. The following are equivalent for every set A:
(a) A is not Kurtz random relative to K;
(b) There is a sequence of finitely generated r.e. open classes such that each class
contains A and the infimum of their measures is 0;
(c) There is a K-recursive function f such that for all m and all n > f(m) it
holds that C(A(0)A(1) . . . A(n)) ≤ n−m;
(d) There is a K-recursive function f such that for all m and all n > f(m) it
holds that H(A(0)A(1) . . . A(n)) ≤ n + H(n)−m.

Proof. (a) ⇒ (b): By definition, A is covered by a K-recursive Kurtz-test. Ac-
cording to Bienvenu and Merkle [1, Definition 7] a (K-recursive) Kurtz-test is
given by a recursive (K-recursive) function f which determines for each m a
finite set Df(m) of strings such that for all m, A has a prefix in Df(m) and the
measure of the class of all sets B with a prefix in Df(m) is at most 2−m. For the
given K-recursive Kurtz test, let f0, f1, f2, . . . be a recursive approximation of
the corresponding function f . Now let V〈m,s〉 = {B : B has a prefix in Dft(m) for
some t ≥ s}. It is clear that every V〈m,s〉 contains A as a prefix of A is in almost
all Dft(m). Furthermore, as the ft converge, the union of all Dft(m) with t ≥ s
is finite and contains only finitely many strings; that is, the r.e. class generated
by it is finitely generated. Furthermore, for every m and every sufficiently large
s, ft(m) = f(m) for all t ≥ s and hence Vm,s has at most measure 2−m.

(b) ⇒ (c): Let V0, V1, V2, . . . be a given sequence of finitely generated r.e. open
classes as in condition (b). Let Ve,s be the class of all B for which is verified in
time s that they belong to Ve; by choice there is for every e an s with Ve,s = Ve.
For every m let gs(m) be the smallest number e such that μ(Ve,s) < 2−3m−1.

This function gs(m) is always defined as it is bounded by the index g(m) of
the first class whose measure is strictly below 2−3m−1. Now let f(m) be the first
step s such that gs(m) = g(m) and Vgs(m),s = Vg(m), that is, all sets which are
put into Vg(m) are already enumerated into it. Observe that gt(m) = g(m) for
all t ≥ f(m). Now let M(1m0x) be the x-th string y of length n + 1 found in
Vgn(m) where n = 3m + |x|. Note that A(0)A(1) . . . A(n) is in the range of M
whenever n > f(m). As the corresponding 1m0x has the length (n + 1) − 2m,
it follows that C(A(0)A(1) . . . A(n)) ≤ n − 2m + O(1) ≤ n −m for almost all
m and all n > f(m). Hence, by a suitable finite modification of f one obtains
condition (c).

(c) ⇒ (d): This follows from Remark 1 and a substitution of f by f̃(m) := f(3m).
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(d) ⇒ (a): Again, by the Counting Theorem 2 there is a constant c such that
for every n,m there are at most 2n−m+c strings σ of length n + 1 with H(σ) ≤
n + H(n) − m. Furthermore let f be given as in condition (d); in particular
H(A(0)A(1) . . . A(f(m))) is at most f(m) + H(f(m))−m. The measure of the
class of the sets B with the same property is at most 2−m−1+c. It follows that
the mapping of m to the class of all B with H(B(0)B(1) . . . B(f(m + c))) ≤
f(m + c) + H(f(m + c))−m is a Kurtz test relative to K. � 
Let A be given such that every A-recursive function is majorised by a K-recursive
one. Then the above characterisations show that A is strongly random iff A
is Kurtz random relative to K. But this coincidence does not hold in general
as 2-generic sets are Kurtz random relative to K but not strongly random. It
should also be noted that there is no oracle B such that every set A which
is not strongly random satisfies that there is an B-recursive function f with
C(A(0)A(1) . . . A(n)) ≤ n−m for all m and all n > f(m). Hence the condition
in Theorem 5 cannot be replaced by a class of functions which is independent
of the set A analyzed. It should be noted that the characterisation of “Schnorr
random relative to K” is quite similar to that one of “Kurtz random relative
to K”.

Theorem 9. The following are equivalent for a set A:
(a) A is not Schnorr random relative to K;
(b) There is a K-recursive function f such that for infinitely many m and all
n > f(m) it holds that C(A(0)A(1) . . . A(n)) ≤ n−m;
(c) There is a K-recursive function f such that for infinitely many m and all
n > f(m) it holds that H(A(0)A(1) . . . A(n)) ≤ n + H(n)−m.

Proof. (a) ⇒ (b): Downey and Griffiths [5] showed that a set A is not Schnorr
random iff there is a recursive sequence of strings σ0, σ1, σ2, . . . such that in-
finitely many of these strings are prefixes of A and

∑
j 2−|σj | is a finite ratio-

nal number; without loss of generality let the sum be 1. This characterisation
can be relativised to K by taking the sequence to be K-recursive. Now one
can choose a K-recursive sequence n0, n1, . . . of indices such that for each m
it holds that

∑
	≥nm

2−|σ�| ≤ 2−3m; this nm can be found as the first num-
ber with

∑
	<nm

2−|σ�| > 1 − 2−3m. Note that the measure of each subsum∑
	=nm,nm+1,...,nm+1

2−|σ�| is also bounded by 2−3m. Now one can define a plain
machine M such that M(1m0τ) is the τ -th string of length |τ | + 3m which ex-
tends one of the finitely many strings σt

nm
, σt

nm+1, . . . , σ
t
nm+1

, where t = |τ |+3m
and σs

n is the value of σn after s steps in some recursive approximation of the se-
quence. When approximating nm, nm+1 and the strings σnm , σnm+1, . . . , σnm+1 ,
there is a K-recursive function f such that f(m) is an upper bound on the time
which is necessary to converge to the correct values; furthermore, one can choose
f(m) to be also an upper bound on |σ	| + 3m for each of these strings. It fol-
lows that for each string η of length at least f(m) there is a string τ of length
|η| − 3m such that M(1m0τ) = η; hence the plain Kolmogorov complexity of
all of these strings η is at most |η| + c − 2m for some constant c. As there are
infinitely many m such that one of the σ	 with nm ≤ " ≤ nm+1 is a prefix of A,
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it follows that there are infinitely many m such that for all n ≥ f(m) it holds
that C(A(0)A(1) . . . A(n)) ≤ n−m.

(b) ⇒ (c): This follows from Remark 1 and a substitution of f by f̃(m) := f(3m).

(c) ⇒ (a): Let Sc′
m := {B : H(B(0) . . . B(f(m+c′))) ≤ f(m+c′)+H(m+c′)−m}.

The Counting Theorem 2 yields a c′ such that (Sc′
m)m∈ω can be enlarged to a

total Solovay test (as defined by Downey and Griffiths [5]) relative to K. This
test covers A, so A is not Schnorr random relative to K. � 

3 Characterising Demuth Randomness

Demuth has defined in the context of analysis a randomness notion which was
formalised as follows in the framework of algorithmic randomness [13, Definition
3.6.24].

Definition 10. In the following let V0, V1, V2, . . . be an acceptable numbering
of all r.e. open classes. Now one says that a set A is Demuth random iff there
is no ω-r.e. function f such that μ(Vf(m)) ≤ 2−m for all m and A ∈ Vf(m) for
infinitely many m.

Theorem 11. The following are equivalent for a set A:
(a) A is not Demuth random;
(b) There exist ω-r.e. functions g and h such that A ∈ Vg(m),h(m) for infinitely
many m and μ(Vg(m),h(m)) ≤ 2−m for all m;
(c) There exists an ω-r.e. function k such that for infinitely many m and all
n ≥ k(m) it holds that C(A(0)A(1) . . . A(n)) ≤ n−m;
(d) There exists an ω-r.e. function k̃ such that for infinitely many m and all
n ≥ k̃(m) it holds that H(A(0)A(1) . . . A(n)) ≤ n + H(n)−m.

Proof. (a) ⇒ (b): Let f be the ω-r.e. function witnessing that A is not Demuth
random. Now define a function h̃(e,m) such that h̃(e,m) is the maximum step
s > 0 for which there is " ∈ {1, 2, . . . , 2m − 1} with μ(Ve,s−1) ≤ " · 2−m <

μ(Ve,s); if no such step exists then h̃(e,m) = 0 and Ve,0 = ∅. Note that μ(Ve)−
μ(Ve,h̃(e,m)) ≤ 2−m. Given f, h̃, consider a function g such that

Vg(m) =
⋃

	=0,1,...,m,m+1

(Vf(	),h̃(f(	),2m+4−	) − Vf(	),h̃(f(	),2m+2−	))

and the function h defined by

h(m) = max{h̃(f("), 2m + 4− ") : " ∈ {0, 1, . . . ,m,m + 1}}.

Without loss of generality we may assume Vg(m) = Vg(m),h(m). Furthermore,

μ(Vf(	),h̃(f(	),2m+4−	) − Vf(	),h̃(f(	),2m+2−	)) ≤ μ(Vf(	) − Vf(	),h̃(f(	),2m+2−	))

≤ 2	−2m−2
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and therefore μ(Vg(m)) ≤ 2−m−1 + 2−m−2 + . . . + 2−2m−2 ≤ 2−m. It remains
to show that g and h are ω-r.e. and that A ∈ Vg(m) = Vg(m),h(m). As f and
h̃ are both ω-r.e. and h̃(e,m) makes at most 2m mind changes, the functions
g and h are also ω-r.e. functions. Now consider any i. Then there is j > i + 1
such that A ∈ Vf(j). It follows that there is an m ≥ j − 1 such that A ∈
Vf(j),h̃(f(j),2m+4−j) − Vf(j),h̃(f(j),2m+2−j); the reason is that μ(Vf (j)) ≤ 2−j and
thus h̃(f(j), 2m + 2 − j) = 0 for m ≤ j − 1. Now Vg(m) contains A and m > i.
Hence there are infinitely many m with A ∈ Vg(m),h(m). So (b) holds.

(b) ⇒ (c): Let g, h be given as required in (b) and assume that gs(m) �= gs+1(m)∨
hs(m) �= hs+1(m) implies that hs+1(m) ≥ s+ 1. Otherwise one can without loss
of generality modify g and h accordingly while preserving (b). Now let M(1m0x)
be the x-th string found in {0, 1}s such that s = |x| + 3m and M(1m0x) ·
{0, 1}∞ ⊆ Vgs(3m),s ∪ Vgs(3m+1),s ∪ Vgs(3m+2),s. For infinitely many m and all
n > max{h(3m), h(3m+1), h(3m+2)} it holds that A(0)A(1) . . . A(n)·{0, 1}∞ ⊆
Vg(3m) ∪ Vg(3m+1) ∪ Vg(3m+2). For such m,n there are only 2n+1−3m strings
of length n qualifying for the search condition, hence there is an x of length
n + 1− 3m such that M(1m0x) = A(0)A(1) . . . A(n) and — if m is furthermore
large enough — C(A(0)A(1) . . . A(n)) ≤ n−m. Hence one can choose k to be a
finite variant of the ω-r.e. function m �→ max{h(3m), h(3m+ 1), h(3m+ 2)}+ 1
in order to satisfy condition (c).

(c) ⇒ (d): This follows from Remark 1 by choosing k̃(m) := k(3m).

(d) ⇒ (a): Let k̃ be as in condition (d). There is a function f defining the class
Vf(m) = {B : H(B(0)B(1) . . . B(k̃(2m))) ≤ k̃(2m) + H(k̃(2m))− 2m}.

Note that Vf(m) has at most measure 2−m for almost all m and we can assume
that Vf(m) contains A for infinitely many m (otherwise we can replace k̃ by
the function n �→ k̃(n + 1)). Furthermore, there is a recursive function which
maps each triple (m, a, b) to an index for the class {B : H(B(0)B(1) . . . B(a)) ≤
a + b − 2m} and therefore maps (m, k̃(2m), H(k̃(2m))) to f(m). There is a
recursive function k̂ such that the approximation of k̃(m) makes at most k̂(m)
mind changes. As one can code m and the number of mind changes in order to get
k̃(m), for almost all m, the value H(k̃(m)) is at most k̂(m)+m and once the value
k̃(m) has stabilised, H(k̃(m)) can be approximated from above with k̂(m) + m
many mind changes. It follows that the mapping m �→ (k̃(2m), H(k̃(2m))) is
ω-r.e. with the number of mind changes bounded by (k̂(2m) + 2m)2 for almost
all m. Hence the function f can be taken to be ω-r.e. as well. Then, after a finite
modification which preserves f to be ω-r.e., one has that not only for almost all
m but indeed for all m the measure of Vf(m) is bounded by 2−m. So A is not
Demuth random. � 

4 Characterising Turing-Incomplete Martin-Löf Random
Sets

Recall that a set A is PA-complete iff there is an A-recursive consistent and
complete extension of Peano Arithmetic. This condition is equivalent to saying



268 R. Hölzl et al.

that every partial-recursive {0, 1}-valued function has a total A-recursive exten-
sion. Stephan [21] showed that a Martin-Löf random set is Turing above K iff
it is PA-complete. This showed that the Martin-Löf random sets fall into two
classes: those above K which coincide with the PA-complete ones and those not
above K which coincide with the PA-incomplete ones. The next result shows
that the PA-incomplete Martin-Löf random sets have a natural characterisation
in terms of initial segment complexity. Note that all Demuth random and all
strongly random sets are PA-incomplete. On the other hand, there are Martin-
Löf random sets which are PA-complete like Chaitin’s Ω. Gács [6] and Kučera
[7] showed that every a ≥T K contains a Martin-Löf random set and those are
PA-complete.

Theorem 12. The following statements are equivalent for a set A:
(a) A is PA-complete or A is not Martin-Löf random;
(b) A ≥T K or A is not Martin-Löf random;
(c) There is an A-recursive function f such that C(A(0)A(1) . . . A(n)) ≤ n−m
for all m and all n > f(m);
(d) There is an A-recursive function f such that H(A(0)A(1) . . . A(n)) ≤ n +
H(n)−m for all m and all n > f(m).

Proof. (a) ⇔ (b) is already known [21] and (c) ⇒ (d) follows from Remark 1.

(b) ⇒ (c): If A is not Martin-Löf random, the construction of f is straightforward,
using the fact that A has 2m-compressible prefixes for each m.

If K ≤T A, then if A were Martin-Löf random relative to K, K would be a base
for ML-randomness. By [13, Theorem 5.1.22] we would have K ∈ Low(MLR), a
contradiction. So A is not Martin-Löf random relative to K and by Theorem 6
there is an A⊕K-recursive function f with

∀m ∀n > f(m) [C(A(0)A(1) . . . A(n)) ≤ n−m].

By assumption, this function f is also A-recursive and satisfies the claim.

(d) ⇒ (b): Assume that A �≥T K as otherwise there is nothing to prove. Let f be
as in condition (d) and let U be the universal prefix-free machine that defines
H . The function m �→ f(2m) is A-recursive and does not majorise the function

g : m �→ max{U(τ) : τ ∈ dom(U) ∩ {0, 1}m},

since A �≥T K and only oracles Turing above K can compute functions which
majorise g. Hence there are infinitely many m where the largest value U(τ) for
τ ∈ dom(U) ∩ {0, 1}m is beyond f(2m). By assumption on f and τ ,

H(A(0)A(1) . . . A(U(τ))) ≤ U(τ)+H(U(τ))−2m ≤ U(τ)+|τ |−2m = U(τ)−m.

This shows that A is not Martin-Löf random. � 
Stephan and Wu [22] called a set A strongly Kurtz random iff there is no recursive
function f such that H(A(0)A(1) . . . A(f(m))) ≤ f(m)−m for all m. Applying
similar methods as above this can be generalized as follows.
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Theorem 13. The following are equivalent for a set A:
(a) A is not strongly Kurtz-random;
(b) There is a recursive function g such that C(A(0)A(1) . . . A(n)) ≤ n−m for
all m and all n > g(m);
(c) There is a recursive function h such that H(A(0)A(1) . . . A(n)) ≤ n+H(n)−
m for all m and all n > h(m).

5 Conclusion and Future Work

The overall idea of this article is to measure the degree of randomness of a set
A by analyzing the function

RA(m) = min{k ∈ N∪{∞} : ∀n [k < n <∞⇒ C(A(0)A(1) . . . A(n)) ≤ n−m]}.

Note that RA(m) ≤ RA(m+1) for all m and that A is Kolmogorov random iff RA

assumes the value ∞ on some inputs. One can now reformulate the main results
of the paper in terms of the function RA. For example, A is strongly random iff
there are no f ≤T A and no g ≤T K such that the concatenation n �→ f(g(n))
dominates RA. Here f dominates g iff f(m) ≥ g(m) for almost all m ∈ N. The
other results in this article can be formulated analogously in an obvious way.

When looking at RA, one could define a new reducibility as follows.

Definition 14. A set A is said to be Kurtz-Kolmogorov-reducible to B (A ≤KK
B) if there is a recursive function f and a constant c such that for all m ∈ N it
holds that RA(m) ≤ f(RB(m + c)). Here, f is extended to N ∪ {∞} by letting
f(∞) = ∞, where the conventions ∞ ≤∞ and ∞ �≤ n hold for all n ∈ N.

Note that this definition is invariant under recursive permutations g, so if B =
{g(n) : n ∈ A} then A ≡KK B. Also, it holds that all sets A,B satisfy A⊕B ≤KK
A. This meets the intuition that a sequence can become more random but not
less random by omitting half of the bits.

Besides this, it can be seen that the following classes are closed upward under
KK-reducibility (that is, whenever A is in the class and A ≤KK B then also B
is in the class): the class of all Kolmogorov random sets (as it consists of the
greatest KK-degree); the class of all strongly Kurtz random sets (as it consists
of all degrees except the least one); the class of all Demuth random sets; the
class of all sets which are Kurtz random relative to K; the class of all sets which
are Schnorr random relative to K.

The reason is that for all of these classes, the randomness notion is defined by
comparing the growth rate of RA with that of a certain list of functions which
do not depend on A.

Somehow, for the classes {A : A is strongly random} and {A : A is Martin-Löf
random and A �≥T K}, A becomes involved and the upward closure is no longer
guaranteed. Indeed, it would be interesting to know whether the role of A could
be replaced by something else, so that one or both of the mentioned classes would
be closed upward with respect to KK-reducibility. Another topic for study could
be the properties of KK-reducibility and its interactions with other reducibilities.
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Abstract. The space of one-sided infinite words plays a crucial rôle in
several parts of Theoretical Computer Science. Usually, it is convenient to
regard this space as a metric space, the Cantor-space. It turned out that
for several purposes topologies other than the one of the Cantor-space
are useful, e.g. for studying fragments of first-order logic over infinite
words or for a topological characterisation of random infinite words.

It is shown that both of these topologies refine the topology of the
Cantor-space. Moreover, from common features of these topologies we
extract properties which characterise a large class of topologies. It turns
out that, for this general class of topologies, the corresponding closure
and interior operators respect the shift operations and also, to some
respect, the definability of sets of infinite words by finite automata.

The space of one-sided infinite words plays a crucial rôle in several parts of The-
oretical Computer Science (see [7,20] and the surveys [6,13,17,18]). Usually, it is
convenient to regard this space as a topological space provided with the Can-
tor topology. This topology can be also considered as the natural continuation
of the left topology of the prefix relation on the space of finite words; for a survey
see [2].

It turned out that for several purposes other topologies on the space of infinite
words are also useful [9,12], e.g. for investigations in first-order logic [3], to
characterise the set of random infinite words [1] or the set of disjunctive infinite
words [15] and to describe the converging behaviour of not necessarily hyperbolic
iterative function systems [5,14].

Most of these papers use topologies on the space of infinite words which are
certain refinements of the Cantor topology showing a certain kind of shift
invariance. The aim of this paper is to give a unified treatment of those topologies
and to investigate their relations to Cantor topology.

Special attention is paid to subsets of the space of infinite words definable
by finite automata. It turns out that several of the refinements of the Can-
tor topology under consideration behave well with respect to finite automata,
that is, the corresponding closure and interior operators preserve at least one of
the classes of finite-state or regular ω-languages.
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1 Notation and Preliminaries

We introduce the notation used throughout the paper. By IN = {0, 1, 2, . . .} we
denote the set of natural numbers. Let X be a finite alphabet of cardinality
|X | = r ≥ 2. By X∗ we denote the set (monoid) of words on X , including the
empty word e, and Xω is the set of infinite sequences (ω-words) over X . For
w ∈ X∗ and η ∈ X∗ ∪Xω let w · η be their concatenation. This concatenation
product extends in an obvious way to subsets W ⊆ X∗ and P ⊆ X∗∪Xω. For a
language W let W ∗ :=

⋃
i∈IN W i be the submonoid of X∗ generated by W , and

by Wω := {w1 · · ·wi · · · : wi ∈ W � {e}} we denote the set of infinite strings
formed by concatenating words in W . Furthermore |w| is the length of the word
w ∈ X∗ and pref(P ) is the set of all finite prefixes of strings in P ⊆ X∗ ∪Xω.
We shall abbreviate w ∈ pref(η) (η ∈ X∗ ∪Xω) by w ! η. A language V ⊆ X∗

is called a prefix-free provided for arbitrary w, v ∈ V the relation w ! v implies
w = v.

Further we denote by P/w := {η : w · η ∈ P} the left derivative or state
of the set P ⊆ X∗ ∪ Xω generated by the word w. We refer to P as finite-
state provided the set of states {P/w : w ∈ X∗} is finite. It is well-known that a
language W ⊆ X∗ is finite state if and only if it is accepted by a finite automaton,
that is, it is a regular language.1

In the case of ω-languages regular ω-languages, that is, ω-languages accepted
by finite automata, are the finite unions of sets of the form W ·V ω, where W and
V are regular languages (cf. e.g. [13]). In particular, every regular ω-language is
finite-state, but, as it was observed in [19], not every finite-state ω-language is
regular (cf. also [11]).

It is well-known that the families of regular or finite-state ω-languages are
closed under Boolean operations [7,20,6,13,17,18] or [11].

1.1 Topological Spaces in General

A topological space is a pair
(
X ,O

)
where X is a non-empty set and O ⊆ 2X is

a family of subsets of X which is closed under arbitrary union and under finite
intersection. The family O is usually called the family of open subsets of the
space X . Their complements are referred to as closed sets of the space X .

As usually, a set B ⊆ O is a base for a topology
(
X ,O

)
on X provided every

set M ∈ O is the (possibly empty) union of sets from B. Thus it does no harm if
one considers bases containing ∅. It is well-known that a family of subsets B of a
set T which is closed under finite intersection generates in this way a topology
on T .

Kuratowski observed that topological spaces can be likewise defined using
closure or interior operators. A topological interior operator J is a mapping
J : 2X → 2X satisfying the following relations. It assigns to a subset M ⊆ X
the largest open set contained in M .
1 Observe that the relation ∼P defined by w ∼P v iff P/w = P/v is the Nerode right

congruence of P .
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JX = X
JJM = JM ⊆M , and

J (M1 ∩M2) = JM1 ∩ JM2

(1)

The interior operator J mapping each subset M ⊆ X to the largest open set
contained in M can be described as follows.

J (M) :=
⋃
{B : B ⊆M ∧B ∈ B} (2)

Using the complementary (duality) relation between open and closed sets one
defines the closure (smallest closed set containing) of M as follows.

CM := X � J (X � M) (3)

Then the following holds.

C ∅ = ∅
CCM = CM ⊇M

C(M1 ∪M2) = CM1 ∪ CM2

(4)

As usual, in a topological space, we denote the classes of countable unions of
closed sets as Fσ and of countable intersections of open sets as Gδ.

1.2 The Cantor-Space: Basic Properties

In this section we list some properties of the Cantor-space (see [7,13,17,20]).
We consider the space of infinite words (ω-words) Xω as a metric space with

metric ρ defined as follows

ρ(ξ, η) :=
{

0, if ξ = η , and
sup{|X |−|w| : w ∈ pref(ξ) ∩ pref(η)} if ξ �= η .

(5)

This space (Xω, ρ) can be also considered as a topological space with base BC :=
{w ·Xω : w ∈ X∗} ∪ {∅}.2

Then the following is well-known.

Property 1
1. Open sets in Cantor-space (Xω, ρ) are of the form W ·Xω where W ⊆ X∗.
2. A subset E ⊆ Xω is open and closed (clopen) if and only if E = W · Xω

where W ⊆ X∗ is finite.
3. A subset F ⊆ Xω is closed if and only if F = {ξ : pref(ξ) ⊆ pref(F )}.
4. C(F ) := {ξ : ξ ∈ Xω ∧pref(ξ) ⊆ pref(F )} =

⋂
n∈IN

(pref(F )∩Xn) ·Xω is
the closure of F .

5. If F is a finite-state ω-language then C(F ) and J (F ) are regular ω-languages.

2 It is sometimes convenient to include the empty set into a base. Here BC becomes a
Boolean algebra.
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Moreover, the Cantor-space (Xω, ρ) is a compact space, that is, for every family
of open sets (Ei)i∈I such that

⋃
i∈I Ei = Xω there is a finite sub-family (Ei)i∈I′

satisfying
⋃

i∈I′ Ei = Xω. This property is in some sense characteristic for the
Cantor topology on Xω. In particular, no topology refining Cantor topology
and having at least one isolated point3 is compact.

Lemma 1. Let (Xω,O) be a topology such that {W ·Xω : W ⊆ X∗} ⊆ O and
there is a ξ ∈ Xω satisfying {ξ} ∈ O. Then the space (Xω,O) is not compact.

Proof. It suffices to give an infinite family (Ei)i∈IN of pairwise disjoint open sets
with

⋃
i∈IN Ei = Xω.

Let U := (pref(ξ) ·X) � pref(ξ). Then the sets w ·Xω, w ∈ U, are pairwise
disjoint and satisfy ξ /∈ w·Xω. It is now easy to see that Xω = {ξ}∪

⋃
w∈U w·Xω.

1.3 Regular ω-Languages

As a last part of this section we mention some facts on regular ω-languages
known from the literature, e.g. [7,13,17,20].

The first one shows the importance of ultimately periodic ω-words. Denote
by Ult := {w · vω : w, v ∈ X∗ � {e}} the set of ultimately periodic ω-words.

Lemma 2 (Büchi). The class of regular ω-languages is a Boolean algebra.
Every non-empty regular ω-language contains an ultimately periodic ω-word,

and regular ω-languages E,F ⊆ Xω coincide if only E ∩ Ult = F ∩ Ult.

The next one gives a connection between accepting devices and topology.

Theorem 1 (Landweber). An ω-language F is accepted by a deterministic
Büchi automaton if and only if F is regular and a Gδ-set.

And, finally, we obtain a topological sufficient condition when finite-state ω-
languages are regular.

Theorem 2 ([11]). Every finite-state ω-language in the class Fσ∩Gδ is already
regular.

2 Topologies Refining the Cantor Topology

In this section we consider some general principles pursued in this paper of the
refinement of the Cantor topology. Most of the following topologies are defined
by introducing a suitable base for the topology. In the sequel, we will often require
that our bases B ⊆ 2Xω

in the space Xω satisfy the following condition.

Definition 1. We will refer to a base B for a topology T on Xω as shift-
invariant provided

∀F∀w∀v(F ∈ B ∧ w ∈ X∗ ∧ v ∈ pref(F ) → w · F, F/v ∈ B) . (6)
3 A point ξ ∈ Xω is called isolated if {ξ} is an open set.
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The property in Definition 1 is, in particular, satisfied for the base BC . It is now
easy to see that for shift-invariant bases the following holds true.

Topologies on the space of finite words satisfying the same condition as in
Eq. (6) were investigated in [8].

Property 2. 1. If B is a shift invariant base for a topology on Xω then ∀w(w ∈
X∗ → ∀E(E ∈ B ↔ w · E ∈ B)).

2. If B is a base for a topology on Xω satisfying Xω ∈ B and ∀w(w ∈ X∗ →
∀E(E ∈ B ↔ w ·E ∈ B)) then B is shift-invariant.

3. A topology T on Xω has a shift-invariant base if and only if ∀w
(
w ∈ X∗ →

∀E(E is open in T ↔ w ·E is open in T )
)
.

The proof of Property 2.3 uses the obvious fact that the set of all open sets is
itself a base for the topology.

Moreover, Property 2.3 shows that all topologies on Xω having a shift-invariant
base refine the Cantor topology. The converse is not true as we shall see in
Section 4.3.

Next we are going to describe the interior operator in topologies on Xω having
a shift-invariant base. To this end we call a subset MB ⊆ B of a base a shift
generator of B provided B � {∅} ⊆ {w ·E : w ∈ X∗ ∧E ∈MB}. In particular, if
B is shift invariant, B itself and B�{∅} are shift generators of B. For the Cantor
topology, for instance, MBC = {Xω} is a minimal shift generator of BC .

Now, the interior operator can be described using a suitably chosen shift
generator MB and the following construction. Let E,F ⊆ Xω. We set

L(F ;E) := {w : w ∈ X∗ ∧ F/w ⊇ E} . (7)

Lemma 3. Let B be a shift-invariant base, and let MB ⊆ B be a shift generator
of B. If J is the corresponding interior operator then

J (F ) =
⋃

E∈MB

L(F ;E) ·E

for every F ⊆ Xω.

Proof. Since J (F ) is open, it is a union of base sets. In view of the special
property of our base there are a family of sets Ej ∈ Mj and a family of words
wj ∈ X∗ such that J (F ) =

⋃
j∈J wj · Ej . Thus F/wj ⊇ Ej for j ∈ J , that is,

wj ∈ L(F ;Ej). Now, the assertion follows with
⋃

j∈J wj ·Ej =
⋃

j∈J L(F ;Ej)·Ej .

It should be mentioned that the languages L(F ;E) have a simple structure, if
only F has a simple structure.

Lemma 4. If F ⊆ Xω is finite-state then L(F ;E) is a regular language.

Proof. It suffices to prove the identity

L(F/v;E) = L(F ;E)/v . (8)

Indeed, we have w ∈ L(F/v;E) if and only if F/(v · w) ⊇ E which, in turn, is
equivalent to v · w ∈ L(F ;E), that is, w ∈ L(F ;E)/v.



276 S. Schwarz and L. Staiger

The subsequent lemma shows that for shift-invariant topologies on Xω the clo-
sure and the interior operator are stable with respect to the derivative.

Lemma 5. If B is a shift-invariant base then JB(F )/v = JB(F/v) and CB(F )/v
= CB(F/v) for all F ⊆ Xω and v ∈ X∗.

Proof. Let MB be a shift generator for B. Then, in view of Eq. (8),
JB(F )/v =

(⋃
E∈MB

L(F ;E) ·E
)
/v

=
⋃

E∈MB

(
L(F ;E)/v

)
·E ∪

⋃
E∈MB

⋃
v′·v′′=v

v′∈L(F ;E)
E/v′′ .

Thus it remains to show that E′/v′′ ⊆
⋃

E∈MB

(
L(F ;E)/v

)
·E whenever E′ ∈

MB and v = v′ · v′′ with v′ ∈ L(F ;E). In the case the latter conditions are
satisfied we have F/v′ ⊇ E′ which implies F/v ⊇ E′/v′′.

In view of Eq. (6) E′/v′′ ∈ B for E′ ∈ B. Consequently, there are u ∈ X∗ and
an E′′ ∈ MB such that E′/v′′ = u · E′′. From F/v ⊇ E′/v′′ = u · E′′ follows
(F/v)/u ⊇ E′′, that is, u ∈ L(F/v;E′′) = L(F ;E′′)/v. The proof is concluded
by the now obvious observation E′/v′′ = u · E′′ ⊆

(
L(F ;E′′)/v

)
·E′′.

The proof for CB follows from the identity Xω � E/w = (Xω � E)/w and
Eq. (3).

As a consequence of Lemma 5 we obtain

Corollary 1. If B is a shift-invariant base for a topology on Xω then JB(v·F ) =
v · JB(F ) and CB(v · F ) = v · CB(F ) for all F ⊆ Xω and v ∈ X∗.

Proof. First observe that in view of Property 2.3 the topology TB generated by
the shift-invariant base B refines the Cantor topology on Xω, hence every set
v ·Xω is also open and closed in TB. Consequently, JB(v ·F ) ⊆ CB(v ·F ) ⊆ v ·Xω.

Now according to Lemma 5 the identities JB(F ) = JB((v ·F )/v) = JB(v ·F )/v
hold. This yields v · JB(F ) = JB(v · F ) ∩ v ·Xω and the assertion follows with
JB(v · F ) ⊆ v ·Xω. The proof for CB is the same.

The following is a consequence of the Lemmata 3, 4 and 5.

Corollary 2. Let a base B for a topology on Xω be shift-invariant and let F ⊆
Xω be a finite-state ω-language.

1. Then JB(F ) and CB(F ) are finite-state ω-languages.
2. If moreover, there is a finite shift generator MB of B consisting solely of

regular ω-languages then JB(F ) and CB(F ) are even regular ω-languages.

Proof. The classes of finite-state and regular ω-languages are both closed under
Boolean operations. Thus the first assertion follows from Lemma 5.

For proving the assertion on the regularity of the ω-languages JB(F ) and
CB(F ) we observe that the strong assumption on MB and Lemmata 3 and 4
yield JB(F ) =

⋃
E∈MB

L(F ;E) · E where the union is finite and L(F ;E) ⊆ X∗

and E ⊆ Xω are regular. Thus JB(F ) is also regular. The assertion for CB(F )
now follows from Eq. (3).
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3 Topologies Related to Finite Automata

In this section we consider four shift-invariant topologies refining Cantor topol-
ogy. These topologies are closely related to finite automata. The first topology
is the smallest topology having all regular ω-languages which are also closed in
Cantor topology as open sets. This topology is remarkable because here all
ω-languages accepted by deterministic Büchi-automata are closed.

The subsequent two topologies are derived from Diekert’s and Kufleitner’s
[3] alphabetic topology which is useful for investigations in restricted first-order
theories for infinite words.

Finally, for the sake of completeness we add the topology having all regular
ω-languages as open (and closed) sets.

Every of the four considered topologies has an infinite set of isolated points.
Thus in view of Lemma 1 none of them is a compact topology on Xω.

3.1 The Automatic Topology

Definition 2. The automatic topology TA on Xω is defined by the base

BA := {F : F ⊆ Xω ∧ F is a regular ω-language closed in Cantor-space} .

It should be remarked that the sets (open balls) w ·Xω are regular and closed in
Cantor-space. Moreover, the properties of regular ω-languages show that BA

is shift-invariant. Thus the base BA contains BC , and the automatic topology
refines the Cantor topology.
TA has the following properties:

Property 3
1. If F ⊆ Xω is open (closed) in Cantor topology TC then F is open (closed)

in TA.
2. Every non-empty set open in TA contains an ultimately periodic ω-word.
3. The set Ult of ultimately periodic ω-words is the set IA of all isolated points

in TA.

Proof. 1. and 2. are obvious.
3. Every ω-language {w·vω} = w·{v}ω is regular and closed in Cantor-space,

and if {ξ} is regular then ξ is an ultimately periodic ω-word.

The following theorem characterises the closure and the interior operators for the
automatic topology. Here the second identity resembles the identity in
Property 1.4.

Theorem 3

JA(F ) =
⋃

E∈BA�{∅} L(F ;E) ·E (9)

CA(F ) =
⋂
{W ·Xω : F ⊆W ·Xω ∧W is regular} (10)
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Proof. The assertion of Eq.(9) is Lemma 3.
To prove Eq.(10) observe that, for regular W ⊆ X∗, the set W ·Xω is closed

in TA. Thus the inclusion “⊆” is obvious.
Let, conversely, ξ /∈ CA(F ). Then there is a set F ′ ∈ BA such that ξ ∈ F ′ and

F ∩ F ′ = ∅. F ′ is a regular ω-language closed in TC . Thus Xω � F ′ = W ′ ·Xω

for some regular language W ′ ⊆ X∗. Consequently, ξ /∈ W ′ ·X∗ ⊇
⋂
{W ·Xω :

F ⊆W ·Xω ∧W is regular}.

The next lemma describes sets open in TA. As usual, a set is called nowhere
dense if its closure does not contain a non-empty open subset.

Lemma 6. A set F ⊆ Xω is open in TA if and only if

F = W ·Xω ∪
⋃

i∈N
Fi

where the sets Fi are regular, closed and nowhere dense in Cantor-space.

Proof. If, in Cantor-space, F ⊆ Xω is closed then F = VF · Xω ∪ F ′ where
VF = {v : v · Xω ⊆ F} and F ′ is nowhere dense and closed. If, moreover, F
is a regular ω-language then VF ⊆ X∗ is a regular language and, consequently,
F ′ = F � VF ·Xω is a regular ω-language.

If E is open in TA then E, as a union of base sets, has the form E = W ′ ·
Xω ∪

⋃
i∈N

Fi where the Fi are regular ω-languages closed in Cantor-space.
Now, from the preceding consideration we obtain the required form E =(

W ′ ∪
⋃

i∈N
VFi

)
·Xω ∪

⋃
i∈N

F ′
i .

As an immediate consequence we obtain the following.

Corollary 3. Every set open in TA is an Fσ-set in Cantor-space, and every
set closed in TA is a Gδ-set in Cantor-space.

The converse of Corollary 3 is not true in general.

Example 1. Let η /∈ Ult and consider the countable ω-language F := {0n · 1 · η :
n ∈ IN}.

Then, in Cantor-space, F = ({0}ω ∪ F ) ∩ 0∗ · 1 · {0, 1}ω is the intersection
of a closed set with an open set, hence, simultaneously an Fσ-set and a Gδ-set.
As F does not contain any ultimately periodic ω-word, it cannot be open in TA.
Thus Xω � F is not closed in TA.

Consequently, 0 ·F ∪ 1 · (Xω �F ) is a set being neither open nor closed in TA

but being simultaneously an Fσ-set and a Gδ-set in Cantor-space. � 

For regular ω-languages, however, we have the following. Here the second item
shows a difference to the Cantor topology.

Proposition 1. 1. Let F ⊆ Xω be a regular ω-language. Then F is an Fσ-
set in Cantor-space if and only if F is open in TA, and F is a Gδ-set in
Cantor-space if and only if F is closed in TA.

2. There are clopen sets in TA which are not regular.
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Proof. 1. In Cantor-space, every regular ω-language F being an Fσ-set is a
countable union of closed regular ω-languages (see [16]).

2. The ω-language F� :=
⋃

n∈IN 0n2 · 1 ·Xω and its complement Xω � F� =
{0ω} ∪

⋃
n is not a square 0n · 1 ·Xω partition the whole space Xω = {0, 1}ω into

two non-regular ω-languages open in TA.

3.2 Finite-State and Regular ω-Languages

In this section we investigate whether finite-state and regular ω-languages are
preserved by JA and CA.

The first simple result is a consequence of Corollary 2.

Proposition 2. If F ⊆ Xω is finite-state the also JA(F ) and CA(F ) are finite-
state ω-languages.

It is, however, not true that the interior or the closure of finite-state ω-languages
are regular. To this end we consider the set Ult of all ultimately periodic ω-words.

Example 2. The set Ult ⊆ Xω is the set of all isolated points of the topology TA

hence open. Thus JA(Ult) = Ult.
Moreover Ult/w = Ult for all w ∈ X∗, that is, Ult is a one-state ω-language,

but Ult is not regular. If we consider, for a, b ∈ X, a �= b, the ω-language
F = a · Ult ∪ b · (Xω � Ult) then F is finite-state and we obtain JA(F ) = a · Ult
and CA(F ) = a ·Xω ∪ b · (Xω � Ult). So neither, JA(F ) nor CA(F ) are regular
ω-languages. � 

A still more striking difference to Cantor topology (see Property 1.5) is the
fact that the closure (and also the interior) of a regular ω-language need not be
regular again.

Example 3. We use the fact (Lemma 2) that two regular ω-languages E,F al-
ready coincide if only E ∩ Ult = F ∩ Ult and consider CA({0, 1}∗ · 0ω).

Utilising Eq. (10) we get CA({0, 1}∗ · 0ω) ⊆
⋂

k∈IN
{0, 1}∗ · 0k · {0, 1}ω. Conse-

quently, CA({0, 1}∗ · 0ω) ∩ Ult = {0, 1}∗ · 0ω.
If, now, CA({0, 1}∗ · 0ω) were a regular ω-language, the identity

CA({0, 1}∗ · 0ω) = {0, 1}∗ · 0ω would follow. This implies, according to Corol-
lary 3 that {0, 1}∗ · 0ω is a Gδ-set in Cantor-space which is not true. � 

3.3 The Alphabetic Topologies

We start with the alphabetic topology which was introduced in [3]. Then we
consider a variant of the alphabetic topology. We define both topologies by their
respective bases.

Definition 3. The alphabetic topology is defined by the base
Bα := {w · Aω : w ∈ X∗ ∧A ⊆ X}.
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All base sets are regular and closed, so the generated topology Tα is coarser than
the automatic topology TA.

For the next definition we fix the following notation (cf. [3]). For A ⊆ X the
ω-language Aim is the set of all ω-words ξ ∈ Xω where exactly the letters in A
occur infinitely often. In particular, Aim = X∗ · Aim.

Definition 4. The strong alphabetic topology is defined by the base
Bs := {w · (Aω ∩Aim) : w ∈ X∗ ∧A ⊆ X}.

The ω-languages in this base Bs are regular ω-languages and Gδ-sets in Cantor-
space but, for |A| ≥ 2, no Fσ-sets in Cantor-space. Thus they are closed but not
open in the automatic topology. This shows that the strong alphabetic topology
Ts does not coincide with TA.

For both alphabetic topologies suitable finite shift generators Mα and Ms for
the bases Bα and Bs, respectively, can be chosen in the following way:

Mα := {Aω : A ⊆ X} and Ms := {Aω ∩Aim : A ⊆ X}

This yields the following property of the corresponding interior operators.

Proposition 3. Jα(F ) =
⋃

A⊆X
L(F ;Aω) · Aω

Js(F ) =
⋃

A⊆X
L(F ;Aω ∩Aim) · (Aω ∩Aim)

With Corollary 2 we obtain the following.

Corollary 4. If F ⊆ Xω is finite-state then Jα(F ), Cα(F ), Js(F ) and Cs(F )
are regular ω-languages.

Proof. Here it suffices to observe that the shift generators Mα := {Aω : ∅ �= A ⊆
X} and Ms := {Aω ∩Aim : ∅ �= A ⊆ X} fulfil the assumption of Corollary 2.

Corollary 4 and Example 3 show that neither of the topologies Tα and Ts coin-
cides with the automatic topology TA.

This latter fact could be also obtained by considering the set of isolated points
Iα and Is of the topologies Tα and Ts, respectively. Since for every isolated point
ξ the singleton {ξ} has to be an element of every base of the topology, we obtain
the identity

Iα = Is = {w · aω : w ∈ X∗ ∧ a ∈ X} . (11)

3.4 The Büchi Topology and the Hierarchy of Topologies

For the sake of completeness we introduce still another topology which we call
Büchi topology because its base consists of all regular ω-languages.

Definition 5. The Büchi topology is defined by the base
BB := {F : F ⊆ Xw ∧ F is a regular ω-language}.

Here, trivially, closure and interior of regular ω-languages are again regular.
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What concerns closure and interior of regular ω-langueges consider the set F
defined in Example 2. One easily verifies that JB(F ) = JA(F ) and CB(F ) =
CA(F ).

So F is an example of a finite-state ω-language having non-regular interior
and closure also with respect to TB. Thus, no base for the Büchi topology has
a subset fulfilling the assumption of Corollary 2.2.

Arguing in the same way as for Tα and Ts we obtain that the set of isolated
points of the Büchi topology is IB = Ult.

Next we show that the following inclusion relation holds for the topologies
considered so far. All inclusions are proper and other ones than the indicated do
not exist.

TB

↗ ↖
TA Ts

↖ ↗
Tα

↑
TC

First, the obvious inclusions BB ⊇ BA ⊇ Bα ⊇ BC and BB ⊇ Bs imply the
inclusions except for Ts ⊇ Tα. This latter follows from the fact that in virtue of
the identity

w · Aω =
⋃

B⊆A

⋃
v∈A∗

(w · v ·Bω ∩Bim) (12)

every base set of Tα is open in Ts.
To show the properness of the inclusions, we observe that the set of isolated

points of the above topologies satisfy IC = ∅, Iα = Is = {w·aω : w ∈ X∗∧a ∈ X}
and IA = IB = Ult. Thus Tα �= TC and TA �⊆ Ts.

The converse relation Ts �⊆ TA follows from the above mentioned fact that the
sets Aω ∩Aim for 2 ≤ |A| are open in Ts but, since they are regular ω-languages
not being Fσ-sets in Cantor-space, according to Proposition 1 not open in TA.

3.5 Metrisability

In this part we show that all the above topologies are metrisable. To this end
we observe that for every topology, the sets contained in the above introduced
bases are not only open but also closed. For TC this is known, for Tα and TA the
base sets are even closed in Cantor-space. For TB this follows because BB is
closed under complementation. Finally, the identity

Xω � (w ·Aω ∩Aim) =
⋃
v �=w

|v|=|w|

v ·Xω ∪
⋃

B �=A

Bim (13)

shows that Bs consists of sets closed in Ts.
To show the metrisability of all spaces we refer to Theorem 4.2.9 of [4] which

states the following.
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Theorem 4. Let X be a topological space with a countable base. Then X is
metrisable if and only if X is a regular topological space.

A topological space X is called regular if every finite set is closed and for every
point p ∈ X and every closed set M ⊆ X , p /∈ M, there are disjoint open sets
O1, O2 such that p ∈ O1 and M ⊆ O2. In particular, this condition is satisfied if
every finite subset of X is closed and X has a base consisting of closed sets.

Thus we obtain our result.

Theorem 5. Each of the topologies TC , Tα, TA, Ts and TB is metrisable.

4 Topologies Obtained by Adding Isolated Points

All topologies TA, TB , Ts and Tα on Xω considered so far have isolated points.
In particular, all their isolated points belong to the set of ultimately periodic
ω-words Ult. In this section we are going to investigate in more detail topologies
on Xω which are obtained from Cantor topology by adding all elements of a
certain fixed set I ⊆ Xω as isolated points to the base BC .

Definition 6. Let I ⊆ Xω. Define TI as the topology (Xω,OI) generated by the
base BI := BC ∪

{
{ξ} : ξ ∈ I

}
.

4.1 General Properties

First we characterise the closure CI in the space (Xω,OI). To this end observe
that ξ /∈ CI(F ) if and only if there is a base set E ∈ BI such that ξ ∈ E and
E ∩ F = ∅. This yields the following.

Xω � CI(F ) =
⋃
{w ·Xω : w ·Xω ∩ F = ∅} ∪ (I � F ) (14)

By complementation, we obtain the following connection to the closure in Can-
tor-space, C(F ) = {ξ : pref(ξ) ⊆ pref(F )}.

CI(F ) = C(F ) ∩ ((Xω � I) ∪ F )
= F ∪ (C(F ) � I) (15)

An immediate consequence of Eq. (15) is the following.

Corollary 5. If F ⊇ Xω � I then F is closed in TI.

We call a point ξ ∈ Xω an accumulation point of a set F ⊆ Xω with respect
to a topology T = (Xω,O) provided every open set E containing ξ contains a
point of F � {ξ}. This is equivalent to the requirement that every base set (in
any base for (Xω,O)) E containing ξ contains a point of F � {ξ}.

Theorem 6. In the space (Xω,OI) the set Xω � I is the set of accumulation
points of the whole space.
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Proof. Let M be the set of accumulation points of the whole space. Then, obvi-
ously, M ∩ I = ∅.

Conversely, if ξ /∈ I then every base set containing ξ is of the form w · Xω,
thus contains infinitely many points of Xω.

Next we turn to metrisability of the topologies. Since our spaces (Xω,OI) do
not necessarily have a countable base, we cannot conclude metrisability as in
Theorem 5.

Therefore we use the Hanai-Morita-Stone-Theorem (cf. [4, Theorem 4.47])

Theorem 7 (Hanai,Morita,Stone). Let M1 = (M1,O1),M2 = (M2,O2) be
topological spaces. If M1 is metrisable and there is a surjective mapping Ψ :
M1 → M2 such that Ψ(M) is closed whenever M ⊆ M1 is closed then the
following are equivalent.

1. M2 is metrisable, and
2. M2 has a base B such that for every m ∈ M2 the set Bm := {B : B ∈

B ∧m ∈ B} is countable.4

It is now obvious that every topological space (Xω,OI) satisfies the Condition 2
of Theorem 7. In fact, for ξ ∈ Xω it holds BI,ξ = {w · Xω : w � ξ} ∪ {ξ} or
BI,ξ = {w ·Xω : w � ξ} according to whether ξ ∈ I or not.

If we use as Ψ the identity mapping from Cantor-space (Xω,OC) to (Xω,OI)
then Ψ trivially satisfies the hypothesis of the Hanai-Morita-Stone-Theorem
and we obtain the following.

Theorem 8. Let I ⊆ Xω. Then the topology TI = (Xω,OI) is metrisable.

4.2 U-δ-Topology

In this section we show that the topology TI admits a nice metrisation resembling
Eq. (5) provided the set I is an Fσ-set in Cantor-space.

Let U ⊆ X∗ be a fixed language and define U δ := {ξ : ξ ∈ Xω∧|pref(ξ)∩U | =
ℵ0}. Then the following holds true.

Lemma 7. A subset F ⊆ Xω is a Gδ-set in Cantor-space if and only if there
is a U ⊆ X∗ such that F = U δ.

Next, following [12], using the language U we introduce a topology on Xω.

Definition 7 (U-δ-topology). The U -δ-topology of Xω is the metric topology
generated by the following metric

ρU (ξ, η) :=
{

0 , if ξ = η , and
|X |−|pref(ξ)∩pref(η)∩U| , otherwise.

This topology has the following properties (see [12,14,15]). Denote by CU the
topological closure induced by the metric ρU .
4 M2 is second countable.
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Proposition 4
1. In the U -δ-topology of Xω every point in IU := Xω �U δ is an isolated point.
2. CU (F ) = C(F ) ∩ (U δ ∪ F ) = F ∪ (C(F ) ∩ U δ)

Now Proposition 4.2 in connection with Eq. (15) shows that, for I := Xω � U δ

the U -δ-topology of Xω coincides with TI.
Next we consider the set of isolated point s of the topologies Tα, Ts, TA and

TB. Recall that Iα = Is =
⋃

a∈X X∗ ·aω and IA = IB = Ult. Both sets are Fσ-sets
in Cantor space. Thus the following holds true.

Proposition 5. One can construct languages Uα and UA such that the set of
isolated points of the Uα-δ-topology of Xω is Iα =

⋃
a∈X X∗ · aω, and the set of

isolated points of the UA-δ-topology of Xω is IA = Ult.

For the case I =
⋃

a∈X X∗ · aω one obtains a regular language Uα.

Corollary 6. It holds Iα = Xω �
(⋃

a,b∈X,a�=b X
∗ · ab

)δ.
4.3 Shift-Invariance

Finally, we derive a necessary and sufficient condition when a topology TI has a
shift-invariant base. To this end we use the results of Section 2.

Lemma 8. A topology TI has a shift-invariant base if and only if I = I/w for
all w ∈ X∗.

Proof. For every isolated point ξ ∈ I the set {ξ} is open in TI. Thus according
to Lemma 5 and Corollary 1 also {ξ}/w and {w · ξ} are open. This shows the
required identity.

Conversely, if I = I/w for all w ∈ X∗ then, obviously, the base BC ∪ {{ξ} :
ξ ∈ I} is shift-invariant.

Having this necessary and sufficient condition one easily verifies that adding iso-
lated points may result in non-shift-invariant refinements of Cantor topology.
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On Symbolic Representations of Maximum
Matchings and (Un)directed Graphs

Beate Bollig

LS2 Informatik, TU Dortmund,
44221 Dortmund, Germany

Abstract. The maximum matching problem is one of the most fun-
damental algorithmic graph problems and OBDDs are one of the most
common dynamic data structures for Boolean functions. Since in some
applications graphs become larger and larger, a research branch has
emerged which is concerned with the theoretical design and analysis of
so-called symbolic algorithms for classical graph problems on OBDD-
represented graph instances. Typically problems get harder when their
input is represented symbolically, nevertheless not many concrete non-
trivial lower bounds are known. Here, it is shown that symbolic OBDD-
based algorithms for the maximum matching problem need exponential
space (with respect to the OBDD size of the input graph). Further-
more, it is shown that OBDD-representations for undirected graphs can
be exponentially larger than OBDD-representations for their directed
counterparts and vice versa.

Keywords: Computational complexity, lower bounds, maximum match-
ing, ordered binary decision diagrams, symbolic algorithms.

1 Introduction

Since modern applications require huge graphs, explicit representations by ad-
jacency matrices or adjacency lists may cause conflicts with memory limitations
and even polynomial time algorithms seem to be not applicable any more. As
time and space resources do not suffice to consider individual vertices, one way
out seems to be to deal with sets of vertices and edges represented by their
characteristic functions. Ordered binary decision diagrams, denoted OBDDs,
introduced by Bryant in 1986 [6], are well suited for the representation and
manipulation of Boolean functions, therefore, a research branch has emerged
which is concerned with the theoretical design and analysis of so-called symbolic
algorithms for classical graph problems on OBDD-represented graph instances
(see, e.g., [11,12], [13], [18,19], [21], [23,24], and [28]). Symbolic algorithms have
to solve problems on a given graph instance by efficient functional operations
offered by the OBDD data structure.

Representing graphs with regularities by means of data structures smaller than
adjacency matrices or adjacency lists seems to be a natural idea. But problems
typically get harder when their input is represented implicitly. For circuit repre-
sentations this has been shown in [1,10,20]. These results do not directly carry
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over to problems on OBDD-represented inputs since there are Boolean functions
like some output bits of integer multiplication whose OBDD complexity is expo-
nentially larger than its circuit size [2,7]. In [8] it has been shown that even the
very basic problem of deciding whether two vertices s and t are connected in a
directed graph G, the so-called graph accessibility problem GAP, is PSPACE-
complete on OBDD-represented graphs. Nevertheless, OBDD-based algorithms
are successful in many applications and despite the hardness results there are
not many concrete non-trivial lower bounds known for the complexity of prob-
lems on OBDD-represented graph instances. In [23] exponential lower bounds on
the space complexity of OBDD-based algorithms for the single-source shortest
paths problem, the maximum flow problem, and a restricted class of algorithms
for the reachability problem have been presented. Recently, the last result has
been generalized and an exponential lower bound on the space complexity of all
OBDD-based algorithms for reachability analysis has been shown in [3]. The re-
sults are not very astonishing but the proofs present worst-case examples which
could be helpful to realize why OBDD-based algorithms are successful in many
applications by characterizing the special cases that can be handled efficiently
and the cases that are difficult to process. In this paper one aim is to present
concrete exponential lower bounds and not only existence proofs that there have
to be objects of large size or that exponential blow-ups may happen for various
problems.

Due to the problem’s rich area of applications the maximum matching problem
has received a considerable amount of attention for explicit graph representa-
tions. Answering an open question posed by Sawitzki (page 186, table 7.4.1 in
[22]), we prove that OBDD-based representations of maximum matchings can be
exponentially larger than the OBDD representation of the input graph. Using
simple counting arguments it can be shown that there exists a complete bipartite
graph whose OBDD complexity is small and for which there exists a maximum
matching whose OBDD complexity is large. In order to present concrete proofs
we present such a graph and a corresponding maximum matching. Searching for
advantageous properties of real-world instances that cause an essentially better
behavior than in the worst-case, the complexity of graph problems with respect
to structured properties of input and/or output OBDDs is interesting. In [21] and
[28] symbolic algorithms for maximum flow in 0-1 networks and topological sort-
ing have been presented which have polylogarithmic running time with respect
to the number of vertices of a given grid graph. These results rely on the very
structured input graph and on restrictions on the width of occuring OBDDs dur-
ing the computation. Our first result on the size of maximum (perfect) matchings
shows that constant input OBDD width is not sufficient to guarantee polynomial
space complexity for the maximum matching problem. Afterwards we present a
graph whose edge set can be represented by OBDDs of small size but for which
the implicit representation of its unique maximum matching needs exponential
OBDD size.

By simple counting arguments it is easy to see that almost all graphs on N
vertices cannot be represented by OBDDs of polylogarithmic size with respect
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to N . On the other hand, it is quite obvious that very simple structured graphs,
e.g., grid graphs, have a small OBDD representation. Therefore, in [18,19] the
question has been investigated whether succinct OBDD representations can be
found for significant graph classes. In this paper we consider whether undirected
graphs can be exponentially larger than their so-called directed counterparts and
vice versa. Our results can be summarized as follows.

Theorem 1. Symbolic OBDD-based algorithms for the maximum matching prob-
lem need exponential space with respect to the size of the implicit representation of
the input graph.

Theorem 2. There exists a directed graph Gd and a corresponding undirected
graph Gu, obtained from Gd by changing the directed edges into undirected ones,
such that the symbolic OBDD representation of Gu is exponentially larger than
the OBDD representation of Gd.

The paper is organized as follows. In Section 2 we define some notation and
present some basics concerning OBDDs, symbolic graph representations, and
the maximum matching problem. Section 3 contains the proof of Theorem 1.
Finally, in Section 4 Theorem 2 is shown and we discuss why the result is not as
obvious as it seems to be at first glance. For a slightly more general model than
OBDDs the representation size for the corresponding undirected counterparts of
directed graphs can only be by a factor of 2 larger than the size for the directed
graph. Furthermore, we will look at an undirected graph GU and a correspond-
ing directed graph GD, obtained from GU by changing each undirected edges
into one directed edge, such that the symbolic OBDD representation of GD is
exponentially larger than the OBDD representation of GU .

2 Preliminaries

In order to make the paper self-contained we briefly recall the main notions we
are dealing with in this paper.

2.1 Ordered Binary Decision Diagrams

When working with Boolean functions as in circuit verification, synthesis, and
model checking, ordered binary decision diagrams are one of the most often used
data structures that support efficiently all fundamental operations on Boolean
functions, like binary operators, quantifications or satisfiability tests. (For a his-
tory of results on binary decision diagrams see, e.g., the monograph of
Wegener [27]).

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.



On Symbolic Representations of Maximum Matchings 289

In the following a variable ordering π is sometimes identified with the corre-
sponding ordering xπ(1), . . . , xπ(n) of the variables if the meaning is clear from
the context.

Definition 2. A π-OBDD on Xn is a directed acyclic graph G = (V,E) whose
sinks are labeled by Boolean constants and whose non-sink (or decision) nodes
are labeled by Boolean variables from Xn. Each decision node has two outgoing
edges one labeled by 0 and the other by 1. The edges between decision nodes have
to respect the variable ordering π, i.e., if an edge leads from an xi-node to an
xj-node, then π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)). Each node
v represents a Boolean function fv ∈ Bn, i.e., fv : {0, 1}n → {0, 1}, defined
in the following way. In order to evaluate fv(b), b ∈ {0, 1}n, start at v. After
reaching an xi-node choose the outgoing edge with label bi until a sink is reached.
The label of this sink defines fv(b). The width of a π-OBDD is the maximum
number of nodes labeled by the same variable. The size of a π-OBDD G is equal
to the number of its nodes and the π-OBDD size of a function f is the size of
the minimal π-OBDD representing f .

It is well known that the size of an OBDD representing a function f that depends
essentially on n Boolean variables (a function g depends essentially on a Boolean
variable z if g|z=0 �= g|z=1) may be different for different variable orderings and
may vary between linear and exponential size with respect to n.

Definition 3. The OBDD size or OBDD complexity of f is the minimum of
all π-OBDD(f).

The size of the reduced π-OBDD representing f is described by the following
structure theorem [25].

Theorem 3. The number of xπ(i)-nodes of the minimal π-OBDD for f is the
number si of different subfunctions f|xπ(1)=a1,...,xπ(i−1)=ai−1 , a1, . . . , ai−1 ∈ {0, 1},
that essentially depend on xπ(i).

Theorem 3 implies the following simple observation which is helpful in order to
prove lower bounds. Given an arbitrary variable ordering π the number of nodes
labeled by a variable x in the reduced π-OBDD representing a given function f
is not smaller than the number of x-nodes in a reduced π-OBDD representing
any subfunction of f .

Partitioned binary decision diagrams, denoted PBDDs, have been introduced
in [14] as a generalized OBDD model allowing a restricted use of nondeterminism
and different variable orderings. They are restricted enough such that most of the
essential operations can be performed efficiently and they allow polynomial-size
representations for more Boolean functions than OBDDs.

Definition 4. A k-PBDD consists of k OBDDs whose variable orderings may
be different. The output value for an input b is defined as 1 iff at least one of
the OBDDs computes 1 on b. A PBDD is a k-PBDD for some k. The size of a
k-PBDD is the sum of the sizes of the k OBDDs.
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2.2 Symbolic OBDD-Based Graph Representations and the
Maximum Matching Problem

In the following for z = (zn−1, . . . , z0) ∈ {0, 1}n let |z| :=
∑n−1

i=0 zi2i. Let G =
(V,E) be a graph with N vertices v0, . . . vN−1. The edge set E can be represented
by an OBDD for its characteristic function, where

XE(x, y) = 1 ⇔ (|x|, |y| < N) ∧ (v|x|, v|y|) ∈ E, x, y ∈ {0, 1}n and n = 2logN3.

Undirected edges are represented by symmetric directed ones. In the rest of the
paper we assume that N is a power of 2 since it has no bearing on the essence of
our results. OBDD-represented graphs on N vertices are typically only defined
on logN Boolean variables in comparison to other implicit graph representations
where at least c logN bits for some constant c > 1 are allowed [16,26]. One of
the reasons is that the number of variables of intermediate OBDDs during a
symbolic algorithms can be seen as a performance parameter. Multiplying the
number of variables on which an OBDD depends by a constant c enlarge the
worst-case size asymptotically from S to Sc. (See, e.g., [9] for the importance to
keep the number of variables as low as possible.)

A matching in an undirected graph G = (V,E) is a subset M ⊆ E such that
no two edges of M are adjacent. A matching M is maximum if there exists no
matching M ′ ⊆ E such that |M ′| > |M |, where |S| denotes the cardinality of
a set S. A perfect matching is a matching of cardinality |V |/2. In the symbolic
setting the maximum (perfect) matching problem is the following one. Given
an OBDD for the characteristic function of the edge set of an undirected input
graph G, the output is an OBDD that represents the characteristic function of
a maximum (perfect) matching in G. A graph G = (V,E) is bipartite, if V can
be partitioned into two disjoint nonempty sets U and W , such that for all edges
(u,w) ∈ E it holds u ∈ U and w ∈W or vice versa.

3 The Maximum Matching Problem on
OBDD-Represented Graphs

In this section we prove Theorem 1 and demonstrate that an exponential blow-
up from input to output size for the maximum matching problem is possible in
the symbolic setting.

Our proof structure is the following one. First, we define an input graph G
for the maximum matching problem. It is not difficult to see that the size of the
corresponding OBDD representation for the characteristic function of its edge
set is polynomial with respect to the number of Boolean variables. Afterwards
we prove that there exists a maximum matching in G represented by its edge set
for which the corresponding characteristic function has exponential OBDD com-
plexity. Therefore, every OBDD-based algorithm solving the maximum matching
problem need exponential space with respect to its input length. We start with a
very simple input graph and show that there exists a maximum matching whose
OBDD complexity is exponentially larger than the OBDD complexity of the
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input graph. The investigated maximum matching is also a perfect matching.
Afterwards we present an example where the maximum matching is unique but
not a perfect matching because the input graph contains many isolated vertices.
Now, we make our ideas more precise.

1) The definition of the input graph G:

Our input graph G = (V,E) is a complete bipartite graph on 2n2+1 vertices.
The vertex set V is partitioned into two nonempty sets U and W of equal size
such that there exists no edge incident to two vertices in U respectively W .
The Boolean encoding of a vertex v ∈ V consists of n2 + 1 Boolean variables
z, x11, . . . , xnn, the variable z indicates whether v is in U (z = 0) or in W (z = 1).
The x-variables can be seen as a Boolean matrix of dimension n× n.

2) The polynomial upper bound on the OBDD size for the characteristic func-
tion of the edge set of G:

G can be represented by an OBDD of size 5. The characteristic function XE of
E is defined on the variables ((z1, x1

11, . . . , x
1
nn), (z2, x2

11, . . . , x
2
nn)). The function

value is 1 iff z1 ⊕ z2 = 1.

3) A maximum matching in G and an exponential lower bound on the OBDD
size for its characteristic function:

It remains to show that there exists a maximum matching in G defined by the
characteristic function of its edge set whose OBDD complexity is exponential.
Note, that our aim is to present a constructive and not only an existence proof.
A vertex v in G has the property P iff the x-variables of its Boolean encoding
correspond to a Boolean matrix that contains exactly one 1-entry in each row
and in each column. Now, we are ready to define a maximum matching in G
whose OBDD complexity is exponential. The crucial idea for the definition of a
perfect matching with large OBDD size is the following. Vertices with property
P are matched to vertices with property P and vertices without P to vertices
without property P . To be more precise, let zu, xu

11, . . . , x
u
nn be the variables

of the Boolean encoding of a vertex u ∈ U and zw, xw
11, . . . , x

w
nn those of a

vertex w ∈ W . The vertices u and w are matched if both have the property
P and xu

ij = xw
ji for all i, j ∈ {1, . . . , n} or if both have not the property P

and xu
ij = xw

ij for all i, j ∈ {1, . . . , n}. Obviously, this is a complete definition
of a perfect matching in G. Let XM be the characteristic function of this edge
set. Next, we prove that the OBDD complexity of XM is exponential. In [15,17]
exponential lower bounds on the size of so-called nondeterministic read-once
branching programs (a more general OBDD model) representing the Boolean
function PERMn, the test, whether a Boolean matrix contains exactly one 1-
entry in each row and in each column, are presented. In the following we consider
an arbitrary OBDD for a carefully chosen subfunction of XM and we investigate
several paths from the source of the OBDD to the 1-sink. Here, for the choice
of the considered paths and for the estimation of the number of different chosen
subpaths some of the ideas presented in [15,17] are used but because of the
different definition of our investigated function we have to add some ideas.
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Let GM be an OBDD on the variables ((z′, x11, . . . , xnn), (z′′, y11, . . . , ynn)) for
the representation of XM and G′

M be the OBDD obtained from GM by replacing
the variables x23, y32 by 1 and x32, y23 by 0. The reason for these replacements
is that all 1-inputs for the subfunction of XM represented by G′

M correspond to
edges between vertices in the input graph G with property P . As a result it is a
little bit easier to argue that G′

M and therefore GM need an exponential number
of nodes. Furthermore, we set z′ to 1 and z′′ to 0. This is not crucial for our
lower bound proof but convenient to keep our proof as simple as possible.

Our aim is to show that there is an exponential number of nodes in the OBDD
G′

M . For the ease of notations we assume w.l.o.g. that n is an even number. We
investigate the paths in G′

M from the source to the 1-sink called accepting paths.
There are 2n− 2 1-edges, i.e., variables set to 1, on these paths and the number
of these paths is (n − 2)(n − 2)!. Now, we separate each accepting path p into
its initial part pu and into the remaining part p	 to the 1-sink. Here, we have to
use a different cut as considered in [15,17]. A pair (xij , yji), i, j ∈ {1, . . . , n}, is
called (x, y)-pair. We define a cut through all accepting paths after for exactly
n/2− 2 (x, y)-pairs there exists at least one variable set to 1 for the first time.
Let Rpu (Cpu) be the set of indices i for which a variable xi∗ or y∗i (x∗i or yi∗)
is set to 1 on pu. If n/2 − 1 rows and columns are fixed, there are (n/2 − 1)!
possibilities to map the indices of the rows to the indices of the columns. Each
initial part of an accepting path can be continued by at most (n/2)! subpath to
the 1-sink. Therefore, there is a set P of different initial paths from the source to
the cut, |P | ≥

(
n−1

n/2−1

)
, such that for two different paths p′u and p′′u in P we know

that Rp′
u
�= Rp′′

u
or Cp′

u
�= Cp′′

u
. Due to our choice of the considered paths, there

are extensions p′	 of p′u and p′′	 of p′′u which lead to the 1-sink. Since Rp′
u
�= Rp′′

u
or

Cp′
u
�= Cp′′

u
, p′u concatenate with p′′	 cannot correspond to a Boolean encoding,

where in each row and in each column is exactly one 1-entry, and therefore,
cannot be an accepting path. Here, we make use of the fact that we investigate
a subfunction of XM whose 1-inputs correspond to edges between vertices with
property P in the input graph. Therefore, the paths in P cannot lead to the same
node in G′

M and the size of the set P is a lower bound on the size of G′
M . Using

Stirling’s formula we obtain a lower bound of Ω(n−1/22n) and we are done.
Summarizing, we have shown that the maximum matching problem may cause

exponential space requirements on OBDD-represented graphs by generating in-
stances with an exponential gap between the input and the output OBDD size.
On the other hand, there exists a perfect matching in G whose OBDD com-
plexity is linear. Therefore, the representation sizes for maximum matchings in
a graph can be quite different. Now, we show that an exponential gap between
input and output size is also possible if the maximum matching is unique. In this
way we demonstrate that every symbolic OBDD-based algorithm for the maxi-
mum matching problem need exponential space. We start with the definition of
a function which is well known in the BDD literature.

Definition 5. The hidden weighted bit function HWBn : {0, 1}n → {0, 1} com-
putes the bit bsum on the input b = (b1, . . . , bn), where sum :=

∑n
i=1 bi and

b0 := 0.



On Symbolic Representations of Maximum Matchings 293

Bryant [7] has introduced this function as a very simple version of storage access
where each variable is control and data variable. He has also already shown
that the OBDD complexity of HWBn is Ω(2(1/5−ε)n) which has been slightly
improved up to Ω(2n/5) in [5].

1) The definition of the input graph Gn:

...
...

...
...

...
...

...
...

...
...

Fig. 1. The input graph Gn and the set of hidden difficult edges

The graph Gn = (V,E) consists of 22n+2 vertices vi1,i2,i3 , i1 ∈ {0, . . . , 3},
i2, i3 ∈ {0, . . . , 2n − 1}. Let bi = (bi

0, . . . , b
i
n−1) be the binary representation of

an integer i ∈ {0, . . . , 2n−1}. There exists an edge between a vertex vi1,i2,i3 and
a vertex vj1,j2,j3 if one of the following requirements is fulfilled:

- i1 = 0, i2 = 2k,
∑n−1

	=0 bi3
	 = k and bi3

k−1 = 1,
j1 = 1, j2 = 0, and j3 = i3, or

- i1 = 2, i2 = 0,
∑n−1

	=0 bi3
	 = k and bi3

k−1 = 1,
j1 = 3, j2 = 2k, and j3 = i3, or

- i1 = 1, i2 = 0, j1 = 2, j2 = 0, and j3 = i3.

Figure 1 shows the structure of the input graph Gn, where isolated vertices
are missing. Obviously, the maximum matching in Gn is unique (see Figure 2).
The important property of Gn is that an edge from a vertex v1,i2,i3 to a vertex
v2,j2,j3 belongs to the maximum matching iff i2 = j2 = 0, i3 = j3, and the
binary representation of i3 respectively j3 corresponds to an input that belongs
to HWB−1

n (0). The characteristic function of this edge set is a difficult function
but in our input graph this edge set is in some sense hidden (see Figure 1)
such that the characteristic function of the edge set of the input graph can be
represented by OBDDs of small size.

2) The polynomial upper bound on the OBDD size of XE :

Let x1
0, x

1
1, x

2
0, . . . , x

2
n−1, x

3
0, . . . , x

3
n−1 be the variables of the Boolean encod-

ing of a vertex vi1,i2,i3 , where x1
0, x

2
0, and x3

0 denote the least significant bits,
the x1-variables represent i1, the x2-variables i2, and the x3-variables i3. The
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...
...

...
...

...
...

...
...

...
...

Fig. 2. The unique maximum matching in Gn

characteristic function XE of the edge set depends on 2(2n+2) Boolean variables
((x1

0, x
1
1, x

2
0, . . . , x

2
n−1, x

3
0, . . . , x

3
n−1), (y1

0 , y
1
1, y

2
0 , . . . , y

2
n−1, y

3
0, . . . , y

3
n−1)).

Our aim is to prove that XE can be represented by OBDDs of size O(n2)
according to the variable ordering

x1
0, y

1
0 , x

1
1, y

1
1 , x

2
0, y

2
0, . . . , x

2
n−1, y

2
n−1, x

3
0, y

3
0 , . . . , x

3
n−1, y

3
n−1.

There are three different disjoint edge sets, from v0,·,·- to v1,·,·-, from v1,·,·- to
v2,·,·-, and from v2,·,·- to v3,·,·-vertices. We prove that each of them can be repre-
sented by OBDDs of small size. Since the different edge sets can be identified by
the assignments to the x1- and y1-variables which are tested at the beginning of
the OBDD, it suffices to add the OBDD sizes in order to obtain an upper bound
on the OBDD complexity of XE .

If x1
0 = x1

1 = 0, y1
0 = 0, and y1

1 = 1, it is checked whether y2
0 = . . . = y2

n−1 = 0,
and there exists exactly one x2-variable set to 1. If |x2| = 2i, the number of x3-
variables is counted. The function value is 1 if

∑n−1
	=0 x3

	 = i, x3
i−1 = 1, and

y3
	 = x3

	 , 0 ≤ " ≤ n− 1. Since we only have to distinguish n different values for
|x2|, this can be done by an OBDD of width O(n).

If x1
0 = 0, x1

1 = 1, y1
0 = y1

1 = 0, the roles of the x- and y-variables are
exchanged. The cases x1

0 = 1, x1
1 = 0, y1

0 = y1
1 = 1, and x1

0 = x1
1 = 1, y1

0 = 0,
y1
1 = 1 are similar.
If x1

0 = 1, x1
1 = 0, y1

0 = 0, y1
1 = 1, or x1

0 = 0, x1
1 = 1, y1

0 = 1, y1
1 = 0, it is

checked whether |x2| = |y2| = 0 and |x3| = |y3|. This can be done by an OBDD
of constant width.

Altogether, we have seen that XE can be represented by an OBDD of size
O(n2).

3) The exponential lower bound on the OBDD size for the characteristic func-
tion of the maximum matching XM in Gn:

Due to our definition of Gn the maximum matching contains an edge from a
vertex v1,i2,i3 to a vertex v2,j2,j3 if i2 = j2 = 0, i3 = j3, and the binary represen-
tation of i3 respectively j3 corresponds to an input that belongs to HWB−1

n (0).
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Our aim is to adapt the ideas for the exponential lower bound on the OBDD size
of HWBn presented in [7]. Therefore, we consider the subfunction of XM , where
x1

0 = 1, x1
1 = 0, y1

0 = 0, y1
1 = 1, and the x2- and y2-variables are replaced by 0.

In the following we assume that n is a multiple of 10 because it has no bearing
on the essence of the proof. Let π be an arbitrary but fixed variable ordering. A
pair (x3

	 , y
3
	 ) is called (x, y)-pair and x3

	 a partner of y3
	 and vice versa. Now, we

define a cut in the variable ordering after for the first time for exactly (6/10)n
(x, y)-pairs there exist at least one variable. T contains the variables before the
cut according to π and B the remaining variables. Let PH be the set of all pairs
(x3

i , y
3
i ), i ∈ {(5/10)n + 1, . . . , (9/10)n}, and PL be the set of all pairs (x3

j , y
3
j ),

j ∈ {(1/10)n+ 1, . . . , (5/10)n}. Obviously, T contains at least for (2/10)n pairs
in PH or at least for (2/10)n pairs in PL at least one variable. W.l.o.g. we as-
sume that T contains at least for (2/10)n pairs in PL at least one variable. In
the following we only consider assignments where variables that belong to the
same (x, y)-pair are replaced by the same constant. We consider all assignments
to the variables in T where exactly (1/10)n pairs in PL are replaced by 1, all
other variables in T are set to 0. There are at least

((2/10)n
(1/10)n

)
= Ω(n−1/22n/5)

different assignments. Using Theorem 3 it is sufficient to prove that these assign-
ments lead to different subfunctions. For this reason we consider two different
assignments b and b′ to the variables in T . Let (x3

	−1, y
3
	−1) be an (x, y)-pair for

which at least one variable is replaced differently in b and b′. W.l.o.g. x3
	−1 is

set to 0 in b and to 1 in b′. Now, we consider the following assignment br to
the variables in B. The variables for which there is a partner in T are replaced
by the assignment to the partner according to b. The remaining variables are
replaced in such a way that there are exactly "− (1/10)n pairs that are set to 1.
This can be done because there are (4/10)n pairs for which both variables are
in B and " ≤ (5/10)n. Obviously, the function value of the subfunction induced
by b on br is 1. The function value for the subfunction induced by b′ on br is 0
because either |x3| �= |y3| or x3 ∈ HWB−1

n (1).
Altogether, we have shown that the OBDD complexity of XM is at least

Ω(n−1/22n/5).

4 Exponential Blow-Ups for the OBDD-Complexity of
Directed and Undirected Graphs

In this section we prove Theorem 2 and consider the OBDD size of directed and
undirected graphs.

Definition 6. An undirected graph Gu = (V,Eu) is called the counterpart of a
directed graph Gd = (V,Ed) iff for all edges (u,w) ∈ Ed the edge (u,w) is in
Eu. An asymmetric directed graph GD = (V,ED) is called a counterpart of an
undirected graph GU = (V,EU ) if for all edges (u,w) ∈ EU the edge (w, u) is
not in ED but (u,w) ∈ ED or vice versa.

In order to prove Theorem 2, we investigate the following directed bipartite
graph Gd = (V,Ed) defined on 2n2+1 vertices. V is partitioned into the sets U
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Fig. 3. An OBDD for XEd . Missing edges are leading to the 0-sink.

and W of equal size. The Boolean encoding of a vertex v ∈ V consists of n2 + 1
Boolean variables z, x11, . . . , xnn, where the variable z indicates whether v ∈ U
(z = 0) or in W (z = 1). The x-variables can be seen as a Boolean matrix X of
dimension n × n. There exists an edge from a node u ∈ U to a node w ∈ W if
there exists a row that consists only of 1-entries in the Boolean encoding X of u
and a column that contains only 1-entries in the Boolean encoding according to
the x-variables of w. Next, we prove that Gd can be represented by OBDDs of
linear size with respect to the number of Boolean variables but the undirected
counterpart Gu needs exponential size. The characteristic function of the edge
set of Gd is defined on the variables (z1, x1

11, . . . , x
1
nn), (z2, x2

11, . . . , x
2
nn). Our aim

is to prove that XEd
can be represented by OBDDs of size O(n2) and constant

width according to the variable ordering

z1, x1
11, x

1
12, . . . , x

1
nn, z

2, x2
11, x

2
21, . . . , x

2
nn,

i.e., the first x-variables are tested in a row-wise manner, variables that belong
to the same row are tested one after another, and the last x-variables are tested
in a column-wise manner. Applying Theorem 3 is is sufficient to prove that there
are only a constant number of different subfunctions obtained by replacements
of the first i variables for all i ∈ {1, . . . , 2n2 + 2} with respect to the considered
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variable ordering. If z1 is 1, the function value is 0 because there are no edges
from a vertex w ∈W to a vertex u ∈ U . If z1 is 0, the x1-variables are tested row-
wise and it is checked whether there exists a row that consists only of 1-entries.
This can be done by an OBDD of width 1. If the test is negative, the function
value is 0. If the test is positive, the variable z2 is tested. The function value is
0, if z2 is 0, because there are no edges between vertices in U . Afterwards the
x2-variables are tested column-wise and the function value is 1 iff there exists
a column that contains only 1-entries. This can also be done by an OBDD of
width 1. Figure 3 shows an OBDD for XEd

.
For the lower bound proof on the OBDD size for the characteristic function of

the undirected counterpart Gu let π be an arbitrary but fixed variable ordering.
We define a cut in π where for the first time n/2 − 1 rows or n/2 − 1 columns
have a tested x1- or x2-variable. XU contains the x-variables before the cut in
π, XL the remaining x-variables.

Case 1: There are n/2− 1 rows for which an x1-variable or n/2− 1 columns for
which an x2-variable is in XU .

W.l.o.g. we assume that there are n/2− 1 rows for which an x1-variable is in
XU . First, we set z1 to 0 and z2 to 1. The x2-variables are replaced by constants
in the following way:

- the variables x2
11, x

2
21, . . . , x

2
n1 are set to 1,

- the remaining x2-variables are set to 0.

As a result we obtain a subfunction of XEu whose function value is 1 iff the
Boolean matrix defined by x1

11, . . . , x
1
nn contains a row that consists only of 1-

entries. Now, we prove that a π-OBDD for this subfunction needs exponential
size. We set the x1-variables tested first in the first n/2 − 1 rows with respect
to π to all possible assignments. Variables in XU that belong to the same row
are set to the same constant. Next, we prove that two different assignments b
and b′ of these 2n/2−1 partial assignments lead to different subfunctions. For this
reason we consider the following assignment br to the remaining x1-variables in
XL. Let " be a row for which the x1-variables in b are set to 1 and in b′ to 0 (or
vice versa). W.l.o.g. we assume that the x	·-variables in b are set to 1 and in b′

to 0. In br the x1
	· -variables are set to 1, the remaining x1-variables are set to 0.

There exist x1
	·-variables in XL because otherwise there are n rows that have a

variable in XU . The function value of the considered subfunction obtained by b
respectively b′ for br is 1 respectively 0, therefore the induced subfunctions are
different and we are done.

Case 2: There are n/2− 1 columns for which an x1-variable or n/2− 1 rows for
which an x2-variable is in XU .

By replacing the variables z1 by 1 and z2 by 0 the case is similar to the first
one and we are done.

One might think that our result is not very astonishing because the orientation
of an edge can store some kind of information and without this information the
representation size may enlarge. Nevertheless, if the characteristic function XEd
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of a directed graph Gd = (V,Ed) is represented by a circuit, the representation
size for the undirected counterpart can only enlarge by a factor of 2. In the
following we show that the same holds for 2-PBDDs which are slightly more
general than OBDDs. Let ER

d be the set of edges obtained by replacing each
directed edge (u, v) ∈ Ed by the directed edge (v, u). Let GEd

be an OBDD
for the characteristic function XEd

which is defined on x- and y-variables. The
PBDD consists of two OBDDs according to different variable orderings. The first
part represents the edges in Ed and is equal to GEd

, the second part represents
XR

Ed
. For the second part of the 2-PBDD we change the variable ordering of GEd

by renaming the x-and the y-variables, i.e., nodes labeled by xi are now yi-nodes
and vice versa (for all indices). Obviously, the second part of the 2-PBDD has
the same size as GEd

and represents XR
Ed

. Altogether, our result on the OBDD
size of directed graphs and their undirected counterparts is not as obvious as it
seems to be.

In the design and analysis of symbolic graph algorithms OBDDs are often
ordered according to so-called interleaved variable orderings, where x- and y-
variables of the same significance (or with the same indices) are tested consecu-
tively (see, e.g., [21] and [28]). This seems to be reasonable, since the characteris-
tic function of an undirected graph is symmetric. If a directed graph Gd = (V,Ed)
can be represented symbolically by an OBDD GEd

of small size according to an
interleaved variable ordering, its undirected counterpart Gu = (V,Eu) can also
be represented symbolically by an OBDD of small size. To be more precise, if
S is the size of GEd

, the OBDD size of XEu is bounded above by O(S2). The
reason is the following one. If we modify a π-OBDD for a function f into a
π′-OBDD for f , where π′ can be obtained from π by only exchanging the posi-
tion of neighbored variables, the size of the π′-OBDD can only be by a factor
of 3 larger than the size of the π-OBDD (see Theorem 4 in [4]). Afterwards an
OBDD for XEu can be obtained by applying an ∨-synthesis on the OBDDs for
XEd

and XER
d

because now the OBDDs are ordered with respect to the same
variable ordering. Using the well-known results on the worst-case complexity of
the synthesis-operation (see, e.g., [6]), the OBDD size for XEu can be bounded
above by the product of the OBDD sizes for XEd

and XER
d
.

In the rest of this section we show that also between undirected graphs
and their directed counterparts an exponential blow-up in the representation
size is possible. Again, we consider the complete undirected bipartite graph
GU = (V,EU ) defined in Section 3. For each undirected edge in EU we have
two possibilities to choose the orientation. Using a simple counting argument,
it is easy to see that there exists a directed counterpart of GU whose OBDD
complexity is exponential. Finally, we present a concrete directed counterpart of
GU whose OBDD size is exponential. The graph is defined in the following way.
There exists an edge from u ∈ U to a vertex w ∈ W iff the x-variables of the
Boolean encoding of u correspond to a Boolean matrix that contains exactly one
1-entry in each row and in each column. If we replace z1 by 0 and the variables
z2, x2

11, . . . , x
2
nn by 1, we obtain the function PERMn. As already mentioned in

Section 3 the OBDD size of PERMn is Ω(n−1/22n). Therefore, we are done.
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Concluding Remarks

Symbolic graph algorithms on OBDD-based representations are implicitly par-
allel, since vertices or edges are treated simultaneously if they share their OBDD
representations. Sawitzki [24] has shown that a problem is in the complexity class
NC, which contains the problems that can be solved efficiently in parallel, if it
can be solved with a polylogarithmic number of OBDD-operations with respect
to the number of the vertices in a given graph. It is an open problem whether
the maximum matching problem is in NC. Nevertheless, we have seen that sym-
bolic algorithms for this problem need exponential space (with respect to the
number of Boolean variables). Since in the complete bipartite graph presented
in Section 3 there exists a maximum matching of linear OBDD size (a node in U
in matched to a node in W if the x-variables in the Boolean encoding are equal)
and a maximum matching whose representation size is exponential even for a
more general model than OBDDs called nondeterministic read-once branching
programs, we have seen that the representation sizes for maximum matchings in
an input graph can be quite different.
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Abstract. We investigate systematically into the various possible no-
tions of traceable sets and the relations they bear to each other and to
other notions such as diagonally noncomputable sets or complex and au-
tocomplex sets. We review known notions and results that appear in the
literature in different contexts, put them into perspective and provide sim-
plified or at least more direct proofs. In addition, we introduce notions
of traceability and complexity such as infinitely often versions of jump
traceability and of complexity, and derive results about these notions that
partially can be viewed as a natural completion of the previously known
results. Finally, we give a result about polynomial-time bounded notions
of traceability and complexity that shows that in principle the equiva-
lences derived so far can be transferred to the time-bounded setting.

1 Introduction and Overview

The various notions of a traceable set have received quite a lot of attention in the
area of algorithmic randomness. On the one hand, traceability naturally comes
up in connection with lowness notions, as it is exemplified in the work of Terwijn
and Zambella [12] on Schnorr randomness and, more recently, the attempts to
characterize lowness for Martin-Löf randomness and the equivalent notion of K-
triviality by an appropriate version of jump traceability [1,3]. On the other hand,
traceability has been shown [9] to interact informatively with classical notions
from computability theory such as diagonally noncomputable sets and with no-
tions such as autocomplex that are defined in terms of Kolmogorov complexity
of initial segments of sets.

In this article, we investigate into notions of traceability from a systematic
point of view. We review standard notions of traceability and some basic results
known on them, giving simplified or at least more direct proofs than in the
current literature, which in particular are meant to provide an intuitive picture
of why the stated relations hold. One of our aims is to give a unified view of
notions and results that appear in the literature, and for example we argue that
a recent results on anticomplex sets by Franklin et al. [5] can be seen as a variant
of results on the relations between notions of complexity and i.o. traceability [9].
∗ The first and the second author are supported and partially supported, respectively,

by DFG grant ME 1806/3-1.
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We also introduce new notions of traceability such as infinitely often versions
of jump traceability and derive an interesting collapse result. Finally, we give
a result about polynomial-time bounded notions of traceability and complexity
that shows that in principle the equivalences derived so far can be transferred
to the time-bounded setting.

Notation. In the sequel, set refers to a subset of the natural numbers N and
functions and partial functions map natural numbers to natural numbers, unless
explicitly specified differently. We let W0,W1, . . . be the standard acceptable
numbering of all computably enumerable (c.e.) sets, i.e., We is the domain of
the e-th partial computable function ϕe. Let C and K denote the plain and
prefix-free versions of Kolmogorov complexity [4,10]. Let ≤+ denote the relation
less than or equal to up to an additive constant, and ≥+ is defined likewise.

2 Traceability

The various traceability notions considered in the sequel are either well-known or
have at least been considered implicitly in the literature, except for, to the best
of our knowledge, the infinitely often versions of jump traceable and strongly
jump traceable introduced in Definition 9 below.

Definition 1. A trace is a sequence (Tn)n of sets. A trace (Tn)n is a trace for
a partial function f if f(n) ∈ Tn holds for all n such that f(n) is defined. A
trace (Tn)n is an i.o. trace for a partial function f if there are infinitely many n
such that f(n) ∈ Tn.

We will also say, for short, that a trace traces or i.o. traces a partial function f , in
case the trace is a trace or an i.o. trace, respectively, for f . For the traces (Tn)n

considered in the sequel, the sets Tn will always be finite.

Definition 2. For a function h, a trace (Tn)n is h-bounded, if |Tn| ≤ h(n)
holds for all n.

A trace (Tn)n is computably enumerable (c.e.) if there is a computable func-
tion g such that Tn is equal to Wg(n) for all n. A trace (Tn)n is computable if
there is a computable function g such that Tn is equal to Dg(n) for all n, where De

is the finite set with canonical index e.

Definition 3. An order is a nondecreasing and unbounded function. A set A is
c.e. traceable iff there is a computable order h such that all functions f ≤T A are
traced by an h-bounded c.e. trace (Tn)n. A set A is c.e. i.o. traceable iff there
is a computable order h such that all functions f ≤T A are i.o. traced by an
h-bounded c.e. trace (Tn)n.

The concepts of computably traceable and of computably i.o. traceable are
defined similarly where in addition the traces are required to be computable in-
stead of being merely c.e.

For all the concepts introduced above, there are variants where Turing re-
ducibility is replaced by weak truth-table or truth-table reducibility, e.g., we say a
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set A is i.o. wtt-traceable iff there is a computable order h such that all functions
f ≤wtt A are i.o. traced by an h-bounded c.e. trace (Tn)n.

Remark 4. Stephan [11] made the interesting observation that a set is c.e. trace-
able if and only if there is a computable function h such that every f ≤T A
satisfies C(f(n)) < h(n) for almost all n. This characterization has the advan-
tage that it works without defining traces and just uses classical concepts. The
disadvantage of this style of characterization is that for other traceability con-
cepts it yields more complicated equivalences; for example the case of computable
traceability would require the use of Kolmogorov complexity defined over total
machines.

Terwijn and Zambella [12] observed that the notions of computable and c.e.
traceability remain the same if one requires in their respective definitions the
existence of h-bounded traces not just for a single but for all computable or-
ders h. The corresponding argument extends directly to the notions c.e. and
computably wtt-traceable, as well as c.e. and computably tt-traceable, but also
to the infinitely often versions of these notions, as is shown in the following re-
mark. For the notion of i.o. c.e. traceable this also follows by Theorem 10 below,
and, what is more, by Corollaries 21 and 23 for some notions even the existence
of 1-bounded traces of the considered type is equivalent.

Remark 5. A set A is c.e. i.o. traceable if and only if for all computable orders h
all functions f ≤T A are i.o. traced by an h-bounded c.e. trace (Tn)n, and a
similar statement holds for the notion computably i.o. traceable, as well as for
variants of these notions defined in terms of weak truth-table or truth-table
reducibility in place of Turing reducibility.

The proof uses the same technique as the proof [12] for the analogous every-
where version of the statement. Let us assume we have i.o. traces bounded by
a computable order g and let us construct a i.o. trace (Sn)n for some function
f ≤T A bounded by some given computable order h.

Let ĝ(n) be the least number k such that h(k) ≥ g(n). This is computable
and well-defined. Therefore the mapping f̂ defined by i �→ (f(0), . . . , f(ĝ(i+1)))
is Turing-reducible to A and therefore has a trace (Ti)i with bound g.

Let ĝ−1 be the discrete inverse of ĝ, that is, for a given k, ĝ−1(k) is the largest
number n such that g(n) ≤ h(k). Then define (Sn)n by

Sn := {πn(x) : x ∈ Tĝ−1(n)}

where πn is the projection to the n-th coordinate.
Then Sn has at most g(ĝ−1(n)) ≤ h(n) entries. For infinitely many i, Ti is

right; that is, it contains some correct ĝ(i+1)-tuple (f(0), . . . , f(ĝ(i+1))). This
tuple then contains (among other) the correct information about the values of
all f(n) with n such that ĝ−1(n) = i. So Sn will be a correct trace for f(n) for
all such n. � 

The following theorem is attributed to Kjos-Hanssen et al. [9] by Downey and
Hirschfeldt [4], however, the assertion of the theorem does not even implicitly
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appear in the published versions of the corresponding article [9], nor does its
proof. Since the proof presented by Downey and Hirschfeldt is via a chain of
equivalent statements, we consider it useful and instructive to give a direct argu-
ment here. Among the various equivalent definitions for the notion high, we will
work with the one according to which a set A is high iff A computes a function
that dominates every computable function.

Theorem 6. The following statements are equivalent.

(i) The set A is computably i.o. traceable.
(ii) The set A is c.e. i.o. traceable and nonhigh.

Proof. (i) implies (ii): Any computably i.o. traceable set A is a fortiori c.e. i.o.
traceable, and is also nonhigh because given an A-computable function g we
obtain a computable function f such that g(n) ≤ f(n) for infinitely many n by
letting f(n) = 1 + maxTn where (Tn)n is a computable trace for g.

(ii) implies (i): Let us assume we have a i.o. trace (Tn)n of a function " ≤T A.
Define the function g such that on argument n one starts to enumerate in parallel
the traces Tm for all m ≥ n and A-computably recognizes when for the first time
for some mn the correct value "(mn) is enumerated into Tmn , then letting g(n) be
the number of computational steps of the enumeration of Tmn that are required
to enumerate "(mn). In this situation, let us say that n has found mn. Since g
is computable in A and A is nonhigh, there is a computable function f that at
infinitely many places is larger than g, where in addition we can assume that f
is nondecreasing.

We can now get a computable trace (T̃n)n for " that is correct at infinitely
many places as follows: simply let T̃n contain all elements that are enumerated
into Tn in at most f(n) steps.

This trace is correct infinitely often. Indeed, any n finds some mn, and among
the corresponding pairs (n,mn) there are infinitely many where we have

g(n) ≤ f(n) ≤ f(mn),

i.e., for these pairs f(mn) exceeds the number of steps needed to enumerate "(mn)
into Tmn , so for these pairs the the correct value "(mn) will be a member of T̃mn .

Finally observe that in the construction the set T̃n is always contained in Tn,
hence any uniform bound h for the c.e. traces of the functions computable in A
will also be a uniform bound for the corresponding computable traces. � 

We review the concepts of jump traceable and strongly jump traceable, which
can be seen as stricter versions of the notion of c.e. traceable where not only the
total but also all partial functions computable in a given set must be traced.

Definition 7. A set A set is jump traceable iff there is a computable order h
such that for all functions partially computable in A there is an h-bounded c.e.
trace. A set A is strongly jump-traceable iff for all computable orders h it holds
that for all functions partially computable in A there is an h-bounded c.e. trace.
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Remark 8. It is easier for our purposes to work with the given definition. Alter-
natively, jump traceability can be defined by requiring that the diagonal jump
function is traceable. For more details, see Downey and Hirschfeldt [4].

It is well-known that the class of strongly jump-traceable sets is a proper sub-
class of the jump-traceable sets, in fact, the two classes are proper sub- and
superclasses, respectively, of the class of K-trivial sets [1,3]. However, for the
infinitely often versions of these two notions we get an interesting collapse of
traceability notions.

Definition 9. A set A is i.o. jump-traceable iff there is a computable order h
such that for all functions partially computable in A that have an infinite domain
there is an h-bounded c.e. i.o. trace.

A set A is strongly i.o. jump-traceable iff for all computable orders h it holds
that for all all functions f partially computable in A that have an infinite domain
there is an h-bounded c.e. i.o. trace.

Theorem 10. The following statements are equivalent.

(i) The set A is strongly i.o. jump-traceable.
(ii) The set A is i.o. jump-traceable.
(iii) The set A is c.e. i.o. traceable.

Proof. By definition, (i) implies (ii) and (ii) implies (iii), so it suffices to show that
not strongly i.o. jump traceable implies not c.e. i.o. traceable. So let A be a set
that computes a partial function f that for some computable order h0 cannot be
i.o. traced by any h0-bounded c.e. trace. We show that for any given computable
order h there is an A-computable function that cannot be i.o. traced by any
h-bounded c.e. trace. Fix an appropriate effective enumeration (T 0

n)n, (T 1
n)n, . . .

of all h-bounded c.e. traces, e.g., let T e
n be the subset of the n-th row of We that

contains the first h(n) elements that are enumerated into this row. Furthermore,
let Sn be the union of all T e

i where i < n and e < n and observe that this
way the cardinality of Sn is at most c(n) = n2h(n). For all n, let Tn be equal
to Sm where m is maximum such that c(m) ≤ h0(n) and call the trace (Tn)n

the universal h0-bounded trace, which by construction is indeed h0-bounded,
hence does not i.o. trace f . Hence for almost all m such that f(m) is defined,
we have f(m) /∈ Tm. So we obtain an A-computable function as required by
mapping n to a value of the form f(m) such that this value is defined and c(n) ≤
h0(m). � 

In order to render the statement of results in Section 5 and 6 more intuitive, we
introduce the following alternate notation for notions of not being traceable.

Definition 11. A set avoids c.e. traces if the set is not c.e. i.o. traceable and
the set i.o. avoids c.e. traces if it is not c.e. traceable. Similarly, a set tt-avoids
c.e. traces if the set is not c.e. i.o. tt-traceable, and further notions such as c.e.
wtt-avoiding computable traces are defined in the same manner.
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3 Autocomplex and Complex Sets

The notions of complexity and autocomplexity were first defined in an article by
Kanovich [8], where he showed that autocomplex sets are Turing complete and
complex sets are wtt-complete for the class of c.e. sets.

Definition 12. A set A is complex if there is a computable order h such that
for all n, it holds that C(A � n) ≥ h(n).

A set A is called autocomplex if there is an A-computable order h such that
for all n, it holds that C(A � n) ≥ h(n).

We omit the straightforward proof of the following known fact [4,9]. Note that
by the standard proof of Proposition 13 it is immediate that all the functions g
that occur in the proposition can be assumed to be order functions.

Proposition 13. A set A is complex if and only if there is a computable func-
tion g such that for all n, we have C(A � g(n)) ≥ n if and only if there is a
function g ≤tt A such that for all n, we have C(g(n)) ≥ n if and only if there is
a function g ≤wtt A such that for all n, we have C(g(n)) ≥ n.

A set A is autocomplex if and only if there is an A-computable function g such
that for all n, we have C(A � g(n)) ≥ n if and only if there is an A-computable
function g such that for all n, we have C(g(n)) ≥ n.

In Section 6, we will see that it is interesting to consider variants of the notions
autocomplex and complex where the condition C(A � g(n)) ≥ n is not required
for all but just for infinitely many n. In connection with the following definition,
note that the notion of not being i.o. complex has been introduced by Franklin
et al. [5] under the name of anticomplex.

Definition 14. A set A is i.o. complex iff there is a computable order g such
that for infinitely many n, we have C(A � g(n)) ≥ n.

A set A is i.o. autocomplex iff there is an A-computable order g such that for
infinitely many n, we have C(A � g(n)) ≥ n.

The equivalent characterizations of complex suggest different ways to define i.o.
complex (and similar remarks can be made for the notion i.o. autocomplex). How-
ever, it would neither be equivalent nor even make sense to define i.o. complexity
by requiring that there is some computable order h such that for infinitely many n
it holds that C(A � n) ≥ h(n), because for small h such as the map n �→ log logn
this inequality is satisfied for infinitely many initial segments of any set A, simply
because a code for A � n is always also a code for n. In Section 8, we will see
that equivalent definitions in this style are still possible by considering specific
variants of Kolmogorov complexity. Furthermore, the two following propositions
show that in the defining condition C(A � g(n)) ≥ n of i.o. autocomplexity and
i.o. complexity the lower bound n can equivalently be replaced by a wide range
of lower bounds in case g may depend on this bound.

Proposition 15. The following assertions are equivalent.

(i) The set A is i.o. autocomplex.
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(ii) There is a computable order h and an A-computable function g such that
there are infinitely many n where C(A � g(n)) ≥ C(n) + h(n).

(iii) For every A-computable order h there is an A-computable function g such
that there are infinitely many n where C(A � g(n)) ≥ h(n).

Proof. It is immediate that (i) implies (ii) and that (iii) implies (i). For a proof
of the remaining implication from (ii) to (iii), fix h and g that satisfy (ii), and
let hA be any A-computable order. Let m0 = 0 and for all n > 0 let

mn = min{m : mn−1 < m and 3hA(n) ≤ h(m)} and In = [mn,mn+1) .

For all n, let g̃(n) an appropriate representation of the pair of the restriction of g
to In and the initial segment of A of length maxj∈In g(j), and observe that the
function g̃ is A-computable. By assumption on g and by construction, there are
infinitely many j such that for the index n where j ∈ In, we have

C(A � g(j)) ≥ C(j) + h(j) ≥ C(j) + h(mn) ≥ C(j) + 3hA(n) .

For each such j and n, it holds that C(g̃(n)) ≥ hA(n), because otherwise A � g(j)
could be described by a word of length C(j) + 2hA(n) + O(1). � 

The following variant of Proposition 15 can be shown by an almost literally
identical proof, which we omit.

Proposition 16. The following assertions are equivalent.

(i) The set A is i.o. complex.
(ii) There is a computable order h and a computable function g such that there

are infinitely many n where C(A � g(n)) ≥ C(n) + h(n).
(iii) For every computable order h there is a computable function g such that

there are infinitely many n where C(A � g(n)) ≥ h(n).

4 Diagonally Noncomputable Sets

Definition 17. A set A is diagonally noncomputable (DNC) if there is a func-
tion f ≤T A such that f(n) differs from ϕn(n) whenever the latter value is de-
fined. With an appropriate coding scheme for finite sequences of natural numbers
understood, a set A is strongly diagonally noncomputable (SDNC) if there is a
function f ≤T A such that when z is a code for the sequence e1, x1, . . . , em, xm,
then f(z) differs for i = 1, . . . ,m from ϕei(xi) whenever this value is defined.

The notions of wtt-DNC, wtt-SDNC, tt-DNC, and tt-SDNC are defined like-
wise, where in the above definitions f ≤T A is replaced by f ≤wtt A and f ≤tt A,
respectively.

Note that if we can compute a function f such that for given n the value f(n)
differs from ϕn(n), we can also compute a function g such that for given e,
x the value g(e, x) differs from ϕe(x), because by the s-m-n theorem one can
effectively find an index i such that ϕe(x) and ϕi(i) are either both undefined
or both defined and have the same value. By a result of Jokusch [7], indeed even
the notions of DNC and SDNC coincide.
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Theorem 18. A set A is DNC if and only if A is SDNC.

Proof. By definition, it suffices to show that DNC implies SDNC. If A is DNC,
one obtains an A-computable function f as required as follows. By fixing uni-
formly effective and uniformly effectively invertible bijections between N and Nm,
for any m, natural numbers can be uniquely identified with m-tuples of natural
numbers. Then given a sequence e1, x1, . . . , em, xm with code z, let f(z) be equal
to the m-tuple (y1, . . . , ym), where yi differs from the i-th component of ϕei (xi),
whenever this value is defined. � 

The following infinitely often versions of the notion DNC is due to Kjos Hanssen
et al. [9]. Note that there are computable functions g such that g(e) differs
from ϕe(e) for infinitely many e, hence in order to get interesting infinitely often
versions of the various variants of the concept of DNC, one has to require more
than just to be able to compute a function that differs from the partial diagonal
function at infinitely many places.

Definition 19. For a function g, let Eg = {e : g(e) = ϕe(e)} be the (diagonal)
equality set of g. A set A is i.o. DNC if for all computable functions z there is
a function g ≤T A such that there are infinitely many n where

|Eg ∩ {0, . . . , z(n)− 1}| ≤ n .

The concepts of i.o. tt-DNC and i.o. wtt-DNC are defined likewise, where in the
definition g ≤T A is replaced by g ≤tt A and g ≤wtt A, respectively.

By definition, a set A is DNC if and only if there is an A-computable function
such that Eg is empty, and consequently any set that is DNC is also i.o. DNC.
More precisely, if a set A is DNC, then it satisfies the definition of i.o. DNC by
a function g ≤T A that does not depend on z. It can be shown that the latter
also holds true for a set that is i.o. DNC and high, and that a DNC set A is high
if and only if there is a single function g ≤T A that works for all z such that in
addition Eg is infinite.

5 Equivalences of the Almost Everwhere Notions

The following theorem is due to Kjos-Hanssen, Merkle and Stephan [9, Theo-
rems 2.3 and 2.7]. The proof of their result given here is somewhat more direct,
furthermore, their short but slightly technical proof of the implication from DNC
to autocomplex is replaced by a simplified argument due to Khodyrev and Shen,
who rediscovered the known equivalence of DNC and SDNC and observed that
SDNC easily implies autocomplex. The equivalence results of this and the follow-
ing sections are formulated in terms of avoidance as introduced in Definition 11
in order to render these results more intuitive.

Theorem 20. The following assertions are equivalent.

(i) The set A is autocomplex.
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(ii) The set A is DNC.
(iii) The set A avoids c.e. traces.

Proof. First, assume that A is autocomplex. Then there is an A-computable
function g such that for all n, we have C(g(n)) ≥ n. So g(n) differs from ϕn(n)
for almost all n, because the latter value, if defined, has plain complexity of logn
up to an additive constant, and consequently, A is DNC. Similarly, the set A is
not c.e. i.o. traceable, i.e., avoids c.e. traces, because otherwise the function g
had an n-bounded c.e. trace by Remark 5, which implied C(g(n)) ≤+ 2 logn.

Next assume that A is DNC and hence SDNC. Then A is autocomplex because
in order to obtain for given n a value g(n) where C(g(n)) ≥ n, it suffices to obtain
a value that differs from all the values ϕe(p) where the latter value is defined, p
has length at most n, and e is an index for the universal machine used in the
definition of the plain complexity C.

Finally, assume that the set A avoids c.e. traces, i.e., is not c.e. i.o. traceable. In
order to see that A is DNC, let the diagonal trace (Tn)n be defined by T (n) =
{ϕe(e)}. By assumption, there is an A-computable function g that is not i.o.
traced by the diagonal trace, hence g(e) differs from ϕe(e), whenever the latter
value is defined. � 

Corollary 21. A set A is c.e. i.o. traceable if and only if every A-computable
function has a 1-bounded c.e. i.o. trace.

Proof. It suffices to show the implication from left to right. By the proof of the
implication from (iii) to (ii) in Theorem 20, if there is an A-computable function
that has no 1-bounded c.e. i.o. trace, then this function witnesses that A is DNC,
hence, by the same theorem, A is not i.o. c.e. traceable. � 

The following variant of Theorem 20 is again due to Kjos-Hanssen et al. [9].
The proofs of Theorem 22 and its corollary are omitted because they are almost
literally the same as for Theorem 22 and Corollary 21 when using the character-
izations of the notion complex from Proposition 13 and showing separately the
equivalences for truth-table and weak truth-table reducibility.

Theorem 22. The following assertions are equivalent.

(i) The set A is complex.
(ii) The set A is tt-DNC.
(iii) The set A tt-avoids c.e. traces.

The three assertions remain equivalent if one replaces in the two last assertions
truth-table reducibility by weak truth-table reducibility.

Corollary 23. The following assertions are all equivalent to A not being
complex.

(i) The set A is c.e. i.o. tt-traceable.
(ii) Every function f ≤tt A has a 1-bounded c.e. i.o. trace.
(iii) The set A is c.e. i.o. wtt-traceable.
(iv) Every function f ≤wtt A has a 1-bounded c.e. i.o. trace.
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6 Equivalence of the Infinitely Often Notions

In Section 5 we have seen equivalences between first, notions of complexity and
autocomplexity, second, computing diagonally noncomputable functions, and
third, notions of avoiding c.e. traces. The corresponding proofs were rather di-
rect and functions g as required in the definitions of these three notions where
obtained place by place in the sense that, for example, a function value g(n) that
has a certain complexity is obtained by considering a value g(n) that is not con-
tained in a component Tn of an appropriate trace and vice versa. Accordingly,
by identical or similar arguments, we obtain infinitely often versions of these
equivalence results where now, for example, for all n such that the value g(n)
has high complexity the value g(n) avoids a corresponding set Tn and vice versa.

The two following theorems are infinitely often versions of Theorems 20 and 22.
The equivalence of assertions (i) and (iii) in Theorem 25 for the case of weak
truth-table reducibility is due to Franklin et al. [5].

Theorem 24. The following assertions are equivalent.

(i) The set A is i.o autocomplex.
(ii) The set A is i.o. DNC.
(iii) The set A i.o. avoids c.e. traces.

Proof. We first show that (i) and (iii) are equivalent, which follows by essentially
the same arguments as the equivalence of being autocomplex and being DNC
stated in Theorem 20. If A is i.o. autocomplex, then there is an A-computable
function g such that for infinitely many n it holds that C(g(n)) ≥ n, and such a
function g cannot have a c.e. trace that, e.g., is n-bounded, hence A is not c.e.
traceable, i.e., A i.o. avoids c.e. traces. Conversely, if A i.o. avoids c.e. traces,
there is an A-computable function g that has no 2n-bounded c.e. trace, hence
in particular, there are infinitely many n such that there is no word w of length
strictly less than n such that g(n) = U(w), where U is the universal machine
used in the definition of C, and consequently A is i.o. autocomplex.

In order to show that (i) implies (ii), assume that A is i.o. autocomplex. Fix
any computable function z and let m0,m1, . . . be a strictly increasing computable
sequence of natural numbers such that for all i, we have z(mi) < mi+1. This way
the natural numbers are partitioned into consecutive intervals Ii = [mi,mi+1).
By Proposition 15, choose some A-computable function g0 such that there are
infinitely many n such that C(g0(n)) ≥ max In. For all n and all j in In, let g(j) =
g0(n). Then g is A-computable and there are infinitely many n where for all j
in In we have

C(ϕj(j)) ≤+ log j < j ≤ max In ≤ C(g0(n)) = C(g(j)) ,

i.e., the set Eg has an empty intersection with In and thus contains at most mn =
min In numbers that are less than or equal to z(mn) ≤ max In.

In order to demonstrate that (ii) implies (iii), we show the contrapositive, so
assume that A does not i.o. avoid c.e. traces, i.e., that A is c.e. traceable. Fix
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some appropriate effective way of coding finite sequences of natural numbers of
arbitrary length by single natural numbers. Let (T 0

	 )	∈N, (T 1
	 )	∈N, . . . be an ap-

propriate effective enumeration of all c.e. traces. Let s be a computable function
such that for all i and j the partial computable function ϕs(i,j) on input y is com-
puted by enumerating the numbers c0, c1, . . . in T i

y until cj is reached, where cj

is then considered as a code for a finite sequence of the form g(0), g(1), . . . , g(")
and in case y ≤ " the output is g(y).

Next define a computable function z where for all n the value z(n) is cho-
sen so large that for all i < n and j < n there are at least n + 1 mutu-
ally distinct indices e ≤ z(n) such that the partial function ϕe is the same
as ϕs(i,j). Then given any function g ≤T A, let g̃(n) be a code for the finite
sequence g(0), . . . g(z(n)). By assumption on A, for h : n �→ n there is an index i
such that the c.e. trace (T i

	 )	∈N is h-bounded and traces the function g̃. For
given n, let j be minimum such that g̃(n) = cj , where c0, c1, . . . are the num-
bers that are enumerated into T i

n. Then for all sufficiently large n, there are at
least n + 1 places e ≤ z(n) such that

ϕe(e) = ϕs(i,j)(e) = g(e) ,

and since g was an arbitrary A-computable function and z does not depend on g,
the set A is not i.o. DNC. � 

Theorem 25. The following assertions are equivalent.

(i) The set A is i.o. complex.
(ii) The set A is i.o. tt-DNC.
(iii) The set A i.o. tt-avoids c.e. traces.

The three assertions remain equivalent if one replaces in the two last assertions
truth-table reducibility by weak truth-table reducibility.

7 Computable Traces and Total Machines

We have seen above that traceability notions defined in terms of c.e. traces can
be characterized by concepts such as autocomplexity that relate to the plain
Kolmogorov complexity of the initial segments of a set. We will see now that
these characterizations can be extended to traceability notions defined in terms
of computable traces if one considers the complexity of initial segments with
respect to total machines.

Remark 26. Bienvenu and Merkle [2] have defined the notion of decidable ma-
chines, that is, machines whose domain is decidable. Obviously, every total ma-
chine is decidable, and every decidable machine can be easily converted into a
total machine by first deciding whether a string is in the domain and then ex-
ecuting the machine as normal if that is the case, and outputting a constant
otherwise.
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Definition 27. A set A is totally complex iff there is a computable function g
such that for all total machines M and almost all n, we have CM (A � g(n)) ≥ n.
A set A is totally i.o. complex iff there is a computable function g such that for
all total machines M there are infinitely many n where CM (A � g(n)) ≥ n.

Theorem 28 can be obtained from a result of Kjos-Hanssen et al. [9, Theorem 5.1]
and Theorem 6. We omit the proof of Theorem 28 and give instead the very
similar proof of its infinitely often version Theorem 29. In connection with the
latter theorem, note that Franklin and Stephan [6] considered computably tt-
traceable sets, that is, sets that do not i.o. tt-avoid computable traces, and
showed that these sets are exactly the Schnorr-trivial sets.

Theorem 28. A set A is totally complex if and only if A tt-avoids computable
traces.

Theorem 29. A set A is totally i.o. complex if and only if A i.o. tt-avoids
computable traces.

Proof. First assume that A is not totally i.o. complex, i.e., for any computable
function g there is a total machine M such that for almost all n, we have CM (A �
g(n)) ≤ n. Fix any function f ≤tt A and some tt-reduction witnessing this fact,
which has use bound u(n). By assumption on A, there is a total machine M such
that for almost all n, we have CM (A � u(n)) ≤ n. In order to obtain a computable
trace (Tn)n for f that is bounded by the function n �→ 2n+1, execute all codes
of length up to n on M , view the outputs as initial segments of oracles, and
let Tn contain all values that one obtains by simulating the fixed tt-reduction
for computing f at place n with any of these oracles. Then f(n) is contained
in Tn for almost all n. Since the bound 2n+1 on the size of the sets Tn does not
depend on f , the set A is computably tt-traceable.

Next assume that A does not i.o. tt-avoid computable traces, i.e., that A is is
computably tt-traceable, and recall that by the discussion preceding Remark 5
we can assume that any function wtt-reducible to A has a computable trace that
is n-bounded. Given a computable function g, we need to show that there is a
total machine M such that for almost all n, we have CM (A � g(n)) ≤ n. We can
assume that the function n �→ A � g(n) has a computable trace (Tn)n where Tn

has size at most n. Let M be the machine, which on input (n, i) outputs the i-th
element of Tn, if this element exists, and outputs some constant otherwise. Since
the set Tn has size at most n and its canonical index can be computed from n,
M is total and satisfies CM (A � g(n)) ≤ 2 logn ≤ n for almost all n. � 

8 Characterizing i.o. Complex and i.o. Autocomplex via
Lower Bounds on the Complexity of Initial Segments

When introducing the notions of i.o. complex and i.o. autocomplex, we have
argued that it does not make sense to define these notions by requiring for the
set A under consideration that for a computable or A-computable order, respec-
tively, infinitely often the order provides a lower bound for the plain Kolmogorov
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complexity of an initial segment of A, and the reason for this was simply that by
choosing a small enough order this condition would be trivially satisfied by all
sets. We will argue in this section, however, that equivalent definitions in terms
of lower bounds for the complexity of initial segments can be given if plain Kol-
mogorov complexity C is replaced by appropriate variants, e.g., by uniform or
monotonic complexity (see Li and Vitányi [10] for a more detailed account of
these notions). Due to space considerations, we will restrict attention to the
concept of i.o. autocomplex.

Definition 30. Let U be the universal Turing machine used to define plain Kol-
mogorov complexity C.

The length-conditioned complexity C (w |n) of w is the length of the shortest
program p such that U on input (p, |w|) will output w.

The uniform complexity C(w;n) of w is the length of the shortest program p
such that for all i ≤ |w|, U on input (p, i) will output the first i bits of w, while U
may do anything on inputs (p, i) with |w| < i.

The monotonic complexity Cmon(w) is the length of the shortest program p
such that U on input p will output some extension of w.

From these definitions, the following chain of inequalities is immediate,

C (w |n) ≤+ C(w;n) ≤+ Cmon(w) ≤+ C(w) . (1)

Definition 31. A set A is length-conditionedly i.o. autocomplex iff there is
an A-computable order h such that for infinitely many n, we have h(n) ≤
C (A � n |n).

A set A is uniformly i.o. autocomplex iff there is an A-computable order h
such that for infinitely many n, we have h(n) ≤ C(A � n;n).

A set A is monotonically i.o. autocomplex iff there is an A-computable order
h such that for infinitely many n, we have h(n) ≤ Cmon(A � n).

In connection with the following theorem, recall that the first, and hence also
the second and third assertion are equivalent to A not being c.e. traceable. We
omit the proof of the following theorem due to space considerations.

Theorem 32. The following assertions are equivalent.

(i) The set A is i.o. autocomplex.
(ii) The set A is monotonically i.o. autocomplex.
(iii) The set A is uniformly i.o. autocomplex.

These three equivalent assertions are all implied by

(iv) The set A is length-conditionedly i.o. autocomplex.

9 Time Bounded Traceability and Complexity

In this last section, we will show that for appropriately chosen notions of complex-
ity and traceability, the relations between these two notions can be transferred to
the time-bounded setting, more precisely, to a setting of polynomial time bounds.
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Definition 33. For t ∈ N, let Ct(x) := min{|σ| : U(σ) = x in at most t steps}.

Consider a coding of finite sets of natural numbers where the code of a set D
consists of the concatenation of the binary expansion of elements of D in the
natural order, where all the bits in the binary expansions are doubled and the
binary expansions are separated from each other by the word 01. In the sequel, we
will identify a finite set D with its code. Instead of looking at the Kolmogorov
complexity of initial segments we will examine the Kolmogorov complexity of
strings A � D where D is a finite subset of N. This will be defined in the
straightforward way.

Definition 34. A set A is i.o. poly-complex iff there is a computable order h
such that for all polynomials p there are infinitely many sets D where we have
for t = p(|D|+ |maxD|) that Ct(A � D | D) ≥ h(maxD).

Definition 35. A set A is polynomial-time tt-traceable iff for all computable
orders h, we have that for every function f ≤P

tt A there is an h-bounded trace
(Tn)n such that for given n, the list of elements of Tn can be computed (or, say,
printed) in time polynomial in the length of n.

Theorem 36. The following statements are equivalent.

(i) A is not i.o. poly-complex.
(ii) A is polynomial-time tt-traceable.

Proof. (i) implies (ii): Let h be the desired trace bound, where we can as-
sume h(n) ≤ n by switching to a delayed version of h, and let f ≤P

tt A be
the function to be traced. Let q be the polynomial time bound of some fixed
tt-reduction from f to A, and let D(n) be the query set of this reduction at
place n, where we can assume that D(n) always contains n.

Now the mapping g : n �→ 4log h(n)5 is surely a computable order, so we know
by assumption that for some p and almost all n we have for t = p(|D(n)| +
|maxD(n)|) that Ct(A � D(n) | D(n)) < g(n). Since t and g(n) are both
polynomial in the length of n, polynomial time in the length of n suffices to run
the universal machine on all programs p of length strictly less than g(n) with
conditioning D(n) for at most t steps each, interpreting the outputs obtained
this way as oracles and to simulate the given reduction at place n with all of
these oracles in order to obtain at most h(n) ≤ 2g(n)−1 values that are put into
the set Tn.

(ii) implies (i): We have to show for a given computable order h that there is a
polynomial p such that for almost all finite sets D it holds for t = p(|D|+|maxD|)
that Ct(A � D | D) < h(maxD). Let f be the function which maps n to A � D,
for all n that are a code for some finite set D, and let f(n) = 0 in case n is
not such a code. By definition of the coding, computing f(n) from A requires at
most logn queries to A of length at most logn. So f ≤P

tt A, say with polynomial
time bound q.

Since the length of the code for a finite set D is effectively bounded in maxD,
we can fix a computable order h′ such that for any finite set D, we have h′(|D|) ≤
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h(maxD). By assumption on A, let (Tn)n be an h′-bounded trace for f with
polynomial time bound, i.e., for any finite set D with code n the value f(n) =
A � D occurs among the at most h′(n) ≤ h(maxD) elements of Tn and Ct(A �
D | D) ≤ h(maxD) with t polynomial in |D|+ |maxD|, as desired. � 

References

1. Barmpalias, G., Downey, R., Greenberg, N.: K-trivial degrees and the jump-
traceability hierarchy. Proc. Amer. Math. Soc. 137(6), 2099–2109 (2009)

2. Bienvenu, L., Merkle, W.: Reconciling data compression and kolmogorov complex-
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Abstract. We present in this paper a 5/2-approximation algorithm for
scheduling rigid jobs on multi-organizations. For a given set of n jobs,
the goal is to construct a schedule for N organizations (composed each
of m identical processors) minimizing the maximum completion time
(makespan). This algorithm runs in O(n(N +log(n)) log(npmax)), where
pmax is the maximum processing time of the jobs. It improves the best ex-
isting low cost approximation algorithms. Moreover, the proposed anal-
ysis can be extended to a more generic approach which suggests different
job partitions that could lead to low cost approximation algorithms of
ratio better than 5/2.

1 Problem Statement

In this paper we consider the problem of scheduling rigid jobs on
Multi-organizations. An organization is a set of m identical available proces-
sors. A job j must be executed on qj processors (sometimes called the degree
of parallelism) during pj units of time. The qj processors must be allocated on
the same organization. The makespan of the schedule is defined as the maxi-
mum finishing time over all the jobs. Given a set of n jobs, the goal is to find
a non-overlapping schedule of all the jobs on N organizations while minimizing
the makespan.

This problem is closely related to strip packing problems. Indeed, if we add
the constraint of using contiguous processors, then scheduling a job j on qj

contiguous processors during pj units of time is equivalent to packing a rectangle
of width qj and height pj .
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Related works. Strip packing, rigid jobs scheduling and Multi-organizations
scheduling problems are all strongly NP -hard, and Zhuk [1] showed that there
is no polynomial time approximation algorithm with absolute ratio better than
2 for strip packing.

For Strip Packing problem, Coffman et al. gave in [2] an overview about per-
formance bounds for shelf-oriented algorithms as NFDH (Next Fit Decreasing
Height) and FFDH (First Fit Decreasing Height). These algorithms have a ap-
proximation ratio of 3 and 2.7, respectively. Schiermeyer [3] and Steinberg [4]
presented independently an algorithm for Strip Packing with absolute ratio 2.
A further important result for the Strip Packing problem is an AFPTAS with
additive constant O(1/ε2) of Kenyon and Rémila [5]. This constant was improved
by Jansen and Solis-Oba, who presented in [6] an APTAS with additive constant
1. Concerning the multi-strip packing problem, there is a 2 + ε approximation
in [7] whose algorithmic cost is doubly exponential in 1

ε . In [8] we gave a 2
approximation with a large algorithmic cost and an AFPTAS for this problem.

Let us now review the related work about rigid job scheduling. For one orga-
nization, the famous List Algorithm for scheduling with resource constraints of
Garey and Graham [9] can be applied (when there is only one resource to share)
to schedule rigid jobs, and is then a 2 approximation. The rigid job schedul-
ing problem on multi-organization has been studied with an on-line setting in
[10]. The authors achieved a ratio of 3 without release times (and 5 with release
times). Notice that these results do not require the knowledge of the processing
times of the jobs. Moreover, the organizations may have a different number of
processors. The rigid job scheduling problem on multi-organizations has been
extended in [11] for the case where the jobs are submitted to local queues on
each cluster with the extra constraint that the initial local schedules must not
be worsened. The authors provide a 3-approximation.

Generally, the results about rigid job scheduling cannot be adapted to the
more constrained contiguous version. To the best of our best knowledge, there is
still no (reasonable) α such that for any instance I, Optc(I) ≤ αOptnc(I) (where
Optc denotes the contiguous optimal value and Optnc the non-contiguous one).
The authors of [12] show that α > 1 by constructing a (rather) simple instance
with 8 jobs and 4 machines.

Our contribution. In this paper, we present a 5
2 approximation algorithm for the

rigid job scheduling problem on multi-organizations that runs in
O(n(N+log(n)) log(npmax)), where pmax is the maximum processing time of the
jobs. Moreover, we suggest how the approach used for the 5/2-algorithm could ex-
tended to get approximation algorithms with better ratio and a low algorithmic
cost.

Organization of the Paper. The preliminaries for the 5/2-approximation are in
Section 2. In Section 3.1 to 3.4 we describe how to construct a preallocation of
the “big” jobs that fits in the targeted makespan. In Section 4 we show how to
turn this preallocation into a compact schedule, and in Section 5 we analyze the
complexity of the algorithm. The discussions on the approach are in Section 6.
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2 Principle and Definitions

Let us now give some definitions that are used throughout the proofs and the
description of the algorithm. We first extend the previous pj and qj notations to
Q(X) and P (X) where X is a set of jobs. We also define the surface (sometimes
also called the area) of a set of jobs as S(X) = Σj∈Xqjpj. A layer is a set of
jobs which are scheduled sequentially on the same organization. The length of
a layer Lay is P (Lay), the sum of the processing time of all the jobs in Lay. A
shelf is a set of jobs which are scheduled on the same organization, and which
start at the same time. Given a shelf sh, the value Q(sh) is called the height
of sh. What we call a bin can be seen as a reservation of a certain number of
processors (generally m) during a certain amount of time. The algorithm will
add some jobs to bins, and given a bin b, we denote by Q(b) the value Σ{j∈b}qj .
Given a sequence of bins seq, we denote by Q(seq) the value Σb∈seqQ(b). These
notations are extended in the same way for P and S. In the whole paper, we
consider that the sets of jobs used as parameters in the algorithms are modified
after the calls.

Let us sketch how 5/2 algorithm is constructed. Let OPT denote the value of an
optimal solution. We target a 5

2 ratio by both ensuring that, for each organization
at least half of the processors are used at any time before the starting time of
the last job, and that the small jobs (whose processing time is lower than OPT/2
and height lower than m/2) are scheduled at the end. Thus, if the makespan of
the final schedule is due to a small job, it is lower than the processing time
of the small job plus the starting time of this job, implying a makespan lower
than OPT/2 + 2OPT = 5OPT/2. As the optimal value is not known, we use the
well known dual approximation technique [13]. Let w denote the current guess
of OPT . The schedule is built in three steps. In the first one we compute a
preallocation π0 of the “big” (pj > w/2 or qj > m/2) jobs. Then we apply a list
algorithm which turns π0 into a “compact” schedule π1 (see Section 4). Finally,
the final schedule π is constructed by adding to π1 the small remaining jobs
using again a list algorithm (see also Section 4).

Let us define the following sets:

• let LH = {j|qj > m/2} be the set of high jobs
• let LXL = {j|pj > 3w/4} be the set of extra long jobs
• let LL = {j|3w/4 ≥ pj > w/2} be the set of long jobs
• let LB = (LXL

⋃
LL)

⋂
LH be the set of huge jobs

• let I ′ = LH

⋃
LXL

⋃
LL

We will prove that either we schedule I with a resulting makespan lower than
5w/2, or w < OPT . Notice that for the sake of simplicity we did not add the
“reject” instructions in the algorithm. Thus we consider in all the proof that
w ≥ OPT , and it is implicit that if one of the claimed properties is wrong
during the execution, the considered w should be rejected. Notice that we only
consider the w values such that Q(LXL

⋃
LL) ≤ Nm and P (LH) ≤ Nw.

We start by providing in Section 3 the three phase algorithm Build Prealloc
that builds the preallocation π0 of the jobs of I ′. We will denote by πi

0 the set of
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preallocated jobs in organization Oi. In phase 1 we preallocate the high jobs. In
phase 2 and phase 3 we preallocate the long and extra long jobs by first packing
shelves of jobs into bins, and then putting these bins into organizations. An
example of a preallocation is depicted Figure 1.

3 Construction of the Preallocation

3.1 Phase 1

Let N1 be the number of organizations used in phase 1. In phase 1, the jobs of
LH are packed in N1 organizations. The Create Layer(X, l) procedure creates
a layer Lay of length at most l, using a Best Fit (according to the processing
times) policy (BFP). Thus, Create Layer(X, l) add at each step the longest
job that fits. Thus, phase 1 calls for each organization (until LH is empty)
Create Layer(LH , 5w/2).

Let us introduce some notations. Let Layi denote the set of jobs scheduled
in the layer created in organization Oi. Let L1

XL and L1
L denote the remaining

jobs of LXL and LL after phase 1. Thus, for the moment we have πi
0 = Layi for

all i ≤ N1.

Lemma 1 (phase 1). If ∃i0 < N1 such that P (πi0
0 ) ≤ 2w then it is straight-

forward to pack all the jobs of I ′. Otherwise, we get ∀i ∈ {1, . . . , N1 − 1},
S(πi

0) > wm and N1 ≤ 2N/23 .

Proof. First let us notice that phase 1 ends, as P (LH) ≤ Nw and P (πi
0) > w

for every organization where we do not run out of jobs to schedule. We first
suppose that ∃i0 < N1 such that P (πi0

0 ) ≤ 2w. In this case we just have to prove
that it is straightforward to preallocate LXL

⋃
LL. We proceed by contradiction

by supposing that we never ran out of jobs of LXL

⋃
LL. When the algorithm

creates a layer for a organization i, we know due to the BFP order that it
will pack at least two jobs of LB, if LB is not empty. The hypothesis implies
that during the execution of phase 1, LH \ LB was empty before LB. Thus, for
i < N1, there is at least two jobs of LB in πi

0, meaning that ∀i with 1 ≤ i <
N1, Q((LXL

⋃
LL)

⋂
πi

0) > m.
Concerning the N −N1 other organizations, we can create shelves of jobs of

LL

⋃
LXL using a best fit according to the height (BFH), implying that each

shelf has a height of at least 2m/3 according to Lemma 2. Packing two shelves in
each organization, we get ∀i > N1, Q((LXL

⋃
LL)

⋂
πi

0) > 4m/3 > m.
Finally, let us check what is scheduled in organization N1. If two jobs of

LB are scheduled in this organization, then Q((LXL

⋃
LL)

⋂
πN1

0 ) > m. If one
job of LB is scheduled, then we create one shelf of jobs of LXL

⋃
LL, and

Q((LXL

⋃
LL)

⋂
πN1

0 ) > m/2 + 2m/3. If no huge job is scheduled in organiza-
tion N1, we pack as before two shelves of jobs of LXL

⋃
LL. Thus, if in every

case we have Q((LXL

⋃
LL)

⋂
πN1

0 ) > m. Thus, we get Q((LXL

⋃
LL)) > Nm,

which is impossible.
Let us prove the second part of the lemma. First notice that for any i <

N1, S(πi
0) > 2wm/2 = mw. Moreover, we have 2(N1 − 1)w < ΣN1

i=1P (πi
0) =

P (LH) ≤ Nw, implying N1 ≤ 2N/23. � 
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Thus, we now assume until the end of the proof that we are in the second case
of Lemma 1 where ∀i ∈ {1, . . . , N1 − 1}, S(πi

0) > mw and N1 ≤ 2N/23.

3.2 Phase 2

In phase 2 the jobs of L1
XL

⋃
L1

L are scheduled in organization N1 by creating
shelves according to what is already scheduled in organization N1. We denote
by L2

XL and L2
L the remaining jobs of L1

XL and L1
L after phase 2. Let us first

define two procedures used for phase 2 and phase 3.
The procedure Pack Shelf(X, b, f) creates a shelf sh using the Best Fit (ac-

cording to the height) policy (BFH), and packs it into bin b. The f parameter
represents the available height of b (meaning that b corresponds to f free pro-
cessors during a certain amount of time), implying of course that Q(sh) ≤ f .
Thus Pack Shelf(X, b, f) adds at each step the highest possible job of X that
fits. We assume that the length of the bin is larger than pj, for all j ∈ X .

The procedure GreedyPack(X, seq) creates for each empty bin b ∈ seq one
shelf of jobs of X using Pack Shelf(X, b,m). This procedure returns the last
bin in which a shelf has been created. Let us now come back to the description
of phase 2.

Depending on the set of jobs already scheduled in ON1 , the Create Padding()
procedure creates nbinL empty bins of length 3w/4 and nbinXL empty bins of
length w, which are added in organization ON1 . Let us define for each case how
many bins of each type are created by Create Padding():

• If P (LayN1) ∈]3w/2, 7w/4] then set (nbinL , nbinXL) to (1, 0)
• If P (LayN1) ∈]w, 3w/2] then set (nbinL , nbinXL) to (0, 1)
• If P (LayN1) ∈]3w/4, w] then

if Q(L1
L) ≥ 5/4 then set (nbinL , nbinXL) to (2, 0)

else set (nbinL , nbinXL) to (0, 1)
• If P (LayN1) ∈]w/2, 3w/4] then set (nbinL , nbinXL) to (1, 1)
• If P (LayN1) ∈ [0,w/2] then set (nbinL , nbinXL) to (0, 2)

Let padL be a sequence of nbinL bins of length 3w/4 and padXL be a sequence
of nbinXL bins of length w. Create Padding() returns (padL, padXL). All in all,
phase 2 can be described by the following procedure calls:

• Let (padL, padXL) = Create Padding()
• GreedyPack(L1

XL, padXL)
• GreedyPack(L1

L, padL)
• GreedyPack(L1

L, padXL)

3.3 Phase 3

In phase 3 we first schedule the jobs of L2
XL using the N2 = N −N1 remaining

organizations. Then, we schedule the jobs of L2
L using also this N2 organizations.

Finally, the possibly remaining jobs of L2
L are added to the last bin used for the
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w 2w

O_1

O_2

w 2w

O_3

O_4
Bin created by
"Create_Padding"

Shelves packed by

L_B

L_L

L_H

L_XL

procedure "add"

Fig. 1. An example of pre-allocation

extra long jobs. Therefore, let us define the add(X, b) procedure. The add(X, b)
procedure packs one or two “small” shelves of jobs of X in the bin b (starting
from the top of the bin for the sake of clarity). Notice that, as b will be the last
bin used for extra long jobs, the available height (for the jobs of X) in b will be
generally lower than m. Here is the description of add(X, b):

• If the left side of b is at time w then let l = 2 else let l = 1
• Repeat l times the call Pack Shelf(X, b,m − Q(b)) and pack the created

shelves in b.

An example of a call to the add procedure is given in Figure 1 for the case where
l = 2.

We now define two sequences of bins seqXL and seqL, such that every bin
of seqXL (resp. seqL) will (possibly) contains one shelf of jobs of L2

XL (resp.
L2

L). Notice that a free organization can be seen as two bins of length w (and
height m), three bins of length 3w/4, or one bin of length w and two bins of
length 3w/4. Thus, seqXL is composed of 2(N − N1) bins

(
b1, . . . , b2(N−N1)

)
of

length w, considering that we created two bins in each of the organizations
{ON1+1, . . .ON}, starting from ON1+1. This implies that for all i ≥ 1, bins
b2i−1 and b2i are in ON1+i. The sequence seqL is composed of 3(N − N1) bins(
b′1, . . . , b

′
3(N−N1)

)
of length 3w/4, considering that we created three bins in each

of the organizations {ON1+1, . . . ON}, from ON to ON1+1. This implies that for
all i ≥ 1, bins b′3i−2, b

′
3i−1 and b′3i are in ON−i+1. Notice that these two sequences

are not ordered in the same way.
All in all, phase 3 can be described by the following procedure calls:

• Let last = GreedyPack(L2
XL, seqXL)

• GreedyPack(L2
L, seqL)

• add(L2
L, last)

Let start the analysis of phase 3 with a remark about Pack Shelf(X, b, f).

Lemma 2. Let Sh denote the shelf created by Pack Shelf(X, b, f). If we know
that the k highest jobs of X fit in f , then Q(Sh) > k

k+1f .
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Proof. Let x be the cardinal of X . Let us assume that qi ≥ qi+1 for 1 ≤ i < x.
Let i0 ≥ k+1 be the first index such that job i0 is not in Sh. Let a = Σi0−1

i=1 qi. We
have Q(Sh) ≥ a ≥ (i0 − 1)qi0 > (i0 − 1)(f − a) leading to a > i0−1

i0
f ≥ k

k+1f . � 

Lemma 3 (phase 3). If there remains an unscheduled job after phase 3, then
S(L2

XL

⋃
L2

L) > (N2 + 1/8)mw.

Proof. Let us first suppose that L2
XL �= ∅. Let aXL = 2(N −N1) be the number

of bins in seqXL. After having filled the first aXL − 1 bins (using a width of at
least 2/3 according to Lemma 2), the width of remaining jobs of L2

XL is strictly
larger than m. Thus we get Q(L2

XL) > 2m/3(aXL − 1) + m = 4m/3N2 + m/3 and
S(L2

XL) > (N2 + 1/4)mw.
We now suppose that L2

XL = ∅. In every organization that contains two bins of
jobs of L2

XL, the total scheduled area is strictly larger than 2×2m/3×3w/4 = wm.
In every organization that contains three bins of jobs of L2

L, the total scheduled
area is strictly larger than 3× 2m/3× w/2 = wm. We have to consider two cases
according to the position of the last bin last (the left side of last may be located
at time 0 or w). Let i0 be the index of the organization that contains last.

In the first case where the left side of last is at time 0, two bins (of length
3w/4 and height m) were created after the bin last in organization Oi0 . Then, if
the remaining jobs of L2

L do not fit in last, the total area of the jobs scheduled
in organization Oi0 is strictly larger than (22m/3 +m)w/2 > 7wm/6. Then we just
sum the area packed over all the organizations, and get the desired result.

In the second case where the left side of last is at time w (as depicted in
Figure 1), the only room in organization Oi0 to schedule jobs of L2

L is in last.
In organization Oi0 , the area of (extra long) jobs contained in the first bin is
strictly larger than wm/2. The add procedure will create two shelves (one next
to the other) of jobs of L2

L in last.
Let last′ and L′

L be the set of jobs in last and L2
L respectively, just before the

call of the add procedure. If Q(last′) > m/2, and as the remaining jobs of L2
L don’t

fit in last, we have that Q(L′
L) > m − Q(last′)′. This implies S(last′

⋃
L′

L) >
3w/4Q(last′) + w/2(m−Q(last)′) > 5wm/8. If Q(last′) ≤ m/2 (see Figure 1) then
add creates a first shelf of jobs of L2

L of height at least (m−Q(last′))/2, and then tries
to pack the remaining jobs in the second shelf. Thus in this case, S(last′

⋃
L′

L) >
3w/4Q(last′) + w/2

(
(m−Q(last′))

2 + m−Q(last′)
)
> 3mw/4. � 

3.4 Main Algorithm

In this section we recall the overall algorithm that builds the preallocation, and
we provide the main proof of the preallocation. Notice that we drop the Li

L and
Li

XL notations for writing the algorithm as we consider that the sets of jobs
(used as parameters in the procedures) are modified after the calls.

Theorem 1. Build Prealloc(I ′) creates a preallocation π0 of makespan lower
than 5w/2.
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Algorithm 1. Build Prealloc(I ′)
Phase 1 [1] Let i = 0

[2] Let i = i + 1, and let Layi = Create Layer(LH , 5w/2)
Pack Layi in organization Si from time 0
[3] Repeat step 3 until LH is empty

Phase 2 [4] Let (padL, padXL) = Create Padding()
[5] Let last = GreedyPack(LXL, padXL)
[6] Call GreedyPack(LL, padL)
[7] Call GreedyPack(LL, padXL)

Phase 3 [8] Let seqXL and seqL be defined as described in Section 3.3
[9] Let last2 = GreedyPack(LXL, seqXL)
[10] If last2 is not null, set last to last2
[11] Call GreedyPack(LL, seqL)
[12] Call add(LL, last)

Proof. Remind that L1
XL and L1

L denote the remaining jobs of LXL and LL after
Phase 1. The makespan of the preallocation is by construction lower than 5w/2.
We know that according to Lemma 1 phase 1 terminates and the area scheduled
in the first N1 − 1 organizations is greater than (N1 − 1)wm. We proceed by
contradiction by supposing that L1

XL

⋃
L1

L is not empty after Phase 2 and Phase
3, and showing that S(I ′) > Nmw. We proceed by case analysis according to
what is scheduled in ON1 .

If P (LayN1) >
7
4w, then S(LayN1) >

7
8mw and CreatePadding doesn’t create

any bin. If L1
XL and L1

L are not completely scheduled by phase 3, then according
to Lemma 3 we get S(L1

XL

⋃
L1

L) > (N2 + 1
8 )mw. Thus in this case we have

S(LayN1

⋃
L1

XL

⋃
L1

L) > (N2 + 1)mw, implying S(I ′) > Nmw.
If 7

4w ≥ P (LayN1) >
3
2w, then S(LayN1) >

3
4mw and CreatePadding creates

one bin of length 3
4w. Recall that the jobs of L1

L are first scheduled in padL.
If Q(padL) is larger than m

2 , then S(LayN1

⋃
padL) > 3

4mw + 1
4mw = mw.

Thus, the total area packed in the first N1 is strictly larger than N1wm. Then,
according to Lemma 3, L2

XL

⋃
L2

L must fit in the N2 remaining organizations. If
Q(padL) ≤ m

2 , then the N2 remaining organizations are available for L1
XL. Thus,

if L1
XL �= ∅ at the end, then S(L1

XL) > (N2 + 1
4 )mw, and S(LayN1

⋃
L1

XL) >
(N2 + 1)mw.

If 3
2w ≥ P (LayN1) > w, then S(LayN1) >

1
2mw and CreatePadding creates

one bin of length w. If Q(padXL) is larger than 2m
3 then S(LayN1

⋃
pad1

XL) >
mw and we conclude with Lemma 3. Otherwise, the N2 remaining organizations
are available for L1

L. Moreover, remind that in this case the only bin in padXL

will be used for jobs of LL during the call of add. Then, if L1
L does not fit, we have

Q(L1
L

⋃
L1

XL) > (2N2 +1)m and S(LayN1

⋃
L1

L

⋃
L1

XL) > mw
2 +N2wm+ wm

2 =
(N2 + 1)mw.

If w ≥ P (LayN1) > 3
4w, then S(LayN1) > 3

8mw and two cases are possi-
ble according to the value of Q(L1

L). If Q(L1
L) ≥ 5m

4 , CreatePadding creates
two bins of length 3

4w. Then, S(LayN1

⋃
padL) > (3

8 + 5
8 )mw and we conclude

with Lemma 3. Otherwise, if Q(L1
L) < 5m

4 , CreatePadding creates one bin
padXL of length w. If Q(padXL) (after the call line 5) is larger than 2m

3 then
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S(LayN1

⋃
pad1

XL) > 7
8mw and we conclude with Lemma 3. Otherwise, jobs of

L1
XL are all scheduled in padXL. As N2 ≥ 1, at least three bins are available for

L1
L, which is sufficient given that Q(L1

L) < 5m
4 .

If 3
4w ≥ P (LayN1) >

1
2w, then S(LayN1) >

1
4mw and CreatePadding creates

one bin of length w and one bin of length 3
4w. If extra long jobs are not scheduled

at the end of the algorithm, then S(LayN1

⋃
padXL) > 3

4mw. Since L2
XL do not

fit into N2 free organizations, we have also S(L2
XL) > (N2 + 1

4 )mw. Thus we
conclude that the extra long jobs are successfully scheduled. Let us suppose
now that the long jobs are not completely scheduled. If Q(padXL) ≥ 5m

9 then
S(LayN1

⋃
padXL

⋃
padL) > (1

4 + 5
12 + 1

3 )mw = mw. Otherwise, let L′
L denote

the set of remaining jobs of L1
L just before the call to add. The area scheduled

in the N2 last organizations is larger than the one scheduled in the optimal. If
L′

L does not fit in padXL during the call to add, then Q(L1
XL + L′

L) > m and
S(LayN1

⋃
padL

⋃
padXL

⋃
L′

L) > (1
4 + 1

3 + 1
2 )mw > mw.

If 1
2w > P (LayN1), CreatePadding creates two bins of length w. If N1 > 1,

then S(
⋃N1

i=1 Layi) > S(
⋃N1−2

i=1 Layi)+ 5
4mw > (N1− 1)mw+ 1

4mw because the
first job of LayN1 does not fit in the previous organization. Thus, if Q(L1

XL) > m

then we have S(
⋃N1

i=1 Layi

⋃
padXL) > N1mw and we conclude with Lemma 3.

Otherwise, we have an empty bin in the sequence padXL and N2 free organi-
zations available for L1

L. Let L′
L be L1

L before the call to add. If add does not
schedule L′

L in last then Q(L1
XL)+Q(L′

L) > m and S(
⋃N1

i=1 Layi

⋃
L1

XL

⋃
L′

L) >
(N1− 3

4 + 1
3 + 1

2 )mw > N1mw. If N1 ≤ 1 then we have two bins of length w in
each of the N organizations, which is of course sufficient to pack L1

XL

⋃
L1

L.� 

4 From the Preallocation to the Final Schedule

From now on, we suppose that the preallocation π0 is built. For each organiza-
tion Oi, π0 indicates first a (possibly empty) sequence of high jobs ji

1, . . . , j
i
xi

that have to be scheduled sequentially from time 0. Then, π0 contains an or-
dered sequence of shelves Shi

1, . . . , Sh
i
x′

i
. Moreover, the makespan of π0 is by

construction less than 5w/2.

Definition 1. Let ui(t) be the utilization of organization Oi at time t, i.e. ui(t)
is the sum of all the qj for any job j which scheduled on organization i at time
t. A schedule is 1/2 compact if and only if for every organization Oi there exists
a time ti such that for all t ≤ ti, ui(t) ≥ m/2 and ui restricted to t > ti is not
increasing.

Let us now describe the algorithm LSπ0 which turns π0 into a 1/2 compact
schedule π1 of I ′. We first define the procedure Add Asap(X,Oi) which scans
organization Oi from time 0, and for every time t starts any possible job(s) in X
that fit(s) at time t. The LSπ0 works as follows: for every organization Oi, pack
first sequentially the high jobs ji

x for 1 ≤ x ≤ xi and then call Add Asap(Shx, Oi)
for 1 ≤ x ≤ x′

i.

Lemma 4. The makespan of π1 is lower than the one of π0, and π1 is 1/2
compact.
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Proof. Let σi be a schedule in a (single) organization Oi (of makespan Ci), let
X be a set of jobs and let σ′

i be the schedule (of makespan C′
i) produced by

Add Asap(X,Oi). If σi is 1/2 compact and if forall j ∈ X, qj ≤ m/2, then σ′
i is

1/2 compact. The proof is straightforward by induction on the cardinality of X .
Moreover, if

∑
X qj ≤ m, then C′

i ≤ Ci + maxXpj because in the worst case
all the jobs of X only start at time Ci. Using these two properties, we prove
the lemma for every organization Oi by induction on the number of call(s) to
Add Asap(Shx, Oi). � 

Remark 1. Notice that in Lemma 4 we do not take care of the particular struc-
ture which occurs when add creates two shelves of jobs of LL as depicted Figure 1.
However, it is easy to see that the proof can be adapted.

Now that π1 is built, we add the small remaining jobs (I\I ′) using a list algorithm
that scans all the organizations from time 0 and schedules as soon as possible
any non scheduled job. Let π denote the obtained schedule.

Theorem 2. The makespan of π is lower than 5w/2.

Proof. The proof is by induction on the cardinal of I \ I ′. At the beginning, π1
is 1/2 compact, as proved in Lemma 4. Each time a job j is scheduled by the list
algorithm, the obtained packing remains 1/2 compact because qj ≤ m

2 . Thus it
is clear that π is 1/2 compact.

Let us assume that the makespan of π is due to a job j ∈ I \ I ′ that starts
at time s. As π is 1/2 compact, this implies that when scheduling job j we had
ti ≥ s for any organization i. Thus, we have S(I) >

∑N
i=1

ti

2 ≥ N s
2 , implying

that s < 2w, and thus that the makespan of π is lower than 5w/2. � 

5 Complexity

Phase 1 can be implemented in O(Nn+n log(n)). Indeed, we first sort the high
jobs in non increasing order of their processing times. Then, each layer can be
created in O(n). Phase 2 and phase 3 can also be implemented in O(Nn +
n log(n)) by sorting the long (and extra long) jobs in non increasing order of
their required processors. Thus π0 is constructed in O(Nn + n log(n)).

The LSπ0 algorithm can be implemented in O(n log(n)). Instead of scanning
time by time and organization by organization, this algorithm can be imple-
mented by maintaining a list that contains the set of “currently” scheduled jobs.
The list contains 3-tuples (j, t, i) indicating that job j (scheduled on organization
i) finishes at time t. Thus, instead of scanning every time from 0 it is sufficient
to maintain sorted this list according to the t values (in non decreasing order),
and to only consider at every step the first element of the list. Then, it takes
O(log(n)) to find a job j0 in the appropriate shelf that fits at time t, because a
shelf can be created as a sorted array. It also takes O(log(n)) to insert the new
event corresponding to the end of j0 in the list.
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The last step, which turns π1 into the final schedule can also be implemented in
O(n log(n)) using a similar global list of events. Notice that for any organization
Oi, there exists a ti such that before ti the utilization is an arbitrary function
strictly larger than m/2, and after ti a non increasing after. Scheduling a small
job before ti would require additional data structure to handle the complex
shape. Thus we do not schedule any small job before ti as it is not necessary for
achieving the 5/2 ratio. Therefore, we only add those events that happen after
ti when initializing the global list for this step. To summarize, for this step we
only need to sort the small jobs in non increasing order of their required number
of processors, and then apply the same global list algorithm.

The binary search on w to find the smallest w which is not rejected can be
done in O(log(npmax)) as all the processing times can be assumed to be integers.
Thus the overall complexity of the 5w/2 approximation is in O(log(npmax)n(N +
log(n))).

6 Toward Better Approximation Ratios

In this paper we provided a low cost 5/2-approximation algorithm using a new
approach. We discuss in this section how the proposed approach can be used for
reaching better approximation bounds. The approach can be summarized in the
two following main steps. The first one consists in constructing a 1/2 compact
schedule π1 of the big jobs I ′ by creating a pre-allocation π0 and “compressing”
it. Then, the remaining small jobs (I \ I ′) are added to π1 in a second step using
the classical list scheduling algorithm LS.

We would like to recall the arguments that make our second step easy to
analyze, and see what could be some other promising partitions. In our partition,
the second step guaranties a makespan lower than 5w/2 because:

• adding a job j with qj ≤ m/2 to a 1/2 compact schedule with LS produces
another 1/2 compact schedule,

• if the makespan is due to a small job j0 that starts at time s0, then s0 ≤
2w (since the schedule is 1/2 compact), leading to a makespan lower than
s0 + pj0 ≤ 5w/2.

Let us now propose other partitions that could be considered. We could define
I ′ = {j|qj > αmi or pj > βw} with appropriate values 0 < α < 1 and 0 < β < 1.
Then, the previous steps become:

1. construct a pre-allocation π0 of I ′ (for instance based on shelves and layers)
and make sure that, when compressed using LSπ0 , the obtained schedule
π1 is 1 − α compact (meaning that for every organization, the utilization is
greater than 1− α, and then it is non-increasing),

2. add the small remaining jobs (I \ I ′) using LS.

Thus, the makespan of jobs added in the second step would be bounded by
b = ( 1

1−α + β)w, implying that the makespan of the pre-allocation should also
be bounded by b.
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For example, we can target a 7/3 ratio by only studying how to pre-allocate
I ′ = {j|qj > mi

2 or pj > w
3 }, or a ratio 2 by studying how to pre-allocate

I ′ = {j|qj > mi

3 or pj > w
2 }. Obviously, if the preallocation is built using again

shelves and layers, the difficulty will probably arise when merging the different
types of jobs (high, extra long or long ones for example), and will may be only
need to handle more particular cases.

Let us remark that this technique will not be easy to apply with (contiguous)
rectangles, since the property of 1/2 compactness becomes hard to guarantee.
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Abstract. In the seat reservation problem, there are k stations, s1

through sk, and one train with n seats departing from the station s1

and arriving at the station sk. Each passenger orders a ticket from sta-
tion si to station sj (1 ≤ i < j ≤ k) by specifying i and j. The task of
an online algorithm is to assign one of n seats to each passenger online,
i.e., without knowing future requests. The purpose of the problem is to
maximize the total price of the sold tickets. There are two models, the
unit price problem and the proportional price problem, depending on
the pricing policy of tickets. In this paper, we improve upper and lower
bounds on the competitive ratios for both models: For the unit price
problem, we give an upper bound of 4

k−2
√

k−1+4
, which improves the

previous bound of 8
k+5

. We also give an upper bound of 2
k−2

√
k−1+2

for
the competitive ratio of Worst-Fit algorithm, which improves the previ-
ous bound of 4

k−1
. For the proportional price problem, we give upper and

lower bounds of 3+
√

13

k−1+
√

13
(� 6.6

k+2.6
) and 2

k−1
, respectively, on the compet-

itive ratio, which improves the previous bounds of 4+2
√

13

k+3+2
√

13
(� 11.2

k+10.2
)

and 1
k−1

, respectively.

1 Introduction

The seat reservation problem, first introduced by Boyar and Larsen [4], is the
following online problem. There are k stations s1 through sk, and one train
with n seats numbered 1 through n. The train departs from the station s1 and
is destined for the station sk. An input is a sequence of requests, where each
request specifies an interval of the form [i, j) (1 ≤ i < j ≤ k), meaning that
the current passenger wants to buy a ticket from station si to station sj . The
task of an online algorithm is to select which seat to assign to this passenger (if
there are more than one available seats), without knowing future requests. In
this problem, we consider only fair algorithms, i.e., if there is a seat available for
the current passenger, it cannot reject her request. The purpose of the problem
is to maximize the income, i.e., the sum of the prices of the sold tickets.

There are two models, the unit price problem and the proportional price prob-
lem, depending on the pricing policy of tickets. In the unit price problem, all

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 328–339, 2010.
c© IFIP International Federation for Information Processing 2010
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tickets have the same price of 1. In the proportional price problem, the price of
a ticket is proportional to the distance traveled, i.e., the price of a ticket from
si to sj is j − i.

The performance of an online algorithm is evaluated by the competitive anal-
ysis. Let ALG be an online algorithm and σ be an input sequence. Let OPT be
an optimal offline algorithm, namely, it optimally works after knowing the com-
plete information of σ. Also, let pALG(σ) and pOPT (σ) be the income obtained
by ALG and OPT , respectively, for σ. If pALG(σ) ≥ r ·pOPT (σ)−d for any input
σ, where d is a constant independent of σ, we say that ALG is r-competitive1.

Boyar and Larsen [4] studied the competitive ratios for both the unit price
and the proportional price models. In particular, they studied three natural
algorithms, First-Fit, Best-Fit, and Worst-Fit. First-Fit assigns each request to
the available seat with the smallest number. Best-Fit assigns a request to a seat
such that the empty space containing the current request interval is minimized
(ties are broken arbitrarily). For example, suppose that there are eight stations
and three seats, and that the current configuration is like Fig. 1, where shaded
areas are assigned. Suppose that the next request is for the interval [4, 6). We
cannot assign it to seat 1. The empty space of seat 2 (seat 3, resp.) containing
this interval is from s2 to s6 (from s4 to s7, resp.) and is of size 4 (3, resp.). So,
Best-Fit selects seat 3 for this request. Conversely, Worst-Fit assigns a request
to a seat such that the empty space containing the current request interval is
maximized (again, ties are broken arbitrarily). In an example of Fig 1, if Worst-
Fit receives a request for [4, 6), then it assigns it to seat 2. Table 1, taken from
[6], summarizes the best known results on the competitive ratios.

Fig. 1. An example configuration of assignment

Our Contributions. In this paper, we improve both upper and lower bounds
on the competitive ratios. Our results are summarized in Table 2, where results
obtained in this paper are highlighted in boldface. For the unit price problem,
we improve an upper bound from 8

k+5 to 4
k−2

√
k−1+4

. To improve a lower bound,
we can see from Table 1 that it is hopeless to try to sophisticate the analysis for
First-Fit or Best-Fit because an almost tight upper bound is already known for
these algorithms, but there is some room for Worst-Fit. However, we show that
1 There is an alternative definition such that competitive ratios are always at least 1.

But here we use this definition following the previous seat reservation papers.
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Table 1. Upper and lower bounds on the competitive ratios

Unit Price Proportional Price

Any deterministic algorithm r ≤ 8
k+5

r ≤ 4+2
√

13

k+3+2
√

13
(� 11.2

k+10.2
)

Worst-Fit 2
k
≤ r ≤ 4

k+1
r = 1

k−1

First-Fit/Best-Fit 2
k
≤ r ≤ 2− 1

k−1
k−1

1
k−1

≤ r ≤ 4
k+2

Table 2. New results (results obtained in this paper are highlighted in boldface)

Unit Price Proportional Price

Any deterministic algorithm r ≤ 4

k−2
√

k−1+4
r ≤ 3+

√
13

k−1+
√

13
(� 6.6

k+2.6
)

Worst-Fit 2
k
≤ r ≤ 2

k−2
√

k−1+2
r = 1

k−1

First-Fit/Best-Fit 2
k
≤ r ≤ 2− 1

k−1
k−1

2
k−1

≤ r ≤ 4
k+2

Worst-Fit is also hopeless by improving its upper bound from 4
k−1 to 2

k−2
√

k−1+2
.

For the proportional price problem, we improve both upper and lower bounds.
We improve an upper bound from 4+2

√
13

k+3+2
√

13
(* 11.2

k+10.2 ) to 3+
√

13
k−1+

√
13

(* 6.6
k+2.6 ).

For a lower bound, we show that First-Fit and Best-Fit achieve the competitive
ratio of 2

k−1 , which improves the previous bound of 1
k−1 . As a result, we improve

the lower bound of the problem itself also. Note that previous lower bounds
were obtained by using only the fact that algorithms are fair, and hence such
bounds hold for any fair online algorithms. In contrast, the result in this paper
is obtained by considering properties that are specific to First-Fit and Best-Fit.

Related Results. Besides the competitive analysis, Boyar and Larsen [4] ana-
lyzed the problem using the accommodating ratio, which takes not all the possible
input sequences but only accommodating sequences into account. An accommo-
dating sequence is a sequence for which an optimal offline algorithm can accom-
modate all the requests. They gave upper and lower bounds of 8k−9

10k−15 and 1
2 ,

respectively, on the accommodating ratio for the unit price problem [4]. Later,
Bach et al. [1] gave the matching upper bound of 1

2 .
There are some results on randomized algorithms. Boyar and Larsen [4] gave

an upper bound of 8k−9
10k−15 on the accommodating ratio for the unit price problem

in the oblivious adversary model. Furthermore, Bach et al. [1] improved both
upper and lower bounds for this problem and gave a matching bound of 7

9 .
Boyar, Larsen, and Nielsen [5] generalized the accommodating ratio. They in-

troduced a variable α(≥ 1) and allowed α-sequences as possible input sequences.
An α-sequence is a sequence for which an optimal offline algorithm can accommo-
date all the requests using αn seats. Then, they gave upper and lower bounds on
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the generalized accommodating ratio for the unit price problem. Boyar et al. [2]
extended the above performance guarantees to more general ones for α(≤ 1) and
gave several upper and lower bounds of First-Fit, Worst-Fit, and other online
algorithms.

Boyar and Medvedev [6] used the relative worst order ratio to compare the
performance of online algorithms (without using optimal offline algorithms).
They showed that for both the unit price and the proportional price problems,
First-Fit and Best-Fit are better than Worst-Fit.

Boyar, Krarup, and Nielsen [3] proposed a variant that allows x seat changes
for each request, i.e., one ticket can be divided into at most x + 1 tickets for
sub-intervals. They obtained several upper and lower bounds on the competitive
and accommodating ratios.

Kohrt and Larsen [7] proposed a problem that lies in between the offline and
online models. The task of an algorithm is not to assign a seat to a request
but only to decide whether the request can be accepted or not (by arranging
the previously accepted requests). They proposed an algorithm as well as an
appropriate data structure, and proved that its running time is optimal.

2 The Unit Price Problem

For better understanding, we give a simple example for k = 4 and n = 2
(see Fig. 2). Consider the following input sequence σ = (r1, r2, r3, r4, r5), where
r1, r2, r3, r4, and r5 are requests for intervals [1, 2), [3, 4), [1, 4), [2, 4), and [1, 2),
respectively. Suppose that an online algorithm A assigns both r1 and r2 to seat
1. Then, it must assign r3 to seat 2 because we only consider fair algorithms. So,
it can accept neither r4 nor r5 and hence its income is 3. On the other hand, an
optimal offline algorithm for σ assigns r1 and r2 into seats 1 and 2, respectively.
It can then reject r3 and accommodate both r4 and r5. So the income of this
algorithm is 4.

Fig. 2. An example of the unit price problem
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2.1 An Upper Bound

We first improve a general upper bound.

Theorem 1. No online algorithm for the unit price problem is more than
4

k−2
√

k−1+4
-competitive.

Proof. Let A be an arbitrary online algorithm. Let m and c be arbitrary positive
integers, and define k = m2 + 1 be the number of stations and n = 2cm be the
number of seats. Our adversary first gives the request sequence σ1 consisting
of 2c requests for the interval [1, 2), 2c requests for the interval [2, 3), . . ., 2c
requests for the interval [m,m + 1). All the requests in σ1 must be assigned by
algorithm A because A is a fair algorithm.

Let R be the set of seats to which A assigns requests for σ1. We give a current
assignment configuration in Fig. 3, in which seats are sorted appropriately: In
region (i), at least one request is assigned for each seat. There may be or may
not be assigned requests in region (ii). In region (iii), one request for the interval
[m,m + 1) is assigned for each seat. No request is assigned in region (iv).

Fig. 3. Assignment configuration for σ1 by algorithm A

The adversary selects subsequent sequences depending on the size of R. It
executes Case (1) if |R| < c(m + 1) and Case (2) otherwise.

Case (1): The adversary gives the following request sequences σ2, σ3, and σ4 in
this order: σ2 consists of 2cm− |R| requests for the interval [1, k). σ3 consists of
|R|−2c requests for the interval [m, k). σ4 consists of 2c requests for the interval
[m+1, k). It is easy to see that A accepts all the requests in σ2, σ3, and σ4 because
of the fairness, and hence after receiving σ4, the whole region (iv) in Fig. 3 is
filled with these requests. Finally, the adversary gives the sequence σ5 consisting
of 2cm−|R| requests for the interval [m,m+1), 2cm−|R| requests for the interval
[m+1,m+2), . . ., and 2cm− |R| requests for the interval [k− 1, k), all of which
are rejected by A. Thus, the income of A is 2cm+ (2cm− |R|)+ (|R| − 2c)+ 2c.

On the other hand, consider an algorithm which assigns each request of σ1 to
different seats. Then, it can reject all the requests in σ2, and hence can accept all
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the requests in σ3, σ4, and σ5. Thus, the income of the optimal offline algorithm
is at least 2cm + (|R| − 2c) + 2c + (k −m)(2cm − |R|). Hence, the competitive
ratio in this case is at most

2cm+ (2cm− |R|) + (|R| − 2c) + 2c
2cm + (|R| − 2c) + 2c + (k −m)(2cm− |R|)

=
4cm

2cm + |R|+ (k −m)(2cm− |R|)

<
4

k − 2
√
k − 1 + 4

because |R| < c(m + 1).

Case (2): The adversary gives the request sequences σ2, σ′
2, σ3, and σ4 in

this order, where σ2, σ3, and σ4 are the same as before and σ′
2 consists of

|R| − 2c requests for the interval [1,m + 1). It is easy to see that A rejects
all the requests in σ′

2 but accepts all the requests in σ2, σ3, and σ4. So, again,
the whole region (iv) in Fig. 3 is filled with these requests. Finally, the adversary
gives the sequence σ′

5 consisting of |R|−2c requests for the interval [m+1,m+2),
|R| − 2c requests for the interval [m + 2,m + 3), . . ., and |R| − 2c requests for
the interval [k − 1, k), all of which are rejected by A. Thus, the income of A is
2cm + (2cm− |R|) + (|R| − 2c) + 2c.

On the other hand, consider an algorithm which assigns each request of σ1
using First-Fit. Then, it accepts all the requests in σ2, σ′

2, σ4, and σ′
5, but rejects

all the requests in σ3. Thus, the income of an optimal offline algorithm is at least
2cm+(2cm−|R|)+(|R|−2c)+2c+(k−m−1)(|R|−2c). Hence, the competitive
ratio in this case is at most

2cm+ (2cm− |R|) + (|R| − 2c) + 2c
2cm + (2cm− |R|) + (|R| − 2c) + 2c + (k −m− 1)(|R| − 2c)

=
4cm

4cm + (k −m− 1)(|R| − 2c)

≤ 4
k − 2

√
k − 1 + 4

because |R| ≥ c(m + 1). � 

2.2 An Upper Bound for Worst-Fit

Recall from Sec. 1 that Worst-Fit assigns each request to a seat such that the
empty space containing the current request interval is maximized. As we have
mentioned in Sec. 1, Worst-Fit has been a good candidate for improving a lower
bound. But we rule out this possibility by giving an almost tight upper bound
for it.

Theorem 2. The competitive ratio of Worst-Fit for the unit price problem is
at most 2

k−2
√

k−1+2
.
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Proof. As in the proof of Theorem 1, let m and c be arbitrary positive integers,
and let k = m2 + 1 and n = 2cm. First, we give the sequence σ1 consisting
of 2c requests for the interval [1, 2), 2c requests for [2, 3), . . ., 2c requests for
[m,m+1). Worst-Fit assigns these n = 2cm requests to different seats. Next, we
give σ2, σ3, and σ4 in this order where σ2 consists of 2cm− 2c requests for the
interval [1,m+1), σ3 consists of 2cm−2c requests for the interval [m, k), and σ4
consists of 2c requests for the interval [m+1, k). Worst-Fit rejects all the requests
in σ2 and accommodates all the requests in σ3 and σ4. So, after receiving σ4,
all the seats are full in the interval [m + 1, k). Finally, we give σ5 consisting of
2cm− 2c requests for [m + 1,m + 2), 2cm− 2c requests for [m + 2,m + 3), . . .,
2cm− 2c requests for [k− 1, k). Worst-Fit rejects all these requests. The income
of Worst-Fit is then 2cm + (2cm− 2c) + 2c.

On the other hand, consider an algorithm which assigns requests in σ1 using
First-Fit. Then it can accommodate all the requests in σ2, and it rejects all the
requests in σ3. Hence, it can accept all the requests in σ4 and σ5, so the income of
an optimal offline algorithm is at least 2cm+(2cm−2c)+2c+(k−m−1)(2cm−2c).
Thus the competitive ratio is at most

2cm + (2cm− 2c) + 2c
2cm+ (2cm− 2c) + 2c + (k −m− 1)(2cm− 2c)

=
4cm

4cm+ (k −m− 1)(2cm− 2c)

=
2

k − 2
√
k − 1 + 2

.
� 

3 The Proportional Price Problem

Recall that in the proportional price problem, the price of a ticket from si to sj

is j − i.

3.1 An Upper Bound

Theorem 3. No online algorithm for the proportional price problem is more
than 3+

√
13

k−1+
√

13
-competitive.

Proof. Consider an arbitrary online algorithm A, and let k and n(= 2m for
a positive integer m) be the numbers of stations and seats, respectively. The
adversary first gives the sequence σ1 consisting of m requests for the interval
[1, 2) and σ2 consisting of m requests for the interval [2, 3). Let R be the set of
seats to which A assigns both requests of σ1 and σ2. The current configuration
is given in Fig. 4, in which assigned areas are shaded.

The adversary selects subsequent sequences depending on the size of R. It
executes Case (1) if |R| < (

√
13−2)m

3 and Case (2) otherwise.

Case (1): The adversary gives σ3 and σ4 in this order such that σ3 consists of
|R| requests for the interval [1, 3) and σ4 consists of m − |R| requests for the



Improving the Competitive Ratios of the Seat Reservation Problem 335

Fig. 4. Assignment configuration for σ1 and σ2 by algorithm A

interval [1, k). A accepts all the requests in σ3 but rejects all the requests in σ4,
so that its income is 2m + 2|R|.

On the other hand, consider an algorithm which uses m seats to assign both
requests of σ1 and σ2. Then, it can accomodate all the requests in σ3 and σ4
and hence the income of an optimal offline algorithm is at least 2m+2|R|+(k−
1)(m− |R|). The competitive ratio is then at most

2m + 2|R|
2m + 2|R|+ (k − 1)(m− |R|)

<
2 + 2

√
13−2
3

2 + 2
√

13−2
3 + (k − 1)(1−

√
13−2
3 )

=
3 +

√
13

k + 2 +
√

13

because |R| < (
√

13−2)m
3 .

Case (2): The adversary gives σ3, σ′
4, and σ′

5 in this order where σ3 is the same
as before, σ′

4 consists of m− |R| requests for the interval [2, 3), and σ′
5 consists

of |R| requests for the interval [2, k). A accommodates all the requests of σ3 and
σ′

4, but rejects all the requests of σ′
5, so, its income is 2m + 2|R|+ (m− |R|).

On the other hand, consider an algorithm which assigns requests of σ1 and
requests of σ2 to different seats, i.e., each of 2m seats contains exactly one
request. Then, it can reject all the requests of σ3 and can accommodate all the
requests of σ′

4 and σ′
5, and hence the income of an optimal offline algorithm is

at least 2m+ (m− |R|) + (k − 2)|R|. The competitive ratio is at most

2m+ 2|R|+ (m− |R|)
2m + (m− |R|) + (k − 2)|R|

≤
3 +

√
13−2
3

3−
√

13−2
3 + (k − 2)

√
13−2
3
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=
3 +

√
13

k − 1 +
√

13

because |R| ≥ (
√

13−2)m
3 . � 

3.2 Lower Bounds for First-Fit and Best-Fit

Recall that First-Fit assigns each request to the available seat with the smallest
number, and Best-Fit assigns a request to a seat such that the empty space
containing the current request interval is minimized. We improve lower bounds
on the competitive ratio for these algorithms, improving a general lower bound
for the proportional price problem.

Theorem 4. Both First-Fit and Best-Fit are 2
k−1 -competitive for the propor-

tional price problem.

Proof. We give a proof for First-Fit (denoted FF hereafter). The proof for Best-
Fit is exactly the same. Consider an arbitrary input σ. If, for every seat, the
total length of intervals assigned by FF is at least two, then we are done since
FF earns at least 2n and an optimal offline algorithm OPT can earn at most
(k − 1)n for an instance with k stations and n seats. If FF rejects no request
in σ, then again we are done. Hence, we assume that there is a seat q to which
only an interval of length 1, say I = [i, i + 1), is assigned. Let r be the request
assigned to q by FF. We can see that no seat has a vacant space for I since if
such a seat q′ exists, assigned intervals of q and q′ do not overlap, contradicting
the definition of FF.

Let RI be the set of requests for intervals containing I assigned by FF. By
the above observation, |RI | = n. Partition RI into R

(1)
I and R

(≥2)
I so that R

(1)
I

is the set of requests for exactly the interval I, and R
(≥2)
I = RI \R(1)

I is the set
of requests for intervals of length at least 2, containing I (see the upper figure
of Fig. 5). Also, let S(1) and S(≥2) be the sets of seats to which requests in R

(1)
I

and R
(≥2)
I , respectively, are assigned. Note that |S(1)| = |R(1)

I |, |S(≥2)| = |R(≥2)
I |,

and |S(1)|+ |S(≥2)| = n.
Suppose that there is a request r′ in R

(1)
I that is rejected by OPT . Let R′

be the set of requests for intervals containing I, accommodated by OPT . Since
OPT is fair but rejected r′, |R′| = n and any request in R′ precedes r′. Since
the interval I is full for both OPT and FF, and since r′ is accepted by FF
but rejected by OPT , there is a request r′′ ∈ R′ rejected by FF. Note that
r′′ precedes r′ since r′′ ∈ R′, but FF rejected r′′ while it accepted r′. So, the
interval requested by r′′ must include an interval other than I, and when FF
rejected r′′, there must be a seat q′′ in which the interval I was empty but some
other intervals were assigned. If at this moment, FF has already received the
request r and has assigned it to the seat q, then we can merge q and q′′ without
overlapping, contradicting the definition of FF. So, the request r has not been
given to FF yet. But then q was empty for the whole interval at this moment,
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and FF could have assigned r′′ to q, a contradiction. So, any request in R
(1)
I is

accepted by OPT .
Now, let S be the set of seats to which OPT assigns requests in R

(1)
I , and

R(S) be the set of requests assigned to S by OPT . Define R = R(S) \R(1)
I (see

the lower figure of Fig. 5). Because FF is fair and the seat q (of FF) eventually
contains only a request for the interval I, FF accommodates all the requests in
R. Also, since requests in R do not contain the interval I, R, R(1)

I , and R
(≥2)
I

are pairwise disjoint.

Fig. 5. Assignment configurations of FF and OPT for σ

For the set X of requests, let p(X) be the total price of tickets for requests
in X . Then, the income of FF is at least p(R(1)

I ) + p(R(≥2)
I ) + p(R) ≥ |S(1)| +

2|S(≥2)|+p(R) = |S|+2(n−|S|)+p(R) because |S(1)| = |S| and |S(1)|+|S(≥2)| =
n. On the other hand, the income of OPT is at most (k−1)(n−|S|)+ |S|+p(R).
So, we have that

pFF (σ)
pOPT (σ)

≥ 2(n− |S|) + |S|+ p(R)
(k − 1)(n− |S|) + |S|+ p(R)

≥ 2
k − 1

,

which completes the proof. � 
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4 Concluding Remarks

In this paper, we narrowed the gap between upper and lower bounds on the
competitive ratios for the seat reservation problem for both the unit price and
the proportional price problems. An apparent future work is to further narrow
the gaps for both models.

To obtain a better bound for the unit price problem, we need to develop other
algorithms as we discussed in this paper. For the proportional price problem,
there still remains a gap between upper and lower bounds for First-Fit and
Best-Fit (see Table 2). Narrowing the gap for these algorithms is one of the next
possible challenges. We finally give a short remark on this direction.

Let us generalize the problem to a loop-line, namely, sk = s1. So, there could
be a request for an interval [j, i) (j > i), which means that the passenger is to
get on the train at station sj and go to station si by way of station sk. (Strictly
speaking, we must consider the number of laps. However, here we consider the
case of only one lap, e.g., intervals [2, 4) and [5, 3) overlap. This definition may
not be practical, but is meaningful for the analysis of First-Fit and Best-Fit, as
one can see below.) For this setting, we can derive a matching bound of 2

k−1 for
First-Fit and Best-Fit. The upper bound will be proved below, and the lower
bound can be derived from exactly the same way as Theorem 4 because the proof
of Theorem 4 holds for the loop-line model also. This suggests that to improve
the lower bound for First-Fit and Best-Fit, we need arguments that do not hold
for the loop-line model.

Upper bound proofs for First-Fit and Best-Fit for loop-line model. We
give a proof for First-Fit (FF). The proof for Best-Fit is exactly the same. Let
k be the number of stations and n = 2m be the number of seats. We give the
following sequences to FF: σ1 consisting of m requests for [1, 2); σ2 consisting
of m requests for [2, 3); σ3 consisting of m requests for [1, 3); σ4 consisting of
m requests for [2, k); and σ5 consisting of m requests for [3, 2). It is not hard
to see that FF accommodates all the requests in σ1, σ2, and σ3, but rejects all
the requests in σ4 and σ5. So, the income of FF is 4m. On the other hand, an
optimal offline algorithm assigns requests in σ1 and requests in σ2 to different
seats. Then it can reject all the requests of σ3, and can accept all the requests
in σ4 and σ5, so its income is 2m(k − 1).
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Abstract. We propose a framework for reasoning about program security build-
ing on language-theoretic and coalgebraic concepts. The behaviour of a system
is viewed as a mapping from traces of high (unobservable) events to low (ob-
servable) events: the less the degree of dependency of low events on high traces,
the more secure the system. We take the abstract view that low events are drawn
from a generic semiring, where they can be combined using product and sum op-
erations; throughout the paper, we provide instances of this framework, obtained
by concrete instantiations of the underlying semiring. We specify systems via a
simple process calculus, whose semantics is given as the unique homomorphism
from the calculus into the set of behaviours, i.e. formal power series, seen as a
final coalgebra. We provide a compositional semantics for the calculus in terms
of rational operators on formal power series and show that the final and the com-
positional semantics coincide.

1 Introduction

Security analysis of programs has traditionally been centered on a notion of non-
interference [16]. Research has mostly been into a functional interpretation whereby
a program is acceptable if low-confidentiality variables or actions do not depend on
high-confidentiality ones. This approach has been developed in both imperative [24]
and process algebraic [15] settings. Non-interference is now generally recognised as
enforcing too strict a policy. For this reason, more flexible variants of this concept are
often considered. In declassification, a program may be declared as acceptable if infor-
mation can flow from high to low but only in prescribed ways [12,25]. In more recent
years, attempts have been made to provide methods to quantify the amount of leaked
information, mostly building on information-theoretic or probabilistic tools [13,14,9,6].
Then a program may be declared as acceptable if the information it leaks does not ex-
ceed a prescribed threshold.

In this paper, we propose a framework for reasoning about information leakage that
builds on language-theoretic and coalgebraic concepts. The framework o�ers a unify-
ing view of diverse facets of language security, such as those mentioned above, puts
them in a more abstract perspective and possibly paves the way to their unification.
It also elucidates interesting connections between language-based security, coalgebras
and language theory.

C.S. Calude and V. Sassone (Eds.): TCS 2010, IFIP AICT 323, pp. 340–354, 2010.
c� IFIP International Federation for Information Processing 2010
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Let us introduce a scenario that motivates our approach. Consider a discrete-time,
nondeterministic system P. During the execution of P, certain events, such as updates
of high-variables, are under the control of a secret scheduler and not directly observable
from the outside. Some other events are observable, including updates of low variables,
input�output actions, certain file accesses, and so on. These observable events are not di-
rectly controlled by the secret scheduler, and may obey nondeterministic or probabilistic
laws. An attacker can perform observations upon the system only at prescribed times,
e.g. only upon termination. Moreover, he can have the system re-execute as many times
as he wishes: through these repeated executions, we assume the policy of the secret
scheduler (high behaviour) remains fixed, while all the possibilities arising from the
nondeterministic or probabilistic low behaviour of the system are observed. Through
this process, the attacker collects a set of observations o1� o2� ��� and combines them into
a global observation to make deductions about the non-observable events – in essence,
about the choices of the secret scheduler. One can think of basically two ways the ob-
servations can be combined. The first one is a form of sequential composition, say �,
by which a sequence of consecutive observations, e.g. o1� o2� o3, results into a combined
observation, o � o1 � o2 � o3. Note that, from the point of view of the attacker, only the
final, combined observation o may be available, not the intermediate oi – the � opera-
tion may not be actually available to him. The second operation, call it �, can be used
to combine observations arising from the repeated executions of the system, e.g. o1�o2

and o3 � o4, into a global observation (o1 � o2) � (o3 � o4). This operation is therefore
available to the attacker. In the end, to each sequence of unobservable events, say �,
there corresponds a global observation o, thus defining a mapping from high traces to
observations that we name �(P). This mapping can be deduced from P’s specification,
which must be assumed to be public. Hence, using �(P) and the global observation o,
the attacker can learn information about the secret sequence �: at least, he can get to
know that � � (�(P))�1(o).

To make a concrete case, consider a system P, informally specified as follows. Either
of two unobservable events, h or h�, is initially executed, the choice depending on the
secret scheduler. Then, h leads to a state where the low-event l is always executed,
while h� leads to a state where either of two branches is taken: in the first branch, l�

and then l�� are executed, while in the second just l is executed. In any case, the system
then terminates. The two branches are taken, respectively, with probability 3

4 and 1
4 .

In this case, the observations o are probability sub-distributions on low-traces, while
� and � are, respectively, the product and sum of sub-distributions (seen as weighted
languages). The above specification hence yields �(P)(h) � [l �� 1] and �(P)(h�) �
[l�l�� �� 3

4 � l �� 1
4 ].

From the point of view of a designer that must assess the security of the system,
the mapping �(P) is the central object of interest. For example, if �(P) is a constant,
then the observed low-event does not depend on the secret sequence of high-events:
the system is perfectly secure (see [26] for a similar notion of security, formulated in a
synchronous setting, Nondeducbility on Strategies). If this is not the case, the designer
might at least be interested in learning how many equivalence classes the domain �(P)
is partitioned into (that is the number of pre-images (�(P))�1(o), for o ranging over
the observations): the fewer, the better. Also, he might want to perform quantitative
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measures, in case probabilistic behaviour is involved. In the example above, �(P) can
be seen as a stochastic matrix whose rows and columns are indexed by high- and low-
traces, respectively, and its capacity can be computed by standard techniques. Indeed, an
information theorist might recognize in this example an instance of the noisy Z-channel
having �h� h�� and �l� l�l��� as an input and an output alphabet, respectively.

In essence, it is crucial for the designer to be able to specify �(P), generate it and
reason on it - e.g. prove that two system specifications generate the same behaviours -
in a compositional, syntax-driven fashion. We face these issues and draw on language-
theoretic concepts. We take the general view that observable events are elements of a
semiring [18], �, whose product and sum correspond to the � and � operations men-
tioned above. A set of unobservable, high-events H is assumed. The security signifi-
cant behaviour of the system, �(P), is then a mapping from H� to �, that is a formal
power series (���) on H and � [18]. We provide a simple process calculus to specify
systems, equipped with an operational semantics given in terms of Moore automata.
Then, following [23], we characterize the semantic mapping�(�) in terms of the unique
homomorphism from this calculus into the set of formal power series seen as a final
coalgebra. We next provide a compositional semantics of the calculus in terms of ratio-
nal operators on ���’s, defined via behavioural di�erential equations (���’s) [23]. We
show that the final and the compositional semantics coincide. A consequence of this
result is a Kleene theorem saying that, in our calculus, all and only the rational ���’s
are definable. The benefits of the two semantics can be summed up as follows: the final
semantics allows for reasoning – proving equivalences – on systems by co-induction,
while the compositional semantics, and in particular the ���’s, can be used for step-wise,
syntax-driven generation of the behaviours �(P), for any P. Throughout the paper, we
provide instances of this framework obtained by concrete instantiations of the semiring
�, and examples that illustrate these ideas.

The rest of the paper is organized as follows: In Section 2 we provide background
notions about semirings and formal power series and introduce a few concrete instances
of them that are relevant to information leakage analysis. In Section 3 we give the
syntax and operational semantics of the language. In Section 4 we describe the abstract
semantics using finality and characterize the semantic mapping in terms of language
equivalence. Following this, we provide a compositional semantics and show that the
final and the compositional semantics coincide in Section 5. In Section 6, we provide
two non-trivial examples illustrating the use of the compositional semantics and of the
language as a modelling tool. To round o� the paper, in Section 7 we briefly discuss an
extension of the language with a simple form of parallel composition. Finally we o�er
some comparison with related work and directions for future research. All proofs have
been confined to an extended version available online [8].

2 Semirings and Formal Power Series

Recall that a semiring � is a tuple (S ����� 0� 1) such that (S ��� 0) is a commutative
monoid, (S ��� 1) is a monoid, � distributes over � both on the left and on the right, and
0 annihilates both on the left and on the right (i.e., 0 � o � o � 0 � 0 for each o � S ).
We let o� o�� ��� range over S . Moreover, given o1� � � � � on � S , we let

�
i�1���n oi denote
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o1 � � � � � on. A semiring (endo)morphism is a function f : � � � such that: f (0) � 0,
f (1) � 1, and for each o� o� � �, f (o � o�) � f (o) � f (o�) and f (o � o�) � f (o) � f (o�).

The simplest possible semiring is �, obtained by taking S � �0� 1� and � and � to be
the sum and product of booleans, that is or and and. Other examples of semirings are
the natural numbers � and the nonnegative reals ��. Every ring, hence every field, is
of course a semiring. As an example of a non-commutative semiring, consider a finite
and non-empty alphabet A; then, � � (2A�

�	� �� 
� ���), with 	 being language union, �
being language concatenation and � being the empty string, is the semiring of languages
over A.

Fix a semiring � � (S ����� 0� 1) and a finite, non-empty alphabet A. A formal power
series (���) over A with coeÆcients in � is a function � : A� � �. The set of all such
functions will be denoted by �A��, or simply by � when no ambiguity arises. Given
�� � � �, the sum � � � and convolution product � � � are the ���’s defined in the
expected manner, that is, by setting for each w � A�

(� � �)(w) � �(w) � �(w) (� � �)(w) �
�

u�v:uv�w

�(u) � �(v) (1)

where, on the right-hand side � (
�

) and � respectively denote sum and product in �.
Note that there is no harm in overloading the symbols � and � as we do here. Indeed, �
can be seen as a subset of � by identifying each o � � with the ��� � such that �(�) � o
and �(w) � 0 elsewhere. This identification is easily seen to preserve the meaning of
�, �, 0 and 1. It is readily checked that (������ 0� 1) is in turn a (non-commutative)
semiring.

Let us now fix a finite, non-empty alphabet L, ranged over by l� l�� ���. In the rest of
the paper, elements of L will usually be interpreted as observable, low confidentiality
actions, as opposed to unobservable, high confidentiality actions, to be introduced in the
next section. For the time being, however, there is no need to fix a specific interpretation
of L. We let �� ��� ��� range over L�. The semiring�� of weighted (low-)traces is defined
as �L��� . That is, weighted (low-)traces are functions o : L� � �

�, with operations of
sum and product defined as in (1) above. The reason for our interest in this semiring
is that it includes all functions o : L� � [0� 1] such that

�
��L� o(�) � 1, that is, all

probability distributions on low traces, as well as all functions o such that
�

��L� o(�) �
1, that is, all probability sub-distributions. Note that neither of these two sets forms a
semiring, which explains why it is mathematically convenient to work with the larger
set��. In what follows we shall sometimes take the freedom of writing down weighted
(low-)traces as formal sums. For instance, 1

3 ll� � 2
3 ll�� denotes the element o � �� such

that: o(�) � 1
3 if � � ll�, o(�) � 2

3 if � � ll�� and o(�) � 0 for any other � � L�.
Let us give another instance of (noncommutative) semiring related to security anal-

ysis. Given any non-empty set V of program variables, a store is a partial function
m : V � �, where � is some data-type. Let M be the set of all such stores. Each el-
ement of 2M, the powerset of M, can be thought of as the result of the execution of a
nondeterministic program. It is natural to endow 2M with a semiring structure as fol-
lows. Let us denote by m � m� the sequential composition of two stores, defined thus:
(m � m�)(v) � m�(v) if m�(v) is defined, (m � m�)(v) � m(v) if m(v) is defined and m�(v)
undefined, (m�m�)(v) is undefined if neither of m(v), m�(v) are defined. In other words,
m�m� describes the e�ect of running two programs one after another, the first producing
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m and the second producing m�. Now consider 	 � (2M�	� �� 
� �
�), where: � is ex-
tended point-wise to 2M (that is, given I1� I2 � M, I1� I2 � �m�m�m � I1�m� � I2�) and

 denotes the empty set, which is also the nowhere defined partial function. It is readily
checked that 	 is a semiring.

3 A Process Calculus

Let us fix a finite, non-empty alphabet H, ranged over by h� h�� � � �. It is convenient to
think of H as a set of unobservable, high-confidentiality actions (as opposed to the set
L introduced in the preceding section; the two sets are assumed to be disjoint). We let
�� ��� � � � range over H�. Let us fix a semiring �. The set of all processes is given by the
following syntax

P ::� o  h  P � P  P; P  P� f �  P�

where o � �, h � H and f : � � � is a semiring morphism. As usual, �, ; and
� denote nondeterministic choice, sequential composition and iteration, respectively;
P� f � is a filtering operator that applies the filter f – a morphism on the semiring – to
the observable events produced by P; the condition that f be a morphism appears to
be quite natural, and yields a compositional way to compute filter applications. Given
processes P1� � � � � Pn, we let

�
i�1���n Pi denote P1 � � � � � Pn, where the summands are

arranged in any arbitrary fixed order. By convention, we let this summation denote 0 � �
when n � 0. In what follows, we shall not commit to any specific semiring, even though
our reference instance is meant to be ��. The set of all processes is denoted by ��, or
simply by � when there is no need to be specific about �.

A measure, 	 : �� � �, is a map from processes to the semiring �. Let � be the
set of all measures. For any P � �, we let Æ(P) denote the measure 	 s.t. 	(Q) � 1 if
Q � P, 	(Q) � 0 otherwise; note that here 0� 1 � �. It is useful to define operations of
internal sum and scalar product for measures. For each P:

(	 � 	�)(P) � 	(P) � 	�(P) (o � 	)(P) � o � 	(P) (2)

where on the right hand side of the definitions the operations are those of the semir-
ing �. Such an overload of the symbols � (

�
) and � is harmless, as any ambigu-

ity is easily resolved by the context. With these operations, every measure can be
written as 	 �

�
P�� 	(P) � Æ(P). A few syntactic operations on measures will be

useful. Syntactic right-multiplication by a process: if 	 �
�

P�� 	(P) � Æ(P), then
	; Q �

�
P�� 	(P) � Æ(P; Q). Syntactic left-multiplication, Q;	, is defined similarly.

Finally, syntactic filtering: with the same 	 as above, 	� f � �
�

P�� f (	(P)) � Æ(P� f �).
When describing the semantics, the following two notable measures will turn out to

be useful. For every P � �:

0�(P) � 0 1�(P) �

�
1 if P � 1
0 otherwise

The operational semantics of � is given by a pair of functions (w���). Here, for each
P, w(P) � � is the final weight of P, corresponding to the observation that can be made
upon P in the current state. A non-zero weight may be understood as indicating the
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possibility of immediate termination. Specifically, w � � is a measure defined by
induction on P as follows1:

w(o) � o w(h) � 0 w(P1; P2) � w(P1) � w(P2)
w(P� f �) � f (w(P)) w(Q�) � 1 if w(Q) � 0

w(P1 � P2) � w(P1) � w(P2) w(Q�) � 0 if w(Q) � 0

The function �� : (� � H) � �, describes the e�ect of executing a high action
and making a transition to a measure. As customary, (P� h� 	) � �� will be written as

P
h
�� 	. The judgments defining P

h
�� 	 are reported below, where we assume h� � h.

h
h
�� 1� h�

h
�� 0� o

h
�� 0�

P
h
�� 	1 Q

h
�� 	2

P � Q
h
�� 	1 � 	2

P
h
�� 	1 Q

h
�� 	2

P; Q
h
�� (	1; Q) � (w(P) � 	2)

P
h
�� 	

P� f �
h
�� 	� f �

P
h
�� 	

P� h
�� 	; P�

The rules should be self explanatory. In particular, the rule for sequential composition
states that the h-derivative of P; Q results from summing up h-derivatives originating
from P, with Q as a sequel, and from Q; the latter contributes to the sum only if P
may terminate immediately. The rule for filtering P with f applies the filter f to every
element of the derivative of P. The rule for P� is obvious if one thinks that Kleene’s
law, namely P� � 1 � P; P�, should remain valid in our setting.

The operational semantics (w���) can be turned into a more tradi-
tional representation in terms of state-transition machines. Recall that a
weighted automaton [18,23] is like a nondeterministic automaton, but both
its arcs and its states are also labelled with weights taken from a semiring.

�������	1
h�o2

h�
�o3

���������	1

h�o2

��

h�
�o3

��

Here, we define a weighted automaton where states are �, the
state labeling function is w(�) and the transition relation �� �

��H � � �� is defined thus: (P� h� o� P�) � ��, written P
h�o
��

P�, whenever P
h
�� 	 and 	(P�) � o � 0. As an example,

the weighted automaton for the process Q � (o2; h � o3; h�)�

is given here on the right, where the leftmost state corresponds
to process Q and the rightmost one to 1; Q. In the next section, we shall introduce an
abstract semantics that equates automata with the same weighted language. It will turn
out that the classical law Q � 1; Q holds also in our setting; a possible application of
such a law could be simplification of the previous automaton to one with just one state
(the rightmost one).

To conclude, let us fix � � �� and give a specification in our language of the Z-
channel mentioned in the Introduction. The input alphabet is h� h� � H and the output
alphabet is l� l�l�� � L�; let p � [0� 1]. Then

1 Note that the semantics of Q� is usually taken as undefined when w(Q) � 0: the reason is
evident if one tries to expand Q� according to Kleene’s law, namely Q�

� 1 � Q; Q�. Here,
for simplicity, in case w(Q) � 0 we stipulate w(Q�) � 0, so as to avoid dealing with a partial
semantic function.
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Z � h; l � h�; pl�l�� � h�; (1 � p)l �

As we shall see, this turns out to be equivalent to h; l � h�; (pl�l�� � (1 � p)l).

4 Abstract Semantics

We first describe the abstract semantics of � by finality and then characterize the se-
mantic mapping in terms of (weighted) language equivalence.

We endow � with a Moore automaton structure2 and then define its semantics coal-
gebraically, following [23,7]. Recall that a Moore automaton with inputs in a finite
non-empty alphabet A and outputs in K is a triple (Q� Æ� 
) where Q is a (not necessar-
ily finite) set of states, Æ : Q � A � Q is a transition function and 
 : Q � K is an
output function. Let us keep A and K fixed. Central to this treatment is the notion of
bisimulation.

Definition 1 (bisimulation). Given M � (Q� Æ� o), a bisimulation is a binary relation
� � Q � Q such that, whenever (q� q�) � � then 
(q) � 
(q�) and (Æ(q� a)� Æ(q�� a)) � �,
for every a � A. We write q � q� if there exists a bisimulation relating q and q�.

The relation � over Q is easily seen to be an equivalence relation and a bisimulation
in turn. A homomorphism between two Moore automata M and M� is a function �

mapping the states of M to the states of M� such that, with an obvious symbology, for
each q � Q, 
(q) � 
�(�(q)) and, for each a � A, �(Æ(q� a)) � Æ�(�(q)� a). The class
of all Moore automata has a final object � that can be characterized in terms of ���’s.
Specifically, we let � be the Moore automaton (Q� Æ� 
) defined thus:

– Q � �A�K ;
– Æ(�� a) � �a, where �a(w) � �(aw), for each w � A�;
– 
(�) � �(�).

Theorem 1 (Finality and Coinduction principle [23]). � is final in the class of
Moore automata with inputs in A and outputs in K. That is, for every such automa-
ton M there exists a unique homomorphism � : M � � . Moreover, for every q and q�

states of M, it holds that q � q� if and only if �(s) � �(s�).

We proceed now to endow � with a Moore automaton structure, with inputs in H and
outputs in the semiring �. Then, the above results will give us: (1) a notion of bisimula-
tion, and (2) a canonical way of interpreting processes as ���’s, which is fully abstract
w.r.t. bisimilarity. The construction goes as follows. We extend the weight function and
transition relation to � by linearity. That is, if we let 	P�h be the unique measure such

that P
h
�� 	P�h (for each P, h and 	), then we have:

– w(	) �
�

P�� 	(P) � w(P);

– 	
h
��� 	h, where 	h �

�
P�� 	(P) � 	P�h.

2 To be precise, we are endowing � with a Moore automaton structure, i.e. we are considering
Moore automata whose states are measures. With some abuse of terminology, we can consider
states as processes, once we see a process P as the Dirac’s measure Æ(P).
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Now, we let � � (�� Æ�w), where Æ(	� h) � 	h: this is a Moore automaton with inputs
in H and outputs in �. Observe that � is naturally embedded in �, once one identifies
P with the measure Æ(P). We now let P � Q stand for Æ(P) � Æ(Q). It is crucial for the
compositionality of the semantics that bisimilarity over � be a congruence.

Theorem 2. For every P� Q�R � � such that P � Q and for every semiring morphism
f : �� �, it holds that:

(1) P � R � Q � R (2) P; R � Q; R (3) P� f � � Q� f � (4) P� � Q�

Let us denote by � the unique homomorphism from � to � given by Theorem 1;
it is a function of type � �� �, mapping every measure to a ���. We want now to
give a more explicit characterization of this homomorphism in terms of the operational
semantics (w���) of �. To this purpose, we extend the notion of h-derivative of a state
	, previously written 	h, to sequences of high actions � � H� in the expected way:
	� � 	 and 	h� � (	h)�.

Proposition 1. For every 	 and �, �(	)(�) � w(	�), for every � � H�.

To conclude, we can define the language generated by a process P, written �(P), as
expected: �(P) � �(Æ(P)).

Let us now illustrate the semantics just introduced by a small, concrete example. Let
us consider the Z-channel again, Z � h; l�h�; pl�l�� �h�; (1� p)l. The Moore automaton
generated by Æ(Z) (or, more formally, the portion of the infinite automaton � that is
reachable from Æ(Z)) according to the operational rules is given by

Æ(Z)
h

����
��

��
�� h�

������������

Æ(l) Æ(pl�l��) � Æ((1 � p)l)

So w(	h) � l, while w(	h�) � pl�l�� � (1 � p)l, as expected. The same result is obtained
starting from Z� � h; l � h�; (pl�l�� � (1 � p)l); thus, Z � Z�.

5 A Compositional Construction

We want to provide now another, more informative way of describing the semantic
mapping � discussed in Section 4. In particular, we want to introduce the analog of the
process operators over � and then prove that � is compositional w.r.t. these process op-
erators (see Corollary 1 below). We follow the approach in [23,7] and define operators
on ���’s via behavioural di�erential equations (���’s). Generally speaking, a ��� is a
coinductive specification of a ���, providing its initial value – �(�) – and the form of its
derivatives �h, for every h � H. Of course, one has in general to prove that the given
equations have a unique solution. The advantage of this kind of definitions, over ex-
plicit but possibly more involved ones, is that they allow for coinductive, step-by-step
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Table 1. Behavioural Di�erential Equations (���’s)

Initial condition Condition on derivatives

o(�) � o (o)h � 0

h(�) � 0 (h)h� �

�
1 if h � h�

0 otherwise
(� � �

�)(�) � �(�) � �
�(�) (� � �

�)h � �h � �
�

h

(�;��)(�) � �(�) � �
�(�) (�;��)h � �h;��

� �(�) � �
�

h

(�� f �)(�) � f (�(�)) (�� f �)h � (�h)� f �

(��)(�) �

�
1 if �(�) � 0
0 otherwise

(��)h � �h;��

reasoning on the ���’s they define. The ���’s defining the operators associated to the
constructs of the language are given in Table 1. There, for every � � H�, we let

0�(�) � 0 1�(�) �

�
1 if � � �

0 otherwise

Indeed, some of these ���’s give rise to operators well-known in the literature on rational
series: � � �� and �;�� are, respectively, just the sum and convolution product defined
by (1) – so another notation for �;�� is just � � ��, while �� is standard iteration (see
e.g. [23]). The main result of this section is Corollary 1 below.

Theorem 3. In �, there exist unique constants ‘o’ and ‘h’ and operators ‘�’, ‘ ;’, ‘� f �’
and ‘ �’ that satisfy the ���’s in Table 1.

Corollary 1 (compositionality). In �, the unique constants ‘o’ and ‘h’ and operators
‘�’, ‘ ;’, ‘� f �’ and ‘ �’ defined by the ���’s in Table 1 also satisfy the following equalities:

�(o) � o �(h) � h �(P � Q) � �(P) ��(Q)

�(P� f �) � (�(P))� f � �(P; Q) � �(P);�(Q) �(P�) � (�(P))�

An obvious consequence of the above result is a Kleene theorem for our language.
Recall that a ��� � � � is rational [18] if it can be inductively built starting from the
���’ o and h (o � �� h � H) and using the sum, concatenation (sequential composition)
and iteration operators defined above. The result entails that one can always eliminate
(�)� f �, essentially by replacing each o occurring in the scope of (�)� f � by f (o).

Proposition 2 (a Kleene theorem). Let � be a ���. Then � is rational if and only if
� � �(P) for some process P � �.

6 Examples

6.1 Modeling a “Single Bid” Auction

We model a scenario where each of a certain number of users (three, for simplicity) bids
for an item at auction. Each user submits a single (secret) bid to a trusted central server
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that, in turn, decides the winner by choosing the user whose bid has the highest value.
Let U1�U2�U3 be the users; every user knows his bid and the outcome of the auction
produced by the server; the problem is measuring the information that every user has
about the other users’ bids.

We choose a user, U1, model his view of the auction and try to understand what infer-
ences he can perform about other users’ bids – that is, U1 represents here the (passive)
attacker. U1’s bid (a natural number between 1 and m) is an observable event modeled
by actions l1� � � � � lm; also the outcome of the auction (i.e., the index of the user that
wins the auction) is an observable event modeled by actions l�1� l

�
2� l

�
3. On the contrary,

the bids of U2 (taken from �1� � � � � n� and modeled by high actions h1� � � � � hn) and of U3

(taken from �1� � � � � q� and modeled by high actions h�1� � � � � h
�
q) are unobservable events,

from U1’s point of view. Let us fix the semiring as � ���.
A simple way to model the auction is by the following process:

n�
j�1

h j;

�������
q�

k�1

h�k;

�������
m�

i�1

[li �� Pr(li)]; oi� j�k

������	
������	 (3)

where Pr(li) denotes the probability of the event li and the element oi� j�k � �� deter-
mines who is the winner of the auction. The actual definition of oi� j�k depends on how
we decide to resolve conflicts arising from di�erent users submitting the same bid. A
simple but crude way is to resolve the conflict deterministically, e.g. by choosing the
user with lowest index:

oi� j�k �


�������
[l�1 �� 1] if i � j and i � k
[l�2 �� 1] if j � i and j � k
[l�3 �� 1] otherwise.

(4)

A fairer way of choosing the winner is by letting

oi� j�k �

�
l�t ��

1
Ti� j�k

�
t�Ti� j�k

(5)

where Ti� j�k is the set of user indexes (i.e., Ti� j�k � �1� 2� 3�) containing the indexes of
the users who made the greatest bids among i� j� k. For example, if i � j � k, then
Ti� j�k � �1� 2� 3�; if i � j � k, then Ti� j�k � �1� 2�; if i � j and i � k, then Ti� j�k � �1�; and
so on.

We let P and Q be the process (3) that uses (4) and (5), respectively, as a definition
of oi� j�k.

Let us now describe the matrix �(P). By the ���’s (or the operational seman-
tics), the only entries with non-zero values are �(P)(h jh�k)(lil�t ) for i � �1� � � � �m�,
j � �1� � � � � n�, k � �1� � � � � q� and t such that oi� j�k � [l�t �� 1]; moreover, we have
that �(P)(h jh�k)(lil�t) � Pr(li). Suppose now that an a priori probability distribution on
high traces, Pr(�), reflecting the bidding behaviour of the users, is publicly known. U1

can then perform some Bayesan inference about the bids of the other users: these in-
ferences are of the form Pr(h jh�k  lil�t ); by noting that �(P)(h jh�k)(lil�t ) corresponds to
Pr(lil�t  h jh�k) and by elementary probability theory

Pr(h jh
�
k  lil

�
t) �

Pr(lil�t  h jh�k) � Pr(h jh�k)

Pr(lil�t )
�

Pr(li) � Pr(h jh�k)

Pr(l�t  li) � Pr(li)
�

Pr(h jh�k)

Pr(l�t  li)
�
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To make a concrete case, let us assume that each user has only two possible bidding
values; thus, m � n � q � 2. In this case, �(P) is

l1l�1 l1l�2 l1l�3 l2l�1
h1h�1 Pr(l1) 0 0 Pr(l2)
h1h�2 0 0 Pr(l1) Pr(l2)
h2h�1 0 Pr(l1) 0 Pr(l2)
h2h�2 0 Pr(l1) 0 Pr(l2)

Thus, Pr(h1h�1  l1l�1) � 1, since Pr(l�1  l1) � Pr(h1h�1): indeed, by (4), the only possi-
bility for U1 to be the winner if he has bid 1 is to have all the bids at 1. The case for
Pr(h1h�2  l1l�3) is similar. Let us consider now Pr(h2h�k  l1l�2), for any k � �1� 2�; in this
case, Pr(l�2  l1) � Pr(h2) because, if U1 has bid 1 and the winner is U2, it must be that
U2’s bid is 2, no matter of U3’s bid. Thus, Pr(h2h�k  l1l�2) � Pr(h�k), once we assume
that the users bids are pairwise independent. Finally, let us consider Pr(h jh�k  l2l�1), for
any j and k. In this case, U1 will always win; thus, Pr(l�1  l2) � Pr(l2) and, hence,

Pr(h jh�k  l2l�1) �
Pr(hjh�

k)
Pr(l2) . To sum up:

1. if U1 bids 1,
(a) he can determine with certainty the other bids if the winner is himself or U3:

in the first case, the bids are 1 for everybody; in the second case, U2 has bid 1
and U3 has bid 2.

(b) if the winner is U2, his only uncertainty is on U3’s bid, since he knows that U2

has bid 2.
2. if U1 bids 2, he surely wins, but he cannot determine with certainty any other bid.

Let us now see how the matrix changes by passing from P to Q, and thus compare the
two implementations of the auction system from the security point of view. The matrix
for Q is:

l1l�1 l1l�2 l1l�3 l2l�1 l2l�2 l2l�3
h1h�1

Pr(l1)
3

Pr(l1)
3

Pr(l1)
3 Pr(l2) 0 0

h1h�2 0 0 Pr(l1) Pr(l2)
2 0 Pr(l2)

2
h2h�1 0 Pr(l1) 0 Pr(l2)

2
Pr(l2)

2 0
h2h�2 0 Pr(l1)

2
Pr(l1)

2
Pr(l2)

3
Pr(l2)

3
Pr(l2)

3

As expected, this system has more possible high-traces associated to the same low
traces, that now are taken from a larger set. Therefore, in this second implementation of
the auction system, U1 can infer less information about the others’ bids; in other words,
Q is more secure than P. This statement can be made precise by saying that the capacity
(see e.g. [9]) of �(Q) is less than the capacity of �(P).

We omit the detailed computation for lack of space. It is worth remarking that all the
matrices shown can be calculated in a coinductive way via the ���’s presented in the
previous section. Moreover, as discussed in [23], such calculations are mechanizable.

6.2 Imperative Computations

This section provides a di�erent way of writing examples; indeed, instead of adopting
a process algebraic flavour (like, e.g., in section 6.1), we adopt here a more imperative
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flavour, by exploiting the semiring of stores, 	, described in Section 2. We let � �� ���
range over sets of stores, i.e. partial functions from a set of variables V to a data domain
� that are both non-empty. Notationally, we write the singleton store �[x �� v]� as
[x � v].

The filter operator (�)� f � can be used to express variable updates and conditionals
mostly like in an imperative setting. Indeed, variable updates can be modelled by using
elements of the semiring as process actions, like in e.g. [x � 1]; P. However, this feature
only allows us to assign constants to variables. If we want to copy one variable into
another, like in e.g. x :� y, this trick does not work, and we have to use filters. For
example, if x� y � V , then the imperative program fragment P; x :� 0; y :� x � 1; Q
corresponds to the following term in the calculus

(P; [x � 0])� fy:�x�1�; Q

where fy:�x�1 : 	� 	 is the morphism defined by

fy:�x�1() � �m � [y � m(x) � 1] : m �  and m(x) is defined�
	 �m �  : m(x) is not defined� �

Similarly, the program fragment P; if (x � y) then y :� y � 1 else z :� 1 corresponds
to the term �

P� f(x�y)�)� fy:�y�1� � (P� f(x�y)�
�
� fz:�1� �

Here the function f(x�y) filters out the stores not satisfying the condition x � y, that is

f(x�y)() � �m �  m(x)�m(y) are both defined and m(x) � m(y)�
	 �m �  : m(x) or m(y) is not defined� �

The other filtering functions are defined as expected.
We can use the above ingredients to model the non-interference scenario commonly

employed when reasoning on imperative programs. Specifically, let us assume that the
set of variables V is partitioned into low and high ones, viz. VL and VH . We shall need
a filter (�)� fL� that hides from the attacker the high-part of stores and is defined to be
fL() � �m�VL : m � � � In a term like P� fL�, assignments to high variables, [h � v],
are not directly observable. Rather, in our modelling, it will be convenient to mark the
occurrence of each such assignment with a distinct high event: the semantics �(P� fL�)
then takes care of establishing the correct correspondence between sequences of such
events and observed stores. As an example, the program fragment h :� 0; l :� h, where
h � VH and l � VL, is modelled as

Q �
�

(h0; [h � 0])� fl:�h�
�
� fL�

and, as expected, �(Q)(h0) � [l � 0].
In this setting, it is quite natural to model, for instance, a ��� checking scenario. A

user chooses a 4-digit ��� and then stores it into a high variable h. The attacker chooses
a guess for this ��� and stores it into a low variable l. This behaviour is modelled by

Choose �

��������
�

i��0�����9999	

hi; [h � i]

�������	 ;

��������
�

j��0�����9999	

[l � j]

�������	
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The ���-checker then checks h against l and stores the result of the comparison into the
low variable r. The whole system is now modelled by:

Check � ( Choose � fh�l�; [r � ok] � Choose � fh�l�; [r � no] ) � fL�

where the filtering functions fh�l and fh�l are defined as expected. We could now gen-
erate the function �(Check) via the ���’s and check that it violates non-interference:
indeed, �(Check) maps the trace hi to the set of stores i � �[l � i� r � ok]� 	 �[l �
j� r � no] : j � i�; therefore, for i � j, we have i �  j. We could make the behaviour
of the ��� checker more refined, by e.g. combining the two semirings considered in
Section 2 and associate probabilities with the choice of the secret and the attacker’s
guess.

7 Parallelism

The interpretation of parallelism and synchronization is notoriously problematic when
probability is involved. On the other hand, if we content ourselves with just weights –
indeed in our calculus we never require weights to add up to 1 – parallelism becomes
much easier, as studied e.g. by Hillston [17] and other authors doing stochastic process
algebra. In fact, is technically easy to extend the language presented in Section 3 with
operators that introduce some form of parallelism. The corresponding operational rules
mimics those found in process calculi, e.g. 	�� [7]. As a further simplification, in the
following we shall confine ourselves to a pure interleaving operator, . We set w(PQ) �
w(P) � w(Q) and introduce the new operational rule

P
h
�� 	 Q

h
�� 	�

PQ
h
�� (	Q) � (P	�)

where, as expected, (	Q) is the measure that assigns the weight 	(R) to any term of
the form RQ, and yields 0 elsewhere ((P	�) is defined symmetrically). In the final
semantics, this corresponds to the shu�e operator on ��� defined by the following ���:
(��)(�) � �(�) � �(�) and (��)h � (�h�) � (��h), for h � H.

As an example, assume H � �h� h�� and L � �l� l�� and consider P � (h; o � h�; o�)�,
for distinct h� h� and o� o�. This process behaves as a noiseless channel that reveals to the
attacker the sequence of actions � � H� is performed by the secret scheduler. Assume
now that two other processes work in parallel with P producing distinct observable
e�ects associated with h and h�, thus

S � P(h; o�)�(h�; o)� �

The system S is a quasi-perfect scrambler, that only reveals the total length of the se-
quence � performed by the three processes. Indeed, assume for instance that o � [l �� 1

2 ]
and that o� � [l� �� 1

2 ]. Then, in the row � (� H�) of the matrix �(S ), the probability is
uniformly distributed on the low-traces of length k, �l� l��k, where k � �.
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8 Concluding Remarks

In the last eight years there has been steady activity in developing concepts, definitions
and analyses in the area of measuring information flows for di�erent languages. Ul-
timately, these aim at being a means of enforcing quantity based security policies. A
highly desirable outcome of this e�ort would be the automatic checking of enforce-
ment via either model checking or program analysis. So far, the e�orts have lead to
some notable progress for simple imperative languages [14,22,21,4,11]. By contrast,
progress for process algebras has been notably slower. One problem has been estab-
lishing appropriate concepts. Lowe’s work [19] provided a starting point, developed in
quite diverse directions by many authors [6,9,10,20,3,1]. Compared with these works,
the present paper makes a conceptual, rather than technical, step, by introducing a gen-
eral, flexible scheme for specifying and analysing regular behaviours of di�erent kinds,
of which quantitative ones are just one flavour.

Our study has connections to the work of Rutten and his collaborators on coalgebras.
As mentioned throughout the paper, the coalgebraic treatment of streams and ���’s was
introduced, in a syntax-free framework, in [23]. In a recent paper [5], they present a
systematic way to generate languages of (generalised) regular expressions, and a sound
and complete axiomatization thereof, for a wide variety of quantitative systems. There
are two major di�erences between our work and theirs. First, they work with branching-
rather than linear-time semantics: their final coalgebras are not ���’s, but more compli-
cated objects with no natural interpretation in terms of traces, languages and security
analysis. Second, they focus on axiomatizations rather than on compositional semantics
in terms of rational operators and ���’s, as we do here.

Future developments of the present framework are exploring instantiations and in-
terpretations of the semiring, as well as expanding the process language. Clearly the
addition of a parallel operator with synchronization would be a significant enhance-
ment, although it would lead us outside the realm of regular behaviours. So far this
extension has presented non-trivial diÆculties.
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Abstract. We present a game-theoretic framework for modeling and solving
routing problems in dynamically changing networks. The model covers the as-
pects of reactivity and non-termination, and it is motivated by quality-of-service
provisioning in cognitive radio networks where data transmissions are interfered
by primary systems. More precisely, we propose an infinite two-player game
where a routing agent has to deliver network packets to their destinations while
an adversary produces demands by generating packets and blocking connections.
We obtain results on the status of basic problems, by showing principal limitations
to solvability of routing requirements and singling out cases with algorithmic
solutions.

1 Introduction

An objection to research in theoretical computer science is often the simplicity of the
models under consideration in relation to much more complex situations as they arise in
practice. In the present paper we attempt to bridge this gap in a specific field of network-
ing which draws much attention currently, namely routing problems over dynamically
changing networks. This is motivated by a new system concept in the domain of wire-
less networking referred to as cognitive radio networks.

To illustrate this, consider a wireless communication network (referred to as cogni-
tive network in the following) which consists of a certain set of nodes. For any pair
of neighboring nodes, there are several radio channels that can be used to convey data
packets from one node to the next one. The network is subject to some load, i.e., at
different nodes data packets are created at different times which need to be forwarded
to a particular destination. Packets are forwarded by a routing scheme, which can take
different information into account (channel states, network load) and is therefore reac-
tive. In such a network, dynamic changes of the connectivity between nodes can occur
due to interference. Interference occurs if some (potentially malicious) device or mul-
tiple such devices start occupying radio channels that are used by the considered cog-
nitive network. Such an action corrupts any data conveyed on that particular channel
and blocks therefore the channel as the cognitive radio network can detect interference
on radio channels prior to data transmission. The main envisioned application area of
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formation and Communication”) of the German Excellence Initiative, German Research Foun-
dation grant DFG EXC 89.
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such cognitive radio networks is the reuse of allocated radio channels owned by so
called primary systems. It is well known that at any point in time the radio spectrum is
heavily underutilized. Thus, “cognitive devices” that identify temporarily unused radio
channels could solve the problem of underutilized radio spectrum (assuming that they
vacate any used radio channels once a primary system starts transmitting data again).

An important question in such a network setting is if – and possibly under which con-
ditions – a cognitive network can provide quality-of-service for transmission requests
that it serves; for instance, does the system concept allow for a timely delivery of data
packets, how much memory must be put into the nodes of the network to support such
guarantees, how do routing schemes have to be designed etc. The key concept in this
scenario is the routing of packets which is adversely affected by the way radio channels
are interfered over time. As we are interested in worst-case system performance, this
naturally leads to a dynamic network model with at least two decision instances: an
entity performing the routing as well as an entity that causes interference. In this paper
we are interested in theoretical limitations and possibilities of routing in such dynamic
networks under various conditions which have implications for the technical design of
a cognitive network.

To do so, we propose a game-theoretic model for routing under adversarial condi-
tions. More precisely, we consider a structured scenario in which two adversarial agents
perform actions in turn. The first agent, called demand agent, carries out actions that
conflict quality-of-service provisioning in the cognitive network. As indicated, primary
systems might block certain radio channels (edges) between nodes of the cognitive net-
work, while new data packets are generated that have to be forwarded by the cognitive
network to their destination. The other agent, called routing agent, sends packets from
nodes to neighboring nodes, observing the fact that certain radio channels are blocked.
We assume a time-slotted (discrete) mode of operation in which demand agent and rout-
ing agent do their actions in alternation. This results in an infinite system run that is also
called “play”, following game-theoretic terminology. Thus, our model includes the as-
pect of full reactivity (between demands and routing) and of non-termination. Different
quality-of-service requirements to be guaranteed by the routing agent are condensed in
“winning conditions” – a play that satisfies one such winning condition is considered
won by routing agent, otherwise demand agent wins. A routing algorithm that leads to
satisfaction of the given requirements under all possible behaviors of the demand agent
is thus a winning strategy in this infinite game. Note that a winning strategy works
fully adaptively over infinite time, even under radical changes of profiles of the demand
player; it is thus a stronger kind of solution than standard routing schemes.

We introduce the model in more detail in the next section. Then we show results on
principal limitations of algorithmic solutions. We show that for our model in general,
it is algorithmically undecidable whether, given a network and some requirements, a
solution (i.e. a winning strategy for routing agent) exists (Section 4). On the other hand
we then show that, assuming specific technical requirements for our network model,
the existence of a solution can be decided and that in the cases where a solutions exist
routing schemes can be effectively constructed (Section 5).

The issue of routing in dynamic networks has been addressed previously in the
context of of online algorithms and competitive analysis by Awerbruch, Mansour and
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Shavit in [4]. In their work – and in a sequel of related ones [1,2,3] – the focus was
on the design of online algorithms with the goal of balancing the load in the network
to avoid congestion. Note that an online algorithm may be viewed as a strategy in a
finite game (possibly of unbounded length), and its performance is measured relatively
to a corresponding optimal offline algorithm. This view has two shortcomings. First,
such a competitive analysis requires a reasonable comparison of the online algorithm
with a corresponding offline algorithm. However, it is inappropriate for the analysis of
problems where an online algorithm is only able to find a strict subset of the offline
solutions. For example, routing problems can be analyzed via competitive analysis if
the number of delivered packets (throughput) is the subject of interest. However, an-
alyzing for which dynamic scenarios certain network properties as the delivery of all
packets can be guaranteed (quality-of-service) is out of scope of the competitive anal-
ysis approach. The other shortcoming in our context is due to the fact that a network
protocol or routing scheme should run without termination. As it is known from the
theory of automatic verification (see e.g. [6]), several natural requirements, such as live-
ness and fairness conditions, can only be modeled faithfully when infinite system runs
are considered rather than their approximations by finite runs of unbounded length.

Further related work on game-theoretic analysis of dynamic networks has been started
in the studies of “sabotage games”, which van Benthem introduced in [5]. There, a reach-
ability problem over graphs is considered, where a “Runner” traverses a graph while a
“Blocker” deletes an edges after each move. The theory of these games was developed
by Löding and Rohde in [13,12,15,16] and also by others [11,8]. An enhanced non-
terminating version of such games was studied in [14]. There, two players, “Construc-
tor” and “Destructor” add resp. delete vertices/edges, and the problem of guaranteeing
certain properties of the network graph (like connectivity) is addressed. However, all
these approaches do not address the essential issue of simultaneous routing of many
packets (which leads to a possibly infinite state space).

Let us finally mention some work on other, complementary aspects of cognitive
radio networks. In [7] different solution concepts by equilibria are pursued. In [19]
the construction of appropriate network architectures is addressed. Shiang and van der
Schaar [17] consider a learning approach for constructing routing schemes adapted to
the behavior of the network users.

2 Modeling Routing in Dynamic Networks via Games

We assume that the two agents acting in the network know the current network structure
including all information about packets and blocked channels. So, in the present ideal
setting we consider a game of perfect information. Moreover, the blocking of frequen-
cies and the generation of packets are subject to certain constraints; these rules may
depend on the whole network state. We allow only “deterministic” (rather than prob-
abilistic) constraints; randomized packet generation and randomized frequency block-
ing [11] is not treated in the present paper.

The game and the game arena. A dynamic network routing game between two play-
ers, called demand agent and routing agent, is given by a tuple G = (G,C,W ) where
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G is the network graph, C a list of “constraints” for moves of demand agent, and W
the requirement (winning condition) to be fulfilled by the routing agent. More precisely,
the network graph or connectivity graph G is a graph of the form G = (V,E) with
finite vertex set V and a finite set E of multi-edges (network connections, where sin-
gle edges correspond to frequencies). Formally, E is partitioned into sets Ea of single
edges, where a ∈ Σ for some index set Σ which denotes the set of available frequen-
cies. We write (u, v)a for the edge (u, v) in Ea. For convenience we consider in the
following all edges as undirected, i.e. (u, v)a ∈ E implies (v, u)a ∈ E. (However,
all results in this paper hold exactly in the same way for network graphs with directed
edges.) C is a list of rules, called also constraints, i.e. conditions imposed on edge re-
moval and packet generation. Finally, W is the winning condition, formally a set of
infinite plays, and containing precisely those plays that are won by routing agent. We
now explain in several stages the notion of play (or admissible system run consisting of
network states).

Packets and blocked frequencies. A packet consists of a unique identifier from N, its
destination node, and a timestamp, which is the number of turns since its creation. Thus
a packet is a triple (id , u, k) ∈ N × V × N, indicating that it has the identifier id , the
destination u, and that it was generated k turns before the current moment. We define
the packet distribution λ : V → 2N×V ×N by mapping each node to the set of packets
which are currently stored at this node.

Network connections (edges) can be blocked (by demand agent, more precisely by
the component of primary systems) for a certain number of turns. The current status of
the edges is described by a blocked links function bl : E → {0, 1, . . . ,m} which says
that edge e is blocked for the next bl(e) turns. If bl(e) = 0, the edge e is not blocked.
Communication between two nodes via the edge e is only possible if bl(e) = 0.

The maximal number of turns m that can be assigned to an edge for blocking is
always given by the constraints C, which are described later. We denote the set of all
possible functions bl for a game G (i.e. E and m are fixed) by BLG or simply by BL
when the context is clear.

Network states and plays. The positions or states of a dynamic network routing game
G are called network states. A network state is a triple (0/1, λi, bl i) where 0 (resp. 1)
indicates that routing agent (resp. demand agent) moves next, λi is a packet distribution,
and bl i is a blocked links function. We denote by QG the set of all network states in the
game G; note that QG can be infinite in general, since we do not impose an a priori
bound on the number of packets in the network.

The initial network state is (1, λ0, bl0) with λ0(u) = ∅ and bl0(e) = 0 for all
u ∈ V , e ∈ E, i.e. no packets are in the network, no edges are blocked, and demand
agent starts. The subsequent moves are chosen by routing agent and demand agent in
alternation. A turn is defined as two consecutive movements: the first one by demand
agent and the second one by routing agent; each of the player’s moves we call a half-
turn. In the i-th half-turn where i is even, demand agent moves and the network state
(1, λi, bl i) is updated according to demand agent’s action to (0, λi+1, bl i+1). In the
subsequent half-turn (where i+ 1 is odd), routing agent acts and generates the network
state (1, λi+2, bl i+2). A detailed explanation of these updates follows. A play is an
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infinite sequence of network states that is generated in this way, i.e. a sequence ρ =
ρ0ρ1ρ2 . . . ∈ Qω

G with ρ0 = (1, λ0, bl0).

Constraints and moves. When it is demand agent’s half-turn, he generates new packets
and blocks edges for a certain amount of turns. We restrict demand agent’s movements
that are possible in the game G = (G,C,W ) by a list C of “constraints”. An example
of a constraint is the following:

node u has a packet ∧ ¬ edge (u, v)a is blocked −→
block2((u, v)a) | block1((u, v)a), generate(u, v′) .

This constraint says that, when there exists a packet at node u and the edge (u, v)a is
not blocked, then demand agent either must block the edge (u, v)a for the next two
turns or he has to block the edge (u, v)a for one turn and generate a packet at node u
with destination v′. If C is a list of more than one constraint, they are processed in their
given order. Generally, a constraint C is a list of rules of the form

Condition −→ Behavior .

Here, the condition is a Boolean combination of statements of the following form:

1. edge (u, v)a is blocked
2. node u has a packet (possibly with destination d and/or timestamp t)

A constraint is called weak if all of its conditions only depend on blocked edges, i.e. ev-
ery condition is a Boolean combination of statements of the first form. Weak constraints
reflect the natural assumption that the possibility of demands (either channel blocking
or packet generation) should be restricted by information on the currently blocked chan-
nels, but not on packets in the cognitive network.

The behavior is a disjunction (separated by “|”) of conjunctions (separated by “,”)
of demands, i.e. instructions of the form (1) generate(u, d) and (2) blockm((u, v)a)
The first says that demand agent must generate a packet at node u with destination d.
The second says that demand agent has to block the edge (u, v)a for the next m turns.
Notice that also an edge (u, v)a with bl i((u, v)a) �= 0 can be blocked again; in this case
bl((u, v)a) is updated to its new value k according to the rule blockk(u, v).

In order to rule out some very exotic situations, the constraints always impose a
uniform bound m on the number of turns for which an edge can be blocked and on the
number of packets generated per turn. The blocked links function bl is then a function
from E to {0, 1, . . . ,m} (if no “block” instruction exists in the constraints, we set
m := 0). A bound for the maximal number of packets generated per turn can be defined
by the number of all “generate” instructions in the constraints.

The semantics of the constraints is defined in the natural way: The list of constraints
is processed in their given order, and whenever the condition (left hand side) is true
(matches the current network state), demand agent has to choose exactly one of the
conjunctions of the behavior (right hand side). Then all statements of the chosen con-
junction are carried out.
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On a more abstract level, the constraints can be seen as a function C : QG → 2QG

which assigns to each network state of demand player a set of possible successor net-
work states that are described by the given list of constraints. Since in weak constraints
only conditions of form 1 are used, these constraints depend on the blocked links only.
So, on this abstract level, weak constraints can be seen as a function C : BLG → 2QG

which assigns to each blocked links function a set of possible successor network states
that are described by the given list of constraints.

When it is routing agent’s half-turn, she can send packets to neighboring nodes. For
each node v ∈ V and each available frequency a ∈ Σ, at most one packet can be
transmitted from node v via frequency a. Delivered packets, i.e. packets that reach
their destination in this turn, are removed from the network. For all other packets the
timestamp is increased by 1. After routing agent’s half-turn the value of the blocked
links function bl is decremented by one for every edge (if it is not already 0).

Strategies. In this paper we only consider deterministic strategies. A strategy for de-
mand agent (resp. routing agent) is a function, here denoted by σ (resp. τ ) that describes
the decisions of the agents (possibly depending on the history of the play). Formally, a
strategy for demand (resp. routing) agent is a (partial) function σ : Q+

G → QG (resp.
τ : Q+

G → QG) that maps each possible play prefix ρ1 · · · ρk to a new network state
which is permitted by the before mentioned rules.

Winning conditions. The winning condition W (for routing agent) describes for each
play ρ ∈ Qω

G whether routing agent wins ρ. We consider the following fundamental
winning conditions:

– DELIVERY. Routing agent wins a play ρ if in ρ each generated packet is eventually
delivered.

– DELIVERY	. Routing agent wins a play ρ if in ρ each packet is delivered within "
turns after it was generated.

– BOUNDEDNESS. Routing agent wins a play ρ if in ρ the number of packets in the
network is bounded, i.e. there is a k such that the number of packets is always ≤ k.

Demand agent wins a play if it is not won by routing agent. We say that demand agent
(resp. routing routing) wins a game G if there exists a strategy σ (resp. τ ) such that he
(resp. she) wins every play ρ ∈ Qω

G that is played according to this strategy.

Some basic problems. From the theory of infinite games it is known that in a very
abstract view of winning conditions, there are winning conditions that do not allow a
winning strategy for either player. Such games are called non-determined. All winning
conditions in this paper are of a somewhat concrete and simple kind (called Borel con-
ditions) that leads to games that are determined; so one of the two players has a winning
strategy. So we do not not address the problem of determinacy in the sequel.

A solution of a game consists then of

1. the decision which of the two players wins
2. and then a presentation of a winning strategy for the winner.
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We will first show that the first problem is undecidable for the winning conditions
BOUNDEDNESS and DELIVERY. On the other hand, for DELIVERY	 both problems 1
and 2 will be shown to be solvable. We will then present a variant where we restrict the
constraints C to be weak; these games turn out to be solvable also for the DELIVERY

winning condition.

3 Toy Example

Consider the tiny network G in Figure 1 with channels over Σ = {a, b}. We define the
dynamic network routing game G = (G,C,W ) where demand agent’s constraints C
are the following. In each turn, demand agent generates at node v1 two packets with
destination v4. Also he blocks exactly one of the a-labeled edges for one turn; so, ex-
actly one of these edges is blocked every turn. The constraints C are weak and can be
formalized as follows:

true −→ generate(v1, v4), generate(v1, v4)
true −→ block1(v1, v2)a | block1(v1, v4)a | block1(v2, v3)a | block1(v3, v4)a .

•v1 • v2

• v3•v4

a

a

a b a b

Fig. 1. A network graph of a dynamic network routing game

First, we analyze the game G for the DELIVERY winning condition. Routing agent
wins the game with the strategy that she sends the packet with the highest timestamp
at v1 to v4 via the b-labeled edge. This operation is always possible since demand agent
cannot block the b-labeled edge in this game. With this strategy, the packet with the
highest timestamp always reaches its destination in every turn. So, routing agent wins G
for the DELIVERY winning condition.

Next, we discuss the game with the DELIVERY	 winning condition. Routing agent
does not win with the above strategy for the DELIVERY winning condition, because by
playing this strategy more and more packets have to be kept at v1. So, routing agent
has to route packets via channel a either using the edge (v1, v4)a or the path v1v2v3v4.
Now, consider that demand agent blocks the edge (v1, v4)a; so, routing agent has to
send a packet via the path v1v2v3v4. In this case, demand agent can keep this packet at
the nodes v2 and v3 by deleting the edge (v1, v2)a if the packet is at v2 (resp. the edge
(v3, v4)a if the packet is at v3). Such a packet will never be delivered. So, demand agent
wins G with the DELIVERY	 winning condition for every ".

Surprisingly, routing agent can win the game for the BOUNDEDNESS winning con-
dition. Her strategy is the following: In every turn routing agent delivers one of the
generated packets at v1 directly via the b-labeled edge. She also delivers the other gen-
erated packet via the a-labeled edge to v4 if this edge is not blocked; otherwise, she
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sends this packet to v2. Furthermore, routing agent sends packets at node v2 always
to v3, and she sends packets at v3 to v4 whenever this is possible. It is easy to see that,
by playing this strategy, each of the generated packets at v1 is sent immediately to an-
other node, and that the number of packets at node v2 (resp. v3) is at most 1 (resp. 2).
So, the number of packets in the network is bounded.

4 Negative Results

Our first result shows that one has to assume a certain coarseness of the constraints in
order to enable an algorithmic analysis of dynamic network routing games. For general
(or exotic) constraints we obtain undecidability:

Theorem 4.1. The following problem is undecidable: Given a network routing game
with the BOUNDEDNESS winning condition, does routing agent have a winning
strategy?

Proof. We show this result by a reduction of the boundedness problem for 2-register ma-
chines to games with the BOUNDEDNESS winning condition. The boundedness problem
for 2-register machines, which are Turing-complete, is known to be undecidable.

A 2-register machine is a program which operations are the modification of two
registers X1, X2; the allowed operations of these registers are the increment and decre-
ment by 1, and the test whether a particular register is 0. Formally, a 2-register ma-
chine has the form R = I1; I2; . . . ; Ik where each Ij is one of the following instruc-
tions: j : INC(Xi), i.e. increment register Xi by 1, j : DEC(Xi), i.e. decrement Xi by 1
if Xi > 0, j : IF Xi = 0 GOTO m, i.e. a conditional jump to instruction m, and
j : GOTO m, i.e. an unconditional jump to m (with 1 ≤ m ≤ k). The last instruction
stops the computation: Ik = k : STOP.

We construct, given a 2-register machine R = I1; I2; . . . ; Ik , a dynamic network
routing game G = (G,C, BOUNDEDNESS). The game arena G = (V,E) has |k| + 5
vertices V = {v1, . . . , vk, c1, c2, c

′
1, c

′
2, s}. Each of the vertices v1, . . . , vk corresponds

to an instruction of the register machine. A packet starting on vertex v1 with destination
vk will move according to the instructions of R. The vertices c1, c2 represent the two
counters (their values are given by the numbers of packets located at c1, c2), and in
order to decrement a counter, the vertex s is used as destination for packets from c1, c2.
The vertex c1 (resp. c2) is connected to s via the vertex c′1 (resp. c′2) and is used to force
routing agent to decrement the number of packets in c1 (resp. c2). The construction only
uses an edge relation over single edges; it is defined as follows:

E :={(vj , vj+1) | j : IF Xi = 0 GOTO j′, or j : INC Xi, or j : DEC Xi ∈ R}
∪ {(vj , vj′) | j : IF Xi = 0 GOTO j′, or j : GOTO j′ ∈ R}
∪ {(c1, c′1), (c2, c′2), (c′1, s), (c′2, s)} .

When there are no packets in the network – especially in the first turn – demand agent
creates a packet with destination vk at vertex v1, which mimics the instruction pointer.
The constraints ensure that exactly the edge between two vertices vi and vj is enabled
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when the packet is at vi and the instruction which must be executed next in R corre-
sponds to the vertex vj . At the vertices c1 and c2 packets are generated according to
the increment instructions, and the paths to the vertex s are enabled according to the
decrement instructions. The vertices c′1 and c′2 allow that we can encode in the con-
straints a check whether routing agent really sends a packet towards s according to a
decrement instruction. If the instruction pointer packet reaches its destination vk, the
game switches in a mode where all remaining packets in the network will be delivered.

With some work on the exact formulation of the constraints one can see, that with
such a construction routing agent wins G iff the register machine R is bounded. � 

Theorem 4.2. The following problem is undecidable: Given a network routing game
with the DELIVERY winning condition, does routing agent have a winning strategy?

Proof. The argument is a one-to-one copy of the previous proof. Here we reduce the
halting problem for 2-register machines to games with the DELIVERY winning condi-
tion. Namely, with the same construction as above, we see that if a 2-register machine
reaches the stop instruction Ik, then all packets are delivered; so, routing agent wins.
Conversely, if the 2-register machine does not reach the stop instruction Ik , at least the
packet which mimics the instruction pointer does not reach its destination; so, demand
agent wins. � 

Note that the undecidability results above can be sharpened. They are still valid if we
only consider single channel networks (using only one frequency) since only single
edges are involved in the constructed network graphs.

The results can be also sharpened regarding the conditions used in the constraints. For
the informally given description of the constraints, only statements of the form “edge e
blocked” and “node u has a packet” are necessary. So, it is not necessary to check the
destination or the timestamp of a packet in the network to obtain undecidability.

5 Positive Results

In this section we show first that dynamic network routing games with the DELIVERY	

winning condition are solvable by a reduction to the so-called safety games. Then we
show that dynamic network routing games with weak constraints are solvable even for
the BOUNDEDNESS and the (unrestricted) DELIVERY winning condition.

5.1 Solving Games with the DELIVERY� Winning Condition

Before turning to dynamic network routing games with the DELIVERY	 winning condi-
tion, we recall the fundamental notion of safety game from the theory of infinite games.
In the case of network routing games, a safety winning condition for routing agent is
given by a set A of “admissible network states”. Routing agent wins a play ρ = ρ0ρ1 . . .
if each network state ρi belongs to A. In other words, she has to avoid getting outside A
at some point.

If the set of possible network states is finite, one can compute whether routing agent
has a winning strategy (starting from the initial network state) in a safety game specified
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by the set A and, in this case, one can compute her winning strategy (a constructive
proof can be found in [18,9]). We can now easily prove the following result:

Theorem 5.1. Dynamic network routing games with the DELIVERY	 winning condition,
where " ∈ N, are solvable (so that one can decide whether routing agent wins and in
this case provide a winning strategy in terms of a suitable routing scheme).

Proof. The idea is that the DELIVERY	 winning condition ensures that the set of net-
work states of the game G = (G,C, DELIVERY	) can be assumed to be finite with
a winning condition in the safety format, so that the remark above gives the desired
solution.

It remains to be shown that it suffices to inspect only a finite subset of the network
states. We can assume that the game is over when the timestamp of a packet exceeds "
(routing agent loses in this case). So, we can assume that it is sufficient to consider
packet timestamps of at most " + 1. Also, the number of packets that can be generated
in one turn is bounded by the constraints, say by a constant k. So, the total number of
packets in the network is at most ("+ 1) · k. Since each packet gets the lowest available
identifier when generated, the identifiers are also bounded by ("+1)·k. So, in this case a
packet distribution λ is a function from V to 2[(	+1)k]×V ×[	+1] where [n] := {0, . . . , n}.
The number of different functions of this form is finite. � 

5.2 Solving Games under Weak Constraints

We exhibit another natural scenario under which the dynamic network routing game
becomes solvable, even for the conditions BOUNDEDNESS and DELIVERY.

This scenario is given by a certain format of constraints of the demand player, taking
into account the division of demands into those by the primary systems and the cognitive
network. A natural assumption on the constraints is that the demand actions may depend
on blocked frequencies (i.e. currently active demands of the primary systems) but not
on information about packets that are currently in the cognitive network. This leads to
the assumption that constraints depend on the information about blocked channels only.

We already defined these weak constraints in Section 2; they can be seen as a function
C : BL → 2QG which assigns to each blocked links function a set of possible successor
network states. We shall show, in contrast to the results of Section 4, the solvability of
games with weak constraints. The central observation will be that – assuming weak con-
straints – inspecting only finitely many network states is sufficient to decide DELIVERY

resp. BOUNDEDNESS. As a preparation we state some auxiliary propositions.

Remark 5.2. In a dynamic network routing game with weak constraints, consider a
play ρ that is won by routing agent and results from demand agent playing accord-
ing to a strategy σ and routing agent playing according to a strategy τ . If demand agent
changes his strategy σ to σ′ by leaving out the generation of some packets, he will also
lose the resulting play, i.e. demand agent cannot improve his strategy in this way.

Remark 5.3. Consider a dynamic network routing game with weak constraints, a play ρ
which is currently in a network state qi with blocked links function bl i. Let us assume
that demand agent has a strategy to reach from qi a network state qj with blocked
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links function blj . Then, since the constraints do not depend on the packet distribution,
demand agent has a strategy from qi to reach a network state q′j with same blocked links
function bl j within at most |BL| − 1 turns (note that |BL| is always ≥ 1).

For the proofs in this section, we use the following terminology. We say that a packet
(id , d, k) which is currently at vertex u (in a given network state) has the type (u, d). So,
in a network with a vertex set V the packets have at most |V |2 different types.

Further, for a given game, we denote with Δout the maximal number of outgoing
packets that routing agent can send per node; formally, it is defined as

Δout = max
u∈V

{ |{a ∈ Σ}| : it exists v ∈ V such that (u, v) ∈ Ea } .

First we show solvability for the BOUNDEDNESS condition under weak constraints. For
this winning condition we can give a uniform bound on the number of packets in the
network (which is sufficient to achieve for routing agent).

Theorem 5.4. Consider a network routing game G with weak constraints. Then, rout-
ing agent wins G with the BOUNDEDNESS winning condition iff she can guarantee in G
that there exists at most b := |BL| · (Δout + k) packets at each vertex where k is the
maximal number of packets that can be generated per turn (given by the constraints).

Proof. Clearly, if routing agent can guarantee the bound b for the number of packets at
each vertex, she can guarantee the bound |V | · b for the total number of packets in the
network; hence, she wins with the BOUNDEDNESS winning condition.

For the converse, we only sketch the proof. We assume that routing agent wins
with the BOUNDEDNESS condition. Since demand agent’s moves do not depend on
the packet distribution, we can partition the network states QG in a set Inf for which de-
mand agent has a strategy to visit a network state with the same blocked links function
infinitely often and a set Fin which are network states whose blocked links function can
occur at most once in a play. The sum of packets that can be generated in states in Fin
in a play can be bounded by the constant c := |BL| · k. For the states in Inf demand
agent can revisit a network state with same blocked links function at least every |BL|
turns (see Remark 5.3). Since routing agent can send at most Δout packets to a neigh-
boring node in each turn, routing agent can keep the number of packets at each vertex
below c + |BL| · Δout turns (with the c above); otherwise demand agent would have a
strategy to generate an unbounded number of packets in the network (which would be
a contradiction). � 

With the previous theorem, we can easily reduce the game to a safety game with finite
state space where routing agent has to ensure that there are at most b packets at each
network node.

Corollary 5.5. Dynamic network routing games with weak constraints and winning
condition BOUNDEDNESS are solvable (so that one can decide whether routing agent
wins and in this case provide a winning strategy in terms of a suitable routing scheme).

Solving network routing games with DELIVERY winning condition under weak con-
straints requires a more involved proof. We start with some technical lemmata:
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Lemma 5.6. Given a game with weak constraints on a game arena ({v1, . . . , vk}, E).
Assume demand agent can reach a network state with blocked links function bl where
vl stores at least nlm packets with destination vm (1 ≤ l,m ≤ k). Let n :=

∑
l,m nlm.

Then, demand agent can also reach such a state within |BL|n+1 · (Δout)n turns; more-
over it suffices to keep at most |BL|n · (Δout)n−1 packets of each type for n > 0 (and 0
for n = 0), i.e. all other packets of each type may be discarded after each turn.

Proof. We show the claim by induction over n. The case n = 0 is easy; demand agent
has to reach a network state with blocked links function bl , which he can reach within
|BL|−1 turns according to Remark 5.3. For n > 0 demand agent has to generate at least
n packets, say P1, . . . , Pn, and thereafter demand agent has to reach a network state qj

with bl j = bl such that the packets P1, . . . , Pn (or equivalently n packets of the same
types) remain at their vertices where there were generated. We distinguish two cases: In
the first case, demand agent has a strategy to generate each packetPi (1 ≤ i ≤ n), say in
a network state qi, without visiting a network state with blocked links function bl i twice,
and after generating all n packets in this way he reaches a network state qj with bl j = bl
where the packets P1, . . . , Pn still exist at their required vertices vlm. This is the trivial
case where demand agent can reach qj within (n+1) · (|BL|− 1) ≤ |BL|n+1 · (Δout)n

turns (and it suffices to keep (Δout + 1) · (n + 1) · (|BL| − 1) packets of each type).
In the second case, there exists a packet Pi (in {P1, . . . , Pn}) such that demand agent
agent can reach the network state qj only by revisiting a network state with blocked links
function bl i. We may assume due to our induction hypothesis that there is a strategy for
demand agent to reach a network state q′j with blocked links function bl within xn−1 :=
|BL|n · (Δout)n−1 turns where at least the packets P1, . . . , Pi−1, Pi+1, . . . , Pn exist at
their required vertices. Now, demand agent has a strategy to revisit a network state with
blocked link function bl i; hence, he can generate sufficiently many packets of the same
type as Pi, so that at least one of these packets remains at its origin after taking the xn−1
turns for reaching a network state qj with bl j = bl . Since in the worst case routing
agent can send at most Δout packets per node and turn, it is sufficient for demand agent
to visit a network state with function bl i at most xn−1 · Δout times. For that demand
agent needs at most xn−1 ·Δout · (|BL| − 1) turns (due to Remark 5.3). Then, from this
state, demand agent needs at most xn−1 turns to reach a network state qj with bl j = bl
and packets P1, . . . , Pn at their required vertices vlm. Overall, demand agent can reach
qj within xn−1 · Δout · (|BL| − 1) + xn−1 = |BL|n+1 · (Δout)n turns (and keeping
xn−1 = |BL|n · (Δout)n−1 packets of the same type at each vertex suffices). � 

Lemma 5.7. Given a network routing game with weak constraints on a game arena
({v1, . . . , vk}, E), and given a network state q with blocked links function bl where
each vertex vl stores nlm packets with destination vm (1 ≤ l,m ≤ k). Assume that
demand agent has a strategy such that from network state q routing agent cannot deliver
one of the packets that are currently in the network. Then, from a network state q′ with
the same function bl where each vertex vl stores only n′

lm = min{nlm, |BL| · Δout}
packets with destination vm in the network, demand agent can also prevent the delivery
of a packet.

Proof. Towards a contradiction, we assume that demand agent has a strategy in q to
prevent the delivery of at least one packet, but that routing agent has a winning strategy τ
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in state q′. If demand agent can prevent the delivery of a packet forever, he can do so due
to reaching a network state q− with a certain blocked links function bl− such that from
q− onwards a particular packet, say P−, will never be delivered. Due to Remark 5.3
demand agent has a strategy σ to reach such a network state from q within |BL| − 1
turns. Also note it follows from Remark 5.2 that, if routing agent plays his winning
strategy τ (which we assumed he has in q′) in the network state q, he can guarantee that
all of the nlm packets of a type with nlm ≤ |BL| ·Δout will be delivered and that at least
|BL| ·Δout of the packets with nlm > |BL| ·Δout will be delivered. But since demand
agent has a strategy in network state q to prevent the delivery of one of the packets,
there is a type with nlm > |BL| ·Δout such that one of the nlm packets of this type will
never be delivered if demand and routing agent play σ and τ from q. Since there are at
least |BL| ·Δout many packets of this type in q′ as well as in q, routing agent can deliver
these packets at best in |BL|·Δout

Δout
= |BL| turns. So, if the routing agent plays τ in q′,

there is still at least one of the nlm packets of this type left at vl after |BL| − 1 turns.
But according to Remark 5.3 demand agent can reach from q′ a state with function bl−
within |BL|−1 turns; so, there is still one packet left that will never be delivered, which
is a contradiction to our assumption that τ is a winning strategy in q′. � 

For a game G, we define the modified game G�b where at most b packets with the same
destination are stored at each node. More precisely, for all vertices u and d, the follow-
ing happen in G�b after each player’s half-turn: While the number of packets at u with
destination d is higher than b, the packet (id , d, t) at u with the highest id is deleted.

Theorem 5.8. Consider a dynamic network routing game with weak constraints. Let
b := (|BL| ·Δout)|V |2·|BL|·Δout . Then, routing agent wins G with the DELIVERY winning
condition iff she wins G�b with the DELIVERY winning condition.

Proof. Assume that routing agent wins G. Towards a contradiction, we assume that
demand agent wins G�b, say with a strategy σ. We take demand agent’s strategy σ for G.
Since the constraints C are independent from the packet distribution, routing agent
must at least deliver all packets which would not be deleted by the additional rule in
the modified game G�b. Since routing agent cannot deliver all packets in G�b, so in G.
Hence, demand agent wins G by playing σ, which is a contradiction to our assumption.

Conversely, assume that routing agent wins G�b. Towards a contradiction, we assume
that demand agent wins G. Then demand agent has a strategy (for G) to reach a network
state q− where he can guarantee that one of the packets will never be delivered. Due
to Lemma 5.7 it suffices to keep at most |BL| · Δout packets of each type from the
network state q− onwards. Since the number of different types is bounded by |V |2,
there have to be kept at most n = |V |2 · |BL| · Δout packets in the network from q−
onwards. According to Lemma 5.6 demand agent has a strategy to reach q− if only
|BL|n · (Δout)n−1 ≤ b (and 0 in the case n = 0) packets of each type are kept in the
network. So, demand agent also wins G�b, which contradicts our assumption. � 

So, for a network routing gameG with weak constraints, deciding the restricted game G�b

with bound b on the number of packets is sufficient for deciding the unbounded game G.
Although the number of network states of the restricted game is finite, it has not the
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safety game format as games with the DELIVERY	 winning condition. With the follow-
ing theorem, every restricted game with a DELIVERY winning condition can be turned
into a game with DELIVERY	 winning condition.

Theorem 5.9. Given a restricted network routing game G�b with weak constraints, rout-
ing agent wins G�b with the DELIVERY	 winning condition for " = |BL|2 · |V |2 · b if and
only if she wins G�b with the DELIVERY winning condition.

Proof. Winning according to the DELIVERY	 condition directly implies winning ac-
cording to the DELIVERY condition. For the converse, we assume that routing agent
wins the game G�b with the DELIVERY winning condition, say with a strategy τ . Since
the the number of packets at each node is bounded by |V | · b (because there exist at
most |V | different destinations), we can assume that routing agent may delay sending
a packet to a neighboring node due to other packets with a higher timestamp at least
|V | · b times. Also, we can assume that routing agent has to wait at most |BL| − 1 turns
until she sends one of the packets of a certain type at a certain node to a neighboring
node. Otherwise a network state with the same blocked frequencies function would be
reached twice in the meantime (see Remark 5.3), which would imply that there are no
new possibilities for routing agent to route one of the packets towards its destination.
Finally, we can assume by a similar argument that routing agent sends a packet to the
same node at most |BL| · |V | times. Otherwise a packet would visit a node twice while
also a network state with the same blocked frequencies function is reached (and this
would imply that there are no new possibilities for routing agent to deliver this packet
in the reached network state). Altogether, we can assume that routing agent can guar-
antee by playing his strategy τ for the game with the DELIVERY winning condition
implies that each packet is delivered within at most |V | · b · (|BL| − 1) · |BL| · |V | turns
(which is less than |BL|2 · |V |2 · b turns). Hence, by playing τ routing agent also wins
the game G�b with the DELIVERY	 winning condition. � 

Now we have all ingredients to solve games with weak constraints. First we transform
the game G in a restricted game G�b with a bound for the maximal number of pack-
ets at a node provided by Theorem 5.8. Then, the previous theorem give us a bound "
such that we can solve G�b with the DELIVERY	 winning condition using Theorem 5.1.
The bounds b and " are computable and the reduction to a safety game allows the con-
struction of a winning strategy for routing agent if one exists. We obtain the following
result:

Corollary 5.10. Dynamic network routing games with weak constraints and winning
condition DELIVERY are solvable (so that one can decide whether routing agent wins
and in this case provide a winning strategy in terms of a suitable routing scheme).

6 Conclusion and Perspective

In this paper we introduced a game-theoretic framework for routing problems in a dy-
namic or adversarial environment that covers the aspects of reactivity and non-termination.
We showed some principal results on the solvability of this problem in terms of routing
procedures.
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In these results, complexity issues and questions on optimization were suppressed.
Under the very liberal assumptions on constraints as considered here, reasonable com-
plexity bounds are not conceivable, both for computing a solution (if it exists at all) and
for the mere description of the resulting routing scheme.

Let us mention some variants of the game and of possible solutions that allow a more
efficient treatment or a refinement of solutions regarding efficiency. More uniformity
can be introduced both into the network model and the format of routing algorithms. For
example, one might assume that the possibilities of the primary systems for blocking a
frequency are globally the same for all edges (and not dependent on any information of
the cognitive network). Similarly, one can pursue the idea that the demands by primary
systems are best described in a stochastic model and using identical (but stochastic)
constraints for different nodes. Also the routing algorithms can be required to be more
uniform.

In current work we address also refined solutions that include aspects of optimization.
Only then it is possible to compare the performance of truly reactive routing algorithms
with solutions in terms of online algorithms as discussed in the introduction. Rather
than requiring delivery of packets “eventually” or “with fixed time bounds” it seems
more reasonable to search for solutions that simply guarantee the “best possible” time
intervals for delivery under the conditions of the considered network game. In [10] we
developed a method to compute optimal strategies for a natural setting.
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Abstract. Modern multiprocessors are equipped with local caches, to
enhance program performance. However, the presence of caches can lead
to the violation of sequential consistency [7] assumptions regarding pro-
gram order and write atomicity. With respect to such relaxed memory
models [1], we provide an operational description of program execution (in
the style of [4]) that accounts for cache effects. In particular, we provide
an operational characterization of cache invalidation and update policies
and an abstract characterization of cache consistency. The programming
model consists of a simple imperative language extended with common
synchronization primitives such as locks or barrier instructions. The main
results show that by precluding certain data races or by placing certain
synchronization constraints, sequentially consistent behavior can be ob-
tained for multiprocessor execution even in the presence of local caches.

1 Introduction

While shared memory multiprocessor systems are becoming increasingly com-
mon today, writing correct concurrent programs for such systems remains a
challenge. Program behavior is determined by a memory model. Programmers
commonly assume a model of memory that is sequentially consistent [7], i.e.,
all memory accesses appear to occur atomically in some total order, and those
issued by any given processor occur as specified by the program order.

One feature for improving performance, found in all modern processors, is a
cache. The presence of caches in a multiprocessor system can lead to violations
of program order and write atomicity assumptions [1]. The goal of this work is to
understand the effect of caches on concurrent program execution with respect to
a weaker memory model where these assumptions are relaxed [2], and to discover
constraints under which sequentially consistent behavior is guaranteed.

We follow the approach of Boudol and Petri [4] in presenting an operational
model of memory and describe the execution of programs written in a simple
imperative language with respect to a sequentially consistent model (“the speci-
fication”), and then with respect to a relaxed model (“the implementation”). We
then consider some synchronization primitives (called “safety nets” in [1]) sup-
ported by the model; these are instructions used to temporarily force program
order or write atomicity in order to make the program behavior more manage-
able. In particular, we show that for locks a well synchronizedness condition
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(equivalent to data-race-freedom), and for barrier instructions, a multiple-race-
free barrier condition, are sufficient to ensure sequentially consistent behavior in
an otherwise non-sequentially consistent system.

Technically, this is done by establishing precise correspondences (e.g., “bisim-
ilarity”) between the specification and implementation behaviors. The conse-
quence of these results is that for programs satisfying these constraints (which
are stated at the specification level), the programmer need only consider the
more intuitive set of sequentially consistent executions rather than all possible
executions, when reasoning about program behavior.

A novel contribution in this paper is an abstract operational characterization
of a memory model, general enough to express multiprocessor memory with local
caches as a particular instance, in terms of a small set of operational properties.
The theorems are thus proven for any memory model exhibiting these properties.
We believe that our implementation semantics closely resemble actual processor
architectures (with caches). At the same time, the semantics abstract over pro-
cessor specific details like cache replacement policies, cache consistency protocols
etc. Thus our models (and hence our theorems) should hold for a wide variety
of multiprocessor systems. We give an example of a cache-based system which
exhibits the required properties, and which allows the following relaxations with
respect to the classification of relaxed memory models in [1]:

1. W → R: Reordering of a write with a following read to a different variable.
2. W → W: Reordering of a write with a following write to a different variable.
3. Read other’s write early: This violates write atomicity.
4. Read own write early: This violates both write atomicity and program

order.

Our approach differs from that of Boudol and Petri [4] in several ways: (i) while
they present a higher-order language with ML-style imperative features, dynamic
thread creation and scoped locks, we prefer a simple imperative language that
we believe has greater applicability; (ii) in addition to locks, we consider syn-
chronization primitives such as barrier or fence instructions; (iii) while Boudol et
al consider write buffers, we believe we consider a more general multiprocessor
model with caches, while being able to deal with a variety of cache management
policies (update, invalidation). Furthermore our operational characterization is
presented in terms of abstract properties.

The rest of this paper is organised as follows. §2 presents the language and
the specification semantics. The abstract characterization of the implementation
semantics is given in §3 as a collection of properties on the operational relation.
§4 introduces scoped locks as a synchronization primitive and shows sequential
consistency can be ensured by data race freedom; similarly a barrier condition
is shown to achieve this when using barrier instructions (§5). In §6, we present
an intuitive model of caches which satisfies the abstract properties of §3.2. §7
concludes the paper with some directions for future work. Proofs of lemmas and
theorems are omitted in this paper but can be found in [6].
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2 The Language

We employ a simple imperative language, which will later be extended with two
different synchronization primitives.
〈e〉 ::= 〈int〉
| 〈e〉 ⊕ 〈e〉
| 〈var〉

〈b〉 ::= true | false
| ¬ 〈b〉 | 〈b〉 ∧ 〈b〉
| 〈e〉 ≤ 〈e〉

〈C 〉 ::= 〈var〉 := 〈e〉
| 〈C 〉; 〈C 〉
| if 〈b〉 then 〈C 〉 else 〈C 〉
| while 〈b〉 do 〈C 〉

All variables are integer valued, boolean values are used only for tests and the
⊕ operator is any one of +, ∗, . . . We also have a runtime marker, (), which is
‘returned’ when a command is executed. It is used only to make the operational
semantics easier to formulate.

2.1 Specification Semantics

A configuration C is a pair (S, P ), where S is the store (main memory) that
is shared across the system, and P is a list of processes. Each process runs on
its own processor. The store is common to all, and is a simple mapping from
variable names to integers. For convenience, we will use C.S and C.P to refer to
the store and program respectively of a specific configuration C.

Transitions involve reducing a redex in an evaluation context [10]. An eval-
uation context consists of a number i (indicating that the process Pi is being
executed), and a one-hole context. We use Pi[E[]] to denote the hole E[] in the
ith process in P .

The redexes and one-hole contexts (E[]) are as follows:

〈bval〉 ::= true | false
〈redex 〉 ::= 〈int〉 ⊕ 〈int〉
| 〈int〉 ≤ 〈int〉
| ¬ 〈bval〉 | 〈bval〉 ∧ 〈bval〉
| 〈var〉 | 〈var〉 := 〈int〉
| if 〈bval〉 then 〈C 〉 else 〈C 〉
| while 〈b〉 do 〈C 〉 | ();〈C 〉

〈E〉 ::= [] | E ⊕ 〈e〉 | 〈int〉 ⊕ E
| E ≤ 〈e〉 | 〈int〉 ≤ E
| ¬ E | E ∧ 〈b〉 | 〈bval〉 ∧ E
| 〈var〉 := E | E ;〈C 〉
| if E then 〈C 〉 else 〈C 〉

The operational semantics are given in Figure 1. We have left out the obvious
transitions such as those for the arithmetic and boolean operators.

Transitions are decorated as:
(a,i)−−−→. Here i is used to indicate that the transi-

tion is for process Pi, and a denotes the action being carried out. The possible
actions are: τ (reduction which does not involve the store), rdv

x (the value v is
read from variable x) and wrv

x (the value v is written to the variable x). For
reads and writes we will use rdx and wrx when we do not care what value was
read/written. Concurrent, conflicting transitions are said to form a race:

Definition 1. In a sequence of transitions C0
(a0,i0)−−−−→ · · · (an,in)−−−−→ Cn+1, two

transitions
(aj ,ij)−−−−→ and

(ak,ik)−−−−→ are said to form a race if ij �= ik and aj , ak ∈
{rdx, wrx} and at least one is wrx.



374 S. Joshi and S. Prasad

(S,Pi[E[x]])
(rdv

x,i)−−−−→ (S, Pi[E[v]]) where S(x) = v

(S,Pi[E[x:=v]])
(wrv

x,i)−−−−→ (S[x ← v], Pi[E[()]])

(S,Pi[E[(); C]])
(τ,i)−−−→ (S, Pi[E[C]])

(S,Pi[E[if true then Ct else Cf ])
(τ,i)−−−→ (S,Pi[E[Ct]])

(S,Pi[E[if false then Ct else Cf ])
(τ,i)−−−→ (S, Pi[E[Cf ]])

(S,Pi[E[while b do C]])
(τ,i)−−−→ (S, Pi[E[if b then {C; while b do C} else ()]])

Fig. 1. Specification Semantics

(M,Pi[E[x]])
(rdv

x,i)−−−−→ (M ′, Pi[E[v]]) where Mi[x] = (M ′, v)

(M,Pi[E[x:=v]])
(wrv

x,i)−−−−→ (M ′, Pi[E[()]]) where Mi[x ← v] = M ′

Fig. 2. Implementation Semantics

Specification semantics correspond to a programmer’s intuitive view of inter-
leaving execution (i.e. a sequentially consistent memory model). Here, processes
execute one at a time (conceptually) albeit in a non-deterministic order, pro-
gram order is respected and writes are atomic. Storage features such as caches
and write buffers can violate these guarantees in a multiprocessor setting [1].

3 Implementation Semantics

In the implementation semantics, we replace the store S with a more general
abstraction for memory, denoted as M . Each processor has a different view
of the memory; processor i sees the value of x as Mi[x] and in general Mi[x]
and Mj [x] need not be equal. We will use M to model a memory hierarchy
where each processor has a local cache. Our semantic account abstracts from
the internal structure of M . We place purely operational constraints on M in
order to prove sequential consistency theorems and later show that common
cache based architectures satisfy these constraints. Thus while our focus is on
the effects of caches, the framework presented here is more general.

In Figure 2 we present the significant changes to the operational rules. We
omit the rules of Figure 1 that do not involve memory.

Both wrv
x and rdv

x transitions access the memory, and potentially alter it. Writ-
ing a variable (denoted Mi[x ← v]) returns the modified memory M ′. Reading
a variable from memory (denoted Mi[x]) returns a pair (M ′, v) where v is the
value read, and M ′ is the possibly modified memory (e.g. an altered cache). For
convenience, we write Mi[x].val = v when Mi[x] = (M ′, v). The next section
imposes some restrictions on the permissible changes in M ′.

In addition, we have some more transitions called the ‘system’ transitions,
denoted by −→. These are used by the system to manage the internal structure
of the memory. We will use → moves later e.g. to model cache consistency and
cache replacement protocols. These transitions can fire non-deterministically at
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any time. Moreover, the program does not constrain which system transitions
can occur, or when. We abstractly characterize the system transitions in §3.2 by a
series of properties which we use in the sequel. In particular the model described
in §6 implements M as a cache based system satisfying these properties.

The transitions introduced in Figures 1 and 2 are now called ‘program’ tran-
sitions (since they fire as a direct result of some piece of code). We will use
C →∗

I C′ to denote that C′ is reachable from C by the implementation semantics
(program and system transitions), and similarly C →∗

S C′′ for the specification
semantics. Note that we will use ∗−→ to denote 0 or more system transitions,
whereas →∗

I means 0 or more system and program transitions.

3.1 Coherence and Consistency

Let us call a configuration C “→-normal” if it cannot make any −→ moves (i.e.
system transitions). In order to relate implementation semantics to specification
semantics, we need the following definition:

Definition 2. An implementation configuration CI is said to reduce to a speci-
fication configuration CS (written CI ⇓ CS) if ∃C′

I : CI
∗−→ C′

I , C′
I is →-normal,

and ∀i∀x C′
I .Mi[x].val = CS .S[x]. CS is called a reduct of CI .

In the next subsection we impose conditions that ensure the existence of reducts.

Definition 3. C is coherent for x if ∃v : ∀CS : C ⇓ CS ,CS .S(x) = v.

A configuration is coherent if it is coherent for all x. It follows that a coherent
configuration has a unique reduct. We use �C� to refer to the unique reduct of a
coherent configuration C.

Definition 4. C is consistent for x if (a) it is coherent for x, (b) ∀i, j,C.Mi[x].
val = C.Mj [x].val, (c) ∀CS ,C ⇓ CS ⇒ ∀i,C.Mi[x].val = CS .S(x) and (d) ∀i, w
if C′ is the same as C except that C′.M = C.Mi[x ← w], then C′ is coherent
for x.

Condition (a) ensures that a consistent configuration is coherent, and (d) that
it remains coherent after any single write. Thus there are no pending writes to
x in a configuration that is consistent for x. Condition (b) ensures that all views
of x coincide and (c) that it agrees on x with its reducts. C is consistent if it is
consistent for all x. A consistent configurations is in some sense identifiable with
its reduct.

3.2 Constraints on the Memory Model

We now present the properties that the memory structure and its system transi-
tions should satisfy. The theorems in the following sections hold for any system
which has these properties.

Property 1. If C → C′, then C.P = C′.P

System transitions have no effect on the program.
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Property 2. An →-normal configuration is consistent.

Property 2 ensures that system transitions are adequate to ensure consistency.
For example, it prevents pathological cache architectures where the contents of
only one designated cache are copied to the rest. In this pathological system, in
the absence of a cached entry in the designated cache, inconsistent →-normal
configurations are possible.

Property 3. Every configuration reachable from a consistent configuration has
at least one →-normal configuration under ∗−→.

We restrict this condition to configurations reachable from a consistent config-
uration because we always begin with a consistent configuration in practice.
The above two properties together mean that such a configuration has at least
one reduct. They also imply that any such configuration can always become
consistent, which is important for the synchronization primitives of the sequel.

Property 4. Consider CI
∗−→ (a,i)−−−→ C′

I . For any C′
S such that C′

I ⇓ C′
S, ∃CS :

CI ⇓ CS which is identical to C′
S except in the position of the redex in Pi, unless

C′
S .S(x) = v and a = wrv

x in which case CS, C′
S may also differ on S(x).

Property 4 states that only writes may make a fundamental change in M , and
only to a single variable. Reads are allowed to change M , but the change is
superficial in this sense (and usually done solely for performance reasons).

Property 5. If C is coherent (resp. consistent) for x and C → C′, then C′ is
also coherent (resp. consistent) for x.

Property 5 states that system transitions preserve coherence and consistency.

Property 6. Let C be consistent for x and consider the sequence C
∗−→ (a0,i0)−−−−→

. . .
∗−→ (an,in)−−−−→ C′. If there is at most one processor i such that (ak, ik) = (wrx, i)

in this sequence then C′ is coherent for x.

Property 6 says if there is no conflicting write then coherence is maintained.

Property 7. If C is consistent, C →∗
I C′ then for any i, if C′.Mi[x].val = v

then either C.Mi[x].val = v or there is a wrv
x on some processor in C →∗

I C′.

Property 7 states that a value is either set by some write or is preserved.

Property 8. Let C be consistent for x, C →∗
I CI

(a,i)−−−→ C′
I , and C′

I ⇓ C′
S. If

a ∈ {wrv
x, rd

v
x} and C′

S .S(x) = w �= v then there exists a transition (wrw
x , j) with

j �= i in C →∗
I CI .

Property 8 means that the last write cannot be ignored and the last read cannot
read the wrong value, unless they form a race with some earlier transition.
System transitions must ensure that the effects of a write can propagate.
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3.3 Derived Properties

The following lemmas can be derived from the above constraints.

Lemma 1. If C is coherent for x, C
(a,i)−−−→ C′ and a �= wrx then C′ is coherent

for x.

Any transition not involving a write on x will maintain coherence for x.

Lemma 2. Let C be reachable from a consistent configuration. If C is consistent

for x, C →∗
I CI

(a,i)−−−→ C′
I , CI is coherent and CI ⇓ CS, then ∃C′

s such that
following diagram commutes:

CI

(a,i) ��

��
C′

I

��
CS

(a,i) �� C′
S

where either a is not a memory access or if a accesses x then in C →∗
I CI there

is a wrx transition only on i.

By Properties 2, 3, 4 and 8. This lemma means that a write-free sequence of
transitions exactly implements the specification semantics.

The following is a useful special case of this lemma:

Lemma 3. If CI is a consistent configuration then ∃C′
S which makes the fol-

lowing diagram commutes:

CI

(a,i) ��

��
C′

I

��
�CI

� (a,i) �� C′
S

We are now ready to consider two synchronization primitives in turn, and give
sufficient conditions for sequential consistency for each.

4 Locks

We extend our language with a locking construct, with l do 〈C〉 following the
approach of [4].

〈C 〉 ::= . . . | with l do 〈C 〉 〈E〉 ::= . . . | holding l do 〈E〉

〈redex 〉 ::= . . . | with l do 〈C 〉 | holding l do ()

Additionally we have a construct holding l do 〈C 〉 which is a runtime construct.
It is used when a lock is held, and 〈C 〉 is being executed. In the following
subsection, we assume that the initial configuration we consider is written in
the source language, and thus has no runtime constructs.

The configurations also change, becoming (S,L, P ) (specification) and (M,L, P )
(implementation) where L is the set of locks that are currently held. L remains
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(S,L, Pi[E[with l do C]])
(l̂,i)−−−→ (S,L ∪ {l}, Pi[E[holding l do C]]) where l �∈ L

(S,L, Pi[E[holding l do()]])
(ľ,i)−−−→ (S, L − {l}, Pi[E[()]])

Fig. 3. Locks: Specification Semantics

(M,L, Pi[E[with l do C]])
(l̂,i)−−−→ (M, L ∪ {l}, Pi[E[holding l do C]]) where l �∈ L

(M,L, Pi[E[holding l do ()]])
(ľ,i)−−−→ (M, L − {l}, Pi[E[()]]) configuration is consistent

Fig. 4. Locks: Implementation Semantics

unaffected by all the transitions given so far, appearing unchanged on both sides.
We introduce two new transitions for locking, with the decorations: l̂ (acquire lock
l) and ľ (release lock l). The specification and implementation semantics for locks
are given in Figures 3 and 4 respectively.

A lock l can only be acquired by a process if no other process holds l. Also, in
the implementation semantics a lock can only be released when the configuration
is consistent. Recall that Properties 2 and 3 ensure that this can happen.

4.1 Sequential Consistency

A sufficient condition to ensure sequential consistency even in the implementa-
tion semantics, is that the initial configuration must be Data Race Free (DRF):

Definition 5. A consistent configuration C involves a data race if it has two
redexes Pi[E[r]] and Pj [E[r′]]], i �= j, r and r′ are both accesses to the same vari-
able and at least one is a write. C is data race free (DRF) iff no configurations
specification reachable from �C� involve a data race.

The following definition for well synchronizedness is often taken to be synony-
mous with DRF, and we treat it as such. Boudol and Petri’s proof [4] of their
equivalence applies to our model nearly unchanged since the proof is at the spec-
ification level, and our specification semantics are essentially the same as their
‘strong’ semantics. The full proof can be found in [6].

Definition 6. A consistent configuration C is said to be well-synchronized (WS),

iff in any valid sequence of specification transitions �C� = C0
(a0,i0)−−−−→ . . .

(an−1,in−1)−−−−−−−−→
Cn if there exists n1 and n2 (with n1 < n2) such that (an1 , in1) and (an2 , in2) form
a race, then ∃n3 : n1 < n3 < n2 ∧ in3 = in1 ∧ an3 = ľ.

For proofs, we will use this characterization rather than Definition 5. Informally,
this property means that there must exist an unlocking operation between every
pair of transitions forming a race (in every sequence of specification transitions).
Note that we need only analyze sequentially consistent executions of a program
in order to determine whether it is WS.

There is one last definition that is required in order to prove that the imple-
mentation and specification semantics coincide for WS programs.
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Definition 7. For any given consistent configuration C, define R(C) as: (CI ,
CS) ∈ R(C) if and only if there exists a sequence of implementation transitions

C = C0
∗−→ (a0,i0)−−−−→ C1 · · · ∗−→ (an,in)−−−−→ Cn = CI

such that
�C� = C′

0
(a0,i0)−−−−→ C′

1 · · ·
(an,in)−−−−→ C′

n = CS

is a valid sequence of specification transitions, with Cj ⇓ C′
j for all j.

We show that if C is WS then the relation R(C) is a bisimulation (and thus the
specification and implementation semantics are essentially the same).

In one direction, the simulation holds whether or not C is WS.

Theorem 1. If (CI ,CS) ∈ R(C) and CS
(a,i)−−−→ CS then there exists CI with

CI
∗−→ (a,i)−−−→ CI such that (CI ,CS) ∈ R(C).

The other direction also holds when the configuration is WS. Further, coherence
is maintained.

Theorem 2. If (CI ,CS) ∈ R(C) (with WS C), CI is coherent and CI
∗−→ (a,i)−−−→

CI then CI is coherent and there exists CS such that CS
(a,i)−−−→ CS with (CI ,CS) ∈

R(C).

5 Barriers

Barriers or fences are a common safety net in various processors with a relaxed
memory model [1] and have also been used in other contexts [3]. Their role is to
prevent instruction re-ordering across the barrier (hence the name). Unlike locks,
they cannot entirely prevent data races but they can still guarantee sequential
consistency (at least with the semantics that we present below).

We extend our language with a bar command, and a new expression for barred
reads:

〈e〉 ::= . . . | !〈var〉 〈C 〉 ::= . . . | bar 〈redex 〉 ::= . . . | bar | !〈var〉

The one-hole contexts remain unchanged. We introduce a barrier transition,
decorated with bar. In the specification semantics, this is a no-op. In the imple-
mentation, it is a way of waiting for pending writes to complete. Figures 5 and 6
give the specification and implementation semantics respectively. The new read
is only a way of introducing a barrier in the middle of an expression. The actual
read is still handled by the usual rdv

x actions.
Note that our barrier semantics enforces a global constraint. Hardware imple-

mentations today often provide barriers whose effects are in some way local to
the current processor (e.g. x86 mFence) but as noted in [9], this is insufficient to
ensure sequential consistency.
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(S,Pi[E[bar]])
(bar,i)−−−−→ (S, Pi[E[()]]) i.e. do nothing

(S,Pi[E[!x]])
(bar,i)−−−−→ (S, Pi[E[x]]) i.e. do nothing

Fig. 5. Barriers: Specification Semantics

(M,Pi[E[bar]])
(bar,i)−−−−→ (M, Pi[E[()]]) configuration is consistent

(M,Pi[E[!x]])
(bar,i)−−−−→ (M, Pi[E[x]]) configuration is consistent

Fig. 6. Barriers: Implementation Semantics

5.1 Sequential Consistency

An important difference between this and the lock model is that in general, it
is not possible to place bars in the program in a way that ensures that there is
a bar between every pair of actions forming a race in every sequentially consis-
tent execution. Instead, we achieve sequential consistency by preventing multiple
races involving the same processor from appearing between a pair of bars.

Definition 8. A sequence of transitions C →∗
I C′ (resp. C →∗

S C′) is called
multiple race free iff for every k such that (ak, ik) forms a race with some tran-
sition in the sequence, if ∃j : j �= k ∧ ij = ik then (aj , ij) does not form a race
with any transition in the sequence.

Definition 9. A consistent configuration C is said to satisfy the barrier con-

dition iff in any valid sequence of specification transitions �C� = C0
(a0,i0)−−−−→

C1 . . .Cn
(an,in)−−−−→ Cn+1, if there are bar transitions at {k1, k2, . . . , km} then tak-

ing k0 = 0 and km+1 = n+1, each subsequence in {Cki →∗
S Cki+1 |0 ≤ i < n+1}

is multiple race free.

As in the case for WS, we need only analyze sequentially consistent executions
of a program to verify that it satisfies the barrier condition.

To prove the equivalence of the two semantics under this condition, we show
that for every specification-reachable configuration there is an implementation-
reachable configuration, and vice-versa. One direction is quite trivial, and the
barrier condition is not required:

Theorem 3. For any consistent configuration C, for every specification config-
uration �C� →∗

S CS, there exists an implementation configuration CI such that
C →∗

I CI and CI ⇓ CS.

Theorem 4. For any consistent configuration C which satisfies the barrier con-
dition, for every implementation configuration CI such that C →∗

I CI and every
specification configuration CS such that CI ⇓ CS, �C� →∗

S CS.

In order to prove this theorem, we need the following lemmas:
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(S,C, Pi[E[x]])
(rd1v

x,i)−−−−−→ (S, C, Pi[E[v]]) where x ∈ dom(Ci) ∧ Ci[x].val = v

(S,C, Pi[E[x]])
(rd2v

x,i)−−−−−→ (S, C, Pi[E[v]]) where x �∈ dom(Ci) ∧ S(x) = v

(S,C, Pi[E[x]])
(rd3v

x,i)−−−−−→ (S, Ci[x ← (v, clean)], Pi[E[v]]) where x �∈ dom(Ci) ∧ S(x) = v

(S,C, Pi[E[x:=v]])
(wrv

x,i)−−−−→ (S, Ci[x ← (v, dirty)], Pi[E[()]])

Fig. 7. Implementation Semantics

Lemma 4. Consider a consistent configuration C, and a configuration CI such

that C
∗−→ (a0,i0)−−−−→ · · · ∗−→ (an,in)−−−−→ CI . If this sequence is multiple race free, then for

every CS such that CI ⇓ CS there exists a sequence �C� (b0,j0)−−−−→ · · · (bn,jn)−−−−→ CS.
Furthermore, the sequence of pairs {(bk, jk)} is a permutation of the sequence
{(ak, ik)}.

Lemma 5. For any consistent configuration C which satisfies the barrier con-
dition, for every implementation configuration CI such that C →∗

I CI and every
specification configuration CS such that CI ⇓ CS, the following hold:

1. The sequence C →∗
I CI is multiple race free between bars.

2. �C� →∗
S CS.

3. The sequence �C� →∗
S CS is a barrier-bounded permutation of (the program

transitions in) C →∗
I CI .

6 Modeling Multiprocessors with Caches

This section gives examples of how a multiprocessor system with local caches
can be modeled in our framework. The memory M now becomes a tuple (S,C),
where S is a store (as in the specification semantics) and C is a set of |P | caches.
The caches contain a local copy of a subset of the store. When a variable is
written to, the write is to the cache. System transitions are used to update the
store and the other caches asynchronously at some later time. A read may also
pull a variable into the cache.

If x ∈ dom(Cn) then this means the nth processor has x in its cache. Its value
Cn[x] is given by a pair (val , state), where val is the ordinary integer value of
the variable and state may be either clean or dirty. A variable is clean either
if it has not been written to by this processor, or if its changed value has been
written through to the store. Otherwise it is dirty. However note that in general,
Cn(x) = (v, clean) �⇒ S(x) = v. The system may allow the store to contain a
different value if some other processor has updated the store but this cache has
not yet been notified. As a notational convenience, we shall write Ci[x].val = v
and Ci[x].state = s when Ci[x] = (v, s).

Figure 7 gives the semantics for Mi[x] and Mi[x ← v]. We express all the
possibilities as separate transitions to make it easier to read. There are three
transitions for reading a variable but they merely represent the different cases
possible for the same label rdv

x. Note also that there are two transitions for
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(S,C, P ) x−→
i�

(S, Ci ↑ x, P ) Ci[x] = (v, clean)

(S,C, P ) x−−→
i→j

(S,Cj [x ← (v, clean)], P )

x ∈ dom(Cj) ∧ Cj [x] �=(v,clean)∧Ci[x]=(v,dirty)
(S,C, P ) x−−−→

i→S
(S[x ← v], Ci[x ← (v, clean)], P )

∀j :j �= i∧x∈dom(Cj), Cj [x]=(v,clean)∧Ci[x]=(v,dirty)

Fig. 8. System Transitions: Update

rdv
x when x �∈ dom(Ci), corresponding to whether or not x is pulled into the

cache. This decision is made non-deterministically, which (along with another
transition for eviction to be introduced later) makes the model independent of
the cache-replacement policy used by the actual implementation.

The system transitions are used to propagate writes to other caches and the
store. In practice this is usually done either with an update-based protocol (where
cached copies are updated with the new value) or with an invalidation-based
protocol (where cached copies are invalidated, effectively removing them from the
cache)[5]. We give two sets of system transitions, one for each type of protocol.

This model allows for W→R reordering, since a read may be serviced while a
previous write (to the cache) has not yet been propagated. W → W reorderings
are possible because there is no guarantee that writes will be propagated in the
order in which they appear. Thus the behaviors described in Fig 5 (a) and (b) in
[1] will be exhibited by this model. Further, a processor may see its own writes
before any other processor, simply because updates/invalidates haven’t occurred
yet. Similarly, other processors may see the write at different times, since the
updates/invalidates on other caches need not happen all at once.

In [6] we show that this model with an update-based protocol satisfies the con-
straints in §3.2. This means that the abstract operational description presented
earlier is general enough to at least allow these four relaxations.

6.1 Coherence and Consistency

For both protocols, we reformulate the definitions of coherence and consistency.
We will show that these structural definitions are equivalent to the operational
definitions given earlier.

Definition 10. A configuration C is said to be coherent for x if ∃v : ∀i : x ∈
dom(Ci) ∧ Ci[x].state = dirty⇒ Ci[x].val = v.

Definition 11. A configuration (S,C, P ) is said to be consistent for x if and
only if ∀i : x ∈ dom(Ci), Ci[x] = (S(x), clean).

6.2 Modeling Update-Based Protocols

Figure 8 gives the system transitions used in the update-based model. The tran-
sitions are as follows:
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1. Eviction x−→
i�

: Evict x from Ci. This is only used for the cache replacement

policy. We do not need it to achieve a consistent configuration in this model.
2. Cache update x−−→

i→j
: Update x in Cj from Ci. This is used to update other

caches when a variable is written to in a cache. It can be applied anytime
there is some cache whose entry for the variable differs from the “correct”
one.

3. Store update x−−−→
i→S

: Update x in S from Ci. The condition for its appli-

cation ensures that a store update only happens after all caches have been
updated and agree on the value of the variable.

As an example of how these transitions work, suppose a write occurs on a proces-
sor, and this is the only processor where that variable is dirty. An update-based
system would execute the cache update transition multiple times to update the
value in the other caches, and then a store update to put that value in the store.
The →-normal configurations are those that have empty caches.

If C is coherent for x by the structural definition, then we can see that
any x−−−→

i→S
will set S(x) to the same value. Conversely, if ∃i, j : Ci[x].state =

Cj [x].state = dirty ∧ Ci[x].val �= Cj [x].val then depending on whether x−−→
i→j

or
x−−→

j→i
occurs (one of the two must occur), two distinct store updates are possible.

Thus the structural and operational definitions for coherence are equivalent.
Similarly, it is easy to see that if C is consistent by the structural definition, it

is consistent by the operational definition. Conversely, for C to be consistent for
x, ∀i : x ∈ dom(Ci), Ci[x].val = S(x) due to (b) and (c) of Definition 4. Further,
if ∃i : Ci[x] = (v, dirty) then for any w �= v ∧ j �= i, C′ is not coherent for x
where C′.M = C.Mj[x← w], thus violating condition (d) of Definition 4.

This model satisfies all the constraints in §3.2 [6]. We additionally prove that
it is possible to achieve a consistent configuration without the use of the eviction
transition. This models the intended semantics of an update based protocol.

Lemma 6. For any configuration C reachable from a consistent configuration,
there exists a sequence of system transitions ∗−→ not involving evictions such that
C

∗−→ C′ and C′ is a consistent configuration.

6.3 Relaxing the Unlocking condition

The following lemma holds in the update based model:

Lemma 7. If C is consistent for x and C →∗
I CI where CI is such that ∀i,

Ci[x].state = clean, then CI is also consistent for x (i.e. ∀i,CI .Ci[x].val = S(x))

Using this lemma, we can relax the condition for an ľ operation and still ensure
that the implementation and specification semantics coincide for WS configura-
tions. Currently, an unlock can only happen if the configuration is consistent,
but we can replace the “configuration is consistent” condition with the following:

∀x ∈ dom(Ci), Ci[x].state = clean
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(S,C, P ) x−→
i�

(S, Ci ↑ x, P ) Ci[x] = (v, clean)

(S,C, P ) x−−−→
i→S

(S[x ← v], Ci[x ← (v, clean)], P ) Ci[x] = (v, dirty)

Fig. 9. System Transitions: Invalidation

i.e. there are no dirty entries in the current cache. This is a purely local condition
(i.e. local to the current processor) on the unlock similar to the semantics of the
unlock instruction on x86 processors [8].

In a system where Lemma 7 holds, this condition ensures that the configura-
tion is consistent for x after the last unlock ľ in a WS sequence, as used in the
proof of Theorem 2. We can modify the abstract semantics to allow local seman-
tics for unlocking ľ by introducing an abstract predicate on M , safex

i with the
conditions that only a (wrx, i) destroys safex

i , and ∀i safex
i ⇒ consistent for x.

An ľ can then happen only when ∀x safex
i . Then in the cache model safex

i is
definable as Ci[x].state = clean.

Note that with the global semantics for locks it may be possible to simulate
barriers with locks, but with these local semantics that is no longer true.

6.4 Modeling Invalidation-Based Protocols

Figure 9 gives the system transitions required to model an invalidation based
cache consistency protocol. The transitions are as follows:

1. Eviction x−→
i�

: This is now used for both cache replacement and cache con-

sistency.
2. Store update x−−−→

i→S
: This can now happen before other caches have been

notified about a write.

As an example of how these work, suppose a write occurs on a processor, and
this is the only processor where that variable is dirty. An invalidation-based
system would execute x−→

j�
on all other caches, and x−−−→

i→S
on this cache (with no

restrictions on the order in which these are carried out).
The proof that this model satisfies the constraints in §3.2 is nearly the same

as that for the update model. Lemma 7 does not hold in this model, so the
relaxed unlock condition cannot be used. The reason this lemma does not hold
is that the last store update can happen before all caches have been invalidated.
Thus some cache may hold a clean entry which nevertheless has a wrong value,
simply because it has not yet been evicted.

7 Related and Future Work

Our work is complementary to the seminal work of Adve et al [1] wherein they
present a classification of memory models (from a systems perspective rather
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than a programming perspective) that examine permissible reorderings of in-
structions. The notions of Data Race Freedom and weak orderings are also ex-
tensively explored by Adve et al [2].

Owens et al [8] have considered the x86 memory model and shown the cor-
respondence between an axiomatic characterization of the model and an opera-
tional one. It would be interesting to relate our work to such concrete instances.

There are several strands of work that we identify for the future. First, the
conditions we give are certainly sufficient to ensure sequential consistency, but
it is not clear whether they are necessary. We also plan to investigate other
synchronization primitives in a similar manner, in particular atomic compare-
and-swap instructions for synchronization which are preferred over locks in many
processors.

An interesting direction is the development of program analysis tools that will
help analyze whether a program satisfies the condition that guarantees sequen-
tially consistent behavior. Finally, we are formalizing the results presented here
using the proof assistant Coq.
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