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Preface

The design and analysis of electronic commerce systems in which agents are de-
ployed involves finding solutions to a large and diverse array of problems, concerning 
individual agent behaviors, interaction, and collective behavior. A wide variety of 
electronic commerce scenarios and systems, including agent approaches to these, 
have been studied in recent years. These studies suggest models that support the de-
sign and the analysis at both the level of the single agent and the level of the  
multiagent system.  

This volume contains revised, selected papers from the 10th Workshop on Agent-
Mediated Electronic Commerce (AMEC-X), co-located with the 7th International 
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), 
and from the 6th Workshop on Trading Agent Design and Analysis (TADA), co-
located with the 23rd AAAI Conference on Artificial Intelligence (AAAI 2008). The 
primary, and complementary, goal of both workshops was to continue to bring to-
gether novel work from diverse fields that focus on modeling, implementation, and 
evaluation of computational trading institutions and/or agent strategies. 

The papers in this volume that originated at AMEC address a variety of issues in 
the field of electronic commerce in general and agent and multiagent problems in the 
context of electronic commerce in particular. An interesting example of the diversity 
is a paper that suggests a test that can prevent a single user from creating multiple 
accounts. Some other papers in this volume focus on negotiation. For instance, in one 
study, preferences and reasoning are incorporated into a negotiation model to improve 
overall negotiation results. Another work facilitates the learning of preferences and 
their usage for negotiation. Automated bargaining is yet another aspect of negotiation 
addressed in this volume.  

In addition to negotiation which is mostly two-sided, some studies in this volume 
address dynamic pricing and auctions, where multiple agents take part in the mecha-
nism. For instance, one paper suggests the use of option pricing as a means to solving 
the exposure problem in sequential auctions. Another paper studies markets in which 
multiple double auctions are implemented and agents can select their auction of pref-
erence, thus introducing competition among the auctions. Dynamic pricing is also 
studied, where agents hold limited information regarding preferences and need to 
update prices of multiattribute goods dynamically.  

In many cases, multiagent electronic commerce requires that agents be allocated 
tasks. The problem of task allocation is complex, and solutions depend on specific 
settings. In this volume, one study addresses task allocation in a social setting where 
agents attempt to under-report. The suggested solution devises means to prevent such 
under-reporting. In another study, task allocation is associated with a recommender 
system.  

The papers in this volume that originated at TADA stem from the effort of the 
community to design scenarios where trading agent designers and market designers 
can be pitched against one another. 



VI Preface 

The Trading Agent Competition (TAC) has included several scenarios over the 
years, which have stimulated considerable research in autonomous economic behav-
ior. The supply-chain management (TAC SCM) scenario placed six agents in the role 
of a PC manufacturer. Each agent had to procure raw materials and sell finished 
goods in competitive markets while managing inventory and production facilities. The 
supply-chain scenario included two side competitions.  The first was a procurement 
challenge that allowed agents to balance risk and cost in the procurement market by 
providing both long-term and short-term contracts. The second was a prediction chal-
lenge designed to test price-prediction capabilities of competing agents in both pro-
curement and sales markets.  In contrast to the supply-chain scenario, which cast the 
competing agents as traders, the CAT scenario placed agents in the role of competing 
exchanges. The CAT competition was motivated by the rise of independent, for profit, 
stock and commodity exchanges that compete for the attention of traders. CAT agents 
competed by defining rules for matching buyers and sellers and by setting commis-
sion fees for their services. Profitability was the ultimate measure of performance in 
both the supply chain and CAT scenarios.  

This volume includes two papers related to TAC SCM, one related to TAC Travel, 
and one related to the Market Design Competition (CAT). One of the papers focused 
on various aspects of performance analysis for the TAC SCM procurement and pre-
diction challenges, giving an assessment of the agents' prediction performance in 
isolation of other decision components.  The complexity and uncertainty in the base-
line TAC SCM game scenario make it difficult to assess prediction accuracy, since 
the predictions of one agent affect another.  One paper presented a survey of agent 
designs in TAC SCM.  The survey showed that, in some areas such as modularity, 
there are common themes emerging in how to design a successful trading agent, while 
in other areas, such as coordination, there are strong differences in the designs. An-
other paper undertook an experimental study of bidding heuristics designed for the 
TAC Travel game, showing that using as much distributional information as possible 
is an effective approach for an agent in one-shot auctions settings.  Another paper 
discussed how to classify bidding strategies in CAT, and found out that using a Hid-
den Markov Model yields the best results.  

The decision on paper acceptance was not easy, as we had excellent submissions to 
select from. We believe that the resulting volume presents both quality and diversity. 
We have studies related to auctions and pricing; we have theoretical and experimental 
studies; we have research on automated negotiation and on market mechanism design; 
we have work on reputation; we also have work on trading agent design and dynamic 
market modeling and pricing.  

The list of topics presented in this volume is diverse, but they all contribute to the 
theory and practice of agent electronic commerce. The papers included in this volume 
suggest models that support the design and the analysis at the level of the single agent 
and at the level of the multiagent system. Hence, this book addresses both the agent 
level and the system level, combining design and analysis aspects of electronic com-
merce. The primary goal of this volume is to continue to bring together novel work 
from diverse fields such as computer science, game theory, economics, artificial intel-
ligence and distributed systems that focus on modeling, implementation and  
evaluation of computational trading agents and institutions. We hope that this collec-
tion indeed meets this goal. 



 Preface VII 

Finally, we would like to conclude by thanking the members of the Program 
Committees of the AMEC and the TADA workshops. They were able to produce a 
large number of high-quality reviews in a very short time span. Furthermore, we 
would also like to thank the authors for submitting their papers to our workshops, as 
well as the active attendees and panelists for their valuable insights and discussions. 
These reviews helped the authors improve the revised papers published in this  
volume. 

August 2008  Wolfgang Ketter 
Han La Poutré 
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Preventing Under-Reporting in Social Task

Allocation

Mathijs de Weerdt and Yingqian Zhang

Delft University of Technology

{M.M.deWeerdt,Yingqian.Zhang}@tudelft.nl

Abstract. In games where agents are asked to declare their available

resources, they can also strategize over this declaration. Surprisingly,

not in all such games a VCG payment can be applied to construct a

truthful mechanism using an optimal algorithm, though such payments

can prevent under-reporting of resources. We show this for the problem

of allocating tasks in a social network (STAP).

Since STAP is NP-hard, we introduce an approximation algorithm

as well. However for such an approximation, a VCG payment cannot

prevent under-reporting anymore. Therefore we introduce an alternative

payment function that motivates agents to fully declare their resources.

We also demonstrate by experiments that the approximation algorithm

works well in different types of social networks.

1 Introduction

In combinatorial auctions (CAs) agents try to buy sets (or bundles) of resources
(or items) from an auctioneer preferably for less than what such a set is worth
to them [1]. The values for these sets come for example from tasks that require
these resources. In this paper we work towards a more general setting of such
a resource allocation problem where the available resources have not just been
trusted with a (central) auctioneer, but where these resources are owned by other
agents.

In such a general resource allocation setting there are two classes of strate-
gizing agents. On the one hand, there are agents that attach some value to
specific sets of resources and construct bids based on this value (we call these
the managers), and on the other hand there are agents that own resources and
can decide to offer these resources to the others (we call these the contractors).
In most current work on CAs [2] and resource allocation [3], agents are only al-
lowed to strategize over the value of each bundle of resources. Here we consider
the case where they may only strategize over the resources they have at their
disposal.

As an application of the general resource allocation problem, consider a set-
ting where a governmental institution would like to provide a platform to bring
both suppliers and consumers together to form new contracts. In general, not
all consumers (managers) want to buy services or resources from all suppliers
(contractors), and not all contractors want to sell their resources to all managers.

W. Ketter et al. (Eds.): AMEC/TADA 2008, LNBIP 44, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 M. de Weerdt and Y. Zhang

We therefore include such a setting of preferred partnerships in our model as a
graph where the agents are nodes, and an edge between two nodes indicates the
existence of a social relation between the agents concerned, meaning that these
agents are prepared to exchange resources. We call this problem, where the con-
tractor agents can strategize over the resources they declare to their neighboring
managers, the social task allocation problem (STAP) [4].

From the perspective of the general resource allocation problem introduced
above, this problem can be seen as a variant of reverse CAs where it is publicly
known how valuations depend on allocated resources, but the resources available
to each contractor are private. As we will see in Section 3, this means that
lying agents can incur infeasible solutions, and Vickrey-Clarke-Groves (VCG)
mechanisms [5,6,7] are no longer truthful.

In this paper we study the strategies of the contractors in STAP for two differ-
ent mechanisms: for an optimal algorithm with a VCG payment, and for a greedy
approximation with an alternative payment function. First we start with a formal
introduction of STAP and the mechanism design problem for STAP (Section 2).
There we distinguish between two types of strategic behavior for the contractor
agents: they can declare resources they do not have (over-reporting), or they can
omit resources they do have (under-reporting). Next we show in Section 3 that
even an optimal algorithm with a VCG payment cannot make truth-telling in-
centive compatible regarding both under- and over-reporting. Knowing that an
optimal algorithm cannot deal with larger instances since STAP is NP-complete,
we introduce an approximation and an alternative payment function in Section 4
with similar truth-telling properties as the VCG payment (i.e., only preventing
under-reporting). Finally, we analyze the quality of the heuristic experimentally,
and draw our conclusions in Sections 5 and 6, respectively.

2 Preliminaries

In STAP, we start from a social network SN of a set of agents A. This social
network SN = (A, AE) is an undirected graph where vertices A are agents and
each edge (i, j) ∈ AE indicates the existence of a social connection between
agents i and j. Some of the agents have a set of resources at their disposal.
These are the contractor agents. Resources come in different types. The set of l
resource types is R. The amount of resources of each type an agent i ∈ A has
available is defined by the function si : R → N.

Some agents, called managers, have tasks they can perform to get some util-
ity. The set of all n tasks is denoted by T = {t1, . . . , tn}. Each task t is defined
by a tuple 〈U(t), req(t), loc(t)〉, where U(t) is the utility gained if task t is ac-
complished, req(t) : R → N is a function that specifies the resources required for
the accomplishment of task t, and loc(t) : A defines the manager of task t.

The exact assignment of how many resources of which type from which agent
are assigned to which tasks is defined by a task allocation, which is a mapping
o : T × A × R → N. A task allocation must obey the social relationships—
each agent’s resources can only be allocated to tasks that are (direct) neighbors
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of this agent in the social network SN . A valid task allocation must also be:
(1) correct—each agent cannot use more than its available resources; and (2)
complete—each task is either not allocated or it receives all required resources.
The set of all valid task allocations for a specific problem setting is denoted by
O. We write To to represent the tasks allocated in o ∈ O. The utility of o is
the sum of the utilities of each task in To, i.e., U(To) =

∑
t∈To

U(t). Note that
we do not include costs for resources; we assume they are already owned by the
contractor agents. The goal of the social task allocation problem (STAP) is to
find an optimal task allocation o∗, such that o∗ is valid and U(To∗) is maximal.
STAP is NP-complete [4].

In this paper, we study the social task allocation problem in a mechanism
design setting where the contractors can only strategize over the set of resources
they declare. We give a brief summary of relevant mechanism design concepts
below, but for a more elaborate introduction see e.g. [8]. In a mechanism design
setting, we provide a method that determines an outcome, i.e., a valid task allo-
cation o ∈ O, given the inputs (called strategies) from in this case the contractor
agents, and possibly some additional true (often public) information. In our case
this is the social network and a set of tasks. We use Z to denote the space for
this external information in STAP. Each z ∈ Z is a tuple (SN, T ).

In the mechanism design setting we consider, each contractor is asked to
declare its available resources, i.e., si : R → N. The set of all such functions is
called its type space S. The type space of all m agents is defined by Sm. We use
s = (s1, . . . , sm) ∈ Sm to denote the type profile of the agents. We sometimes
denote s by (si, s−i), where s−i denotes the types of all agents except i. An agent
can decide to declare another set of resources other than its true type. The set
of all such choices is called its strategy space A. In our case A = S.

When the mechanism receives inputs a = (a1, . . . , am) ∈ Am (called a strategy
profile), it selects an allocation o = O(z, a) with some allocation algorithm
O. In addition, the mechanism computes payments (p1(z,a), . . . , pm(z, a)) for
all contractor agents. The result for agent i, called its utility, is the sum of
the valuation vi that i gets from the resulting allocation o with its type si

and the payment it receives from the mechanism: ui(a) = vi(si, o) + pi(z, a).
This utility model is called quasilinear. This utility ui is what agent i aims
to maximize. In STAP, we define the valuation of a contractor agent i as its
fair share of the utilities of the tasks it helped to fulfill. For this we define
the efficiency e of a task t by dividing the utility of t by the total number
of required resources for t: e(t) = U(t)∑

r∈R req(t)(r) . An agent then receives for
each resource it is contributing the efficiency of the task it is allocated to, thus
vi(ai, o) =

∑
t∈To

∑
r∈R o(t, i, r) · e(t). However, agent i may not be able to fully

contribute to a given allocation o = O(z,a) because it is asked for resources it
does not own. Therefore we define the valuation vi(si, o) that agent i obtains
based on its true type si as

vi(si, o) =
∑

t∈T
′
o,i

∑
r∈R

o(t, i, r) · e(t), (1)
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where T
′
o,i = {t ∈ To | ∀ro(t, i, r) ≤ si(r)} is the set of allocated tasks that are

feasible regarding agent i’s true type.
The social welfare W (o) of the system is the sum of the valuations of the

contractors in the allocation o, i.e., W (o) =
∑m

i=1 vi(si, o). We use this to define
the mechanism design problem for STAP formally.

Definition 1 (Mechanism design for STAP). Given the parameter space Z,
the type space S, and the strategy space A, the mechanism design problem for
STAP is to find a mechanism M = (O, p) that consists of an allocation function
O : Z × A → O, and a payment function p : Z × A → R such that the selected
output o ∈ O maximizes the total social welfare W (o).

One of the most desirable properties of a mechanism is truthfulness.

Definition 2 (Truthful). Given an output algorithm O, a mechanism is truth-
ful if A = S, and for any parameter z ∈ Z, for any strategy profile a−i ∈ Am−1,
for any agent i with type si ∈ S, and for any other type ai ∈ A, it holds that

ui(si,a−i) = vi(si, O(z, si,a−i)) + pi(z, si,a−i)
≥ ui(ai,a−i) = vi(si, O(z, ai, a−i)) + pi(z, ai, a−i).

Informally, under a truthful mechanism, an agent i is never worse off by revealing
its true private type si to the mechanism, no matter what strategies other agents
play. In this paper, we study two types of lying by contractor agent i: (1) under-
reporting its available resource types or amounts, i.e., ∃r∈Rai(r) < si(r), denoted
by ai < si, and (2) over-reporting its available resource types or amounts, i.e.,
∃r∈Rai(r) > si(r), denoted by ai > si.1 We define truthfulness with respect to
under-reporting and truthfulness with respect to over-reporting as follows.

Definition 3. Given an output algorithm O, a mechanism is truthful with re-
spect to under-reporting (or with respect to over-reporting) if A = S, and for
any parameter z ∈ Z, for any strategy profile a−i ∈ Am−1, for any agent i with
type si ∈ S and for any other type ai ∈ A and ai < si (or ai > si), it holds that

ui(si,a−i) = vi(si, O(z, si,a−i)) + pi(z, si,a−i)
≥ ui(ai,a−i) = vi(si, O(z, ai, a−i)) + pi(z, ai, a−i).

Proposition 1. If a mechanism for STAP is truthful then it is both truthful with
respect to under-reporting as well as truthful with respect to over-reporting.

Proof. This follows immediately from Definition 2 and Definition 3.

A mechanism is individually rational (IR) when an agent never receives negative
utility by declaring its true type. We are looking for a mechanism that is IR,
because otherwise agents have no incentive to take part at all.

It is well known that truthful mechanisms can be achieved with carefully de-
signed payment functions, such as VCG payments [5,6,7]. Nisan et al. [9] also

1 Note that agents can in principle also under-report some and over-report some other

resources. We will discuss this mixed lying type at the end of Section 3.
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showed that truthfulness is guaranteed by a VCG payment if the mechanism
outputs the optimal solution. However, in the next section, we show that VCG
mechanisms with an optimal algorithm can only achieve truthfulness with re-
spect to under-reporting, but not with respect to over-reporting. Consequently,
it is impossible to have a truthful VCG mechanism for STAP.

3 An Exact VCG Mechanism for STAP

In this section, we first introduce an optimal allocation algorithm for STAP, and
then a VCG mechanism to incentivize agents to report their true types with
respect to under-reporting.

The optimal task allocation algorithm should deal with the restrictions posed
by the social network. We translate this NP-complete problem to an integer linear
programming (ILP) problem and use the GNU Linear Programming Kit [10] to
solve this problem. For the ILP formulation we introduce two types of variables:
the binary variables yj ∈ {0, 1} for 1 ≤ j ≤ n describe whether or not task j is
allocated, and the integer variables ∀1≤j≤n,1≤i≤m,1≤k≤l xijk denote the amount
of resources of type k agent i supplies to task j. The ILP formulation then looks
as follows: maxmize

∑n
j=1 yj · U(tj), subject to having sufficient resources of

each type for each chosen task from the neighboring agents, and not using more
resources than there are available, i.e.

∀1≤j≤n∀1≤k≤l

∑
{i∈[1,m]|(i,loc(tj))∈AE} xijk ≥ yj · req(tj)(rk), and

∀1≤i≤m∀1≤k≤l

∑n
j=1 xijk ≤ rsc(i)(rk).

This optimal algorithm (OPT) is in the worst case exponential in the number of
variables, i.e., the number of tasks, agents, and resource types.

Our mechanism is then developed using OPT and a VCG payment scheme as
follows.

Definition 4 (MOPT for STAP). Let z = (SN, T ) be given. The task alloca-
tion mechanism MOPT is then defined as follows. First the mechanism center
announces the set of tasks T that need to be allocated to all contractor agents.
Next the contractors declare their types a to the center. The center then finds
the efficient allocation o = OPT(z, a) using the ILP translation.

For the VCG payment function pOPT we follow Clarke’s rule, taking an
agent’s marginal contribution to the society [8]: pOPT

i (z, ai, a−i) = −vi(ai, o) +
W (o)−W (o−i), where o−i = OPT(z, a−i) is the efficient allocation computed by
OPT without i’s participation.

Proposition 2. The mechanism MOPT = (OPT, pOPT) is individually rational.

Proof. When agent i is truthful, its utility is computed by ui(si, a−i) = vi(si, o)+
pOPT

i (z, si,a−i) = W (o)−W (o−i). With agent i, the resulting allocation is never
worse than that without i’s participation, because of the additional resources i
brings in. Therefore, W (o) ≥ W (o−i) and thus ui(si, a−i) ≥ 0, so i is guaranteed
to receive non-negative utility when declaring its true type. 
�
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It seems that MOPT is both efficient and truthful, as its payment is VCG based
and it uses an optimal allocation algorithm. Unfortunately, this is not always
true. Before we show this, we discuss the relationship between the value U(To)
of the allocation o computed by any allocation algorithm O and the gained
social welfare W (o), since this relationship is important for the properties of the
mechanism explained later. Consider the value of such an allocation o:

U(To) =
∑
t∈To

U(t) =
∑
t∈To

∑
r∈R

req(t)(r) · e(t) =
∑
i∈A

∑
t∈To

∑
r∈R

o(t, i, r) · e(t)

We distinguish two cases of a lying agent i: under-reporting and over-reporting.
– In the case of under-reporting (ai < si), for each resource type r ∈ R,

o(t, i, r) ≤ si(r), since the algorithm will not assign more resources than what
i declares. Therefore, by Eq. 1, we have vi(si, o) =

∑
t∈To

∑
r∈R o(t, i, r)e(t)

since T ′
o,i = To. Hence, U(To) =

∑m
i=1 vi(si, o) = W (o), i.e., the utility of

the allocation is equal to the social welfare.
– In the case of over-reporting (ai > si), the algorithm may use i’s non-existing

but declared resources to allocate tasks. If so, the resulting allocation is
infeasible, since agent i cannot actually deliver these resources. Furthermore,
since there exist a resource r such that o(t, i, r) > si(r), so by Eq. 1, we have
T ′

o,i ⊂ To. It follows that U(To) 
= W (o), i.e. the utility of the allocation
computed by the algorithm is not exactly the social welfare.

These results are used to show MOPT is only efficient and truthful with respect
to under-reporting, but not with respect to over-reporting.

Theorem 1. MOPT = (OPT, pOPT) is efficient and truthful with respect to
under-reporting.
Proof. Let si be the true type of agent i and ai be any other type such that ai <
si. Given a problem instance z, let the resulting allocations be denoted by o =
OPT(z, si,a−i), and ô = OPT(z, ai, a−i), respectively, and let o−i = OPT(z, a−i)
be the efficient allocation without i’s participation. We have shown that when
ai < si, W (o) = U(To). Since U(To) is maximal, then W (o) is maximal. That
is, the mechanism is efficient.

We now prove that agent i never receives less utility by declaring its true type
si instead of ai. The difference δ is calculated as follows:

δ = ui(si,a−i) − ui(ai, a−i)
= vi(si, o) + pOPT

i (z, si, a−i) − vi(ai, ô) − pOPT
i (z, ai, a−i)

= W (o) − W (o−i) − (W (ô) − W (o−i)) = W (o) − W (ô).

Since the optimal allocation will not get worse by adding more resources in the
system, U(To) − U(Tô) ≥ 0, thus, W (o) − W (ô) ≥ 0 and then δ ≥ 0. 
�

Unfortunately, with MOPT, agents do have an incentive to declare more resources
than they actually have available.

Theorem 2. MOPT = (OPT, pOPT) is not efficient and not truthful with respect
to over-reporting.



Preventing Under-Reporting in Social Task Allocation 7

i : {r1, r3}

t2 : {r3, r4}

U(t2) = 10

j : {r4,r5}

t1 : {r1, r2,r5}

U(t1) = 12

Fig. 1. Agent i is better off by over-reporting when a VCG payment is used

Proof. Consider the problem instance z with tasks t1 and t2 with U(t1) = 12,
U(t2) = 10 (see Figure 1). Task t1 requires resources {r1, r2, r5}; task t2 requires
{r3, r4}. Both tasks are connected to contractor agents i and j, where i has got
resources r1 and r3, and j owns r4, r5.

Suppose that agent j is truthfully reporting its resource r4. If i also declares its
type {r1, r3} truthfully to the mechanism, the resulting optimal allocation o1 =
OPT(z, sj, si) allocates To1 = {t2}. So in this case, the utility that i receives by
declaring truthfully is: ui(sj , si) = vi(si, o1)+pOPT

i (z, sj, si) = W (o1) = U(t2) =
10. Consider now the case where i over-reports its resources, i.e., ai = {r1, r2, r3}.
Then, both t1 and t2 are allocated, i.e. To2 = {t1, t2}. The utility of i then
becomes: ui(sj , ai) = vi(si, o2)+pOPT

i (z, sj, ai) = vi(si, o2)−vi(ai, o2)+W (o2) =
10
2 − (12

3 · 2 + 10
2 ) + 22 = 14. Since ui(sj , ai) > ui(sj , si), agent i is better off by

over-reporting its resources.
When i over-declares, the output of OPT is not exactly maximizing the social

welfare. It is not efficient with respect to over-reporting. 
�

The above example shows that MOPT is not truthful because an agent may
declare a non-existing resource r2 to improve its utility. In the example this
results in an infeasible allocation, since t1 cannot be executed successfully.2 In
general, it follows from Theorem 2 that no VCG mechanism for STAP can make
the optimal algorithm truthful.

Corollary 1. No VCG mechanism for STAP can make the optimal allocation
algorithm OPT truthful.

Proof. Consider the general description of a VCG payment for an agent i:

pi(z,a) = −vi(ai, OPT(z, a)) + W (O(z,a)) + ha−i , (2)

where ha−i is an arbitrary function that does not depend on i’s truthfulness. We
can therefore assume that ha−i = 0. Repeat the example in Theorem 2, we get
the same result, i.e., agent i is better off by over-reporting its available type. 
�

The results of [5,6,7,9] show that VCG mechanisms are truthful if the mechanism
selects the optimal one among all allowable (or feasible) outputs. The private
information of a player in [9] is a set of values of its types. Therefore given the
type space of the players, the set of feasible outputs is known to the mechanism.
2 Because this can be detected after the tasks have been executed, we may avoid

over-reporting in some applications by transferring part of the payments afterwards.
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Here the private information of a contractor is its available resources. As a
consequence, over-reporting may lead to an infeasible allocation. In other words,
the mechanism has no knowledge about the set of feasible outputs. Thus, the
“optimal” output is not optimizing the true social welfare. This is exactly why
the VCG mechanism cannot guarantee truthfulness in STAP.

In principle, an agent can have a mixed type of lying, i.e., under-reporting
some resources and over-reporting some others. However, if VCG mechanisms
are not able to prevent “pure” over-reporting as shown in Theorem 2, they
cannot prevent the mixed type of lying either. Therefore, in the remainder of
this paper, we only study the case of under-reporting.

One of the disadvantages of VCG mechanisms is that they are not budget-
balanced (BB), i.e.

∑m
i=1 pi = 0. However, it is still interesting to study the total

payment of the mechanism MOPT.

Proposition 3. The total payment of the mechanism MOPT = (OPT, pOPT) to
the contractors is: −W (o) ≤

∑m
i=1 pOPT

i ≤ (m − 1)W (o), where W (o) is the
optimal social welfare and m is the number of contractor agents.

4 A Greedy Mechanism for STAP

Often, we desire a polynomial-time mechanism where the allocation and the
payments can both be computed in polynomial time. However, computing the
efficient task allocation in a social network is NP-complete. Furthermore, when
the number of neighbors of each agent is bounded by Δ for Δ ≥ 3, it is not
approximable within Δε for some ε > 0 (unless P = NP) [4]. This indicates
that finding an approximation algorithm which has a non-trivial approximation
ratio is difficult. Moreover, developing a payment function that makes such an
approximation truthful is even more challenging. Still in this section, we work
towards this by first introducing a greedy allocation approximation algorithm
GTA. We show that VCG mechanisms for GTA cannot even make agents truthful
with respect to under-reporting. We therefore propose a non-VCG mechanism
that is truthful with respect to under-reporting.

4.1 A Greedy Allocation Algorithm

The idea for the greedy allocation algorithm is based on a greedy approximation
for 0-1 knapsack [11]: first sort all items on their relative value, and then try to
insert them in this order. If an item is inserted, it is never removed again.

In the greedy allocation algorithm (GTA) for STAP we consider the tasks in
order of efficiency (the ratio between utility and required resources). If a task is
feasible, it is inserted, if not, it is removed from the current selection of tasks.
Feasibility of a selection of tasks is checked by translating the problem to a
(polynomially solvable) network flow instance (see Algorithm 1).

Proposition 4. The greedy allocation algorithm (GTA) is a K|R|-approximation
algorithm for STAP, where K is the maximum number of resources of one type a
task can require. The run time of GTA is O(|R|n2m).
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Algorithm 1. Greedy centralized allocation algorithm (GTA)
1. Sort all tasks from all managers in descending order of their efficiencies e(t). Denote

the sorted tasks by t′1, t
′
2, . . . , t

′
n, and the current selection of tasks by T ′ = ∅.

2. For i = 1, . . . , n do:

(a) Test if the selection of tasks T ′ ← T ′ ∪ {t′i} is feasible:

(b) Create a network flow problem for each resource type r ∈ R (separately):

i. Create a source s and a sink s′.
ii. For each agent j ∈ A, if r ∈ aj create an agent node and an edge from s

to this node with capacity aj(r).
iii. For each task t ∈ T ′, if r ∈ req(t) create a task node and an edge from

this node to s′ with capacity req(t)(r).
iv. For each agent j ∈ A connect its node to all nodes of neighboring tasks,

i.e., {t ∈ T ′ | (j, loc(t)) ∈ AE}. Give this connection unlimited capacity.

(c) Solve the maximum flow problem for the created flow networks. If the total

maximum flow in all networks is equal to
∑

t∈T ′
∑

r∈R req(t)(r), the current

combination of tasks is feasible. Otherwise remove task t′i from T ′.
3. Output the task set T ′ and the current allocation.

So, in the worst case, GTA may return quite bad solutions. Therefore, in Section 5
we study the average performance of GTA by a set of experiments.

Unfortunately, GTA cannot be made truthful even with respect to under-
reporting by using a VCG payment function, in contrast to OPT.

Proposition 5. No VCG payment function can make the greedy task allocation
algorithm GTA a truthful mechanism with respect to under-reporting.

Proof. In this proof we show that for a specific instance the VCG payment
cannot incentivize a contractor to declare all its available resources truthfully.
First consider the general description of a VCG payment for any agent i (see
Equation 2), where without loss of generality we assume that ha−i = 0. Thus,
pi(z,a) = −vi(ai, GTA(z,a)) + W (GTA(z, a)).

Consider a problem instance with tasks t1, t2 and t3. Task t1 requires resources
{r1, r2, r3}; task t2 requires {r2, r4}; and t3 requires {r3, r5}. All three tasks
are connected to contractors i and j, where i has resources {r1, r4, r5}, and
j owns {r2, r3}. Let the utilities of the tasks be U(t1) = 15, U(t2) = 8, and
U(t3) = 8. Thus the efficiencies are 5, 4, and 4, respectively. Suppose that agent
j is truthfully reporting its resources {r2, r3}. We now compare two situations.
When i also declares its type truthfully to the mechanism, i.e. {r1, r4, r5}, then
according to the greedy algorithm, the resulting allocation is o1 = GTA(z, sj, si)
with To1 = {t1}, because t1 has the highest efficiency. The payment then is
pi(z, sj , si) = −vi(si, o1) + W (o1). So in this case, the utility that i receives by
declaring truthfully is ui(sj , si) = vi(si, o1) + pi(z, sj , si) = W (o1) = 15.

Consider now a case where i under-reports (ai < si) its resources, i.e., {r4, r5}.
In this case t1 cannot be allocated. The greedy algorithm then outputs the
allocation o2 = GTA(z, sj , ai) and To2 = {t2, t3}. The utility of i then becomes
ui(sj , ai) = vi(si, o2)−vi(ai, o2)+W (o2) = (4+4)−(4+4)+16. Since ui(sj , ai) >
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Algorithm 2. Greedy payment pGTA

Inputs: a problem instance z, and the declared types a.

For each agent i, let bi = 0, and do

1. For each resource type r declared by agent i in ai, do

(a) Sort tasks in T r
i in descending order of their efficiencies e(t). Let L denote this

list of sorted tasks. Store the currently available resources of type r of agent

i: ki,r = ai(r), and initialize the set of assigned tasks: Ti,r = ∅.
(b) For each task t ∈ L, if ki,r ≥ req(t)(r), then

i. assign the amount req(t)(r) of agent i’s resource r to t,
ii. update i’s available resource r: ki,r = ki,r− req(t)(r); update the assigned

task set: Ti,r = Ti,r ∪ {t}.
(c) For each task t ∈ Ti,r, if there exists no other agent j such that t ∈ T r

j and

aj(r) > 0, update bi = bi + e(t) · req(t)(r).
2. The payment to agent i is calculated by: pGTA

i (z, ai,a−i) = −vi(ai, o) + bi.

ui(sj , si), agent i is better off by under-reporting its available resources. This
mechanism is not truthful with respect to under-reporting. 
�

4.2 A Mechanism That Is Truthful with Respect to
Under-Reporting

Since we cannot make GTA truthful by a VCG payment, we propose a non-VCG
payment function that pays agents for each resource that no other agent can
provide. Consequently, agents will not benefit anymore from keeping essential
resources from the mechanism to influence the selection of allocated tasks.

For this we introduce some notation and definitions. Given a strategy profile
a and a set of tasks T , let Ti denote the set of agent i’s neighboring tasks to
which it can contribute, and let T r

i denote the set of tasks of i’s neighbors to
which agent i can contribute a resource r, i.e., req(t)(r) > 0 and ai(r) > 0.
Clearly,

⋃
r∈R T r

i = Ti. The payment is based on the allocation of each resource
r of agent i to the most efficient task t such that the agent i’s valuation for such
an allocation is as high as possible. However, we pay agent i its contribution of
resource r to t only if r is unique for t, that is, no other agent j connected to t
has declared r. This greedy payment is described in Algorithm 2.

We now define the greedy mechanism MGTA = (GTA, pGTA) which uses the
greedy allocation algorithm GTA to determine the task allocation, and uses the
greedy payment function pGTA defined above (in Algorithm 2) to calculate the
payments to each participating agent.

We first show in the following lemma that given an outcome o based on an
agent i’s declared type ai (ai ≤ si), i’s valuation based on its true type si is
equal to its valuation based on its declared type ai.

Lemma 1. Given any problem instance z ∈ Z, any algorithm O, strategy profile
a−i ∈ Am−1, and for any agent i its declared type ai, if ai ≤ si, it holds that
vi(ai, o) = vi(si, o) where o = O(z,a).
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Theorem 3. The greedy mechanism MGTA = (GTA, pGTA) is truthful with re-
spect to under-reporting, individually rational, and runs in polynomial-time.

Proof. Let a problem instance z, the declared types of others a−i, and the dec-
laration ai ≤ si be given. From this, the outcome o = GTA(z, ai, a−i) can
be calculated. The utility of an agent i is then determined by ui(ai, a−i) =
vi(si, o) + pGTA

i (z, ai,a−i) = vi(si, o)− vi(ai, o) + bi, where bi is computed based
on the greedy payment given in Algorithm 2. We know from Lemma 1 that
vi(si, o) = vi(ai, o) for ai ≤ si. Thus the utility of i completely depends on the
value of bi, i.e. ui(ai,a−i) = bi. According to the computation of bi in Algorithm
2, for each resource type r, the value that i can get from the allocated tasks
Ti,r is maximal when i declares its full amount of resources, because in this way,
more highly efficient tasks can be allocated, no matter whether its resource r is
unique to tasks in Ti,r. Moreover, bi is maximized when i declares every resource
type r that it has. In other words, each agent’s utility is monotonically increasing
with its declared resources.

An agent i’s utility for declaring its true type si is ui(si, a−i) = bi ≥ 0. So, it
is rational for agent i to participate.

In the greedy payment pGTA, sorting the tasks takes O(n log(n)), and deter-
mining the value and checking the unique for the resource of each contractor
takes O(|R|nm). Hence the total payment computation is O(n log(n)+ |R|m2n).
Since both GTA and pGTA can be computed in polynomial time, the mechanism
is a polynomial-time mechanism. 
�

This result (and its proof) can be generalized for any mechanism for STAP as
long as we can make the agent’s utility function monotonically increasing with
the declared resources.

Theorem 4. Given any problem instance z ∈ Z, any allocation algorithm O,
for any agent i with type si ∈ S and for any other type ai ∈ A and ai ≤ si, a
mechanism for STAP is truthful with respect to under-reporting if the payment to
any agent i is of the form pMON

i = −vi(ai, O(z, a)) + h(ai), where h(ai) is any
function which is monotonically increasing with the declaration ai.

Proposition 6. The total payment of the mechanism MGTA = (GTA, pGTA) to
the contractors is: −W (o) ≤

∑m
i=1 pGTA

i ≤ U(T ), where W (o) is the social wel-
fare and U(T ) is the total utility of all tasks.

5 Experiments

The worst-case performance guarantee for the greedy heuristic presented in the
previous section is based on a specific case where one task with a high efficiency
blocks all other tasks. In practice, not all tasks are connected to the same agents
and the average performance will be much better. To see how much better, we
investigated the performance of this mechanism experimentally.

A problem instance in these experiments is defined by the number of agents,
tasks, and resource types; the requirements, the utility and the location of each
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Fig. 2. These graphs show the relative social welfare of the greedy mechanism related

to the number of tasks (left), and the degree of the networks (right), respectively

task; the available resources at each agent and the relations between the agents.
In our case these relations are defined by the type of social network. The types we
consider in our experiments are: (i) random networks, where agents are connected
completely at random until the desired degree has been reached, (ii) small-world
networks [12], where most agents are connected locally (to the neighbors of their
neighbors), but have a fixed “rewiring” probability of 0.05 to connected to any
other agent, and (iii) scale-free networks, where agents have a higher probability
to get connected to agents with more neighbors [13].

First we investigated each parameter separately using default settings for the
other parameters such that the optimal solution can still be calculated in at most
10 minutes. These defaults were: 200 contractors, 100 tasks, 20 resource types,
20 resources per task on average, 10 resources on average per agent, a uniformly
random distribution of resources and tasks to agents, and the value of a task
drawn from a normal distribution around two times the number of resources
with a standard deviation of one time this number (with a minimal value of
1). We kept the total number of resources required by the tasks and the total
available resources in the network the same, and equal to each other. In a fully
connected network this would mean that all tasks can be allocated. However,
in the networks we consider they generally cannot. For each experiment with
the parameter settings described above, we generated 20 instances of each of
the three types of networks. In the plots we only showed the average and the
standard deviation over these 20 instances for each setting.

When we varied the problem size by increasing the number of tasks from 40 to
100, we noticed (see the first graph in Figure 2) an increase of the quality of the
greedy mechanism from about 0.55 up to about 0.8 in the small-world network
setting, and about 0.9 in the random and scale-free setting. Interestingly, it seems
that the greedy algorithm works better on structures like scale-free networks
where some tasks (managers) are very well connected, while some others are
(almost) not connected at all, than on more uniform structures like small-world
networks, where each task has about the same number of connections.

Next we show the results for problem instances with a degree of the social
network varying from 4 to 40. The greedy mechanism performed extremely well
for networks with a large degree showing a relative social welfare of about 0.99.
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In such a setting most tasks can be allocated, because they end up in very
well-connected nodes, having many alternative contractor agents.

A more important observation is that the performance over all these instances
(about 200 per figure) was between 0.55 and 0.99, and on average around 0.85 of
the optimal outcome. This is a much better result than the worst-case theoretical
bound of K|R| (in this case K was 8) presented in Section 4.1.

6 Discussion and Conclusions

This paper started with a very general resource allocation problem where both
the agents providing the resources (contractors) as well as the agents having some
utility for bundles of resources (managers) can be strategizing. When the con-
tractors are trusted, and only the managers are allowed to strategize over their
value for each bundle, we end up with the well-studied CA problem. However, in
this paper we consider a mechanism design setting which differs in an important
way from most of the studied situations, such as CAs [2], single-parameter and
single-value domains [14,15], because the contractors are not strategizing about
the valuation they declare, but about the resources they have available. When
agents lie about their valuation, the output of a mechanism can be inefficient, but
is always feasible. However, when agents lie about such things as their available
resources, the mechanism can come up with an infeasible outcome.

We showed that in such a setting a VCG payment with an optimal algorithm
cannot guarantee a truthful mechanism, but it can realize a mechanism that
is truthful with respect to under-reporting. Moreover, since the problem is NP-
hard, we can only expect to find optimal algorithms that run in time exponential
in the size of the input.

In this paper we therefore proposed a polynomial-time approximation. We
first showed that using this approximation, VCG mechanisms cannot be used to
create similar truth-telling properties as for the optimal mechanism. However,
we then proposed another payment function that actually could realize these
properties. In general, we showed that this is because the utility of agents is
monotonically increasing in the number of declared resources. Our experimental
results show that the overall quality of the solutions using this mechanism is
quite good. Since STAP is NP-complete, we conclude that this heuristic is more
useful than the optimal mechanism in many practical situations with a moderate
or larger problem size.

The fact that agents have an incentive to over-report is very severe, because it
could lead to infeasible solutions. However, we believe that this consequence may
also imply a solution, because lying agents can thus be detected and punished.
This is an important topic in our current work.

Furthermore, we will consider the general resource allocation problem where
not only the contractor agents, but also the managers can strategize. Our goal is
to also incentivize the managers to truthfully declare their tasks and the attached
utilities. It is relatively straightforward to see that a VCG payment can achieve
this if an optimal algorithm is used. How to achieve this using an approximation
algorithm is still an open question.
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With the proposed greedy payment algorithm an agent may receive zero utility
if its contribution (i.e. resource) is not unique to the task. Moreover, additional
funding is required to incentivize the agents. To avoid these undesirable situa-
tions, we are interested in developing a dynamic payment scheme which adapts
the payments based on (i) the specific instance, e.g. the resource distribution,
and (ii) the generated social welfare, while maintaining the truthfulness property.

As a final remark, we believe that the results in this paper generalize to other
(NP-hard) problem domains where a wrong input to the mechanism by the agents
can lead to infeasible outcomes, such as in multiagent planning. We intend to
show in the future that alternative payment functions such as the one proposed
here can be applied to those settings as well.
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Abstract. Automated negotiation is important for carrying out flexible transac-
tions. Agents that take part in automated negotiation need to have a concise repre-
sentation of their user’s preferences and should be able to reason on these
preferences effectively. We develop an automated negotiation platform wherein
consumer agents negotiate with producer agents about services. A consumer agent
represents its user’s preferences in a compact way using a CP-net, which is a struc-
ture that allows users to order their preferences based on the different value combi-
nations of attributes. Acquiring user’s preferences in a compact way is crucial since
it significantly decreases the number of questions to be asked to the user by the con-
sumer agent. We design strategies for consumer agents to reason on and negotiate
effectively with the preference graph induced from a CP-net. These strategies are
designed to generate deals that are acceptable by the provider and the consumer.
We compare our proposed strategies in terms of how well and how quickly they
can find desirable deals for the consumer.

1 Introduction

Automated negotiation is a key problem in agent-mediated e-commerce [1]. Negotia-
tion is a process in which participants deviate from their most desired offerings to the
extent that is acceptable. In order to engage in an automated negotiation, participants
should know and reason about their preferences. Preferences represent the desired and
acceptable alternatives for the services being negotiated. In order to decide if an offer is
acceptable, an agent needs to consult its user’s preferences, decide which offer is more
preferable, and generate possible counter-offers based on this. Hence, representation
and reasoning of preferences constitutes an irreplaceable part of automated negotiation.
Whereas the preferences should be simple to represent and manipulate, they should also
be represented expressively.

Preferences can be considered as the choice of the user when there exist more than
one alternative for a particular issue. Preferences can be represented quantitatively or
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qualitatively. Quantitative representations require the users to associate numerical val-
ues to denote the extent of their preferences. However, obtaining these values are dif-
ficult. Further, representing and quantifying conditional preferences is cumbersome.
Contrary to quantitative representations of preferences, qualitative representations are
mostly in the form of comparatives and conditionals. For example, a user may prefer
Rose wine to White wine (comparative) or may prefer Rose wine to White wine only
if the region is French (conditional).

Since expressing preference in a compact way decreases the required time for pref-
erence elicitation, it is preferred to use a compact representation while taking the pref-
erences from the user. There are several compact representations such as GAI-nets [2]
and CP-nets [3]. Whereas the GAI-nets are utility-based quantitative preference model,
CP-nets are qualitative models. Since it is hard to obtain numerical utility values for
subset of attributes, we prefer to use CP-nets as our preference representation model.
This paper studies the following questions about preferences:

– How can the preferences be taken efficiently from the user?
– How can the user preferences be represented in a compact way?
– How will the consumer agent generate its request in accordance with its preferences

in an automatic way?
– When should the consumer agent accept the counter offer of the producer (in the

light of its preferences)?
– According to the request, which service content should be offered by the producer?

The rest of this paper is organized as follows. Section 2 describes our general architec-
ture, discusses representations for preferences and provides a background on CP-nets.
Section 3 introduces novel strategies with which CP-nets can be used. The producer
strategy for generating its counter offer is explained in Section 4. Section 5 evaluates
these strategies experimentally and compares their benefits. Finally, Section 6 reviews
our work in relation to existing literature and gives directions for further research.

2 Representing and Ordering Preferences

We consider the negotiation between a consumer and a producer agent, which com-
municate with each other in order to reach a mutual agreement on the service. As is
commonly the case, the producer agent cannot provide all possible services requested
by the consumer. Hence, both the consumer and the producer need to reach a consensus
on an acceptable service. To reach a consensus, the agents negotiate the content of the
service in an iterative way so that if either agent does not accept the proposal of the
other, it makes a counter offer. In principle, the negotiation can continue until either a
consensus is found, or the producer runs out of services it can offer [4]. However, to be
more realistic, we are interested in negotiations that have a deadline; i.e., the negotiation
is expected to end in a fixed number of iterations or in a fixed amount of time.

In this automated negotiation, common understanding between the agents are pro-
vided via a shared ontology that can be used to specify information on service descrip-
tion, features constructing the service, the domain information for each feature and so
on. In our experiments, we prefer to use a modified version of Wine ontology, since this
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ontology is well-known and publicly used for test purposes. Thus, the service that is
being negotiated between consumer and producer is that of selling wine.

2.1 Ceteris Paribus Nets (CP-Nets)

From our point of view, complexity of a preference can be investigated in two ways.
Firstly, a preference may have a simple structure such as the customer prefers red wine,
which means any red wine is an acceptable offer. Here, the boundary of the preferences
is explicitly specified. There is no information about how much the consumer prefers
red wine. We just know that red wine is preferred. In our previous study [4], we assume
that the preferences are in the form of disjunctions and conjunctions of the attributes.
For instance, a customer may prefer rose or red dry wine ( (Color = (Red ∨ Rose))
and (Sugar = Dry) ). The consumer agent accepts any wine compatible with this
preference. Secondly, we can represent preferences in a more sophisticated way. Some
constraints can be defined over the preferences such as if the region is FrenchRegion,
the red wine is better than rose wine. Here, it does not mean only red wine is acceptable.
It just gives the preference ordering. CP-nets can also represent conditional preference.
Such preference structures enable more flexible negotiation interaction among agents.
In contrast to our previous work, this study deals with more flexible preferences instead
of strict ones.

CP-net is a tool for representing qualitative preferences in a compact way [3]. Even
though they are compact, they can represent most practical preference orderings. Pref-
erence statement such as Rose wine is better than White wine, means that any Rose
wine is better than any White wine when all the other features such as grape, region
have the same value. For example, when both wine has made from the same grape type
in the same region and all other wine features except color are same, Rose wine is better
than White wine for the user. Such statement is called the preference ceteris paribus,
“everything else being equal” [5].

A CP-net is composed of a dependency graph of features showing child-parent rela-
tions and a set of conditional preference tables (CPT) including preference statements.
A ceteris paribus preference statement indicates which feature value is dominant over
others. For example, White � Red means that White is preferred to Red. Further,
(FrenchRegion ∧ Dry) : Red � White means that if the region is FrenchRegion
and the sweetness degree of the wine is Dry, then Red color is preferable to White
color.

In CP-net terminology, a feature may have parent feature(s). This parent-child re-
lation of features depends on the preferential dependency. The value of parent feature
affects the user preferences over the values of child feature. By this way, we can express
the conditional preferences. For instance, we can express if the color is Red, then we
prefer Dry wine to Sweet wine. Here, the parent feature can be thought as color and
preference of the sweetness degree attribute of wine depend on the wine color attribute
value. Example 1 explains CP-net representation in depth.

We can see a preference as an ordering of instances. The problem is the number of
instances is exponentially many with respect to the number of features. Asking a user for
a complete definition of her preferences is cumbersome. Therefore, tools like CP-nets
representing preferences with asking proportionally fewer questions are crucial. That



18 R. Aydoğan, N. Taşdemir, and P. Yolum

is, all potential orderings cannot be captured by CP-net but mostly necessary partial
information can acquired.

Example 1. Assume that we have only two features: Flavor and Color. Figure 1 depicts
a sample CP-net. In this example, Flavor is the parent of Color attribute. According to
the CP-net terminology, the Flavor and Color are variables. And, Color may take one
of the values: Red, White and Rose whereas the domain of Flavor includes Delicate,
Moderate and Strong. A CPT involves the preference statements related to the values
of the variables. We can infer some conclusions from these statements such as when the
flavor is Delicate, then the user prefers Red wine to White wine and to Rose wine.

Fig. 1. Sample CP-net

The preference ordering specified on a particular variable is transitive such that if
X � Y and Y � Z then we can say that X � Z . As seen in Figure 1, we know that
Delicate � Strong and Strong � Moderate. Because of transitivity, it can be said
that Delicate � Moderate.

Furthermore, we can induce a preference graph from a given CP-net. The nodes
of this preference graph represent the decision choices such as (Rose ∧ Moderate)
meaning that a wine whose color is rose and flavor is moderate. The edges of the in-
duced preference graph can be established via improving flips on a given CP-net. An
improving flip is changing the value of a single attribute with a more desired value by
using the CPT of the attribute. Therefore, the instance obtained via this method is more
desirable. The preference graph of the sample CP-net in Figure 1 is drawn in Figure 2.
Every edge is obtained by an improving flip. Example 2 explains the improving flipping
for the given sample CP-net. The root element(s) of the induced graph represents the
worst choice whereas the leaf node(s) expresses the best one. From top to bottom, the
choice becomes more desired. For instance, there is an edge from (Rose ∧ Moderate)
to (Rose∧Strong). It can be inferred that rose and strong wine is more preferable than
rose and moderate wine.

Example 2. Let’s start with the choice node (Rose∧Moderate). From the CPT table
of Flavor, we know the fact of Strong � Moderate. By using this fact, Moderate is
changed with Strong. By this improving flip, an edge is established between the first
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Fig. 2. The induced preference graph from the sample CP-net in Figure 1

node and the new node (Rose∧Strong). Afterwards, Rose is replaced by Red because
of the fact Red � Rose in CPT of Color. Now, we draw an edge from (Rose∧Strong)
to (Red ∧ Strong). By a sequence of improving flips, the induced preference graph
is generated. We can make a comparison between some choices by investigating this
graph. For example, the fact that red and strong wine is more preferable than rose and
moderate wine, can be inferred from this graph.

As a result, CP-nets are very convenient model to get user preferences in a compact
way. From this compact representation, we can induce a preference graph showing the
degree of the user preferences. According to the graph shown in Figure 2, the most
preferable wine is Red and Delicate.

2.2 Obtaining Preferences

Getting all possible preference orderings from the user is an expensive task so we need
to take these preferences in a more efficient way. At this point, using the CP-net con-
struction seems an efficient way to get the preferences from the user. To accomplish this,
there are two subtasks: taking the dependency among features and getting preference
ordering of for possible values of these features based on the dependency.

The consumer agent has only one interaction with the user to obtain the user prefer-
ences, before starting the negotiation. These preferences are taken by using the CP-net
as follows. First, the dependency among features are obtained. As we explained be-
fore, the ordering of preferences for a particular attribute (child attribute) may depend
on the values of other attributes (parent attributes). Thus, the user is asked firstly for
child-parent relations of the features, which constitute a service. For example, accord-
ing to the user, the preference ordering for color attribute may depend on the flavor
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attribute. Afterwards, the order of preferences is taken. Every combination of parent
attribute values form the conditional part of the ceteris paribus statements. For instance,
for each value of flavor, the preference ordering is asked for wine color. And for the at-
tributes not having any parent attributes such as flavor, the preference ordering is asked
unconditionally. As a result, the user preferences are elicited easily by this way.

3 Strategies for Generating Requests

The consumer agent keeps the preferences in a CP-net form constructed by the given
dependency graph of features and a set of conditional ceteris paribus preference state-
ments. Then, a preference graph is induced from this CP-net structure. This preference
graph is used by the consumer agent to generate a request for the desired service.

In this graph, each node represents a possible service. The direction of the edges
is from the less preferable service to the more preferable service. In order to compare
these services, making some assumptions is required for comparison of the services
since less information is taken to construct the CP-net from the user compared to the
complete preference information. Therefore, we assume that the depth of service plays a
determinative role in comparison of the services. According to our approach, the higher
depth a service has, the more likely to be preferred by the user. Thus, determining the
depth of each node is necessary when comparing two services in terms of which service
is more preferable by the user. One node may be pointed by more than one node. Thus,
we start assigning depth to each node from the root node(s). The depth of root node(s)
is equal to zero. Then, we increment the depth by one and assign one to the depth of
all child nodes of the root node(s). Afterwards, the same process is applied to all child
nodes of the child nodes of root node(s) in a recursive way. By this way, a parent node
may have child nodes at different depths.

To illustrate this, consider the graph in Figure 2. Here, the root node is (Rose ∧
Moderate) with depth zero. It has three child nodes: (White ∧ Moderate), (Red ∧
Moderate) and (Rose ∧ Strong). Their depths are initially assigned one. Afterwards,
the incrementing the child node process continues for these three child nodes in a re-
cursive way. Since (White ∧ Moderate) is child of (Red ∧ Moderate), its depth is
incremented by one again. At the end, the depth of (White ∧ Moderate) becomes
equal to two whereas that of other child node of the root node (Red ∧ Moderate) is
one. From the point of consumer agent, the depth is a measure of preference. That is
the services at higher depths are more preferable than the lower ones. The nodes at the
highest depth are the most preferable by the user. For instance, in the previous example,
the user prefers mostly red and delicate wine.

Using this preference graph, requests can be generated in several ways. Here, we
develop and analyze four types of strategies for generating the requests: (1) Sequential
Search Strategy (Section 3.1), (2) Depth Limited Search Strategy (Section 3.2), (3)
Binary Search Strategy (Section 3.3), and Upper Random Strategy (Section 3.4).

The producer agent in this architecture provides the service if it is available in his
stock. Otherwise, the most similar service to the last request of the consumer is offered
to the consumer. This simplistic approach is chosen deliberately for the producer to
enable us to focus on the customer strategies.
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3.1 Sequential Search Strategy

From the preference graph, we obtain a hierarchy of nodes based on their depths. Ac-
cording to sequential search strategy, the consumer generates a request with the highest
possible depth. Note that the node having the highest depth means the service that the
user prefers the most. The intuition here is that if the consumer requests the most de-
sired services and if a service can be provided by the provider, the consumer will end up
with the most desired outcome. In order to get the most desired service that is available,
consumer requests services in descending order with respect to their depth over time.

The aim of consumer agent is to complete the negotiation as soon as possible in
addition to taking the best service it can gain. Thus, a heuristic for deciding when the
consumer should accept the producer’s offer is required. For this reason, the consumer
agent keeps the best service offered by the producer. At each interaction with the pro-
ducer, he updates the best offer if the current offer is better than the best offer. There is
no need to investigate other services at the current depth if the current depth is less than
or equal to the best offer. In this case, the consumer requests the best offer. This request
is met by the producer and the negotiation is completed successfully.

The performance of the strategies depends on the available services in the producer’s
stock. According to our expectation, if the services are spread on the higher depths,
the agents will negotiate quickly. On the other hand, this strategy may not give a good
performance if the producer only has the services that are mostly less desired by the
user. In this case, the time for consensus may increase.

Assume that the producer has four services, which are less desired by the consumer:
(Rose∧Moderate), (Red∧Moderate), (Rose∧Strong) and (White∧Moderate).
According to this strategy, the consumer first request (Red ∧ Delicate), whose depth
is five. The producer offers an alternative service, which is most similar to the request,
(Red∧Moderate). This offer is kept as best offer whose depth is one but the consumer
does not accept it because its depth is lower than five. Next, the consumer requests
(White ∧ Delicate) of depth four and the producer offers (White ∧ Moderate). Be-
cause its depth is two, the consumer updates its best offer with this new offer. Afterward,
the consumer asks for (White∧Strong). Now, the producer offers (Rose∧Strong) of
depth one. The consumer does not accept it and now the current depth is equal to two for
the consumer. Thus, it asks for the best offer that he got before, (White∧ Moderate).
Hopefully, the producer provides this service and negotiation is completed successfully
with four interactions. If the producer has services whose depth is higher, the agents
have a consensus sooner. For example, if the producer has (White ∧ Delicate), the
agents interact with each other twice.

3.2 Depth Limited Search Strategy

In this strategy, the consumer applies depth limited search technique in order to gener-
ate a request. Here, the consumer starts his request with the most desired service and
decreases his ambition level on the service up to an acceptable degree. After reaching
this limit, he starts to ask for higher preferred services. Initially the limit is predefined
as the half of the highest depth of the preference graph and it is updated during the ne-
gotiation with the depth of the producer’s best offer plus one since it is unnecessary to
ask for services whose depth is less than or equal to the depth of producer’s best offer.
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To make the clear understanding of depth limited approach, an example is explained
where in the best offer proposed by the producer does not make the limit be updated.
After this example, we will deal with another example demonstrating the case that the
limit is updated according to the producer’s best offer.

As the first example, consider the preference graph in Figure 2. According to the
preference graph, the highest depth is equal to five so the limit is equal to two. The
consumer generates his first request by starting at the leaf node, which holds the most
desired service (Red∧Delicate). In the second iteration, he chooses one parent of this
node as a request. For example, he may select (White∧Delicate) of depth four. After-
wards, the consumer selects the parent of that node, (White∧Strong). It goes on until
the depth of the parent is less than the limit, two. Search will go on by backtracking to
the leaf node step by step. At each step, all the parents of the current service are checked
for being a possible request. For instance, after requesting (Red ∧ Strong), consumer
backtracks to the node (White ∧ Strong). Whether the depth of the other parents of
this node is equal to or greater than the limit is investigated. If there are such nodes,
these nodes are chosen for the request one by one. In our example, (White∧ Strong)
has three parents: (Red∧Strong) is asked before, the depth of (Rose∧Strong) is less
than limit and (White ∧ Moderate) is a suitable candidate for being a request. Since
a particular node may be parents of more than one, it is required to check whether the
service node is used as request before in order to prevent the duplication in request.

Second example differs from the first one in the response of the producer to the
request of (Red∧ Strong). In this example, producer offers (Rose∧Delicate) whose
depth is equal to two. Afterwards, the limit is updated as three (= 2+1). This situation
results a change in the suitability of the next candidate. For example, namely (White∧
Moderate) of depth two will not be requested.

In this approach, the consumer does not always generate the request having high-
est depth but it also considers the request from the nodes having lower depth. If the
producer has services in between the most preferred services and moderately preferred
services, this strategy may lead the consumer to a consensus in a short time compared
to sequential strategy. Technically, such kind of strategy may be beneficial when the
services in the stock of producer are at any depth between limit and highest depth.

3.3 Binary Search Strategy

The consumer generates the requests using binary search over the preference graph.
Algorithm 1 explains binary search procedure for this task. According to the algorithm,
two boundaries are defined for the depth hierarchy: lower and upper. At the beginning,
upper boundary is equal to the highest depth whereas the lower boundary is equal to
zero. The consumer uses a service node in the graph whose depth is equal to half of the
sum of these two boundaries ((upper + low)/2). To speed up the negotiation process,
lower boundary is updated after each interaction with the producer. After the producer
offers an alternative service whose depth is higher than the lower, it would be irrational
for the consumer to request a service less desired than the previously offered service
by the producer. For instance, assume that the producer offers a service of depth three.
From the consumer point of view, it does not make sense to ask for a service whose
depth is less than three.
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Algorithm 1. Generating Request with Binary Search Strategy
1: control← False
2: while control==False do
3: curDepth← (upper + lower)/2
4: if index[curDepth] < hierarchy.at(curDepth).size then
5: control← True
6: else
7: hierarchy.remove(curDepth)

8: index.remove(curDepth)

9: depthIndex.remove(curDepth)

10: if lower < upper then
11: upper← (upper − 1)

12: else
13: negotiated← True
14: return best
15: end if
16: end if
17: end while
18: value← index[curDepth]

19: index[curDepth]← (value + 1)

20: return hierarchy.at(curDepth).at(value)

In the given algorithm, upper represents the upper depth and lower represents the
lower depth (initially zero). The consumer first asks for any service whose depth is equal
to curDepth = (upper + lower)/2. According to the algorithm, firstly whether there
exists any service node that was not be used previously at the curDepth is checked
(Lines 1-5). If such a node exists, it returns it as a potential request (Line 20). For
each depth, index holds the number of service that has been used as a request by the
consumer. After each request, this value for the current depth is updated by increasing
it by one (Lines 18-19).

If there are no remaining services at the current depth (curDepth), the current depth
may be eliminated from the hierarchy. In this case, the next depth is chosen as the
current depth (Lines 7-9). To illustrate this, assume all the services of depth two are
requested before. In this case, the current depth is removed from the hierarchy and the
new current depth becomes third depth in the previous hierarchy. Also the upper depth
is now equal to upper depth minus one (Line 11). In this case, the lower depth may not
be higher than the upper depth. At this time, negotiation is completed with the best offer
done by producer (Line 14).

3.4 Upper Random Strategy

The consumer chooses his request randomly from the preference graph. To improve
the negotiation, the consumer selects the service randomly whose depth is higher than
the depth of service offered by producer. For instance, in the second interaction with the
producer the consumer selects a service randomly whose depth is higher than two if the
producer has offered a service of depth two in the previous interaction. The negotiation
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continues until there is no unrequested service whose depth is higher than that of the
best offer. In this case, the best offer proposed by the producer is requested by the
consumer.

4 Producer’s Strategy for Counter Offer

Unless the producer does not own the requested services, it has a tendency to offer a ser-
vice from its stock, which is most similar to the last request of the consumer. To estimate
the similarity, Tversky’s similarity measure [6] comparing two vectors in terms of the
number of exactly matching features is used. The formula for this similarity metric is
shown in Equation (1) [6]. Here, common represents the number of matched attributes
whereas different represents the number of the different attributes. We assume that α
and β is equal to each other.

SMpq =
α(common)

α(common) + β(different)
(1)

5 Experiments

To evaluate our proposed strategies, we construct a system including one producer and
one consumer agent that are negotiating a wine service automatically. This system is
implemented in Java. The shared ontology describing the wine service is a modified ver-
sion of the Wine Ontology [7]. OWL [8] is used as the ontology language and Jena2 [9]
is used as the ontology reasoner. In the modified wine ontology, the wine service is
described as a concept including six properties: grape, sugar, flavor, color, region and
winery.

To start the negotiation, first the user’s preferences are taken using the CP-net inter-
face application. Based on the dependencies of the features, the user is asked to order
her preferences. The obtained CP-net is kept in a file that can be reached only by the
consumer agent. Note that the producer does not know the user’s preferences. The pro-
ducer agent has a service stock consisting of 20 wine services. These services are not
known by the consumer.

We evaluate the performance of the strategies that are used by the consumer in order
to generate requests. Intuitively, the customer prefers to get the best offer as soon as
possible. Thus, the performance criterion is taken as the number of interactions with
the producer to take the best service in terms of consumer preferences available on the
producer side.

The experiments are conducted using two different customer preference profiles. The
induced preference graph for the first customer profile has a depth of 18, whereas the
second graph has a depth of 25. For each customer profile, four strategies explained
in Section 3 are tested separately. These strategies are: sequential, depth limited, bi-
nary and upper random. To observe the performance of the strategies for generat-
ing a request, 20 different service stocks are constructed. Half of these service stocks
(Stock1A . . . Stock10A) are used for the first customer profile and remaining (Stock1B
. . . Stock10B) are used for the second profile. Since the available services in the stock
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Table 1. Information about datasets in according to pattern and preference profile

Pattern Preference Max Depth Information

First First 14 11 of depth 8, 8 of depth 9 and 1 of depth 14
First Second 20 11 of depth 12, 8 of depth 13 and 1 of depth 20
Second First 17 5 of depth 8, 5 of depth 9, 5 of depth 16 and 5 of depth 17
Second Second 24 5 of depth 12, 5 of depth 13, 5 of depth 23 and 5 of depth 24

may influence the negotiation process, we study two patterns for service stocks. The
stock information for each pattern and preference profile is given in Table 1.

First pattern includes services of moderately desired level and one highly desired
level service. In order to observe the behavior of the consumer’s strategy, the stock has
11 services of depth eight, eight services of depth nine and one service of depth 14 as
far as the first preference graph is concerned. To be fair, we use five different service
stocks in this pattern for the first customer profile: Stock1A . . . Stock5A. The second
preference profile is composed of 11 services of depth 12, eight services of depth 13
and one service of depth 20. Similarly, we use five different stocks in this pattern for the
second customer profile: Stock1B . . . Stock5B. Different from other strategies, upper
random strategy is run at five times and the average value is used for the evaluation.

Table 2 and Table 3 show the number of interactions with the producer for each
strategy to obtain the producer’s best offer for the first preference profile and second
preference profile respectively. As seen from the results, the consumer using sequential
strategy for generating requests takes the producer’s best offer sooner than using binary
or upper random strategies. The performance of the depth limited strategy is similar to
that of sequential strategy but it gets worse compared to the sequential strategy for two
of the five stocks for each preference.

Since the producer offers the most similar service to the request, the available ser-
vices existing in producer’s stock influence the negotiation direction. For some partic-
ular stocks, the similarity between the best service that the producer can offer and the
consumer request inevitably causes the depth limited strategy to take longer then the se-
quential strategy. Consider Stock1A in which the best offer is similar to second service
of depth 17. After requesting the first service of depth 17, consumer asks for a lower
depth when the depth limited strategy is used. In this case, the consumer’s next requests
become far away from the best offer that can be proposed by the producer. Therefore, it
takes more time to reach the best offer.

Table 2. Number of interactions to get the best offer (first preference profile, first pattern)

Strategy Stock 1A Stock 2A Stock 3A Stock 4A Stock 5A

Sequential 3 1 1 1 3
Depth Limited 14 1 1 1 6
Binary 9 2 2 6 13
Upper Random 12.8 8.6 8 9.8 6
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Table 3. Number of interactions to get the best offer (second preference profile, first pattern)

Strategy Stock 1B Stock 2B Stock 3B Stock 4B Stock 5B

Sequential 1 1 3 2 1
Depth Limited 1 1 11 15 1
Binary 4 3 4 4 5
Upper Random 6.8 4 12.8 4.8 13.8

The second pattern that we investigated in our experiments involves same numbers of
services of moderately desired level and highly desired level. For first preference profile,
the stock has five services of depth eight, five services of depth nine , five services
of depth 16 and five services of depth 17. Five different service stocks having these
features are Stock6A . . . Stock10A. The pattern of the stock for the second preference
profile consists of five services of depth 12, five services of depth 13, five services of
depth 23 and five services of depth 24 as far as the preference graph is concerned. Half
of the services are highly desired whereas other half is desired moderately. We use
different stocks having these features: Stock6B . . . Stock10B.

Table 4 shows the number of interaction with the producer for each strategy to ob-
tain the producer’s best offer for the first preference profile whereas Table 5 indicates
the same for the second preference profile. According to the results, the sequential and
depth limited strategies gives the best results for both preference profiles. The perfor-
mance of the binary and upper random strategies is better for the second stock pattern
than for the first pattern. Since the number of highly desired services in the second pat-
tern is larger than that in the first pattern, the probability to reach the best offer is high
in the second pattern. Therefore, the performance of binary strategy as well as the upper
random strategy increases implicitly.

As a summary, the consumer using sequential strategy receives the producer’s best
offer sooner than those using other strategies. The consumer using depth limited strat-
egy achieves the second high performance but in some cases binary strategy works
better than depth limited. This stems from the fact that the performance of the strategies
are affected by the content distribution of the stocks. That is, the producer offers the
most similar service which does not necessarily correspond to services that are of the
same or consecutive depths. Therefore the producer may offer a service of unexpected
depth. As a result, the strategies may give different performance for different stocks in
the same pattern.

Table 4. Number of interactions to get the best offer (first preference profile, second pattern)

Strategy Stock 6A Stock 7A Stock 8A Stock 9A Stock 10A

Sequential 1 1 1 1 1
Depth Limited 1 1 1 1 1
Binary 3 2 2 3 3
Upper Random 2 1.8 2.6 2.4 2.8
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Table 5. Number of interactions to get the best offer (second preference profile, second pattern)

Strategy Stock 6B Stock 7B Stock 8B Stock 9B Stock 10B

Sequential 1 1 1 1 1
Depth Limited 1 1 1 1 1
Binary 2 3 2 2 3
Upper Random 2.6 2.8 2.6 2.4 3

6 Discussion

Tykhonov and Hindriks propose to learn the opponent’s preferences using Bayesian
learning in order to improve the performance of the negotiation process [10]. They
study learning opponent’s preferences from bid exchanges in automated multi-issue ne-
gotiation. Whereas Tykhonov and Hindriks assume issues to be independent, we also
consider dependent issues in our model. Under this setting, we do not learn the oppo-
nent’s preferences but develop strategies to negotiate with preferences. In this respect,
our work is complementary.

Dastani et al. study mediating agents and modeling user preferences in e-commerce
[11]. They argue that preferences can be modeled automatically. In order to induce
the preferences, they suggest applying inductive logic programming in that mediating
agent finds out the regularities in the behavior of the participants. By this way, it in-
duces hypotheses about their preferences. Instead of learning preferences, we take the
preferences in the form of CP-net and provide strategies to propose offers.

Faratin et al. propose a multi-issue negotiation mechanism based on trade-offs [1].
The service variables for the negotiation process such as price, quality, and so on are
considered trade-offs against each other (i.e., higher price for earlier delivery). They
generate a heuristic model for trade-offs including fuzzy similarity estimation and a hill-
climbing exploration for possibly acceptable offers. A possible offer having the same
score value for the agent with its previous offer, which approximates the opponent’s last
offer is proposed by the agent. In our study, the consumer generates its requests via the
proposed strategies explained in Section 3. These strategies use the preference graph
induced by the CP-net.

Lue et al. study gaining user trade-off strategies and preferences to improve the ef-
ficiency of the negotiation [12]. They propose a default-then-adjust method for this.
According to their approach, system first makes an interview with the user about the
possible trade-off strategies. Then, the user can alter the default suggested trade-off
strategies and also the default preferences on the trade-off alternatives. Compared to
that approach, we deal with taking consumer preferences in order to generate requests
rather than trade-off preferences.

Present work only focuses on the consumer’s strategies for generating requests. In the
future, we plan to incorporate mechanisms such as learning preferences to improve ne-
gotiation capabilities of the producer. Further, we plan to study the trade-offs of strate-
gies under different patterns of service distributions.
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Abstract. This paper studies the benefits of using priced options for solving the
exposure problem that bidders with valuation synergies face when participating
in multiple, sequential auctions. We consider a model in which complementary-
valued items are auctioned sequentially by different sellers, who have the choice
of either selling their good directly or through a priced option, after fixing its ex-
ercise price. We analyze this model from a decision-theoretic perspective and we
show, for a setting where the competition is formed by local bidders, that using
options can increase the expected profit for both buyers and sellers. Furthermore,
we derive the equations that provide minimum and maximum bounds between
which a synergy buyer’s bids should fall in order for both sides to have an incen-
tive to use the options mechanism. Next, we perform an experimental analysis of
a market in which multiple synergy bidders are active simultaneously.

1 Introduction

The exposure problem appears whenever a bidder with complementary valuations (i.e.
synergies) tries to acquire a bundle of goods sold through sequential auctions. Infor-
mally, the problem occurs whenever an agent may buy a single good at a price higher
than what it is worth to her, in the hope of obtaining extra value through synergy with
another good, which is sold in a later auction. However, if she then fails to buy this other
good at a profitable price, she is exposed to the risk of a potential loss. In the analysis
presented in this paper, we call such a global bidder a synergy bidder.

The exposure problem is well known in auction theory and multi-agent systems re-
search. The usual way to tackle this problem in the mechanism design community is to
replace sequential allocation with a one-shot mechanism, such as a combinatorial auc-
tion [4]. However, this approach has the disadvantage of typically requiring a central
point of authority, which handles all the sales. Moreover, many allocation problems oc-
curring in practice are inherently decentralized and sequential. Possible examples range
from items sold on Ebay by different sellers, loads appearing over time in distributed
transportation logistics, dynamic resource allocation in hospitals, etc.

In this paper, we consider a different approach to handle the exposure problem, and
propose a mechanism which involves auctioning priced options for the goods, instead
of the goods themselves.

W. Ketter et al. (Eds.): AMEC/TADA 2008, LNBIP 44, pp. 29–45, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1.1 Options: Basic Definition

An option can be seen as a contract between the buyer and the seller of a good, subject
to the following rules:

– The writer or seller of the option has the obligation to sell the good for the exercise
price, but not the right.

– The holder or buyer of the option has the right to buy the good for the exercise
price, but not the obligation.

Since the buyer gains the right to choose in the future whether or not she wants to
buy the good, an option comes with an option price, which she has to pay regardless
of whether she chooses to exercise the option or not. Options can thus help a synergy
buyer reduce the exposure problem she faces. She still has to pay the option price, but if
she fails to complete her desired bundle, then she does not have to pay the exercise price
as well and thus she limits her loss. So part of the uncertainty of not winning subsequent
auctions is transferred to the seller, who may now miss out on the exercise price if the
buyer fails to acquire the desired bundle. At the same time, the seller can also benefit
indirectly, from the additional participation in the market by additional synergy buyers,
who would have otherwise stayed out, because of the exposure to a potential loss.

1.2 Related Work

The first work to introduce an explicit option-based mechanism for sequential-auction
allocation of goods to the MAS community is Juda & Parkes [2,3]. They create a mar-
ket design in which global bidders are awarded free (i.e. zero-priced) options, in order
to cover their exposure problem and, for this setting, they propose truth-telling as a
dominant strategy. In their case, the exposure problem is entirely solved for the synergy
bidders, because they do not even have a possible loss consisting of the option price.
However, this approach also introduces some limitations. Because the options are as-
sumed to be offered free (zero-priced), there may be cases in which sellers do not have
a sufficient incentive to offer free options, because of the risk of remaining with their
items unsold. The sellers could, however, demand a premium (in the form of the option
price) to cover their risk. In such cases, only positively-priced options can provide suf-
ficient incentive for for both sides to use the mechanism. Furthermore, the mechanism
proposed by Juda & Parkes requires sellers to be more patient than all synergy bidders
present in the market.

Priced options have a long history of research in finance (see [1] for an overview).
However, the underlying assumption for all financial option pricing models is their de-
pendence on an underlying asset, which has a known public value that moves indepen-
dently of the actions of individual agents. This type of assumption does not hold for the
private values, sequential auctions setting we consider.

Finally, there is a connection between options and leveled commitment mechanisms
(Sandholm & Lesser [5] ’t Hoen et. al. [6]). In leveled commitment, both parties have
the possibility to decommit (i.e. unilaterally break a contract), against paying a pre-
agreed decommitment penalty. This differs from option contracts, where the right to
exercise the option is paid by one party in advance.
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1.3 Outline and Contribution of Our Approach

The goal of this paper is to study the use of priced options to solve the exposure problem
and to identify the settings in which using priced options benefits both the synergy
buyer and the seller. An option consists out of two prices, so an adjustment needs to be
made to the standard auction with bids of a single price. The essence of options, in our
model, is that bidders obtain the right to buy the good for a certain exercise price in the
future. The value of such an option may be different for different market participants at
different times. Throughout this study, in order to make the analysis tractable, we have a
fixed exercise price and a flexible option price. The seller determines the exercise price
of an option for the good she has for sale and then sells this option through a first price
auction. Bidders bid for the right to buy this option, i.e. they bid on the option price.

Note that, in this model, direct auctioning of the items appears as a particular sub-
case of the proposed mechanism, assuming free disposal on the part of the buyers. If
the seller fixes the future exercise price for the option at zero, then a buyer basically
bids for the right to get the item for free. Since such an option is always exercised
(assuming free disposal), this is basically equivalent to auctioning the item itself. Our
analysis of the problem can be characterized as decision-theoretic, meaning both buyer
and seller reason with respect to expected future price. To summarize, our contribution
to the literature can be characterized as being twofold:

First, we consider a setting in which n complementary-valued goods (or options for
them) are auctioned sequentially, assuming there is only one synergy bidder or global
bidder (the rest of the competition is formed by local bidders desiring only one good).
For this setting, we show analytically (under some assumptions), that using priced op-
tions can increase the expected profit for both the synergy bidder and the seller, com-
pared to the case when the goods are auctioned directly. Furthermore, we derive the
equations that provide minimum and maximum bounds between which the bids of the
synergy bidder should fall in order for both sides to have an incentive to use options.

In the second part of the paper, we consider market settings in which multiple syn-
ergy bidders (global bidders) are active simultaneously, and study it through experimen-
tal simulations. We show that, while some synergy bidders lose because of the extra
competition, other synergy bidders may actually benefit, because sellers are forced to
fix exercise prices for options at levels which encourages participation of all bidders.

2 Expected Profit for a Sequence of n Auctions and 1 Synergy
Bidder

Section 3 will analytically prove, that options can be profitable to both synergy bidder
and seller. In order to do that, this section derives the expected profit functions for the
synergy bidder and the seller. Throughout this study it is assumed that both sellers and
bidders are risk neutral and that they want to maximize their expected profit.

2.1 Profit with n Unique Goods without Options

This section describes the expected profit of the synergy bidder and the sellers as a
function of the synergy bidder’s bids for a market with n unique, complementary goods,
which are sold without options.
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Let G be the set of n goods for sale in a temporal sequence of auctions and vsyn(Gsub)
be the valuation the synergy bidder has for Gsub � G. Then assume that vsyn(G) > 0
and ∀Gsub � G, vsyn(Gsub) = 0. In other words, the synergy bidder only desires a
bundle of all the goods considered in the model.

The goods G1..Gn ∈ G are sold individually through sequential, first-price, sealed-
bid auctions. Here we choose the auctions to be first price, as they are more tractable to
study using game-theoretic analysis. Furthermore, in a sequential setting with valuation
complementarities of the bidders, second-price auctions do not have the nice dominant
strategies properties, described by Vickrey. Furthermore, in many settings where such a
model could be used in practice, such as request-for-quotes (RFQ) auctions in logistics
or supply chains, first-price auctioning is often used.

The time these auctions take place in is t = 1 . . . n, such that at time t good Gt ∈
G is auctioned. The above assumptions mean that if the synergy bidder has failed to
obtain Gt, then she cannot achieve a bundle for which she has a positive valuation.
If the synergy bidder fails to obtain Gt, then it is rational for her to not place bids in
subsequent auctions. The bids of the synergy bidder are B = (b1, . . . , bn), where bt

is the bid the synergy bidder will place for good Gt, conditional on having won the
previous auctions. Because of the first-price auction format, bt is also the price the
synergy bidder has to pay if she has won the auction.

Throughout this analysis, we assume the competition the synergy bidder faces for
each good Gt (sold at time t) is formed by local bidders that only require the good Gt.
We further assume that these local bidders are myopic, i.e. the bids placed by the syn-
ergy bidder have no effect on their bidding behaviour. Therefore, from the perspective
of the synergy bidder, the competition can be modeled as a distribution over the ex-
pected closing prices at each time point t, more precisely as a distribution over a value
bmt, which is the maximal bid placed by the competition not counting bt.

Denote by Ft(bt) the probability that the synergy bidder wins good Gt with bid bt

- where Ft(bt) depends on whether bt can outbid the maximal bid bmt placed by the
competition, excluding bt. For each good Gt, there exists a strictly positive reserve price
of bt,res, which is the seller’s own valuation for that good. Then bmt is the highest bid
of the local bidders (who only want Gt), if that bid is higher than bt,res. Otherwise bmt

equals bt,res. To deal with ties, we assume the synergy bidder only wins Gt if bt > bmt

and not if the bids are equal. Then Ft(bt) can be defined as follows:

Ft(bt) = Prob(bt > bmt) (1)

The synergy bidder only has a strictly positive valuation for the bundle of goods G,
which includes all the goods Gt, sold at times t = 1..n. Therefore, in a market without
options, the a-priori expected profit πdir

syn of the synergy bidder is:

E(πdir
syn) =

[
vsyn(G)

n∏
i=1

Fi(bi)

]
+

[ n∑
j=1

(−bj)

j∏
k=1

Fk(bk)

]
(2)

The synergy bidder wants to maximize her expected profit. So her optimal bids B∗ =
(b∗1, . . . , b∗n) maximize equation 2:

B∗ = argmaxB∗ E(πdir
syn) (3)
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Next the profit of the sellers are examined. It is assumed that all sellers have their own
valuation for the good that they sell and that they set their reserve price of bt,res equal
to this private valuation. So when the good is sold for bt, the seller of Gt has a profit
πdir

t of bt − bt,res. As previously shown, the synergy bidder only participates when she
has won the previous auctions; otherwise bmt is the maximal placed bid. The expected
profit of the seller of the good Gt sold at time t is:

E(πdir
t ) = (E(bmt)− bt,res)(1−

t−1∏
i=1

Fi(bi)) +
(
Ft(bt)(bt − bt,res)

+ (1− Ft(bt))(E(bmt|bmt ≥ bt)− bt,res)
) t−1∏

i=1

Fi(bi) (4)

2.2 Profit with n Unique Goods with Options

Next, we derive the expected profits for the synergy bidder and the sellers for a market
with options. This section has the same setting as the general model with n goods being
sold, only now an option on Gt is auctioned at time t. Therefore, all the sellers in the
market will sell options for their goods, instead of directly the goods themselves. After
the n auctions have taken place, the bidders need to determine whether or not they
will exercise their option. It is assumed that an option is only exercised if a bidder has
obtained her entire, desired bundle. The local bidders are only interested in Gt, so they
will always exercise an option on Gt should they have one. The synergy bidder is only
interested in a bundle of all goods, so she will only exercise an option (and pay the
corresponding exercise price) if she has options on all the goods required.

The option exists out of a fixed exercise price Kt and the synergy bidder’s bids on the
option price are OP = (op1, . . . , opn). The maximal bid without the synergy bidder
was bmt, but now opmt is the maximal placed option price.

Since the competition only wants one good, they do not benefit from having an option
and they will always exercise any option they acquire. Therefore the competition’s best
policy is to keep bidding the same total price, which is the bid without options minus the
exercise price. Thus the distribution of the competition is only shifted horizontally to
the left, by the reduction of the exercise price: opmt = bmt − Kt. Thus, if the synergy
bidder bids the same total price (option + exercise), then she has the same probability
of winning the auction in both models. Let F o

t (opt) be the probability that opt wins the
auction for the option on Gt. So if opt + Kt = bt, then F o

t (opt) = F o
t (bt − Kt) =

Ft(bt).
The synergy bidder’s expected profit with options then is:

E(πop
syn) =

[
(vsyn(G)−

[ n∑
h=1

Kh

]] n∏
i=1

F o
i (opi) +

[ n∑
j=1

(−opj)

j∏
k=1

F o
k (opk)

]
(5)

So her optimal bids OP ∗ = (op∗1, . . . , op∗n) maximize the profit equation 5:

OP ∗
= argmaxOP ∗ E(πop

syn)) (6)
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The main difference for the seller of Gt, is that if the synergy bidder wins, then she
only earns Kt − bt,res when the option is exercised. She then gains the exercise price,
but loses the value the good has to her, which is the reserve price. And the probability of
exercise is the probability that the synergy bidder wins all the other auctions. Therefore,
the total expected profit of the seller at time t is:

E(πop
t ) = (E(opmt) + Kt − bt,res)(1−

t−1∏
i=1

F o
i (opi))

+
(
F o

t (opt)(opt +
[
(Kt − bt,res)

n∏
h=t+1

F o
h(oph)

]
)

+ (1− F o
t (opt))(E(opmt|opmt ≥ opt) + Kt − bt,res)

) t−1∏
i=1

F o
i (opi) (7)

3 When Options Can Benefit Both Synergy Bidder and Seller

Section 2 resulted in the a-priori, expected profit for the synergy bidder and the sellers as
a function of the synergy bidder’s bids for a market with and without options. This sec-
tion uses these functions to determine the difference in profit between the two markets,
which is πδt and πδsyn for the seller of good Gt and the synergy bidder respectively.

πδt = πop
t − πdir

t ,

πδsyn = πop
syn − πdir

syn

So if πδt and πδsyn are positive, then both agents are better off with options.

3.1 The Case When Agents Are Better Off with Options

Let B∗ denote the synergy bidder’s optimal bidding policy in a market where goods
are sold directly (without options). We assume for the rest of Sect. 3 that for 1 ≤ t ≤
n, Ft(b∗t ) > 0 and Ft(b∗t ) < 1. So she may complete her bundle, but may also end up
paying for a worthless subset of goods. Thus she faces an exposure problem. For the
market with options, we define a benchmark strategy OP ′ for the synergy bidder, so
that the two markets can easily be compared.

Definition 1. The benchmark of the synergy bidder’s bids with options OP ′ = (op′1,
. . . , op′n) is that for 1 ≤ t ≤ n:

op′t = b∗t − Kt

In other words, the benchmark strategy implies that the synergy bidder will bid the
same total amount for the good, as if she used her optimal bidding policy in a direct
sale market. Clearly this does not have to be her profit-maximizing bid in a market
where priced options are used. In fact, it is almost always the case that the synergy
bidder will bid a different value in a market in with priced options. This deviance from
the benchmark is denoted by λt:
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Fig. 1. A possible situation in which options are desirable for both the synergy bidder and seller

Definition 2. Let λt denote the deviation in the bid of the synergy bidder on the item
Gt sold at time t, in a model with options, with respect to her profit-maximizing bid b∗t
in a model without options. So her bid on an option for Gt will be op′t + λt.

These definitions enable us to rigorously define the bounds within which the use of
options (with a given exercise price) are desirable for both the synergy bidder and the
seller. Figure 1 gives the visual description of a generic setting in which options are
beneficial for both sides. It shows the possible bids a synergy bidder can place for an
option. First, valid bids have to be bigger than the reserve price Res, for each good in
the sequence. The point op′ is where the synergy bidder keeps bidding the same total
price as in a market without options, c.f. Definition 1.

The deviations, in an option model, from the benchmark bid op′ is measured by three
levels, all denoted with λ: λl is the minimal risk premium the seller requires to benefit
from using options, λh is the maximal extra amount the synergy bidder is willing to pay
for an option and op∗ = op′ + λ∗ is the synergy bidder’s profit-maximizing bid. So, if
it were rational for the synergy bidder to bid an additional quantity between λl and λh

(as shown in Fig. 1), then both she and the seller are better off with options.
In the rest of Sect. 3, we derive the analytical expressions which can be used to

determine the values for λl, λh and λ∗ and compare them. Before this, however, we
describe an important assumption behind the proofs in the remainder of this section.

Assumption on the proof structure. Performing an exhaustive theoretical analysis
of the minimum, maximum and optimal bidding levels of the λ-s for all auctions in a
sequence would not be tractable, as they all influence each other. Therefore, we simplify
our proof structure by focusing only on one of the λ parameters: the one corresponding
to the first good. This is possible since, as explained in the introduction, each seller
sells one good and is only interested in maximizing the expected profit from that sale.
The decision of using options contract or a direct sale is a decision taken bilaterally by
each seller and the synergy bidder, thus has to benefit both of them. The reason why
we focus on the first good in the sequence is that, for this good, the bidder’s probability
of not completing her desired bundle, hence her exposure problem, is the greatest. Our
proof structure could be generalized as a recursive procedure: if one shows that options
are beneficial to use for the first item in a sequence, given a remaining [non-empty]
sequence of auctions, this can be generalized to all remaining sub-sequences (except
the last item, for which options would be always exercised, thus they are not needed).

In order to analytically examine the benefits of deviating from the benchmark strat-
egy op′1 in the first auction, the proofs in this paper use the additional assumption that
the synergy bidder will use the benchmark strategy from Def. 1 for all remaining goods
in the sequence. This is a reasonable assumption for this model (as defined above),
as sellers of items in subsequent auctions can only benefit from (or are indifferent to)
the fact that items sold earlier in the sequence were sold through options, rather than
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directly. To explain, if there are no complementarities between the earlier items and the
good they are currently selling, then sellers are indifferent to the use of options in ear-
lier sales. If there are such complementarities however, subsequent sellers also benefit,
because the synergy bidder has a higher chance of acquiring the first good, she also has
a higher probability of participating in subsequent auctions.

When synergy bidder is better off with options. This part of Section 3.1 examines
for which bids the synergy bidder is better off with options. This is done by determining
the maximal amount she is willing to pay for options.

Lemma 1. Let B∗ =< bt > for 1 ≤ t ≤ n be the vector of optimal bids of the synergy
bidder in the model without options, and op′t + λt be the bids in a model with options.
The expected gain (i.e. difference in expected profit) from using options E(πδsyn) is:

E(πδsyn)=
[
vsyn(G)(

n∏
i=1

Fi(b
∗
i +λi)−

n∏
i=1

Fi(b
∗
i ))
]
+
[ n∑

j=1

Kj(

j∏
k=1

Fk(b∗k + λk)−

n∏
i=1

Fi(b
∗
i + λi))

]
+

n∑
j=1

(−λj)

j∏
k=1

Fk(b∗k + λk)+

[ n∑
j=1

(−b∗j )(
j∏

k=1

Fk(b∗k + λk)−
j∏

k=1

Fk(b∗k))

]

Proof. The proof is omitted due to lack of space. In short, the expression from Lemma 1
can be obtained by deducting the profit without options from Eq. (2) from the profit with
options in Eq. (5), and using Fot(op′t + λt) = Ft(b∗t + λt).

Intuitively, if λt is positive for all Gt, then the difference is formed by a summation of
4 terms: 1) the synergy bidder bids more with options, so she has a higher probability
of obtaining her desired bundle 2) with options she does not have to pay the exercise
price right away, but only when she completes her bundle 3) she bids more, so she pays
a higher price and 4) since she bids more in previous auctions, there is a higher chance
that she wins the current one and pays for the good.

Next, we provide the equations that allow us to deduce the λ parameters that give the
synergy bidder an incentive to use options. As explained in Sect. 3.1, we simplify the
proof structure by only focusing on the most important option for the synergy bidder:
the one on the first good (when bidding for this good, the probability of not completing
her entire bundle is the greatest). This is done under the assumption that for the goods in
the sequence, we assume the benchmark strategy is used (i.e. λt = 0 for t > 1). For the
rest of the items in the sequence, the same proof technique can be applied recursively.

Theorem 1. Let λ1 be the deviation in the bidding strategy, compared to the benchmark
strategy op′1, as defined in Def. 1. If λt = 0 for 1 < t ≤ n, then E(πδsyn) >= 0 if
0 ≤ λ1 < λh. The value of λh (corresponding to E(πδsyn) = 0) can be determined as
the numerical solution of the following equation:

F1(b
∗
1 + λh)λh = F1(b

∗
1 + λh)

[ n∑
j=1

Kj(

j∏
k=2

Fk(b∗k)−
n∏

i=2

Fi(b
∗
i ))
]

+ (F1(b
∗
1 + λh)− F1(b

∗
1))
[
vsyn(G)

n∏
i=2

Fi(b
∗
i )−

n∑
j=1

(b∗j )
j∏

k=2

Fk(b∗k)
]
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Proof. The proof is based on the difference in profit function derived in Lemma 1, using
the assumption that λt = 0 for 1 < t ≤ n. As the expectation function of the synergy
bidder is descending in the value of λ, we determine when E(πδsyn) = 0.

[
vsyn(G)(F1(b

∗
1 + λh)− F1(b

∗
1))

n∏
i=2

Fi(b
∗
i )
]

+
[ n∑

j=1

Kj(F1(b
∗
1 + λh)

j∏
k=2

Fk(b∗k))− (F1(b
∗
1 + λh)

n∏
i=2

Fi(b
∗
i ))
]

+ (−λh)F1(b
∗
1 + λh) +

[ n∑
j=1

(−b∗j )(F1(b
∗
1 + λh)− F1(b

∗
1))

j∏
k=2

Fk(b∗k)
]

= 0

Isolating the values of λh yields the formula in Th. 1.

When the first seller is better off with options. We now determine the minimum or
lower bound λl (the level of λ that, according to Def. 2, keeps the seller of G1 indifferent
about options). In order to compare this bid with the λh from the previous section, it is
again assumed that λt = 0 for 1 < t ≤ n.

Theorem 2. If without options the synergy bidder bids B∗ and with options op′1 + λ1

for G1 and op′t for 1 < t ≤ n, then E(πδ1) for the seller of G1 is:

E(πδ1) = F1(b
∗
1)(λ1 + (b1,res −K1)

[
1−

n∏
h=2

Fh(b∗h)
]
) + (F1(b

∗
1 + λ1)− F1(b

∗
1))(b

∗
1 + λ1

− E(bm1|b∗1 + λ1 ≥ bm1 > b∗1) + (b1,res −K1)
[
1−

n∏
h=2

Fh(b∗h)
]
)

By definition, λ1 is the lower bound for λl that guarantees that the expected profit of
the seller E(πδ1) > 0. The value of λl can be obtained as the solution to the equation
E(πδ1) = 0, which using the equation above gives:

F1(b
∗
1 + λl)(−λl) = F1(b

∗
1 + λl)((b1,res −K1)

[
1−

n∏
h=2

Fh(b∗h)
]
)

+ (F1(b
∗
1 + λl)− F1(b

∗
1))(b

∗
1 − E(bm1|b∗1 + λl ≥ bm1 > b∗1))

Proof. The proof is derived by taking the difference in profits between Eq. (7) and Eq.
(4), and replacing op′1 with its definition, as follows: op1 = op′1 + λ1 = b∗1 − K1 + λ1

and F o
1 (op1) = F o

1 (op′1 + λ1) = F1(b∗1 + λ1):

E(πδ1) = F1(b
∗
1 + λ1)(b

∗
1 −K1 + λ1 +

[
(K1 − b1,res)

n∏
h=2

Foh(op′
h)
]
)

+ (F1(b
∗
1 + λ1)− F1(b

∗
1))(−E(bm1|b∗1 + λ1 ≥ bm1 > b∗1) + b1,res)

− F1(b
∗
1)(b

∗
1 − b1,res)

Splitting F1(b∗1 + λ1) into F1(b∗1) and F1(b∗1 + λ1) − F1(b∗1), and combining some K1

and b1,res leads to the equation in Theorem 2. The optimal λl can then be determined
by solving the equation E(πδ1) = 0, from the expression in Theorem 2.
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Intuitively, the difference in profit has two parts: the cases where the synergy bidder
wins the auction in both markets and the ones where she only wins with options. With
the first, the synergy bidder pays more than she used to and with the second, the synergy
bidder pays more than the local bidders, who used to win if λ1 < λl. But both cases have
the downside for the seller that the synergy bidder may now not exercise her option.

Both agents can be better off with options

Theorem 3. If synergy bidder bids λx extra for an option on G1, where λl < λx < λh,
then both the seller of G1 and the synergy bidder have a higher expected profit in a
market with only options compared to one without options.

Proof. The proof for this follows immediately from the definition of λl and λh, and
from Theorems 1 and 2.

3.2 Synergy Bidder’s Profit-Maximizing Bid

In Section 3.1, we derived the equations for the bounds λl and λh between which the
additional bids of the synergy bidder have to fall in order for both parties to be incen-
tivised to use options. In this section, we look at the synergy bidder’s profit-maximizing
bids op∗, but with the added assumption that F1(b1) follows a uniform distribution in
the range of the possible bids. We do this by using the same framework introduced in
Definition 2 and Figure 1 above. That means, we compute the deviation λ∗ between the
optimal bid in a model with options and the optimal bid in a model without options, i.e.
the difference λ∗ = (K1 + op∗1) − b∗1.

If the profit-maximizing bid op∗1 > op′1 + λl, then according to Theorem 2 the seller
of G1 is better off with options. Therefore, it is in the rational interest of the seller to
set the exercise price for selling her good such that the expected optimal bid of her
bidders, in a model with options, will provide sufficient incentive for the seller to also
use options, and thus the following condition holds: op∗1 > op′1 + λl. Note that in order
to use Theorem 2, the bids for the other goods are set at op′t.

Lemma 2. If F1(b1) follows a uniform distribution between two values ua, ub ∈ R
(such that ua < ub), then op∗1 + K1 − b∗1 = λ∗, where:

λ∗
= 0.5(K1(1−

n∏
i=2

Fi(b
∗
i )) +

n∑
j=2

Kj(

j∏
k=2

Fk(b∗k)−
n∏

i=2

Fi(b
∗
i )))

While the lower bound λl is:

λl = −(b∗1 − ua +
[
1−

n∏
h=2

Fh(b∗h)
]
(b1,res −K1))

+

√√√√(b∗1 − ua+
[
1−

n∏
h=2

Fh(b∗h)
]
(b1,res −K1))2 − 2(b∗1 − ua)

[
1−

n∏
h=2

Fh(b∗h)
]
(b1,res −K1)

Proof. The proof for Lemma 2 had to be omitted due to lack of space. Basically, the
partial derivatives are taken from the expected profit equations (Equations 2 and 5),



Using Priced Options to Solve the Exposure Problem in Sequential Auctions 39

using the uniform distribution F1(b1) between the values ua and ub. For deriving λl, we
used the equation from Theorem 2, with the added assumption of a uniform distribution.

The seller then can set K1 at a value for which λl < λ∗ holds. We found that de-
riving a closed-form solution for this condition is not possible analytically. However,
the framework developed above is sufficient to enable the seller to solve this condition
numerically using a standard solver and, choose the optimal level for exercise price K1.

4 Simulation of a Market with a Single Synergy Bidder

This section presents an experimental examination of a market with one synergy bidder.
It introduces the market entry effects in the synergy bidder’s behaviour, as well as the
threshold effects that may determine which exercise prices the seller chooses for her
options. Section 5 considers a market with multiple synergy bidders.

The experimental setting is as follows: we consider a simulation where two goods A
and B are auctioned nA and nB times respectively. The synergy bidder desires one copy
of both goods and has zero valuation for the individual goods. That is, each synergy (or
global) bidder requires exactly one bundle of {A, B}.In the setting considered in this
section, local bidders only want one good and participate in one auction, thus their bids
can be modeled as a distribution.

Furthermore, in order to simplify the simulation we assume there is a single seller
who auctions all the goods. This is actually equivalent to studying whether on average
sellers have an incentive to use options. To explain, on any single sequence of auctions,
the sellers of different items may have diverging incentives to use options, based on
their position in the auction queue. However, in a large, open setting, where bidders
enter the market randomly, it is difficult for any individual seller to strategise about
her particular place in the sequence. Our goal is to study under which conditions, on
average, sellers benefit from using options if there are synergy bidders in the market.

Note that, typically a seller has a resale value of for the goods that remain unsold,
which is typically lower that the value at the start of the auction sequence. The reason for
this may be that there is some time discounting associated with waiting for a sequence
of auctions to resell her items, or even a listing cost, which is paid per auction (such
as in the Ebay case). In this paper, we do not explicitly simulate resale, but we use a
reservation value, which represents the expected resale value the seller expects to get,
if she is forced to resell her items.

For each auction, in each simulation run, there is a set of local bidders, assumed to be
myopic. The bids of these local bidders are therefore, assumed to follow a normal price
distribution, with the parameters n, mean, std and res consisting out of two values:
one for good A and one for good B. For each simulation run, the synergy bidder(s)
compute their profit-maximizing bid for that setting, as described in Section 4.1.

Since there may be considerable variance in the bids of the local bidders, each pos-
sible auction sequence is run k times (typically, we had k > 10000). The average profit
of the seller and the synergy bidder which are reported here, for both the case of with
and without options, are averages over all these k simulations and also over all possible
auction orders of items A and B in the sequence.



40 L. Mous, V. Robu, and H. La Poutré

4.1 Synergy Bidder’s Strategy

Let Q(zA, zB, X, It, bt) be the expected profit of the synergy bidder when bidding bt

at each time step t. Here, zA and zB are the number of remaining auctions for A and
B respectively (zA ≤ nA, zB ≤ nB), while Xt is the current endowment of the agent
(i.e. items it already acquired) at time t. The profit-maximizing bid b∗t is computed as:

b∗t = argmaxbt Q(zA, zB, X, It, bt) (8)

This value can be computed through standard dynamic programming. Exact search for
b∗t is computationally feasible for the experiments reported in this paper (as the size
of the desired bundle and the length of the auction sequence are limited). For larger
domains, solving this MDP may be more involved, however.

4.2 Experimental Results: Market Entry Effect for One Synergy Bidder

First, we study experimentally the incentives to use options for the sellers and bidders,
in the case there is just one synergy bidder present in the market. The experimental
setting presented in this paper involves 2 auctions for each type of item, i.e. nA = 2
and nB = 2. As mentioned above, the local bidders are considered myopic and only bid
in one local auction. Therefore, their bids can be modeled as a distribution ∼ N(10, 4)
for both goods. Thus, the goods A and B are, in this model, of equal rarity and attract an
equal amount of independent competition during bidding. We made this choice because
having a certain degree of symmetry in the experimental model allows us to reduce the
number of parameter settings we need to consider. More specifically, we can assume
the same exercise prices are set for both goods of type A and B.

Furthermore, for each good, the seller has a reservation value res = 8, which gives
its estimate resell value in the case the synergy bidder acquires an option for the item,
but fails to exercise it. The value of a bundle of {A,B} which the synergy bidder re-
quires, is v(A, B) = 21, which is, on average, 5% more than the local competition.

Results for this setting are shown in Fig. 2. There are two main effects to be observed.
First, the synergy bidder in such a market always prefers higher exercise prices. If the
option for an item is sold with a higher exercise price, then the synergy bidder can bid
more aggressively on the option price to get the item, since she is “covered” for the loss
represented by the exercise price. The myopic bidders extract no advantage from being
offered the good as an options vs. a direct sale, because, if they acquire the option, they
would always exercise it, regardless of the exercise price.

Second, the expected profit of the seller seems to decrease if she has to sell the option
with a higher exercise price. However, an important effect to note are the participation
thresholds (that appear as “peaks” in the picture). These can be explained by the synergy
bidder joining the market, as the expected profit becomes non-negative. For the settings
used in Fig. 2, the synergy bidder will only bid on a good if there are two remaining
auctions for the other good. So she places a bid for A if the auctions are [A, B, B], but
not if they are [A, B]. This is because with a single auction for B, the risk of ending up
with a only a worthless A is too great. But in a market with exercise prices of at least
2.5, the risk is reduced and one remaining auction is already enough for the synergy
bidder to stay in the market. So a higher exercise price enables the synergy bidder to
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Fig. 2. Percentage increase in profit for a model using options wrt. direct sale, for the case there
is one synergy bidder is present in the market. Note the threshold effect in the profit increase for
the seller when the exercise price K ≥ 2.5.

stay the market, even if she owns nothing and there are only a few auctions left, which
increases the seller’s expected profit. This increase in participation is beneficial to the
seller, who thus has an incentive to fix the exercise prices KA = KB = 2.5.

5 Multiple Synergy Bidders

Next, we considered market settings in which multiple synergy bidders are active si-
multaneously. The experimental set-up and parameter choices are the same as for the
case of one for the single synergy bidder. The only difference is that now multiple syn-
ergy bidders may enter and leave the market at different times and they have different
valuations for the combination of A and B.

The results from this setting are based on the assumption that the synergy bidders
have some prior expectations about the closing prices in future auctions and compute
their optimal strategy w.r.t. these expectations. In the tests performed here, these ex-
pectations were assumed to be the same for all synergy bidders, which is a reasonable
choice in comparing their strategies. In a more realistic market, however, synergy bid-
ders could be expected to be able to learn and adjust their expectations based on past
interactions, as well as reason game-theoretically about the fact that another synergy
bidder may present in the market. At this point, these more sophisticated forms of rea-
soning are left to future work.

As in the previous section all simulations of this section have reserve prices of 8 and
local bidders following ∼ N(10, 2.5). The first two experiments also have two synergy
bidders syn1 and syn2 with valuations for both goods of 21.5 and 22.5 respectively.
The order the synergy bidders enter the market (and the number of auctions they can
stay in) are given in Figure 3, while results for these settings are shown in Fig. 4. In the
following, we discuss these in separate subsections.
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Fig. 3. Illustration of market entry order for two synergy bidders: 1. Interacting only through the
exercise price level (left), 2. Directly competing in the same auctions (right).

Fig. 4. Percentage increase in profits for a market with with 2 synergy bidders. The length of
the auction sequence and the entry points of the synergy bidders into the market correspond to
the two cases shown in Fig. 3: 1. Interacting only through the exercise price level (left side), 2.
Directly competing in the same auctions (right side).

5.1 Two Synergy Bidders Interacting Indirectly through the Exercise Price
Level

In the setting examined here, the two synergy bidders each have nA = 3 and nB = 3,
without the other agent participating in these auctions. An example of such an auction
sequence is shown in Fig. 3 (left). However, these two synergy bidders do interact in-
directly as follows. Since options are sold through open auctions based on the option
price, the seller has to fix the exercise prices for the whole market. So while synergy
bidders may not participate in the same auctions, their presence does influence the com-
petition through the exercise prices set by the seller.

This effect can be seen in Fig. 4 (left), in which the seller maximizes her expected
profit at K = KA = KB = 2.4. In this case syn2 is better off, because without the
presence of syn1 she would be offered options with lower exercise prices. But syn1 is
worse off, because if she were alone in the market the seller would choose K = 3.2,
which gives her a higher expected profit. Yet, due to syn2, the seller sets K = 2.4. In
this case, due to the seller’s choice of exercise prices, one synergy bidder (syn1) gains,
while syn2 loses.

5.2 Direct Synergy Bidder Competition in the Same Auctions

Next, we considered a setting in which synergy bidders compete directly for some of the
goods. The entry points for such a setting are shown in Fig. 3 (right), while simulation
results for this setting are given in Figure 4 (right).
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Fig. 5. Percentage increase in seller’s profits in a larger experimental setting, with synergy bidders
randomly entering the market with a probability of 25% at each time step

As can be seen from the right-hand side graph in Fig. 4, the profit of syn2 drops
at 2.5. In Fig. 4 (left), the synergy bidders’ profits were monotonically increasing in
the exercise prices, because they then have a smaller loss when they fail to complete
their bundle. But now this effect cannot immediately compensate the extra competition
coming from syn1, who participates in the same auctions more often after this threshold
at 2.5. So, in this case, both synergy bidders lose, in expectation, from the presence of
additional synergy bidders. While one synergy bidder (i.e. syn2) should benefit because
she is offered better (higher) exercise prices than if she were alone in the market, this
effect cannot immediately compensate the additional competition.

5.3 Larger Simulation with Random Synergy Bidders’ Market Entry

Finally, we conducted a larger scale simulation with multiple synergy bidders, which
can enter the market randomly, with a certain probability.

The experimental setup implies that each sequence of auctions (forming a test case)
has 10 items of each type (i.e. nA = 10 and nB = 10). What differs from previous
settings is the random entry of synergy bidders. For each auction, there is a 25% chance
that a synergy bidder will enter the market. If she does, then her valuation is drawn
from a uniform distribution between 20 and 22 and she will stay in the market for
exactly four auctions. To simplify matters, the auction sequence is fixed at first selling
A, then B, then A etc. so that each synergy bidder will face exactly two auctions for
an item of type A and two for an item of type B. However, the general result of this
section is also true for a random auction sequence, since the basic effects remain the
same.

As shown in Figure 5, the seller’s profit now only has one maximum at 5, because
initially each increase in exercise prices causes, with some probability, a synergy bidder
to participate more often. So each point is a threshold and the profit graph smooths out
over those many local maxima, corresponding to a steady increase (on average) of the
expected profit. This result shows why it can be rational for the seller to have the same
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exercise prices for all goods of the same type (e.g. the same KA). In a market with
random entry of synergy bidders, the seller does not know which bidders are partici-
pating in any particular auction. Her optimal policy is to set her exercise prices which
maximize her overall expected profit (in this case, K = 5).

6 Discussion and Further Work

This paper examined, from a decision-theoretic perspective, the use of priced options
as a solution to the exposure problem in sequential auctions. We consider a model in
which the seller is free to fix the exercise price for options on the goods she has to offer,
and then sell these options through an open auction.

For this setting, we derived analytically, for a market with a synergy bidder and under
some assumptions, the expressions that provide the bounds on the option prices between
which both synergy buyers and sellers have an incentive to use an option contract over
direct auctions. Next, we performed an experimental analyses of several settings, where
either one or multiple synergy bidders are active simultaneously in the market.

The overall conclusion of our study is that the proposed priced options mechanism
can considerably reduce the exposure problem that synergy bidders face when taking
part in sequential auctions. Furthermore, and most important, both parties in the market
have an incentive to prefer and use such a mechanism. We show that in many realistic
market scenarios, sellers can fix the exercise prices at a level that both provides suf-
ficient incentive for bidders to take part in the auctions, as well as cover their risk of
remaining with the items unsold.

Finally, while this paper provides an analysis and results for several realistic cases, it
leaves several issues to future work. These include more sophisticated reasoning abil-
ities on the part of participating synergy bidders and sellers, as well as markets where
bidders have asymmetric or imperfect information or different attitudes to risk.

To conclude, sequential auction bidding with complementary valuations is a prob-
lem that appears in many real-life settings, although participating synergy bidders face
a severe exposure problem. The main intuition of this work is that a simple options
mechanism, where sellers auction options for their goods (with a pre-set exercise price),
instead of the goods themselves can go a long way in solving the exposure problem, and
can be beneficial to both sides of such a market.
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6. ’t Hoen, P.J., Redekar, G., Robu, V., Poutré, J.A.L.: chapter Decommitment in a Competitive
Multi-Agent Transportation Setting. In: Whitestein Series in Software Agent Technologies,
pp.409–433. Birkhäuser, Basel (2005)
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Abstract. In automated negotiation, information gained about an op-

ponent’s preference profile by means of learning techniques may signifi-

cantly improve an agent’s negotiation performance. It therefore is useful

to gain a better understanding of how various negotiation factors influ-

ence the quality of learning. The quality of learning techniques in negoti-

ation are typically assessed indirectly by means of comparing the utility

levels of agreed outcomes and other more global negotiation parameters.

An evaluation of learning based on such general criteria, however, does

not provide any insight into the influence of various aspects of negotia-

tion on the quality of the learned model itself. The quality may depend

on such aspects as the domain of negotiation, the structure of the prefer-

ence profiles, the negotiation strategies used by the parties, and others.

To gain a better understanding of the performance of proposed learning

techniques in the context of negotiation and to be able to assess the po-

tential to improve the performance of such techniques a more systematic

assessment method is needed. In this paper we propose such a systematic

method to analyse the quality of the information gained about opponent

preferences by learning in single-instance negotiations. The method in-

cludes measures to assess the quality of a learned preference profile and

proposes an experimental setup to analyse the influence of various ne-

gotiation aspects on the quality of learning. We apply the method to a

Bayesian learning approach for learning an opponent’s preference profile

and discuss our findings.

1 Introduction

In the area of learning in negotiation, the benefits of the application of learn-
ing techniques are often measured with respect to the final outcome or other
generally relevant parameters of negotiation such as number of rounds to reach
an agreement. The quality of the model of what has to be learned thus is often
not directly analyzed but a more indirect method is used to assess these ben-
efits. One of the problems with this indirect method of measuring the benefits
of learning in negotiation is that it does not provide any tools to analyse the
performance of the learning mechanism itself nor does it provide insight into the
factors influencing the quality of learning in negotiation.

To gain a better understanding of the performance of proposed learning tech-
niques and the potential to improve the performance of such techniques in the
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context of automated negotiation a more systematic assessment method for the
quality of learning is needed. Such a method should provide the technical tools
for analysis, identify the key factors that need to be taken into account and
propose an experimental setup to evaluate the quality of learning. In this paper
we present a method that can be used to assess the quality of a learning of
an opponent’s preference profile. Useful technical tools as well as an approach
for analysis are discussed. We apply the method to illustrate its value for the
analysis of opponent preferences learning techniques, and we present some of the
insights that may be gained.

The paper is organized as follows. In Section 2 we briefly discuss learning
in negotiation and introduce the problem concerning the quality of learning in
negotiation that we address in this paper. In Section 3 a method is proposed
and the various components of the proposed method are discussed. In Section 4
the proposed method is applied to the Bayesian learning approach proposed in
[8] and results are presented. In Section 5 conclusions and several directions for
future research are outlined.

2 Related Work and Problem Description

Learning in automated negotiation is an important topic since it has been shown
that it can significantly improve the performance of a negotiating agent. Work
in the area of opponent modelling in negotiation has resulted in a variety of
approaches that usually focus on learning one aspect of the negotiation process.
The range of negotiation aspects that are learned includes reservation values
[21], issue priorities (or weights associated with negotiated issues modelling the
relative importance of each issue; [2,9]), and negotiation strategies [12,14].

In [11] an opponent’s preference profile is learned in a qualitative negotia-
tion setting. It is assumed that a fixed set of possible profile types is given.
Bayesian learning then is used to determine the likelihood that an opponent has
one of these given profiles. In [4] a model is presented that incorporates domain
knowledge for deciding on a negotiation move, which is extended in [2] with a
learning technique based on on kernel density estimation (KDE) to learn the
issue priorities of an opponent. [9] proposes an alternative method for learning
issue priorities. In [8] a Bayesian learning technique is presented to learn an op-
ponent’s preference profile including both issue priorities as well as the ranking
of issue alternatives. The evaluation method that has been used to assess the
quality of learning in each of these approaches has been indirect, e.g. by evalu-
ating the improvement of the outcome that is reached with respect to standard
notions such as Pareto efficiency. An exception is the work reported in [17] where
the quality of learning is discussed on the basis of statistical analysis, and the
work reported in [1] that presents quantitative results on a Bayesian classifier to
classify the type of profile of an opponent. However, it is not clear from [1,17]
how various factors determine the quality of learning.

In order to define a quality assessment method that provides insight into
the contribution of various factors to the learning quality, we first introduce
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the model of negotiation that we use. Negotiation is a form of decision-making
where two or more parties jointly search a space of possible outcomes Ω with
the goal of reaching a consensus [18]. In this paper, we only consider bilateral
negotiation, i.e. negotiation between two parties. We further assume that both
parties are able to express their preferences over possible outcomes ω ∈ Ω and
that these preferences can be modelled by means of a utility function U that
maps a possible outcome ω to a real-valued number in the range [0; 1] (cf. [20]).
A utility function will also be referred to as a preference profile.

Possible outcomes of a negotiation may have additional structure and consist
of a package-deal of several issues or attributes. Each issue has an associated
range of alternatives one of which for each issue needs to be agreed upon to
reach a final outcome. The space of possible outcomes each of which consists of
values assigned to a number of issues is also called the negotiation domain.

It is often assumed that a preference profile can be defined as a function of
the evaluation functions associated with individual issues and we do so as well
here. More specifically, we assume that utility functions are linearly additive [16].
That is, in a domain with n issues and outcomes that consist of one alternative
xi for each of the n issues, we assume that a utility function can be defined by:

U(ω) =
n∑

i=1

wiei(xi ∈ ω) (1)

where the wi are normalized weights that sum to 1 and the ei(xi ∈ ω) are
evaluation functions with range [0; 1] which model preferences for issue alterna-
tives. An important reason that justifies this restriction is that most existing
negotiation strategies can handle linearly additive utility functions but cannot
(efficiently) handle more complex utility functions.

In order to obtain an advantageous negotiation outcome, i.e. to reach an
agreement as best as possible, it is useful to have as much information about
the preference profile of an opponent as is possible. In a closed negotiation the
negotiating parties however do not exchange information about the preferences
of each other. In single-instance negotiations a negotiating agent may then try
to obtain a model of the preference profile of its opponent by means of learning
[2,8,9,11]. The goal of applying learning techniques here is to construct a function
Ũ that is similar to the actual utility function U of the opponent. The problem
that we address in this paper is how to assess the quality of a learning technique
in this context, that is, which tools can be used to assess the similarity of the
learned preference profile with the actual profile and which factors influence
the similarity. The method proposed aims at a direct assessment of the quality
of a learned preference profile instead of indirect evaluations based on results
that indicate comparative utility increases of negotiation outcomes, reaching
agreements in fewer negotiation rounds, or outcomes closer to the Pareto frontier
or fair outcomes such as the Nash solution. One of our objectives is to be able
to analyze the influence of various negotiation aspects on the learning quality.
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3 Quality Assessment Method

The method we propose has three components: (i) quality measures to estimate
the learning performance, (ii) criteria for selecting a diverse range of negotiation
domains and preference profiles on these domains, and (iii) criteria for selecting
a number of negotiation strategies of the opponent. These components then are
used to define an experimental setup to obtain data to analyze learning quality
by means of a negotiation tournament.

The first component consists of several similarity measures that provide a
metric for assessing the accuracy of the learned preference profile with respect
to the actual preference profile. We discuss several measures that can be used to
assess the quality of the learned preference profile. Apart from the restriction on
utility functions which need to be linearly additive, the second component of the
method consists of several additional criteria for selecting negotiation domains
such as size and complexity of the domain, and the similarity of the preference
profiles of the negotiating parties. These criteria are used to define the exper-
imental setup of the negotiation tournament. The third component provides
criteria for selecting negotiation strategies that should be used by negotiating
agents in the tournament. Since learning of an opponent’s preference profile in
single-instance negotiations has to be accomplished with only the observations
of the opponent’s negotiation moves [8,12,17,22], typically such learning algo-
rithms use assumptions about an opponent’s behaviour. For instance, in [1,8,22]
a concession assumption is used which states that negotiators on average de-
crease the utilities of offers as time passes in order to find a deal. Although this
assumption is reasonable and can be applied in typical negotiation settings, it is
important to assess the robustness of a learning technique also when negotiating
against agents that use strategies that do not comply with this assumption. It
thus is important to incorporate a diverse range of negotiation strategies in any
experimental setup to evaluate learning quality.

3.1 Quality Measures

In this Section we discuss two quality measures to assess learning quality that
are based on two metrics to measure the distance between the actual preference
profile of an opponent and the learned preference profile. These quality measures
are applied to both the complete preference profiles or utility functions, as well
as to the issue priorities or weights.

The learning task of learning an opponent’s preference profile clearly is an
approximation problem. The task is to re-constructs the actual utility function
U of the opponent by means of a learning technique resulting in an approxi-
mate function Ũ . A quality measure with respect to learning preference profiles
therefore can be defined as a distance metric of two utility functions, and can
be formally represented as d(U, Ũ).

Ideally, the approximation Ũ of an opponent’s utility function would provide
an accurate prediction of the exact utility value an opponent associates with an
outcome. Some strategies like the Tit-for-Tat-based strategy introduced in [3]
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depend on the accuracy of cardinal values of the utility function of the opponent
since a negotiation move is chosen based on an estimate of the concession the
other party made in the previous move. It therefore is important to have a
distance metric that can be used to measure the accuracy of the cardinal values
predicted by the learned profile. Here we use Pearson’s correlation coefficient for
that purpose. This coefficient represents the degree of linear relationship between
two variables and is defined as follows:

dpearson(U, Ũ) =

∑
ω∈Ω

(U(ω) − 〈U〉)(Ũ (ω) − 〈Ũ 〉)√ ∑
ω∈Ω

(U(ω) − 〈U〉)2
∑

ω∈Ω

(Ũ (ω) − 〈Ũ〉)2
(2)

where 〈U〉 (respectively 〈Ũ〉) denotes the average utility over the outcome space
defined by utility function U (Ũ). The Pearson’s correlation coefficient takes a
real value from the interval [−1; 1]. A value of +1 means that there is a perfect
positive linear relationship between variables, whereas a value of −1 means that
there is a perfect negative linear relationship between variables. A value of 0
means that there is no linear relationship between the two variables.

Although a perfect match of cardinal values of the actual and learned utility
function would be ideal, in practice it may be sufficient and more important to
approximate the preference ranking of outcomes by an opponent (cf. [4]). For
example, negotiation strategies that aim at maximizing an opponent’s utility by
means of walking on an utility iso-curve in one’s own preference profile only need
adequate information about an opponent’s ranking of outcomes. It is sufficient
when using such strategies to possess accurate ordinal ranking information.

To estimate the distance between the rankings of the bids given the actual
utility function of the opponent and the learned utility function, a metric is
introduced that compares all outcomes in the outcome space pairwise. In order
to do so, a ranking relation ≺U is defined as follows: ∀ωi, ωj ∈ Ω, ωi ≺U ωj ⇔
U(ωi) < U(ωj). Using this ranking relation, we can define a conflict indicator
function adapted from [6] to measure conflicting rankings given arbitrary utility
functions u and ũ. The conflict indicator function is defined as follows:

c≺u,≺ũ(ωi,ωj) =

⎧⎪⎨
⎪⎩

1 if (ωi �u ωj ∧ ωj ≺ũ ωi) ∨ (ωi ≺u ωj ∧ ωj �ũ ωi)
∨(ωi �ũ ωj ∧ ωj ≺u ωi) ∨ (ωi ≺ũ ωj ∧ ωj �u ωi),

0 otherwise.
(3)

The conflict indicator function yields 1 when the ranking relation of two arbitrary
outcomes ω, ω′ based on the learned utility space Ũ is not the same as the ranking
relation based on the actual utility space of the opponent U ; if the rankings based
on both utility functions match the conflict indicator takes the value of 0.

Using the conflict indicator c, we can define a metric called the ranking dis-
tance of two utility functions. The ranking distance is the calculated average of
the number of conflicts between two utility functions given c:

dranking(U, Ũ) =
1

|Ω|2
∑

ω∈Ω,ω′∈Ω

c≺U ,≺Ũ
(ω, ω′) (4)
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In [6] various properties of this distance measure are proved, including e.g. re-
flexivity, symmetry and the triangle inequality property.

It is useful to not only apply the distance measures to complete preference
profiles but also to apply it to the issue priorities or weights in such a profile.
In Section 4 we apply the assessment method to the learning approach for au-
tomated closed negotiation based on Bayesian learning proposed in [8]. In this
learning approach the different components of a linearly additive utility function,
i.e. weights and evaluation functions, are learned in a different way. In order to
obtain experimental data about these different learning processes we therefore
also define similar distance measures to those discussed above for measuring
distance of actual and learned issues weights.

The set of weights can be represented as a weight vector, and it is not hard
to define the Pearson correlation coefficient for the vectors of weights. The coef-
ficient is defined as follows:

dpearson(W, W̃ ) =
∑n

i=1(wi − 〈w〉) ∗ (w̃i − 〈w̃〉)√∑n
i=1(wi − 〈w〉)2

∑n
i=1(w̃i − 〈w̃〉)2

(5)

To calculate the ranking distance between the two weight vectors W and W̃ a
ranking relation is constructed on the weights of the corresponding vector as
follows: i = 1 . . . n, j = 1 . . . n, i ≺ j ⇔ w(i) < w(j), where w(i) = wi. Then,
the conflict indicator c≺W ,≺W̃

(i, j) can be defined in the same way as for utility
functions. The ranking distance of two weight vectors is defined as follows:

dranking(W, W̃ ) =
1
n2

n∑
i=1

n∑
j=1

c≺W ,≺W̃
(i, j) (6)

3.2 Negotiation Domains and Profiles

Whereas precise mathematical metrics can be defined for measuring distance
of preference profiles, for the selection of an adequate set of domains to be
used in the experimental setup less formal criteria are proposed here. The main
reason is that it is impossible to assess a learning technique on the space of all
negotiation domains and associated preference profile. Ideally, then, one would
use an experimental setup based on random sampling of the domains and profiles
in order to deal with this problem. However, it is not clear how to setup such
a sampling procedure.1 Instead, we therefore discuss and propose to use three
factors for selecting domains that are relevant in testing the learning quality.

Size of the negotiation domain. The amount of information exchanged during the
negotiation is limited in a closed negotiation since we can rely only on observed

1 As an example, we found that the predictability of issue preferences (see below)

may influence the outcomes of negotiation strategies. It is not particularly clear,

however, how to obtain a random sample which would be an adequate representation

of domains with and without predictable issues.



52 K.V. Hindriks and D. Tykhonov

negotiation moves of an opponent, which affects learning quality. The amount
of information needed by a learning technique typically depends on the model
structure and the size of the parameter space that is to be learned. Therefore,
a learning technique has to be assessed on negotiation domains of various sizes
and of various complexity. Since in any negotiation the number of issues is one
of the most important factors that determines the complexity of the preferences
profile, a set of domains should be selected that range from a low number of
issues to higher number of issues.

Predictability of the preferences. Most learning techniques for learning an op-
ponent’s preference profile use assumptions about the structure of the prefer-
ence profile (e.g. see [2,8,22]). Among others such techniques may rely on the
predictability of issue preferences [7]. Issues are called predictable when even
though the actual evaluation function for the issue is unknown, it is possible to
guess some of its global properties. For example, a price issue typically is rather
predictable, where more is better for the seller, and less is better for the buyer,
and the normal ordering of the real numbers is maintained; an issue concerning
colour, however, is typically less predictable. Learning even ranking preferences
related to issue values of unpredictable issues therefore is more difficult.

The set of selected negotiation domains for any experimental setup therefore
ideally should consist of a balanced mix of predictable and unpredictable issues.
In principle, the higher the number of unpredictable issues the more complicated
the learning of a corresponding profile becomes.

Opposition of preferences. The results of analyzing negotiation dynamics pre-
sented in [7] revealed that some negotiation strategies are sensitive to preference
profiles with compatible issues. Issues are compatible if the issue preferences of
both negotiating parties are such that they both prefer the same alternatives
for the given issue. Negotiation strategies may more or less depend on whether
preferences of the negotiating parties are opposed or not on every issue. That
is, using some strategies it is harder or even impossible to exploit such common
ground and agree on the most preferred option by both parties for compatible
issues (humans are reported to have difficulty with this as well; cf. [19]). A selec-
tion of preference profiles should therefore take into account that both preference
profiles with and without compatible issues are included.

The notion of opposition can be made more precise. Conceptually, it represents
a degree of conflict of interests between the parties. In other words, there is a
conflict of interests if one party prefers outcome ω over outcome ω′ and the other
party prefers outcome ω′ over outcome ω. In [10] a notion of local opposition
based on the gradients of the utility functions of both parties is defined for
each outcome in the negotiation domain. Intuitively, if the gradients point to
opposite directions then the preferences of the negotiation parties are opposed.
The more colinear the gradients are the closer (more compatible) the preferences
of the parties. Although it is possible to generalize the notion of local opposition
relative to an outcome to a more global notion of opposition of utility functions,
we propose to reuse the distance measures for preference profiles to measure the
level of opposition present.
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As discussed, it is not clear how to randomly sample negotiation domains and
we use the criteria discussed to select a number of negotiation domains to be
used in our experimental setup. The selection we present is not intended to cover
all variations in line with these criteria but rather is meant to illustrate these
criteria. The following negotiation domains with predefined opponent profiles
have been selected (also see Table 1 for details about profile distances):
– Second hand car selling, taken from [9]: a domain of 5 issues, of which only

price is really predictable. That is, an agent can only reliably predict the
other agent’s preferences for this issue.

– Service-Oriented Negotiation, taken from [2], a domain with 4 issues for
which domain knowledge is made available to the strategies.

– Employment contract negotiation domain, taken from [13] with 5 discrete
issues. All issues have predictable values. The preference profiles have the
strongest opposition in our setup.

– AMPO vs City, taken from [15], a domain with 10 issues, for which 7 are
rather predictable, but 3 are not. This is the biggest domain in our experi-
mental setup.

– Party domain is created for negotiation experiments with humans. It is a
rather small domain with 5 discrete issues with 5 possible values each. All
of the issues are unpredictable. The preference profiles have the lowest op-
position in the experimental setup.

Table 1. Distance measures between utility space in the analyzed domains

Domain
Utility spaces Weights

Domain size No. of Predictable
Ranking Pearson Ranking Pearson

AMPO vs. City 0.662 -0.482 0.422 -0.139 7,128,000 3 (10)

Party 0.540 -0.126 0.467 -0.276 3,125 0 (5)

SON 0.669 -0.453 0.833 -0.751 810,000 4 (4)

Employment contract 0.698 -0.584 0.600 -0.241 3,125 5 (5)

2nd hand car 0.635 -0.387 0.600 -0.147 18,750 1 (5)

3.3 Negotiation Strategies of the Opponent

The results of the analysis presented in [7] also have shown that the performance
of a negotiation strategy can be significantly influenced by the negotiation strat-
egy of the opponent. For example, the class of pure time-dependent tactics (TDT;
see [3]) does not take into account the negotiation moves of opponents and se-
lects the next offer to propose in a negotiation based on how close one is to the
negotiation deadline. Whereas TDT tactics are insensitive to opponent moves,
negotiation strategies in the class of behaviour-dependent tactics (BDT) do base
their choice of offer on the offers received so far from the opponent. A variety
of strategies therefore is needed to asses the quality of learning, which includes
strategies that belong to the TDT class, the BDT class as well as mixes thereof.

The selection of strategies to be used in an experimental setup should be
able to test the robustness of the learning technique with respect to various
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opponents that use different types of negotiation strategies. For example, to
enable learning of opponent preferences from the observed negotiation moves
(offers) typically a concession assumption is made (cf. [1,8,22]). Such rationality
assumptions might however be exploited and it should be tested if a learning
technique is robust against strategies like the Zero-Intelligence strategy that uses
an irrational random tactic [5].

Again we do not claim to present an exhaustive coverage of the criteria dis-
cussed, but present a selection to illustrate. The following negotiation strategies
have been used by the negotiating parties in our experimental setup:
– The ABMP strategy from [9], which is a concession oriented approach in

the TDT class, and is taking no heed of knowledge about the domain or
the opponent. The ABMP strategy uses a non-linear concession tactic. It
conceeds more in the beginning of the negotiation when the gap between
the opponents’ negotiation positions is big and decreases the size of the
concession when their negotiation positions approach each other. As such, it
is an example of a so-called conceder tactic (cf. [3]).

– The Trade-off Strategy, taken from [4], uses so-called similarity criteria and
exploits domain knowledge. The Trade-off strategy is an example of a
Behaviour-dependent strategy. In our experiments we allowed three smart
steps and a concession of 0.05 for the smart meta strategy.

– Zero-Intelligence, taken from [5], is a random strategy that makes random
jumps through the outcome space. The ZI agent used a reservation point in
our experiments to avoid making offers that have very low utility which was
set to 0.6. The ZI strategy plays a role as a baseline strategy.

4 Application and Experimental Results

To show how the proposed method is used in practice we apply it to agents
that make use of opponent’s preferences learning techniques taken from [8]. This
section presents the details of the experimental setup and presents some results
obtained.

4.1 Experimental Setup

A learning technique based on Bayesian learning algorithm proposed in [8] is
used as a subject of the analysis. The opponent model in [8] is based on learning
probability over a set of hypothesis about evaluation functions and weights of
the issues. The probability distribution is defined over the set of hypothesis that
represent agent’s belief about opponent’s preferences. Structural assumptions
about the evaluation functions and weights are made to decrease the number of
parameters to be learned and simplify the learning task.

Authors propose two versions of the learning algorithm. In the first version of
the algorithm each hypotheses represents a complete utility space as a combina-
tion of weights ranking and shapes of the issue evaluation functions. The size of
the hypothesis space growth exponentially w.r.t. the number of issue and thus
is intractable for negotiation domains with high number of issues.
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The second version of the algorithm is a scalable variant for the first one. This
version of the agent tries to learn probability distribution over the individual hy-
pothesis about the value of the weight and shape of the issue evaluation function
independently of other issues. The computational tractability of the learning is
achieved by approximating the conditional distributions of the hypotheses using
the expected values of the dependant hypotheses.

To test the proposed method for learning quality assessment an experimental
setup is created. The method is applied in a tournament-like setup. In the tour-
nament the Bayesian agent that uses a learning technique negotiates against the
set of opponent strategies from the section 3.3. The tournament is repeated for
all negotiation domains and preference profiles from the section 3.2.

The original code of the Bayesian agent was extended with a module that
calculates the quality measures as explained in the section 3.1. This module
is granted an access to the actual preference profile of the opponent that is
needed to calculate the measures. The module calculates the distances between
the current model of the opponent preference and the actual preferences profile
of the opponent when the agent initializes the opponent model and after every
update of the model. According to the algorithm of the Bayesian agent, the
opponent model is updated when agent receives a bid from the opponent.

The authors realize that the learning power of such solution would degrade
compared to the first version of the algorithm. However, the agent performs quite
well on the negotiation domains of higher dimensionality (10 issues), see [8]. It is
only reasonable to expect that the quality of learning degrades when the size of
the negotiation domain is increased. In addition, the unscaleable version of the
Bayesian learning agent is expected to perform less than the scalable version in
terms of learning quality on the same negotiation domain.

The ZI agent is used to test the robustness of the Bayesian learning tech-
nique with respect to the opponent’s negotiation strategy. Both versions of the
Bayesian learning algorithm are expected to show worse performance when nego-
tiating against the ZI agent because they rely on assumptions about the rational-
ity of the opponent’s negotiation strategy. Furthermore, the quality of learning
of the Bayesian agent on the Party domain is expected to suffer from the upre-
dictability of the preference of all the issues in this domain.

4.2 Evaluation

Due to space limitations, we only present the results of those experiments that
give rise to some of the more significant conclusions. Figure 1 shows results that
represent the quality of learning of the scalable version of the Bayesian agent on
the Employment contract negotiation domain.

As explained in the previous section, the Bayesian agent updates the opponent
model after receiving a bid from the opponent. Therefore, the horizontal axis of
the charts represents the sequential number of the negotiation round. The first
point of the curves corresponds to the distance between initial opponent model
and the actual utility function of the opponent.
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Fig. 1. Learning quality measures for the unscaleable Bayesian angent on the Employ-

ment contract negotiation domain against the Trade-off (a,d), ABMP (b,e), and ZI

(c,f) strategies

The results show that the concession tactics of the opponent influences the
quality of learning, as expected. The Bayesian agent learns the preferences of the
opponent better when the opponent uses the Trade-off tactics rather than the
ABMP strategy. The Trade-off tactics uses semi-linear concession tactics (see
section 3.3), which is more consistent with the opponent tactics assumptions
made in the Bayesian agent. As expected, the the Bayesian agent learns the
opponent preference slower in case of the ZI negotiation strategy of the opponent.
However, it is still capable of learning the opponent’s preference quite well.

In general, the learning quality is better in smaller negotiation domains spaces.
This follows from a comparison of the AMPO vs. City domain which is the largest
domain with the SON contract negotiation domain in Figure 2. The Bayesian
learning technique is able to perfectly learn a model of the ranking (ranking
distance measure) in case of the SON domain and keeps improving the absolute
values of the weights (cf. the results of the Pearson distance). In the AMPO
vs. City domain the agent is able to learn the ranking of the weights to some
extent. However, the results show that the learning of the outcome ranking is
rather limited. This can be partly explained by the presence of a few issues
with unpredictable preferences, which results in a lower learning quality of the
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Fig. 2. Learning quality measures for the scaleable Bayesian agent against Trade-off

strategy on the AMPO vs. City (a,d), SON (b,e), and Party (c,f) negotiation domains

evaluation functions and a lower learning quality of the utility function compared
to the results for the SON domain.

Another interesting observation is that the learning algorithm approximates
the absolute, cardinal values of the utility function and weights quite well, see
Figure 2(b,e). This can be explained by the nature of the hypothesis space of
the learning algorithm. The algorithm calculates opponent’s utility values of a
bid as an expected value of a random variable. The expected value is a sum of
the utilities according to the hypothesis weighted with their probabilities. Thus,
even if the more detailed structure of the opponent’s preferences is not learned
by the agent the information learned can still be used to approximate the utility
function of the opponent as a linear combination of the set of all hypotheses.

5 Conclusion and Discussion

In this paper, a method for the analysis of the learning quality of learned op-
ponent preference profiles in automated negotiation has been presented. The
method consists of three components: (i) It uses distance measures between the
actual preference profile of the opponent and the learned preference profile to
assess the quality of the learned model; (ii) it propose criteria for the system-
atic classification of negotiation domains and preferences profiles to assess the
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impact of a variety of domains on the quality of the learned model; and (iii)
it proposes some criteria to select a set of negotiation strategies. The method
has been applied as an illustration to the agents introduced in [8], which use a
Bayesian learning technique to learn preference profiles. The results confirmed
the effectiveness of the learning technique, in particular that of the unscaleable
version of the agent. The performance of the scalable agent is comparable to that
of the unscaleable version on smaller negotiation domains. As is to be expected,
the results showed that learning performance slowly degrades for the negotiation
domains of higher dimensionality.

In addition, we believe that the results revealed interesting features of the
learning algorithms that can be used to improve their performance. For instance,
a more detailed analysis of the unscaleable version of the Bayesian agent pro-
posed in [8] revealed that the learning algorithm typically approximates the
opponent’s preference profile with a weighted sum of the evaluation hypotheses
instead of learning the evaluation function that best matches the actual function
defined for a given issue. This indicates that it may be possible to reduce the
hypothesis space of evaluation functions and use a smaller set of such functions
which would still be sufficient to approximate a wide range of possible opponent
preference profiles.

One issue that needs more research is the classification of both domains as
well as strategies in order to systematically evaluate a learning technique used
in negotiation. Though in principle, given that utility functions representing
preference profiles are of a certain type, it is possible to generate random outcome
and utility spaces to be used for evaluation. A method based on such random
samples would potentially be more generic than the analysis of cases as used
in this paper. It is not trivial to define such an approach, however, since the
distribution used to generate samples should not favour particular situations (e.g.
combinations of strictly opposed preference profiles over compatible preference
profiles). Since it is also not completely clear how realistic certain preference
profiles which lack sufficient structure are this poses another problem to be
addressed before the use of random samples would make sense.

In this paper we have mainly focused on the learning of the opponent’s prefer-
ence profile. However, a negotiation strategy might also exploit other knowledge
about the negotiating parties. Other parameters such as reservation value, or
type of negotiation strategy however would require certain adaptations of the
proposed method. We plan to extend our method with such tools along with a
statistical toolbox useful in defining a testbed for automated negotiation agents.
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Abstract. In many Web-based applications, there are incentives for a

user to sign up for more than one account, under false names. By doing

so, the user can send spam e-mail from an account (which will eventually

cause the account to be shut down); distort online ratings by rating

multiple times (in particular, she can inflate her own reputation ratings);

indefinitely continue using a product with a free trial period; place shill

bids on items that she is selling on an auction site; engage in false-

name bidding in combinatorial auctions; etc. All of these behaviors are

highly undesirable from the perspective of system performance. While

CAPTCHAs can prevent a bot from automatically signing up for many

accounts, they do not prevent a human from signing up for multiple

accounts. It may appear that the only way to prevent the latter is to

require the user to provide information that identifies her in the real

world (such as a credit card or telephone number), but users are reluctant

to give out such information.

In this paper, we propose an alternative approach. We investigate

whether it is possible to design an automated test that is easy to pass once,

but difficult to pass a second time. Specifically, we design a memory test.

In our test, items are randomly associated with colors (“Cars are green.”).

The user first observes all of these associations, and is then asked to recall

the colors of the items (“Cars are...?”). The items are the same across it-

erations of the test, but the colors are randomly redrawn each time (“Cars
are blue.”). Therefore, a user who has taken the test before will occasionally

accidentally respond with the association from the previous time that she

took the test (“Cars are...? Green!”). If there is significant correlation be-

tween the user’s answers and the correct answers from a previous iteration

of the test, then the system can decide that the user is probably the same,

and refuse to grant another account. We present and analyze the results of

a small study with human subjects. We also give a game-theoretic analysis.

In the appendix, we propose an alternative test and present the results of

a small study with human subjects for that test (however, the results for

that test are quite negative).

1 Introduction

Many Web-based applications require a user to sign up for an account first.
Because of the anonymity that the Internet provides, it is typically not difficult

W. Ketter et al. (Eds.): AMEC/TADA 2008, LNBIP 44, pp. 60–72, 2010.
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for a single user to sign up for multiple accounts under fictional identities. Doing
so can provide many benefits to the user, including at least the following:

1. The user can send spam e-mail from the fictional accounts. The service
provider will typically realize that this is happening fairly quickly and shut
down the account, but then the user can simply sign up for another account.

2. In online rating systems, the user can rate the same object many times and
thereby distort the aggregate rating. This is especially valuable when the
object being rated is a product that the user is selling, or when the object
is the user’s own reputation (on, say, an auction site).

3. When a product has a free trial period, the user can indefinitely continue
using the product at no cost: once the trial period expires, she can simply
start using the product under a different account.

4. In an online auction, the user can use another account to place shill bids on
the items that she is selling, thereby driving up their selling prices.

5. In more complex economic mechanisms such as combinatorial auctions, in
which multiple items are simultaneously for sale (for an overview, see [1]), it
is often possible to obtain a bundle of items at a lower price by bidding under
multiple identities [12,13]. It is possible to design mechanisms for which using
multiple identities is not beneficial [12,10,13,11], but these are less efficient.

6. In online poker, the user can try to play on the same table under two or
more distinct identities, allowing her to effectively collude with herself.

While all of the above behaviors are beneficial to the user who engages in them,
they reduce the performance of the system as a whole. Users have to deal with
potentially large volumes of unwanted e-mail, online ratings become meaning-
less, companies become reluctant to offer free trial periods, auction mechanisms
become less efficient, people become reluctant to play poker online1, etc. As a
result, it may well be that all users, including those who choose to engage in the
behavior, would prefer it if this behavior was impossible.2

In some cases, a user would benefit from owning a very large number of
accounts. For example, if the accounts are used to send spam e-mail, then the
service provider is likely to shut down the account as soon as it realizes that the
account is being used to send spam; hence, many accounts are necessary to send
out a significant amount of spam. In cases such as these, the user (spammer) may
try to use a computer program, or bot, that repeatedly registers for an account.
This (along with other applications) motivated the development of CAPTCHAs
(Completely Automated Public Turing Tests to Tell Computers and Humans
Apart) [8,9], which are automated tests that are easy to pass for humans, but
difficult to pass for computers. A well-known CAPTCHA is Gimpy, where the
1 Given online poker’s murky legal status, one may debate whether this is a good or

a bad thing.
2 Game theory (for overviews, see [2,5,6]) provides many other examples where agents

would prefer it if their most preferred actions were made unavailable, given that

those actions are also made unavailable to the other agents: consider defection in

the Prisoner’s Dilemma, overgrazing in the Tragedy of the Commons, etc.
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task is to read distorted text. Indeed, Gimpy is now widely used to screen out
bots. It should be noted that several variants of Gimpy have been broken, that is,
programs have been written that succeed on a large fraction of instances of the
test [3,7,4]. This arguably represents a significant advance in computer vision.
In fact, AI researchers should hope that every CAPTCHA that is designed will
eventually be broken, since otherwise the CAPTCHA would represent a limit
to artificial intelligence (more precisely, to the artificial intelligence that we as
humans can create). But when a CAPTCHA is broken, we can in principle
switch to using a different CAPTCHA, as long as artificial intelligence does not
yet match human intelligence.

Unfortunately, CAPTCHAs are of little use in preventing a human from sign-
ing up for multiple accounts. Given how little revenue a spammer obtains from
a single account, it is perhaps not economically feasible for a spammer to solve
sufficiently many CAPTCHAs herself (or to hire people to do it for her). How-
ever, for all of the other uses for multiple accounts that we mentioned, only a
few accounts are required. So, how can we prevent a human from signing up
for multiple accounts? One possibility is to require her to provide information
from which her identity in the real world can be established—for example, a
credit card number or a phone number.3 However, users tend to be very unwill-
ing to provide such information, among other reasons because doing so entails
giving up the privacy and anonymity that the Internet affords. Another pos-
sibility is to charge a price for each account (assuming that payments can be
made anonymously), but again, Web users are notoriously unwilling to make
payments. Also, if the payment is small enough, then the user may still want to
sign up for multiple accounts.

It may seem that if account registrations are completely anonymous, and a
user can sign up for one account, then she can always sign up for a second
account in the same way. In this paper, we argue that this is not necessarily the
case. We investigate whether it is possible to design an automated test that is
easy to pass once, but difficult to pass a second time. The idea that we pursue
is to have the user be affected by taking the test the first time, in a way that is
detectable when she takes the test again. Specifically, we design a memory test.
In this test, the user is asked to memorize and then recall a number of (item,
color) associations. Across iterations of the test, the items are always the same,
but the color associated with each item is randomly redrawn each iteration.
Because of this, a user taking the test a second time is likely to get confused and
occasionally respond with the association from the first time that she took the
test. (This is related to the proactive interference phenomenon in psychology,
where old memories interfere with the learning of new memories. However, this
term typically refers to the decrease in performance on the later iteration of the
test, rather than to the overlap in answers with the earlier iteration of the test.)
Thus, if there is significant correlation between the user’s answers and the correct

3 One way to sign up for a GmailTMaccount is to submit a mobile phone number, to

which an invitation code is then sent. This is explicitly to prevent one person from

signing up for many accounts.
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answers from a previous iteration of the test, then the system can decide that the
user is probably the same, and refuse to grant another account. The system must
also refuse to grant the account if the user recalls too few associations correctly:
otherwise, the user can just respond randomly, and thereby avoid confusion and
overlap. Several other minor modifications are necessary to make the system
work. For one, memory tests are easy to pass for computers; therefore, the test
must be integrated with a CAPTCHA (in such a way that the CAPTCHA cannot
simply be separated and given to a human). For example, the (item, color) pairs
can be distorted as in Gimpy. Also, the test must be run at a speed that makes
it infeasible for the user to write down and look up the associations.

In the remainder of this paper, we first present the specifics of the automated
test that we designed. We then present the results of a small, formal study
on human subjects. We also present a game-theoretic model of the test, and
analyze the effects of different strategies for the user. Finally, we discuss future
research. In the appendix, we discuss another (less effective) automated test that
we designed, as well as the results of a small study on human subjects for that
test.

2 Test Specifics

The specifics of the test that we designed are as follows. (The source code is
available upon request.) There are 100 items in the test, which were chosen with
a bias towards items that do not naturally have a color associated with them.
(E.g., “cars” was one of the items, “grass” was not. Of course, cars are still more
associated with red than with pink; it seems impossible to avoid such association
altogether.) There are 8 colors in the test: red, green, blue, yellow, white, black,
orange, and pink. At the beginning of an iteration of the test, each item is
randomly associated with one of the colors (e.g., “Cars are green.”). Each of
these associations is then displayed to the user for 4 seconds (in random order).
After all of the associations have been displayed, each of the items is displayed
to the user for 3 seconds (in a different order4), during which the user has to
recall the associated color. Thus, the total duration of the test is 700 seconds
(11.7 minutes). Clearly, the length of the test makes it somewhat unattractive
to take, but with fewer items we are unlikely to be able to recognize correlation
with a previous iteration of the test (with statistical significance). In principle,
a user would have to take the test only once, to obtain a master account which
she can then use to sign up for other accounts. Besides the number of items, the
other parameters are the number of colors, the amount of time each association
is displayed, and the amount of time given to recall each item’s color. Based on
some informal experiments, these parameters were set to make the test difficult
but not impossible, as well as to keep its length reasonable.

4 Changing the order forces users to associate colors with items, rather than just

remember a sequence of colors. It also makes it difficult to write down and look up

the associations in time.
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3 A Small Study with Human Subjects

We proceeded to conduct a small, formal study with human subjects, whose details
and results we describe in this section. Each subject first did a practice run with
a version of the system with only 10 items, which do not overlap with the “offi-
cial” 100 items. Then, the subject did two full iterations of the main test (with the
same 100 items, but re-randomized colors for each item). Each subject was com-
pensated US $7, plus US $7 times the percentage of correct answers given in the
two iterations of the main test. (Given that the test is somewhat exhausting, it was
considered important to reward subjects for good performance, to keep them en-
gaged.) Subjects were recruited by posting flyers. In the end, we obtained data from
7 subjects, all of whom are students at Duke University. The study was approved
by the Institutional Review Board. It is very small, but it is enough to illustrate
the key phenomena. Earlier, informal tests produced similar results.

Before presenting the results, it is useful to consider what results would indicate
that our system is effective. Ideally, we would see: 1. high scores (percentage cor-
rect) for the first iteration (so that a user can obtain an account), and 2. either low
scores for the second iteration, or significant overlap between the answers given by
the user in the second iteration and the correct answers in the first iteration (so
that a user will fail to obtain a second account, either because her performance is
too poor or because the system can link her to her first attempt). We do not want
to consider the overlap between given answers in the second iteration and given
answers in the first iteration, because it is likely that there would be significant
overlap between given answers even for two different users—for example, because
people tend to answer “white” more often, or because they tend to answer “red”
for cars, etc. However, the probability of giving the answer that was the correct
answer for another iteration of the test, given that the user never saw the correct
answers for that iteration,5 is exactly 1/nc (where nc is the number of colors, 8 in
our case), because the correct answers are randomly drawn. Thus, if the overlap
between the given answers in one iteration of the test, and the correct answers in
another iteration, is significantly greater than 1/nc, then we can be reasonably
sure that the same user was involved in both iterations.

Unfortunately, it appears inevitable that some users will do poorly on their
first iteration. If this happens, then we no longer have the same goal for the
second iteration: if anything, we would like them to do better on their second
iteration, since they would have failed to obtain an account the first time. Also, in
this case, it is unreasonable to expect the correct answers from the first iteration
to overlap much with the given answers in the second iteration, since these
correct answers did not even overlap much with the given answers in the first
iteration! So, to prevent users from signing up for multiple accounts, the key
requirement is that people that perform well in the first iteration either perform
poorly in the second iteration, or that their given answers in the second iteration
have significant overlap with the correct answers from the first iteration. We are
now ready to present the results of the study.

5 ... or was otherwise (indirectly) influenced by the correct answers for that iteration.
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Table 1. Experimental results for human subjects

subject c1 = a1 c2 = a2 c1 = a2 c2 = a1

1 53 66 27 13

2 34 23 14 13

3 31 46 13 13

4 50 61 23 14

5 17 38 15 11

6 42 43 11 11

7 60 70 22 12

In the results, ci stands for the correct answer in the ith iteration, and ai for
the given answer in the ith iteration (i ∈ {1, 2}). Thus, the sequence c1 = a1

gives the score for the first iteration, c2 = a2 gives the score for the second
iteration, c1 = a2 indicates how often the given answer in the second iteration
is identical to the correct answer (for that item) in the first iteration (indicating
the level of confusion that the subject experienced, and the extent to which
the system can identify the subject as the same person that performed the first
iteration), and c2 = a1 indicates how often the given answer in the first iteration
is identical to the correct answer (for that item) in the second iteration. For the
last sequence, the probability that these answers match is always 1/8 (because
the second iteration’s correct answer is drawn randomly after the user’s answer
has been given in the first iteration), so unsurprisingly, this sequence is closely
clustered around 12.5 = 100/8. (Had this not been the case, it could only have
been due to a statistical fluke, a mistake in the experimental setup, or a failure
of the random number generator.) So we focus on the three remaining sequences.

Unfortunately, not all the subjects do well on the first iteration. Thus, if we
require a reasonably high score on the test, some users will be denied an account
on their first attempt. However, in all but one case, performance improved on
the second attempt. If we look at the three subjects who performed best (1,
4, and 7), we see, encouragingly, that their overlap (c1 = a2) is very high (27,
23, 22, respectively). The probability that an overlap of at least 22 would have
occurred if the two iterations of the test were taken by different people (so
that the probability of overlap on any individual answer would be 1/8) is only∑100

i=22

(
100
i

)
(1/8)i(7/8)100−i = 0.0056, so we can reject the second account ap-

plication in these cases.6 (Here, we are in some sense evaluating the cutoff of 22

6 It should be noted that in a real system, we must compare the answers not just to

one specific previous iteration of the test, but to every previous (successful) iteration

of the test. If the number of users is large, then the probability of this much overlap

occurring by chance in at least one of these comparisons is significant. For example,

if nobody is trying to obtain multiple accounts and there have already been 100

iterations of the test with previous users, then the probability that the next user has

an overlap of at least 22 with at least one previous iteration is 1−(1−0.0056)100 = .43.
That is, if we require that the overlap with every one of the previous 100 iterations is

less than 22, then an honest agent has a chance of only 57% of getting an account on

the first attempt (assuming that this agent is not rejected due to poor performance).
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on the same data as the data on which we based this cutoff; for a more thorough
evaluation, it would be desirable to have a separate training set, on which we
base the cutoff, and test set, on which we evaluate the cutoff.) However, the
fourth-best performer, subject 6, displayed no overlap at all in spite of perform-
ing reasonably well on both iterations. We conjecture that there are different
memorization strategies that subjects used, and that while the most successful
strategies tend to produce significant overlap, there are other strategies that are
still somewhat successful and less prone to cause overlap. For example, a sub-
ject can split the colors into two sets of four each, restrict attention to colors in
the first set in the first iteration, and to colors in the second set in the second
iteration. Fortunately, such strategies will fail if the user is required to recall a
large enough number of associations correctly.

4 A Game-Theoretic Analysis

Subjects were cautioned that the items in the second iteration would be the
same as in the first iteration, with potentially different color associations, so
that they should try to take care not to get confused. In reality, however, the
reward structure of the study did not penalize subjects for giving an answer in
the second iteration that was the correct answer in the first iteration (at least
not more than it penalized them for giving any other wrong answer). Since the
idea is to deny the request for an account if there is too much overlap with the
correct answers from a previous iteration, an ideal study would have penalized
subjects for such overlap; this perhaps would have made subjects more careful
to avoid it. We chose not to pursue such a design for the study for the following
reasons. First, it is ex ante not clear by how much to penalize subjects. Perhaps
the most convincing design would have been to set strict criteria beforehand for
when a subject “passed” the test (i.e., would be awarded an account), and to pay
subjects in proportion to the number of accounts that they obtained. However,
this would have required us to set the requirements for passing the test before
collecting any formal data. Moreover, the lack of any “partial credit” may have
made it more difficult to attract subjects. A second reason for the design of our
study is that by using a game-theoretic model that we present next, we can use
the results of the study to infer what results a subject could have obtained by
changing her strategy (assuming correctness of the model). The test designer and
the user play a game where the designer sets criteria and the user subsequently
tries to obtain multiple accounts.

We first introduce a (highly simplified) model of the limitations of human
memory. Suppose that when the user is asked to recall the color of an item, one
color (not necessarily the right one) pops up into her memory. In game-theoretic
terms, this color can be referred to as a signal that she receives from her memory.
Specifically, suppose that when a user takes the test a second time,

– with probability p1 the signal is the correct answer (from the second
iteration),
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– with probability p2 the signal is the correct answer from the first iteration,
and

– with probability p3 = 1 − p1 − p2 the signal is one of the colors drawn at
random.

Presumably, p1 > p2. As for p3, all of the following are reasonably possible:
p3 ≥ p1 (a forgetful user), p1 > p3 ≥ p2 (a user that is somewhat forgetful and
does not get confused much), and p2 > p3 (a user that is not very forgetful
but does get confused). Since the probability that the correct answer in the
first iteration is the same as the correct answer in the second iteration is 1/nc,
the (ex ante) probability that the correct answer pops up for a given item is
p1 +p2/nc +p3/nc = p1 +(1−p1)/nc. Similarly, the probability that the correct
answer from the first round pops up is p1/nc+p2+p3/nc = p2+(1−p2)/nc. The
user does not receive any other signal from her memory (such as a confidence
level that the answer is the correct one).

In this highly simplified model, for each item, the user must choose whether
to respond with the color corresponding to her signal, or with some other color.
(Since there is no way to distinguish the other colors, we may assume that
she chooses one of the remaining colors at random in the latter case.) Thus,
the only strategic decision that the user can make is the fraction q of items
for which she responds with the signal. If she responds with the signal for an
item, the probability that she is right is p1 + (1 − p1)/nc. If she responds with
a random other color, then the probability that she is right is (1 − (p1 + (1 −
p1)/nc))/(nc − 1) = (1− p1)/nc. Thus, the expected fraction of times that she is
right is p1q + (1− p1)/nc = p1(q − 1/nc) + 1/nc. Similarly, it can be shown that
the expected fraction of times that she responds with the correct answer from
the first iteration is p2q + (1 − p2)/nc = p2(q − 1/nc) + 1/nc. (If we, completely
inaccurately, assume that in our experiment, all users had the same p1 and the
same p2, and that they all set q = 1, then this produces estimates of p1 = .42 and
p2 = .06.) If q = 1/nc (which corresponds to random guessing), both of these
expressions are equal to 1/nc. Hence, intuitively, if a user wants to increase the
first expression beyond 1/nc, the second expression must also increase beyond
1/nc, and the second increase must be p2/p1 times the first increase.

This suggests the following metric for evaluating whether a test taker is the
same as the taker of a given previous iteration of the test.

– Take the percentage of answers that are correct (for the current iteration),
minus 1/nc (the percentage expected for random guessing). Call the resulting
fraction f1.

– Then, take the percentage of answers that coincide with the correct answers
from the earlier iteration, minus 1/nc (the percentage expected for random
guessing). Call the resulting fraction f2.

– Finally, take the ratio f2/f1.

Then, by the above, if the test taker is the same in both iterations, the result-
ing ratio must be somewhere close to p2(q−1/nc)

p1(q−1/nc)
= p2/p1 (assuming that f1 is
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significantly positive). (With our very rough experimental estimates from above,
p2/p1 = .06/.42 = .14.) The following theorem makes this precise.

Theorem 1. Suppose the following are true:

– the game-theoretic model proposed above is correct,
– the test taker is the same in both iterations,
– in the second iteration, the test taker sets q to a value above 1/nc (i.e., she

does not guess randomly).

Then, for any ε > 0, as the number of items ni goes to infinity, the probability
that |f2/f1 − p2/p1| ≥ ε goes to zero.

Proof. For any ε1 > 0, as ni → ∞, the probability that |f1 − p1(q − 1/nc)| ≥ ε1
goes to zero (using the law of large numbers and the fact that p1(q − 1/nc) is
the expected value of f1). Similarly, for any ε2 > 0, as ni → ∞, the probability
that |f2 − p2(q − 1/nc)| ≥ ε2 goes to zero. Because p1 > 0 and q > 1/nc, it must
be the case that p1(q − 1/nc) > 0, and hence, for any ε > 0, as ni → ∞, the
probability that |f2/f1 − p2/p1| = |f2/f1 − p2(q−1/nc)

p1(q−1/nc)
| ≥ ε goes to zero as well.

By contrast, if the iterations of the test had different test takers, then with high
probability, the ratio f2/f1 is close to 0, because the expectation of f2 must be
0. (This is assuming that performance on the current iteration is significantly
better than random guessing, so that the expectation of f1 is positive). Thus,
if we require f1 to be significantly above 0 to pass the test (that is, the user
should be getting significantly more answers right than random guessing would
give, and hence must set q to a value significantly greater than 1/nc to have a
good chance of passing), the number of items is sufficiently large, and p2 > 0,
then with sufficiently many items we can reliably detect when an applicant has
taken the test before (because p2/p1 > 0).

5 Conclusions and Future Research

In many Web-based applications, there are incentives for a user to sign up for
more than one account, under false names. By doing so, the user can send spam
e-mail from an account (which will eventually cause the account to be shut
down); distort online ratings by rating multiple times (in particular, she can
inflate her own reputation ratings); indefinitely continue using a product with a
free trial period; place shill bids on items that she is selling on an auction site;
engage in false-name bidding in combinatorial auctions; participate in the same
online poker game under multiple identities, allowing her to effectively collude
with herself; etc. All of these behaviors can be beneficial to the individual user,
but are highly undesirable from the perspective of system performance. Users
end up receiving tons of unwanted e-mail; online ratings become meaningless;
companies become unwilling to offer free trial periods; users become skeptical
of online auctions and poker games; etc. CAPTCHAs offer a partial remedy in
that they can prevent a bot from automatically signing up for many accounts.
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However, they do not prevent a human from signing up for multiple accounts.
It may appear that the only way to prevent the latter is to require the user
to provide information that identifies her in the real world (such as a credit
card or telephone number), but users are typically reluctant to give out such
information. In this paper, we proposed an alternative approach. We investigated
whether it is possible to design an automated memory test that is easy to pass
once, but difficult to pass a second time. Specifically, we designed a memory
test. In this test, items are randomly associated with colors (“Cars are green.”).
The user first observes all of these associations, and is then asked to recall the
colors of the items (“Cars are...?”). The items are the same across iterations
of the test, but the colors are randomly redrawn each time (“Cars are blue.”).
Therefore, a user who has taken the test before will occasionally accidentally
respond with the association from the previous time that she took the test
(“Cars are...? Green!”). If there is significant correlation between the user’s
answers and the correct answers from a previous iteration of the test, then the
system can decide that the user is probably the same, and refuse to grant another
account. We presented and analyzed the results of a small study with human
subjects, in which each subject took the test twice. The results of this study
were mixed. On the negative side, about half of the subjects did not perform
very well on the tests. On the positive side, for subjects that performed well,
there was significant overlap between their answers in the second iteration and
the correct answers in the first iteration. Thus, the system may be effective
at preventing multiple account registrations from the same person, but not at
allowing everyone to obtain an account. To analyze whether there exists some
strategy for users that is more successful at signing up for multiple accounts, we
introduced a simple game-theoretic model. We showed that under this model,
any strategy is likely to fail at signing up for multiple accounts, if the test is large
enough.

There are several aspects of the proposed test design that limit its feasibility
in practice. First, the test is long and exhausting, which would probably dis-
courage users from signing up for accounts. Second, the study indicates that
performance on the test is very variable (even when its takers are restricted to
Duke University students). Because in addition, the study suggests that we must
require a high percentage of correct answers for passing the test in order to see
the desired confusion (that is, overlap) across iterations of the test, this means
that some users would have serious difficulty passing the test. Third, while the
study suggests that it is difficult to do well on the test twice without getting
confused across iterations, the study took place under controlled conditions. In
the real world, users may try to pass the test multiple times in different ways
(by waiting a longer time between iterations,7 getting other people to help them,
trying to use tools to record the associations (though the speed at which the test
is run makes this difficult), etc.), and we know little about the test’s robustness
to such behavior.

7 This would still imply that the rate at which users can sign up for accounts has

decreased.
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While there are many obstacles that need to be overcome for this approach
to be truly practical, we feel that the results are encouraging enough, and that
the value of having a practical solution would be high enough, that it is very
much worthwhile to pursue further research on this topic. Such research should
probably investigate other variants of the basic test design. In the appendix, we
present results for one alternative design that is based on face recognition by the
subjects. Unfortunately, that design did not end up working very well, but the
results are informative for future designs.

One can imagine numerous other designs. For example, a test based on proce-
dural (“how-to”) memory rather than declarative (fact-storing) memory may be
more effective. To find the optimal design, it may be beneficial to reach out to
researchers in cognitive psychology and cognitive neuroscience, to exploit known
particularities of human memory. However, our approach can introduce incen-
tives for test takers to behave in ways that are not beneficial in more typical
memory tests. These incentives and the behavior that they are likely to cause
must be rigorously studied, both in theory and through experimental evaluation.
Creating a truly practical system is an ambitious goal, but one that, if reached,
will make many existing Web-based applications much more efficient, and will
probably make new ones feasible.
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Appendix: Another Test Based on Recognizing Faces

In this appendix, we present the experimental results of another test, which
turned out not to work as well as hoped. In this test, we used a database of 58
human faces (a subset of the Indian Face Database developed at IIT Kanpur).
A subject was first shown 29 faces drawn at random from the 58, one face at a
time, for 5 seconds per face. Subsequently, the subject was shown the full set of
faces (one at a time, for 4 seconds per face); in this second phase, the subject
was asked, for each face, whether she/he had seen the face in the first phase.
Each subject took this test twice (using the same database of 58 faces each
time, but with a new draw of 29 faces in the first phase of the second iteration).
(Each subject also did a practice run beforehand on a few faces not in the 58.)
Again, each subject received US $7, plus the percentage of correct answers times
US $7.

The hope was that performance in the second iteration of the test would be
worse than in the first iteration of the test, due to the fact that, in the second
phase of the second iteration, if a face looks familiar to the subject it may be
difficult for him/her to decide whether he/she had seen it in the first phase of
the second iteration, or only at some point in the first iteration of the test (in the
latter case, the correct answer would be “no”). If performance were consistent
across subjects, and significantly worse in the second iteration, then perhaps we
could set a threshold that everyone can pass the first time but not another time.
Unfortunately, this turned out not to be the case, as the results below show.

While for some subjects, there was a drop in performance in the second it-
eration, these drops were generally not significant, and some subjects’ scores
actually increased in the second iteration. It appears that subjects did experi-
ence some confusion in the second iteration, but at the same time, there was a
learning effect: subjects became generally better at remembering the faces, and
this canceled out the confusion effect. Perhaps this learning effect can be removed
by making subjects practice beforehand, but this would make the duration of
the test unreasonable.

One may also wonder if it is possible to observe correlations across iterations of
this test, as we did for the test in the main part of this paper. In the experiment,
it was the case that most of the subjects’ wrong answers in the second iteration
occurred when the correct answer for a face in the second iteration was not the
same as the correct answer for that face in the first iteration; however, this effect
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Table 2. Experimental results for human subjects in the face-based test

subject # correct in iteration 1 # correct in iteration 2

1 53 45

2 47 49

3 48 44

4 43 42

5 45 45

6 41 51

7 46 47

8 36 34

does not appear strong enough to confidently conclude that two iterations of
the test correspond to one person (especially because subjects generally did not
have that many wrong answers in this test).



Multi-attribute Regret-Based Dynamic Pricing

Janyl Jumadinova� and Prithviraj Dasgupta

Computer Science Department

University of Nebraska, Omaha, NE 68182, USA

{jjumadinova,pdasgupta}@mail.unomaha.edu

Abstract. In this paper, we consider the problem of dynamic pricing

by a set of competing sellers in an information economy where buyers

differentiate products along multiple attributes, and buyer preferences

can change temporally. Previous research in this area has either focused

on dynamic pricing along a limited number of (e.g. binary) attributes, or,

assumes that each seller has access to private information such as prefer-

ence distribution of buyers, and profit/price information of other sellers.

However, in real information markets, private information about buyers

and sellers cannot be assumed to be available a priori. Moreover, due to

the competition between sellers, each seller faces a tradeoff between ac-

curacy and rapidity of the pricing mechanism. In this paper, we describe

a multi-attribute dynamic pricing algorithm based on minimax regret

that can be used by a seller’s agent called a pricebot, to maximize the

seller’s utility. Our simulation results show that the minimax regret based

dynamic pricing algorithm performs significantly better than other algo-

rithms for rapidly and dynamically tracking consumer attributes without

using any private information from either buyers or sellers.

Keywords: Dynamic pricing, pricebots, minimax regret.

1 Introduction

With the increasing automation of e-commerce applications, intelligent agents
are becoming an essential part of various business transactions. Over the past
decade, several services such as automated comparison shopping tools including
MySimon[2] and PriceGrabber[3], and seller ratings Websites such as Bizrate [1]
have enabled online buyers make rapid and informed decisions before purchasing
products over the Internet. As the number of buyers who rely on these services
increases, it is becoming advantageous for online sellers to use automated pricing-
setting techniques in an attempt to maximize profits. Intelligent agents called
pricebots [14] provide a suitable paradigm for online sellers to rapidly update the
price of a product in response to changes in market parameters such as buyer
preferences in an online economy.

Consumers who purchase products online are frequently willing to pay an
elevated price for enhanced values on particular product attributes such as de-
livery time, seller reputation, and after-sales service[1]. Different consumers have
� Primary author, student.
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also been reported to prefer different product attributes and these preferences
vary over time depending on exogenous factors such as sales promotion, aggres-
sive advertising and even time of the year [16]. Therefore, it is important for
an online seller to differentiate a product it sells along multiple attributes, and,
determine a potential buyer’s purchase preferences over the different product
attributes, so that it can tailor its offer to meet the buyer’s requirements, and,
improve its profits. Online markets are also characterized by multiple sellers for
the same product. To remain competitive in such a market, a seller has to offer a
price that is more attractive than its competitors prices to potential buyers. To
achieve this, each seller has to use a dynamic pricing algorithm that calculates
a profit maximizing price for the seller. Previous research on dynamic pricing
algorithms requires each seller to possess a priori information about the market
parameters such as buyers’ reservation prices, the number of buyers, preferences
of buyers over different product attributes and prices and profits of other com-
peting sellers in the market. However, in real-life economies accurate knowledge
of such market parameters cannot be assumed to be available with sellers. In this
paper, we make two contributions to the problem of dynamic pricing in a market
where buyers differentiate products along multiple attributes. First, we describe
a preference elicitation algorithm based on minimax regret that can be used by a
seller’s pricebot to determine the distribution of buyer preferences along different
product attributes. Then, we describe a minimax regret based algorithm that
enables a seller to dynamically update the posted price of a product to improve
its profit. Both these algorithms do not require any a priori knowledge about
market parameters such as buyer’s preferences over product attributes, buyers’
reservation prices and other competing sellers’ prices and profits. These algo-
rithms only require a seller’s private history including its posted prices, profits
and purchase decisions from different buyers for their calculations. Our simula-
tion results show that the minimax regret-based attribute prediction algorithm
is able to predict the preferred attributes of different buyers with more than
90% accuracy in most cases, even when the buyers’ preferences over different
attributes change dynamically over time. When used with the attribute predic-
tion algorithm in a competitive market, a seller using the minimax regret based
dynamic pricing algorithm is able to obtain 9−13% more profits than competing
sellers using other dynamic pricing strategies.

2 Dynamic Pricing over Multiple Product Attributes

Current real-life internet economies involve complex interactions between several
buyers, sellers and possibly brokers that facilitate trading. We have made certain
simplifying assumptions of an online economy to simplify analysis while retaining
the essential features of the market. Our online market model is based on the
shopbot economy model of Kephart and Greenwald [14]. We consider an economy
that consists of a set of S sellers who compete to provide a set of B buyers with
a single homogeneous product, where | B |�| S |. Each seller behaves as a
profit maximizer and has a sufficient supply of the product to last the lifetime
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B 1

B 2

S 1

S 3

S 2

S 4

Get current offer from 
sellers for attribute 1

Get current offer from 
sellers for attribute 3

Buyer with 
preferred attribute
a3 selects seller 3

Buyer with 
preferred attribute
a1 selects seller 4

       Seller 1
<0.8, 0.4, 0.3, 0.5>

       Seller 2
<0.85, 0.3, 0.6, 0.7>

       Seller 3
<0.7, 0.2, 0.8, 0.1>

       Seller 4
<0.6, 0.1, 0.7, 0.1>

Fig. 1. A hypothetical market showing two buyers with preferred attributes as a1

and a3 respectively making a quote request to four sellers and selecting the seller

that offers the best price for the product on their respective attributes. The tuple

< pa1 , pa2 , pa3 , pa4 > below each seller denotes the normalized price offered by each

seller on the different product attributes.

of the buyers. Buyers come back to the market repeatedly to re-purchase the
product. A product is differentiated by buyers and sellers on multiple attributes
such as offered price, delivery time, product quality, seller reputation, previous
experience with seller, etc. Here, we assume that each product has a set of A
different attributes, and, the buyers and sellers in the market are aware of this
set of product attributes.

Every buyer in the market selects one of the product’s attribute as its preferred
attribute and is willing to pay a slightly elevated price to purchase the product
along its preferred attribute. In online markets, buyers also change their preferred
attribute for a product dynamically [16]. For example, when buyers purchase
products under time constraints, they prefer the ’delivery- time’ attribute of
the product. On the other hand, when buyers do not consider time as a critical
factor, product quality or seller reputation are possible attributes that determine
their purchase decision. The choice of the preferred product attribute of a buyer
can also be affected by exogenous factors such as time of the year, previous
purchase experiences, etc.[18]. To model this, we assume that every buyer in
our market has one of the product’s attributes as its preferred attribute and the
preferred attribute of a buyer can vary with time. Sellers are unaware of buyers’
preferred attributes and the temporal variation of the preferred attributes for
each buyer. A seller offers a slightly different price for the product along each
product attribute ai ∈ A. To improve its profits in a market with multiple
sellers offering the same product, each seller has to dynamically adjust its posted
prices along the different product attributes so that it can continue to offer a
competitive price and attract buyers. When a buyer requests a price quote, the
buyer’s preferred attribute is not known to a seller. Therefore, the objective of a
profit maximizing seller is to determine a buyer’s preferred attribute in response
to the buyer’s quote request. The seller can then calculate a competitive price of
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the product along the buyer’s preferred attribute and make an attractive offer
to the buyer.

An illustration of the operation of our market is shown in Figure 1. A seller
j enters the market with an initial price p0

ai,j
for a unit of the product under

attribute ai. Each seller has a unit production cost pco below which it is not
willing to sell the product. A buyer wishing to purchase a product first requests
a price quote from the sellers. We assume that buyers use comparison shopping
services [3] to discover sellers and are aware of all the sellers in the market.
Since we analyze pricing algorithms for sellers, seller discovery is not treated as a
major issue in the model. Each seller j receiving a buyer’s quote request responds
with a price vector P̄ t

j =< pt
ai,j >, where pt

ai,j represents the price charged by
seller j during interval t along product attribute ai. This price is updated by
the seller’s pricebot at intervals τj using a dynamic pricing algorithm. Different
sellers update their product prices asynchronously and each seller uses its own
pricing strategy. When a buyer that had made quote requests receives the offers
from different sellers, it compares the offers made by the different sellers. Each
buyer b has a reservation price for the product pr,b,ai along attribute ai, above
which it is not willing to buy the product. The utility of the product to a buyer
b from seller j along attribute ai is given by Ub,ai,j = pr,b,ai − pt

ai,j, where pt
ai,j

is the posted price of the product offered by seller j along attribute ai during
interval t. The purchase decision is made by buyer b by comparing the utilities
from the different sellers along the preferred attribute ai of the product, and,
selecting seller Sk given by Sk = argS maxUb,ai,S . In case, more than one seller
offers the same lowest price along the buyer’s preferred attribute, one of the
sellers offering the highest utility is chosen randomly by the buyer. Buyer b
then pays seller Sk the posted price of the product and the seller delivers the
product. Payment and product delivery are not discussed any further here as
we concentrate on seller’s preferred attribute prediction and pricing strategies.
In the next two sections, we present the minimax regret-based dynamic pricing
algorithm that is used by sellers to estimate buyers’ preferences and dynamically
update the posted prices over the different product attributes.

3 Minimax Regret-Based Algorithms

The parameters used in our market model are given below:

A Set of product attributes.
B Set of buyers.
S Set of sellers.
pr,b,ai Buyer b’s reservation price along attribute ai.
pco Unit production cost for a seller(assumed to be uniform over all attributes)
τj Price update interval for seller j.
pt

ai,j Posted price of the product by seller j along attribute ai during interval t.
πt

ai,j
Profit obtained by seller j along attribute ai during interval t.

ut
b,ai

Upper bound on the buyer’s purchase value for attribute ai.
ltb,ai

Lower bound on the buyer’s purchase value for attribute ai.



Multi-attribute Regret-Based Dynamic Pricing 77

3.1 Minimax Regret-Based Attribute Prediction

To remain competitive in a market where buyers can change their preferred at-
tribute, each seller should attempt to accurately determine the current preferred
attribute of the buyers that request price quotes from it, so that the seller can
charge a profit maximizing price along the buyers’ preferred attribute. However,
dynamically determining the buyers’ preferred attribute without any knowledge
of the buyers’ demand and attribute variance function is a challenging task fac-
ing the seller. In this paper, we describe a preference elicitation based technique
that can be used by sellers to predict the buyers’ preferred attribute.

Most of the previous literature on user preference elicitation uses consider-
able information extracted from users to determine the user’s preferences over
different choices. However, in our model there are three challenges in collating
consumer data for analysis by sellers for preference elicitation: (1) A buyer’s
preferred product attribute changes over time and a seller needs to continuously
update the buyer’s preferences over the different product attributes to be able
to determine the current preferred attribute of the buyer. (2) A seller and a
buyer interact for a limited duration and the only information that the seller is
able to get from a buyer is the purchase decision (yes or no) of the buyer from
that seller. (3) Because a seller is not aware of the prices offered by other sellers
in the market, when a buyer does not purchase a product from the seller after
receiving the seller’s offer, the seller does not have any mechanism for inferring
whether the negative purchase decision resulted from incorrect calculation of
buyer’s preferred product attribute, or, whether another seller offered a more
attractive price to the buyer along the buyer’s preferred attribute.

To address these issues, we first make the observation that elicitation of the
full buyer preferences captured by the utility function of the buyer might be
unnecessary in determining the buyer preferred product attribute. A reasonable
estimate of the buyer preferences can be obtained by a seller from the purchase
decision made by a buyer after the buyer requests a quote from the seller. To
elicit the buyer preferences from the purchase decision information of a seller,
each seller in our model uses the minimax regret technique of preference elic-
itation described by Boutilier et al. in [6]. To enable the preference elicitation
mechanism, each seller assumes that there is a set of bounds on every buyer’s
expected purchase value of the product. These bounds keep track of the price
levels at which a buyer will purchase the product and can be used as an in-
dicator for both the buyer’s valuation(reservation price) of the product as well
as the prices charged by the competing sellers at which the buyer has recently
purchased the product. The minimax decision criterion suggests that the seller
makes a decision that gives the minimum max-regret, where max-regret is the
largest value by which the seller could regret making that decision. It is therefore
a decision the seller would regret the least and minimizes the worst-case loss the
seller would encounter after making that decision.

In our model, sellers have to make a decision at the end of each interval about
which attribute to predict for each buyer. To realize this, each seller keeps an
upper bound ub,ai and a lower bound lb,ai for every buyer on their expected
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purchase values for each attribute of the product. To enable the elicitation of
buyers’ preferences, we consider the buyer-seller interaction as a querying pro-
cess. Essentially sellers are sending a query to a buyer every time they respond
to that buyer’s quote request with the product’s posted prices.

We can consider this query as a bound query of type: ”Is your valuation of
the product greater than or equal to my offered price?” Given a ”yes” response,

function minimax attrib predict returns

input: int τj ; // time interval length (in quotes)

variables: int qr ; // number of quote requests received by seller

int t ; // time interval

double pt
ai,j ; // seller j’s price along attribute ai

set Bt
j ; // set of buyers that have accessed j during interval t

set B[ai]; // index set of buyers under attribute ai

t← 0; Bt
j ← ∅;

while(seller remains in market)

1. for every ai ∈ A

2. pt
ai,j ← p | p ∈ U [pco, 1]

3. while (qr < τj)

4. if some buyer b ∈ B requests quote from seller

5. qr ← qr + 1;

6. Bt
j ← Bt

j

⋃
b;

7. if some buyer b′ ∈ Bt
j purchases product with preferred attribute ai

8. Bt
j,ai,pos ← Bt

j,ai,pos

⋃
b′

9.

10. for every buyer b ∈ Bt
j

11. for every ai ∈ A
12. if(b ∈ Bt

j,ai,pos)

13. ltb,ai
← ltb,ai

+ ε;
14. else

15. ut
b,ai
← ut

b,ai
− ε;

16. Bt
j,ai,neg ← Bt

j,ai,neg

⋃
b;

17. // condition ub,ai and lb,ai values

18. for every ai ∈ A

19. ut
b,ai
←
∑h

k=0 λkut−k
b,ai
|
∑

λk = 1, λk−1 > λk;

20. ltb,ai
←
∑h

k=0 λklt−k
b,ai
|
∑

λk = 1, λk−1 > λk;

21. for every buyer b ∈ Bt
j

22. for every ai ∈ A
23. R(ai, a−i)← ut

b,a−i
− ltb,ai

;

24. R(ai, ai)← 0;

25. for every ai ∈ A
26. MRai ← maxa−i∈A R(ai, a−i);

27. al ← argaimin MRai ;

28. Place buyer b in B[al];

29. Remove buyer b from any other B[a−l];

30. t← t + 1;

Fig. 2. Algorithm used by the sellers to predict buyers preferred attributes at the end

of each time interval
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the seller modifies that buyer’s lower bound and given a ”no” response, the
seller adjusts buyer’s upper bound, thus tightening the bounds of the buyer’s
purchase valuation. The algorithm describing the attribute prediction process
is presented in Figure 2. Initially, seller j sets its price along each attribute
randomly (lines 1-2). Seller j keeps track of the number of quotes it receives and
records whether a purchase was made or not by the buyers (lines 3-9). When the
number of quote requests received by seller j reaches τj (time interval for price
update measured in number of buyer quote requests), seller j updates its bounds
on the purchase valuation of every buyer that has purchased from it over the
current time interval. A positive purchase decision by a buyer raises the lower
bound of the purchase valuation while a negative purchase decision lowers the
upper bound of the purchase valuation (lines 10-16). Seller j then weighs both of
these bounds over the historical values of the previous h bounds used by it, with
higher weights given to more recent bounds, to prevent wide fluctuations in these
values(lines 17-19). To calculate the minimax regret, seller j first calculates the
pairwise regret R(ai, a−i) of attribute ai ∈ A with respect to other attributes
a−i ∈ A. This value corresponds to the regret the seller feels for predicting
attribute ai instead of any other attribute a−i. Seller j then selects the attribute
al corresponding to the minimum of the maximum regrets from these pairwise
regret values as the preferred attribute for buyer b. This calculation is repeated
for every buyer b that purchases from the seller in the current time interval (line
22-26).

3.2 Regret-Based Dynamic Pricing

At the end of each time interval, seller j predicts the buyer’s preferred attribute
and then updates its price along each attribute ai. A seller’s objective is to calcu-
late a profit maximizing price along each product attribute while considering the
number of buyers that were determined to have that attribute as its preferred
attribute during that time interval using the attribute prediction technique in
Section 3.1. The algorithm for achieving this dynamic pricing is described in
Figure 3. Seller j first calculates the average bounds on the purchase valuations
across all buyers for each product attribute (lines 1-2). It then calculates a his-
torical weighted average price pt

ai,j using prices in h previous intervals (line 3).
The seller then calculates the normalized number of buyers, nai , with preferred
attribute ai, using the number of buyers under each product attribute deter-
mined by the minimax attrib predict function (line 27, Figure 2). This value is
then used to determine the regret-based price p′tai,j by seller j (lines 4-5).

Since the goal of the seller is to maximize its profit, the seller keeps track
of its profit direction changes and adjusts its prices so that the profits are in-
creasing. The seller observes the direction of price movement predicted by the
average regret-based price and the historical average of prices. If the direction
of this price movement is the same as the direction of the profit change in the
last interval, the seller sets the new posted price during interval (t + 1) along
attribute ai as the weighted average of regret-based price and historical aver-
age price with the larger weight given to regret-based price. Regret-based price
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function minimax regret pricing return double[ ] < pt
ai,j >

for every ai ∈ A
1. ut

b,ai
←
∑

b∈B[ai]
ut

b,ai
/|B[ai]|;

2. l
t
b,ai
←
∑

b∈B[ai]
ltb,ai

/|B[ai]|;
3. pt

ai,j ←
∑h

k=0 λkpt−k
ai,j |

∑
λk = 1, λk−1 > λk; // historical average

4. nai ←
|B[ai]|
|B| ;

5. p′t
ai,j ← naiu

t
b,ai

+ (1− nai)l
t
b,ai

; // average regret-based price

6. if (sign(p′t
ai,j − pt

ai,j) ∗ sign(πt
ai,j − πt−1

ai,j) = 1)

7. pt+1
ai,j ← λ1p

′t
ai,j + (1− λ1)p

t
ai,j ;

8. else

9. pt+1
ai,j ← pt

ai,j + sign(πt
ai,j − πt−1

ai,j) ∗ ε;

return < pt+1
ai,j >

Fig. 3. Minimax regret-based dynamic pricing algorithm used by sellers to update

prices at the end of each interval

accounts for the buyers’ predicted preference distribution, whereas historical av-
erage price is used to account for some ”noise” in the market, which can make the
buyers’ predicted preference distribution less accurate. Using past price trends,
sellers can eliminate sudden changes in the prices that are caused by the inac-
curate prediction of the buyers’ preference distribution. On the other hand, if
the direction of predicted price movement and the direction of profit change are
opposite to each other, the seller will still want to update its prices based on the
profit changes, since that will yield it more profit. The opposite direction of the
predicted price movement to the profit change can happen as a result of some
error in the attribute prediction algorithm or some noise in the market. In this
case, the seller sets the posted price during interval (t + 1) as the price during
the last interval t plus a small amount ε in the direction of the profit change
(lines 6-9).

4 Simulation Results

We have tested our minimax regret based attribute prediction and dynamic
pricing algorithm within a simulated market economy. All simulation results
have been averaged over 10 simulation runs. Following is a list of parameters
and their values we have used in our simulations:

4.1 Comparison Strategies

To quantify the performance of our minimax regret based algorithm with other
algorithms for dynamic pricing, we have compared the minimax regret based
algorithm with the following strategies: (1) Fixed Pricing. In fixed pricing, a
seller does not change the posted price of a product. (2) Derivative Follower
Pricing Strategy. In the derivative follower (DF) strategy, a seller determines
the price for the next interval based on the profits obtained from the pricing in
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Table 1. Parameters used for the simulation experiments

Parameter Value

Number of buyers 500 or 1000

Number of sellers 3 or 5

Number of product attributes 5

Rate at which buyers send quote requests to sellers 5000 ms

Unit production cost for seller 0.1

Entry price of sellers in market U [pco, 1.0]

Number of past intervals, h 10

Interval for price updates for seller 40 quote requests from buyers1

Weight of average regret based price (λ1 in line 7, 0.8
Figure 3)

the current interval. The price update equation along attribute ai used by a seller
j using the derivative follower strategy is given by: pt+1

ai,j
= pt

ai,j
+ sign(πt

ai,j
−

πt−1
ai,j

) ∗ ε, where ε ∈ U [0.1, 0.2]. (3) Goal Directed Strategy. In the goal-
directed pricing strategy described by DiMicco et al.[10], a seller calculates the
average number of a units of the product it should sell per interval that enables
it to clear the inventory by its last interval in the market. It then observes the
number of units it is able to sell during the current interval. If the actual number
of units sold is above(below) the expected clearance value, the seller responds
by raising(lowering) the price of the product for the next interval.

Variation of Buyer Attribute Preferences. Buyers have a set of discrete
probability distributions Pn according to which they vary their preferred at-
tributes. When a buyer enters the market, it randomly selects one of the prob-
ability distributions, pn ∈ Pn. Each probability distribution consists of | A |
probabilities, pn =< pai >| i = 1, ..., | A |. Each pai corresponds to a buyer’s
probability of selecting that attribute as its preferred attribute. To model the
temporal variation in preferred attributes, each buyer changes its selected prob-
ability distribution from pn to pn′ ∈ p−n at random times.

Attribute Prediction Algorithms. For comparing the minimax regret based
attribute prediction algorithm, we have used a collaborative filtering based at-
tributed prediction technique used in dynamic pricing. Collaborative filtering
algorithms [17] are used extensively in recommender systems for recommending
products to a user by matching the user’s preferences along different product
attributes with the preferences of other users collected over time. [5,9] have em-
ployed collaborative filtering techniques to determine consumer attributes for
the dynamic pricing problem. In these collaborative filtering mechanisms, each
seller predicts the buyers’ preferred attributes based on the purchase history
of buyers with that seller. To achieve this, each seller associates each product
attribute with a cluster of buyers. For every buyer that has purchased from the
seller, the seller calculates a set of probabilities Wt = wt

i for placing the buyer
under cluster(attribute) ai ∈ A during interval t. Each seller updates these prob-
abilities at the end of every interval based on the purchase decision of the buyer
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during the interval and the historical values of the probabilities, as outlined

below: (1) Update w values: wt+1
i = (wt

i)
pt

i
p −nt

i
n , where pt

i is number of pur-
chases during interval t along cluster i and nt

i is the number of no-purchases, p
is the total number of purchases along attribute i and n is the total number of
no-purchases.

Find wt+1
i values for each attribute, i = 1.. | A | and put them into the

Wt+1 vector (2) Find the cosine similarities of Wt+1 with all previous clus-
ter probability vectors that are in the history table according to the following
equation: sim = Wt+1.Wj

||Wt+1||∗||Wj || , where j represents elements in the history ta-
ble. (3) Select the probability vector Wt−j that is most similar to Wt+1 and
calculate of weighted sum of Wt−j and its h successive probability vectors:
W ′

t+1 = Σh
k=0λkWt−j+k (4) The probability values in W ′

t+1 are then used to
assign buyers into clusters during next interval t + 1.

4.2 Experimental Results

Attribute Prediction. In our first set of simulations, we compare the attribute
prediction accuracy, independent of price setting, using the collaborative filter-
ing and the minimax regret-based techniques. Figure 4(a) shows the attribute
prediction comparison along attribute a2 ∈ A in a market with 3 sellers and 500
buyers, where two of the sellers use the minimax regret based attribute prediction
while the remaining seller uses the collaborative filtering technique for attribute
prediction. We observe that sellers using the minimax regret-based attribute
prediction technique are able to predict the number of buyers with preferred
attribute a2 within 0 − 15% accuracy of the actual number of buyers under the
attribute. Although the collaborative filtering based technique performs compa-
rably, it shows intermittent excursions in the attribute prediction resulting in the
preferred attribute being incorrectly predicted for as many as 80% of the buyers
in the market. The relative inaccurate predictions of the collaborative filtering
algorithm can be attributed to the fact that collaborative filtering performance
is highly dependent on other buyers purchase decisions and might introduce
biased effects. This causes the overall most preferred attributes to be recom-
mended more often and prevents the seller from adjusting to changes in buyer
preferences. In Figure 4(b), we show the comparison results for the two attribute
prediction techniques in a market with 5 sellers and 1000 buyers, where three of
the sellers use the minimax regret based attribute prediction while the remaining
two sellers use the collaborative filtering technique for attribute prediction. Once
again, we observe that the minimax regret based technique is able to predict the
attribute of the buyers accurately most of the time and has a maximum error
of only 10% during the entire simulation. On the other hand, the collaborative
filtering based technique performs considerably poorly with errors ranging from
20−30% through most of the simulation. The reason for the poor performance of
the collaborative filtering algorithm can be attributed to the probability values
varying significantly with a big change in the number of purchases which results
in most buyers being classified under one attribute. This contributes to sellers
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Fig. 4. Attribute prediction using minimax regret based attribute prediction and col-

laborative filtering techniques. (a) In a market with 3 sellers and 500 buyers and (b)

in a market with 5 sellers and 1000 buyers.

using collaborative filtering predicting one attribute for most of the buyers dur-
ing some intervals and resulting in large inaccurate oscillations in the number of
predicted buyers The average prediction accuracy for our simulations in Figure
4 was 89% for minimax regret-based attribute prediction and 69% for attribute
prediction using the collaborative filtering approach.

Dynamic Pricing. In our next set of simulations we compared the performance
of different pricing strategies used by different sellers in our simulated market
economy. For the first set of experiments, we used a market with 500 buyers
and 3 sellers. Two of the sellers used the minimax regret based dynamic pricing
strategy while the remaining seller used the strategy being compared. Figure
5(top) shows the profit comparisons and price competition of two sellers using
the minimax regret-based dynamic pricing and one seller who sets a fixed price.
In our simulations, fixed-price sellers set the price for each attribute randomly
when they enter the market. Figure 5(top) illustrates that even when the fixed
price is initially below the prices set randomly by the minimax regret-based
dynamic pricing sellers, sellers using minimax regret-based pricing strategies
adjust their prices as they compete with each other and end up with the majority
of the market profit share (49.2 % and 50.3%). Figure 5(middle) presents the
profits and the price variations of three sellers over time, two of the sellers use
minimax regret-based dynamic pricing and the other seller uses goal-directed
pricing technique. For goal-directed strategy price computation, the parameter
daysInMarket is set to 1, 000 intervals and initialInventory is set to 20, 000
units. The sellers using the minimax regret-based pricing technique are able to
get higher shares of the profits, 35% and 42%, in Figure 5(middle), while the
seller using goal-directed strategy gets about 23% of the total market profit
share. Our simulations show that even in the market in which a seller has a
limited supply of products, minimax regret-based pricing can outperform the
goal-directed strategy. Finally, Figure 5(bottom) illustrates the profit and price
profiles of three sellers that use either the derivative-follower or the minimax
regret-based dynamic pricing strategies. The market prices fluctuate consistently
due to the competition between sellers. The seller using the derivative-follower
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pricing strategy ends up with the smallest market profit share (about 23% of
the total profit in the market). The sellers that use the minimax regret-based
dynamic pricing get the larger share of the market profit share (about 38% and
39%). The sellers that use the minimax regret for attribute prediction adjust to
the buyers preferences and other market changes to obtain more profits.

Figure 6 illustrates the profit and price competition in a market with 1000
buyers and 5 sellers where 1 of the sellers use the minimax regret-based strategy
and each of the remaining sellers use the goal-directed or derivative-following
strategy. The two goal-directed sellers end up receiving 20% and 19% of the
market’s profits respectively. This is because the goal directed strategy is unable
to reduce the posted price in response to price cuts by the other sellers because
the strategy is dependent on the surplus inventory at the end of each interval.
The derivative-follower seller raises prices until its profit goes down and then
significantly lowers the price. The price adjustments by the derivative-follower
are not very effective when the sellers using goal-directed and minimax regret-
based pricing are simultaneously in the market with it. Consequently, the two
sellers using derivative follower strategy for dynamic pricing receive 13% and 16%
of the profits in the market. As sellers compete for profit shares, the sellers using
minimax regret-based pricing adjust their prices more accurately and capture
32% of the market profit.

5 Related Work

Over the past few years, several researchers have considered the problem of auto-
mated dynamic pricing by sellers using software agents called pricebots. Kephart
and Greenwald [14] analyze various dynamic price strategies such as game-
theoretic, myopically optimal, derivative-following strategy, and Q-learning price
setting strategy. An extension of this work [11] describes a no-regret learning
based technique for automated dynamic pricing by sellers. In these algorithms
sellers are assumed to have prior knowledge of some market parameters such as
reservation prices of buyers, the distribution of buyers under each attribute of
the product, and prices or profits of competing sellers. However, in most real-life
economies, knowledge of such market parameters is either unavailable or has
to be learned by the seller in real time. In contrast, in this paper, we do not
assume prior knowledge of the reservation prices of buyers, the distribution of
buyers under different product attributes and competitors’ price information.
Moreover, the minimax regret based attribute prediction and dynamic pricing
techniques presented in this paper can determine product prices for sellers when
the preferences of buyers over different product attributes change dynamically
with time. In [12,4], the authors have also considered the problem of dynamic
pricing products. However, their settings contain only one seller and the main
problem considered is to determine the optimal bundle of products and the price
of the bundle that maximizes the seller’s profit. Preference elicitation of con-
sumers in a market has also been an active research topic in the area of decision
support systems[13]. Recently, Lahaie and Parkes [15] have developed techniques
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based on machine learning for preference elicitation from consumers. Bayesian
methods for preference elicitation have been researched in [7] where preference
uncertainty is probabilistically quantified. In contrast, in our work, sellers don’t
use a density over possible utility functions and dynamically calculate the distri-
bution of buyers over different product attributes. In [6,19], Boutilier et al. use
minimax regret as a decision criterion in constraint-based decision making. We
have used a similar minimax regret-based technique to enable a seller’s price-
bot learn the consumer’s preferences over different attributes and dynamically
update the product’s posted price. In contrast to the work in [6], sellers in our
model cannot explicitly send queries to consumers to elicit their preferences.
We have therefore considered the price quote sent by a seller to the buyer as a
bound query and used the purchase decision made by the buyer after receiving
the seller’s price quote as a response to the bound query. Conitzer [8] showed
that single-peaked preferences can be elicited using comparison queries if prior
knowledge of some preference order structure or the preferences of one agent ex-
ists. However, in our model sellers interact with buyers only while offering price
quotes or receiving an affirmative purchase decision. Therefore, our model is not
amenable to comparison queries.

6 Conclusion

In this paper, we have described an algorithm that can be used by sellers to
determine temporally changing buyer preferences across multiple product at-
tributes, and, to dynamically update the posted product prices in a competitive
market without explicit knowledge of various market parameters. There are sev-
eral directions we plan to expand this work in the future. First, we are interested
in investigating dynamic pricing algorithms in markets where sellers have infor-
mation, possibly partially, about competitors’ prices. With partial information
about competitors’ prices a seller could possibly infer the reason for a negative
purchase decision by a buyer more efficiently and improve its buyer attribute
prediction as well as its dynamic pricing performance, resulting in improved
profits. Secondly, we plan to investigate a scenario where buyers are able to ex-
change information about sellers with each other. This results in more informed
purchase decisions between buyers and could even lead to collisions between
buyers to affect the prices being charged by sellers. Dynamic pricing over multi-
ple attributes by competing sellers in a market with limited information about
market parameters is a relevant yet challenging problem and we envisage that
appropriate solution techniques in this direction will result in improved success
of e-commerce technologies.
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Abstract. Real market institutions, stock and commodity exchanges for exam-
ple, do not occur in isolation. The same stocks and commodities may be listed on
multiple exchanges, and traders who want to deal in those goods have a choice
of markets in which to trade. While there has been extensive research into agent-
based trading in individual markets, there is little work on this kind of multiple
market scenario. Our work seeks to address this imbalance. In particular, this pa-
per examines how allocative efficiency, the standard measure of a market’s ability
to extract surplus, is affected by the presence of multiple markets for the same
good. We find that while dividing traders between several small markets typically
leads to lower efficiency than grouping them into one large market, the move-
ment of traders between markets, and price incentives for changing markets, can
reduce this loss of efficiency.

1 Introduction

An auction, according to [7], is a market mechanism in which messages from traders
include some price information — this information may be an offer to buy at a given
price, in the case of a bid, or an offer to sell at a given price, in the case of an ask — and
which gives priority to higher bids and lower asks. The rules of an auction determine, on
the basis of the offers that have been made, the allocation of goods and money between
traders. When well designed [11], auctions achieve desired economic outcomes like
high allocative efficiency whilst being easy to implement. Auctions have been widely
used in solving real-world resource allocation problems [12], and in structuring stock
or futures exchanges [7].

There are many different kinds of auction. One of the most widely used kinds is the
double auction (DA), in which both buyers and sellers are allowed to exchange offers
simultaneously. Since double auctions allow dynamic pricing on both the supply side
and the demand side of the marketplace, their study is of great importance, both to
theoretical economists, and those seeking to implement real-world market places. The
continuous double auction (CDA) is a DA in which traders make deals continuously
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throughout the auction. The CDA is one of the most common exchange institutions, and
is in fact the primary institution for trading of equities, commodities and derivatives
in markets such as the New York Stock Exchange (NYSE) and Chicago Mercantile
Exchange (CME). Another common kind of double auction market is the clearing-house
(CH) in which the market clears at a pre-specified time, allowing all traders to place
offers before any matches are found. The CH is used, for example, to set stock prices at
the beginning of trading on some exchange markets.

Our focus in this paper is on the behavior of multiple auctions for the same good. This
interest is motivated by the fact that such situations occur in the real world. For example,
company stock is frequently listed on several stock exchanges. Indian companies can
be listed on both the National Stock Exchange (NSE) and the Bombay Stock Exchange
(BSE) [21]. US companies may be listed on both the NYSE, NASDAQ and, in the case of
larger firms, non-US markets like the London Stock Exchange (LSE). Other examples
of multiple markets for the same good are the various commodity exchanges, prediction
markets such as [1,6], and internet auctions, though the latter are not typically structured
as double auctions.

The interactions between related markets can be complex, as when the NSE opened
and proceeded to claim much of the trade volume from the established BSE [21], or
when unfulfilled orders on the CME overflowed onto the NYSE during the global stock
market crash of 1987 [13]. This kind of interaction between markets has not been widely
studied, especially in the context of automated traders. Our work addresses exactly this
issue.

2 Background

Double auctions have been extensively studied using both human traders and comput-
erized agents. Starting in 1955, Smith carried out numerous experiments investigating
the behavior of such markets, documented in papers such as [22,23]. The experiments
in [22], for example, involved human traders and showed that even with limited infor-
mation available, and only a few participants, the CDA can achieve very high efficiency,
comes close to the theoretical equilibrium, and responds rapidly to changing market
conditions. This result was in contrast to classical theory, which suggested that high
efficiency would require a very large number of traders, and led some to suggest that
the form of the market itself was sufficient to ensure efficiency. In other words, Smith’s
results led to the suggestion that double auction markets are bound to lead to efficiency
irrespective of the way that traders behave. Gode and Sunder [9] tested this hypothesis,
introducing two automated trading strategies which they dubbed zero intelligence with-
out constraint (ZI-U) and zero intelligence with constraint (ZI-C). ZI-U traders make
offers at random, while ZI-C traders make offers at random, but are constrained so as
to ensure that traders do not make a loss (it is easy to see that ZI-U traders can make
a loss, and so can lead to low efficiency markets). In the experiments reported in [9],
the ZI-C traders gained high efficiency and came close enough to the performance of
human traders for Gode and Sunder to claim that trader intelligence is not necessary for
the market to achieve high efficiency and that only the constraint on not making a loss
is important.
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This position was attacked by Cliff [4], who showed that if supply and demand are
asymmetric, the average transaction prices of ZI-C traders can vary significantly from
the theoretical equilibrium. Cliff then introduced the zero intelligence plus (ZIP) trader,
which uses a simple machine learning technique to decide what offers to make based on
previous offers and the trades that have taken place. ZIP traders outperform ZI-C traders,
achieving both higher efficiency and approaching equilibrium more closely across a
wider range of market conditions (though [4][page 60] suggests conditions under which
ZIP will fail to attain equilibrium), prompting Cliff to suggest that ZIP traders embod-
ied the minimal intelligence required. A range of other trading algorithms have been
proposed — including those that took part in the Santa Fe double auction tournament
[19], the reinforcement learning Roth-Erev approach (RE) [18] and the expected-profit
maximizing Gjerstad-Dickhaut approach (GD) [8] — and the performance of these al-
gorithms evaluated under various market conditions.

This work on trading strategies is only one facet of the research on auctions. Gode
and Sunder’s results suggest that the structure of the auction mechanisms plays an im-
portant role in determining the outcome of an auction, and this is further borne out by
the work of [26] (which also points out that results hinge on both auction design and
the mix of trading strategies used). For example, if an auction is strategy-proof, traders
need not bother to conceal their private values and in such auctions complex trading
agents are not required.

As mentioned above, there has been little work on multiple market scenarios. We
have presented some initial results on the dynamics of auctions that compete for traders
[15] and the design of such auctions is the focus of the TAC Market Design competitions.
This paper is a further contribution in the same direction, considering the impact of
multiple markets on the efficiency of trading.

3 Experimental Setup

3.1 Software

To experiment with multiple markets, we used the Java-based server platform JCAT [10].
JCAT provides the ability to run multiple double auction markets populated by traders
that use a variety of trading strategies, and was used to support the 2007 and 2008 TAC

Market Design competition [3,16]. Auctions in JCAT follow the usual pattern for work
on automated trading agents, running for a number of trading days, with each day being
broken up into a series of rounds. A round is an opportunity for agents to make offers
(shouts) to buy or sell, and we distinguish different days because at the beginning of a
day, agents have their inventories replenished. As a result, every buyer can buy goods
every day, and every seller can sell every day. Days are not identical because agents are
aware of what happened on the previous day. Thus it is possible for traders to learn,
over the course of several days, the optimal way to trade.

We run a number of JCAT markets simultaneously, allowing traders to move between
markets at the start of a day. In practice this means that traders need a decision mech-
anism that picks which market to trade in. Using this approach, agents are not only
learning how best to make offers, which they will have to do anew for each market, but
they are also learning which market is best for them. Of course, which market is best
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will depend partly on the properties of different markets, but also on which other agents
are in those markets.

3.2 Traders

Traders in our experiments have two tasks. One is to decide how to make offers. The
mechanism they use to do this is their trading strategy. The other task is to choose
market to make offers in. The mechanism for doing this is their market selection strat-
egy. We studied markets in which all the traders used the same trading strategy, and
considered three such strategies:

– Gode and Sunder’s zero intelligence with constraint (ZI-C) strategy [9];
– A variant of Cliff’s zero intelligence plus strategy [4] which we call ZIQ; and
– Roth and Erev’s reinforcement learning strategy (RE) [18].

The reason for picking the first of these is that given by [14,25], that since ZI-C is not
making bids with any intelligence, any effects we see have to be a result of market
structure, rather than a consequence of the trading strategy, and hence will be robust
across markets inhabited by different kinds of trader. The reason for picking the ZIP

variant and RE is that given by [17]. The first of these strategies is typical of the behavior
of automated traders, while the second can be a good model of human bidding behavior
(though it does not match human performance in a CDA). Using both will give us results
indicative of markets with both human and software traders.

The market selection strategy is based on a simple model for reinforcement learning.
Traders treat the choice of market as an n-armed bandit problem that they solve using
an ε-greedy exploration policy [24]. Using this approach the behavior of the agents is
controlled by two parameters ε and α. A trader chooses what it estimates to be the best
market, in terms of daily trading profit, with probability 1 − ε, and randomly chooses
one of the remaining markets otherwise. ε may remain constant or be variable over
time, depending upon the value of the parameter α [24]. If α is 1, ε remains constant,
while if α takes any value in (0, 1), ε will reduce over time. For these experiments, we
set α to 1, and ε to 0.1. The results from or previous work on the interactions between
multiple markets [15] suggest that market selection behavior is rather insensitive to the
parameters we choose here.

JCAT is typically set up to use the market selection strategy to decide which mar-
ket each trader should participate in at the start of each day. Since this facility can be
disabled, however, we can experiment with two different kinds of trader movement:

– Mobile: traders choose a market at the start of each day (this may be the same
market in which the traders participated the previous day).

– Stationary: traders always remain in the same market.

Each trader is permitted to buy or sell at most five units of goods per day, and each trader
has a private value for these goods, a value which is drawn from a uniform distribution
between $50 and $150. A given trader is assumed to have the same private value for all
goods that it trades throughout the entire experiment.
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3.3 Markets

All of our experiments consider five markets which we refer to as M0, M1, M2, M3
and M4. While JCAT allows markets to charge traders in a variety of ways, we used just
four kinds of charge in the work reported here:

– Shout fees, charges made by the market for each shout made by a trader.
– Information fees, charges made by the market for information about shouts made

by other traders in the market.
– Transaction fees, charges made by the market for each transaction executed by a

trader.
– Profit fees, charges made by the market on the bid/ask spread of any transactions

they execute.1.

We set shout, information and transaction fees to constant, low, figures — $0.1, $2 and
$0.1 respectively. These are values typical of those adopted by entrants in the 2007 TAC

Market Design Competition, and, as [16] discusses, are sufficient to provide a small
negative reinforcement that encourages traders to leave markets in which they are not
managing to make trades.

We used three different mechanisms for setting the profit fees:

– Fixed: a constant proportion, in this case 10% (M0), 20% (M1), 30% (M2), 40%
(M3) and 50% (M4) of the surplus on a transaction, is taken as a fee.

– Lure-or-learn fast (LL): a version of the ZIP strategy for traders [5] adapted for
markets and introduced by [15] under the name “zero intelligence”2. A LL market
adjusts its charges to be just lower than that of the market that is the most profitable.
If it is the most profitable market, it raises its charges slightly. In these experiments,
initial charges are the same as for the fixed markets.

– Free: no profit fees are charged.

In all of our experiments the markets are populated by 100 traders, evenly split between
buyers and sellers.

3.4 Experiments

Our main aim in this work was to answer the questions “what is the economic effect
of running a number of parallel markets?”, and “what is the effect of different charg-
ing regimes?”, so our basic comparisons are between the situation in which all traders
transact in a single market, and the situation in which traders are split across a number
of markets for different charging mechanisms. We were also interested in the effect of
traders moving between markets — the results we published in [15] tell us that traders

1 The name arose since the bid/ask spread is the transaction surplus, and with the k = 0.5 rule
we usually use for allocating the surplus is thus directly related to the profit realized by both
agents.

2 We found that calling it “zero-intelligence” caused confusion with the trading strategies, and
the current name is inspired by WOLF [2].
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move between markets due to the charges imposed by markets, but it does not say any-
thing about the effect of that movement on the overall performance of the markets in
economic terms.

These considerations led us to compare the performance of the single market, and
the multiple markets in different scenarios. We considered six different scenarios — one
scenario for each combination of charging mechanism (fixed, LL and free) and traders
that are either mobile or stationary. For a given trading strategy, we considered all six
of these scenarios for both CH and CDA exchanges.

Thus we ran a total of 36 experiments, six scenarios for the two different kinds of
market and the three different kind of trading strategy. For each experiment we obtained
results for both traders split across five markets and all the traders concentrated in one
market. Each of these 36 experiments was run for 400 trading days, with each day being
split into 50 0.5-second-long rounds. We repeated each experiment 50 times.

3.5 Measurements

The effectiveness of a market can be measured in a number of different ways. Allocative
efficiency, Ea, is used to measure how good a market is at extracting possible profits.
The actual overall profit, Pa, of an auction is:

Pa =
∑

i

|vi − pi| (1)

for all agents who trade, where pi is the price of a trade made by agent i and vi is the
private value of agent i. The equilibrium profit, Pe, is:

Pe =
∑

i

|vi − p0| (2)

for all buyers whose private value is no less than the equilibrium price, p0, and all
sellers whose private value is no greater than p0. The equilibrium price is the price at
which supply and demand curves cross, and can be computed from the private values
of the traders assuming that no trader makes a loss. Ea, is then Pa/Pe expressed as a
percentage. This tells us how close a market is to theoretical equilibrium in terms of
profits made. However, it says nothing about how close a market is to trading at the
equilibrium price. For the latter we use the coefficient of convergence α, introduced by
Smith [22]. α actually measures the deviation of transaction prices from the equilibrium
price:

α =

√
1
n

∑
i (pi − p0)2

p0
× 100 (3)

For the multiple market experiments, we measure the efficiencies and convergence of
each individual market, but also what we call the global values which assess the mea-
surements across all the parallel markets. Global efficiency Eg

a is computed as:

Eg
a =

∑
j

∑
i |v

j
i − pj

i |∑
j

∑
i |v

j
i − p0|

(4)
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where vj
i is the private value of agent i in market j, pj

i is the price paid by agent i
in market j, and p0 is the equilibrium price that would hold were all the traders in
a single market. Thus the equilibrium profit term is the equilibrium profit for all the
traders together in the same market, while the actual profit is the sum of the actual
profits made in each individual market. The global value of α is computed similarly,
using the transaction prices that are obtained in each of the individual markets and
the equilibrium price from one large market that contains all the traders. These global
values give us some idea how closely the set of markets approaches the performance of
one large market containing all the traders.

4 Results

Figure 1, which summarizes the results of the experiment that places mobile ZIQ traders
in CH markets that adjust their profit charges using the LL mechanism, show the typical
way that markets change over time. All the other experiments have very similar results,
and the results parallel those we reported in [15].

Figure 1 (a) shows the number of traders leaving each of the five markets at the end
of each day. The lines plotting these numbers for each of the markets are superimposed
over each other since the performances of the markets in this regard are indistinguish-
able. Over the first 50 days, the amount of “churn” falls steadily and eventually the
movement between markets stabilizes and settles to a constant value. However, because
the market selection strategy always keeps exploring, on average each market still has
two traders leave each day. (On average, the same number of traders also enter).

This movement of traders necessarily has a effect on the trading that takes place in
each of the markets. Whereas we would expect a single market to rapidly approach
equilibrium after just a few days at most, in the multiple market case, this does not
happen. Figure 1(b), which plots the change in equilibrium price in each market (to be
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Fig. 1. How individual markets change over time. Mobile ZIP traders in CH markets that use LL

to set charges on trader profits. The values for change in equilibrium price are 10-day averages.
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Fig. 2. How individual markets change over time. Mobile ZIP traders in CH markets that use LL

to set charges on trader profits. The plots show average value and standard deviation.

precise, it plots the ten-day moving average — there is a lot of variation from day to
day and the trends are much clearer in these smoothed plots), is testimony to the way
that that the markets don’t have a settled equilibrium. Every market has a non-zero daily
change, even at the end of the 400 days of the experiment. However, we do see a certain
level of stability emerge — by the end of 400 days, there is a clear separation between
the change seen in the different markets, and for several of the markets this has settled
towards a relatively stable value over the last 100 days.

In case these results suggest that there is no overall pattern, consider Figure 2. This
plots the global values of efficiency and the coefficient of convergence for the same ex-
periment as in Figure 1. As described above, global efficiency is computed by summing
actual trader profits and then dividing by the theoretical profit that would be made if
all the traders were in the same market. It thus gives us a picture of our set of markets
taken as a whole, and shows that, despite the churn, the overall picture has settled down
after around 200 days.

Having sketched the overall behavior of the markets in our experiments, the main
results of this paper are given in Tables 1–3. These give, for each of the experiments
outlined above, the efficiencies of markets M0 to M4, the global efficiency, and the
efficiency of a single market containing all the traders. This latter differs from the global
measure in that the actual trader profits are obtained in the single market rather than in
the individual markets (while the theoretical profit is the same in both cases). The values
of the efficiency given is averaged over the last 100 days of each experiment as well as
across the 50 runs of each experiment.

The first point to make is that, just as one would expect from usual theoretical analy-
sis, say [20], the efficiency of the single market of 100 traders is greater than the global
efficiency (though there is an exception). Not only is this in agreement with the theory,
but it is not surprising. The theoretical profit is the same in both cases, so for the global
efficiency to be higher, the individual markets would have to do a better job of matching
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Fig. 3. Typical final day supply and demand curves for the fixed charging CDA markets (a)–(e)
with stationary traders and (f)–(j) with mobile traders

traders than the single market. Clearly the churn will make any optimal matching hard
to sustain even if it occurs in the first place.

Some other interesting points emerge. First, looking just at the global values, we see
that across all three trading strategies, markets with mobile traders are more efficient
than markets with stationary traders. It therefore seems to be the case that trader mobil-
ity leads to higher efficiency. Traders that move to maximize their own expected profit,
which is the effect of the market selection strategy we use, end up improving the per-
formance of the markets as a whole. Second, again across all three trading strategies,
the best performing (in terms of efficiency) individual markets with mobile traders that
make charges on profits, outperform any of the corresponding individual markets that
do not charge3. Thus, not only does it seem that mobility leads to higher efficiency, but
it also seems that charging does.

Third, the effect of charging is strong enough that with ZIQ and RE traders (the ones
that might be considered more rational because they pick offers that aim to maximize
their profits) these best performing individual markets do so well that they lift the global
performance of the charging markets with mobile traders above that of the markets that
don’t charge. (This despite the fact that the higher charging individual markets have
considerably lower efficiencies than the markets that do not charge). Thus, not only do
individual markets benefit from the charges, but it seems that overall the markets benefit
— they certainly manage to extract more total profits that way.

5 Discussion

An explanation for the effects that we see is provided by Figure 3. This compares
one typical set of supply and demand curves for the final trading day of five paral-
lel CDA markets, all of which charge. The difference between the two sets is that in

3 In other words, M0 under fixed and LL charging has greater efficiency than any of the markets
which are free.
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Table 1. Market allocative efficiency for ZIC traders in single-market and multiple-market
scenarios

multiple markets
single market

M0 M1 M2 M3 M4 global

CDA

Mobile

Fixed 87.14 80.67 71.47 65.90 64.99 85.45 �88.86
11.96 20.07 27.04 29.85 30.99 3.49 2.05

LL 87.15 80.88 78.36 66.25 60.49 85.54 �87.58
12.17 20.65 22.89 30.09 32.26 3.31 2.35

Free 78.80 76.37 78.27 79.36 78.24 85.66 �88.92
22.46 25.48 22.41 22.22 23.31 3.03 2.01

Stationary

Fixed 83.10 82.71 83.59 82.91 83.86 77.02 �88.86
11.11 9.19 9.19 8.25 8.40 5.80 2.05

LL 82.38 84.70 81.65 80.51 81.51 77.18 �87.58
10.63 10.42 12.08 13.49 14.91 6.05 2.35

Free 81.20 81.83 81.65 80.58 81.20 77.25 �88.92
11.05 10.86 12.48 11.29 12.55 5.37 2.01

CH

Mobile

Fixed 84.99 75.05 69.12 57.41 55.83 81.16 �81.99
20.01 24.85 30.87 30.87 31.30 3.20 2.99

LL 87.41 79.55 69.29 60.43 57.81 �83.52 81.30
7.17 16.02 25.13 29.86 30.89 2.94 2.63

Free 74.58 76.38 71.83 72.94 77.90 83.72 �83.89
24.73 22.10 24.96 25.31 21.37 3.14 2.76

Stationary

Fixed 86.40 86.26 85.56 86.74 87.67 77.80 �81.99
8.47 8.85 7.63 8.72 8.72 5.11 2.99

LL 79.78 81.08 81.72 78.62 77.69 76.09 �81.30
9.50 9.95 7.99 12.24 13.73 5.13 2.63

Free 79.35 80.77 82.46 80.32 81.29 76.86 �83.89
11.82 10.48 9.11 10.12 11.86 4.66 2.76

Italic numbers are standard deviations, bold numbers indicate the better of the global and single
market values, bold italic identifies the largest value on each line, and � denotes that where these
comparisons are significant at the 95% level. The charges on profit rise linearly from M0 (10%)
to M4 (50%). In the case of the LL markets, these are the figures from which charges start.

Note that in a single market it makes no sense for traders to move since there is no market to
move to or from. As a result, figures for mobile and stationary traders are the same.

one the traders are allowed to move while in the other the are stationary. Whereas in
the markets with stationary traders the numbers of intra-marginal traders (to the left
of the intersection between supply and demand curves) and extra-marginal traders (to
the right of the intersection) are fairly well balanced, as one would expect of a ran-
dom allocation of private values, this is not the case in the markets with the mobile
traders. In these latter markets the traders have sorted themselves so that market M0
has no extra-marginal buyers, market M2 has no extra-marginal traders at all, M4 has
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Table 2. Market allocative efficiency for ZIQ traders in single-market and multiple-market
scenarios

multiple markets
single market

M0 M1 M2 M3 M4 global

CDA

Mobile

Fixed 97.06 96.24 96.11 94.60 93.24 94.53 �97.93
5.59 7.54 7.76 11.84 14.38 2.59 1.27

LL 96.79 96.91 96.63 94.43 93.49 94.51 �98.55
7.15 5.34 5.74 12.68 14.30 2.62 1.04

Free 96.04 96.39 96.17 95.88 95.63 94.22 �99.49
8.19 6.80 7.34 8.26 9.18 2.63 0.47

Stationary

Fixed 97.47 97.86 97.46 98.05 96.98 91.14 �97.93
3.03 3.23 3.34 4.96 4.16 4.16 1.27

LL 97.66 97.85 97.80 97.97 97.87 90.37 �98.55
2.96 2.72 2.76 3.25 2.65 4.15 1.04

Free 97.27 97.59 97.60 97.55 97.54 89.62 �99.49
4.11 3.75 3.49 4.57 4.16 5.10 0.47

CH

Mobile

Fixed 98.85 98.53 97.52 96.38 95.09 96.62 �99.74
4.74 8.25 11.25 13.75 13.75 2.10 0.52

LL 98.56 97.89 96.88 96.65 94.17 96.74 �99.68
4.71 7.50 10.07 10.86 16.45 2.34 0.49

Free 97.96 97.79 98.41 98.24 98.17 96.91 �99.75
6.77 7.62 4.60 5.02 5.98 2.06 0.49

Stationary

Fixed 99.04 99.01 99.36 99.22 99.01 90.54 �99.74
3.45 2.06 3.40 3.96 4.98 4.98 0.52

LL 99.35 99.16 99.21 99.32 99.03 92.50 �99.68
1.79 2.82 2.67 2.04 4.11 4.19 0.49

Free 99.29 98.56 99.06 99.06 99.19 91.34 �99.75
2.55 5.66 3.35 2.97 2.91 4.76 0.49

Italic numbers are standard deviations, bold numbers indicate the better of the global and single
market values, bold italic identifies the largest value on each line, and � denotes that where these
comparisons are significant at the 95% level. The charges on profit rise linearly from M0 (10%)
to M4 (50%). In the case of the LL markets, these are the figures from which charges start.

Note that in a single market it makes no sense for traders to move since there is no market to
move to or from. As a result, figures for mobile and stationary traders are the same.

no intra-marginal traders, and M3 has virtually no intra-marginal traders. Since, as [27]
points out, the reason that CDA markets lose efficiency is because of extra-marginal
traders “stealing” transactions from intra-marginal traders (who for a given transaction
will, by definition, generate a larger profit), the segregation that we observe will lead
to increased efficiency. In addition, as we observed in [16], charges have the effect of
prodding traders that aren’t making profits — and so are not adding to the efficiency
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Table 3. Market allocative efficiency for RE traders in single-market and multiple-market
scenarios

multiple markets
single market

M0 M1 M2 M3 M4 global

CDA

Mobile

Fixed 89.89 88.62 79.54 68.81 68.57 85.79 �89.14
9.29 29.06 39.19 40.06 3.07 3.07 1.68

LL 89.94 89.20 79.69 70.43 66.90 86.55 �87.39
2.93 8.41 29.40 38.49 41.10 3.21 2.46

Free 86.97 87.29 85.85 85.37 84.93 85.59 �89.37
14.74 12.08 17.89 18.11 18.58 3.00 1.69

Stationary

Fixed 88.47 89.79 88.17 88.26 89.40 82.07 �89.14
4.85 4.80 5.33 4.70 4.92 4.92 1.68

LL 87.75 87.62 87.12 86.97 88.09 81.42 �87.39
5.53 7.25 6.74 5.66 5.49 5.49 2.46

Free 88.64 89.53 87.93 88.74 87.72 81.15 �89.37
5.94 5.18 5.65 4.98 5.59 5.26 1.69

CH

Mobile

Fixed 99.01 97.73 94.52 89.83 87.90 95.90 �99.33
5.30 15.90 24.81 27.67 27.67 2.94 0.86

LL 98.86 97.71 95.74 92.48 87.57 95.83 �99.42
2.30 6.76 12.84 20.95 28.84 3.28 0.78

Free 97.18 97.87 97.41 97.23 97.27 95.51 �99.20
6.28 8.34 8.84 8.54 8.54 2.90 0.92

Stationary

Fixed 98.46 98.51 98.50 98.56 98.89 91.99 �99.33
2.79 2.73 2.62 2.41 4.60 4.60 0.86

LL 98.65 98.66 98.58 98.81 98.84 88.13 �99.42
2.49 2.36 2.57 2.48 2.13 6.42 0.78

Free 98.44 98.66 98.73 98.65 98.59 89.48 �99.20
2.58 2.30 2.52 2.86 5.59 5.59 0.92

Italic numbers are standard deviations, bold numbers indicate the better of the global and single
market values, bold italic identifies the largest value on each line, and � denotes that where these
comparisons are significant at the 95% level. The charges on profit rise linearly from M0 (10%)
to M4 (50%). In the case of the LL markets, these are the figures from which charges start.

Note that in a single market it makes no sense for traders to move since there is no market to
move to or from. As a result, figures for mobile and stationary traders are the same.

of a given market — to try different markets, allowing markets to rid themselves of
unproductive traders.

Figure 3 also shows us that the increased efficiency in mobile markets is not purely
the result of all traders collecting in the lowest charging market — there are still signif-
icant numbers of traders in the higher charging markets. (Subsequent work, which we
do not have room to discuss here, provides further evidence that this is the case.)
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In CH markets, of course, extra-marginal traders cannot “steal” trades away from
intra-marginal traders (at least not if they make rational offers). However, the move-
ment of traders can still increase profits by allowing a trader that is extra-marginal in
one market to become intra-marginal in another. Again, this behavior is encouraged
by the combination of the market selection strategy and the charges imposed by the
markets.

Finally, we should note that the efficiencies of the individual markets and the global
efficiencies are rather low compared with those often reported for the trading strategies
we use (in contrast the single market values are much the same as one would expect
given the random allocation of private values to traders). We attribute this, at least in
part, to churn. When a trader moves from one market to another, any learning it under-
went in the old market is no use any more, and may even be detrimental. Similarly, the
influx of new traders into a market can invalidate the learning previously undertaken by
traders that have not moved.

6 Conclusions

The main conclusion of this paper is that while dividing traders into multiple markets
leads to a loss of efficiency, this loss is reduced when traders are allowed to move
between markets in search of greater profits, and this movement is encouraged by the
imposition of fees on the traders. This result holds because the movement of traders
between markets serves to segment those markets. Since the movement is profit-driven
— traders choose markets with a probability that is proportional to the average profit
that they make in those markets — traders migrate towards markets that allow them
to make good trades. Overall this increases the total surplus generated by the set of
markets, and this in turn increases the global efficiency. The effect is sharpened by
the application of fees since fees tend to reduce the profits recorded by traders (the
fees charged by a market are counted by the trader as negative profits from trading in
the market while not affecting the values used in computing efficiency) and so further
discourage agents from remaining in markets that are unprofitable for them.

Our current work extends the investigation reported here. We are examining: the
robustness of our results against traders who use different algorithms to do market se-
lection4; the effect of different levels of charging on the changes in efficiency that we
observe; and the influence of network effects, such as restrictions on the mobility of
traders, on the effects that we observe here.
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Complex Computational Systems. The authors are grateful for support from the compu-
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4 Especially since the n-armed bandit algorithm we use is not particularly effective when payoffs
change, as they do here.
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Abstract. This paper describes a multiagent recommender system

where agents maintain local knowledge bases and, when requested to

support a travel planning task, they collaborate exchanging information

stored in their local bases. A request for a travel recommendation is de-

composed by the system into sub tasks, corresponding to travel services.

Agents select tasks autonomously, and accomplish them with the help

of the knowledge derived from previous solutions. In the proposed archi-

tecture, agents become experts in some task types, and this makes the

recommendation generation more efficient. In this paper, we validate the

model via simulations where agents collaborate to recommend a travel

package to the user. The experiments show that specialization is useful

hence providing a validation of the proposed model.

1 Introduction

Internet is a rich source of information where users search information about
products and services related to their interests and preferences. However, this has
generated new information problems. In fact, the overabundance of information
may overload the users and ultimately can make very hard to locate the right
information [9]. Moreover, the information required for a topic or a service (e.g.,
rent a car) is usually distributed in several repositories.

In order to cope with these issues, Recommender Systems have been proposed
[11]. They are based on data mining algorithms, are capable to learn about
user preferences over time, and can automatically identify relevant products or
information that fit the user needs [1]. Different approaches are used in their
core recommendation algorithms, such as collaborative filtering, content-based
filtering or knowledge-based approaches [1]. Recommender systems have been
applied in several domains [5] such as book recommendation (amazon.com) or
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movie recommendation (netflix.com). It is worth noting that these web sites can
fully support the purchase (or rent) process, they manage huge catalogues of
products and they can rely on the user information acquired by direct contact
with their customers (logs).

However in some application domains it may be possible that a single informa-
tion source (web site) does not manage all the information needed to run the full
recommendation process. The data available may be fragmented, overspecialized
or overgeneralized, or even irrelevant to the recommendation at hand. There are
several data sources and services distributed in Internet, which are not always
available, and sometimes can they offer information that can be ambiguous or
erroneous.

To cope with these problems, we propose the application and integration of
two technologies: distributed recommender systems and multiagent technologies.
We claim that a multiagent recommender system can be applied for retrieving,
filtering and using information that is relevant to the recommendation task, and
can better deal with the dynamic changes in the information source compared
with more traditional non-distributed recommender systems [2,10].

In the tourism domain, for instance, a travel package recommendation is typ-
ically supported by several service providers for flights, hotels and attractions.
Moreover, specific knowledge is required to assemble all the components [12].
Usually this information cannot be found in a single repository. The tourism
market is by its nature distributed, and several service providers and interme-
diaries manage and store in their databases (or in informal repositories) service
information and users data [17]. In order to recommend a travel package, an in-
termediary (travel agent) must construct a model representing all the elements
(information) required for generating this recommendation. This model can be
implicitly defined in her mind, or explicitly documented in a formal plan in the
travel agency. These elements would include resources (information, products or
services), customers and their requirements, factors influencing the recommen-
dation (such as the season), immediate strategies for finding the best options
for the user, and so on. However, planning a travel and building a package is
not performed by an intermediary alone. Collaboration among travel agents is
required to integrate individual experiences into a coherent plan that satisfies
user’s preferences.

The main goal of a Multiagent Recommender System is therefore to implement
this cooperation among the agents. Each agent should work as an expert and
participate to the composition of the final recommendation. This work presents a
distributed, and knowledge-based, recommender system implemented in a multi-
agent environment. The recommendation computation (travel package) is based
on the collaboration of multiple agents exchanging information stored in their
local knowledge bases. A recommendation request is decomposed into sub-tasks
handled by different agents, each one maintaining its own knowledge base and
working as an expert helping to compose the final recommendation. The pro-
posed model supports agent specialization, i.e., the agents become experts in
specific tasks. This agent specialization mimics what happens in the real world,
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where it is common for travel agents to specialize in a particular kind of ser-
vice (hotel, flights, interchanges, conferences, etc) in order to provide better and
better advises to the customers. Specialization increases agent’s confidence and
improves quality of service. We want to replicate this in our multiagent scenario,
and generate expert agents by letting them to specialize.

This paper is structured as follow: the next section discusses some related work
on Multiagent Recommender Systems and Recommender Systems. Section 3 de-
scribes the multiagent recommender model and Section 4 presents the experi-
ments we conducted. Finally section 5 summarizes the paper’s contributions.

2 Related Work

Our approach explores the ability of multiagent systems to decompose a complex
recommendation problem into smaller ones. This allows specific knowledge to be
applied in solving each subproblem and updated when changes occur in the
domain. The baseline technologies applied in our research are introduced in this
section.

2.1 Recommender Systems

As mentioned above the three major recommendation techniques are: collabo-
rative filtering, content-based filtering and knowledge-based systems. The most
popular technique is collaborative filtering that aggregates customer’s prefer-
ences, expressed as product ratings, to recommend new products [11]. In col-
laborative filtering the system predicts the target user ratings and select the
products with highest rating. However, a large number of ratings from similar
users are required to build reliable recommendations for a target user. This is
hard to achieve and ”data sparsity” is the primary source of erroneous recom-
mendations.

Amazon.com is a very popular e-Commerce site that exploits collaborative-
filtering. In its book section for instance, the system encourages direct feedback
from customers about books that they have already read [13]. After this, the
customer may request recommendation for books that he/she might like.

In content-based filtering the preferences of a specific customer are exploited
to build new recommendations to her. NewsDude [4], for instance, observes what
online news stories the user has read and not read and learns which articles the
user may be interested in reading. In content-based systems only data related
to the current user are exploited in building a recommendation. It requires a
description of user interests that either matches the items’ catalog or provides an
input for the user model that was learned in order to output a recommendation.

Collaborative and content-based filtering can deliver poor recommendations
if not trained with an adequate number of examples (product ratings or pattern
of user preferences). This limitation mostly motivates the knowledge-based ap-
proach. A knowledge-based system learns about user preferences over time and
automatically suggests products that fit the user model. This technique tries to
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better use preexisting knowledge, which is specific to the application domain, in
order to build a more accurate prediction model still based on a limited number
of training instances.

Usually knowledge-based approaches, such as case-based reasoning [14,6], are
combined with collaborative or content-based filtering to provide better recom-
mendations. Knowledge about customers and the application domain are used to
reason about the products that fit the customer’s preferences. The most impor-
tant advantage of the combined approach is that it does not depend (exclusively)
on customer’s rates, hence avoiding the mentioned difficulty to bootstrapping the
system. The knowledge that improves the recommendation can be expressed as
a detailed user model; a model of the selection process or a description of the
items that will be suggested.

Travel recommendation is a complex task and there are still many open issues.
In this paper we are mostly focussed on the integration of different information
sources distributed over the Internet, and to exploit experts’ specific knowledge
in the recommendation. In order to deal with these issues, we propose a multi-
agent recommender system.

2.2 Multiagent Recommender Systems

Multiagent systems (MAS) can be applied to retrieve, filter and use information
relevant to recommendations [16] [8]. MAS can deal with distributed information
sources and there are several advantages in developing these systems [15], such as:
1) the information sources may be already distributed, and it would be wasteful
to replicate agent information gathering and problem solving capabilities for each
user and each application; 2) agents can interact flexibly in new configurations
on demand; and 3) the system performance can degrade gracefully when some
agents are out of service temporarily.

Classical recommendation technologies can be described as single agent, as one
single intelligent system provides the recommendation function [10]. In a mul-
tiagent recommender system a collection of interacting agents manage the rec-
ommendation generation process, trying to improve the recommendation quality
obtained by a single agent. The agents cooperate and negotiate in order to satisfy
the users, interacting among themselves to complement their partial solutions
or even to solve conflicts that may arise.

CASIS [7] is an example of multiagent case-based recommender system [14,6],
where the authors proposed a metaphor from swarm intelligence to help the ne-
gotiation process among agents. The honey bees’ dancing metaphor is applied
with case-based reasoning approach to recommend the best travel to the user.
The recommendation process works as follows: the user elicits her preferences;
the bees visit all cases in the case base and when they find the best case (ac-
cording to the user’s preferences) they dance to that case, recruiting other bees
to that case; and the case with the most number of bees dancing for it is the
one recommended to the user.

The advantage of this application is that the bees always return some
recommendation to the user. Normally, case-based recommender systems use
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similarity-based retrieval to identify the best cases. The recommendation results
depend on the retrieval algorithm (similarity function, similarity threshold, fea-
ture weights, etc.) and sometimes the system does not find cases that sufficiently
match the probe (problem definition). In a real travel package recommendation,
the travel agent always recommend something to the user, even if there is not a
travel package that matches the customer’s preferences. The travel agent always
provides to the customer an answer, as the customer could always switch to
another travel agency. Because of this, CASIS always returns some recommen-
dation. However, the main disadvantage of this system is that the case-base is
unique and centralized. It is not possible to search information located in other
sources.

Another example of multiagent recommender system is presented in [8]. This
system arranges meetings for several participants taking into account constraints
for personal agendas. In this system, three different agents were proposed: the
personal assistant agent is the interface between the user and the MAS; the
flight travel agent is connected to a database of flights; and the accommodation
hotel agent is responsible to find an accommodation on the cities involved in
the meeting. A disadvantage found in this approach is that the problem is not
solved dynamically because the recommender system has to collect information
from different information gathering agents to model the problem-solving.

3 MAS Recommendation Model

This section describes the proposed Multiagent System (MAS) approach and
uses the tourism domain as motivating scenario. Planning a travel is a difficult
task even for an expert travel agent. She needs to know many details about the
destination chosen by the passenger and many features of the whole trip such
as the attractions’ details, hotels or flights times and costs. In several cases, this
knowledge is distributed among different travel agents, and they must commu-
nicate and exchange information to compose the final recommendation.

3.1 The Agents

Using the travel recommendation example, we have created a multiagent system
where a community of agents share a common goal (the travel package recom-
mendation) as well as individual goals (the travel components that each one
must identify). A community C of agents consists of n Searcher (Src) agents
a1, a2, ..., an.

When the user asks for a recommendation, a list of tasks, here restricted to
flights, hotels or attractions, is created and communicated to the Src agents.
The agents choose a task from the received list and perform it. When a task is
performed by an agent, it is marked as not available, which means that another
agent can perform that task at the same time.

The Src agent is represented by a = (P, LocalKB) where P is the agent’s
profile and LocalKB is the agent knowledge base.



108 F. Lorenzi et al.

The agent’s profile is defined as P = (id, status, tcurrent, confind); id is the
identification id of the agent, status indicates if the agent is online, offline or
not available to perform a task. The agent can be offline if, for example, the
computer is switched off or the network is down. In this case, it will not be
able to perform a task. When the agent is performing a task its status becomes
not available. tcurrent is the current chosen task and confind are the confidence
indexes of the agent to each type of task.

Each confidence index is calculated through the number of tasks performed of
the respective type and the evaluation of each task done by the user. Each task
solved by an agent receives an evaluation from the user, with a rating ranging
from 0 to 10, where 0 is the worst and 10 is the best rating. The task evaluation is
then used in the agent confidence index computation so that the agent increases
more the confidence when it solved better the task.

Two features are desired when addressing the set of evaluations: quality and
uniformity. The first one is quite obvious, the goal is to give the best recommen-
dation to obtain a high evaluation. The second one relates to the evaluations
homogeneity. Here, the lower the variability of evaluations the more reliable will
be the results. Thus, we search for a set of evaluations with a high average
evaluation and low standard deviation.

confind(n)(t) =
confind(n−1)(t) + F (n−1)(t)∑

i∈T F (n−1)(i)
× evaluation (1)

Equation 1 shows the confind (confidence indexes) update function of an agent,
where t is the task type, T is the set of task types, confind(n)(t) is the new
confidence index of task type t, F (n)(t) is the number of tasks of type t performed
by the agent in the instant n. Finally, the evaluation is defined as follow:

evaluation =

⎧⎪⎨
⎪⎩

α
(

μ(t)∑
j∈T μ(j)

)
if
∑

k∈T σ(k) = 0

α
(

μ(t)∑
j∈T μ(j)

)
+ (1 − α)

(
1

σ(t)∑
k∈T

1
σ(k)

)
otherwise

(2)

where: μ(t) is the evaluation average of type task t performed by the agent; σ(t)
is the evaluation standard deviation of type task t performed by the agent.

In order to get the normalized evaluations average value of the type task t,
the value is divided by the sum over all task types evaluations. The standard
deviation value is calculated in the same way. Since the formula is a recurrence
equation, it was necessary to set initial conditions, such as:

– Each agent has performed one task of each type;
– Each performed task got an evaluation equal to 5 (a neutral rate);
– There is no standard deviation in instant 0, which means that the standard

deviation was not considered in instant 0.

The α coefficient determines the relevance of the average and the standard devi-
ation over the confidence indexes. In the experiments, described later, α was set
to 0.5. That means that the average and the standard deviation have the same
importance in the calculation of the confidence index.
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Thus, the confidence index must be proportional to the average and inversely
proportional to the standard deviation, which means that we will get best re-
sults with a high average evaluation and a low standard deviation. Equation 2
expresses the influence that the tasks evaluations have over the confidence index.

The agent updates the confidence indexes every time it must choose a task
to execute. Based on those indexes, it can check which task type, among those
available, is better considering. However, sometimes the agent can be forced to
choose a task that is not its specialty (for example, a flight recommendation is
required but the flight expert is missing and only the (agent) expert in hotels is
available).

This behavior helps the agent to become an expert in a task type. The agent
specialization improves the system performance. If the agent has enough infor-
mation about a task type in its knowledge base, it can provide a faster recom-
mendation for that kind of service. But more importantly, it gives, in the long
run, high quality recommendations because the agent becomes an expert in that
type of recommendations.

LocalKB stores the knowledge the agent has already used to solve previous
recommendations. Figure 1 shows the agent’s model. The user’s preferences and
the list of tasks (appearing inside the box) do not belong to the agent, but they
are needed to understand the agent’s LocalKB. Id is the task’s identification.
type is the task’s type (flight, hotel or attractions) and timespent represents the
time spent by the agent to perform the task. requirements represent the user’s
preferences, i.e., the user’s query. Solution represents the task already performed
by the agent. The combination of the requirements and the solution attributes
represents a case, i.e., the description of the problem and the description of the
solution, respectively.

The agent’s knowledge base is increased with the number of tasks it decides
to save. The bigger the knowledge base becomes, the worse becomes the search
performance. On the other hand, a small knowledge base forces the agent to
search in the community or in the Web, which results in a waste of time and
slower performance. For this reason, it is important for the agent to control

Fig. 1. Agent’s model
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the size of its knowledge base. It must have enough knowledge to give good
recommendations. The confidence indexes help to control the knowledge base
size according to the tasks the agent has performed. After performing the task,
the agent checks if that task has increased or not its confidence index and it
decides to keep or not the task in its knowledge base.

3.2 The Recommendation Algorithm

As shown in the previous subsections, each agent performs a task (of type flight,
hotel or attraction) to contribute to the final complete recommendation, i.e., a
travel package.

When the user explicit her preferences, the recommendation process starts
and the list of tasks is created. Let us now consider a hypothetical scenario
where the user has chosen Paris as destination to her vacation; she would like to
travel on March 10th, to stay in a three-stars hotel and would like to know the
possible attractions in Paris. Three new tasks are created with these preferences.

After that, each agent picks a task (considering its confidence indexes) and
turns its status to not available. This choice is made in a decentralized manner,
where the agent chooses the task it has the highest confidence index. A task can
be performed only by one agent which means that two different agents cannot
pick the same task. When an agent chooses a task, it chance its status and this
task is not available anymore.

Algorithm 1. Multiagent Recommendation
{C is the agent community}
{T is the set of tasks to be solved}
Procedure Recommendation (agentx, t, C)

repeat
taskToBeSolved = PickTask(agentx, t)
T = T \ {taskToBeSolved}
Solution = SearchLocalKB(taskToBeSolved)

if Solution = ∅ then
for each agentx ∈ C
Solution = CommunitySearch(agenty, taskToBeSolved)

if Solution = ∅ then
T = T ∪ { taskToBeSolved }

end if
end if

until (T �= ∅)
UpdateConfind()

The agent might find the information necessary to solve the task in two ways:
searching in its own knowledge base or exchanging information with agents in
the community. As shown in algorithm 1, two levels of information search are
proposed.
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Through the SearchLocalKB procedure, agents search for the information nec-
essary to complete their selected tasks in their own knowledge bases. Each agent
has a knowledge base that stores the task episodes already performed by the
agent. These episodes are stored as cases with attributes describing the user’s
preferences (the description of the problem) and attributes describing the task
itself (the solution of that recommendation episode).

If the agent does not find the information required to complete the selected
task in its knowledge base, then it proceeds with the second type of search,
here called CommunitySearch. In this stage, the agent communicates with the
available agents to exchange information. This communication is important be-
cause the agent can find another agent that is expert in the selected task and
exchanging information with this expert agent, it will better solve the task. It is
important to note that the CommunitySearch is not exploited in this paper and
it will be detailed in a future work.

4 Experimental Results

In order to validate the multiagent recommender approach in the tourism do-
main, a preliminary experiment was done, where we have simulated different
users asking for different recommendations and 35 users queries were generated.
From these queries, 100 new tasks to be performed were created (i.e, the list of
tasks was created from these new queries).

The agents were developed in the JADE (Java Agent Development Frame-
work) framework [3]. An acquisition knowledge step was done in a travel agency
and the Src agents’ knowledge bases were populated randomly with real cases
of clients of this agency.

Here we assume that, at instant 0, each agent has performed one task for each
type and these tasks got an evaluation equal to 5 (a neutral rate). That means
that the agent has all confidence indexes with the same value and therefore at
the beginning it will choose the task randomly.

Another goal of the experiments was to validate the scalability of the system.
For this reason, the experiments were done with different number of available
agents. We have calculated the average evaluation of agents in each solved task
and we shall show how this value changes during the whole tasks performed by
the agents.

We have run the same experiment under two conditions, to show that spe-
cializing the agents can be useful. In the first one, the agents confidence indexes
were calculated and the agents used these values to select the task to execute.
In the second one, the agents did not considered the indexes and they chose the
tasks randomly.

Figure 2 shows the average evaluation values for the 54 tasks performed,
where 3 agents were available to perform tasks. The average evaluation value of
expert agents was high (almost 7) which means a better result comparing to the
non-expert agents that reached only 5.
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Fig. 2. Average evaluation value - 3 agents (54 tasks)

0 10 20 30 40 50
tasks

0

1

2

3

4

5

6

7

8

9

10

av
er

ag
e 

ev
al

ua
tio

n 
va

lu
e

specialized
not specialized

Fig. 3. Average evaluation value - 10 agents (54 tasks)
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Fig. 4. Average evaluation value - 15 agents (54 tasks)

In the second run, 10 agents were available to perform tasks. Since we have
more agents for the same number of tasks, and the same number of task types,
the individual performance decreases. The objective was understand how the
agents behave if we increase the number of available agents to perform the tasks.
Figure 3 shows that, as expected, that increasing the number of agents and
keeping the same number of tasks, the average evaluation value is lower for the
specialized agents, than the previous scenario (with 3 agents).

Figure 4 confirms the behavior shown in the previous figure. Here we have
15 agents and 54 tasks and the average evaluation value was around 4 for both
agents: expert and non-expert. Similarly the results from the previous exper-
iment, as larger the number of agents performing tasks, lower is the average
evaluation value.

We also have run a second experiment, where we increased the number of
tasks to perform (and kept the same number of types). In this experiment we
had 100 tasks to be performed. The same number of agents were used in the
experiments: 3, 10, and 15.

Figure 5 shows the average evaluation value of specialized and non-specialized
agents, through the 100 tasks performed, with only 3 agents available. Both
non-expert and expert agents had unstable average evaluation values in the
beginning. However, the expert agents had better results in the end.

In figure 6 we can see the average evaluation value of expert and non-expert
agents with 10 agents working. Expert agents got better results than non-expert
agents. They reached 4.5 of evaluation average value and the result was stable
starting from the thirties task. Considering that we have 10 agents and 100 tasks
to be performed, the results of expert agents were good. It was almost the same
results got in the experiment with less tasks.
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Fig. 5. Average evaluation value - 3 agents (100 tasks)
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Fig. 6. Average evaluation value - 10 agents (100 tasks)

Figure 7 shows the average evaluation value when we used 15 agents working
to solve the tasks. Despite the expert agents started with unstable values, the
evaluation average became stable soon and kept the same performance until all
the tasks were completed.
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Fig. 7. Average evaluation value - 15 agents (100 tasks)

5 Conclusions

This paper presented a distributed knowledge-based multiagent model applied to
the tourism domain. The agents are cooperative and recommend travel packages
to the user.

A recommendation is divided in small pieces called tasks and each agent is re-
sponsible to perform some tasks not necessarily for the same travel-package re-
quest. As long as the agents will perform different tasks, they become experts in a
specific task type. The agents become travel agents, where each one have specific
knowledge and the cooperation among them can bring good recommendations.

It is important to mention that the tourism domain was chosen to validate the
architecture but we believe that the approach can answer the requests of other
applications that deal with problems that require the application of a dynamic
and distributed knowledge to solve that application tasks. Testing the reusability
of the proposal is going to be done in a next phase of this work.

Decomposing the problem and distribute it to several different agents that
are becoming more and more specialized can yield good recommendations, even
when applied to tourism that is a complex domain that needs specific knowledge
distributed over different sources. The agents can be considered experts, i.e.,
thanks to the confidence indexes that were added in the agent’s model in order
to help the agent to select the tasks that it is more prepared to attend.

Another interesting point is that the ideas presentedhere are being validated in a
real scenario.A knowledge acquisition phase was conducted and the agents’ knowl-
edge bases were created with knowledge from a real travel agency. The queries used
in the experiments were obtained from the travel agency as well, which provide a
real scene for collecting and understand the requirements of the application.
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Abstract. This paper focuses on the prominent issue of automating

bargaining agents within electronic markets. Models of bargaining in lit-

erature deal with settings wherein there are only two agents and no model

satisfactorily captures settings in which there is competition among buy-

ers, being they more than one, and analogously among sellers. In this

paper, we extend the principal bargaining protocol, i.e. the alternating-

offers protocol, to capture bargaining in markets. The model we propose

is such that, in presence of a unique buyer and a unique seller, agents’

equilibrium strategies are those in the original protocol. Moreover, we

game theoretically study the considered game providing the following

results: in presence of one-sided competition (more buyers and one seller

or vice versa) we provide agents’ equilibrium strategies for all the values

of the parameters, in presence of two-sided competition (more buyers

and more sellers) we provide an algorithm that produce agents’ equilib-

rium strategies for a large set of the parameters and we experimentally

evaluate its effectiveness.

1 Introduction

A bargaining situation involves two parties, which can cooperate towards the
creation of a commonly desirable surplus, over whose distribution both parties
are in conflict [1]. The alternating-offers [2] is considered the main protocol for
bilateral negotiations and it has received a lot of attention both in economics
to analyze human transactions [3] and in computer science both to automate
electronic transactions [4] and to solve dynamic distributed optimizations [5].
The study of bargaining is commonly carried out by employing tools provided
by game theory in which one distinguishes the protocol from the strategies. The
protocol sets the negotiation mechanism, whereas the strategies define agents’
behavior. Rational agents employ strategies that are in equilibrium.

The alternating-offers protocol is simple: an agent makes an offer; the oppo-
nent can accept it or exit or make a counteroffer; if a counteroffer is made, the
process is repeated. The utility function of each agent depends on her reservation
price, her time discount factor, and her temporal deadline.

W. Ketter et al. (Eds.): AMEC/TADA 2008, LNBIP 44, pp. 117–130, 2010.
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Although the analysis of bargaining in presence of real-world settings is cur-
rently far from being addressed, some recent results are promising for its future
employment: multiple issue bargaining can be reduced in polynomial time (in
the number of issues) to single issue bargaining [6], the situation wherein agents
have uncertain weights over the issues can be solved in polynomial time (in the
number of agents’ types), and the situation with one-sided uncertain over dead-
lines can be solved in time asymptotically independent of the number of agent’s
types [7].

A crucial setting that is not satisfactory studied in literature is the setting
where the two bargaining agents act in a market. This setting will be common in
real-world electronic markets. Within a market of bargaining agents two aspects
coexist: the matching of two opponents (a buyer and a seller) and the negoti-
ation between two matched opponents. Classic models from literature does not
effectively capture the matching between two agents, usually assuming that the
matching is random [1,3,8]. Moreover, these models make assumptions too re-
strictive to be employed in real-world applications: all the buyers (sellers) are
the same and agents do not have deadlines. The lack of a satisfactory model for
bargaining in markets pushes researchers to develop more effective models.

In this paper, we consider a complete information setting where there are
more buyers and more sellers with deadlines and agents can be different, i.e.
agents’ parameters can be different. The original contributions we present in
this paper are the followings. (i) We provide an extension of the alternating-
offers protocol to capture bargaining in markets where agents can choose the
opponent with whom negotiating and, once matched, they negotiate as in the
original protocol. The proposed model satisfactorily extends the alternating-
offers protocol since, in presence of a unique buyer and a unique seller, agents’
equilibrium strategies are those in the original protocol. (ii) In presence of one-
sided competition (when there are one buyer and more sellers or more buyers
and one seller) we provide agents’ equilibrium strategies for all the values of the
parameters. In presence of two-sided competition (more buyers and more sellers)
we provide an algorithm that efficiently produces agents’ equilibrium strategies
for a large set of the parameters and we experimentally evaluate the effectiveness
of the proposed algorithm.

The paper is organized as follows. In Section 2 we review the classic alternating-
offers protocol presenting the mechanism and agents’ equilibrium strategies. In
Section 3 we describe our protocol that extends the classic alternating-offers. In
Section 4 we study agents’ equilibrium strategies. Section 5 concludes the paper.

2 Alternating-Offers Bargaining with Agents’ Deadlines

Alternating-offers bargaining is an extensive-form game where a buyer agent
b and a seller agent s try to agree on the value of one or more issues. (In
this paper, we consider only single-issue bargaining, since, as showed in [6],
with complete information multi-issue bargaining can be casted into single-issue
bargaining in polynomial time with respect to the number of issues.) A player
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function ι : N → {b, s} returns the agent that acts at time t and is such that
ι(t) 
= ι(t+1). At time t > 0 the action σι(t)(t) of agent ι(t) can be: (i) offer (x),
where x ∈ R; (ii) exit ; (iii) accept. At t = 0 agent ι(0) can make only (i) or
(ii). If σι(t)(t) = accept the game stops and the outcome is the agreement (x, t),
where x is the value such that σι(t−1)(t−1) = offer(x). If σι(t)(t) = exit the game
stops and the outcome is NoAgreement . Otherwise the bargaining continues to
the next time point.

The utility of an agreement (x, t) for agent i is given by a utility function
Ui : (R×N)∪ {NoAgreement} → R that depends on three parameters of agent
i: the reservation price RPi ∈ R+, the temporal discount factor δi ∈ (0, 1], and
the deadline Ti ∈ N, Ti > 0. If the outcome of the bargaining is (x, t), then the
utility functions Ub and Us are:

Ub(x, t) =

{
(RPb − x) · δt

b if t ≤ Tb

−1 otherwise
,

Us(x, t) =

{
(x−RPs) · δt

s if t ≤ Ts

−1 otherwise
.

If the outcome is NoAgreement , then Ub(NoAgreement) = Us(NoAgreement) =
0. Notice that the assignment of a strictly negative value (we have chosen by
convention the value −1) to Ui after agent i’s deadline allows one to capture the
essence of the deadline: an agent, after her deadline, strictly prefers to exit the
negotiation rather than to reach any agreement. Finally, we standardly assume
the feasibility of the problem, i.e. RPb ≥ RPs, and the rationality of the agents,
i.e. each agent will act to maximize her utility.

With complete information the appropriate solution concept for the game
we are dealing with is the subgame perfect equilibrium [9]. In subgame perfect
equilibrium strategies, agents’ strategies are of equilibrium in every possible
subgame. Such a solution can be found by backward induction. We briefly revise
the use of backward induction in this setting; details can be found in [10].

Initially, it is determined the time point T where the game rationally stops:
it is T = min{Tb, Ts}. The equilibrium outcome of every subgame starting from
t ≥ T is NoAgreement, since at least one agent will make exit . Therefore, at
t = T agent ι(T ) would accept any offer x which gives her a utility not worse than
NoAgreement, namely, any offer x such that Uι(T)(x, T ) ≥ 0. From t = T − 1
back to t = 0 it is possible to find the optimal offer agent ι(t) can make at t, if
she makes an offer, and the offers that she would accept. We denote by x∗(t) the
optimal offer of agent ι(t) at t. Easily, x∗(t) is the offer such that, if t < T − 1,
agent ι(t + 1) is indifferent at t + 1 between accepting it and rejecting it to
make her optimal offer x∗(t + 1) and, if t = T − 1, agent ι(t + 1) is indifferent
at t + 1 between accepting it and making exit . Formally, x∗(t) is such that
Uι(t+1)(x∗(t), t) = Uι(t+1)(x∗(t+1), t+1) if t < T −1 and Uι(t+1)(x∗(t), t) = 0 if
t = T − 1. The offers agent ι(t) would accept at t are all those offers that gives
her a utility no worse than the utility given by offering x∗(t). The equilibrium
strategies of any subgame starting from 0 ≤ t < T prescribe that agent ι(t)
offers x∗(t) at t and agent ι(t + 1) accepts it at t + 1.



120 N. Gatti, A. Lazaric, and M. Restelli

In order to provide a recursive formula for x∗(t), we introduce the notion
of backward propagation: given value x and agent i, we call backward propaga-
tion [6] of value x for agent i the value y such that Ui(y, t − 1) = Ui(x, t); we
employ the arrow notation x←i for backward propagations. Formally, x←b =
RPb − (RPb − x) · δb and x←s = RPs + (x − RPs) · δs. If a value x is backward
propagated n times for agent i, we write x←n[i], e.g. x←2[i] = (x←i)←i. If a value
is backward propagated for more than one agent, we list them left to right in
the subscript, e.g. x←i2[j] = ((x←i)←j)←j . The values of x∗(t) can be calculated
recursively from t = T − 1 back to t = 0 as follows:

x∗(t) =
{

RPι(t+1) if t = T − 1

(x∗(t + 1))←ι(t+1) if t < T − 1
.

Finally, agents’ equilibrium strategies can be defined on the basis of x∗(t) as
follows:

σ∗
b(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = 0 offer(x∗(0))

0 < t < T

⎧⎪⎨
⎪⎩

if σs(t− 1) = offer(x) accept

with x ≤ (x∗(t))←b

otherwise offer(x∗(t))

T ≤ t ≤ Tb

⎧⎪⎨
⎪⎩

if σs(t− 1) = offer(x) accept

with x ≤ RPb

otherwise exit

Tb < t exit

.

σ∗
s (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t = 0 offer(x∗(0))

0 < t < T

⎧⎪⎨
⎪⎩

if σb(t− 1) = offer(x) accept

with x ≥ (x∗(t))←s

otherwise offer(x∗(t))

T ≤ t ≤ Ts

⎧⎪⎨
⎪⎩

if σb(t− 1) = offer(x) accept

with x ≥ RPs

exit otherwise

Ts < t exit

In Fig. 1 and in Fig. 2 we report agents’ optimal offers in two different games.
The parameters in both games are RPb = 1, δb = 0.95, Tb = 11, RPs = 0,
δs = 0.95, and Ts = 12. We denote by Γ (0, s,b) the bargaining starting from
t = 0 between s and b where ι(0) = s; agents’ optimal offers in Γ (0, s,b) are
reported in Fig. 1. Analogously, Γ (0,b, s) denotes the bargaining starting from
t = 0 between s and b where ι(0) = b; agents’ optimal offers in Γ (0,b, s)
are reported in Fig. 2. The lines connecting two consecutive offers are isoutility
curves. In both examples T = min{Tb, Ts} = 11. Consider Γ (0, s,b): ι(11) = b.
Therefore, x∗(10) = RPb = 1, x∗(9) = (x∗(10))←s = .95, x∗(8) = (x∗(9))←b =
.9525, and so on. Consider Γ (0,b, s): ι(11) = s. Therefore, x∗(10) = RPs = 0,
x∗(9) = (x∗(10))←b = .05, and so on.
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Fig. 1. Optimal offers in Γ (0, s,b): RPb = 1, RPs = 0, δb = δs = 0.95, Tb = 11,

Ts = 12, ι(0) = s
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Fig. 2. Optimal offers in Γ (0, s,b): RPb = 1, RPs = 0, δb = δs = 0.95, Tb = 11,
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3 The Proposed Model

In this section, we propose a bargaining model, as extension of the model dis-
cussed in the previous section, to capture the situation where there are m buyer
agents and n seller agents such that:

– the items sold by the sellers are equal;
– all the sellers have exactly one item to sell;
– all the buyers are interested in buying exactly one item.

We denote by bi the i-th buyer agent – her parameters will be RPbi , Tbi, and
δbi – and by sj the j-th seller agent – her parameters will be RPsj , Tsj , and δsj .
Furthermore, each agent, both bi and sj , will be characterized by a time point
denoted by Abi and Asj , respectively, where she enters the market. Easily, an
agent i can act in a market from t = Ai.

Within a market two different aspects coexist: (1) the matching of two oppo-
nents (a buyer bi and a seller sj) and (2) the negotiation between two matched
opponents. According to classical literature these two aspects can overlap. In-
deed, several models allow agents that are negotiating to leave the negotiation
they are currently carrying on and match other opponents with whom starting
a new negotiation. This is usually captured by introducing an action, named
outside option [8,11], available to the agents. For the sake of simplicity, in this
paper we provide a market model for bargaining agents where agents cannot
match other opponents during the negotiation. We will consider this option in
future works. Precisely, we design our bargaining model such that:

– (exclusively) non-matched agents can match (exclusively) non-matched op-
ponents;

– two agents that match at t will start to negotiate at t+d where d ∈ N, d > 0
(the value of d captures a possible delay due to the negotiation platform
or set by the electronic institution; we assume that the platform grants the
negotiation to begin exactly at t+d and then the value of d is known a priori
by the agents);

– given two agents matched at t, the agent that opens the negotiation at t + d
is chosen randomly with a probability .5 by the negotiation platform;

– two matched agents negotiate as prescribed by the bargaining model pro-
vided in the previous section;

– in presence of one buyer agent and one seller agent, agents’ equilibrium
strategies are exactly those in the classic alternating-offers protocol described
in the previous section.

Finally, in the proposed model we partially capture two-sided competition, since
agents’ allowed actions are not symmetric. Precisely, each buyer will announce
whether she wants to be matched and, in the affirmative case, will announce by
which seller wants to be matched, whereas each seller will choose which buyer to
match (we report details below). Fully two-sided competition will be studied in
future works. Our extension of the original bargaining model develops in three
points. We discuss them one by one.
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(1) We introduce three actions to rule the matching between two oppo-
nents, i.e. matchable(sj), nonmatchable , and match(bi), and one action to allow
agents to wait for the next time point, i.e. wait . The actions matchable(sj) and
nonmatchable are available at t to the buyers that are not matched at such time
point and the effect of the first one is to signal that the buyer is ready at t to be
matched by the specific seller sj , whereas the effect of the second one is that the
buyer does not want to be matched. In order for matchable(sj) to be valid at t,
sj must be present in the market and must be non-matched at such time point.
The action match(bi) is available to the non-matched sellers and the effect is
that sj matches the buyer bi. Obviously, to be match(bi) a valid action for sj

at t, bi must have made matchable(sj) at such time point. The action wait is
available to both buyers and sellers, and allow them to wait for the next time
point. We discuss below, at point (3), when and how agents can employ these
actions.

(2) We redefine the action exit : if an agent made exit , then she leaves the
market and her outcome is NoAgreement. Our choice is directed to exclude
agents’ non-feasible behaviors: it can be easily observed that if action exit does
not impose agents to leave the market, then in presence of a unique buyer and
a unique seller the equilibrium strategies are different from those prescribed by
Rubinstein’s equilibrium. We will show that in the next section.

(3) We modify the mechanism of the game dividing each time point in two
sequential stages, denoted by 1 and 2, and inhibiting and allowing actions ac-
cording to the actual state in which an agent is. Precisely, in a market an agent
bi (or sj) can be in three different states: (i) bi (or sj) is non-matched, (ii) bi

(or sj) have been matched with sj (or bi) and is waiting for starting to negotiate,
or (iii) bi (or sj) is negotiating with sj (or bi). Consider state (i). If bi is not
matched, then her allowed actions are the following. In the first stage of every
time point t she can make nonmatchable or matchable(sk) where sk must not
be matched at t. In the second stage of every time t point she can make wait
or exit ; this second action is allowed only if in the first stage of t bi has made
nonmatchable: we exclude non-reasonable situations wherein at the same time
point a buyer announces to be ready to be matched with a specific seller and
subsequently leaves the market. If sj is not matched, then her allowed actions
are the following. In the first stage of every time point t, no action is allowed. In
the second stage of every time point t, she can make wait or match(bk) where
bk must not be matched or exit . Consider state (ii). If bi (or sj) is matched and
is waiting for starting to negotiate, no action is allowed. Consider state (iii). If
bi (or sj) is negotiating, then she acts alternately and her allowed actions are
exactly those in the alternating-offers protocol discussed in the previous section:
offer(x), accept , and exit . For the sake of clarity, the actions available to agents
are summarized in Tab. 1.

Agents’ utility functions are exactly those defined in the previous section.
Since every agent negotiate exclusively on one item, once a negotiation has been
concluded with an acceptance, the two negotiators leave the market. When m >
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Table 1. Actions available to the agents

state stage agent time points available actions

1 bi any nonmatchable ,matchable(sk)

if sk is not matched

bi (sj) is not matched bi any wait , exit if bi has

2 made nonmatchable
sj any wait ,match(bi) if bi has

made matchable(sj), exit

bi and sj are negotiating 2 bi alternately offer(x),accept , exit
sj alternately offer(x),accept , exit

n (or m < n) m − n buyer agents (or n − m seller agents) will never take part
in any negotiation and therefore their outcome will be NoAgreement.

4 Equilibrium Strategies

In this section we provide agents’ equilibrium strategies when Ai = Aj = 0 for
all i, j. The analysis of the general case will be produced in future works.

4.1 Base Case: One Buyer and One Seller

We consider the setting wherein there are a unique buyer b1 and a unique seller
s1. We can state the following lemma.

Lemma 41 Once two opponents have started to negotiate, they employ the equi-
librium strategies prescribed in Section 2.

The proof is omitted, being trivial. It is based on the fact that, if RPb1 > RPs1 ,
agents strictly prefer to negotiate rather than to make exit . We state now the
following lemma.

Lemma 42 If b1 and s1 are both present in the market at t < T − d and they
are not matched, then they prefer to match immediately rather than to match
subsequently or not to match.

Proof. Call x∗
b1

(t) and x∗
s1(t) the optimal offers of b1 and s1, respectively, at t. No-

tice that x∗
b1

(t) is defined in Γ (t,b1, s1), whereas x∗
s1(t) is defined in Γ (t, s1,b1).

We study b1’s optimal actions (s1’s ones can be similarly studied). We consider
the case with d = 1; when d > 1 the proof is analogous.

We need to prove that b1’s expected utility of starting a negotiation at t is
greater than her expected utility of starting a negotiation at t + 1. Formally, we
need to prove that:

(1
2
x∗
s1(t + 1) +

1
2
x∗
b1

(t + 1)
)
←b1

>
1
2
x∗
s1(t) +

1
2
x∗
b1

(t).
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We consider the worst case, i.e. when δs1 = 1, and we show that in the worst case
the above inequality holds. Precisely, we can make the following substitutions:
x∗
b1

(t) = x∗
s1(t + 1) and x∗

s1(t) = RPb1 − (RPb1 − x∗
b1

(t + 1))δb1 . We obtain:

1
2
· (1 − δb1) · (RPb1 − x∗

s1(t + 1)) > 0.

Since RPb1 − x∗
s1(t + 1) > 0 by construction and 1 − δb1 > 0 by definition, the

above inequality holds. �

From Lemmas 41 and 42, it trivially follows the following theorem.

Theorem 43 In presence of one buyer and one seller, agents equilibrium strate-
gies are:

σb1(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

if matched strategies prescribed in Section 2

if non-matched

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t < T − d

{
stage 1 matchable(s1)
stage 2 wait

T − d ≤ t

{
stage 1 nonmatchable
stage 2 exit

σs1(t) =

⎧⎪⎪⎨
⎪⎪⎩

if matched strategies prescribed in Section 2

if non-matched

⎧⎨
⎩

t < T − d
{
stage 2 match(b2)

T − d ≤ t
{
stage 2 exit

We show now that, if action exit does not impose agents to leave the platform,
then Lemma 41 does not hold and therefore, in presence of a unique buyer and
a unique seller, agents’ equilibrium strategies are different from those in the
original protocol presented in Section 2.

Consider the bargaining setting with one buyer b1 and one seller s1, with
d = 1, and where both agents enter the market at t = 0: agents’ optimal offers
are reported in Fig. 3. It can be easily observed that agents will immediately
match themselves and then they will start to negotiate at t = 1. If agents can
make exit without leaving the market, then they will make it at t = 1. Consider
Γ (1, s1,b1): s1 opens the negotiation (the analysis of Γ (1,b1, s1) is analogous). If
s employs the strategies provided in Section 2, i.e. offer(x∗(1)) with x∗(1) � 0.1,
then she gains Us1(x

∗(1), 0) � 0.1. If s makes exit and subsequently match(b1)
at t = 2, then she gains � 0.45. Exactly, the computation of the expected utility
of making exit at t = 1 and subsequently match(b1) at t = 2 is: with probability
.5 s1 acts at t = 3 offering x∗(3) = 0.05 and with probability .5 b1 acts at t = 3
offering x∗(3) = 0.95; since these agreements are reached at t = 4, their utility
must be discounted by δ2

s1 . Notice that agents prefer to offer rather than to exit
at t = 3 (otherwise agents would not reach any agreement).
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Fig. 3. Subgames Γ (1,b1, s1) and Γ (1, s1, b1) where RPb1 = 1, δb1 = 0.95, Tb1 = 5,

RPs1 = 0, δs1 = 0.95, Ts1 = 12, and d = 1

4.2 One-Sided Competition I: One Buyer and More Sellers

We consider the setting wherein there are one buyer bi and more sellers sj

with j ∈ {1, . . . , n}. We denote by x∗
bi

(t, sj) the optimal offer of bi at t in the
negotiation with sj and, analogously, by x∗

sj
(t,bi) the optimal offer of sj at t in

the negotiation with bi.
The analysis of the considered setting is straightforward. Indeed, all the sell-

ers sj (with RPsj < RPb1) prefer to negotiate and reach an agreement rather
than not to negotiate and reach thus NoAgreement. The buyer b1 will choose
the seller to match in order to maximize her profit. Exactly, the utility ex-
pected by b1 from being matched by a seller sj at t is: 1

2Ub1(x∗
sj

(t,b1), t + d) +
1
2Ub1(x∗

b1
(t, sj), t + d + 1). Indeed, with probability .5 sj will open the negoti-

ation at t + d and with probability .5 b1 will open the negotiation. Among all
the possible sjs, b1 will choose the one that maximize her expected utility. By
trivial mathematics we can write:

s∗(b1, t) = arg min
sj∈{s1,...,sn}

{
x∗
sj

(t + d,b1) + x∗
b1

(t + d, sj)
}

,

where s∗(b1, t) is the seller that b1 will match at t on the equilibrium path.
We state the following theorem, whose proof trivially follows from the above
considerations.
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Theorem 44 In presence of one buyer and more sellers, b1 and s∗(b1, t)’s equilib-
rium strategies are exactly the ones reported in Theorem 43 where s1 is substituted
by s∗(b1, t) and equilibrium strategies of all the other sjs are to make exit .

4.3 One-Sided Competition II: More Buyers and One Seller

We consider the setting wherein there are more buyers bi with i ∈ {1, . . . , m}
and one seller s1. The analysis of the considered setting is analogous to the
previous one. All the buyers bi (with RPbi > RPs1) prefer to negotiate and
reach an agreement rather than not to negotiate and reach thus NoAgreement.
The seller s1 will choice the buyer to match in order to maximize her profit.
Exactly, the utility expected by s1 from being matched by a buyer bi at t is:
1
2Us1(x∗

s1(t,bi), t+d)+ 1
2Us1(x∗

bi
(t, s1), t+d+1). Among all the possible bis, s1

will choose the one that maximize her expected utility. By trivial mathematics
we can write:

b∗(s1, t) = arg max
bi∈{b1,...,bm}

{
x∗
s1(t + d,bi) + x∗

bi
(t + d, s1)

}
,

where b∗(s1, t) is the buyer that s1 will match at t on the equilibrium path.
We state the following theorem, whose proof trivially follows from the above
considerations.

Theorem 45 In presence of more buyers and one seller, b∗(s1, t) and s1’s equi-
librium strategies are exactly the ones reported in Theorem 43 where b1 is sub-
stituted by b∗(s1, t) and equilibrium strategies of all the other bis are to make
nonmatchable at the stage 1 and exit at stage 2.

4.4 Two-Sided Competition: More Buyers and More Sellers

The study of the setting with more buyers and more sellers is not straightforward.
This is due to the intrinsic complexity of the game: it is essentially a multistage
game wherein m+n agents concurrently act and the game changes at each stage.
Nevertheless, for a large set of values of the parameters an efficient solution can
be found. Indeed, for a large set of values of the parameters it is possible to limit
the study of the agents’ matching to the initial time point t = 0: from t > 0 all
the agents will be matched and therefore agents’ equilibrium strategies will be
those described in Section 2. In what follows we provide such an algorithm and
we experimentally evaluate when it is effective; in future works we will provide a
solution for the values of the parameters such that the proposed algorithm fails.

The algorithm develops in three steps. We present them one by one.
Step 1. In this step agents’ optimal offers in all the possible negotiations

are computed. Formally, x∗
bi

(t, sj) and x∗
sj

(t,bi) for every i ∈ {1, . . . , m} and
j ∈ {1, . . . , n} are computed. Their values are produced as stated in Section 2.

Step 2. In this step agents’ preferences concerning the opponent to match are
computed. Precisely, for every buyer bi (and for every seller sj) it is necessary to
sort the sellers (the buyers) from the one which gives bi the maximum expected
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utility to the one which gives bi the minimum expected utility. Formally, for the
buyers we need to produce:⎛

⎜⎜⎝
b1 : s2 � s3 � s1 � s5 � s6 � . . .
b2 : s7 � s1 � s3 � s4 � s2 � . . .
. . . . . .
bm : s7 � s5 � s2 � s1 � s6 � . . .

⎞
⎟⎟⎠

(this is to say that b1 prefers to match s2 than s3, prefers to match s3 than s1,
and so on). The preferences of the sellers will be defined analogous. We recall
that the preferences of a buyer bi can be found by ordering x∗

bi
(0, sj)+x∗

sj
(0,bi)

for any j ∈ {1, . . . , n} from the minimum one to the maximum one. Analogously,
the preferences of a seller sj can be found by ordering x∗

bi
(0, sj) + x∗

sj
(0,bi) for

any j ∈ {1, . . . , n} from the maximum one to the minimum one.
Step 3. We iteratively apply the following procedure while it can be applied.

If there exists a couple (bi, sj) such that sj is the most preferred seller for bi

and bi is the most preferred buyer for sj , then:

– bi and sj match themselves and are removed from the matching problem,
– bi is removed from the preferences of all the possible sellers present in the

matching problem and, analogously, sj is removed from the preferences of
all the possible buyers present in the matching problem.

Given the result produced by the above iterated procedure, if all the buyers
or all the sellers are matched, then an equilibrium strategy has been found.
Otherwise, further analysis is required. The proof of optimality of the algorithm
is trivial and is based on the iterated elimination of strictly dominated actions.

The proposed algorithm is efficient, since it requires:

– (Step 1) 2 · m · n backward inductions as those described in Section 2 to
produce agents’ optimal offers in all the possible negotiations,

– (Step 2) m sorts for producing buyers’ preferences and n sorts for producing
sellers’ preferences,

– (Step 3) 1
2 min{m2, n2} searches for finding possible couples to match.

Summarily, the asymptotical computational complexity of the proposed algo-
rithm is O(m · n).

We report an example of the use of the proposed algorithm. We consider a
setting with three buyers b1,b2,b3 and three sellers s1, s2, s3. Buyers’ param-
eters are: RPb1 = RPb2 = RPb3 = 1, δb1 = 0.98, δb2 = 0.94, δb3 = 0.65,
Tb1 = 68, Tb2 = 3, Tb3 = 84. Sellers’ parameters are: RPs1 = RPs2 = RPs3 = 0,
δs1 = 0.77, δs2 = 0.89, δs3 = 0.73, Ts1 = 91, Ts2 = 71, Ts3 = 19. We report their
preferences: ⎛

⎝b1 : s1 � s3 � s2

b2 : s3 � s1 � s2

b3 : s3 � s1 � s2

⎞
⎠ ,

⎛
⎝ s1 : b3 � b2 � b1

s2 : b3 � b2 � b1

s3 : b3 � b2 � b1

⎞
⎠
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Since b3’s most preferred seller is s3 and s3’s most preferred seller is b3, then b3

and s3 match themselves and they are removed from other agents’ preferences.
We obtain: (

b1 : s1 � s2

b1 : s1 � s2

)
,

(
s1 : b2 � b1

s2 : b2 � b1

)
Since b2’s most preferred seller is s1 and s1’s most preferred seller is b2, then b2

and s1 match themselves and they are removed from other agents’ preferences.
We obtain: (

b1 : s2

)
,
(
s2 : b1

)
Finally, b1 and s2 match themselves. Therefore, the matched agents are: (b1, s2),
(b2, s1), and (b3, s3).

We report now an example where the application of our algorithm does not
produce any equilibrium strategies. Buyers’ parameters are: RPb1 = RPb2 =
RPb3 = 1, δb1 = 0.71, δb2 = 0.97, δb3 = 0.75, Tb1 = 10, Tb2 = 19, Tb3 = 51.
Sellers’ parameters are: RPs1 = RPs2 = RPs3 = 0, δs1 = 0.92, δs2 = 0.91,
δs3 = 0.98, Ts1 = 43, Ts2 = 4, Ts3 = 87. Agents’ preferences are:⎛

⎝b1 : s2 � s1 � s3

b2 : s1 � s2 � s3

b3 : s2 � s1 � s3

⎞
⎠ ,

⎛
⎝ s1 : b3 � b1 � b2

s2 : b1 � b3 � b2

s3 : b3 � b1 � b2

⎞
⎠

Notice that the procedure described in the Step 3 cannot be applied, since there
is not any couple (bi, sj) such that bi’s most preferred seller is sj and sj’s most
preferred buyer is bi.

We experimentally evaluate the effectiveness of our algorithm. We consider
experimental settings characterized by a different number of agents, precisely,
by different values for min{m, n}s. For each value of min{m, n} ∈ {1, . . . , 25}
we have considered 105 different settings where agents’ parameters are chosen
with uniform probability distribution from the following intervals: δi ∈ (0, 1),
Ti ∈ [2, 100], RPbi = 1, RPsi = 0. In Tab. 2 we report the percentage of success of
the proposed algorithm. The algorithm results very effective for min{m, n} ≤ 6.

Table 2. Experimental evaluation of the effectiveness of the proposed algorithm

min{m,n} success min{m, n} success min{m,n} success

2 ∼ 99.7% 6 ∼ 90.1% 10 ∼ 74.2%

3 ∼ 98.2% 7 ∼ 86.1% 15 ∼ 55.5%

4 ∼ 96.2% 8 ∼ 82.4% 20 ∼ 37.0%

5 ∼ 93.4% 9 ∼ 78.1% 25 ∼ 24.7%

5 Conclusions and Future Works

Automated bargaining is a prominent challenge for artificial intelligence, being
bargaining the principal negotiation protocol. The study of bargaining is vast in
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literature both in bilateral settings and in market settings, but no work provides
a model that satisfactorily captures electronic markets.

In this paper we propose an extension of the classic alternating-offers to cap-
ture the setting wherein there are more buyers and more sellers. The proposed
model satisfactorily extends the alternating-offers protocol: in presence of a
unique buyer and a unique seller, agents’ equilibrium strategies are those in
the original protocol.

Furthermore, we game theoretically study the proposed model. Precisely, we
provide agents’ equilibrium strategies in presence of one-sided competition and
an algorithm that produces agents’ equilibrium strategies in presence of two-
sided competition for a large set of values of the parameters. Finally, we exper-
imentally evaluate the effectiveness of the proposed algorithm.

Our intention is to refine our model to allow agents to rematch themselves
also during the negotiation and to provide an algorithm able to produce agents’
equilibrium strategies for all the values of the parameters.
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Abstract. We undertake an experimental study of heuristics designed

for the Travel division of the Trading Agent Competition. Our primary

goal is to analyze the performance of the sample average approximation

(SAA) heuristic, which is approximately optimal in the decision-theoretic

(DT) setting, in this game-theoretic (GT) setting. To this end, we con-

duct experiments in four settings, three DT and one GT. The relevant

distinction between the DT and the GT settings is: in the DT settings,

agents’ strategies do not affect the distribution of prices. Because of

this distinction, the DT experiments are easier to analyze than the GT

experiments. Moreover, settings with normally distributed prices, and

controlled noise, are easier to analyze than those with competitive equi-

librium prices. In the studied domain, analysis of the DT settings with

possibly noisy normally distributed prices informs our analysis of the

richer DT and GT settings with competitive equilibrium prices. In future

work, we plan to investigate whether this experimental methodology—

namely, transferring knowledge gained in a DT setting with noisy signals

to a GT setting—can be applied to analyze heuristics for playing other

complex games.

1 Introduction

In the design of autonomous trading agents that buy and sell goods in electronic
markets, a variety of interesting computational questions arise. One of the most
fundamental is to determine how to bid on goods being auctioned off in separate
markets when the agent’s valuations for those goods are highly interdependent
(i.e., complementary or substitutable). The Trading Agent Competition (TAC)
Travel division was designed as a testbed in which to compare and contrast
various approaches to this problem [1]. We partake in an empirical investigation
of heuristics designed for bidding in the simultaneous auctions that characterize
TAC in a simplified TAC-like setting.

At a high-level, the design of many successful TAC agents (for example,
Walverine [2], RoxyBot (Greenwald and Boyan 2004 & 2005) and ATTac [3])
can be summarized as: Step 1: predict, i.e., build a model of the auctions’ clear-
ing prices; Step 2: optimize, i.e., solve for an (approximately) optimal set of bids,

W. Ketter et al. (Eds.): AMEC/TADA 2008, LNBIP 44, pp. 131–146, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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given this model. This paper is devoted to the study of bidding, that is, the opti-
mization piece of this design. We assume that agents are given price predictions
in the form of a black box from which they can sample a vector of predicted
prices; such samples are called scenarios. Because finding an optimal solution to
the bidding problem is not generally tractable, our study centers around a se-
ries of heuristics that construct bids based on approximations or simplifications.
We subject these heuristics to experimental trials within a simplified version of
the TAC domain that we find more amenable to experimental study than the
full-blown TAC Travel game.

2 TAC Travel Game

In this section, we briefly summarize the TAC Travel market game. For more
details, see http://www.sics.se/tac/.

A TAC Travel agent is a simulated travel agent whose task is to organize
itineraries for a group of clients to travel to and from TACTown. The agent’s
objective is to procure “desirable” travel goods as inexpensively as possible. An
agent desires goods (i.e., it earns utility for procuring them) to the extent that
they comprise itineraries that satisfy its clients’ preferences.

Travel goods are sold in simultaneous auctions:

– Flights are sold by the “TAC seller” in dynamic posted-pricing environments. No

resale is permitted.

– Hotel reservations are also sold by the “TAC seller,” in multi-unit ascending call

markets. Specifically, 16 hotel reservations are sold in each hotel auction at the

16th highest price. No resale is permitted.

– Agents trade tickets to entertainment events among themselves in continuous dou-

ble auctions.

Flights and hotel reservations are complementary goods: flights do not garner
utility without complementary hotel reservations; nor do hotel reservations gar-
ner utility without complementary flights. Tickets to entertainment events, e.g.,
the Boston Red Sox and the Boston Symphony Orchestra, are substitutable.

Clients have preferred departure and arrival dates, and a penalty is subtracted
from the agent’s utility for allocating packages that do not match clients’ pref-
erences exactly. For example, a penalty of 200 (100 per day) is incurred when a
client who wants to depart Monday and arrive on Tuesday is assigned a pack-
age with a Monday departure and a Thursday arrival. Clients also have hotel
preferences, for the two type of hotels, “good” and “bad.” A client’s preference
for staying at the good rather than the bad hotel is described by a hotel bonus,
utility the agent accumulates when the client’s assigned package includes the
good hotel.

3 Bidding Heuristics

Our test suite consists of six marginal-utility-based and two sample average
approximation heuristics. We present a brief description of these heuristics here.

http://www.sics.se/tac/
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Interested readers are referred to Wellman, Greenwald, and Stone ([4]) for more
detailed explanations.

3.1 Marginal-Utility-Based Heuristics

In a second-price auction for a single good, it is optimal for an agent to simply
bid its independent value on that good [5]. In simultaneous auctions for multi-
ple goods, however, bidding is not so straightforward because it is unclear how
to assign independent values to interdependent goods. Perfectly complementary
goods (e.g., an inflight and outflight for a particular client) are worthless in isola-
tion, and perfectly substitutable goods (e.g., rooms in different hotels for the same
client on the same day) provide added value only in isolation. Still, an agent might
be tempted to bid on each good its marginal utility (MU), that is, the incremental
value of obtaining that good relative to the collection of goods it already owns or
can buy. Many reasonable bidding heuristics (e.g., Greenwald and Boyan ([6], [7]),
Stone et al. ([3])) incorporate some form of marginal utility bidding.

Definition 1. Given a set of goods X, a valuation function v : 2X → R, and
bundle prices q : 2X → R. The marginal utility μ(x, q) of good x ∈ X is defined as:

μ(x) = max
Y ⊆X\{x}

[v(Y ∪ {x}) − q(Y )] − max
Y ⊆X\{x}

[v(Y ) − q(Y )]

Consistent with TAC Travel, we assume additive prices: that is, in the above
equation, the bundle pricing function q returns the sum of the predicted prices
of the goods in Y .

Our heuristics actually sample a set of scenarios, not a single vector of pre-
dicted prices. We consider two classes of marginal utility heuristics based on how
they make use of the information in the scenarios.

Bidding Heuristics that Collapse Available Distributional Informa-
tion. The following heuristics collapse all scenarios into a single vector of pre-
dicted prices, namely the average scenario, and then calculate the marginal util-
ity of each good assuming the other goods can be purchased at the average
prices.

StraightMU bids the marginal utility of each good.

TargetMU bids marginal utilities only on the goods in a target set of goods. The
target set is one that an agent would optimally purchase at the average prices.

TargetMU* is similar to TargetMU, but calculates marginal utilities assuming
only goods from the target set are available. This results in higher bids.

Bidding Heuristics that Exploit Available Distributional Information.
The heuristics discussed thus far collapse the distributional information con-
tained in the sample set of scenarios down to a point estimate, thereby operating
on approximations of the expected clearing prices. The heuristics described next
more fully exploit any available distributional information; they seek bids that
are effective across multiple scenarios, not in just the average scenario.
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AverageMU calculates the marginal utilities of all goods, once per scenario, and
then bids the average MU of each good in each auction.

BidEvaluator evaluates K candidate bidding policies on a fixed set of E sample
scenarios. The policy that earns the highest total score is selected. BidEvaluator
generates its candidates by making successive calls to the TargetMU heuristic,
each time sending it a different scenario to use as its predicted prices.

BidEvaluator* is identical to BidEvaluator, except that its candidate bidding
policies are generated by calling TargetMU* instead of TargetMU.

3.2 Sample Average Approximation

The problem of bidding under uncertainty—how to bid given a distributional
model of predicted prices—is a stochastic optimization problem. The objective
is to select bids that maximize the expected value of the difference between the
value of the goods the agent wins and the cost of those goods. Formally,

Definition 2 (Stochastic Bidding Problem). Given a set of goods X, a
(combinatorial) valuation function v : 2X → R, and a distribution f over clear-
ing prices p ∈ RX , the stochastic bidding problem is defined as:

max
b∈RX

Ep∼f [v(Win(b, p)) − p̃(Win(b, p))] (1)

Here, x ∈ Win(b, p) if and only if b(x) ≥ p(x), and p̃ : 2X → R is the additive
extension of p ∈ RX , that is, the real-valued function on bundles defined as
follows: p̃(Y ) =

∑
x∈Y p(x), for all Y ⊆ X .

Sample average approximation (SAA) is a standard way of approximating the
solution to a stochastic optimization problem, like bidding under uncertainty.
The idea behind SAA is simple: (i) generate a set of sample scenarios, and
(ii) solve an approximation of the problem that incorporates only the sample
scenarios.

Technically, the TAC Travel bidding problem, in which the goal is to maximize
the difference between the value of allocating travel packages to clients and the
costs of the goods procured to create those packages, is a stochastic program with
integer recourse [8]. Using the theory of large deviations, Ahmed and Shapiro [9]
establish the following: the probability that an optimal solution to the sample
average approximation of a stochastic program with integer recourse is in fact an
optimal solution to the original stochastic program approaches 1 exponentially
fast as the number of scenarios S → ∞. Given time and space constraints,
however, it is not always possible to sample sufficiently many scenarios to make
any reasonable guarantees about the quality of a solution to the sample average
approximation.

Our default implementation of SAA which we call SAABottom always bids
one of the sampled prices. However, given a set of scenarios, SAA is indifferent
between bidding the highest sampled price or any amount above that price: in
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any case SAA believes it will win in all scenarios. Consequently, we do not know
exactly how much SAA is willing to pay when it bids the highest sampled price.
In the settings with imperfect price prediction or when SAA is given too few
scenarios, it may be desirable to bid above the highest sampled price to increase
the chances of winning. For this reason, we introduce a modified SAA heuristic—
SAATop—in which bids equal to the highest sampled price are replaced with the
“maximum” bid. In general, this bid is the most the agent is willing to pay. In
our domain, this maximum is the sum of the utility bonus (300; see Footnote 2)
and, for good hotels, the largest hotel bonus among the agent’s clients’.

4 Experiments in TAC Travel-Like Auctions

Weconsider four experimental settings: normallydistributedprices in twodecision-
theoretic settings, one with perfect and another with imperfect prediction; and
competitive equilibrium (CE) prices in a decision-theoretic setting with perfect
prediction and a game-theoretic setting with typically imperfect prediction.

Our experiments were conducted in a TAC Travel-like setting, in which nearly
all the standard rules apply.1 Most notably, we simplified the dynamics of the
game. In TAC, flights and entertainment tickets are available continuously at
time-varying prices, and hotel auctions close one at a time, providing opportu-
nities for agents to revise their bids on other hotels. In this work, we focus on
one-shot auctions. More specifically, we assume all hotels close after one round
of bidding.

To reduce variance, we eliminated entertainment trading and simplified flight
trading by fixing flight prices at zero.2,3

We built a simulator of the TAC server, which can easily be tailored to simu-
late numerous experimental designs. Our simulator is available for download at
http://www.sics.se/tac/showagents.php.

Each trial in an experiment (i.e., each simulation run) proceeded in five steps:

1. The agents predict hotel clearing prices in the form of scenarios - samples
from the predicted distribution of clearing prices.
– In the settings where prices are normally distributed, the scenarios were

sampled from given distributions of predicted prices.
– In the settings characterized by competitive equilibrium prices, scenar-

ios were generated by simulating simultaneous ascending auctions, as
described in Lee et al. [8].

1 For a detailed description of the TAC Travel rules, visit http://www.sics.se/tac
2 Since we fixed flight prices at zero (instead of roughly 700 for round trip tickets), we

adjusted the utility bonus for constructing a valid travel package down from 1000 to

300. That way, our simulation scores fall in the same range as real game scores.
3 Initially, we ran experiments with flight prices fixed at 350, which is the value close

to the average flight price in the TAC Travel game. However the resulting one-shot

setting was not interesting as flight tickets represented a very high sunk cost and

the dominant hotel bidding strategy was to bid very high on the hotels that would

complement the flights in completing travel packages.

http://www.sics.se/tac/showagents.php
http://www.sics.se/tac
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2. The agents construct bids using price information contained in the scenarios
and submit them.

3. The simulator determines hotel clearing prices, and bids that are equal to or
above those clearing prices are deemed winning bids.

– In the decision-theoretic settings, the clearing prices were sampled from
given distributions of clearing prices.

– In the game-theoretic setting, each hotels’ clearing price was set to the
16th highest bid on that hotel.

4. Agents pay clearing prices for the hotels they win. They use the hotels and
free flight tickets to create packages for their clients, based on which they
earn the corresponding utilities.

5. Each agent’s final score is the difference between its utility and its cost.

The first two steps in the above sequence correspond to the prediction and
optimization steps typical of autonomous bidding agents. To carry out step 2,
the agents employ heuristics from a test suite that includes the eight bidding
heuristics detailed in Wellman, et al.([4]), and summarized above.

Regarding price prediction in step 1, hotel price predictions were perfect in our
first and third experimental setups and imperfect in our second and fourth. In
the first two, hotel prices were predicted to be normally distributed; in the second
two, hotel prices were predicted to be competitive equilibrium prices. Our first
three experimental setups were decision-theoretic; the fourth was game-theoretic.
In the second setup, we simply tweaked the normal distribution of predicted
prices to generate a similar, but distinct, normal distribution of clearing prices.
In the fourth setup, the game-theoretic setting, clearing prices were dictated by
the outcome of 16th price auctions. All setups, with all settings of the parameters
(μ, σ, and λ), were run for 1000 trials.

5 Decision-Theoretic Experiments with Perfect
Distributional Prediction

Our first experimental setup is decision-theoretic, with prices determined exoge-
nously. Each agent is endowed with perfect distributional information, so that
it constructs its bids based on samples drawn from the true price distribution.
Under these conditions, it is known that the SAA-based heuristics bid optimally
in the limit as S → ∞ [9]. The purpose of conducting experiments in this set-
ting was twofold: (i) to evaluate the performance of the SAA-based heuristics
with only finitely many scenarios; and (ii) to evaluate the performance of the
MU-based heuristics relative to that of the SAA-based heuristics. We find that
both the SAA-based heuristics and certain variants of the MU-based heuristics
(primarily, TargetMU* and BidEvaluator*) perform well assuming low variance,
but that the SAA-based heuristics and AverageMU outperform all the other
heuristics assuming high variance.
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Fig. 1. Mean Scores. Decision-theoretic setting with perfect distributional prediction.

5.1 Setup

Hotel prices were drawn from normal distributions with mean values4 μ̄ =
(150, 150, 150, 150, 250, 250, 250, 250) constant across experiments and standard
deviations σ ∈ {0, 20, 40, 60, 80, 100} varying across experiments.

5.2 Results

Figure 1 depicts the mean scores earned by each agent in each experiment: i.e.,
for each setting of σ.

The SAA-based agents perform better than most of the agents as variance
increases. They gain an advantage by submitting low bids on more goods than
necessary in an attempt to win only the goods that are cheap. We refer to this
strategy as hedging. We see that the SAA agents employ hedging because the
number of bids they place increases, their average bids decrease, and the number
of hotels they win remains constant as the variance increases. The number of
low-priced hotels increases with the variance making hedging especially effective
when variance is high.

Recall that target bidders (TargetMU, TargetMU*, BidEvaluator, and Bid-
Evaluator*) bid only on goods in their target set, i.e. they do not hedge. Con-
sequently, failing to win one of the requisite hotels results in not being able to
complete a package (most packages are for one-night stays as extending the stay
for an extra day is likely to be more expensive than incurring the penalty for
deviating from client’s preferences). TargetMU and BidEvaluator win fewer and
fewer hotels as the variance increases, and hence complete fewer and fewer pack-
ages. At the same time the average cost of hotels they win decreases. The agents’
4 In this, and all, hotel price vectors, the first four numbers refer to the price of the

bad hotel on days 1 through 4, respectively, and the second four numbers refer to

the price of the good hotel on days 1 through 4, respectively.
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scores have a slight upward trend as the benefit from lower cost outweighs the
loss from completing fewer packages.

BidEvaluator bids on more hotels than TargetMU when variance is 100. Recall
that BidEvaluator chooses the best of K bidding policies. Bidding policies that
bid on more hotels score higher because they hedge, implicitly. For example, a
policy that bids to reserve two nights for a client may earn a higher score than
a policy that bids to reserve one night as the reservation for two nights can be
used to create two separate one-night packages if some of the other bids fail.

TargetMU* and BidEvaluator*, the main rivals of the SAA-based agents, do
not perform well in this setting. Just like TargetMU and BidEvaluator, TargetMU*
and BidEvaluator* bid only on target goods. When variance is low (σ = 20),
bidding high on target good is a good strategy as evidenced by TargetMU*’s
and BidEvaluator*’s good performance. As variance increases the agents fail to
win some of the target goods. In fact when variance is 100, TargetMU* submits
5.8 bids but wins only 4.8 while BidEvaluator* submits 7.4 bids and wins only
5.2. The average cost of hotels that TargetMU* and BidEvaluator* do win is 50%
higher than the prices the SAA-based agents pay per hotel.

Interestingly, AverageMU’s strategy happens to be very close to hedging when
variance is high. StraightMU submits a lot of bids too but unlike AverageMU
does not perform well. StraightMU’s bids are higher than AverageMU’s resulting
in more purchased hotels and higher average hotel cost. The increase in cost that
StraightMU incurs compared to AverageMU is not compensated by the increase
in utility that extra hotels bring.

In conclusion, the SAA-based agents and AverageMU with their hedging strat-
egy outperform the other agents when variance is high.

6 Decision-Theoretic Experiments with Imperfect
Distributional Prediction

In our second decision-theoretic experimental setup, the agents construct their
bids based on samples drawn from a normal distribution that resembles, but is
distinct from, the true distribution. Our intent here is to evaluate the agents’
behavior in a controlled setting with imperfect predictions, in order to inform
our analysis of their behavior in the game-theoretic setting, where predictions
are again imperfect. We find that SAATop performs worse than TargetMU*, and
BidEvaluator* at low variance, but outperforms most of the other agents at high
variance.

6.1 Setup

In these experiments, the predicted price distributions were normal with mean
values μ̄ = (150, 150, 150, 150, 250, 250, 250, 250), whereas the clearing price dis-
tributions were normal with mean values μ̄+λ. That is, the mean of each predicted
distribution differed by λ from the true mean. For example, for λ = −40, predicted
prices were sampled from normal distributions with μ̄ = (150, 150, 150, 150, 250,
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250, 250, 250), and clearing prices were sampled from normal distributions with
μ̄ = (110, 110, 110, 110, 210, 210, 210, 210). Hence, negative values of λ implied
“overprediction.” Similarly, positive values of λ implied “underprediction.” The λ
parameter varied as follows: λ ∈ {−40,−30,−20,−10, 0, 10, 20, 30, 40}. We chose
as standard deviations of the distributions a low setting (σ = 20) and a high set-
ting (σ = 80).

In the low (and similarly in the high) deviation experiments the strategies of
the agents did not change with λ because the agent received the same predictions
for all values of λ. Experiments in this setting evaluate the strategies from the
perfect prediction setting with σ = 20 and σ = 80 under different distributions
of clearing prices as controlled by the values of λ.

6.2 Results

Low Variance: σ = 20. The results assuming low variance are shown in Fig-
ure 2(a). Recall from the perfect prediction experiments that the strategy of
bidding high on the goods from a target set is as good as hedging when variance
is low. In particular, TargetMU* and BidEvaluator* perform as well as the SAA-
based agents. We will see that hedging is not a good strategy in the low-variance
setting with imperfect prediction while bidding high on the goods in a target set
works fairly well.

In an attempt to hedge, the SAA-based agents submit twice as many bids
as TargetMU, TargetMU*, BidEvaluator, and BidEvaluator*. The strategy of the
SAA-based agents is to bid low hoping to win approximately half the bids.
Because predictions are not perfect, the SAA-based agents win too many hotels
when prices are lower than expected and too few hotels when prices are higher
than expected. Not surprisingly, SAATop, which bids higher than its counterpart,
performs worse than SAABottom when prices are lower than expected and better
than SAABottom when the opposite it true.

When there is a high degree of overprediction and variance is low, (e.g., when
λ = −40 and σ = 20), clearing prices are very likely to be below predicted prices.
Since TargetMU always bids at least the predicted price, it is likely to win all the
hotels it expects to win in this setting, and hence performs well. Consequently,
TargetMU*, BidEvaluator, and BidEvaluator* all perform well. In contrast, when
prices are often lower than expected, AverageMU and StraightMU win too many
goods and thus incur high unnecessary costs.

As λ increases from −40 to −10, AverageMU and StraightMU win fewer un-
necessary hotels, which improves their scores. But once λ reaches 0, they fail to
win enough hotels, and their utilities decrease as λ increases to 40. TargetMU
and BidEvaluator encounter the same difficulty.

TargetMU* and BidEvaluator* bid higher than TargetMU and BidEvaluator;
hence, underprediction affects the former pair less than the latter pair.

To summarize, in the low-variance setting TargetMU*’s and BidEvaluator*’s
strategy of bidding high on a target set of goods is more robust to imperfect pre-
dictions than the strategy of the SAA-based agents that involves some hedging.
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Fig. 2. Mean Scores. Imperfect prediction.

High Variance: σ = 80. The results assuming high variance are shown in
Figure 2(b). As we observed in the experiments with perfect prediction and
σ = 80, hedging allowed the SAA-based agents to dominate. We will see that
hedging is effective in the high-variance setting even when predictions are not
perfect.

The SAA-based agents submit over four times as many bids as TargetMU,
TargetMU*, BidEvaluator, and BidEvaluator*. In contrast to the setting with low
variance, high overprediction (λ = −40) does not cause the SAA-based agents
to overspend on hotels. In the high-variance setting the SAA-based agents’ bids
are 40% lower than in the low-variance setting (σ = 20) and only one-third of
the bids are winning bids.

Similarly, the SAA-based agents perform much better in the high underpre-
diction (λ = 40) setting when variance is high than when variance is low. In the
high-variance setting with underprediction the SAA-based agents win at least as
many hotels as the high bidding TargetMU* and BidEvaluator* agents. Although
the SAA-based agents bid half the price that TargetMU* and BidEvaluator* bid,
a much higher number of bids that the SAA-based agents submit combined with
high variance results in a similar number of winning bids.

Performance of the other agents is similar to their performance in the setting
with perfect prediction. TargetMU, TargetMU*, BidEvaluator, and BidEvaluator*
do not hedge and perform poorly in under and over prediction settings. Target
bidders often fail to win some of the target hotels even in the overprediction
setting. AverageMU submits a lot of low bids resulting in a well-hedged strat-
egy and the scores that are as high as SAA’s for some values of λ. As before,
StraightMU wins too many hotels.

In contrast to the setting with low variance and imperfect predictions, the
SAA-based agents’ hedging strategy works well when there is high variance.
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7 Experiments with Competitive Equilibrium Prices

In contrast with our first two experimental settings, in which the hotel clearing
prices and their corresponding predictions are exogenously determined and hence
independent of any game specifics, in our second two experimental settings, both
hotel clearing prices and predictions are determined endogenously (i.e., based
on features of each game instance). Specifically, following Walverine [2], hotel
clearing prices and their corresponding predictions are taken to be approximate
competitive equilibrium (CE) prices. CE prices are prices at which supply equals
demand when all market participants act as price-taking profit maximizers [10].
CE prices need not exist, and likely do not in many of the games studied here.
Still, we approximate CE prices as follows: in a market inhabited by its own eight
clients and eight randomly sampled clients per competitor, each agent generates
a scenario by simulating simultaneous ascending auctions (i.e., increasing prices
by some small increment until supply exceeds demand; see Lee et al. [8] for
details); the resulting prices form a scenario.

7.1 Setup

In this context, where hotel price predictions are (roughly) competitive equi-
librium prices, we designed two sets of experiments: one decision-theoretic and
one game-theoretic. In the former, hotel clearing prices are also the outcome
of a simulation of simultaneous ascending auctions, but depend on the actual
clients in each game, not some random sampling like the agents’ predictions.
(Our simulator is more informed than the individual agents.) In the latter, hotel
clearing prices are determined by the bids the agents submit. As in TAC Travel,
the clearing price is the 16th highest bid (or zero, if fewer than 16 bids are sub-
mitted). Note that hotel clearing prices and their respective predictions are not
independent of one another in these experiments.

In these experiments games are played with a random number of agents drawn
from a binomial distribution with n = 32 and p = 0.5, with the requisite num-
ber of agents sampled uniformly with replacement from the set of eight possible
agent types. The agents first sample the number of competitors from the bino-
mial distribution, and then generate scenarios assuming the sampled number of
competitors, resampling that number to generate each new scenario.

7.2 Decision-Theoretic Experiments

Marginal frequency distributions of CE prices in these experiments have means
(109, 126, 126, 107, 212, 227, 227, 210) and standard deviations (47, 37, 37,
46, 50, 41, 41, 49). Standard deviation in this setting is close to 40 making this
setting similar to the one with perfect prediction and σ = 40. The mean hotel
prices are approximately 20% lower in this CE setting but we do not expect
the difference in mean hotel prices to have a strong effect on the ranking of the
agents and attribute the differences in relative results to the different structure
of prices: unlike the setting with normally distributed prices, CE prices are not
independent.
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SAATop, SAABottom, TargetMU*, and BidEvaluator* are among the best agents
in this CE setting (see Figure 3(a)). However, StraightMU and especially Aver-
ageMU perform poorly. AverageMU and StraightMU submit more bids and win
more hotels than the other agents, but cannot create as many packages as the top-
scoring agents. This is because (i) CE prices of substitutable goods are similar, and
(ii) marginal utilities of substitutable goods are similar. As a result, AverageMU
and StraightMU bid almost the same amount on all substitutable goods and either
win or lose all of them.

SAA-based agents employ some hedging but do not perform significantly bet-
ter than the non-hedging heuristics TargetMU* and BidEvaluator*.
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Fig. 3. Mean scores and confidence intervals

7.3 Game-Theoretic Experiments

The predicted prices are the same as in the decision-theoretic experiments with
CE prices and 32 agents: means (109, 126, 126, 107, 212, 227, 227, 210) and
standard deviations (47, 37, 37, 46, 50, 41, 41, 49). Marginal frequency distri-
butions of clearing prices have means (91, 98, 100, 91, 198, 186, 187, 197) and
standard deviations (41, 33, 32, 40, 50, 56, 54, 50). L1-norm of the difference
between mean price vectors is 197. Predicted prices are slightly higher (by about
20) than the clearing prices. This is similar to the decision-theoretic setting with
overprediction (λ = −20) and medium deviation (between 20 and 80).

Indeed, we find that the results in this setting (see Figure 3(b)) are similar
to the results in the decision-theoretic setting with imperfect prediction and
high variance: λ = −20 and σ = 80 (see the ranking of agents for λ = −20
in Figure 2(b)). The ranking of non-SAA agents is almost the same in both
settings. A notable exception is AverageMU, which performs much worse in the
game-theoretic setting for the reasons described above. SAATop and SAABottom
are the best agents in this setting, with SAABottom performing slightly better.
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8 Summary and Discussion of Experimental Results

In our experiments, we evaluated the performance of various bidding heuristics
in simultaneous auctions. Based on our findings, we summarize the performance
of the heuristics analyzed as follows:

– SAATop and SAABottom perform well in all settings except for the setting
with imperfect prediction and low variance. SAATop and SAABottom are
especially effective in high-variance settings because they are able to take
advantage of hedging opportunities.

– TargetMU and BidEvaluator are competitive only in the settings with low vari-
ance and high overprediction. BidEvaluator outperforms TargetMU in high-
variance settings.

– TargetMU* and BidEvaluator* perform well in the settings with low variance.
– AverageMU performs well in the settings with independent prices.
– StraightMU performs worse than the other heuristics.

We can also make the following observations about the various bidding behaviors:

– SAABottom, SAATop, and AMU place low bids on many goods, intending to
win whatever sells at cheap prices. These heuristics incur high penalties for
not satisfying their clients’ precise preferences.

– TargetMU, TargetMU*, BidEvaluator, and BidEvaluator* place higher bids but
on fewer goods, namely those for which their clients have clear preferences.
These heuristics incur lower penalties, but risk alienating some clients, by
not allocating them any travel packages at all.5

The performance of SAA is known to approach optimality as the number of
scenarios approaches ∞ in decision-theoretic settings. We investigated the via-
bility of two SAA heuristics with only finitely-many scenarios in both decision-
theoretic and game-theoretic settings. Our first and third experimental settings
(with normally distributed and competitive equilibrium prices, assuming perfect
price prediction) established the viability of these heuristics in decision-theoretic
settings with only finitely-many scenarios. Our fourth experimental setting estab-
lished the viability of these heuristics (again, with only finitely-many scenarios,
but in addition) in a rich game-theoretic setting.

9 Related Work

The test suite considered here is far from exhaustive. In this section, we mention
several heuristics that were not included in our study—some TAC-specific; some
more general—and the reasons for their exclusion.

The creators of the ATTac agent [3] propose using AverageMU for TAC hotel
bidding. ATTac also employs distributional information about hotel prices to
5 No penalty is incurred when a client is not allocated any package at all. (Of course,

no utility is awarded either.)
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determine the benefit of postponing flight purchases until hotel prices are known;
this additional functionality, while certainly of interest, is not applicable to the
one-shot auction setting studied here.

WhiteBear’s [11] TAC hotel bids are computed by taking a weighted average of
the current price and the marginal utility of each hotel. The particular weights,
which were fine-tuned based on historical competition data, varied with time.
In a one-shot setting, WhiteBear’s strategy essentially reduces to TargetMU: it is
too risky to bid anything lower.

SouthamptonTAC [12] and Mertacor [13] focus on hotel price prediction, and
do not thoroughly analyze bidding. SouthamptonTAC uses fuzzy reasoning to
predict how hotel prices change during the game.

Unlike the heuristics studied in this paper, Walverine’s [2] bidding strategy
incorporates some game-theoretic reasoning. Specifically, Walverine analytically
calculates the distribution of marginal utilities of the other agents’ clients and
bids a best-response to this distribution. The authors implicitly assume that
the other agents bid marginal utilities (i.e., act decision-theoretically) and only
their agent bids a best-response (i.e., acts game-theoretically). We learned from
the study reported in this paper that SAA can be a successful bidding heuris-
tic in certain markets. Following Walverine’s line of thought, we can imagine
bidding a best-response to a distribution of SAA bids. However, if this bidding
strategy were successful, we would have to assume that other agents would act
game-theoretically as well; that is, they would also play a best-response to a
distribution of SAA bids. We may then seek a fixed point of this process. This
line of inquiry could be fascinating, but any approach based on this insight of
Walverine’s warrants a detailed study of its own.

Aside from TAC Travel there is a rich literature on bidding in other set-
tings. We reference a few papers here, highlighting some of the settings that
have been studied. We are not aware of any papers that address the problem of
bidding in multiple one-shot auctions for both complementary and substitutable
goods. Gerding et al. ([14]) describes a strategy for bidding in simultaneous one-
shot second-price auctions selling perfect substitutes. Byde, Priest, & Jennings
([15]) consider the decision-theoretic problem of bidding in multiple auctions
with overlapping closing times. Their model treats all goods as indistinguishable
(i.e., winning any n goods results in utility v(n)). Krishna & Rosenthal ([16])
characterize a symmetric equilibrium for the case of one-shot simultaneous auc-
tions with indistinguishable complementary goods (i.e. v(n) ≥ nv(1)).

10 Conclusion

The primary purpose of this work was to show that using as much distributional
information as possible is an effective approach to bidding in TAC Travel-like
one-shot simultaneous auctions. Most TAC Travel agents used point price predic-
tions or employed little distributional information about prices in constructing
their bids. Some of the difficulties with using distributional price predictions
include the inaccuracy of and the high computational cost of optimizing with
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respect to distributional predictions. We showed experimentally that the SAA
heuristic, which uses more distributional information than the other heuristics
in our test suite, is one of the best heuristics in the GT setting.

The underlying research question motivating this line of inquiry was: how
can we facilitate the search for heuristics that perform well against a variety
of competing agents in complex games? Analyzing the performance of an in-
dividual agent in a game-theoretic setting is complicated because each agent’s
performance is affected by the strategies of the others, and can vary dramatically
with the mix of participants. Others tackling this problem in the TAC Travel
domain have employed more direct game-theoretic analysis techniques based on
equilibrium computations (e.g., Vetsikas et al. [17] and Jordan, Kiekintveld, &
Wellman [18]). In contrast, we first used systematic decision-theoretic analysis
to help us understand some of the intrinsic properties of our bidding heuristics,
before attempting any game-theoretic analysis. We found that certain properties
of the heuristics that may have been hard to identify in game-theoretic settings,
such as how they perform in conditions of over- vs. under-prediction, carried
over from our DT to our GT settings.

In summary, the methodology advocated in this paper for analyzing game-
theoretic heuristics is this: first, evaluate the heuristic in DT settings with perfect
and imperfect predictions; and second, measure the accuracy of the agent’s pre-
dictions in GT experiments and use the corresponding DT analysis to inform the
analysis of the GT results. It remains to test this methodology in other complex
games, such as TAC SCM [19].
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Abstract. In the CAT Tournament, specialists facilitate transactions between 
buyers and sellers with the intention of maximizing profit from commission and 
other fees.  Each specialist must find a well-balanced strategy that allows it to 
entice buyers and sellers to trade in its market while also retaining the buyers 
and sellers that are currently subscribed to it.  Classification techniques can be 
used to determine the distribution of bidding strategies used by all traders sub-
scribed to a particular specialist.  Our experiments showed that Hidden Markov 
Model classification yielded the best results.  The distribution of strategies, 
along with other competition-related factors, can be used to determine the opti-
mal action in any given game state.  Experimental data shows that the GD and 
ZIP bidding strategies are more volatile than the RE and ZIC strategies. An 
MDP framework for determining optimal actions given an accurate distribution 
of bidding strategies is proposed as a motivator for future work. 

1   Introduction 

The field of Catallactics, or the science of exchanges, has received significant atten-
tion in the Artificial Intelligence community over the past few years, in large part, due 
to increasing use of e-commerce environments such online auctions and ticket ven-
dors.  In particular, significant attention has been given to designing efficient markets 
in which traders of numerous roles and preferences interact and exchange goods while 
utilizing various bidding strategies and trading tactics.  The CAT Tournament [1], an 
offshoot of the original Trading Agents Competition introduced in 2007, is a contest 
in which markets (hereon referred to as “specialists”) attempt to lure buyers and sell-
ers (hereon collectively referred to as “traders”) to their respective trading platforms 
in hopes of maximizing profit.  Unlike the original TAC Classic and TAC SMC com-
petitions in which specialists fulfilled stationary requests, CAT specialists must re-
spond to a variety of bidding techniques employed by the traders who also wish to 
maximize their own profits; this dynamic environment serves as the main motivation 
for developing adaptive markets that actively respond to the traders’ ever-changing 
preferences.   

Successful specialist design requires a balanced decision-making strategy that entices 
new traders to subscribe to the specialist while also retaining existing traders. One 
method of developing such a strategy involves creating a model for every trader and 
determining how each action affects each model. This approach is highly infeasible, 
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however, because the specialist does not receive any information regarding the traders 
other than which ones are currently subscribed to it; all incoming bids are masked be-
fore they reach the specialist, so the specialist is unable to definitively link each bid with 
a particular trader.  Creating a model for each trader is also highly ineffective given that 
there may be hundreds of traders interacting with one another.  Processing hundreds of 
models can take a significant amount of time on even the most powerful systems and 
may require more system memory than is available. 

One important feature of the CAT Tournament is that all traders use strictly one of 
four previously-defined bidding strategies.  In this paper we describe how classifica-
tion techniques can be used to exploit the fact that traders must use one of four bid-
ding strategies, reducing the number of models required to accurately represent all 
traders to just four.  We provide experimental results indicating how certain actions 
affect the trader pool, especially groups of traders utilizing the same bidding strategy.  
We also discuss how these group models can be used to train the specialist, allowing 
it make decisions quickly during the competition. 

The paper first provides a brief description of each bidding strategy in Section 2.  
The benefits of classifying traders according to bidding strategies are described in 
detail in Section 3, along with a comprehensive analysis of various classification 
techniques that have been applied to this problem and their final results.  Section 4 
briefly describes how classification (in conjunction with other game factors) can be 
used to determine the optimal action the specialist should take at any particular point 
in the competition. Experimental results are presented in Section 5, followed by a 
brief conclusion and a discussion of possible future work in Section 6. 

2   Bidding Strategies 

All traders in the CAT Tournament are required to utilize one of four bidding strate-
gies.  A brief description of each strategy is provided here, but the reader is urged to 
consult the original publications (see references [2]-[5]) that describe the strategies in 
detail. 

A trader using the Double Auction strategy [3] (henceforth called GD) keeps track 
of the number of bids accepted and rejected by the market at a particular price. Sub-
sequent values for the bids are chosen depending on the probability of acceptance of a 
bid, given the past history. Utilizing the Extensive Form Game strategy [5] (hereon 
referred to as RE), a trader alters its future bid values based on the profits that were 
observed for the previous bids.  The Zero Information-Constrained (ZI-C) strategy [4] 
involves generating random bids constrained between a maximum and minimum 
value.  A buyer using the ZI-C strategy will never bid more than what it believes a 
good is worth.  Likewise, a seller will never sell a good for less than the amount it 
cost the seller to obtain the good.  Finally, if a trader uses the Zero Information, Plus 
(ZIP) strategy [2], it utilizes the same trading techniques as a trader that employs ZI-
C, but it also updates the constraints based on feedback from the market.  Thus, each 
process (except when using the ZI-C strategy) receives feedback from the market in 
various forms and updates itself to generate new bids.  
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3   Classifying Traders by Bidding Strategies 

In the CAT Tournament, all traders must employ one of four previously-defined bidding 
strategies when placing bids with their respective specialist.  With this stipulation, it is 
reasonable to assume that all traders utilizing the same bidding strategy will behave 
similarly (at least more so than the other traders).  Likewise, any action taken by the 
specialist, such as raising or lowering a particular fee, will most likely have a similar 
affect on all traders utilizing the same bidding strategy.  These assumptions allow the 
specialist to reason about how its actions may affect an entire group of traders rather 
than individuals, turning the trader-modeling problem into a classification problem.  We 
discuss the validity of our assumption in the Experimental Results section (5). 

For simplicity, we consider only the bids that the specialist has received from its 
traders, and disregard the information available from other markets.  Unfortunately, 
the collected data cannot be used for classification in its rawest form because bids are 
masked before they reach the specialist, making it virtually impossible to determine 
from which trader each bid originated.  As a result, a set of collected data was manu-
ally unmasked in order to train and then test various classifiers.   

At this point we need to point out that, based on the assumption that traders act as 
groups, it is sufficient for the classifier to predict the proportional utilization of each 
bidding strategy rather than identify the bidding strategy used by each individual trader.  
This relaxation becomes crucial during the actual competition when all of the bids are 
again masked and the specialist is unable to determine the origin of each bid it receives. 

Bid sequences were collected for 400 traders (100 traders for each strategy), with their 
identities unmasked. We decided that focusing on the selling trader sequences alone 
would suffice to evaluate the efficacy of the classification strategy. In all, 2076 bid se-
quences were generated by the system. Two-thirds (1384) of these samples were ran-
domly chosen to be the training set and one-third of the data (692) was used for testing. 

We describe our data collection methods in Section 3.1 and then examine two  
classification techniques in detail, focusing our attention on SVM Classification in 
Section 3.2 and HMM Classification in Section 3.3.  In Section 3.4 we briefly discuss 
other classification techniques that were considered but not explored in detail. 

3.1   Data Collection 

CAT, each trader makes a bid to the market and continues to update it until another 
trader in the same market accepts the bid price and a transaction takes place. We call 
each string of updated bids from the same trader a “bid sequence”.  Sample bid se-
quences can be seen in Fig. 1. Given the competitive nature of the market with several 
traders attempting to make the transaction, a buyer’s bid could be accepted by a seller 
at any point during the bid process. This means that the number of bids a trader has to 
make before successfully concluding a transaction is not constant.  As a result, the 
number of bids in each bid sequence can vary significantly. There is no upper bound 
on the length of the sequence.  The number of bids in the sequence can range from 1 
to any large number depending on the state of the market and the strategies of other 
traders in that market.  We witnessed a number of occasions in which bid sequences 
contained more than 200 bids.  The problem is further complicated when we consider 
multiple traders using different strategies. 
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Fig. 1. Illustration of bid sequences from a sample market with multiple traders employing 
different bidding strategies 

The traders’ bidding data was collected through numerous simulations of a typical 
CAT competition1.  Although there were no problems collecting a sufficient amount 
of data (one could always run more simulations), the “raw” data collected could not 
immediately be used for classification purposes for a number of reasons. The most 
significant obstacle of data classification was dealing with anonymized data. By 
“anonymized” we mean that the true origin of each bid was masked. This occurred 
per the specification of the CAT Competition Protocol, in which bids shouted by 
traders first reached the server, which replaced the identity of the bid source with a 
unique bid identifier used only for that particular sequence of bids. Once a transaction 
completed, the bid identifier was discarded and a new bid identifier was assigned to 
the next sequence of bids from the same trader. As a result, all bids were masked by 
the time they reached the specialist. Thus, the specialist could determine neither the 
true identity of each bid, nor which bid sequences originated from the same trader.  

The random order in which the bids arrived also further complicated the process of 
determining the true origin of each bid. Fortunately, the CAT source code (freely 
available to all CAT Competition participants and researchers) gives users access to 
all functional modules that make up the competition. With these additional resources, 
and a number of code modifications, we were able to obtain the required data in its 
“unmasked” form, allowing them to identify the true source of each bid that the spe-
cialist received. This data was collected under the assumption that it would be used 
for training only, since the identity of each bid would not be available to the specialist 
during an actual competition.  

3.2   Classification Using a Support Vector Machine 

Support Vector Machines are a set of popular classification algorithms that strive to 
simultaneously minimize classification error and maximize the margin of separation 
of data [7]. 

In order to perform classification using the SVM, collected data was first converted 
to the appropriate data format.  Each sequence of bids was represented by a unique 
                                                           
1  Simulations were run using the TAC Market Design Competition Platform[6], which was 

obtained at https://sourceforge.net/projects/jcat 
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vector, and each bid in the sequence became a feature in the corresponding vector.  
Feature numbers were assigned incrementally, so a bid sequence made up of n bids 
was represented by a vector of features 1 through n.  Each vector was assigned a clas-
sification as follows: a bid sequence coming from a trader using the GD strategy was 
classified as class 1, RE as class 2, ZIP as class 3, and ZIC as class 4.  An example of 
the data can be seen in Fig. 2. 

SVM training and classification was performed using LibSVM® v2.85 [8]. Predic-
tion results using SVM classification varied greatly, depending largely on the type of 
kernel that was used for training. Training on the sigmoid kernel (with default gamma 
and coefficient values) yielded the worst results, predicting only 28.2% of the testing 
set correctly (only 3% better than completely random prediction). Training under the 
linear and polynomial kernels also yielded rather poor results, predicting only 32.8% 
and 38.4% of the testing data correctly, respectively. The sigmoid kernel, however, 
produced much better results, predicting 53.8% of the testing data correctly under 
default parameters and 59.7% of the data correctly when gamma was set to 0.8.  An 
observation was also made that the GD and ZI-C strategies were predicted with a high 
degree of accuracy, while data from the ZIP and RE strategies was more difficult to 
classify. 

 

Fig. 2. Bid sequence data converted to SVM format. The number of bids in each sequence 
varied and was heavily dependent on the bidding strategy utilized by each bidding trader. 

3.3   Classification Using a Hidden Markov Model 

Hidden Markov Models are graphical models that can be used to model the underly-
ing process that generates a given set of data [9]. They are most widely used for clas-
sifying time-series data, (e.g. speech processing [10]). 

HMM-based classification showed a small improvement over the SVM-based 
method that was used earlier, supporting our expectation that a Hidden Markov Model 
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would most effectively model the variables involved in the bidding process. Several 
HMM runs were executed with different values for the parameters (number of hidden 
states and mixture components).  A summary of the results can be seen in Fig. 3. The 
HMM models took between 10 and 68 minutes to train depending on the number of 
states and mixture components. In contrast, SVM training ranged between only a few 
seconds and 2-3 minutes. Nevertheless, the accuracy for the HMM method was al-
ways greater than 52%, and we were able to achieve about 62% accuracy by tuning 
the parameters (number of hidden states = 10, number of mixture components = 10).   

A small experiment was also carried out to explore the efficacy of feature reduction 
of the observed dataset in the HMM classification framework. We could not use stan-
dard reduction methods like PCA because the dataset included instances of varying 
feature lengths (treating each bid as a single feature).  Most samples had only one 
feature, while some had as many as 200. Experiments showed that when only two 
features were used, the HMM accuracy fell to 49%, while using only the first 10 fea-
tures improved upon earlier best results slightly. Thus, we concluded that a moderate 
reduction in the number of features could result in improved performance while also 
maintaining the integrity of the observed data. 

 

Fig. 3. HMM Classification results for varying parameters 

3.4   Alternative Classification Techniques 

A number of other interesting methods were explored for improving the results of the 
HMM. We tried to fit a Conditional Random Fields (CRF) model to the data, using 
the CRF Toolbox for MATLAB® source code provided by Professor Kevin Murphy 
(U. of B.C.).  The model failed to converge in many cases, however, and resulted in 
accuracy that was not much better than random performance. 

Since SVM is the most popular and successful classification method in most appli-
cations, we decided to also try the time-dependent Fourier kernel [11]. We expected 
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that the power of SVM when combined with some time information provided by the 
Fourier kernel would show significant improvement in the classification accuracies. A 
Fourier kernel was calculated for all the instances in the training and testing data set, 
as required by the LibSVM framework for implementing user-defined kernels in 
LibSVM.  Accuracy of between 28% and 42% was observed for different cases of the 
Fourier kernel, suggesting that it was not an improvement over the other kernel func-
tions of the SVM framework.   

We decided that the pyramid kernel [12], given its ability to classify datasets that 
have a varying number of features, would be used in future work. 

4   Utilizing Classification to Determine Optimal Action Policies 

An accurate model of CAT is required for the specialist to make sound decisions 
throughout the competition.  The specialist is privy to a large amount of data, most 
notably every bid it receives from its traders, but it is not immediately clear how this 
data should be represented in the game model.  Clearly, modeling every individual bid 
is not only impractical but also very likely infeasible and probably unnecessary.  The 
classification techniques we discussed in the previous section allow us to model all 
bids using a simple yet highly-descriptive distribution.  We can then use this distribu-
tion, along with a number of other observable factors, to uniquely and correctly iden-
tify the state of the competition and take the action that is deemed optimal for that 
state. The characteristics required to identify a CAT state are described in Table 1. 

The distribution of bidding strategy combinations was represented by a pre-
determined number in the range of 0 to 24, because there are 24 (4!) unique orders in 
which the bidding strategies can be listed.  Then, utilizing the classification results 
from Section 3, the bidding strategies were ordered in a sequence starting with the 
most popular and ending with the least popular.  Finally, the sequence was matched 
with the pre-defined list to obtain the unique number representing that particular se-
quence of strategies.  

In addition to the distribution of bidding strategies, the specialist should consider a 
number of other observable factors such as Position, Trader Count, and Current Fees.  All 
of these factors may be subject to a wide range of values or may not be bounded at all, so 
a reduction function must be applied to relegate the number of total possible states to a 
finite and practical quantity.  For example, it may be sufficient to categorize Trader 
Count based on a particular range of total traders (e.g. 0-10% of all traders, 10-20%, 
etc…).  Likewise, the Current Fees factor can be classified in relation to some numerical 
constants determined to be “threshold boundaries” for certain groups of traders.   

The actions each specialist can take can be limited to raising, lowering, or main-
taining each of the five fees the specialist charges each trader.  However, because four 
of the five fees do not have an upper bound, it does not make sense to enumerate the 
actions based on raw values (of which there are infinitely many).  Similar to the 
Trader Count factor used to define the state of the CAT Tournament, raw actions must 
also be mapped to produce a finite and enumerable set of distinct actions.  One such 
mapping involves simply determining whether each fee has been raised, lowered, or 
unmodified, resulting in 3^5, or 243 unique actions.  We describe our implementation 
of this framework in section 5.4. 
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Table 1. Summary of the CAT state components and their respective value ranges 

Component Description Range of Values 

Distribution Bidding strategy combinations … 0 – 24 

Position Numerical score position 0 – N2 

Trader Count Number of subscribed traders 0 – T3 

Current Fees Hash value of the fees 0 – F4 

5   Experimental Results 

A set of experimental test runs was executed to determine if certain actions had a 
more profound effect on specific groups of traders; they yielded a number of interest-
ing properties for various bidding strategies.  We also describe our attempt to deter-
mine optimal bidding policies using a Markov Decision Process (MDP) framework 
outlined earlier.   

We first describe the environment in which our experiments were executed, as well 
as the algorithm that was implemented to adjust fees throughout the experiments. 

5.1   Testing Environment 

All non-clustering experiments were run on a Compaq C712NR laptop with the fol-
lowing specifications: 

 

Intel® Pentium® Dual-core CPU T2310 @ 1.46GHz 
 1 GB DDRAM, 789 MHz 
 Windows XP with Service Pack 2 
 JavaTM SE Runtime Environment (build 1.6.0_05-b13)  
 

All CAT agents (server, specialists, and traders) were run on the same machine.  The 
server and traders were run using the tournament.params parameter file provided with 
the CAT source code.  Important features included: 

 

 400 total traders (100 for each bidding strategy) 
 200 buyers, 200 sellers (8 groups of 50 traders total) 
 Game length of 4000 days (usually terminated earlier) 
 Day length of 20 rounds 
 Round length of 1000 milliseconds 
 

All experiments were run with a total of 5 specialists.  To simulate a realistic tour-
nament environment, publicly available binaries from the 2007 CAT Tournament5 
were used as specialist adversaries, specifically CrocodileAgent, jackaroo, Persian-
Cat, and TaxTec.   
                                                           
2  N refers to the number of specialists competing in the CAT tournament. 
3  T refers to the number of traders that are subscribed to the specialist in the CAT Tournament. 
4  F refers to the maximum hash value used to uniquely identify the fees charged by the special-

ist. This value is directly dependent on the number of categories used for each fee. 
5  Binaries of 2007 CAT Tournament specialists were obtained from  
   http://www.sics.se/tac/showagents.php 
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5.2   Fee Adjustments 

Following the discussion in the previous section, fees were randomly adjusted in one 
of three ways:  

 
1) increase a fee by a factor of 2 
2) decrease a fee by a factor of 2 
3) retain an existing fee 
 

The likelihood of all outcomes was set to the same frequency (1/3).  Our fee-
adjustment algorithm ensured that the profit fee would not surpass 100% (per the 
specification of the CAT protocol) and set an arbitrary amount for a fee when it was 
being increased from 0, since increasing 0 by a factor of two again results in 0. 

Finally, a special “stabilization” algorithm was implemented for a subset of the ex-
periments.  Specifically, the algorithm maximized the specialist’s chances of regain-
ing traders if the number of subscribed traders reached 0.  In this case, all fees were 
immediately reduced to 0 and maintained at that level until at least 10% of the trader 
pool was again subscribed to the specialist. 

 

Algorithm for Non-Stabilizing Fee Increases  

funct IncreaseFee(fee): 
  if (increase_fee) 
    if (fee > 0) 
      fee = fee * 2.0; 
      if (fee > 1.0 && isProfitFee(fee)) 
        fee = 1.0; 
    else 
      if (fee.type = = profitFee) 
        fee = 0.1; 
      else 
        fee = 1.0; 

5.3   Experiments 

A number of experiments were run and a large amount of data was collected.  We 
separate the results we deemed most interesting into the following categories: largest 
increases in traders, largest decreases in traders, and largest discrepancy in trader 
strategies.  

Largest Increases in Trader Count. Unsurprisingly, some of the largest increases in 
trader count came during the first day of a stabilization sequence when all fees were 
reset to 0.  The increase in traders ranged from 9 to 24 traders.  The traders that im-
mediately subscribed to the stabilizing specialist represented all of the bidding strate-
gies fairly equally, although the total number of recently-joined sellers was often 
higher than the total number of recently-joined buyers. 

More surprisingly, a continued state of stabilization did not yield a constant in-
crease in traders. In one case it took 356 trading days before the stabilizing specialist 
had regained 10 percent of the total trader pool (although it had regained 9% of the 
trader pool in 191 days). This result, presented in Fig. 4, conveyed that once traders 
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had settled upon a particular specialist a significant decrease in fees of another spe-
cialist was not sufficient in tearing the traders away from their host, and only action 
taken by the host specialist resulted in traders looking for another specialist. 

 

Fig. 4. Stabilization sequence which lasted 356 days 

Largest Decreases in Trader Count. Analogous to the largest increases, the most 
significant decreases in trader count occurred when multiple fees increased simulta-
neously, sometimes bringing the specialist’s trader count to zero and initiating a stabi-
lization sequence. 

Interestingly, an increase in multiple fees almost always resulted in a significant 
decrease in trader count regardless of whether other fees had decreased or remained 
the same.  Additionally, the data suggested that trader count decreased when multiple 
fees increase regardless of the actual amount by which the fees rose.  For example, 
three fees doubling from 1.0 to 2.0 during one day resulted in a decrease in trader 
count with the same magnitude as that of three fees doubling from 16 to 32.  A small 
link appeared to exist between a decrease in the registration and information fees and 
a decrease in the buyers using GD bidding and sellers using RE bidding. 

Largest Discrepancy in Bidding Strategies. After modifying the provided CAT 
source code, we were able to identify the bidding strategies of all traders placing bids 
through our specialist.  This allowed us to analyze the distribution of strategies at any 
point during the CAT competition and yielded some interesting results.  Here we note 
that this information is not available during the actual competition when bids are 
masked, so the results we have gathered should be used only to identify general prop-
erties of the bidding strategies. 

Our first observation was that traders employing the GD and ZIP bidding strategies 
were generally more volatile than traders who were utilizing the RE and ZIC bidding 
strategies.  For example, during a sequence of days in which the total count of traders 
decreased we observed that the percentage of total traders utilizing the ZIP strategy 
nearly doubled while the percentage of total traders utilizing the GD strategy de-
creased by nearly a factor of 2 (see Fig. 5).   
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Fig. 5. Bidding strategy makeup during a sequence of decreasing traders 

In the same experiment, we also observed the representation of each bidding strat-
egy during a sequence of days in which the total number of traders gradually in-
creased.  Under this scenario, the percentage of total traders utilizing the ZIP strategy 
decreased by a factor of 2 while the proportion of traders utilizing the GD strategy 
nearly doubled (see Fig. 6).  Although the proportion of traders employing the other 
two strategies also changed during the same sequences, the changes were not recipro-
cal of one another when comparing the sequences. 

 

Fig. 6. Bidding strategy makeup during a sequence of increasing traders 
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5.4   Determining Optimal Actions Using an MDP 

Very early in our testing cycle we observed that CAT states possess the Markov 
Property, suggesting that a Markov Decision Process (MDP) framework could be 
used to determine the optimal action for each state.  Thus, we attempted to address the 
decision-making problem presented in section 4 with the following MDP definition: 

CAT MDP Definition. Let < S, A, R, P > represent the MDP decision-making 
problem in the CAT tournament, where: 

S is a CAT state, further decomposed into 4 criterion: 

Distribution ::= S1, S2, S3, S4, represents the strategies utilized by the subscribed 
traders in decreasing order of popularity. 

Position ::= <FIRST, MIDDLE, LAST>,  refers to the specialist’s overall score when 
compared with other specialists’ scores. 

Traders ::= <0-10%, 10-20%, 20-30%, 30%+>, represents the percentage of all 
traders subscribed to our specialist. 

 Fees ::= <Flat Fees | Profit Fee>, where 
 Flat::=<0, 0–1, 1–20, 20–100, 100–1000, 1000+> 
 Profit ::= <0, 0-0.25, 0.25-0.5, 0.5-0.75, 0.75-1, 1> 

 
A is a CAT action, represented by the tuple <f1, f2, f3, f4, f5> where fx ::= <raise, 
lower, keep> represents an action for each of the five fees. 

 

R is the reward function for each CAT state. Since the ultimate goal in CAT is to 
maximize profit, we defined the reward of each state to be the profit earned during 
the most recent day of trading. 

 

P is the transition probability matrix for every pair of states. Matrix values were 
experimentally obtained. 

 
After a number of experiments6 we realized that our state definition was not sufficient 
in accurately representing the CAT game state.  We based this conclusion on the ob-
servation that the reward of a given state often varied greatly (often by thousands of 
points), suggesting that our states were not sufficiently unique.  It was not immedi-
ately obvious what additional criteria could be used to better identify CAT game 
states and remains a top priority for future work.   

6   Conclusion and Future Work 

We present a number of techniques for classifying traders according to their bidding 
strategies and show that a Hidden Markov Model yields the best results. Our  

                                                           
6  Our implementation of the MDP framework utilized source code written for the AIMA[13] 

textbook and can be obtained from http://code.google.com/p/aima-java 
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experimental data presents a number of conclusions regarding fees and how they 
affect bidding strategies.  Most notably, we demonstrate that traders utilizing the 
GD and ZIP strategies are more volatile than those employing the RE a ZIC strate-
gies.  We also note that multiple fee increases generally lead to a loss of traders.  
Finally, we show evidence supporting the claim that traders are hesitant about 
switching, regardless of their strategies.  

We also proposed a model for discovering optimal action policies while also ex-
ploiting the strategy-specific properties presented here.  Although our framework 
appears to support the Markov Property (suggesting that MDP-related algorithms 
would do well in determining optimal action policies), the criteria we chose were not 
sufficient to uniquely identify CAT game states.  Establishing which criteria should 
be used to identify CAT states remains an interesting and unsolved problem.   Addi-
tional experiments should also be performed to determine if bidding strategies can be 
further exploited.  Especially interesting is the interrelationship of the various bidding 
properties and whether or not certain actions affect the strategies in a similar fashion. 
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Abstract. An autonomous trading agent is a complex piece of software that must
operate in a competitive economic environment. We identify the problem of de-
cision coordination as a crucial element in the design of an agent for TAC SCM,
and we review the published literature on agent design to discover a wide variety
of approaches to this problem. We believe that the existence of such variety is an
indication that much is yet to be learned about designing such agents.

1 Introduction

Supply-Chain Management is an especially challenging domain for a rational decision-
maker. Such an agent must not only operate simultaneously in multiple markets (a cus-
tomer market and a supplier market), but it must coordinate its market activities with
each other and with internal processes such as production scheduling and inventory
management in a way that maximizes its utility across an extended time horizon.

Organized competitions can be an effective way to drive research and understanding
in complex domains, free of the complexities and risks of operating in open, real-world
environments. Artificial economic environments typically abstract certain interesting
features of the real world, such as markets and competitors, demand-based prices and
cost of capital, and omit others, such as human resources, secondary markets, taxes, and
seasonal demand. The Trading Agent Competition for Supply-Chain Management [1]
(TAC SCM) is based on an economic simulation in which competing autonomous
agents operate in a simple supply-chain scenario, purchasing components, managing
a factory and warehouse, and selling finished products to customers.

TAC SCM has been an active competition since 2003, and the design of the game has
been stable since 2005. More than 50 different teams have participated, and a number of
papers have been published that describe agent designs, agent and game analyses, and
specific methods for modeling the markets and decision processes in the simulation.

TAC SCM is an interesting challenge for a number of reasons. Different groups have
approached the problem from a variety of perspectives, depending on the individual in-
terests and backgrounds of the participants. For example, a team that is primarily inter-
ested in developing and testing machine-learning techniques will have a very different
approach to the problem than a team that is primarily interested in developing methods
to solve constrained optimization problems under uncertainty. To better understand this
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variety, we conducted an informal survey of many of the active teams in 2007. In this
paper, we explore in some depth and attempt to classify the variety of approaches we
have observed to one of the special challenges in designing a successful agent for TAC
SCM, the problem of coordinating the various decision processes.

2 Overview of the TAC SCM Game

In a TAC SCM game, each of the competing agents plays the part of a manufacturer
of personal computers. Figure 1 gives a schematic overview of the TAC SCM game.
Agents compete with each other in a procurement market for computer components,
and in a sales market for customers. A game runs for 220 simulated days over about an
hour of real time. Each agent starts with no inventory and an empty bank account. The
agent with the largest bank account at the end of the game is the winner.

Customers express demand each day by issuing a set of Request for Quotes (RFQs)
for finished computers. Each RFQ specifies the type of computer, a quantity, a due
date, a reserve price, and a penalty for late delivery. Each agent may choose to bid
on any subset of the day’s RFQs. For each RFQ, the bid with the lowest price will be
accepted, as long as that price is at or below the customer’s reserve price. Once a bid

Fig. 1. TAC SCM game scenario
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is accepted, the agent is obligated to ship the requested products by the due date, or it
must pay the stated penalty for each day the shipment is late. Agents do not see the bids
of other agents, but aggregate market statistics are supplied to the agents periodically.
The customer market is segmented into a low-cost segment with five products, a mid-
range segment with six products, and a premium segment with five products. Customer
demand in each segment varies independently through the course of the game by a
random walk with a superimposed Poisson distribution.

2.1 Agent Decision Processes

Agents assemble computers from parts, which must be purchased from suppliers. When
agents wish to procure parts, they issue RFQs to individual suppliers, and suppliers
respond with bids that specify price and availability. If the agent decides to accept a
supplier’s offer, then the supplier will ship the ordered parts on or after the due date.
Late shipments are possible because supplier capacity varies from day to day by a mean-
reverting random walk. Supplier prices are based on the ratio of demand to current
uncommitted capacity, so agents have to decide when to place their orders, for what
amounts, what due dates, and at what minimum price.

Once an agent has the necessary parts to assemble computers, it must schedule pro-
duction in its finite-capacity production facility. Each computer model requires a spe-
cific set of parts, and a specified number of assembly cycles. Assembled computers
are added to the agent’s finished-goods inventory, and may be shipped to customers to
satisfy outstanding orders.

An agent operating in the TAC SCM scenario must make the following four basic
decisions during each simulated “day” in a competition:

1. decide what parts to purchase, from whom, and when to have them delivered
(Procurement).

2. schedule its manufacturing facility (Production).
3. decide which customer RFQs to respond to, and set bid prices (Sales).
4. ship completed orders to customers (Fulfillment).

These decisions are supported by models of the sales and procurement markets, and
by models of the agent’s own production facility and inventory situation. The details of
these models and decision processes are the primary subjects of research for participants
in TAC SCM. These models may be populated with historical data from previous games,
and with observations in the current game. During a game, agents can observe market
reactions to their own actions (bids accepted or not, price and quantity data in supplier
offers), and a very limited set of market summary data. In-game summary information is
limited to daily high and low order prices for each product in the customer market, and
summary reports every 20 days that give average prices and aggregate quantities. Many
important factors, such as current capacity and outstanding commitments of suppliers,
and sales volumes and price distributions in the customer market, are not visible to the
agents.



164 W. Ketter, J. Collins, and M. Gini

2.2 Game Balance

The design of TAC SCM was carefully tuned over the first three years to make the
competition interesting and challenging. The most obvious opportunities for strategic
manipulation [2,3] have been eliminated. Agents must manage their reputations with
respect to each supplier, to discourage agents from making large requests and then
turning down the resulting offers. Suppliers reserve approximately half of their total
capacity at the beginning of the game for future demand, which makes it very difficult
to “corner” the market for some component type.

The parameters of the game scenario are set to ensure that decision coordination
among procurement and sales is reasonably challenging. Figure 2 shows the overall
balance between supply and demand. It is a histogram of the daily customer RFQ count
over 200 games, about 40,000 observations. Superimposed on the histogram are the
mean customer demand, the aggregate capacity of the six agent factories, and the ex-
pected supplier capacity. The key message from this balance is that expected customer
demand is somewhat below the expected ability of the market to supply that demand.
This means that an agent can expect to buy enough parts to keep its factory busy, but
a strategy that simply tries to keep the factory busy all the time is likely to result in
a large unsold inventory at the end of an average game1. On the other hand, there are
some games in which the agents cannot supply all the demand, and the variability of the
game can lead to serious imbalances between customer demand for specific products
and the availability of parts to build them.

Fig. 2. Game balance. Mean customer demand is below the production capacity of all the agents,
and below the expected availability of parts in the supplier market.

1 This balance was first introduced in the 2005 competition. Price wars were a large problem in
the early rounds of that competition until the full-production agents were eliminated.
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3 Agent Design and the Decision Coordination Problem

Kiekintveld et al. [4] identify three key issues that a successful TAC SCM agent must ad-
dress: dealing with substantial uncertainty in a highly dynamic economic environment,
in competition with other self-interested agents whose behavior is naturally strategic.
To this list we would add two other issues: making coordinated decisions across mul-
tiple domains in order to maximize payoff over time, and operating effectively in an
oligopoly market. Because of the relatively small number of players in the customer
and supplier markets, both are best characterized as oligopoly markets, and so many of
the simplifying assumptions that can be used effectively in large markets do not hold.
One such assumption is that the decisions of individual players have negligible impact
on the observable market behavior. In contrast, competitive TAC SCM agents cannot
act simply as “price-takers” in these markets - their decisions can move the markets
decisively, and failure to account for this reaction can cause significant deviations from
predicted outcomes.

The complexity of the problems an agent must solve to be competitive in TAC SCM
has produced a number of interesting design approaches. To understand the spectrum
of agent designs, we conducted a survey of the research community via the TAC SCM
discussion email list in the period May-September 2007. Some common themes were an
emphasis on modularity, use of constrained optimization techniques, machine learning,
dealing with uncertainty, and a focus on coordination of decisions among procurement,
production, sales, and fulfilment. Detailed results of the survey are presented in [5].

Two of the four agent decision problems, procurement and sales, are dominated by
the variability of the game scenario and are strongly affected by the actions of other
agents, while the production-scheduling and fulfillment decisions are internal to the
agent and less affected by the inherent variability in the game. Because of this, some
agent designs simply fold fulfillment into the sales problem, and production scheduling
is sometimes also bundled into sales, especially for agents that use a make-to-order
production strategy.

Simply stated, a solution to coordination problem will maximize (expected) profit
over an entire game, subject to availability of individual part types in the supplier mar-
ket, demand in the customer market, and capacity of the agent’s factory. Of course,
prices and availability in the supplier market are at least partly determined by the be-
havior of other agents in the simulation. In addition, prices in the customer market are
largely determined by the behavior of the other agents, since competition almost always
keeps prices well below customer reserve prices. This problem is commonly viewed as
one of enabling independent decision processes to coordinate their actions while mini-
mizing the need to share representation and implementation details.

As we shall see, many approaches to the coordination problem have been tried, and
there is little evidence from tournament standings that any of these approaches domi-
nates the others. In fact, a study by Jordan et al. [6] has shown that no single dominant
strategy has yet been found, and our analysis shows that the top three agents in the
Jordan study, namely TacTex, DeepMaize, and PhantAgent, use different coordination
mechanisms. We do know that the “push” strategy that was popular in the 2003 and
2004 competitions (for example, Benisch et al. [7]) is not effective, because the factory
can produce more than what can be sold at a profit, at least in expectation. This approach
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attempts to purchase enough parts early in the game to keep factory utilization high for
the entire game, thereby eliminating procurement from the coordination problem.

In the following sections, we explore the variety of coordination approaches that we
have observed among published agent designs and the respondents to the 2007 survey.
We note that none of them have tried to solve the general problem in its entirety, presum-
ably because the variability inherent in the simulation and the difficulty of predicting
the behaviors of other agents have so far defeated all attempts to do so. Therefore, what
we see is that each design has chosen a more manageable approach, one that simplifies
the problem through approximations, through heuristics, and through focus on much
shorter time horizons than the entire game.

3.1 Predicted Sales Volume

Because the balance of supply, demand, and production capacity in the simulation de-
sign has defeated a simple “push” approach to coordination, the next obvious choice
would seem to be adoption of a “pull” approach, in which sales activities pull finished
goods through the factory, which in turn pulls in components through the procurement
market.

Fig. 3. SouthamptonSCM: Coordination primarily by the Customer Agent

A good example of this approach is SouthamptonSCM [8]. This agent was a finalist
in the 2004 competition, and placed second in 2005. Figure 3 is a schematic repre-
sentation of this design. In SouthamptonSCM, a Customer Agent uses fuzzy reason-
ing to compute offer prices, based on inventory level, customer demand, and time in
the game2. Priority is given to the products with the highest expected per-unit profit.
The Component Agent buys a portion of its components with long lead-times, because
prices tend to be lower with longer lead times. The remaining component inventory is

2 A separate rule set is used near the end of the game, because of the need to exhaust inventory
and because prices tend to be much more volatile late in the game.
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purchased with shorter lead times, in response to observed customer demand and to
depletion of inventory by sales to customers. The Factory Agent primarily builds out-
standing customer orders, and if it has spare capacity and available parts, it builds up a
modest inventory of finished goods.

The MinneTAC agent [9,10], shown in Figure 4, can be configured in a number of
different ways, but the configuration used in the 2007 and 2008 competitions solves a
linear program each day to maximize expected profit over a 20-day horizon, subject to
constraints on production capacity, customer demand, and anticipated inventory. The
output of the linear program is “sales quotas” for each product for each of the next 20
days. The current-day quota is used by the Sales Manager to set prices in the customer
market, and future-day quotas are used by the Supplier Manager to drive procurement.
A slightly different configuration of MinneTAC was a finalist in the 2005 and 2006
competitions.

Fig. 4. MinneTAC: Coordination through the Repository, details depend on configuration

As we can see from Figure 4, MinneTAC uses a very different design approach
from the other agents we examine here. The Repository acts as a “blackboard”, and
the various components interact only through the Repository. The Oracle component is
a wrapper for a large number of small modules, called “Evaluators”, that can be strung
together as specified in a configuration file to do the necessary analysis and prediction
tasks requested by the decision components. The actual coordination among decision
components happens because they share some of those Evaluators. Specifically, both
the Sales Manager and the Supplier Manager use the sales quotas produced by one of
the Evaluators.

3.2 Future Production Schedule

DeepMaize [4] coordinates its decisions through a principled approach called “value-
based decomposition”. In this approach, a long-term production schedule is constructed
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Fig. 5. DeepMaize: Coordination through a long-term production schedule, using value-based
decomposition

by incrementally adding the products that are expected to return the highest profit. The
general scheme is shown schematically in Figure 5.

This approach depends on pricing models in both the customer and supplier mar-
kets that effectively capture price-quantity tradeoffs. The two prediction components
shown in the diagram, along with an off-line machine-learning process, are responsible
for producing those models. Given a long-term production schedule, the Procurement
module attempts to provide the necessary components to fill it, and Sales uses it to set
prices in the customer market. DeepMaize has been a finalist in all of the TAC SCM
tournaments. It placed third in 2006 and 2007, and first in 2008.

3.3 Inventory Management

Three published agent designs appear to focus on an inventory model to coordinate de-
cisions. Mertacor [11,12] is the clearest example. As we see in Figure 6, an “Inventory
Manager” component is the central element in this design. Mertacor uses an “Assemble
to Order” approach, which is recommended in the literature on inventory management
for situations where assembly times are significantly shorter than procurement lead
times. The Inventory Manager attempts to maintain component stocks above a mini-
mum threshold, subject to committed and expected sales, and to committed deliveries
from suppliers. Mertacor placed third in the 2005 competition.

PhantAgent [13] is another design that appears to focus on inventory management,
although as we see in Figure 7, the inventory management function is conceptually
combined with the procurement function in a Component Module. The goal of the
Component Module is to maintain expected stocks of each component type within nar-
row bounds throughout the game. It computes expected stocks for each component for
each day until the end of the game, and formulates new supplier orders to make up any
deficits. PhantAgent placed second in 2006, and first in the 2007 competition.
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Fig. 6. Mertacor: Coordination through the Inventory Manager

For each component c, and for each day d from the current day until the end of the
game, the expected stock is computed as

Ic,d = Ic,d−1 + incomingc,d − usagec,d

where Ic,d is the expected inventory of component c on day d, incomingc,d is the quan-
tities of committed supplier orders, and usagec,d is the expected usage of component c
on day d.

PhantAgent is interesting in another way. It deals with the inherent complexity and
uncertainty of the TAC SCM environment, and the resulting strategic inter-dependencies
between the different agent modules, using heuristic approximations rather than

Fig. 7. PhantAgent: Coordination is by inventory control, originating in the Procurement module
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optimization algorithms. The team’s assessment is that finding optimal solutions to the
different sub-problems does not always lead to the best overall performance.

Another agent whose decision coordination mechanism seems focused on inventory
control is CrocodileAgent [14,15]. The agent drives procurement to maintain expected
component inventory stocks within defined minimum and maximum bounds. Similarly,
Production operates to maintain a finished goods inventory within pre-defined bounds.
Sales then bids on customer requests using a simple pricing algorithm, in an attempt to
sell products, profitably, as fast as they are being produced. When demand is low, the
profitability constraint causes inventory to back up, and production and procurement to
slow down.

3.4 Central Strategy Module

An agent that has very clearly separated the decision coordination issues from the de-
tails of procurement, sales, and production scheduling is CMieux [16], a finalist in the
2007 and 2008 competitions. A schematic diagram of the CMieux design is shown in
Figure 8.

The Strategy module sets overall goals for the remainder of the system, such as the
portion of expected demand to target, and the portion of the production schedule (ATP,
the products Available to Promise) that should be sold to customers (DTP, products
Desired to Promise). The Forecast module observes the markets and makes predic-
tions about demand, prices, and delays in supplier shipments. The Inventory Projector
combines that with current inventories and expected supplier deliveries to generate in-
ventory projections over time. Procurement uses the projected inventory along with an

Fig. 8. CMieux: Coordination by a separate Strategy module
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optimistic version of the production schedule (what Production would expect to build if
there were no inventory constraints) to decide what to order from suppliers, and supplies
Inventory Projector with actual supplier orders.

3.5 Separate Supply and Demand Models

The design of TacTex [17] is quite different from the others we have reviewed, in the
sense that it does not try to centralize decision coordination at all. Instead, it employs
a Supply Manager that interacts with suppliers and models the supply market, and a
Demand manager that interacts with customers and models the customer market. Coor-
dination is achieved by communication between these two models. TacTex has been a
very strong competitor, placing first in 2005 and 2006, and second in 2007.

Fig. 9. TacTex: Coordination is by communication of inventory, cost, and projected usage data
between the Supply Manager and the Demand Manager

In this design, the Supply Manager attempts to minimize the cost of procuring the
components requested by the Demand Manager, and provides in return an inventory
projection including current inventory and expected future deliveries, along with re-
placement cost estimates for each component type. The Demand Manager, in turn,
seeks to maximize the agent’s profits from sales, subject to constraints from the cus-
tomer market, its own production capacity, and the information provided by the Supply
Manager.

3.6 Internal Markets

RedAgent [18] is a unique approach to agent design. It won the first year’s competition
in 2003, but did not do well in 2004 and was never updated after the rule change in
2005.

As we can see from Figure 10, RedAgent manages the flow of components from
suppliers through production and into sales and fulfillment of customer orders through
a series of internal markets. The Bidder observes its inventory status and the current
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Fig. 10. RedAgent: Coordination by a sequence of internal markets

prices in its internal finished-goods markets, and makes offers to customers. Customer
orders then compete for products in the internal product markets, which are supplied
by assemblers for each product type. Those assemblers in turn compete for components
in internal component markets, which are supplied by individual component agents.
The component agents then interact with suppliers in order to set prices and supply
their markets. RedAgent used loosely-coupled “sub-agents” competing with each other
in internal auction-based markets for finished goods, production capacity, and compo-
nents. This achieved a radical decoupling of the various components, but proved to
be not competitive after the game design was adjusted in 2005 to defeat some of the
simplest approaches that lacked adequate coordination among decisions. Specifically,
agents that focused procurement only on keeping the factory in full production found
themselves overproducing when the balance between factory capacity and expected
customer demand was adjusted.

4 Conclusions and Future Work

We have presented a brief overview of agent design ideas and architectures for TAC
SCM, using information both from a survey of agent development teams and from
published results. The overall survey outcome shows that there are common themes
emerging from the different research groups on how to design a successful supply-
chain trading agent. A clear challenge that each agent design must meet is the need
to coordinate its internal processes (production scheduling) with action in procurement
and customer markets. We have observed a variety of approaches to the decision coor-
dination problem, including the use of sales to “pull” products and supplies through the
system, coordination through internal models of inventory and prices, assigning current
and future value to inventory and production resources, and the use of an explicit top-
level strategy component that coordinates the lower-level decision processes. The fact
that after several years of competition there is still much to be learned, suggest that the
recipe for a full competent supply-chain trading agent is still an unsolved problem, even
for an abstract, constrained environment like TAC SCM.
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Many of these agents are available in either binary or source form through the TAC
SCM Agent Repository at http://www.sics.se/tac/showagents.php.

References

1. Collins, J., Arunachalam, R., Sadeh, N., Ericsson, J., Finne, N., Janson, S.: The Supply Chain
Management Game for the 2006 Trading Agent Competition. Technical Report CMU-ISRI-
05-132, Carnegie Mellon University, Pittsburgh, PA (2005)

2. Ketter, W., Kryzhnyaya, E., Damer, S., McMillen, C., Agovic, A., Collins, J., Gini, M.: Anal-
ysis and design of supply-driven strategies in TAC-SCM. In: Workshop: Trading Agent De-
sign and Analysis at the Third Int’l. Conf. on Autonomous Agents and Multi-Agent Systems,
New York, pp. 44–51 (2004)

3. Wellman, M.P., Estelle, J., Singh, S., Vorobeychik, Y., Kiekintveld, C., Soni, V.: Strategic
interactions in a supply chain game. Computational Intelligence 21(1), 1–26 (2005)

4. Kiekintveld, C., Miller, J., Jordan, P.R., Wellman, M.P.: Controlling a Supply Chain Agent
Using Value-Based Decomposition. In: Proc. of 7th ACM Conf. on Electronic Commerce,
Ann Arbor, USA, pp. 208–217 (2006)

5. Collins, J., Ketter, W., Gini, M.: Flexible decision control in an autonomous trading agent.
Electronic Commerce Research and Applications 8(2), 91–105 (2009)

6. Jordan, P.R., Kiekintveld, C., Wellman, M.P.: Empirical game-theoretic analysis of the tac
supply chain game. In: Proc. of the Sixth Int’l. Conf. on Autonomous Agents and Multi-
Agent Systems, pp. 1188–1195 (2007)

7. Benisch, M., Greenwald, A., Grypari, I., Lederman, R., Naroditskiy, V., Tschantz, M.: Botti-
celli: A supply chain management agent designed to optimize under uncertainty. ACM Trans.
on Comp. Logic 4(3), 29–37 (2004)

8. He, M., Rogers, A., Luo, X., Jennings, N.R.: Designing a successful trading agent for supply
chain management. In: Proc. of the Fifth Int’l. Conf. on Autonomous Agents and Multi-
Agent Systems, pp. 1159–1166 (2006)

9. Collins, J., Ketter, W., Gini, M.: Flexible decision support in a dynamic business network.
In: Verwest, P., van Liere, D., Zheng, L. (eds.) The Network Experience – New Value from
Smart Business Networks, pp. 233–246. Springer, Heidelberg (2008)

10. Collins, J., Ketter, W., Gini, M., Agovic, A.: Software architecture of the MinneTAC supply-
chain trading agent. Technical Report 08-031, University of Minnesota, Department of Com-
puter Science and Engineering, Minneapolis, MN (2008)

11. Chatzidimitriou, K.C., Symeonidis, A.L., Kontogounis, I., Mitkas, P.A.: Agent Mertacor:
A robust design for dealing with uncertainty and variation in SCM environments. Expert
Systems with Applications 35(3), 591–603 (2008)

12. Kontogounis, I., Chatzidimitriou, K., Symeonidis, A., Mitkas, P.: A Robust Agent Design for
Dynamic SCM Environments. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis,
D. (eds.) SETN 2006. LNCS (LNAI), vol. 3955, pp. 127–136. Springer, Heidelberg (2006)

13. Stan, M., Stan, B., Florea, A.M.: A Dynamic Strategy Agent for Supply Chain Management.
In: Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, pp. 227–232 (2006)

14. Podobnik, V., Petric, A., Jezic, G.: The crocodileagent: Research for efficient agent-based
cross-enterprise processes. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Work-
shops. LNCS, vol. 4277, pp. 752–762. Springer, Heidelberg (2006)

15. Petric, A., Podobnik, V., Jezic, G.: The CrocodileAgent: Designing a robust trading agent for
volatile e-market conditions. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.)
KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 597–606. Springer, Heidelberg (2007)



174 W. Ketter, J. Collins, and M. Gini

16. Benisch, M., Sardinha, A., Andrews, J., Sadeh, N.: CMieux: adaptive strategies for compet-
itive supply chain trading. In: Proc. of 8th Int’l. Conf. on Electronic Commerce, pp. 47–58.
ACM Press, New York (2006)

17. Pardoe, D., Stone, P.: An autonomous agent for supply chain management. In: Adomavi-
cius, G., Gupta, A. (eds.) Handbooks in Information Systems Series: Business Computing.
Elsevier, Amsterdam (2007)

18. Keller, P.W., Duguay, F.O., Precup, D.: Redagent - winner of the TAC SCM 2003. SIGecom
Exchanges 4(3), 1–8 (2004)



The 2007 TAC SCM Prediction Challenge

David Pardoe and Peter Stone

Department of Computer Sciences

The University of Texas at Austin

{dpardoe,pstone}@cs.utexas.edu

Abstract. The TAC SCM Prediction Challenge presents an opportu-

nity for agents designed for the full TAC SCM game to compete solely on

their ability to make predictions. Participants are presented with situa-

tions from actual TAC SCM games and are evaluated on their prediction

accuracy in four categories: current and future computer prices, and cur-

rent and future component prices. This paper introduces the Prediction

Challenge and presents the results from 2007 along with an analysis of

how the predictions of the participants compare to each other.

1 Introduction

The Trading Agent Competition Supply Chain Management scenario (TAC
SCM) [1] provides a unique testbed for studying and prototyping supply chain
management agents by providing a competitive environment in which indepen-
dently created agents can be tested against each other in an open academic
setting. In order to be competitive, an agent must be able to successfully per-
form a number of interrelated tasks. While this fact contributes to the complexity
and realism of the scenario, it can also make it difficult to determine the relative
effectiveness of agent components in isolation. To address this issue, in 2007 two
challenges were designed to be run in addition to the full SCM game, each de-
signed to measure an agent’s performance on one specific task: a Procurement
Challenge, and a Prediction Challenge. This paper focuses on the Prediction
Challenge. The contributions of this paper are the specification of this new chal-
lenge (designed by the authors), the presentation of the 2007 results, and an
analysis of how the predictions of the challenge participants compare to each
other.1 In addition, a brief description of the prediction methods used by the
challenge participants and others is provided.

2 The Prediction Challenge

As the Prediction Challenge is closely tied to the full TAC SCM game, we begin
by providing a short summary of the full game. Full details may be found in the
official specifications [1]. In a TAC SCM game, six agents compete as computer
1 Software, results, and the complete specifications are available from the Prediction

Challenge website: http://www.cs.utexas.edu/~TacTex/PredictionChallenge
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manufacturers. Agents must purchase components (CPUs, motherboards, hard
drives, and memory, each coming in multiple varieties) from suppliers and sell
the assembled computers (coming in 16 configurations) to customers. Both com-
ponent and computer sales take place through a process involving requests for
quotes (RFQs): the buyer sends the seller an RFQ with details such as quantity
and due date, the seller responds with a price, and the buyer accepts or de-
clines the offer. Each type of component and computer is assigned a base price
that serves as a point of reference, but prices can fluctuate significantly dur-
ing a game due to factors such as variable customer demand, supplier capacity,
and the actions of the agents themselves. Agents are unable to see the prices at
which other agents are buying components and selling computers. A game lasts
for 220 simulated days, and in each round of the competition, a group of agents
competes in a number of games, usually 16.

While the methods used by different SCM agents to manage the supply chain
vary considerably, many of these agents share a similar design at a high level
- they divide the full problem into a number of smaller tasks and then solve
these tasks using decision theoretic approaches based on maximizing utility given
various predictions about the economy. The success of an agent thus depends on
both the accuracy of the many kinds of predictions it makes and the manner in
which these predictions are used, making it difficult to assign credit to individual
agent components. To give a concrete example, suppose that based on available
statistics from past games and the current one, agent A predicts that it will be
able to sell one type of computer for $2000 on day 45, and agent B predicts
that it will be able to sell that computer for $1900. They then make component
purchases, plan manufacturing, and commit to customer orders based on these
and other predictions. Ultimately, agent A wins. Is it safe to draw conclusions
about the accuracy of these predictions based on this outcome? No.

The goal of the Prediction Challenge is to allow a head to head comparison of
agents’ prediction accuracy without concern for how these predictions are used.
In the example above, if we had recorded the predictions and then observed on
day 45 that the specific type of computer sold for an average price of $1870,
we could say that agent B made a more accurate prediction. This is exactly
what takes place in the Prediction Challenge. There are many quantities for
which agents may make predictions, such as customer demand, the probability
that a particular offer to a customer will be accepted, and supplier capacities.
However, the Prediction Challenge focuses only on those predictions that can be
expressed in the form of a price, namely component prices and computer prices.
As agents need to be able to make predictions about future prices as well as
current prices in order to plan effectively, the accuracy of predictions for both
current and future prices is measured. There are thus four prediction categories
in the Prediction Challenge: current and future computer prices, and current
and future component prices.

Instead of making predictions about live TAC SCM games in which they are
participating, participants in the challenge make predictions on behalf of another
agent called the SCMPredictionAgent (or PAgent for short). (For clarity, we will
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refer to the manufacturing agents that participate in SCM games as agents, and
the prediction agents participating in the Prediction Challenge as participants.)
Before the competition, the organizers of the challenge run a number of games
in which PAgent competes against other agents. The identities of these other
agents and the resulting game logs are not made available to participants until
after the competition. During the competition, participants connect to a game
server which re-plays these games from the game logs. For each day of each game,
participants receive the exact messages sent to PAgent (incoming messages), as
well as the messages it sent to the game server in response (outgoing messages)
- exactly the same information that would be available to an agent during a live
game. In addition to these incoming and outgoing messages, each participant is
also given a set of predictions that must be made before the information for the
following day will be sent.

There are a number of benefits to running the competition using logs from
completed games instead of using live games. First, there is no restriction on
the number of participants that may compete head to head at one time. Second,
each participant will receive exactly the same information about the state of each
game and will be asked to make the same predictions. Finally, in live games there
would be an incentive for participants to behave differently than in normal TAC
SCM games, such as by manipulating prices in order to make past predictions
come true.

Although predictions could be made on behalf of any agent from a completed
game, the use of a single agent (PAgent) for which source code is available
simplifies the task of participants by helping them to understand exactly what
behavior to expect from the agent. PAgent was designed to be as simple as pos-
sible and to behave in a consistent and predictable manner while still exhibiting
reasonable behavior. (PAgent was developed by the authors and is an extension
of their TacTex Starter Agent2 , which is in turn a simplified version of their
TacTex agent [2] made available for educational purposes.)

The exact predictions that are made by each participant are as follows:

– Current computer prices: The price at which each RFQ sent from cus-
tomers on the current day will be ordered (i.e., the lowest price that will be
offered by any manufacturer for that RFQ). These predictions are required
on all but the first day and the last two days of each game, when few or no
computers are sold. If the RFQ does not result in an order, the prediction
will be ignored when accuracy is evaluated. Therefore, participants do not
need to be concerned with whether an order will result, only what the price
will be if there is an order.

– Future computer prices: For each of the 16 types of computers, the me-
dian price at which it will sell 20 days in the future. These predictions are
required on all but the last 22 days of each game (thus the last day on which
current computer price predictions is required is the last day for which fu-
ture computer price predictions are required). If no computers of a certain

2 http://www.cs.utexas.edu/~TacTex/starterAgent

http://www.cs.utexas.edu/~TacTex/starterAgent
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type are sold, the prediction for that type will be ignored when accuracy is
evaluated.

– Current component prices: The price that will be offered for each RFQ
sent by the PAgent to a supplier on the current day. The PAgent sends RFQs
to suppliers on all but the last 10 days of each game. If an RFQ results in no
offer (due to the reserve price) or an offer (or offers) with modified quantity
or due date, the prediction for that RFQ will be ignored when accuracy is
evaluated.

– Future component prices: The price that will be offered for each of a
number of provided RFQs that will be sent by the PAgent to suppliers in 20
days. For each of the 16 pairs of a supplier and a component that it supplies,
a zero-quantity RFQ is provided that will be sent by the PAgent in 20 days
with a due date chosen at random between 5 and 30 (or the number of days
remaining, if less than 30) days after the date the RFQ is sent. Because the
PAgent sends no RFQs during the last 10 days of a game, predictions for
future RFQs do not need to be made during the last 30 days of the game.

To test the ability of participants to make predictions for games with various
competitors, each participant is required to make predictions for 3 sets of games.
In each set, the PAgent will have run against a different group of five competi-
tors chosen at random from the TAC agent repository.3 Each set contains 16
games, meaning that participants have a chance to improve their predictions
through repeated experience with the same group of competitors. Participants
make predictions for one game at a time, and must complete the predictions for
one game day before receiving information for the next day. Unlike the standard
SCM game, participants do not need to compete simultaneously, so they may
connect to the game server at any time and make predictions at their own pace.
There is, however, an eight hour time limit.

Performance is evaluated separately for each of the four prediction categories.
Root mean squared error is used as the scoring metric, and all errors are mea-
sured as a fraction of the base price of the computer/component. Participants
are ranked in each category, and the overall winner is the agent with the highest
average rank over all four categories.

3 Prediction Methods

Four participants competed in the 2007 Prediction Challenge: Botticelli (Brown
University), DeepMaize (University of Michigan), Kshitij (Indian Institute of
Technology Kharagpur), and TacTex (The University of Texas at Austin). Tac-
Tex and DeepMaize finished second and third, respectively, in the full 2007 SCM
competition, and Botticelli was one of 12 semifinalists. This section provides brief
descriptions of the prediction methods used by the top two participants, which
have been published in full elsewhere, along with an overview of other predic-
tion methods that have been used by TAC SCM agents. The methods used by
Botticelli and Kshitij have not been published or made known to the authors.
3 https://www.sics.se/tac/showagents.php

https://www.sics.se/tac/showagents.php
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DeepMaize [3] makes predictions for current and future computer prices using
a k-nearest neighbors algorithm. For each prediction to be made, similar situa-
tions from a data set of previous games are identified, and the prediction is based
on the prices observed in those situations. Predictions can be made about both
the probability of winning an order at a given price and the expected winning
price. Situations are chosen and weighted using Euclidean distance between a
set of state features such as the date, estimated levels of supplier capacity and
customer demand, and observed computer prices. Each neighbor is chosen from
a different past game to provide sufficient diversity. DeepMaize uses two separate
data sets, one from past TAC SCM tournament data and one from self-play, and
updates the weighting of each set online based on past accuracy.

TacTex [2] tracks computer prices using a particle filter. For each of the 16
types of computer, TacTex maintains a filter that represents a distribution over
possible sales prices (to be precise, the lowest price that will be offered by an-
other agent in response to an RFQ for that type of computer). Each particle
represents a Gaussian with a certain mean and variance and has a weight indi-
cating its relative likelihood. The distribution over sales prices represented by
the filter is the weighted sum of these Gaussians. Each day, a new set of par-
ticles is generated from the old. For each new particle to be generated, an old
particle is selected at random based on weight, and the new particle’s estimate
of mean and variance are set to those of the old particle plus small changes,
drawn randomly from the distribution of day-to-day changes seen in a data set
of past games. The new particles are then reweighted, with the weight of each
particle set to the probability of the previous day’s price-related observations
occurring according to the distribution represented. As with DeepMaize, Tac-
Tex uses the distributions generated by these filters during the full TAC SCM
game to estimate the probability of winning an order given a certain offer price.
In the Prediction Challenge, for each computer RFQ TacTex predicts that the
sales price will be the mean of the distribution for that computer, or the price
offered by the PAgent if that is lower.

To make predictions for future computer prices, TacTex uses the additive
regression algorithm from the WEKA machine learning package [4]. Additive
regression is an iterative method in which at each step a decision stump is fit to
the residual of the previous step, and the sum of the output of the stumps is taken
as the output of the model. Using a large number of games including a variety
of agent groups from the TAC agent repository (and including the PAgent in
each game), TacTex creates a training data set in which each instance represents
a future computer price prediction that would have been made and is labeled
with the difference between the actual median price for a computer and the price
that would have been predicted by the particle filter 20 days previously. Each
instance consists of 31 features that represent data available to the agent during
the game and are similar to those used by DeepMaize in its k-nearest neighbors
approach. During the Prediction Challenge, TacTex makes predictions for each
type of computer’s future price by adding the change predicted by its learned
additive regression model to its prediction of the current computer price.
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DeepMaize tracks component prices by recording the prices offered by each
supplier over a number of recent days (five days in the full SCM competition, but
only one day in the Prediction Challenge). The price for a component request
with a given due date can then be predicted by taking the recorded price for
that due date, if one exists, or by linearly interpolating between prices offered on
different due dates if not. To improve the resulting predictions, DeepMaize also
uses the reduced error pruning tree from WEKA, a form of decision tree, to learn
the difference between actual observed prices in a data set of past games and the
predictions of the linear interpolation method. This use of regression is similar
to the method used by TacTex to predict changes in future component prices;
however, instead of only learning to make predictions for the change in prices over
20 days, DeepMaize also includes features that allow it to specify the number
of days in the future for which the change should be predicted. As a result,
DeepMaize can used its learned model to predict both the corrections needed
to the linear interpolation method for the current component price predictions,
and the changes in prices expected for the future component price predictions.

TacTex makes predictions about current component prices by attempting to
directly estimate the available production capacity of each supplier on each fu-
ture day. The prices offered by suppliers are determined entirely by the fraction
of their capacity that is free before the requested due date, so each offer can
be used to determine the free capacity over a certain range. If two offers with
different due dates are available, the fraction of the supplier’s capacity that is
committed in the period between the first and second date can be determined by
subtracting the total capacity committed before the first date from that commit-
ted before the second. With enough offers over many days, TacTex can maintain
a reasonable estimate of the fraction of capacity committed by a supplier on any
single day, and use this estimate to make price predictions.

TacTex makes future component price predictions using the same method it
uses for future computer price predictions. Additive regression is used to learn a
model that can predict the difference between current predictions and the prices
that will exist in 20 days.

In addition to the prediction methods used by these participants, a number of
techniques used in previous TAC SCM agents have been documented, primarily
for predicting current computer prices. A previous version of DeepMaize used
equilibrium analysis to make predictions about the future state of the market,
from which information such as future prices could be extracted [5]. CMieux [6]
makes predictions about computer prices using a form of modified regression tree
called a distribution tree that learns to predict a distribution over winning prices
using data from past games. For current component prices, CMieux predicts
the price that will be offered for an RFQ with a given due date by using a
nearest neighbors approach that considers recent offers with similar due dates.
Foreseer [7] uses a form of online learning to learn multipliers indicating the
impact of various RFQ properties on current computer prices. A previous version
of Botticelli [8] used a heuristic in which linear regression is performed on recent
computer prices to predict a distribution over winning prices.
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4 Results and Analysis

In this section, we present the results of the Prediction Challenge and then
analyze the data in a number of ways.

4.1 Results

Tables 1-4 show the prediction accuracy of each participant in each prediction
category in terms of RMS error. Table 5 shows the overall place and average rank
of each participant. Table 6 shows the five agents against which the PAgent com-
peted in each of the three sets of 16 games. The winning participant, DeepMaize,
had the lowest error on both current and future component price predictions,
while TacTex had the lowest error on both current and future computer price
predictions. For each category, the difference between the top agent and other
agents is statistically significant with at least 98% confidence according to paired
t-tests comparing the RMS errors for each of the 48 games. A few observations
can be made from these results.

First, in each prediction category, the difference between the best and third
best RMS error was fairly small, at most 12%. This fact suggests that the pre-
diction methods used by the top three participants are all reasonably effective,
and that there may be limited room for improvement. At the same time, the
magnitudes of these errors are significant, suggesting that making predictions in
TAC SCM is inherently difficult. To give perspective to these results, the agents
in the final round of the 2007 TAC SCM competition had average profit margins
between 1% and 7.5%, so prediction errors of these (similar) magnitudes could
conceivably have a significant impact on agent performance.

Also, for both computers and component prices, the ranking of participants is
the same for both current and future predictions. This is perhaps not surprising,
as it seems reasonable that a participant able to make better short term predic-
tions would have an advantage in making long term predictions. As expected,
errors for future price predictions are much higher than errors for current price
predictions, roughly by a factor of two.

4.2 Average Daily Errors

We begin our analysis by looking at how prediction errors vary across time. Fig-
ures 1-4 show the average RMS errors in each prediction category over all 48
games for each game day. (To improve visibility only the top three participants
are shown; Kshitij’s errors are consistently higher without displaying notably
different patterns.) The most obvious feature of these graphs is that errors are
usually very high at the beginning and end of games. Making predictions at
the beginning of games can be difficult because there is little or no information
about previous prices, and because prices can change rapidly as agents place
large component orders (driving component prices up) and begin selling com-
puters as components arrive (driving computer prices down). Computer prices
are often unpredictable at the ends of games when agents are trying to sell off
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Table 1. Current

computer prices
Name Error

1. TacTex .0455
2. DeepMaize .0468
3. Botticeli .0471
4. Kshitij .0487

Table 2. Future

computer prices

Name Error

1. TacTex .0916
2. DeepMaize .0959
3. Botticeli .1024
4. Kshitij .1109

Table 3. Current

component prices

Name Error

1. DeepMaize .0392
2. Botticeli .0417
3. TacTex .0428
4. Kshitij .1333

Table 4. Future

component prices

Name Error

1. DeepMaize .0943
2. Botticeli .0970
3. TacTex .1034
4. Kshitij .1389

Table 5. Overall placing and av-

erage rank of each participant

Place Name Avg. rank

1 DeepMaize 1.5
2 TacTex 2
3 Botticelli 2.5
4 Kshitij 4

Table 6. Agents in each of the three sets of games

Set Agents

A Maxon06, MinneTAC05, DeepMaize05,
Foreseer05, PhantAgent06

B GoBlueOval05, GeminiJK05, RationalSCM05,
PhantAgent05, TacTex06

C PhantAgent06, Maxon06, RationalSCM05,
Tiancalli06, PhantAgent05

Table 7. RMS errors over the first 20 days, last 20 days, and middle portion of the

prediction interval for each category (lowest error in bold)

Name Current computer Future computer Current component Future component
start mid end start mid end start mid end start mid end

DeepMaize .0562 .0403 .0947 .0965 .0913 .1356 .0484 .0341 .0810 .0920 .0951 .0936
TacTex .0771 .0342 .1026 .1473 .0774 .1262 .0868 .0313 .0797 .1219 .0992 .1210
Botticelli .0665 .0381 .0984 .1240 .0952 .1408 .0505 .0365 .0858 .0965 .0975 .0969

their remaining inventory – for each computer type, prices may suddenly become
very high or low depending on inventory levels and thus competition. TacTex
appears to suffer the most from errors at the start and end of games, espe-
cially when predicting component prices, while DeepMaize has particularly low
errors in initial component price predictions and is roughly the same as Botti-
celli elsewhere. Occasional large errors such as these can be very damaging to a
participant’s overall performance due to the fact that RMS error, and not mean
absolute error, is used in scoring.

In some cases, sudden error spikes can be attributed to the behavior of a
specific agent. The spike in current component price errors on day 201 (and thus
in future component price errors on day 181) occurs only in the games in Set
A and is caused by MinneTAC05 sending large requests for components on that
date but not accepting the resulting offers, presumably with the goal of driving
up prices for other agents. It is interesting to note that Botticelli and TacTex
recovered completely (returned to the previous low error level) in two days, while
DeepMaize recovered in three days, suggesting that such spikes will only confuse
agents for a short period of time.

The timing of the distinct jumps in late-game current computer price pre-
diction errors observable in Figure 1 can also be traced to specific agents. The
jump at day 202 occurs only in games from set C and is caused by Tiancalli06
suddenly dropping the prices it offers, while the jump at day 209 occurs only in
games from set B and is caused by GeminiJK05 doing the same. The final rise
over the last few days appears to be caused by widely varying (often very high)
prices resulting from reduced competition to sell certain types of computers.
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Compared to the starting and ending errors, average prediction errors during
the middle of games tend to be much lower, and they are more consistent both
over time and between participants. Still, there are some notable patterns. Tac-
Tex consistently has slightly lower errors for current computer price and current
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component price predictions and significantly lower errors for future computer
price predictions, but errors for future component price predictions are generally
a little higher than those of Botticelli or DeepMaize. DeepMaize suffers early on
from higher errors for current computer price predictions, while Botticelli like-
wise has higher errors for future computer price predictions at the start of games,
but otherwise the two participants have extremely similar patterns of errors.

The level of errors for current component prices remains nearly constant
throughout games, while errors for future computer prices undergo notable swings
for reasons that are unclear. These swings appear to some degree when each of
the three sets of games is considered alone, although the swings occur at differ-
ent times and scales for each set. While somewhat consistent, errors for current
computer prices tend to be lower in the early parts of games for TacTex and Bot-
ticelli (probably due to the fact that competition tends to remain strong across all
computer types while agents work through the components ordered at the start of
each game), and errors for future component prices drop near the ends of games
for Botticelli and DeepMaize (probably due to the fact that component orders,
and thus changes in supplier prices, tend to dwindle during this period).

It is important to note that these observations do not necessarily hold when
individual games are analyzed. Figures 5-8 show the daily RMS errors for a
single representative game, game 3 from Set A. The most striking difference is
the fact that for both current and future computer price predictions, errors vary
considerably between the participants. Errors also show more variance across
time, except for current computer prices, where there are only occasional spikes
that are likely caused by unusually heavy component requests.

In the remainder of this paper, we ignore errors over the first and last 20
days for which predictions are required for each prediction category. Doing so
removes the highly variable effects (start and end game conditions, and the spike
in component price errors caused by MinneTAC05) that can obscure patterns
that would otherwise be visible. Table 7 shows how the elimination of these
errors affects the results.

4.3 Differences between Participants across Games

To get a better view of how prediction error varies across games, we now compare
the performance of participants on each game individually. Figures 9-12 show the
errors for TacTex in each game plotted against those for DeepMaize. Each figure
shows a different prediction category. Figures 13-16 show the same information
for Botticelli and DeepMaize, and Figures 17-20 compare TacTex to Botticelli.
For each figure, the correlation coefficient r is given. The dotted line in each
figure is the line y = x, meaning that a point below the line represents a game
for which the participant on the y-axis had lower error.

We begin by looking at the current computer price predictions. Figure 17
shows that the errors of TaxTex and Botticelli are highly correlated, with Bot-
ticelli’s errors being higher than TacTex’s by a similar amount in each game.
Comparing either participant to DeepMaize (Figures 9 and 13) paints a differ-
ent picture. While there is still a strong correlation between errors, it appears
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that as the difficulty of making predictions in a game increases, the performance
of DeepMaize increases relative to the performance of the others, to the point
that DeepMaize has the lowest errors of any participant on the most difficult
games. One possible explanation for this result is that the prediction methods
of other participants (the particle filter in the case of TacTex) are highly tuned
for “typical” games and thus suffer as computer prices behave more atypically,
while DeepMaize’s use of a kNN-based predictor allows it to better handle un-
usual situations by matching them with similar situations from its data set. This
prediction category is the only one in which such a phenomenon occurs, and this
fact is particularly interesting because it makes it difficult to state that one par-
ticipant’s method of prediction is best (in expectation) under all circumstances.
An agent with access to the prediction methods of all participants might choose
to use TacTex’s method in most cases but to use DeepMaize’s method in certain
games where prediction appeared particularly difficult.

Errors for future computer prices (Figures 10, 14, and 18) exhibit a different
pattern. Here there is some correlation between the errors of DeepMaize and
Botticelli, but very little between the errors of either of these two participants
and those of TacTex. In fact, for Set C, the errors of TacTex appear completely
unrelated to those of the other two participants. This low correlation suggests
that the difficulties experienced by DeepMaize and Botticelli are not related to
a particular set of games or common to all games, but have to do with particular
situations that can occur in all three sets of games and that TacTex is able to
handle correctly. In the case of DeepMaize, these situations may be different
from those encountered in the data set used by the kNN-based predictor, or the
distance metric used by the predictor may be unable to distinguish these situa-
tions from unrelated ones in the data set. The fact that DeepMaize and Botticelli
have a higher degree of correlation suggests that they may have difficulties under
some of the same circumstances.

The pattern of errors for current component prices (Figures 11, 15, and 19)
is much clearer. Here there is a high degree of correlation between the errors of
different participants, with the errors of one participant differing from those of
another by a fairly consistent amount. It should be noted that the reason why
TacTex has the lowest errors here, but the third lowest error in Table 3, is the
exclusion of the beginning of each game, where TacTex had very high errors.

While not as highly correlated as the errors in current component prices, the
errors for future component price predictions (Figures 12, 16, and 20) show a
somewhat similar pattern.

In addition to making comparisons between the participants, we can also com-
pare the difficulty of making predictions for each of the three sets of games. For
computer prices, it appears to be easier to make predictions for Set B, especially
current predictions, while Set A tends to have higher future prediction errors.
On the other hand, predicting component prices appears to be more difficult for
Set B, especially current component prices. The reasons for these differences be-
tween sets are not clear, unlike the error spikes in Figures 1 and 3 that could be
traced to specific agent behaviors. Better understanding these differences would
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likely be useful in designing improved predictors that can handle a wider variety
of agent behaviors.

It is interesting to note that the patterns observed above (such as correlations
between errors and which participant had the lowest errors) generally appear to
hold equally well for all three sets of games. Given that the prediction methods
used often require the user to choose a data set composed of past game results,
it would not be surprising for a participant to make particularly accurate pre-
dictions on games that are most similar to the games in the chosen data set, and
for certain participants to favor certain sets of games as a result, but this does
not appear to have happened.

4.4 Differences between Participants across Days

To make comparisons at a finer level of detail, we can also plot the errors of each
agent on a daily basis, rather than for each game. Figures 21-26 show a subset of
the comparisons from Figures 9-20 at this level. Again, RMS error is measured,
and the first and last 20 days of errors are omitted. These figures largely serve
to shed further light on the observations that have been made previously. Unlike
the previous set of figures, no indication is given about the set of games from
which each point plotted came, but plotting each set separately reveals very
similarly shaped distributions for each set.

Figure 23 shows that the daily errors for the current computer predictions of
TacTex and Botticelli are highly correlated, as would be expected from Figure
17. The correlation between TacTex and DeepMaize is much weaker, as seen in
Figure 21 (the plot of Botticelli and DeepMaize is nearly the same). As noted be-
fore, Figures 9 and 13 show that the performance of DeepMaize tends to improve
relative to the other participants as the predictions become more challenging.
While a distribution of the same shape (high correlation but a high slope) in
Figure 23 would cause this outcome, instead it appears that there are some pre-
dictions for which DeepMaize has similar errors (those along the line y = x),
along with a cluster of predictions (along the bottom-left) for which DeepMaize
has higher errors. It may be the case that there are certain relatively easy predic-
tions with which DeepMaize has difficulty, and that these easy predictions occur
less often in the more challenging games. Many of the points in this cluster are
from the early parts of games where DeepMaize has higher errors (see Figure
1), but not all – even with the first 70 days omitted from the plot, the cluster is
still visible.

Based on Figures 10 and 14, we would expect DeepMaize’s daily future com-
puter price prediction errors to be weakly correlated with those of TacTex and
somewhat correlated with those of Botticelli, and Figures 22 and 24 confirm this
expectation (the plot of TacTex and Botticelli is similar to Figure 22). Looking
at Figure 2, in which Botticelli and DeepMaize have nearly identical average
daily errors, it is perhaps surprising that their correlation here is not higher.

Figures 25 and 26 show the daily errors for the current and future component
price predictions of DeepMaize and TacTex (plots for Botticelli are similar).
These errors are highly correlated, as they were in Figures 11 and 12. Figure 25
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illustrates that the pattern observed for a single game in Figure 7 (mostly low
errors around 0.03, with occasional spikes that affect all participants similarly)
is true in general. Similarly, the pattern seen in one game in Figure 8 (errors
more evenly distributed over a wide range but still highly correlated between
participants) appears in Figure 26.

One additional observation that can be made is that while a participant may
show consistently lower errors at the full-game level (for instance, TacTex in
Figures 10 and 11), there may still be a large number of days on which it has
higher errors (Figures 22 and 25). This observation may indicate that there is still
room for the participant to improve, or it may simply be a result of the stochastic
nature of the game (that is, for each situation in which predictions are made,
there may actually be a wide distribution over possible outcomes depending on
random game factors such as demand fluctuations). Both possibilities are likely
true to some degree.

5 Conclusion

We have introduced the TAC SCM Prediction Challenge and analyzed the results
of the 2007 competition. Our analysis showed that different prediction methods
can achieve similar prediction accuracy and that errors are frequently, but not
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always, correlated. At the same time, some participants are clearly stronger
than others in certain areas. TacTex regularly had lower errors in three of the
four prediction categories during the middle of each game, but suffered from
high errors at the start and end of games. The winner, DeepMaize, was fairly
effective in all aspects of the challenge.

There are many additional ways in which the results of the competition could
be analyzed. We have focused on giving a high-level comparison of the predic-
tion accuracy of the participants, but it would also be possible to continue this
analysis at a finer level, such as by comparing accuracy on predictions for in-
dividual RFQs or by trying to identify the specific conditions under which one
agent outperformed another. Such analysis could be useful in helping partic-
ipants to identify the shortcomings of their prediction methods and to make
future improvements.
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