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IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First
World Computer Congress held in Paris the previous year. An umbrella organi-
zation for societies working in information processing, IFIP’s aim is two-fold:
to support information processing within its member countries and to encourage
technology transfer to developing nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical
organization which encourages and assists in the development, ex-
ploitation and application of information technology for the benefit
of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and
publications. IFIP’s events range from an international congress to local seminars,
but the most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited
and contributed papers are presented. Contributed papers are rigorously refereed
and the rejection rate is high.

As with the Congress, participation in the open conferences is open to all and
papers may be invited or submitted. Again, submitted papers are stringently ref-
ereed.

The working conferences are structured differently. They are usually run by a
working group and attendance is small and by invitation only. Their purpose is
to create an atmosphere conducive to innovation and development. Refereeing is
less rigorous and papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP
World Computer Congress and at open conferences are published as conference
proceedings, while the results of the working conferences are often published as
collections of selected and edited papers.

Any national society whose primary activity is in information may apply to be-
come a full member of IFIP, although full membership is restricted to one society
per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for asso-
ciate or corresponding membership. Associate members enjoy the same benefits
as full members, but without voting rights. Corresponding members are not rep-
resented in IFIP bodies. Affiliated membership is open to non-national societies,
and individual and honorary membership schemes are also offered.
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IFIP World Computer Congress 2010 
(WCC 2010) 

Message from the Chairs 

Every two years, the International Federation for Information Processing (IFIP) hosts a 
major event which showcases the scientific endeavors of its over one hundred technical 
committees and working groups. On the occasion of IFIP’s 50th anniversary, 2010 saw 
the 21st IFIP World Computer Congress (WCC 2010) take place in Australia for  
the third time, at the Brisbane Convention and Exhibition Centre, Brisbane, Queensland, 
September 20–23, 2010. 

The congress was hosted by the Australian Computer Society, ACS. It was run as a 
federation of co-located conferences offered by the different IFIP technical commit-
tees, working groups and special interest groups, under the coordination of the Inter-
national Program Committee.  

The event was larger than ever before, consisting of 17 parallel conferences, focusing 
on topics ranging from artificial intelligence to entertainment computing, human choice 
and computers, security, networks of the future and theoretical computer science. The 
conference History of Computing was a valuable contribution to IFIPs 50th anniversary, 
as it specifically addressed IT developments during those years. The conference  
e-Health was organized jointly with the International Medical Informatics Association 
(IMIA), which evolved from IFIP Technical Committee TC-4 “Medical Informatics”. 

Some of these were established conferences that run at regular intervals, e.g.,  
annually, and some represented new, groundbreaking areas of computing. Each con-
ference had a call for papers, an International Program Committee of experts and a 
thorough peer reviewing process of full papers. The congress received 642 papers for 
the 17 conferences, and selected 319 from those, representing an acceptance rate of 
49.69% (averaged over all conferences). To support interoperation between events, 
conferences were grouped into 8 areas: Deliver IT, Govern IT, Learn IT, Play IT, 
Sustain IT, Treat IT, Trust IT, and Value IT. 

This volume is one of 13 volumes associated with the 17 scientific conferences. 
Each volume covers a specific topic and separately or together they form a valuable 
record of the state of computing research in the world in 2010. Each volume was 
prepared for publication in the Springer IFIP Advances in Information and Communi-
cation Technology series by the conference’s volume editors. The overall Publications 
Chair for all volumes published for this congress is Mike Hinchey.  

For full details of the World Computer Congress, please refer to the webpage at 
http://www.ifip.org. 

June 2010 Augusto Casaca, Portugal, Chair, International Program Committee 
Phillip Nyssen, Australia, Co-chair, International Program Committee 

Nick Tate, Australia, Chair, Organizing Committee 
Mike Hinchey, Ireland, Publications Chair 

Klaus Brunnstein, Germany, General Congress Chair



Preface

This volume contains the proceedings of two conferences held as part of the 21st IFIP 
World Computer Congress in Brisbane, Australia, 20–23 September 2010. 

The first part of the book presents the proceedings of DIPES 2010, the 7th IFIP 
Conference on Distributed and Parallel Embedded Systems. The conference, intro-
duced in a separate preface by the Chairs, covers a range of topics from specification 
and design of embedded systems through to dependability and fault tolerance. 

The second part of the book contains the proceedings of BICC 2010, the 3rd IFIP 
Conference on Biologically-Inspired Collaborative Computing. The conference is 
concerned with emerging techniques from research areas such as organic computing, 
autonomic computing and self-adaptive systems, where inspiraton for techniques de-
rives from exhibited behaviour in nature and biology. Such techniques require the use 
of research developed by the DIPES community in supporting collaboration over 
multiple systems. 

We hope that the combination of the two proceedings will add value for the reader 
and advance our related work. 

July 2010 Mike Hinchey 
Bernd Kleinjohann 

Lisa Kleinjohann 
Peter Lindsay 

Franz J. Rammig 
Jon Timmis 

Marilyn Wolf 
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Lúıs Gomes

An Entirely Model-Based Framework for Hardware Design and
Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Safouan Taha, Ansgar Radermacher, and Sébastien Gérard
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Preface

IFIP Working Group 10.2 was pleased to sponsor DIPES 2010, the IFIP Confer-
ence on Distributed and Parallel Embedded Systems. The conference was held
in Brisbane, Australia during September 20-22, 2010 as part of the IFIP World
Computer Conference.

Already when establishing this conference series in 1998, the idea of distribu-
tion, where the control task is carried out by a number of controllers distributed
over the entire system and connected by some interconnect network, was empha-
sized in its title. This idea naturally leads to the recent research field of cyber
physical systems where embedded systems are no longer seen as “closed boxes”
that do not expose the computing capability to the outside. Instead networked
embedded systems interact with physical processes in a feedback loop leading
to ever more “intelligent” applications with increased adaptability, autonomy,
efficiency, functionality, reliability, safety, and usability. Examples like collision
avoidance, nano-tolerance manufacturing, autonomous systems for search and
rescue, zero-net energy buildings, assistive technologies and ubiquitous health-
care cover a wide range of domains influencing nearly all parts of our lives.

Hence, the design of distributed embedded systems interacting with physical
processes is becoming ever more challenging and more than ever needs the in-
terdisciplinary research of designers and researches from industry and academia.
DIPES provides an excellent forum for discussing recent research activities and
results.

DIPES 2010 received 37 submissions: 30 from Europe, 4 from South Amer-
ica, 2 from Asia/Australia, and 1 from Africa. From these submissions, the Pro-
gram Committee accepted 18 papers for presentation at the conference. The
contributions present advanced design methods for distributed embedded sys-
tems, starting from specification and modelling over verification and validation
to scheduling, partitioning and code generation, also targeting specific architec-
tures such as upcoming multi-core systems or reconfigurable systems.

We would like to thank all authors for their submitted papers and the Pro-
gram Committee for their careful reviews. Our thanks also go to Rolf Ernst for
his inspiring keynote speech on mastering the conflicting trends safety, efficiency
and autonomy in embedded systems design. We gratefully acknowledge the su-
perb organization of this event by the WCC Committee. Furthermore, we also
thank our colleague Claudius Stern for his valuable support in preparing the
camera-ready material for this book.

Marilyn Wolf
Bernd Kleinjohann

Lisa Kleinjohann



Safety, Efficiency and Autonomy - Mastering
Conflicting Trends in Embedded Systems Design

Rolf Ernst

Technische Universitt Carolo-Wilhelmina zu Braunschweig

Institute of Computer and Network Engineering

Hans-Sommer-Str. 66,

38106 Braunschweig, Germany

r.ernst@tu-bs.de

Extended Abstract

Embedded systems have developed from single microcontrollers to networked
sys-tems and are moving further on to large open systems. As an example, au-
tomotive electronics started as a single microcontroller for engine control to de-
velop into a local network of 50 and more electronic control units connected via
several network standards and gateways which are found in current cars. These
networks will be ex-tended by open wireless car-to-car or car-to-infrastructure
communication enabling completely new functionality, such as advanced driver
assistance systems that report approaching cars that could cause an accident.
Other examples are found in health-care, where patients are monitored at home
connected to a hospital data base and monitoring system rather than staying
in the hospital for that purpose, or in smart buildings where different control
functions are integrated to minimize energy con-sumption and adapt consump-
tion to the available energy, or in energy supply net-works that are optimized to
include renewable energy production. In all these cases we observe a transition
from local closed networks with a single systems integrator controlling all de-
sign aspects (such as an automotive manufacturer) to larger open networks with
many independent functions and different integrators following differ-ent design
objectives. The Internet plays an important role supporting that trend. Unlike
closed networks with a defined topology, such systems change over the life-time
of a system.

As a consequence, there is no single design process any more that controls
all components and subsystems. There is no single “product” that is replicated
in produc-tion, but every open networked system is somewhat different both in
implemented services and in topology. Updates and upgrades change the sys-
tem over its lifetime. Lab test and maintenance become increasingly difficult as
neither execution platform nor system function are fully defined at design time.
Many deeply embedded nodes are hard to reach or become so large in their
numbers that a centrally controlled maintenance process becomes infeasible. To
handle such challenges, autonomous, self learning and evolutionary system func-
tions have been proposed which automatically adapt to changing environments

M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 5–6, 2010.
c© IFIP International Federation for Information Processing 2010



6 R. Ernst

and requirements. Unfortunately, this reduces system predictability which is a
main requirement to guarantee system properties such as real-time and safety.

A second consequence is the convergence of system functions with different
de-pendability and safety requirements. Patient monitoring at home is certainly
a safety critical task that runs in a home environment that was intended for
home office, entertainment and home appliances with lower safety requirements.
So, if we want to use the IT environment at home for monitoring, it must be able
to handle higher safety requirements. A similar requirement holds for car-to-car
communication if safety critical driver assistance functions shall be implemented
this way. A future traffic assistance system is likely to include pedestrians and
bicyclists using their mobile devices to communicate with cars and warn of haz-
ardous situations. This will be particularly helpful for senior persons. Now, the
mobile device and its communication channels will become safety critical which
is a completely new requirement.

This host of conflicting requirements is likely to become a showstopper for
many advanced embedded applications if system and service providers are not
able to give guarantees and assume liability. One approach is isolation of re-
sources. Most promi-nently, time triggered protocols and architectures have been
proposed that assign unique time slots to each application in order to minimize
side effects. This is a con-sistent but conservative approach which has a major
impact on the autonomous development and evolution of a system. Unfortu-
nately, current hardware components have a deep state space (caches, dynamic
predictions) that affects execution timing beyond even longer time slots. That
makes complete isolation in time rather difficult. Multicore based systems with
shared resources are a good exam-ple for the upcoming challenges.

As an alternative or complement, formal methods have been proposed that
analyze system properties, such as timing and safety. Today, they are typically
used in support of embedded system simulation and prototyping, but in future
autonomous systems they could run automatically since test cases and evaluation
are not needed. First examples have been presented in research demonstrating
feasible computation requirements.

Even if the upcoming systems integration challenges can be handled with
autono-my, suitable computer architectures, and formal methods, they will not
be for free. Lack of cost and power efficiency could still prevent their introduction,
in particular where energy resources are scarce. So, systems integration and
control of autonomous embedded systems should be seen as a global optimization
problem using a separate global control function, much like the control layer of a
classical communication network, but requiring guarantees that are far beyond
the current state.



Rialto 2.0: A Language for Heterogeneous
Computations

Johan Lilius1, Andreas Dahlin1,2, and Lionel Morel3

1 Center for Reliable Software Technology, Åbo Akademi University, Finland
2 Turku Centre for Computer Science, Finland

{jolilius,andalin}@abo.fi
3 Université de Lyon, France

lionel.morel@insa-lyon.fr

Abstract. Modern embedded systems are often heterogeneous in that

their design requires several description paradigms, based on different

models of computation and concurrency (MoCCs). In this paper we

present Rialto, a formal language intended at expressing computations in

several MoCCs. The distinguishing features of Rialto and its implemen-

tation are 1) A formal semantics: the language is formalized using SOS

(structured operational semantics) rules; 2) Encapsulation of models of

computation into policies: we thus distinguish between the syntactic ele-

ments of the language (parallelism, interrupts) and its semantics; 3) effi-

cient implementation algorithms. Policies are expressed in the language

itself, which allows for more expressive power and a sounder semantics.

1 Introduction

A model of computation (MoC) is a domain specific, often intuitive, under-
standing of how the computations in that domain are done: it encompasses the
designer’s notion of physical processes, or as Edward A. Lee [1] puts it, the ”laws
of physics” that govern component interactions. Many different computational
models exist: Hardware is often seen as having a synchronous model of computa-
tion in the sense that everything is governed by a global clock, while software has
an asynchronous MoC. A system that is described using several MoCs is called
heterogeneous, and the computations it makes are heterogeneous computations.

We are interested in understanding what the combination of models of compu-
tation means. The need for combining several models of computation arises often
when modelling embedded systems. Our specific interest is in understanding the
combination of models of computation from an operational perspective. Figure 1
shows an example of a system modeled in two different models of computation:
One of the states in a state machine is refined by a Synchronous dataflow (SDF)
graph. While in state wait, the program can take a transition to state process and
start processing events using the algorithm in the SDF diagram. However sev-
eral questions need to be answered before this description can be implemented.
For example: what happens if a second e1 arrives while the system is in state
process?

M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 7–18, 2010.
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Fig. 1. A state machine, with one state refined by an SDF graph

In practice one does not program in a model of computation but in a pro-
gramming language and we have therefore taken a slightly broader definition and
view a model of computation as consisting of both a language and a correspond-
ing semantics. The goal of our research can now be stated as twofold: 1. The
development of a unified operational mathematical model of models of compu-
tation, and 2. the development of a textual language, in which it will be possible
to program these kinds of models using a standard set of syntactic elements to
represent entities in the different models of computation.

The second goal is motivated by the fact that many of the languages we have
looked at (e.g. UML state machines [2], Esterel [3] and Harel’s Statecharts [4]),
use the same syntactic concepts but with different semantics. What we would
like to do is pinpoint the semantic differences to certain syntactic concepts.
For example the notion of parallelism exists in all three languages above, but
there is certainly a difference in the semantics of parallelism between UML state
machines and Esterel. On the other hand all languages also have a notion of
interrupt (the trap-construct in Esterel and hierarchical transitions in both
variants of Statecharts) that have very similar semantics.

To address this issue, we propose a language for expressing computations in
several models of computation. The distinguishing features of Rialto and its im-
plementation are: 1. A formal semantics : The language is formalized using SOS
rules, 2. Encapsulation of models of computation into policies : This technique
makes it possible to distinguish between the syntactic elements of the language
(like parallelism, interrupts) and its semantics (step, interleaving, rtc, etc.) and
3. Efficient implementation algorithms : A Rialto program can be flattened [5].
This means that there exists a path to an efficient implementation.

The paper is structured in the following way. In section 2, we describe syntax
and motivate the choice of syntactic entities. In section 3 we briefly outline the
operational semantics, and the scheduling semantics of the language. Finally in
the last sections, we present some examples and give a conclusion.

1.1 Related Work

The work of Lee et al. [6, 7] is a comprehensive study of different models of
computation. The authors propose a formal classification framework that makes
it possible to compare and express differences between models of computation.
The framework is denotational and has no operational content, which means that
it is possible to describe models of computation, including timed and partial
order based models that we cannot model in our framework. The reason for
this is that both timed and partial order based models are models that describe
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program ::= program name decbody nullstmt ::= null
begin body end; body ::= ((label :)? (S |expr);)*

decbody ::= (vardec | owndec | policdec)* gotostmt ::= goto label
vardec ::= (label :)? var name: Type; atomicstmt ::= [ body ]
policydec ::= policy name decbody returnstmt ::= return label

begin body end; suspendstmt ::= suspend label
ifstmt ::= if boolexpr then body resumestmt ::= resume label

else body endif assignstmt ::= i := expr
parstmt ::= par body || body endpar trapstmt ::= trap boolexpr do S
statestmt ::= state policy name; decbody body endtrap

begin body endstate

Fig. 2. The Rialto grammar (S represents any statement)

constraints on possible implementations. Although we can model dataflow in our
language, we have to decide on a specific operational semantics for the dataflow.
This semantics will be one of several that preserve the partial-ordering between
operations described by the dataflow specification. On the other hand Girault et
al. [8] present ideas for combining graphically modelled MoCs, e.g. they combine
SDF graphs with finite state machines. Their idea is similar to ours in that they
use state hierarchy to delineate MoCs.

We would also like to point out that in [6], Lee independently proposes an
approach that is conceptually essentially the same as ours, i.e. he suggests that
a language, or a set of languages, with a given abstract syntax, can be used
to model very different things depending on the semantics and the model of
computation connected to the syntax. More recently, Benveniste et al. have pro-
vided interesting insights on dealing with heterogeneity through so-called Tag
Systems [9,10]. Their approach, which is also based on a denotational description
of the possible traces of a system, provides a mathematical setting well suited for
proving properties on the correctness of particular design methods. Our work,
on the other hand, proposes a language for programming heterogeneous systems,
letting the user designing both the hierarchical structure of the program and the
scheduling policies that rule each sub-system. From a language point of view,
Rialto is also close to Ptolemy [11]. Essentially, our states are Ptolemy’s actors
while our policies can be seen as formal descriptions of Ptolemy’s directors. Cen-
tral differences are that Rialto has a formal semantics and code generation, while
Ptolemy is a modelling and simulation tool.

2 Syntax of the Language

In this section we define the syntax of Rialto 2.0, discuss the choice of syntactic
elements and provide an example. Our language is a small language, originally
designed to describe UML statecharts. Basic syntax is given in Figure 2. Each
statement in a program has a unique label, given by a designer or the compiler.

The basic concept in our language is the notion of a state. State is seldom
explicit in programming languages like VHDL or ESTEREL but many modelling
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languages like UML, Harel’s Statecharts or Petri nets make state explicit. Rialto
states can be concurrent as well as hierarchical, sequential computations inside
states can be expressed in a connected action language. Syntactically a state is
represented by a state - endstate block.

An interrupt is an event of high priority that should be reacted upon immedi-
ately, or almost immediately. In our language, a trap - endtrap block is used to
monitor interrupts. Interrupts correspond to trap in ESTEREL and hierarchical
transitions going upwards in the state hierarchy in UML and Harel’s State-
charts. Coroutines are independent threads of control that can be suspended
and resumed. In programming languages, threads and processes are common
abstraction mechanisms for coroutines. In modelling languages coroutines play a
crucial role, e.g. history states in UML and Harel’s Statecharts label the thread
of control in a state as a coroutine, because the state is suspended when a hier-
archical transition takes the control out of the state. In Rialto 2.0, concurrency
is indicated using the par statement. The parallelism is interpreted differently
depending on the execution policy for the current scope.

A novelty in our language is that we make atomicity explicit. Atomicity defines
what the smallest observable state change is. At the one extreme, in traditional
programming languages, atomicity is not a part of the language itself, but is
loosely defined by multiprogramming concepts like semaphores and monitors.
At the other extreme, in synchronous languages like Esterel, atomicity encom-
passes the whole program, so that the internal workings of the program are not
observable. In the middle-field between these extremes other proposals exist, e.g.
the GALS (Globally Asynchronous, Locally Synchronous) semantics proposed in
POLIS [12]. In GALS atomicity is confined to single state machines, while com-
munication between state machines can be observed. In our approach we have
introduced atomicity as an explicit syntactic entity, the atomic brackets [ ]. It
abides to the normal rules of scoping and is thus less general than the first ap-
proach mentioned above, but using this approach we can model its interaction
with other constructs at the needed level of atomicity.

The communication policy states how different modules of the system commu-
nicate with each other. For the moment we have taken a rather simple approach
which allows us to still model many more complex approaches. We call the main
communication media in our language channels. A channel can e.g. represent
the global event queue in a UML statechart, a link in an SDF graph etc. In state
diagrams, an event is an occurrence that may trigger a state transition. In UML
statecharts, there is an implicit global event queue; whereas, in our language
several channels can be declared and the scope of a channel declaration is the
state block. The notation in our language for checking for the presence of an
event on a queue is q1.e1, where q1 is the queue and e1 is an event.

Data handling is not our primary concern at the moment, as we are more
interested in control-dominated programming; however, the language has a few
primitive types like integers and floats. Complex types and functions are only
declared in Rialto, while their implementation is deferred to the target language.
This is the same approach as in ESTEREL.
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Fig. 3. A hierarchical state machine with two policies

2.1 Example

Figure 3 gives a graphical and textual representation of a simple Rialto program.
This program encodes a hierarchical state machine composed of two machines
sp1 and sp2 that are put in parallel with the || statement. The latter is itself
decomposed into two state machines put in parallel, sp2 par l and sp2 par r.
To each state in the program is associated a scheduling policy which defines
how execution is organized within the state. The default, step and interleaving
policies as well as other policies are also defined in Rialto. They are discussed in
section 4.

In the initial state, the state machine will be in the states s2, s4 and s6.
Execution starts with the evaluation of the top-most policy shared by these three
states, i.e. the policy step associated to s. This policy is defined (see section 4)
to execute each orthogonal state. In this case both states sp1 and sp2 should be
executed during the step. Our initial states are organized into partitions {s2}
and {s4, s6}. The execution of s2 in the first part of the step is straightforward
and it will result in a transition to the state s3. The next part of the step is to let
the policy associated with {s4, s6}, namely the interleaving policy, decide
the execution of these states. The interleaving policy is defined to randomly
execute one of the orthogonal regions of the state it is scheduling. This means
that either s4 or s6 is executed, but never both during the same step. In the
scenario where s4 is executed the result of the interleaving would lead sp2 into
the state {s5, s6}, while the other scenario (execution of s6) would move sp2
into {s4, s7}. The step is completed by collecting the new state of the system.
The instance of the step policy, which is scheduling s, is responsible to collect
the new observable state of the system. This state is either {s3, s5, s6} or
{s3, s4, s7}. The next step will also be initiated by the policy of s, since the
new state of the system also has s as its parent state.
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3 Semantics

The semantics of Rialto 2.0 is split into three parts. First we define the static
structure of a Rialto program. This is a graph that encodes the hierarchical
and sequential relationships of statements in the program. Then we define the
dynamic state of a Rialto program. Finally we explain the operational rules that
are used to interpret a Rialto program.

3.1 The Static Structure of a Rialto Program

A Rialto program consists of a set of hierarchical state-machines. Each state-
ment enclosed in a state-block has a label that acts as an “instruction address”.
Because of the hierarchical structure we can define a tree structure on these la-
bels, which reflects the hierarchy of the program. There is a sequential order on
some of the statements; reflected in the fact that leafs of a node in the tree may
be ordered using a next relation. A program is defined as a tuple <L, ↓, ⇀,P>,
where:

– L is the set of labels of the program. Labels are strings (L ⊂ Strings);
– ↓ is a tree on L;
– ⇀ is a partial function on L that defines the next relation between labels;
– P is the function Label → Stmt, that maps each label to a statement.

3.2 Dynamic State of a Rialto Program

The state of a Rialto program is a stack of state configurations. By default, the
top element of the stack is always selected for execution. A state configuration is
defined by SC = L∗×L∗, the set of pairs of lists of labels, representing state con-
figurations. We have ∀sc ∈ SC.sc=(active, suspended) where: sc.active ⊆ L des-
ignates the set of active labels in the state configuration, while sc.suspended ⊆ L
designates the set of suspended labels in the state configuration.

A state configuration is used to represent the dynamic state of a Rialto pro-
gram, i.e. it basically contains the list of “sub-processes” that are either sub-
ject to execution (the active set) or that should not be executed because they
have been suspended (the suspended set). Thus, suspend and resume actions
of co-routines can easily be modelled by moving labels between the active and
suspended sets.

A policy instance represents the dynamic state of execution of a particular
scheduling policy associated to a particular state. It is defined as a tuple P = L
× L × Env. We have ∀p ∈ P . p = (callLabel, currentLabel, ownV ars) where:

– p.callLabel ∈ L designates the label of the instance of the policy currently
used (the label where the policy is “called”).

– p.currentlabel ∈ L designates the label in the policy: the place in the policy
where this instance of the policy is currently at.

– p.ownV ars ∈ Env designates the variable environments corresponding to
this particular instance of the policy. Encodes the state of the policy.
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We will use one such stack to organize the dynamic execution of a Rialto
program. This stack is used to memorize execution context, in particular, when
switching between user (program) and supervisor (policy) modes. Stack elements
are tuples made of a Cell. C = SC×C×P is the set of cells. We have: ∀c ∈ C.c =
(sc, prevProgCtx, policyDesc) where:

– c.sc ∈ SC the current state configuration that gives information about sus-
pended and active labels in the currently executing context,

– c.policyDesc ∈ P designates the current policy instance that is “leading”
the execution of the current state configuration,

– c.prevProgCtx ∈ C designates the previous program context

We define Stacks of state configurations. Stack(SC) denotes the type “stack
of SC elements”. We denote top(st).active as st.active, while top(st).suspended
is denoted st.suspended. The stack SC can be seen as an interleaving of the
program and the policy execution stacks. As we have chosen to write policies in
Rialto, it is natural to use the same stack structure to represent their state. This
corresponds to the normal operating system states user and supervisor. But this
means that we need special functions to distinguish between these two states.

Finally we can define the runtime state of the program RStack : Stack×Env×
L denotes the type “Rialto program stack”. We have ∀ rstack ∈ RStack =
(st, env, pc) where st designates the program’s stack, env designates the vari-
able environment for the program and pc (program counter) is a pointer to the
currently executed statement. This stack is at the heart of the semantics of the
language. It is also available in the language itself. Indeed, it serves both for deal-
ing with the basic language mechanisms (see section 3.3), and in the description
of the scheduling policies.

3.3 Semantics of Statements

In this section we will discuss the operational rules for executing a Rialto pro-
gram. We will assume the existence of the Rialto dynamic structures
r = (st, env, pc) as introduced earlier. Every statement has the same struc-
ture. The program counter points to a statement in the program array. The rule
is selected by matching on this statement. There may be other conditions that
have to be true. If the premise holds, then the rule is “executed”. Finally the
program counter is set to ⊥ to force the control to the “enter policy” rule.

P [Pc] = “stmt′′ “otherconditions′′

“stmtstatechange′′ Pc =⊥

The null statement (0) deletes the current label from the active set and adds
the successor. The if statement (1) is also very easily defined. We have two
branches, the true and the false branch. The par statement (2) is a compound
statement. The assumption is that all compound statements have their sub-
statements as children in the label-tree. So the effect is to delete the label of the
par-statement and to add all its children to the active set.
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0 Pl[Pc] = “null′′ ∧ Pc �=⊥
st.active = st.active\{Pc} ∪ next(Pc) ∧ Pc =⊥ 6

P[Pc]= trap b do stmt ∧Pc �=⊥ ∧eval(b, Var)
st.active=st.active\{Pc}∪label(stmt)∧Pc=⊥

1 P[Pc] = if b then stmt1 else stmt2 endif
∧pc �=⊥ ∧eval(b, Var)

st.active = st.active\{Pc} ∪ label(stmt1) ∧ pc =⊥
7

P[Pc] = varname ::= expr;
Var[varname]=eval(expr, Var)∧Pc=⊥

P[Pc] = if b then stmt1 else stmt2 endif
∧pc �=⊥ ∧ �= eval(b, Var)

st.active = st.active\{Pc} ∪ label(stmt2) ∧ pc=⊥
8

P[Pc] = state ∧ Pc �=⊥
st.active=st.active\{Pc}∪next(Pc)∧Pc=⊥

2

P[Pc] = par stmt(‖ stmt)∗ endpar ∧ Pc �=⊥
st.active = st.active\{Pc} ∪ child(Pc) ∧ Pc =⊥ 9

P[Pc] = program ∧ Pc �=⊥
st.active=st.active\{Pc}∪next(Pc) ∧ Pc=⊥

3 P[Pc]= suspend l ∧ ∃l′ ∈ subtree(l) : l′ ∈ active(st)
∧Pc �=⊥

st.suspended=st.suspended∪{st.active∩subtree(l)}
st.active=st.active\{Pc, subtree(l)}∧Pc=⊥

10 Pc =⊥
Pc = lub(st.active).policyDesc
push(st, newC({Pc}, Pc, top(st)))

4 P[Pc] = resume l ∧ l ∈ active(st) ∧ Pc �=⊥
st.suspended = st.suspended\{subtree(l)}
st.active = st.active\{Pc}

∪{st.suspended ∩ subtree(l)} ∧ Pc =⊥

11

Pc �=⊥ ∧P[pc] = return l
Pc = env[l] ∧ pop(st)

5 P[Pc] = goto {l1, . . . , ln} ∧ Pc �=⊥
st.active=st.active\{Pc}∪subtree(lub(path

(Pc, lub(Pc, l1, .., ln))))∪{l1, . . . , ln} ∧ Pc=⊥

12 Pc =⊥ ∧top(st) = ϕ
pop(st)

Fig. 4. The statement (0-9) and policy rules (10-12)

The suspend (3) statement deletes a label from the active set and moves
it into the set of suspended labels, effectively suspending the executing of the
corresponding thread. There are two ways this statement can be defined. The
first and the more simple one is to assume that for the statement to make sense,
the label l must be active. On the other hand, when writing a scheduling policy
for an operating system, it might make sense to be able to suspend a task without
knowing which statement it was executing at the time. For this reason we choose
a definition for suspend that actually suspends the subtree below it. However
if this subtree is not active then the command is a “nop”. resume (4) is the
companion to suspend. It moves a label from the suspended set into the active
set thus resuming the thread. As with the suspend statement we have to take
care that the whole subtree is resumed.

A goto (5) statement should jump control from the current location to the
location pointed to by the label l. For this we need to calculate the least upper
bound between the goto statements label and l. Then we delete all children
of lub(l, Pc) that are on the path to Pc from the active set and add all the
children that are on the path to l. The trap (6) statement is a statement that
monitors a certain condition. Anytime it is executed it checks the condition.
If the condition holds the do part is executed, else nothing is done. In both
cases the trap statement is reactivated. Note that for the trap statement to be
effective, it should be executed at each step. However, no such execution is built
into the Rialto language. Instead this has to be taken care of by the policy.

The assignment statement is defined in rule (7). The expression is evaluated in
the environment and the resulting value is assigned to the variable. The state dec-
laration (8) is used to delineate a hierarchical state. The nature of a state is such
that the program will stay in the state until it is exited from the state explicitly,
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through a goto statement or by other means. Thus the execution of a state state-
ment just adds the label of the first statement in the state block to the active set,
while the endstate statement restarts the state block. Finally a program state-
ment is used to start the execution of the program.

Policy Protocol. In Figure 4 the policy rules are shown. A policy controls what
a step in the execution of the program consists of. It has three possible states:

1. the initialisation, at which point the contents of the step is calculated and
the first label is selected,

2. the execution state, in which the policy selects the next label from a set of
labels calculated in the initialisation state and

3. the exit state, in which the policy manipulates the stack and returns.

We define the entry to a policy (10) as follows. A policy execution can only
start if the value of the program counter is the special label ⊥. Every rule that
wants to trigger the execution of a policy must set the program counter to this
special value at the end of its execution. Then we pick the top element from the
state configuration stack, and find the least upper bound of this set. The label
is then one whose policy we will start executing. Notice that it is not enough to
select a label and then pick its policy. The state may be spread out in several
hierarchical states with different policies, thus we need to pick the policy of
the lowest upper bound in this hierarchy to get at the right policy. We assign
the address of this policy to the program counter. Finally we add a new state
configuration with only the current value of the program counter. In effect this
will confine the execution to the statements of the policy.

Exiting a policy (11) is done by executing a return statement. The policy
return protocol requires that the policy always returns one label, which is the
next label to be executed. This label, stored in variable l, is retrieved from
memory by the rule. The top of the stack is now the last label of the policy,
which means that the stack must be manipulated so that this label is replaced
with the next label. Finally we restore the previous state context.

The last rule (12) presented in Figure 4 is necessary for dealing with the
special case when every active label in the current state configuration has been
executed. Then we need to pop the state configuration stack to get new labels
to execute. If the stack is empty the program terminates.

Some policies require “non-destructive” evaluation of statements. This situa-
tion arises e.g. in the RTC-step of UML-state-machines [2], where the RTC-step
first collects all “enabled” transitions, i.e. those transitions that can be exe-
cuted, because their action is on the input queue. Then this set is pruned by
deleting transitions whose guard is not true, or who are disabled by some other
transition higher up in the hierarchy. For this we define a function enabled :
Label × Var → Bool that returns true if the statement attached to the label
can be executed. Given the set of statements as defined above, all statements
are by definition enabled all the time, except the if statement. For the latter,
we define: enabled( if b then stmt1 else stmt2 endif) = eval(b, Var). An
assumption here is that evaluation does not have any side-effects.
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policy default
own indefault: Boolean ; var l: Label;
begin

l := sc.prevProgCtx.getLabelFromActiveSet();
if indefault == true then

indefault := false; sc.bottom (). getActiveSet().add(l);
if sc.size() > 2 then sc. popFromPrevProgCtx(); else endif;
return __;

else indefault := true && !sc. inPolicyMode(); return l; endif;
end;

Fig. 5. The default policy

4 Policies and Examples of Models of Computation

Using Rialto, the programmer is free to program the scheduling policies, i.e. mod-
els of computations. We now illustrate the description of such policies through
several examples. Due to space reasons listings of all the policies cannot be pre-
sented, but they are available in [13]. The default policy (Figure 5) is used
for completely sequential executions. As the name suggests, the policy is used
as the default choice of policy for states. Scheduling decisions cannot be made
by this policy, implying that it should only be used in situations where only one
label is in the active labels set for the topmost stack element, i.e. when the next
statement that can be executed is unique.

The interleaving policy is a loose, non-deterministic execution model. For
example, UML Interactions (found in communication diagrams) can be sched-
uled by the interleaving policy. Each time it is activated, it selects randomly one
label among the current active labels. In Figure 6, a code listing for this policy is
provided. The policy is structured according to the policy protocol in the parts:
interleaving init, interleaving exec and interleaving exit. The first part of the pol-
icy contains the necessary variable declarations and decides which part of the
policy should be executed, depending on the state of the particular instance of
the policy (see Figure 6a). If the policy is already in the execution step we proceed
to the interleaving exit part presented in Figure 6c, but if the policy is activated
in the beginning of an execution step the policy enters the initialisation state. In
this state, all activated labels are collected (calculateStep(currentPc)) and a
random active label is chosen for execution. The policy will now proceed to the
execution state interleaving exec (Figure 6b), in which necessary modifications
of stack configurations are done and the label to be executed is put on top of the
stack. The execution state is always completed by a return statement; either the
label to execute is returned, implying that the program counter will be set to
the returned label or the ⊥ is returned, which indicates that another policy still
must be invoked to decide on which statement is to be executed. In Figure 6c,
the new state of the system is collected in the exit part of the policy. The new
system state is made observable to the system by modifying the stack to reflect
the new system state. Finally, the execution step is completed by returning ⊥.

The step policy is used when we want to allow the computation to proceed in
steps. A statement is executed in each concurrent thread at each step. The step
policy is suitable to use in situations where real parallelism should be allowed,
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policy interleaving
own instep : Boolean ;
own stackSize: Integer ;
own lbl : Label;
var lfound : Boolean ;
var step:FifoQueueOfLabel
var l : Label;
var runLbl : Label;
var set : SetOfLabel;
var rLbls : SetOfLabel;
var scf : StateConfig;
var lblStr : String;

begin
if instep then

goto interleaving_exit;
else

goto interleaving_init;
endif;

interleaving_init:
instep := true;
rLbls :=sc. prevProgCtx
.getActiveSet();

runLbl :=sc. prevProgCtx
.getAnyActiveSetLbl();

step := calculateStep(PC);
sc.prevProgCtx
.getActiveSet(). clear();

lbl := step.poll();
sc.prevProgCtx
.getActiveSet().add(lbl)

step.poll();

a) initialization

interleaving_exec:
if step.empty() == false then
lblStr := step.poll();
if lblStr == __ then
if lfound == true then
scf.getActiveSet().add(set);
sc.pushAbovePrevProgCtx(scf)
scf.clear();
rLbls.remove(set);
lfound := false;

else
set.clear();
goto interleaving_exec;

endif;
else
l := lblStr;
set.add(l);
lfound := (lfound==false
&& l==runLbl)||lfound==true;

goto interleaving_exec;
endif;

else endif;

scf.getActiveSet().add(rLbls);
sc.pushToBottom(scf);
stackSize := sc.size();

if lbl == runLblthen
return runLbl;

else
return __;

endif;

b) execution

interleaving_exit:
instep := false;
scf:=
sc.popFromPrevProgCtx();

scf.getActiveSet()
.remove(lbl);

set := scf.getActiveSet();
sc.bottom().getActiveSet()
.add(set);

if stackSize-sc.size()==1
then
sc.popFromPrevProgCtx();

else endif;

if sc.size() > 2 then
scf :=sc.popFromBottom();
set:=scf.getActiveSet();
sc.bottom().getActiveSet()
.add(set);

else endif;

return __;
end;

c) exit

Fig. 6. Interleaving policy structured according to the three policy states

regardless of the chosen MoC. The policy can be seen, to some extent, as a
replacement for the interleaving policy.

The SDF policy implements a policy for handling static dataflow. Although
SDF is an abbreviation for synchronous dataflow, its underlying model is not
synchronous so it can rather be described as an untimed MoC [5]. Synchronous
dataflow is a special case of dataflow that requires scheduling decisions for the
system can be taken already at compile time.

5 Conclusion and Future Work

We have presented Rialto, a uniform framework dedicated to the design of het-
erogeneous systems, based on the notion of model of computation. A MoCCs
can be encoded in Rialto by writing a dedicated policy. Programs are structured
using a state-based, which state being interpreted with respect to a policy that is
associated to it. We have outlined several scheduling policies that are described
more precisely in [13]. The latter also introduces JRialto, which is an interpreter
for Rialto. Policies have been encoded and tested using JRialto.

This work can be continued in several ways. The first improvement that we
are planning is to develop better abstractions for the stack manipulation. As
can be seen in Figure 6 quite a lot of the code is actually housekeeping code for
the stack. Better abstractions will make the writing of polices simpler and less
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error-prone. The main reason for the complexity is the interleaving of the policy
and program contexts on the stack. A second planned extension of the work is to
implement the Rialto 2.0 semantics in HOL or some other proof assistant, to be
able to prove properties of programs. Finally we will need to compare Rialto with
other formalisms, among those presented in section 1.1. In particular, we would
like to propose Rialto as an operational implementation of the Tag Systems [10].
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Abstract. This manuscript addresses the creation of scenario-based models to
reason about the behavior of existing industrial information systems. In our ap-
proach the system behavior is modeled in two steps that gradually introduce detail
and formality. This manuscript addresses the first step, where text-based descrip-
tions, in the form of structured rules, are used to specify how the system is or
should be regulated. Those rules can be used to create behavioral snapshots, which
are collections of scenario-based descriptions that represent different instances of
the system behavior. Snapshots are specified in an intuitive and graphical nota-
tion that considers the elements from the problem domain and permit designers to
discuss and validate the externally observable behavior, together with the domain
experts. In the second step (not fully covered in this manuscript), the system be-
havior is formalized with an executable model. This formal model, which in our
approach is specified using the Colored Petri Net (CP-nets) language, allows the
system internal behavior to be animated, simulated, and optimized. The insights
gained by experimenting with the formal model can be subsequently used for
reengineering the existing system.

1 Introduction

In industrial environments, reengineering an existing industrial information system, to
support significant changes in the process or to improve its performance, is usually an
extremely sensitive operation. In industrial environments, modifying directly the sys-
tem and testing the impact of those changes on the number and quality of the produced
goods is simply prohibitive, because this would imply vast losses. Additionally, some
industrial information systems are intrinsically complex, since they are expected to or-
chestrate control, data, and communication in distributed environments, where their
operation is both business- and safety-critical. Monitoring and supervision of industrial
processes require huge investments in technical solutions based on real-time embed-
ded technologies, especially developed to interconnect the production equipments with
the MIS (Management Information Systems) applications [8]. Complex systems are,
by their nature, hard to master and reason about. In engineering, one classical solution
to this problem is to create a model, since for the specific purpose in consideration,
it is simpler, safer or cheaper than the considered system. For industrial information
systems, which are typically control intensive [9], this implies that we essentially need
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to have a model of the behavior, since this is the most critical view to take into ac-
count. This contrasts with data-centric systems, like databases or information systems,
where the information and the relation among entities are the most important issues to
consider.

For the majority of the existing industrial information systems in operation, there
is no model with which one can immediately reason about those systems. If it does
exist, typically the model does not completely reflect the system, since maintenance
procedures that resulted in modifications in the system structure and behavior, were not
reflected in changes in the model. This implies that techniques to obtain models for
systems in use are most-needed in industrial organizations.

This manuscript presents an approach that was devised for a particular problem (i.e.,
an existing industrial information system), in order to obtain a behavioral model of
that already existent system. This model, obtained after a careful description of the
perceived behavior, permits industrial engineers (here, considered the domain experts)
to reason about the system, evaluate which parts can be improved, change the model
accordingly, analyze the improvements in relation to the initial version, and decide if
the changes could be reflected in the industrial information system. In summary, the
devised approach adopts three different artifacts:

1. Rules describe, in a textual form (written with natural language), how the system
is (in an ’as-is’ approach) or should be (in a ’to-be’ approach) regulated, and thus
implicitly specify the requirements the system is supposed to accomplish;

2. Snapshots present, in a pictorial format (by means of an intuitive and graphical
notation), scenarios of the interactions among the system and the environment, il-
lustrating application cases of the defined rules;

3. CP-nets are used to give a formal and executable nature to the snapshots, which are
essential characteristics to allow reasoning capabilities.

Within a concrete reengineering problem of an existing industrial information system,
the proposed approach supports the characterization of both the baseline situation (the
’as-is’ system) and the future or end-state situation (the ’to-be’ system). This is ex-
tremely important to allow the construction of the sequencing plan, where the strategy
for changing the system from the current baseline to the target architecture is defined.
It schedules multiple, concurrent, interdependent activities, and incremental builds that
will evolve the industrial organization.

In this sense, the overall goal of the presented work is to simultaneously capture
requirements and support animation of behavioral snapshots through Petri nets (PNs)
based modeling. This manuscript focuses on the integrated usage of the first two ar-
tifacts for the considered industrial information system in an ’as-is’ approach and is
structured as next described. For details about the generation of CP-nets (from sce-
nario models), please refer to [3,11,13] In Section 2, the running case study is briefly
described. Section 3 presents the structuring of rules by using text-based descriptions.
Section 4 illustrates the construction of snapshots by means of scenario-based descrip-
tions. Section 5 briefly describes how CP-nets must be obtained to support reasoning
activities. Section 6 is devoted to the final considerations.



Scenario-Based Modeling in Industrial Information Systems 21

2 Case Study

All artifacts presented in this manuscript are related to the production lines that man-
ufacture car radios (Fig. 1). Each car radio is placed on top of a palette, whose track
along the lines is automatically controlled. The transport system is composed of several
rolling carpets that conduct the radios to the processing sites.

Fig. 1. The production lines of the case study

The radios are processed in pipeline by the production lines. The processing sites
are geographically distributed in a sequential way, along the production lines. Each
production line is composed of 6 transport tracks (that can be simply called “lines”):
three on the upper level (LA, LB, LC) and three on the lower level (LD, LE , LF ). The
upper level tracks transport palettes from left to right and the lower level tracks transport
palettes from right to left.

The track LB is used to transport radios between non sequential sites. The upper
tracks LA and LC are preferably utilized for sending the radios to the buffers of the sites
(FIFOs that start at the sites). The lower tracks are used for: (1) routing malfunctioning
radios to the repairing sites; (2) feed backing the sites that did not accept radios because
their buffers were full; (3) transporting empty palettes to the beginning of the line. There
is also a robot that receives radios from the previous production sub processes (com-
ponent insertion) and puts them on track LB. The transfers allow the change of palettes
between two neighbor tracks at the same level or between a track and an elevator. The
five elevators (eα , eβ , . . .) establish the linkage between the upper and the lower tracks.

3 Text-Based Descriptions

Text-based descriptions in the form of structured rules are used to specify how the
system is or should be regulated. These rules constitute, from the external point of
view, the functionalities of the control parts of the industrial information system.
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The usage of rules at the beginning of the (re-)design phase is crucial to characterize
the system, since domain experts can thus be involved to discuss, with the designers,
the expected behavior for the environment elements (that constitute the plant). The op-
tion for natural language allows domain experts (frequently, persons with no scientific
knowledge about specification formalisms) to effectively get involved in the definition
of the rules.

Typically, the rules make reference to the elements of the environment. Taking into
account the domain concepts, it is crucial to normalize the vocabulary, the notation and
the graphical elements. For the case study, the graphical notation depicted in Fig. 2
was adopted, where all the basic elements of the environment (in this case, sensors and
actuators), that must be sensed and controlled by the system, possess a precise graphical
representation and a textual notation.

Fig. 2.a shows (1) rolling carpets that transport the palettes along the Oχ axis, whose
movement is activated by actuator mc; (2) transfers that shift palettes between transport
tracks along the Oγ axis, whose movement is activated by actuator t; (3) sensors that
detect palettes in a specific (x,y) point of the transport tracks, identified as iu, il,x, il,y,
id , ip, ir,y, and ir,x; (4) bar code readers that identify the car radio that is placed on top of
a palette, identified as b; (5) stoppers that block the movement of palettes in a specific
(x,y) point of the transport tracks, whose state is activated by actuators sc, sp, sl , and
sr; (6) processing sites, identified as Pn,l and Pn,r.

Additionally, for each basic element of the environment, there is a tabular description
that fully characterizes its functionality and its logic interface (output for sensors and
input for actuators). Fig. 2.c is an example of one of these tables for one inductive
sensor. The tables for the other elements in Fig. 2.a are not shown here, due to space
limitations. To specify the concrete production lines, this textual notation was used
to instantiate each one of the existing elements of the environment package (Fig. 2).
See [10] for details, not covered in this manuscript, on how to obtain the system’s
components.

The notation should take into account the elements usually adopted in the problem
domain, so that designers can validate the behavior with the domain experts when an-
imating the rules with behavioral snapshots. The effort to use only elements from the
problem domain (in these rule-based representations) and to avoid any reference to el-
ements of the solution domain (in what concerns the system parts) is not enough to
obtain models that can be fully understood by common domain experts. This difficulty
is especially noticeable in the comprehension of the dynamic properties of the system
when interacting with the environment. This means that, even with the referred efforts,
those static representations should not be used to directly base the validation of the
elicited requirements by the domain experts. Instead, those static representations are
used to derivate behavioral snapshots.

The purpose is not to formally reason about the mathematical properties of the ob-
tained system models, in a typical verification approach. The usage of intuitive rep-
resentations of the expected system behavior, from the external point of view and in
a usability driven approach, is rather preferred. The adopted tables for static charac-
terization and pictorial representation of the plant have proven to be quite effective to
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accomplish the goal of simultaneously capturing requirements and supporting the ani-
mation of behavioral snapshots.

3.1 High-Level Rules

A set of generic rules (named high-level rules), that characterize the global objectives of
the plant, must be defined. The concrete rules (just called rules) must contribute, either
directly or indirectly, to the accomplishment of the high-level rules. For the running
case study, the following high-level rule is an example:

[hlr 3] Transfers and elevators must be managed as scarce re-
sources of the environment. This implies that the time they are
allocated to a given palette must be minimized and that the si-
multaneous accesses must be efficiently controlled.

This high-level rule of the plant is very generic and does not impose any design or
implementation decision to the system. It also leaves open the way it will assure the
exclusive access to the critical resources of the environment. However, although the
high level rule is generic in its nature, it constitutes a proper requirement of the system,
namely the need to control multiple accesses.

3.2 Rules

Due to the great complexity of the system (illustrated in the case study), it was decided
to impose a functional partition that gave rise to two hierarchical levels to define the
(low-level) rules: (1) level 1, where the strategic management decisions about the flows
along the lines are considered; (2) level 2, where the concrete movement decisions for
the palettes along the lines are taken. This 2-level partitioning guides the elicitation of
the system requirements, since, for each level, a specific set of rules must be defined to
specialize and refine the high-level rules.

For level 1, four sets of rules were defined: computation of the next production area
(rna), site processing (rsp), buffers management (rbm), and strategic routing (rsr). In
total, 15 rules of level 1 were characterized. As an example, consider one of the rules
related to the site processing:

[rsp-2] A car radio can be processed in a site, if the latter belongs
to its processing sequence, if the task to be processed in the site
was not yet accomplished over the car radio, if it is guaranteed
that all the previous processing tasks were successfully executed
over the car radio, and if the car radio physically arrived to the
given site under coordination of the system.

For level 2, other four sets of rules were defined: transfers access (rta), elevators ac-
cess (rea), fault tolerance (rft), and performance optimization (rpo). In total, 16 rules of
level 2 were identified. As an example, consider one of the rules related to the elevators
access:



24 R.J. Machado et al.

(a)

(b)

(c)

Fig. 2. (a) Graphical notation of the case study environment; (b) Graphical notation of an elevator
node; (c) Characterization of one basic element of the environment
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[rea-2] The routing of a palette that requires the usage of an
elevator must be executed in two distinct steps; in the first one,
the final destination is the transfer that is inside the elevator; in
the second step, the destination is the real one and the start is the
transfer inside the elevator.

This rule directly contributes to the fulfillment of high-level rule hlr-3. Nevertheless,
not all high-level rules must be refined, since they are supposed to be very high-level
directives to guide the development of the system. Thus, it is possible that some of them
are not taken into account, especially in the early stages of system design, when func-
tional prototyping gathers the main design effort. Typically, high-level directives that
are concerned with non-functional requirements, such as fault tolerance and perfor-
mance optimization, are postponed due to the need to adopt requirements prioritization
techniques.

To fully characterize the interaction with the environment, all the possible rules must
be elicited and documented. Thus, the system behavior is correctly and completely
inferred. If this task is not properly executed, the behavioral description of the system
can become incomplete and some inconsistencies may also occur.

4 Behavioral Snapshots

Scenarios are almost unanimously considered a powerful technique to capture the re-
quirements of a given system. They are especially useful to describe the system re-
quirements, which are typically more detailed than the user requirements. Additionally,
scenarios are easier to discuss than the textual descriptions of the systems requirements,
since these are inevitably interpreted in different ways by the various stakeholders, due
to the usage of natural language.

UML 2.0 has several types of interaction diagrams: communication diagrams (des-
ignated collaboration diagrams in UML 1.x), sequence diagrams, interaction overview
diagrams, and timing diagrams. Each type of diagram provides slightly different capa-
bilities that make it more appropriate for certain situations. All interaction diagrams are
useful for describing how a group of objects collaborate to accomplish some behavior
in a given scenario. However, these diagrams are considered too technical for domain
experts not able to read UML models.

In some situations, to allow a better communication with the domain experts, it is
important to use a different notation, for modeling the interaction between the environ-
ment elements and the system. That notation should be based on the vocabulary of the
problem domain. In the case study, the environment elements are sensors, actuators and
the palettes for the car radios. If carefully selected to be as powerful and expressive as
the sequence diagrams, the usage of behavioral snapshots is a proper choice, especially
if the system is complex in behavioral terms and the need to discuss the system with the
domain experts is paramount.

In our approach, an instantaneous snapshot is a static configuration of the envi-
ronment elements in a sufficiently short timeframe, which assures the atomicity of the
external observable system state from a behavioral point of view. A behavioral snap-
shot is a chronologically ordered collection of instantaneous snapshots that shows how



26 R.J. Machado et al.

elements of a system behave and react, within a given scenario. A scenario is a coher-
ent sequence of actions that illustrates behaviors, starting from a well defined system
configuration and in response to external stimulus. A behavioral snapshot is intended
to convey the same behavior as a sequence diagram, and thus can be seen as a domain
specific visual representation of a sequence diagram. Fig. 3 depicts one behavioral snap-
shot with four instant snapshots (a→ b→ c→ d), for the following rule of performance
optimization:

[rpo 3] If a palette, during a movement through the transfers, is
in a transfer of a middle line (lines B and E, for the upper and
lower nodes), it must be verified, during a pre-defined period
(parameter TIME BL), if the exit at the destination is free; if
this is not the case, the palette must follow for a middle line.

In this behavioral snapshot, between instants t1 and t2, palette #2 is put just after the
transfer C, which makes impossible for palette #1 to reach its destination. The unex-
pected positioning of palette #2 just after the transfer C may occur without its explicit
transportation by the system, since line operators sometimes put palettes in the tracks.
At instant t3, after time TIME BL is elapsed, the destination for palette #1 is changed to
track LB, since palette #2 is still placed just after the transfer C. In this case, track LB is
used as an alternative route, since the initial destination (track LC) can not be reached.
With this strategy, the permanence of stopped car radios at the transfers is avoided,
which increases the availability of resources. This behavior maximizes the probability
of car radios to have a destination to exit the node, even in situations where the ini-
tial path becomes blocked for some reason. If the track LB is also blocked, the node is
blocked until the track becomes free. At the lower tracks, the behavior is similar and
track LE is used as the alternative one.

Only for those rules that present some critical behavior requirements it is recom-
mended to construct the corresponding behavioral snapshots. Rule rpo-3 corresponds
to a critical situation. The arrows depicted in behavioral snapshots represent the final
destination of palettes. Whenever the destination of a palette must be redefined, a new
arrow must be drawn to represent that new destination.

The behavioral snapshots can also illustrate the application of the rules that present
alternative or optional scenarios. Rule rsr-7 presents two alternative behavioral snap-
shots.

[rsr-7] Under the request of level 2 control, level 1 control
should authorize one palette to mount into one transfer, if the
palette path does not present any crossing point with any other
palette that is already executing its path along the same node
and if the exit at the destination is free (the place just after the
transfer) to receive the palette.

Fig. 4 depicts one behavioral snapshot for rule rsr-7. In this scenario, palette #2 has
track LB as its destination. At time t1, it is possible to check that the path to track LB

is free, even though one palette (#3) is located in a transfer, while being conducted to
its destination (track LA). The movement of palette #2 can be started at time t1, since
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Fig. 3. A behavioral snapshot for rule rpo-3

the paths of the palettes #2, #3 and #4 do not overlap and the destination of palette
#2 is free. Instants t2 − t4 show the elementary movements made simultaneously by
palettes #2 and #3 to reach their destinations (palette #4 remains stopped during all the
scenario).

Behavioral snapshots are a good technique for requirements elicitation. However,
since they are based on scenario identification, they do not assure a complete behavior
characterization and they lack semantic formalization. These characteristics justify the
usage of a more formal behavioral specification to support the system detailed design,
namely those based on state oriented models.

5 Specification with Colored Petri Nets

As already said, the ultimate goal of the approach partially presented here is to allow the
generation of CP-nets from scenario models, in order to allow validation of the system
under consideration.

The application of PNs to the specification of the behavioral view of controllers can
benefit from several research results. PNs constitute a mathematical meta-model that
can be animated/simulated, formally analyzed, and for which several implementation
techniques are available. The designer can choose, among several PN meta-models, a
specific one intentionally created to deal with the particularities of the system under
consideration, like the ones referred in [4,7,15,16].
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In the last years, research in scenario-based modeling is receiving a considerable
attention. In this manuscript, the main general goal is to devise scenario-based mod-
eling techniques that can be translatable to a PN model, so here we focus on previous
works that address the (more generic) transformation of scenario-based models into
state-based models.

Campos and Merseguer integrate performance modeling within software develop-
ment process, based on the translation of almost all UML behavioral models into Gen-
eralized Stochastic PNs [1]. They explain how to obtain from sequence diagrams and
statecharts a performance model representing an execution of the system.

Shatz and other colleagues propose a mapping from UML statecharts and collabo-
ration diagrams into CP-nets [14,5]. Firstly, statecharts are converted to flat state ma-
chines, which are next translated into Object PNs (OPNs). Collaboration diagrams are
used to connect these OPN models and to derive a CP-net model for the considered
system, which can be analysed by rigorous techniques or simulated to infer properties
some of its behavioral properties.

Pettit and Gomaa describe how CP-nets can be integrated with object-oriented de-
signs captured by UML communication diagrams [12]. Their method translates a UML
software architecture design into a CP-net model, using pre-defined CP-net templates
based on object behavioral roles.

Eichner at al. introduce a formal semantics for the majority of the concepts of
UML 2.0 sequence diagrams by means of PNs [2]. The approach concentrates on

Fig. 4. First behavioral snapshot for rule rsr-7
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capturing, simulating and visualizing behavior. An animation environment is reported
to be under development, to allow the objects to be animated, using the PN as the main
driver. Their work has some similarities with ours, namely on the usage of sequence
diagrams, but uses a different PN language (M-nets) and is oriented towards sequence
diagrams that describe the behavior of a set of objects.

It is important to note that the choice of which state based model to use must be made
consciously, taking into account the characteristics of the system. If they have simple
sequential behavior, FSMs or Statecharts are enough, but if they present several parallel
activities and synchronization points, a high-level PN may be the most adequate choice
to cope with the system’s complexity.

In our approach, behavioral snapshots are translated into sequence diagrams to allow
the application of the techniques described in [13,11,3] to allow the rigorous generation
of CP-nets [6]. The transitions of these CP-nets present a strict one-to-one relationship
with the messages in the sequence diagrams. So, for each message in a sequence di-
agram, one transition, in the corresponding CP-net, is created. In order to make that
correspondence more evident, the name of each transition matches exactly the name of
the corresponding message in the sequence diagram.

6 Conclusions and Future Work

In this manuscript, we present an approach that uses scenario-based descriptions and
CP-net for modeling the behavior of an industrial information system. Further research
is needed to investigate how the approach can be generalized, namely because the usage
of an informal and intuitive notation, based on concepts and elements borrowed from
the problem domain, may not have the same degree of readability.

A behavioral snapshot is an ordered collection of instant snapshots and shows how
elements of a system behave and react, within a given scenario. Since the notation for
the snapshots should consider the vocabulary of the problem domain, designers and
domain experts can cooperate in the validation of the system behavior. The presented
approach offers a client friendly scenario notation, which eases the discussion with non
technical stakeholders.

Based on the sequence diagrams equivalent to the behavioral snapshots, controllers
can be incrementally formalized with a state based model. CP-nets are adopted, since
they are able to explicitly support the management of the environment resources in a
conservative way. This incremental approach allows the completion and early correction
of CP-nets by functional validation and performance optimization.

Currently, the domain concepts used in the snapshots have to be produced for each
application. As a way to bridge the current gap between sequence diagrams and snap-
shots, the development of a domain specific meta model to describe the terms used on
the sequence diagrams is under consideration.

It is also planned to incorporate into the tool workbench a mechanism to achieve
the automatic generation of the animated sequence diagrams. This will allow the auto-
matic reproduction of the very same set of scenarios that were initially described using
behavioral snapshots and sequences, if the state based model is correct and complete.
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Abstract. For a long time, the code generation from domain-specific

and/or model-based languages to implementation ones remained manual

and error-prone. The use of modeling was required in the early stages of

development to ease the design and communicate intents, but because

of the manual implementation, there were no traceability and no formal

link with the final code. Model-Driven Development (MDD) was unable

to win its audience.

Today, models constructed with UML have an equivalent representa-

tion in XML. And thanks to XML technologies, manipulating models for

data mining, transformation or code generation becomes possible. MDD

is now commonly used within the software community.

Next, for the hardware community, this work will empower the use of

MDD in hardware design and simulation. It offers a completely opera-

tional framework based on OMG standards: UML and MARTE.

1 Introduction

The Object Management Group (OMG) standard UML (Unified Modeling
Language) [6] is commonly used within the software community. UML has sig-
nificantly improved efficiency in software development, thanks to several mech-
anisms, like generalization, composition, encapsulation, separation of concerns
(structure/behavior), abstraction (different views), and refinement. UML is sup-
ported by many modeling tools.

By using hardware description languages like VHDL and SystemC, hardware
design becomes a programming activity similar to the software development.
That eases the hardware design and enables hardware simulation to avoid any
risky implementations. But in practice, just like software, hardware programming
is implementation-oriented and doesn’t match the real issues of hardware design
and architecture exploration.

Taking into account this analogy between hardware design and software, we
developed an entire and operational framework that is completely based on mod-
els of concepts and constructs specific to the hardware domain. Such framework
let the hardware designer benefit from all well-known features of DSLs and MDD.
Our framework is composed of a standardized Hardware Resource Modeling
(HRM) language and a powerful simulation engine.
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In this paper, we will first describe a modeling methodology which helps to
resourcefully use HRM for building consistent models. This HRM methodology
is a set of guidelines within an incremental process of successive hardware com-
positions. Then, we will illustrate the efficiency of such model-based framework
on a large case study: we will apply the HRM methodology to create the model
of a heterogeneous hardware platform and we will simulate it.

The paper is organized as follows. The next section introduces in brief the
HRM profile. Section 3 describes the modeling methodology based on HRM.
Section 4 explains how the simulation engine works. Where the last section
depicts the whole design process on a case study.

2 Hardware Resource Model

The purpose of HRM is to adopt UML as a hardware design language to benefit
from its features and tools, and to unify the (software/hardware) co-design pro-
cess of embedded systems. Thanks to the UML extension mechanism, the HRM
profile [8] extends UML with hardware concepts and semantics. HRM is part
of the new OMG standard MARTE [7] (Modeling and Analysis of Real-Time
Embedded systems). HRM is intended to serve for description of existing or for
conception of new hardware platforms, through different views and detail levels.
HRM covers a large scope:

Software design and allocation: The hardware designer may use a high level
hardware description model of the targeted platform architecture, with only
key properties of the available resources like the instruction set family, the
memory size. . . Such abstract model is a formal alternative to block diagrams
that are communicated to software teams and system architects.

Analysis: Analysis needs specialized hardware description model. The nature
of details depends on the analysis focus. For example, schedulability analy-
sis requires details on the processor throughput, memory organization and
communication bandwidth, whereas power analysis will focus on power con-
sumption, heat dissipation and the layout of the hardware components. HRM
uses the UML ability to project different views of the same model.

Simulation: It is based on detailed hardware models (see section 4). The re-
quired level of detail depends on the simulation accuracy. The performance
simulation needs a fine description of the processor microarchitecture and
memory timings, whereas many functional simulators simply require entering
the instruction set family.

HRM is grouping most of hardware concepts under a hierarchical taxonomy
with several categories depending on their nature, functionality, technology and
form. The HRM profile is composed of two sub-profiles, a logical profile that
classifies hardware resources depending on their functional properties, and a
physical one that concentrates on their physical nature. The logical and physical
views are complementary. They provide two different abstractions of hardware
that should be merged to obtain the whole model. Each sub-profile is, in turn,
composed of many metamodels as shown in figure 1.
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Fig. 1. HRM structure overview

Logical Model. The objective of the logical model is to provide a functional
classification of hardware resources, whether if they are computing, storage,
communication, timing or auxiliary devices. This classification is mainly based
on services that each resource offers. As shown in figure 1, there is a specific
metamodel for each hardware logical category.

HRM contains most of hardware resources thanks to a big range of stereotypes
that are organized under a tree of successive inheritances from generic stereo-
types to specific ones. This is the reason behind the ability of the HRM profile
to cover many detail levels. For example, the HwMemory metamodel shown in
figure 2 reveals the HRM accuracy and its layered architecture. The HwMemory
stereotype denotes a given amount of memory. It has three attributes, memo-
rySize, addressSize and timings. This latter is a datatype to annotate detailed
timing durations. HwMemory could be an HwProcessingMemory symbolizing a
fast and working memory, or an HwStorageMemory for permanent and relatively
time consuming storage devices. . .

Physical Model. The hardware physical model represents hardware resources
as physical components with physical properties. As most of embedded systems
have limited area and weight, hard environmental conditions and a predeter-
mined autonomy, this view enables layout, cost, power analysis and autonomy
optimization The HwPhysical profile contains two metamodels: HwLayout and
HwPower.

For more details on HRM, please refer to [8] and the MARTE document [7].
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memorySize : NFP_DataSize
addressSize : NFP_DataSize
timings : Timing [*]

« stereotype »
HwMemory

repl_Policy : Repl_Policy
writePolicy : WritePolicy

HwProcessingMemory

HwStorageMemory

level : NFP_Natural
type : CacheType
structure : CacheStructure

« stereotype »
HwCache

organization : MemoryOrganization
isSynchronous : NFP_Boolean
isStatic :NFP_Boolean
isNonVolatile : NFP_Boolean

« stereotype »
HwRAM

Data
Instruction
Unified
Other
Undefined

« enumeration »
CacheType

notation : NFP_String
description : NFP_String
value : NFP_Duration

« dataType »
Timing

nbRows : NFP_Natural
nbColumns : NFP_Natural
nbBanks : NFP_Natural
wordSize : NFP_DataSize

« dataType »
MemoryOrganization

nbSets : NFP_Natural
blocSize : NFP_DataSize
associativity : NFP_Natural

« dataType »
CacheStructure

buffer
{subsets ownedHW}
0..1

WriteBack
WriteThrough
Other
Undefined

« enumeration »
WritePolicy

LRU
NFU
FIFO
Random
Other
Undefined

« enumeration »
Repl_Policy

type : ROM_Type
organization : MemoryOrganization

« stereotype »
HwROM

MaskedROM
EPROM
OTP_EPROM
EEPROM
Flash
Other
Undefined

« enumeration »
ROM_Type

sectorSize : NFP_DataSize

« stereotype »
HwDrive

« stereotype »
MARTE::GRM::Storage

« stereotype »
HwResource

Fig. 2. HwMemory metamodel

As HRM is serialized into the OMG standard XML Metadata Interchange
(XMI) [5], it can be used within most UML-based modeling tools. In our case,
we use the Papyrus UML tool [3] that is developed within our laboratory (CEA
LIST/LISE). Papyrus is based on the Eclipse Modeling Framework and provides
a MARTE plug-in.

3 Hardware Modeling Methodology

As the HRM profile extends the generic UML kernel metaclasses, it can be used
within all UML diagrams. UML offers a big amount of notations and diagrams,
it also includes many variation points. Consequently, it is a common practice
to adopt modeling methodologies that restrain the UML mechanisms to use,
fixate their semantics and bring consistency rules. Considering that the hardware
designers are not used to UML-based modeling, such a modeling methodology
is quite necessary.

The HRM modeling methodology is mainly based on the UML2 Compos-
ite Structure diagram, since this latter has a clear graphical representation of
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composition and supports the Part, Port and Connector concepts that are well-
adapted to hardware modeling.

The HRM modeling methodology is iterative, one iteration corresponds to
the entire modeling of only one resource from the hardware platform. Each it-
eration is composed of many modeling steps grouped into three phases: class
definition, internal structure modeling and instantiation. Our methodology is
also incremental (bottom-up), it starts from modeling elementary resources, and
with successive compositions, it reaches the whole platform model.

Class Definition

1. Choose the next resource to model taking into account the incremental order
(partial order) of compositions. Create the corresponding class using the
resource name. Specify its inheritances from previously defined classes (from
previous iterations). Notice that the inheritance mechanism is an efficient
way to classify hardware resources depending on their nature.

2. Apply the HRM stereotype matching the resource type. It is a key step
where we extend, in a simple manner, the UML class structure and seman-
tics with the hardware specific ones. To avoid useless decompositions, many
HRM stereotypes could be applied simultaneously if the current resource
plays many roles within the hardware platform (e.g. a typical chipset is
either HwMemoryManager, HwBridge, HwArbiter . . . ). Furthermore, stereo-
types from different profiles may also be applied if necessary. UML supports
these options.

3. Assign values to some of the tag definitions (stereotype attributes), espe-
cially those that match the class level and are common to all the resources
represented by the current class. For example, if the instruction set of a Hw-
Processor could be assigned at this level, its frequency or its cache size should
be specified later within the steps of integration and instantiation. Notice
that the HRM tag definitions are optional and they should be specified only
if necessary.

4. Even if HRM is very detailed, it is a standard that mainly groups generic
and common properties. Therefore, if at this stage of modeling, the hardware
designer still needs to specify additional properties of the current resource,
he should use UML ordinary, in this step, regardless of HRM.
– Define specific attributes. They must be strictly typed, and for this, we

can exploit the UML typing mechanisms like DataType or Enumeration.
We can also use the MARTE library of basic types BasicNFP Types
or define new complex types (with physical measurements and units)
thanks to the NFP profile [7] of MARTE.

– Add associations when necessary between the current class and the previ-
ously defined ones. When an association corresponds to a hardware con-
nection, we can apply corresponding stereotypes (HwMedia, HwBus . . . )
on it. Notice that class compositions will be defined during the next step.
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Fig. 3. ICACHE class definition

– Define operations and use the HwResourceService stereotype and the
providedServices tag definition to settle if they are provided services of
the current resource.

Figure 3 shows a light model of an instruction cache class that we typically
obtain at the end of this first iteration phase.

Internal Structure Modeling

5. To define the internal structure of the resource being modeled, insert UML
Part(s) typed by resources specified in previous iterations. We see here the
reason behind the use of the Composite Structure diagram in our method-
ology and why we are following the incremental compositions order. Each
Part has a multiplicity that is a simple and powerful mechanism for the rep-
resentation of repetitive structures, very frequent in the area of hardware.
Each Part must also display its ports, which correspond to those of its class
type (see step 8).

6. Once Part(s) are typed as resources and taking into account their new con-
text, it is important to reapply stereotypes and assign local values to their
specific tag definitions. Indeed, if we have previously modeled resource in
absolute terms regardless of its enclosing component, it should be now more
specifically characterized. The hardware designer is limited to the reapplica-
tion of stereotypes previously applied to the typing class or one of its class
parents. It is a rule of consistency between the nature of the resource and
the roles it can play within different platforms.

7. Connect these parts by means of UML Connector(s) linking their ports.
Such connectors must be typed by either an association defined in step 4
or a HRM meta-association. They could also be stereotyped as HwMedia,
HwBus or HwBridge depending on their role.

8. Define boundary ports. In the UML Composite Structure diagram, a Port is
a Property that is not necessarily typed but has a name and a multiplicity.
Under this methodology, we require that each port and/or its class type must
be stereotyped as a HwEndPoint.
Use then UML Connector(s) to define delegations from the class ports to
the ports of its subcomponents.

Figure 4 shows a model of a composite memory class that we typically obtain
at the end of this second phase. It contains the ICACHE shown in figure 3.
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Fig. 4. PMI (Program Memory Interface) internal structure modeling

Instantiation

9. Step 9 is a test step, which unlike other steps, does nothing to the model
under construction. Our methodology is iterative and incremental in the
sense of composition, since the designer begins with basic resources and then
iterates to resources increasingly composite. If the current class represents
the entire platform, this means that the model is complete, and that normally
at this stage, all resources are referenced from the current platform class. We
skip therefore to step 10 for the model instantiation. Otherwise we iterate
from step 1, and we choose the next resource to model from those that have
all their subcomponents already modeled in previous iterations.

For example, figure 5 represents the block diagram of the complex CPU Sub-
system of the Infineon microcontroller TC1796 [2]. Figure 6 shows its entire
platform class model that was achieved through this methodology. If the first
diagram is only a useless drawing, the second one is formal and may be used for
analysis and simulation.

10. Finally, once the class of the whole platform is reached, instantiate the model
giving values to slots (attributes, parts and ports), linking them and again
applying stereotypes (if needed) on instances with assigning tag values cor-
responding to instance level semantics.

By the several steps of this methodology, we propose an efficient use of the
HRM profile. We limit for this, the UML mechanisms to use and we give them
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Fig. 5. TC1796 CPU Subsystem (block diagram)

Fig. 6. TC1796 final platform class
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clear semantics. However our methodology is advisory, even if it includes good
practices, the use of HRM independently of it, is obviously possible. It is never-
theless adapted to new users of UML and ensures consistency of the final model.
When a platform model is consistent you can use it for various manipulations,
such as simulation that we will detail in the next section.

4 Hardware Simulation

The simulation of a hardware architecture to test its ability to provide an ad-
equate execution platform for the software application, provides many bene-
fits. It improves flexibility, accelerates the development process, saves time and
money, and enables effective communication between software and hardware
flows. Therefore, developers are no longer dependent on the availability of the
physical hardware and they can explore in the early stages of design, several
architectures, including new configurations. The simulation also offers several
advances in debugging software and hardware.

Designated as one of the three HRM use cases, the idea behind our simula-
tion engine is to use HRM/UML as a common interface to hardware simulation
tools. Indeed, the user can take advantage of HRM/UML to describe a hardware
architecture in a model that will be automatically translated and interpreted by
simulation tools.

Most simulation tools are only Instruction Set Simulators (ISS) that simulate a
processor with some RAM running assembler code. However, we simulate a whole
execution platform with processors, memory, peripherals, and different means of
communication. Such a simulation environment should also run complex software
applications without any modification and start operating systems.

After a deep study we adopt Simics [1] as a target of our model-based simula-
tion engine. Simics is capable of simulating the full-system. All common embed-
ded components are available including PowerPC, ARM, SPARC, x86 processors,
FLASH memories, I2C busses, serial ports and timers. Also, defining new com-
ponents is feasible. Simics platform runs the same binary software as would run
the real hardware target including operating systems and device drivers. Simics
is at the origin a fast functional system-level simulator, it does not handle tim-
ing considerations. But recently, a Micro Architectural Interface was designed to
overcome these limitations and provides cycle-accurate simulations.

Today, Simics is widely used by the telecom, networking, military/aerospace
(including commercial avionics and space systems), high-performance comput-
ing, and semiconductor industries.

To start, we modeled using HRM all components supported by Simics, we get
then a library of resources’ models. This library will be provided to the user who
will apply our HRM methodology to create his hardware platform. The user
can use the resources of the library as basic components and with successive
iterations in the sense of compositions, he can construct the whole hardware
platform. Once done, he can automatically generate the equivalent script that
will run under Simics. This process is illustrated in figure 7.
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Fig. 7. Simulation engine process

Modeling the Library of Simics Components. As Simics is implemented
in Python and C++, our task was easier because Simics has already an object-
oriented structure. Nevertheless it has a specific terminology and semantics wider
than the object paradigm ones. We had then to translate each of its concepts
according to UML/HRM. In brief, the concept of component is central in Simics,
it denotes a hardware resource that can be used in the construction of a platform
(called machine or configuration), a component can be implemented by one or
more classes.

Code Generation. We had primarily used Acceleo [4] that we reinforced by a
set of services we have developed in Java (thanks to the Eclipse UML2 plug-in).
Acceleo generates code from models by interpreting a script of declarative rules.

Our first step of code generation is to explore the platform subcomponents
and generate the adequate Simics creation commands. To parametrize the Sim-
ics components, we have developed indeed a method that checks whether a
stereotype is applied and gets the corresponding value of the tag definition when
specified.

The second step of code generation is to produce connection commands be-
tween the Simics components created during the previous step. To do this, we
take one by one all connectors of the platform that are linking the ports of the
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various subcomponents. We check that the ports are similar and have consistent
directions. Note however that connection commands may be inappropriate for
technological or generational reasons and will therefore be rejected by Simics.

The first objective of this simulation engine was to demonstrate that HRM is
complete and it offers a level of detail sufficient to interface the most accurate
simulation tools. The second objective was to provide the hardware designer with
a rich and automated model-based tool to assist him in designing platforms. Let’s
illustrate it on a real complex example.

5 Case Study

For our case study shown in figure 8, we consider a highly heterogeneous hard-
ware platform, since it combines two very different computing resources: board
and boardSMP. The first is a uniprocessor from the PowerPC family and has
a 32bits architecture. While the second is a multiprocessor (SMP) from the
Itanium family with a 64bits architecture, it may contain up to 32 processors
sharing a 1GiBytes memory. We connected board and boardSMP via an Ethernet
link ethLink, but it was necessary, first, to provide the boardSMP with an Ether-
net card CardPciEth that we connected to a PCI port. We also have connected to

Fig. 8. Heterogeneous platform model
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the boardSMP a SCSI hard disk harddisk via a HwBridge pci-sym53c810. board
has a 64MiBytes ddr memory and the exact description of its organization is
specified in terms of nbRows, nbColumns, nbBanks . . .

Figure 8 shows the whole platform class that was obtained applying our
methodology (within the Papyrus UML tool), we used then our simulation en-
gine to generate the corresponding Simics script. To simulate this platform, we
started two different Linux 2.4, the first on board was compiled for the ppc32 in-
struction set and the second on boardSMP was compiled for the ia64 instruction
set with the SMP option activated. Both run and communicate perfectly.

6 Conclusion

Having no equals that meet the needs of high-level description of hardware archi-
tectures and with the standardization of MARTE, HRM is dedicated to a massive
use within the industry. In this paper, we first describe a modeling methodology
which helps to resourcefully use HRM for building consistent platform models.
We developed then an innovative simulation framework that is hundred percent
model-based and supports the widely-used simulator Simics.
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Abstract. The ongoing OMG standard on the “Semantics of a Foundational 
Subset for Executable UML Models” identifies a subset of UML (called fUML, 
for Foundational UML), for which it defines a general-purpose execution 
model. This execution model therefore captures an executable semantics for 
fUML, providing an unambiguous basis for various kinds of model-based ex-
ploitations (model transformation, code generation, analysis, simulation, de-
bugging etc.). This kind of facility is of great interest for the domain of real 
time systems, where analysis of system behavior is very sensible. One may 
therefore wonder if the general-purpose execution model of fUML can be used 
to reflect execution semantics concerns of real-time systems (e.g., concurrency, 
synchronization, and scheduling.). It would practically mean that it is possible 
to leverage on this precise semantic foundation (and all the work that its defini-
tion implied) to capture the precise execution semantics of real-time systems. In 
this paper, we show that this approach is not directly feasible, because of the 
way concurrency and asynchronous communications are actually handled in the 
fUML execution model. However, we show that introducing support for these 
aspects is technically feasible and reasonable in terms of effort and we propose 
lightweight modifications of the Execution model to illustrate our purpose.  

Keywords: fUML, MDD, Model Simulation, Concurrent systems, Real-time 
systems. 

1   Introduction 

Profiles are the default UML extension mechanism for tailoring UML2 to specific 
application domains, from both syntactic and semantic terms. Extending UML2 syn-
tax is well achieved, with explicit stereotype definitions capturing the syntactic exten-
sions. Unfortunately, the semantic extensions (potentially implied by a profile) have 
not yet reached a similar degree of formalization. They usually take the form of a 
natural language description, just like the semantic description of the UML2  
metamodel. The informal nature of this description leaves the door open to several 
(potentially contradictory) interpretations of a given model and does not lend itself to 
unambiguous model-based exploitations. This is particularly critical when considering 
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complex notions such as time and concurrency, which are central issues to the design 
of real-time and embedded software. 

Things should however evolve with the ongoing OMG standard on the semantics 
of a foundational subset for executable UML models [2]. This standard indeed defines 
a formal operational semantics for a subset of UML2 called fUML (foundational 
UML). The operational semantics of fUML takes the form of an executable UML 
model called “Execution Model” (that is to say, a UML model defined with elements 
from the fUML subset1), which is precise enough to be considered as an interpreter 
for fUML models. While foundational, this subset includes non-trivial mechanisms 
carrying concurrent and asynchronous execution semantics, such as active objects 
(i.e., objects with their own execution thread) and asynchronous communications via 
signal passing. These notions are essential when considering concurrent real-time 
systems, such as in the MARTE profile [1] (Modeling and Analysis of Real-Time and 
Embedded systems) and in particular in its HLAM sub-profile (High Level Applica-
tion Modeling), which provides support for designing concurrent real-time systems 
with extensions inspired by the concept of real-time active object [4][5][6]. 

Our long term objective is to reflect timed and concurrent execution semantics as 
introduced in HLAM by extending the general-purpose Execution Model of fUML. 
Ideally, this extension would first rely on fUML mechanisms for concurrency and 
asynchronous communications, and then add support for time. This extended Exe-
cution Model would typically provide support for model-based simulation, a design 
technique that has proven useful for rapid prototyping of real-time and embedded 
systems [7][8].  

While the rationale for this approach sounds quite obvious, we believe that it can-
not be directly put into practice. Our main obstacle concerns the way concurrency 
(i.e., active objects) and asynchronous communications (i.e., via signals) are actually 
supported. While the fUML specification of Execution Model leaves the door open to 
support some slightly different execution paradigms by including a few explicit se-
mantics variation points (section 8.2.2 of [2]), no key variation points are defined 
regarding concurrency and asynchronous communications. Furthermore, the Execu-
tion Model does not identify an explicit entity responsible (such as scheduler) for the 
management of concurrent entities. In order to properly handle these aspects, some 
modifications are needed in the Execution model. The main contribution of this article 
is to propose such lightweight modifications. These propositions can be considered as 
a first step towards our long-term objective: reflecting the execution semantics of 
real-time systems by specializing the fUML execution model. 

In section 2, we start by highlighting fUML limitations. In section 3, we discuss 
works related to model-based simulation of concurrent systems. We show how prin-
ciples underlying these approaches could be integrated in the standard Execution 
Model of UML. In section 4 we propose a modification of the Execution Model, 
which mainly consists in introducing an explicit scheduler. Section 5 then concludes 
this article and sets guidelines for future research. 

                                                           
1 In order to break circularity, some of the fUML elements have a formal axiomatic description. 
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2   Limitations of fUML Regarding Support for Concurrency and 
Asynchronous Communications 

As explained in the introduction to this article, fUML [2] formalizes the execution 
semantics of a subset of the UML2 metamodel. Particularly, this subset contains 
mechanisms for the description of concurrent systems (i.e., classes can be active. See 
[12], section 13.3.8 for more details). It also includes support for the specification of 
asynchronous communications (i.e., Signal, SendSignalAction, SignalEvent, see [12], 
section 13.12.24, 11.3.45 and 13.3.25). The semantic formalization, called Execution 
Model, takes the form of a UML model specified with the fUML subset itself, simply 
by considering the fact that the fUML execution engine is a particular executable 
fUML model. It defines the operational procedure for the dynamic changes required 
during the execution of a fUML model. In the following section, we start by provid-
ing an overview of the Execution Model. Then, we discuss limitations of the Execu-
tion Model regarding the management of concurrent executions. 

2.1   Overview the fUML Execution Model 

The Execution Model has been defined following the Visitor design pattern [11], 
where almost each class of the Execution Model has a relationship with a class from 
the fUML syntax subset (except for a package called Loci, where classes Locus, Ex-
ecutor and ExecutionFactory are not visitors, and are just used for setting up the exe-
cution engine).  

Each visitor class of the Execution Model basically provides an interpretation for 
the associated fUML class, and therefore explicitly captures the corresponding execu-
tion semantics. Globally, the Execution Model can be considered as the model of an 
interpreter for UML models specified with the fUML subset. Figure 1 illustrates a 
part of this global architecture. It represents the relationship between syntactic ele-
ments of the fUML subset (left-hand side of Figure 1) and corresponding visitors of 
the Execution Model (right-hand side part of Figure 1). For example, the execution 
semantics associated with the concept of Class (which is part of the fUML subset) is 
defined by the class Object from the execution model.  

 

Fig. 1. The global architecture of execution model 
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It is important to notice that the Execution Model exploits the mechanisms pro-
vided by fUML for concurrency and asynchronous communications. For example, 
classes ObjectActivation (which encapsulates the execution of an event dispatch loop, 
enabling a given active object to react to event occurrences) and ClassifierBehavio-
rExecution (which encapsulates the concurrent execution of the classifier behavior 
associated with the type of an object) are active classes, i.e., classes whose instances 
have their own thread of control. In principle, the Execution Model thus explicitly 
captures the concurrent aspects of fUML execution semantics. In practice, however, 
the management of concurrency is buried inside the architecture of the fUML Execu-
tion Model. Regarding our preliminary objective, this is an important limitation of the 
fUML Execution Model: The place where concurrency is handled in the Execution 
Model must be accessible and explicit, so that it can be conveniently tailored to the 
needs of particular application domains. In the two following sections, we first dis-
cuss this limitation and its relationship with the usage of Java as a concrete notation 
for the description of behavioral aspects of the fUML Execution Model (i.e., mainly, 
behaviors associated with operations of classes from the Execution Model). Then, we 
more generally discuss the absence, in the architecture of the Execution Model, of 
explicit mechanisms for scheduling and synchronizing instances of concurrent entities 
(i.e., active objects). 

2.2   On the Actual Java Specification of the Execution Model 

UML activities are the only behavioral formalism supported by fUML. In the Execu-
tion Model, they are practically used to specify the implementations of every opera-
tion and/or classifier behaviors. However, for significant behaviors, these diagrams 
quickly become large and complex and thus hard to understand. Instead of using such 
complex graphical notation (or defining from scratch a new textual notation for activi-
ties), the authors of the fUML specification have used Java as a concrete textual nota-
tion for capturing behavioral aspects of the Execution Model, respecting a strict “Java 
to Activities” mapping (see. Appendix A of [2] for details). 

In other words, Java statements should just be considered as a concrete and concise 
textual syntax for UML activities. Nevertheless, the positive side effect regarding the 
choice of Java is that the Execution Model takes an executable form, which could be 
used as a model interpreter for UML models respecting the fUML subset. A reference 
implementation is thereby provided by Model Driven Solutions [3]. However, the 
“Java to Activities” mapping (defined in Appendix A of [2], and followed for the 
definition of the Execution Model) does not consider native Java threading mecha-
nisms. fUML mechanisms related to concurrency and asynchronous communications 
(e.g., active objects, signal emissions, etc.) are simply depicted using syntactic con-
ventions, with no explicit manifestation of the Java Thread API. For example, a call to 
the operation _send() of class ObjectActivation (depicted in the right-hand side of 
Figure 1) is the Java mapping for a SendSignalAction, which normally corresponds to 
an asynchronous signal emission. Therefore, an interpreter strictly conforming to the 
Java implementation of the Execution Model can only interpret fUML models as 
sequential Java programs (e.g., a call to _send() remains a synchronous and blocking 
Java call). 
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To be clear, the fact that the resulting Java implementation is mono-threaded and 
purely sequential is not a fundamental issue per se. Indeed, as we will see in the Re-
lated Works section, most state-of-the-art simulation tools are also sequential and 
mono-threaded. However, these tools include explicit mechanisms for simulating 
concurrency, usually with a well indentified entity which is responsible for triggering 
the execution of the various behaviors, according to a given scheduling policy. The 
real issue with the current architecture of the Execution Model is that there are no 
equivalent mechanisms, and that executions obtained via the Execution Model are 
purely sequential. Let us illustrate this issue with a simple example. 

The example illustrated in Figure 2 describes a simple application model that we 
want to simulate using the fUML Execution Model. It contains two active classes (C1 
and C2) whose instances will communicate via signal exchanges (S1 and S2). The 
classifier behaviors of C1 and C2 are respectively described by activities C1Behavior 
and C2Behavior. C1 asynchronously sends a signal S1 to C2, and then waits for a 
reception of a signal S2 from C2. On the other side, C2 waits to receive a signal s1 
from C1. After the reception, it asynchronously sends a signal S2 to C1. 

 

Fig. 2. fUML model of a simple asynchronous system 

Figure 3 shows a sequence diagram of a sequential execution trace respecting the 
java statements of the operational fUML Execution Model. The hypothesis for this 
execution trace is that two active objects c1:C1 and c2:C2 have been created, and that 
c2 has been started before c12. Lifelines appearing in the sequence diagram of Figure 3 
represent instances of classes from the fUML execution model. The interactions be-
tween these lifelines show how the model specified in Figure 2 is actually interpreted 
by the fUML Execution Model (in this case, all the execution is carried out in one 
thread). 

On the right-hand side of Figure 3, the instance of ClassifierBehaviorExecution 
represents the execution of the classifier behavior of c2. Once it is started, it performs 
the AcceptEventAction. From the Execution Model standpoint, It consists in registering 
an EventAccepter for S1 within a list of waiting event accepters (i.e., call to operation 
                                                           
2  Another fundamental limitation of this sequential Java interpretation is that it is non-

deterministic. The resulting execution trace will be different if c1 is started before c2. 
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register()). It captures the fact that the execution of c2 is now waiting for an occurrence 
of S1. However, the execution of c2 does not actually wait for an occurrence of S1 
(i.e., with the strict interpretation of the Java statements, the ClassifierBehaviorExecu-
tion is not executed on its own thread). Instead, it returns to the main activity, which 
continues the execution by starting the classifier behavior of c1. The execution flow of 
c2’s ClassifierBehaviorExecution will be further continued, after an explicit notifica-
tion. On the left-hand side of Figure 3, when the classifier behavior of c1 starts (i.e., 
call to execute() emitted by the ActivityExecution), it executes the SendSignalAction. 
The semantics associated with the SendSignalAction is captured in the execution model 
by calling the operation send() of target object c2, which in turn calls the operation 
send() of ObjectActivation. It results in adding a signal instance s1 to the event pool 
associated with the object activation of c2. 

:ClassifierBehavior
Execution

Handles the execution of 
the classifier behavior of C1

:Object

Represents c2 in the 
execution model

send(s1)

:ObjectActivation

send(s1)

eventPool: 
SignalInstance [*]

add(s1)

:ClassifierBehavior
Execution

Handles the execution of 
the classifier behavior of C2

-Match the signal with 
eventAcceptersList
-If mach found, accept s1

register(eventAccepter)

Event accepter 
for s1

dispatchNextEvent

_sendArrivalSignal()

accept(s1)
send(s2)

:ActivityExecution

Main

execute()

execute()

Register is an operation 
of AcceptEventAction

Accept is an operation 
of AcceptEventAction

 

Fig. 3. Execution trace from a sequential implementation of the Execution Model 

In order to notify the ClassifierBehaviorExecution of c2 that a signal is available 
for dispatch (and therefore that its execution flow can potentially be continued if there 
is a matching EventAccepter), a call to _send(new ArrivalSignal()) is emitted, which 
in turn causes a call to dispatchNextEvent(). This operation dispatches a signal from 
the event pool and matches it against the list of waiting event accepters. If an event 
accepter matches, a call to the accept operation of the AcceptEventAction is performed 
and the classifier behavior of c2 continues the execution by sending signal S2 to c1. 
The execution of this SendSignalAction results in a call to operation send() on target 
object c1, which in turn implies the sequencing of operations described above. 

Beyond these technical details, it is important to notice here that this sequential 
propagation of operation calls will finally result in a valid execution trace (i.e., an exe-
cution trace respecting control and data dependencies expressed between actions in the 
application model being simulated). Basically, once an action execution terminates, it 
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will simply trigger the execution of another action that can logically be executed after 
it. The problem here is that the mechanisms which determine the next action to be 
scheduled is buried inside the implementation of each ActionExecution visitor class. If 
we want the Execution Model to be easily customizable for the real-time domain 
(which is our primary objective), we clearly need to extract this scheduling aspect from 
visitor classes, and add an explicit entity that would be responsible for scheduling the 
execution of actions. Once the entity which is responsible for scheduling action execu-
tions is clearly identified, it can be easily specialized to capture various execution 
schemes, corresponding to various execution semantics (i.e., semantics implied by a 
profile definition). Perceptive readers may wonder whether the need for an explicit 
scheduler is the consequence of the sequential Java implementation.  

If we make abstraction of the actual Java statements and the way they would be in-
terpreted by a Java compiler (i.e., sequential propagation of synchronous and blocking 
operation calls), the classifier behavior of each active object c1 and c2 is theoretically 
started asynchronously and performed on its own thread. What is important to notice 
is that active objects are simply started by the Execution Model, and finish their exe-
cution once their associated classifier behavior terminates. There is neither a well 
identified entity in the Execution Model describing scheduling rules, nor synchroniza-
tion primitives that could be used by the scheduler to synchronize running active 
objects (e.g., operations or signal receptions that could be associated with class Object 
of the Execution Model depicted in Figure 1).  

This architecture is not well suited to our primary objective: Specializing the Exe-
cution Model in order to reflect concerns of the real-time domain. For this purpose, 
we believe that introducing an explicit and well-identified entity responsible for 
scheduling active objects and/or action executions is mandatory, along with well-
identified primitives for synchronizing and scheduling concurrent entities. Existing 
solutions (discussed in the next section) in model-based simulation of concurrent 
systems could inspire the modifications required by the Execution Model. 

3   Related Works  

In the field of Hardware Description Languages (HDLs), designers have already been 
facing the issue of simulating hardware systems (which are intrinsically concurrent) 
on design platforms which are typically not concurrent. SystemC [9, 10] is a represen-
tative example of solutions put into practice in this domain in order to solve this issue. 
It basically consists of a set of C++ extensions and class definitions (along with a 
usage methodology), and a simulation kernel for executing them. These extensions 
include handling of concurrent behaviors, time sequenced operations and simulation 
support. The core of SystemC is based on an event-driven simulator, where processes 
are behaviors and events are synchronization points that determine when a process 
must be triggered. The SystemC scheduler controls the timing, the order of process 
execution and handles event notifications. It provides primitives to synchronize and 
notify processes (e.g., wait() and notify() primitives). Concretely, similar mechanisms 
could be easily integrated in the fUML Execution Model, by adding a scheduler and 
primitives like wait() and notify() (which would be associated with class Object).  
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More generally, in the field of model-based simulation of concurrent systems, ge-
neric approaches such as Ptolemy [13] and ModHel'X [14] should also be considered. 
Ptolemy focuses on modeling, simulation, and design of concurrent, real-time, em-
bedded systems. This approach is based on the notion of actors which communicate 
through an interface which hides their internal behaviour and is composed of ports. 
Models are built from actors and relations between their ports, with a director in 
charge of interpreting the relations between ports and the values available on the 
ports. The director of a model gives the execution semantics of the model as the rules 
used to combine the behaviors of its component actors. In fact, a director may repre-
sent a family of execution semantics and may have parameters such as a scheduling 
policy. Ptolemy comes with a number of directors ranging from Synchronous Data 
Flow for discrete time signal processing to Continuous Time for modeling physical 
processes. It supports a Discrete Event model of computation which is similar to the 
execution model of SystemC, as well as a Process Network model of computation in 
which asynchronous processes are synchronized on the availability of their inputs 
(contrary to CSP, producing data is never blocking, only getting data may block a 
process if the data is not yet available). In Ptolemy, actors are autonomous entities 
with a behavior which may be executed in its own flow of control. However, in many 
models of computation, actors are activated in sequence according to a static or dy-
namic schedule. What is important to notice here is that the Director / Actor architec-
ture of Ptolemy is flexible enough to support multiple models of computation, that is 
to say multiple execution semantics. Regarding the fUML Execution Model, a similar 
architecture could be adopted: Active objects and/or action executions could be con-
sidered as actors, and the explicit entity responsible for scheduling their execution 
could be a kind of Ptolemy director. Defining a specialization of the Execution Model 
for a given application domain (i.e., explicitly capturing the execution semantics im-
plied by a profile) would therefore basically come to extending corresponding classes 
in the execution model, and overloading or implementing some of their operations. 

Like Ptolemy, ModHel'X defines a unique generic simulation engine to support all 
MoCs. Consequently, ModHel'X is well adapted for heterogeneous systems modeling. 
It adopts a model-based approach where the whole behavior is represented by a set of 
blocks, ports and unidirectional lines. A snapshot-based execution engine is proposed 
for interpreting this structure. As described in [14], a model execution is a sequence 
of snapshots. To compute each snapshot, the algorithm provides the model with in-
puts from the environment and builds an observation of the outputs, according to its 
current state. This process has a generic structure: first, choose a component to ob-
serve, then observe its behavior in response to its inputs, and propagate this observa-
tion according to the relations within the model structure. This generic algorithm for 
executing models relies on such primitive operations which can be refined for each 
model of computation. The semantics of these operations define the semantics of the 
model of computation. Indeed, ModHel’X has a more generic execution engine and 
provides a finer grain description of models of computation than Ptolemy. Concretely, 
we could also get inspiration of this architecture to modify the fUML Execution 
Model. A class encapsulating the snapshot-based execution engine could be integrated 
in the Execution Model, and specializing the Execution Model for a given application 
domain would basically come to provide particular implementations for the opera-
tions described above. 
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Coupling with existing and more static approaches such as TimeSquare [16] could 
also be considered. TimeSquare provides an environment for modeling and analyzing 
timed systems. TimeSquare supports an implementation of the Time Model intro-
duced in the UML MARTE profile and the CCSL language (Clock Constraint Speci-
fication Language). It displays possible time evolutions as waveforms generated in 
the standard VCD format. These evolutions constitute a scheduling trace. 

TimeSquare takes as input an UML model and a CCSL model applied to the UML 
model. The CCSL model is used to specify time constraints and apply a specific be-
havioral semantics on a model. The result produced by TimeSquare is a sequence of 
steps (Scheduling Map) that can be used by external tools for analysis/simulation 
purposes. Concretely, coupling the fUML Execution Model would mean that a CCSL 
model must be generated for a given application model, and that the generated model 
reflects the time and concurrent semantics of the application domain for which a pro-
file is defined. Scheduling maps generated by TimeSquare could then be “played” by 
the Execution Model. Again, modifications in the architecture of the Execution Model 
would be required, and would mainly consist in adding an explicit entity responsible 
for triggering executions of active objects and actions, with respect to the scheduling 
map generated by TimeSquare. 

4   Introducing an Explicit Scheduler in the fUML Execution 
Model 

In section 2, we have shown that the executions performed by the fUML Execution 
Model are purely sequential. We have highlighted the absence of an explicit entity 
responsible for scheduling the execution of actions. We have identified in section 3 
different approaches for modeling and simulation of concurrent systems. Each ap-
proach contains an entity and primitives to control behavior executions. We propose 
in this section a lightweight modification of the Execution Model following this gen-
eral idea. The goal is to break the sequential execution and provide the ability to con-
trol the start of each action execution, in a way that can be easily overloaded (so that 
it is possible to cope with multiple scheduling policies). We introduce for this purpose 
an explicit scheduler into the Execution model, as illustrated in Figure 4. 

 

Fig. 4. Description of the Scheduler in fUML Execution Model 
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The class Scheduler manipulates a list of ActivityNodeActivation (i.e., this class 
represents the visitor class of UML::Action) depicted by the property schedulingList, 
which contains the list of all actions ready to execute (i.e., an action is ready to exe-
cute if all its control and data tokens are available). Scheduler offers several opera-
tions that can be used to control executions of actions. These operations are called in 
the body of start ( ) which actually start the behavior of the scheduler. The operation 
selectNextAction( ) determines the next action to be executed, by extracting an ele-
ment from schedulingList, according to a given scheduling policy. The operation 
updateSchedulingList ( ) determines the potential successors for the last executed 
action (i.e., with respect to control and data dependencies within the executed activ-
ity) and adds them to the scheduling list.  

To capture several scheduling policies that could correspond to different execution 
semantics, we rely on the strategy pattern proposed by the Execution model, itself 
based on the class SemanticStrategy (for more details about the strategy pattern, see 
[11]). In the fUML execution model, SemanticStrategy is used to address semantic 
variation points of UML, with a refinement of this class for each semantic variation 
point of UML (e.g., there is a class called GetNextEventStrategy, which is introduced 
to address the UML semantic variation point related to the selection of an event from 
an object’s event pool). Fixing a given semantic variation point then comes to refine 
the corresponding strategy class, by providing an implementation for the operation 
capturing the strategy.  

Following this pattern, supporting different scheduling policies amounts to refine 
the class SelecNextActionStrategy (see Figure 4) for each new policy and to overload 
the selectNextAction() operation to capture the underlying behavior. In our case, we 
introduce the class SelecNextActionStrategy, whose operation selectNextAction() is 
overloaded in order to encapsulate the behavior of one particular scheduling policy. 
For example, FIFOSelectNextActionStrategy is a concrete class that implements a 
simple FIFO strategy (i.e., by “FIFO”, we simply mean that actions are executed 
respecting their order of appearance in a list of action activations such as sheduling-
List). In order to plug the scheduler onto the fUML execution model, we also modify 
the behavior of ActivityNodeActivation in order to let the scheduler determine the next 
action to be executed after a given ActivityNodeActivation finishes the execution of its 
visited action. Figure 5 shows a sequence diagram of an interaction trace between the 
scheduler and an action. The scheduler executes the operation selectNextAction ( ) 
that chooses one action from its scheduling list according to a certain policy. Its im-
plementation actually consists in delegating the choice to a SelectNextActionStrategy 
class (in this case, the policy is the one of FIFOSelectNextActionStrategy. Note that 
the Loci class dynamically determines the various semantic strategy classes to be 
used, provided it has been correctly configured before launching the execution). Then, 
the scheduler triggers the execution of the selected action. The behavior of the se-
lected action is performed by the operation doAction( ). The operation sendOffer( ) 
then propagates tokens to the next actions that can logically be executed after it, but it 
does not trigger anymore the execution of these actions. The scheduler indeed calls 
updateSchedulingList() to add these potential successors into the scheduling list. The 
next action to be executed is selected by calling selectNextAction(). This behavior is 
repeated until the scheduling list becomes empty (i.e., the execution of the activity is 
finished). 
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Fig. 5. Execution trace of scheduler interactions with action 

5   Conclusion 

The ongoing OMG standard on the semantics of a foundational subset (fUML) for 
executable UML models defines a general-purpose execution model for a subset of 
UML. This subset includes non trivial mechanisms, carrying concurrent and asyn-
chronous execution semantics (e.g., active objects, signals, etc). Our objective was to 
evaluate how far the current definition of the fUML Execution Model can support 
formalization of concurrent and temporal semantic aspects required for real time em-
bedded system design and analysis. As shown in the study, the current form of the 
fUML execution model is not suited to this objective, mainly due to the way concur-
rency and asynchronous communications are actually handled. 

We have mainly shown that the current architecture of the fUML Execution Model 
suffers the lack of explicit mechanisms for manipulating and synchronizing concur-
rent entities. Existing solutions for embedded system simulation indicate that it is 
possible to provide much more adapted and realistic solutions. We proposed some 
concrete modifications regarding the architecture of the fUML Execution Model, 
inspired by these solutions. We took care of minimizing changes in the architecture, 
so that we can leverage as much as possible on the existing Execution Model (and all 
the work that its definition implied). The proposed solution is mainly intended to 
show that a modification of the fUML Execution Model is technically feasible and 
reasonable in terms of efforts. However, further experiments are still required to vali-
date the proposed modifications. Additionally, this solution only reflects executions 
by a single unit of computation (i.e., mono-processor). The case of executions onto 
multiple processing units will be investigated in future works. 

Another important aspect which has not been detailed in this article concerns the 
simulation of time in the Execution Model, which is currently not supported. Time is 
indeed considered as a semantic variation point within the fUML Specification (Sub-
clause 2.3 of [2]). Consequently, a wide variety of time models could be adopted, 
including discrete or continuous time. fUML does not make any assumptions about 
the sources of time information and their related mechanisms. Therefore, to support 
timed execution semantics and underlying timing properties (e.g., ready time, period, 
deadline, etc.), it is necessary to extend the Execution Model with both necessary 
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syntactic and semantic concepts. Time is a central aspect to our work. Resolving the 
concurrency issues of the fUML Execution Model by adopting solutions similar to 
those proposed in the Related Works could therefore, in the same move, provide a 
solution for the Time issue of the Execution Model. Ultimately, our goal is to provide 
a kind of methodological and tooled framework for the definition of UML profiles, 
where the semantic specializations of UML implied by a profile will take as much 
considerations as syntactic specializations. 
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Abstract. In this paper we present new concepts to resolve ECU (Electronic
Control Unit) failures in FlexRay networks. Our approach extends the FlexRay
bus schedule by redundant slots with modifications in the communication and slot
assignment. We introduce additional backup nodes to replace faulty nodes. To re-
duce the required memory resources of the backup nodes, we distribute redundant
tasks over different nodes and propose the migration of tasks to the backup node
at runtime. We investigate different solutions to migrate the redundant tasks to
the backup node by time-triggered and event-triggered transmissions.

1 Introduction

FlexRay is the emerging standard for safety-critical distributed real-time systems in ve-
hicles [5][15]. It implements deterministic behavior and comes with high bandwidths.
For increased safety, it provides redundant channels to guarantee communication if one
channel is corrupted. Nevertheless, since an ECU (Electronic Control Unit) failure still
often results in the malfunction of the whole system, the main question remains how
to ensure the correct behavior of a safety-critical distributed system in such a case.
As presented in [4], different techniques for tolerating permanent, transient, or inter-
mittent faults are applied. In our article, we consider ECU failures based on permanent
hardware faults which are compensated by means of redundancy. We focus on the repli-
cation of tasks and the activation of backup nodes. The failure results in an execution
of the redundant tasks on a different node which induces changes in the communication
at runtime. Unfortunately, FlexRay only supports static bus schedules where each slot
is reserved for an individual sender and the slot assignments can only be changed by a
bus restart, whose timing is not exactly predictable. In contrast, our approach extends
bus schedules by redundant slots and considers communication dependencies already at
the system design phase before network configuration. Additionally, as ECU function-
alities are distributed over several ECUs, the failure of an ECU which executes several
functions may have a big impact on the correct operation of the whole system. We
adopt this approach and assign two functions to an ECU.1 One implements the main
ECU function; the other one is a redundant mirrored instance of another ECU func-
tion, which is activated on a failure of the other ECU (see Fig. 1 and [4]). Here, just
the failure of one ECU can be compensated. A second node failure may lead to the
failure of the complete system again. In Figure 1, for example, the failure of node n1
disables its own task set and the backup for node n2. The additional failure of node
n4 irrecoverable corrupts the functionality of node n1. We introduce backup nodes to

1 For the matter of simplicity, we presume that a function corresponds to a task.

M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 55–65, 2010.
c© IFIP International Federation for Information Processing 2010
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Fig. 1. Redundancy with mirrored tasks on other nodes

completely replace any faulty node and presume a homogeneous network of nodes with
identical resources. This redundancy raises the fault tolerance of distributed networks
and we can furher improve it by simply increasing the number of backup nodes. This
approach additionally requires the migration of the main and the redundant function
of the faulty ECU from other nodes and their migration to the backup node. The addi-
tional advantage is that the redundant function can immediately start executing before
the migration, e.g., t1* on node n4. After the migration, the execution is resumed by
the backup node. This yields to the initial setup where every node is executing only
its main functionality again and keeps a redundant instance of a function from another
ECU which compensates an additional failure of an arbitrary node.

In this article, we present different variants for such a task migration and evaluate
them with respect to their time consumption, predictability, and impact to the commu-
nication. A detailed description of our approach is given in Section 4. The evaluation is
presented in Section 5 before the final section concludes with a summary.

2 Related Work

Several approaches like [14] deal with the analysis of the FlexRay protocol and its
optimization. They present several heuristics to determine proper configurations and
parameterizations for the FlexRay bus based on the static [11][7][10] and the dynamic
segment [14][13]. In general, their optimizations and the resulting configurations as-
sume that the executed tasks are statically linked to the nodes of the FlexRay network.
[4] considers a replication of tasks and a more flexible task to node assignment. Based
on these assumptions they determine the reconfiguration capabilities of the FlexRay
bus.

Task migration itself is a hot topic in current automotive research. For example,
[1] describes a concept for a middleware, which uses task migration further described
in [9] to increase the reliability of distributed embedded systems with soft real-time
constraints, e.g., for infotainment systems. In contrast to our work, they do not consider
safety-critical components and the runtime reconfiguration of FlexRay networks.

Task migration at runtime was considered in the context of mobile agents like [12]
and [2]. However, we are not interested in principle architectures rather than on their
technical realization and the efficient task migration in the context of FlexRay. We are
not aware of other related approaches in this area.
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3 FlexRay

FlexRay was introduced to implement deterministic and fault-tolerant communication
systems for safety-critical distributed real-time systems like x-by-wire. The main bene-
fits of FlexRay are:

– Synchronous and asynchronous data transmission: FlexRay offers cycle-based
time-triggered communication complemented by an optional event-triggered trans-
mission mode.

– Determinism: The time triggered transmission mode of FlexRay ensures real-time
capabilities of the communication because it guarantees deterministic behavior
with a defined maximum message latency.

– Redundant communication channels with large bandwidth: FlexRay offers two
redundant channels for safety-critical systems. Each channel offers a bandwidth up
to 10 Mbit/s with little latency.

A communication cycle can be composed of a static and an optional dynamic seg-
ment (see Figure 2(a)). In the static segment, the time-triggered data transfer is carried
out via TDMA (Time Division Multiple Access). The transmission slots of the seg-
ment are assigned to one sender node by a globally known synchronously incremented
slot-counter. The static segment consists of a fixed number of equally sized static slots
(2 – 1023). The event-triggered dynamic segment realizes the bus access via FTDMA
(Flexible Time Division Multiple Access) and consists of dynamic slots with variable
size. Dynamic slots are composed of minislots whose number depends on the length of
the message to transmit (max. 7986 per cycle). The arbitration is accomplished by a pri-
ority assignment to nodes (Frame IDs). If a node has nothing to send, only one minislot
is unused and the next node gets the opportunity for transmission. The size of the slots
and minislots, the cycle length, the size of messages (frames) as well as several other
parameters are defined through an initial setup of the FlexRay schedule, which cannot
be changed during runtime. Figure 2(b) shows the basic components of a FlexRay node.
A host for the functionality of the ECU and a communication controller (CC). The CC

(a) (b)

Fig. 2. Components of the FlexRay communication cycle (a) and communication controller (b)
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is the core component of FlexRay because it implements the actual protocol. It provides
the communication interface to the bus through a bus driver and it performs the send-
ing/receiving and the decoding/coding of data messages (frames). For more detailed
introduction to FlexRay, the reader is referred to [6].

4 Migration of Redundant Tasks in FlexRay Networks

Our concepts are based on existing approaches for redundant tasks to improve the ro-
bustness of FlexRay networks in case of a node failure. To further increase the fault
tolerance of a FlexRay network, our concept extends them by the improvements out-
lined in the next subsection.

4.1 Overview

Our improvements for an increasing fault tolerance are:

– Extension with additional backup node(s): Backup nodes can completely replace
any faulty node as they provide the same resources as the other nodes. To reduce
the memory demand for the backup node, we migrate necessary tasks rather than
storing instances of all tasks on a backup node. This results in a homogenous system
topology with similar node capacity.

– Migration to the backup node at runtime: During the migration, the functional-
ity is immediately executed by the redundant instance on another ECU. After the
migration, the corresponding task execution is resumed on the backup node. This
yields to the initial system setup where every node executes a main function and
keeps an additional redundant instance from another ECU.

Additionally, we add a coordinator component, which is in charge of the communication
in the system. This can be realized by two different strategies. First, the coordinator can
be distributed on different nodes. Second, the coordinator can – as it is realized here –
run on an extra node to keep the topology described above with ECUs executing one
main function, represented as one task. Figure 3 presents the topology of a FlexRay
network with an extra backup and coordinator node.

Fig. 3. Topology with backup and coordinator node before a failure of Node n1
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As shown in Figure 3, the coordinator maintains a task list, with main and redundant
tasks of every node and a communication matrix (see Table 1) with the correspond-
ing transmission/reception slots. These structures will be updated when modifications
in task and slot assignments are required due to node failures, execution of redundant
tasks, or task migrations. The coordinator is configured to monitor messages from all
slots. Using the information from the task list and the communication matrix, the coor-
dinator detects node failures monitoring the bus traffic. If a malfunction of an ECU is
detected, the coordinator sends a message to the appropriate nodes to activate the corre-
sponding redundant task instance and to start the transmission of the particular tasks to
the backup node. This message also contains information about changes in the slot as-
signment for receiving nodes. When the transmission is complete, this is recognized by
the coordinator. Then, the coordinator activates the migrated task on the backup node at
the same time it deactivates the redundant task and informs the receiving nodes about
rearrangements in the slot assignments. Figure 4 illustrates this process for the system
shown in Figure 3 in case of a failure of node n1. The synchronous and asynchronous
data transmission of the FlexRay protocol allows different implementations of our ap-
proach. It can be realized in the static segment, in the dynamic segment, or in both. In
the following we introduce alternative scenarios for the previous example.

Table 1. Example of a communication matrix for a topology with 4 nodes

static segment dynamic segment
Slot s1 s2 s3 s4 ... d1 d2 ...

Node n1 t1:tx - t1:rx - ... - - ...
Node n2 t2:rx t2:tx t2:rx - ... - - ...
Node n3 t3:rx - t3:tx t3:rx ... - - ...
Node n4 - - - t4:tx ... - - ...

Fig. 4. Topology with backup and coordinator node after a failure of Node n1
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4.2 Exclusive Usage of Static Segment

For an exclusive usage of the static segment, additional static slots for the coordinator,
the backup node, and the migrations have to be reserved. This extends the static seg-
ment as shown in Table 2. The advantage of this solution is the predictability for the
transmissions of all nodes as well as the task migration. The duration Δmigration of the
copy process for a task with the size Φtask can be computed by

Δmigration = #cycles ·Δcycle with #cycles =
⌈

Φtask · gdBit
Δslot

⌉
, (1)

where #cycles is the number of cycles and Δcycle the length of a cycle. The cycle length
and the nominal bit time (inverted bit rate) gdBit are configured in the FlexRay sched-
ule as well as the slot length Δslot , which is related to the number of needed cycles
for a task migration (#cycles) (ref. (1)). Table 2 presents the static slots and the result-
ing assignments and changes for a failure of node n1. In addition to slots s1,..,s4 for
the primarily communication between the four nodes, slots for the coordinator (s5) and
the transmission of the redundant task during the migration process (s6,...,s9) – here
t1* transmits in s9 – have to be reserved in the schedule. For the migration, a slot for
each node (s10, ..., s13) and a slot for the backup node (s14) has to be reserved. The
communication matrix shows that all nodes receive the messages from the coordinator
(s5) and the coordinator monitors all slots. Node n4 uses slot s13 to copy the task t1*
to the backup node (t1*:mig) and node n2 uses s11 (t2:mig). During that period, the
redundant task t1* transmits its data in slot s9 and receives from slot s3. The corre-
sponding tasks/nodes are informed via the coordinator message to listen to s5. When
the migration is finished, the backup node receives the advice (bk:rx) to activate its mi-
grated instance of t1*. Thereafter, task t1* on the backup node reads from slot s3 and
sends via slot s14 whereas the receiving tasks are informed to listen to this slot. Simul-
taneously, node n4 stops executing its instance of task t1*. All transmissions as well
as the migration are time-triggered and have a guaranteed maximum latency. But only
few of the reserved slots are required in the case of a node failure. This results in a big
overhead of slots. The setting of an appropriate static slot size (Δslot) makes the situa-
tion even worse. To get a small number of cycles needed for a migration (#cycles), slots
should be considerably large. Beside the fact that FlexRay as well as system properties
(e.g., sampling rates of tasks) limit the maximal slot length, this causes a significant
increase of the overhead because every slot needs to be equally sized independent of its
transmitted content.

4.3 Exclusive Usage of Dynamic Segment

To minimize the overhead described above, it is possible to exclusively use the event-
triggered dynamic segment. To guarantee the correct transmission of data within the
dynamic segment, FlexRay only allows a node to send if its frame completely fits into
the remaining minislots (ref [6]). In the case that it does not fit, the node has to wait
for the next cycle. This makes the communication nondeterministic, particularly if the
dynamic segment is also used for other event-based messages like error codes etc. Thus,
the calculation of the time needed for the migration within the dynamic segment is more
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complex. The value for (Δmigration) can be determined using equation (1). The slot size
(Δslot) is dynamic and is determined by

Δslot = Δdynamic −Δhp with Δhp =
i

∑
k=1

Δ f ramei . (2)

Equation (2) shows that the available dynamic slot size for the migration is given by the
complete length of the dynamic segment (Δdynamic) decremented by the slot sizes used
by frames with higher priority (Δhp). These results inserted into Equation (1) yield to
the migration time derived from the segment length and the priority assignment. The
communication matrix in Table 3 shows the assignment. The coordinator gets the high-
est priority (d1) because it transmits messages of highest priority. During the migration
process task t1* running on node n4 uses d2 to send its data. The other reserved slots
(d3-d5) are unused. When the migration is finished, the activated backup node blocks
the dynamic slot d6 and d2 remains unused. The communication matrix also shows that
the migration of the tasks gets the lowest priorities (d7,..., d10). Here, d8 is used for
the migration of t2 and d10 for the migration of t1*. To permit access to the dynamic
segment, the data size of the migration process must fit in the space left influenced by
prior messages. Additionally, the coordinator informs the backup node how much data
to transmit per cycle. This usage of the dynamic segment makes this solution more flex-
ible than the use of the static segment. Even though the transmission is event-triggered
and nondeterministic, it can be guaranteed that sufficient data are transmitted due to a
proper priority assignment. The size of the dynamic segment has to be initially config-
ured based on the system properties and the message sizes to reach the desired migration
process duration Δmigration along Equation (2). Because the utilization in the dynamic
segment is more flexible and the static slot size is independent of the migration data,
the potential overhead of this solution is considerably less than in the static version
of Table 2. In particular, each unused slot in the dynamic segment only consumes one
minislot. Nevertheless, the major drawback is the partial loss of determinism, which is
an important requirement for safety-critical systems.

4.4 Usage of Static and Dynamic Segments

A compromise between the previous two solutions is given by the configuration given
in Table 4. Here, we achieve a reduction of overhead in compliance with a determin-
istic communication. The communication matrix shows that the coordinator node (s5),
the redundant task instances (s6,..., s9), and the backup node (s10) communicate time-
triggered over reserved static slots like in the exclusive static segment solution. In
contrast, the migration itself is performed via the dynamic segment (d1,...,d4), which
reduces the overhead significantly as the size of the migration frames only influences
the size of the dynamic segment and unused slots in the dynamic segment generate less
overhead. Hence, the size of the static slots remains independent of the migration data.
In summary, this yields to a higher flexibility in the schedule configuration and com-
bines the benefits. On the one hand, we guarantee a maximum latency and a determinis-
tic transmission for the important messages using the static segment. On the other hand,
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we reduce the overhead by the exclusive assignment of the dynamic segment to the
migration process. Through this, the migration time is even more predictable because
the capacity required by prioritized tasks is omitted.

5 Experimental Results

We evaluated the presented alternatives by simulations with our SystemC Flex-Ray
library. SystemC is a system design language providing means to model application-
specific hardware and software at different levels of abstraction [3]. The implemented
FlexRay CC supports the simulation of static and dynamic segments for one communi-
cation channel. All necessary modules specified in the FlexRay standard (see [6]) are
also covered by the implementation. Our model consists of six modules implement-
ing communication nodes along the topology shown in Figure 3. Each node uses an
instance of the CC for the communication. All CCs are in turn connected to a transac-
tion level (TLM) bus object. The CC model can be configured with the same controller
host interface (CHI) files like hardware CCs. This file contains all necessary param-
eters to configure the registers and message buffers for the communication. The bus
communication applies TLM 2.0 [8]. Figure 5 depicts a communication sequence be-
tween two communication controllers. The communication controllers act as initiators
of the transaction during the communication process and the bus acts as the target. We
use approximately timed TLM 2.0 coding style to model the communication with the
bus module. The communication is divided into four phases: Begin/end request and
begin/end response. As shown in Figure 5, CONTROLLER1 starts a write transaction,
with a begin request. Immediately after the receipt of the transaction, the bus module
notifies CONTROLLER2 about the start of the data transmission with the time required
for the data transfer. Afterwards, CONTROLLER2 starts a read transaction. Both con-
trollers then wait until they have received a confirmation from the bus about the end of
the data transfer. The SystemC model consists of 6 nodes, 6 CCs, and 1 bus module in
total. Nodes communicate via their respective CCs. Communication between nodes and
CCs is realized via callback methods. Each node has to implement receive and transmit
function, that are called by the FlexRay CC. Since we are using an abstract model for
the evaluation, we did not actually implement the migration process itself. Instead we
simulate the reconfiguration/migration duration since timing analysis is our main focus.

Simulation Results. In the following, we present the simulation results for one exam-
ple. For that we assume a size of 1 kByte = 8000 bit for a task to migrate (Φtask) and
configure the FlexRay Bus schedule by:

– Δcycle = 600μs for static solution,
– Δcycle = 600μs+ 400μs = 1000μs for dynamic and mixed solution,
– Δslot = 50μs for the static segment with 14 slots,
– gdBit = 0,1μs/bit (equates to a bandwith of 10 Mbit/s).

The time needed for the migration within the static segment can be determined by
means of Equation (1) as:
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Simulation time =
10ns + delay

Controller1
(Initiator)

FlexRay_Bus
(Target)

Controller2
(Initiator)

READ, BEGIN_REQ, delayTLM_ACCEPTED

TLM_ACCEPTED

WRITE, BEGIN_REQ, delay WRITE, BEGIN_REQ, delay

TLM_COMPLETED

READ, BEGIN_RESP, -WRITE, BEGIN_RESP, -

TLM_COMPLETED

Simulation time =
10ns

Simulation time =
20ns

Simulation time =
20ns + delay

w
ait(delay)

no time elapses

1.1 Notify begin of
transmisssion

(Trick: use backward
path)

1. initiate a write
transaction on
forward path

3. notify end of
transmission on
backward path

3. notify end of
transmission on
backward path

2. initiate a read
transaction on
forward path

Fig. 5. Simulation of bus transmission

#cycles =
⌈

Φtask · gdBit
Δslot

⌉
=

⌈
8000 bit · 0,1 μs/bit

50μs

⌉
= 16,

Δmigration = #cycles ·Δcycle = 16 ·600μs = 9,6ms

For the (exclusive) assignment of the dynamic segment to the migration and the
usage of both transmission modes, the simulation also confirms the computed values,
e.g.:

#cycles =
⌈

Φtask · gdBit
Δslot

⌉
=

⌈
8000 bit · 0,1 μs/bit

400μs

⌉
= 2 with

i

∑
k=1

Δ f ramei = 0,

Δmigration = #cycles ·Δcycle = 2 ·1000μs = 2ms.

All numbers were additionally validated by our simulations which thus confirms the
applicability of our approach.

6 Conclusion and Outlook

This paper presented different alternatives of redundant tasks and slots for the com-
pensation of node failures in safety-critical FlexRay networks. We introduced backup
nodes, which can replace any faulty node when our task migration is applied. With
this scalable approach, we further increase redundancy and fault tolerance through the
compensation of an additional failure of an arbitrary node. We presented three different
task migration strategies based on the transmission capabilities of FlexRay and evalu-
ated them by a SystemC simulation. The comparison of the proposed solutions showed
that the combined usage of static and dynamic segment improves the benefits and min-
imizes the disadvantages by providing deterministic communication with low overhead
and flexibility for task migration. On the one hand, it results in a maximum latency
for the transmission of functional relevant messages in the static segment. On the other
hand, it reduces the overhead through the exclusive assignment of the dynamic segment
to the migration process.
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In future work, we will examine the distribution and redundancy of the coordinator
component within the system. By this, we avoid the potential “single-point of failure”
induced by the solution with a single coordinator ECU. The additional small memory
requirement resulting from the stored task list and communication matrix on several
nodes is neglectable.
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Abstract. Replication is a proven concept for increasing the availability of dis-
tributed systems. However, actively replicating every software component in dis-
tributed embedded systems may not be a feasible approach. Not only the available
resources are often limited, but also the imposed overhead could significantly de-
grade the system’s performance.

This paper proposes heuristics to dynamically determine which components
to replicate based on their significance to the system as a whole, its consequent
number of passive replicas, and where to place those replicas in the network. The
activation of passive replicas is coordinated through a fast convergence protocol
that reduces the complexity of the needed interactions among nodes until a new
collective global service solution is determined.

1 Introduction

The highly dynamic and unpredictable nature of open distributed real-time embedded
systems can lead to a highly volatile environment where QoS provision needs to adapt
seamlessly to changing resource levels [1].Some of the difficulties arise from the fact
that the mix of independently developed applications and their aggregate resource and
timing requirements are unknown until runtime but, still, a timely answer to events
must be provided in order to guarantee a desired level of performance. Our previous
work [2] applied concepts of cooperative QoS-aware computing to address such chal-
lenges, emerging as a promising distributed computing paradigm to face the stringent
demands on resources and performance of new embedded real-time systems. Available
software components can be shared among different services and can be adapted at
runtime to varying operational conditions, enhancing the efficiency in the use of the
available resources.

Nevertheless, it is imperative to accept that failures can and will occur, even in metic-
ulously designed systems, and design proper measures to counter those failures [3].
Software replication has some advantages over other fault tolerance solutions in dis-
tributed environments, providing the shortest recovery delays, it is less intrusive with
respect to execution time, it scales much better, and is relatively generic and transparent
to the application domain [4]. However, actively replicating all software components,
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independently of their significance to the overall system, may be infeasible in some
embedded systems due to the scale of their timing, cost, and resource constraints [5].

This paper is then motivated by the need to develop a flexible and cost-effective
fault tolerance solution with a significant lower overhead compared to a strict active
redundancy-based approach. The term cost-effective implies that we want to achieve a
high error coverage with the minimum amount of redundancy. The paper proposes low
runtime complexity heuristics to (i) dynamically determine which components to repli-
cate based on their significance to the system as a whole; (ii) determine a number of
replicas proportional to the components’ significance degree; and (iii) select the loca-
tion of those replicas based on collected information about the nodes’ availability as the
system progresses. To quantitatively study the effectiveness of the proposed approach
an extensive number of simulation runs was analysed. The results show that even sim-
ple heuristics with low runtime complexity can achieve a reasonably higher system’s
availability than static offline decisions when lower replication ratios are imposed due
to resource or cost limitations.

One of the advantages of passive replication is that it can be implemented without
the use of complex replica consistency protocols [6,7]. Nevertheless, consider the case
where the quality of the produced output of a particular component depends not only on
the amount and type of used resources but also on the quality of the inputs being sent
by other components in the system [8]. If a primary replica is found to be faulty, a new
primary must be elected from the set of passive backup ones and the execution restarted
from the last saved state. However, it is not guaranteed that the new primary will be able
to locally reserve the needed resources to output the same QoS level that was being pro-
duced by the old primary. In such cases, the need of coordination arises in order to pre-
serve the correct functionality of the service’s distributed execution [9,10]. This paper
proposes a distributed coordination protocol that rapidly converges to a new globally
consistent service solution by (i) reducing the needed interactions among nodes; and
(ii) compensating for a decrease in input quality by an increase in the amount of used
resources in key components in interdependency graphs.

2 System Model

We understand a service S = {c1, c2, . . . , cn} as a set of software components ci being
cooperatively executed by a coalition of nodes [2]. Each component ci is defined by its
functionality, is able to send and receive messages, is available at a certain point of the
network, and has a set of QoS parameters that can be changed in order to adapt service
provisioning to a dynamically changing environment. Each subset of QoS parameters
that relates to a single aspect of service quality is named as a QoS dimension. Each
of these QoS dimensions has different resource requirements for each possible level
of service quality. We make the reasonable assumption that services’ execution modes
associated with higher QoS levels require higher resource amounts.

Users provide a single specification of their own range of acceptable QoS quality
levels Q for a complete service S, ranging from a desired QoS level Ldesired to the
maximum tolerable service degradation, specified by a minimum acceptable QoS level
Lminimum, without having to understand the individual components that make up the
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service. Nodes dynamically group themselves into a new coalition, cooperatively allo-
cating resources to each new service and establishing an initial Service Level Agree-
ment (SLA) that maximises the satisfaction of the user’s QoS constraints associated
with the new service while minimises the impact on the global system’s QoS caused by
the new service’s arrival [2]. Within a coalition, each component ci ∈ S will then be
executed at a QoS level Lminimum ≤ Qi

val ≤ Ldesired at a node ni. This relation is
represented by a triple (ni, ci, Q

i
val).

There may exist QoS interdependencies among two or more of the multiple QoS
dimensions of a service S, both within a component and among components that may
be in the same or in different nodes. Given two QoS dimensions, Qa and Qb, a QoS
dimension Qa is said to be dependent on another dimension Qb if a change along the
dimension Qb will increase the needed resource demand to achieve the quality level
previously achieved along Qa [11]. Furthermore, we consider the existence of feasible
QoS regions [8]. A region of output quality [q(O)1, q(O)2] is defined as the QoS level
that can be provided by a component when provided with sufficient input quality and
resources. Within a QoS region, it may be possible to keep the current output quality
level by compensating a decreased input quality by an increase in the amount of used
resources or vice versa.

The set of QoS interdependencies among components ci ∈ S is represented as a
connected graph GS = (VS , ES), on top of the service’s distribution graph, where each
vertex vi ∈ VS represents a component ci and a directed edge ei ∈ ES from cj to ck

indicates that ck is functionally dependent on cj . Within GS = (VS , ES), we call cut-
vertex to a component ci ∈ VS , if the removal of that component divides GS in two
separate connected graphs.

A component ci is only aware of the set of inputs Ici = {(cj, Q
j
val), . . . , (ck, Qk

val)}
describing the quality of all of its inputs coming from precedent components in GW and
the set of outputs Oci = {(cl, Q

l
val), . . . , (cp, Q

p
val)}, describing the quality of all of

its outputs sent to its successor components in GW . As such, no global knowledge is
required for coordinating the activation of a backup replica after a failure of a primary
component ci.

3 Towards a Flexible and Adaptive Replication Control

The possibility of partial failures is a fundamental characteristic of distributed applica-
tions, even more so in open environments. A sub-domain of reliability, fault tolerance
aims at allowing a system to survive in spite of faults, i.e. after a fault has occurred,
by means of redundancy. In this paper, we consider a failure to be when a software
component stops producing output.

Replication is an effective way to achieve fault tolerance for such type of failure
[12]. In fault-tolerant real-time systems, using active replication schemes, where several
replicas run simultaneously, has been common [13]. Even if errors are detected in some
of the replicas, the non-erroneous ones will still be able to produce results within the
deadlines. On the negative side, running several replicas simultaneously is costly and
can be infeasible or undesirable in distributed embedded systems [5] due to the limited
resource availability and excessive overhead. Thus, a different approach is needed.
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Passive replication [14] minimises resource consumption by only activating redun-
dant replicas in case of failures, as typically providing and applying state updates is less
resource demanding than requesting execution. As such, passive replication is appeal-
ing for soft real-time systems that cannot afford the cost of maintaining active replicas
and tolerate an increased recovery time [15]. Nevertheless, it may still be possible to
tolerate faults within deadlines, thus improving the system’s reliability without using a
more resource consuming fault-tolerance mechanism [16].

However, most of the existing solutions for passive fault tolerance are usually de-
signed and configured at design time, explicitly and statically identifying the most crit-
ical components and their number of replicas, lacking the needed flexibility to handle
the runtime dynamics of open distributed real-time embedded systems [6]. Distributed
real-time embedded systems often consist of several independently developed compo-
nents, shared across applications and whose criticality may evolve dynamically during
the course of computation. As such, offline decisions on the number and allocation of
replicas may be inadequate after the system has been executing for some time.

Consequently, the problem consists in finding a replication scheme which minimises
the probability of failure of the most important components without replicating ev-
ery software component. This involves the study of mechanisms to determine which
components should be replicated, the quantity of replicas to be made, and where to
deploy such replicas [17]. As such, the benefits of replication in open dynamic resource-
constrained environments are a complex function of the number of replicas, the place-
ment of those replicas, the selected replica consistency protocol, and the availability and
performance characteristics of the nodes and networks composing the system. Since
replica consistency protocols are relatively well understood [18,7,6], we will not con-
sider them in the remainder of this paper.

Thus, assuming that a mechanism exists for keeping passive replicas consistent,
how can we make use of passive replication for increasing the reliability of distributed
resource-constrained embedded systems where it may not be possible to replicate every
available component? Our approach is based on the concept of significance, a value as-
sociated to each component which reflects the effects of its failure on the overall system.
Intuitively, the more a component ci has other components depending on it, the more it
is significant to the system as a whole. Then, the significance degree wi of a component
ci can be computed as the aggregation of the interdependencies of other components on
it, determining the usefulness of its outputs to all the components which depend on it to
perform their tasks.

More formally, given SG = {G1, . . . ,Gn}, the set of connected graphs of interde-
pendencies between components for a given system, and OGj (ci), the out-degree of a
node ci ∈ Gj , the significance wi of ci is given by Equation 1.

wi =
n∑

k=1

OGk
(ci) (1)

Once the significance of each component to the system has been estimated, the deci-
sion on which components to replicate and the correspondent number of passive replicas
must be taken. Equation 2 determines a number of replicas for a component ci which
is directly proportional to the component’s significance degree wi and to the maximum
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number of possible replicas maxci
1 and inversely proportional to the sum of the signif-

icance degree of all components in the system W .

nci =
⌈wi ∗ maxci

W

⌉
(2)

The next step is to determine a strategy for placing those replicas in the network. Con-
sider the effects of placing replicas on unreliable nodes. The resulting unreliability of
those replicas will usually require replica consistency protocols to work harder [6], in-
creasing network traffic and processing overheads. Thus, not only will the system’s per-
formance suffer but its availability may actually decrease, despite the increased number
of available components through replication [18]. However, an optimal replica place-
ment in a distributed system can be classified as a NP-hard discrete location problem.
Consequently, several heuristic strategies which do not have a guarantee in terms of so-
lution quality or running time, but provide a robust approach to obtaining a high quality
solution to problems of a realistic size in reasonable time have been investigated, in-
dependently of the followed replication approach [19,20]. Nevertheless, it is our belief
that static offline approaches are inadequate for open real-time systems, where the en-
vironment dynamically changes as the system progresses. As such, a placement of a
replica which was correct when a service was started may be incorrect after it has been
executing for some time.

Two gross measures of the reliability of a node are its Mean Time To Failure (MTTF)
and its Mean Time To Recovery (MTTR) [17]. We propose to use those measures to
dynamically allocate the set of replicas of a component ci based on the expected avail-

ability of nodes in the system. The utility 0 ≤ u
ri

j

k ≤ 1 of allocating a passive replica
ri
j of a component ci to a node nk is then defined by the probability of its availability

during the system’s execution, given by Equation 3. Utilities range from zero, the value
of a completely unavailable node, to one, the value of a totally available node.

u
ri

j

k =
MTTFk

MTTFk + MTTRk
(3)

Having the utility of each possible allocation, the probability of failure of a given set of
replicas Ri = ri

1, r
i
2, . . . , r

i
nci is determined by Equation 4.

F (Ri) = (1 − ui
1) ∗ (1 − ui

2) ∗ . . . ∗ (1 − ui
nci ) (4)

The system will then allocate the set of replicas Ri = ri
1, r

i
2, . . . , r

i
nci such that its

probability of failure F (Ri) is minimal among all the possible allocation sets. In order
to keep this allocation as up-to-date as possible, nodes have to be monitored as the
system runs. If reliability of a replica set strays outside a predefined tolerance value a
reconfiguration of the allocation set should be performed.

4 Coordinated Activation of Passive Backup Replicas

While passive replication is appealing for systems that cannot afford the cost of main-
taining active replicas, the requirement to provide both high availability, strong state

1 maxci is given by the number of nodes in a heterogeneous environment which have the needed
type of resources to execute the component ci.
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consistency, and satisfactory response times during the non-failure cases is conflict-
ing in many ways. In fact, response times perceived by applications will depend on the
time taken by the primary replica to synchronise its state with that of the slowest backup
replica, even if low complexity replica consistency protocols are used [6,7].

To overcome this limitation a possibility is for the backup replicas’ state to be made
consistent only during a failure’s recovery, which significantly improves response times
and saves resources during the non-failure cases. We recognise, however, that extra time
must be spent to activate a new primary due to the significantly weaker consistency
model. The problem is even more challenging when activating replicas in interdepen-
dent cooperative coalitions where the output produced by a component may depend not
only on the amount and type of used resources but also on the quality of the received
inputs [21]. Nevertheless, the complexity of the needed interactions among nodes until
a new collective global service solution is determined can be reduced through a fast
convergence protocol, while benefiting from a better performance on non-failure cases
by only updating the backup replicas’ state on a failure of a primary one.

Ideally, whenever a primary components fails it is elected as a new primary a backup
which is able to obtain the needed resources to output the QoS level that was being
produced by the old primary replica. However, due to the heterogeneity and dynami-
cally varying workloads of nodes in the system, it is not guaranteed that at least one of
the backups will be able to locally reserve the needed resources to output such quality
level. Such feasibility is determined by the anytime local QoS optimisation algorithm
of [2], which aims to minimise the impact of the activation of a new component on the
currently provided QoS level of previously activated components at a particular node.

Thus, whenever the required QoS level cannot be assured by the new primary replica
there is a need to ensure that individual substitutions of a component will produce a
globally acceptable solution for the entire distributed interdependent service [22]. While
there has been a great deal of research in several aspects of runtime coordination in em-
bedded real-time systems [23,24,25,26], to the best of our knowledge we are the first to
address the specific problem of coordinating the activation of passive replicas in inter-
dependent distributed environments with real-time constraints. Here, the term coordi-
nated activation refers to the ability of a distributed system to invoke adaptive actions
on multiple nodes in a coordinated manner so as to achieve a new service configuration.

Without any central coordination entity, the collective adaptation behaviour must
emerge from local interactions among components. This is typically accomplished by
the exchange of multiple messages to ensure that all involved components make the
same decision about whether and how to adapt [26]. One main challenge is controlling
this exchange of information in order to achieve a convergence to a globally consistent
solution. It may be difficult to predict the exact behaviour of the system taken as a
whole due to the large number of possible non-deterministic ways in which the system
can behave [27]. Whenever real-time decision making is in order, a timely answer to
events suggests that after some finite and bounded time the global adaptation process
converges to a consistent solution. We propose to achieve a time-bounded convergence
to a global solution through a regulated decentralised coordination protocol defined by
the following three phases:



72 L. Nogueira, L.M. Pinho, and J. Coelho

1. New primary selection. Let Qi
val be the QoS level that was being outputted by

the primary replica of component ci ∈ S that has failed. If no passive replica of
ci is able to output the same QoS level, select the one which is able to output the
QoS level Qi

val′ < Qi
val closer to Qi

val. A coordination message is sent to affected
partners in the coalition.

2. Local adaptation. Affected partners, executing any interdependent component cj ∈
S, become aware of the new output values Qi

val′ of ci and recompute their local
set of SLAs using the anytime QoS optimisation approach of [2]. We assume that
coalition partners are willing to collaborate in order to achieve a global coalition’s
consistency, even if this might reduce the utility of their local optimisations.

3. Coordinated adaptation. Coalition partners affected by the decrease to Qi
val′ in

the path to the next cut-vertex cc ∈ S may be able to continue to output their
current QoS level despite the downgraded input by compensating with an increased
resource usage while others may not. If the next cut-vertex cc is unable maintain
its current QoS level then all the precedent components cj which are compensating
their downgraded inputs with an increased resource usage can downgrade to Qj

val′

since their effort is useless.

Note that, if a cut-vertex cc, despite the change in the current quality of some or all of
its inputs, is able to maintain its current QoS level there is no need to further propagate
the required coordination along the dependency graph GS , reducing the needed time to
achieve a new acceptable global solution. On the other hand, if cj is forced to down-
grade its outputs due to the lower quality of its inputs, global resource usage is optimised
by aborting useless compensations at precedent components in GS and the coordination
request is propagated. Thus, the core idea behind the proposed decentralised coordina-
tion model is to support distributed systems composed of autonomous individual nodes
working without any central control but still producing the desired function as a whole.
The proposed approach is sufficient to reach a new acceptable, non-optimal, service
configuration in a time-bounded manner.

A formal validation of the properties and correctness of the proposed coordination
model, as well as a detailed example of its operation, are available in [28].

5 Evaluation

An application that captures, compresses and transmits frames of video to end users,
which may use a diversity of end devices and have different sets of QoS preferences,
was used to evaluate the efficiency of the proposed passive replication mechanism with
coordinated activations, with a special attention being devoted to introduce a high vari-
ability in the characteristics of the considered scenarios. The application is composed
by a set of components to collect the data, a set of compression components to gather
and compress the data sent from multiple sources, a set of transmission components to
transmit the data over the network, a set of decompression components to convert the
data into the user’s specified format, and a set of components to display the data in the
end device [2].

The number of simultaneous nodes in the system randomly varied, in each simulation
run, from 10 to 100. For each node, the type and amount of available resources, creating
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a distributed heterogeneous environment. Nodes failed and recovered according to their
MTTF and MTTR reliability values, which were randomly assigned when the nodes
were created (it was ensured that each node had an availability between 60% and 99%).
Each node was running a prototype implementation of the CooperatES framework [29],
with a fixed set of mappings between requested QoS levels and resource requirements.
At randomly selected nodes, new service requests from 5 to 20 simultaneous users were
randomly generated, dynamically generating different amounts of load and resource
availability. Based on each user’s service request, coalitions of 4 to 20 components were
formed [2] and a randomly percentage of the connections among those components was
selected as a QoS interdependency.

In order to assess the efficiency of the proposed dynamic replication control as op-
posed to an offline static replication in dynamic resource-constrained environments,
we considered the number of coalitions which where able to recover from failures and
conclude their cooperative executions as a function of the used replication ratio. The
reported results were observed from multiple and independent simulation runs, with
initial conditions and parameters, but different seeds for the random values used to
drive the simulations, obtaining independent and identically distributed variables. The
mean values of all generated samples were used to produce the charts.

In the first study, we evaluated the achieved system’s availability with the proposed
dynamic replication control based on components’ significance and with a static offline
approach in which the components to replicate and their number of replicas is fixed by
the system’s designer at a coalition’s initialisation phase [17]. At each simulation run,
if the primary replica of a component ci failed during operation, a new primary was
selected among the set of passive backups. If this was not possible, all the coalitions de-
pending on ci were aborted. In this study, replicas were also randomly allocated among
eligible nodes with the dynamic replication control policy.

Figure 1 clearly shows that our strategy is more accurate to determine and replicate
the most significant components than a static offline one, particularly with lower repli-
cation ratios. Thus, when lower replication ratios are imposed due to resource or cost
limitations, a higher availability can be achieved if the selection of which components
to replicate and their number of replicas depends on their significance to the system as a
whole. In open and dynamic environments, such significance can be determined online
as the aggregation of all the other components that depend on a particular component
to perform their tasks.

A second study evaluated the impact of the selected replicas’ placement strategy on
the achieved system’s availability for a given replication ratio. The study compared the
performance of the proposed allocation heuristic based on collected information about
the nodes’ availability as the system evolves with a random policy in which the place-
ment of the generated replicas is fixed offline [30]. The decision on which components
to replicate and their number of replicas followed the same dynamic and static ap-
proaches of the first study. For the dynamic allocation strategy, a tolerance value for the
availability of each replica set was randomly generated at each simulation run. If this
tolerance was surpassed, a reassignment of replicas was performed. The results were
plotted in Figure 2.
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Fig. 1. Impact of the chosen replication control strategy on the system’s availability

Fig. 2. Impact of the chosen replica allocation strategy on the system’s availability

It is then possible to conclude that the location of replicas is a relevant factor for the
system’s availability as a whole. The proposed dynamic replicate allocation that takes
into account the nodes’ reliability over time always achieves a better performance than
an offline static allocation policy in open and dynamic environments. Furthermore, a
comparison of Figures 1 and 2 shows that even though an improvement in availability
can be achieved by increasing the replication ratio, the impact of replicas’ placement is
quite significant.

A third study evaluated the efficiency of the proposed coordinated activation of inter-
dependent passive replicas in comparison to a typical centralised coordination approach
[31] in which a system-wide controller coordinates resource allocations among multiple
nodes. The average results of all simulation runs for the different coalition sizes and per-
centages of interdependencies among components are plotted in Figure 3. As expected,
both coordination approaches need more time as the complexity of the service’s topol-
ogy increases. Nevertheless, the proposed decentralised coordination model is faster
to determine the overall coordination result in all the evaluated services’ topologies,
needing approximately 75% of the time spent by the centralised near-optimal model.
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Fig. 3. Time for a coordinated replica activation

6 Conclusions

The availability and performance of open distributed embedded system is significantly
affected by the choice of the replication control strategy and placement of the gener-
ated replicas. Due to its low resource consumption, passive replication is appealing for
embedded real-time systems that cannot afford the cost of maintaining active replicas
and need not assure hard real-time performance. The proposed heuristics based on the
components’ significance to the overall system and on nodes’ reliability history have
a low runtime complexity and achieve a reasonably higher system’s availability than
static offline decisions, particularly when lower replication ratios are imposed due to
resource or cost limitations.

Another challenge is to transfer the state of a distributed service to a new globally
acceptable configuration whenever a new elected primary cannot provide the same QoS
level that was being outputted by the old primary that was found to be faulty. The pro-
posed distributed coordination model reduces the complexity of the needed interactions
among nodes and is faster to converge to a globally acceptable solution than a traditional
centralised coordination approach.
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Abstract. We introduce a structured methodology for the generation of execu-
table test environments from textual requirement specifications via UML class 
diagrams and the application of the classification tree methodology for embed-
ded systems. The first phase is a stepwise transformation from unstructured 
English text into a textual normal form (TNF), which is automatically translated 
into UML class diagrams. After annotations of the class diagrams and the defi-
nition of test cases by sequence diagrams, both are converted into classification 
trees.  From the classification trees we can finally generate SystemVerilog code.  
The methodology is introduced and evaluated by the example of an Adaptive 
Cruise Controller.  

Keywords: Natural Language, UML, SystemVerilog, Testbenches. 

1   Introduction 

Since the introduction of the electronic injection control by Bosch in the 80s, we ob-
served a rapid growth of electronic systems and software in vehicles. Today a modern 
car is equipped with 30-70 microcontrollers, so called ECUs (Electronic Control 
Units). With the acceptance of the AUTOSAR standard and its tool support there is a 
need for further automation in automotive systems developments, especially in the 
first design phases. 

Currently, the model-based testing process is based on different design stages, like 
Model-in-the-Loop (MIL), Software-in-the-Loop (SIL), and Hardware-in-the-Loop 
(HIL) tests.  In this context, different testing hardware and software come into appli-
cation like MTest from dSPACE which compares to the Classification Tree Method 
for Embedded Systems (CTM/ES) which we applied in our work. While model-based 
testing is well supported by existing tools, one of the major challenges still remains 
the transformation of requirements to a first executable specification. In practice, such 
requirements are typically captured as unstructured text by means of tools like Ra-
tional DOORS from IBM. Today, we can identify a major gap between requirement 
specifications and first implementation of the executable testbench.  

This article closes this gap by introducing a structured semi-automatic methodol-
ogy for the generation of test environment via UML class diagrams and CTM/ES. The 
first phase performs a stepwise transformation of natural language sentences before 
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they are automatically translated into UML class diagrams. For automatic translation, 
we defined a textual normal form (TNF) as a subset of natural English sentences, 
where classes, attributes, functions, and relationships can be easily identified. The 
generated class diagrams are annotated by additional information so that we can - 
after the definition of test scenarios - generate a testbench. In our evaluation, we ap-
plied SystemVerilog and QuestaSim and linked it with native SystemC code and C 
code generated from Matlab/Simulink. Though we applied SystemVerilog for the 
implementation of this case study, our methodology is not limited to SystemVerilog. 
The introduced methodology may easily adapt to other languages like e [10] as long 
as they support function coverage definition and random test pattern generation. 

The remainder of this article is structured as follows. The next section discusses  
related work including CTM/ES and principles of functional verification as basic tech-
nologies. Section 3 introduces the four steps of our methodology. Thereafter, we pre-
sent experimental results in Section 4. Section 5 finally closes with a summary and a 
conclusion. 

2   Existing Work 

In embedded systems design, test processes for automotive software are based on tool 
support with heterogeneous test infrastructures.  The model-based testing process is 
based on different development steps like Model-in-the-Loop (MIL), Software-in-the-
Loop (SIL), and Hardware-in-the-Loop (HIL) tests. In this context, different testing 
environments come into application like ControlDesk, MTest, and AutomationDesk 
from dSPACE. Each test environment typically applies its own proprietary testing 
language or exchange format and we can find only very few approaches to standard 
languages like ETSI TTCN-3 and the OMG UML testing profile [16].  

For natural language requirement specification capture and management, Rational 
DOORS or just MS Word or MS Excel is applied on a regular basis. In order to increase 
the level of automation, several XML-based formats for enhanced tool interoperabilities 
have been developed. For requirement captures, RIF (Requirement Interchange Format) 
has been defined by HIS (Hersteller Initiative Software) and is meanwhile adopted by 
several tools. For the exchange of test descriptions, ATML was introduced by IEEE [7] 
and TestML by the IMMOS project [5]. The latter provides an XML-based exchange 
format which supports functional, regression, Back-to-back and time partition tests 
where stimuli can be defined by different means like classification tree methodology for 
embedded systems (CTM/ES) [4], which is introduced in the next subsection.  

In general, there has been early work for the formalization of text by entity rela-
tionship diagrams like [1] and multiple work for the generation of test cases from test 
scenarios like [13]. However, we are not aware of any work which combines those for 
the generation of complete test environments (i.e., testbench architectures and test 
cases) for real-time systems taking advantage of principles of functional verification, 
e.g., functional coverage and constraint based test pattern generation. 

2.1   Classification Tree Method 

Classification Trees were introduced by Daimler in the 90’s [6]. Classification trees 
provide structured tree-oriented means for capturing test cases. Starting from an entry  
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Fig. 1. Classification Tree 

node, the test input is divided into compositions, classifications, and classes (see Fig. 1). 
A classification is divided into (equivalence) classes which represent an abstract set of 
test inputs each.  A leaf class defines further an abstract set of possible input values. 
Columns and rows below define a combination table. Therein, in each row exactly one 
class of each classification is selected. Each row defines exactly one test step and com-
pares to different states of the state machine which controls the test environment. The 
development of a classification is defined by the Classification Tree Method (CTM) [6], 
which is based on the Category-Partition-Method [14]. 

In its first introduction, classification trees described different variations of input 
stimuli of a System Under Test (SUT). As embedded automotive systems testing is 
based on sampling rates and time-based relationships between stimuli, Conrad has 
extended CTM to the Classification Tree Method for Embedded Systems (CTM/ES) 
[4]. As such, a classification tree is derived from the interface of the SUT and classifi-
cations from SUT inputs. The input domain is partitioned into different input interval 
classes like safety-critical ranges and corner cases. This compares to the definition of 
bins in the definition of a SystemVerilog functional coverage definition. For the man-
agement of more complex test suites, test cases are additionally divided into test se-
quences. Finally a timeline is assigned to each test sequence. That timeline is typically 
related to the sampling rate in automotive systems testing. Each horizontal line de-
fines the inputs of a SUT for a specific time period where a time point stands for the 
activation or synchronization point of a test step. Therefore, an additional transition 
functions, e.g., step, ramp, sinus, has to be assigned to a synchronization point, which 
defines the transition between values of different synchronization points. In the com-
bination table, different transition functions are indicated by different line styles be-
tween transition points (see Fig. 6).  

2.2   Functional Verification 

Our final verification environment based on the principles of functional verification. 
The notion of functional verification denotes the application of assertions, functional 
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coverage, and constrained random test pattern generation in ESL and RTL designs. 
Such technologies are based on the application of Hardware Verification Languages 
like the IEEE Standards SystemVerilog [8], PSL [9] and e [10].  They support the 
formal and reusable definition of system properties for functional verification. Stan-
dardized APIs like the SystemVerilog DPI additionally support multi language envi-
ronments and provide an interface to adapt proprietary test environments. Meanwhile, 
there exist several libraries and methodologies for additional support like VMM [2] 
and OVM [15]. 

3   Generation of Testbenches from Requirements Specifications 

Our methodology for the derivation of executable SystemVerilog testbenches applies 
four different phases: 

1. Formalization of Requirements 
2. Transformation of Class Diagrams 
3. Definition of Test Scenarios 
4. Generation of the Testbench 

We first provide a stepwise manual transformation of unstructured natural language 
English sentences into short structured English sentences. The latter can be seen as a 
first formal version of the requirements as they directly correspond to UML class dia-
grams to which they can be automatically translated.  After some simple transforma-
tions of the class diagrams they are further translated into compositions, classifications, 
and classes of a classification tree for embedded systems. Concurrently, in Phase 3, test 
scenarios have to be developed. We propose the application of UML sequence dia-
grams though related means can be applied as well. The test scenarios compose the test 
sequences of the classification tree. Finally, we can automatically generate a testbench 
from the classification tree. In our case, we generate SystemVerilog code [8]. How-
ever, we can apply any comparable Hardware Verification Language which supports 
random test pattern generation and function coverage specification. 

In the next paragraphs, we outline the four phases in further details. For this we 
apply an industrial case study from the automotive domain, i.e., an Adaptive Cruise 
Controllers (ACC) [3]. The ACC is a cruise controller with a radar-based distance 
control to a front (subject) vehicle.  The ACC controls the cruise speed and the  
distance to the front vehicle in the same lane with the desired speed and a desired 
distance as input.  

3.1   Formalization of Requirements 

Starting from a set of unstructured English sentences, they are stepwise manually 
formalized into a Textual Normal Form (TNF) which is composed of unambiguous 
sentences which can be automatically transformed into a UML class diagram. Table 1 
gives an example of some sentences before and after the transformation. 
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Table 1. Transformation of Unstructured Sentences 

Unstructured Sentence Transformed Sentences 

AdaptiveCruiseController is entity. 

Radar is entity. 
AdaptiveCruiseController getsDataFrom 
Radar. 
AdaptiveCruiseController has 
currentDrivenVehicleSpeed  
{currentDrivenVehicleSpeed is between 20 and 
125 km/h}. 

The ACC system shall include a long-
range radar sensor capable of detect-
ing data about moving objects travel-
ling in the same direction as the driven 
vehicle. If a vehicle is identified by the 
ACC a safety distance shall be kept by 
actuating over the throttle or applying 
the brakes if necessary. The ACC 
system shall operate under a limited 
speed range, between 20 and 125 
km/h. The distance for detecting vehi-
cles shall be limited to 150 meters. 

AdaptiveCruiseController has currentDistance  
{currentDistance is between 1 and 150 meters 
to SubjectVehicles}. 

An unstructured textual requirement specification typically includes information 
about the logical description of the SUT and the environment. It identifies operational 
constraints and conditions but also logical components, functions, and attributes 
which include important information to implement test environments and test cases. 
The structured transformations of that information are an important step to support the 
traceability of requirements to their corresponding testbench components in order to 
guarantee the compliance of the testbench to the requirements for an advanced quality 
assurance.      

The target of the first transformation phase is the Textual Normal Form (TNF). 
TNF is a machine readable presentation composed of three word sentences (plus con-
straints) which are later automatically transformed into UML class diagrams as an 
intermediate format.  During the different manual transformation steps, redundancies, 
incompleteness, and contradictions can be much better identified by visual inspections 
than in the unstructured sentences. In the first step, we remove filler words and empty 
phrases, like ‘basically’ and ‘most likely’. Thereafter, we transform long sentences 
into short sentences without disambiguities and incomplete information as far as pos-
sible. For instance, we split long sentences and transform subordinate clauses into 
main clauses and replace pronouns by proper nouns. Then, subjects and objects are 
transformed into identifiers, articles removed, and sentences translated into present 
tense. If necessary, this also means to combine or extend subjects/objects with attrib-
utes like ‘Adaptive cruise controller system’ to ‘AdaptiveCruiseController’. After 
this, each identifier has to refer to exactly one entity, i.e., two different identifiers are 
not allowed to refer to the same entity and the same identifier shall not refer to differ-
ent entities.  

Finally, for each identifier X, we add an explicit sentence ‘X is entity’.  This helps 
for later automatic translations and completeness checks by visual inspection. After 
the identification of entities, we have to further proceed with attributes, functions, and 
relationships. In details, we identify the attributes of each entity and separate it into a 
individual sentence of form ‘<entity id> has <attribute id>’, e.g., ‘AdaptiveCruise 
Controller has currentDistance’ (cf. Table 1). We also associate attribute sentences 
with the corresponding constraints and append them enclosed in curly brackets.  
Thereafter, the identification of functions with constraints is similarly and results in 
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sentences like ‘Driver does applyBrakePedal’. It is important to note here that we 
combine the verb with the object id for the final name of the operation in the later 
class diagram. Finally, all relationships between entities are identified and sentences 
like ‘AdaptiveCruiseController getsDataFrom Radar’ are separated. 

We finally arrive at a forest structured transformation relationship between original 
sentences at the root and TNF sentences at the leaves. When applying a simple tool 
like MS Excel, we can easily sort the final sentences by the first identifier (i.e., the 
subject), which helps to easily check for duplicates or subjects with similar meaning 
and even for incomplete specifications which can hardly be detected in the unstruc-
tured original text. The final TNF is nothing else than the textual representation of 
Class Diagrams which can thus be automatically derived along early works of Bailin 
[1]. For this consider the following TNF sentence examples:  

• AdaptiveCruiseController is entity.. 
• AdaptiveCruiseController has currentDistance 
• AdaptiveCruiseController does controlCurrentDistance.  
• AdaptiveCruiseController getsDataFrom Radar. 

We can easily see their direct correspondence to the UML Class Diagram in Fig. 2. 
For more details, the reader is referred to [1]. 

 

Fig. 2. UML Class Diagram 

3.2   Transformation of Class Diagrams 

In the second phase, Class Diagrams are structured and annotated before they are 
transformed into a classification tree, which is an intermediate representation for the 
automatic generation of the executable testbench.  

As such, we first divide all classes into categories <<environment>> for the test 
environment and <<system>> for the SUT by assigning UML stereotypes to them. 
Thereafter, we analyze all attributes of all classes and divide them into: in, out, and 
internal with corresponding stereotypes. Attributes of the first category are further 
qualified by the delivering class as it is shown in Fig. 3. As we are dealing with dis-
tributed systems, we have to compute the same attributes by different classes. In that 
figure, we can also see the out category is actually redundant as the information is 
already implicitly covered by the two other categories. However, this redundancy helps 
to better analyze the interaction between the classes and to detect further inconsisten-
cies as all in and out attributes of the DUT give a complete definition the DUT inter-
face. Thereafter, we have to formalize all <<out>> attributes of all <<environment>> 



84 W. Mueller et al. 

 

classes. Let us consider currentDrivenVehicleSpeed of DrivenVehicle in Fig. 3 as an 
example. The original constraint defines that the ACC is only active between 20 and 
125 km/h (see also the system class in Fig. 3). Considering a maximum vehicle speed 
of 250 km/h, we can formalize it by the definition of five intervals with 20 and 125 as 
corner values. In SystemVerilog syntax, this is defined as {[0:19], 20, [21:124], 125, 
[126,260]}. This example shows that several constraints can be retrieved from the 
original requirement specification. In practice, additional conventions and standards 
like IEC 61508 [13] have to be consulted to retrieve the complete set of constraints. 
Though our example defines closed intervals due to the limitations of SystemVerilog, 
without the loss of generality, we can also apply open intervals provided they are sup-
ported by the tools or verification language.  

 

Fig. 3. Modified UML Class Diagram 

The final version of the UML Class Diagram can now be directly translated into a 
classification tree (without a combination table) with the SUT at the root. The indi-
vidual UML environment classes translate to the different compositions and the class 
attributes to classifications (cf. Fig. 4). 

 

Fig. 4. Fraction of a Classification Tree for Embedded Systems 

3.3   Definition of Test Scenarios 

In the next step, we have to manually define test scenarios with test steps and test 
sequences for the completion of the classification tree. We start with the selection of 
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one or more environment classes from the class diagram. The following example 
takes an interaction of the Driver and the (Driven) Vehicle with the ACC and defines 
a simplified scenario with five steps: 

1. Vehicle drives at a speed of 125 km/h. 
2. Driver sets a new speed (desiredCruiseSpeed). 

3. Driver sets distance to front vehicle (TimeGap) . 
4. Vehicle reaches a medium speed. 
5. Vehicle reaches a high speed. 

We now can link the entities in the description to the classifications in the classifi-
cation tree and define a UML Sequence Diagram in order to formalize the five steps. 
The individual steps of the description have to be mapped to message interactions 
with intervals as parameters. The next step is the creation of several instances of this 
Sequence Diagram with respect to the timeline and variations of message parameters. 
Fig. 5 gives an example of a possible instantiation. In this example, we assign the 
timeline to the time points 0s, +2s, +3s, and +5s. The vehicle starts with a speed of 
125 km/h at 0s. At 3s the speed changes to an interval between 21 and 124 km/h. 
Hereafter, the speed increases at 5s. 

 

Fig. 5. Test Sequence as an UML Sequence Diagram 

 

Fig. 6. Extended Classification Tree 
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Each of the Sequence Diagrams can be easily transformed to a test sequence of the 
classification tree. Fig. 5 shows part of the final classification tree, which is translated 
from the diagram of Fig. 5. Fig. 6 also shows some interpolation functions between 
synchronization points, which have to be defined before the generation of the testbench.  

3.4   Testbench Generation 

The final phase generates an executable testbench from the classification tree which 
includes the test sequences. More details of this phase can be found in [12]. Though 
we apply SystemVerilog here, other verification languages which support random test 
pattern generation and functional coverage can be taken as well. As an example, we 
focus on the application of SystemVerilog constraints for random test pattern genera-
tion in the following outlines.  

After randomization, the input vectors with interpolation functions are applied to 
the specified SUT interface of the <<system>>. Due to the current tool support, the 
general execution is controlled from SystemVerilog where the SUT can be imple-
mented in other languages like SystemC or C code generated from Matlab/Simulink. 
For the translation of classification tree test sequences, each test sequence is translated 
to a SystemVerilog class with array variables which correspond to the classifications 
of the classification tree, i.e., an input signal of the SUT: 

class AdaptiveCruiseController_Sequence1; 

     rand Int_class_sp 

     currentDrivenVehicleSpeed[];  
… 

Furthermore, each array element corresponds to a test step of a classification tree 
test sequence for which randomization (rand) is applied. The array element has a data 
structure which includes an attribute for the time point of the test step, the value of the 
signal, and the individual interpolation function, like ramp or sinus. For each  
SystemVerilog class, we also generate a constraint block, which implements the con-
straints specified in the classification tree. The constraints implement the timing be-
havior and the selection of the equivalence class as follows: 

  constraint ctmemb{ 
     currentDrivenVehicleSpeed[0].t==0*SEC; 
     currentDrivenVehicleSpeed[0].v==125; 
     currentDrivenVehicleSpeed[1].t==   
                    currentDrivenVehicleSpeed[0].t+2*SEC; 
   currentDrivenVehicleSpeed[1].v==125;  

     desiredTimeGap[0].t==currentDrivenVehicleSpeed[0].t; 
     desiredTimeGap[0].v==0; 
     desiredTimeGap[1].t==currentDrivenVehicleSpeed[1].t; 
     desiredTimeGap[1].v inside {[2:4]}; … 
} 

This example implements the constraints of the first two test steps (with index 1 
and 0) of test Sequence1 for the two signals currentDrivenVehicleSpeed and desired-
TimeGap.  For each signal at each step, the time and the value is assigned. Here, SEC 
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stands for the adjustment to the time unit of the simulation time. Along the classifica-
tion tree specification, the second synchronization point is 2 seconds after the first 
one. The last line takes the interval [2,4] for the desiredTimeGap directly from the 
classification tree to SystemVerilog. Additionally, we define a method 
pre_randomize() for the SystemVerilog class, which instantiates array data in prepara-
tion for randomization and initializes values that are not randomized like the interpo-
lation function. 

    function void pre_randomize 
        foreach(currentDrivenVehicleSpeed[i]) 
              currentDrivenVehicleSpeed[i]=new(); 
        … 
        currentDrivenVehicleSpeed[1].ipol = ramp;  
        … 

4   Experimental Results 

We have applied the introduced the textual requirement specification of an Adaptive 
Cruise Controllers (ACC) in [3]. The original key requirements were composed of 23 
long sentences. Those sentences were transformed by our methodology in to their 
Textual Normal Form (TNF) with finally 79 sentences. They were translated to a 
UML class diagram with 10 classes. Table 2 gives an overview of the details of the 
generated class diagram. The adapted class diagram had 6 classes, which were trans-
lated into a classification tree. Details of that classification tree can be found in Table 3. 
For our first evaluation we defined a limited set of 2 test scenarios which were related 
to 2 test sequences with 14 test steps each. The final test environment which was 
automatically generated from the classification tree was composed of 526 lines of 
SystemVerilog code. 

Table 2. UML Class Diagram Numbers 

Class #attributes #methods #assoc. in #assoc. out 

AdaptiveCruiseControler 13 11 1 7 

CruiseControlerInterface 3 8 2 2 

Radar 5 6 1 1 

Driver 0 2 1 3 

SubjectVehicle 1 1 1 0 

DrivenVehicle 1 0 3 0 

BrakePedal 1 1 2 1 

Accelerator 1 1 2 1 

Brake 0 0 2 1 

Throttle 0 0 2 1 
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Table 3. Classification Tree Numbers 

Signal # equivalence classes component 
acceleratorPosition 3 Accelerator 
brakePedalPosition 3 BrakePedal 
currentDistance 5 Radar 
currentDrivenVehicleSpeed 5 DrivenVehicle 
desiredCruiseSpeed 5 CruiseControlerInterface 
desiredMode 2 CruiseControlerInterface 
desiredTimeGap 5 CruiseControlerInterface 
vehicleInSameLane 2 Radar 

5   Conclusions and Outlook 

This article presented a structured semi-automatic methodology for the generation of 
executable SystemVerilog testbenches from unstructured natural language require-
ment specification via UML and classification trees. After transformation into a Tex-
tual Normal Form (TNF), UML class diagrams are generated. After some annotations 
and simple adjustments they are further translated into a classification tree from 
which a SystemVerilog testbench is automatically generated.  We successfully ap-
plied and evaluated our methodology to the requirements specification of an Adaptive 
Cruise Controller which was implemented in SystemC/C. 

Our evaluation has shown that in the first phase until the final derivation of the 
TNF, several incomplete and redundant statements could be easily identified. This is a 
very important issue for industrial application as identification of inconsistencies and 
errors in very early design phases may result in a significant reduction of design 
respins. Due to our experience, with some extend, the detection of such errors based 
on manual transformations and visual inspection is currently still the most efficient 
and fastest method compared to a first time consuming transformation to a first formal 
model like finite state machines and logical formulae. 

However, the main advantage of our methodology is definitely the complete trace-
ability of each individual requirement to the corresponding objects or methods in the 
testbench. Though we just have used MS Excel to capture the requirements in our 
studies, it was easily possible to trace single requirements via subrequirements to 
SystemVerilog classes, methods and attributes. This greatly simplifies feedback with 
the customers in order to quickly resolve open design issues. Our studies have also 
indicated that it is very hard to achieve a complete automation of the first phase as 
transformations of natural language statements still require the dedicated expertise of 
a domain engineer. In contrast, transformations in later phases are subject of further 
possible automation. Our studies gave promising results and more evaluations have to 
follow. 
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Abstract. Concurrent software is difficult to verify. Because the thread

schedule is not controlled by the application, testing may miss defects

that occur under specific thread schedules. This problem gave rise to soft-

ware model checking, where the outcome of all possible thread schedules

is analyzed.

Among existing software model checkers for multi-threaded programs,

Java PathFinder for Java bytecode is probably the most flexible one. We

argue that compared to C programs, the virtual machine architecture of

Java, combined with the absence of direct low-level memory access, lends

itself to software model checking using a virtual machine approach. C

model checkers, on the other hand, often use a stateless approach, where

it is harder to avoid redundancy in the analysis.

Because of this, we found it beneficial to prototype a concurrent al-

gorithm in Java, and use the richer feature set of a Java model checker,

before moving our implementation to C. As the thread models are nearly

identical, such a transition does not incur high development cost. Our

case studies confirm the potential of our approach.

1 Introduction

Concurrent software is often implemented using threads [26] to handle multi-
ple active units of execution. Because the thread schedule is not controlled by
the application, the usage of concurrency introduces implicit non-determinism.
Without proper guards against incorrect concurrent access, so-called race condi-
tions may occur, where the outcome of an two concurrent operations is no longer
well-defined for all possible interleavings in which they may occur.

In software testing, a given test execution only covers one particular instance
of all possible schedules. To ensure that no schedules cause a failure, it is desir-
able to model check software. Model checking explores, as far as computational
resources allow, the entire behavior of a system under test by investigating each
reachable system state [10], accounting for non-determinism in external inputs,
such as thread schedules. Recently, model checking has been applied directly to
software [5,6,8,11,12,13,27,28]. Initially, software model checkers were stateless:
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c© IFIP International Federation for Information Processing 2010



Model Checking of Concurrent Algorithms: From Java to C 91

after backtracking, the program is restarted, and the history of visited program
states is not kept [13]. This makes the model checker more light-weight, at the
expense of potentially analyzing redundant states. Stateful model checkers keep
a (possibly compressed) representation of each visited state. This allows a model
checker to backtrack to a previously visited state without having to re-execute
a program up to that point, and also avoids repeated explorations of equivalent
(redundant) states.

Certain programming languages, such as C [17] or C++ [25], allow direct
low-level memory access. Pointer arithmetic allows the usage of any integer off-
set together with a base pointer, making it impossible to guarantee memory
safety in the general case. Memory safety implies that memory which is read has
been allocated and initialized beforehand. Program behavior is undefined for un-
safe memory accesses. More recently developed programming languages, such as
Java [14], Eiffel [21], or C# [22], can restrict memory accesses to be always safe.
This feature, in conjunction with garbage collection, relieves the developer from
the burden of manual memory management. It also makes it easier to define the
semantics of operations, and to perform program analysis.

Embedded systems may be implemented on a platform supporting either Java
or C. Due to its managed memory, Java is easier to develop for, but the ease
comes at the expense of a higher memory usage. Embedded systems, or core
algorithms used therein, may therefore be prototyped in Java, and moved to C
if resource constraints require it. In such cases, it is useful to verify the Java
version in detail before translating it to C for further optimization.

In addition to memory safety, the object-oriented semantics and strong typ-
ing of many more recent programming languages facilitate the analysis of the
heap structure. This enables efficient execution inside a virtual machine [20]
and also allows program states to be mutated and compared easily. Software
model checking benefits greatly from this, as stateful model checking can be
implemented much more readily for such programming languages. Besides the
promise of avoiding redundant states, the statefulness of a model checker can
also be exploited for programs that utilize network communication. The results
of network communication can be cached, making analysis orders of magnitude
more efficient than in cases where the entire environment has to be restarted [4].
Such an input/output cache has been implemented for the Java PathFinder
model checker, which analyzes Java bytecode [27]. That cache is one of about 15
available extensions for that model checker, making it much more flexible and
feature-rich than its counterparts for C or C++.

Finally, it is easier to debug a concurrent implementation when memory safety
is not an issue; the developer can focus on concurrency aspects without worrying
about memory safety. Because of this, and the flexibility of Java model checkers,
we argue that it is often beneficial to develop a concurrent algorithm in Java
first. After analysis, the Java version can be readily converted to C (or C++)
using the pThreads thread library. We have successfully applied this paradigm to
multiple implementations of concurrent algorithms. Compared to a compilation
of Java to machine code, a source-level translation has the advantage that stack
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memory for non-primitive data types and other optimizations are available. A
verification of the resulting C code detects possible translation errors.

Translations from a higher-level language to a lower-level one are common in
model-based code generation. However, in that domain, more abstract languages
such as state charts [15] are common. High-level models prevent low-level access
conflicts but cannot be optimized for fine-grained concurrency in ways that Java
or C code can. Our translation is on code level, because thread-level parallelism
with the explicit usage of mutual exclusion through locking is still prevalent in
implementations of concurrent systems.

Related work exists in translating C code to Java [16]. That translation con-
siders self-contained programs and mostly targets the implementation of pointer
arithmetic in C as arrays in Java. For concurrent programs, manual case stud-
ies have been performed on the conversion of a space craft controller written in
C, to Java [7]. The Java version was developed for analysis purposes because
no suitable tools for analyzing multi-threaded C software existed at that time.
We advocate the reverse direction, a translation from Java to C, because the
Java version can be more readily developed, given the higher automation of low-
level tasks by the run-time environment, and because more powerful concurrency
analysis tools are available.

The rest of this paper is organized as follows: Section 2 introduces threads
in Java and C. Section 3 shows our mapping of multi-threaded Java code to C.
Experiments are described in Section 4. Section 5 concludes.

2 Thread Models in Java and C

A thread is an independent unit of execution, with its own program counter
and stack frame, and possibly a separate memory region (thread-local mem-
ory) [26]. It typically interacts with other threads through semaphores (signals),
and ensures mutual exclusion by using monitors (locks). Threads are started by
a parent thread, which is the only thread of execution in a process at its cre-
ation. Execution may merge with other threads by “joining” them, waiting for
their termination.

The standard version of Java has built-in support for multi-threading. In Java,
a thread has its own program counter and stack frame, but shares the main
memory with all other application threads. Threads may run on one or more
hardware processors, potentially by using time-slicing to support more threads
than available processors [14]. The C programming language has no built-in
support for threads [17]. However, on most modern operating systems, threads
are supported by libraries following the POSIX threads (pThreads) standard [23].

As Java threads were designed with the possibility of an underlying pThreads
implementation in mind, the two thread models have much in common. The
specified memory model allows each thread to hold shared data (from main
memory) in a thread-local cache. This cache may be out of date with respect
to the copy in main memory. Whenever a lock is acquired or released, though,
values in the thread-local cache are synchronized with the main memory [14].
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This behavior of Java is similar to other programming environments, in par-
ticular typical environments supporting the pThreads standard. Furthermore,
there are no constraints on the thread scheduling algorithm; while it is possi-
ble to set thread priorities, both the Java and the pThreads platforms do not
have to adhere to thread priorities strictly [14,23]. Most importantly, the rather
unrestricted memory model used by Java does not imply the sequential consis-
tency [18] of a sequence of actions within one thread. Instruction reorderings,
which are performed by most modern hardware processors, are permitted, re-
quiring a concurrent implementation to use locking to ensure mutual exclusion
and correct execution. As a consequence of this, a concurrent program in Java
needs to use the same safeguards that a concurrent program written in C uses.

Finally, variables in Java and C may be declared as volatile, disallowing
thread-local caching of such values. Because read-and-set accesses of volatile
values are not atomic, there exist few cases where they are actually used in
practice. We do not cover volatile values further in this paper.

3 Mapping Java to C

We define a mapping of Java thread functions to C here. This allows a developer
to write an initial version of a concurrent algorithm in Java. The version can then
be transformed to C, for example, if the memory requirements of Java may not be
fulfilled by an embedded platform. The translation is discussed both in terms of
differences in the concepts and in the application programming interface (API)
of the two implementations. A complete transformation of a program entails
addressing other issues, which are mentioned at the end of this section.

3.1 Threads

Both in Java and C, threads are independent units of execution, sharing global
memory. Data structures that are internal to a thread are stored in instances of
java.lang.Thread in Java [14], and of the pthread_t data structure when using
pThreads [23]. These data structures can be initialized via their constructor in
Java or by setting attributes in pThreads. The functionality of the child thread
is specified via inheritance in Java, and via a function pointer in C. These mech-
anisms correspond to the object-oriented paradigm of Java and the imperative
paradigm of C, and can be easily transformed. Likewise, functions to start the
child thread, join the execution of another thread (awaiting its termination) or
terminate the current thread, are readily translated (see Table 1).

3.2 Locks

Some of the concurrent functionality of Java cannot be mapped isomorphi-
cally. Specifically, important differences exist for locking and shared conditions
(semaphores). In Java, each object may be used as a lock; the initialization of
the lock, and access to platform-specific lock properties, are not specified by
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Table 1. Comparison between thread primitives for Java and C

Function Java C

Thread start java.lang.Thread.start pthread_create

Thread end end of run method pthread_exit

Join another thread java.lang.Thread.join pthread_join

Lock initialization implicit with object creation pthread_mutex_init

Acquire lock synchronized keyword pthread_mutex_lock

Release lock synchronized keyword pthread_mutex_unlock

Lock deallocation implicit with garbage collection pthread_mutex_destroy

Initialize condition conditions are tied to locks pthread_cond_init

Wait on condition java.lang.Object.wait pthread_cond_wait

Signal established cond. java.lang.Object.notify pthread_cond_signal

Broadcast est. cond. java.lang.Object.notifyAll pthread_cond_broadcast

Deallocate condition implicit with garbage collection pthread_cond_destroy

Java code and happen internally in the Java virtual machine [20]. In pThreads,
on the other hand, lock objects have to be created and initialized explicitly.
Locks use the opaque C data type pthread_mutex_t, which is initialized through
pthread_mutex_init and managed by the library. In Java, classes derive from
base class java.lang.Object and carry their own data, in addition to the im-
plicit (hidden) lock; in C using pThreads, application data and lock data are
separate. Therefore, locks in Java have to be transformed in two possible ways,
depending on their usage:

Lock only: Instances of java.lang.Object carry no user-defined data and
may be used for the sole purpose of locking. They can be substituted with
an instance of pthread_mutex_t in pThreads.

Locks combined with data: In all other cases, instances are used both as
data structures and as objects. They have to be split into two entities in C,
where application-specific data structures and pThread locks are separate.

Similarly, the syntax with which locking is used is quite different between the
two platforms: In Java, a synchronized block takes a lock as an argument. The
lock is obtained at the beginning of the block and released at the end of it.
The current thread is suspended if the lock is already taken by another thread.
Locks in Java are reentrant, i. e., nested acquisitions and releases of locks are
possible. Furthermore, there exists a syntactic variation of locking, by annotating
an entire method as synchronized. This corresponds to obtaining a lock on the
current instance (this) for the duration of a method, as if a synchronized block
spanning the entire method had been specified.

After transforming synchronized methods to blocks, lock acquisitions and
releases in Java can be readily mapped to C. The beginning of a synchronized
block is mapped to pthread_mutex_lock, using the lock corresponding to the
argument to synchronized. Lock releases are mapped likewise (see Table 1).
Reentrancy is supported by pThreads through a corresponding attribute. Finally,
locks should be explicitly deallocated in C to prevent resource leaks.
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Java C

synchronized (lock) {
while (!condition) {
try {

lock.wait();
} catch (InterruptedException e) {
}

}
assert (condition);
... // condition established

}

pthread_mutex_lock (&lock);
while (!condition) {

pthread_cond_wait (&cond_var, &lock);
// explicit condition variable
// of type pthread_cond_t

}
assert (condition);
... // condition established
pthread_mutex_unlock (&lock);

Fig. 1. Inter-thread conditional variables in Java and C

3.3 Conditions

Efficient inter-thread communication requires mechanisms to notify other threads
about important status (condition) changes. To avoid busy-waiting loops, Java
and pThreads offer mechanisms to wait for a condition, and to signal that the
condition has been established. The mechanism is similar on both platforms, with
one major difference: In Java, locks are used as a data structure to signal the status
of a shared condition. In pThreads, there is a need for a separate condition variable,
in addition to the lock in question.

In Java, due to the absence of condition objects, there always exists a one-
to-one relationship between locks and condition variables. In pThreads, several
condition variables may relate to the same lock, a fact that is further elucidated
below. Figure 1 shows how shared conditions are mapped. The condition itself is
expressed through a boolean variable or a complex expression. If the condition
is not established, a thread may suspend itself using wait, awaiting a signal.
Both in Java and C, a lock has to be held throughout the process; Java further-
more requires to check for the presence of an InterruptedException, because
a waiting thread may optionally be interrupted by another thread.

3.4 Possible Implementation Refinements for pThreads

There are a couple of differences between Java threads and POSIX threads that
allow for a more efficient implementation in C, by exploiting low-level data struc-
tures that are not accessible in Java. This may be exploited when translating
an algorithm from Java to C. As such a translation cannot always be done au-
tomatically, another verification against concurrency defects is advisable when
optimizing the C/pThreads implementation.

– When using pThreads, the function executing in its own thread may return
a pointer to a thread waiting for its termination. This allows a thread to
return data directly, rather via other ways of sharing.

– Separate condition variables in pThreads (pthread_cond_t) enable a decou-
pling of related but distinct conditions. In the experiments, we describe a
case where the Java version uses one lock to signal the emptiness or fullness
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of a queue. In C, the two cases can be separated, which sometimes yields
performance improvements.

– The pThreads library has a function pthread_once, for which no direct
equivalent exists in Java. This mechanism allows a function to be executed at
most once, resembling the way static initializers are used in Java to initialize
class-specific data. Unlike static initializers, the execution of pthread_once
is not tied to another event, such as class initialization.

– In pThreads, it is possible to forgo the acquisition of a lock when the lock is
already taken, by using pthread_mutex_trylock. In some cases, the same
effect may be achieved in newer versions of Java by checking if a particular
thread already holds a lock (by calling Thread.holdsLock, available from
Java version 1.4 and higher).

Furthermore, both platforms offer ways to fine-tune the performance of thread
scheduling using specific API calls in Java, and via attributes in pThreads. This
does not affect the correctness of algorithms, and is elided here.

Finally, newer versions of Java (1.5 and later) offer read-write locks (java.
util.concurrent.lock.ReentrantReadWriteLock), and barriers (java.util.
concurrent.CyclicBarrier),which facilitate the implementation of certain dis-
tributed algorithms. Equivalent facilities are provided by pThreads, as
pthread_rwlock_t and pthread_barrier_t, respectively. The translation of
these and other similar functions resemble the translations shown above, and
are not described in further detail here.

3.5 Other Mappings

It is possible to compile Java to machine code, or to automate the mapping
of Java programs to C, but the result will not be efficient. Java allocates all
non-primitive data on the heap, while C allows complex data to be allocated on
the stack. Stack-based allocation requires no explicit memory management or
garbage collection, and is more efficient than heap memory. Furthermore, if Java
heap memory is emulated in C, that memory has to be managed by garbage
collection as well. A manual translation therefore yields better results.

Among library functionality other than multi-threading, Java offers many
types of complex data structures such as sets, maps, and hash tables. These
have to be substituted with equivalent data structures in C, provided by third-
party libraries. In our experiments, we used a publicly available hash table [9]
as a substitute for the hash table provided by the Java standard library.

Finally, for programs using input/output such as networking, the correspond-
ing library calls have to be translated. In these libraries, the Java API offers
some “convenience methods”, which implement a sequence of low-level library
calls. The C version may require additional function calls and data structures.

4 Experiments

In our experiments, we verify two concurrent algorithms, and one concurrent
client/server program. To our knowledge, no higher-level code synthesis approach
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supports all types of parallelism used, so we advocate a verification of the imple-
mentation itself. We verified the Java and C versions using Java PathFinder [27],
and inspect [28], respectively. At the time of writing, they were the only model
checkers to support enough of the core and thread libraries to be applicable.

4.1 Example Programs

We originally tried to obtain multi-threaded programs written in Java and C
from a well-known web page hosting benchmarks for various problems, imple-
mented in different programming languages [1]. Unfortunately, the quality of
the implementations is not sufficient for a scientific comparison. The different
implementations are not translations from one language to another, but com-
pletely independent implementations. Their efficiency, due to differences in the
algorithm, may vary by orders of magnitudes.

Hash. The first example is provided by a source that strives for a faithful
translation of a benchmark from Java to C++ [24]. We then translated the
C++ version to C, and implemented a concurrent version in C and Java.

The program counts the number of matching strings for numbers in hexadec-
imal and decimal notation, up to a given value. It uses a hash table to store
the strings, and worker threads to compute the string representations of each
number. While the concurrent implementation is not faster than the sequen-
tial one, due to contention on the lock guarding the global data structure, it is
still a useful benchmark for model checking. The program utilizes the typical
worker thread architecture with fork/join synchronization, which is also found
in mathematical simulations and similar problems.

Queue. This example implements a blocking, thread-safe queue that offers
atomic insertions and removals of n elements at a time. The queue uses a fixed-
size buffer, and obeys the constraints that the removal of n elements requires at
least n elements to be present, and that the buffer size may not be exceeded.
When these constraints cannot be fulfilled, the queue blocks until the opera-
tion can be allowed. The queue uses a circular buffer, which wraps around when
necessary.

The C version of the queue is used in an ongoing project about model checking
networked software [19]. The algorithm has originally been developed and verified
in Java, before it has been translated to C, inspiring this paper.

Alphabet client/server. The last benchmark is a client/server program. The
alphabet client communicates with the alphabet server using two threads per
connection: a producer and a consumer thread. The server expects a string con-
taining a number, terminated by a newline character, and returns the corre-
sponding character of the alphabet [3]. In this case, both the client and the
server are multi-threaded, and were model checked in two steps; in each step,
one side is run in the model checker, using a cache layer to intercept commu-
nication between the model checker and peer processes [4]. For the alphabet
server, we used both a correct and a faulty version. The faulty version included
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a read-write access pattern where the lock is released in between, constituting
an atomicity race [2], as confirmed by an assertion failure that checks for this.

4.2 Translation to C

Translation of the Java version to the C version proceeded as described in Sec-
tion 3. For the hash benchmark, we kept the optimization where the C version
allocates a single large buffer to hold all strings [24]. This optimization is not
(directly) possible in Java. In the Java version, locking was used implicitly by
wrapping the global hash table (of type java.util.HashMap) in a synchronized
container, using java.util.Collections.synchronizedMap. A corresponding
lock was used in the C translation.

In the queue example, we split the conditions for fullness/emptiness into sep-
arate condition variables, as described in Section 3. There were no special issues
when translating the alphabet client/server. However, for the experiments, the
execution of the peer processes had to be automated by a script, which checks
for the existence of a temporary file generated whenever the C model checker
inspect starts a new execution run.

4.3 Verification Results

All experiments were run on the latest stable release of Java PathFinder (4.0
r1258) and the C model checker inspect, version 0.3. We analyzed the default
properties: the absence of deadlocks; assertion violations; and, for Java, uncaught
exceptions. Table 2 shows the results. It lists each application (including param-
eters), the number of threads used, and the time and number of transitions taken
for model checking the Java and C version, respectively.

Being a stateful model checker, Java PathFinder (JPF) can check if transitions
lead to a new or previously visited state. In the latter case, the search can be
pruned. The ratio of such pruned branches to new states grows for more complex
cases. This is indicated as a percentage in Table 2; one should keep in mind that
previously visited states may include entire subtrees (with additional redundant
states), so the percentage is a lower bound on the potential overhead of a stateless
search. The C model checker fares much better on small systems with fewer
states, as its lightweight architecture can explore more execution runs in a given
time than JPF does. One should note that transitions are not always equivalent
in the two versions, owing to differences in the language semantics of Java and
C, and in the implementations of the model checker platforms.

Inspect had an internal problem when analyzing the alphabet client. We ex-
pect such problems to disappear as the tool becomes more mature. Other than
that, the alphabet server case stands out, where inspect was very fast. In the
correct version of the alphabet server, there is no data flow between threads.
The data flow analysis of inspect recognizes this, allowing inspect to treat these
thread executions as atomic, and to skip the analysis of different orders of net-
work messages on separate channels. After the insertion of an atomicity race [2]
into the alphabet server, transitions inside a thread are broken up, resulting in



Model Checking of Concurrent Algorithms: From Java to C 99

Table 2. Verification results for Java and C versions of the same programs

Application # thr. Java C

Time [s] Transitions Time [s] Trans.

new visited vis./new [%]

Hash (4 elements) 1 1.36 73 34 46 0.03 91

2 2.76 1,237 1,500 121 0.76 1,438

3 128.84 124,946 218,748 175 10.72 18,789

4 > 1 h 288.02 501,576

Hash (8 elements) 1 1.41 121 58 47 0.04 147

2 3.56 2,617 3,416 130 119.27 181,332

3 283.90 381,233 748,583 196 > 1 h

4 > 1 h > 1 h

Hash (17 elements) 1 1.56 205 100 48 0.07 268

2 7.25 9,882 13,709 138 > 1 h

3 1034.51 1,617,695 3,386,868 209 > 1 h

Queue 2 1.45 121 72 59 0.06 77

(size 5, atomic 3 2.15 958 699 72 0.91 1,130

insert/remove with 4 23.25 47,973 81,849 170 54.67 62,952

two elements) 5 236.72 494,965 975,576 197 > 1 h

6 2622.14 4,982,175 12,304,490 246 > 1 h

Alphabet Client 3 3.01 1,607 4,226 262

(3 messages) 4 20.12 21,445 83,402 388

5 291.95 275,711 1,423,326 516

Alphabet Client 3 3.83 2,354 6,032 256 Assertion failure

(4 messages) 4 32.68 35,159 133,556 379 inside inspect

5 553.87 501,836 2,533,616 504 model checker

Alphabet Client 3 4.63 3,281 8,234 250

(5 messages) 4 50.73 53,957 201,122 372

5 972.50 843,521 4,182,406 495

Correct 3 8.08 589 1,164 197 0.14 33

Alphabet Server 4 21.29 12,635 36,776 291 0.15 42

(3 messages) 5 124.75 89,590 351,517 392 0.19 51

Correct 3 8.61 959 1,903 198 0.14 36

Alphabet Server 4 30.48 22,560 65,617 290 0.15 46

(4 messages) 5 253.93 179,197 704,855 393 0.19 61

Correct 3 9.23 1,455 2,894 198 0.14 39

Alphabet Server 4 44.55 37,327 108,466 290 0.17 50

(5 messages) 5 391.17 326,862 1,287,935 394 0.21 61

Atomic-race 3 7.45 141 225 159 1.83 2,633

Alphabet Server 4 9.63 146 333 228 43.64 76,502

(3 messages) 5 11.79 158 457 289 2905.33 3,565,667

Atomic-race 3 7.60 183 304 166 1.79 2,747

Alphabet Server 4 9.82 190 453 238 44.43 79,213

(4 messages) 5 12.04 204 619 303 2542.21 3,667,525

Atomic-race 3 7.76 231 395 170 1.86 2,861

Alphabet Server 4 10.04 240 591 246 45.20 81,924

(5 messages) 5 12.26 256 805 314 2541.16 3,769,383
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an explosion of the state space. JPF has an advantage in that case, because the
caching of network input/output [4] enables the model checker to generate most
interleavings of network messages in memory, as opposed to having to execute
the peer process many times (up to 113,400 times for five messages).

5 Conclusions

Nowadays, embedded systems may be developed either in Java or C. Java offers
easier development, but a translation to C may be necessary if system constraints
require it. We show that a development approach where a concurrent core algo-
rithm is developed in Java and then translated to C. Concurrency primitives in
Java can be readily mapped to POSIX threads in C. A direct, automatic trans-
lation from Java to C is theoretically possible, but a manual translation may
yield a more efficient program. Areas where the C code can be optimized include
memory allocation and a more fine-grained treatment of condition variables.

Because concurrent software is difficult to verify, we believe that software
model checking is an invaluable tool to analyze multi-threaded code. Software
model checkers for Java are currently more flexible and powerful than for C.
Because of this, it can be beneficial to develop a concurrent algorithm in Java
first. Our case studies confirm the viability of the approach.

Acknowledgements

We would like to thank the research team developing inspect for their feedback
and advice on using their tool.

This work was supported by a kakenhi grant (2030006) from JSPS.

References

1. The computer language benchmarks game (2010),

http://shootout.alioth.debian.org/

2. Artho, C., Biere, A., Havelund, K.: Using block-local atomicity to detect stale-value

concurrency errors. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 150–164.

Springer, Heidelberg (2004)

3. Artho, C., Leungwattanakit, W., Hagiya, M., Tanabe, Y.: Efficient model checking

of networked applications. In: Proc. TOOLS EUROPE 2008. LNBIP, vol. 19, pp.

22–40. Springer, Heidelberg (2008)

4. Artho, C., Leungwattanakit, W., Hagiya, M., Tanabe, Y., Yamamoto, M.: Cache-

based model checking of networked applications: From linear to branching time. In:

Proc. ASE 2009, Auckland, New Zealand, pp. 447–458. IEEE Computer Society,

Los Alamitos (2009)

5. Artho, C., Schuppan, V., Biere, A., Eugster, P., Baur, M., Zweimüller, B.: JNuke:

Efficient dynamic analysis for Java. In: Alur, R., Peled, D.A. (eds.) CAV 2004.

LNCS, vol. 3114, pp. 462–465. Springer, Heidelberg (2004)

http://shootout.alioth.debian.org/


Model Checking of Concurrent Algorithms: From Java to C 101

6. Ball, T., Podelski, A., Rajamani, S.: Boolean and Cartesian abstractions for

model checking C programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,

vol. 2031, pp. 268–285. Springer, Heidelberg (2001)

7. Brat, G., Drusinsky, D., Giannakopoulou, D., Goldberg, A., Havelund, K., Lowry,

M., Pasareanu, C., Visser, W., Washington, R.: Experimental evaluation of verifi-

cation and validation tools on Martian rover software. Formal Methods in System

Design 25(2), 167–198 (2004)

8. Chaki, S., Clarke, E., Groce, A., Jha, S., Veith, H.: Modular verification of software

components in C. IEEE Trans. on Software Eng. 30(6), 388–402 (2004)

9. Clark, C.: C hash table (2005), http://www.cl.cam.ac.uk/~cwc22/hashtable/

10. Clarke, E., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge (1999)

11. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate

abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS,

vol. 3440, pp. 570–574. Springer, Heidelberg (2005)

12. Corbett, J., Dwyer, M., Hatcliff, J., Pasareanu, C., Robby, Laubach, S., Zheng,

H.: Bandera: Extracting finite-state models from Java source code. In: Proc.

ICSE 2000, Limerick, Ireland, pp. 439–448. ACM Press, New York (2000)

13. Godefroid, P.: Model checking for programming languages using VeriSoft. In: Proc.

POPL 1997, Paris, France, pp. 174–186. ACM Press, New York (1997)

14. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd

edn. Addison-Wesley, Reading (2005)

15. Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-

gram 8(3), 231–274 (1987)

16. Kamijima, Y., Sumii, E.: Safe implementation of C pointer arithmetics by transla-

tion to Java. Computer Software 26(1), 139–154 (2009)

17. Kernighan, B., Ritchie, D.: The C Programming Language. Prentice-Hall, Engle-

wood Cliffs (1988)

18. Lamport, L.: How to Make a Multiprocessor that Correctly Executes Multiprocess

Programs. IEEE Transactions on Computers 9, 690–691 (1979)

19. Leungwattanakit, W., Artho, C., Hagiya, M., Tanabe, Y., Yamamoto, M.: Intro-

duction of virtualization technology to multi-process model checking. In: Proc.

NFM 2009, Moffett Field, USA, pp. 106–110 (2009)

20. Lindholm, T., Yellin, A.: The Java Virtual Machine Specification, 2nd edn.

Addison-Wesley, Reading (1999)

21. Meyer, B.: Eiffel: the language. Prentice-Hall, Upper Saddle River (1992)

22. Microsoft Corporation. Microsoft Visual C#.NET Language Reference. Microsoft

Press, Redmond (2002)

23. Nichols, B., Buttlar, D., Farrell, J.: Pthreads Programming. O’Reilly, Sebastopol

(1996)

24. W3 Systems Design. C++ vs Java (2009),

http://www.w3sys.com/pages.meta/benchmarks.html

25. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley Long-

man Publishing Co., Inc, Boston (1997)

26. Tanenbaum, A.: Modern operating systems. Prentice-Hall, Englewood Cliffs (1992)

27. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.

Automated Software Engineering Journal 10(2), 203–232 (2003)

28. Wang, C., Yang, Y., Gupta, A., Gopalakrishnan, G.: Dynamic model checking

with property driven pruning to detect race conditions. In: Cha, S(S.), Choi, J.-

Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp.

126–140. Springer, Heidelberg (2008)

http://www.cl.cam.ac.uk/~cwc22/hashtable/
http://www.w3sys.com/pages.meta/benchmarks.html


Integrate Online Model Checking into
Distributed Reconfigurable System on Chip

with Adaptable OS Services

Sufyan Samara, Yuhong Zhao�, and Franz J. Rammig

Heinz Nixdorf Institute, University of Paderborn

Fürstenallee 11, 33102 Paderborn, Germany

sufyan@mail.uni-paderborn.de

Abstract. This paper presents a novel flexible, dependable, and reli-

able operating system design for distributed reconfigurable system on

chip. The dependability and reliability are achieved by integrating on-

line model checking technique. Each OS service has different implemen-

tations which are further partitioned into small blocks. This operating

system design allows the OS service to be adapted at runtime according

to the given resource requirements and response time. Such adaptable

services may be required by real time safety-critical applications. The

flexibility introduced in executing adaptable OS services also gives rise

to a potential safety problem. Thus, online model checking is integrated

to the operating system so as to improve the dependability, reliability,

and fault tolerance of these adaptable OS services.

Keywords: Online Model Checking, Distributed Reconfigurable Sys-

tem on Chip, OS Adaptable Service.

1 Introduction

The vast growing need for powerful yet small and customized systems encour-
aged the development of embedded systems. These now are most likely to con-
tain more than one computational element on a single chip forming what so
called a System on Chip (SoC). An addition of a Field Programmable Gate
Array (FPGA) gives SoC the ability of reconfiguration. FPGAs are known of
their computational power and dynamic behavior in comparison with General
Purpose Processors (GPP). Many applications such as signal processing, en-
cryption/decryption, and multimedia encoding/decoding are in need for such
systems. However, the complexity of these systems is no longer easily manage-
able, especially if they are distributed. This raises the necessity for embedded
Operating System (OS).
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An OS working on distributed Reconfigurable SoCs (RSoC) can also bene-
fit from the dynamic behavior and the computational power provided by their
FPGAs. These benefits involve adaptability, runtime safety checking and recov-
ery, etc. This adaptable OS is capable of changing its resource requirements and
execution behavior in order to accommodate the variety of applications highly
expected in distributed systems.

The underlying OS services usually play a critical role in order to safely ex-
ecute real time applications/tasks on distributed RSoCs. This is reflected in
ensuring the executions of these services correct without violating any dead-
lines or safety constraints. In order to achieve this goal, we make OS services be
accompanied with a runtime checker to predict possible errors or constraints vi-
olation. In case that an error or constraint violation is found, the presented novel
OS service design allows the service to recover. The recovery process allows the
OS service to continue execution from the point the error occurred with as min-
imum losses as possible and without violating any constraints. This is achieved
by recalculating and finding another configuration efficiently [1,2].

In this paper we present a novel flexible and dependable OS design that can
adapt at runtime its services according to applications/tasks desired QoS, i.e.,
the actual resource requirements and response time, on the one hand; meanwhile
online check at model level the safety constraints of these adaptable services and
then recover if necessary from the detected errors or constraints violation on
the other hand. We make this design feasible by partitioning OS services and
integrating online model checking [3,4] into the operating system.

The rest of this paper is organized as follows: Section 2 introduces the dis-
tributed system topology and discusses the adaptable OS design; in Section 3 the
online model checking is introduced as follows: Subsection 3.1 explains applica-
tion scenario; Subsection 3.2 describes how to generate an abstract model for an
adaptable OS service; the model checking paradigm and the pre and post- check-
ing are presented in Subsection 3.3 and 3.4 respectively; the integration of the
online model checker with the OS design is discussed in Section 4; in Section 5
some related work is introduced and finally we conclude the work in Section 6.

2 Distributed Reconfigurable System on Chip with
Adaptable OS Services

The distributed system under consideration is a hybrid one between a centralized
and fully distributed system. The RSoCs are distributed and allowed to operate
and communicate freely without central coordination. However, at the initializa-
tion stages and for the sake of OS services distribution, a unique central RSoC ex-
ists. This central RSoC is assumed to have enough resources to hold and manage
a whole copy of the OS and acts as OS Services Repository (OSR), see Figure 1.
After distributing the services, this central RSoC existence is no more important,
but beneficent. This is because the used distribution algorithm supports encoding
which allows the retrieval of any OS services and provides for some fault tolerance.

Each RSoC in the distributed system has at least an FPGA and GPP. For
an OS service to be able to fully or partially utilize FPGA and GPP on each
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Fig. 1. RSoCs distribution

RSoC, the service exists in two implementations. One implementation is to run
on FPGA while the other one is to run on GPP. Further, each of the two imple-
mentations is divided into the same number of blocks, where each block is called
a Small Execution Segment (SES), see Figure 2. Each SES with the same index
has the same functional behavior. For instance, the second SES in all the imple-
mentations of the given OS service will have the same functional behavior. If we
input identical data to the second SES in any implementation of this OS service,
we should get identical output. However, the time of getting these outputs, the
power consumed, and the area/utilization required for each SES differ.

These similarities and differences give us much flexibility in executing an OS
service. For example, if we have one service with two implementations each with
just two SESs, we would have four possibilities to execute the service, each with
different resource requirements and response time. Our previous work, [1] and
[2], prove the feasibility of this design to execute and adapt an OS service to
run on RSoC even with very limited resources without violating any demanded
constraints. Further, a complete formal description of the design and a linear
algorithm to schedule such service were presented.

As aforesaid, the RSoCs are distributed in a hybrid topology network where
a central RSoC management node exists but the RSoCs can work without cen-
tral RSOC. This central RSoC contains the whole set of OS services. It is used
in the initialization stage to balance the distribution of the services/SESs over
all the available RSoCs in the system. Depending on resources and distribution,
an execution of a service can be either carried out on a single RSoC or as collab-
oration of more than one RSoC. This requires an evaluation at runtime to find
a suitable configuration for the service to execute on available resources without
violating any constraint. Due to dynamic changes in applications/tasks, the re-
sources or the constraints may change accordingly at runtime. This may lead to
change/adjustment in service configuration. Due to the sensitivity of the process,
as this may be a service requested by a real time application/task, dependability
and fault tolerance of the underlying operating system is highly expected.
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Fig. 2. Two implementations of OS service with execution order of the SES’s. Here S

stands Software, H: for Hardware, C for Communication, T for Time, P for power and

A for Area. For example SCT denotes Software Communication Time.

3 Online Model Checking

3.1 Application Scenario

Given an adaptable service with n (> 1) implementations and each implemen-
tation with m (> 1) SES’s, then we have mn different combination ways to
configure the SES’s of this OS service. The actual configuration of the SES’s has
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to be determined at runtime with respect to the resource requirements and the
response time. There is no way to know in advance which configuration of the
SES’s should be selected. In essence, each configuration of the SES’s can be seen
as a different implementation of this service. Due to the huge time and space
complexity, it is impossible to verify the safety properties of all the mn different
implementations of this service at the systems development phase. Therefore,
online model checking [3,4] might be a good choice to improve the dependability
and fault tolerance of our distributed RSoC with adaptable OS services.

Without loss of generality, let’s suppose that some SES’s of a given OS ser-
vice are safety-critical. Of course, all the SES’s of an OS service can be con-
servatively labeled as safety-critical. When this service is called by a real-time
application/task running on an RSoC, the middleware (see Section 4) of the
RSoC will figure out a suitable configuration of this service. Therefore, the mid-
dleware always knows in advance when a safety-critical SES will be executed
and thus can trigger online model checking in time on an RSoC with enough
resource.

3.2 Abstract Model

In order to do online model checking, we need to generate a sufficiently precise
abstract model from the source code of each safety-critical SES of a service at
first. A promising approach to construct an abstract state graph automatically
is predicate abstraction [5]. Let {ϕ1, ϕ2, · · · , ϕk} (k > 0) be a set of predicates
induced from the conditional statements and guarded expressions of the source
code. E.g., for a guard (x < y), where x and y are Integer variables, we can get
a predicate ϕ = (x < y). Abstract states are the evaluations of these predicates
ϕ1, ϕ2, · · · , ϕk on the program variables at each statement of the source code.

The abstract state graph is constructed starting from the abstract initial state.
With the help of some theorem prover (e.g., PVS), we can compute the possible
successors of any abstract state by deciding for each index i whether ϕi or ¬ϕi is
a post condition of this abstract state. Obviously, the more predicates we have,
the more precise the abstract model is. The resulting abstract model is an over
approximation of the concrete system. For every concrete state sequence, there
exists a corresponding abstract state sequence.

The relations between concrete states and abstract states are defined by means
of two functions: abstraction function α maps every set of concrete states to a
corresponding abstract state; concretization function γ maps every abstract state
to a set of concrete states that it represents.

In this way, for each safety-critical SESi of a service, we can get the cor-
responding abstract model ŜESi as well as the abstraction function αi and
concretization function γi.

3.3 Model Checking Paradigm

Online model checking runs on an RSoC in parallel with the SES’s to be checked.
The abstract model of the checked SES is explored with respect to the given
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Fig. 3. Online Model Checking

safety property. Here we consider such a kind of the safety properties that can be
formally specified as invariants or LTL formulas. Since our model checking is done
online, the current (concrete) states of the SES’s execution can be monitored
and reported to the model checker from time to time (see Subsection 4.1). By
mapping these concrete states to the corresponding abstract states at model level
through the abstraction function, the online model checker needs only to explore
such a partial state space reachable from these abstract (current) states as shown
in Fig 3. Initially, when the current starting state is not available, online model
checking will explore all the possible behaviors from the abstract starting state.
Once a current state is available, the state space to be checked will be shrunk to
the part reachable from the corresponding abstract state. If this partial abstract
model is checked safe against the given property, then we have more confidence
to the safety of the actual execution trace. It doesn’t matter even though there
might be some errors lurked outside the partial abstract state space. If an error
is detected within the partial state space, the recovery process will be triggered
(see Subsection 4.2). Notice that the detected error might not really exist in the
source code, because we check at (abstract) model level, which usually contains
more behaviors than the corresponding source code. To avoid the error really to
happen, it is necessary for safety-critical systems to trigger recovery process.

We have done some experiments to estimate the performance of our online
model checking for invariants and LTL formulas [4]. The experimental results are
promising and demonstrate that the maximal out-degree of a model has a larger
influence on look-ahead performance than the average degree of the model.
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3.4 Pre-checking and Post-checking

Since we check the abstract model instead of the concrete source code, the ex-
ecution of our online model checker is loosely bound to the execution of the
source code. Online model checking is able to explore the abstract state space
even when a current state is not yet monitored. In fact, the current states are
only used to reduce the state space to be checked. From this point of view, there
exists a race between the model checker and the source code to be checked.

Ideally, we wish that model checker could always run enough (time) steps
ahead the execution of the source code. This depends on the complexity of
the checking task as well as the underlying hardware architecture. In reality,
model checker might fall behind the execution of the source code. Therefore,
we introduce two checking modes: pre-checking and post-checking. The model
checking is in pre-checking mode, if it runs ahead of the execution of the source
code; otherwise, it is in post-checking mode.

In pre-checking mode, the model checker can predict violations before they
really happen. In post-checking mode, it seems at first sight that the violations
could only be detected after they have already happened. However, it is still
possible to “predict” violations even in post-checking mode because our on-line
checking works at the model level. If an error is detected at some place other than
the monitored execution trace in the partial state space, then we can “predict”
that there might be an error in the model which has not happened yet. In this
sense, both checking modes are useful for safety-critical systems.

Of course, we hope that the model checker can take the leading position
against the source code for as long time as possible. We need to find a so-
phisticated strategy to make the model checking have more chance or higher
probability to win against the source code. Recall that the source code is usu-
ally validated by means of simulation and testing. Currently we are looking to
find some heuristic knowledge at the system testing phase so that the abstract
model can be enriched with more useful information. The heuristic information
can thus guide on-line model checker to further reduce the state space to be
explored whenever necessary.

4 Integrate Online Model Checking into Distributed
RSoC with Adaptable OS Services

Recall that every RSoC in the distributed system is assumed to have at least
one FPGA and one GPP. In order to hide the complexity and provide some
transparency to applications, a middleware is introduced to each RSoC. The
middleware can prepare the services needed by applications, coordinate the com-
munication between applications and OS services, monitor the resources avail-
ability, and manages the SES’s. It can also cooperate with the online Model
Checker (MC), see Figure 4-A, to provide for fault tolerance and recovery as
discussed bellow.
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Fig. 4. A) An overview of an RSoC with one FPGA and GPP and the communi-

cations between SESs, MC, and memory. B) An insight of the SES stages and the

communication with the X-manager.

4.1 Communication between the MC and SES’s

Online model checker needs to communicate with SES’s running on FPGA as
well as on GPP. For the implementations of an adaptable service, all the SES’s
with the same index have the same functional behavior, i.e., given the same
input, we will get the same output from the SES’s with the same index. However,
the SES’s with the same index might be implemented by different algorithms in
different languages on different platforms. They might be executed in a parallel or
sequential way depending on the underlying architecture. As a result, the SES’s
with the same index are distinctive in terms of execution time and resource usage.
This makes it unrealistic to synchronously schedule the communication between
the model checker and an SES to be checked, e.g., every T time. Fortunately, an
event driven approach is a suitable solution. This can be done at the design phase
by defining triggering points at which communication is initiated. The triggering
points depends on the functional behavior and states of each OS service and can
be obtained by analyzing the source code. When the communication is triggered,
a decoded message with the required information is sent to the model checker.
These are normally global data and conditional values.

The model checker is usually running on GPP. This eases data transferring
between SES’s running on GPP and the model checker. It can be achieved by
coping/accessing the address space of the SES or using shared memory. Because
we also consider to check the SES’s running on FPGA, an X-manager is intro-
duced, where X is either H for hardware or S for software. The X-manager is
working as complementary part to the model checker. It consists of two parts:
the H-manager which works on FPGA and the S-manager which runs with the
model checker on GPP, see Figure 4-A. All the SES’s communications involving
reading or writing memory are done through the X-manager. In doing so, the
X-manager can monitor all the modifications and synchronize the SES’s to get
an updated value to any memory request. Without the X-manager the memory
requested by SES may not be up to date, because FPGA can normally access
the physical memory directly. In addition, anything running on GPP accesses
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memory using a memory manager. This may also involve caching and/or virtual
memory usage. In this case, memory accessed by an SES on FPGA might not be
up to date if that memory was cached by an SES on GPP, and no update occurs
to the physical original memory. To avoid such errors, we need to monitor and
synchronize any modification to memory so as to ensure that we always read up
to date values.

Needless to say, X-manager plays a decisive role in the communication between
the online model checker and the SES to be checked. For this purpose, the
internal structure of each SES is further defined into stages at design phase as
shown in Figure 4-B. A stage is a logical grouping of a SES code after which the
MC is triggered. Any access to the memory from every stage is monitored by the
X-manager. At the end of each stage, an event will be sent to the X-manager.
On receiving the event, the X-manager will provide the model checker with a
snap shot of the memory just modified by the so far executed stage of the SES
to be checked. This minimizes the time needed to transfer data to the model
checker. Thus, the model checker might have more chance to run in pre-checking
mode, i.e., look ahead in the near future at the model level. This is important
as it allows the recovery process to happen without violating any constraints.

4.2 Recovery Process

When an application/task running on an RSoC requests a service to be exe-
cuted, the middleware of the RSoC evaluates the available resources and the
real time demands of the application/task to find a suitable configuration. This
process may require coordination with other RSoCs or if applicable with an
Operating Systems Repository (OSR) (see Fig. 1). It is just at this time that
the configuration of the service to be executed is known. This configuration is
then administrated by the the middleware of the RSoC for execution. The online
model checker is triggered whenever an SES marked with safety-critical is known
to be executed. The model checker runs in parallel with the SES to be checked.
In case that a possible violation is detected in the abstract model of the SES to
be checked, a recovery process is initiated as shown in Fig 5.

Fig. 5. Recovering a possible fault in OS service execution
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The recovery process is initiated by sending a recovery message from the
model checker to the RSoC middleware which coordinates the process of OS
service execution. This can be the same RSoC where the model checker is being
executed or different RSoC in the distributed system. The message contains
information about the possible incorrect SES and the current state of this SES.
The middleware then evaluates a new suitable configuration and if necessary
acquires any missing SES from OSR. Meanwhile, it raises a stop signal to the
incorrect service. The middleware afterwards initialize the new configuration and
redirect the further execution of the service to it. The middleware also sends the
model checker a message to set a new model associated with the new SES to be
executed if necessary.

5 Related Work

The benefits of implementing OS partially on RSoC is well recognized [6,7]. Many
researches have been carried out in the direction for an OS design to support
RSoC [8,9,10]. The idea of multiple implementations was also presented in [11]
and [12]. Every Service were assumed to have one implementation as a whole for
GPP and another for FPGA. Both implementations co-exist at the same time
on an RSoC to allow context switching. Doing so wastes too much resources
on each RSoC and makes the underlying OS design unfeasible for distributed
systems. Moreover, this OS design uses an algorithm based on Binary Integer
Programming (BIP), whose computational complexity is O(n2). We present an
OS design specially for distributed systems. It is fault tolerant and it can adapt
according to the QoS requirements of the applications. Further, the adopted
algorithm [1,2] has a linear complexity.

For distributed systems, correctness and temporal analysis of the underlying
OS are desirable, because most SoC systems have real-time and dependability
requirements [13]. This analysis includes more and more formal verification tech-
niques like model checking [14]. Model checking has the advantage of being fully
automated and inherently includes means for diagnosis in case of errors. On the
other hand, model checking is substantially confronted with the so called state
explosion problem. Numerous approaches to overcome this deficiency have been
developed, like partial order reduction [15], compositional reasoning [16], and
other simplification and abstraction techniques, which aim to reduce the state
space to be explored by over-approximation [17] or under-approximation [18]
techniques.

In recent years, runtime verification is presented as a complementary approach
to the static checking techniques. The basic idea of the state-of-the-art runtime
verification [19,20,21,22] is to monitor the execution of the source code and after-
wards to check the so far observed execution trace against the given properties
specified usually by LTL formulas. The checking progress always falls behind
the execution of the source code because the checking procedure can continue
only after a new state has been observed. In contrast, our runtime verification
is applied to the model level. The states observed from the execution trace are
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mainly used to reduce the state space to be explored at the model level. If the
checking speed is fast enough, our online model checking could keep looking cer-
tain time steps ahead of the execution of the source code and then predict how
many time steps in the near future are safe.

6 Conclusion

We present a novel OS design which allows OS services to have flexible QoS,
fault tolerance, and recovery ability in distributed RSoC environment. Each OS
service may have different implementations, which can be configured at runtime.
This dynamic feature makes it difficult to check the safety of such OS services at
design phase. Therefore, online model checker is integrated so as to make error
prediction and recovery available. In [1] and [2], we have proved the feasibility of
this OS design to execute and adapt an OS service running on RSoC even with
very limited resources without violating any demanded requirements. We have
done some experiments to estimate the performance of our online model checking
for invariants and LTL formulas [4]. The experimental results are promising and
demonstrate that the maximal out-degree of a model has a larger influence on
look-ahead performance than the average degree of the model.
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Abstract. Constrained random simulation based verification (CRV) becomes an 
important means of verifying the functional correctness of the increasingly 
complex hardware designs. Effective coverage metric still lacks for assessing 
the adequacy of these processes. In contrast to other coverage metrics, the syn-
tax-based Mutation Analysis (MA) defines a systematic correlation between the 
coverage results and the test’s ability to reveal design errors. However, it al-
ways suffers from extremely high computation cost. In this paper we present an 
efficient integration of mutation analysis into CRV flows, not only as a cover-
age gauge for simulation adequacy but also, a step further, to direct a dynamic 
adjustment of the test probability distribution. We consider the distinct cost 
model of this MA-based random simulation flow and try to optimize the cover-
age process. From the probabilistic analysis of the simulation cost, a heuristics 
for steering the test generation is derived. The automated flow is implemented 
by the SystemC Verification Library and by CertitudeTM for mutation analysis. 
Results from the experiment with an IEEE floating point arithmetic design 
show the efficiency of our approach.  

Keywords: Verification Coverage, Constrained Random Verification, Mutation 
Analysis. 

1   Introduction 

Simulation has still a dominant role in the verification of the functional correctness of 
electronic and embedded systems. Today, designs are increasingly complex, on the 
one hand, driven by the need to fill the Moore’s Law driven capacity of integrated 
circuits and, on the other hand, thanks to our eager promotion of the design capability. 
Model-based, system-level methodologies and more extensive IP reuse are adopted. 
However, our verification ability lags behind. By [13], many current development 
projects have already a verification team sized over 2:1 to the design team.  

To accommodate this growing complexity of designs, random simulation is applied 
to ease the labor cost of writing directed test vectors. It generates test input automati-
cally and, therefore, reinforces the scalability of simulation-based approaches.  
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Constraints and biases on the inputs domain can be imposed additionally on the ran-
domness to overcome its shortage and exercise the design more extensively. By the 
nature of focusing on the boundary, the constrained random simulation based verifica-
tion (CRV) processes need particularly an effective metric, or a suite of them, to  
assess their adequacy. On the whole, the effectiveness and reliability of such an ade-
quacy guard should be judged by its ability to detect potential design errors.  

Code coverage like statement coverage or branch coverage is the most intuitive 
metrics and long being used for both software testing and hardware design simulation. 
It is also supported by most Hardware Description Languages (HDLs) simulation 
tools. However, though a necessary step, high code coverage solely reflects the com-
pletion progress very limitedly. The functional coverage mechanism [20, 21] pro-
vided by the recently popular hardware verification languages like SystemVerilog 
requires the explicit definition of variable value ranges to hit, which is then recorded 
during simulation. A major drawback is the enforcement of verification engineers to 
thoroughly understand the design and extra effort to define the coverage points or 
applying libraries as a subjective metric.  

Originally proposed for software testing, Mutation Analysis (MA) is a fault-based 
test data selection technique. A so-called mutation is a single syntactic change to the 
original program source code under test, such as replacing an add arithmetic operator 
with a minus, as an artificially injected bug. Such a program mutant is said to be killed 
by a test when it under the test produces a different output from that of the original 
program.  When applied to generate or assess an adequate set of tests, MA creates a 
bunch of mutants from the original program, each by a single, different mutation. 
Then the percentage of the mutants killed by the testing process is measured as the 
adequacy of the coverage.  

The possible syntactic changes, as mutation operators, obviously depend only on 
the description language of the objects. As testing is a requirement with many com-
puter-aided artifacts, subsequent research work extends mutation analysis to other 
languages.  Particularly, HDLs share similar syntaxes with programming languages 
and have alike execution means as software. As an industrial EDA tool, CertitudeTM 
[7,14] from SpringSoft implements the mutation analysis mechanism on Verilog and 
VHDL. Mutation operators specifically for HDLs are defined like:  

sign <= opa(63)  xor  opb(63) ; 

∆ sign <= opa(63) xnor opb(63) ; 

where ∆ is by convention used to indicate the only mutated statement.  
Design errors, at various levels of descriptions, are essentially any of its deviation 

from the specification. Different from other fault-based methods like [10,11,12] for 
test data selection, MA defines a systematic correlation between the coverage results 
and the test’s ability to reveal design errors. This is done in two steps. First, a cover-
age point is defined directly as if a test exposes a potential mistake by the designer.  
Second, MA hypothesizes and experimentally establishes a coupling-effect [1,4], 
which states that a set of tests capable of killing those mutants with simple faults 
injected will also be effective at exposing other more complex errors. As such, MA 
serves as a reliable guard for testing or verification processes ensuring the detection of 
design errors.  
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However, though with extensive study, mutation analysis suffers from extremely 
high computation cost, which becomes the main challenge for any MA application. 
Considering a hardware design with  lines under the simulation which is guarded by 
a mutation analysis with  mutation operators, we will have a mutant set with ap-
proximately a size  as the coverage metric.  as a constant and assuming the 
simulation cost linear to the design size, calculation of one test case against the metric 
will have a cost to  and the overall coverage evaluation a cost to  for 

 test cases. This is a high computation requirement with increasingly complex  
designs. With a CRV flow, the situation is even worse, since  will be enlarged as 
randomness is used to reach the adequacy. This cost efficiency issue should be ad-
dressed. Therefore, in this work, we experiment with the use of MA coverage for 
CRV, consider the accurate cost model of such a flow, and try to develop an efficient 
algorithm to tackle the coverage cost problem.  

2   Related Work 

MA is a fault-based verification technique. Analogously, the fault models at gate-
level, e.g. the stuck-at, is used to guide the selection of product test data for exposing 
defects that may be introduced during the manufacturing processes. Manufacturing 
defects can be viewed as the deviation of a product circuit from the designed struc-
ture. Automatic test pattern generation (ATPG) algorithms like PODEM (Path-
Oriented Decision Making) and FAN (FAN-out-oriented test generation algorithm) 
generate test vectors targeting the gate-level modeled faults.  Although theoretically, 
when hardware designs are concerned, we can always translate higher level faults to 
gate-level and apply an ATPG there to generate test vectors that correspondingly 
expose the high-level faults. This mapping imposes high complexity and inefficiency, 
especially with complex designs.  Successful application of ATPGs relies on Design-
for-Testability techniques [8], with which ATPG algorithms can assume a small por-
tion of the circuit as their input, and output effective tests for the structural testing. In 
contrast, simulation vector generation for functional verification, similar to functional 
testing, concerns the overall functionality of the design. They are supposed to take the 
whole design as the algorithm input. 

Fault models for automatic test generation at higher levels, such as the behavioral 
level or RTL, has also been considered in [9,11], for instance. [9] also mentions the 
use of MA for hardware designs. The designs are transformed to FORTRAN pro-
grams and then fed as the standard input into software mutation analysis tool Mothra 
[2]. Faults analysis and tests generation are then the task of Mothra [2,5]. However, 
neither the language translation is efficient, nor does the Mothra system handle com-
plex objects. [11] first transforms the original and faulty VHDL descriptions to Binary 
Decision Diagram (BDD) based representations, with a different BDD for each output 
bit. Then each pair of these bits is compared to extract the symbolic test vector. Here, 
scalability is the main challenge.  

Other coverage metrics have been used to direct random test generation. Code cov-
erage, more specifically branch coverage is considered in [15]. A Genetic Algorithm, 
with the branch coverage degree as a fitness measurement, is developed to guide si-
mulation sequences generation and evaluated on some VHDL design. The method in 
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[17] begins with a test planning and the coverage is defined as the amount of pre-
planned verification tasks that have been simulated, e.g., specific transactions from a 
CPU unit. Then an evolving Bayesian Network is constructed to model the correlation 
between test generation directives and the coverage. [16] employs a so-called tag-
coverage. A tag is defined as some symbolic disturbance to a variable value assign-
ment and is said to be covered if this disturbance is propagated to any observation 
point in the simulation. A Markov Chain derived from the hardware design is built 
and tuned according to this tag-coverage. Probability distribution of the random input 
is then optimized by the chain.  

We consider the distinct cost model of a MA-based random simulation flow and 
try to optimize the coverage by dynamically adjusting the probability distribution of 
the random test generation.  

3   Mutation-Analysis Directed Constrained Random Simulation 

Our CRV flow is built with three components. First, the SystemC Verification Library 
(SCV) [18] presents a standard constrained-random test generation (CRTG) facility, 
with a handy interface for defining input constraints associated with weighted ranges. 
Second, the ModelSimTM simulator is employed due to its ability to simulate mixed 
SystemC/VHDL/Verilog designs.  Third, as a key enabling factor, the CertitudeTM 
defines a comprehensive model of design errors on VHDL and Verilog for mutation 
analysis.  

Originally, the identification of mutants is defined by observation and comparison 
at the boundary of the object under test. Another concept weak mutation is developed 
in [3] by allowing this observation at any intermediate points between the mutation 
point and the design output, e.g. immediately after the execution of the mutated ex-
pression, or statement. In contrast, the classical MA with the mutant identification at 
the output, can be denoted as strong mutation analysis. In CertitudeTM, the option for 
distinguishing mutants’ behaviors ranges from directly after the mutation line, to any 
subcomponent ports, and to the top design output ports. Further, CertitudeTM applies 
another so-called schema-based mutation technique [6], which encodes all indepen-
dent mutants into a single design copy. Compilation of mutants becomes a one-time 
job and, at the same time, the statement-based weak mutation analysis for all mutants, 
i.e. whether a mutant produces a locally different behavior, requires only a single 
simulation of this instrumented design by in-time comparison with the execution of 
the original statement.1  

3.1   The Simulation Flow and Its Cost 

Figure 1 depicts the general design flow. The three bold arrows represent simulations 
and behavior monitoring, either on the original DUV (Design Under Verification) or 
the mutants. We start with some initial test constraints for the DUV and a CRTG. At 
the beginning and any time the DUV is changed the design files are copied and in-
strumented by the mutation operators. This process is determinate and the product is  
 

                                                           
1  Certitude introduces a layer called functional qualification [19], which gives the test bench a 

good credit when its monitor is vigilant enough and flags a failure when a mutant does pro-
duce a distinguishable behaviour at the observation point. 
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Fig. 1. The CRV loop and closure directed by the coverage of mutation analysis 

the mutants. We should also note that some mutants remain functionally unchanged, 
which always produce the same output as in the original program. These so-called 
equivalent mutants are eliminated from the mutants box. Each time the CRTG gene-
rates a test case and the monitor flags a pass to the DUV simulation result, this test 
case is sent to be assessed by the mutation analysis.  

In this work, we use strong mutation analysis results as the final coverage mea-
surement. However, putting a weak mutation phase at the front saves simulation effort 
definitely and significantly, as herewith we only need to simulate the locally already 
exposed mutants, though each one against the test case. As previously described, this 
requires only one extra simulation under CertitudeTM.  

Killed mutants are removed from the mutants box. The accumulated results from 
mutation analysis are used for a runtime calculation of some reasonable adjustment to 
the test distribution, and if any, to be fed back to the CRTG. At the same time, a cer-
tain percentage of dead mutants is used to break the loop and end the flow. This does 
not apply a 100% killing of mutants, which can rarely be the case for complex de-
signs. Without loss of generality, we consider here the cost model for an 100% mu-
tant-killing coverage. 

Although constraint solving, source code instrumentation for creating mutants, and 
equivalent mutants identification all consume computation resources, most time of the 
flow will be spent on simulation. Basically this is due to the nature of mutation analy-
sis of feeding each test case to individual mutants for simulation. Since the single 
simulation cost scales linearly with the design size, the complexity of the proposed 
flow is decided by the number of simulation runs. In the following, we make a de-
tailed analysis on the required simulations. Consider  the design in the flow under 
verification and , , … ,  as the set of non-equivalent mutants gener-
ated. At any time in the CRV loop we have a probability distribution  over the input 
variable value domain . With  the random variable for the weak mutation 
analysis outcome on  and  for the strong analysis, for any  we can define  , Pr 1  and  , Pr 1 . 

Then the simulation runs on  in the strong mutation phase can be represented by 
a random number  as the times of 1  happening until the first success of 1 . Noting that for  1 1 , we can derive by geometric 
distribution the expected value of  as 
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                1
Pr 1| 1   1 ,,  

 ,,  

denoted by , , . Further, as the weak MA phase costs one simulation for all 
remained mutants, ,  as the total weak mutation runs, i.e., the flow loop 
count until the last live mutants being killed, can be simply estimated by max 1 ,⁄ . Therefore, we calculate  as the total simulation effort needed to 
kill all mutants under distribution , expectedly, as  , , ,  

                                                max 1 ,⁄ ,,                                           1  

I other words, a high activation rate of mutants with low propagation probability leads 
to high simulation costs. For instance, assuming a set of 100 design mutants and un-
der a certain test distribution  each of ,  having a same value of 0.01, and all  ,  a value of 0.005, we can calculate then as a cost estimation of 400 si-
mulation runs. For another  with all ,   having a value 0.5 and  ,  0.01, 
though the mutants have a higher probability to be exposed, they give more costs with 
a total of 5100 simulation runs, expectedly. 

As another example, under selective mutation operators an RTL FFT design mod-
ule with 29811 lines derives already  of 26758 non-equivalent mutants.  
becomes extremely high with growing design sizes.  Symbolic methods traditionally 
used for mutation-based test generation [5, 2] assume at most time 11 , i.e., a mutant when activated then propagates to the output. This is not the 
case if we apply mutation analysis to the simulation of large designs. This cost prob-
lem can be addressed and, next, we present a heuristics as our first effort towards an 
efficient mutant-killing coverage for the CRV flow. 

3.2   Dynamic Distribution Adjustment for More Efficient Coverage 

We note that Equation (1) can be simply applied to a subset of . At some point 
during the CRV flow in Figure 1,  is reduced by dead mutants and only those 
hard-to-kill under the current test distribution are left. Then if we adjust , a newly 
estimated computation cost is defined in the same manner. This adjustment should be 
based on the cost estimation in Equation (1), so as to reach more quickly a high mu-
tant-killing coverage. For this, a heuristics as described in Figure 2 is developed. 

The algorithm for the heuristics assumes that the test input domain can be seg-
mented into some discrete ranges. Then, basically, it utilizes the past analysis infor-
mation to estimate the effectiveness of those ranges and re-distributes the probability. 
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Mutation analysis results ∑ ∑⁄  as given in Line 3 are 
used to represent the ∑ ⁄  under the current distribution. The effectiveness is 
then measured relatively to a value _  through Lines 6 to 11 and used to 
flag a range as effective by adding it to an effective_distrib array, if its ⁄  
surpasses _ . If no mutant is killed, we add it to an ineffective_distrib 
array. Initially _  is assigned a parameter value _ _ . 
This relative measure always relaxes in Line 19 as live mutants decrease and the re-
maining ones become harder to kill.  

 

Heuristics   #for the distribution adjustment box in Figure 1. 

Parameters: _ , _ _ , _   

#Assume the input value domain can be segmented as a set of ranges   , , … , . For each mutant , ,  0,1              
as  
the weak and strong mutation analysis result, respectively.  

(1) _  _ _   
(2)  0 
(3) , ∑ , ∑   
    as received from CRTG and mutation analysis 
(4) Enter the following loop if the previous total happening of event n 0)  
    already reaches _ . 
(5) Loop until the killed mutants reach a certain ratio predefined,   

     or the verification cost budget is reached 
(6)    If  ⁄ _   

(7)        Add pair ,    into an array _  
(8)    Elseif  0  
(9)        Add  into another array _   
(10)       Increase  by 1 
(11)  End if  
(12)  If  _  
(13)       If _  is not empty, set test distribution as: 
(14)        For each ,  in _ , set   
       Pr          ⁄    _    
(15)       Else, set the distribution as  
(16)          Uniformly distributed on  | _   
(17)       End if 
(18)       Empty arrays _ , _ , set 0 
(19)       Lower  _  _      2⁄  

(20)  End if 
(21) End loop 

Fig. 2. Heuristics for mutant-killing by utilizing past analysis information 
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This establishes a macro relation between the test input domain and the overall 
mutant-killing. Our hypothesis is that if an input range is assessed to be effective at 
killing mutants, we expect it to be further capable of killing mutants and adjust the 
test distribution towards it. Otherwise, the distribution is steered away. Lines 13 to 17 
are for this purpose. After this adjustment the arrays are emptied. 

Furthermore, a threshold parameter _  is defined to trigger 
an adjustment procedure in Line 12, when the loop iteration killing none of the mu-
tants, recorded by a variable , reaches this amount. We have not considered an 
optimal setting for this parameter.  It could be set initially to a value of 1 and also 
loosens while the remaining mutants become more stubborn. 

Since at this level 100 percent killing of the mutants could be infeasible under 
some time restriction, the whole flow should also be controlled by a simulation cost 
budget which terminates at a reasonably high certain ratio of killed mutants.  

The presence of a _  parameter is the last to notice. The dynamic 
distribution adjustment is not necessary at the beginning phase of the CRV flow, 
when many of the easy-to-kill mutants are still alive. This trigger is controlled by 
parameter _ . 

4   Results 

We have chosen a VHDL implementation of the IEEE binary double-precision float-
ing point arithmetic unit from opencores.org for our experiments in our MA-directed 
CRV flow. Figure 3 shows the architecture of that example.   

 

Fig. 3. The floating point arithmetic under CRV 

The test domain of the DUV is composed of its major input ports including the 
arithmetic operator, rounding mode, and two operands. To execute the heuristics, this 
domain is segmented by the number classification of the operands, norm, infinity, 
denormal, etc. For strong mutation analysis, the mutant-distinguishing point is set at 
the output ports of the core including the arithmetic output and exception signals. 
Further, though not the focus of this experiment, a software implementation of the 
floating point standard is used in the simulation as an oracle, to compare and assess 
the correctness of the DUV output.  

Figure 4 gives a summary of the experimental results. The design with a total 
number of 2492 lines-of-code derives 2257 mutants, which have the mutation points 
scattered over all the major sub-components. 58 of them are detected by the tool as 
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equivalent mutants. We then executed the flow in Figure 1 with two setups, one fixed 
with a uniform input distribution, another  also starting with a uniform distribution 
but self-tuning directed by the heuristics. Each setup is executed twice for 200 loop 
iterations, i.e., 200 test cases as shown in the figure to provide more evident data. The 

adjustment threshold parameter of the heuristics is set to 1, and _ _  
set to 0.01. Our studies also compared the simulation time with and without memory 
utilization and found no significant difference. To conduct the two experiments with 
uniform distribution, it took us 89460 and 101681 simulation runs for about 85 and 96 
hours, respectively, which killed 1301 and 1289 mutants. The other two experiments 
with the heuristics took 78460 and 78849 simulations for around 75 and 77 hours with 
a mutant killing coverage of 1679 and 1668, respectively.  The original test bench 
delivered with the arithmetic core, simulating all the operations, rounding modes, and 
corner cases, is also exercised with the mutation analysis. It killed 1440 mutants. 

In summary, experiments gave a clear improvement by the heuristics against the 
single uniform distribution, in terms of a higher total mutant-killing coverage and less 
simulation effort. This means that our heuristics significantly advances the current 
state of mutation-based verification automation. Although the deterministic test bench 
exposes a certain amount of mutants more rapidly, it is the advantage of the CRV to 
avoid the manual, labour intensive writing and improving of test cases. 

 

Fig. 4. Experimental results 

5   Conclusion 

We primarily considered the cost model when applying mutation analysis as the cov-
erage metric to measure the completeness of a CRV flow. Basically, the simulation 
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effort is , where  stands for the number of test cases and  the size of the 
design.  representing the design complexity grows rapidly along with the Moore’s 
Law driven capacity of integrated circuits. In CRV,  is further enlarged as the 
amount of test cases required to reach an adequacy is based on random generation. 
More accurately, with some probability analyses max 1⁄ ∑ ⁄   is 
found to be the expected simulation runs. Based on this, a heuristics is developed that 
collects the past analysis information to estimate the effectiveness of test domain 
ranges and re-distributes the probability. 

The CRV flow equipped with the dynamic distribution adjustment heuristics has 
been implemented and experimented with CertitudeTM and a VHDL floating point 
arithmetic unit. The results are encouraging and show the efficiency improvement in 
terms of reaching more rapidly a higher mutant-killing coverage. With more, yet 
automated simulation effort, it also surpasses the manual test bench that is carefully 
composed by the author of the arithmetic core.  

In future work, we will investigate different architecture and their impact on the 
heuristics with a focus on control-oriented circuits like microprocessors. Since the 
verification flow is based on simulation, it also scales well to large designs. 

In contrast to other fault-based test generation approaches, MA systematically cor-
relates the mutant-killing and the test’s capability of revealing design errors. This can 
be key technology for solving the verification bottleneck today. The work presented 
in this paper is established on the macro relation between the test input domain and 
the overall mutant killing. It promotes coverage efficiency but specific, even-harder-
to-expose mutants may remain. Here, future work will also consider the automatic, 
deterministic test generation for exposing an individual mutant. Existing solutions 
rely on symbolic execution and constraint solving with the assumption that mutant 
behaviors propagate to the output if activated. This is a limitation when the algorithms 
face complex SW/HW/system designs. More efficient, light-weight solutions have to 
be developed to enable a practical deployment. Nevertheless, the MA directed CRV 
will remain a necessary step to obtain a first mutant killing coverage, since it sieves 
out the easy-to-kill mutants, which the deterministic test generation algorithms can 
hardly do. 
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Abstract. Embedded systems’ complexity and amount of distinct functional-
ities have increased over the last years. To cope with such issues, the projects’ 
abstraction level is being continuously raised, and, in addition, new design 
techniques have also been used to shorten design time. In this context, Model-
Driven Engineering approaches that use UML models are interesting options to 
design embedded systems, aiming at code generation of software and hardware 
components. Source code generation from UML is already supported by several 
commercial tools for software. However, there are only few tools addressing 
generation code using hardware description languages, such as VHDL. This 
work proposes an approach to generate automatically VHDL source code from 
UML specifications. This approach is supported by the GenERTiCA tool, 
which has been extended to support VHDL code generation. To validate  
this work, a use case focused in maintenance systems attended by embedded 
systems is presented. 

Keywords: Embedded systems, system engineering, intelligent maintenance, 
UML specification, VHDL code generation. 

1   Introduction 

Embedded systems are dedicated system designed to perform a small number of func-
tions. It contains predominantly digital components, consisting in a hardware platform 
upon which software application execute [1]. Embedded systems’ functionalities can 
be distributed over different processing nodes. Distributed Embedded Systems (DES) 
rely on a communication infrastructure constrained by requirements/constraints of 
embedded systems domain, e.g. timing and energy consumption requirements.  

In the industrial domain, DES may be composed by several intelligent components, 
which make decisions and perform their activities autonomously [2]. Industrial DES 
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support conventional or innovative functions. The former concerns to simple control 
functions, whereas the later represents more elaborated functions, e.g. maintenance 
and prognostic systems’ functions to perform Condition Monitoring (CM), Health 
Assessment (HA), Prognostics (PR), etc. Components’ intelligence level is defined by 
the amount of different services required by the end-user that are implemented as 
component functions [3], [4]. As machines do not suddenly fail, they usually pass 
through a measurable process of degradation before failing. Intelligent maintenance or 
prognostics systems use information provided by sensors and computing components 
embedded into equipments. Then, algorithms for health estimation and failure predic-
tion are applied to assess machines’ degradation level. Hence, embedded sensors, 
intelligent actuators and processing elements play a fundamental role in the develop-
ment of intelligent maintenance systems. 

The complexity of this scenario demands new tools and techniques. Increasing the 
design’s abstraction level by using, for instance Model-Driven Engineering (MDE) 
[6] techniques, is an interesting approach to deal with the mentioned issues [5]. Stan-
dard graphical languages, e.g. the Unified Modeling Language (UML)1, must be used 
to facilitate the communication of design’s intentions to different teams, i.e. software 
and hardware teams. UML is a high-level design language and is broad enough in 
scope to model DES. Usually, UML-based MDE approach focus only in the software 
part of embedded systems by defining a mapping between high-level specification’s 
construction down to software construction using programming languages (e.g. 
C/C++, Java, etc.). There are many academic works and commercial tools (e.g. Ra-
tional Rose2 and Artisan Studio3) that can generate software code from UML models. 
However, considering embedded systems’ hardware part, only few works address the 
use of UML to produce Hardware Description Language (HDL) descriptions, as in 
[9], [10]. In this sense, the transformation of UML models into HDL code, e.g. using 
VHDL (Very High Speed Integrated Circuit HDL), is not yet well diffused, opening 
room for research on this subject. 

This works presents an extension to our aspect-oriented MDE approach for DES 
named Aspect-Oriented Model-Driven Engineering for Real-Time systems (AMoDE-
RT) [7]. This work’s main contribution is to support automatic generation of VHDL 
descriptions from UML models. In other words, this work extends AMoDE-RT’s 
supporting tool GenERTiCA (Generation of Embedded Real-Time Code based on 
Aspects) [12], aiming at automatic generation of VHDL descriptions from UML mod-
els. The generated VHDL code is intended to be used in FPGA (Field Programmable 
Gate Array) systems. Thus, the proposed approach allows the behavior of the required 
system to be described (modeled) and verified (simulated) before synthesis tools 
translate the design into real hardware (gates and wires). 

Additionally, this work proposes an engineering process, which covers from re-
quirements analysis and UML modeling phases to VHDL code generation. The focus 
is to generate VHDL source code for the logical functions of an embedded system, 
which so far has only been implemented in software. To validate this work, this paper 
presents a use case focused on a distributed embedded system (i.e. DES) used for 

                                                           
1 UML 2.2 Specification. Object Management Group, http://www.omg.org/ spec/UML/2.2/ 
2 http://www.ibm.com/software/rational/ 
3 http://www.artisansoftwaretools.com 
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maintenance systems (intelligent components), which integrates both conventional 
and innovative functions.  

This paper is organized as follows: Section 2 provides an overview of the proposed 
approach to map UML specifications into VHDL source code, whereas Section 3 
presents the developed mapping rules. The case study of a valve component system is 
presented in Section 4. Section 5 provides a review of works related. Finally, conclu-
sion and directions for future work are presented in Section 6. 

2   Overview of the Proposed Approach 

The proposed approach follows the flow proposed by the Aspect-oriented Model-
Driven Engineering for Real-Time systems (AMoDE-RT) [7], [15] (see Fig. 1), which 
uses MDE techniques combined with AO concepts to design DES. AMoDE-RT is 
supported by GenERTiCA [12] code generation, which uses mapping rules scripts to 
produce source code files for a given target platform from UML models annotated 
with the MARTE profile4. Therefore, GenERTiCA is capable of generating code for 
many distinct languages (Java, C/C++, etc.), since there are mapping rules for the 
target platforms. The process is the same to generate code for different languages and 
therefore it is considered generic. This work proposes an extension for the GenER-
TiCA tool in terms of a new set of mapping rules to map UML meta-model elements 
into VHDL constructs. 

 

Fig. 1. General overview on the whole process 

 
                                                           
4  UML Profile for Modeling and Analysis of Real-time and Embedded Systems (MARTE),  

http://www.omg.org/spec/MARTE/1.0 
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Following, a brief description of each step of AMoDE-RT design flow is presented. 

1. Requirements Analysis and Identification 

In the first phase, requirements and constraints of the distributed embedded real-time 
system are gathered. To accomplish this, the RT-FRIDA [13] requirements analysis is 
performed, resulting in a set of documents describing system’s requirements, func-
tionalities and constraints. Afterwards, use case diagrams are created, depicting all 
expected functionalities of the distributed embedded real time system, and also the 
external elements that interact with the system. 

2. Modeling  

The next step is to specify the elements to handle the functional and non-functional 
requirements gathered in the previous phase. To model functional requirements,  
designers use class diagrams to describe the structure, and sequence diagrams to de-
scribe the methods behavior. Other behavioral and structural diagrams, such as activ-
ity or state diagrams, or composite structure or deployment diagrams, can also be 
used. However the class and sequence diagrams are mandatory to describe the struc-
ture and behavior of all system with correctness. These UML diagrams are annotated 
with the stereotype of the MARTE profile to specify real-time characteristics of 
(some) DES’ elements. During this phase, the non-functional requirements handling 
are specified using aspects from the Distributed Embedded Real-Time Aspects 
Framework (DERAF) [12]. These aspects are modeled in the Aspects Crosscutting 
Overview Diagram (ACOD) [15], and the points (in the UML model) in which 
DERAF aspects perform adaptations are specified using Join Point Designation Dia-
grams (JPDD). 

3. UML-to-DERCS Transformation 

At this point GenERTiCA transforms the system specification, i.e. the UML model, 
into another model called DERCS (Distributed Embedded Compact Specification) 
[12], which represents an embedded system PIM free of information overlapping5. A 
UML specification can contain several model elements, representing the same ele-
ment that hinders the code generation process. Thus these ambiguous elements of 
UML model are mapped in a single DERCS element, eliminating such ambiguities 
that could result in code with errors. When an inconsistency is detected, the UML-to-
DERCS transformation algorithm stops and GenERTiCA informs this occurrence to 
the designer, requesting his/her intervention to solve the issue. Interested readers are 
referred to [12] to have more details on this UML-to-DERCS model transformation. 

4. Code Generation 

In this phase the code generation process executes a set of scripts (i.e. mapping rules), 
which guide the GenERTiCA tool   to perform the model-to-text transformation from 
DERCS elements to constructions in the target platform. Furthermore, the code gen-
eration process also performs the aspects weaving. If the element under evaluation is 

                                                           
5  Information overlapping in UML models means the same feature of the target system, which 

has been specified using distinct diagrams depicting different viewpoints of the same struc-
tural/behavioral characteristic. 
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affected by an aspect, the aspects weaving process modifies the generated code frag-
ments according to aspects adaptations described in the mapping rules. 

3   Mapping UML to VHDL 

As previously mentioned, to generate code from the UML model, GenERTiCA adopts 
a script-based approach, in which small scripts define how to map model elements 
into target platform constructions, generating source code fragments that are merged 
to produce source code files. The script-based code generation process improves sepa-
ration of concerns in mapping rules specification, as each script is concerned with the 
transformation of a single model element (or few of them) into source code fragment.  

Table 1. Concepts Mapping 

UML Element VHDL Element 
Class Entity-Architecture pair 
Public attribute Entity Ports 
Private attribute Signals 
Methods Processes 
Events and Message exchange Entity Ports 
Associations between classes  Entity Ports 
Inheritance VHDL key word “new” 
Static polymorphism Configuration structure 
Objects instantiation  Component structure 

 
In this sense, this work has proposed a set of mapping rules to allow VHDL code 

generation from UML models, following GenERTiCA’s approach. Table 1 shows the 
mapping from UML concepts into VHDL ones. Scripts to accomplish these transfor-
mations have been developed and inserted in an eXtensible Markup Language 
(XML)6 file, which guide GenERTiCA in the code generation process. Details on the 
created mapping rules are provided in the following sub-sections. 

Classes are mapped into VHDL entity-architecture pairs. The class parameters are 
mapped to VHDL generic statements, while public attributes to VHDL entity ports 
and private attributes to VHDL signals. The methods are mapped to VHDL processes. 
The composition relationship, which describes the composition of a system from 
components, is mapped to a VHDL port map statements. Objects are instantiated as 
component structures into other entities. Events and Messages exchanges are imple-
mented as entities ports that allow the communication between different entities and 
their processes (methods). Associations between classes are similar to the approach 
used to messages exchange, however component structures representing each associ-
ated-class (i.e. entities) are instantiated into the pair-class to accomplish the associa-
tion by the mapping of signals between these two classes. Inheritance is obtained 
making the entity or architecture declaration with the VHDL key word “tagged”, 
which means that the declaration is valid but still incomplete. Then, we declare a new 

                                                           
6  eXtensible Markup Language (XML) 1.0 (Fifth Edition). http://www.w3.org/TR/2008/REC-

xml-20081126/ 



130 T.G. Moreira et al. 

 

entity/architecture using the VHDL key word “new”, with the desired modifications. 
Static polymorphism is obtained using the VHDL configuration structure to bind the 
same VHDL component to different entities or architectures. 

3.1   Mapping Rules 

Mapping rules are specified as small scripts that create source code fragments (repre-
senting target platform constructions) from DERCS model elements. Source code 
files are made up from these generated code fragments. Scripts are stored and organ-
ized in one mapping rules file specified using the XML format. This XML file has a 
portable format allowing the specification of self-described content organized in a tree 
structure. XML tree organization facilitates scripts storage in terms of platform map-
ping rules repositories. It allows scripts to be reused in further projects that use the 
same target platform. Hence, the design effort to derive system implementation from 
an UML model is decreased.  

Scripts are located in the leaf nodes of the tree. The correct script is selected based 
on which element is being accessed by the code generation algorithm (i.e. the leaf 
node must match with the DERCS element). The code generation algorithm first iden-
tifies the type of the element. Afterwards, it tries to find the tree’s leaf that better 
represents the type of such element being evaluated. Then, it executes the script con-
tained within the found node (i.e. leaf), which will create a VHDL code fragment to 
that element being evaluated. 

The language used to describe the scripts is the well-known open source scripting 
framework called Velocity7, which defines the Velocity Template Language (VTL) 
that provides all functionalities required to assist the code generation approach im-
plementation. VTL is a Java-like scripting language, which returns a string as result of 
script execution. Thus, the generated source code fragment is obtained by means of 
accessing model information through DERCS API. 

To illustrate what is a script an example is given above. This script is responsible 
for the code generation to the classes’ methods. It generates one VHDL process for 
each method in the classes. 

01  #if ($Message.Name != $Class.Name) 
02    \n${Message.Name}: process( 
03    #if ($Message.Name == "run") 
04        clock, 
05        reset, 
06    #end 
07    #if ($Message.ParametersCount > 0) 
08        #foreach( $param in $Message.Parameters ) 
09            #if ($velocityCount > 1), #end 
10            $param.Name 
11        #end 
12    #end 
13    ) 
14    \n$Options.BlockStart 
15    #if ($Message.Name == "run") 
16        \n 
17        \nif (reset='1') then 
18        \n-- variables initialization 
19        \n 
20        \nelsif (clock'EVENT and clock='1') then 

                                                           
7 http://velocity.apache.org 
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21    #end 
22    \n$CodeGenerator.getVariablesDeclaration(0) 
23    \n$CodeGenerator.getActionsCode(1) 
24    #if ($Message.Name == "run") 
25        \n 
26        \nend if; 
27    #end 
28    \n$Options.BlockEnd process; 
29    \n 
30  #end 

3.2   Concepts 

The concepts used in this work to the transformation of UML structures into VHDL 
code are based in [9] and [14]. These works gave us some ideas on how to represent 
in VHDL the structure of classes, attributes, methods, association between classes, 
events and messages exchange, inheritance, and polymorphism.  

UML Model is object-oriented, while the VHDL code is structured. This semantic 
gap between abstraction levels hinders the mapping between these two languages. It 
may be one of the main reasons why it is very rare, until the present days, to find 
works addressing to VHDL code generation from UML models and/or any commer-
cial tool. 

From these concepts some rules have been developed and tested to this version of 
the VHDL mapping rules. They represent the first version of the mapping rules to 
provide the VHDL code generation through GenERTiCA tool. Up to now, it has been 
developed and tested mapping rules to generate VHDL code from UML classes, at-
tributes and behaviors. Their feasibility is shown in the case study of next section. 
The concepts of inheritance, polymorphism, associations between classes, etc, are 
being be implemented in the next version of this work. 

4   Case Study 

This section shows an example of automatic VHDL code generation from a UML 
model. The system under evaluation is composed by an automatic valve and the sen-
sors that give information about the valve’s states. This valve is used to regulate the 
water flow and is part of CISPI (Conduite de grands systèmes industriels à risque) 
experimental platform located at CRAN (Centre de Recherche en Automatique de 
Nancy - France). By applying the proposed approach, we intend to integrate new 
functionalities supported by a FPGA in this valve, leading to an implementation of an 
intelligent component. This intelligent component is part of a mechatronic system 
which also contains other mechanical, electronics and computational parts. The elec-
tronics and computational parts represent the control system, which is composed of 
logical functions executing in a hardware platform. Logical functions represent com-
ponents’ behavior and are usually implemented in software. This work aims at im-
plementing these logical functions as hardware. Thus the system has been specified in 
UML and its implementation has been generated as VHDL code. The generated code 
represent the hardware description of the logical and the control system parts (logical 
functions), which is executed inside of a FPGA (hardware platform). 
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The development of this case study was compliant with the AMoDE-RT approach 
defined in the section III. Then, the first step was to gather the requirements and cre-
ate a use case diagram to identify system’s services and the actors that interact with 
the system. Only two actors were considered. The “User” actor request services to 
open and close the valve, while the “Maintenance Operator” actor requests services to 
know the number of times the valve performed opening and closing actions. Informa-
tion about these numbers is used for assessing the component physical heath.   

The second step was to create class and sequence diagrams. The class diagram has 
been built from the knowledge acquired in the use case. It represents the system’s 
structure. All services have been modeled as classes. These classes work together to 
provide the system’s services. They are enclosed by a main class responsible for all 
system. No DERAF aspects have been used to deal with non-functional requirements, 
and hence, no ACOD and JPDD diagrams have been created.  

Services are modeled as sequences of actions in sequence diagrams. Sequence dia-
grams represent the exchange of messages between the objects that compose the sys-
tem in order to represent the expected system behavior. Each service demanded by the 
actors results in the execution of one or many sequence diagrams. Fig. 2 depicts a part 
of the main sequence diagram of valve’s system related to the service solicitations. 

 

Fig. 2. Sequence diagram of the main function in the valve’s system 

The rule implementing the association between classes was not developed in this 
first version of the mapping rules. Thus, all this case study was re-modeled as just one 
class and one method. From these new diagrams the feasibility of the system could be 
tested and the 3rd and 4th steps performed. The mapping has transformed the UML 
class and sequence diagrams into one single VHDL file, which contains an entity-
architecture pair declaration. The UML class is represented by the entity-architecture 
pair, while the UML behavior (method) is represented by a VHDL process inside of 
the architecture. 
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The code that appears in fig. 3 is the result of the automatic code generation per-
formed by the mapping rules proposed in this work. This first test generated code for 
only one embedded component. For this component have been automatically gener-
ated 80 lines of VHDL code, covering 100% of the needed code for the application. 
This component is simple and its model was developed on only one UML class, how-
ever the results are encouraging for future works.  

The real feasibility of the VHDL code can be tested quickly, since this code can be 
synthesized in the resulting bitstream uploaded in a FPGA development platform, 
such as Virtex-II PRO (V2-Pro) development system by Digilent8. 

 

Fig. 3. VHDL code representing the architecture declaration and run method initial part 

5   Related Works 

This section discusses some projects and commercial tools that propose transformations 
from UML specifications to source code VHDL. Among these works different ap-
proaches to generate source code from UML models have been found. Some use only 
one diagram (e.g. class diagram) to generate code, while others use a combination of 

                                                           
8 Digilent Inc. www.digilentinc.com 
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distinct diagrams (e.g. class and state diagrams, sequence and/or activities diagrams) 
[8]. Thus the presented related works generate code ranging from classes skeletons to 
code containing system elements behavior.  

In [9], a framework has been developed to derive VHDL specifications from 
UML’s class and state diagrams. They use homomorphic mappings between dissimi-
lar structures while preserving metamodel class associations in a way that resembles 
MDA technique. However, their generated VHDL code focuses on simulation and 
verification of UML models rather than on hardware synthesis. 

An interesting work has been developed in [10], in which the MODCO tool is pre-
sented. It uses MDA techniques to define high-level model-based system descriptions 
that can be implemented in either hardware or software. Thus it can transform UML 
state diagrams directly into synthesizable VHDL. State machines in UML are used to 
describe the behavior of a part of a system. However, the complete code is generated 
for the behavior. Functional requirements are mapped to UML component, class, use 
case and state diagrams. Non-functional requirements are specified as UML annota-
tions that describe performance constraints using property-value pairs defined by 
UML profiles. However, the authors targeted flat state-transition diagrams without 
supporting hierarchy and concurrency, and also only covering a small subset of UML 
state diagram constructs. 

In [11], they have developed a framework for deriving VHDL specifications from 
UML state diagrams, and also a set of rules, which enable automated generation of 
synthesizable VHDL code from UML. Their engineering process is based on meta-
models. Concepts of the UML state diagram metamodel are mapped onto concepts of 
the VHDL metamodel. There are two transformations between models, happening in 
the following way: the first transformation converts the main UML model into state 
diagram models; and the second one maps the state diagram models onto concepts in 
the VHDL language. A model-to-text transformation is used to generate synthesizable 
VHDL code from the VHDL model.  

Two commercial tools to generate VHDL code could also be found. StateCAD9 by 
Xilinx is a graphical entry tool for digital design that has its own graphical notation to 
represent state diagrams as bubble diagrams. StateCAD automatically generates HDL 
(VHDL and Verilog) code, for simulation and also synthesis, directly from these state 
diagrams. The other tool is Simulink HDL Coder10 by MathWorks, which generates 
synthesizable VHDL and Verilog code from simulink models, stateflow charts, and 
embedded Matlab code. Simulink HDL Coder also generates simulation and synthesis 
scripts, enabling to simulate and synthesize quickly the developed design. These 
commercial tools do not generate VHDL code from UML specifications. 

The approach proposed in [11] realizes the mapping between models, similarly to 
other MDE techniques. In [10], there is a separation of the functional and non-
functional requirements in the modeling stage using distinct UML diagrams. These 
mentioned works are limited, because they cover a specific subset of the UML struc-
tures, and also use only the UML state diagrams. By using GenERTiCA the designer 
can use distinct UML diagrams, combining them to specify the full functionality in 
terms of structure, behavior and non-functional requirements handling, since some 

                                                           
9  http://www.xilinx.com/ 
10  http://www.mathworks.com/products/slhdlcoder/ 
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guidelines are followed. These guidelines are simple and intuitive, allowing designers 
to separate the functional and non-functional requirements. Moreover, by using the 
extension proposed in this work, it is possible to generate code for VHDL and also for 
the Java and C++ languages from the same model. 

6   Conclusions 

This work addresses the problem of generating HDL descriptions from UML models. 
It presented the initial set of mapping rules to generate VHDL code from class and 
sequence diagrams, using GenERTiCA tool. To achieve this goal, is has been pro-
posed a mapping from object-oriented concepts supported in UML into concepts used 
by VHDL. Then, a set of mapping rules (used by GenERTiCA to generate VHDL 
code) has been developed.  These rules extend the functionality of GenERTiCA tool, 
allowing it to generate HDL code in addition to software source code. Besides, this 
paper has described all steps of the proposed approach that must be followed to gen-
erate automatically VHDL descriptions.  

To demonstrate the proposed approach, a case study has been presented. It showed 
a small part of a maintenance system, i.e. automatic control of a valve implemented as 
a Smart Component. As mentioned mapping rules have been implemented and tested 
to produce VHDL code from UML’s classes, attributes and behavior. Results shown 
that, for developing simple systems, 100% of the necessary code could be generated. 
Hence, despite the case study’s size, the results are considered satisfactory since we 
see great potential to scale the approach to more complex systems. 

To continue this work the following direction will be pursued: to complete the 
rules needed for the code generation of VHDL structures. The concepts of inheri-
tance, polymorphism, associations between classes are very important to be able the 
modeling of complex systems; to develop the rules for the non-functional require-
ments implemented by aspects; to test and to prove the new rules; to perform more 
tests with FPGA boards; to apply the proposed approach in a complex real system, 
such as an industrial maintenance and prognostic systems. 
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Abstract. Increasingly, embedded systems designers tend to use Appli-

cation Specific Instruction Set Processors (ASIPs) during the design of

application specific systems. However, one of the design metrics of em-

bedded systems is the time to market of a product, which includes the

design time of an embedded processor, is an important consideration in

the deployment of ASIPs. While the design time of an ASIP is very short

compared to an ASIC it is longer than when using a general purpose pro-

cessor. There exist a number of tools which expedite this design process,

and they could be divided into two: first, tools that automatically gener-

ate HDL descriptions of the processor for both simulation and synthesis;

and second, tools that generate instruction set simulators for the simula-

tion of the hardware models. While the first one is useful to measure the

critical path of the design, die area, etc. they are extremely slow for simu-

lating real world software applications. At the same time, the instruction

set simulators are fast for simulating real world software applications, but

they fail to provide information so readily available from the HDL mod-

els. The framework presented in this paper, RACE, addresses this issue

by integrating an automatic HDL generator with a well-known instruction

set simulator. Therefore, embedded systems designers who use our RACE

framework will have the benefits of both a fast instruction set simulation

and rapid hardware synthesis at the same time.

Keywords: Design Automation, Simulation, Synthesis.

1 Introduction

Embedded systems are ubiquitous, and are present in low-end systems such as
wireless handsets, networked sensors, and smart cards, to high-end systems such
as network routers, gateways, firewalls, and servers. Embedded systems are seen
as application specific equipment and they differ from general purpose comput-
ing machinery since they execute a single application or a class of applications
repeatedly.
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The heart of an embedded system is usually implemented using either general
purpose processors, ASICs or a combination of both. General Purpose Proces-
sors (GPPs) are programmable, but consume more power than ASICs. Reduced
time to market and minimized risk are factors which favour the use of GPPs in
embedded systems. ASICs, on the other hand, cost a great deal to design and
are nonprogrammable, making upgradability impossible. However, ASICs have
reduced power consumption and are smaller than GPPs.

Recently a new entrant called the Application Specific Instruction-set Proces-
sor (ASIP) has taken centre stage as an alternative contender for implementing
functionalities in embedded systems. These are processors with specialized in-
structions, selected co-processors, and parameterized caches applicable only to
a particular program or a class of programs. An ASIP will execute an applica-
tion for which it was designed with great efficiency, though they are capable of
executing any other program (usually with reduced efficiency). ASIPs are pro-
grammable, quick to design and consume less power than GPPs (though more
than ASICs). ASIPs in particular are suited for utilization in embedded systems
where customization allows increased performance, yet reduces power consump-
tion by not having unnecessary functional units. Programmability allows the
ability to upgrade, and reduces software design time. Tools and customizable
processors such as ASIPmeister [1], Xtensa [2], LISATek [3], ARCtangent [4],
Jazz [5], Nios [6], and SP5-flex [7] allow rapid creation of ASIPs. The advent of
tools to create ASIPs has greatly enhanced the ability to reduce design turn-
around time.

However, there exists a limitation. The tools listed above except the one pre-
sented in [4] will either generate the hardware description language (HDL) model
of the embedded processor or a model where only Instruction Set Simulation
(ISS) could be performed. The HDL models are good for precise synthesis and
power measurement of the processor, but fail to provide fast simulation results
such as the clock cycle count of an application that runs on such a model. The
ISS models are good for faster simulation of applications, but fail to provide
synthesis results which are essential in embedded system design. Even though
tools such as the one from Tensilica [2] try to address this issue, they do not pro-
vide the flexibility (such as accurate power measurement using the HDL model,
full control of the instruction set of the processor, etc.) expected in other ASIP
design tools such as ASIPmeister.

In this paper, we present a framework, named RACE, which provides both
an ISS model for fast simulation and an HDL description for fast synthesis of an
embedded processor during its design. We make use of ASIPmeister [1], an auto-
matic processor generation tool for preparing the HDL model and SimpleScalar
tool-set [8] for preparing the ISS model. The detail of how these are integrated
to form the RACE framework is discussed in this paper.

The rest of this paper is organised as follows. Section 2 summarizes the previ-
ous work related to embedded processor simulation and synthesis. Section 3 de-
tails our framework. Section 4 explains how our framework incorporates processor
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customization and Section 5 discusses a typical experimental setup of our frame-
work. Finally, Section 6 concludes the paper.

2 Related Work

With the demand for shorter design turnaround times, many commercial and
research organizations have provided base processor cores, so that fewer modifi-
cations have to be made on the design to achieve particular performance require-
ments. This has led to the emergence of reconfigurable and extensible processors.
Xtensa [2], Jazz [5] and PEAS-III (used by ASIPmeister) [1] are examples of pro-
cessor template based approaches which build ASIPs around base processors.

Xtensa [2] is a configurable and scalable RISC core. It provides both 24-bit
and 16-bit instructions to freely mix at a fine granularity. The base processor
supports 80 base instructions of the Xtensa Instruction Set Architecture (ISA)
with a 5-stage pipe-line. New functional units and extensible instructions can be
added using the Tensilica Instruction Extension (TIE) language. Synthesizable
code can be obtained together with the software tools for various architectures
implemented with Xtensa. However, it fails to provide the flexibility for altering
the base processor.

The Jazz Processor [5] permits the modelling and simulation of a system con-
sisting of multiple processors, memories and peripherals. Data width, number
of registers, depth of hardware task queue, and addition of custom functionality
are its input parameters. It has a base ISA which supports addition of extensi-
ble instructions to further optimize the core for specific applications. The Jazz
processor has a 2-stage instruction pipeline, single cycle execution units and sup-
ports interrupts with different priority levels. Users are able to select between
16-bit or 32-bit data paths. It also has a broad selection of optional 16-bit or
32-bit DSP execution units which are fully tested and ready to be included in
the design. However, Jazz is suitable only for VLIW and DSP architectures.

ASIPmeister [1] is able to capture a target processors specification using a
GUI. A micro-operation level simulation model and RTL description for logic
synthesis can be generated along with software tool chain. It provides support
for any RISC architecture type and a library of configurable components. The
core produced follows the Harvard style memory architecture. Even though it
provides both the simulation and the synthesisable models, the simulation model
could only be used with an HDL simulator such as ModelSim and therefore, real
world applications will take hours (if not days) for simulation. Researchers have
proposed extensions to ASIPmeister, such as the one presented in [9], so that
it could be used as a fully fledged simulation system with system call support,
file handling, etc. However, they failed to solve the problem of the extended
simulation time taken to simulate real world applications as explained earlier.

The RACE framework we propose here uses similar techniques to that of [9]
to generate the synthesis model of the processor. However, we propose to use
an independent instruction set simulator which is derived from the SimpleScalar
tool-set [8] for faster simulation of the same processor. We show how the instruc-
tion sets could be altered (reduced/amended/added) in both the simulation and
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the synthesis models of a target processor by taking PISA, the ISA used in the
SimpleScalar tool-set as an example.

Therefore, in summary, the contributions are:

– a framework that performs both fast simulation and synthesis of an embed-
ded processor model; a fully flexible and rapid ASIP design flow based on
our framework; and,

– a scheme on how an instruction set could be altered to explore the design
space of both the simulation and synthesisable models.

However, there exist the following limitations:

– Designing the initial models of the processors might take a longer time (a
day or two to a familiar designer). However, this is a one-time process and
the same model could be used later for rapid design development.

– It is assumed that the compiler tool-set is available as open source for the
instruction set used in the design.

3 The RACE Framework

RACE is a hardware-software co-design framework, where both the software
binary of a target application as well as the hardware model to run such a
binary are designed and implemented. In this section, we explain the process of
software binary generation a target ISA, and then we describe the generation of
the hardware models, for instruction set simulation and for synthesis.

3.1 Software Generation

SimpleScalar cross compiler (such as sslittle-na-sstrix-gcc) is used to generate the
instruction and the data memory dump (we call it the binary) from the application
program. In the HDL models, both memories will communicate with the CPU
model to function as a complete processor, executing the program. Further details
on the memory generation can be found in an earlier publication [9].

Figure 1 depicts the typical software generation process. A C/C++ applica-
tion is compiled to the target binary by using the SimpleScaler compiler tool-set
using a cross compiler.

As depicted in Figure 1, if necessary, support for new instructions (to the ISA)
is added to the assembler of the SimpleScalar cross compiler. Given that the cross
compiler is a derivative of the well understood open source GNU/GCC compiler
tool-chain; this task can be performed with relative ease. When the support for
new instructions is available in the assembler, application programs can be writ-
ten either in a higher level language like C with inline assembly (for new instruc-
tions) or in the target assembly language by using the new instructions. Here, the
new instructions will both be designed and inserted (to the application) manually
by the designer. Even though, this could be considered a limitation of the RACE
framework (as pointed out earlier under limitations), we argue that it gives better
control of the design flow to the designer. If absolutely necessary, support for such
automation can be established by extending the compiler tool-set.
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Fig. 1. The software generation process: Support for new instructions can be added to

the assembler and programs can be written with either in-lined or added new assembly

instructions

3.2 Hardware Generation for Simulation

Figure 2 depicts the generation process of hardware models in RACE framework.
As depicted, RACE framework generates three hardware models of an ASIP from
two input set of specifications.

All three models depicted as derived in Figure 2 can be used for simulation of
an application program. However, as these three models vary in the level of detail
used for implementing the hardware, the times taken to perform the simulation
vary significantly. For example, while a typical embedded system application
would take days (if not weeks) to be simulated using gate level simulation, it
can be done in seconds or minutes using an instruction level simulation.

Therefore, the RACE framework uses the ISS to run complete application
program simulations. Given that these simulations are cycle accurate, they will
be used to count the number of clock cycles taken to simulate applications. The
number of clock cycles along with the clock period (that is calculated from the
synthesis discussed in the next subsection) is used to compute the execution
time of an application, one of the main design metrics of any ASIP design.

SimpleSim, the ISS of the SimpleScalar tool-set is used to derive the ISS
for RACE. The modular design of SimpleSim allows us to add/remove/amend
instructions of the target ISA. As depicted on the right hand side of Figure 2,
the machine.def file of SimpleSim is altered to change the target ISA.

3.3 Hardware Generation for Synthesis

An ASIP design tool, ASIPmeister, generates a model in HDL (both gate level
and behaviour models) for a given ISA. As shown on the left side of Figure 2,
to generate a processor using ASIPmeister, the first step is to create a suitable
description of the processor, including the hardware resources (such as register
file, ALU, divider, etc.) and pipeline stages. The instructions, their formats and
addressing modes and the tasks to be performed by each instruction at run-time
are defined as micro-operations (RTL operations), where each pipeline stage of
the instruction is coded.
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Fig. 2. The generation process of hardware models: On the left side is the HDL gener-

ation (both gate [ASIP - Gate Level Model] and behavioural [ASIP - Behaviour Model]

models) with the help of ASIPmeister and on the right is the ISS generation for cycle

accurate simulation

RACE uses the Portable Instruction Set Architecture (PISA: as implemented
in SimpleScalar tool-set [8]) as its base processor. However, the base ISA could be
of any other RISC processor. When the processor models (both gate level and
behavioural) are generated, they are integrated with HDL models of memory
modules to complete the ASIP models. Additional hardware can now be added
to the design such as cache and memory mapped I/O.

4 Customized ASIPs

When the base models are designed in RACE, they can be customized in a
number of ways either to explore the design space with different configurations
or to add a totally different domain of tasks (such as instruction changes to
perform security checks [11]) to the models. We discuss such customizations in
this section.

Most of the applications hardly utilize the whole instruction set of a processor,
thus the need for ASIPs. If an application does not need a specific instruction, it
would be quite useful to turn off that instruction from the processor. This will re-
duce the area usage and power consumption, benefiting an embedded system [9].
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ASIPs are famous for ’special instructions’, instructions that are not available
in the base ISA. RACE allows its users to have their own instructions. Special
instructions can be utilized to add new customized hardware modules to perform
repeated tasks and therefore make the processing faster [11].

5 Simulation and Synthesis Setup

Figure 3 depicts the simulation and synthesis setup used by RACE framework.
The behavioural model is typically used during the design stage for debugging
and testing of the ASIP (by performing simulation in ModelSim). The debugging
and testing is performed by running test applications to cover all the instructions
in our target ASIP. The completed gate level model is used with Synopsys Design
Compiler to create the synthesized version, which is ready to be fabricated. The
software binary is an input to the synthesis model, by which the memory size of
the ASIP can be computed. Synthesis reports include power consumption, clock
period and, area in gates and cells.

Software 
Binary

Derived SimpleSim

ModelSim

ASIP ‐ Behavioural 
Model

ASIP ‐ Gate Level 
Model

Synopsys Design 
Compiler

CC Count

Verified ASIP 
Model

Die Area, Clock 
Period, Power

Fig. 3. Simulation and Synthesis: Simulations are performed by using the SimpleSim

ISS and ModelSim. Synthesis is performed by using Synopsys Design Compiler.

Simulation is performed with SimpleSim to count the number of clock cycles
(CC) particular software binaries would take. CC is multiplied by clock period
(a metric computed from the synthesis using Synopsys Design Compiler) to
compute the total execution time of the application.

Comparing the design time of large design problems with and without the
RACE framework is currently being performed. We propose this as a future
work for this paper.

6 Conclusion

In this paper, we reported RACE, a simulation and synthesis framework for
rapid hardware-software co-design of ASIPs. RACE framework integrates an
automatic HDL generator with a well-known instruction set simulator to support
rapid processor development.
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Abstract. In this article, we present a flexible simulation environment for em-
bedded real-time software refinement by a mixed level cosimulation. For this,
we combine the native speed of an abstract real-time operating system (RTOS)
model in SystemC with dynamic binary translation for fast Instruction Set Sim-
ulation (ISS) by QEMU. In order to support stepwise RTOS software refinement
from system level to the target software, each task can be separately migrated
between the native execution and the ISS. By adapting the dynamic binary trans-
lation approach to an efficient but yet very accurate synchronization scheme the
overhead of QEMU user mode execution is only factor two compared to native
SystemC. Furthermore, the simulation speed increases almost linearly according
to the utilization of the task set abstracted by the native execution. Hereby, the
simulation time can be considerably reduced by cosimulating just a subset of
tasks on QEMU.

1 Introduction

The introduction of RTOS models raised the level of software-aware abstraction to true
electronic system level designs. Today, real-time properties of even very complex de-
signs with several CPUs can be verified efficiently. For this, RTOS models typically
wrap the native execution of functionally segmented C code in a system level design
language like SystemC[1] or SpecC[8]. Hereby, RTOS services are provided by means
of an application programming interface (API) and task synchronization is achieved
by implementing dedicated real-time scheduling policies. For timing analysis and es-
timation, software is partitioned into segments which are back annotated by timing
information.

For this, the execution time of software tasks, functions, and basic blocks, i.e., linear
code segments followed by a branch instruction, is either measured on the target CPU
or retrieved from a static timing analysis. Sometimes, the timing information for the
functional segments is not available as due to intellectual property protection the C code
is not accessible. Then, an abstract RTOS simulation which requires the partitioning and
annotation of the code cannot be applied. In such a case, the application software and
RTOS has to be completely simulated by an Instruction Set Simulator (ISS). Since an
ISS usually comes with a slow execution speed, it is not possible to efficiently perform
detailed analysis.

Therefore, we developed a new approach to combine the benefit of the ISS with the
speed of the RTOS abstraction. Our approach applies a clear separation of the software
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and the operating system along the natural interface of system calls and to clearly dis-
tinguish application software from the operating and its services. Application software
typically runs in user space with unprivileged user mode access. Only through system
calls the software can get kernel mode access to the kernel space. In contrast, system
services and drivers have to run in kernel space for kernel mode access for the execution
of privileged instructions for full access to the hardware.

To reach a high simulation speed, we use the open source QEMU software emulator
[5] for instruction set simulation in combination with SystemC since it provides fast ex-
ecution of cross-compiled target code due to an advanced dynamic binary translation.
Combined with a fast execution time estimation approach and an efficient synchroniza-
tion scheme, we achieve a much higher simulation speed than cosimulations of SystemC
with a traditional ISS.

In the first refinement levels, the kernel space is abstracted by an abstract RTOS
model. By combining it with user mode QEMU emulations, for each user space task it
can be separately decided whether to be executed natively or to be coexecuted on the tar-
get Instruction Set Architecture (ISA) under QEMU. As such, software task refinement
from system level towards firmware is smoothly supported as depicted by Figure 1.
The task refinement starts from a) native SystemC and is then refined via b) mixed user
space (i.e., subsets of tasks coexecuting on ISS) to c) the user space emulation (i.e., all
tasks coexecuting on ISS) and finally arriving at d) the full system emulation including
the complete target RTOS kernel and kernel space drivers.

Fig. 1. RTOS software refinement

The remainder of this article is organized as follows. Section 2 describes recent re-
search in the field of RTOS simulation. Section 3 introduces the concepts of our sim-
ulation environment providing basic concepts of the mixed level simulation. Section 4
underlines the feasibility and efficiency of our mixed level simulation levels with some
experimental results. Finally, Section 5 concludes with a summary.

2 Related Work

We can find several related work in the areas of RTOS simulation and RTOS software
refinement methodologies.

Early work by Hassan et al. [11] outlines a simple RTOS simulation in SystemC,
where specific schedulers can be derived from a basic class. They model processes by
a 1-safe Petri-Net with atomic transitions annotated by time and power consumption.
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Individual state transitions are triggered by the μ-ITRON-OS-based RTOS kernel μ-
Itron via round-robin scheduling, and I/O operations call hardware operations via a bus
functional model. They do not consider interrupt management.

Krause et al. [12] present a tool-based approach for system refinement with RTOS
generation. Stepwise refinement covers abstraction levels from CP (Communicating
Processes) to CA (Cycle Accurate) models. In the context of the PORTOS (POrting
to RTOS) tool, they introduce the mapping of individual SystemC primitives to RTOS
functions. Mapping to different target architectures is implemented by a macro defini-
tion. PORTOS is configured by a XML specification characterizing the individual target
platforms.

Destro et al. [7] introduce a refinement for multi-processor architectures in SystemC
with a mapping from SystemC primitives to POSIX function calls. Starting from func-
tional SystemC, first processor allocation and then HW/SW partitioning are performed.
A final step maps SystemC to a cosimulation of hardware in SystemC and software run-
ning on top of an RTOS. After the mapping hardware threads are executed by a specific
SystemC compliant hardware scheduler.

Posadas et al. [15] have published several articles on RTOS simulation. They intro-
duce concepts of their freely available SystemC RTOS library PERFidiX, which covers
approximately 70% of the POSIX standard. They report a gain in simulation speed w.r.t.
ISS of more than 142 times in one of their first publications, including a 2x overhead in
speed due to their operator overloading.

RTOS simulation with time annotated segments is either based on on a standard
RTOS API, like the previous approach, or an abstract canonical RTOS. Gerstlauer et al.
[9] implemented a canonical RTOS in SpecC. More details of that SpecC library were
outlined by Yu [18], who also introduced an approach for SoC software development
and evaluation of different scheduling algorithms and their impact on HW/SW parti-
tioning in early design phases. Communication between tasks, including interrupts, is
based on events. ISRs are modeled as tasks. Since task scheduling is implemented on
top of the non-preemptive SpecC simulation kernel, simulations may give inaccurate
results, which has most recently been resolved by Schirner and Doemer [16].

However, interrupts are still modeled as high priority tasks and have to apply the
same scheduling algorithm as the software scheduler. Our SystemC RTOS model [19]
follows [9] but overcomes the limited interrupt modeling accuracy by means of provid-
ing dedicated schedulers for tasks and ISRs.

In [3] we additionally proposed a four level RTOS and communication refinement
flow for TLM2.0-based designs comprising our SystemC RTOS model and the QEMU
system emulator for ISS cosimulation. There are some other existing approaches us-
ing QEMU dynamic binary translation for ISS. For instance, the GreenSoCs project
QEMU-SystemC [14] combines SystemC and QEMU in a HW/SW cosimulation by
providing a TLM interface for device driver development of memory mapped SystemC
HW descriptions. In [10] the authors extend the QEMU dynamic binary translation
by an approximate cycle-count estimation for fast performance evaluation in MPSoC
designs. They also consider precise simulation of cache effects in MPSoCs by substi-
tuting the internal memory model of QEMU with an external cache and memory model
in SystemC.
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Some work can be found considering the combination of RTOS models and ISS.
For instance, Krause et al. [13] combined an abstract SystemC RTOS model with the
SimpleScalar ISS for target software evaluation. For this, they provide a virtual pro-
totyping environment that abstracts the scheduling and context switching by their Sys-
temC RTOS model whereas the residual software parts keep running on the cosimulated
SimpleScalar ISS.

3 RTOS Simulation Environment

We introduce a mixed level RTOS-aware cosimulation environment with a refinement
from an abstract RTOS model towards a cycle-accurate simulation of the instruction set
on the basis of a per-task refinement, i.e., an independent refinement of each applica-
tion task from the abstract description in SystemC towards a target-specific firmware
binary. At the same time, the refinement of abstract RTOS services to the target RTOS
is provided by a stepwise migration of RTOS primitives like task scheduling, I/O, and
task communication from the abstract RTOS model to user mode emulation. Finally,
the abstracted kernel is seamlessly replaced by the kernel of the target operating system
in order to run a full system cosimulation.

QEMUTaskWrapper::Task() {
do {

wait(); // For task activation
while(!END_OF_TASK) {

switch(QEMU->execute()) { 
case NEED SYNCHRONIZATION:case NEED_SYNCHRONIZATION:

RTOS->sync(QEMU->delay); break;
case SYSCALL_EXCEPTION:

RTOS->syscall(&QEMU->env); break;
...   
}

}
} while (true);

}

Fig. 2. Mixed level simulation by QEMU task wrapper

For mixed level cosimulation, we combine our in-house SystemC aRTOS library
with the QEMU emulator at the system call interface. The abstract RTOS model ab-
stracts the kernel space whereas QEMU emulates user space on an instruction and reg-
ister accurate CPU abstraction. For this, each software task is wrapped into its own
QEMU user mode emulator under control of an SC T HREAD.
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Since QEMU has no notion of an execution time, we use a dynamic estimation ap-
proach for cycle-approximation during binary translation. Execution time estimation of
each task is considered by the SystemC aRTOS model as a delay annotation for its rep-
resenting SC THREAD. Then, the QEMU execution is synchronized along the RTOS
scheduling policy. In order to reduce the synchronization overhead due to cosimulation,
context switching and task preemption is abstracted in the aRTOS model by means of
an efficient synchronization scheme that still provides precise interrupt simulation.

Figure 2 depicts our mixed level cosimulation environment with non-native tasks
connected with native tasks together for a common RTOS model in SystemC. For this,
each non-native task is wrapped by a QEMU wrapper module providing interfaces to
the RTOS model and SystemC HW models. The QEMU wrapper provides the synchro-
nization with the RTOS model by means of task execution control, system call han-
dling, and I/O via TLM-interfaced HW models. The core of the QEMU wrapper is the
SC T HREAD that controls the main execution loop of a QEMU CPU. Execution delays
are estimated during binary translation and used for the synchronization by calling the
RTOS model sync() function invoking a call to the aRTOS CONSUME CPU T IME()
function to define a task’s execution time.

3.1 Dynamic Binary Translation

A suitable simulation model always has to consider the trade-off between accuracy and
performance. Sometimes fast simulation is more important than cycle-true accuracy.
This is especially during the early design phase of a complex system with a bunch of
CPUs. Thus, we postpone the use of traditional cycle-accurate CPU models to a later
refinement step since their use results in a slowdown in runtime by several orders of
magnitude. Instead, we use QEMU as an instruction and register accurate abstraction
of the target CPU to trade-off some accuracy for performance gain.

QEMU is a software emulator which is based on a dynamic binary translation for
efficient conversion of a target Instruction Set Architecture (ISA) into a host ISA with
the support of multiple platforms, e.g., ARM, PowerPC, MIPS, or Microblaze. The
effort of porting QEMU to new target and host platforms is minimized by means of
mapping instructions to an intermediate code, i.e., a canonical set of micro operations.

For the binary translation, target code is considered on Basic Block (BB) level, i.e.,
linear code segments until a final branch instruction. QEMU uses a dynamic code gen-
erator to translate BBs at run-time by means of concatenating precompiled host code
segments. For faster execution, Translated Basic Blocks (TB) are stored in a TB cache.
Then, the major translation effort is just chaining TBs from cache and patching the
instruction operands.

Dynamic binary translation is widely used in a variety of hardware virtualization
tools, e.g., Bochs or Sun’s VirtualBox. However, QEMU supersedes them and combines
some unique features that makes it particularly applicable for our purpose. In general,
QEMU can operate in two system modes: user mode and full system mode. The user
mode supports user space emulation of a single task on top of a Linux process. The
full system mode includes an entire target platform with I/O and kernel space for an
operating system and driver execution.



150 M. Becker, H. Zabel, and W. Mueller

3.2 Dynamic Execution Time Estimation

Instruction Set Simulators are widely used to estimate target SW performance in a vir-
tual prototyping environment. ISS can be either cycle-accurate by using CPU models
on Register Transfer Level (RTL) or they can be instruction accurate by using an in-
terpretive simulator. In contrast, QEMU uses binary translation avoiding cycle-accurate
CPU models and interpretive execution.

As we can reach significantly higher simulation speeds with the binary translation
compared to cycle-accurate ISS models, we do not aim at a cycle-true accuracy. Since
QEMU does not provide execution times for the executed code, following the concepts
of [10], we extended QEMU by an efficient dynamic estimation approach for cycle-
approximate timed execution.

The estimation approach is tightly related to the binary translation. It comprises two
levels. In the first phase, each time QEMU encounters a new BB, a static timing analysis
of the target code is performed. For this, cycle count values are accumulated for each BB
during binary translation. Cycle count values per instruction can be derived from either
the CPU specification or by means of estimating average values. In order to reduce the
error of dynamic instruction delays, e.g., due to branch misprediction or cache misses,
special code can be inserted at the cost of an increased overhead to resolve the error
during execution by means of accumulating some extra amount of cycles.

Obviously, the accuracy and efficiency of the estimation approach depends on the
complexity of the target platform. In order to achieve predictable systems, most em-
bedded platforms use simple RISC CPUs and avoid multi-staged pipelines with caches.
Thus, accumulating a static amount of cycles per instruction is a reasonable abstraction
to avoid complex and time-consuming cycle-accurate CPU models.

3.3 Inter-task Communication and I/O

Modern CPUs with RTOS provide several ways for tasks to communicate with their
environment, e.g., inter-task communication via kernel primitives or shared memory
access. I/O devices can be accessed via memory mapping, i.e., I/O registers connected
to a CPU bus are mapped into the CPU address space. Some CPUs also provide special
operations for direct access to I/O ports.

Our cosimulation environment supports mixed level task simulation, i.e., cosimu-
lated ISS tasks coexecute together with native tasks on top of a SystemC aRTOS model.
For task communication support, we need to define data exchange interfaces between
the different simulation models. Exchanging data via kernel space primitives is covered
by the syscall translator since each kernel communication invokes a call to the system
call interface. Here, we catch system calls from user mode that are passed through by
the QEMU by translating the Application Binary Interface (ABI) specific calls from
user mode emulation and mapping them to the aRTOS model API.

Communication via shared memory is either provided at compile-time or dynami-
cally using a kernel API. The memory access itself is performed via simple memory
operations in user mode. Thus, we must provide a mechanism to redirect shared mem-
ory access to a common memory model in order to synchronize shared data between
SystemC tasks and QEMU tasks. QEMU provides an API to add memory-mapped
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I/O (MMIO) in order to interface HW models written in C. This feature allows to in-
clude shared memory models that can be accessed from within QEMU and also from
SystemC.

Task I/O can be realized in a similar way. For MMIO, hardware models can be con-
nected via a memory-mapped TLM transactor using the same mechanism as for shared
memory simulation. Communication via I/O port accessing CPU operations can be
caught and redirected to the TLM transactor via function calls that are inserted dur-
ing the binary code translation.

3.4 Synchronization and Task Preemption

Precise simulation of interrupts and task preemption is crucial for a sufficient accuracy
with respect to the sequence of data accesses and response times analysis. The simula-
tion of an aRTOS model and user space emulation need to be synchronized from time
to time since this is the only possibility to yield over control to the RTOS kernel thus
allowing the scheduler to preempt task execution. Hence, task preemption granularity
is tightly related to the synchronization scheme used by the cosimulation.

Since lock-step synchronization is usually a major reason for performance decrease
in cosimulation, we partition the software code of a task into more coarse-grained seg-
ments for their timing annotation. For this, we apply our causality-true preemption
scheme[4] that is comparable to the approach described in [17]. It abstracts the real
preemptive behavior by enforcing a synchronization only for a task interaction, e.g.,
system calls, I/O, and shared memory access. Thus, the functional execution of a task
can only be preempted at interaction points. The estimated execution time between
two interaction points is considered in the RTOS model by means of a cycle delay
annotation.

This is extremely efficient in combination with the dynamic estimation approach de-
scribed in Section 3.2 since multiple TBs can be comprised in one execution segment
and TB time estimations can be accumulated to a single delay annotation. In the case
that all task interaction can be detected during simulation, the application of our syn-
chronization scheme does not influence the causal order in their execution.

QEMU supports two execution modes. In single-step mode, QEMU returns from
its execution loop after each target instruction to check whether there are pending in-
terrupts to be handled. In default mode, interrupts are asynchronously triggered and
QEMU checks for interrupts only at TB level. This is much more efficient due to the
internal TB caching. Along our synchronization scheme, interrupts must be checked
before task interaction. Thus, the BB translation must be extended in order to ensure
interaction points to be always on the border of a TB. For this, we modified QEMU to
finish a TB not only at branch instructions (which is the common understanding of a
basic block) but also when an interaction is detected.

Figure 3 compares the different levels of functional segmentation for delay annotated
simulation including our modified TB level denoted as TB*. The difference between BB
and TB* levels is that there are additional cuts whenever there is a task communication.
These cuts refer to a synchronization between the ISS and the RTOS model so that all
TBs in between are comprised to a single execution segment.
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Fig. 3. Comparison of functional segmentation levels

Basically, interaction detection is covered by the task communication interfaces de-
scribed in Section 3.3. Nevertheless, BB translation cannot distinguish between mem-
ory operations referring to a memory register and those referring to a I/O register since
it depends on the instruction operands that are updated during TB chaining. Therefore,
as our modified BB translator has no detailed knowledge about I/O, it pessimistically
cuts a TB at each memory operation in order to maintain full interrupt accuracy. This
may result in a performance decrease due to less efficient TB caching. However, in
system level design the system communication is explicitly modeled and refined in a
top-down strategy. As such I/O can be derived from a more abstract model to expose
potential I/O operations to the BB translation (see Figure 4).

Fig. 4. Modified basic block translation (adapted from [10])

In order to obtain accurate output for scheduling analysis, the aRTOS model uses
an interruptible wait algorithm to hide the abstracted preemption behavior. For this, the
delay annotation of a segment is split according to the scheduling policy considering
the true preemption behavior on a real target, i.e., true number of preemptions, true
preemption point in time, and also the true context switching overhead.

4 Experimental Results

In order to show the feasibility and efficiency of our approach, we applied our
simulation environment to the stepwise refinement of an example composed of two
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computation intensive software tasks running at 100% utilization of the processor. Task
1 iteratively computes prime numbers. Task 2 recursively computes faculties of n. The
task set is scheduled by a fixed priority scheduler and their execution is synchronized
through kernel signals.

Along the refinement introduced in Section 1, we executed several experiments (see
Table 1). The first experiment executes the example on top of a native SystemC sim-
ulation using our SystemC RTOS library aRTOS. For this, the application C code is
wrapped by SC T HREADs. For functional segmentation and time annotation, the code
is instrumented with preprocessor macros at the branch level. Thus, a task’s execu-
tion time is considered by means of dynamically accumulating back annotated delays
during simulation. According to our synchronization scheme a task yields control to the
RTOS model at interaction points. For this, some special macros additionally invoke the
function which defines the time delay (CONSUME CPU T IME) which also enforces
a synchronization with aRTOS and the SystemC kernel.

The next experiment runs the software tasks in a mixed level cosimulation accord-
ing to the mixed level environment introduced in Chapter 3. For this, Task 2 is cross
compiled for a PowerPC405 to be executed in our QEMU user mode wrapper. Task 1
remains as a native SystemC thread. At this level the mixed level task set is scheduled
by the common aRTOS scheduler in SystemC. In the next step, both tasks are executed
in their own QEMU user mode wrapper. The RTOS kernel is still abstract and tasks
are scheduled by aRTOS. On the next level, we completely replace aRTOS by full sys-
tem mode QEMU in order to introduce the actual RTOS kernel. For this, we took our
in-house real-time operating system ORCOS[2].

So far, all levels apply our causality-true preemption scheme synchronizing at inter-
action points since it allows us to operate QEMU in the very efficient TB execution
mode in order to take full advantage of the binary translation. In system mode, we
switch to single instruction mode in order to achieve full interrupt accuracy. At this
level, we do not cosimulate any hardware models except the ones that are provided by
the QEMU full system emulator. Finally, we coupled the QEMU system emulator with
a SystemC kernel for the cosimulation with SystemC HW models. For this, we syn-
chronize with the SystemC kernel after each emulated target instruction by a SystemC
wait() statement.

The experiments were performed on an Intel Core 2 Quad CPU @ 2.4 GHz equipped
with 6 GB memory. The target code was built with the GCC 4.4 PowerPC EABI cross
compiler. We adopted the QEMU user mode and system mode emulators from the
QEMU 0.12.1 release. Each application task was activated 1.000.000 times. The ex-
periments were compared by means of the task output and simulation overhead. Our
experiments showed that the task output was equal for all refinement levels thus prov-
ing a functional correct simulation. Figure 5 depicts the simulation overhead which we
have measured at the different refinement levels.

The plain aRTOS SystemC model required the lowest overhead with just 5.6 seconds
for all task activations. Surprisingly, it turned out that migrating the application tasks
from aRTOS to QEMU user mode, resulted in a slowdown of just 1.5x for one of the
tasks being executed on QEMU and 2x for both tasks, respectively. This is extremely
fast since traditional ISS approaches usually come with a slowdown of 4000x-40000x
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Table 1. Experiments according to the refinement of the example application

Level Description Sim. time

aRTOS All tasks@SystemC w. aRTOS 5.6s
Mixed tasks Task1@SystemC/Task2@QEMU user mode w. aRTOS 7.6s
Qemu user All tasks@QEMU user mode w. aRTOS 9.2s
Qemu system ORCOS@QEMU full system mode 51.6s
QS cosim. ORCOS@QEMU full system mode w. SystemC cosim. 1472.2s
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Fig. 5. Simulation overhead increase at different refinement levels

[19] compared to native executed simulation C code. Our experiments also showed that
the slowdown of the QEMU execution is nearly linear to the utilization produced by the
task set moved to user mode emulation. Thus, using our mixed simulation environment
the simulation effort can be considerably reduced when simulating just a subset of tasks
on QEMU.

Furthermore, the experiments showed that our mixed level simulation reaches a per-
formance gain of 5.5-6.8x compared to the execution of ORCOS on the QEMU full
system emulator and 150-200x compared to the cosimulation of QEMU full system
emulator with SystemC, respectively. However, since CPU idle times are abstracted by
aRTOS, we expect the performance gain to be even higher with a utilization of less than
100% which is the typical case in hard real-time scheduling. For instance, the worst-
case CPU utilization of a task set scheduled by Rate Monotonic must not exceed 69%
in order to be feasible [6]. Thus, the average utilization is typically lower.

5 Conclusion

In this article, we presented an approach for the stepwise RTOS-aware refinement of
software tasks by means of a mixed level simulation combining the native speed of
an abstract SystemC RTOS model and the advantage of the QEMU software emula-
tor. For mixed level simulation, each task can be moved between host-compiled code
and cross-compiled target code. Our experimental results show that user mode QEMU
with integrated abstract RTOS simulation is a most efficient intermediate step for the
migration of native SystemC models to full system emulation and ISS, respectively.
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In this context, we can take full advantage of QEMU’s efficient binary translation in
combination with abstract RTOS simulation. As it makes simulation by several mag-
nitudes faster than traditional ISS, this technology is well applicable for early design
phases. Additionally, it provides an ideal intermediate refinement level to smoothly mi-
grate from the introduction of abstract RTOS calls to full system calls of the target
RTOS or OS, respectively. Future work will focus on further investigation for the cor-
respondence of the system calls between those levels to increase the automation of the
refinement.
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16. Schirner, G., Dömer, R.: Introducing preemptive scheduling in abstract rtos models using
result oriented modeling. In: DATE 2008: Proceedings of Design, Automation and Test in
Europe. IEEE Computer Society, New York (2008)

17. Wu, M.-H., Lee, W.-C., Chuang, C.-Y., Tsay, R.-S.: Automatic generation of software tlm in
multiple abstraction layers for efficient hw/sw co-simulation. In: DATE 2010: Proceedings
of the conference on Design, automation and test in Europe (2010)

18. Yu, H.: Software Synthesis for System-on-Chip. PhD thesis, University of California, Irvine
(2005)

19. Zabel, H., Mueller, W., Gerstlauer, A.: Accurate RTOS Modeling and Analysis with Sys-
temC. In: Hardware-dependent Software, pp. 233–260 (2009)



Global Best-Case Response Time for Improving
the Worst-Case Response Times in Distributed

Real-Time Systems

Steffen Kollmann, Victor Pollex, and Frank Slomka

Ulm University,

Institute of Embedded Systems/Real-Time Systems

{firstname.lastname}@uni-ulm.de

Abstract. In this paper an improvement of the schedulability analysis

for fixed-priority distributed hard real-time systems is presented. During

the analysis it is not sufficient to include the tasks’ worst-case execution

time, but also the best-case execution time has to be considered, be-

cause the lower bound of the execution has a direct impact on the event

densities in the system. The presented approach improves the best-case

response time analysis introduced by Redell et al. The paper shows how

it is possible to calculate a lower bound for the best-case response time

using an expressive event model. This new lower bound of the response

time will relax the event densities in a distributed system and will there-

fore lead to more relaxed worst-case response times.

1 Introduction

In our daily life we are surrounded by many different computer systems. Most
of them are hidden in a technical context, like an airbag control or an anti-lock
system, and are called embedded systems. Some of these systems have to satisfy
time constraints. In such cases we talk about embedded real-time systems which
means that the correctness of the systems depends on correctly computed values
as well as on the time intervals in which these values are computed.

In modern systems several CPUs are connected by several buses. Especially in
the automotive industry we have large distributed systems with many different
time constraints. During the design process of such systems it is desirable to
prove the correctness of time constraints by a schedulability analysis. To achieve
realistic results it is necessary to have tight bounds for the minimum and maxi-
mum occurrence of events in a system.

For instance, assume a sensor triggered every 5 ms. The sensor has an exe-
cution time between 1 ms and 3 ms and triggers a successive task. It is obvious
that the trigger of the task depends directly on the execution time of the sensor.
In the worst-case two events can occur in a time interval of 3 ms and in best-case
in a time interval of 7 ms. Therefore it is not sufficient to include the worst-case
execution time of tasks into the analysis, but also the best-case execution time,
because the lower bound of the execution has a direct impact on the maximum
event densities in the system and thus on the worst-case response times.

M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 157–168, 2010.
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This lower bound of execution time can be improved by considering higher
priority tasks as shown in [11] where a best-case response time for tasks is intro-
duced and the impact on the worst-case response times is shown. We will show
that this best-case response time can be improved when an expressive event
model is used.

2 Related Work and Contribution

In order to improve the calculation of the event densities and thereby the worst-
case response times in a system it is possible to include the lower bounds of the
stimulations into the real-time analysis. Some models considering these lower
bounds of event densities are, for example, the periodic task model with jitter
based on the busy-window approach [12] or the real-time calculus (RTC) [14].

The latter uses curves describing the arrival of events and the capacities
of resources. Based on the network calculus [2] the curves are used to calcu-
late the response times in the system. During the calculation of the outgoing
event curves, the RTC considers the lower bounds of the incoming stimulations
of the tasks. But the technique used cannot be applied to the busy-window
approach.

The busy-window approach is very popular and many research has been done
with it like a response-time analysis for Round-Robin [10] or considering offsets
between tasks [9]. To calculate a best-case response time of a task was also
an aim in the past. Redell et al. show in [11] how the calculation of a best-
case response time can be obtained by the periodic model with jitter when
lower bounds of stimulations are considered. The SymTA/S approach [12] uses
this best-case response time analysis in order to relax the event densities in
distributed systems. Palencia and Harbour show in [4] how a lower bound for
the best-case response time can be determined. But this bound is not exact.
Henderson et al. [5] improved this by a search through all possible orderings of
higher priority tasks executions, but according to Redell [11], this solution leads
to a numerically intractable search.

Redell’s approach [11] is for some cases not exact, because it does not consider
the occurrence of each single event exactly. This is founded by the fact that the
periodic model with jitter is not expressive enough. For this reason, we use the
event stream model from Gresser [3] which allows us to describe a wider range
of task’s stimulation. First we will exploit the lower bound of the stimulations
in order to relax the maximum density of events in a distributed system and
calculate the occurrence of each single event as accurately as possible. So we will
adapt Redell’s approach to the event stream model [3]. We call this approach
local-best case response time.

Based on the local-best case response time we will improve the idea by means
of a global context of jobs. We use the intervals between successive jobs in order
to determine whether more interrupts from higher priority tasks have to be
considered. We call this approach global best-case response time.
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3 System Model

3.1 Task Model

Γ is the set of tasks on one resource Γ :={τ1, ..., τn}. A task τ :=(c+, c−, d, φ, Θ+,
Θ−) consists of c+ the worst-case execution time, c− the best-case execution
time, d the deadline, φ the priority for the scheduling (the lower the number the
higher the priority), Θ+ defines the maximum stimulation (maximum number
of events in an interval) and Θ− the minimum stimulation (minimum number
of events in an interval). An interval denotes the length of an interval. Let τi,j

be the j-th job/execution of task τi.
In our model we assume that a task can only generate an event at the end of

its execution to notify other tasks. In the following, incoming events are events
triggering tasks and outgoing events are events generated by tasks. Furthermore
we assume a pre-emptive fixed-priority scheduling.

3.2 Maximum Event Streams

Event streams have been first defined in [3]. The purpose was to give a gener-
alized description for every kind of stimulation. The basic idea is to define an
event function η(Δt, Θ+) which can calculate for every interval Δt the maxi-
mum amount of events occurring within Δt. In the following, when speaking
of intervals we mean the length of the interval. The idea is to describe for each
number of events the minimum interval which can include this number of events.
Therefore we get an interval for one event two events and so on. The interval
for one event is infinitely small and therefore considered to be zero. The result
is a sequence of intervals showing a non-decreasing behavior. The reason for this
behavior is, that the minimum interval for n events cannot be smaller than the
minimum interval for n-1 events since the first interval also includes n-1 events.

Definition 1 (Maximum Event Stream Θ+) A maximum event stream is
a set of event stream elements θ : Θ+ = {θ1, θ2, ..., θn} and each event stream
element θ = (p, a) consists of an offset-interval a and a period p. The maximum
event stream complies the characteristic of sub-additivity.: η(Δt1 + Δt2, Θ

+) ≤
η(Δt1, Θ

+) + η(Δt2, Θ
+).

This means that the maximum number of events of an interval cannot exceed
the cumulated maximum number of events of its subintervals.

Each event stream element θ describes a set of intervals {aθ + k · pθ|k ∈ N}
of the sequence. With an infinite (∞) period it is possible to model irregular
behavior. The event function is defined as follows:

Definition 2 (Event Function η(Δt, Θ)) The event function calculates an
upper bound of events for a given event stream Θ and a given length of the
interval Δt:

η(Δt, Θ) =
∑
θ∈Θ

aθ≤Δt

⌈
Δt − aθ

pθ

⌉
(1)
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As inverse function we define the interval function which denotes the minimum
interval in which a given number of events can occur:

Definition 3 (Interval Function Δt(n, Θ)) The interval function gives for an
event stream Θ and a number of n events the corresponding minimum interval
in which these events can occur:

Δt(n, Θ) = inf{Δt|η(Δt, Θ) ≥ n} (2)

A detailed definition of the concept and the mathematical foundation of the
event streams can be found in [1].

Δt

Δt

Δt

Θ3

Θ2

Θ1

p

p

p

p−j

t

Fig. 1. Three different event streams

Example 1. In figure 1 some examples for event streams can be found. The first
one Θ+

1 = {(p,0)} has a strictly periodic stimulus with a period p. The second
example Θ+

2 = {(∞,0), (p,p-j)} shows a periodic stimulus in which the single
events can jitter within a jitter interval of size j. Since we derive the maximum
occurrence of the events in an interval the worst-case is the following: The first
event is delayed by j/2 and the following events are delayed by −j/2. Therefore
two events can occur in a time interval of p− j, three events in 2p− j and so on.
In the third example Θ+

3 = {(p, 0), (p, 0), (p, 0), (p, t)} three events occur at the
same time and the fourth occurs after a time t. This pattern is repeated with a
period of p.

3.3 Minimum Event Streams

Analogously we define the minimum event stream which describes for every
interval Δt the minimum stimulation in such an interval.

Definition 4 (Minimum Event Stream Θ−) A minimum event stream is
a set of event stream elements θ : Θ− = {θ1, θ2, ..., θn} and each event stream
element θ = (p, a) consists of an offset-interval a and a period p. The minimum
event stream complies the characteristic of super-additivity: η(Δt1 +Δt2, Θ

−) ≥
η(Δt1, Θ

−) + η(Δt2, Θ
−).
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This means that the minimum number of events of an interval can exceed the
cumulated minimum number of events of its subintervals.

The event function (1) and the interval function (2) apply also for the mini-
mum event streams.

Example 2. The corresponding minimum event streams for the examples shown
in figure 1 can be described as follows: The first one Θ−

1 = {(p,p)}. The second
example Θ−

2 = {(p,p+j)}. In the third example Θ−
3 = {(p,p-t), (p,p), (p,p),

(p,p)}.

3.4 Real-Time Analysis

Based on previous work we define the real-time analysis with event streams.
As described in [13] in each global iteration step of the real-time analysis the
worst/best-case response time and the outgoing maximum/minimum stimulation
for each task in the system are computed until a fix-point is found. How to
perform a real-time analysis with event streams is described in [7]. For the next
section we will repeat how the necessary parameters to perform a real-time
analysis can be computed for the event stream model.

Worst-Case Response Time. The worst-case response time of a task with
event streams is bounded by the following equation:

Lemma 1. The worst-case response time with event streams is calculated by:

r+(τ) = max
k=1,...,n

{r+(k, τ) − Δt(k, Θ+
τ )|r+(k − 1, τ) > Δt(k, Θ+

τ )} (3)

r+(k, τ) =

⎧⎨
⎩c+

τ k = 0
min{Δt|Δt = k · c+

τ +
∑

τ ′∈HP

η(Δt, Θ+
τ ′) · c+

τ ′} k ≥ 1 (4)

Proof. The proof is given in [8]

Equation (3) determines the maximum of the response times of each job (r+(k,
τ) − Δt(k, Θ+

τ )) in the busy window (r+(k − 1, τ) > Δt(k, Θ+
τ )). Equation (4)

delivers the completion time of each job measured from the critical instance up
to its finishing time. Since the calculation of the worst-case response time has
not changed but only the model describing it, the proof in [8] is still valid.

Best-Case Response Time. Additionally to the worst-case response-time it
is possible to determine a best-case response time, since we have minimal event
streams. For this we have adapted the best-case response time from Redell [11]:

Lemma 2. Best-Case Response Time

r−(τ) = max{Δt|Δt = c−τ +
∑

τ ′∈HP

η(Δt, Θ−
τ ′) · c−τ ′} (5)
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Proof. The proof is given in [11].

Since only the model has changed to calculate the best-case response time and
not the calculation itself, the proof in [11] is still valid. The equation adds to
the best-case execution time of task τ the best-case execution time of higher
priority tasks. How many execution times are added depends on the minimal
event streams of the higher priority tasks. It is possible to find the best-case
response time as well as the worst-case response time by a fix-point iteration.
Since the computation of the best-case response time is done only once for all
jobs, we call Redell’s approach in conjunction with event streams local best-case
response time.

Maximum Outgoing Event Density. To derive the outgoing event densities
we give the following definition:

Definition 5 The completion time r±(n, τ) of the n-th job is the interval from
the request of the first job up to the point in time where the n-th job has finished
its execution. The response time of a job is the completion time minus the request
time Δt(n, Θτ ).

Lemma 3. A number of outgoing events occurs in the maximum density when
the first event is delayed as much as possible and all further events occur as early
as possible whereas a job can only be executed when the previous jobs have been
finished. So the minimum interval between n outgoing events of a task is bounded
by:

Δtmin(n, τ) = r±(n, τ) − r+(τ) (6)

r±(n, τ) =

⎧⎪⎨
⎪⎩

r+(τ) n = 1

max(Δt(n, Θ+
τ ), r±(n − 1, τ)) + r−(τ) n > 1

(7)

Proof. The proof is given in [7].

Minimum Outgoing Event Density.

Lemma 4. A number of outgoing events occurs in the minimum density when
the first event occurs as early as possible and all further events occur as late as
possible. So the maximum interval between n outgoing events of a task is bounded
by:

Δtmax(n, τ) = Δt(n, Θ−
τ ) + (r+(τ) − r−(τ)) (8)

Proof. The proof is analogous to the proof of the maximum event density.

To calculate the outgoing event streams concretely, see [6] where a normalization
for event streams is proposed.
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4 Improved Maximum Event Density

Up to this point we have shown how to adapt the best-case response time analysis
of Redell et al. [11] to the event stream model and how to conduct a real-time
analysis for distributed systems. We will now introduce a methodology in order
to calculate the best-case response times of each job in a global context and
show how this improves the outgoing maximum event densities of tasks. Global
context means here, that the order of the job execution and the time of incoming
events are considered.

The idea of the approach is that between successive jobs more interference
from higher priority tasks can occur than the local best-case response time as-
certains. So we determine whether higher priority tasks produce more load than
the interval between n outgoing events can provide. In case that the load is
greater than the interval, we are able to relax the best-case response time of a
job r−(n, τ) and improve Δtmin(n, τ).

With figure 2 and equation (9), (10) and (11) we develop our new methodology.

Lemma 5. A number of outgoing events occurs in the maximum density when
the first event is delayed as much as possible and all further events occur as
early as possible whereas a job can only be executed when the previous jobs have
been finished and the best-case response time of the n-th job exploits the intervals
between successive jobs. So the minimum interval between n outgoing events of
a task is bounded by:

Δtmin(n, τ ) = r±(n, τ ) − r+
(τ ) (9)

r±(n, τ ) =

⎧⎨
⎩r+(τ ) n = 1

max
l∈N0

{r±(n, τ, l)} + r+(τ ) n > 1
(10)

r±(n, τ, l) =

⎧⎨
⎩

max(Δt(n,Θ+
τ ), r±(n − 1, τ )) + r−(τ ) − r+(τ ) l = 0

(n − 1) · c−τ +
∑

τ ′∈HP (τ)

η(r±(n, τ, l − 1) + c+

τ
′ , Θ

−
τ
′ ) · c−τ ′ l > 0 (11)

Proof. We have to show that there exists no interval smaller than Δtmin(n, τ)
Case 1 (n = 1): According to the lemma the first event n = 1 is delayed

maximal. This is the worst-case response time r+(τ) by definition and therefore
the interval for one event is zero.

Case 2: (n > 1): For this case we have to show that the two cases in equation
(11) are bounds for the completion times. The first case l = 0 is the lower bound
shown in lemma 3. This can be obtained by inserting this case in equation (10)
and we get:

max(Δt(n, Θ+
τ ), r±(n − 1, τ)) + r−(τ) − r+(τ) + r+(τ)
= max(Δt(n, Θ+

τ ), r±(n − 1, τ)) + r−(τ)

Second case of equation 11 assumes an interval Δt which is the earliest comple-
tion time that fulfills the lemma. So we get: Δt = r+(τ) + Δt′. If the condition
r±(n, τ, l+1) > r±(n, τ, l) holds, the processor is always busy in Δt′ and we get:
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Fig. 2. BCRT of the second job

Δt = r+(τ) + (n − 1) · c−τ +
∑

τ ′∈ΓHP

mτ ′ · c−τ ′ (12)

The number of events occurring in Δt are divided in the interval Δt1 which
considers all the occurrences of the events during the worst-case response time
η(Δt1, Θ

+
τ ′) and the rest interval Δt2 considering the minimal occurrence of

events from a task η(Δt2, Θ
−
τ ′). The last possible occurrence of an event from

a higher priority task during the worst-case response time is r+(τ) − c+
τ ′ . So it

follows:
r+(τ) − c+

τ ′ + Δt2 = Δt ⇔ Δt2 = Δt − r+(τ) + c+
τ ′ ⇔ Δt2 = Δt′ + c+

τ ′

This interval can be inserted into equation (12):

Δt = r+(τ) + (n − 1) · c−τ +
∑

τ ′∈ΓHP

η(Δt′ + c+
τ ′, Θ

−
τ ′) · c−τ ′

The maximum interval Δt which fulfills r±(n, τ, l + 1) > r±(n, τ, l) can be found
by a fix-point iteration and we get:
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r+(τ) + (n − 1) · c−τ +
∑

τ ′∈ΓHP

η(r±(n, τ, l) + c+
τ ′ , Θ

−
τ ′) · c−τ ′

So the minimal interval between n outgoing events can be calculated by lemma 5:
Δtmin(n, τ) = r±(n, τ) − r+(τ). �

In figure 2 it is exemplarily shown how the approach works. Part one shows the
event density if only the best-case execution time is considered. The second part
shows the idea from Redell which is the initial value for our approach. Part three
and four of figure 2 depicts the new developed fixed-point iteration. It can be
seen that the load produced in interval Δt2 is greater than the interval itself and
therefore the two outgoing events have a relaxed event density.

5 Experiments and Results

To consider the improvement of the new algorithm we have used the synthetical
distributed system depicted in figure 3. Due to the reversed paths we have chosen
this example. The distributed system has three processing elements. All the tasks
are scheduled by a fixed-priority schedule. The system has been evaluated with
different utilization. The event density of the three inputs ΘA, ΘC , ΘN has been
varied to achieve this. In order to vary the input stimulation only the period
and the jitter have been modified and mapped to the different event models.

τ τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12

c−[ms]20020150030050 8 1000 500 50 4 900 1000

c+[ms]200201500300501610001000150 4 12001100

Fig. 3. Distributed System
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The jitter was up to five times the period. For each utilization step the average
of 100 variations has been taken. The assumed execution demands are described
in the table of figure 3.

Figure 4 depicts the average utilization of the system versus the cumulated
average worst-case response time in the system. In this figure the absolute im-
provement of the global best-case response time versus the local best-case re-
sponse time, Redell’s [11] approach and the SymTA/S approach [12] can be
observed. The SymTA/S approach extends Redell’s methodology by a minimal
distance between events. We have implemented all techniques in one framework.
The SymTA/S approach is implemented as described in [12]. The improvement
is especially huge for high utilization. When the utilization is low (50%-70%)
it is improbable that the execution of the tasks are interrupted very often by
higher priority tasks. Therefore the improvement in this range is smaller. Be-
tween the local best-case response time and global best-case response time we
have also no significant improvement for high utilization (95%-99%). This is
founded by the fact that we have a very high utilization and the gaps for the
possible improvements are very small, because the utilization is near 100%. So
in this case the local best-case response time and the global best-case response
time converge. In the range (70%-95%) where the utilization is high enough for
many interrupts from higher priority tasks and when enough gaps are available
between successive jobs, we have good improvements concerning the worst-case
response times. The relative improvement in percent is also depicted in figure 5
(left) and underlines the states above.

Figure 5 (right) gives an overview about the runtime of the implemented
approaches. It is obvious that the global best-case response time approach is
slower than the local best-case response time calculation. This is founded by the
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fact, that we have to calculate the best-case response time for each job. It is also
obvious that Redell’s approach and the SymTA/S approach are faster than the
approaches with event streams, because not every event is calculated exactly.

Sometimes we have outliers in the runtime of the global best-case response
time but not a significant improvement. In these cases we have to calculate many
global best-case response times, but the effect on the worst-case response times
is marginal. This occurs when the improvement over many instances is small and
the relaxation has no influence on the interruption for the worst-case response
times.

The experiments show that we are able to perform a real-time analysis with
the global best-case response times and get tighter results than Redell’s best-
case response time analysis. We get up to 24% of improvement of the average
worst-case response time in the system versus the local best-case response time,
41% versus the SymTA/S approach and up to 135% versus Redell’s best-case
response time analysis. The runtime of the global best-case response times is for
lower utilization almost identical to the local best-case response time analysis.
Only where the improvement is high we have higher runtime.

6 Conclusion

In this paper we have shown how to use lower bounds of stimulation in order
to improve the real-time analysis of distributed systems. Two contributions are
presented in this paper. The first one is the adaption of Redell’s methodology
[11] of the best-case response time analysis to the event stream model called
local best-case response time. This technique has been improved using the in-
tervals between successive jobs in order to determine the interrupts from higher
priority task in a global context leading to best-case response times on job-level.
Furthermore we have shown that this leads directly to more realistic response
times of the system. Since we have only considered fixed priority pre-emptive
scheduling, it would be interested in the future to consider this approach for
other scheduling policies like round-robin.
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Abstract. In this paper, we describe an automatic synthesis procedure that dis-
tributes synchronous programs on a set of desynchronized processing elements.
Our distribution procedure consists of three steps: First, we translate the given syn-
chronous program to synchronous guarded actions. Second, we analyze their data
dependencies and represent them in a so-called action dependency graph (ADG).
Third, the ADG is subsequently partitioned into of sub-graphs where cuts can be
made horizontal (for a pipelined execution) or vertical (for a concurrent execution).
Finally, we generate for each sub-graph a corresponding component and automat-
ically synthesize a communication infrastructure between these components.

1 Introduction

Synchronous programming languages like Esterel [5], Lustre [22] or Quartz [30] are
all based on the synchronous model of computation [3]. Its core is the synchronous
hypothesis, which divides the program execution into micro and macro steps. Thereby,
micro steps, which represent computation and communication, are all executed in zero
time. Consumption of time is explicitly modeled by grouping a finite number of micro
steps to macro steps, which all consume the same amount of logical time. As a conse-
quence, all threads of the program run in lockstep, i. e. they automatically synchronize
at the end of each macro step. Since all micro steps of a macro step are executed at the
same point of time (at least from the semantical point of view), their ordering within
the macro step is irrelevant. Therefore, values of variables are determined with respect
to macro steps instead of micro steps, i. e. variables do not change within a macro-step.

This abstraction guarantees many properties which are desirable for the development
of safety-critical embedded systems. It enforces deterministic concurrency, which has
many advantages in system design, e.g. to avoid Heisenbugs (i.e. bugs that disappear
when one tries to simulate/test them), and it is the key to a straightforward translation of
synchronous programs to hardware circuits [4,27,30]. Furthermore, the concise formal
semantics of synchronous languages makes them particularly attractive for reasoning
about program properties [33,28], correctness and worst-case execution time [26,7].

However, the other side of the coin is that the synchronous model of computation
makes both the compilation and synthesis quite difficult. While causality [6,36] and
schizophrenia [33] problems already challenge compilers, the synthesis procedures of-
ten have to map a synchronous program to a target architecture that does not provide

M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 169–180, 2010.
c© IFIP International Federation for Information Processing 2010
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perfect synchrony. This mismatch between the synchronous model used for the devel-
opment of a system and most real-world implementation environments poses serious
problems, in particular for distributed and parallel embedded applications (as in the au-
tomotive or avionic industries), where the target architecture is a heterogeneous set of
interconnected processing elements.

Using these architectures, it is often not reasonable to maintain a global clock, which
synchronizes all components. In addition to communication latencies, which would
slow down the execution, the varying speeds of the individual components would lead
to unnecessary idle times. As the slowest component in each step defines the global
speed, the resulting performance would often become unacceptable.

In general, there are many ways to partition and distribute a synchronous program
into single components. The simplest approach requires that the structure of the system
description corresponds to the one of the final target architecture. However, this very
simple approach has several drawbacks: first, it is not in the spirit of model-based de-
sign, where the system description should be independent of the target system as long
as possible. Second, it allows one only to partition the set of modules used in the sys-
tem description into components, and therefore, it does not allow one to split a single
module into different components. Finally, the communication among the sub-systems
that correspond to the identified components has to be adapted since there is no longer
a global clock.

The contribution of this paper is therefore twofold: First, it presents a partitioning
of synchronous programs into concurrent, desynchronized parts. Second, it provides
an automatic synthesis of a generic communication infrastructure between these com-
ponents, which ensures that the implementation still complies with the synchronous
semantics of the original source program.

Thereby, it integrates and extends our previous approaches: [1] extracts independent
parts of a synchronous program to extract concurrent threads, whereas [2] slices chains
of dependencies to create a pipelined system. In this paper, we integrate both partition-
ing approaches so that an arbitrary combination of concurrent and pipelined execution
becomes possible. Furthermore, we do not rely on a specific synthesis target: the parti-
tioning and the communication infrastructure are constructed in a target-independent in-
termediate format so that each component can be later mapped to hardware or software,
as well as the communication between them can be mapped to appropriate protocols.

There is some previous work which has already considered the automatic distribu-
tion of synchronous programs to an asynchronous network of processing elements: In
[20,14], a clock-driven distribution of Lustre programs is presented which partitions
and distributes the system according to the clock that triggers each part. While this
approach has shown to produce quite efficient implementations, it may suffer from a
significant drawback: Mutual data dependencies between components may require that
some component must be further decomposed into smaller components, which may re-
quire in turn additional communication and synchronization effort. In our approach, this
is avoided by construction.

Related work appeared also in the implementation of digital circuits where the num-
ber of cycles required to transmit a signal from one component to another can only be
done when the final layout has been derived. To this end, latency-insensitive [10,12,11]
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and synchronous elastic systems [18,17,24] have been proposed to make the communi-
cation between the synchronous modules independent of a global clock. We also make
use of these ideas for distributing a given synchronous system description into desyn-
chronized components.

The rest of the paper is organized as follows: Section 2 briefly introduces syn-
chronous guarded actions, which serve as a starting point for the synthesis procedure
of this paper. Section 3 explains how we analyze the data-dependencies of the guarded
actions by means of an action-dependency graph (ADG), which gives rise to a parti-
tion of the guarded actions. Section 4 explains the construction of the communication
infrastructure. Finally, Section 5 concludes with a short summary.

2 Synchronous Guarded Actions

Synchronous systems [3,21] as implemented by synchronous languages like Esterel [5]
and Quartz [30,33,29] divide their computation into single reactions. Within each reac-
tion, new inputs are synchronously read from all input ports, and new outputs are syn-
chronously generated on all output ports with respect to the current state of the system
and the current inputs. Furthermore, the reaction determines the state for the next reac-
tion. It is very important for synchronous languages that variables do not change during
the macro step. For this reason, all micro steps are viewed to be executed at the same
point of time (as they are executed in the same variable environment). The instanta-
neous feedback due to immediate assignments to outputs can therefore lead to so-called
causality problems [6,34,35]. Compilers check the causality of a program at compile
time with a fixpoint analysis that essentially corresponds to those used for checking the
speed-independence of asynchronous circuits via ternary simulation [9]. Besides the
causality analysis, compilers for synchronous languages often perform further checks
to avoid runtime exceptions like out-of-bound overflows or division by zero. Moreover,
most compilers for synchronous languages also allow the use of formal verification,
usually by means of model checking.

The compiler of our Averest system1 is split into several compile phases: The front-
end translates a synchronous program into an equivalent set of (synchronous) guarded
actions [16,19,23,25] of the form 〈γ ⇒ A〉 (see [33,8,30]). The Boolean condition γ is
called the guard and A is called the action of the guarded action, which corresponds to
an action of the source language. In this paper, these are the assignments of the source
language, i. e. the guarded actions have either the form 〈γ ⇒ x = τ〉 (for an immediate
assignment) or 〈γ ⇒ next(x) = τ〉 (for a delayed assignment). In each macro step,
the guards γ of all actions (of all variables) are checked simultaneously. If a guard γ
is true, the right-hand side τ of the action is immediately evaluated. Immediate actions
x = τ assign the computed value immediately to the variable x, while the updates of
delayed actions next(x) = τ are deferred to the following macro step. If no action sets
the value of a variable in the current step, it is determined by the so-called reaction
to absence, which usually keeps the value of the previous step. In general, a different
behavior (like resetting to a default value) is possible, but for the sake of simplicity, we
do not elaborate these cases in the following.

1 http://www.averest.org



172 D. Baudisch, J. Brandt, and K. Schneider

Hence, if an immediate assignment x = τ is enabled in the current macro step, the
current value of x must be equal to the value of τ . Implementations must therefore
make sure that x is not read before the value of τ is evaluated so that one implements
the programmer’s view that the assignment was performed in zero time.

Synchronous systems are always deterministic, because there is no choice among
activated guarded actions, since all of the enabled actions must be fired. Hence, any
system is guaranteed to produce the same outputs for the same inputs. However, forc-
ing conflicting actions to fire simultaneously may lead to causality problems. This is
a well-studied problem for synchronous systems and many analysis procedures have
been developed to spot and eliminate these problems [32,35,31,36]. In the following
section, we assume that a program is causally correct and that for each variable at most
one action is active in a macro step.

⎡
⎢⎢⎢⎢⎣

a = x + y b = x − y
c = z · z r ⇒ x = p

s ⇒ next(x) = a s ⇒ y = q
¬s ⇒ y = o next(r) = s

next(o) = a · b m = b + c

⎤
⎥⎥⎥⎥⎦

Fig. 1. Synchronous Guarded Actions

Figure 1 shows a set of synchronous guarded actions, which will serve as a running
example in the following. Note that the translation of synchronous programs into guarded
actions is already the first step towards our distribution, since it allows us to split the
system into subsets of guarded actions that will form the distributed components.

3 Partitioning System Descriptions into Components

As we already mentioned in the previous section, synchronous guarded actions must be
executed according to their causal data dependencies. As we want to map the actions
onto a network of asynchronous processing elements, the partition must also reflect
the causal order. Before we explain our approach, we first need to give some basic
definitions about the dependencies between actions and the variables accessed by them.

Definition 1 (Read and Write Dependencies). Let FV(τ) denote the free variables
occurring in the expression τ . Then, the dependencies from actions to variables are
defined as follows:

rdVars (γ ⇒ x = τ) := FV(τ) ∪ FV(γ)
rdVars (γ ⇒ next(x) = τ) := FV(τ) ∪ FV(γ)
wrVars (γ ⇒ x = τ) := {x}
wrVars (γ ⇒ next(x) = τ) := {next(x)}

The dependencies from variables to actions are determined as follows:

rdActs (x) := {γ ⇒ A | x ∈ rdVars (γ ⇒ A)}
wrActs (x) := {γ ⇒ A | x ∈ wrVars (γ ⇒ A)}
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next(o1) =
a5 · b5

m� = b5 + c5

o� m�

o m

Fig. 2. Left: Partitioned ADG, Right: Partioned ADG with Intermediate Variables

For a given set of guarded actions, the dependencies between all individual elements
can be illustrated by an Action Dependency Graph (ADG), which is a bipartite graph
consisting of vertices V representing variables, vertices A representing the guarded
actions and labeled edges representing the dependencies. Thereby, a solid (or dashed)
edge from 〈γ ⇒ A〉 to x denotes that action A writes x in the current step (or next step).
Similarly, a solid edge from x to 〈γ ⇒ A〉 expresses that x is read in A, i. e. it appears
in the guard γ or in the right-hand side of action A. Thus, this graph exactly encodes
the restrictions for the execution of the guarded actions of a synchronous system. An
action can be only executed if all read variables are known. Similarly, a variable is only
known if all actions writing it in the current step have been evaluated before.

The dependencies encoded in the ADG give rise to possible distributions of the orig-
inal synchronous system. In the following, we do not focus on the question how to find
an optimal solution for a given realization (e. g. software threads or hardware circuits)
or target platform. Naturally, the concrete partition generally has a significant impact
on the performance of the implementation. However, the appropriate data can be only
provided by an external analysis tool, which knows many internals about the target plat-
form. We do not focus on that but provide a general method how the results of such an
analysis can be exploited for desynchronization. Our approach is generally applicable
and it only requires a legal partition, which is defined in the following.
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Definition 2 (Legal Partition of an ADG). A partition Π of an ADG is a mapping
from actions to classes π ∈ Π . Let class(A) denote the class of an action A ∈ A,
and let gacts(π) denote all the actions occurring in class π. Let � be the reflexive and
transitive closure of the following relation R ⊆ A×A: (A1, A2) ∈ R ⇔ wrVars (A1)∩
rdVars (A2) �= {}. A partition is legal iff � is a partial order.

Note that, according to Definition 1, the intersection of wrVars (A1) and rdVars (A2)
is empty if A1 is a delayed action for a variable read in A2. For example, the left hand
side of Figure 2 shows the ADG of the actions of Figure 1. It is partitioned into five
classes, which can be easily verified to be legal, since they form a partial order. This
ensures that the partitioned implementation will be free of deadlocks.

Since all classes of the partition should run in a desynchronized way, they must be
able to process data of different macro steps. This data is stored in communication
channels between the classes in the later realization, which are modeled by additional
variables in our model. Therefore, for each variable x of the original system, we declare
several intermediate variables, one for each class that reads x, or formally:

Definition 3 (Read Access and Activity). For all classes π ∈ Π and for all variables
x ∈ V , the predicate read(x, π) denotes whether x is read in class π, i. e. read(x, π) =
∃G. G ∈ gacts(π) ∧ x ∈ rdVars (G). Additionally, we consider two virtual classes
π⊥ � π � π� for all π ∈ Π , and we assume read(i, π⊥) and read(o, π�) for each
input variable i and output variable o, respectively.

If read(x, π) holds, an intermediate variable for x is inserted in class π, which provides
the current input value of x. To distinguish all the different intermediate variables of x,
we add a superscript π, where xπ represents the intermediate variable for x in class π.
Among all the different copies of x, we select a set of stable incarnations. The stable
incarnations mark the points in the partitioned system where a variable x must have
become known, i. e. stable(x) = {π | read(x, π) ∧ �ρ � π.read(x, π)}. Due to the
concurrency of classes, there can be more than one incarnation. All write accesses to
a variable will be forwarded to these stable incarnations leading to a high overhead in
communication. Fortunately, each stable incarnation will get the same value for a de-
fined macro step. Hence, communication overhead can be reduced by adding a canon-
ical incarnation for x, written canon(x), that distributes the values for variable x to its
stable incarnations.

Since all original variables have now been replaced by intermediate variables, the
guarded actions must be rewritten to refer to them. Apparently, all actions (immediate
and delayed) of the original system that are put in class π read variables with superscript
π. Furthermore, all write accesses of a class π are forwarded to the canonical incarnation
of this variable. We rewrite the actions as given in the function Transform shown in
Figure 3. Thereby, let [γ]π be the operations that relabels all variables x ∈ FV(γ) with
their superscripted counterparts xπ .

However, this causes a problem since all the classes generally process different
macro steps, and each class can write to the same variable. Hence, values may not arrive
in-order according to their logical time so that they have to be reordered explicitly. In
our approach, this is accomplished by a merge component Mergex, which provides an
input for each class that may write to x. Such a component is attached to canon(x).
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function Transform(G)

G′ := {}
forall G ∈ G

π := class(G)

case G :

γ ⇒ x = τ :

G′ := G′∪
〈[γ]π ⇒ [x]canon(x) = [τ ]π〉

γ ⇒ next(x) = τ :

G′ := G′∪
〈[γ]π ⇒ next([x]canon(x)) = [τ ]π〉

return G′

function CreateTransport(G)

for π = 1, . . . , N
forall xπ ∈ V

G := G ∪ {true ⇒ xπ = pre(xπ)}
return G

function CreateTransport′(G)

for π = 1, . . . , N
wrπ =

⋃
A∈gacts(π) wrVars (A)

forall x ∈ wrπ

guard := (validin(π) ∨ valid(π))

∧stopin(π) ∧ ¬fire(π)

G := G ∪ {guard ⇒ next(x) = x}
return G

function DistributedSystem(G)

G := Transform(G)

G := CreateTransport(G)

G := CreateTransport′(G)

return G

Fig. 3. Functions to Distribute a Synchronous System

In the current section, it does not play any role, since in a fully synchronous model,
the merge component just implements the identity function. Its behavior is explained in
detail in the next section.

Finally, we have to add the transport of the intermediate variables, which corresponds
to the reaction to absence of a synchronous system: a class π that reads an intermediate
variable xπ obtains its values from that class that precedes π and writes to x as soon as
a set of variables is processed by this preceding class. The preceding class of class π is
formally given by classPre(xπ) = max�{j | read(xj , j) ∧ j � π} with max�(A) =
{π | π ∈ A ∧ ¬(∃ν ∈ A. : π � ν)}. Additionally, we define pre(xπ) = xj , j ∈
classPre(xπ) as an arbitrary but determined predecessor of xπ . Due to concurrency of
classes, a class may have more than one predecessor. Each predecessor generates for
each set of inputs exactly one value for x. Furthermore, all incarnations of x are copies,
i. e. they contain the same value for each input set with a defined logical time step.
Hence, it is sufficient to forward the values for a variable x only from one preceding
incarnation of x.

Note that incarnations following the stable ones do not require a Mergex. Due to the
Mergex, the stable incarnation obtains the variable’s values in the correct temporal or-
dering, and it will proceed sets of variables in-order. Hence, the stable incarnations will
forward a variable’s values in order and as a result of this, each succeeding incarnation
obtains these values also in the correct temporal ordering. The right-hand side of Figure 2
shows the transformed set of guarded actions including the transport actions for our run-
ning example. The ten original actions are rewritten so that they refer to the superscripted
variables, and the remaining actions are due to the transfer of variables.
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4 Communication Infrastructure

The previous section partitioned the system into a set of components, which are desyn-
chronized in this section by introducing an appropriate communication infrastructure.
Thereby, each class can be first synthesized separately and independently of the others.
The individual classes are finally connected by channels that follow a generic desyn-
chronizing protocol. We do not rely on a specific one but only require that it can model
the validity of data values and the congestion of buffers (back-pressure). This is pro-
vided by latency insensitive protocols [12,15], synchronous elastic circuits [13] or al-
most any asynchronous communication infrastructure based on buffers.

In the following, we demonstrate how to apply the SELF protocol as described by
Carmona et al. in [13] to the partitioned system to gain a synchronous elastic system.
First, the classes require additional control logic for communication. The control logic
guarantees the correct flow of information between the classes. The interface of each
class π ∈ Π is extended by two Boolean input signals. The input validin(π) indicates
that the current inputs of class π contain valid values, whereas the input stopin(π) tells
the class whether its outputs can be processed by subsequent classes. Similarly, each
class has two output signals, which drive the status signals of other classes: validout(π)
gives notice of the validity of the current outputs, while stopout(π) indicates whether
the class is able to handle new inputs.

To control these flags, each class makes use of two additional variables valid(π) and
fire(π), which memorize the validity of the current outputs and signalizes that class π
can fire its actions, respectively:

1. If a class obtains valid inputs but currently has no valid outputs, it must read the
inputs and fire its actions. Formally: fire(π) = validin(π) ∧ ¬valid(π).

2. If a class obtains valid inputs or already has valid outputs, it has valid outputs in
both cases. Formally: validout(π) = (validin(π) ∨ valid(π)).

3. If a class has valid outputs and a stop signal comes in, the internal output valid-
ity flag has to be set for the next step. Formally: next(valid(π)) = (validin(π) ∨
valid(π)) ∧ stopin(π).

4. If a class obtains valid inputs but already has valid outputs or obtains a stop signal,
then the class must set its own stop signal. Formally: stopout(π) = validin(π) ∧
(valid(π) ∨ stopin(π)).

All guarded actions are modified to take notice of the class’s fire condition. The fire
condition fire(class(A)) is added as an additional clause to the guards of all actions
A ∈ G of the class’s build as the conjunction of its old guard and the corresponding
class’s fire condition. Finally, if a class contains an action writing to a variable x and
the class does not fire, but has to keep the value valid, it has to transport (copy) explicitly
its value (see Function CreateTransport′ in Figure 3).

In a simple chain of classes π1, π2, . . . , πN (as in a pipeline), the status signals can be
simply connected between successive elements, i. e. validin(πi+1) = validout(πi) and
stopin(π) = stopout(πi+1). For a general topology of the distribution, which is targeted
in our approach, a more general solution is necessary. Each class that obtains its inputs
from several others or sends its outputs to several others, needs to provide join or fork
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elements, respectively, as already explained in [13]. In the following, we explain the
functioning of these elements in terms of our approach.

A join element is needed if a single class π obtains its inputs from several other
classes π1, . . . , πn. Obviously, it can only fire iff all inputs are valid. The valid flag of
class π is set to validin(π) =

∧
i=1,...,n validout(πi). Values do not have to be stored

internally in a join element since a valid input value is provided by the producing class
until it is read, i. e. when all inputs are valid. The stop signals from class π to the
preceding classes π1, . . . , πn are determined as follows: if class π stalls, the stall signal
is simply broadcasted to all preceding classes. Furthermore, if some of these classes πi

already serves valid inputs but some other class πj does not provide valid inputs yet,
the class πi must be also stalled, formally: stopout(πi) = stopin(π) ∨ (validin(πi) ∧∨

j∈{1,...,n},i�=j validout(πj)).
A fork element is used if a single class π writes a variable x which is read by several

other classes π1, . . . , πn. Since π1, . . . , πn are unrelated, they may read x in different
macro steps. Without the fork element, this leads to a critical situation: On the one hand,
the value of x would have to be invalidated to prevent the reading classes to read the
same value again, and on the other hand, the value of x would have to be kept valid so
the stalling classes can read this value as soon as they are able to fire. Therefore, the fork
broadcasts the valid signal as soon as a new value arrives from class π but individually
determines the acknowledge for each class π1, . . . , πn. Hence, each one has its own
signals validout(πi) and stopin(πi).

Join and fork elements can be also used to provide a wrapper to the environment,
which reconstructs a synchronous interface. If we insert a fork element in front of all
system classes (with respect to the classical order ⊆ as defined in the previous section),
and a join element behind of all classes, which implement two virtual classes π⊥ and
π�, reading and distributing all inputs and collecting and writing all outputs so that
the interaction with the environment is synchronized. The right-hand side of Figure 1
shows these virtual classes.



178 D. Baudisch, J. Brandt, and K. Schneider

As already mentioned, each class of the implementation may process another macro
step but they all write to the same variables. Hence, for each variable x, a merge com-
ponent Mergex is needed to reorder values of x according to their macro steps. In prin-
ciple, Mergex waits until the value with the desired logical time arrives and forwards it.
All other classes providing values which do not have the desired logical time stamp are
stalled.

Figure 4 shows an exemplary structure of a Mergex. In this example, two classes
may write to x; therefore, each of these classes gets an interface to communicate with
Mergex. As the figure shows, Mergex provides two input channels for each class -
one for immediate and one channel for delayed writes to x. This distinction is neces-
sary since immediate and delayed actions address different macro steps. However, both
channels share the valid and stop signals because they stem from the same macro step.

Additionally, the interface also includes the valid and stop flags as already described
above. With their help, the merge component Mergex checks all incoming values for
validity and the required logical time stamp. As long as the valid value for the required
step is not available, validout(Mergex) is unset. When the requested value becomes
available, it is forwarded and the validity signal is set. Whenever a valid value arrives
but does not have the requested time stamp, a stop signal is sent back, i. e. the sending
class is stalled until the value is read. The logical time stamp for the currently required
value is determined by an internal counter. As explained Section 2, each variable is
written exactly once in each macro step, i. e. if a value arrives, the counter can be safely
incremented by one.

Finally, the Mergex is also responsible for the reaction to absence of variable x. It is
implemented by two special input signals Absence(x) and Absence(next(x)), which are
set iff no immediate action and delayed action can fire for a given macro step, respec-
tively. These signals are driven by the class that succeeds the last class(es) containing
immediate or delayed actions writing to x. In this case, Mergex can assign a value to x,
e. g. a default value or the value from the preceding macro step.

To the end, all required elements are available for creating the desynchronized sys-
tem. The last step is to choose the correct channels, i. e. the connection of classes, in de-
pendence of the target platform. In hardware synthesis, one would insert relay stations,
and in software synthesis one can use queues with Lamport’s clock synchronization to
obtain a lightweight thread communication as already used in [2].

5 Summary

In this paper, we presented an approach to partition a synchronous program into desyn-
chronized classes. The key for desynchronizing a partitioned system is the adaption of
the system’s classes to a defined protocol, i. e. each class must be able to wait for inputs,
to signalize the validity of its outputs, and to wait for succeeding classes. In particular, the
interface of each class has to be extended by four flags (validin(π), validout(π), stopin(π),
stopout(π)). Finally, attaching the join and fork elements to the classes enables us to use
relay stations or queues to run our classes desynchronized. The advantage of our approach
is the ability to use it in both hardware and software synthesis by only extending it by
inserting corresponding channels, i. e. a hardware synthesis would insert relay stations
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between classes to obtain a latency insensitive system, and a software synthesis would
insert queues to obtain decoupled threads.
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Abstract. With the rise of multi-core platforms even more complex

software systems can be implemented. Designers are facing various new

challenges during the development of efficient, predictable, and correct

applications for such platforms. To efficiently map software applications

to these architectures, the impact of platform decisions with respect to

the hardware and the software infrastructure (OS, scheduling policies,

priorities, mapping) has to be explored in early design phases.

Especially shared resource accesses are critical in that regard. The

efficient mapping of tasks to processor cores and their local scheduling

are increasingly difficult on multi-core architectures. In this work we

present an integration of shared resources into a SystemC-based simula-

tion framework, which enables early functional simulation and provides a

refinement flow towards an implementation, covering an increasing level

of platform details. We propose shared resource extensions towards multi-

core platform models and discuss which aspects of the system behaviour

can be captured.

Keywords: Multi-core, Resource Sharing, Platform Exploration,

SystemC, Real-time, Simulation.

1 Introduction

In high-performance, desktop, and graphics processing multi- and many-core
platforms are already state-of-the-art. A rise of multi-core platforms for embed-
ded systems is not only conceivable, but is actually happening. On one hand,
it enables the implementation of more functionality in software, thus exploiting
the advantages of software flexibility and higher productivity. But on the other
hand, this can turn into a nightmare when the new flexibility and multi-core
design space needs to be limited to meet functional and non-functional system
properties like real-time constraints, power consumption and cost.

To help developers during this phase of the design space exploration, efficient
modelling of different architecture alternatives has to be supported by the cho-
sen design flow. Apart from considering the underlying hardware platform, this

M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 181–192, 2010.
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includes the early analysis of software and (real-time) operating system (RTOS)
effects on the system’s overall performance. This is important especially if mul-
tiple tasks are sharing a single processor core. Real-time properties have to be
analysed and explored by choosing e.g. the scheduling policies and protocols as
well as task priorities to fulfil the given set of requirements like deadlines or other
application specific constraints. Furthermore, the partitioning of the application
in tasks and the mapping of these tasks to the cores is complex and influences
the scheduling and therefore the system performance.

An important aspect from the application’s point of view is the mechanism used
for inter-task communication and synchronisation. Communication via global
shared memory with explicit locks for mutual exclusion impairs locality and in-
creases coupling between tasks. Especially in the real-time domain, shared re-
source accesses are critical, even more so on multi-core architectures. To efficiently
cope with such shared (e.g. communication) resources, task dependencies have to
be considered during the mapping and scheduling phase. Depending on the target
platform, dedicated hardware support for such communication primitives could be
beneficial.

The contribution of this paper is the extension of OSSS for modelling software
on multi-core platforms. We discuss the influence of shared resources on the
execution behaviour of task sets. Since we provide a framework for early design
space exploration, we do not yet capture all properties of the final platform.
Instead we present a basic set of representable properties like the scheduling of
parallel tasks on a multi-core execution unit, task switching, and blocking on
shared resources.

In Section 3, we introduce the SystemC-based OSSS Design Methodology,
with a specially focus on the modelling of embedded software for multi-cores.
Based on these abstract RTOS modelling capabilities of the OSSS methodol-
ogy, Section 4 covers the extension of OSSS by additional features required for
supporting the distributed, scheduling approach with shared resources. In Sec-
tion 5 we present our first simulation results of the extended OSSS framework
for multi-core scheduling with shared resources.

Before Section 6 concludes the paper with a summary and an outlook for
future research directions, we discuss the capabilities of the presented approach
with respect to modelling, real-time analysis, early simulation and the further
refinement flow towards an implementation.

2 Related Work

Recently published work shows the importance of new programming and ab-
straction paradigms for multi- and many-core systems [12]. To fully exploit the
possibilities of the upcoming thousand-core chips [21], workloads of the future are
already discussed [18]. To encounter these trends high-level, component-based
methodology and design environment for multiprocessor SoC architectures have
been proposed [15].

Many different approaches to modelling embedded software in the context of
SystemC have been proposed.
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Abstract RTOS models, like the one presented for SpecC in [5] are suited for
early comparison of different scheduling and priority alternatives. The timing
accuracy and therefore the simulation performance of this approach is limited
by the fixed minimal resolution of discrete time advances. Just recently, an ex-
tension deploying techniques with respect to preemptive scheduling models very
similar to the ones presented in this work has been presented in [19]. The “Re-
sult Oriented Modelling” collects and consumes consecutive timing annotations
while still handling preemptions accurately similar to our “lazy synchronisation”
scheme presented in [8].

Several approaches based on abstract task graphs [11,14,20] have been pro-
posed as well. In this case, a pure functional SystemC model is mapped onto
an architecture model including an abstract RTOS. The mapping requires an
abstract task graph of the model, where estimated execution times can be anno-
tated on a per-task basis only, ignoring control-flow dependent durations. This
reduces the achievable accuracy.

A single-source approach for the generation of embedded SW from SystemC-
based descriptions has been proposed in [3,10,17]. The performance analysis of
the resulting model with respect to an underlying RTOS model can be evalu-
ated with the PERFidiX library, that augments the generated source via opera-
tor overloading with estimated execution times. Due to the fine-grained timing
annotations, the model achieves a good accuracy but relatively weak simula-
tion performance. This interesting approach aims in the same direction as our
proposed software execution time annotation.

An early proposal of a generic RTOS model based on SystemC has been pub-
lished in [13]. The presented abstract RTOS model achieves time-accurate task
preemption via SystemC events and models time consumption via a delay()
method. Additionally, the RTOS overhead can be modelled as well. Two differ-
ent task scheduling schemes are studied: The first one uses a dedicated thread
for the scheduler, while the second one is based on cooperative procedure calls,
avoiding this overhead. Although in this approach explicit inter-task communi-
cation resources are required (message queue, . . . ), the simulation time advances
simultaneously as the tasks consume their delays.

In [9], an RTOS modelling tool is presented. Its main purpose is to accurately
model an existing RTOS on top of SystemC. A system designer cannot directly
use it. In this approach, the next RTOS “event” (like interrupt, scheduling event,
etc.) is predicted during run-time. This improves simulation speed, but requires
deeper knowledge of the underlying system.

In [23], the main focus lies on precise interrupt scheduling. For this purpose, a
separate scheduler is introduced to handle incoming interrupt requests. Timing
annotations and synchronisation within user tasks is handled by a replacement
of the SystemC wait(). In [22] an annotation method for time estimation that
supports flexible simulation and validation of real-time-constraints for task mi-
gration between different target processors has been presented.

In this work, we propose an extension of [7], which includes some proper-
ties of the above mentioned approaches, especially concerning a simple runtime
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Fig. 1. Overview of the OSSS Methodology for modelling parallel Software

and RTOS model. Furthermore, our model allows a separation of application,
architecture and mapping. The proposed application model allows a flexible in-
tegration of shared resources for user-defined communication mechanisms via
Shared Objects and the handling of timing (back) annotations. Our proposed
extension on the architecture model includes a configurable multitasking simu-
lation based on SystemC that allows preemptive distributed scheduling. Tasks
and Shared Objects can be grouped together and mapped to different cores, each
of them having its own local runtime. Through simulation the effects of the cho-
sen mapping and system configuration on the functional behaviour of the task
sets can be observed.

3 The OSSS Methodology for Modelling Parallel SW

OSSS defines separate layers of abstraction for improving refinement support
during the design process. The design entry point in OSSS is called the Appli-
cation Layer. By manually applying a mapping of the system’s components, the
design can be refined from Application Layer to the Virtual Target Architecture
Layer, which can be synthesised to a specified target platform in a separate step
by the synthesis tool Fossy [4].

The abstraction mechanisms of OSSS allow the exploration of different imple-
mentation platforms. The separation of application and platform allows different
mappings and the underlying SystemC-based simulation kernel supports model
execution and monitoring.

On the Application Layer the system is modelled as a set of parallel, commu-
nicating processes, representing software tasks (see Listing 1). A shared resource
in OSSS is called Shared Object, which equips a user-defined class with specific
synchronisation facilities. Shared Objects are inspired by the Protected Objects
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known from Ada [1]. Synchronisation is performed by arbitrating concurrent ac-
cesses and a special feature called Guarded Methods, that can be used to block
the execution of a method until an user-defined condition evaluates to true.

As a result, they are especially useful for modelling inter-process communi-
cation. User-defined Interface Method Calls (IMC), a concept well known from
SystemC channels, performs communication between software tasks and Shared
Objects. On the Application Layer this communication concept abstracts from
the details of the underlying communication primitives, such as the actual imple-
mentation of channel across core and hardware/software boundaries. An in-depth
description of the Shared Object concept, including several design examples, is
part of the OSSS documentation [6].

class my_software_task : public osss_software_task {

public:

my_software_task() : osss_software_task() { /∗ ... ∗/ }

virtual void main() {

while( some_condition ) // the following block has to be finished within 1ms
OSSS_RET( sc_time( 1, SC_MS ) )

{

OSSS_EET( sc_time( 20, SC_US ) ) {

// computation, that consumes 20μs
}

for( int i=0; i<max_i; ++i ) // estimate a data-dependent loop
OSSS_EET( sc_time( 100, SC_US ) ) {

// loop body
}

if( my_condition ) {

// communication only outside of EET blocks
result = my_port_to_shared->my_method();

}

} // end of RET block and loop
}

};

Listing 1. Example of a software task eith estimated and required execution time

annotations

A proper modelling of software requires the consideration of its timing be-
haviour. In OSSS, the Estimated Execution Time (EET) of a code block can
be annotated within Software Tasks and Shared Objects using the OSSS_EET()
block annotation. In addition to the EETs, OSSS enables the designer to specify
local deadlines for a specific code block. The Required Execution Time (RET)
is specified by the OSSS_RET() block annotation, which observes the duration
of the marked code block. If required, RETs can be nested at arbitrary depth.
The consistency of nested RETs is checked during the simulation as well as a
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violation of the RETs. If such a timing constraint is violated during the simu-
lation, it is reported. Unmet RETs may arise from (additional) delays caused
by blocking guard conditions, or simply unexpectedly long estimated execution
times (e.g. max_i ≥ 9 in Listing 1).

4 Multi-core Scheduling with Shared Resources

In this paper, we focus on the abstract modelling capabilities of OSSS for embed-
ded software, especially targeting multi-core platforms. Here, the OSSS model
is not meant to directly represent existing real-time operating system (RTOS)
primitives. Instead, the Software Tasks in OSSS are meant to run on top of a
rather generic (but lightweight) run-time system (see Fig. 1), where the synchro-
nisation and inter-task communication is modelled with Shared Objects.

In a refinement step the Application Layer model is mapped to the Virtual
Target Architecture. Each task is then mapped to a specific core, each of which
provides a distinct run-time, to improve locality and reduce the coupling between
different cores, as shown in Fig. 1. Tasks have may have statically or dynamically
assigned priorities, according to a given scheduling policy for each core, an initial
startup time, optional periods and deadlines.

During simulation, the tasks can be in different states as shown in Fig. 2.
We distinguish between the full parallel Application Model and the core mapped
Virtual Target Architecture Model task state machines. In the Application Model
a task can either be running, waiting or blocked. The distinction between
blocked and waiting has been introduced to ease the detection of deadlocks.
A task in the waiting state will enter the running state after a given amount
of time (duration), whereas a blocked task can only be de-blocked, once the
access to a shared resource is granted. In the running state, a task might access
a Shared Object through IMC. This either leads to the acquisition of its critical
section (use state) or a suspension in the blocked state. In this state the task
tries to reacquire the shared resource until it gets access.

The execution times of certain code blocks can be annotated flexibly, to in-
troduce control-flow dependent time consumption, as shown in Listing 1.

In the Virtual Target Architecture Model Software Tasks and Shared Objects
are grouped and mapped onto runtimes of the cores. During the simulation, the
OSSS software runtime abstraction handles the time-sharing of a single processor
core by several Software Tasks, which are bound to this OS instance. Therefore,
a ready state has been introduced. A scheduler for handling the time-sharing is
attached to the set of mapped tasks. Several frequently used scheduling policies
are already provided by the simulation library, like static priorities (preemptive
and cooperative), or earliest-deadline first. Additionally, arbitrary user-defined
scheduling policies can be added. The RTOS overhead of context switches (assign
& deassign times) and execution times of scheduling decisions can be annotated
as well. With this set of basic elements, the behaviour of the real RTOS on the
target platform can be modelled.
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Fig. 2. Task states and transitions (terminate edges omitted)

To improve the real-time capabilities, Guarded Methods that can lead to arbi-
trary blocking times due to data-dependent conditions, are ignored. Instead, only
the guaranteed mutual exclusive access to Shared Objects is used for synchro-
nisation and communication between the tasks. Each method of such a Shared
Object can then be considered as a critical section, which is executed atomi-
cally. Intra-core communication, i.e. communication between tasks mapped to
the same core, can be handled as usual. Here, the accesses are ordered according
to the local scheduling policy.

Moreover, the Virtual Target Architecture Model allows incorporating the ef-
fects of a shared memory that is connected to the cores via a shared communica-
tion medium. In an implementation on a target architecture the access protocol
data, as well as the user data of a Shared Object are mapped to a specific lo-
cation in a shared memory. Therefore, all states of the Shared Object include a
certain overhead of shared medium acquisition, usage and release. These times
could also be annotated to the proposed simulation model, but are not in the
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focus of this paper. We also do not cover effects of instruction and data fetches
over the shared communication medium, assuming that each core has its local
data and instruction memory.

5 Experiments

The main purpose of the modelling of abstract software multitasking in early
design phases is the exploration of the impact of platform choices on the system’s
correctness and performance. In the context of multi-core architectures, accesses
to shared resources (modelled as Shared Objects) have to be considered carefully.
Distributed access from different cores and runtimes to the same resource has
to be orchestrated. Different strategies are possible and lead to quite different
behaviours during run-time. An early simulation of these cross-dependencies
helps during the development of the application.

In Fig. 3, several combinations of local and distributed access policies are
compared for the application and mapping example shown in Fig. 1: Six tasks
are mapped on two cores, accessing three Shared Objects.

In Fig. 3(a), the Application Layer model of the system is depicted. In this
initial model, no local scheduling policy is enforced, which leads to independently
running tasks. The only blocking times occur in case of conflicting accesses to
Shared Objects. This model already exhibits the execution times (and periods
within critical regions inside the Shared Objects), according to the task arrival
times, the EETs and the access patterns of tasks to resources.

Next, static priorities are assigned to the tasks (T0 > T1 > T2, T3 > T4 > T5)
and the tasks are mapped to different cores, following Fig. 1. The scheduling
policy is always assumed to be priority-based, either with or without support
for local priority inheritance. Inter-core accesses to shared resources are resolved
based on the set of pending requests (see Section 3). In the example, it is assumed
that tasks on Core 0 have a higher priority, than those running on Core 1.

In the various scenarios, different access strategies with respect to the shared
resources are compared, according to their impact on the overall system schedul-
ing. For local resource accesses, i.e. resources that are accessed from tasks within
the same core, task preemption is allowed in Fig. 3(b)–(d), and suppressed in
Fig. 3(e)–(f). In case, a shared resource is currently locked by another core, the
calling task can either try to do busy-waiting until the resource is available again
(Spinning, in (b), (c), (e)), or stop its execution to let other tasks execute on the
current core (Suspend, in (d), (f)). It is then assumed, that the runtime is able
to resume the task, as soon as the blocked resource is available again.

For the given task set and mapping, the different execution traces that can be
obtained by the OSSS Multi-Core Software simulation in the different scenarios
are shown. Tasks are assigned to their cores according to the local priority based
scheduling policy. Different run-time artefacts can be observed (in addition to
potential RET violations, which are not shown here).

If a task that is currently accessing a shared resource can be preempted by the
runtime system due to the arrival of a higher-priority task (or its availability due to
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(a) Application Layer model. (b) Static priorities, Spinning.

(c) Priority inheritance, Spinning. (d) Priority inheritance, Suspend.

(e) No access preemption, Spinning. (f) No access preemption, Suspend.

Fig. 3. Different scheduling scenarios with shared resources

resource grants), so called “priority inversion” can occur. In Fig. 3(b), this can be
observed on both cores, when tasks T2, and T4 get access to their cores, although
higher-priority tasks T0, and T3 are waiting for the Shared Objects S0, and S2,
respectively. This leads to longer blocking times for these high-priority tasks.

In the context of a single core, priority inheritance [2] is known to be a solu-
tion for such scenarios. With priority inheritance, the low-priority tasks holding
resources required by high-priority tasks get an elevated priority, which reduces
their lock times. In the context of multi-cores, a local priority inheritance im-
plementation may lead to even worse scenarios, as shown in Fig. 3(c). First of
all, the response time of T0 is reduced, since T2 can continue until the release of
S0, once T0 requests S0. But the resource S2 has been locked by the arrival of
T1 on Core 0, before T3 could obtain S2 on Core 1. Core 1 is subsequently busy
waiting on S2, which is held by the preempted task T1 on Core 0. Overall, the
response time of the latest task is now significantly worse.
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An approach towards better CPU utilisation in the context of shared resources
might be the suspension of tasks, blocked by conflicting inter-core accesses, as
shown in Fig. 3(d). The overly long spinning time of T3 and even the preemption
of the access to S0 by T2 is avoided in this example.

Instead of suspending inter-core blocked tasks, an orthogonal approach to
reduce blocking times between cores is to suppress the preemption of local,
lower-priority tasks, that are currently accessing a shared resource. The results
of this access strategy are shown in Fig. 3(e),(f). Both traces lead to very good
overall response times with nearly no blocking times. The high-priority tasks are
of course started with an additional delay, depending on the currently ongoing
resource accesses. But since resource occupation should be kept short anyhow,
this might be a feasible strategy. The spinning time on S2, that can be observed
in Fig. 3(e) is quite short. Since in case of the suspension strategy, runtime
overhead costs are excluded for simplicity, the slightly better result in Fig. 3(f)
might be misleading. A refined model should consider these overheads as well.

6 Conclusion and Future Work

In this paper, we have presented the current modelling capabilities for embed-
ded software of the OSSS hardware/software design methodology, especially fo-
cussing on multi-core platforms.

OSSS features a layered approach with a separation between an abstract Ap-
plication Layer which can later be mapped to a Virtual Architecture Layer. This
separation enables flexible exploration of different (software) architecture vari-
ants already at early phases in the design process, e.g considering scheduling
policies, priorities, resource access strategies, etc.

After a general overview of the current OSSS Software Modelling approach in
Section 3, some of the required extensions to the existing methodology towards
abstract, but more accurate multi-core system models have been discussed in
Section 4. For a set of distributed multi-tasking systems, the OSSS approach is
an expressive and suitable modelling approach for applications running on top of
such platforms. Due to the explicitly visible resource sharing, expressed by using
Shared Objects, the resulting synchronisation and communication overheads and
conflicts can be observed already in early simulation models.

In Section 5, a simple Application Layer model has been mapped to a multi-
core platform. Since distributed resource accesses are critical for the overall sys-
tem behaviour, several different access strategies, both regarding local scheduling
decisions (priority inheritance, atomic/nonpreemptable resource accesses) as well
as the handling of remotely blocked resources (Spinning, Suspension) have been
compared. It can be seen, that even for small and allegedly simple cases, the
resulting system behaviour is hard to predict. Therefore, early simulation of the
different alternatives is a valuable analysis tool for a designer.

Regarding an implementation on a real multi-core platform, the proposed ac-
cess strategies require different platform primitives, depending on the intended
implementation approach. As proposed in Section 4, an implementation purely
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in terms of a shared memory region with a software implementation of the ac-
cess protocol is possible. For the support of an suspend-based access strategy,
platform support for the reactivation of suspended tasks on a certain core is
required, e.g. via sending an interrupt from the core, that releases a given re-
source to all cores, waiting for said resource. An initial implementation based on
a Linux implementation of the OSSS runtime will be published separately.

In the context of real-time applications, it is even more difficult to give guaran-
tees, when considering shared resources as well. We intend to further extend the
presented resource access protocols to improve the static analysability of OSSS
system models. This includes a restricted task/object model, e.g. by omitting
user-defined guard conditions, which can lead to arbitrary, data-dependent block-
ing times. Future work is to study real-time scheduling approaches for multi-cores
as discussed in [16]. These scheduling aspects can be integrated into the OSSS
methodology.

Summarising can be said, that OSSS already provides a good starting point
for modelling, exploring, refining, and implementing applications on emerging
multi-core platforms. Further extensions are possible and promising to improve
these capabilities even more.
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19. Schirner, G., Dömer, R.: Introducing Preemptive Scheduling in Abstract RTOS

Models using Result Oriented Modeling. In: Proceedings of Design, Automation

and Test in Europe (DATE 2008), Munich, Germany, pp. 122–127 (March 2008)
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Abstract. In this paper, we consider the problem of fixed-priority par-

titioned scheduling of sporadic real-time tasks for homogeneous proces-

sors. We propose a partitioning heuristic that takes into account possible

Worst Case Execution Time (WCET) overruns. Our goal is to maximize

the duration a task can be allowed to exceed its WCET without compro-

mising the timeliness constraints of all the tasks. This duration is denoted

in the paper the allowance of the task and is computed with a sensitivity

analysis. The partitioning heuristic we propose, assigns the tasks to the

processors in order (i) to maximize the allowance of the tasks and (ii) to

tolerate bounded execution duration overruns. Property (ii) is important

as real-time applications are often prone to be subject to OS approxima-

tions or software faults that might result in execution duration overruns.

We show with performance evaluations that Allowance-Fit-Decreasing
partitioning improves the temporal robustness of real-time systems w.r.t.

classical {First-Fit/Best-Fit/Next-Fit}-Decreasing partitioning.

Keywords: Real-time Scheduling, Partitioned Scheduling, Robustness.

1 Introduction

Fixed-priority scheduling of recurring real-time tasks has been largely studied
for uniprocessors. In such a scheduling, a Priority Assignment (PA) assigns a
fixed priority to each job of the task. For instance, Rate-Monotonic (RM) is an
optimal PA for periodic tasks with implicit-deadlines (deadlines equal to periods)
[1]. Optimality implies that if a feasible PA over a taskset exists, then the optimal
PA is also feasible. A feasible taskset is a taskset such that a scheduling algorithm
exists which can schedule this taskset. We focus on the more general model of
tasks with constrained-deadlines (deadlines less than or equal to periods) for
which Deadline-Monotonic (DM) is an optimal PA [2]. Recently, the optimal
Robust Priority Assignment (RPA) [3] has been proposed to find the PA which
maximizes the interference that a tasks system can support. These interferences

M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 193–204, 2010.
c© IFIP International Federation for Information Processing 2010
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can be handled by the tasks by allowing WCETs overruns while the timeliness
constraints of all the tasks are respected. These tolerated WCETs overruns are
denoted allowance of the tasks. In the same way, our motivation is to propose a
robust multiprocessor scheduling which maximizes the allowance.

The two most studied approaches to schedule real-time tasks on a multipro-
cessor are partitioned and global scheduling. The first one does not allow tasks to
migrate whereas the second one allows unrestricted migrations. Recent architec-
ture have reduced the cost of migration. Nevertheless, taking into account the
cost of migration in the feasibility conditions of global scheduling is still an open
issue. A recent performance evaluation of partitioned and global schedulings
show that partitioned scheduling outperform global scheduling, in the current
state-of-the-art of feasibility conditions [4]. We therefore focus on the partitioned
approach. Several algorithms for fixed-priority partitioned scheduling have been
proposed [5,6,7,8,9]. The aim of the authors is to propose algorithms which
improve the worst-case utilization bound. The worst-case utilization bound for
a scheduling algorithm A is defined as the minimum utilization for which any
implicit-deadline taskset is schedulable according to algorithm A. The utilization
of an implicit-deadline taskset is the sum of the processor utilization (formally
defined in Sect.2) of each task composing this taskset.

In this paper, our motivation is slightly different since we want to design
a partitioned scheduling which improves the temporal robustness of a system
i.e. to improve its capability to support variations on the system parameters at
run time (WCET overruns for e.g.). Such events should not lead to a deadline
violation in a hard real-time application. We focus on the WCET parameter
and we propose an algorithm which allocates the tasks on the processor having
the greatest capability to support WCETs overrun by maximizing the minimum
allowance of all the tasks.

The rest of this paper is organized as follows. In Section 2, we introduce the
terminology used in the rest of this paper. In Section 3, we give a definition
of robustness in context of this paper. In Section 4, we discuss two manners to
compute the allowance of the execution duration which is the criterion of our
partitioning algorithm for the assignment of real-time tasks on the processors.
In Section 5, we present our heuristic and describe how it works. In Section 6,
we compare on some simulations the performance of the partitioning schedulings
and we explain the benefits of our approach. We summarize the contributions of
this paper in Section 7 and we give direction for our future work.

2 Terminology

In this paper, we consider an application built from a set τ = {τ1, τ2, . . . , τn} of
n sporadic real-time tasks. A sporadic task is a recurring task for which only a
upper bound on the separation between release times of the jobs is known. Each
task τi is characterized by a minimum interarrival time Ti (also denoted period),
a worst-case execution time Ci and a relative deadline Di. This application runs
on a platform Π = {π1, π2, . . . , πm} of m identical processors (homogeneous
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case). We consider a fixed-priority scheduling on each processor. A fixed-priority
scheduler assigns a priority to each task and all jobs of a task is released with the
fixed priority of this task. We assume that tasks are indexed by decreasing prior-
ity: ∀i = 1, . . . , n−1, task τi has a higher priority than task τi+1. A partitioning
algorithm produces a partition Part(τ) = {τ1, τ2, . . . , τm} of m disjointed sub-
sets where each subset τ j of real-time tasks is executed on processor πj . The
subset τ j composed by nj tasks is also denoted by τ j = {τ j

1 , τ j
2 , . . . , τ j

nj
}. In

the rest of this paper, we refer to τi when the considered task is taken indepen-
dently and to τ j

i when it is considered assigned on processor πj . We define ui

as the utilization of task τi : ui ≡ Ci

Ti
and U j as the utilization of the taskset τ j

: U j ≡ ∑
τ j

k∈τ j uk. On the processor πj , we denote lpj(i) (respectively hpj(i))
the subset of real-time tasks assigned to πj which have a priority lower than
(respectively higher than or equal to) τi. The response time of the task τi is
denoted Ri. We denote Rk

i the kth iteration in the response time computation
of the task τi.

3 Robustness

We consider the robustness in the real-time systems as the capacity of the system
to handle WCET overruns faults when the WCET are estimated. If the WCET
of all the tasks of the system has been well defined, a feasibility analysis shows
wheter the system is feasible. But in pratice, it may possible that a task makes
a fault or that the time constraints has been miscalculated. Some real-time
specifications - such as Real-Time Specification for Java [10] - provide mechanism
to handle cost overruns and deadline misses in the case of estimated WCET.

In this work, we consider the robustness as the capacity of a system to meet
all the deadlines. We can guarantee that the system stay feasible if and only if we
know the execution duration during which a task can exceed its WCET without
any deadline is missed. This duration is denoted allowance and the more each
task allowance has, the more robust the system regarding to our definition is.

4 Allowance Concept

The allowance of a task is used as a criterion for allocating a task on a processor
by our heuristic. We define the allowance Aj

i of a task τ j
i on the processor πj as

follows :

Definition 1. Let τ j be a given set of tasks assigned on processor πj. The al-
lowance Aj

i of a task τ j
i of τ j is the maximum duration which can be added to

the WCET Ci of τ j
i such as all tasks of τ j meet their deadlines.

We identified in the literature two approaches to compute the allowance: one
based on a (Worst Case Response Time) WCRT computation and one based
on a sensitivity analysis on the WCETs. The response time of a task is the du-
ration between the time this task has been released and the time it has been
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Table 1. System of 4 sporadic real-time tasks

Ci Di Ti

τ1 10 60 70

τ2 15 85 100

τ3 30 190 210

τ4 45 260 320

finished. The WCRT of a task is the response time of this task in the worst acti-
vation scheme. We use the taskset given in Tab.1 to describe the two allowance
computation methods in the following subsections.

4.1 Allowance Computed from WCRT

One of the available approach to compute the allowance of the execution duration
has been proposed by Bougueroua et al. [11]. For a given value of allowance Aj

i ,
this method consists in checking that the system remains schedulable when the
execution duration of a task τi is equal to C′

i = Ci + Aj
i . In other words, this

method consists in checking that the WCRT of all the tasks remains less than or
equal to their deadline when their WCET is extended to Ci+Aj

i . The 3 following
equations perform this check for the task τ j

i on a processor πj if τ j
i was assigned

on τ j .

U j +
Aj

i

Ti
≤ 1 (1)

Rk+1
i = Ci + Aj

i +
∑

τh∈hpj(i)

⌈
Rk

i

Th

⌉
Ch ≤ Di (2)

∀τl ∈ lpj(i),

Rk+1
l = Cl +

∑
τh∈hpj(l)

⌈
Rk

l

Th

⌉
Ch +

⌈
Rk

l

Ti

⌉
Aj

i ≤ Dl
(3)

The value of allowance of a real-time task τi is found by a binary search. Equa-
tion (1) tests if the utilization U j of the system when the WCET of τ j

i is extended
to Ci + Aj

i does not exceed processor utilization. An upper bound Aj
i,up on the

allowance of the task τi can be found from (1):

Aj
i,up =

⌊
(1 − U j) · Ti

⌋
(4)

Equation (4) allows to bound the binary search in [0, Aj
i,up]. For the task τ j

1

of our example, Aj
1,up = �(1 − 0.58) · 70� = 29. We can carry out a binary

search with 0 ≤ A1 ≤ 29. Equation (2) tests if the response time R1 of τ1,
when its WCET has been extended to C1 + A1,j , does not exceed its deadline
D1. Equation (3) tests if the response times Rl of all tasks τ j

l of lower priority
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than τ j
1 don’t exceed their deadlines Dl when the WCET of τ j

1 is extended by
A1,j . For the value �29/2� = 14, we must check that this value satisfies (2) and
(3). For A1,j = 14, the response time of τ j

1 is R1 = 24 ≤ D1. We also obtain
R2 = 39 ≤ D2, R3 = 69 ≤ D3 and R4 = 177 ≤ D4. Then A1,j = 14 is a valid
value of allowance for τ j

1 on the processor πj . We continue the binary search
until A1,j = 21, then A1 = 21 is the maximum value of allowance for τ1,j .

The complexity of this approach is pseudo-polynomial due to the Response
Time Analysis (RTA) in (2) and in (3). This complexity is in O(n2) where n is
the number of tasks. Indeed, for a task τi, a RTA is performed in O(n) and for
each task of lower priority than τi, a RTA is performed in O(n). In the worst
case, there is n− 1 tasks of lower priority than τ1, thus the complexity is O(n2).

4.2 Allowance Computed from Sensitivity Analysis

Another approach to compute the allowance of the execution duration is the
sensitivity analysis. This approach has been introduced by Bini et al. [12]. This
approach is attractive compared to the previous one because no iterative compu-
tation (such as WCRT computation) is needed. The authors propose to consider
the system only at time corresponding to the activation time of the highest pri-
ority tasks in [0, Di] union time {Di}. The maximum allowance Aj

i of a task τ j
i

on the processor πj is computed by the following equations:

Sens(k) = max
t∈schedPk

t −
⎛
⎝Ck +

∑
h∈hp(k)

⌈
t

Th

⌉
Ch

⎞
⎠

�t/Ti� (5)

Aj
i =

⌊
min

k∈lp(i)
Sens(k)

⌋
(6)

where schedPk is the set of scheduling points defined by schedPk = Pi−1(Dk)
and Pk(t) is defined by :{P0(t) = {t}

Pk(t) = Pk−1(
⌊

t
Tk

⌋
Tk) ∪ Pk−1(t)

(7)

For the task τ1 of our example, schedP1 = D1 = {60}. For the other tasks in
the same way, schedP2 = {70, 85}, schedP3 = {70, 100, 140, 190} and schedP4 =
{140, 200, 210, 260}. The values Sens(1) = 50, Sens(2) = 45, Sens(3) = 33.33
and Sens(4) = 21.66 are computed by using Equation 5. The allowance M1 =
mink∈lpj(i)�Sens(k)� = 21 is obtained from (5) and (6).

The complexity of this approach is exponential because |schedPn|, denoted as
the size of the scheduling points set computed by (7) is 2n−1 in the worst-case.
But in practice, the size of schedPn << 2n−1 for a great value of n. We notice
that the size of schedPn is highly sensitive to the range of task periods as seen
in appendix of [13].
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5 Partitioning Algorithm

5.1 Task Partitioning Problem

The task partitioning problem consists of finding a partition of a taskset τ in m
subsets τ j , 1 ≤ j ≤ m such that each subset is feasible on processor πj . Since it
has been proved that bin-packing problem (NP-hard in the strong sense) can
be reduced in polynomial-time to a task partitioning problem [14], no optimal
algorithm exists to decide in polynomial-time if a given taskset is feasible. For-
tunately, approximation algorithms and heuristics exist to find solutions for the
task partitioning problem in polynomial-time. Heuristics for the tasks partition-
ing problem exist and are versions of the heuristics proposed for the bin-packing
problem. The more cited in the literature are First-Fit [8] (FF), Best-Fit [6]
(BF) and Next-Fit (NF) [7]. These heuristics have been initially designed to
minimize the number of bins (respectively the number of processors) for the
bin-packing problem (respectively the tasks partitioning problem). Another
heuristic Worst-Fit [15], is rarely used because it provides poor performance to
solve the bin-packing problem. On the problem of task partitioning, this heuris-
tic allocates tasks to processors where utilization is the lowest. This approach is
relevant because we want the best allocation of tasks to maximize the allowance
of tasks. We propose in the next subsection a heuristic which allocates tasks to
processors that has the greatest allowance rather than processors that has the
lowest utilization.

5.2 Allowance-Fit-Decreasing

We propose a heuristic, denoted Allowance-Fit-Decreasing, to solve the task par-
titioning problem. We want to tolerate bounded WCET overruns, a property not
considered in classical heuristics. WCETs overruns can be due to OS approxima-
tions, faults of the task or WCET under-estimation. By definition, the allowance
of a processor is the minimum allowance for all task allocated to the processor.
Our goal is to propose a partitioning scheme that assigns a task to the processor
whose allowance is maximum.

We describe the Allowance-Fit-Decreasing heuristic with the pseudo-code given
in Alg.1. The tasks are first sorted according to their utilization by function
sort task by decreasing utilization()(line 1). For each task τi of the taskset
τ (iteration loopat lines 2-17), theprocparameter,denoting theprocessoronwhich
τi is allocated (at line 3), is initialized with a null value. The minimum value of al-
lowance for the entire system (variable Amin at line 4) is first initialized to minus
infinity. We then consider all processors inΠ and find the processor thatmaximizes
the processor allowance. For each processor πj (iteration loop at lines 5-11),
our heuristic finds the minimum value of processor allowance Aj

min computed
by function compute allowance(πj, τ j

i ) when τi is allocated to πj with the
method described in Sect.4.2. If after the iteration loop, Amin is greater than
or equal to 0 then, τi can be assigned to a processor, the one that maximizes
the processor allowance, by construction. We then proceed with the other tasks
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Algorithm 1. Allowance-Fit-Decreasing
sort task by decreasing utilization()1

foreach τi in τ do2

proc = None;3

Amin = -Inf;4

foreach πj in Π do5

Aj
min = compute allowance(πj , τ

j
i )6

if Aj
min > Amin then7

proc = πj ;8

Amin = Aj
min;9

end10

end11

if Amin ≥ 0 then12

assign τi to proc13

else14

return unschedulable15

end16

end17

return schedulable18

until all the tasks until either all tasks have been assigned to a processor (we
then return that the task set is schedulable in line 18) or one task is declared
not schedulable (line 15).

5.3 Partitioned Scheduling Algorithm

A partitioned scheduling algorithm is the combination of a task partitioning
algorithm with a schedulability condition. We build two partitioned scheduling
algorithms, one from Worst-Fit and one from Allowance-Fit-Decreasing. For the
first one, the schedulability condition is a necessary and sufficient condition
implicitly given by Allowance-Fit-Decreasing. Indeed, our heuristic computes
with the function compute allowance(πj,τi) the value of Aj

min, the minimum
allowance for all the tasks assigned to processor πj , including τi. If this function
returns a negative value, then τi cannot be assigned on the processor πj . Aj

min

is computed from the sensitivity analysis given in Sect.4.2. For the second one,
we combine Worst-Fit with the necessary and sufficient schedulability condition
RTA [16].

During the allocation, the tasks are taken in order of their decreasing utiliza-
tion. In other words, the tasks with the greater utilization are allocated first. We
consider a fixed-priority assignment and we use DM priority assignment since
this PA is an optimal one when the considered tasks have constrained-deadlines
(∀i, Di ≤ Ti) [2].
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6 Simulations

6.1 Methodology

Our simulations is based on randomly generated tasksets. Because we focus on
tasks with constrained-deadlines, we consider tasksets such that for any task
τi, α = Di

Ti
). We randomly generate 10 sets for α ∈ [0.1, 0.2, . . . , 1.0]. Each set

is built from 100,000 randomly generated tasksets. Each taskset is composed
by 24 tasks. A taskset is generated using the UUniFast algorithm [17] which
produces a uniformly distributed set of task utilizations and which avoids bias
in the generated tasksets. For a given task τi, the period Ti is generated with
a uniform distribution between 100 and 100,000 ms. The deadline Di is given
by Di = α · Ti and the WCET Ci is given by Ci = ui · Ti. We consider an
homogeneous processor composed by 8 identical processors.

6.2 Simulation Results

We show in Fig.1 the average number of iterations during the computation of
allowance.

Rk+1
i = Ci +

∑
τh∈hpj(i)

⌈
Rk

i

Th

⌉
Ch (8)

We implement a function iteration() which computes the value given by (8).
The computation of the allowance based on the WCRT computation calls this
function in (2) and in (3). The computation of the allowance based on the sensi-
tivity analysis calls this function in (5). For the two implementations of the al-
lowance computation, we count the number of calls to the function iteration()
for each randomly generated taskset and we keep the average of the allowance
over all the taskset. We notice that despite the fact of the complexity of the
sensitivity analysis seems greater than the complexity of the allowance compu-
tation based on the WCRT, the number of iterations for sensitivity analysis is
well below the number of iterations for computation based on the WCRT. We
therefore choose to compute allowance by sensitivity analysis [12].

We show in Fig.2, 3 and 5 the comparison between First-Fit-Decreasing (FFD),
Worst-Fit-Decreasing (WFD) and Allowance-Fit-Decreasing (AFD). Decreasing
means that these heuristics assign the tasks in order of their decreasing uti-
lization. We voluntarily omit to show results concerning BF and NF because
their behavior are very similar to FF. AFD and WFD use a necessary and suffi-
cient condition of schedulability. Therefore we used the necessary and sufficient
condition RTA [16] for the heuristics FFD.

We show in Fig.2 the number of partition found by the heuristics FFD, WFD
and AFD. We notice that FFD provides a slightly better schedulability for α ≥
0.4. This result is explained by the fact that FFD is one of the best heuristic
for the task partitioning problem in terms schedulability. But the gap between
FFD and the other two heuristics is not very large and may be acceptable if we
want more robustness to WCETs overruns.
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Fig. 1. Comparison of computation time for the allowance computation approaches

Fig. 2. Comparison of schedulability for the tasks partitioning heuristics

We compare in Fig.3 the minimum allowance obtained by the three heuristics
on 4 processors and in Fig.4 on 8 processors. Minimum allowance Amin guaran-
tees that any task of the system can bear an interference during Amin without
any deadline is missed. We show that AFD and WFD outperforms largely FFD.
Indeed, AFD and WFD distributes the tasks among the processors instead of
fills up all the first processors. We note that AFD is slightly better than WFD.
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Fig. 3. Comparison of minimum allowance for the tasks partitioning heuristics on 4

processors

Fig. 4. Comparison of minimum allowance for the tasks partitioning heuristics on 8

processors

We show in Fig.5 the comparison between the computational time of the three
heuristics. AFD offers better results than WFD in terms of minimum allowance.
But the computation time of AFD is 6 to 10 greater than the computation time
of WFD. For a robust allocation to the WCETs overruns, it is interesting to use
AFD. But when tasks must be accepted online, WFD is a preferable choice.
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Fig. 5. Comparison of computation time of the heuristics

7 Conclusion

We have proposed a fixed-priority partitioned scheduling for homogeneous pro-
cessors which maximizes the allowance of the execution duration. This scheduling
is more robust than the others based on FF, BF or NF because during alloca-
tion of the tasks, the processor offering the greatest value of allowance is chosen.
In terms of maximization of allowance, Allowance-Fit is slighty efficient than
Worst-Fit. But in terms of computation time, Worst-Fit is largelly better than
Allowance-Fit. Thus Worst-Fit is a good heuristic to maximize the robustness
of a partitioned system of real-time tasks. In a future work, we will extend this
approach to the class of restricted migration scheduling to improve the schedula-
bility of our solution. In such a scheduling, the different jobs of a recurring task
can migrate from a processor to another, but no migration is allowed during the
execution of the job.
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Abstract. Embedded systems in robotics or mechatronics need flexi-

bility since they are working in dynamic environments. We consider an

embedded modular multi-microcontroller system. Each module includes

a microcontroller and special purpose hardware like a motor driver. Usu-

ally a change of the embedded software necessitates a direct access to all

the devices (microcontrollers) to reload the code.

To overcome this disadvantage we introduce an infrastructure for flex-

ible runtime reconfiguration of microcontroller modules within a system.

The infrastructure enables the system to be coarse-grain reconfigurable

on module level from one single point of access.

By using our infrastructure the system can remain operational dur-

ing reconfiguration except the modules that actually get reconfigured.

The infrastructure can cope with hardware changes during runtime like

disconnection and reconnection of system parts.

1 Introduction

Embedded systems in robotics or mechatronics need flexibility since they are
working in dynamic environments. We consider an embedded modular multi-
microcontroller system whereby each module includes a microcontroller and spe-
cial purpose hardware, e.g., a motor driver. Typically these systems are rather
complex in terms of number of microcontrollers or in terms of communication
structure. Nowadays those system are statically built so that an adaptation to
a new environmental situation often requires a complete rebuilding of the en-
tire system. Of course, for improvements of the algorithms used in embedded
microcontrollers a reconfiguration of the according controller is also needed. If
possible at all, a change of the embedded software on the embedded devices often
is very difficult because a direct access to each device is necessary. In such cases
a solution would be needed that provides one single point of access for reliable
reconfiguration of the embedded software of a microcontroller module which is
deeply embedded in the system.

As an example consider a complex mechatronic system with more than hun-
dred microcontrollers. Given that about 20% of the microcontrollers do the same
job, like motor controlling, at least 20 microcontrollers have to be reconfigured if

M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 205–216, 2010.
c© IFIP International Federation for Information Processing 2010
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an error is revealed or an update is necessary. Hence, besides the single point of
access it would be useful to have the ability not only to reconfigure a single mi-
crocontroller but to reconfigure a functionally identical group of microcontrollers
simultaneously.

Now consider a reconfigurable mechatronic system, e.g., a truck which could
be equipped with different types of accessories. Each accessory for its own is a
mechatronic system which is equipped with multiple microcontrollers. If, e.g., a
company with several of these multi-use trucks finds an error in the height-level
control of the snow plow accessory, a reconfiguration is necessary. An easy way
to reconfigure these microcontrollers would be to plug a reconfiguration device
in each truck equipped with the faulty snow plow. If for some reason this recon-
figuration device is plugged in a truck without a snow plow the system should
be able to identify its actual structure and the currently available functional
units to prevent wrong reconfiguration. Furthermore, considering a necessary
reconfiguration which would reconfigure microcontrollers both on an accessory
as well as on the truck itself, the system should be able to reconfigure the one
part without having the other part available.

As third example let us regard a production line as a mechatronic system. It
could be very expensive to stop the complete system. To consider a reconfigurable
system to be installed, a reconfiguration must not lead to a complete system
stop. One possibility is to split the production line into sections—which already
is common practice—where each section can be stopped individually. The näıve
approach would bring up the non-central reconfiguration issue again. Splitting
up the production line while keeping the central reconfiguration would need an
architecture which ensures the reconfiguration process not to interfere with the
functionality of the rest of the system.

The examples described above show that a flexible modular approach is
necessary for system reconfiguration. The individual modules should represent
functional units which can be combined with mechanics to create mechatronic
functional units, e.g., a driving unit for robotics. The system has to be flexible
enough to be used at several different places in a robotic system, e.g., as a motor
controller or as a multi-servo controller. Components have to be reconfigurable
without the necessity of accessing them directly. They should be reconfigurable
during runtime while the rest of the system remains operational. The user should
not be bothered with details of reconfiguration. The system should be able to
identify its own structure.

We envision to plug a system together and when connected to a PC, a diagram
of the functional unit structure appears. The user then would be able to select
those parts of the system he wants to reconfigure.

In this paper we present an infrastructure for a flexible runtime reconfigurable
microcontroller system, that shows the following features.

– Single point of access for reconfiguration:
Our infrastructure provides reconfiguration-access to the complete system
via a single point of access.
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– Multicast reconfiguration:
Simultaneous reconfiguration of multiple modules is possible.

– System enumerates nodes automatically and unambiguously:
Independent from user-space communication, the system can determine its
own structure and the system assigns unique identifiers automatically to its
nodes.

– System recognizes changes:
When a node is removed or added, the system recognizes this situation and
starts a new enumeration cycle automatically.

– Separation of concerns: communication vs. reconfiguration:
The user needs not to bother about matters of reconfiguration.

– Reconfiguration can be independent from user communication channel:
We integrate two independent communication domains for reconfiguration
and user-space communication. It can be selected which communication
channel is to be used for reconfiguration.

– Runtime reconfiguration on module level:
The reconfiguration of a module is possible without stopping the whole sys-
tem. Only the module itself has to be stopped.

The remainder of this paper is organized as follows. In Section 2 we describe
the underlying architecture of our reconfiguration infrastructure. In Section 3 we
focus on the automatic structure determination. In Section 4 the reconfiguration
process is described. Section 5 then shows the application of our infrastructure
to a demonstration system. After that, we discuss related work in Section 6.
Finally, we conclude our work in Section 7.

2 Reconfiguration Architecture

Our intention was to create a modular system of microcontroller boards for
control purposes. A common problem nowadays is that each individual micro-
controller is reconfigurable, but only at its own connector. Now imagine a large
system with 10 or more microcontrollers deeply embedded within the system.
Here a single point of access to connect to the system is desirable even if only one
microcontroller has to be reconfigured. Therefore we designed modular micro-
controller boards and enhanced this design with a reconfiguration architecture.
The resulting infrastructure is depicted in Fig. 1.

In the following we use the term node for modules which have a specialized
logic and a dedicated microcontroller for reconfiguration and structure recogni-
tion. The architecture distinguishes three basic types of modules.

– Communication nodes
– Execution nodes (e.g., I/O nodes, calculator nodes)
– Power supply modules (no node logic)

Communication nodes hold a central position within the infrastructure. They are
the bridge between the embedded system and a controlling infrastructure. For this
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purpose one Communication node is equipped with a microcontroller Ccomm and
several internal and external communication interfaces. Hence a Communication
node acts as the single point of access to the system.

Execution nodes are specialized microcontroller-driven devices which are used
for the actual control tasks like motor controlling, waveform generation, etc..
Each Execution node has a main microcontroller Cmain for the actual control
task and a dedicated reconfiguration microcontroller Cconfig for reconfiguring
Cmain .

Cconfig

Cmain

Signaling

Reconfi-
guration

Execution node n

Bootloader

User program n

Control Sense

ControlSense

Cconfig

Ccomm

Cmain

Signaling

PC

CANRS-485 Reconfiguration data

User-space communication

Reconfi-
guration

Stack system

Execution node 1

Communication node

Bootloader

User program 1

Control Sense

ControlSense

Control Sense

ControlSense

Fig. 1. Reconfiguration Architecture

Fig. 1 shows two independent communication channels throughout the system
(CAN in white, RS-485 in gray). In this case the CAN bus is used for user-
space communication (although it could be also used for reconfiguration) and
the RS-485 bus is exclusively used for reconfiguration. The ports Sense and
Control which are shown in the figure are used for the automatic structure
detection. They are important during the system’s initialization and whenever
the system is structurally changed, e.g., because of parts of the system being
switched off or on. The automatic structure determination of our architecture
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which is described detailed in Section 3 enables the reconfiguration of systems
whose hardware structure can be changed. The separation of concerns between
user-space communication and reconfiguration enables a system reconfiguration
during run-time. While one microcontroller of the system is reconfigured, the
rest of the system may remain operating.

3 Automatic Structure Determination

In order to increase the flexibility of a reconfigurable microcontroller architec-
ture, such a system should be able to determine its own physical structure and
to recognize changes to this structure. Fig. 2 depicts a simplified block diagram
of the structure of a stacked system. Actually, two connected stacks are shown.
Only one of them is equipped with a Communication node. However, in some
cases it could be useful to have more than one Communication node in the
system. Since Communication nodes act as a bridge between the internal com-
munication architecture and an external one, more than one Communication
node could be needed. If the device which uses the system is, e.g., equipped
with an internal control PC, one Communication node would be connected to
this internal PC and another one would act as the reconfiguration access point.
Another example for a scenario with more than one Communication node would
be a setting where multiple points of access to the system are desirable, e.g., at
the front and the end of a large production line.

Unlike in Section 2 here only that part of the system is of interest which
is concerned with the actual reconfiguration. Hence, only the Communication
node, Ccomm , and the reconfiguration microcontrollers of the Execution nodes,

Control Sense

Sense

Sense

Sense

Control

Control

Control

Control Sense

Sense Control

Cconfig

Ccomm

Control Sense

Sense Control

Cconfig

Control Sense

Sense Control

Cconfig

Control Sense

Sense Control

Cconfig

(a) Daisy chain; stack with external nodes
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Sense Control
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Control Sense

Sense Control

Cconfig

Control Sense

Sense Control

Cconfig

Control Sense

Sense Control

Cconfig
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Token flow

Broadcast

Reconfiguration data

(b) Enumeration sequence

Fig. 2. Exemplary system configuration with enumeration
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Cconfig , are shown instead of the entire nodes. While determining the structure
of the system, every node gets a unique number which is later used as an address
for the reconfiguration process (Section 4). The structure determination uses a
depth-first search which is also used to assign the addresses at the same time.

We now describe an exemplary enumeration on the basis of the configuration
shown in Fig. 2(a). Fig. 2(b) depicts the enumeration sequence and parts of the
communication. Each node, except the Communication node, has two signaling
ports to its logical top and the same to its logical bottom. Note another difference
to Fig. 1. Ccomm is equipped with two additional signaling ports where external
stacks can be connected (see Fig. 4). Sense is an input port used to recognize a
connected node and Control is an output port used to send signals to a connected
node. Both signals have a predefined signal level (Control = 1, Sense = 0). Hence,
initially each node is able to detect whether another node is connected. When
two nodes are connected, the Control port pulls the Sense port of the other node
to 1.

We defined the root node to be the one that initially has no node at its top.
The initial 0 at the top Sense port is regarded as a token signaling to the root
node that no other node is on top of it. In Fig. 2(a) the root node is Ccomm .
Note that any of the nodes could take this position.

All nodes hold a variable where the currently highest node address is stored
(initially -1). Ccomm gets the token (its top Sense port is 0) and therefore may
take an address. It takes address 0 and broadcasts this through the system. After
a node has taken an address, it then passes the token to its children. When the
token returns through the bottom Sense port, it has to be passed to the next
child or—if all children returned the token—it has to be passed to the parent
node.

After Ccomm has broadcasted its address, Ccomm disables its bottom Control
port (passes the token to its first child). This causes a change on the Sense port
of Cconfig below Ccomm . This signals the node below node 0 that it could now
take the next address. This process is continued until no node is connected at
the bottom port. In the exemplary case of Fig. 2(b) the last node in the first
chain is node no. 2. It detects that no further node is connected and therefore
passes the token to its parent (node 1). This signals node 1 that all nodes below
have finished their enumeration phase.

Node 1 then passes the token to node 0 (Ccomm). Node 0 recognizes the return
of the token and passes it to the next child. In this case the child is the first
node of the external stack. It takes the address 3 and passes the token to the
next node. After node 4 has taken its address, the token is returned to node 3
and then to node 0. Ccomm recognizes that it has no further children to pass
the token to. As Ccomm is the root node it then can broadcast the end of the
enumeration phase. All nodes then return their Control ports into the initial
state which enables the system to recognize changes.

After a change of the system’s structure a renumeration has to be initiated.
Fig. 3 depicts the two stages of the renumeration process exemplaryly for a dis-
connect event. Since all nodes have reset their Control ports, node 1 in Fig. 3(a)
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Fig. 3. Renumeration after disconnect event

is able to detect the disconnection of node 2, as the Sense port of node 1 switches
from 1 to 0. This level change is regarded as a token signaling a disconnect event
to the sensing node. The token is passed to the parent until the root node has
been reached. Node 0 then sends a broadcast signaling the upcoming renumer-
ation. After that a normal enumeration process starts as shown in Fig. 3(b).

4 Reconfiguration Process

As we mentioned before, we envision a pluggable modular system whose struc-
ture is displayed when connected to a PC. After the system has determined its
structure, every node has a unique address and is therefore able to reconfigure
itself. Besides the two basic types Communication node and Execution node, the
system is also able to distinguish between different nodes of the same basic type.
The user of such a system can define groups of functionally identical nodes, e.g.,
motor drivers. In a structural diagram the user then would be able to identify
and to select a single node as well as a group of nodes for reconfiguration. The
usual reconfiguration should follow the scheme described below:

– Ccomm of the Communication node, which wants to start a reconfigura-
tion process, sends a message over the reconfiguration bus. The message
is addressed to the Cconfig microcontrollers of those nodes that have to be
reconfigured and contains the following data:
• Desired function, e.g., enter programming mode
• Desired channel for further communication, e.g., RS485
• List of addressed nodes
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– The reception of the initial message will be confirmed by all selected Cconfig

microcontrollers. The confirmations will be sent in the order of the address
list.

– All selected Cconfig microcontrollers then put their Cmain into reconfigura-
tion mode and prepare them for the communication with the desired com-
munication channel.

– After Cmain has entered the reconfiguration mode, it transmits a confirma-
tion to the initiating Ccomm using the selected communication channel.

– Ccomm has to wait for all confirmation messages, which are sent over the
selected communication channel.

– For every memory page to be transmitted, three types of messages are ex-
changed.
• A start message, containing information about the content type, e.g.

EEPROM, FLASH, the start address or page number, the number of
expected data messages and a checksum for the complete data to be
received.

• Data messages, containing the actual data. Dependent on the used com-
munication channel, these data messages can have different sizes and
may be also protected by a checksum.

• A finishing message, causing all recipient Cmain microcontrollers to check
the data for completeness and correctness and to write the received data
to the according memory. This ensures that the reconfiguration process
starts only, if all data have been received correctly. If one of the recipients
reports an error, the process is restarted. Data which already have been
received correctly will be ignored, so that only the erroneous nodes are
reconfigured again.

– As last step, Ccomm sends a finishing message to all selected Cconfig micro-
controllers, causing them to reset their Cmain microcontrollers into normal
operation mode.

Using this communication scheme for reconfiguration ensures that single nodes
as well as a group of nodes can be reliably reconfigured.

5 Realization of the Demonstrator

Fig. 4 depicts an exemplary setup of our stack system. The system consists of
a Power supply module, one Communication node and two Execution nodes.
The Communication node can be easily identified as it is equipped with a USB
connector and two external ports to connect to other stack systems. The Power
supply module has an according external connector to get connected with an-
other stack system.

The Communication nodes hold a central position within the infrastructure.
They are the bridge between the embedded system and a controlling infras-
tructure. For this purpose one Communication node is equipped with several
internal and external communication interfaces. The internal interfaces include
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Fig. 4. Stacked sytem

two independent communication channels: a CAN bus interface for user-space
communication and a RS-485 interface for reconfiguration purposes.

As external interfaces, a USB interface and a LAN interface are provided. The
USB interface (FT232R) acts as a UART. The LAN interface is built on founda-
tion of the WIZnet chip W5100, which is a hardwired TCP/IP embedded Ether-
net controller. We have chosen this Ethernet controller to save program memory
and CPU load on the main microcontroller. Another fact which distinguishes the
Communication node from the other nodes is the different node logic controller
(Ccomm) which has two additional external interfaces for reconfiguration.

Furthermore there are different types of Execution nodes. So far, we developed
a digital-analog I/O node and a motor driver node (Fig. 5). The I/O node has
16 digital outputs, 8 digital inputs and 8 analog inputs. The motor driver node
is mainly based on the power motor driver VNH2SP30-E from STMicroelectron-
ics. One specialty of the motor driver node is that its communication channels
are fully optocoupled. This ensures that no electrical noise from a connected
motor interferes with the communication or with the internal electrical system
in general.

6 Related Work

The term reconfiguration in terms of embedded system often is related to Field
Programmable Gate Arrays (FPGAs). There are many relations between an
FPGA-based system and our modular multi-microcontroller system. In terms of
an FPGA system coarse-granular reconfiguration means the replacement of com-
plete system modules in contrast to only reconfiguring parts of a processor. Our
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Fig. 5. One node of our stack system (motor driver node)

reconfiguration is coarse-granular in terms of only reconfiguring a complete mod-
ule. Additionally, we integrate I/O-hardware, power drivers and even galvanic
isolation in our modules. Masselos and Voros [5] introduce a classification of
reconfigurable architectures. Our approach cannot directly be classified by their
classification scheme. We have a temporal computation style, have a great post
fabrication programmability and are highly flexible. Our type of reconfiguration
is kind of both static—from microcontroller’s point of view—and dynamic—from
the system’s point of view.

Wahlah and Gossens [7] propose a 3-tier reconfiguration model for FPGAs
using hardwired network on chip. Besides their 3-tier architecture they use the
hardwired network as a dedicated communication channel for reconfiguration.
They also propose a separation of concerns as the user has no need to bother
about reconfiguration details as the application manager takes over this task.

Blodget et al. [1] present an approach for dynamic reconfiguration of a spe-
cial FPGA. They propose a hardware and software infrastructure to enable the
FPGA to reconfigure itself using a soft microprocessor to control the reconfig-
uration. We also use the concept of a dedicated microcontroller to control the
reconfiguration. In our case each module carries its own reconfiguration micro-
controller which is also used for the automatic structure detection.

The technical term “component-based reconfiguration” is usually used for
software systems but there are many related issues to a module-based system
as we have proposed it in this paper. Matevska [6] “presents a model-based
approach to runtime reconfiguration of component-based systems, which aims at
minimising the interference caused by the reconfiguration and thus maximising



An Infrastructure for Flexible Runtime Reconfiguration 215

system responsiveness during reconfiguration.” His main goal is to maximize
the system responsiveness during reconfiguration. In contrast, our main goal
is to encapsulate the reconfiguration process to ease the reconfiguration. The
infrastructure we proposed ensures that—except the modules that actually get
reconfigured—the rest of the system remains operational.

Chen et al. [2] “propose a framework to support component-based model in-
tegration, hierarchical functionality composition, and reconfiguration of systems
[...]”. Their framework is more related to our future work but they also use hier-
archical components to hide the implementation details. This is comparable with
our separation of concerns paradigm which hides the details of reconfiguration.

David et al. [3] propose a multi-stage approach for reliable dynamic recon-
figuration. They focus on a validation of the reconfiguration process to detect
errors before the execution of the reconfiguration. This partly also applies to
our infrastructure regarding the separation of concerns paradigm. We provide
an interface to the user to reliably reconfigure a system’s module. Another part
of the work of David et al. is the error detection in a running system and to
automatically mitigate them by reconfiguration. This part of their work is more
related to our future work.

Gumzej et al. [4] propose a reconfiguration pattern for UML-based projects of
embedded real-time systems. Their concept mainly regards real-time capability
of the reconfiguration management. We have not analyzed the real-time capa-
bility of our infrastructure yet and in their point of view the infrastructure we
proposed would only be a part of the reconfiguration management. Our infras-
tructure proposal would be located on the hardware level and on the middleware
level.

7 Conclusion and Future Work

Our intention was to create an infrastructure for coarse-grain flexible run-time
reconfiguration of multi-microcontroller systems. We have shown that the infras-
tructure we proposed fulfills the requirements of a flexible module-based coarse-
grain run-time reconfiguration and moreover introduces a separation of concerns
regarding user-space communication and reconfiguration. Our infrastructure is
able to cope with structural system changes and ensures a reliable reconfigu-
ration. Additionally, our infrastructure provides the ability to do a multicast
reconfiguration of functionally identical modules.

Until now, we have tested the automatic structure detection within one stack,
and we have implemented a driving unit. The driving unit includes three motor
controllers realized on three Execution nodes and one Communication node. We
successfully tested both the user-space communication and the reconfiguration
communication. We are currently working on the bootloader code.

This infrastructure will be the foundation of future work. Both ideas, to ex-
tend the amount of modules and to more deeply integrate the stack system with
complex embedded systems, will be issues in our future work. More complex func-
tional units including embedded PCs will be developed to build a self-monitoring
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and self-repairing subsystem that uses in-system runtime reconfiguration to make
the whole system more robust against failure.
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Preface

“Look deep into nature and you will understand everything better,” advised
Albert Einstein. In recent years, the research communities in computer science,
engineering, and other disciplines have taken this message to heart, and a rela-
tively new field of “biologically inspired computing” has been born. Inspiration
is being drawn from nature, from the behaviors of colonies of ants, of swarms of
bees, and even the human body. This new paradigm in computing takes many
simple autonomous objects or agents and lets them jointly perform a complex
task, without having the need for centralized control. In this paradigm, these
simple objects interact locally with their environment using simple rules. Appli-
cations include optimization algorithms, communications networks, scheduling
and decision making, supply-chain management, and robotics, to name just a
few. There are many disciplines involved in making such systems work: from
artificial intelligence to energy-aware systems. Often these disciplines have their
own field of focus, have their own conferences, or only deal with specialized
sub-problems (e.g., swarm intelligence, biologically inspired computation, sensor
networks). The Third IFIP Conference on Biologically Inspired Collaborative
Computing aimed to bridge this separation of the scientific community and bring
together researchers in the fields of organic computing, autonomic computing,
self-organizing systems, pervasive computing, and related areas.

The contributions to the program of this conference were selected from sub-
missions originating from North and South America, Asia, Europe, and Aus-
tralia. We would like to thank the members of the Program Committee for
the careful reviewing of all submissions, which formed the basis for selecting
this attractive program. We are grateful to IFIP and in particular IFIP TC-10
for their support. We all enjoyed the inspiring series of talks and discussions at
BICC 2010, part of a range of excellent conferences in the IFIP World Computer
Conference 2010.

Peter Lindsay
Franz J. Rammig

Mike Hinchey
Jon Timmis



M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 221–232, 2010. 
© IFIP International Federation for Information Processing 2010 

Model Checking the Ant Colony Optimisation 

Lucio Mauro Duarte1, Luciana Foss2, Flávio Rech Wagner1, and Tales Heimfarth3 

1 Institute of Informatics, Federal University of Rio Grande do Sul – Brazil 
2 Institute of Physics and Mathematics, DINFO, Federal University of Pelotas – Brazil 

3 Dep. of Computer Science, Federal University of Lavras - Brazil 
{lmduarte,flavio}@inf.ufrgs.br, luciana.foss@ufpel.edu.br, 

tales@dcc.ufla.br 

Abstract. We present a model for the travelling salesman problem (TSP) 
solved using the ant colony optimisation (ACO), a bio-inspired mechanism that 
helps speed up the search for a solution and that can be applied to many other 
problems. The natural complexity of the TSP combined with the self-
organisation and emergent behaviours that result from the application of the 
ACO make model-checking this system a hard task. We discuss our approach 
for modelling the ACO in a well-known probabilistic model checker and de-
scribe results of verifications carried out using our model and a couple of prob-
abilistic temporal properties. These results demonstrate not only the effective-
ness of the ACO applied to the TSP, but also that our modelling approach for 
the ACO produces the expected behaviour. It also indicates that the same mod-
elling could be used in other scenarios. 

Keywords: ant colony optimisation, self-organisation, emergent behaviour, 
probabilistic model checking. 

1   Introduction 

Biologically inspired algorithms (or simply bio-inspired algorithms) [1] are methods 
that use mechanisms that resemble behaviours observed in nature, such as food 
search, evolution and insect swarming. These mechanisms define solving strategies 
that make applications more robust, flexible and scalable. They have been success-
fully applied to several problems, such as sensor networks [2][3]. 

All bio-inspired algorithms present a decentralised control and are composed by 
several, simple components that act autonomously and interact with each other. The 
overall behaviour of the system is a result of the interactions between its components 
and their autonomous decisions, based on environment conditions. Therefore, bio-
inspired algorithms combine self-organisation and emergence. Self-organisation [4] 
describes the ability of a system to dynamically modify its internal structure in an 
autonomous manner. Hence, components automatically adapt to changes without any 
external intervention. Emergence [5] means that the system's behaviour, rather than 
being simply the sum of the behaviours of its components, emerges from local inter-
actions between these components. Systems that contain self-organisation and emer-
gence are called self-organising emergent systems (SOES) and are considered one of 



222 L.M. Duarte et al. 

the most promising answers to the development of massive distributed systems with 
decentralised control [6]. However, no appropriate support is provided by current 
software engineering techniques for the development of such systems. 

The main problem in developing an SOES is the dynamic changes in its structure, 
which makes it difficult to analyse the system using traditional approaches, which 
require predicting all possible behaviours. Furthermore, even though components of 
the system and their interactions are quite simple, the great number of possibilities of 
interactions increases the system's overall complexity.  

In this paper we investigate how to provide some guarantee that a system involving 
a bio-inspired algorithm – thus characterising an SOES - exhibits the expected  
behaviour. Though simulation is the usual technique for the analysis of these systems, 
we present an approach based on probabilistic model checking [7], which is a  
technique that extends the traditional model checking [8] by allowing property  
specification and model analysis to consider probabilities and timing information. The 
reason for this choice is the need of checking not only qualitative properties (i.e., 
properties that evaluate as either “true” or “false”) but mainly quantitative properties 
regarding issues such as reliability, performance and resource usage. Moreover,  
modelling bio-inspired mechanisms requires different abstractions to describe the 
dynamics of the system and possible changes in its structure over time. 

We describe a modelling strategy for a bio-inspired algorithm based on the mecha-
nism of pheromones. We advocate that, since bio-inspired algorithms are naturally 
self-organising mechanisms, if there is a well-defined way of model-checking them, 
then SOESs in general could be more easily modelled and verified. 

To evaluate our idea, we have developed an example involving the travelling 
salesman problem (TSP) [9] using the ant colony optimisation (ACO) [10] to drive 
the solution for the problem in a small scenario. Hence, our main goals with this study 
were: to propose a way of modelling the bio-inspired algorithm, to apply it to a model 
of the TSP and to show, through the verification of some properties, the correctness of 
the modelling, which means that the mechanism indeed eventually leads the system to 
exhibit the expected behaviour. We demonstrate how we have modelled the TSP and 
the ACO as a discrete-time Markov chain (DTMC) in the Probabilistic Symbolic 
Model Checker (PRISM) [11] and present a couple of properties specified using 
probabilistic computational tree logic (PCTL) [12] that we have checked. The results 
indicate that the pheromone mechanism successfully eventually leads to a behaviour 
that complies with requirements for solving the problem, thus demonstrating the cor-
rect modelling of the bio-inspired algorithm. 

The remaining of this paper is organised as follows: Section 2 presents background 
information on the subject of this work; Section 3 describes how we have modelled 
and verified the TSP-ACO experiment and the results obtained; Section 4 presents a 
discussion about some related work; and Section 5 contains the conclusions. 

2   Background 

This section presents the basic ideas related to the problem and to the bio-inspired 
algorithm. It also briefly describes concepts related to probabilistic model checking.  
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2.1   The ACO Applied to the TSP  

The travelling salesman problem (TSP) [9] is a classic and well-studied problem in 
Theoretical Computer Science that can be used to formalise a number of real-world 
problems. It consists in finding the shortest Hamiltonian circuit in a fully-connected 
graph G=(N,E), where N represents a set of n cities and E describes the set of routes 
between pairs of cities. Each route (i,j) in E is assigned a cost cost(i,j), describing the 
distance between cities i and  j. Thus, the total cost of a certain tour t=(c0,c1,...,cn,c0) is 
given by the sum in (1), which represents the sum of the costs of every route included 
in the tour. Therefore, the shortest path1 would be the one with the lowest total cost. 
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One way proposed to help solve the TSP is by the ant colony optimisation (ACO) 
[10], which is an algorithm that simulates the behaviour of ants looking for food 
sources. They mark the paths they take by leaving a trail of pheromone, which is a 
natural hormone. When choosing paths, ants take into account the pheromone concen-
tration, which indicates paths more often taken by other ants. Thus, paths leading to 
food sources close to the nest tend to concentrate higher levels of pheromone and 
become more attractive to other ants. After some time, the pheromone slowly evapo-
rates, ensuring that paths that do not lead to good food sources (i.e., are not frequently 
used) will become less attractive over time. Therefore, the pheromone mechanism 
provides all the information ants need to choose paths and achieve the necessary or-
ganisation without external intervention. This means that the behaviour of the whole 
colony emerges from the interactions through pheromone. 

2.2   Probabilistic Model Checking 

As in any other SOES, the complexity of the ACO lies not on the behaviour of each 
component (ant) alone, but on the difficulty of predicting the behaviours that can 
emerge from local interactions. In order to provide guarantees of some sort about the 
emergence of a specific behaviour, we can identify two possible approaches: simula-
tion or formal verification. Simulations of an abstract system model can be used to 
drive design choices until the required quality properties are obtained. However, sys-
tem analysis based on simulation does not provide sound guarantees for the engineer-
ing of complex systems such as ACO because it is based only on approximations. In 
contrast to simulation, formal verification techniques, such as model checking [8], can 
provide precise results about the system real behaviour, at the cost of requiring more 
accurate abstractions. 

Probabilistic model checking [7] is a model checking technique more tailored for 
the analysis of SOESs, as it provides means of dealing with systems that exhibit prob-
abilistic or stochastic behaviour. It mainly differs from traditional model checking in 
that it involves additional information on probabilities or timing of transitions  
between states. Properties can involve calculations of the probability of certain events 
occurring during the execution of the system. 

                                                           
1  We use the term tour to represent the traversal of the graph and the term path to describe a 

sequence of cities visited during a tour.  
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There are several commonly used model representations for probabilistic and sto-
chastic systems, most of them based on Markov chains. In Markov chains, transitions 
between states depend on some probability distribution, where only the current state 
of the system influences the probability of the next transitions. A particular type of 
Markov chain is a discrete-time Markov chain (DTMC), which is represented by a 
transition system that defines the probability of moving from one state to another by 
applying discrete-time steps. The temporal logics probabilistic computation tree logic 
(PCTL) [12] is used to specify properties of a DTMC. PCTL extends the temporal 
logic CTL [13] with discrete time and probabilities. 

One of the most used tools regarding probabilistic model checking is the Probabil-
istic Symbolic Model Checker (PRISM) [11]. Amongst some other features, it  
supports the specification of PCTL properties and the creation of DTMCs described 
using a simple, state-based language. It also provides an environment for checking the 
properties against the models using either simulation or verification. 

3   Verification of the TSP with ACO 

This section presents the results of our modelling of the ACO and how this mecha-
nism was introduced in the TSP model to help find a solution using self-organisation 
and emergence. We also discuss how we specified properties based on these require-
ments and verified that they hold in the model. 

3.1   Modelling 

We modelled the problem using the PRISM language [11] to describe the symmetric 
version of the TSP (where routes have the same cost on both ways). The graph was 
composed by 4 cities, which is the minimum number of vertices necessary to intro-
duce some complexity to the problem. To simplify the modelling, we fixed city num-
ber 1 as the initial city and modelled the solution with only one ant. This way, rather 
than having multiple ants travelling in parallel, there was only one ant repeatedly 
traversing the graph. Therefore, each tour of this sole ant represents the behaviour of a 
different ant, thus simulating the behaviour of several ants. This abstraction reduces 
the complexity of the problem but does not affect the analysis results as the effect of 
the pheromone mechanism works exactly in the same way.  

Although we followed the original ACO algorithm [10], calculating the probabili-
ties of paths based on both costs and desirability (amount of pheromone), we used 
different formulas to simplify the modelling. Our desirability component, called pref-
erence, refers to the amount of pheromone associated to each route between two  
cities, which ranges from 1 (MIN_PREF) to 10 (MAX_PREF). All routes are initial-
ised with MIN_PREF and, after a tour, pheromone is deposited only on edges that are 
part of the path taken, causing preferences to be updated. The local updated prefer-
ence value after a tour is calculated as presented in (2). 

.))_),_(_min(' PREFMAXdisttotfactorincpp ijij +=      (2)

In the formula, pij denotes the preference of route (i,j) and tot_dist is the sum of the 
costs of all routes comprising the most recent tour. Function inc_factor determines by 
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how much the preference of a route will be increased depending on the total cost of 
the complete path. It assigns an increase value to paths according to their length group 
(short, mid-length or long). The group which a path belongs to is determined by the 
assignment of a cost to each route, which defines a scenario for the TSP.  

The local update of routes causes a global update of probabilities. The probability 
of taking a certain route (i,j) is given by (3), where N_CITIES defines the number of 
cities involved, and visited_cities is the set of cities already visited in the current tour. 
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Considering a scenario with 4 cities, the probability of taking, for instance, route (1,2) 
when starting the tour in city 1 is given by (4). 
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Note that the formula guarantees that the probabilities of all possible routes from a 
city add up to 1. The code below presents the PRISM model of the TSP-ACO: 

1  dtmc 
2  const int N_CITIES = 4; const int MIN_PREF = 1;  
3  const int MAX_PREF = 10; 
4  const int D12 = 1; const int D23 = 8; const int D34 = 2;  
5  const int D14 = 4; const int D13 = 4; const int D24 = 3; 
6  const int MAX_DIST=(D12+D23+D34+D14+D13+D24); const double EVAP_RATE; 
7  const int N_CYCLES; 
8  global cont : [0..N_CYCLES] init 0; 
9  global p12 : [MIN_PREF..MAX_PREF] init MIN_PREF; 
10 global p13 : [MIN_PREF..MAX_PREF] init MIN_PREF; 
11 global p14 : [MIN_PREF..MAX_PREF] init MIN_PREF; 
12 global p23 : [MIN_PREF..MAX_PREF] init MIN_PREF; 
13 global p24 : [MIN_PREF..MAX_PREF] init MIN_PREF; 
14 global p34 : [MIN_PREF..MAX_PREF] init MIN_PREF; 
15 formula prob12 = (p12/(p14+p13+p12)); 
16 formula prob13 = (p13/(p14+p13+p12)); 
17 formula prob14 = (p14/(p14+p13+p12)); 
18 formula prob123 = (p23/(p23+p24)); formula prob124 = (p24/(p23+p24)); 
19 formula prob132 = (p23/(p23+p34)); formula prob134 = (p34/(p23+p34)); 
20 formula prob142 = (p24/(p24+p34)); formula prob143 = (p34/(p24+p34)); 
21 formula inc_factor = (tot_dist<15) ? 7 : ((tot_dist=15) ? 4 : 1); 
 

22 module traveller 
23  loc : [1..N_CITIES+1] init 1; 
24  path : [0..6] init 0; 
25  tot_dist : [0..MAX_DIST] init 0; 
26  [] loc=1 & path=0 -> prob12 : (loc'=2) + 
27                        prob13 : (loc'=3) + 
28                        prob14 : (loc'=4); 
29  [] loc=2 & path=0 -> 
30      prob123 : (loc'=3) & 
31                (path'=1) & 
32                (tot_dist'=D12+D23+D34+D14) + 
33      prob124 : (loc'=4) & 
34                (path'=2) & 
35                (tot_dist'=D12+D24+D34+D13); 
36  [] loc=3 & path=0 -> 
37      prob132 : (loc'=2) & 
38                (path'=3) & 
39                (tot_dist'=D13+D23+D34+D14) + 
40      prob134 : (loc'=4) & 
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41                (path'=4) & 
42                (tot_dist'=D13+D34+D24+D12); 
43  [] loc=4 & path=0 -> 
44      prob142 : (loc'=2) & 
45                (path'=5) & 
46                (tot_dist'=D14+D24+D23+D13) + 
47      prob143 : (loc'=3) & 
48                (path'=6) & 
49                (tot_dist'=D14+D34+D23+D12); 
50  [] (loc=2|loc=3|loc=4) & path!=0 -> 1.0 : (loc'=5); 
51  [] loc=5 & path=1 -> 1.0 : 
52     (path'=0) & 
53     (p12'=min(p12+inc_factor,MAX_PREF)) & 
54     (p23'=min(p23+inc_factor,MAX_PREF)) & 
55     (p34'=min(p34+inc_factor,MAX_PREF)) & 
56     (p14'=min(p14+inc_factor,MAX_PREF)) & 
57     (tot_dist'=0); 
58  [] loc=5 & path=2 -> 1.0 : 
59     (path'=0) & 
60     (p12'=min(p12+inc_factor,MAX_PREF)) & 
61     (p24'=min(p24+inc_factor,MAX_PREF)) & 
62     (p34'=min(p34+inc_factor,MAX_PREF)) & 
63     (p13'=min(p13+inc_factor,MAX_PREF)) & 
64     (tot_dist'=0); 
65  [] loc=5 & path=3 -> 1.0 : 
66     (path'=0) & 
67     (p13'=min(p13+inc_factor,MAX_PREF)) & 
68     (p23'=min(p23+inc_factor,MAX_PREF)) & 
69     (p24'=min(p24+inc_factor,MAX_PREF)) & 
70     (p14'=min(p14+inc_factor,MAX_PREF)) & 
71     (tot_dist'=0); 
72  [] loc=5 & path=4 -> 1.0 : 
73     (path'=0) & 
74     (p13'=min(p13+inc_factor,MAX_PREF)) & 
75     (p34'=min(p34+inc_factor,MAX_PREF)) & 
76     (p24'=min(p24+inc_factor,MAX_PREF)) & 
77     (p12'=min(p12+inc_factor,MAX_PREF)) & 
78     (tot_dist'=0); 
79  [] loc=5 & path=5 -> 1.0 : 
80     (path'=0) & 
81     (p14'=min(p14+inc_factor,MAX_PREF)) & 
82     (p24'=min(p24+inc_factor,MAX_PREF)) & 
83     (p23'=min(p23+inc_factor,MAX_PREF)) & 
84     (p13'=min(p13+inc_factor,MAX_PREF)) & 
85     (tot_dist'=0); 
86  [] loc=5 & path=6 -> 1.0 : 
87     (path'=0) & 
88     (p14'=min(p14+inc_factor,MAX_PREF)) & 
89     (p34'=min(p34+inc_factor,MAX_PREF)) & 
90     (p23'=min(p23+inc_factor,MAX_PREF)) & 
91     (p12'=min(p12+inc_factor,MAX_PREF)) & 
92     (tot_dist'=0); 
93  [] loc=5 & path=0 & cont<N_CYCLES -> 1.0 : 
94     (p12'=(max(p12-ceil(EVAP_RATE*p12),MIN_PREF))) & 
95     (p23'=(max(p23-ceil(EVAP_RATE*p23),MIN_PREF))) & 
96     (p34'=(max(p34-ceil(EVAP_RATE*p34),MIN_PREF))) & 
97     (p14'=(max(p14-ceil(EVAP_RATE*p14),MIN_PREF))) & 
98     (p13'=(max(p13-ceil(EVAP_RATE*p13),MIN_PREF))) & 
99     (p24'=(max(p24-ceil(EVAP_RATE*p24),MIN_PREF))) & 
100    (loc'=1) & (cont'=cont+1); 
101 [] loc=5 & path=0 & cont=N_CYCLES -> 1.0 : true; 
102 endmodule 

A model in PRISM is described as a set of constants and global variables, a set of 
formulas and a set of modules. Each module describes a component of the system and 
consists of a set of local variables and a list of guarded transition commands. Each of 
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these commands is described in the form [l]g -> p: <cmds>, where l is an optional 
label ([] for empty), g is a guard, which describes the condition on which the transi-
tion may occur, p is the probability of that transition occurring if enabled (guard is 
true) and <cmds> determines the effect of the transition. This effect is described in 
terms of changes in values of variables, which might modify values of formulas. 

In our model, each constant Dij determines the distance (or cost) between cities i 
and j. Constants EVAP_RATE and N_CYCLES are used during analysis to set the rate 
at which the pheromone on routes evaporates and the number of cycles to be exe-
cuted, respectively. Variable cont controls the number of cycles executed, whereas 
each variable pij defines the preference of route (i,j). Lines 15-20 describe the appli-
cation of the formula in (3) to calculate the probability of travelling between cities. In 
the scenario proposed (lines 4-5), the distances defined for each route in the graph 
create 3 groups of path lengths: the longest paths have a total distance of 19, mid-
length paths have a cost of 15, and the shortest paths have a total distance of 10. 
Therefore, we simplified the calculation by testing, according to the total distance of a 
path, which group this path belongs to2. The shortest paths receive an increase of 7, 
mid-length paths of 4, and the longest paths of only 1.  

Module traveller describes the behaviour of the artificial ant moving from city to 
city. Variable loc determines the city the ant is currently in. Though N_CITIES limits 
the number of cities, we use an extra “city” to apply the necessary updates, as we will 
explain soon. Variable tot_dist determines the total distance travelled during the tour. 
Variable path determines which of the possible paths has been taken during the cur-
rent tour, according to the following identification, where the sequences of numbers 
represent sequences of visited cities: Path 1 = 1-2-3-4-1, Path 2 = 1-2-4-3-1, Path 3 = 
1-3-2-4-1, Path 4 = 1-3-4-2-1, Path 5 = 1-4-2-3-1, and Path 6 = 1-4-3-2-1. Consider-
ing these possible paths and the distances of each route, paths 2 and 4 are the shortest, 
1 and 6 are the mid-length, and 3 and 5 are the longest ones.  

From city 1 (line 26), there are three possible routes to take. Because all  
preferences are initialised with the minimum preference, at the beginning, the prob-
abilities are the same for all possible routes. Depending on the next location, which is 
determined probabilistically, the choices for the next route are different, so that we 
comply with the requirement that all cities should be visited only once during a tour. 
For instance, consider that a transition to city 2 has been selected. Then lines 29-35 
describe the behaviour at this location. If we had reached city 2 from city 1, then there 
would still be two cities to visit (3 and 4). Because there are only four cities involved, 
once the third city is chosen, we can already identify which path was taken. For ex-
ample, if city 3 is selected, we know for a fact that the next city is necessarily city 4 
and that, from there, we will move back to city 1 to complete the tour. Hence, the path 
taken was 1-2-3-4-1, which is Path 1 (line 31). Since we know the path, we can de-
termine the total distance travelled (line 32). 

We defined a special location (city number 5), which is used to apply the necessary 
updates. The idea is that reaching location 5 represents that a tour is completed.  
Depending on the path taken, the preferences of the routes involved are updated ac-
cording to (2) (lines 51-92). Variables path and tot_dist are reset to signal that the 

                                                           
2  Command <cond> ? val1 : val2 represents a selection operation where value val1 is returned 

in case the boolean expression cond is evaluated as true and val2 is returned, otherwise. 
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preference update has been executed, which allows the evaporation update to happen. 
Using the defined evaporation rate, preferences are updated once again according to 
the formulas presented in lines 94-99. The evaporation occurs at the end of every tour 
until cont reaches the predetermined number of cycles, when the model enters a sink 
state (line 101). This finite behaviour is necessary to avoid state-space explosion and 
to allow the execution of a bounded model checking process. 

3.2   Property Specification 

For the TSP, considering an origin Orig and a destination Dest, such that Orig ≠ Dest, 
two main requirements can be defined: 

1. If an ant a1 starts a tour at time t1, with probability p1 of finding the shortest 
path, and an ant a2 takes off at time t2, with a probability p2 of finding the 
shortest path, such that t1 < t2, then  p1 ≤ p2; 

2. The majority of ants travelling through the graph will eventually follow the 
shortest path from Orig to Dest. 

Based on these requirements, we have specified properties in PCTL devised to  
verify whether the behaviour described in the model fulfils the requirements. These 
properties are presented below, where “stopped” is a label that represents the formula 
(cont=T & loc=5), which defines the end of cycle T, where T is an undefined constant 
used during verification. Label “R12” represents the formula ((p12>p14) & 
(p12>p23)), “R13” the formula ((p13>p14) & (p13>p23)), “R24” the formula 
((p24>p14) & (p24>p23)), and “R34” the formula ((p34>p14) & (p34>p23)). Label 
“shortest_paths” represents formula ((path=2)|(path=4)). 
 

P1: P=? [F (“stopped” & “R12” & “R13” & “R24” & “R34”)] 
P2: P=? [F (“stopped” & “shortest_paths”)] 
 
Property P1 is based on requirement 1 and refers to the probability of the  

preferences of routes that compose the shortest paths being higher than those of other 
routes when cycle T ends. This property checks whether the pheromone update and 
pheromone evaporation processes guarantee that edges that compose the shortest 
paths will receive higher concentrations of pheromone, thus having higher probability 
of being taken. Property P2, based on requirement 2, asks the probability of taking 
one of the shortest paths when cycle T ends. Hence, this property can be used to  
identify how this probability varies from one cycle to the next. 

3.3   Verification 

Equipped with the model presented in Sec. 3.1 and having the properties described in 
Sec. 3.2, we were able to carry out experiments using the PRISM tool. Our first ex-
periment was to compare different evaporation rates and analyse how they affect the 
results of our properties. The objectives were to evaluate the effect of the evaporation 
rate to guarantee the preference for the shortest paths (2 and 4) and to determine the 
minimum value of the evaporation rate that guarantees the requirements are fulfilled. 
For this analysis, we used a model with 20 cycles, which was enough to detect a  
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pattern of increase or decrease of probabilities3, and T ranging from 0 to 20. Table 1 
presents the results for each property for evaporation rates ranging from 0 to 0.8 (we 
ignore values 0.9 and 1, as they have the same results as those of value 0.8). 

Analysing the results, we can see that value 0 (i.e., preference does not decay with 
time) results in property P1 having almost 100% probability. This is because no route 
has its preference decreased as cycles go by, which means all routes of the scenario 
will reach saturation irrespective of being in the shortest paths or not. The effect of 
having an evaporation rate can be seen in the results of value 0.1, where already there 
was a clear tendency to select the shortest paths. With value 0.2 we achieved the 
probability that the majority of tours involve the shortest paths, but it was with value 
0.3 that a consistent majority was achieved. With value 0.4 we reached the highest 
probability of taking the shortest paths. With values from 0.5 to 0.8, it is possible to 
see that the probability of the shortest paths decreased as the evaporation rate in-
creased, resulting from an effect similar to that of not having pheromone decay.  

Considering the results, we decided to adopt value 0.3 because our main objective 
was that routes belonging to the shortest paths had higher preference than other 
routes, so that ants would tend to take those routes. Hence, we needed to take into 
account the value of property P1, and its highest value, considering values 0.3, 0.4 
and 0.5 (those where P2 is above 51%), was obtained with 0.3. 

Adopting value 0.3 as the evaporation rate, we produced a model with 20 cycles 
and verified the results for property P2 at each cycle. The goal was to obtain evidence 
that indeed the probability of taking the shortest paths tended to grow after each cycle. 
The results are displayed on the graph of Fig. 1. 

Table 1. Property results for different evaporation rates 

Ev. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
P1 0.993 0.807 0.841 0.793 0.713 0.484 0.346 0 0 
P2 0.346 0.480 0.501 0.548 0.562 0.558 0.481 0.417 0.333 

The graph clearly shows the expected behaviour, as the probability of the shortest 
paths increase continually. Hence, the behaviour described in the model leads to the 
global behaviour expected, where the majority of ants choose the shortest paths. 

3.4   Analysis and Discussion 

Our experiments showed that the model successfully fulfills the requirements of the 
system, considering the specification provided. We obtained numerical, accurate 
evidence that the majority of ants (or travellers) tended to take the shortest paths. 
Furthermore, we obtained results that indicate the effective action of the pheromones 
on paths by comparing different evaporation rates. 

                                                           
3  In a simulation of property P2 considering 1000 cycles, the model reached a firm majority 

( ≅ 55%) after 20 cycles and remained around this value from that point on. 
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Fig. 1. Analysis of property P2 with evaporation rate 0.3 and 20 cycles 

Though we worked with only four cities, we believe that the modelling could be 
easily extended to a higher number of cities. The limitation, however, capacity of the 
machine, as the number of states increases considerably just with the addition of an-
other city. It seems that better abstractions should be defined so as to avoid state-
space explosion and allow the verification of larger models. Nevertheless, we are 
confident that the effectiveness of the ACO modelling is not limited to four cities. 

Considering our requirements, requirement 1 can be checked by verifying the re-
sult of property P1, since it is possible to obtain the probability of higher concentra-
tions being deposited on routes composing the shortest paths along a certain number 
of cycles (by varying the value of T). Requirement 2 can be verified using property 
P2, analysing whether the result reaches a value higher than 50% and tends to not go 
below this value during the subsequent cycles. 

4   Related Work 

Considering the modelling of bio-inspired mechanisms, there are a few approaches 
worth mentioning. In [14], the authors present bio-inspired techniques for self-
organisation and self-governance for autonomic networks. Simulation is used to ana-
lyse properties like traffic- and node-load and the amount of bandwidth in each route 
in the network (self-management of resources). In [15], the authors propose self-
organising mechanisms based on properties of cellular systems to model hardware 
systems that can grow, self-replicate and self-repair. Hardware simulation is per-
formed to show how the artificial organisms evolve. 

Formalisms like Brane Calculus [16] and P Systems [17] are inspired by the struc-
ture and dynamics of biological membranes and used to model biological processes. 
There are some approaches proposing the application of model checking to these 
formalisms, but they are still quite restrictive.  

With respect to using ACO to solve the TSP, some approaches have been pro-
posed, such as [10], [18], [19] and [20]. In all these approaches, simulation is used to 
check the solution to compare it with those of other approaches. Though simulation is 
in general faster than model checking, it provides only approximate results. Model 
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checking, on the other hand, provides a solid confidence on the results, which is  
particularly important when dealing with behaviours that cannot be easily predicted 
beforehand and may violate critical properties. As far as we are aware of, there is no 
work on applying model checking to verify properties of the TSP-ACO.  

5   Conclusions 

We presented a probabilistic modelling of the ACO, a bio-inspired mechanism, ap-
plied to the TSP. The ACO attributes a self-organising characteristic to the system as 
it adjusts the probabilities of paths automatically and autonomously, deriving emer-
gent behaviours. Results of experiments show that our model, when checked against a 
couple of quantitative properties, indeed presents the expected behaviour. This  
behaviour corresponds to guaranteeing that most of the times the shortest paths are  
probabilistically taken. We analysed the effect of the pheromone evaporation rate on 
the variations of path probabilities and determined the most appropriate value for this 
rate. We also presented a comparison of path probabilities during multiple cycles of 
execution, representing multiple ants travelling from city to city to complete tours. 

We explored the use of model checking because it can provide a higher degree of 
confidence when compared with other techniques, such as simulation, where results 
are only approximate. However, we had to apply some simplifications during the 
modelling phase so as to avoid state-space explosion. These restrictions did not affect 
the results of our experiments, but might be an issue in other applications. As prob-
lems grow more complex, creating abstractions precise enough to guarantee a good 
level of confidence and yet sufficiently coarse to prevent intractability becomes an 
even harder task. We still need more experience in applying this modelling approach, 
considering other scenarios, so that we can better understand the real limits of model-
ling characteristics as self-organisation and emergent behaviours. 

Though our scenario was quite simple, it was enough to demonstrate that the appli-
cation of the pheromone mechanism leads the system to the expected behaviour. From 
this result, we intend to study how to apply the same mechanism to other known prob-
lems where it can be useful (e.g., routing in sensor networks). We aim to define a 
modelling pattern for this mechanism to facilitate its use.  

We also plan to study how other bio-inspired mechanisms could be modelled and 
used for the verification of quantitative properties, such as modelling ideas used in 
swarm intelligence. As bio-inspired mechanisms are essentially self-organising 
mechanisms, it seems that having a modelling approach for these mechanisms could 
be a step towards providing support for the verification of self-organising emergent 
systems in general. 
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Feature Selection for Classification Using an Ant System 
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Abstract. Many applications such as pattern recognition and data mining re-
quire selecting a subset of the input features in order to represent the whole set 
of features. The aim of feature selection is to remove irrelevant, redundant or 
noisy features while keeping the most informative ones. In this paper, an ant 
system approach for solving feature selection for classification is presented. The 
results we got are promising in terms of the accuracy of the classifier and the 
number of selected features in all the used datasets.   

Keywords: Ant colony optimization, pattern recognition, support vector  
machine and feature selection. 

1   Introduction 

Pattern recognition is the assignment of an input pattern to one of several predefined 
categories/classes [1]. The basic component of any pattern recognition system is the 
classifier whose task is to partition the feature space into class-labeled decision re-
gions. The performance of the classifiers is sensitive to the choice of the features that 
are used for constructing those classifiers. The choice of the features that are pre-
sented to the classifiers affects the following important things: 

• The accuracy of the classifiers, 
• The time needed for learning the classification function, and 
• The number of examples needed for learning the classification function [2].  

Some research suggests increasing the examples amount of training data, but this af-
fects the time needed for the learning. It is here that feature selection becomes impor-
tant. The assumption that more features can offer more information about the inputs is 
not always valid in practice. It has been found that including more features can be time 
consuming and may lead to finding a less optimal solution. This makes feature selec-
tion from the original set of features is highly desirable in many situations [1], [3]. 

Feature selection (FS) is the problem of selecting a subset of features without 
reducing the accuracy of representing the original set of features [3]. Feature selection 
(the most general term is variable selection ) is used in many applications to remove 
irrelevant and redundant features where there are high dimensional datasets. These 
datasets can contain high degree of irrelevant and redundant features that may 
decrease the performance of learning algorithms.  
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The main approaches that are used for solving feature selection problem can be 
classified into filter or wrapper approach depending on whether or not feature 
selection is done independently of the learning algorithm. Some researchers use a 
hyprid approach to take the advantage of these 2 approaches and to handle large 
datasets. 

Feature selection can be seen as an optimization problem that involves searching 
the space of possible feature subsets to identify the optimal one. Many optimization 
techniques such as genetic algorithms (GA) [2], tabu search (TS), simulated annealing 
(SA) and ant colony optimization algorithms (ACO) have been used for solving fea-
ture selection. 

Real ants are able to find the shortest path between their nest and food sources be-
cause of the chemical substance (pheromone) that they deposit on their way. The 
pheromone evaporates over time so the shortest paths will contain much pheromone 
and subsequently will attract more ants in future. 

Ant colony optimization algorithms simulate the foraging behavior of some ant 
species [5]. ACO algorithms are guided search algorithms that use 2 factors for guid-
ing the search process. These factors are: 1) the pheromone values (numerical values 
as a simulation for the pheromone that real ants deposit on their way from/to their 
nest). 2) Heuristic information that is crucial for good performance of the system 
when we can not use local search.  There are 2 types of heuristic information used by 
ACO algorithms; static heuristic information (that is computed at the initialization 
time and then remains unchanged throughout the whole algorithm’s run such as the 
distances between cities in traveling salesman problem) and dynamic heuristic infor-
mation (that depends on the partial solution constructed so far and therefore it is com-
puted at each step of an ant’s walk).  

One of the recent trends in ACO is to apply them in solving new optimization 
problems such as applying them in solving many industrial problems proving that 
these algorithms are useful in real-world applications [6]-[8]. Recently, many re-
searchers adopted some ACO algorithms for the solutions of feature selection prob-
lem such as in [9]-[12]. 

The traditional ACO algorithms were designed for solving ordering problems such 
as traveling salesman problem and quadratic assignment problem [11]. Feature selec-
tion problem is different from these optimization problems in terms of there is no 
prior information known about the features such as in TSP where the distances be-
tween the cities are known in advance for guiding the search process besides the 
pheromone values.  

In order to solve an optimization problem using an ACO algorithm, the problem 
should be represented as a fully connected construction graph and 2 factors are used 
for guiding the search process. These factors are the heuristic information (known in 
advance about the given problem) and the pheromone values.  

In the traditional ACO algorithms, the pheromone values are associated with the 
nodes or the edges of the construction graph representing the problem (depending on 
the chosen problem representation), which may also contain heuristic information 
representing prior information about the given problem [6]-[7].  

In the proposed algorithm, we did not use the graphical representation hence; there 
is no concept of path. We associate the pheromone with each feature. Although there is 
no heuristic information known in advance in this type of problems, we used heuristic 



 Feature Selection for Classification Using an Ant System Approach 235 

 

information in computing the moving probability that is used by each ant to select a 
particular feature in each construction step. We used the proportional of the ants chose 
a particular feature as heuristic information so the proposed algorithm does not need 
prior knowledge of features. We also used a new equation for the pheromone update as 
we will explain in the following sections. 

The rest of this paper is organized as follows. Section 2 addresses the fundamentals 
of 4 ACO algorithms based on which we developed the proposed algorithm. The third 
section explains the proposed algorithm. Section 4 details the experiments carried out 
and presents the obtained results. The discussion of the results is presented in section 5. 
Section 6 highlights future work in this area. And finally, section 7 concludes this paper. 

2   Related Work 

In this section, we explain ant system (AS) and ant colony system (ACS) in solving 
traveling salesman problem since we used many aspects of these approaches. We will 
then explain briefly 2 ACO algorithms for solving feature selection. 

The first ant colony optimization algorithm is AS as proposed in the early nineties 
[13]. Since its appearance, it became the basis for many successive ACO algorithms 
and it is known as the original ACO algorithm. AS is an iterative algorithm where in 
each iteration each ant selects the next city to be visited using the following equation: 
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where )( ρsN is the set of feasible components. The parameters α and β control the 

relative importance of the pheromone versus the heuristic information ijη that is equal 

to 
ijd
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where dij is the distance between city i and city j. 

At the end of each iteration, the pheromone values (numerical values associated 
with each solution components- here are the edges) are updated by all ants that have 
built solution according to the following equation: 
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Where ρ is the evaporation rate, m is the number of ants and k
ijτΔ  = kLQ /  where 

Q is a constant and Lk is the length of the tour constructed by ant k. 
Ant colony system (ACS) is considered one of the most successful ACO algo-

rithms [14]. Since its appearance, it has been using for solving many optimization 
problems.  ACS is an iterative algorithm where at each iteration, each ant chooses the 
next city to be visited (j) using pseudorandom proportional rule that is computed ac-
cording to the following equation: 
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This equation is used by each ant at each construction step to choose the next city 
depending on a random variable q and a parameter q0 and it is used if q<= q0.  

After each construction step, the local pheromone update is performed by all ants 
to the last edge traversed according to the following equation: 

0..)1( τϕτϕτ +−= ijij  
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Where ]1,0(∈ϕ  and 0τ  is the initial pheromone. 
Local pheromone update leads to decreasing the pheromone values on the edges 

that encourages subsequent ants to choose other edges and subsequently produce 
different solutions. 

At the end of each iteration, the pheromone values are updated by only the best ant 
according to the following equation: 
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Where bestij L/1=Δτ  and Lbest is the length of the tour constructed by the best 

ant. 
An ACO approach called antselect for variable selection in quantitative structure-

activity relationship (QSAR) has been developed in [9]. In antselect, a weight is  
associated with each feature and used for calculating the probability with which the 
feature is randomly selected by an ant. Initially, the weights and the probabilities are 
equal for all variables. The moving probability is calculated according to the follow-
ing equation:  
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where kω is the weight associated with feature k. 

The weights are updated according to the following equation: 
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where ρ is the evaporation rate, ωΔ is a constant factor, and L is the length of ant 

k’s path. In [10], antselect was used with artificial neural networks for variable selec-
tion with different dataset.  

A modified ant colony optimization algorithm for solving feature selection in 
QSAR [11] expresses the feature selection problem in a binary notation where an ant 
moves in an N-dimensional search space of N variables. The pheromone levels on 

each feature are divided into two kinds, 0iτ and 1iτ .  
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The pheromone levels are updated according to the appropriate one of the follow-
ing two updating rules: 
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The moving probability for any feature is 0 or 1, where 1 means that this feature will 
be selected and 0 means the inverse. The moving probability is calculated according 
to the following equation: 
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This algorithm has also been used for solving feature selection problem in different 
dataset in [12]. 

3   The Proposed Algorithm  

The proposed algorithm is a wrapper-based system that deals with the problem of 
feature selection as a binary problem where a set of binary bits (of a length equivalent 
to the number of the features in a given dataset) is associated with each ant.  If the nth 
bit is a 1 this means that feature number n in the dataset is selected, otherwise this 
feature is not selected. Thus, the concept of path in the traditional ACO algorithms 
does not pertain here. At the start of the algorithm, the bits are randomly initialized to 
zeros and ones.  

The pheromone values are associated with the features. At each construction step, 
each ant selects a feature out of all the features with the probability computed accord-
ing to the following equation: 

iii ττρ Δ= .  

 

  (13) 

where iτ  is the pheromone value associated with feature i and =Δ iτ proportion of the 

ants that selected this feature and acts as heuristic information that represents the desir-
ability of feature i. In ACO algorithms, the design of the moving probability is critical. 
Here, we used both the pheromone values and heuristic information to compute it. 

At the end of each iteration, the pheromone values are updated according to the  
following equation: 
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where kL = no. of features selected by ant k and p is the evaporation rate. This equa-

tion is used by all ants at the end of each iteration to all features that have been chosen. 
The updating of the pheromone values is important to reinforce those features that 

lead to high quality feature subsets. Features that belong to good solutions will con-
tain larger pheromone. Consequently, these features tend to be selected more often. 

The pseudo code of the proposed algorithm is as follows:  

Procedure of the proposed algorithm 

Initialization 

While (not terminate) do 
  construct ant solution   
  build SVM 
  update statistics 
  update pheromone values by all ants 
 end while 
end. 

4   Tests and Results 

In order to test the proposed algorithm, we used it with a Support Vector Machine 
(SVM) learning algorithm, which is considered one of the most popular, powerful and 
efficient classification and regression methods. Although not all machine learning 
algorithms require the phase of feature selection, feature selection is important in 
building SVM-based regression and classification as well [1], [3]. We used the num-
ber of correct classification / the whole number of observations as a fitness function 
where each ant evaluates its solution based on its ratio of correct classifications. 

4.1   Datasets  

In order to test the proposed algorithm, we did several experiments using several data-
sets. In our experiments, we did not do any modifications to these datasets before using 
them rather than converting them into a suitable format for our systems. In our experi-
ments, we used 5-fold cross validation (CV). The used datasets here are: backache, 
prnn_virus3, prnn_viruses, analcatdata_authorship, and analcatdata_marketing from 
statistical datasets available in .arff format from the Website of Waikato University [15].  

4.2   Methods   

In our experiments, we developed the following 2 systems: 
• SVM: that uses the entire set of features (without the phase of feature selec-

tion), and  
• SVM-FS: that uses subset of features selected by the proposed algorithm (with 

the phase of feature selection). 
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In this paper, we focus on testing the effect of feature selection on the performance 
of the classifier. So we did not optimize the performance of SVM although further 
investigation is highly required since it affects the performance of the whole system.  
We used the default values to its parameters in both cases, with and without the use of 
feature selection. We used C-classification SVM of package (e1071) of R language 
with the default values to its parameters (cost, gamma, and epsilon). 

In these 2 systems, we used 5-fold CV. The number of ants was set to the number 
of the features in any dataset. The initial pheromone was set at 1. The number of itera-
tions is 10 iterations. P was set at 0.3. β was set at 0.3. Q was set at 4. 

4.3   Results  

Table 1 shows the results of these 2 systems using the above mentioned datasets. The 
results for the proposed algorithm represent the average of 5 independent runs. These 
systems are implemented using R language [16]-[17] and WEKA machine learning 
tool [18]-[19]. All the experiments were run on a personal PC with 2 GHz CPU and 
2 GB RAM. 

Table 1. The accuracy of SVM with and without the use of feature selection  

 Dataset Name No. of  
original  
features 

Avg. no. of 
selected  
features 

SVM 
(without 
FS) 

SVM  
(with FS) 

1 backache 32 20.2 0.9 0.9222 
2 prnn_virus3 17 13.2 0.9474 0.9789 
3 prnn_viruses 17 10.8 0.0164 0.9016 
4 analcatdata_authorship 70 33 1 1 
5 analcatdata_marketing 32 27.2 0.6401 0.6561 

5   Discussion  

The proposed algorithm deals with feature selection problem as a binary one but uses 
many concepts from ant system although it does not have the concept of path. 

The previous results show that SVM-FS with the proposed algorithm for perform-
ing feature selection outperforms SVM that uses all the features in all the used data-
sets (the accuracy of SVM is larger than that of SVM with all features). The number 
of features selected by the proposed algorithm is significantly smaller than the total 
number of the features in the original datasets in all of the used datasets. 

In the proposed algorithm, we used: 
• Heuristic information in calculating the moving probability. This heuristic infor-

mation indicates to how often a particular feature has been chosen by different 
ants. There are many ideas that could be used as heuristic information for guiding 
the search process besides the pheromone values but we see this equation is very 
useful based on many experiments we have done. 

• Different pheromones update equation rather than the usual ones used in ACO for 
feature selection.  

• Pheromone evaporation as in ant colony system. 
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6   Future Work  

Trying other classifiers and additional experiments with other datasets are currently in 
progress. 

Although the initial results are promising, further investigation is required particu-
larly in solving the problem of the big number of parameters that the proposed  
algorithm suffers from (its parameters besides the parameters of SVM-all of these 
parameters need to be adjusted especially that the performance of ACO algorithms in 
general is sensitive to its parameters) in order to enhance its performance. 

Another direction for future work is conducting comparisons of the performance of 
the proposed algorithm with that of other stochastic algorithms used for solving fea-
ture selection.  

7   Conclusion   

In this paper, we solved feature selection problem for classification using an ant sys-
tem approach on an SVM classifier with several datasets. We used heuristic informa-
tion in order to guide the search process besides the pheromone values as in most of 
conventional ACO algorithms. The results we got are promising in terms of the solu-
tion quality and the number of selected features.   
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Abstract. A typical task of intrusion detection systems is to detect

known kinds of attacks by analyzing network traffic. In this article, we

will take a step forward and enable such a system to recognize very new

kinds of attacks by means of novelty-awareness mechanisms. That is, an

intrusion detection system will be able to recognize deficits in its own

knowledge and to react accordingly. It will present a learned rule premise

to the system administrator which will then be labeled, i.e., extended by

an appropriate conclusion. In this article, we present new techniques for

novelty-aware attack recognition based on probabilistic rule modeling

techniques and demonstrate how these techniques can successfully be

applied to intrusion benchmark data. The proposed novelty-awareness

techniques may also be used in other application fields by intelligent

technical systems (e.g., organic computing systems) to resolve problems

with knowledge deficits in a self-organizing way.

1 Introduction

Organic Computing (OC) has emerged recently as a challenging research area
dealing with future computationally intelligent systems that will be based on so-
called self-x properties such as self-organization, self-optimization, self-configura-
tion, self-healing, self-protection, or self-learning [1,2]. An example for such a
system is an intelligent distributed system, e.g., a team of robots, a smart sensor
network, or a multi-agent system. Often, the nodes of such a system have to
perform the same or similar tasks, or they even have to cooperate to solve a given
problem. Typically, these nodes know how to observe their local environment and
this knowledge is represented by certain rules. However, many environments are
dynamic. That is, new rules are necessary or existing rules become obsolete.
Therefore, really intelligent nodes should adapt on-line to their environment by
means of certain machine learning techniques.

In this article we focus on components—intrusion detection agents (IDA)—of
a distributed intrusion detection system (DIDS). These IDA are able to analyze
network traffic and to distinguish between “normal” network data (connections)
and data originating from certain kinds of attacks (or tools used to prepare
an attack). The rules that are used for that purpose are learned from sample
data. The challenge is now that an IDA must be able to detect new kinds of
attacks as well as new kinds of “normal” data which it had not seen before. This
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property is termed novelty-awareness. Then, the IDA must support a system
administrator in creating new rules. That is, it must present an autonomously
learned rule premise to the system administrator who must “label” that rule
(i.e., determine an appropriate conclusion). Then, the new rule must be added
to the existing rule system. In a future version of our DIDS, new rules will be
exchanged between different IDA of the DIDS. Then, an IDA will be enabled to
recognize attacks that it had not seen before.

The architecture of an IDA, the DIDS, a framework for large-scale simulations,
and techniques for alert aggregation are described in [3,4,5] in more detail. Here,
we focus on the novelty-aware attack recognition at the detection layer. This
kind of novelty-awareness is very new to the field of intrusion detection. Thus,
this article should be seen as a kind of proof of concept, where many of the
components will be further improved in the future.

In the following, Section 2 brieflydiscusses relatedwork in the field ofDIDS, Sec-
tion 3 lays the theoretical and methodological foundations of novelty-awareness,
and Section 4 provides some experimental results. Finally, Section 5 summarizes
the major findings and gives an outlook to our future work.

2 Related Work

Here, we briefly discuss related work in the field of DIDS. Information about
terminology in the field of intrusion detection can be found in [6].

In most cases, the collaborative aspect of DIDS is found in the correlation of
distributed data. Classical DIDS research is mostly focused on systems where
agents located on network nodes aggregate data and send alerts to a central agent
for correlation [7]. [8] proposes a p2p overlay network which allows correlation
of attacks across domain borders with the goal of reducing the false positive
rate and the reaction time. [9] proposes a system where different agents use
different methods for attack detection (misuse or anomaly detection). [10] uses
clustering at centralized nodes to perform correlation tasks. [11] describes a
distributed fuzzy classifier, where distributed agents perform fuzzification of local
data sources. A central fuzzy evaluation engine aggregates the agents findings
and generates alerts according to pre-trained rules.

There are only a few proposals for systems which collaborate in some form
to improve the performance of attack detection in the distributed agents. These
systems are more closely related to our work. [12] describes an artificial immune
system based DIDS where a primary IDS generates detectors (negative selection)
and secondary IDS on the hosts perform detections and performance evaluation
(clonal selection). [13] uses a genetic algorithm (island model) to train decision
trees. Individual hosts form islands and work independently, but can exchange
individuals among the different islands’ gene-pools.

3 Theoretical and Methodological Foundations

In this section our proposed approach for realizing self-adaptive IDA is pre-
sented. First, we describe how classification knowledge is represented within the
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agents. Then, we show how this kind of knowledge can be learned given a set of
training data. Finally, techniques for adapting learned knowledge to changes in
the environment are introduced.

3.1 Representation of Classification Knowledge

To classify network connections we use a probabilistic approach. That is, for
a D-dimensional input sample x containing information about a specific con-
nection (e.g., duration of the connection or number of transmitted packets) we
want to compute the posterior distribution p(c|x), i.e., the probabilities for class
membership given an input x. To minimize the risk of classification errors we
then select the class with the highest posterior probability (cf. the principle
of winner-takes-all). According to our previous publication [14], p(c|x) can be
decomposed as follows:

p(c|x)=
J∑

j=1

∫
x∈Rc

p(j|x)dx · p(c)

p(j)︸ ︷︷ ︸
p(c|j)

· p(x|j)p(j)∑J
j′=1 p(x|j′)p(j′)︸ ︷︷ ︸

p(j|x)

. (1)

In this classification approach based on a so-called mixture density model p(x),
the conditional densities p(x|j) (j ∈ {1, . . . , J}) are the components of the model,
p(j) is a multinomial distribution with parameters πj (the mixing coefficients
or rule “weights”), the p(c|j) are multinomial conditional distributions with pa-
rameters ξj,c, and Rc is the (not necessarily connected) region of the input space
associated with class c. That is, we have a classifier (rule set) consisting of J
rules, where each rule j is described by a distribution p(j|x) (which we call the
rule premise) and a distribution p(c|j) (which we call the rule conclusion). We
can state that the former can be trained in an unsupervised way while class la-
bels for patterns are needed for the latter. For a particular sample x′, the values
p(j|x′) are called responsibilities (i.e., of the component for the sample).

Which kind of density functions can we use for the components? Basically,
our D-dimensional input samples x describing network connections may have
Dcont continuous (i.e., real-valued) dimensions and Dcat = D−Dcont categorical
ones. Without loss of generality we arrange these dimensions such that

x = (x1, . . . , xDcont︸ ︷︷ ︸
continuous

, xDcont+1 , . . . , xD︸ ︷︷ ︸
categorical

).

Note that we italicize x when we refer to single dimensions. The continuous part
of this vector xcont = (x1, . . . , xDcont) with xd ∈ R for all d ∈ {1, . . . , Dcont} is
modeled with a multivariate normal distribution with center μ and covariance
matrix Σ, i.e.,

N (xcont|μ, Σ) =
1

(2π)
Dcont

2 |Σ| 12
exp

(
−0.5

(
ΔΣ(xcont, μ)

)2
)

(2)
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with the distance measure (matrix norm) ΔM (v1, v2) given by ΔM (v1, v2) =√
(v1 − v2)T M−1(v1 − v2). ΔM defines the Mahalanobis distance of vectors

v1, v2 ∈ RDcont based on a Dcont × Dcont covariance matrix M .
For categorical dimensions we must extend our approach presented in [14]

by means of multinomial distributions. We use a 1-of-Kd coding scheme where
Kd is the number of possible categories of attribute xd (d ∈ {Dcont+1, . . . , D}).
The value of such an attribute is represented by a vector xd = (xd1 , . . . , xdKd

)
with xdk

= 1 if xd belongs to category k and xdk
= 0 otherwise. Categorical

dimensions are modeled by means of multinomial distributions. That is, for an
attribute xd ∈ {xDcont+1 , . . . , xD} we use

M(xd|δd) =
Kd∏
k=1

δ
xdk

k (3)

with a parameter vector δd = (δd1 , . . . , δKd
) and the restrictions δdk

≥ 0 and∑Kd

k=1 δdk
= 1.

We assume that the categorical dimensions are mutually independent and
that there are no dependencies between the categorical and the continuous di-
mensions. Thus, the component densities p(x|j) are defined by

p(x|j) = N (xcont|μj , Σj)
D∏

d=Dcont+1

M(xd|δjd
). (4)

3.2 Knowledge Acquisition Using Sample Data

How can the various parameters of the classifier be determined? For a given
training set X with N input samples xn and corresponding target classes it
is assumed that the xn are independent and identically distributed. First, the
parameters of p(x) are computed in an unsupervised manner. Let θ be the overall
set of model parameters consisting of all μj , Σj , δjd

, and πj . Then, the likelihood
function of the parameters θ given the data X is defined by

p(X|θ) =
N∏

n=1

p(xn|θ). (5)

We are searching the parameter setting that maximizes this function. In the case
of a mixture density model it is not possible to evolve a closed formula for the
optimization. However, by introducing the concept of latent (i.e., unobserved)
variables, iterative methods can be used. For each sample xn one of the J compo-
nents is ”responsible”. To describe the ”assignment” of samples to components,
an additional latent random variable zn is introduced for each sample. Z denotes
the set of all latent variables.

In this work we perform model parameter estimation by means of a technique
called variational Bayesian inference (VI) which realizes the Bayesian idea of
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regarding the model parameters θ as random variables whose distributions must
be trained. This approach has two important advantages over other methods.
First, the estimation process is more robust, i.e., it avoids “collapsing” compo-
nents, so-called singularities whose variance in one or more dimensions vanishes.
Second, VI optimizes the number of components by its own. For a more detailed
discussion on Bayesian inference, and, particularly, VI see [15]. For the model
described in the previous section we need the joint distribution of all random
variables (i.e., observations, latent variables and model parameters) which can
be decomposed into

p(X, Z, π, μ, Λ, δ) = p(X|Z, μ, Λ, δ)p(Z|π)p(π)p(μ|Λ)p(Λ)
D∏

d=Dcont+1

p(δd). (6)

where π = {πj}, μ = {μj}, Λ = {Λj}, and δd = {δjd
}. Note that for convenience

we are using precision matrices Λj which are the inverses of the covariance
matrices (i.e., Λj = Σ−1

j ). Unfortunately, this approach comes with an infeasible
computational effort, and, thus, an approximation must be used. Therefore, it
is assumed that the joint distribution of latent variables and model parameters
p can be approximated by a function q that can be factorized as follows:

q(Z, π, μ, Λ, δ) = q(Z)q(π)
J∏

j=1

q(μj , Λj)
D∏

d=Dcont+1

q(δjd
). (7)

The distributions of the model parameters on the right hand side are called
prior distributions and for an efficient computation their functional form must
be chosen in a special way (so called conjugate prior distributions, cf. [15]). For
the parameters μj and Σj , a Gauss-Wishart distribution must be used as prior
distribution [15], i.e.,

q(μj , Λj) = N (μj |mj, (βjΛj)−1)W(Λj |Wj , νj) (8)

where mj , βj , Wj, and νj are the parameters of the distribution that are deter-
mined during training (see below). The parameters π and δjd

are assumed to be
multinomially distributed and, thus, Dirichlet priors must be used, i.e.,

q(π) = Dir(π|α) and q(δjd
) = Dir(δjd

|εjd
). (9)

The corresponding parameters α and εjd
are also infered during training. The

VI is conducted iteratively by alternating between two steps. In the first step,
the responsibilities γn,j of components j for patterns xn are evaluated:

γn,j =
ρn,j∑J

j′=1 ρn,j′
, (10)

where

ln ρn,j = E[lnπj ] +
1
2

E[ln |Λj |] − Dcont

2
ln(2π)

−1
2

Eμj ,Λj [(x
cont
n − μj)T Λj(xcont

n − μj)] +
D∑

d=Dcont+1

Kd∑
k=1

xndk
E[ln δjdk

]
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with

E[lnπj ] = ψ(αj) − ψ

⎛
⎝ J∑

j=1

αj

⎞
⎠ , E[ln δjdk

] = ψ(εjdk
) − ψ

(
Kd∑
k=1

εjdk

)
,

where ψ(·) is the Digamma function,

E[ln |Λj |] =
Dcont∑
i=1

ψ

(
νj + 1 − i

2

)
+ Dcont ln 2 + ln |Wj |,

and

Eμj ,Λj [(x
cont
n −μj)T Λj(xcont

n −μj)] =
Dcont

βj
+ νj(xcont

n −mj)T Wj(xcont
n −mj).

In the second step, the parameters of the prior distributions q(·) are adapted.
With Nj =

∑N
n=1 γn,j being the “effective” number of samples generated by

component j, Njdk
=

∑N
n=1 γn,jxdk

the “effective” number of samples belonging
to category k in dimension d generated by component j and the statistics

xj =
1

Nj

N∑
n=1

γn,jxcont
n , Sj =

1
Nj

N∑
n=1

γn,j(xcont
n − xj)(xcont

n − xj)T

the update formulas are given by

αj = α0 + Nj, βj = β0 + Nj, νj = ν0 + Nj,

εjdk
= ε0 + Njdk

, mj =
1
βj

(β0m0 + Njxj)

and
W−1

j = W−1
0 + NjSj +

β0Nj

β0 + Nj
(xj − m0)(xj − m0)T .

In the formulas we see some parameters indexed with 0, namely α0, β0, ε0, m0,
ν0, and W0. These parameters are so-called prior parameters of the VI, which
can be used to influence the behavior of the algorithm in a desired way, e.g., to
avoid singularities and to cope with sparse data. The values of these parameters
represent prior knowledge that can be set depending on the data set or on the
specific application.

The VI algorithm is also able to estimate an appropriate number of compo-
nents for a dataset. The “effective” number of samples Nj for which a component
is responsible can be used as a decision criterion. The higher this number, the
more “valuable” is the respective component. If a component is not valuable
enough (a test criterion is realized with a threshold), it is simply deleted from
the model. That is, the VI training approach must be started with a number
of components that must be higher than the number that is expected to be re-
quired. The training is performed until a given stopping criterion is met (e.g.,
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no or only slight improvements of the likelihood or a fixed number of steps).
Point estimates of the model parameters are then obtained by calculating the
expected value of the trained distributions.

At this point, we have found parameter estimates for the rule premises (p(j|x),
cf. Eq. (1)) in an unsupervised manner. Now, we still need the parameters ξj,c of
the rule conclusions p(c|j). These can be obtained in a second, supervised step.
With Ic we denote the index set of all samples from the overall training set X for
which c is the assigned target class. Then, with p(j|c) =

∫
x∈Rc

p(j|x)dx where
Rc is the region of the input space associated with class c, we get the maximum
likelihood estimates

ξj,c =
1

Nj

∑
n∈Ic

γn,j . (11)

This supervised step can also be realized in a slightly different way if labeled
data are not available: After the unsupervised step, the components (i.e., rule
premises) may be labeled by a human domain expert.

3.3 Knowledge Adaptation Based on Novelty-Awareness

In a changing environment agents must be able to detect the need for generating
new rules and to handle this situation appropriately. In the case of an IDA, new
knowledge is required if events are observed that are not covered by the current
set of classification rules. This can either be due to malicious actions such as
an hitherto unknown attack taking place or legitimate actions that deviate from
the learned profile (e.g., a newly installed application).

First, we will describe our novel approach for detecting the need for new
knowledge (i.e., novelty detection). Here, we only use the continuous part xcont

as an indicator for novelty. The key measure for our technique is the Maha-
lanobis distance Δ. We exploit the fact that the squared Mahalanobis distances
Δ2

j(x
cont, μj) of samples xcont generated by a Gaussian component j to the cor-

responding center μj are approximately χ2-distributed with Dcont degrees of
freedom. Knowing the distribution of the Mahalanobis distances, we can define
a hyper-ellipsoid around each center μj such that we can expect that a certain
percentage κ of the samples produced by the process which is modeled by com-
ponent j lies within that hyper-ellipsoid. The radius ρ of these hyper-ellipsoids
can be determined by means of the inverted cumulative χ2 distribution. Based
on these hyper-ellipsoids we define a novelty status snov of the overall classifier
that can be regarded as the degree of “satisfaction” with respect to the cur-
rently observed situation. This status is updated with every new observation. It
is rewarded if the observation is inside the hyper-ellipsoid and penalized other-
wise. If the ratio of penalty to reward is equal to the ratio of “inside samples”
to “outside samples”, there is an equilibrium of penalties and rewards and snov

oscillates around its initial value. In this case, our classifier fits the observed
data. If, however, we observe more than 1− κ percent outside samples (i.e., due
to a new process that is not yet covered by the classifier such as a new kind
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of attack), snov is penalized more often and, thus, decreases. If it falls below a
user-defined threshold τ , novelty is detected.

To compensate the effect of overlapping components we additionally scale the
rewards and penalties with the component responsibilities (cf. Eq. 10). Thus,
our novelty detection algorithm works as follows:

Novelty Detection:

1. Set the percentage κ of samples that are expected to be inside the hyper-
ellipsoid (e.g., κ := 0.9) and penalty νpen and reward νrew values with the
correct ratio (e.g., νrew := 0.1, νpen := κ

1−κ · νrew).
2. Determine the set Jin of rules for which the sample xcont is inside the hyper-

ellipsoid and the set Jout of the remaining rules by comparing the squared
Mahalanobis distance of xcont to the centers μj to a threshold ρ:

Jin := {j|Δ2
j(x

cont, μj) ≤ ρ} Jout := {j|Δ2
j(x

cont, μj) > ρ}.
The threshold ρ is obtained by evaluating the inverse cumulative χ2-distribu-
tion for the value κ.

3. Compute an update value for the overall novelty status of the classifier by
scaling the rewards and penalties with the corresponding responsibilities:

Δnov(xcont) := η ·
⎛
⎝ ∑

j∈Jin

γn,j · νrew −
∑

j∈Jout

γn,j · νpen

⎞
⎠

with η being the step size controlling the reaction time.
4. The new novelty status is then

snov := snov + Δnov(xcont)

where snov must be initialized appropriately (e.g., with snov := 1).
5. If snov sinks below a given threshold τ (e.g., τ := 0.2), there is a need to

integrate one or several new rules into the classifier.

The algorithm can be parametrized to show different behavior, i.e., if new
processes are expected to emerge distant to existing ones and the detection
delay should be short, larger values for κ (e.g., κ = 0.95) should be used. A
more deliberate behavior can be achieved with smaller values (κ = 0.7). It is also
possible to use multiple instances with different parameterizations in parallel.

Whenever novelty is stated, the rule set must be adapted accordingly by
adding new rules. Basically, we use the VI technique on a sliding window of
recent samples to find new rule premises. To avoid changes of the already existing
premises, the centers and covariance matrices of existing components are fixed
and only those of new components are adapted. The mixture coefficients can
either be re-estimated based on the sliding window or set to identical values. A
rule conclusion, i.e., an estimate of the parameters of the distribution p(c|j) for
a new component j, can then be obtained in various ways:
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1. Application experts (e.g., system administrators) can be asked to label a set
of recently observed samples (e.g., measured within a sliding window). These
labels are then used to determine values for the parameters ξj,c.

2. Application experts can be asked to label a new rule j, i.e., to assign it
uniquely to one of the classes.

3. In the case of rule exchange between IDA, certain rules, and in particular
their conclusions, may be taken over from other IDA.

Altogether, we can state that the adaptation of rule premises can be done in
an unsupervised way, i.e., autonomously by the agents themselves. For the rule
conclusions we need application experts in some application scenarios, but their
effort can be kept as low as possible if rules are taken over from other agents
whenever possible and experts are asked to label rules instead of a (often large)
number of samples which can be done much more efficiently.

4 Experiments

To analyze the performance of our proposed techniques we use parts of the
well-known DARPA intrusion detection evaluation data set [16] that consists
of several weeks of labeled network data (i.e., legitimate normal network traffic
interleaved with various attacks) which was generated within a simulated envi-
ronment. The network architecture as well as the generated network traffic have
been designed to be similar to that of an Air Force base. We are aware of the
various critique of the DARPA data (e.g. [17]). In order to achieve fair and re-
alistic results, we carefully analyzed all known deficiencies and omitted features
that could bias detector performance.

We used the TCP/IP network dump as input data for an agent. At the sensor
layer TCP connections are reassembled and statistical information (i.e., events)
are extracted and handed over to the detection layer. Each event consists of fea-
tures that are typically used for intrusion detection, i.e., two categorical dimen-
sions (source and destination port) and ten continuous dimensions (e.g., duration,
number of transmitted packets, entropy of the exchanged information). We re-
moved all attack connections from the first week of the DARPA data set and used
the result to train an initial detection model for the agent that describes the ex-
pected normal network traffic. The agent is equipped with two instances of our
proposed novelty detection technique (one parametrized with κ = 0.97, η = 0.05
to detect distant and one with κ = 0.80, η = 0.1 to detect close new processes)
and it is able to perform self-adaptation. When a new rule premise is generated, a
simulated human expert is asked to provide a conclusion (which is calculated here
using the labeled connections). We confront the agent with weeks 2 to 5 (attacks
with less than 20 connections were left out). After every week, we reset the agent
to its initial model to prevent influences between the weeks.

Table 1 (left) shows the classification rate (CR), missing alert rate (MA), false
alert rate (FA), the total number of connections (i.e., events), and the number
of newly generated rules for week 2. First, note that obviously the normal traffic
of week 2 differs from week 1 as two additional rules are generated. The attacks
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back and ipsweep are successfully detected with good classification rates. Guest
and portsweep only consist of a few connections and, thus, the delay until a
new rule is generated significantly reduces the classification rate. Interestingly,
ipsweep shows a high rate of false alerts. A closer inspection of the misclassified
connections showed, however, that these connections are suspicious (i.e., they are
directed at closed ports and consist only of two packets) and should definitely
be reported to a system administrator as they indicate an erroneous program
configuration.

Table 1 (right) shows the results for week 3. The normal traffic significantly
differs from week 1 as the agent learned 18 new rules. All attacks are successfully
detected. Again, portsweep being a short attack results in a lower classification
rate due to the detection delay.

Table 1. Classification Results for Week 2 (Left) and Week 3 (Right)

Type CR MA FA events rules

Normal n/a n/a n/a 182 932 2
Back 95.5% 4.6% 1.4% 983 3
Guest 74.0% 26.0% 0.0% 50 1

Ipsweep 89.9% 10.1% 72.1% 855 2
Portsweep 63.6% 36.4% 8.3% 99 4

Type CR MA FA events rules

Normal n/a n/a n/a 54 893 18
Back 92.1% 7.9% 0.3% 999 3

Neptune 100% 0.0% 0.4% 185 652 1
Nmap 95.9% 4.1% 9.1% 941 1

Portsweep 70.0% 30.0% 5.6% 100 4

Table 2. Classification Results for Week 4 (Left) and Week 5 (Right)

Type CR MA FA events rules

Normal n/a n/a n/a 49 159 10
Neptune 98.9% 1.1% 0.2% 798 1

Portsweep 98.4% 1.6% 5.7% 1 971 3
Satan 16.7% 83.3% 2.4% 4 003 2

Warezclient 72.8% 27.2% 0.2% 419 2

Type CR MA FA events rules

Normal n/a n/a n/a 44 130 11
Neptune 100% 0.0% 0.4% 419 832 1

Portsweep 96.4% 3.6% 2.9% 2 238 7
Satan 5.8% 94.1% 1.9% 204 1

The results for week 4 are outlined in Table 2 (left). Obviously, the attack
satan is very hard to detect for our agent. A closer inspection showed, that the
first of the 10 newly generated rules for normal traffic covers a major part of
all satan connections. We analyzed the events that resulted in the generation
of this rule and, again, found a number of unsuccessful connection attempts.
However, as they are labeled as being normal connections our simulated human
expert provides a “normal” conclusion for the rule. A real human expert would
certainly provide a different conclusion for these suspicious connections.

Neptune and portsweep are very well detected in week 5 (cf. Table 2, right).
Again, such as in week 4, one of the new rules for normal traffic covers most of
the satan connections.

These experiments showed very promising results of our proposed techniques.
Our initial model was trained using only normal traffic but for all attacks cor-
responding rule premises were generated and for nearly all attacks good classifi-
cation results were obtained. The classification rates of the satan attack suffered
from a number of unsuccessful connection attempts contained in the normal traffic
that led to the creation of corresponding normal rules. Thus, these misclassifica-
tions can be regarded as an artifact caused by our expert simulation.
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5 Conclusion and Outlook

In this work we laid the methodological basis for IDA that recognize novel kinds
of attacks, react accordingly by creating new rules, and (in the future) col-
laborate by exchanging these locally learned rules. The self-adaptation of the
IDA is performed in a very efficient manner that reduces the need for a human
application expert to a minimum: System administrators are confronted with
rule premises for which appropriate conclusions must be found. Thus, we try
to avoid situations where system administrators must analyze huge amount of
alerts to build new rules. We investigated how these techniques perform on some
well-known benchmark intrusion data. In the future, we will combine the classi-
fiers presented here with conventional intrusion detection systems such as Snort
[18] to improve the classification rates and we will develop DIDS based on OC
principles. We will also consider categorical input attributes of a classifier in our
novelty-awareness techniques (detection and reaction) and improve the temporal
behavior of these techniques.

It is obvious that the proposed novelty-awareness techniques may also be used
in other applications to support intelligent technical systems (e.g., in the field
of OC) in their task to resolve problems with knowledge deficits in a (partly
or completely) self-organizing way. Thus, novelty detection and reaction tech-
niques will become a fundamental OC principle. We will use the techniques for
knowledge exchange in intelligent distributed systems, too. This kind of collec-
tive intelligence is biologically inspired in the sense that these systems follow
the human archetype: Humans not only learn by exchanging information (e.g.,
observed facts) but also by teaching each other learned knowledge (e.g., rules)
and experience gained with the application of this knowledge.
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Abstract. Usually, Evolutionary Computation (EC) is used for optimisation and 
machine learning tasks. Recently, a novel use of EC has been proposed – Mul-
tiobjective Evolutionary Based Risk Assessment (MEBRA). MEBRA charac-
terises the problem space associated with good and inferior performance of 
computational algorithms. Problem instances are represented (“scenario Repre-
sentation”) and evolved (“scenario Generation”) in order to evaluate algorithms 
(“scenario Evaluation”). The objective functions aim at maximising or minimis-
ing the success rate of an algorithm. In the “scenario Mining” step, MEBRA 
identifies the patterns common in problem instances when an algorithm per-
forms best in order to understand when to use it, and in instances when it per-
forms worst in order to understand when not to use it.  

So far, MEBRA has only been applied to a limited number of problems. 
Here we demonstrate its viability to efficiently detect hot spots in an algorithm's 
problem space. In particular, we apply the basic MEBRA rationale in the area 
of Air Traffic Management (ATM). We examine two widely used algorithms 
for Aircraft Landing Sequencing: First Come First Served (FCFS) and Con-
strained Position Shifting (CPS). Through the use of three different problem 
(“scenario”) representations, we identify those patterns in ATM problems that 
signal instances when CPS performs better than FCFS, and those when it  
performs worse. We show that scenario representation affects the quality of 
MEBRA outputs. In particular, we find that the variable-length chromosome 
representation of aircraft scheduling sequence scenarios converges fast and 
finds all relevant risk patterns associated with the use of FCFS and CPS.  

Keywords: Algorithms’ Behavior, Aircraft Sequencing, Evolutionary  
Computation. 

1   Introduction 

Existing demands on the air traffic system routinely exceed the capacity of airports. 
This leads to air-traffic imposed ground and airborne delays of aircraft. For the major-
ity of U.S. and European airports such delays are estimated to be over 15 minutes per 
aircraft [4] costing airlines billions of dollars per year [10]. Thus airports are proving 
to be serious bottlenecks in handling rising air traffic densities. Since constructing 
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new airports or additional runways is not a near-term solution, researchers investigate 
various approaches as how to make the most efficient use of the available runways 
given safety constraints. Amongst these approaches is the effective scheduling of 
aircraft landings, which can significantly improve runway throughput capacity as well 
as safety and efficiency of airports. 

It has been shown in the literature that the problem of finding optimal landing se-
quences – when the constraints of spacing between arrivals depend on the aircraft 
type as is the case in real-world applications – is NP-hard [6]. Thus it is unlikely that 
efficient optimisation algorithms exist [6]. Even if there was an accurate schedule 
optimiser, it would probably lack the speed to respond quickly to operational demands 
in the high-paced work environment of air traffic controllers (ATC). In the real  
world, therefore, fast and frugal heuristics are more useful than sophisticated but slow 
algorithms. 

The most commonly used heuristics-based algorithm that generates efficient air-
craft landing sequences is First Come First Served (FCFS). The basis of this method 
is the Estimated Time of Arrival (ETA) of aircraft at the runway and the minimum 
time separation between aircraft [7]. In FCFS, the aircraft land in order of their 
scheduled arrival times. ATC add suitable separation times to ensure appropriate 
spacing between aircraft. FCFS is straightforward and favoured by airlines for its 
fairness and by ATC for its simplicity that puts little demands on ATC workloads. 
However, its drawback is that it may lead to reduced runway throughput due to un-
necessary spacing requirements [8]. 

Another common approach is Constrained Position Shifting (CPS) [2] in which an 
aircraft can be moved forward or backward in the FCFS schedule by a specified 
maximum number of positions. This approach provides ATC with additional flexibil-
ity and helps pilots to better predict landing times and positions [8]. However, it also 
increases the controller’s workload in terms of increased ATC-Pilot communication 
and controller directives. 

Both FCFS and CPS thus have their advantages and disadvantages, which express 
themselves in variations of algorithmic performance depending on problem situation 
and context of use. Considering the large amount of money lost because of runway 
congestions, it makes economical sense to investigate in which aircraft landing se-
quence scenarios (ALSS) CPS performs better (or worse) than FCFS. Such an inves-
tigation will enable airports to identify and understand the risks, both negative and 
positive, when choosing one scheduling heuristic over another. 

In this paper, we make use of the recently introduced Multiobjective Evolutionary 
Based Risk Assessment (MEBRA) framework [1] to identify positive and negative 
risks associated with the application of a particular algorithm. Rather than optimising 
an algorithm, MEBRA explores and evaluates the risk profiles of algorithms. These 
risk profiles are signatures in the problem space and associated with the performance 
of a computational algorithm. In its risk assessment, MEBRA employs scenario repre-
sentation, scenario generation, scenario evaluation and scenario mining. Here the term 
“scenario” refers to a problem instance in which the computational algorithm under 
investigation is applied. 

So far though, MEBRA has only been applied to a limited number of problems. 
Here we demonstrate its viability by applying it to the Air Traffic Management 
(ATM) problem domain. We study performance and identify risks associated with the 
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use of FCFS and CPS in ALSS. Our paper further investigates how scenario represen-
tation impacts on algorithm evaluation. We examine three different representations: 
Fixed Length Chromosome, Variable Length Chromosome, and a Probabilistic 
Model. 

At the start of our application of MEBRA to ATM, random ALSS are generated 
and encoded in the chromosome representation. Then complex landing sequence 
scenarios are evolved over many generations by applying genetic operators and using 
a fitness function that correlates with risk. This imposes selection pressure on the 
population of scenarios. ALSS that are deemed “fitter individuals” have increased 
likelihood to survive into the next generation. In the final “scenario Mining” step of 
MEBRA, the scenario population at the end of evolution is used to identify common 
characteristics, or “signatures”, of aircraft landing sequences that contribute to sched-
ule delays. This aids in understanding those factors that result in technical risks in the 
generation of landing sequences when using scheduling heuristics such as FCFS or 
CPS. 

The rest of this paper is organised as follows. In Section 2, we describe the aircraft 
landing sequencing problem along with details of the FCFS and CPS algorithms. 
Next, we present the MEBRA framework (Section 3) and how it applies to the risk 
assessment of aircraft landing sequencing algorithms (Section 4). We illustrate the 
approach in a simple example and describe our results in Section 5. Conclusions are 
drawn in the final section. 

2   Aircraft Landing Sequencing 

The U.S Federal Aviation Administration (FAA) has established minimum spacing 
requirements between landing aircraft to prevent the turbulence from wake vortices 
[5]. If an aircraft interacts with the wake vortex of the aircraft landing in front of it, it 
could lose control. To prevent this risk, a minimum time separation between aircraft is 
mandated. This separation depends on both the size of the leading aircraft and that of 
the trailing aircraft. The FAA divides aircraft into three weight classes, based on the 
maximum take-off weight capability. These classes are: 

1. Heavy Aircraft are capable of having a maximum takeoff weight of 255,000 
lbs or more. 

2. Large Aircraft can have more than 41,000 lbs and up to 255,000 lbs maxi-
mum takeoff weight. 

3. Small Aircraft are incapable of carrying more than 41,000 lbs takeoff weight. 

A matrix of the minimum time separations mandated by the FAA is shown in Table 1. 

2.1   First Come First Served 

FCFS is a prominent scheduling algorithm in Sequencing Theory [9]. It is the most 
straightforward method to sequence aircraft arrivals in an airport. Much of present 
technology has some relationship with it or is even based on it [6]. 
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Table 1. Minimum time separation (in seconds) between landings as mandated by the FAA 

        Trailing Aircraft  Leading  Aircraft 
  Heavy  Large  Small 

      Heavy   96   157   196 

      Large   60    69   131 
      Small   60    69    82 

FCFS determines the aircraft landing sequence according to the order of its esti-
mated time of arrival (ETA) at the runway. ETA is computed by the control center at 
the time an incoming aircraft crosses the transition airspace boundary. If the differ-
ence between the ETA of two successive aircraft violates the minimum separation 
time constraints, then the Scheduled Time of Arrival (STA) of the trailing aircraft is 
adjusted accordingly. The following numerical example illustrates this adjustment. 

Given seven aircraft, A, B, C, D, E, F, G, each belonging to one of the three weight 
classes H (heavy), L (large) or S (small). FCFS orders these aircraft according to their 
ETA, see third row of Table 2. It then adds time to an ETA, when the separation time 
between two aircraft is smaller than the allowable minima shown in Table 1. For 
instance, the ETA of the small aircraft C is only 60 sec later than the ETA of the pre-
ceding large aircraft B. Thus 71 sec are added to the ETA of C to achieve a separation 
of 131 sec as required by the FAA (Table 1). In the example, the STA of all aircraft 
following C are now determined by adding the minimum separation time to the STA 
of the leading aircraft because all STA calculated this way happen to be later than the 
ETAs. The makespan (i.e. the difference between final STA and first STA) in this 
example is 18m59s - 07m51s = 668 sec. 

FCFS scheduling establishes the landing sequence based on predicted landing 
times. It therefore is easy to implement and does not put significant pressure onto 
ATC workloads. However, it ignores information which can be used to increase run-
way throughput capacity. 

Table 2. FCFS scheduling example 

Aircraft    A B C D E F G 
Category L L S H L S H 
ETA 07m51s 10m00s 11m00s 12m00s 13m00s 14m00s 15m00s 
AC Order A:1 B:2 C:3 D:4 E:5 F:6 G:7 
STA 07m51s 10m00s 12m11s 13m11s 15m48s 17m59s 18m59s 

2.2   Constrained Position Shifting 

CPS, first proposed by Dear [3], stipulates that the ETA-based schedule can be 
changed slightly and that an aircraft may be moved up by a small number of posi-
tions. Neumann and Erzberger [8] investigated an enumerative technique for comput-
ing the sequence which minimises the makespan, subject to a single position shift  
(1-CPS) constraint. In the example of Table 2, for instance, the swap of aircraft D and 
E would result in a reduction of makespan by 23 sec: the STAs of E, D, F and G 
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would be 13m20s, 14m20s, 17m36s and 18m36s, respectively. This is the basic moti-
vation for CPS methods. 

Finding the optimal ordering of a set of aircraft through CPS can be seen as a 
search for the lowest-cost path through a tree of possible aircraft orderings, where the 
cost is the sum of the time separations required between each pair of aircraft. For the 
CPS problem, an initial sequence of aircraft is given, along with the list of minimum 
separation constraints (e.g. Table 1) and the maximum possible time-shifts for each 
aircraft.  In the final sequence shown in Table 3, each aircraft is constrained to lie 
within one shift from its initial position, and no aircraft must have a time of arrival 
earlier than permitted by the maximum allowable time shift. 

Table 3. CPS scheduling example 

Aircraft    A B C D E F G 
Category L L S H L S H 
ETA 07m51s 10m00s 11m00s 12m00s 13m00s 14m00s 15m00s 
AC Order A:1 B:2 C:3 E:4 D:5 F:6 G:7 
STA 07m51s 10m00s 12m11s 13m20s 14m20s 17m63s 18m36s 

3   MEBRA – Multiobjective Evolutionary Based Risk Assessment 

The objective of this paper is to demonstrate how evolutionary computation (EC) 
methods can be used to assess the performance of aircraft landing sequencing algo-
rithms. The approach we take is a simplified version of the Multiobjective Evolution-
ary Based Risk Assessment (MEBRA) framework that is designed for the purpose of 
exploring and evaluating computational algorithms under risk [1]. In aircraft landing 
sequencing problems, risks associated with computational algorithms include produc-
tion of suboptimal scheduling sequences, i.e. unnecessarily large makespans; computa-
tional complexity that results in algorithms taking too long and becoming unresponsive 
to operational demands; and unnecessary increases of ATC workloads. The occurrence 
of these risks depends on the specifics of the problem at hand; for instance in an ALSS 
that requires a large number of aircraft to be scheduled in a very short period of time 
ATC are more likely to get overloaded than in an ALSS when only a few aircraft need 
to be sequenced. MEBRA of algorithmic performance is thus concerned with searches 
on the problem space, also known as the “scenario space”, rather than the solution 
space. 

MEBRA comprises four building blocks: Scenario Representation, Scenario Gen-
eration, Scenario Evaluation, and Scenario Mining. MEBRA’s Scenario Representa-
tion can be as simple as sampling a parameter space that captures quantitative aspects 
of a problem, or as complex as narratives that try to capture futuristic strategic uncer-
tainties. During Scenario Generation MEBRA makes use of evolutionary computa-
tion. Problem instances are evolved over many generations while being exposed to 
selection pressure. This pressure makes less risky scenarios less likely to survive into 
the next generation and therefore is part of Scenario Evaluation. In this paper, we 
make use of the single objective version of MEBRA, called SEBRA. In the Scenario 
Mining step, MEBRA identifies risk patterns or “hot spots”, i.e. conditions in scenario 



 EC Based Risk Assessment of Aircraft Landing Sequencing Algorithms 259 

 

space under which risk eventuates. Scenario mining techniques can be as simple as 
descriptive statistics of the evolved scenario population or as complex as a framework 
that analyses dynamics and network dependencies to unveil the “rules of the game”. 

4   Application of MEBRA to Aircraft Landing Sequencing 
Algorithms 

4.1   ALSS Representation 

In order to capture complex patterns of aircraft landing sequences, we use three dif-
ferent chromosome representations: fixed-length sequence representing a problem 
instance, a variable-length sequence representing a pattern that is repeated in a prob-
lem instance, and a stochastic finite state machine representation representing the 
probability transition matrix to generate patterns. A detailed description of the three 
representation is as follows:   

1. Fixed-length chromosome. In the fixed-length chromosome, each gene repre-
sents an aircraft type. The position in the chromosome corresponds to the air-
craft’s position in the arrival schedule according to ETA. The length of the 
chromosome is equal to the total number of aircraft whose landing need to be 
scheduled. In our experiments, the fixed-length chromosome contains 200 
genes. At chromosome initialisation, ETA values are spaced with 1 sec and 
assigned to the aircraft sequence. We use this initialisation condition because 
having all aircraft arrive “at once” puts the biggest demand on the landing se-
quencing algorithms and thus will facilitate the search for “hot spots” in 
ALSS. 

2. Variable-length chromosome. The variable-length chromosome encodes a pat-
tern. A pattern is a partial sequence of aircraft arrivals. As with the fixed-
length chromosome, each gene encodes an aircraft type. With respect to the 
whole aircraft arrival sequence, the partial sequence has a starting point de-
scribed by a position in the arrival schedule and a length that is smaller than 
the total number of aircraft to be scheduled. In our experiments, the starting 
point is always the first position in the scheduling sequence and the pattern’s 
length varies between 3 and 50. At the time a pattern is evaluated, it is repeated 
as many times as needed to generate a 200-gene sequence. For example, a pat-
tern of length 50 would need to be repeated four times. This normalises the 
scale when comparing-variable length and fixed-length chromosome represen-
tations. The evolution based on the variable length representation is pushed to 
find those patterns that optimise the fitness function (see Subsection 4.3). A se-
lection pressure is placed automatically to favour shorter patterns since their 
frequency in the 200-gene sequence increases. 

3. Stochastic Finite State Machine (SFSM) chromosome. The SFSM chromo-
some contains nine genes which encode how likely it is that an aircraft type is 
followed by another in the schedule. The genes thus represent probabilities of 
the nine possible SFSM transitions. The initial generation initializes the 
chromosomes randomly from uniform distributions. Obviously, when the 
SFSM is used to generate a sequence, transition probabilities out of each node 
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are normalised. Moreover, it is natural that this stochastic representation 
would require multiple evaluations (30 in our case) of each chromosome to 
approximate its fitness. 

4.2   ALSS Generation 

In the generation of ALSS we make use of evolutionary computation (EC) techniques. 
In EC, a seed population of scenarios is evolved over many generations (implicit 
parallelism) to explore the space of possible ALSS. From generation to generation, 
individuals are subjected to single-point crossover and uniform mutation. Evolution 
(“search”) proceeds to meet a given selection pressure (such as in Equation 2 below) 
and according to some given rules; e.g. in our experiments (Section 4.5) we apply 
tournament selection with elitism. Note that evolving ATM problems according to the 
selection pressure in Equation 2 does not ensure that we always find scenarios for 
which both FCFS and CPS generate optimal landing schedules. However, for most of 
the evolved complex scenarios in the final population this actually is the case. It is 
thus fair to assume that low-risk scenarios evolved with Equation 2 will have features 
that differ from those of the high-risk problems generated under the selection pressure 
of Equation 1 (below). 

4.3   ALSS Evaluation 

To assess both positive and negative risk of inefficiency-based delays in aircraft land-
ing sequencing algorithms we define two fitness functions. The first one is designed to 
identify those situations where FCFS is inferior to CPS. Therefore, the objective of the 
first fitness function is to maximise the difference between the FCFS makespan and the 
CPS makespan. As mentioned earlier, we study worst-case situations, i.e. when all 
aircraft in a sequence arrive within one second of each other and are ready to be 
landed. The “negative-risk” objective function can be described formally as follows: 

Max {F = TFCFS – TCPS} . (1) 

where TX denotes the makespan of algorithm X.  
As described earlier, in any ALSS the CPS method guarantees an equal or better 

makespan than the FCFS sequencing approach. By evolving solutions that optimise 
the function in Equation 1, MEBRA will evolve problem instances for which CPS 
considerably outperforms FCFS. While we cannot be sure that CPS is a very good 
algorithm to use in such evolved complex scenarios, we definitely know that FCFS 
performs very poorly. The evolutionary process thus finds scenario sets for which 
CPS results in maximum improvements to the FCFS schedule; i.e. we identify scenar-
ios in which FCFS is particularly inefficient. 

The second fitness function, the “positive-risk” objective, is to minimise the differ-
ence between the two makespans, i.e. we identify low-risk scenarios for which CPS 
will not result in significantly reduced makespans. Formally, 

Min {F = TFCFS – TCPS} . (2) 
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Fig. 1. The progress in fitness values as a function of the number of objective function evalua-
tions. Figures on the left are for the negative-risk objective function while those on right are for 
the positive-risk objective function. The top figure depicts the evolution of a population of 
scenarios encoded with fixed-length chromosome representation, the middle one for the vari-
able-length chromosome representation and the bottom one for the SFSM chromosome repre-
sentation of ALSS. 

4.4   ALSS Mining 

To compare among the three representations, we use three two-way 2x2 comparison 
matrices. Each matrix captures the best-best, worst-best, worst-worst, and best-worst 
overlaps between the solutions found using each representation. Each cell in the ma-
trix is the comparison result between: 
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1. Fixed length v.s. Variable Length: the count of matched patterns by sliding 
the pattern of the variable length and counting its frequency in the fixed 
length. We start from the first aircraft in fixed length chromosome and slide 
the variable length chromosome by one aircraft position at each step. We 
count the number of matches between the partial sequence in fixed length is 
as same as the whole sequence of variable length chromosome.  

2. Fixed length v.s. SFSM: the distance of probabilities of transitions by trans-
forming the fixed length to a SFSM using the frequency of transitions found 
in the fixed length chromosome. We calculate the frequency of aircraft transi-
tions in the fixed length chromosome and translate these frequencies into the 
stochastic finite state machine representation. We obtain nine transition prob-
abilities from the fixed length chromosome with the same format as the 
SFSM chromosome. The Euclidean distance between the two normalized 
probability vectors is used to calculate similarities. 

3. Variable Length v.s. SFSM: the distance of probabilities of transitions by 
transforming the variable length into the fixed length (by repeating the pat-
terns) then transforming the fixed length to a SFSM using the frequency of 
transitions found in the 200-gene sequence. The calculations are then done in 
the same way illustrated in the previous step. 

4.5   Experimental Setup 

We ran each of the 6 SEBRA evolutions 30 times with different seeds and a popula-
tion size of 200. We apply tournament selection with elitism, single-point crossover 
with probability 0.9 and uniform mutation with probability equal to the reciprocal of 
the chromosome length. For the variable length chromosome, the mutation is set to 
0.02. Those parameters are chosen carefully after a number of sample runs. We al-
lowed sufficient number of objective evaluations in each run for evolution to become 
stable (the best solution does not change significantly). 

5   Results 

The progress in the two fitness functions, “negative-risk” and “positive-risk” objec-
tives, corresponding to each of the six experimental setups and the associated 30 
seeds is plotted in Figure 1. 

The following observations can be made: 

1. Three types of local optima in the negative-risk objectives can be distin-
guished when we use a variable-length chromosome representation of ALSS – 
one with a fitness value of around 5000, a second with a fitness of approxi-
mately 4400, and a third one with fitness of about 4000. 

2. Both fixed-length and SFSM chromosome representations appear to have be-
come stuck between two of the three local optima found by the variable-length 
chromosome. 

3. In the variable-length chromosome representation the number of objective 
evaluations to convergence is an order of magnitude smaller than the evalua-
tions needed in the other two scenario representations. 
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This suggests that it is more efficient to evolve pattern (as in the experiments with 
variable-length ALSS chromosomes) than to evolve whole scenarios. 

Table 4. Count of Building Blocks Matches in Fixed-Length vs Variable-Length ALSS 

     Fixed  
 best  worst 

 best  20196   0 Variable 
 worst   0  7200 

Table 5. Distance of Probabilities for Building Blocks when comparing SFSM vs Fixed-Length 
and vs Variable-Length ALSS  

     Fixed       Variable  
 best  worst  best  worst 

 best 0.718186 1.452852 0.635106 1.827628 SFSM 
 worst 1.898998 0.839643 1.914774 1.079916 

We now address the question whether the patterns found by evolving the variable-
length representation are also present in the evolved fixed-length and SFSM ALSS. 
Table 4 shows that the patterns which maximize the difference between FCFS and 
CPS (“worst”-case scenarios, as of Eq.1) and which are found by evolving variable-
length ALSS can be found with high frequency in the evolved fixed-length ALSS. 
These patterns are not at all present in fixed-length scenarios that minimize the differ-
ence between the two makespans (“best”-case scenarios, as of Eq.2). This indicates 
that the variable-length patterns are some sort of building blocks in this problem and 
that it is more efficient to evolve building blocks directly than to evolve the solution 
vector as a whole. 

Similar trends are found in Table 5. The normalized transition probabilities found 
by the fixed and variable length representations are closer to those found by the 
SFSM representation in corresponding experiments. 

Figure-2 depicts two patterns found by evolving SFSM ALSS. Examples of high 
frequency patterns found by evolving the variable-length representation when looking 
for worst-case scenarios include: HSHSHSH, HSHSHSS, HLSHS, and SHSHSH. 
These patterns are not as simple as they may appear. The HSHSHSH pattern, when 
used as a building block will generate an HH link. Examples of building blocks found 
in best-case scenarios include: SLLH, LHSL, HHHH, LHHHH, and HHHSS SLLH, 
LHSL, HHHH, LHHHH, and HHHSS. It is easy to see why each of these patterns 
would give an advantage to CPS over FCFS. 

In summary, we demonstrated that evolutionary computation can be a powerful 
framework to evaluate the performance of different algorithms. A deeper analysis of 
the resulting solutions can shed light on the problem patterns that determine strengths 
and weaknesses of an algorithm compared with another (baseline) algorithm. In the 
problem domain investigated in this paper, discovering these patterns allows to bal-
ance safety risks that can result from an unnecessary increase of ATC workloads and 
the (economic and ecological) costs that result from unnecessary delays or holdings of 
aircraft. 
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Fig. 2. Two examples of SFSM found in the case of Max objective function 

6   Conclusions 

For many years, Evolutionary Computation (EC) has been successfully applied to opti-
misation problems, although almost exclusively to evolve solutions for such problems. 
In this paper, we showed that EC techniques can be used in a novel way, namely to 
assist in the assessment of algorithmic performance. We employed the Multiobjective 
Evolutionary Based Risk Assessment (MEBRA) concept to evolve problem instances in 
which heuristic algorithms perform particularly poorly or particularly well. 

MEBRA can be used as a comparative analysis technique. Through the application 
of clustering methods, pattern analysis and the like to the population of evolved prob-
lem instances, or scenarios, it can detect signatures, or “hot spots”, in the scenario 
space for which an algorithm performs better or worse than a reference algorithm. 
Thus, MEBRA provides valuable information about when it is best to use one algo-
rithm over another. 

We applied a single-objective version of the MEBRA framework – SEBRA – to the 
comparison of two prevalent heuristics used in the landing sequencing of aircraft arri-
vals in an airport: the First Come First Served (FCFS) and Constrained Position Shifting 
(CPS) algorithms. We found indeed that SEBRA could identify hot spots in the problem 
space for which FCFS performed markedly worse than CPS. We also found patterns in 
the sequences of estimated time of arrival (ETA), for which FCFS performs equally 
well as the computationally more complex CPS. The patterns were interesting and could 
easily be interpreted by making use of the minimum separation time matrix. 

Our results indicate that convergence and variance of SEBRA depend on the chro-
mosome representations for the SEBRA problem instances. The fixed-length chromo-
some and stochastic representations were stable and converged reasonably fast. The 
variable-length chromosome representation converged the fastest and found all  
patterns of interest. 
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Abstract. Collaboration and self-organization are hallmarks of many

biological systems. We present the design for an intelligent decision sup-

port system that employs these characteristics: it works through a col-

laborative, self-organizing network of intelligent agents. Developed for

the realm of Marine Safety and Security, the goal of the system is to as-

sist in the management of a complex array of resources in both a routine

and emergency role. Notably, this system must be able to handle a dy-

namic environment and the existence of uncertainty. The decentralized

control structure of a collaborative self-organizing system reinforces its

adaptiveness, robustness and scalability in critical situations.

Keywords: Coastal Surveillance, Self-Organizing System, Automated

Planning, Configuration Management, Abstract State Machines.

1 Introduction

Canada and its allies have identified the vulnerability of sea lanes, their ports and
harbors to a variety of threats and illegal activities. With a total length of over
243,000 kilometers (151,000 miles), Canada has the longest coastline of any coun-
try in the world [1]. Scarce surveillance and tracking capabilities make it difficult
to perform large volume surveillance, keeping track of all marine traffic [2]. A col-
laborative research initiative by Defence R&D Canada, MDA and three academic
partners addresses the design of intelligent decision support systems [3] for large
volume coastal surveillance [4]. The NADIF research project [5] expands on the
CanCoastWatch (CCW) project [4] by building on realistic marine safety and se-
curity scenarios studied in CCW. The aim is to facilitate complex command and
control tasks of Marine Security Operation Centres (MSOC) [6] by improving
situational awareness and automating routine coordination tasks. The proposed
system concept integrates Adaptive Information Fusion techniques with decen-
tralized control mechanisms for Dynamic Resource Configuration Management
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(DRCM) and task execution management. Autonomously operating agents form
an intelligent decision support system through distributed collaboration and co-
ordination. The target platforms for this system are dynamically reconfigurable
network architectures.

Operating under uncertainty in an adverse environment, as will be explained,
the system design presented here strives for resilience through adaptivity, robust-
ness and scalability, building on concepts of collaborative self-organizing systems
inspired by biological processes and mechanisms [7]:

What renders this approach particularly attractive from a dynamic net-
work perspective is that global properties like adaptation, self-organization
and robustness are achieved without explicitly programming them into
the individual artificial agents. Yet, given large ensembles of agents, the
global behavior is surprisingly adaptive and can cope with arbitrary ini-
tial conditions, unforeseen scenarios, variations in the environment or
presence of deviant agents.

Border control and emergency response services deploy a range of mobile sensor
platforms with heterogeneous sensor units that cooperatively perform surveil-
lance and rescue missions in the vast coastal areas that constitute the littoral
zone. Platforms include satellites; airborne vehicles (SAR helicopters, patrol air-
craft and UAVs); coastguard vessels(frigates and various smaller boats); and
land vehicles.

We distinguish cooperative search (e.g., locating a fishing boat in distress) from
non-cooperative search (detecting illegal activities, e.g., smuggling operations).
A typical mission involves various tasks and subtasks deploying multiple mobile
platforms with diverse capabilities: sensor capabilities, mobility capabilities, ex-
traction and transport capabilities. Situation awareness1 entails flexible control
mechanisms to respond to dynamic changes in internal conditions regarding mis-
sion requirements (priorities, search areas, medical conditions, time windows) and
external conditions, such as adverse weather conditions and fading daylight, as
well as often unpredictable changes in the operational status of platforms.

The NADIF system concept comprises three main parts: a Decision Support
Engine, a Configuration Management Engine, and an Information Fusion Engine.
We focus here on the design of a collaborative decision support and configuration
management model. Section 2 discusses background concepts. Section 3 outlines
the conceptual model, and Section 4 addresses Automated Planning and Tasking.
Section 5 illustrates our System Reference Model. Section 6 concludes the paper.

2 Background

This section presents background concepts relevant to the work presented here.
We employ these to formulate a model that accurately captures the characteris-
tics, functionality and requirements of the target system.
1 Situation Awareness, a state in the mind of a human, is essential for decision-making

activities. It concerns the perception of elements in the environment, the comprehen-

sion of their meaning, and the projection of their status in the near future [8].
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2.1 Cooperative Models

A Cooperative Multi-agent System in general consists of a number of agents
collaborating with each other. Agents are able to use different types of commu-
nication in order to fulfill shared goals. Within cooperative systems, there is a
wide range of different system architectures with each model defined by some
main characteristics.

Different models have been studied (e.g., Swarms, Coalition, Collaboration
and Clusters) in [9]. Among these models, clusters match the requirements of
our system best. In such systems different agents can be combined together to
aggregate their capabilities as a group. Clustering also increases the flexibility
of the system through dynamic re-organization of the agents. This is beneficial
for applications which work in a changing environment. Clustering results in a
more complicated structure, which can be costly to manage, but the behavior of
each node can be kept simple [10].

2.2 Self-Organizing Systems

The concept of self-organization is used in diverse research areas, such as Biology,
Physics and also in social sciences such as Economics. In nature it can be seen,
for instance, in flocking by birds and fish. The construction of physical struc-
tures by social animals (e.g., bees or ants) is another example. Self-organization
is defined as the emergence of global level pattern in a system as a result of many
low-level interactions which utilize only local information [11]. The concept of
biologically inspired self-organization is becoming increasingly popular in auto-
mated systems. In Swarm Robotics, many simple physical robots communicate
with each other while interacting with the environment. These communications
produce feedback to the system and consequently initiate emergent global be-
havior in the system. Such behavior is called Swarm Intelligence [12]. Swarm
behavior can be generated from very simple rules for individual agents.

2.3 Command and Control

In our previous work [13], the DRCM (Dynamic Resource Configuration Man-
agement) architecture for the current system was introduced. The topology of
the resource configuration network is based on the Command and Control (C2)

Fig. 1. Organizing Resources: Hierarchical Network Architecture
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Hierarchy which is broadly used in the military domain [14]. In such a hierar-
chy, nodes represent different resources in the network (e.g., platforms, sensors,
services and units) and the edges connecting nodes can be seen as relationships
(command and control from parent nodes) or connectivity (e.g., link, TCP/IP,
radio). In Fig. 1, missions are introduced into the system through the comman-
der. As illustrated, the C2 hierarchy has a decentralized control structure where
a parent node (commander) assigns tasks to a group of subordinate nodes and
subsequently, local decisions are made in the lower layers.

3 Collaborative Self-Organization

This section introduces the conceptual model and basic design principles shaping
the DRCM core, specifically the decentralized control processes that dynamically
configure mobile resources into resource clusters and continuously monitor and
control the operations and tasks being performed by the cluster components.

Operating under uncertain mission requirements in an unstable physical envi-
ronment calls for flexible adaptation to new situations. Building on collaborative
self-organizing system concepts naturally facilitates reconfigurable applications
and dynamic reorganization in response to internal changes in resource require-
ments and external changes affecting the availability of resources.

The complex command and control structure is realized in a distributed and
hierarchical fashion by means of a dynamic ensemble of autonomously operating
control agents interacting with one another and with their local environment.
Intuitively, each agent is associated with an individual resource representing a
concurrent control thread of the decentralized system. Agents are created or
eliminated at run-time as resources are added to or removed from the system.

3.1 Resource Hierarchy

Missions represent complex tasks and goals that normally exceed the capacity
and capabilities of any individual resource; hence, they need to be decomposed
into subtasks and subgoals in such a way that the resulting tasks and goals can
be performed co-operatively by a resource cluster that has the required capacity
and also matches the capabilities. This process is performed by the planning
component in several iterative steps until all the resulting tasks are executable
tasks. When such tasks are ready to be executed the tasking component then
allocates resources depending on resource availability and task priority.

In order to simplify mapping the constituent tasks of a mission onto resources
that execute them, the network architecture hierarchically organizes resources in
clusters. Control agents are nodes in the network architecture; their organization
into clusters is stated by undirected edges (see Fig. 1). Referring to distinct roles
of resource entities, there are two different types of nodes:

– Physical resources refer to real-world resource entities in the form of mobile
sensor platforms. In the hierarchy, only the leaf nodes represent physical
resources. Depending on the level of abstraction at which a distributed fusion
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system is considered, a physical resource may refer to a group of mobile
sensor platforms, to a single mobile platform, or even to an individual sensor
unit on a given sensor platform. 2

– Logical resources refer to abstract resource entities formed by clustering two
or more physical and/or logical resources, each with a certain range of ca-
pabilities, into a higher level resource with aggregated (richer) capabilities
needed to perform more complex operations. A logical resource identifies a
cluster of resources. All non-leaf nodes represent logical resources (Fig. 1).

Resource clusters form collaborative self-organizing command and control units
that are configured at run-time to perform specific missions and tasks, where
their resource orchestration is subject to dynamic change. For increased robust-
ness and to reduce control and communication overhead, logical resources op-
erate semi-autonomously, making their own local decisions on the realignment
and reorganization of resources within a cluster. DRCM policies govern the mi-
gration of resources between clusters based on common prioritization schemes
for resource selection, load balancing and organization of idle resource pools.
Resources may join or be removed from a cluster on demand depending on their
sensor capabilities, mobility capabilities, geographic location, cost aspects and
other characteristics. The underlying design principles resemble those for im-
proving performance and robustness in mobile ad hoc networks.

3.2 Organization Principles

Specific challenges arise from complex interaction patterns between logical and
physical resources and the dependencies between the operations and tasks to
be performed in a collaborative fashion. The following organization principles
outline some of the aspects that need to be addressed.

– Resource Clustering Principles control the arrangement of resources into
resource clusters. Composition rules defined over resource descriptors specify
the clustering of resources so as to form composite resources with richer
behaviors. A resource descriptor is an abstract representation of resource
attributes such as physical capabilities (e.g., sensor capabilities, mobility
and time constraints), geographic position and workload information.

– Resource Distribution Principles refer to the spatio-temporal distribution of
mobile resources in the geographical environment. Position information and
projections of resource trajectories provide important input for grouping
resources into clusters (e.g., keeping resources of the same group in close
proximity to each other) and also to satisfy communication requirements
(e.g., moving a resource in order to act as a communication proxy).

– Task Decomposition Principles define the decomposition of complex tasks
(including entire missions) into subtasks based on common patterns and
schemes for mapping tasks onto resources. This concept entails an abstract
characterization of tasks for specifying their resource requirements and the
required orchestration of resources for performing the tasks.

2 Henceforth, we identify physical resources with mobile sensor platforms.
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4 Intelligent Decision Support

In order to support the decision making of system operators, it is vital for the
system to be able to simulate the entire process of decision making. The focus
here is on Automated Planning and Automated Tasking.

4.1 Automated Planning

Generally speaking, any non-trivial objective will require a planning process in
order to decide upon the best set of actions to follow. In the domain of Marine
Safety and Security, missions introduced by command personnel are stated at
an abstract level, establishing a goal without defining a specific manner in which
it must be achieved. Expert knowledge and institutional policies can then be
invoked in order to select which tasks are likely to be successful. This can be
seen as an iterative process, as high level plans are used to generate subplans
until an actionable set of tasks is found.

A hierarchical perspective captures this mechanism well: abstract tasks are
successively broken down into more refined subtasks. Subtasks requiring more
refinement before they can be implemented are also broken down. This continues
until all of the resulting subtasks are executable. The set of executable tasks
generated this way constitute the elements of the plan. The Hierarchical Task
Network (HTN) approach [15] is a prime example of this kind of planning. HTNs
use substitution rules called methods to select the right subtasks for each abstract
task, generating a tree-like network through this process. The network not only
shows the relationship between tasks and subtasks, but also any constraints
that exist between tasks. If executable subtasks can be found for all tasks in the
network, a solution has been constructed for the problem at hand.

Fig. 2 shows a simplified HTN plan. The top task, Capsized Boat, corresponds
to the mission introduced to the system. It is too general as stated to be ful-
filled, so a method associated with it is used to find three subtasks. In turn,
these subtasks require further refinement and other methods are used to find
appropriate subtasks for them. Two kinds of constraints are illustrated: prece-
dence and shared resource. The first defines a partial order in which the tasks
must be completed, and the second forces a reasonable limitation on the choice
of resources to complete the tasks. The leaf nodes of the network correspond to
the executable tasks that make up the final plan.

A planning system that interacts with the real world must have the ability
to replan in order to adapt task choice to deal with changing conditions or
new information. Replanning should cause as little disruption as possible to the
existing plan, since tasks may currently be underway. Local replanning aims
to do this by making changes in the task network as close to the problem as
possible [16]. This entails the requirement to be able to evaluate the current world
state in order to recognize when replanning is needed, and what in particular
needs to change.
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Fig. 2. Hierarchical Task Network (HTN) Example

4.2 Automated Tasking

Once a plan has been decided upon, either in whole or in part, it is still necessary
to see that it is successfully completed. This is due to factors outside of the
control of the system, as well as imperfect knowledge gathered from sensors.
Appropriate resources must be found for the tasks, and they must be performed
only when appropriate. Tasks in the midst of execution must be monitored, since
they may provide data that must be considered immediately. Tasks can end
prematurely, due to resource failure or environmental interference, for example.
In these cases the problem may be solved by finding a new resource to assign
to the task, or it may be necessary to change the existing plan. The Tasking
component in our system is responsible for handling these issues. It also serves
as a nexus of interaction between the other components. In this way, it serves as
a buffer and conductor for asynchronous events, enabling the system to act in a
robust manner in real-time.

5 System Reference Model

In this section, we describe the interactions between the components of the sys-
tem in terms of an abstract generic scenario indicating their responsibilities and
relations. In order to model and analyze system scenarios, a standard notation,
User Requirements Notation (URN) [17] is used. In 2008, the User Requirements
Notation was approved as an ITU-T standard that combines concepts and no-
tation for modeling goals and scenarios. A scenario describes a partial usage
of the system. It is defined as a set of partially ordered responsibilities to be
performed such that the system reaches its goals. Each scenario has start points,
represented by filled circles and end points illustrated by solid bars. A scenario
progresses along paths between these start and end points, and the responsibili-
ties are represented by crosses on the path. The diamond symbol is called a stub
and is a placeholder for a sub-scenario. We employ them in our model for com-
plexity management by encapsulating some related and coherent responsibilities
as a subcomponent. Beyond the above concepts and notations, there are other
aspects supported by URN, but those are not used here.
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5.1 Describing the Abstract Generic Scenario

This system is intended to be implemented in a distributed manner, with all
five services running on each node in the C2 hierarchy. This allows for a truly
decentralized control structure and improves the robustness of the network. We
use jUCMNav for modeling different concrete scenarios of the system in various
situations. The abstract generic scenario is the result of generalizing the com-
mon parts of these concrete scenarios. As shown in Fig. 3, the system has five
components in addition to the Command and Control Center. This section de-
fines the responsibilities of each component and also the communication among
them. It is important to note that Fig. 3 shows the flow of control and informa-
tion, and the duties of each element, so some parts of the path can be executed
concurrently for different missions and tasks.
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Fig. 3. Abstract Generic Scenario of the NADIF System

The Command and Control Center is outside the boundary of the system
and is considered to be an actor on the system. This component is responsible
for introducing new missions to Planning. In addition, it will receive a report
of the finished mission, whether it is successful or not. The decision support
components of each node are modeled as an interacting set of internal services.
The responsibilities of each component and their respective subcomponents are:

Planning is responsible for generating new plans and also replanning previous
cases when necessary.
– Evaluation(1): This subcomponent is responsible for evaluating finished

tasks, as well as relevant situation information, such as the output of the
Fusion component. If the results of a task compromise an active mission,
it is sent back to Plan Generation for replanning. If instead a mission has



274 U. Glässer et al.

finished (whether successful or not), this subcomponent issues a report
to the Command and Control Center.

– Plan Generation(2): In this subcomponent, the current plan is decom-
posed into a set of tasks. Any tasks that are executable are sent to Task
Management in order to wait for resource assignment and execution.

Tasking is responsible for managing tasks which are waiting for execution or
that have just finished execution.
– Task Management(3): This subcomponent maintains the pool of waiting

tasks. If a task needs a resource, a request is sent to Resource Selection.
When a task is ready to execute, it is sent to Task Execution. It also
checks if a task can no longer be executed, due to exceeding its time
window, finished status (from the execution report sent by Task Report
Generation), or if no resource assignments are possible (i.e., a rejection
message from Execution Initialization). In these cases, the task will be
sent back to Evaluation, which may result in replanning if necessary.

– Execution Initialization(5): Its main duty is to pick the best resources
for executing the current task from the list provided by Resource Se-
lection. The decision is based on different parameters such as resource
availability, task priority, resource location, and other information. First,
resources currently in use by tasks of higher priority are pruned from the
list. If the resulting list is empty, this subcomponent sends a message to
Task Management; otherwise, there are appropriate resources for execut-
ing the task. If the selected resources are idle, they are assigned to the
current task, which is then sent to the task pool in Task Management. If
any of the selected resources are in use, but the current task has a higher
priority, a request to release these resources is sent to the Task Execution
subcomponent. Once they have been released, the higher priority task
obtains these resources and waits in Task Management for execution.

Resourcing is responsible for monitoring resources available to the current
node. It also participates in resource configuration management.
– Resource Selection(4): This subcomponent acts as a filter to find the

resources that satisfy the required capabilities of a task. In this manner,
a list of resources that are able to perform the task is created and sent
to the Execution Initialization subcomponent in Tasking.

Execution is responsible for managing and monitoring the tasks during their
execution process.
– Task Execution(6): This subcomponent is responsible for monitoring the

execution of current tasks. There are two different situations: 1) the
assigned resources are physical, so the execution of the task is controlled
by this subcomponent, or 2) the assigned resources are logical, so the
task can be considered as a new mission to be sent to the corresponding
node for execution (as shown in Fig. 3, in which Node X sends a task
to Node Y as a new mission). In the new node, the new mission passes
through the same scenario.
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– Task Report Generation(7): Whenever task execution has finished, this
subcomponent generates a report. In the case that the task has executed
in another node (i.e., as a mission), its final report comes into this sub-
component. The report contains the results of performing the task and is
sent to the Task Management subcomponent. This report will be used in
Task Management to determine whether or not the task has effectively
finished execution. Furthermore, Task Report Generation sends regu-
lar reports to Observation to provide data required for the Information
Fusion process.

Fusion is responsible for the synthesis of high level information from low level
data and information. Information fusion is a key enabler of Situation Anal-
ysis, a process which leads to Situation Awareness.
– Observation(8): This is concerned with getting all of the data produced

from executing tasks into the same coordinate frame, i.e., aligning them
in space and time, and presenting a coherent and consistent picture
across several agents. The output of this effort are fused tracks. This
is commonly referred to as Level 1 data fusion. Note that this is a pro-
cessing function that is distinct from sensing.

– Orientation(9): Here conclusions are drawn from the tracks by reasoning
about the relationships between objects and making inferences about
their intentions, and ultimately analyzing the impact of those intentions
on others. This stage is referred to as Level 2 data fusion.

Note that Observation and Orientation inside the Fusion component directly
correspond to the first two steps of John Boyd’s Observe-Orient-Decide-Act
(OODA) loop [4]. The Act step is handled by the Execution component,
while the rest of the system model is dedicated to the complexity of the
Decision step. The OODA concept has wide acceptance in the military R&D
community, and the mapping to an Agent concept emphasizes the distributed
nature of the tasks.

5.2 Abstract State Machine Representation

We formally describe the detailed design specifications of the subcomponents
comprising the system in terms of Abstract State Machine [18] models. These
are executable in principle (for experimental studies) using the CoreASM tool en-
vironment [19]. ASM code for the Task Management subcomponent is included
in [9]. We present two rules here: (1) Execution Initialization establishes how
a resource is assigned using a list of resource candidates provided by Resource
Selection, and (2) Task Execution enables self-organization in the system by
allowing tasks to be distributed in a recursive manner as missions among sub-
ordinate logical resources until they are assigned to a physical resource capable
of executing them.
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ExecutionInitialization(t : TASK) ≡
let prunedList = {r|r in resourceCandidateList(t) with

priority(t) > MaxPriority(r, time(t))} in
choose r in prunedList with cost(r, t) = MinCost(prunedList, t) do

if busy(r, time(t)) then
Release(r, time(t))

resource(t) := r
task(r, time(t)) := t

ifnone do
resourceCandidateList(t) := undef
add “NO RESOURCE” to exceptions(t)

add t to taskPool

TaskExecution(t : TASK) ≡
let r = resource(t) in

if PhysicalResource(r) then
Active(t) := true
Execute(t, r)

else // r is a logical resource

add t to missions(r)

6 Conclusions

Decision support systems have considerable potential in a range of application
fields involving situation analysis processes: the examination of a situation, its
elements, and their relations, to provide and maintain a state of situation aware-
ness [20]. We contend that this is a sensible choice for Marine Safety and Security.
For the considered scenarios the challenge is to manage complex coordination
tasks under uncertain mission requirements, operating in a dynamically changing
environment adversely affecting mission success. In the presence of uncertainty
and frequent change, dynamic replanning and re-tasking constitute the norm.

The NADIF system concept is characterized by adaptiveness, robustness and
scalability and thus embraces change. Building on biologically-inspired comput-
ing principles, a self-organizing network of intelligent control agents forms the
backbone of the Decision Support and Configuration Management engines. Col-
laboratively agents decompose and distribute complex operations across the net-
work. By deferring decisions on how to operationalize mission requirements and
by localizing decisions on resource alignments within a cluster, this organization
enhances flexibility by avoiding the bottleneck of central control structures.
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Abstract. In this paper we present a novel two-stage method to realize

a lightweight but very capable hardware implementation of a Learning

Classifier System for on-chip learning. Learning Classifier Systems (LCS)

allow taking good run-time decisions, but current hardware implemen-

tations are either large or have limited learning capabilities.

In this work, we combine the capabilities of a software-based LCS, the

XCS, with a lightweight hardware implementation, the LCT, retaining the

benefits of both. We compare our method with other LCS implementa-

tions using the multiplexer problem and evaluate it with two chip-related

problems, run-time task allocation and SoC component parameterization.

In all three problem sets, we find that the learning and self-adaptation ca-

pabilities are comparable to a full-fledged system, but with the added ben-

efits of a lightweight hardware implementation, namely small area size and

quick response time. Given our work, autonomous chips based on Learning

Classifier Systems become feasible.

Keywords: System-on-Chip, Learning Classifier System, XCS.

1 Introduction

As the number of functions integrated in a single chip increases, the complexity
of a chip grows significantly. Furthermore, increasing transistor variability [4,6],
process variation [1], and degradation effects [18] make it increasingly difficult
to ensure the reliability of the chip [16]. The International Technology Roadmap
for Semiconductors (ITRS) [13] estimates that until 2015, up to 70% of a chip’s
design must be reused to keep up with the increasing complexity.

Autonomic System-on-Chip (ASoC) [15] add a logical, autonomic layer to con-
temporary SoCs that helps the designer to manage the complexity and reliability
issues: decisions that are hard to take at design time because many parameters
are uncertain, can be taken at run time by the autonomic layer. Learning Clas-
sifier Systems (LCS) have been shown to be able to take the right run-time
decisions [3,2] and even adapt to events that due to the chip complexity have
not been foreseen at design time. LCS use a genetic algorithm and reinforcement

M. Hinchey et al. (Eds.): DIPES/BICC 2010, IFIP AICT 329, pp. 278–289, 2010.
c© IFIP International Federation for Information Processing 2010
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learning to evolve a set of rules, the interaction of which propose a preferably
optimal action to any situation the chip may encounter. Although LCS allow
very capable systems for autonomous run-time decisions and self-adaptation,
current hardware implementations either require large portions of the chip [5],
increasing total chip costs, or have limited learning capabilities [24].

In this paper, we present a novel two-stage method to realize an on-chip Learn-
ing Classifier System (LCS) that is small, takes the good run-time decisions, and
can adapt to unexpected events. In the first stage at design time, we learn a rule
set in software using a particular LCS, the XCS [23]. In the second stage, we
use the rule set to initialize the lightweight LCS hardware implementation LCT
[24]. The idea is that the XCS learns just enough rules so that the LCT can
adapt to the actual manifestation and conditions of a particular chip and even
to unexpected events, albeit in a limited way.

We first compare our method to other LCS implementations using the mul-
tiplexer problem, a traditional testbed for LCS [23], and then apply it to two
chip-related problems, namely task-allocation and SoC component parameteri-
zation. We show that the LCT can adequately learn and still react to unexpected
events. To the best of our knowledge, this is the first study of a lightweight but
still capable hardware implementation of an LCS. We think that our work makes
using LCS to control chips conceivable.

This work is structured as follows. Section 2 gives an overview of related work.
Section 3 introduces the XCS and the hardware implementation LCT. Section 4
describes our proposed method. Section 5 presents the three benchmarks mul-
tiplexer, task-allocation and SoC component parameterization that we use to
assess our method. Section 6 shows the results of our assessment and Section 7
concludes this paper.

2 Related Work

Learning Classifier Systems were originally introduced in [12]. The XCS was first
presented in [21] and later refined in [23]. The XCS has been used in a large range
of learning and classification problems, including controlling a robotic mouse
[10], a system-on-chip (SoC) [3], the lights of a traffic junction [17], and for
finding suitable partitions in hardware-software codesign [11]. A first hardware
implementation of an XCS has been presented in [5], named XCSi, which uses
fixed-point arithmetic. The implementation shows good learning rates of the
XCSi, but is quite large. In [24], the authors present an optimized hardware
implementation of an LCS, called the Learning Classifier Table (LCT), which
is small but has no mechanism to create new classifiers. Using a hand-crafted
initial rule set, the authors show that the LCT can adjust the frequency of a
SoC according to a given objective function.

The most popular machine learning algorithms for which hardware imple-
mentations exist are neural networks [19,9] and, more recently, support vector
machines [14]. Along with the fact that for these systems, “the actual rules im-
plemented [are] not apparent” [19], their implementations are about five times
as large as the LCT [14].
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3 XCS and LCT

We briefly describe the XCS and LCT and refer to [22,23,7,24] for further details.
The XCS learns a minimal set of classifiers (or rules) the interaction of which,

in the ideal case, provide an optimal response (called action) for a given situation.
The learning is based on a genetic algorithm and reinforcement learning. Each
classifier (or rule) consists of a condition, an action, a reward prediction, the
reward prediction accuracy, and some other house keeping values. The condition
is a string of bits (‘0’, ‘1’, and the don’t-care symbol ‘#’). At each learning
step, the XCS matches the input signal with the condition of each classifier and
notes the actions and accuracy-weighted reward predictions that each classifier
proposes. The XCS then selects an action to apply: in the exploit mode, it
chooses the action that promises the highest reward, while in the explore mode,
it chooses a random action to find new alternatives. After the action has been
applied, the XCS receives a reward depending on the new state and updates its
reward predictions and classifier set accordingly. After some number of iterations,
the genetic algorithm repeatedly creates new, possibly better suited rules.

The LCT consists of a memory, which holds a fixed number of classifiers, and
hardware-based mechanisms for action lookup and fitness update. There is no
mechanism to generate new classifiers. The classifiers in the LCT consist only
of a condition, an action and a fitness, similar to the fitness in the strength-
based ZCS [20]. To realize the don’t-care bits, the LCT first logically ANDs the
monitor signal with a mask before comparing it with the bit value. The LCT
selects the action of a matching classifier randomly according to the classifier’s
relative fitness (roulette-wheel selection) using weighted reservoir sampling to
ensure a fixed lookup time. After receiving the reward for a previously applied
action, the LCT distributes the reward r to the classifiers of the action set and
updates the fitness f according to f ← βr + (1 − β)f with the learning rate
0 ≤ β ≤ 1.

4 Methodology

One major trade-off of hardware-based machine learning lies between the learn-
ing capabilities of the implementation and the allotted hardware resources: the
system is either very capable but requires a lot of resources or it requires lit-
tle resources but is less capable. We address this problem with the following
two-stage approach:

1. At design time, the software-based XCS learns a (preferably optimal) set of
rules to solve a given problem.

2. We translate the XCS rules with our xcs2lct too into a form that is suitable
for the LCT. Initialized with these rules, the hardware-based LCT continues
to learn at run time.

With this setup, we can use all the resources that are available to a capa-
ble software implementation (the XCS) and use the acquired knowledge in a



Combining Software and Hardware LCS for Lightweight On-Chip Learning 281

lightweight hardware implementation (the LCT). The idea is that the XCS learns
a rule set that allows the LCT to adapt to the actual manifestation and con-
ditions of a particular chip and even to unexpected event, despite its limited
learning capabilities.

As the chip area that is necessary to store the classifiers in memory constitutes
the largest part of the LCT, we would like to minimize the number of necessary
classifiers to keep the chip area requirement small. We therefore consider trans-
lating both all XCS rules to corresponding LCT rules (all-XCS translation) and
only the top performing rules (top-XCS translation). The xcs2lct translates the
rules according to the following algorithm, which ensures that the XCS and the
LCT classifiers match the same input values:
foreach b ← xcs-rule[i] do

if b == ’#’ then lct-rule[i].(mask,bit) ← (’0’, ’0’);
else lct-rule[i].(mask,bit) ← (’1’, b);

To compare our method with the base performance of the LCT, we also con-
sider two more ways to generate LCT rules, full-constant and full-reverse. Both
translations provide all possible LCT rules, that is, a complete condition-action
table1 as there is no known method to generate an appropriate rule table for the
LCT. The full-constant translation initializes the rule fitness to half the maxi-
mum reward (500) and, as it is independent of the XCS rules, represents the
bottom line of LCT’s own learning capabilities. The full-reverse translation sets
the rule fitness to the highest predicted reward of all matching XCS rules, or
zero, if no XCS rule matches, and represents the combined learning capability
of the LCT and the XCS.

The original action selection strategy for the LCT is roulette-wheel, which se-
lects actions randomly according to the relative predicted reward of the matching
classifiers, similar to the explore mode of the XCS. Additionally, we also consider
the winner-takes-all strategy, which selects the action whose matching classifiers
predict the highest reward, similar to the exploit mode of the XCS. However,
unlike in the XCS, in the LCT the accuracy of the prediction does not influence
the action selection.

While the XCS is usually configured to alternate between the explore and
exploit mode, in our experiments the LCT uses only one of either strategies. We
leave the analysis of alternating strategies in the LCT as future work.

5 Experimental Setup

We use three problem types to assess our method: multiplexer [21], task al-
location [2], and SoC component parameterization. Additionally, we define an
unexpected event for each problem type to explore LCT’s learning ability. As the
XCS has already been shown to be able to solve these problem types and adapt
to unexpected chip events [2], in this work we concentrate on the performance
of the LCT.
1 Of course, the memory requirements of the classifiers generated with full-* grow

exponentially with the problem size. We use them only for comparison.
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The multiplexer problem is a typical LCS benchmark [23]. The n-multiplexer-
problem is defined over binary strings of length n = k + 2k. The first k bits
index a bit in the remaining bits. The correct action for the LCS is the value
of the indexed bit. For example, in the 6-multiplexer problem, m6(011101) = 0
and m6(100100) = 1. We define the inversed multiplexer as the unexpected
event for the multiplexer, that is, the LCS is supposed to return the inversed
value of the indexed bit. For example, in the inversed 6-multiplexer problem,
m6(011101) = 1 − m6(011101) = 1. We use the same XCS parameters as the
full-fledged FPGA implementation of XCS presented in [5] to have comparable
results: α = 0.1, β = 0.2, δ = 0.1, ε0 = 10 (which is 1% of the maximum reward),
ν = 5, θGA = 25, χGA = 0.8, μGA = 0.04, P# = 0.3; GA subsumption is on with
θGAsub = 20, while action set subsumption is off. We do not use generalization
or niche mutation. The reported results are averages over 20 runs.

The task-allocation problem has been first introduced in [2] and is motivated
by the advent of multi-core systems, where tasks can be run on several cores si-
multaneously to increase overall reliability. In the (L, i)-task-allocation problem,
the LCS must allocate i available tasks on L ≥ i cores, some of which are known
to be occupied and thus not available. The system input is a binary string of
length L, where each bit represents the occupation of a particular core. There is
one action for each possible allocation plus a special action that indicates that no
allocation is possible (e.g., when all cores are already occupied), totaling

(
L
i

)
+1

possible actions. An action is valid and returns the maximum reward if the cor-
responding allocation only allocates available cores; otherwise the reward is zero.
The unexpected event for the task-allocation problem is the unmonitored failure
of a core: although reported as available, the core cannot be occupied, and an
allocation of that core returns zero reward. For the task-allocation problem, we
use the XCS parameters from [2] to have comparable results, which differ from
the multiplexer settings only in the following parameters: α = 1, θGA = 250,
χGA = 0.1, μGA = 0.1, P# = 0.4; GA subsumption is off. The reported results
are averages over 5 runs, due to the longer simulation time for the many problem
instances.

The SoC component parameterization problem demonstrates the ability of
LCS to dynamically parameterize a system-on-chip at run time, similar to [3].
The system consists of a processing core that is subject to random load fluc-
tuations. As the load changes, the LCS is responsible for setting the operating
frequency of the core as low as possible (i.e., maintaining as high a utilization
as possible), while ensuring that the core can keep up with the workload. The
monitor input consists of the core’s current frequency as well as its utilization.
There are five possible actions: four actions to increase or decrease the core’s
operating frequency by 10 or 20 MHz over a range from 50 to 200 MHz, and
one action to keep the core’s frequency unchanged. The reward for each action
is calculated by comparing the value of a system-wide objective function before
and after the action is applied. The objective function indicates how far from
the designer-specified optimum of high utilization and low error rate the system
is currently operating and is defined as fobj = (100%− utilization) + error rate,
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where a low value indicates that the system is operating near its optimum. A
base reward of half the maximum reward (500) is given when the objective func-
tion returns the same value before and after the action is carried out. This is the
lowest possible reward without actively worsening the system’s operating state.
The unexpected event for the component parameterization problem is a man-
ufacturing defect that causes critical timing errors for operating frequencies in
excess of 100 MHz. As a result, increasing the frequency above 100 MHz causes
the core to cease functioning, resulting in wasted cycles for error correction and
providing lower rewards to the LCS. With timing errors, the LCT must therefore
learn to cap the frequency at 100 MHz, even when the workload would warrant
higher operating frequencies. We use the same XCS parameters as for the task-
allocation problem, except for α = 0.8 and P# = 0.1. The reported results are
averages over 100 runs.

We use the implementation of the XCS in the programming language C as
described in [8] as the software version of XCS. We use a SystemC-based sim-
ulation model of the LCT hardware implementation described in [24], with the
additional winner-takes-all strategy described in Section 4.

We compare the performance of the LCT that has been instructed using our
method with the base performance of the LCT, the performance of the full-
fledged hardware implementation of the XCS presented by [5], the performance
of the XCS reported in [2], and the performance of the software version of the
XCS. We also check whether the LCT retains the capability of LCS to adapt to
unexpected events.

6 Results

In this section we present the results on the three problem types multiplexer,
task-allocation, and SoC component parameterization mentioned previously.

6.1 Multiplexer

Figure 1 shows the correctness rate (x-axis) and population size (y-axis) for
the 6-, 11-, 20-, and 37-multiplexer problem for all eight possible combinations
of translations and action selection strategies for the LCT. Note that the x-
axis starts at 70% correctness rate and that the scales of the y-axes differ. The
top-XCS translation uses only classifiers that predict the maximum reward with
perfect accuracy. As we aim for a small but correct LCS, in each graph lower right
is better. The figures show that in the new winner-takes-all (WTA) strategy (solid
symbols), the LCT solves the multiplexer problem perfectly , while in the original
roulette-wheel (RW) strategy (empty symbols), it solves only between 80% and
97% of the problem instances. With the winner-takes-all strategy, the LCT shows
the same results as the full-fledged XCS implementation presented in [5]. The
figure also shows that the population size of the all-XCS translation (square
symbol) is about three times the population size of the top-XCS translation
(upwards triangle symbol) for all multiplexer problems. As the population sizes
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Fig. 1. Performance in the multiplexer problem. Clockwise from upper left: 6-, 11-,

20-, and 37-multiplexer. Within each graph, lower right is better. Note that the y-axes

differ in scale. Error bars are standard deviations σ in the respective dimension.

for the full-* translations rise exponentially, we excluded them from the 20- and
37-multiplexer problem.

All LCT configurations were able to perfectly adapt to the unexpected event
of the inversed multiplexer problem (not depicted), given a rule base that the
XCS has learned for the (regular, non-inversed) multiplexer problem. However,
the LCT can only adapt to the inversed multiplexer problem, if the XCS was
able to solve the multiplexer problem sufficiently well (e.g., because XCS’ learn-
ing process was terminated prematurely). Otherwise, even if the XCS shows a
correctness rate of 100%, not all LCT configurations can adapt to the inversed
multiplexer. Figure 2 illustrates the case for m11. While the configurations all-
XCS and full-const solve 80%-100% of the inversed multiplexer problem, the top-
XCS and full-rev solve no more than 30%. The correctness rate did not change
further until 1 million steps. We assume that the prematurely terminated XCS
contains too many high-rewarding rules that are falsely marked as accurate be-
cause they were trained on only few problem instances, disturbing the results of
the top-XCS and full-rev translations.

From the results in the multiplexer problem, we conclude that with the all-
XCS translation the LCT shows both a high correctness rate and retains the
capability to adapt to unexpected events. When using the full-const translation,
we find similar results. Combining XCS’ knowledge and LCT’s own learning
capabilities in the full-rev translation leads to an LCT whose capability to adapt
to unforeseen events is very sensitive to the quality of the XCS rules. Similar is
true when using only the top performing XCS rules with the top-XCS translation.
As for more real-world problem types the XCS cannot always learn perfectly, we
will concentrate on the all-XCS translation in the following experiments.
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son. σ < 11% or better for any setting.

6.2 Task Allocation

Figure 3 shows the rate RLCT of valid task allocations of the LCT for the (L, i)-
task-allocation-problems, 1 ≤ i < L ≤ 10, and RXCS for comparison. The x-axis
shows the problem instances and the y-axis shows run-time RLCT and design-
time RXCS. From the figure we note that the LCT uses rule bases for which the
XCS correctly allocates more than 90% of the problem instances for L < 9 and
more than 80% for 9 ≤ L ≤ 10, comparable to what has been reported in [2]. We
find that the LCT using the winner-takes-all strategy (WTA) has very similar
rates to the XCS, with a larger difference only for L = 10. Using the roulette-
wheel strategy (RW), the LCT finds valid allocations considerably less often; in
particular for 1 < i < L−1, RLCT drops as low as 22%. The reduced performance
in the (10, 5) and (10, 6) problem instances concurs with the findings in [2] that
these two problem instances are the most difficult for the XCS.

To test LCT’s ability to adapt to unexpected events, we initialize the LCT with
the all-XCS-translated XCS rules and let the cores fail randomly every 5 000 steps.
Note that there is no further rule sharing between the XCS and the LCT besides
the initialization of the LCT; we depict the XCS solely for comparison purposes.

Figure 4 shows RLCT and RXCS after the first (left half) and the second
(right half) randomly chosen cores have failed. Note that the diagram shows
fewer problem instances for the second core failure, as not every instance allows
the failure of two cores (e.g., when allocating three tasks out on four cores, the
failure of two cores turns the problem unsolvable). We find that the rate of
valid task allocations of the LCT increases slightly, on average by about 1%-
point (maximum 10%-points) after the first core has failed and an additional
1%-point (maximum 11%-points) after the second core has failed. Compared to
the rates before any core has failed, we find an increase of about 2%-points on
average (maximum 17%-points). The increase is of about the same amount for
any employed action selection strategy, with the roulette-wheel strategy showing
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Fig. 4. RLCT after one or two randomly chosen cores have failed, and RXCS for com-

parison. After one core has failed, σ < 7%; after two cores have failed, σ < 5%.

a greater variance (not depicted). The results show approximately the same
increase that the XCS would show. As reported in [2], the valid task-allocation
rate generally increases after a core fails because the probability that the action
“no valid allocation possible” is correct increases.

Summarizing, we find that when using the winner-takes-all action selection
strategy, the LCT shows rates of valid task allocations which are comparable
to what we find in the XCS and to what has been reported in [2]. The LCT
also retains the capability to adapt to the unexpected failure of two cores, as
previously shown for the XCS in [2]. The roulette-wheel strategy, however, shows
high rates of valid task allocations only for some border cases.

6.3 Component Parameterization

Figure 5 shows the reward returned to the LCS in the SoC component pa-
rameterization problem before (left) and after (right) the unexpected event of
malfunctioning in the core, with 1000 being the maximum reward. The figure
shows the results for the first 3000 steps to clearly show the reward’s trend over
time. We find that the less explorative winner-takes-all strategy (WTA, dashed
line) receives the highest reward among the LCT configurations, with the all-XCS
translation (square) being on top. While on average the roulette-wheel strategy
(RW, solid line with symbols) never actively degrades performance, it is unable
to achieve even the level of performance that a static, non-learning winner-takes-
all strategy (cross on dashed line) achieves given the XCS-generated rule set as
a starting point. The more explorative roulette-wheel strategy is also unable
to show a significantly improved learning behavior, clearly making the winner-
takes-all strategy a better choice for this problem.

As expected, the initial average reward when using the full-const translation
(triangle) is 500, indicating that an equal number of rules benefit and harm
the system. Even though the winner-takes-all strategy is quickly able to achieve
higher rewards, it is not able to achieve the same level of reward as a system
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rate of XCS used to generate LCTs’ initial rule set included for comparison.

initialized with a design-time generated rule set (all-XCS, square). The roulette-
wheel strategy is only able to attain a very slight improvement to its average
reward.

Comparing the final reward of the design-time XCS (solid line with no sym-
bols) with the initial rewards of the run-time LCT using all-XCS translation
shows a surprising discrepancy. Although the LCT uses the rules learned by
the design-time XCS, we find a severe drop in the initial reward (from ∼840
to ∼650). We presume that this is because the LCT does not incorporate the
complete functionality of the XCS. For example, the LCT cannot sufficiently
represent XCS rules with high accuracy but low prediction, as the LCT does
not store accuracy. Thus, the LCT must initially re-learn portions of the de-
sign space. Fortunately, the LCT is able to perform this initial re-learning fairly
quickly within the first 500 steps.

Figure 5 shows the results of the component parameterization problem with
the unexpected event as explained in Section 5. The results are very similar
to those of the non-defective system, except that the average reward achieved
by the system is somewhat lower than before. In fact, the starting rewards of
less than 500 for the roulette-wheel strategy (solid line) indicate that, initially, a
majority of actions are taken that disadvantage the system. As before, the learn-
ing capabilities of the LCT quickly achieve an increase in the average reward.
However, the fact that any frequency above 100 MHz results in timing errors
prevents the system from adapting to heavier load scenarios, forcing the system
to operate at a lower degree of optimality and generally reducing the achievable
maximum rewards.

In summary, we find that the LCT using the winner-takes-all action selection
strategy and the all-XCS translation is capable to solve the SoC component
parameterization problem, even in the event of a unexpected manufacturing
defect.
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7 Conclusions

In this paper, we have presented a two-stage method that combines the capa-
bility of the software-based XCS with the area efficiency of the LCS hardware
implementation LCT. In the first stage at design time, the XCS initially learns a
set of classifiers based on a software simulation of a given problem. In the second
stage, we translate the classifiers into rules that are suitable for the LCT and
apply the LCT to the same problem at run time.

We showed that with our newly introduced winner-takes-all action selection
strategy for the LCT, the LCT can solve the multiplexer, the task-allocation and
the SoC component parameterization problem, if we initialize it with all rules
that the XCS has learned (all-XCS). In addition, the LCT retains the capability to
adapt to the unexpected events of the problems, which includes the unexpected
failure of two cores and the manufacturing defect of a core. We also found that
the performance of the LCT is less sensitive to the performance of the XCS when
using the all-XCS translation.

In summary, the results show that our proposed method allows a small and
lightweight yet very capable hardware implementation of an LCS, with which
the autonomic control of chips using LCS becomes feasible.

In future work, we will investigate alternating between roulette-wheel and
winner-takes-all action selection for quicker adaptation to unexpected events
in the LCT. We will also examine ways to reflect XCS’s knowledge of reward
prediction accuracy in the reward of the generated LCT rules, avoiding the
initial drop in returned reward, and we will look for a trade-off between the
good performance of all-XCS and the smaller classifier set of top-XCS.
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Abstract. A generic predator/prey pursuit scenario is used to validate

a common learning approach using Wilson’s eXtended Learning Classi-

fier System (XCS). The predators, having only local information, should

independently learn and act while at the same time they are urged to

collaborate and to capture the prey. Since learning from scratch is often a

time consuming process, the common learning approach, as investigated

here, is compared to an individual learning approach of selfish learning

agents. A special focus is set on the performance of how quickly the team

goal is achieved in both learning scenarios. This paper provides new in-

sights of how agents with local information could learn collaboratively

in a dynamically changing multi-agent environment. Furthermore, the

concept of a common rule base based on Wilson’s XCS is investigated.

The results based on the common rule base approach show a significant

speed up in the learning performance but may be significantly inferior

on the long run, in particular in situations with a moving prey.

Keywords: Multi-agent learning, predator/prey pursuit scenario, emer-

gent behavior, collaboration, and XCS.

1 Motivation

Due to the increasing scale and complexity of strongly interconnected application
systems there is a need for intelligent distributed information processing and
control. The design of multi-agent systems (MASs) has addressed this need,
using concepts from machine learning and distributed artificial intelligence [1].
MASs have been utilized successfully in a range of application scenarios: Guiding
automated machines in collaborative industry scenarios [2], trading energy on
market platforms [3], seeking smallest distance routes for delivery services [4], or
managing air conditioners in buildings [5], are some examples of problems which
are solved (completely or partially) using MAS approaches.

A MAS consists of a collection of agents acting autonomously within their
common environment in order to meet their objectives. They take sensory inputs
from the environment, match them on actions, and then perform some actions,
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which again affect their environment [6]. Here, an agent does not always represent
a physical entity. It could be a virtual one, defined by a piece of software, or
even some lines of a program. The predator/prey scenario [7] has been shown
to provide a generic scenario as a basis for fundamental research on MASs,
capturing essential aspects of many potential fields of application (cf. [8]).

In this paper, we investigate different aspects of learning in predator/prey
scenarios. Each predator collects experiences while trying to capture the prey
and learns from others. We compare a common (centralized) knowledge approach
where every predator contributes to a centralized rule base to an individual
knowledge approach where every agent learns on its own and the experiences are
stored locally in decentralized rule bases.

The paper is structured as follows: Section 2 summarizes some related work
concerning XCS in multi-agent environments. Section 3 explains in more detail
the investigated scenario. Section 4 concentrates on collaboration methods, while
Sect. 5 discusses the methodology. Section 6 presents the results and compar-
isons, followed by a conclusion and an outlook in Sect. 7.

2 Learning Classifier Systems in MASs

The field of learning classifier systems (LCSs), introduced in the 1970ies [9],
is one of the most active and best-developed forms of genetic-based machine
learning. LCSs are rule-based on-line learning systems that combine nature-
inspired optimization heuristics and reinforcement learning techniques to learn
appropriate actions for any input they get.

A variety of different LCS implementations has been proposed, many are
based on Wilson’s eXtended Learning Classifier System (XCS) [10], as sketched
in Fig. 1. A learning agent senses its environment and sends its detector values
to an XCS. The input is compared to all rules (called classifiers) in the rule base
(population P ). Matching classifiers enter the match set M and are grouped
by their actions using the prediction array PA, which consists of each action’s
average of the predicted values. Then, the action with the highest prediction
value is chosen, and the related group of classifiers enters the action set A. The
chosen action is executed and a reward value is received based on the quality of
this action with respect to the resulting state of the environment. The reward
is used to update the prediction values of the classifiers in the action set and a
learning cycle starts again.

In general, multi-agent learning approaches using LCSs are based on the idea
of several independent LCSs which work in parallel on the same learning problem.
Agents administrate individual populations learned locally on the one hand, and
contribute to global shared rule sets on the other hand. In multi-agent scenarios,
this may be useful, when agents have to cooperate with each other and their local
behaviors contribute to a global goal with respect to different roles. In dynamic
environments, agents have to cope with changes, which often require different
behaviors. This corresponds to different roles an agent can take.

In [11], an XCS approach is investigated by modeling social problems. The El
Farol bar problem is used as a benchmark for ten up to hundred agents learning
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Fig. 1. Schematic overview of the on-line learning in XCS [10]

a cooperative behavior in parallel. XCS is also used in [12], where some agents
in forms of various five-square tiles (called pentominos) collaboratively manage
themselves to cover the smallest possible area by lying side by side. These papers
indicate the feasibility of using XCS in multi-agent scenarios with collaborative
agents, which is also in the focus of this paper.

3 Predator/Prey Pursuit Scenarios

In the literature, various types of predator/prey pursuit scenarios exist. Typi-
cally, some predators follow the goal of capturing a prey in a two-dimensional
grid world [13]. Since such a two-dimensional grid world with a team of collab-
orating agents (i. e., predators) offers many design possibilities, this approach
has been adopted for the investigations of this paper. Our special scenario is
described as follows.

3.1 Grid World

In this paper, the grid world consists of a borderless two-dimensional array (also
known as a torus), some predators, and one or more preys. For example, Fig. 2(a)
shows a 10 × 10 grid world with four predators working as a team to capture
one prey (a capturing situation is shown in Fig. 2(b)).

At each simulation tick, predators and prey move to one of the neighboring
cells in the von Neumann neighborhood. If the cell at the desired direction is
occupied, the agent stays where it is. Also, when more than one agent intends
to move on a free cell, only one of them (chosen arbitrarily) will move into the
cell while the other ones do not move.

The prey is captured when it has no possibility to move as all four directly
neighboring cells are occupied by the predators. Therefore, the quality of the
predators’ moves is evaluated with respect to their ability to minimize their
distance to the prey (measured as the Manhattan distance, i. e., the sum of
horizontal and vertical distances).
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(a) (b) (c)

Fig. 2. (a) A borderless grid world with four predators (black dots) and a prey (white

dot); (b) The goal is achieved as the prey is captured by the predators. (c) A predator’s

local observation range (using the Chebyshev distance of two).

3.2 Prey

Since the investigated scenario focuses on collaboratively learning predators, we
start with a simple prey which ignores any sensory information except for the
status of its four directly neighboring cells. In every tick it moves to one of its
von Neumann neighboring cells in an arbitrarily chosen direction, unless stated
differently for experimental purposes. If the prey is captured (i. e., it cannot move
any more), it is eliminated and another one will appear at a random location
within the grid world – to ensure that the simulation is continuously running
and predators can learn in several cycles.

3.3 Predators

Every predator is designed to obtain sensory information within a limited ob-
servation range determined by a Chebyshev distance of two (which refers to
the maximum of the horizontal and vertical distances), as depicted in Fig.2(c).
There, the predator in the middle of the grid can sense itself, two of its team-
mates, and the prey. Here, sensing is interpreted as recognizing and knowing the
grid coordinates (x, y) of all the currently sensed objects.

Moreover, the location of the prey is broadcasted to all the predators as soon
as one of them has sensed it locally. This is intentionally implemented to allow for
a local evaluation of the quality of the moves. In other words, without knowing
the prey’s location, predators cannot learn anything (since possible movements
could not be rewarded in a goal-oriented way).

When the prey’s location is unknown (for instance, at the beginning of the sim-
ulation), all predators move arbitrarily expecting to find it somewhere (Fig.3(a)).
When at least one of them has located the prey (e. g., as depicted in Fig. 3(b)),
the coordinates of the prey are broadcasted (i. e., (5, 7) in Fig. 3(b), as (0, 0) is
the bottom-left corner cell) and retrieved by all teammates at the same tick. If
the prey’s location is known, the predator uses it for deciding about the next
action. This decision is taken at each time step of a simulation run.

Now, conventional non-collaborative predators will individually decide to take
their best movement regardless of any information about its teammates’ po-
sitions. However, it is possible that the set of a predator’s movements which
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(a) (b)

Fig. 3. Two examples of situations with predators having a viewing range of one: (a)

No predator sees the prey; (b) The prey is located by predator P4

(a) (b) (c)

Fig. 4. (a) P1 and P4 are denoted as blocking predators, P2 and P3 as blocked predators.

(b) The blocked predators cannot get closer the prey. (c) Similar to Fig. 4(b).

minimize the distance to the prey is limited, since it may be blocked by its
teammates, as depicted in Fig. 4(a). Then, the desired goal of capturing the
prey is not directly achievable.

As depicted in the example, the predators P1 and P4 perform a selfish behavior
and block their teammates P2 and P3 as long as they all try to minimize their dis-
tance to the prey with each move. Consequently, if P1 and P4 remain at their cap-
turing positions, P2 and P3 can only follow the option to move around P1 and P4

in order to reach the other capturing positions, as marked with crosses. Fig. 4(b)
and Fig. 4(c) show the two blocked predators P2 and P3 could attempt to resolve
this by moving away to the east or to the west. This provides possibilities for the
blocked predators to have good moves afterwards, but the common behavior of all
four predators does not relate to a desirable collaborative behavior. The following
section describes ideas to pursue the team task collaboratively.

4 Collaboration Methods

In order to overcome the drawbacks of selfish behavior of non-collaborating
predators, we investigate possibilities of learning collaborative behavior which
is superior with respect to the global goal of capturing the prey. In a dynami-
cally changing environment, learning is often challenged by the need to adjust
the learning speed to the dynamics of the system (as mentioned in [14]). These
aspects are focused on in the following.

4.1 Fair Moves

In Fig. 4(a), blocking situations have been discussed which may arise in various
ways. Two possible static solutions are explained here:
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Fig. 5. Required steps to capture the prey starting from a blocking situation

(a) (b) (c) (d)

Fig. 6. (a) Fair moves by P1 and P4. (b) Goal achieved. (c) Not a fair move. (d) P3

blocks P4.

1. The blocked predators move step by step around the other predators to get
closer to the prey eventually;

2. The predators collaborate and perform so-called fair moves.

As depicted in Fig. 5, the first strategy requires at least five steps for all
predators to surround the prey. In contrast, using fair moves as shown in Fig. 6(a)
and Fig. 6(b), only two steps are required which is a significant benefit.

The idea behind the fair moves is that blocking predators should move out
of their current position to give their teammates a chance to get closer to the
prey. This is called a fair move, only if the Chebyshev distance of the moving
predator to the prey does not change.

Starting from the situation displayed in Fig. 4(a), an example of fair moves is
shown in Fig. 6(a). The fair moves of P1 and P4 are allowing P2 and P3 to come
closer to the prey, as shown in Fig. 6(b). On the other hand, Fig. 6(c) shows a
move by P4 which is not a fair one. This unsurprisingly leads to a situation where
P4 becomes a blocked predator, as depicted in Fig. 6(d). Due to the benefit of
fair moves, the agents should get a special reward in the on-line learning cycles,
whenever they perform a fair move.

4.2 Common Rule Base

As outlined in Sect. 2, multi-agent learning approaches may use individual rule
bases or global shared rule sets. Generally, selfish agents would learn for them-
selves while collaborative ones do it for the team. In this paper, two different
learning architectures (as depicted in Fig. 7) are compared. Figure 7(a) shows
an architecture where every agent has its own rule base and the others do not
get the benefit of learning from any of their teammates’ experience. In contrast
to this, the second architecture uses a common rule base for all the agents, as
depicted in Fig. 7(b), i. e., every predator decides on its action by using the accu-
mulated experience of the team. Different from centralized learning approaches
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(a) (b)

Fig. 7. Learning architectures: (a) Individual rule bases; (b) Common rule base

with a centralized single-learning agent (e. g., in [5]); this approach is based on
a rule base which cumulatively collects experience from all predators. In other
words, all predators still make decisions autonomously, but store their knowledge
in a centralized rule base – accessible to all teammates.

Obviously, a good move for a predator is always a good one for others being in
the same situation. If predators act as a set of sensors (or experience collectors for
a common rule base), they will presumably have shorter learning times than in
scenarios where learning is limited to selfish agent behavior (i. e., a team of four
predators can update a common rule base four times faster than a single predator
can update its own rule base). Thus, in dynamically changing environments, a
quicker converging process of how to behave well seems to be very desirable.

Although these architectures are independent of the specific method of updat-
ing the rule bases, in the following it is assumed that XCS is used as the learning
method in both scenarios. Following, the predators’ algorithm in applying the
common rule base is described.

4.3 The Algorithm

At each tick of the simulation, every predator executes the algorithm given in
Fig. 8, which does the following: A predator observes its environmental sur-
rounding and takes a decision on an action that specifies the direction of the
next movement. Having the prey in the local observation range, the predator
broadcasts the location of the prey. Without having the prey in sight, a preda-
tor will examine whether any other teammate can sense the prey.

Fig. 8. A flow chart of the predator’s algorithm performed at each simulation tick
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If the prey’s location is available (locally or by broadcast), a learning mecha-
nism is applied based on Wilson’s XCS: An action is selected from the local or
global XCS rule base. It is triggered and evaluated, and the reward is used to
build up the predator’s knowledge. Otherwise, the predator performs a random
movement without referring to the rule base.

The next section describes how these behaviors are implemented, how the
methods affect the results, and how useful they are in achieving the goal.

5 Methodology

In the experimental setting, the predator/prey scenario is performed in a two-
dimensional 15×15 borderless grid world. Four predators having a viewing range
limited to a Chebyshev distance of two have to learn to capture a prey. All rule
bases are initialized to an empty population (i. e., no predefined knowledge). New
rules are generated using the standard covering operator [15]. The maximum
number of rules per rule base is set to 480. This means, whenever the number
of classifiers is greater than 480, rule deletions will occur, as specified in [15].

Initially, all entities start at random coordinates. When the prey is captured,
a new prey will appear and the old one disappears. The number of capture cycles
is then used to compare the performances in different parameterized scenarios.

To adapt the XCS algorithm to the scenario, three things have to be defined:
The input string to the XCS rule base, the action encoding, and the reward
mechanism. As explained and known from the literature (e. g., in [14]), classi-
fier systems have weaknesses in learning speed due to increasing search spaces.
Therefore, an efficient way of learning favors an intelligent coding of input and
output values and a proper reward mechanism.

Thus, two sorts of information are used as input to a learning predator: The
current relative direction of the prey and the predator’s von Neumann neighbor-
hood of range one (denoted as (direct) neighborhood afterwards). The direction
is used to decide where the predator should move to, while the direct neigh-
borhood is useful for extracting the information whether a neighboring cell is
occupied or not.

Figure 9(a) depicts an example derived from Fig. 2(c) and explains the en-
coding of the chosen XCS input. Firstly, the environment is simplified into eight
directions coded into four bits sequentially representing north, east, south, and
west, as shown in Fig. 9(b). For example, the direction southeast would be ‘0110’.
Since our investigations are limited to a scenario with one prey, only one of the
eight directions will be true.

The second part of the input is information concerning the possibility to move
to the neighboring cells. Moving to a cell occupied by a teammate is unfavorable,
but in contrary, moving towards the prey is a good one. Therefore, no information
about the prey’s existence is given to this part of the input.

As seen in Fig. 9(b), the first part of the input is ‘0001’ representing west.
Then, a neighboring cell is coded to ‘1’ if it is occupied by a teammate, or to ‘0’
otherwise. Starting from the northern cell, going clockwise, and taking one bit
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(a) (b)

Fig. 9. (a) Simplification of the observed area; (b) Encoding of the XCS input

Fig. 10. XCS input of predators not seeing the prey

Table 1. Allocation of rewards

no. Dt−1 Dt name condition basic add.

reward reward

1. x x − 1 closer any 100 0

2. x x + 1 further any 10 0

3. x x stagnant any 1 0

4. x x + 1 fair move was a blocking predator & un- 0 140

changed Chebyshev distance

5. 1 1 staying as a neighbor moving towards the prey 0 99

for every direction, the neighboring cells are coded to ‘1000’. The XCS output
will be one of four possible directions (north, east, south, or west are encoded as
0, 1, 2, or 3).

This simple form of input is also applicable to be implemented by the preda-
tors not seeing the prey. For instance in Fig. 3(a), P1, P2, and P3 compose inputs
using the prey’s coordinate broadcasted by P4, as shown in Fig. 10. Moreover,
the encoding is able to represent fair moves. For example, if the prey is located
at north (‘1000’) and a teammate is sensed on the southern neighboring cell
(‘0010’), then moving east (2) or west (4) will provide a fair move.

Based on the XCS output, each predator moves and gets a reward to the
classifiers in the action set according to the mechanism shown in Table 1. The
reward is based on the Manhattan distance between a predator and the prey.
After moving, each predator checks its current distance to the prey (Dt) and
compares it to the previous (Dt−1). The standard reward for an input-output-
combination (a rule) is 50, and a reward is considered as low if it is less than
that. A high reward will be given to a rule if it takes the predator closer to the
prey. Otherwise, a low reward will be received. Stagnancy, where a predator fails
to change its position, is rewarded very lowly.

A basic reward is given to any actions, while an additional reward is only
given to specific movements. Fulfilling more than one criterion, a move will be
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awarded by the sum of the basic and additional rewards. For instance, staying at
any distance of x is a stagnant move deserving the low reward of 1. Additional
reward would be given for x = 1 which is a staying as a neighbor move, deserving
the total reward of 100. This value refers to closer, since in the rule base both of
them are represented by the same classifier denoting if the prey is in direction z
and you are not blocked by your teammate, then go to z. Finally, a fair move is
rewarded very highly to encourage predators taking it, testing its effectiveness
in achieving the team task.

6 Results and Comparisons

Experiments have been done using two types of prey, a static (not moving) prey
and a moving one, having the same speed as the predators. The following figures
show averaged experimental results how the agents behave in simulations over
time. The horizontal axis denotes the simulation time in a logarithmic scale while
the vertical axis depicts the average number of capture cycles from the beginning
to the end of the simulations. Data are taken from 20 experiments where each
simulation ends after one million ticks – one tick is one simulation step. Due to
lack of space we did not include any information on the statistical significance
of the results. But a simple statistical analysis indicates insignificant deviations.

Figures 11(a) and 11(b) present the experimental results of the comparison
between simulations with and without rewarding fair move decisions in the case
of both learning architectures (individual vs. common rule base). Moreover, both
figures show some relatively significant increases for the number of average cap-
ture times by rewarding fair move decisions, either in capturing a static or a
moving prey. Since rewarding fair moves seems advantageous, further compar-
isons only focus on the two different rule base architectures which are always
rewarding fair decisions.

The learning speed, which has been pointed out as a weakness of XCS, is
improved slightly by implementing a common rule base. As shown in Fig. 12,

(a) (b)

Fig. 11. Comparisons of learning with and without rewarding fair move decisions using:

(a) the individual rule base approach; and (b) a common rule base
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(a) (b)

Fig. 12. Comparison of learning using individual and common rule bases in fair mode

simulations using (a) a static prey; and (b) a moving prey

simulations using the common rule base approach are superior for some ini-
tial period although after some time the individual rule base approach provides
better results, especially in capturing a moving prey.

Furthermore, the individual learning approach can benefit from storing indi-
vidual knowledge for a longer period. Rarely used classifiers are possibly deleted
in the common learning approach, since the maximal number of classifiers keeps
the population as compact as possible (cf. the mechanism of deleting classifiers,
as proposed by [15]).

7 Conclusion and Outlook

This paper has focused on an instance of the generic pursuit scenario where
predators should learn to contribute to a common goal - capturing a prey. The
usability of Wilson’s XCS has specially been investigated in two different ap-
proaches. Firstly, all predators individually learn and store their experience in
local rule bases. Secondly, the predators share and store their experiences in a
common rule base.

Predators have been designed with a local view where they can sense their
local environment. If the prey is found, its coordinates will be broadcasted to all
other predators. Then, a simple input encoding has been defined, consisting of
the direction where the prey has been located and information about the neigh-
boring cells - are the cells occupied with the teammates or not. Finally, a proper
reward function for fair moves has been proposed, which enforces collaborative
group behavior. These fair moves are based on the idea that moving away from a
desirable position and thus giving a chance for a teammate to come closer could
be beneficial in some cases.

Experimental results have been achieved using different parameter combina-
tions. The results provide a clear view: The learning approach using a common
rule base provides a quicker improvement in the learning behavior but may be
significantly inferior on the long run, in particular in situations with a moving
prey. Nevertheless, the presented idea of collaborative learning by storing the
knowledge in a common rule base provides a wide area for further research on
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multi-agent learning: The complexities of heterogeneous predators, an intelli-
gently acting prey, or more complex goals than capturing a prey give rise to new
challenges for learning, which will be tackled by future work.
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Abstract. In this paper we elaborate a study on self-stabilizing humanoid robot 
that achieves run-time self-stabilization and energy optimized walking gait pat-
tern parameters on different kinds of flat surfaces. The algorithmic approach 
named SelSta uses biologically inspired notions that introduce robustness into 
the self-stabilizing functionality of the humanoid robot. The approach has been 
practically tested on our S2-HuRo humanoid robot and the results from the tests 
demonstrate that it can be successfully used on humanoid robots to achieve auto-
nomic optimized stabilization of their walking on different kinds of flat surfaces.  

Keywords: Self-stabilizing humanoid robot, S2-HuRo, biologically inspired 
approach, symbiosis, SelSta approach, humanoid robot walking optimization. 

1   Introduction 

In recent years the trend in robotics research has shifted towards service, field, and 
entertainment robots as market demand continually rises for these types of robots. 
Different kinds of humanoid robots are developed nowadays with purpose to serve the 
elderly people or for entertainment purposes like humanoid robots playing soccer 
games [1]. Humanoid robots are complex robotic systems exhibiting high degrees of 
freedom (DOF), consisting of different electronic hardware parts and complex soft-
ware control architectures [2] [3].  

Many surveys have been done on mathematical modeling of biped locomotion 
mechanisms [4] [5]. Most of the mathematical models are related to dynamic walking 
models and maintaining the zero moment point (ZMP) inside the support region. The 
ZMP was first introduced in [6] [7] and since then there are many research studies 
based on the ZMP method and their combinations with other methods [8] [9].  

The control algorithms [10] for humanoid robots should be robust in order to 
achieve stable walking gait and balance of the humanoid robot without compromising 
the mechanical stability. Some researchers prefer to use simulations [11] - [14] in 
order to experiment and predict the outcome of their control algorithms applied on the 
humanoid robots without sacrificing the mechanical integrity of their real robots. The 
simulation environments are stated to provide high fidelity rigid body dynamics [15] - 
[18]. However, the simulation experiments cannot be completely identical with reality 
experiments because of various factors such as: environmental influences, dynamics, 
vibrations, sensors noise, etc. present in the second ones. This directly implies that the 
algorithm developed for the simulation can not be one-to-one mapped to the reality 
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experiments or a lot of work will be spent on “tuning” some parameters in order to 
mitigate some problems that come from not identical mapping. 

For that reason we have planned in advance on how to set and conduct the self-
stabilizing humanoid robot walking experiments (without using simulations) so we 
can assure that the algorithm will function as intended on a real robot under real  
circumstances.  

In this research we also wanted to overcome the cumbersome traditional dynamic 
model designing that perhaps fits to only one particular robot, but instead to derive a 
more generic biologically inspired approach that with small or no adjustments can be 
used in variety of other humanoid robot research projects. In the search for better 
algorithms and approaches for achieving better locomotion and dynamics of human-
oid robots, researchers, besides the classical mathematical modeling approaches, have 
also tried to use biologically inspired paradigms for this domain [19] - [22].  

Some of them are based on spinal central pattern generators (CPGs) in vertebrate 
systems [19], others use the CPG in relation with modulation of stiffness [20], reflex 
based stabilization using SMA muscles [21] or coupled oscillators [22].    

The practical usefulness of bio-inspired paradigms in robotic domain has encour-
aged us to apply biologically inspired notions of mutual interactions seen by biologi-
cal species for achieving self-stabilizing robot walking over different kinds of flat 
surfaces (carpets, different types of floors, etc.).  

The structure of the paper is organized as follows: In the second chapter we de-
scribe our humanoid robot demonstrator S2-HuRo. In the third chapter we describe 
the self-stabilizing approach SelSta in details. There, we explain also its relation to the 
biologically inspired notions of mutual interactions seen by biological species. In the 
fourth chapter we present the experimental test setup and results of experiments done 
on our humanoid robot demonstrator. In the fifth chapter we give out a conclusion 
about the research presented in this paper. 

1.1   S2-HuRo (Self-Stabilizing Humanoid Robot) 

We have used the humanoid robot named S2-HuRo (Fig.1) as robot demonstrator in 
order to test the self-stabilizing algorithm that we have developed for humanoid robot 
walking stabilization.  

  

Fig. 1. S2-HuRo (Self-Stabilizing Humanoid Robot) 
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The humanoid robot is based on the “Robonova” [23] humanoid robot platform 
with ATmega servo controller. It has been additionally modified by excluding some 
arm servos (to reduce the weight) and including some other components such as: an 
embedded system, two dual-axis gyroscopes, voltage convertors, batteries, three con-
tact sensors per foot, etc. Its height is 35 cm, its weight is 1.8 kg. 

The contact sensors on the feet are used to acquire information whether the robot 
leg is touching the ground surface or not. They are also used to detect if the robot has 
fallen while walking, which is needed for evaluation within self-stabilizing walking 
experiments.  

2   SelSta – A Self-Stabilizing Approach for Humanoid Robot 
Walking 

2.1   SelSta Approach - Overview 

Here we elaborate an approach named as SelSta which we found will be very useful 
for the domain of humanoid robots self-stabilized walking. Namely, the research on 
humanoid robot walking usually is concentrated on finding a control algorithm for 
humanoid robot walking where the characteristics of the surface on which the robot is 
walking are often overlooked. However, the surface on which the robot is walking 
indeed brings different dynamics to humanoid robot walking stability. Here by sur-
face we mean a flat surface from some material like linoleum floor, different types of 
carpets (soft, medium, hard) and the like. It is often very important that the humanoid 
robot walking is optimally stabilized and energy-efficient for a particular walking 
surface. This may also mean difference between the winner and the looser in some 
RoboCup [1] humanoid robot match. This research objective is how to develop a 
robust automated method that will achieve optimal and energy efficient stabilized 
walking of humanoid robots for any kind of flat surface with different material char-
acteristics in a relatively short time.  

The SelSta method was designed to function under real circumstances on a real ro-
bot, since no simulation can replace or perfectly represent the different surface dy-
namics introduced to a humanoid robot walking on different types of surfaces.    

It is built as an add-on module to the already developed humanoid robot walking 
algorithm (not strictly optimized for walking on some particular surface) with some 
predefined non-optimal walking gait. In a calibration phase, the humanoid robot using 
SelSta first finds the best walking parameters so that the robot can achieve the best 
performance in stability, speed, and energy consumption over some given surface. 
After that, in its normal run, the robot is run with the best found walking parameters. 

2.2   SelSta Approach Details 

The SelSta approach is based on biological inspiration from symbiosis [24] which can 
be associated to some sort of mutual interaction between biological species from 
which the both species have benefit. This mapped to our approach is described with 
“mutual” interaction between robot’s lateral and longitudinal (or sagittal) axis stabil-
ity. Those stabilities are estimated from both gyros axes values and the robot’s servos 
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accumulated load during the robot’s walking. Before describing the details on how 
this “mutual” interaction was practically realized in the SelSta approach, we are going 
to describe what the SelSta approach consists of. The SelSta approach comprises the 
SymbScore evaluation that codes the “mutual” interaction of the robot’s axes (ex-
plained later in this chapter), combined with a genetic algorithm that generates lateral 
and longitudinal balancing movement parameters for the robot’s feet - represented 
with two real type genes. We have chosen a genetic algorithm for optimization pur-
poses, but in general other optimization approaches (PSO, Ant Colony Alg., etc.) can 
be also considered in combination with SymbScore. The balancing movement action 
of the robot’s “ankles” takes place only when the leg starts with its stance phase (foot 
on the ground). In that impulsive movement the foot moves from its neutral position, 
assumed with 0 degrees when the foot is parallel to the ground, to some other degree 
values independently chosen for lateral and saggital directions. These values are cho-
sen by the genetic algorithm in range from -5 to 5 degrees (with resolution 0.5), where 
forward and right from robot’s point of view there are positive values and in other 
directions there are negative values. Such impulsive movement takes place in the 
middle of each stance phase. After this movement, the foot is set back to 0 degrees in 
lateral and saggital planes. The balancing movement is represented with double sided 
arrow lines in Fig.2 and Fig.3.  

One robot’s walking period takes 6 robot steps (Fig.2) from which the first and the 
last steps are “start of walking” and “stop of walking” respectively. The whole 
evaluation period duration is 4 robot steps. Just for better understanding, this process 
is sketched in Fig.2. In that period averaged gyro values from both robot’s axes and 
accumulated robot’s servo loads are measured. At the end of the robot’s walking 
period a SelSta symbiosis score - SymbScore is computed which states how stable and 
optimal the robot’s walking was. The SymbScore therefore “guides” the optimization, 
so the robot maintains greater stability while walking. While the robot is standing 
between two evaluation walking periods a genetic algorithm is run to compute the 
lateral (A) and longitudinal (B) balancing movement parameters for the next evalua-
tion period of the robot’s walking. This computation time for generating the next 
generation is rather small and can be neglected. The score - SymbScore is used in the 
genetic algorithm’s objective function to select the next better generation of parame-
ters for balancing the movement of the foot. In each self-stabilizing run, there may be 
several such evaluation periods up to the moment where enough optimized self-
stabilizing walking of the robot is generated for a particular surface. The parameters 
for genetic algorithm are presented in Fig. 4. The “Number of generations” and the 
“Population size parameters” have been experimentally found, so the approach can be 
still fast and at the same time enough robust to find the optimal solutions. The other 
GA parameters are selected by default. “Tournament selection“ was used for selecting 
the individuals in the population.  Each individual in the population of the genetic 
algorithm has the following format:  

A B 

Where A, B represent: lateral (A) and longitudinal (B) leg positioning from the nor-
mal robot still standing position and range from -5 to 5 degrees, with resolution 0.5.  
 



306 B. Jakimovski et al. 

 

 

Fig. 2. Evaluation period and the swing and stance phases of the robot’s legs; Double sided 
arrow lines represent the balancing movement of the robot foot during each stance phase; L and 
R represent the left and right robot’s foot on the ground; Right foot (R) in this case is in its 
swing phase (not on the ground) therefore not shown 

 

(a)    (b) 

Fig. 3. Balancing movement of the robot’s foot during each stance phase; (a) Situation where 
the robot is better balanced and has smaller load on the servos; (b) Situation where the robot is 
more unstable and has higher load on the servos 

 

Fig. 4. Genetic algorithm parameters 
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The resolution can be decreased if needed. The A, B parameters for standing still 
position are defined as 0, 0. The genetic algorithm is a single point crossover. The 
replacement percentage is 0.5, meaning one half of the population in every cycle is 
replaced with a new one. 

The genetic algorithm finishes with its search either when the number of genera-
tions reaches 15 or the convergence percentage is 0.99. At the end, optimized parame-
ters for balancing movement for robot walking on the particular surface are found. 

The symbiosis score - SymbScore computation practically is implemented as cas-
caded fuzzy logic rule base computation (Fig.5) that at the end generates a SymbScore 
value between 0 and 1, a score approaching 1 is the better score, meaning the parame-
ters chosen for the robot’s balancing movement action are the best ones for some 
particular robot walking.  

 

Fig. 5. SymbScore computation - implemented as cascaded fuzzy logic rule base computation 

The inputs to the SymbScore computation are the two axes gyro values. The gyro 
values range from -66 to +66 units, and their absolute values were considered for 
computation. These values are associated to lateral and longitudinal movement; and 
the averaged accumulated load of all the servos and their values in range from 0 to 70 
units. The “rule base 1” and “rule base 2” (Fig.6) have identical rules and compute the 
“stability_x” and “stability_y” related to robot stability on longitudinal (or sagittal) 
and lateral axis. Those are intermediate normalized outputs ranging from 0 to 1. Each 
computed value gives the relationship between the present load on the robot’s servos 
and one axis gyro values. A value closer to 1 means stability computed for that par-
ticular axis is better. Those two intermediate values get further “fuzzified” into the 
“rule base symbiosis” (Fig.7) that computes the SymbScore result value between 0 
and 1. An exception is when the robot has fallen during the evaluation period, in 
which case the SymbScore is set to 0. The SymbScore value is computed continously. 

In Fig.7 the rules numbered 3 and 7 represent the “mutual” relationship between 
“stability_x” and “stability_y” - intermediate computed stabilities for two robot’s 
axes. The meaning of these rules can be interpreted as follows: only when both of 
their values are not drastically different, the computed SymbScore can be bigger 
(closer to 1), i.e. indicating more stable and more energy efficient robot walking. The 
overall robot’s stable walking depends both on the robot’s stability in its longitudinal 
(sagittal) and lateral axis.  
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Fig. 6. Fuzzy logic rule base for “stability_x” and “stability_y” computation; DoS is degree of 
support for fuzzy rules and is set to 1 

 

Fig. 7. Fuzzy logic rule base for SymbScore computation with highlighted rules 3 and 7 repre-
senting the “mutual” relationship between the two axes stabilities; DoS is degree of support for 
fuzzy rules and is set to 1 

3   Experiments and Results of SelSta Approach for Self-Stabilizing 
Humanoid Robot on Different Kinds of Surfaces 

3.1   Experimental Test Setup 

For performing the experiments with the S2-HuRo we have prepared the following 
setup as can be seen of Fig.8. The surface on which the robot walks is replaced with 
another one in every experiment. Therefore we have experimented with self-
stabilizing behavior on different kinds of flat surfaces (carpets). For our experiments 
we have chosen 4 different types of surfaces: hard linoleum surface, soft green carpet, 
hard green carpet, and orange soft carpet, on which we have tested the SelSta method. 
In each of these tests the robot is connected to power supply cables and a serial con-
nection to PC.  

This was chosen only for performing the data logging (which on PC is 2 times 
faster than on the robot’s embedded system) and used for starting/stopping the robot 
walking. The robot is hung on a steel cable via metal rings. The rings give the robot 
enough space for performing its walking actions without influencing the walking 
movement itself. On the other hand, they give support when the robot is falling (due 
to some improper walking behavior or poorly generated balancing parameters).  
When this happens a human operator puts the robot to standard standing position first.  
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Fig. 8. One of the four test setups - S2-HuRo self-stabilization experiment on orange soft carpet 

Then via PC command the robot is instructed to continue with a new cycle of balanc-
ing movement parameter generation till the optimal parameters for balancing move-
ments are found. We chose the steel wire rope support approach since we expected a 
lot of robot falls, however that was probably overcautious. 

3.2   Results from Experiments 

The experiments were performed on 4 different kinds of surfaces and on each surface 
(floor or carpet) self-stabilization was performed for 3 different robot walking speeds 
(slow, medium and fast). Although the speed of the robot is not an objective of an 
optimization function, we have observed the robustness of our SelSta approach when 
the robot is trying to get self-stabilizing walking with different walking speeds. The 3 
initial robot walking gaits & speeds were manually predefined (but not optimized for 
any particular surface). During the experiments the SelSta approach tried to find the 
optimal balancing parameters for each of those speeds for every kind of surface on 
which the robot was walking. The self-stabilizing approach for every evaluation walk-
ing section produces a lot of data that can be analyzed later and from where the suc-
cess of this approach can be recognized. Due to the limited space in this paper, we 
represent here only a selection of results from the acquired data of all the self-
stabilizing experiments on different flat surfaces. The results are related to self-
stabilizing experiment by fast speed robot walking on green soft carpet. The results 
from measurements for this particular surface can be seen as examples on how the 
results from other self-stabilization runs on other surfaces look like (Fig.9, Fig.10). In 
Fig.9 the symbiosis score - SymbScore generated by SelSta approach for 15 genera-
tions (evaluation walking sections) is represented. The other two lines in the same 
figure represent the other types of SymbScores evaluated for walking robot stability 
by standard setup and manual setup for the balancing parameters.  

They are given here just for comparison purposes with the value that is reached by 
the self-stabilization approach, where its value is distinctly better than by the standard 
and manual setup approaches. In this figure it can be also seen that sometimes the man-
ual setup can be very subjective and not always better performing than the standard 
setup values. It has to be also kept in mind that manual setup is done once for a particu-
lar terrain and that the speed of the robot also has influence on how “performing” are the  
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Fig. 9. SymbScore values by self-stabilization by fast walking speed on green soft carpet - 15 
generations 

setup values. Fig. 10 represents data logged by only one walking evaluation section by 
self-stabilizing fast speed robot walking on green soft carpet. One walking section con-
tains 4 robot steps, therefore there are a lot of such walking sections within one self-
stabilizing walking trial. The “Mode” line on that graph represents the stance and swing 
phases of the robot’s legs and has two values: -25 and +25. The other lines are named as 
“Gyro_X” with range -66 to +66, “Load” with range 0 to 70, “Stability_X”, “Symb-
Score” varies in range from 0 to 1 and is computed as previously described. For better 
clarity of the figure the values for “Gyro_Y” and “Stability_Y” were omitted and values 
for “Stability_X” and “SymbScore” are normalized between 0 and 20.  
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Fig. 10. Representation of data logged for section number 36 out of many walking evaluation 
sections for each generation by self-stabilizing fast speed robot walking on green soft carpet 
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Fig. 11. Results from humanoid robot self-stabilizing experiments done on different kinds of 
surfaces, with different testing parameters and three different walking speeds 

The results of the tests are shown in Fig. 11. They also include data from perform-
ance tests done on 5 walking test sections (each section is 6 robot walking steps as 
described earlier) of the best found balancing parameters and direct comparison to 
tests done with manual set values for the balancing parameters and standard set values 
(feet longitudinal and lateral degree is 0). The comparison includes number of robot 
fallings by that final evaluation approach. 

In comparison with manual set up values, the self-stabilizing SelSta approach gen-
erates in a relatively short time a more stable, energy efficient walking of the human-
oid robot on different kinds of surfaces. This can be clearly seen when comparing the 
values in rows: SymbScore (average of 5 test sections), SymbScore (best of 5 test 
sections) for “Autonomous Self-Stabilizing”, “Manual Values” setup, “Standard Val-
ues” setup. The bigger values by SymbScore indicate more stable and energy efficient 
walking. Quantitatively and qualitatively better values with Autonomous Self-
Stabilizing category in comparison with the “Manual” and “Standard” Values setup 
categories, indicate that the autonomously found parameters using our biologically 
inspired approach are better. With this the SelSta approach has clearly reached its 
main projected goals. 
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4   Conclusion 

In this paper we have explained the SelSta approach that we have created for self-
stabilizing humanoid robot walking on different specific kinds of flat surfaces. The 
SelSta approach is robust since it is built on a modular basis as an addition to the 
already built control algorithm for humanoid walking. Thus, it can be easily adopted 
to other humanoid robots and also for creating more optimally stabilized humanoid 
robots that play soccer on RoboCup[1] matches. Further research will be done on 
transferring the functionality of this method to stabilize the humanoid robot walking 
over rough terrains.  
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Glässer, Uwe 266

Gomes, Lúıs 19
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