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Preface

The series of advanced courses, initiated in Séminaire de Probabilités XXXIII, con-
tinues with a course of Jean Picard on the representation formulae for the fractional
Brownian motion. The rest of the volume covers a wide range of themes, such as
stochastic calculus and stochastic differential equations, stochastic differential ge-
ometry, filtrations, analysis on Wiener space, random matrices and free probability,
mathematical finance. Some of the contributions were presented at the Journées de
Probabilités held in Poitiers in June 2009.

The Séminaire has now a new web site at the URL

http://portail.mathdoc.fr/SemProba/

This web site is hosted by the Cellule Math Doc funded both by the CNRS and the
Université Joseph Fourier in Grenoble, France. We thank the team of the Institut de
Recherche Mathématiques Avancées (IRMA) in Strasbourg for the maintenance of
the former web site.

With the new web site also comes a new multicriteria research tool which im-
proves the previous one. This tool has been developped by the Cellule MathDoc
(Laurent Guillopé, Elizabeth Cherhal and Claude Goutorbe). The enormous work
of indexing and commenting was started by Paul-André Meyer in 1995 with the
help of other editors, with an important contribution from Michel Émery (who per-
formed the supervision of all the work) and Marc Yor. The database covers now
the contents of volumes I to XL. We expect to complete the work soon in order to
provide some easy way to exploit fully the content of the Séminaire.

We remind you that the Cellule Math Doc also hosts digitized articles of many
scientific journals within the NUMDAM project. All the articles of the Seminaire
from Volume I in 1967 to Volume XXXVI in 2002 are freely accessible from this
web site

http://www.numdam.org/numdam-bin/feuilleter?j=SPS

Finally, the Rédaction of the Séminaire is modified: Christophe Stricker and
Michel Émery retired from our team after Séminaire XLII was completed. Both
contributed early and continuously as authors and accepted to invest energy and
time as Rédacteurs. Michel Émery was a member of the board since volume XXIX.

v



vi Preface

During all these years, the Séminaire benefited from his demanding quality require-
ments, be it on mathematics and on style. His meticulous reading of articles was
sometimes supplemented by a rewriting suggesting notably elegant phrases instead
of basic English.

While preparing this volume, we heard the sad news that Lester Dubins, professor
emeritus at Berkeley University, passed away. From the early days, several talentu-
ous mathematicians from various countries have contributed to the Séminaire and
Dubins was one of them.

C. Donati-Martin
A. Lejay

A. Rouault
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Representation Formulae for the Fractional
Brownian Motion

Jean Picard

Abstract We discuss the relationships between some classical representations of
the fractional Brownian motion, as a stochastic integral with respect to a standard
Brownian motion, or as a series of functions with independent Gaussian coefficients.
The basic notions of fractional calculus which are needed for the study are intro-
duced. As an application, we also prove some properties of the Cameron–Martin
space of the fractional Brownian motion, and compare its law with the law of some
of its variants. Several of the results which are given here are not new; our aim is
to provide a unified treatment of some previous literature, and to give alternative
proofs and additional results; we also try to be as self-contained as possible.

Keywords Fractional Brownian motion � Cameron-Martin space � Laws of
Gaussian processes

1 Introduction

Consider a fractional Brownian motion .BHt I t 2R/ with Hurst parameter
0<H <1. These processes appeared in 1940 in [24], and they generalise the
case H D 1=2 which is the standard Brownian motion. A huge literature has been
devoted to them since the late 1960s. They are often used to model systems involv-
ing Gaussian noise, but which are not correctly explained with a standard Brownian
motion. Our aim here is to give a few basic results about them, and in particular to
explain how all of them can be deduced from a standard Brownian motion.

The process BH is a centred Gaussian process which has stationary increments
and is H -self-similar; these two conditions can be written as

BHtCt0 � BHt0 ' BHt ; BH�t ' �HBHt (1)

J. Picard (�)
Laboratoire de Mathématiques, Clermont Université, Université Blaise Pascal and CNRS UMR
6620, BP 10448, 63000 Clermont-Ferrand, France
e-mail: Jean.Picard@math.univ-bpclermont.fr

C. Donati-Martin et al. (eds.), Séminaire de Probabilités XLIII, Lecture Notes in Mathematics
2006, DOI 10.1007/978-3-642-15217-7__1, c� Springer-Verlag Berlin Heidelberg 2011
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4 J. Picard

for t0 2 R and � > 0, where the notation Z1t ' Z2t means that the two processes
have the same finite dimensional distributions. We can deduce from (1) thatBH�t and
BHt have the same variance, that this variance is proportional to jt j2H , and that the
covariance kernel of BH must be of the form

C.s; t/ D E
�
BHs B

H
t

� D 1

2
E

h
.BHs /

2 C .BHt /2 � .BHt � BHs /2
i

D 1

2
E

h
.BHs /

2 C .BHt /2 � .BHt�s/2
i

D �

2

�
jsj2H C jt j2H � jt � sj2H

�
(2)

for a positive parameter � D EŒ.BH1 /
2� (we always assume that � ¤ 0). The process

BH has a continuous modification (we always choose this modification), and its law
is characterised by the two parameters � and H ; however, the important parameter
is H , and � is easily modified by multiplying BH by a constant. In this article, it
will be convenient to suppose � D �.H/ given in (51); this choice corresponds to
the representation of BH given in (6). We also consider the restriction of BH to
intervals of R such as RC, R� or Œ0; 1�.

Notice that the fractional Brownian motion also exists for H D 1 and satisfies
B1t D t B11 ; this is however a very particular process which is excluded from our
study (with our choice of �.H/ we have �.1/ D 1).

The standard Brownian motion Wt D B
1=2
t is the process corresponding to

H D 1=2 and � D �.1=2/ D 1. It is often useful to represent BH for 0<H <1

as a linear functional of W ; this means that one looks for a kernel KH .t; s/ such
that the Wiener-Itô integral

BHt D
Z
KH .t; s/dWs (3)

is a H -fractional Brownian motion. More generally, considering the family
.BH I 0<H <1/ defined by (3), we would like to find KJ;H so that

BHt D
Z
KJ;H .t; s/dBJs : (4)

In this case however, we have to give a sense to the integral; the process BJ is a
Gaussian process but is not a semimartingale for J ¤ 1=2, so we cannot consider Itô
integration. In order to solve this issue, we approximate BJ with smooth functions
for which the Lebesgue–Stieltjes integral can be defined, and then verify that we can
pass to the limit in an adequate functional space in which BJ lives almost surely.
Alternatively, it is also possible to use integration by parts.

The case where KJ;H is a Volterra kernel (KJ;H .t; s/ D 0 if s > t) is of partic-
ular interest; in this case, the completed filtrations of BH and of the increments of
BJ satisfy Ft .BH / � Ft .dBJ /, with the notation

Ft .X/ D � .XsI s � t/ ; Ft .dX/ D � .Xs � XuI u � s � t/ : (5)
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Notice that when the time interval is RC, then Ft .dBJ / D Ft .BJ / (because
BJ0 D 0), but this is false for t < 0 when the time interval is R or R�. When
Ft .BH / D Ft .BJ /, we say that the representation (4) is canonical; actually, we
extend here a terminology, introduced by [25] (see [16]), which classically describes
representations with respect to processes with independent increments (so here the
representation (3)); such a canonical representation is in some sense unique.

Another purpose of this article is to compare BH with two other families of
processes with similar properties and which are easier to handle in some situations:

� The so-called Riemann–Liouville processes on RC (they are also sometimes
called type II fractional Brownian motions, see [27]), are deduced from the
standard Brownian motion by applying Riemann–Liouville fractional operators,
whereas, as we shall recall it, the genuine fractional Brownian motion requires a
weighted fractional operator.

� We shall also consider here some processes defined by means of a Fourier-Wiener
series on a finite time interval; they are easy to handle in Fourier analysis, whereas
the Fourier coefficients of the genuine fractional Brownian motion do not satisfy
good independence properties.

We shall prove that the Cameron–Martin spaces of all these processes are equivalent,
and we shall compare their laws; more precisely, it is known from [10, 15, 16] that
two Gaussian measures are either equivalent, or mutually singular, and we shall
decide between these two possibilities.

Let us now describe the contents of this article. Notations and definitions which
are used throughout the article are given in Sect. 2; we also give in this section a
short review of fractional calculus, in particular Riemann–Liouville operators and
some of their modifications which are important for our study; we introduce some
functional spaces of Hölder continuous functions; much more results can be found
in [35]. In Sect. 3, we give some results concerning the time inversion (t 7! 1=t) of
Gaussian self-similar processes.

We enter the main topic in Sect. 4. Our first aim is to explore the relationship
between two classical representations of BH with respect to W , namely the repre-
sentation of [26],

BHt D
1

� .H C 1=2/
Z

R

�
.t � s/H�1=2

C � .�s/H�1=2
C

�
dWs (6)

on R (with the notation u�C D u�1fu>0g), and the canonical representation on RC
obtained in [29,30], see also [8,32] (this is a representation of type (3) for a Volterra
kernel KH , and such that W and BH generate the same filtration). Let us explain
the idea by means of which this relationship can be obtained; in the canonical repre-
sentation on RC, we want BHt to depend on past valuesWs , s � t , or equivalently,
we want the infinitesimal increment dBHt to depend on past increments dWs, s � t .
In (6), values of BHt for t � 0 involve values of Ws for all �1 � s � t , so this is
not convenient for a study on RC. However, we can reverse the time (t 7! �t) and
use the backward representation
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BHt D
1

� .H C 1=2/
Z C1

0

�
sH�1=2 � .s � t/H�1=2

C
�

dWs

on RC. Now the value of BHt involves the whole path of W on RC, but we can
notice that the infinitesimal increment dBHt only involves future increments dWs,
s � t . Thus dBH .1=t/ depends on past increments dW.1=s/, s � t . We can then
conclude by applying the invariance of fractional Brownian motions by time inver-
sion which has been proved in Sect. 3. This argument is justified in [29] by using
the generalised processes dBHt =dt , but we shall avoid the explicit use of these pro-
cesses here. This technique can be used to work out a general relationship of type
(4) between BH and BJ for any 0 < J;H < 1, see Theorem 11 (such a relation
was obtained by [20]).

Application of time inversion techniques also enables us to deduce in Theorem 13
a canonical representation on R�, and to obtain in Theorem 16 some non canonical
representations of BH with respect to itself, extending the classical case H D 1=2;
these representations are also considered by [21].

Representations of type (3) or (4) can be applied to descriptions of the Cameron–
Martin spaces HH of the fractional Brownian motionsBH ; these spaces are Hilbert
spaces which characterise the laws of centred Gaussian processes (see Appendix C).
The space H1=2 is the classical space of absolutely continuous functions h such that
h.0/ D 0 and the derivative D1h is square integrable, and (3) implies that HH is
the space of functions of the form

t 7! 1

� .H C 1=2/
Z

R

�
.t � s/H�1=2

C � .�s/H�1=2
C

�
f .s/ds

for square integrable functions f .
Sections 5 and 6 are devoted to the comparison ofBH with two processes. One of

them is self-similar but has only asymptotically stationary increments in large time,
and the other one has stationary increments, but is only asymptotically self-similar
in small time.

In Sect. 5, we consider on RC the so-called Riemann–Liouville process defined
forH > 0 by

XHt D
1

� .H C 1=2/
Z t

0

.t � s/H�1=2dWs:

This process is H -self-similar but does not have stationary increments; contrary to
BH , the parameterH can be larger than 1. The Cameron–Martin space H0

H of XH

is the space of functions

t 7! 1

� .H C 1=2/
Z t

0

.t � s/H�1=2f .s/ds

for square integrable functions f . We explain in Theorem 19 a result of [35], see [8],
stating that HH and H0

H are equivalent for 0 < H < 1 (they are the same set with
equivalent norms). We also compare the paths of BH and XH , and in particular
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study the equivalence or mutual singularity of the laws of these processes (Theorem
20); it appears that these two processes can be discriminated by looking at their
behaviour in small (or large) time. As an application, we also estimate the mutual
information of increments ofBH on disjoint time intervals (more results of this type
can be found in [31]).

Another classical representation of the fractional Brownian motion on R is its
spectral representation which can be written in the form

BHt D
1p
�

Z C1

0

s�1=2�H �.cos.st/ � 1/ dW1
s C sin.st/dW2

s

�
; (7)

where W 1
t and W 2

t , t � 0, are two independent standard Brownian motions;
it is indeed not difficult to check that the right-hand side is Gaussian, centred,
H -self-similar with stationary increments, and 1=

p
� is the constant for which this

process has the same variance as (6) (see Appendix B). If now we are interested in
BH on a bounded interval, say Œ0; 1�, we look for its Fourier coefficients. Thus the
aim of Sect. 6 is to study the relationship between BH on Œ0; 1� and some series of
trigonometric functions with independent Gaussian coefficients. More precisely, the
standard Brownian motion can be defined on Œ0; 1� by series such as

Wt D �0t C
p
2
X

n�1

�
�n

cos.2n�t/ � 1
2n�

C � 0
n

sin.2n�t/

2n�

	
; (8)

Wt D
p
2
X

n�0

�
�n

cos..2nC 1/�t/ � 1
.2nC 1/� C � 0

n

sin..2nC 1/�t/
.2nC 1/�

	
; (9)

or

Wt D
p
2
X

n�0
�n

sin ..nC 1=2/�t/
.nC 1=2/� ; (10)

where �n, � 0
n are independent standard Gaussian variables. The form (10) is the

Karhunen-Loève expansion; it provides the orthonormal basis
p
2 sin ..nC 1=2/�t/

of L2.Œ0; 1�/, such that the expansion of Wt on this basis consists of independent
terms; it is a consequence of (9) which can be written on Œ�1=2; 1=2�, and of the
property

Wt '
p
2Wt=2 ' Wt=2 �W�t=2:

It is not possible to write on Œ0; 1� the analogues of these formulae for BH , H ¤
1=2, but it is possible (Theorem 22) to write BH on Œ0; 1� as

BHt D aH0 �0t C
X

n�1
aHn

�
.cos.�nt/� 1/ �n C sin.�nt/� 0

n

�
(11)

with
P
.aHn /

2 < 1. This result was proved in [18] when H � 1=2, and the case
H > 1=2 was studied in [17] with an approximation method. Formula (11) is not
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completely analogous to (8), (9) or (10); contrary to these expansions of W , the
�-algebra generated by BH in (11) is strictly smaller than the �-algebra of the
sequence .�n; � 0

n/; in other words, the right hand side of (11) involves an extra in-
formation not contained in BH , and this is a drawback for some questions. This is
why we define for H > 0 a process

bB
H

t D �0t C
p
2
X

n�1

�
�n

cos.2�nt/� 1
.2�n/HC1=2 C � 0

n

sin.2�nt/

.2�n/HC1=2

	

which is a direct generalisation of (8), and a similar process B
H

t which generalises
(9). It appears that for 0 < H < 1, these processes have local properties similar
to BH , and we can prove that their Cameron–Martin spaces are equivalent to HH

(Theorem 25). As an application, we obtain Riesz bases of HH , and show that func-
tions of HH can be characterised on Œ0; 1� by means of their Fourier coefficients.

We then study the equivalence or mutual singularity of the laws of BH and bB
H

,

B
H

(Theorem 27). We also discuss the extension of (10) which has been proposed
in [11]. In Theorem 29, we recover a result of [4, 37] which solves the following
question: if we observe a path of a process, can we say whether it is a pure frac-
tional Brownian motion BJ , or whether this process BJ has been corrupted by an
independent fractional Brownian motion of different indexH?

Technical results which are required in our study are given in the three
appendices:

� A lemma about some continuous endomorphisms of the standard Cameron–
Martin space (Appendix A).

� The computation of the variance of fractional Brownian motions (Appendix B).
� Results about the equivalence and mutual singularity of laws of Gaussian pro-

cesses, and about their relative entropies, with in particular a short review of
Cameron–Martin spaces (Appendix C).

Notice that many aspects concerning the fractional Brownian motionBH are not
considered in this work. Concerning the representations, it is possible to expandBH

on a wavelet basis; we do not consider this question to which several works have
been devoted, see for instance [28]. We also do not study stochastic differential
equations driven by BH (which can be solved by means of the theory of rough
paths, see [6]), or the simulation of fractional Brownian paths. On the other hand,
fractional Brownian motions have applications in many scientific fields, and we do
not describe any of them.

2 Fractional Calculus

Let us first give some notations. All random variables and processes are supposed to
be defined on a probability space .˝;F ;P/ and the expectation is denoted by E; pro-
cesses are always supposed to be measurable functions	 W .t; !/ 7! 	t .!/, where
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t is in a subset of R endowed with its Borel �-algebra; the �-algebra generated by
	 is denoted by �.	/, and for the filtrations we use the notation (5). The derivative
of order n of f is denoted by Dnf ; the function is said to be smooth if it is C1.
The function f1 is said to be dominated by f2 if jf1j � Cf2. The notation un � vn
means that vn=un is between two positive constants. We say that two Hilbert spaces
H and H0 are equivalent (and write H � H0) if they are the same set and

C1khkH � khkH0 � C2khkH (12)

for some positive C1 and C2; this means that the two spaces are continuously em-
bedded into each other. We often use the classical function � defined on C n Z�,
and in particular the property � .zC 1/ D z� .z/.

We now describe the functional spaces, fractional integrals and derivatives which
are used in this work; see [35] for a much more complete study of the fractional
calculus. These functional spaces are weighted Hölder spaces which are convenient
for the study of the fractional Brownian motion. The results are certainly not stated
in their full generality, but are adapted to our future needs.

2.1 Functional Spaces

The main property which is involved in our study is the Hölder continuity, but func-
tions will often exhibit a different behaviour near time 0 and for large times. More
precisely, on the time interval R

?C, let H
ˇ;�;ı for 0 < ˇ < 1 and 
 , ı real, be the

Banach space of real functions f such that

kf kˇ;�;ı D sup
t

jf .t/j
tˇ t�;ı

C sup
s<t

ˇ
ˇf .t/ � f .s/ˇˇ

.t � s/ˇ sups�u�t u�;ı
(13)

is finite, with the notation

t�;ı D t�1ft�1g C tı1ft>1g: (14)

Thus functions of this space are locally Hölder continuous with index ˇ, and param-
eters 
 and ı make more precise the behaviour at 0 and at infinity. If ˇC 
 > 0, the
function f can be extended by continuity at 0 by f .0/ D lim0 f D 0. If 
 � 0 and
ı � 0 and if we consider functions f such that lim0 f D 0, then the second term of
(13) dominates the first one (let s decrease to 0).

Remark 1. Define

kf k0ˇ;�;ı D sup

( ˇ
ˇf .t/ � f .s/ˇˇ
.2n/�;ı .t � s/ˇ ; 2

n � s � t � 2nC1; n 2 Z

)

:
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Then this semi-norm is equivalent to the second term in (13); in particular, if 
 � 0
and ı � 0, then k:kˇ;�;ı and k:k0

ˇ;�;ı
are equivalent on the space of functions f such

that lim0 f D 0. It is indeed easy to see that k:k0
ˇ;�;ı

is dominated by the second
term of (13). For the inverse estimation, notice that upper bounds for jf .t/ � f .s/j
can be obtained by adding the increments of f on the dyadic intervals Œ2n; 2nC1�
intersecting Œs; t �. More precisely, if 2k�1 � s � 2k � 2n � t � 2nC1, then

ˇ̌
f .t/ � f .s/ˇ̌ � kf k0ˇ;�;ı sup

k�1�j�n

�
2j
��;ı

0

@
n�1X

jDk
2jˇ C .2k � s/ˇ C .t � 2n/ˇ

1

A

� C kf k0ˇ;�;ı sup
s�u�t

u�;ı
�
2nˇ � 2kˇ C .2k � s/ˇ C .t � 2n/ˇ

�

� 3C kf k0ˇ;�;ı sup
s�u�t

u�;ı.t � s/ˇ

because 2nˇ � 2kˇ � .2n � 2k/ˇ � .t � s/ˇ .

In particular, one can deduce from Remark 1 that H
ˇ;�;ı is continuously embed-

ded into H
ˇ�";�C";ıC" for 0 < " < ˇ.

Theorem 1. The map .f1; f2/ 7! f1f2 is continuous from H
ˇ;�1;ı1 	H

ˇ;�2;ı2 into
H
ˇ;ˇC�1C�2;ˇCı1Cı2 .

Proof. This is a bilinear map, so it is sufficient to prove that the image of a bounded
subset is bounded. If f1 and f2 are bounded in their respective Hölder spaces, it is
easy to deduce that f1.t/f2.t/ is dominated by t2ˇ t�1C�2;ı1Cı2 . On the other hand,
following Remark 1, we verify that for 2n � s � t � 2nC1,

ˇ
ˇf1.t/f2.t/ � f1.s/f2.s/

ˇ
ˇ

� ˇˇf1.s/
ˇ
ˇ
ˇ
ˇf2.t/ � f2.s/

ˇ
ˇC ˇˇf2.t/

ˇ
ˇ
ˇ
ˇf1.t/ � f1.s/

ˇ
ˇ

� C
�
sˇ s�1;ı1.2n/�2;ı2.t � s/ˇ C tˇ t�2;ı2.2n/�1;ı1.t � s/ˇ

�

� C 0.2n/ˇ .2n/�1;ı1.2n/�2;ı2.t � s/ˇ :

The theorem is therefore proved. ut
Let us define

H
ˇ;� D H

ˇ;�;0; H
ˇ D H

ˇ;0;0:

These spaces can be used for functions defined on a finite time interval Œ0; T �, since
in this case the parameter ı is unimportant. For functions defined on R

?�, we say that
f is in H

ˇ;�;ı if t 7! f .�t/ is in it, and for functions defined on a general interval
of R, we assume that the restrictions to R

?C and R
?� are in H

ˇ;�;ı . For 
 D 0, the
regularity at time 0 is similar to other times, so spaces H

ˇ;0;ı are invariant by the
time shifts f 7! f .:C t0/� f .t0/. If we consider a time interval of type Œ1;C1/,
then the parameter 
 can be omitted and we denote the space by H

ˇ;:;ı .
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We use the notations

H
ˇ�;�;ıC D

\

">0

H
ˇ�";�;ıC2"; H

ˇ�;� D
\

">0

H
ˇ�";� ; H

ˇ� D
\

">0

H
ˇ�": (15)

They are Fréchet spaces.

Example 1. If BH is a H -fractional Brownian motion on the time interval Œ0; 1�,
the probability of the event fBH 2 H

ˇ g is 1 if ˇ < H (this follows from the
Kolmogorov continuity theorem). In particular, BH lives almost surely in H

H�.
We shall see in Remark 7 that this implies that on the time interval RC, the process
BH lives in H

H�;0;0C.

The parameters 
 and ı can be modified by means of some multiplication oper-
ators. More precisely, on R

?C, define

˘˛f .t/ D t˛f .t/; ˘˛1;˛2f .t/ D t˛1.1C t/˛2�˛1f .t/: (16)

Theorem 2. The operator˘˛1;˛2 maps continuously H
ˇ;�;ı into H

ˇ;�C˛1;ıC˛2 . In
particular, on the time interval .0; 1�, the operator˘˛ maps continuously H

ˇ;� into
H
ˇ;�C˛.

Proof. The quantity jt˛ � s˛ j.t � s/�ˇ tˇ�˛ is bounded for 2n � s � t � 2nC1,
and the bound does not depend on n (use the scaling). Thus it follows from
Remark 1 that the function t 7! t˛ is in H

ˇ;˛�ˇ;˛�ˇ . The same property implies that
.1C t/˛ � .1C s/˛ is dominated by .1Ct/˛�ˇ .t�s/ˇ (with the same assumptions
on s and t), and we can deduce that t 7! .1Ct/˛ is in H

ˇ;�ˇ;˛�ˇ (the coefficient�ˇ
is due to the fact that the function tends to 1 at 0). We deduce from Theorem 1 that
the function t˛1.1C t/˛2�˛1 is in H

ˇ;˛1�ˇ;˛2�ˇ . The operator˘˛1;˛2 is the multi-
plication by this function, and the result follows by again applying Theorem 1. ut

It is then possible to deduce a density result for the spaces of (15) (the result
is false with ˇ instead of ˇ�). Fractional polynomials are linear combinations of
monomials t˛, ˛ 2 R, and these monomials are in H

ˇ;� on .0; 1� if ˛ � ˇ C 
 .

Theorem 3. Let 0 < ˇ < 1.

� On .0; 1�, fractional polynomials (belonging to H
ˇ�;� ) are dense in H

ˇ�;� .
� On R

?C, smooth functions with compact support are dense in H
ˇ�;�;ıC.

Proof. Let us consider separately the two statements.

Study on .0; 1�. The problem can be reduced to the case 
 D 0 with Theorem 2,
and functions f of H

ˇ� are continuous on the closed interval Œ0; 1� with f .0/ D 0.
If f is in H

ˇ�" (for " small), it can be approximated by classical polynomials fn by
means of the Stone-Weierstrass theorem; more precisely, if we choose the Bernstein

approximations Ef
�
1
n

Pn
jD1 1fUj�xg

�
for independent uniformly distributed vari-

ables Uj in Œ0; 1�, then fn is bounded in H
ˇ�" and converges uniformly to f . Thus
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ˇ
ˇfn.t/ � fn.s/ � f .t/C f .s/

ˇ
ˇ

� C
�
jfn.t/ � fn.s/j.ˇ�2"/=.ˇ�"/ C jf .t/ � f .s/j.ˇ�2"/=.ˇ�"/�

sup
u
jfn.u/� f .u/j"=.ˇ�"/

� C 0.t � s/ˇ�2" sup
u
jfn.u/� f .u/j"=.ˇ�"/: (17)

These inequalities can also be written for s D 0 to estimate jfn.t/ � f .t/j, so fn
converges to f in H

ˇ�2".

Study on R
?C. The technique is similar. By means of ˘˛1;˛2 , we can reduce the

study to the case 
 D 0 and �2ˇ < ı < �ˇ. Let f be in H
ˇ�;0;ıC and let us fix a

small " > 0; then f is in H
ˇ�";0;ıC2"; in particular, it tends to 0 at 0 and at infinity.

A standard procedure enables to approximate it uniformly by smooth functions fn
with compact support, such that fn is bounded in H

ˇ�";0;ıC2"; to this end, we first
multiply f by the function �n supported by Œ2�n�1; 2nC1�, taking the value 1 on
Œ2�n; 2n�, and which is affine on Œ2�n�1; 2�n� and on Œ2n; 2nC1�; then we take the
convolution of f �n with 2nC2 .2nC2t/ for a smooth function  supported by
Œ�1; 1� and with integral 1. By proceeding as in (17), we can see that

ˇ̌
fn.t/ � fn.s/� f .t/C f .s/

ˇ̌

� C.t � s/ˇ�2" sup
s�u�t

�
u0;ıC2"

�.ˇ�2"/=.ˇ�"/
sup

u
jfn.u/� f .u/j"=.ˇ�"/

so fn converges to f in H
ˇ�2";0;ıC4" because .ı C 2"/.ˇ � 2"/=.ˇ � "/ � ı C 4"

for " small enough. ut

2.2 Riemann–Liouville Operators

An important tool for the stochastic calculus of fractional Brownian motions is the
fractional calculus obtained from the study of Riemann–Liouville operators I˛˙.
These operators can be defined for any real index ˛ (and even for complex indices),
but we will mainly focus on the case j˛j < 1.

2.2.1 Operators with Finite Horizon

The fractional integral operators I˛�˙ (Riemann–Liouville operators) are defined for
� 2 R and ˛ > 0 by

I ˛�Cf .t/D
1

� .˛/

Z t

�

.t � s/˛�1f .s/ds; I ˛��f .t/D
1

� .˛/

Z �

t

.s � t/˛�1f .s/ds;

(18)
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respectively for t > � and t < � . These integrals are well defined for instance if f
is locally bounded on .�;C1/ or .�1; �/, and is integrable near � . If f is inte-
grable, they are defined almost everywhere, and I˛�˙ is a continuous endomorphism
of L1.Œ�; T �/ or L1.ŒT; ��/. These operators satisfy the semigroup property

I
˛2
�˙I

˛1
�˙ D I ˛1C˛2

�˙ (19)

which can be proved from the relation between Beta and Gamma functions recalled
in (95). If ˛ is an integer, we get iterated integrals; in particular, I 1�˙f is ˙ the
primitive of f taking value 0 at � . Notice that relations (18) can also be written as

I ˛�Cf .t/ D
1

� .˛/

Z t

�

.t � s/˛�1 .f .s/ � f .t// dsC .t � �/˛
� .˛ C 1/f .t/;

I ˛��f .t/ D
1

� .˛/

Z �

t

.s � t/˛�1 .f .s/ � f .t// dsC .� � t/˛
� .˛ C 1/f .t/: (20)

If f is Lipschitz with f .�/ D 0, an integration by parts shows that

I ˛�Cf .t/ D
1

� .˛ C 1/
Z t

�

.t�s/˛df .s/; I ˛��f .t/ D
�1

� .˛ C 1/
Z �

t

.s�t/˛df .s/:
(21)

For ˛ D 0, the operators I 0�˙ are by definition the identity (this is coherent with
(21)). The study of the operators I˛�˙ can be reduced to the study of I ˛0C, since the
other cases can be deduced by means of an affine change of time.

Example 2. The value of I˛0C on fractional polynomials can be obtained from

I ˛0C

 
tˇ

� .ˇ C 1/

!

D t˛Cˇ

� .˛ C ˇ C 1/ (22)

which is valid for ˇ > �1.

Riemann–Liouville operators can also be defined for negative exponents, and are
called fractional derivatives. Here we restrict ourselves to �1 < ˛ < 0, and in this
case the derivative of order �˛ is defined by

I˛�Cf D D1I 1C˛
�C f; I ˛��f D �D1I 1C˛

�� f (23)

if I 1C˛
�˙ f is absolutely continuous, for the differentiation operatorD1. The relation

(22) is easily extended to negative ˛ (with result 0 if ˛ C ˇ C 1 D 0). Fractional
derivatives operate on smooth functions, and we have the following result.

Theorem 4. Suppose that f is smooth and integrable on .0; 1�. Then, for any
˛ > �1, I˛0Cf is well defined, is smooth on .0; 1�, and
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ˇ
ˇD1I ˛0Cf .t/

ˇ
ˇ � C˛

 

t˛�2
Z t=2

0

jf .s/jds C t˛�1 sup
Œt=2;t �

jf j

Ct˛ sup
Œt=2;t �

jD1f j C t˛C1 sup
Œt=2;t �

jD2f j
!

: (24)

If D1f is integrable and lim0 f D 0, then D1I ˛0Cf D I ˛0CD1f .

Proof. First suppose ˛ > 0. Then, for t > u > 0, we can write (18) in the form

I˛0Cf .t/ D � .˛/�1
�Z u

0

.t � s/˛�1f .s/dsC
Z t�u

0

s˛�1f .t � s/ds

	
: (25)

This expression is smooth, and

D1I ˛0Cf .t/ D � .˛/�1
�
.˛ � 1/

Z u

0

.t � s/˛�2f .s/ds

C
Z t�u

0

s˛�1D1f .t � s/dsC .t � u/˛�1f .u/
	
: (26)

In particular, by letting u D t=2, we obtain (24) without the D2f term. Moreover,
if D1f is integrable and lim0 f D 0, we see by writing

.t � u/˛�1f .u/ D �.˛ � 1/
Z u

0

.t � s/˛�2f .s/dsC
Z u

0

.t � s/˛�1D1f .s/ds

that

D1I ˛0Cf .t/ D � .˛/�1
�Z t�u

0

s˛�1D1f .t � s/dsC
Z u

0

.t � s/˛�1D1f .s/ds

	

D I˛0CD1f .t/

(apply (25) with f replaced by D1f ). Let us now consider the case �1 < ˛ < 0;
we use the definition (23) of the fractional derivative, and in particular deduce that
I˛0Cf is again smooth. Moreover, from (26),

D1I ˛0Cf .t/ D D2I ˛C1
0C f .t/

D � .˛ C 1/�1
�
˛.˛ � 1/

Z u

0

.t � s/˛�2f .s/dsC .t � u/˛D1f .u/

C
Z t�u

0

s˛D2f .t � s/dsC ˛.t � u/˛�1f .u/
	
:



Representation Formulae for the Fractional Brownian Motion 15

We deduce (24) by letting again uD t=2. If lim0 f D 0 andD1f is integrable, then

D1I ˛0Cf D D2I ˛C1
0C f D D1I ˛C1

0C D1f D I ˛0CD1f

from the definition (23) and the property for ˛C 1 which has already been proved.
ut

For �1 < ˛ < 0, a study of (20) shows that I˛�˙f is defined as soon as f is
Hölder continuous with index greater than �˛, and that (20) again holds true. If f
is Lipschitz and f .�/ D 0, then we can write

I ˛�˙f D ˙D1I 1C˛
�˙ f D D1I 1C˛

�˙ I 1�˙D1f D D1I 1�˙I
1C˛
�˙ D1f D ˙I 1C˛

�˙ D1f

where we have used (19) in the third equality, so (21) again holds true. Thus rela-
tions (20) and (21) can be used for any ˛ > �1 (˛ ¤ 0 for (20)). By using the
multiplication operators˘˛ defined in (16), we can deduce from (20) a formula for
weighted fractional operators; if f is smooth with compact support in R

?C, then

˘��I ˛0C˘�f .t/ D I ˛0Cf .t/C
1

� .˛/

Z t

0

.t � s/˛�1 �� s
t

�� � 1
�
f .s/ds (27)

for ˛ > �1, ˛ ¤ 0.
Here are some results about I˛0C related to the functional spaces of Sect. 2.1.

They can easily be translated into properties of I ˛�˙, see also [32, 35].

Theorem 5. Consider the time interval .0; 1� and let 
 > �1.

� If ˇ and ˇ C ˛ are in .0; 1/, then the operator I ˛0C maps continuously H
ˇ;� into

H
ˇC˛;� .

� The composition rule I˛20CI
˛1
0C D I

˛1C˛2
0C holds on H

ˇ;� provided ˇ, ˇ C ˛1 and
ˇ C ˛1 C ˛2 are in .0; 1/.

Proof. Let us prove the first statement. Let f be in H
ˇ;� . The property I ˛0Cf .t/ D

O.t˛CˇC� / can be deduced from (20) and (22). By applying Remark 1, it is then
sufficient to compare I˛0Cf at times s and t for 2n � s � t � 2nC1, n < 0.
Consider the time v D .3s � t/=2, so that 2n�1 � s=2 � v � s � 2nC1. By again
applying (20), we have

I˛0Cf .t/ � I ˛0Cf .s/

D t˛f .t/ � s˛f .s/
� .˛ C 1/ C Av;t �Av;s

� .˛/
C f .s/ � f .t/

� .˛/

Z v

0

.t � u/˛�1du

C 1

� .˛/

Z v

0

�
.t � u/˛�1 � .s � u/˛�1� .f .u/ � f .s// du
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with

Av;w D
Z w

v

.w � u/˛�1 .f .u/ � f .w// du D O
�
.v� C w� /.w � v/˛Cˇ� :

We deduce that

I˛0Cf .t/ � I ˛0Cf .s/ D
.t˛ � s˛/ f .s/
� .˛ C 1/ C Av;t �Av;s

� .˛/
� f .s/ � f .t/

� .˛ C 1/ .t � v/
˛

C 1

� .˛/

Z v

0

�
.t � u/˛�1 � .s � u/˛�1� .f .u/� f .s// du:

(28)

The second and third terms are easily shown to be dominated by 2n� .t�s/˛Cˇ . The
first term is dominated by

sup
s�u�t

u˛�1.t � s/sˇC� � C 2n� .t � s/˛Cˇ :

The last term is dominated by

Z v

0

�
.s � u/˛�1 � .t � u/˛�1� .s � u/ˇ .u� C s� / du

� .1 � ˛/.t � s/
Z v

0

.s � u/˛Cˇ�2 .u� C s� / du

� C.t � s/
 

2n� .s � v/˛Cˇ�1 C
Z s=2

0

.s � u/˛Cˇ�2 .u� C s� / du

!

� C 02n� .t � s/˛Cˇ

because s�v D .t�s/=2 and the integral on Œ0; s=2� is proportional to s˛CˇC��1 �
c 2n.˛CˇC��1/ � c 2n�.t � s/˛Cˇ�1. Thus the continuity of I ˛0C is proved. For the
composition rule, it is easily verified for monomials f .t/ D tˇ (apply (22)), and
is then extended by density to the space H

ˇ�;� from Theorem 3. By applying this
property to a slightly larger value of ˇ, it appears that the composition rule actually
holds on H

ˇ;� . ut
Notice that fractional monomials t� are eigenfunctions of˘�˛I ˛0C and I ˛0C˘�˛

when they are in the domains of definitions of these operators, so when  is large
enough. This implies that these operators commute on fractional polynomials. This
property is then extended to other functions by density. In particular,

I
˛2
0C˘

�˛1�˛2I ˛10C D ˘�˛1I ˛1C˛2
0C ˘�˛2 ; (29)

see (10.6) in [35].
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2.2.2 Operators with Infinite Horizon

The operators I ˛˙ are defined by letting � ! 
1 in I ˛�˙. However, we will be more
interested in the modified operators

eI ˛˙f .t/ D I ˛˙f .t/ � I ˛˙f .0/ D lim
�!�1

�
I ˛�˙f .t/ � I ˛�˙f .0/

�

when the limit exists. For ˛ > 0, we can write

eI ˛Cf .t/ D
1

� .˛/

Z �
.t � s/˛�1C � .�s/˛�1C

�
f .s/ds;

eI ˛�f .t/ D
1

� .˛/

Z �
.s � t/˛�1C � s˛�1C

�
f .s/ds (30)

where we use the notation u�C D u�1fu>0g. These integrals are well defined if f .t/
is dominated by .1C jt j/ı for ı < 1 � ˛ (there are also cases where the integrals
are only semi-convergent). In particular, the fractional integrals are generally not
defined for large values of ˛, as it was the case for I˛0C. We are going to studyeI ˛˙
on the functional spaces H

ˇ;0;ı .

Remark 2. The operator eI ˛˙ is a normalisation of I ˛˙ in the sense that it can be
defined in more cases than I˛˙f . For instance, for ˛ > 0, if we compare I˛�f and
eI˛�f on R

?C for f .s/ D sı , we see that the former one is defined for ı < �˛,
whereas the latter one is defined for ı < 1 � ˛.

Let us now consider the case �1 < ˛ < 0; we can let � tend to infinity in (20)
and obtain

eI ˛Cf .t/ D
1

� .˛/

Z �
.t � s/˛�1C .f .s/ � f .t// � .�s/˛�1C .f .s/ � f .0//� ds;

eI ˛�f .t/ D
1

� .˛/

Z �
.s � t/˛�1C .f .s/ � f .t// � s˛�1C .f .s/ � f .0//� ds: (31)

This expression is defined on H
ˇ;0;ı provided ˇ C ˛ > 0 and ˇ C ˛ C ı < 1.

Let ˛ > �1. Suppose that f is Lipschitz and has compact support, so that f is
0 on .�1; � �, respectively Œ�;C1/. Then I ˛˙f D I ˛�˙f on Œ�;C1/, respectively
.�1; � �, so eI ˛˙f .t/ is equal to I ˛�˙f .t/ � I ˛�˙f .0/, which can be expressed by
means of (21). Thus

eI˛Cf .t/ D
1

� .˛ C 1/
Z �

.t � s/˛C � .�s/˛C
�
df .s/;

eI˛�f .t/ D
1

� .˛ C 1/
Z �

s˛C � .s � t/˛C
�
df .s/: (32)
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By applying Theorem 4, we see that if f is smooth with compact support, theneI ˛˙f
is smooth and

D1eI ˛˙f D D1I ˛˙f D I ˛˙D1f: (33)

Remark 3. If f D 0 on RC and if we look for eI ˛Cf on R
?C, we see when ˛ < 0

that f .0/ and f .t/ disappear in (31), so (30) can be used on R
?C for both positive

and negative ˛, andeI ˛Cf is C1 on R
?C.

Theorem 6. Consider the operators eI ˛C and eI ˛� on the respective time intervals
.�1; T � for T � 0, and ŒT;C1/ for T � 0. Let ı > 0.

� The operatoreI ˛˙ maps continuously H
ˇ;0;ı into H

ˇC˛;0;ı provided ˇ, ˇC ˛ and
ˇ C ˛ C ı are in .0; 1/.

� The composition rule eI
˛2
˙eI

˛1
˙ D eI

˛1C˛2
˙ holds on H

ˇ;0;ı provided ˇ, ˇ C ˛1,
ˇ C ˛1 C ˛2, ˇ C ˛1 C ı and ˇ C ˛1 C ˛2 C ı are in .0; 1/.

Proof. It is of course sufficient to studyeI ˛C. We prove separately the two statements.

Continuity of eI ˛C. We want to study the continuity on the time interval .�1; T �;
by means of a time shift, let us consider the time interval .�1;�1�, and let us
prove that if f is in H

ˇ;:;ı , then the function lim�!�1.I ˛�Cf .t/� I ˛�Cf .�1// is in
H
ˇC˛;:;ı . From Remark 1, it is sufficient to estimate the increments of this function

on intervals Œs; t � � Œ�2nC1;�2n� for n � 0. Consider the proof of Theorem 5
where I ˛0C is replaced by I ˛�C, and let us estimate I ˛�Cf .t/�I ˛�Cf .s/ for � ! �1.
We can write a formula similar to (28). The first term involves .t � �/˛ � .s � �/˛
which tends to 0 as � ! �1, so this first term vanishes. The second and third terms
are dealt with similarly to Theorem 5; the only difference is that the weight 2n� now
becomes 2nı . The last term is an integral on .�1; v/ and is dominated by

.t � s/
Z v

�1
.s � u/˛Cˇ�2jujıdu D .t � s/

Z C1

.t�s/=2
u˛Cˇ�2.u � s/ıdu

� .t � s/
Z C1

.t�s/=2

�
u˛CˇCı�2 C u˛Cˇ�2jsjı

�
du

� C.t � s/
�
.t � s/˛CˇCı�1 C .t�s/˛Cˇ�1jsjı

�

� 2C.t � s/˛Cˇ jsjı :

Composition rule. If f is 0 before some time �0, then eI
˛1
C f .t/ D I

˛1
�Cf .t/ �

I
˛1
�Cf .0/ for � � �0 ^ t . Thus

eI
˛2
CeI

˛1
C f .t/ D lim

�!�1
�
I
˛2
�CeI

˛1
C f .t/ � I ˛2�CeI

˛1
C f .0/

�
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with

I
˛2
�C

eI ˛1
C
f .t/ D I ˛2

�C
I
˛1
�C
f .t/� .t � �/˛2

� .˛2 C 1/I
˛1
�C
f .0/ DI ˛1C˛2

�C
f .t/� .t � �/˛2

� .˛2 C 1/I
˛1
C
f .0/

from Theorem 5. Thus

eI
˛2
CeI

˛1
C f .t/ DeI ˛1C˛2

C f .t/� lim
�!�1

.t � �/˛2 � .��/˛2
� .˛2 C 1/ I

˛1C f .0/ DeI ˛1C˛2
C f .t/:

The case of general functions is then deduced from the density of functions with
compact support in H

ˇ�;0;ıC (Theorem 3); the proof on H
ˇ;0;ı is obtained as in

Theorem 5 by increasing ˇ and decreasing ı slightly. ut

In particular, we deduce from Theorem 6 that eI ˛˙ is a homeomorphism from
H
ˇ�;0;0C onto H

.˛Cˇ/�;0;0C if ˇ and ˛Cˇ are in .0; 1/, andeI -˛˙ is its inverse map.

2.2.3 Operators for Periodic Functions

Consider a bounded 1-periodic function f . Let j˛j < 1; if ˛ < 0, suppose moreover
that f is in H

ˇ for some ˇ > �˛. TheneI ˛Cf is well defined and is given by (30)
or (31); moreover, this function is also 1-periodic, and is 0 at time 0; this follows
from

I ˛�Cf .t C 1/ D I ˛.��1/Cf .t/

so that

I ˛�Cf .t C 1/� I˛�Cf .0/ D
�
I ˛.��1/Cf .t/ � I ˛.��1/Cf .0/

�

C
�
I ˛.��1/Cf .0/� I ˛�Cf .0/

�
:

By letting � ! �1, one easily checks that the second part tends to 0, so
eI ˛Cf .t C 1/ DeI ˛Cf .t/.

The following example explains the action ofeI ˛C on trigonometric functions.

Example 3. Let us computeeI ˛C on the family of complex functions �r.t/ D eirt�1
for r > 0. Suppose 0 < ˛ < 1. The formula

� .˛/ D
Z 1

0

s˛�1e�sds D u˛
Z 1

0

s˛�1e�usds

is valid for u > 0 and can be extended to complex numbers with positive real part.
One can also write it for u D 
ir, r > 0, and we obtain

Z 1

0

s˛�1e˙irsds D e˙i˛�=2r�˛� .˛/ (34)
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where the integral is only semi-convergent. Thus we obtain the classical formula
(see Sect. 7 of [35])

I ˛Ceirt D
1

� .˛/

Z t

�1
.t � s/˛�1eirsds

D eirt

� .˛/

Z 1

0

s˛�1e�irsds D r�˛e�i˛�=2eirt:

We deduce thateI ˛C�r D r�˛e�i˛�=2�r , and this relation is extended to negative ˛
since the operators of exponents˛ and�˛ are the inverse of each other (Theorem 6).
In particular,

eI ˛C .1 � cos.rt// D r�˛ .cos.˛�=2/ � cos.rt � ˛�=2//
eI˛C sin.rt/ D r�˛ .sin.˛�=2/C sin.rt � ˛�=2// : (35)

Remark 4. We can similarly study eI ˛� which multiplies �r by r�˛ei˛�=2; conse-
quently, the two-sided operator .eI ˛C CeI ˛�/=.2 cos.˛�=2// multiplies �r by r�˛ .

Let us now define two modificationsbI
˛

C and I
˛

C ofeI ˛C which will be useful for
the study of the fractional Brownian motion on Œ0; 1�. Consider a bounded function
f defined on the time interval Œ0; 1� and such that f .0/ D 0. If ˛ < 0, suppose again
that f is in H

ˇ for some ˇ > �˛. Let g.t/ be the 1-periodic function coinciding on
Œ0; 1� with f .t/ � t f .1/. We now define on Œ0; 1�

bI
˛

Cf .t/ D t f .1/CeI ˛Cg.t/: (36)

Thus bI
˛

C satisfies the formulae (35) for r D 2n� , and we decide arbitrarily that
bI
˛

Ct D t . On the other hand, let h be the function with 1-antiperiodic increments,
so that

h.1C t/ � h.1C s/ D �h.t/C h.s/;
and coinciding with f on Œ0; 1�. We define

I
˛

Cf .t/ DeI ˛Ch.t/: (37)

Then I
˛

C satisfies (35) for r D .2nC 1/� .

It is clear that bI
˛2

CbI
˛1

C D bI
˛1C˛2
C is satisfied on H

ˇ as soon as ˇ, ˇ C ˛1

and ˇ C ˛1 C ˛2 are in .0; 1/, and the same property is valid for I
˛

C (apply
Theorem 6). Actually, these composition rules can be used to extend the two op-
erators to arbitrarily large values of ˛. Moreover,bI

˛

C and I
˛

C are homeomorphisms

from H
ˇ onto H

ˇC˛ if ˇ and ˇ C ˛ are in .0; 1/, and their inverse maps arebI
�˛
C

and I
�˛
C .
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2.3 Some Other Operators

Let us describe the other operators which are used in this work. The multiplication
operator˘˛ , ˛ 2 R, has already been defined in (16) on R

?C, and let us complement
it with

ĕ˛f .t/ D I 10C˘˛D1f .t/ D
Z t

0

s˛df .s/ D t˛f .t/ � ˛
Z t

0

s˛�1f .s/ds (38)

for f smooth with compact support. In the last form, we see that ĕ
˛
f can be

defined as soon as t˛�1f .t/ is integrable on any Œ0; T �, so on H
ˇ;�;ı if ˛CˇC
 > 0.

On the other hand, let us define for ˛ 2 R the time inversion operators T˛ and
T 0̨ on R

?C by

T˛f .t/ D t2˛f .1=t/ (39)

and

T 0̨f .t/ D �I 10CT˛�1D1f .t/ D �
Z t

0

s2˛�2D1f .1=s/ds D �
Z 1

1=t

s�2˛df .s/

D t2˛f .1=t/ � 2˛
Z 1

1=t

s�2˛�1f .s/ds (40)

and the last form can be used if t�2˛�1f .t/ is integrable on any ŒT;1/, so in par-
ticular on H

ˇ;�;ı if 2˛ > ˇ C ı. Actually, the form of T˛ and a comparison of (40)
and (38) show that

T˛ D ˘2˛T0 D T0˘�2˛ ; T 0̨ D ĕ2˛T0: (41)

Notice that T˛ and T 0̨ are involutions, so that

T˛T
0̨f .t/ D f .t/ � 2˛ t2˛

Z 1

t

s�2˛�1f .s/ds (42)

and

T 0̨T˛f .t/ D ĕ2˛˘�2˛f .t/ D f .t/ � 2˛
Z t

0

f .s/
ds

s
(43)

are the inverse transformation of each other.

Theorem 7. Let 0 < ˇ < 1 and consider the time interval R
?C.

� The operator ĕ
˛

maps continuously H
ˇ;�;ı into H

ˇ;�C˛;ıC˛ if ˇ C 
 C ˛ > 0

and ˇ C ı C ˛ > 0. It satisfies the composition rule ĕ
˛2 ĕ˛1 D ĕ˛1C˛2 on

H
ˇ;�;ı if ˇ C 
 C ˛1 > 0 and ˇ C 
 C ˛1 C ˛2 > 0.
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� The operator T˛ maps continuously H
ˇ;�;ı into H

ˇ;�ıC2.˛�ˇ/;��C2.˛�ˇ/. If
moreover 2˛ > ˇ C ı and 2˛ > ˇ C 
 , the operator T 0̨ satisfies the same
property.

Proof. We prove separately the two parts.

Study of ĕ
˛

. The continuity on H
ˇ;�;ı is proved by noticing

ˇ̌
ĕ˛f .t/

ˇ̌ � ˇ̌˘˛f .t/
ˇ̌C C

Z t

0

s˛�1Cˇ s�;ıds � C 0t˛Cˇ t�;ı ;

ˇ
ˇĕ˛f .t/ � ĕ˛f .s/ˇˇ � ˇˇ˘˛f .t/ �˘˛f .s/

ˇ
ˇC C

Z t

s

u˛Cˇ�1u�;ıdu

� ˇˇ˘˛f .t/ �˘˛f .s/
ˇ
ˇC C 0.t � s/ˇ sup

s�u�t
u˛u�;ı ;

and by applying Theorem 2. The composition rule is evident for smooth functions
(use the first equality of (38)), and can be extended by density (the parameter ı is
unimportant since we only need the functions on bounded time intervals).

Study of T˛ and T 0̨ . If f is in H
ˇ;�;ı , then f .1=t/ is dominated by t�ˇ t�ı;�� , and

if 2n � s � t � 2nC1,
ˇ
ˇf .1=t/� f .1=s/ˇˇ � C sup

s�u�t
u�ı;�� .1=s � 1=t/ˇ � C 0.2n/�ı;�� s�ˇ t�ˇ .t � s/ˇ

� C 00.2n/�ı�2ˇ;���2ˇ .t � s/ˇ ;

so T0f W t 7! f .1=t/ is in H
ˇ;�2ˇ�ı;�2ˇ�� . The continuity of T˛ and T 0̨ is then a

consequence of (41) and of the continuity of ˘2˛ and ĕ
2˛

. ut
Remark 5. We deduce in particular from Theorem 7 that T˛ and T 0̨ are homeo-
morphisms from H

˛�;0;0C into itself for 0 < ˛ < 1. We also deduce that T˛T 0̨ ,
respectively T 0̨T˛, is a continuous endomorphism of H

ˇ;�;ı when 2˛ > ˇ C 
 and
2˛ > ˇC ı, respectively when ˇC 
 > 0 and ˇC ı > 0; when the four conditions

are satisfied, they are the inverse of each other. The form ĕ2˛˘�2˛ of T 0̨T˛ can be
used on a bounded time interval Œ0; T �, and in this case we only need ˇ C 
 > 0.

The time inversion operator T0 enables to write the relationship between I˛� and
I ˛0C on R

?C. If ˛ > 0 and if f is a smooth function with compact support in R
?C, we

deduce from the change of variables s 7! 1=s that

I˛�f .1=t/ D
Z 1

1=t

�
s � 1

t

	˛�1
f .s/ds D

Z t

0

�
1

s
� 1
t

	˛�1
f .1=s/

ds

s2

so that

T0I
˛�T0 D ˘1�˛I ˛0C˘�1�˛ : (44)
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3 Time Inversion for Self-Similar Processes

We give here time inversion properties which are valid for any H -self-similar
centred Gaussian process .	t I t > 0/, and not only for the fractional Brownian
motion. Such a process must have a covariance kernel of the form

C.s; t/ D sH tH�.s=t/ (45)

where �.u/ D �.1=u/ and j�.u/j � �.1/. It then follows immediately by comparing
the covariance kernels that if TH is the time inversion operator defined in (39), then
one has the equality in law TH	 ' 	 . Notice that this holds even when H is not
positive.

Remark 6. The Lamperti transform (see for instance [5])

.	.t/I t > 0/ 7!
�
e�Ht	.et /I t 2 R

�
(46)

maps H -self-similar processes 	t into stationary processes Zt . Then TH	 ' 	

is equivalent to the property Z�t ' Zt which is valid for stationary Gaussian pro-
cesses (invariance by time reversal).

Remark 7. We have THBH ' BH and can deduce properties of BH on Œ1;C1/
from its properties on Œ0; 1�. For instance, BH lives in H

H� on Œ0; 1�, and we can
check from Theorem 7 that TH sends this space on Œ0; 1� into the space H

H�;:;0C
on Œ1;C1/; thus BH lives in H

H�;0;0C on RC (notation (15)).

We now prove another time inversion property when H > 0 (we do not assume
H < 1). Assume provisionally that the paths of 	 are absolutely continuous; then
its derivativeD1	 is .H � 1/-self-similar, so TH�1D1	 ' D1	 and

T 0
H	 D �I 10CTH�1D1	 ' �I 10CD1	 D �	 ' 	:

In the general case (when	 is not absolutely continuous), the same property can be
proved with the theory of generalised processes (as said in [29]); we here avoid this
theory.

Theorem 8. For H > 0, let .	t I t � 0/ be a H -self-similar centred Gaussian
process, and consider the time inversion operators TH and T 0

H . Then one has the
equalities in law T 0

H	 ' TH	 ' 	 .

Proof. As it has already been said in the beginning of this section, TH	 ' 	 is
obtained by comparing the covariance kernels. Since 	 is H -self-similar, the norm
of	t in L1.˝/ is proportional to tH , so the variable

R1
T j	t jt�2H�1dt is in L1.˝/

for any T > 0, and is therefore almost surely finite. Thus T 0
H	 is well defined.

Moreover, T 0
H	 D T 0

HTHTH	 ' T 0
HTH	 , so let us compare the covariance

kernels of 	 and T 0
HTH	 D ĕ2H˘�2H	 given by (43). We have from (45) that
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E

"

	T

Z S

0

	s
ds

s

#

D TH
Z S

0

sH�1�.s=T /ds D T 2H
Z S=T

0

uH�1�.u/du:

Thus

E

" Z T

0

	t
dt

t

! Z S

0

	s
ds

s

!#

D
Z T

0

t2H�1
Z S=t

0

uH�1�.u/du dt D 1

2H

Z 1

0

�
T ^ S

u

	2H
uH�1�.u/du

D 1

2H

 

T 2H
Z S=T

0

uH�1�.u/duC S2H
Z 1

S=T

u�H�1�.u/du

!

D 1

2H

 

T 2H
Z S=T

0

uH�1�.u/duC S2H
Z T=S

0

uH�1�.u/du

!

(we used �.1=u/ D �.u/ in the last equality). We deduce from these two equations
that

E

" 

	T � 2H
Z T

0

	t
dt

t

! 

	S � 2H
Z S

0

	s
ds

s

!#

D E
�
	T	S

�

since the other terms cancel one another, so T 0
HTH	 has the same covariance kernel

as 	 . ut
Remark 8. Theorem 8 can be applied to the fractional Brownian motionBH . More-
over, the relations BH ' THBH ' T 0

HB
H can be extended to R

? by defining

THf .t/ D jt j2Hf .1=t/; T 0
Hf D 
I 10˙TH�1D1f on R

?˙.

Since BH also has stationary increments, we can deduce how the law of the
generalised process D1BH is transformed under the time transformations t 7!
.at C b/=.ct C d/, see [29].

The law of theH -self-similar process	 is therefore invariant by the transforma-

tions THT 0
H and T 0

HTH D ĕ2H˘�2H given by (42) and (43). We now introduce
a generalisation TH;L of T 0

HTH , which was also studied in [21].

Theorem 9. On the time interval RC, for H > 0 and L > 0, the operator

TH;L D ˘H�LT 0
LTL˘

L�H D ˘H�L ĕ2L˘�L�H (47)

is a continuous endomorphism of H
ˇ;�;ı when 0 < ˇ < 1, and ˇC 
 and ˇC ı are

greater thanH �L; in particular, it is a continuous endomorphism of H
H�;0;0C if
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0 < H < 1. It is defined on a function f as soon as tL�H�1f .t/ is integrable on
any Œ0; T �, and it satisfies

TH;Lf .t/ D f .t/ � 2L tH�L
Z t

0

f .s/sL�H�1ds: (48)

If 	 is a H -self-similar centred Gaussian process, then TH;L	 has the same law
as 	 .

Proof. The continuity property of TH;L can be deduced from Theorem 7 and Re-
mark 5. The representation (48) follows easily from (38) and the second form of
TH;L in (47). Let 	 be a centred Gaussian H -self-similar process; then the L1-

norm of 	t is proportional to tH , so
R T
0
tL�H�1j	t jdt is integrable and therefore

almost surely finite for any T > 0. We deduce that TH;L	 is well defined; we have

T 0
LTL˘

L�H	 ' ˘L�H	

because ˘L�H	 is L-self-similar. By applying ˘H�L to both sides we obtain
TH;L	 ' 	 . ut
Remark 9. In the non centred case, we have TH	 ' 	 and T 0

H	 ' TH;L
	 ' �	 .

We will resume our study of TH;L for self-similar processes in Sect. 4.4.

4 Representations of Fractional Brownian Motions

Starting from the classical representation of fractional Brownian motions on R de-
scribed in Sect. 4.1, we study canonical representations on RC (Sect. 4.2) and R�
(Sect. 4.3). In Sect. 4.4, we also consider the non canonical representations on RC
introduced in Theorem 9.

4.1 A Representation on R

For 0 < H < 1, the basic representation of a fractional Brownian motion BH is

BHt D 
Z C1

�1

�
.t � s/H�1=2

C � .�s/H�1=2
C

�
dWs (49)

for a positive parameter , see [26]. It is not difficult to check that the integral of the
right-hand side is Gaussian, centred, with stationary increments, andH -self-similar.
Thus BHt is a fractional Brownian motion; its covariance is given by (2), and the
variance � of BH1 is proportional to 2; the precise relationship between � and 
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is given in Theorem 33. Subsequently, we will consider the fractional Brownian
motion corresponding to

 D .H/ D 1=� .H C 1=2/; (50)

so that (following (96))

� D �.H/ D �2cos.�H/

�
� .�2H/; �.1=2/ D 1: (51)

In particular, B1=2 D W is the standard Brownian motion. This choice of  is due
to the following result, where we use the modified Riemann–Liouville operators of
Sect. 2.2.2.

Theorem 10. The family of processes .BH I 0 < H < 1/ defined by (49) with (50)
can be written as

BH DeI H�1=2
C W: (52)

More generally,

BH DeI H�J
C BJ (53)

for any 0 < J;H < 1.

Proof. The formula (52) would hold true from (32) if W were Lipschitz with com-

pact support; the operator eI
H�1=2
C is continuous on H

1=2�;0;0C (Theorem 6) in
which W lives, and Lipschitz functions with compact support are dense in this
space (Theorem 3); moreover, integration by parts shows that the stochastic inte-
gral in the right-hand side of (49) can also be computed by approximating W with
smooth functions with compact support, so (52) holds almost surely. Then (53) fol-
lows from the composition rules for Riemann–Liouville operators (Theorem 6). ut

We deduce in particular from (53) that (52) can be reversed (W D B1=2), and

W DeI 1=2�H
C BH :

Thus the increments of W and BH generate the same completed filtration, namely
Ft .dBH / D Ft .dW/ (with notation (5)).

Remark 10. Relation (53) can be written by means of (30) (H >J ) or (31)
(H <J ). It can be written more informally as

BHt D
1

� .H � J C 1/
Z C1

�1

�
.t � s/H�JC � .�s/H�JC

�
dBJs ;

where the integral is obtained by approximating BJ by Lipschitz functions with
compact support, and passing to the limit.
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Relations (52) or (53) can be restricted to the time interval R�; in order to know
BH on R�, we only needW on R�, and vice-versa. On the other hand, they cannot
be used on RC; in order to know BH on RC, we have to knowW on the whole real
line R. If we want a representation on RC, we can reverse the time (t 7! �t) for all
the processes, so that the operatorseI C are replaced byeI �. We obtain on RC the
backward representation

BHt DeI H�1=2
� W.t/ D 1

� .H C 1=2/
Z 1

0

�
sH�1=2 � .s � t/H�1=2

C
�
dWs: (54)

However, in this formula, if we want to know BH at a single time t , we needW on
the whole half-line RC; next section is devoted to a representation formula where
we only needW on Œ0; t �.

4.2 Canonical Representation on RC

We shall here explain the derivation of the canonical representation of fractional
Brownian motions on RC which was found by [29,30], and the general relationship
between BJ and BH which was given in [20]. More precisely, we want the various
processes .BH I 0 < H < 1/ to be deduced from one another, so that all of them
generate the same filtration.

As explained in the introduction, we start from the relation BH DeI H�1=2
� W of

(54) and apply the time inversion t 7! 1=t on the increments dWt and dBHt ; this
time inversion is made by means of the operators T 0

1=2
and T 0

H defined in (39) (they

are involutions), which preserve respectively the laws of W and BH (Theorem 8).
Thus

BH '
�
T 0
H
eI
H�1=2
� T 0

1=2

�
W:

It appears that this is the canonical representation of BH . We now make more ex-
plicit this calculation, and generalise it to the comparison of BH and BJ for any J

and H ; starting from BH DeI H�J
� BJ , we can show similarly that

BH '
�
T 0
H
eI
H�J
� T 0

J

�
BJ : (55)

Theorem 11. On the time interval RC, the family of fractional Brownian motions
BH , 0 < H < 1, can be defined jointly so that BH D GJ;H0C BJ for

G
J;H
0C D ĕHCJ�1

IH�J
0C ĕ1�H�J

(56)

(see Sect. 2 for the definitions of I ˛0C and ĕ
˛

). This family of operators satisfies the

composition rule GH;L0C G
J;H
0C D GJ;L0C , and all the processes BH generate the same
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completed filtration. Moreover, the operator GJ;H0C maps continuously H
J�;0;0C

(where paths of BJ live) into H
H�;0;0C, and can be defined by the following re-

lation; if we define

�J;H .u/ D .H � J /
Z u

1

�
vHCJ�1 � 1

�
.v � 1/H�J�1dv C .u � 1/H�J (57)

for 0 < J;H < 1 and u > 1, and if

K
J;H
0C .t; s/ D 1

� .H � J C 1/�
J;H

�
t

s

	
sH�J ; (58)

then

G
J;H
0C f .t/ D

Z t

0

K
J;H
0C .t; s/df .s/ (59)

for f Lipschitz with compact support in R
?C. Moreover, BH is given by the Itô

integral

BHt D
Z t

0

K
1=2;H
0C .t; s/dWs (60)

for W D B1=2.

Proof. Let us divide the proof into four steps.

Step 1: Definition of the families GJ;H0C and BH . Following (55), we define

G
J;H
0C D T 0

H
eI
H�J
� T 0

J ; BH D G1=2;H0C W; (61)

so that BH is a H -fractional Brownian motion. The continuity of GJ;H0C from
H
J�;0;0C into H

H�;0;0C is then a consequence of Theorems 6 and 7; it indeed
follows from these two theorems that T 0

J and T 0
H are continuous endomorphisms of

respectively H
J�;0;0C and H

H�;0;0C, and thateI
H�J
� is continuous from H

J�;0;0C
into H

H�;0;0C. Moreover

GH;L
0C

GJ;H
0C
D T 0

L
eI L�H

�
T 0

HT
0

H
eI H�J

�
T 0

J D T 0

L
eI L�H

�

eI H�J

�
T 0

J D T 0

L
eI L�J

�
T 0

J D GJ;L
0C

and consequently

G
J;H
0C BJ D GJ;H0C G

1=2;J
0C W D G1=2;H0C W D BH :

The equality between filtrations of BH also follows from this relation.

Step 2: Proof of (56). First assume H > J , and let us work on smooth functions
with compact support in R

?C. We deduce from (44) and the relations T˛ D ˘2˛T0 D
T0˘

�2˛ that
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TH�1IH�J� TJ�1 D ˘2H�2T0IH�J� T0˘
2�2J

D ˘2H�2˘1�HCJ IH�J
0C ˘�1�HCJ˘2�2J

D ˘HCJ�1IH�J
0C ˘1�H�J : (62)

On the other hand, T 0̨ has been defined as�I 10CT˛�1D1, andeI ˛� D I 10CI ˛�D1 from
(33), so the definition (61) can be written as

G
J;H
0C D .I 10CTH�1D1/.I 10CIH�J� D1/.I 10CTJ�1D1/

D I 10CTH�1IH�J� TJ�1D1

D I 10C˘HCJ�1IH�J
0C ˘1�H�JD1

D I 10C˘HCJ�1IH�J
0C D1I 10C˘1�H�JD1

D
�
I 10C˘HCJ�1D1

�
IH�J
0C

�
I 10C˘1�H�JD1

�

D ĕHCJ�1
IH�J
0C ĕ1�H�J

(63)

(we used (62) in the third equality and Theorem 4 in the fifth one). The equality
can be extended to the functional space H

J�;0;0C, since GJ;H0C is continuous on
this space, and the right-hand side is continuous on H

J� on any interval Œ0; T �.
Moreover, inverting this relation provides GH;J0C , so that this expression of GJ;H0C
also holds when H < J .

Step 3: Proof of (59). For smooth functions f with compact support in R
?C, (27)

yields

˘HCJ�1IH�J
0C ˘1�H�J f .t/

D IH�J
0C f .t/C 1

� .H � J /
Z t

0

��s
t

�1�H�J � 1
	
.t � s/H�J�1f .s/ds;

so (63) implies

G
J;H
0C f .t/

DIH�J
0C f .t/C 1

� .H � J /
Z t

0

�Z v

0

�� s
v

�1�H�J � 1
	
.v � s/H�J�1df .s/

	
dv

D 1

� .H � J C 1/
Z t

0

.t � s/H�Jdf .s/

C H � J
� .H � J C 1/

Z t

0

�Z t

s

�� s
v

�1�H�J � 1
	
.v � s/H�J�1dv

	
df .s/:

This expression can be written as (59) for a kernel KJ;H
0C , and a scaling argument

shows that KJ;H
0C is of the form (58) for �J;H .u/ D � .H � J C 1/KJ;H

0C .u; 1/.
Then (57) follows from a simple verification.
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Step 4: Proof of (60). By means of an integration by parts, we write (59) for J D
1=2 and H ¤ 1=2 in the form

G
1=2;H
0C f .t/ D f .t/

t

Z t

0

K
1=2;H
0C .t; s/dsC

Z t

0

K
1=2;H
0C .t; s/

�
D1f .s/�f .t/=t�ds

D f .t/

t

Z t

0

K
1=2;H
0C .t; s/ds �

Z t

0

�
f .s/ � s

t
f .t/

�
@sK

1=2;H
0C .t; s/ds:

(64)

On the other hand,

.�J;H /0.u/ D .H � J /.u � 1/H�J�1uHCJ�1

so that

@sK
J;H
0C .t; s/ D 1

� .H � J /

 

�J;H .
t

s
/sH�J�1 � .t � s/H�J�1

�
t

s

	HCJ!
:

An asymptotic study of (57) shows that �1=2;H .u/ is O..u� 1/H�1=2/ as u # 1 and
O.u2H�1 _ 1/ as u " 1; thus @sK

1=2;H
0C .t; s/ is O..t � s/H�3=2/ as s " t , and is

O.s�H�1=2 _ sH�3=2/ as s # 0. An approximation by smooth functions shows that
(64) is still valid for W , and a stochastic integration by parts leads to (60). ut
Remark 11. It is also possible to write a representation BH D G

J;H
TC BJ on the

time interval ŒT;C1/, associated to the kernel KJ;H
TC .t; s/ D KJ;H

0C .t � T; s � T /.
In [22], it is proved that letting T tend to �1, we recover at the limit (49).

Remark 12. If H > J , we have

�J;H .u/ D .H � J /
Z u

1

vHCJ�1.v � 1/H�J�1dv:

If H < J , this integral diverges and �J;H .u/ is its principal value. This function,
and therefore the kernel KJ;H

0C .t; s/ can also be written by means of the Gauss hy-
pergeometric function, see [8, 20].

Remark 13. If H C J D 1, then (56) is simply written as GJ;H0C D IH�J
0C . Thus

the relation between BH and B1�H is particularly simple (as it has already been
noticed in [20]), but we have no intuitive explanation of this fact.

Remark 14. The expression (56) for GJ;H0C is close to the representation given in
[32] for J D 1=2. We define

Z
J;H
t D IH�J

0C ĕ1�J�H
BJ .t/ D 1

� .H � J C 1/
Z t

0

.t � s/H�J s1�J�H dBJs
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which is an Itô integral in the case J D 1=2, and the fractional Brownian motion
BH is given by

BHt D ĕHCJ�1
ZJ;H .t/ D

Z t

0

sHCJ�1dZJ;Hs

which can be defined by integration by parts.

Remark 15. In the case J D 1=2, let us compare our result with the decomposition
of [8]. We look for a decomposition ofG1=2;H0C which would be valid on the classical
Cameron–Martin space H1=2 D I 10CL2 of W . To this end, we start from (63)

G
1=2;H
0C D I 10C˘H�1=2IH�1=2

0C ˘1=2�HD1

which is valid for smooth functions. When H > 1=2, this formula is valid on H1=2

for any finite time interval Œ0; T � because these five operators satisfy the continuity
properties

H1=2 ! L2 ! L1 ! L1 ! L1 ! L1

(use the fact that I ˛0C is a continuous endomorphism of L1 for ˛ > 0). However, it

does not make sense on H1=2 for H < 1=2 because IH�1=2
0C is in this case a frac-

tional derivative, and is not defined for non continuous functions. Thus let us look
for an alternative definition of the operator G1=2;H0C ; in order to solve this question,
we apply the property (29) of Riemann–Liouville operators and get

G
1=2;H
0C D I 2H0C

�
I 1�2H
0C ˘H�1=2IH�1=2

0C
�
˘1=2�HD1

D I 2H0C
�
˘1=2�H I 1=2�H

0C ˘2H�1�˘1=2�HD1

D I 2H0C ˘1=2�H I 1=2�H
0C ˘H�1=2D1

which makes sense on H1=2 if H < 1=2. This is the expression of [8].

Remark 16. A consequence of (60) is that we can write the conditional law of
.BHt I t � S/ given .BHt I 0 � t � S/. This is the prediction problem, see also
[13, 29].

Remark 17. Theorem 11 can also be proved by using the time inversion operators
TH rather than T 0

H . If we start again from (54) and consider the process with inde-
pendent increments

V Ht D
Z t

0

sH�1=2dWs;

then it appears that BHt depends on future values of V H ; consequently, THBH .t/
depends on past values of THV

H . On the other hand, THBH 'BH and
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THV
H 'V H from Theorem 8, so we obtain an adapted representation of BH

with respect to V H , and therefore with respect to W . One can verify that this is the
same representation as Theorem 11; however, the composition rule for the operators
G
J;H
0C is less direct with this approach.

Let us give another application of Theorem 11. The process BH has station-
ary increments, so a natural question is to know whether it can be written as
BHt D AHt � AH0 for a stationary centred Gaussian process AH , and to find AH .
This is clearly not possible on an infinite time interval, since the variance of BH

is unbounded. However, let us check that this is possible in an explicit way on a
finite time interval, and that moreover we do not have to increase the �-algebra of
BH . Since we are on a bounded time interval Œ0; T �, the stationarity means that
.AHUCt I 0 � t � T � U / and .AHt I 0 � t � T � U / have the same law for any
0 < U < T .

Theorem 12. Let T > 0. There exists a stationary centred Gaussian process
.AHt I 0 � t � T / such that BHt D AHt � AH0 is a H -fractional Brownian motion
on Œ0; T �, and BH and AH generate the same �-algebra.

Proof. Consider BH D G
1=2;H
0C W . We look for a variable AH0 such that AHt D

BHt C AH0 is stationary; this will hold when

E
�
AHt A

H
s

�D �
2

�
t2H C s2H � jt � sj2H

�
CE

�
BHt A

H
0

�CE
�
BHs A

H
0

�CE
�
.AH0 /

2
�

is a function of t � s, so when

E
�
BHt A

H
0

� D �� t2H =2:

By applying the operatorGH;1=20C , this condition is shown to be equivalent to

E
�
WtA

H
0

� D ��
2
G
H;1=2
0C t2H D ��

2

2H

H C 1=2� .H C 1=2/t
HC1=2

by using the formulae (63) and (22) for computingGH;1=20C , and for � given by (51).
Thus we can choose

AH0 D
Z T

0

d

dt
E
�
WtA

H
0

�
dWt D ��H � .H C 1=2/

Z T

0

tH�1=2dWt :

ut
In particular we haveA1=20 D �WT =2. Of course we can add toAH0 any indepen-

dent variable; this increases the �-algebra, but this explains the mutual compatibility
of the variables AH0 when T increases. More generally, the technique used in the
proof enables to write any variable A of the Gaussian space of BH , knowing the
covariances EŒABHt �.
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Remark 18. We can also try to write BH on Œ0; T � as the increments of a process
which would be stationary on R. We shall address this question in Remark 31.

Remark 19. Another classical stationary process related to the Brownian motion is
the Ornstein–Uhlenbeck process; actually there are two different fractional exten-
sions of this process, see [5].

4.3 Canonical Representation on R�

In the representation (6), we have Ft .dBH / D Ft .dW / (with notation (5)).
However, when t < 0, the filtration Ft .dBH / is strictly included into Ft .BH /.
We now give a representation of BH on the time interval R� for which Ft .BH / D
Ft .dW /; one can then deduce a canonical representation of BH (see Remark 20
below). In the particular case H D 1=2 of a standard Brownian motion, we recover
the classical representation of the Brownian bridge.

We want BHt , t < 0, to depend on past increments of W ; by applying the time
reversal t 7! �t , this is equivalent to wanting BHt , t > 0, to depend on future
increments of W . The starting point is the operator T˛T 0̨ of (42) which can be
written in the form

THT
0
Hf .t/ D �2Ht2H

Z 1

t

s�2H�1 .f .s/ � f .t// ds:

Thus THT 0
Hf .t/ depends on future increments of f , and the equality in law

BH ' THT 0
HB

H enables to writeBH as a process depending on future increments
of another H -fractional Brownian motion. On the other hand, in the representation

BH ' eI
H�1=2
� W of (54), future increments of BH depend on future increments

ofW . Thus, in BH ' THT 0
H
eI
H�1=2
� W , the value of BHt depends on future incre-

ments of W , and this answers our question. The same method can be used with W
replaced by BJ .

Theorem 13. LetBJ be a J -fractional Brownian motion on R�; consider the func-
tion �J;H of (57). On R

?�, the operator

G
J;H
C f .t/ D

Z t

�1
K
J;H
C .t; s/df .s/

for f smooth with compact support, with

K
J;H
C .t; s/ D � .H � J C 1/�1�J;H .s=t/.�t/2H .�s/�H�J ; s < t < 0;

can be extended to a continuous operator from H
J�;0;0C into H

H�;0;0C,

and eB
J;H DGJ;HC BJ is a H -fractional Brownian motion on R�. Moreover,

Ft .eB
J;H

/ D Ft .dBJ / (with notation (5)).
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Proof. We transform the question on R� into a question on RC by means of the
time reversal t 7! �t . Following the discussion before the theorem, we introduce
on R

?C the operator

GJ;H� D THT 0
H
eI
H�J
� :

It follows from Theorems 6 and 7 that GJ;H� maps continuously H
J�;0;0C into

H
H�;0;0C; moreover eB

J;H D GJ;H� BJ is a H -fractional Brownian motion. If we
compare GJ;H� with GJ;H0C given in (61), we see that

GJ;H� D THGJ;H0C T 0
J :

For f smooth with compact support in R
?C,

G
J;H
0C T 0

Jf .t/D
Z t

0

K
J;H
0C .t; s/s2J�2D1f .1=s/dsD

Z 1

1=t

K
J;H
0C .t; 1=s/s�2Jdf .s/

so

GJ;H� f .t/ D t2H
Z 1

t

K
J;H
0C .1=t; 1=s/s�2Jdf .s/ D

Z 1

t

KJ;H� .t; s/df .s/

with

KJ;H� .t; s/ D t2H s�2JKJ;H
0C .1=t; 1=s/D � .H � J C 1/�1�J;H .s=t/t2H s�H�J

(apply (58)). We still have to check that

�
�
eB
J;H

s I s � t
�
D �

�
BJs � BJu I s � u � t

�

for t � 0. The inclusion of the left-hand side in the right-hand side follows from

the discussion before the theorem. For the inverse inclusion, notice that eB
J;H D

GJ;H� BJ can be reversed and

BJ DeI J�H
� T 0

HTH
eB
J;H

:

Thus future increments of BJ depend on future increments of T 0
HTH

eB
J;H

, which

depend on future values of eB
J;H

from (43). ut
Remark 20. The theorem involves Ft .dBJ / which is strictly smaller than Ft .BJ /,
so the representation is not really canonical on R�; however, Ft .dBJ / is also the
filtration generated by (for instance) the increments of the process

� Jt D
Z t

�1
.�s/�2J dBJs D .�t/�2JBJt C 2J

Z t

�1
.�s/�2J�1BJs ds;
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and

eB
J;H

t D
Z t

�1
K
J;H
C .t; s/.�s/2Jd� Js : (65)

The process � Jt tends to 0 at �1, so

Ft .eB
J;H

/ D Ft .dBJ / D Ft .d� J / D Ft .� J /

and (65) is therefore a canonical representation on R� (notice that � 1=2 has
independent increments).

Remark 21. By applying Theorem 13 with J D 1=2, we can predict on R� future
values of BH knowing previous values; this prediction must take into account the
factBH0 D 0; this can be viewed as a bridge; actually forH D J D 1=2, we recover

the classical Brownian bridge. More precisely, �1=2;1=2 � 1, so K1=2;1=2
C .t; s/ D

jt j=jsj on R�; thus W D B1=2 and W D eB
1=2;1=2

are Brownian motions on R�,
and satisfy

W t D jt j
Z t

�1
jsj�1dWs; dW t D �W t

jt j dt C dWt :

Notice in the same vein that BHt�T ' BHT�t on Œ0; T � for T > 0, so the study on
Œ�T; 0� is related to the time reversal of BH on Œ0; T �; some general results for this
problem were obtained in [7].

4.4 Some Non Canonical Representations

Let us come back to general H -self-similar centred Gaussian processes 	t , t � 0.
In Theorem 9, we have proved the equality in law

	t ' TH;L	.t/ D 	t � 2L tH�L
Z t

0

sL�H�1	sds

for L > 0. When 	 D W is a standard Brownian motion so that H D 1=2, this
is the classical Lévy family of non canonical representations of W with respect to
itself. We now verify that this property of non canonical representation holds in
many cases, in the sense that Ft .TH;L	/ is strictly included in Ft .	/ for t > 0

(it is of course sufficient to consider the case t D 1). In the following theorem we
need some notions about Cameron–Martin spaces and Wiener integrals (see a short
introduction in Appendix C.1).

Theorem 14. Let 	 D .	t I 0 � t � 1/ be the restriction to Œ0; 1� of a H -self-
similar centred Gaussian process for H > 0. Let W be a separable Fréchet space
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of paths in which	 lives, and let H be its Cameron–Martin space. Suppose that the
function  .t/ D tHCL is in H, and denote by h	; iH its Wiener integral. Then

�.	/ D �.TH;L	/ _ �.h	; iH/

where the two �-algebras of the right-hand side are independent.

Proof. The operator TH;L operates on H, and it is easy to check that functions
proportional to  constitute the kernel of TH;L. On the other hand, for any h in H,
h ¤ 0, we can write the decomposition

	 D h	; hiH h

jhj2H
C
�
	 � h	; hiH h

jhj2H

	

where the two terms are independent: this is because independence and orthogona-
lity are equivalent in Gaussian spaces, and

E

h
h	; hiH

˝
	 � h	; hiH h

jhj2H
; h0˛

H

i
D 0

for any h0 in H (apply (99)). Thus

TH;L	 D h	; hiHTH;Lhjhj2H
C process independent of h	; hiH;

and TH;L	 is independent of h	; hiH if and only if h is in the kernel of TH;L, so if
and only if h is proportional to  . Thus the Gaussian space of	 , which is generated
by h	; hiH, h 2 H, is the orthogonal sum of the Gaussian space generated by
TH;L	 and of the variables proportional to h	; iH. We deduce the theorem. ut

Notice that on the other hand, the transformation TH;L becomes injective on the
whole time interval RC, so �.	/ and �.TH;L	/ coincide; actually, the theorem
cannot be used on RC because  is no more in H; this can be viewed from the
fact that	 lives in the space of functions f such that t�H�1�"f .t/ is integrable on
Œ1;1/ (for " > 0), so H is included in this space, whereas  does not belong to it
for " � L.

In the case where 	 is the standard Brownian motion W , we obtain the well
known property

Ft .W / D Ft .T1=2;LW / _ �
�
ĕL�1=2

W.t/
�
: (66)

Let us prove that this property enables to write Theorem 14 in another form when
	 has a canonical representation with respect to W , see also [21].

Theorem 15. Consider the standard Brownian motionW on RC, and let

	t D .AW /.t/ D
Z t

0

K.t; s/dWs
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be given by a kernel K satisfying K.�t; �s/ D �H�1=2K.t; s/ for any � > 0 and
someH > 0. Suppose that Ft .	/ D Ft .W / (the representation is canonical). Then
	 is a H -self-similar process, and we have

TH;L	 D AT1=2;LW; Ft .	/ D Ft .TH;L	/ _ �
�
ĕL�1=2

W.t/
�

(67)

where the two �-algebras of the right side are independent.

Proof. The scaling condition on K implies that 	 is H -self-similar. It can be
viewed for instance as a random variable in the space of functions f such that
t"�1�H;�"�H�1f .t/ is integrable on R

?C. On the other hand, notice that

TH;L D ˘H�1=2˘1=2�L ĕ2L˘�L�1=2˘1=2�H D ˘H�1=2T1=2;L˘1=2�H (68)

from (47), and consider the linear functional ˘1=2�HA mapping W to the
1=2-self-similar process ˘1=2�H	 . The monomials  ˇ .t/ D tˇ , ˇ > 1=2,
generate the Cameron–Martin space H1=2 ofW ; we deduce from the scaling condi-
tion that they are eigenfunctions of ˘1=2�HA and of T1=2;L, so the commutativity
relation

˘1=2�HAT1=2;L D T1=2;L˘1=2�HA (69)

holds on fractional polynomials, and therefore on H1=2 and on the paths ofW (a lin-
ear functional of W which is zero on the Cameron–Martin space must be zero on
W ). We deduce from (68) and (69) that

TH;L	D˘H�1=2T1=2;L˘1=2�HAW D ˘H�1=2˘1=2�HAT1=2;LWDAT1=2;LW

and the first part of (67) is proved. We have moreover assumed that Ft .AW / D
Ft .W /; this can be applied to the Brownian motion T1=2;LW so Ft .AT1=2;LW / D
Ft .T1=2;LW /. Thus, by applying (66),

Ft .	/ D Ft .W / D Ft .T1=2;LW / _ �.ĕL�1=2
W.t//

D Ft .AT1=2;L	/ _ �.ĕL�1=2
W.t// D Ft .TH;L	/ _ �.ĕL�1=2

W.t//

so the second part of (67) is also proved. ut
Remark 22. Another proof of the second part of (67) is to use directly Theorem 14;
we verify that on Œ0; 1�

ĕL�1=2
W.1/ D hW;�iH1=2 D h	;A�iH

for �.t/ D tLC1=2=.LC1=2/, andA� is proportional to the function .t/ D tLCH
from the scaling condition.

Theorem 16. Consider on RC the family of fractional Brownian motions
BH DG1=2;H0C W , so that BH DGJ;H0C BJ . Then, for any L>0, the process
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BH;LD TH;LBH is a H -fractional Brownian motion satisfying the relation
BH;LDGJ;H0C BJ;L. Moreover, for any t ,

Ft .BH / D Ft .BH;L/ _ �
�
ĕL�1=2

W.t/
�
; (70)

and the two �-algebras of the right-hand side are independent.

Proof. This is a direct application of Theorem 15 with A D G
1=2;H
0C . The first part

of (67) implies that

BH;L D G1=2;H0C T1=2;LW;

and the relationship between BJ;L and BH;L follows from the composition rule
satisfied by the family GJ;H0C . ut

5 Riemann–Liouville Processes

In this section, we compare the fractional Brownian motion BH with the process
XH D IH�1=2

0C W .

5.1 Comparison of Processes

The processes

XHt D IH�1=2
0C W.t/ D 1

� .H � 1=2/
Z t

0

.t � s/H�1=2dWs (71)

defined on RC are often called Riemann–Liouville processes. Notice that these pro-
cesses can be defined for anyH > 0. When 0 < H < 1, these processes have paths
in H

H� on bounded time intervals from Theorem 5, and can be viewed as good ap-
proximations of fractional Brownian motions BH for large times, as it is explained
in the following result.

Theorem 17. For 0<H <1, we can realise jointly the two processes .XH ; BH /
on RC, so thatXH �BH isC1 on R

?C. Moreover, for T >0, S >0 and 1�p<1,





 sup
0�t�T

ˇ̌
.XHSCt � XHS /� .BHSCt � BHS /

ˇ̌



p
� Cp SH�1T (72)

(where k:kp denotes the Lp.˝/-norm for the probability space).
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Proof. Let .BHt I t � 0/ be defined by BH D eI H�1=2
C W for a standard Brownian

motion .Wt I t 2 R/. The process W can be decomposed into the two independent
processesW C

t D Wt and W �
t D W�t for t � 0, and consequently, the process BH

is decomposed into BH D XH C YH where

XH DeI H�1=2
C

�
W 1RC

� D IH�1=2
0C W C

is a Riemann–Liouville process, and YH D eI
H�1=2
C .W 1R�

/ can be written by

means of Remark 3; more precisely, YH D IH�1=2
4 W �, where

I ˛4f .t/ D
1

� .˛/

Z 1

0

�
.t C s/˛�1 � s˛�1�f .s/ds: (73)

We deduce from this representation that YH is C1 on R
?C, so the first statement is

proved. On the other hand, it follows from the scaling property that its derivative is
.H � 1/-self-similar, and is therefore of order tH�1 in Lp.˝/; thus the left hand
side of (72) is bounded by












Z SCT

S

ˇ
ˇD1Y Hu

ˇ
ˇdu











p

� Cp
Z SCT

S

uH�1du � Cp SH�1T:

ut
Remark 23. Inequality (72) says that the process XS;Ht D XHSCt � XHS is close to
a fractional Brownian motion when S is large; it actually provides an upper bound
for the Wasserstein distance between the laws of these two processes. A result about
the total variation distance will be given later (Theorem 20).

Instead of using the representation of BH D eI H�1=2
C W on R, we can consider

the coupling based on the canonical representation of BH on RC. It appears that in
this caseXH �BH is notC1 but is still differentiable. In particular, we can deduce
that the estimation (72) also holds for the coupling of Theorem 18.

Theorem 18. Consider on RC the family BH D G
1=2;H
0C W and the family XH

defined by (71). Then XH � BH is differentiable on R
?C.

Proof. For f smooth with compact support in R
?C, Theorem 4 and the expression

(63) for GJ;H0C shows that GJ;H0C f and IH�J
0C f are smooth, and

D1
�
G
J;H
0C � IH�J

0C
�
D
�
˘HCJ�1IH�J

0C ˘1�H�J � IH�J
0C

�
D1:
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We therefore deduce from (27) that

d

dt

�
G
J;H
0C � IH�J

0C
�
f .t/

D 1

� .H � J /
Z t

0

 �
t

s

	HCJ�1
� 1

!

.t � s/H�J�1D1f .s/ds

D f .t/

t
U.t/C 1

� .H � J /
Z t

0

 �
t

s

	HCJ�1
� 1

!

.t � s/H�J�1

�
D1f .s/ � f .t/=t� ds

D f .t/

t
U.t/ � 1

� .H � J /
Z t

0

@s

� �
t

s

	HCJ�1
� 1

!

.t � s/H�J�1
�

�
f .s/ � s

t
f .t/

�
ds

with

U.t/ D 1

� .H � J /
Z t

0

 �
t

s

	HCJ�1
� 1

!

.t � s/H�J�1ds

proportional to tH�J . This equality can be extended to any function f of H
J�, so

in particular to W in the case J D 1=2; we deduce the differentiability announced
in the theorem. ut

5.2 The Riemann–Liouville Cameron–Martin Space

Cameron–Martin spaces are Hilbert spaces which characterise the law of centred
Gaussian variables, so in particular of centred Gaussian processes, see Appendix
C.1. The Cameron–Martin spaces HH of H -fractional Brownian motions are de-
duced from each other by means of the transforms of Theorems 10 or 11, so that

HH DeI H�J
C .HJ / DeI H�J

� .HJ /; HH D GJ;H0C .HJ / DeI H�J
� .HJ /

respectively on R and RC; the space H1=2 is the classical space of absolutely
continuous functions h such that h.0/ D 0 and D1h is in L2. Similarly, the
Cameron–Martin space of the Riemann–Liouville process XH on RC is

H0
H D IH�1=2

0C H1=2 D IHC1=2
0C L2:

In particular, if f is a smooth function on RC such that f .0/ D 0, then, on the time
interval Œ0; T �,
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jf jH0

H
D ˇˇD1I

1=2�H
0C f

ˇ
ˇ
L2

� C
0

@sup jD1f j
 Z T

0

�
t1=2�H�2 dt

!1=2

C sup jD2f j
 Z T

0

�
t3=2�H�2 dt

!1=21

A

� C 0
�
T 1�H sup jD1f j C T 2�H sup jD2f j

�
(74)

from Theorem 4.
We now explain the proof of a result mentioned in [8] (Theorem 2.1) and taken

from [35]. We use the equivalence of Hilbert spaces (H � H0) defined in (12). A
probabilistic interpretation of this equivalence is given in Appendix C.1, see (100).

Theorem 19. For 0 < H < 1, the spaces HH and H0
H are equivalent on RC.

Proof. The proof is divided into the two inclusions; for the second one, we are going
to use an analytical result proved in Appendix A. We can of course omit the case
H D 1=2.

Proof of H0
H � HH . We have seen in the proof of Theorem 17 that BH can be

written as the sum of the Riemann–Liouville process XH and of an independent
process YH . If we denote by H4

H the Cameron–Martin space of YH , then this
decomposition implies (see (101)) that

HH D H0
HCH4

H with jhjHH D inf

�
jh1j2H0

H
C jh2j2H4

H

�1=2I h D h1C h2
�
:

(75)
In particular, H0

H � HH with jhjHH � jhjH0

H
.

Proof of HH � H0
H . It is sufficient from (75) to prove that H4

H is continuously
embedded into H0

H . Let h be in H
1=2; then jh.t/j � jhj

H1=2

p
t , and we can deduce

from (73) that IH�1=2
4 h is C1 on R

?C, and that the derivative of order k is domi-

nated by jhj
H1=2

tH�k . Theorem 4 enables to deduce that Ah D I
1=2�H
0C I

H�1=2
4 h

is also smooth, and we have from (24) that D1Ah.t/ is dominated by jhj
H1=2

=
p
t .

Moreover, the scaling condition (93) is satisfied, so we deduce from Theorem 32
that A is a continuous endomorphism of H1=2. By composing with IH�1=2

0C , we

obtain that
ˇ̌
I
H�1=2
4 g

ˇ̌
H0

H

is dominated by jgjH1=2 , so

jhjH4

H
D inf

n
jgjH1=2 I h D IH�1=2

4 g
o
� cjhjH0

H
:

ut
Remark 24. Let us give another interpretation of Theorem 19. By comparing R

and RC, the fractional Brownian motion on RC can be obtained as a restriction
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of the fractional Brownian motion on R. This property can be extended to the
Cameron–Martin spaces, and applying (101), we deduce that HH .RC/ consists of
the restrictions to RC of functions of HH .R/, and

jhjHH .RC/ D inf
n
jgjHH .R/I g D h on RC

o
;

so jhjHH .RC/ � jh 1RC
jHH .R/ for h defined on RC. On the other hand,

jhjH0

H
D ˇ̌I 1=2�H

0C h
ˇ̌
H1=2.RC/

D ˇ̌.I 1=2�H
0C h/1RC

ˇ̌
H1=2.R/

D ˇˇeI H�1=2
C ..I

1=2�H
0C h/1RC

/
ˇ
ˇ
HH .R/

D ˇˇh 1RC

ˇ
ˇ
HH .R/

:

Thus jhjHH .RC/ � jhjH0

H
, and H0

H is continuously embedded in HH .RC/. The
inverse inclusion means that

ˇ
ˇh 1RC

ˇ
ˇ
HH .R/

� C inf
n
jgjHH .R/I g D h on RC

o
;

for h defined on RC, and this is equivalent to

ˇ̌
g 1RC

ˇ̌
HH .R/

� C jgjHH .R/

for g defined on R; thus this means that g 7! g 1RC
is a continuous endomorphism

of HH .R/. This is a known analytical result, see also Lemma 1 in [31].

Remark 25. Consider on RC the even and odd parts BH˙
t D .BHt ˙ BH�t /=2 of

BH . These two processes are independent (this is easily verified by computing the
covariance), and BH1RC

D BHC C BH�, so their Cameron–Martin spaces HH˙
are continuously embedded into HH .RC/. On the other hand

jhjHH˙
D inf

n
jgjHH .R/I h.t/ D

1

2
.g.t/˙ g.�t// on RC

o

� 2ˇˇh 1RC

ˇ
ˇ
HH .R/

D 2jhjH0

H
� C jhjHH .RC/

by means of the result of Remark 24, so the three spaces HH˙ and HH .RC/ are
equivalent.

Remark 26. Notice that the endomorphism of Remark 24 maps the function h.t/ to
the function h.tC/; by applying the invariance by time reversal, we deduce that the
operator mapping h.t/ to h.1� .1� t/C/ is also continuous, so by composing these
two operators, we see that the operator mapping h.t/ to the function

h?.t/ D

8
ˆ̂
<

ˆ̂
:

0 if t � 0,

h.t/ if 0 � t � 1,

h.1/ if t � 1,

(76)
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is a continuous endomorphism of HH . On the other hand, we have

jhjHH .Œ0;1�/ D inf
n
jgjHH .R/I g D h on Œ0; 1�

o
:

Thus h 7! h? is continuous from HH .Œ0; 1�/ into HH .R/.

5.3 Equivalence and Mutual Singularity of Laws

In Theorem 19, we have proved that the Cameron–Martin spaces ofBH andXH are
equivalent. It is known that the laws of two centred Gaussian processes are either
equivalent, or mutually singular, see Appendix C; the equivalence of Cameron–
Martin spaces is necessary for the equivalence of the laws, but is of course not
sufficient (compare for instance a standard Brownian motionWt with 2Wt ). In sub-
sequent results, the equivalence or mutual singularity of laws of processes should
be understood by considering these processes as variables with values in the space
of continuous functions.

Theorem 20. Let 0 < H < 1. For any S > 0, the laws of BHt and XS;Ht D
XHSCt � XHS are equivalent on any time interval Œ0; T �; more precisely, the relative
entropies of BH and XS;H with respect to each other are dominated by S2H�2 as
S " 1, and therefore tend to 0; in particular, the total variation distance between
the laws of XS;H and BH is dominated by SH�1. In the case S D 0, the two laws
are mutually singular as soon as H ¤ 1=2.

Proof. Let us consider separately the cases S > 0 and S D 0.

Equivalence for S > 0. Consider the coupling and notations of Theorem 17, so
that the process BHt D XHt C YHt is written as the sum of two independent pro-
cesses. This implies thatBS;H D XS;HCY S;H , whereBS;H and Y S;H are defined
similarly to XS;H . Theorem 19 states that the Cameron–Martin spaces of XH and
BH are equivalent; this implies that the Cameron–Martin space of XS;H is equiv-
alent to the Cameron–Martin space of BS;H which is HH , and is therefore also
equivalent to H0

H D I
HC1=2
0C L2.RC/; thus it contains smooth functions taking

value 0 at 0. But the perturbation Y S;H is smooth, so the equivalence of the laws
of BS;H and XS;H follows from the Cameron–Martin theorem for an independent
perturbation. Moreover, (103) yields an estimation of the relative entropies

max
�
I.BH ;XS;H /;I.XS;H ; BH /

� � 1

2
EjY S;H j2HH

� C EjY S;H j2H0

H

� CT E

 

sup
Œ0;T �

jD1Y S;H jC sup
Œ0;T �

jD2Y S;H j
!2
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from (74). The derivative DkYHt is O.tH�k/ in L2.˝/ from the scaling
property, so

sup jD1Y
S;H
t j D sup jD1YHSCt j � jD1Y HS j C

Z T

0

jD2YHSCt jdt D O.SH�1/

as S " 1. The second derivative is even smaller (of order SH�2). Thus the relative
entropies are dominated by S2H�2. In particular, the total variation distance is
estimated from Pinsker’s inequality (102).

Mutual singularity for S D 0. This is a consequence of Theorem 37; the two
processes are self-similar, the initial �-algebra F0C.BH / is almost surely trivial
(Remark 46), so it is sufficient to prove that they do not have the same law. But this
is evident since BH can be written as the sum ofXH and of an independent process
YH which is not identically zero. ut
Remark 27. In the case S D 0, Theorem 36 provides a criterion to decide whether
a process 	 has the law of BH or XH . The variances of these two processes differ
(they can be computed from the calculation of Appendix B), so we can decide be-
tween them by looking at the small time behaviour of

R 1
t
s�2H�1.	s/2ds. Actually,

by applying the invariance by time inversion, we can also look at the behaviour in
large time.

For the following result, we recall that the mutual information of two variables
X1 and X2 is defined as the entropy of .X1; X2/ relative to two independent copies
of X1 and X2. We want to estimate the dependence between the increments of BH

on some interval ŒS; S C T �, S � 0, and its increments before time 0, and in par-
ticular prove that the two processes are asymptotically independent when S " C1.
This result and other estimates were proved in [31] with a more analytical method;
an asymptotic independence result is also given in [33].

Theorem 21. Let H ¤ 1=2. The joint law of the two processes .BS;Ht D BHSCt �
BHS I 0 � t � T / and .BHt I t � 0/ is equivalent to the product of laws as soon as
S > 0, and the Shannon mutual information is O.S2H�2/ as S " 1. If S D 0, the
joint law and the product of laws are mutually singular.

Proof. We consider separately the two cases.

Equivalence for S > 0. Let .Wt I t 2 R/ and .W t I t 2 R/ be two standard
Brownian motions such that W t D Wt for t � 0 and .W t I t � 0/ is independent

of W . We then consider the two fractional Brownian motions BH D eI
H�1=2
C W

and �H D eI
H�1=2
C W . With the notation of Theorem 17, they can be written on

RC as BH D XH C YH and �H D XH C Y H , so �H D BH C Y H � YH ; by

looking at the increments after time S , we have �S;H D BS;H C Y S;H � Y S;H .
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Conditionally on F0.W;W / D F0.BH ; �H /, the process Y
S;H �Y S;H becomes a

deterministic process which is almost surely in HH (see the proof of Theorem 20),
so the conditional laws of

.B
S;H
t ; 0 � t � T I BHt ; t � 0/ and .�

S;H
t ; 0 � t � T I BHt ; t � 0/

are equivalent. We deduce that the unconditional laws are also equivalent. Moreover,
the two processes of the right side are independent, and �S;H ' BS;H , so the
equivalence of laws stated in the theorem is proved. On the other hand, the relative
entropies of

.B
S;H
t ; 0 � t � T I BHt ; t � 0I �Ht ; t � 0/

and

.�
S;H
t ; 0 � t � T I BHt ; t � 0I �Ht ; t � 0/

with respect to each other are equal to

1

2
E
ˇ
ˇY
S;H � Y S;H ˇˇ2HH � 2E

ˇ
ˇY S;H

ˇ
ˇ2
HH
D O.S2H�2/

(proceed as in Theorem 20). If we project on the two first components, we deduce
that the mutual information that we are looking for is smaller than this quantity.

Mutual singularity for S D 0. If we compare the law of .BHt ; B
H�t I 0 � t � T /

with the law of two independent copies of the fractional Brownian motion, we have
two self-similar Gaussian processes with different laws, so the laws are mutually
singular from Theorem 37. ut
Remark 28. As an application, we can compare BH with its odd and even parts.
Let B and B 0 be two independent copies of BH . Let S > 0. From Theorem 21, we
have on Œ0; T � the equivalence of laws

�
BHSCt � BHS

�
˙
�
BH�S�t � BH�S

�
� .BSCt � BS /˙

�
B 0�S�t � B 0�S

�

' p2
�
BHSCt � BHS

�

' p2BHt :

Thus the law of the increments of .BHt ˙ BH�t /=
p
2 on ŒS; S C T � have a law

equivalent to the law of BH . For S D 0, the Cameron–Martin spaces are equivalent
(Remark 25), but the laws can be proved to be mutually singular from Theorem 37.
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6 Series Expansions

Let us try to write BH on Œ0; 1� as some series of type

BHt D
X

n

hn.t/�n

where hn are deterministic functions and �n are independent standard Gaussian vari-
ables. Such expansions have been described in the standard case H D 1=2 by [19],
and actually, an expansion valid for the standard Brownian motion W can be trans-
ported to BH by means of the operatorG1=2;H0C , see [12].

If we look more precisely for a trigonometric expansion, we can apply [9] where
the functions hn are trigonometric functions, the coefficients of which are related
to some Bessel function depending on H . However, we are here more interested in
trigonometric functions which do not depend on H .

6.1 A Trigonometric Series

Suppose that we are interested in the Fourier series of .BHt I 0 � t � 1/. The
problem is that the Fourier coefficients are not independent, since this property is
already known to be false for H D 1=2. What is known for H D 1=2 is that Wt
can be represented by means of (8), (9) or (10) for independent standard Gaussian
variables .�n; � 0

nIn � 1/; the series converges in L2.˝/, uniformly in t , and one
easily deduces the Fourier series ofW from (8). Similar representations cannot hold
on Œ0; 1� for the fractional Brownian motion as soon asH ¤ 1=2, but it appears that
one can find a representation mixing (8) and (9),

BHt ' aH0 �0t C
X

n�1
aHn

�
.cos .�nt/ � 1/ �n C sin .�nt/ � 0

n

�
(77)

on Œ0; 1�. This question has been studied in [18] and [17] respectively for the cases
H < 1=2 and H > 1=2. The sign of aHn is of course irrelevant so we will choose
aHn � 0. We follow a general technique for finding series expansions of Gaussian
processes from series expansions of their covariance kernels. We are going to find
all the possible aHn for which (77) holds; it appears that aHn , n � 1, is unique as
soon as aH0 has been chosen in some set of possible values.

Theorem 22. It is possible to find a sequence .aHn I n � 0/, aHn � 0, such thatP
.aHn /

2 < 1 and (77) holds on Œ0; 1� for independent standard Gaussian vari-
ables .�0; �n; � 0

nIn � 1/. The convergence of the series holds uniformly in t , almost
surely. If H � 1=2, we have to choose aH0 in an interval Œ0; a.H/�, a.H/ > 0,
and aHn is then uniquely determined; if H > 1=2 there is only one choice for the
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sequence. Moreover, except in the case H D 1=2, we must have aHn ¤ 0 for all
large enough n. If H ¤ 1=2, then (77) cannot hold on Œ0; T � for T > 1.

Proof. We divide the proof into two parts.

Step 1: Study on Œ0; 1�. It is clear that the convergence of the series in (77) holds
for t fixed (almost surely and in L2.˝/); the uniform convergence comes from the
Itô-Nisio theorem [19]. We have to verify that the right hand side Z has the same
covariance kernel as BH for a good choice of .aHn /. We have

E ŒZsZt �

D
�
aH0

�2
st C

X

n�1

�
aHn

�2
..cos .�nt/ � 1/ .cos .�ns/ � 1/

C sin .�nt/ sin .�ns//

D
�
aH0

�2
st C

X

n�1

�
aHn

�2
.cos .�n.t � s// � cos .�nt/ � cos .�ns/C 1/

D .fH .t/C fH .s/� fH .t � s// =2

with

fH .t/ D
�
aH0

�2
t2 C 2

X

n�1

�
aHn

�2
.1 � cos.�nt// : (78)

If we compare this expression with (2), it appears that if fH coincides on Œ�1; 1�
with gH .t/ D �; jt j2H , then BH ' Z on Œ0; 1�; conversely, if BH ' Z, then they
have the same variance, so fH D gH on Œ0; 1� and therefore on Œ�1; 1� (the two
functions are even). Thus finding an expansion (77) on Œ0; 1� is equivalent to finding
coefficients aHn so that fH D gH on Œ�1; 1�. For any choice of aH0 , one has on
Œ�1; 1� the Fourier decomposition

�jt j2H � .aH0 /2t2 D bH0 � 2
X

n�1
bHn cos.�nt/:

Thus the possible expansions correspond to the possible choices of aH0 such that
bHn � 0 for n � 1 and

P
bHn <1; then

�jt j2H � .aH0 /2t2 D 2
X

n�1
bHn .1 � cos.�nt//

and we take aHn D
p
bHn for n � 1. We have

bHn D ��
Z 1

0

t2H cos.�nt/dtC .aH0 /2
Z 1

0

t2 cos.�nt/dt

D 2H

�n
�

Z 1

0

t2H�1 sin.�nt/dt � 2.a
H
0 /

2

�n

Z 1

0

t sin.�nt/dt
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D �2H.2H � 1/
�2n2

�

Z 1

0

t2H�2 .1 � cos.�nt// dt

C 2H

�2n2
� .1� .�1/n/C 2.aH0 /

2

�2n2
.�1/n: (79)

Let us first assume H < 1=2; then the first term is positive, and the sum of the
second and third terms is nonnegative as soon as aH0 �

p
2�H . Moreover

cn2
Z 1=n

0

t2Hdt �
Z 1

0

t2H�2 .1� cos .�nt// dt � Cn2

	
Z 1=n

0

t2Hdt C 2
Z 1

1=n

t2H�2dt (80)

so this integral is of order n1�2H (actually a more precise estimate will be proved
in Theorem 23), and we have bHn � n�1�2H . It is then not difficult to deduce that
there exists a maximal a.H/ � p2�H such that if we choose aH0 in Œ0; a.H/�,
then bHn � 0 for any n; the value a.H/ is attained when one of the coefficients bHn
becomes 0. It follows from bHn � n�1�2H that

P
bHn < 1. Let us now assume

H D 1=2; the property bHn � 0 holds for a1=20 2 Œ0; a.1=2/� D Œ0; 1�, and b1=2n D
O.n�2/. Finally, if H > 1=2,

bHn D
2H.2H � 1/

�2n2
�

Z 1

0

t2H�2 cos.�nt/dt C 2.aH0 /
2 � 2�H
�2n2

.�1/n

D �2H.2H � 1/.2H � 2/
�3n3

�

Z 1

0

t2H�3 sin.�nt/dt C 2.aH0 /
2 � 2�H
�2n2

.�1/n

D 2H.2H � 1/.2H � 2/.2H � 3/
�4n4

�

Z 1

0

t2H�4 .1� cos.�nt// dt

� 2H.2H � 1/.2H � 2/
�4n4

� .1 � .�1/n/C 2.aH0 /
2 � 2�H
�2n2

.�1/n: (81)

The integral of the last equality is studied like (80), and is of order n3�2H , so the
first term of this last equality is positive and of order n�1�2H . The second term
is nonnegative and smaller. If we choose aH0 ¤

p
�H , then the third term has an

alternating sign and is the dominant term, so bHn is not always positive. Thus we
must choose aH0 D

p
�H , and bHn > 0 for any n; we again have bHn � n�1�2H

so that
P
bHn < 1. Moreover, in the two cases H < 1=2 and H > 1=2, we have

aHn � n�H�1=2, so aHn ¤ 0 for all large enough n.

Step 2: Study on larger intervals. Suppose now that (77) holds on Œ0; T � for some
T > 1. Then, as in previous step, we should have fH .t/ D gH .t/ D �jt j2H on
Œ�T; T �. But fH .t/ � .aH0 /2t2 is even and 2-periodic, so

fH .1 � t/ � .aH0 /2.1 � t/2 D fH .1C t/ � .aH0 /2.1C t/2:



Representation Formulae for the Fractional Brownian Motion 49

Thus
�.1 � t/2H � .aH0 /2.1 � t/2 D �.1C t/2H � .aH0 /2.1C t/2

for jt j � min.T � 1; 1/. By differentiating twice, it appears that this relation is false
if H ¤ 1=2. ut
Remark 29. For H D 1=2, we can choose a1=20 in Œ0; 1�, and the expansion (77) is
an interpolation between the decompositions containing respectively only odd terms
(a1=20 D 0) and only even terms (a1=20 D 1), which are respectively (9) and (8).

Remark 30. Suppose that H � 1=2 with aH0 D 0; the formula (77) defines a
Gaussian process on the torus R=2Z with covariance kernel

E
�
BHt B

H
s

� D �

2

�
ı.0; t/2H C ı.0; s/2H � ı.s; t/2H

�
(82)

for the distance ı on the torus. This is the fractional Brownian motion of [18] in-
dexed by the torus. For H > 1=2, we cannot take aH0 D 0; this is related to the
fact proved in [18], that the fractional Brownian motion on the torus does not exist;
when indeed such a process exists, we deduce from (82) that

E
�
BHt .B

H
1Ct � BH1 /

� D �
�
.1 � t/2H � 1

�
� �2�Ht

as t # 0 (use the fact ı.1 C t; 0/ D 1 � t on the torus), whereas this covariance
should be dominated by t2H .

Remark 31. When H � 1=2 and aH0 D 0, we can write BHt on Œ0; 1� as A
H

t � AH0
for the stationary process A

H

t D
P
aHn .cos.�nt/�n C sin.�nt/� 0

n/. In the case
H D 1=2, it generates the same �-algebra as B1=2, and this process coincides with
the processA1=2 of Theorem 12. However, a comparison of the variances of the two
processes show that they are generally different whenH < 1=2.

Remark 32. Since the two sides of (77) have stationary increments, we can replace
the time intervals Œ0; 1� and Œ0; T � of Theorem 22 by other intervals of length 1 and
T containing 0.

We now study the asymptotic behaviour of the coefficients aHn of Theorem 22.

Theorem 23. The expansion of Theorem 22 can be written with aH0 D
p
�H . In

this case, aHn > 0 for any n and

aHn D .�n/�H�1=2 �1CO�n2H�3�� (83)

for n large.
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Proof. The only part which has still to be proved is (83). This will be accomplished
through an asymptotic analysis of the integrals in (79) and (81). For H D 1=2 we
have aHn D .�n/�1 so this is trivial. If H < 1=2, we have

.1 � 2H/
Z 1

0

t2H�2.1 � cos.�nt//dt D .1 � 2H/

	
Z 1

0

t2H�2.1 � cos.�nt//dt � 1C .1 � 2H/
Z 1

1

t2H�2 cos.�nt/dt

D .1 � 2H/.�n/1�2H
Z 1

0

t2H�2.1 � cos t/dt � 1

C .1 � 2H/.�n/1�2H
Z 1

�n

t2H�2 cos t dt

D .�n/1�2H
Z 1

0

t2H�1 sin t dt � 1CO.n�2/ (84)

where we have used in the last equality

ˇ̌
ˇ
Z 1

�n

t2H�2 cos t dt
ˇ̌
ˇ D .2 � 2H/

ˇ̌
ˇ
Z 1

�n

t2H�3 sin t dt
ˇ̌
ˇ

D .2 � 2H/
ˇ
ˇ
ˇ
X

k�n

Z �.kC1/

�k

t2H�3 sin t dt
ˇ
ˇ
ˇ

� .2 � 2H/
ˇ
ˇ
ˇ
Z �.nC1/

�n

t2H�3 sin t dt
ˇ
ˇ
ˇ D O.n2H�3/ (85)

(this is an alternating series). By applying (34), we deduce that

.1�2H/
Z 1

0

t2H�2.1 � cos .�nt// dtD.�n/1�2H � .2H/ sin .�H/�1CO �n�2� ;

so (79) with aH0 D
p
�H implies

bHn D �.�n/�1�2H� .2H C 1/ sin.�H/CO.n�4/: (86)

Similarly, if H > 1=2, then (85) again holds true and

Z 1

0

t2H�2 cos.�nt/dt D .�n/1�2H
Z 1

0

t2H�2 cos t dt CO.n�2/

D .�n/1�2H� .2H � 1/ sin.�H/CO.n�2/
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and we deduce from (81) that we again have (86). By using our choice of � given in
(51), we obtain in both cases

bHn D �2
� .�2H/� .2H C 1/
�2HC2n2HC1 cos.�H/ sin.�H/.1CO.n2H�3//

D .�n/�2H�1.1CO.n2H�3//

from (95). We deduce (83) by taking the square root. ut
Remark 33. Considering the expansion (77) for aH0 D

p
�H , replacing BH by the

process

LBHt D c�0t C
X

n�1
.�n/�H�1=2 �.cos.�nt/ � 1/�n C sin.�nt/� 0

n

�

for c > 0 is equivalent to multiplying �0 by c=aH0 and .�n; � 0
n/ by some .1 C

O.n2H�3// which remains strictly positive. We can compare the laws of these
two sequences of independent Gaussian variables by means of Kakutani’s criterion
(Theorem 34), and it appears that the laws of these two sequences are equivalent
(
P
n4H�6 < 1). Thus the laws of BH and LBH are equivalent on Œ0; 1�. This im-

plies that the law of 2�H LBH2t is equivalent on Œ0; 1=2� to the law of BHt ; actually,
we will prove in Theorem 27 that these two laws are equivalent on Œ0; T � for any
T < 1.

6.2 Approximate Expansions

We now consider the processes

bB
H

t D �0t C
p
2
X

n�1

�
�n

cos.2n�t/ � 1
.2n�/HC1=2 C � 0

n

sin.2n�t/

.2n�/HC1=2

	
;

B
H

t D
p
2
X

n�0

�
�n

cos..2nC 1/�t/ � 1
..2nC 1/�/HC1=2 C � 0

n

sin..2nC 1/�t/
..2nC 1/�/HC1=2

	
(87)

on Œ0; 1�. Notice that bB
1=2 ' B

1=2 ' W from (8) and (9). On the other hand, it

follows from Theorem 22 that bB
H 6' BH and B

H 6' BH for H ¤ 1=2 (because
one should have aHn ¤ 0 in the expansion (77) of BH for all large enough n), but
we are going to check that these two processes have a local behaviour similar to
BH . The advantage with respect to the exact expansion (77) is that the sequence
of random coefficients and the process will generate the same �-algebra. Then we
will apply these approximations to some properties of the Cameron–Martin space
HH (Sect. 6.3), and to some equivalence of laws (Sect. 6.4). As it was the case for

Riemann–Liouville processes, bB
H

and B
H

are not only defined for 0 < H < 1,
but also for any H > 0.
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Let us compare bB
H

and B
H

with BH for 0 < H < 1. We use the operatorsbI
˛

C
and I

˛

C defined in (36) and (37). By projecting on the Gaussian spaces generated
by �n and � 0

n and by applying (35), we can write

bI
1=2�H
C bB

H

t

D �0t C
p
2
X

n�1

�
�n

cos.2�nt C .H � 1=2/�=2/� cos..H � 1=2/�=2/
2�n

C� 0
n

sin.2�nt C .H � 1=2/�=2/� sin..H � 1=2/�=2/
2�n

	
:

(88)

The two expressions (8) and (88) are related to each other by applying a rotation on

the vectors .�n; � 0
n/, so bI

1=2�H
C bB

H
and W have the same law. A similar property

holds for I
1=2�H
C B

H
, and we can therefore write

bB
H 'bI H�J

C bB
J
; B

H ' I H�J
C B

J
; bB

1=2 ' B1=2 ' W: (89)

We can give an extension of Theorem 17.

Theorem 24. It is possible to realise jointly the processes BH , XH , B
H

and bB
H

so that the differences BH � XH , B
H � BH and bB

H � BH are C1 on .0; 1�;
moreover, the derivatives of order k of these differences are O.tH�k/ in L2.˝/ as
t # 0.

Proof. We consider the coupling BH D eI
H�1=2
C W , XH D I

H�1=2
0C W , B

H D
I
H�1=2
C W and bB

H DbI H�1=2
C W for the same W on R. The smoothness of BH �

XH is proved in Theorem 17, and the estimation of the derivatives follows by a
scaling argument. On the other hand, let W 1

t be equal to Wt �W1t on Œ0; 1�, extend
it to R by periodicity, and defineW 2

t D W 1�t for t � 0. Then, with the notation (73),

bB
H

t D W1t C IH�1=2
0C .Wt �W1t/C IH�1=2

4 W 2
t

D XHt CW1
�
t � � .H C 3=2/�1tHC1=2

�
C IH�1=2

4 W 2
t

The smoothness of bB
H � XH follows; the process W 2

t is dominated in L2.˝/ by
min.
p
t ; 1/, so we deduce from (73) that




DkI

H�1=2
4 W 2

t





2
� C

Z 1

0

.t C s/H�k�3=2ps ds D C 0tH�k
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for k � 1. The study of B
H

is similar; let W 3 be the process W on Œ0; 1� extended

to R so that the increments are 1-antiperiodic, and letW 4
t D W 3�t ; then B

H
is equal

to XH C IH�1=2
4 W 4; the end of the proof is identical. ut

6.3 Application to the Cameron–Martin Space

Let bHH and HH be the Cameron–Martin spaces ofbB
H

andB
H

on the time interval

Œ0; 1�. It follows from (89) that bH1=2 D H1=2 D H1=2, and bHH D bI
H�J
C bHJ as

well as HH D I H�J
C HJ .

Theorem 25. For 0 < H < 1, the spaces bHH , HH and HH are equivalent on
Œ0; 1�.

Proof. We compare successively bHH and HH with HH .Œ0; 1�/, and use the prop-
erties of this last space described in Remark 26.

Proof of bHH � HH . We know that bHH D bI
H�1=2
C H1=2, so it is sufficient to es-

tablish that bI
H�1=2
C is a homeomorphism from H1=2.Œ0; 1�/ onto HH .Œ0; 1�/. To

this end, we are going to prove that bI
H�J
C is continuous from HJ .Œ0; 1�/ into

HH .Œ0; 1�/ for 0 < J;H < 1. Consider a function h ofHJ .Œ0; 1�/, consider h0.t/ D
h.t/ � h.1/t , and extend it by periodicity. Then h0 is generally not in HJ .R/, but
the operator h 7! h1 D h01.�1;1� is continuous from HJ .Œ0; 1�/ into HJ .R/. More-
over, the operator h 7! h2 D h01.�1;�1� is continuous from HJ .Œ0; 1�/ into the
space L1..�1;�1�/ of bounded functions supported by .�1;�1�. On the other

hand, it is known that HH D eI
H�J
C HJ on R, and eI

H�J
C also maps continu-

ously L1..�1;�1�/ into the space of smooth functions on Œ0; 1�, and therefore

into HH .Œ0; 1�/. Thus h 7! eI
H�J
C h0 D eI H�J

C h1 CeI H�J
C h2 is continuous from

HJ .Œ0; 1�/ into HH .Œ0; 1�/. If we add the operator h 7! .h.1/t/ which is also con-
tinuous, we can conclude.

Proof of HH � HH . In this case, we let h0 be the function h on Œ0; 1�, extended to
R so that the increments are 1-antiperiodic. We then consider h1 D h01.�2;1� and
h2 D h01.�1;�2�. The proof is then similar, except that we do not have the term
h.1/t in this case. ut

Remark 34. In view of (7), a function h is in the space HH .R/ if its derivative
D1h (in distribution sense if H < 1=2) is in the homogeneous Sobolev space of
order H � 1=2 (see for instance [31]); similarly, it follows from (87) that h is in
bHH is D1h is in the Sobolev space of order H � 1=2 of the torus R=Z. Thus the
equivalence bHH � HH of Theorem 25 means that the Sobolev space on the torus is
equivalent to the restriction to Œ0; 1� of the Sobolev space on R. This classical result
is true because we deal with Sobolev spaces of order in .�1=2; 1=2/.
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Remark 35. We have from Theorems 19 and 25 that HH � H0
H � bHH � HH for

any 0 < H < 1. Notice however that the comparison for instance of bHH and H0
H

cannot be extended to the case H > 1; in this case indeed, functions of H0
H satisfy

D1h.0/ D 0, contrary to functions of bHH .

Let us now give an immediate corollary of Theorem 25.

Theorem 26. The sets of functions on Œ0; 1�

t; n�H�1=2 .1 � cos.2n�t// ; n�H�1=2 sin.2n�t/;

and

n�H�1=2 .1� cos..2nC 1/�t// ; n�H�1=2 sin..2nC 1/�t/;
form two Riesz bases of HH . A function h is in HH is and only if it has the Fourier
expansion

h.t/ � h.1/t D
X

n�0
˛n cos.2�nt/C

X

n�1
ˇn sin.2�nt/

with X
n2HC1 �˛2n C ˇ2n

�
<1:

6.4 Equivalence and Mutual Singularity of Laws

We now compare the laws of BH , bB
H

and B
H

viewed as variables with values in
the space of continuous functions.

Theorem 27. LetH ¤ 1=2. The laws of the processes bB
H

,B
H

andBH are equiv-
alent on the time interval Œ0; T � if T < 1, and are mutually singular if T D 1.

Proof. We compare the laws of BH and bB
H

. The study of B
H

is similar.

Proof of the equivalence for 0 < T < 1. The increments of both processes are

stationary, so let us study the equivalence of bB
S;H

t D bB
H

SCt � bB
H

S and BS;Ht D
BHSCt � BHS on Œ0; T � for S D 1 � T . From Theorem 24, we can couple BH and

bB
H

so that the difference is smooth on R
?C. Consequently,bB

S;H �BS;H is smooth
on Œ0; T �, so it lives in HH . Moreover, we have proved in Theorem 25 that the

Cameron–Martin spaces of bB
H

and BH are equivalent, so the same is true for the

Cameron–Martin spaces of bB
S;H

and BS;H . The equivalence of laws then follows
from Theorem 35.
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Proof of the mutual singularity for T D 1. Consider bB
H

on R. Our aim is to prove
that the laws of the two processes

.BHt ; B
H
1 �BH1�t / and

�
bB
H

t ;
bB
H

1 � bB
H

1�t
�
D
�
bB
H

t ;�bB
H

�t
�
'
�
bB
H

2t � bB
H

t ;
bB
H

t

�

are mutually singular on the time interval Œ0; 1=4�. The law of the first process is
equivalent to a couple .BH;1t ; B

H;2
t / of two independent fractional Brownian mo-

tions (see Theorem 21), and F0C.BH;1; BH;2/ is almost surely trivial. On the other
hand, from the first part of this proof, the law of the second process is equivalent to
the law of .BH2t � BHt ; BHt /. We therefore obtain two self-similar processes which
do not have the same law, so we deduce from Theorem 37 that the laws are mutually
singular. ut
Remark 36. It follows from Remark 33 that the law of BH is equivalent on Œ0; 1�

to the law of .bB
H C BH /=p2, where bB

H
and B

H
are independent. We have now

proved that this law is equivalent separately to the laws of bB
H

and B
H

, but only on
Œ0; T � for T < 1.

Theorem 28. Let T > 0. The distance in total variation between the laws of the

processes ."�HbB
H

"t I 0 � t � T / and .BHt I 0 � t � T / is O."1�H / as " # 0. The

process B
H

satisfies the same property.

Proof. As in Theorem 27, let us compare the laws of bB
1=2;H

and B1=2;H on Œ0; "T �
for 0 < " � 1=.2T /. It follows from Theorem 35 that the entropy I of the former
process relative to the latter one satisfies

I � C E
ˇ
ˇbB

1=2;H � B1=2;H ˇˇ2HH .Œ0;"T �/:
More precisely it is stated in Theorem 35 that the constant C involved in this dom-
ination property depends only on the constants involved in the injections of the

Cameron–Martin spaces of bB
1=2;H

and B1=2;H on Œ0; "T � into each other; but

if we choose a constant which is valid for bB
H

and BH the time interval Œ0; 1�

(Theorem 25), then it is also valid for bB
1=2;H

and B1=2;H on Œ0; 1=2�, and therefore
on the subintervals Œ0; "T �, 0 < " � 1=.2T /, so we can choose C not depending
on ". Thus

I � C E
ˇ
ˇbB

1=2;H � B1=2;H ˇˇ2H0

H
.Œ0;"T �/

D O."2�2H /

from (74). The convergence in total variation and the speed of convergence are de-

duced from (102). The proof for B
H

is similar. ut
Remark 37. We can say that the processes B

H
and bB

H
are asymptotically

fractional Brownian motions near time 0. The processes B
H

, bB
H

and BH have
stationary increments, so the same local property holds at any time.
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As an application, we recover a result of [4], see also [2, 37] for more general
results. Notice that the equivalence stated in the following theorem may hold even
when the paths of BH2 are not in HJ .

Theorem 29. Let BJ1 and BH2 be two independent fractional Brownian motions
with indices J < H , and let T > 0. Then the laws of .BJ1 C �BH2 I � � 0/

are pairwise equivalent on Œ0; T � if H > J C 1=4. Otherwise, they are pairwise
mutually singular.

Proof. It is sufficient to prove the result for T D 1.

Equivalence for H � J > 1=4. Let us prove that the laws of BJ1 and BJ1 C �BH2 ,
are equivalent. From Theorems 22 and 23, the process BJ1 can be written as (77)
for independent standard Gaussian variables .�n; � 0

n/ and coefficients aJn such that
aJn ¤ 0 for any n. The process BH2 can be written similarly with coefficients aHn
and variables .�n; �0

n/. Thus BJ1 C �BH2 is the image by some functional of the
sequence

U �n D aJn .�n; � 0
n/C � aHn .�n; �0

n/;

and it is sufficient to prove that the laws of U �n and U 0n are equivalent. This can
be done by means of Kakutani’s criterion (Theorem 34) with �2n D .aJn /

2 and
N�2n D .aJn /2 C �2.aHn /2. But

X

n�1

�
�2.aHn /

2

.aJn /
2

	2
� C

X

n�1
n4.J�H/ <1

from Theorem 23.

Mutual singularity for 0 < H � J � 1=4. Let us use the coupling

BJ1 D G1=2;J0C W1; BH2 DeI H�1=2
C W2; XK2 DIK�1=2

0C W2; bB
K

2 DbI
K�1=2
C W2

(0 < K < 1), for independent W1 on RC and W2 on R. By applying the operator
G
J;1=2
0C , we can write

G
J;1=2
0C

�
BJ1 C �BH2

�
D W1 C �GJ;1=20C BH2

D W1 C �
�
.G

J;1=2
0C � I 1=2�J

0C /BH2 C I 1=2�J
0C .BH2 � XH2 /

CX1=2CH�J
2 � bB1=2CH�J

2

�
C �bB1=2CH�J

2 :

(90)

Let us now prove that the process inside the big parentheses lives in H1=2. We have

checked in the proof of Theorem 18 that .GJ;1=20C � I 1=2�J
0C /f is differentiable on
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R
?C for any f in H

J�, so in particular for f D BH2 ; the scaling property then

enables to prove that the derivative is O.tH�J�1=2/, so .GJ;1=20C � I 1=2�J
0C /BH2 is in

H1=2. Similarly, BH2 � XH2 is smooth, so I 1=2�J
0C .BH2 � XH2 / is also smooth, and

we deduce from the same scaling property that it is in H1=2. Finally X1=2CH�J
2 �

bB
1=2CH�J
2 is also in H1=2 from Theorem 24. Thus we deduce that the process of

(90) is obtained fromW1 C �bB1=2CH�J
2 by means of a perturbation which lives in

H1=2 and is independent of W1, so the two laws are equivalent. It is then sufficient

to prove that the laws ofW1C�i bB1=2CH�J
2 for �1 ¤ �2 are mutually singular. But

these two processes can be expanded on the basis .t; 1�cos.2�nt/; sin.2�nt//; the
coefficients are independent with positive variance; the variance of the coefficients
on 1� cos.2�nt/ and sin.2�nt/ is equal to 2.2�n/�2C 2�2i .2�n/�2.H�JC1/. As
in the first step, we can apply Kakutani’s criterion (Theorem 34) and notice that

X

n�1

 
.�22 � �21/.2�n/�2.H�JC1/

.2�n/�2 C �21.2�n/�2.H�JC1/

!2
D1

so that the two laws are mutually singular. ut
Remark 38. For H > J and � > 0, the process BJ C �BH exhibits different
scaling properties in finite and large time. It is locally asymptotically J -self-similar,
whereas it is asymptoticallyH -self-similar in large time.

Another application is the comparison with BH of a fractional analogue of the
Karhunen–Loève process (10) proposed in [11].

Theorem 30. Consider the process

LHt D
p
2
X

n�0
�n

sin ..nC 1=2/�t/
..nC 1=2/�/HC1=2

for independent standard Gaussian variables �n. Then the laws of LHSCt � LHS and
BH are equivalent on Œ0; T �S� for 0 < S < T < 1. On the other hand, these laws
are mutually singular if S D 0 or T D 1.

Proof. We deduce from Theorem 27 that the laws of BH
t=2

and B
H

t=2 are equivalent
on Œ0; 2T � for T < 1, and therefore on Œ�T; T � (the two processes have stationary
increments). Thus .BHt � BH�t /=

p
2, which has the same law as 2H�1=2.BH

t=2
�

BH�t=2/, has a law equivalent on Œ0; T � to the law of

2H�1=2
�
B
H

t=2 � BH�t=2
�
D 2HC1X

n�0
�n

sin..nC 1=2/�t/
..2nC 1/�/HC1=2 D LHt ;
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so we have the equivalence of laws

LHt � .BHt � BH�t /=
p
2 (91)

on Œ0; T �. Moreover, we deduce from Remark 28 that the increments of the right
hand side of (91) on ŒS; T � are equivalent to the increments of BH , and this proves
the first statement of the theorem. For the case S D 0, we have also noticed in
Remark 28 that the laws of the right hand side of (91) and of BH are mutually
singular. For the case T D 1, we have to check that the laws of LH1 � LH1�t and of
BH are mutually singular on Œ0; 1 � S�. We have

LH1 � LH1�t D 2H�1=2 �BH1=2 � BH.1�t/=2 � BH�1=2 C BH.t�1/=2
�

D 2H�1=2
�
2B

H

1=2 � BH.1�t/=2 � BH.1Ct/=2
�

' 2H�1=2
�
B
H

�t=2 C BHt=2
�
� .BHt C BH�t /=

p
2

where we have used the fact that the increments of B
H

are 1-antiperiodic and sta-
tionary. But the law of this process is mutually singular with the law ofBH by again
applying Remark 28. ut

Appendix

We now explain some technical results which were used throughout this article.

A An Analytical Lemma

The basic result of this appendix is the following classical lemma, see Theorem 1.5
of [35].

Theorem 31. Consider a kernel K.t; s/ on RC 	 RC such that

K.�t; �s/ D K.t; s/=� (92)

for � > 0, and Z 1

0

jK.1; s/jp
s

ds <1:

Then K W f 7! R
K.:; s/f .s/ds defines a continuous endomorphism of L2.
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Proof. For f nonnegative, let us study

E.f / D
Z 1

0

�Z 1

0

jK.t; s/jf .s/ds
	2
dt D

Z 1

0

�Z 1

0

jK.1; s/jf .ts/ds
	2
dt

D
•
jK.1; s/j jK.1; u/jf .ts/f .tu/ds du dt

from the scaling property (92) written as K.t; s/ D K.1; s=t/=t . We have
Z
f .ts/f .tu/dt � kf k2

L2
=
p
su;

so

E.f / � kf k2
L2

�Z jK.1; s/jp
s

ds

	2
:

If now f is a real square integrable function, then Kf.t/ is well defined for almost
any t , and Z 1

0

Kf.t/2dt � E.jf j/ � Ckf k2
L2
:

ut
Theorem 32. On the time interval RC, let

A W .h.t/I t � 0/ 7! .Ah.t/I t � 0/
be a linear operator defined on H

1=2 (the space of 1=2-Hölder continuous functions
taking the value 0 at 0) such that Ah.0/ D 0. We suppose that

A.h�/ D .Ah/� for h�.t/ D h.�t/. (93)

We also suppose that Ah is differentiable on R
?C and that h 7! D1Ah.1/ is con-

tinuous on H
1=2. Then A is a continuous endomorphism of the standard Cameron–

Martin space H1=2 D I 10CL2.

Proof. On H1=2, the linear form h 7! D1Ah.1/ takes the form D1Ah.1/ D
ha; hiH1=2 for some a in H1=2, so

D1Ah.t/ D 1

t
D1.Ah/t .1/ D 1

t
D1Aht .1/

D 1

t
ha; ht iH1=2 D

1

t

Z
D1a.s/D1ht .s/ds

D
Z
D1a.s/D1h.ts/ds D

Z
K.t; s/D1h.s/ds

for
K.t; s/ D D1a.s=t/=t:
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ThenK satisfies the scaling condition (92), and

Z jD1a.s/jp
s

ds � sup
n
ha; hiH1=2 I h 2 H1=2; jD1h.s/j � 1=ps

o

� sup
n
D1Ah.1/I h.0/ D 0; jh.t/ � h.s/j � 2pt � s

o
<1

since h 7! D1Ah.1/ is continuous on H
1=2. Thus we can apply Theorem 31 and

deduce that D1AI 10C is a continuous endomorphism of L2, or, equivalently, that A
is a continuous endomorphism of H1=2. ut

B Variance of Fractional Brownian Motions

We prove here a result stated in Sect. 4.1, more precisely that if BH is given by the
representation (49) with  given by (50). then the variance � of BH1 satisfies (51).
We also prove that the variance of BH1 given by the spectral representation (7) is
the same.

Theorem 33. The variance of BH1 defined by (49) is given by

� D 2 3=2�H
2H

B.2 � 2H;H C 1=2/ (94)

for the Beta function

B.˛; ˇ/ D
Z 1

0

t˛�1.1 � t/ˇ�1dt; ˛ > 0; ˇ > 0:

Proof. For t > 0, by decomposing the right-hand side of (49) into integrals on Œ0; t �
and on R�, we obtain

EŒ.BHt /
2� D 2

�
t2H

2H
C �.t/

	

with

�.t/ D
Z 1

0

�
.t C x/H�1=2 � xH�1=2

�2
dx:

We can differentiate twice this integral and get

�0.t/ D .2H � 1/
Z 1

0

�
.t C x/2H�2 � .t C x/H�3=2xH�1=2

�
dx;

�00.t/ D .2H � 1/.2H � 2/
Z 1

0

.t C x/2H�3dx
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� .2H � 1/.H � 3=2/
Z 1

0

.t C x/H�5=2xH�1=2dx

D �.2H�1/t2H�2 � .2H�1/.H�3=2/t2H�2
Z 1

1

yH�5=2.y�1/H�1=2dy

D �.2H � 1/t2H�2 � .2H � 1/.H � 3=2/t2H�2
Z 1

0

�
1 � z

z2

	H�1=2
dz

by means of the changes of variables x D t.y � 1/ and y D 1=z. Thus

�00.t/ D .2H � 1/t2H�2 .�1C .3=2�H/B.2 � 2H;H C 1=2// :

We integrate twice this formula, and since �.t/ and �0.t/ are respectively propor-
tional to t2H and t2H�1, we obtain (94) by writing 2 .�.1/C 1=.2H//. ut

By applying properties of Beta and Gamma functions

B.˛; ˇ/ D � .˛/� .ˇ/=� .˛ C ˇ/;
� .zC 1/ D z� .z/; � .z/� .1 � z/ D �= sin.�z/;

(95)

where � is defined on C n Z�, we can write equivalent forms which are used in the
literature,

� D 2 3=2�H
2H

� .2 � 2H/� .H C 1=2/
� .5=2�H/

D 2 1

2H.1=2�H/
� .2� 2H/� .H C 1=2/

� .1=2�H/

D 2 cos.�H/

�H.1 � 2H/� .2 � 2H/� .H C 1=2/
2

D �22 cos.�H/

�
� .�2H/� .H C 1=2/2 (96)

where, except in the first line, we have to assume H ¤ 1=2. Thus if we choose
 D .H/ D � .H C 1=2/�1 as this is done in this article, then � is given by (51).

If now we consider the spectral representation (7), then

E
�
.BH1 /

2
� D 1

�

Z 1

0

s�1�2H
�
.cos s � 1/2 C sin2 s

�
ds

D 2

�

Z 1

0

s�1�2H .1 � cos s/ ds D 1

�H

Z 1

0

s�2H sin s ds

by integration by parts. IfH < 1=2, an application of (34) shows that this variance is
again given by (51); if H > 1=2, the same property can be proved by using another
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integration by parts, and the case H D 1=2 can be deduced from the continuity of
the variance with respect to H .

Remark 39. The variance of the spectral decomposition can also be obtained as
follows. The process BH given by (7) can be written as the real part of

B
H;C
t D 1p

�

Z C1

0

s�H�1=2 �eist � 1� �dW 1
s C i dW 2

s

�

' 1p
2�

Z C1

�1
jsj1=2�H eist � 1

s

�
dW 1

s C i dW 2
s

�
:

The isometry property of the Fourier transform on L2 enables to check that B1=2;C

has the same law as W 1 C i W 2, so in particular B1=2 is a standard Brownian
motion. Following Theorem 10, the general case H ¤ 1=2 is obtained by applying
eI
H�1=2
C to B1=2;C (use (34)).

C Equivalence of Laws of Gaussian Processes

Our aim is to compare the laws of two centred Gaussian processes. It is known from
[10,15,16] that their laws are either equivalent, or mutually singular (actually this is
also true in the non centred case), and we want to decide between these two possibil-
ities. In Sect. C.1, after a brief review of infinite dimensional Gaussian variables, we
explain how the Cameron–Martin space (or reproducing kernel Hilbert space) can
be used to study this question. In particular, we prove a sufficient condition for the
equivalence. Then, in Sect. C.2, we describe a more computational method which
can be used for self-similar processes to decide between the equivalence and mutual
singularity.

C.1 Cameron–Martin Spaces

A Gaussian process can be viewed as a Gaussian variable W taking its values in an
infinite-dimensional vector space W , but the choice of W is not unique; in order
to facilitate the study of W , it is better for W to have a good topological structure.
This is with this purpose that the notion of abstract Wiener space was introduced
by [14]; in this framework, W is a separable Banach space. However, more general
topological vector spaces can also be considered, see for instance [3]. Here, we as-
sume that W is a separable Fréchet space and we let W? be its topological dual. The
space W is endowed with its Borel �-algebra, which coincides with the cylindrical
�-algebra generated by the maps w 7! `.w/, ` 2 W?. A W-valued variable W is
said to be centred Gaussian if `.W / is centred Gaussian for any ` 2W?; the closed
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subspace of L2.˝/ generated by the variables `.W / is the Gaussian space of W .
The Fernique theorem (see Theorem 2.8.5 in [3]) states that if j:j is a measurable
seminorm on W (which may take infinite values) and if jW j is almost surely finite,
then exp.�jW j2/ is integrable for small enough positive �.

For h in W , define

jhjH D sup
n `.h/



`.W /





2

I ` 2W?
o

(97)

with the usual convention 0=0 D 0. Then H D ˚
hI jhjH < 1� is a separa-

ble Hilbert space which is continuously embedded in W and which is called the
Cameron–Martin space of W ; it is dense in W if the topological support of the
law of W is W . It can be identified to its dual, and the adjoint of the inclusion
i W H!W is a map i? WW? ! H with dense image such that

hi?.`/; hiH D `.h/; hi?.`1/; i?.`2/iH D E
�
`1.W /`2.W /

�
: (98)

Consequently, the map ` 7! `.W / can be extended to an isometry between H and
the Gaussian space of W , that we denote by hW;hiH (though W does not live in
H); thus `.W / D hW; i?.`/iH and

E
�hW;hiH hW;h0iH

� D hh; h0iH: (99)

The variable hW;hiH is called the Wiener integral of h.

Example 4. When considering real continuous Gaussian processes, the space W
can be taken to be the space of real-valued continuous functions with the topology
of uniform convergence on compact subsets. The most known example is the stan-
dard Brownian motion; its Cameron–Martin space H1=2 is the space of absolutely
continuous functions h such that h.0/ D 0 and D1h is in L2.

Remark 40. Let W be the space of real-valued continuous functions. The coordinate
maps `t .!/ D !.t/ are in W? and the linear subspace generated by the variables
`t .W / D Wt is dense in the Gaussian space of W ; equivalently, the space H is
generated by the elements i?.`t /. On the other hand, we deduce from (98) that

i?.`t / W s 7! `s
�
i?.`t /

� D hi?.`s/; i?.`t /iH D EŒWsWt �:

Thus, if we denote by C.s; t/ D EŒWsWt � the covariance kernel, then H is the
closure of the linear span of the functions i?.`t / D C.t; :/ for the inner product

hC.s; :/; C.t; :/iH D C.s; t/:
This relation is called the reproducing property, and H is the reproducing kernel
Hilbert space of C.:; :/. This technique can also be used for non continuous pro-
cesses, see for instance [36].

Remark 41. Another viewpoint for the Wiener integrals when W D .Wt / is a con-
tinuous Gaussian process is to consider the integrals

R
f .t/dWt for deterministic
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functions f . This integral is easily defined when f is an elementary (or step)
process, and we can extend by continuity this definition to more general functions.
With this method, we obtain variables which are in the Gaussian space ofW , but we
do not necessarily obtain the whole space, see the case of the fractional Brownian
motion BH whenH > 1=2 in [34].

Let W1 and W2 be two centred Gaussian variables with values in the same space
W , with Cameron–Martin spaces H1 and H2. It follows from (97) that H1 is con-
tinuously embedded in H2 if and only if




`.W1/





2
� C

`.W2/





2

(100)

for any ` 2W?.
Let W1 and W2 be separable Fréchet spaces, let W be a W1-valued centred

Gaussian variable with Cameron–Martin space H1, and let A W W1 ! W2 be a
measurable linear transformation which is defined on a measurable linear subspace
of W1 supporting the law of W . Then AW is a centred Gaussian variable. If A is
injective on H1, then the Cameron–Martin space of AW is H2 D A.H1/. This ex-
plains how the Cameron–Martin space HH of the fractional Brownian motion BH

can be deduced from H1=2; one applies the transformationseI
H�1=2
C (Theorem 10)

or G1=2;H0C (Theorem 11). On the other hand, if A is non injective, one still has
H2 D A.H1/ and the norm is now given by

jh2jH2 D inf
˚jh1jH1 I A.h1/ D h2

�
: (101)

In particular jAhjH2 � jhjH1 . If A D 0 on H1, then AW D 0.
We now consider the absolute continuity of Gaussian measures with respect

to one another. This notion can be studied by means of the relative entropy, or
Kullback-Leibler divergence, defined for probability measures �1 and �2 by

I.�2; �1/ D
Z

ln .d�2=d�1/ d�2

if �2 is absolutely continuous with respect to �1, and byC1 otherwise. This quan-
tity is related to the total variation of �2 � �1 by the Pinsker inequality

�Z ˇ
ˇd�2 � d�1

ˇ
ˇ
	2
� 2I.�2; �1/: (102)

The Cameron–Martin theorem enables to characterise elements of H amongst
elements of W . More precisely, h is in H if and only if the law of W C h is abso-
lutely continuous with respect to the law of W . Moreover, in this case, the density
is exp

�hW;hiH � jhj2H=2
�
. Thus

I.�0; �/ D I.�; �0/ D jhj2H=2
when � and �0 are the laws of W andW C h.
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The transformation W 7! W C h of the Cameron–Martin space can be
generalised to random h. If we add to W an independent process X taking its
values in H, it is easily seen by working conditionally on X that the laws of
W and W C X are again equivalent. Moreover, the law of .W C X;X/ is ab-
solutely continuous with respect to the law of .W;X/, with a density equal to
exp

�hW;XiH � jX j2H=2
�
, and relative entropies of the two variables with respect

to each other are equal to 1
2
EjX j2H. By projecting on the first component, it follows

from the Jensen inequality that the relative entropy cannot increase, so

max
�
I.�0; �/; I.�; �0/

� � EjX j2H=2 (103)

when � and �0 are the laws of W andW CX .
When W D .Wn/ and W D .W n/ are two sequences consisting of independent

centred Gaussian variables with positive variances, then the equivalence or mutual
singularity of their laws can be decided by means of Kakutani’s criterion [23]. This
criterion is actually intended to general non Gaussian variables; when specialised to
the Gaussian case, it leads to the following result.

Theorem 34. Let W D .Wn/ and W D .W n/ be two sequences of independent
centred Gaussian variables with variances �2n > 0 and N�2n > 0. Then the laws ofW
andW are equivalent if and only if

X

n

� N�2n
�2n
� 1

	2
<1: (104)

Returning to general Gaussian variables, we now give a sufficient condition for
the equivalence of W and W C X where W and X are not required to be indepen-
dent. This result has been used in the proof of Theorem 27; it can be deduced from
the proof of [10], but we explain its proof for completeness.

Theorem 35. Let .W;X/ be a centred Gaussian variable with values in W 	 H,
where W is a separable Fréchet space, and H is the Cameron–Martin space of W ;
thusW CX is a Gaussian variable taking its values in W; let H0 be its Cameron–
Martin space.

� The space H0 is continuously embedded in H.
� If moreover H is continuously embedded in H0 (so that H � H0), then the laws

of W and W C X are equivalent. Moreover, the entropy of the law of W C X
relative to the law of W is bounded by C EjX j2H, where C depends only on the
norms of the injections of H and H0 into each other.

Proof. We have to compare the laws of .`.W /I ` 2W?/ and .`.W CX/; ` 2W?/.
Since jX jH is almost surely finite, it follows from the Fernique theorem that jX j2H
has an exponential moment and is in particular integrable, so `.X/ D hi?.`/; XiH
is square integrable. Thus



`.W CX/


2
� 

`.W /



2
C C ˇ̌i?.`/ˇ̌H � .C C 1/



`.W /



2
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and the inclusion H0 � H follows from (100). Let us now suppose H � H0, so that,
by again applying (100),

C1



`.W /





2
� 

`.W CX/



2
� C2




`.W /





2

(105)

for positiveC1 andC2. Let us first compare the laws of the families .`.W CX/I ` 2
W?
1 / and .`.W /I ` 2W?

1 / for a finite-dimensional subspace W?
1 of W?. We have

W?
0 D

˚
` 2W?I 

`.W /



2
D 0� D ˚` 2W?I 

`.W CX/



2
D 0�

and it is sufficient to consider the case where W?
1\W?

0 D f0g. Then j`j D k`.W /


2

and j`j0 D 

`.W CX/


2

define two Euclidean structures on W?
1 , and it is possible

to find a basis .`nI 1 � n � N/ which is orthonormal for the former norm, and
orthogonal for the latter norm. We have to compare the laws �N and �0

N of UN D
.`n.W /I 1 � n � N/ and U 0

N D .`n.W C X/I 1 � n � N/. The vectors UN and
U 0
N consist of independent centred Gaussian variables; moreover, Un has variance

1, and it follows from (105) that U 0
n has a variance �2n satisfying C1 � �2n � C2.

We deduce that

I.�0
N ; �N / D

1

2

NX

nD1

�
�2n � 1 � ln �2n

� � C
NX

nD1
.�2n � 1/2:

But

�2n � 1 D 2E
�
`n.W / `n.X/

�C E
�
.`n.X//

2
� � C �E�.`n.X//2

��1=2
(106)

(we deduce from �2n � C2 that the variances of `n.X/ are uniformly bounded), and

I.�0
N ; �N / � C

NX

nD1
E

h
.`n.X//

2
i
D C

NX

nD1
E

h
hi?.`n/; Xi2H

i
� C EjX j2H

because i?.`n/ is from (98) an orthonormal sequence in H. Thus the entropy of
the law of .`.W C X/I ` 2 W?

1 / relative to .`.W /I ` 2 W?
1 / is bounded by an

expression C EjX j2H which does not depend on the choice of the finite-dimensional
subspace W?

1 . This implies that the law in W of W C X is absolutely continuous
with respect to the law of W , and that the corresponding relative entropy is also
bounded by this expression. ut
Remark 42. The condition about the equivalence of Cameron–Martin spaces cannot
be dropped in Theorem 35, see the counterexample of the Brownian motion W D
.Wt / and Xt D �t W1.

Remark 43. If W and X are independent, then




`.W CX/

2

2
D 

`.W /

2

2
C 

`.X/

2

2
� 

`.W /

2

2



Representation Formulae for the Fractional Brownian Motion 67

so H � H0 is automatically satisfied. Moreover the estimation (106) is improved
and we have EhX; hni2H instead of its square root. This explains why the laws ofW
and W C X can be equivalent even when X does not take its values in H; when
W and X consist of sequences of independent variables (and assuming again that
H � H0), this improvement leads to the condition (104).

Remark 44. More generally, for the comparison of two centred Gaussian measures
� and �0 on a separable Fréchet space W , a necessary condition for the equivalence
of � and �0 is the equivalence of the Cameron–Martin spaces H and H0. If this
condition holds, there exists a homeomorphismQ of H onto itself such that

hh1; h2iH0 D hh1;Qh2iH:

Then � and �0 are equivalent if and only if Q � I is a Hilbert-Schmidt operator.

C.2 Covariance of Self-Similar Processes

Consider a square integrable H -self-similar process for H > 0; we now explain
that if it satisfies a 0-1 law in small time, then its covariance kernel can be estimated
by means of its behaviour in small time; this is a simple consequence of the Birkhoff
ergodic theorem.

Theorem 36. Let .	t I t > 0/ be aH -self-similar continuous process, and suppose
that its filtration Ft .	/ is such that F0C.	/ is almost surely trivial. Define

�r	.t/ D eHr	.e�r t/; �1 < r < C1:

Then for any measurable functional f on the space of continuous paths such that
f .	/ is integrable,

lim
T!1

1

T

Z T

0

f .�r	/dr D EŒf .	/� (107)

almost surely. In particular, if 	 D .	1; : : : ; 	n/ is square integrable,

EŒ	 iu	
j
v � D lim

t!0

1

j log t j
Z 1

t

	 ius	
j
vs

s2HC1 ds: (108)

Proof. One has �r�r0 D �rCr0 , so .�r/ is a family of shifts. Moreover, the H -self-
similarity of the process 	 is equivalent to the shift invariance of its law. Events
which are .�r/-invariant are in F0C.	/ which is almost surely trivial, so the ergodic
theorem enables to deduce (107). Then (108) is obtained by taking f .	/ D 	 iu	jv
and by applying the change of variable r D log.1=s/ in the integral. ut
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Remark 45. By using the Lamperti transform defined in (46), the family .�r/ is
reduced to the time translation on stationary processes.

Remark 46. In the centred Gaussian case, the law is characterised by the covariance
kernel, so Theorem 36 implies that the whole law of 	 can be deduced from its
small time behaviour. The result can be applied to fractional Brownian motions of
index 0 < H < 1; by applying the canonical representation of Sect. 4, one has
indeed F0C.BH / D F0C.W / and this �-algebra is well-known to be almost surely
trivial (Blumenthal 0-1 law). A simple counterexample is the fractional Brownian
motion of index H D 1; this process (which was always excluded from our study
of BH ) is given by B1t D t B1 for a Gaussian variable B1; the assumption about
F0C.	/ and the conclusion of the theorem do not hold.

Remark 47. In the Gaussian case, (108) is a simple way to prove that the law of 	
can be deduced from its small time behaviour. There are however other techniques,
such as Corollary 3.1 of [1] about the law of iterated logarithm.

Theorem 37. Let 	 and � be two centred continuous H -self-similar Gaussian
processes on Œ0; 1�, such that F0C.	/ is almost surely trivial. Then the two pro-
cesses either have the same law, or have mutually singular laws.

Proof. Gaussian measures are either equivalent, or mutually singular, so suppose
that the laws of 	 and � are equivalent. The process 	 satisfies (108), so

EŒ	 iu	
j
v � D lim

t!0

1

j log t j
Z 1

t

� ius�
j
vs

s2HC1 ds:

Moreover, the right hand side is bounded in Lp.˝/ for any p, so we can take the
expectation in the limit, and it follows from the self-similarity of � that

EŒ	 iu	
j
v � D lim

t!0

1

j log t j
Z 1

t

EŒ� ius�
j
vs �

s2HC1 ds D EŒ� iu�
j
v �:

Thus 	 and � have the same law. ut
A counterexample of this property is again the fractional Brownian motion with

index H D 1. Processes corresponding to different variances �DEŒ.B1/
2� > 0

have equivalent but different laws.
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Horizontal Diffusion in C1 Path Space

Marc Arnaudon, Koléhè Abdoulaye Coulibaly, and Anton Thalmaier

Abstract We define horizontal diffusion in C 1 path space over a Riemannian
manifold and prove its existence. If the metric on the manifold is developing un-
der the forward Ricci flow, horizontal diffusion along Brownian motion turns out to
be length preserving. As application, we prove contraction properties in the Monge–
Kantorovich minimization problem for probability measures evolving along the heat
flow. For constant rank diffusions, differentiating a family of coupled diffusions
gives a derivative process with a covariant derivative of finite variation. This con-
struction provides an alternative method to filtering out redundant noise.

Keywords Brownian motion � Damped parallel transport � Horizontal diffusion
�Monge–Kantorovich problem � Ricci curvature

1 Preliminaries

The main concern of this paper is to answer the following question: Given a second
order differential operator L without constant term on a manifoldM and a C 1 path
u 7! '.u/ taking values in M , is it possible to construct a one parameter family
Xt .u/ of diffusions with generatorL and starting point X0.u/ D '.u/, such that the
derivative with respect to u is locally uniformly bounded?

If the manifold is R
n and the generator L a constant coefficient differential op-

erator, there is an obvious solution: the family Xt .u/ D '.u/ C Yt , where Yt is
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an L-diffusion starting at 0, has the required properties. But already on R
n with a

non-constant generator, the question becomes difficult.
In this paper we give a positive answer for elliptic operators L on general mani-

folds; the result also covers time-dependent elliptic generators L D L.t/.
It turns out that the constructed family of diffusions solves the ordinary differen-

tial equation in the space of semimartingales:

@uXt .u/ D W.X.u//t. P'.u//; (1)

whereW.X.u// is the so-called deformed parallel translation along the semimartin-
gale X.u/.

The problem is similar to finding flows associated to derivative processes as stud-
ied in [7–10, 12–15]. However it is transversal in the sense that in these papers
diffusions with the same starting point are deformed along a drift which vanishes at
time 0. In contrast, we want to move the starting point but to keep the generator. See
Stroock [22], Chap. 10, for a related construction.

Our strategy of proof consists in iterating parallel couplings for closer and closer
diffusions. In the limit, the solution may be considered as an infinite number of in-
finitesimally coupled diffusions. We call it horizontalL-diffusion in C 1 path space.

If the generator L is degenerate, we are able to solve (1) only in the constant
rank case; by parallel coupling we construct a family of diffusions satisfying (1) at
u D 0. In particular, the derivative of Xt .u/ at u D 0 has finite variation compared
to parallel transport.

Note that our construction requires only a connection on the fiber bundle gener-
ated by the “carré du champ” operator. In the previous approach of [11], a stochastic
differential equation is needed and r has to be the Le Jan-Watanabe connection as-
sociated to the SDE.

The construction of families of L.t/-diffusions X..u/ with @uX..u/ locally uni-
formly bounded has a variety of applications. In Stochastic Analysis, for instance,
it allows to deduce Bismut type formulas without filtering redundant noise. If only
the derivative with respect to u at u D 0 is needed, parallel coupling as constructed
in [5, 6] would be a sufficient tool. The horizontal diffusion however is much more
intrinsic by yielding a flow with the deformed parallel translation as derivative, well-
suited to applications in the analysis of path space. Moreover for any u, the diffusion
X..u/ generates the same filtration as X..0/, and has the same lifetime if the mani-
fold is complete.

In Sect. 4 we use the horizontal diffusion to establish a contraction property for
the Monge–Kantorovich optimal transport between probability measures evolving
under the heat flow. We only assume that the cost function is a non-decreasing
function of distance. This includes all Wasserstein distances with respect to the time-
dependent Riemannian metric generated by the symbol of the generatorL.t/. For a
generator which is independent of time, the proof could be achieved using simple
parallel coupling. The time-dependent case however requires horizontal diffusion as
a tool.
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2 Horizontal Diffusion in C 1 Path Space

Let M be a complete Riemannian manifold with � its Riemannian distance. The
Levi–Civita connection on M will be denoted by r.

Given a continuous semimartingaleX taking values inM , we denote by drX D
dX its Itô differential and by dmX the martingale part of dX . In local coordinates,

drX � dX D
�

dX i C 1

2
� ijk.X/ d<Xj ; Xk >

	
@

@xi
(2)

where � i
jk

are the Christoffel symbols of the Levi–Civita connection on M . In
addition, if

dX i D dM i C dAi

whereM i is a local martingale and Ai a finite variation process, then

dmX D dM i @

@xi
:

Alternatively, if

Pt .X/ � PMt .X/ W TX0M ! TXtM

denotes parallel translation along X , then

dXt D Pt .X/ d

�Z .

0

Ps.X/
�1ıXs

	

t

and
dmXt D Pt .X/ dNt

where Nt is the martingale part of the Stratonovich integral

Z t

0

P.X/�1s ıXs:

IfX is a diffusion with generatorL, we denote byW.X/ the so-called deformed
parallel translation along X . Recall that W.X/t is a linear map TX0M ! TXtM ,
determined by the initial conditionW.X/0 D IdTX0M and the covariant Itô stochas-
tic differential equation:

DW.X/t D �1
2

Ric].W.X/t / dt CrW.X/tZ dt: (3)

By definition we have

DW.X/t D Pt .X/d
�
P..X/�1W.X/

�
t
: (4)
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Note that the Itô differential (2) and the parallel translation require only a
connection r on M . For the deformed parallel translation (3) however the con-
nection has to be adapted to a metric.

In this section the connection and the metric are independent of time. We shall
see in Sect. 3 how these notions can be extended to time-dependent connections and
metrics.

Theorem 2.1. Let R ! M , u 7! '.u/, be a C 1 path in M and let Z be a vector
field onM . Further let X0 be a diffusion with generator

L D �=2CZ;

starting at '.0/, and lifetime �. There exists a unique family

u 7! .Xt .u//t2Œ0;�Œ

of diffusions with generator L, almost surely continuous in .t; u/ and C 1 in u, sat-
isfying X.0/ D X0, X0.u/ D '.u/ and

@uXt .u/ D W.X.u//t. P'.u//: (5)

Furthermore, the process X.u/ satisfies the Itô stochastic differential equation

dXt .u/ D PXt . �/0;u dmX0t CZXt .u/ dt; (6)

where PXt . �/0;u W TX0t M ! TXt .u/M denotes parallel transport along the C 1 curve

Œ0; u�!M; v 7! Xt .v/:

Definition 2.2. We call t 7! .Xt .u//u2R the horizontal L-diffusion in C 1 path
space C 1.R;M / over X0, starting at '.

Remark 2.3. Given an elliptic generator L, we can always choose a metric g on M
such that

L D �=2CZ
for some vector field Z where � is the Laplacian with respect to g. Assuming that
M is complete with respect to this metric, the assumptions of Theorem 2.1 are
fulfilled. In the non-complete case, a similar result holds with the only difference
that the lifetime of X..u/ then possibly depends on u.

Remark 2.4. Even if L D �=2, the solution we are looking for is not the flow of a
Cameron–Martin vector field: firstly the starting point here is not fixed and secondly
the vector field would have to depend on the parameter u. Consequently one cannot
apply for instance Theorem 3.2 in [15]. An adaptation of the proof of the cited result
would be possible, but we prefer to give a proof using infinitesimal parallel coupling
which is more adapted to our situation.
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Proof (Proof of Theorem 2.1).
Without loss of generality we may restrict ourselves to the case u � 0.
A. Existence. Under the assumption that a solutionXt .u/ exists, we have for any

stopping time T ,

WTCt .X.u//. P'.u// D Wt .XTC� .u// .@XT .u//;

for t 2 Œ0; �.!/ � T .!/Œ and ! 2 fT < �g. Here @XT WD .@X/T denotes the deriva-
tive process @X with respect to u, stopped at the random time T ; note that by (5),

.@XT /.u/ D W.X.u//T . P'.u//:
Consequently we may localize and replace the time interval Œ0; �Œ by Œ0; � ^ t0� for
some t0 > 0, where � is the first exit time of X from a relatively compact open
subset U of M with smooth boundary.

We may also assume that U is sufficiently small and included in the domain of
a local chart; moreover we can choose u0 2 �0; 1� with

R u0
0
k P'.u/k du small enough

such that the processes constructed for u 2 Œ0; u0� stay in the domain U of the chart.
At this point we use the uniform boundedness of W on Œ0; � ^ t0�.

For ˛ > 0, we define by induction a family of processes .X˛t .u//t�0 indexed by
u � 0 as follows: X˛.0/ D X0, X˛0 .u/ D '.u/, and if u 2 �n˛; .nC 1/˛� for some
integer n � 0, X˛.u/ satisfies the Itô equation

dX˛t .u/ D PX˛t .n˛/;X˛t .u/dmX˛t .n˛/CZX˛t .u/ dt; (7)

where Px;y denotes parallel translation along the minimal geodesic from x to y.
We choose ˛ sufficiently small so that all the minimizing geodesics are uniquely
determined and depend smoothly of the endpoints: since X˛.u/ is constructed from
X˛.n˛/ via parallel coupling (7), there exists a constant C > 0 such that

�.X˛t .u/; X
˛
t .n˛// � �.X˛0 .u/; X˛0 .n˛// eCt � k P'k1 ˛eCt0 (8)

(see e.g. [16]).
The process @X˛.u/ satisfies the covariant Itô stochastic differential equation

D@X˛.u/ D r@X˛.u/PX˛.n˛/; .dmX˛t .n˛/
Cr@X˛.u/Z dt � 1

2
Ric].@X˛.u// dt; (9)

(see [3] (4.7), along with Theorem 2.2).

Step 1 We prove that if X and Y are two L-diffusions stopped at �0 WD � ^ t0 and
living in U , then there exists a constant C such that

E

�
sup
t��0
kW.X/t �W.Y /tk2

�
� C E

�
sup
t��0
kXt � Ytk2

�
: (10)

Here we use the Euclidean norm defined by the chart.
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Write
L D aij @ij C bj @j

with aij D aj i for i; j 2 f1; : : : ; dimM g.
For L-diffusions X and Y taking values in U , we denote by NX , respectively

N Y , their martingale parts in the chart U . Then Itô’s formula yields
˝
.NX /k � .N Y /k; .NX /k � .N Y /k

˛
t

D .Xkt � Y kt /2 � .Xk0 � Y k0 /2

� 2
Z t

0

.Xks � Y ks / d..NX
s /

k � .N Y
s /

k/

� 2
Z t

0

.Xks � Y ks /
�
bk.Xs/ � bk.Ys/

�
ds:

Thus, for U sufficiently small, denoting by hNX � N Y jNX � N Y i the corre-
sponding Riemannian quadratic variation, there exists a constant C > 0 (possibly
changing from line to line) such that

E

h
hNX �N Y jNX �N Y i�0

i

� C E

�
sup
t��0
kXt � Ytk2

�
C C

X

k

E

�Z �0

0

jXkt � Y kt j jbk.Xt / � bk.Yt /j dt
�

� C E

�
sup
t��0
kXt � Ytk2

�
C C

Z t0

0

E

�
sup
s��0
kXs � Ysk2

�
dt

� C.1C t0/E
�

sup
t��0
kXt � Ytk2

�
:

Finally, again changing C , we obtain

E

h
hNX �N Y jNX �N Y i�0

i
� C E

�
sup
t��0
kXt � Ytk2

�
: (11)

Writing W.X/ D P.X/
�
P.X/�1W.X/

�
, a straightforward calculation shows

that in the local chart

dW.X/ D �� .X/.dX;W.X//
� 1

2
.d� /.X/.dX/.dX;W.X//

C 1

2
� .X/.dX;� .X/.dX;W.X///

� 1

2
Ric].W.X// dt

C rW.X/Z dt: (12)
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We are going to use (12) to evaluate the difference W.Y / � W.X/. Along with
the already established bound (11), taking into account that W.X/, W.Y / and the
derivatives of the brackets ofX and Y are bounded in U , we are able to get a bound
for

F.t/ WD E

�
sup
s�t^�

kW.Y / �W.X/k2
�
:

Indeed, first an estimate of the type

F.t/ � C1 E

�
sup
s��0
kXs � Ysk2

�
C C2

Z t

0

F.s/ ds; 0 � t � t0;

is derived which then by Gronwall’s lemma leads to

F.t/ � C1 eC2t E

�
sup
t��0
kXt � Ytk2

�
: (13)

Letting t D t0 in (13) we obtain the desired bound (10).

Step 2 We prove that there exists C > 0 such that for all u 2 Œ0; u0�,

E

�
sup
t��0

�2
�
X˛t .u/; X

˛0

t .u/
��
� C.˛ C ˛0/2: (14)

From the covariant equation (9) for @X˛t .v/ and the definition of deformed
parallel translation (3),

DW.X/�1t D
1

2
Ric].W.X/�1t / dt � rW.X/�1t Z dt;

we have for .t; v/ 2 Œ0; �0� 	 Œ0; u0�,

W.X˛.v//�1t @X˛t .v/ D P'.v/C
Z t

0

W.X˛.v//�1s r@X˛s .v/PX˛s .v˛/; .dmX˛s .v˛/;

or equivalently,

@X˛t .v/ D W.X˛.v//t P'.v/

CW.X˛.v//t
Z t

0

W.X˛.v//�1s r@X˛s .v/PX˛s .v˛/; .dmX˛s .v˛/ (15)

with v˛ D n˛, where the integer n is determined by n˛ < v � .n C 1/˛.
Consequently, we obtain
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�.X˛t .u/; X
˛0

t .u//

D
Z u

0

D
d�;

�
@X˛t .v/; @X

˛0

t .v/
�E

dv

D
Z u

0

D
d�;

�
W.X˛.v//t P'.v/;W.X˛0

.v//t P'.v/
�E

dv

C
Z u

0

�
d�;

�
W.X˛.v//t

Z t

0
W.X˛.v//�1s r@X˛s .v/PX˛s .v˛/; . dmX

˛
s .v˛/; 0

	�
dv

C
Z u

0

�
d�;

�
0;W.X˛

0

.v//t

Z t

0
W.X˛

0

.v//�1s r@X˛0

s .v/
P
X˛

0

s .v˛0 /; . dmX
˛0

s .va0/

	�
dv:

This yields, by means of boundedness of d� and deformed parallel translation,
together with (13) and the Burkholder–Davis–Gundy inequalities,

E

�
sup
t��0

�2
�
X˛t .u/; X

˛0

t .u/
��
� C

Z u

0

E

�
sup
t��0

�2
�
X˛t .v/; X

˛0

t .v/
��

dv

C C
Z u

0

E

�Z �0

0



r@X˛s .v/PX˛s .v˛/; .


2 ds

�
dv

C C
Z u

0

E

�Z �0

0





r

@X˛
0

s .v/
P
X˛

0

s .v˛0 /; .






2

ds

�
dv:

From here we obtain

E

�
sup
t��0

�2
�
X˛t .u/; X

˛0

t .u/
��
� C

Z u

0

E

�
sup
t��0

�2
�
X˛t .v/; X

˛0

t .v/
��

dv

C C˛2
Z u

0

E

�Z �0

0

k@X˛s .v/k2 ds

�
dv

C C˛02
Z u

0

E

�Z �0

0






@X˛

0

s .v/






2

ds

�
dv;

where we used the fact that for v 2 TxM , rvPx; . D 0, together with

�.Xˇs .v/; X
ˇ
s .vˇ // � Cˇ; ˇ D ˛; ˛0;

see estimate (8).
Now, by (9) forD@Xˇ , there exists a constantC 0 > 0 such that for all v 2 Œ0; u0�,

E

�Z �0

0





@Xˇs .v/






2

ds

�
< C 0:
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Consequently,

E

�
sup
t��0

�2
�
X˛t .u/; X

˛0

t .u/
��
� C

Z u

0

E

�
sup
t��0

�2
�
X˛t .v/; X

˛0

t .v/
��

dv

C 2CC 0.˛ C ˛0/2;

which by Gronwall lemma yields

E

�
sup
t��0

�2
�
X˛t .u/; X

˛0

t .u/
��
� C .˛ C ˛0/2

for some constant C > 0. This is the desired inequality.

Step 3 Recall that
L D aij @ij C bj @j :

Denoting by .aij / the inverse of .aij /, we let r 0 be the connection with Christoffel
symbols

.� 0/kij D �
1

2
.aik C ajk/bk: (16)

We are going to prove that all L-diffusions are r 0-martingales:

(i) On one hand, r 0-martingales are characterized by the fact that for any k,

dXk C 1

2
.� 0/kij dhX i ; Xj i is the differential of a local martingale. (17)

(ii) On the other hand, L-diffusions satisfy the following two conditions:

dXk � bk.X/ dt is the differential of a local martingale, (18)

and
dhX i ; Xj i D .aij .X/C aj i .X// dt: (19)

From this it is clear that (16), (18) together with (19) imply (17).
From inequality (14) we deduce that there exists a limiting process

.Xt .u//0�t��0; 0�u�u0

such that for all u 2 Œ0; u0� and ˛ > 0,

E

�
sup
t��0

�2
�
X˛t .u/; Xt .u/

�� � C˛2: (20)

In other words, for any fixed u 2 Œ0; u0�, the process .X˛t .u//t2Œ0;�0� con-
verges to .Xt .u//t2Œ0;�0� uniformly in L2 as ˛ tends to 0. Since these processes are
r 0-martingales, convergence also holds in the topology of semimartingales ([4],
Proposition 2.10). This implies in particular that for any u 2 Œ0; u0�, the process
.Xt .u//t2Œ0;�0� is a diffusion with generator L, stopped at time �0.
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Extracting a subsequence .˛k/k�0 convergent to 0, we may assume that almost
surely, for all dyadic u 2 Œ0; u0�,

sup
t��0

�
�
X˛t .u/; Xt .u/

�

converges to 0. Moreover we can choose .˛k/k�0 of the form ˛k D 2�nk with
.nk/k�0 an increasing sequence of positive integers. Due to (8), we can take a
version of the processes .t; u/ 7! X

˛k
t .u/ such that

u 7! X
˛k
t .u/

is uniformly Lipschitz in u 2 N˛k \ Œ0; u0� with a Lipschitz constant independent
of k and t . Passing to the limit, we obtain that a.s for any t 2 Œ0; �0�, the map

u 7! Xt .u/

is uniformly Lipschitz in u 2 D\ Œ0; u0� with a Lipschitz constant independent of t ,
where D is the set of dyadic numbers. Finally we can choose a version of

.t; u/ 7! Xt .u/

which is a.s. continuous in .t; u/ 2 Œ0; �0� 	 Œ0; u0�, and hence uniformly Lipschitz
in u 2 Œ0; u0�.
Step 4 We prove that almost surely, Xt .u/ is differentiable in u with derivative

W.X.u//t. P'.u//:

More precisely, we show that in local coordinates, almost surely, for all t 2 Œ0; �0�,
u 2 Œ0; u0�,

Xt .u/ D X0t C
Z u

0

W.X.v//t . P'.v// dv: (21)

From the construction it is clear that almost surely, for all t 2 Œ0; �0�, u 2 Œ0; u0�,

X
˛k
t .u/ D X0t C

Z u

0

W.X˛k .v//t . P'.v// dv

C
Z u

0

�
W.X˛k .v//t

Z t

0

W.X˛k .v//�1s r@X˛ks .v/
P
X
˛k
s .v˛k /; .

dmX˛ks .v˛k /

	
dv:

This yields

Xt .u/� X0t �
Z u

0

W.X.v//t . P'.v// dv

D Xt .u/�X˛kt .u/C
Z u

0

.W.X˛k .v//t �W.X.v//t / P'.v/ dv

C
Z u

0

�
W.X˛k .v//t

Z t

0

W.X˛k .v//�1s r@X˛ks .v/
P
X
˛k
s .v˛k /; .

dmX˛ks .v˛k /

	
dv:
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The terms of right-hand-side are easily estimated, where in the estimates the con-
stant C may change from one line to another. First observe that

E

�
sup
t��0




Xt .u/� X˛kt .u/




2
�
� C˛2k:

Using (10) and (20) we have

E

"

sup
t��0









Z u

0

.W.X˛k .v//t �W.X.v//t / dv









2
#

� E

�
sup
t��0

Z u

0

kW.X˛k .v//t �W.X.v//tk2 dv

�

D
Z u

0

E

�
sup
t��0
kW.X˛k .v//t �W.X.v//tk2

�
dv

� C˛2k;

and finally

E

"

sup
t��0









Z u

0

W.X˛k .v//t

	
�Z t

0

W.X˛k .v//�1s r@X˛ks .v/
P
X
˛k
s .v˛k /; .

dmX˛ks .v˛k /

	
dv










2
#

� C
Z u

0

E

"

sup
t��0









Z t

0

W.X˛k .v//�1s r@X˛ks .v/
P
X
˛k
s .v˛k /; .

dmX˛ks .v˛k /









2
#

dv

� C
Z u

0

E

�Z �0

0






r

@X
˛k
s .v/

P
X
˛k
s .v˛k /; .







2

ds

�
dv (since W �1 is bounded)

� C˛2k
Z u

0

E

�Z �0

0

k@X˛ks .v/k2 ds

�
dv

� C˛2k:

where in the last but one inequality we used rvPx; . D 0 for any v 2 TxM which
implies 

rvPy; .



2 � C �.x; y/2kvk2;
and the last inequality is a consequence of (9).

We deduce that

E

"

sup
t��0








Xt .u/�X0t �

Z u

0

W.X.v//t. P'.v// dv










2
#

� C˛2k:
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Since this is true for any ˛k , using continuity in u of Xt .u/, we finally get almost
surely for all t; u,

Xt .u/ D X0t C
Z u

0

W.X.v//t . P'.v// dv:

Step 5 Finally we are able to prove (6):

dXt .u/ D PXt . �/0;u dmX0t CZXt .u/ dt:

Since a.s. the mapping .t; u/ 7! @Xt .u/ is continuous, the map u 7! @X.u/ is
continuous in the topology of uniform convergence in probability. We want to prove
that u 7! @X.u/ is continuous in the topology of semimartingales.

Since for a given connection on a manifold, the topology of uniform convergence
in probability and the topology of semimartingale coincide on the set of martingales
(Proposition 2.10 of [4]), it is sufficient to find a connection on TM for which
@X.u/ is a martingale for any u. Again we can localize in the domain of a chart.
Recall that for all u, the process X.u/ is a r 0-martingale where r 0 is defined in
step 1. Then by [1], Theorem 3.3, this implies that the derivative with respect to
u with values in TM , denoted here by @X.u/, is a .r 0/c-martingale with respect
to the complete lift .r 0/c of r 0. This proves that u 7! @X.u/ is continuous in the
topology of semimartingales.

Remark 2.5. Alternatively, one could have used that given a generator L0, the
topologies of uniform convergence in probability on compact sets and the topology
of semimartingales coincide on the space of L0-diffusions. Since the processes
@X.u/ are diffusions with the same generator, the result could be derived as well.

As a consequence, Itô integrals commute with derivatives with respect to u (see
e.g. [4], Corollary 3.18 and Lemma 3.15). We write it formally as

D@X D rudX � 1
2
R.@X; dX/dX: (22)

Since
dX.u/˝ dX.u/ D g�1.X.u// dt

where g is the metric tensor, (22) becomes

D@X D rudX � 1
2

Ric].@X/ dt:

On the other hand, (5) and (3) for W yield

D@X D �1
2

Ric].@X/ dt Cr@XZ dt:

From the last two equations we obtain

rudX D r@XZ dt:
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This along with the original equation

dX0 D dmX0 CZX0 dt

gives
dXt .u/ D PXt . �/0;u dmX0t CZXt .u/ dt;

where
P
Xt . �/
0;u W TXtM ! TXt .u/M

denotes parallel transport along the C 1 curve v 7! Xt .v/.

B. Uniqueness. Again we may localize in the domain of a chart U . LettingX.u/
and Y.u/ be two solutions of (5), then for .t; u/ 2 Œ0; �0Œ	Œ0; u0� we find in local
coordinates,

Yt .u/� Xt .u/ D
Z u

0

�
W.Y.v//t �W.X.v//t

�
. P'.v// dv: (23)

On the other hand, using (10) we have

E

�
sup
t��0
kYt .u/� Xt .u/k2

�
� C

Z u

0

E

�
sup
t��0
kYt .v/ � Xt .v/k2

�
dv (24)

from which we deduce that almost surely, for all t 2 Œ0; �0�, Xt .u/ D Yt .u/. Conse-
quently, exploiting the fact that the two processes are continuous in .t; u/, they must
be indistinguishable. ut

3 Horizontal Diffusion Along Non-Homogeneous Diffusion

In this section we assume that the elliptic generator is a C 1 function of time:
LDL.t/ for t � 0. Let g.t/ be the metric on M such that

L.t/ D 1

2
�t CZ.t/

where�t is the g.t/-Laplacian and Z.t/ a vector field on M .
Let .Xt / be an inhomogeneous diffusion with generator L.t/. Parallel transport

P t .X/t along the L.t/-diffusion Xt is defined analogously to [2] as the linear map

P t .X/t WTX0M ! TXtM

which satisfies

DtP t .X/t D �1
2
Pg].P t .X/t / dt (25)
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where Pg denotes the derivative of g with respect to time; the covariant differen-
tial Dt is defined in local coordinates by the same formulas as D, with the only
difference that Christoffel symbols now depend on t .

Alternatively, if J is a semimartingale over X , the covariant differential DtJ

may be defined as QD.0; J / D .0;DtJ /, where .0; J / is a semimartingale along
.t; Xt / in QM D Œ0; T � 	M endowed with the connection Qr defined as follows: if

s 7! Q'.s/ D .f .s/; '.s//
is a C 1 path in QM and s 7! Qu.s/ D .˛.s/; u.s// 2 T QM is C 1 path over Q', then

Qr Qu.s/ D
�
P̨ .s/; �rf.s/u�.s/

�

where rt denotes the Levi–Civita connection associated to g.t/. It is proven in [2]
that P t .X/t is an isometry from .TX0M;g.0;X0// to .TXtM;g.t; Xt //.

The damped parallel translationW t .X/t along Xt is the linear map

W t .X/t W TX0M ! TXtM

satisfying

DtW t .X/t D
�
rtW t .X/t

Z.t; �/� 1
2
.Rict /].W t .X/t /

	
dt: (26)

If Z � 0 and g.t/ is solution to the backward Ricci flow:

Pg D Ric; (27)

then damped parallel translation coincides with the usual parallel translation:

P t .X/ D W t .X/;

(see [2], Theorem 2.3).
The Itô differential drY D drtY of an M -valued semimartingale Y is defined

by formula (2), with the only difference that the Christoffel symbols depend on time.

Theorem 3.1. Keeping the assumptions of this section, let

R!M; u 7! '.u/;

be a C 1 path in M and let X0 be an L.t/-diffusion with starting point '.0/ and
lifetime �. Assume that .M; g.t// is complete for every t . There exists a unique
family

u 7! .Xt .u//t2Œ0;�Œ
of L.t/-diffusions, which is a.s. continuous in .t; u/ and C 1 in u, satisfying

X.0/ D X0 and X0.u/ D '.u/;
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and solving the equation

@Xt .u/ D W t .X.u//t. P'.u//: (28)

Furthermore, X.u/ solves the Itô stochastic differential equation

drXt .u/ D P t;Xt . �/0;u dr.t/Xt CZ.t;Xt .u// dt; (29)

where
P
t;Xt . �/
0;u W TX0t M ! TXt .u/M

denotes parallel transport along the C 1 curve

Œ0; u�!M; v 7! Xt .v/;

with respect to the metric g.t/.
If Z � 0 and if g.t/ is given as solution to the backward Ricci flow equation,

then almost surely for all t ,

k@Xt .u/kg.t/ D k P'.u/kg.0/ : (30)

Definition 3.2. We call
t 7! .Xt .u//u2R

the horizontal L.t/-diffusion in C 1 path space C 1.R;M / over X0, started at '.

Remark 3.3. Equation (30) says that if Z � 0 and if g is solution to the backward
Ricci flow equation, then the horizontal g.t/-Brownian motion is length preserving
(with respect to the moving metric).

Remark 3.4. Again if the manifold .M; g.t// is not necessarily complete for all t , a
similar result holds with the lifetime of X..u/ possibly depending on u.

Proof (Proof of Theorem 3.1). The proof is similar to the one of Theorem 2.1. We
restrict ourselves to explaining the differences.

The localization procedure carries over immediately; we work on the time inter-
val Œ0; � ^ t0�.

For ˛ > 0, we define the approximating process X˛t .u/ by induction as

X˛t .0/ D X0t ; X˛0 .u/ D '.u/;

and if u 2 �n˛; .nC 1/˛� for some integer n � 0, thenX˛.u/ solves the Itô equation

drX˛t .u/ D P tX˛t .n˛/;X˛t .u/dmX
˛
t .n˛/CZ.t;Xt .u// dt (31)

where P tx;y is the parallel transport along the minimal geodesic from x to y, for the
connection rt .
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Alternatively, letting QX˛t D .t; X˛t /, we may write (31) as

d
Qr QX˛t .u/ D QP QX˛t .n˛/; QX˛t .u/dm

QX˛t .n˛/CZ. QX˛t .u// dt (32)

where QP Qx; Qy denotes parallel translation along the minimal geodesic from Qx to Qy for
the connection Qr.

Denoting by �.t; x; y/ the distance from x to y with respect to the metric g.t/,
Itô’s formula shows that the process �

�
t; X˛t .u/; X

˛
t .n˛/

�
has locally bounded vari-

ation. Moreover since locally @t�.t; x; y/ � C�.t; x; y/ for x 6D y, we find similarly
to (8),

�.t; X˛t .u/; X
˛
t .n˛// � �.0;X˛0 .u/; X˛0 .n˛// eCt � k P'k1 ˛ eCt0 :

Since all Riemannian distances are locally equivalent, this implies

�.X˛t .u/; X
˛
t .n˛// � �.X˛0 .u/; X˛0 .n˛// eCt � k P'k1 ˛ eCt0 (33)

where � D �.0; �; �/.
Next, differentiating (32) yields

QD@u QX˛t .u/ D Qr@u QX˛t .u/
QP QX˛t .n˛/; .dm

QX˛t .n˛/

C Qr
@u QX˛t .u/Z dt � 1

2
QR�@u QX˛t .u/; d QX˛t .u/

�
d QX˛t .u/:

Using the fact that the first component of QX˛t .u/ has finite variation, a careful com-
putation of QR leads to the equation

Dt@uX
˛
t .u/ D rt@uX

˛
t .u/

P tX˛t .n˛/; .dmX
˛
t .n˛/

Crt
@uX

˛
t .u/

Z.t; �/ � 1
2
.Rict /]

�
@uX

˛
t .u/

�
dt:

To finish the proof, it is sufficient to remark that in step 1, (11) still holds true for
X and Y g.t/-Brownian motions living in a small open set U , and that in step 5, the
map u 7! @X.u/ is continuous in the topology of semimartingales. This last point is
due to the fact that all @X.u/ are inhomogeneous diffusions with the same generator,
say L0, and the fact that the topology of uniform convergence on compact sets and
the topology of semimartingales coincide on L0-diffusions. ut

4 Application to Optimal Transport

In this section we assume again that the elliptic generator L.t/ is a C 1 function of
time with associated metric g.t/:

L.t/ D 1

2
�t CZ.t/; t 2 Œ0; T �;
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where �t is the Laplacian associated to g.t/ and Z.t/ is a vector field. We assume
further that for any t , the Riemannian manifold .M; g.t// is metrically complete,
and L.t/ diffusions have lifetime T .

Letting 'W Œ0; T �! RC be a non-decreasing function, we define a cost function

c.t; x; y/ D '.�.t; x; y// (34)

where �.t; �; �/ denotes distance with respect to g.t/.
To the cost function c we associate the Monge–Kantorovich minimization be-

tween two probability measures on M

Wc;t .�; �/ D inf
	2˘.
;�/

Z

M	M
c.t; x; y/ d�.x; y/ (35)

where ˘.�; �/ is the set of all probability measures on M 	M with marginals �
and �. We denote

Wp;t .�; �/ D
�
W�p;t .�; �/

�1=p
(36)

the Wasserstein distance associated to p > 0. For a probability measure � on M ,
the solution of the heat flow equation associated to L.t/ will be denoted by �Pt .

Define a section .rtZ/[ 2 � .T 
M ˇ T 
M/ as follows: for any x 2 M and
u; v 2 TxM ,

.rtZ/[.u; v/ D 1

2

�
g.t/.rtuZ; v/C g.t/.u;rtvZ/

�
:

In case the metric is independent of t and Z D gradV for some C 2 function V
on M , then

.rtZ/[.u; v/ D rdV.u; v/:

Theorem 4.1. We keep notation and assumptions from above.

(a) Assume
Rict � Pg � 2.rtZ/[ � 0; t 2 Œ0; T �: (37)

Then the function
t 7! Wc;t .�Pt ; �Pt /

is non-increasing on Œ0; T �.

(b) If for some k 2 R,

Rict � Pg � 2.rtZ/[ � kg; t 2 Œ0; T �; (38)

then we have for all p > 0

Wp;t .�Pt ; �Pt / � e�kt=2Wp;0.�; �/; t 2 Œ0; T �:
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Remark 4.2. Before turning to the proof of Theorem 4.1, let us mention that in the
case Z D 0, g constant, p D 2 and k D 0, item (b) is due to [21] and [20]. In the
case where g is a backward Ricci flow solution, Z D 0 and p D 2, statement (b)
forM compact is due to Lott [18] and McCann–Topping [19]. For extensions about
L-transportation, see [23].

Proof (Proof of Theorem 4.1). (a) Assume that Rict � Pg � 2.rtZ/[ � 0. Then for
any L.t/-diffusion .Xt /, we have

d
�
g.t/.W.X/t ;W.X/t /

�

D Pg.t/�W.X/t ;W.X/t
�

dt C 2g.t/ �DtW.X/t ;W.X/t
�

D Pg.t/�W.X/t ;W.X/t
�

dt

C 2g.t/
�
rtW.X/tZ.t; �/ �

1

2
.Rict /].W.X/t /;W.X/t

	
dt

D
�
Pg C 2.rtZ/[ � Rict

� �
W.X/t ;W.X/t

�
dt � 0:

Consequently, for any t � 0,

kW.X/tkt � kW.X/0k0 D 1: (39)

For x; y 2M , let u 7! 
.x; y/.u/ be a minimal g.0/-geodesic from x to y in time 1:

.x; y/.0/ D x and 
.x; y/.1/ D y. Denote byXx;y.u/ a horizontalL.t/-diffusion
with initial condition 
.x; y/.

For � 2 ˘.�; �/, define the measure �t onM 	M by

�t .A 	B/ D
Z

M	M
P
˚
X
x;y
t .0/ 2 A; Xx;yt .1/ 2 B� d�.x; y/;

where A and B are Borel subsets of M . Then �t has marginals �Pt and �Pt . Con-
sequently it is sufficient to prove that for any such �,

Z

M	M
E
�
c.t; X

x;y
t .0/; X

x;y
t .1//

�
d�.x; y/ �

Z

M	M
c.0; x; y/ d�.x; y/: (40)

On the other hand, we have a.s.,

�.t; X
x;y
t .0/; X

x;y
t .1// �

Z 1

0




@uX

x;y
t .u/





t

du

D
Z 1

0




W.Xx;y.u//t P
.x; y/.u/





t

du

�
Z 1

0



 P
.x; y/.u/


0

du

D �.0; x; y/;
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and this clearly implies

c
�
t; X

x;y
t .0/; X

x;y
t .1/

� � c.0; x; y/ a.s.;

and then (40).

(b) Under condition (38), we have

d

dt
g.t/

�
W.X/t ;W.X/t

� � �k g.t/�W.X/t ;W.X/t
�
;

which implies
kW.X/tkt � e�kt=2;

and then
�
�
t; X

x;y
t .0/; X

x;y
t .1/

� � e�kt=2�.0; x; y/:

The result follows. ut

5 Derivative Process Along Constant Rank Diffusion

In this section we consider a generatorL of constant rank: the imageE of the “carré
du champ” operator � .L/ 2 � .TM ˝ TM/ defines a subbundle of TM . In E we
then have an intrinsic metric given by

g.x/ D .� .L/jE.x//�1 ; x 2 M:

Let r be a connection onE with preserves g, and denote byr 0 the associated semi-
connection: if U 2 � .TM/ is a vector field, r 0

vU is defined only if v 2 E and
satisfies

r 0
vU D rUx0V C ŒV; U �x0

where V 2 � .E/ is such that Vx0 D v (see [11], Sect. 1.3). We denote by Z.x/ the
drift of L with respect to the connection r.

For the construction of a flow of L-diffusions we will use an extension of r to
TM denoted by Qr. Then the associated semi-connection r 0 is the restriction of the
classical adjoint of Qr (see [11], Proposition 1.3.1).

Remark 5.1. It is proven in [11] that a connection r always exists, for instance, we
may take the Le Jan-Watanabe connection associated to a well chosen vector bundle
homomorphism from a trivial bundleM 	H to E where H is a Hilbert space.

If Xt is an L-diffusion, the parallel transport

P.X/t WEX0 ! EXt
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along Xt (with respect to the connection Qr) depends only on r. The same applies
for the Itô differential dXt D drXt . We still denote by dmXt its martingale part.

We denote by
QP 0.X/t W TX0M ! TXtM

the parallel transport along Xt for the adjoint connection . Qr/0, and by QD0J the
covariant differential (with respect to . Qr/0) of a semimartingale J 2 TM above X ;
compare (4) for the definition.

Theorem 5.2. We keep the notation and assumptions from above. Let x0 be a fixed
point in M and Xt .x0/ an L-diffusion starting at x0. For x 2 M close to x0, we
define the L-diffusion Xt .x/, started at x, by

dXt.x/ D QPXt .x0/;Xt .x/ dmXt .x0/CZ.Xt .x// dt (41)

where QPx;y denotes parallel transport (with respect to Qr) along the unique
Qr-geodesic from x to y. Then

QD0Tx0X D QrTx0XZ dt � 1
2

Ric].Tx0X/ dt (42)

where

Ric].u/ D
dX

iD1
QR.u; ei/ei ; u 2 TxM;

and .ei /iD1;:::;d an orthonormal basis of Ex for the metric g.
Under the additional assumption that Z 2 � .E/, the differential QD0Tx0X does

not depend on the extension Qr, and we have

QD0Tx0X D rTx0XZ dt � 1
2

Ric].Tx0X/ dt: (43)

Proof. From [3, eq. (7.4)] we have

QD0Tx0X D QrTx0X QPXt .x0/; . dmXt .x0/C QrTx0XZ dt

� 1
2

� QR0.Tx0X; dX.x0// dX.x0/C Qr 0 QT 0.dX.x0/; Tx0X; dX.x0//
�

� 1
2
QT 0. QD0Tx0X; dX/

where QT 0 denotes the torsion tensor of Qr 0. Since for all x 2 M , Qrv QPx; . D 0 if
v 2 TxM , the first term in the right vanishes. As a consequence, QD0Tx0X has finite
variation, and T 0. QD0Tx0X; dX/ D 0. Then using the identity

QR0.v; u/uC Qr 0 QT 0.u; v; u/ D QR.v; u/u; u; v 2 TxM;
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which is a particular case of identity (C.17) in [11], we obtain

QD0Tx0X D QrTx0XZ dt � 1
2
QR.Tx0X; dX.x0//dX.x0/:

Finally writing

QR.Tx0X; dX.x0//dX.x0/ D Ric].Tx0X/ dt

yields the result. ut
Remark 5.3. In the non-degenerate case,r is the Levi–Civita connection associated
to the metric generated by L, and we are in the situation of Sect. 2. In the degenerate
case, in general, r does not extend to a metric connection on M . However condi-
tions are given in [11] (1.3.C) under which P 0.X/ is adapted to some metric, and in
this case Tx0X is bounded with respect to the metric.

One would like to extend Theorem 2.1 to degenerate diffusions of constant rank,
by solving the equation

@uX.u/ D Qr@uX.u/Z dt � 1
2

Ric].@uX.u// dt:

Our proof does not work in this situation for two reasons. The first one is that in
general QP 0.X/ is not adapted to a metric. The second one is the lack of an inequality
of the type (8) since r does not have an extension Qr which is the Levi–Civita
connection of some metric.

Remark 5.4. When M is a Lie group and L is left invariant, then Qr can be chosen
as the left invariant connection. In this case . Qr/0 is the right invariant connection,
which is metric.

Acknowledgements The first named author wishes to thank the University of Luxembourg for
support.

Note added in proof Using recent results of Kuwada and Philipowski [17], the condition at the
beginning of Sect. 4 that L.t/ diffusions have lifetime T is automatically satisfied in the case of
a family of metrics g.t/ evolving by backward Ricci flow on a g.0/-complete manifold M . Thus
our Theorem 4.1 extends in particular the result of McCann–Topping [19] and Topping [23] from
compact to complete manifolds.
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A Stochastic Calculus Proof of the CLT
for the L2 Modulus of Continuity of Local Time

Jay Rosen

Abstract We give a stochastic calculus proof of the Central Limit Theorem

R
.LxCh
t �Lxt /2 dx � 4ht

h3=2

LH) c

�Z
.Lxt /

2 dx

	1=2
�

as h ! 0 for Brownian local time Lxt . Here � is an independent normal random
variable with mean zero and variance one.

Keywords Central limit theorem � Moduli of continuity � Local time � Brownian
motion

MSC 2000: Primary 60F05, 60J55, 60J65.

1 Introduction

In [3] we obtain almost sure limits for the Lp moduli of continuity of local times of
a very wide class of symmetric Lévy processes. More specifically, if fLxt I .x; t/ 2
R1 	 R1Cg denotes Brownian local time then for all p � 1, and all t 2 RC,

lim
h#0

Z b

a

ˇ
ˇ
ˇ
ˇ
LxCh
t � Lxtp

h

ˇ
ˇ
ˇ
ˇ

p

dx D 2pE.j�jp/
Z b

a

jLxt jp=2 dx

for all a; b in the extended real line almost surely, and also in Lm, m � 1. (Here
� is normal random variable with mean zero and variance one.) In particular when
p D 2 we have

lim
h#0

Z
.LxCh
t �Lxt /2

h
dx D 4t; almost surely. (1)

J. Rosen (�)
Department of Mathematics, College of Staten Island, CUNY, Staten Island, NY 10314, USA
e-mail: jrosen30@optimum.net

C. Donati-Martin et al. (eds.), Séminaire de Probabilités XLIII, Lecture Notes in Mathematics
2006, DOI 10.1007/978-3-642-15217-7__3, c� Springer-Verlag Berlin Heidelberg 2011

95

jrosen30@optimum.net


96 J. Rosen

We refer to
R
.LxCh
t � Lxt /2 dx as the L2 modulus of continuity of Brownian local

time.
In our recent paper [1] we obtain the central limit theorem corresponding to (1).

Theorem 1. For each fixed t

R
.LxCh
t �Lxt /2 dx � 4ht

h3=2

LH) c

�Z
.Lxt /

2 dx

	1=2
� (2)

as h! 0, with c D � 64
3

�1=2
. Equivalently

R
.LxC1
t �Lxt /2 dx � 4t

t3=4

LH) c

�Z
.Lx1/

2 dx

	1=2
� (3)

as t ! 1. Here � is an independent normal random variable with mean zero and
variance one.

It can be shown that

E

�Z
.LxC1
t � Lxt /2 dx

	
D 4

 

t � 2t
1=2

p
2�

!

CO.1/:

so that (3) can be written as

R
.LxC1
t � Lxt /2 dx � E

�R
.LxC1
t � Lxt /2 dx

�

t3=4

LH) c

�Z
.Lx1 /

2 dx

	1=2
�

with a similar statement for (2).
Our proof of Theorem 1 in [1] is rather long and involved. We use the method of

moments, but rather than study the asymptotics of the moments of (2), which seem
intractable, we study the moments of the analogous expression where the fixed time
t is replaced by an independent exponential time of mean 1=�. An important part of
the proof is then to “invert the Laplace transform” to obtain the asymptotics of the
moments for fixed t .

The purpose of this paper is to give a new and shorter proof of Theorem 1 using
stochastic integrals, following the approach of [8,9]. Our proof makes use of certain
differentiability properties of the double and triple intersection local time, ˛2;t .x/
and ˛3;t .x; y/, which are formally given by

˛2;t .x/ D
Z t

0

Z s

0

ı.Ws �Wr � x/ dr ds

and

˛3;t .x; y/ D
Z t

0

Z s

0

Z r

0

ı.Wr �Wr0 � x/ı.Ws �Wr � y/ dr0 dr ds:
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More precisely, let f .x/ be a smooth positive symmetric function with compact
support and

R
f .x/ dx D 1. Set f.x/ D 1


f .x=�/. Then

˛2;t .x/ D lim
!0

Z t

0

Z s

0

f.Ws �Wr � x/ dr ds

and

˛3;t .x; y/ D lim
!0

Z t

0

Z s

0

Z r

0

f.Wr �Wr0 � x/f.Ws �Wr � y/ dr0 dr ds

exist almost surely and in all Lp , are independent of the particular choice of f , and
are continuous in .x; y; t/ almost surely, [6]. It is easy to show, see [7, Theorem 2],
that for any measurable �.x/

Z t

0

Z s

0

�.Ws �Wr / dr ds D
Z
�.x/˛2;t .x/ dx (4)

and for any measurable �.x; y/

Z t

0

Z s

0

Z r

0

�.Wr �Wr0 ; Ws �Wr/ dr0 dr ds D
Z
�.x; y/˛3;t .x; y/ dx dy: (5)

To express the differentiability properties of ˛2;t .x/ and ˛3;t .x; y/ which we
need, let us set

v.x/ D
Z 1

0

e�s=2ps.x/ ds D e�jxj:

The following result is [7, Theorem 1].

Theorem 2. It holds that


2;t .x/ DW ˛2;t .x/ � tv.x/

and


3;t .x; y/ DW ˛3;t .x; y/ � 
2;t .x/v.y/ � 
2;t .y/v.x/ � tv.x/v.y/

are C 1 in .x; y/ and r
2;t .x/;r
3;t .x; y/ are continuous in .x; y; t/.

Our new proof of Theorem 1 is given in Sect. 2.
Our original motivation for studying the asymptotics of

R
.LxCh
t � Lxt /2 dx

comes from our interest in the Hamiltonian

Hn D
nX

i;jD1; i¤j
1fSiDSj g � 1

2

nX

i;jD1; i¤j
1fjSi�Sj jD1g;
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for the critical attractive random polymer in dimension one, [2], where fSn I n D
0; 1; 2; : : :g is a simple random walk on Z1. Note that Hn DPx2Z1

�
lxn � lxC1

n

�2
,

where lxn D
Pn
iD1 1fSiDxg is the local time for the random walk Sn.

2 A Stochastic Calculus Approach

By [4, Lemma 2.4.1] we have that

Lxt D lim
!0

Z t

0

f.Ws � x/ ds

almost surely, with convergence locally uniform in x. Hence

Z
LxCh
t Lxt dx

D
Z

lim
!0

�Z t

0

f.Ws � .x C h// ds

	�Z t

0

f.Wr � x/ dr

	
dx

D lim
!0

Z �Z t

0

f.Ws � .x C h// ds

	�Z t

0

f.Wr � x/ dr

	
dx

D lim
!0

Z t

0

Z t

0

f � f.Ws �Wr � h/ dr ds

D lim
!0

Z t

0

Z s

0

f � f.Ws �Wr � h/ dr ds

C lim
!0

Z t

0

Z r

0

f � f.Wr �Ws C h/ ds dr
D ˛2;t .h/C ˛2;t .�h/: (6)

Note that
Z
.LxCh
t �Lxt /2 dx D 2

�Z
.Lxt /

2 dx �
Z
LxCh
t Lxt dx

	

and thus
Z
.LxCh
t � Lxt /2 dx D 2 .2˛2;t .0/� ˛2;t .h/ � ˛2;t .�h// :

Hence we can prove Theorem 1 by showing that for each fixed t

2 .2˛2;t .0/� ˛2;t .h/ � ˛2;t .�h// � 4ht
h3=2

LH) c
p
˛2;t .0/ � (7)
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as h ! 0, with c D �
128
3

�1=2
. Here we used the fact, which follows from (6), thatR

.Lx1/
2 dx D 2 ˛2;t .0/.

In proving (7) we will need the following Lemma. Compare Tanaka’s formula,
[5, Chap. VI, Theorem 1.2].

Lemma 1. For any a 2 R1,

˛2;t .a/ D 2
Z t

0

.Wt �Ws � a/C ds � 2.�a/Ct � 2
Z t

0

Z s

0

1fWs�Wr>ag dr dWs :

Proof. Set

g.x/ D
Z 1

0

yf.x � y/ dy

so that

g0
.x/ D

Z 1

0

yf 0
 .x � y/ dy D

Z 1

0

f.x � y/ dy (8)

and consequently
g00
 .x/ D f.x/: (9)

Let

Fa.t; x/ D
Z t

0

g.x �Ws � a/ ds:

Then by Ito’s formula, [5, Chap. IV, (3.12)], applied to the non-anticipating func-
tional Fa.t; x/ we have

Z t

0

g.Wt �Ws � a/ ds

D
Z t

0

g.�a/ ds C
Z t

0

Z s

0

g0
.Ws �Wr � a/ dr dWs

C1
2

Z t

0

Z s

0

g00
 .Ws �Wr � a/ dr ds:

It is easy to check that locally uniformly

lim
!0

g.x/ D xC

and hence using (9) we obtain

˛2;t .a/

D 2
Z t

0

.Wt �Ws � a/C ds � 2.�a/Ct � 2 lim
!0

Z t

0

Z s

0

g0
.Ws �Wr � a/ dr dWs:
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From (8) we can see that supx jg0
.x/j � 1 and

lim
!0

g0
.x/ D 1fx>0g C 1

2
1fxD0g:

Thus by the dominated convergence theorem

lim
!0

Z t

0

E

 �Z s

0

˚
g0
.Ws �Wr � a/ � 1fWs�Wr>ag

�
dr

	2!

ds D 0

which completes the proof of our Lemma. ut
Proof (Proof of Theorem 1). If we now set

Jh.x/ D 2xC � .x � h/C � .x C h/C
(
�x � h if � h � x � 0;
x � h if 0 � x � h: (10)

and

Kh.x/ D 21fx>0g � 1fx>hg � 1fx>�hg D 1f0<x�hg � 1f�h<x�0g

we see from Lemma 1 that

2 f2˛t .0/� ˛t .h/ � ˛t .�h/g � 4ht
D 4

Z t

0

Jh.Wt �Ws/ ds � 4
Z t

0

Z s

0

Kh.Ws �Wr/ dr dWs : (11)

By (10),

Z t

0

Jh.Wt �Ws/ ds D
Z
Jh.Wt � x/Lxt dx D O.h2 sup

x
Lxt /:

Hence to prove (7) it suffices to show that for each fixed t

R t
0

R s
0
Kh.Ws �Wr/ dr dWs

h3=2

LH)
�
8

3

	1=2p
˛2;t .0/ � (12)

as h! 0. Let

M h
t D h�3=2

Z t

0

Z s

0

Kh.Ws �Wr/ dr dWs :

It follows from the proof of Theorem 2.6 in [5, Chap. XIII], (the Theorem of
Papanicolaou, Stroock, and Varadhan) that to establish (12) it suffices to show that

lim
h!0
hM h;W it D 0 (13)



CLT for the L2 Modulus of Continuity of Local Time 101

and

lim
h!0
hM h;M hit D 8

3
˛2;t .0/ (14)

uniformly in t on compact intervals.
By (4), and using the fact that Kh.x/ D K1.x=h/, we have that

hM h;W it D h�3=2
Z t

0

Z s

0

Kh.Ws �Wr / dr ds

D h�3=2
Z
Kh.x/˛2;t .x/ dx

D h�1=2
Z
K1.x/˛2;t .hx/ dx

D
Z 1

0

˛2;t .hx/ � ˛2;t .�hx/
h1=2

dx:

But v.hx/ D v.�hx/, so by Lemma 2 we have that

˛2;t .hx/ � ˛2;t .�hx/ D 
2;t .hx/ � 
2;t .�hx/ D O.h/

which completes the proof of (13).
We next analyze

hM h;M hit D h�3
Z t

0

�Z s

0

Kh.Ws �Wr/ dr
	2

ds

D h�3
Z t

0

�Z s

0

Kh.Ws �Wr/ dr
	�Z s

0

Kh.Ws �Wr0/ dr 0
	

ds

D h�3
Z t

0

�Z s

0

Z r

0

Kh.Ws �Wr0/Kh.Ws �Wr / dr 0 dr
	

ds

C h�3
Z t

0

 Z s

0

Z r0

0

Kh.Ws �Wr/Kh.Ws �Wr0/ dr dr 0
!

ds:

(15)

By (5) we have that

Z t

0

Z s

0

Z r

0

Kh.Ws �Wr0/Kh.Ws �Wr/ dr 0 dr ds

D
Z t

0

Z s

0

Z r

0

Kh.Ws �Wr CWr �Wr0/Kh.Ws �Wr / dr 0 dr ds

D
Z Z

Kh.x C y/Kh.y/˛3;t .x; y/ dx dy:
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Using Kh.x/ D K1.x=h/ we have

h�3
Z t

0

Z s

0

Z r

0

Kh.Ws �Wr0/Kh.Ws �Wr/ dr 0 dr ds

D h�3
Z Z

Kh.x C y/Kh.y/˛3;t .x; y/ dx dy

D h�1
Z Z

K1.x C y/K1.y/˛3;t .hx; hy/ dx dy

D h�1
Z Z

K1.x/K1.y/˛3;t .h.x � y/; hy/ dx dy

D h�1
Z 1

0

Z 1

0

A3;t .h; x; y/ dx dy

where

A3;t .h; x; y/ D ˛3;t .h.x � y/; hy/ � ˛3;t .h.�x � y/; hy/
�˛3;t .h.x C y/;�hy/C ˛3;t .�h.x � y/;�hy/:

It remains to consider

lim
h!0

A3;t .h; x; y/

h
:

We now use Lemma 2. Using the fact that 
3;t .x; y/, 
2;t .x/ are continuously
differentiable


3;t .h.x � y/; hy/ � 
3;t .h.�x � y/; hy/
D h.x � y/ @

@x

3;t .0; hy/� h.�x � y/ @

@x

3;t .0; hy/C o.h/

D 2hx @
@x

3;t .0; 0/C o.h/

and similarly


3;t .�h.x � y/;�hy/ � 
3;t .h.x C y/;�hy/
D �h.x � y/ @

@x

3;t .0;�hy/ � h.x C y/ @

@x

3;t .0;�hy/C o.h/

D �2hx @
@x

3;t .0; 0/C o.h/

and these two terms cancel up to o.h/.
Next,


2;t .h.x � y//v.hy/ � 
2;t .h.�x � y//v.hy/
C 
2;t .�h.x � y//v.�hy/ � 
2;t .h.x C y//v.�hy/

D h.x � y/
 0
2;t .0/v.0/� h.�x � y/
 0

2;t .0/v.0/
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�h.x � y/
 0
2;t .0/v.0/� h.x C y/
 0

2;t .0/v.0/C o.h/
D o.h/:

On the other hand, using v.x/ D e�jxj D 1 � jxj CO.x2/ we have

v.h.x � y//
2;t .hy/ � v.h.�x � y//
2;t .hy/
C v.�h.x � y//
2;t .�hy/ � v.h.x C y//
2;t .�hy/
D �jh.x � y/j
2;t .0/C jh.�x � y/j
2;t .0/
�jh.x � y/j
2;t .0/C jh.x C y/j
2;t .0/C o.h/
D 2h.jx C yj � jx � yj/
2;t .0/C o.h/:

and similarly

v.h.x � y//v.hy/ � v.h.�x � y//v.hy/
C v.�h.x � y//v.�hy/ � v.h.x C y//v.�hy/
D �jh.x � y/jv.0/C jh.�x � y/jv.0/
�jh.x � y/jv.0/C jh.x C y/jv.0/CO.h2/
D 2h.jx C yj � jx � yj/v.0/CO.h2/:

Putting this all together and using the fact that ˛2;t .0/ D 
2;t .0/C tv.0/ we see that

Z 1

0

Z 1

0

A3;t .h; x; y/ dx dy D 2h˛2;t .0/
Z 1

0

Z 1

0

.jxCyj� jx�yj// dx dyCo.h/:

Of course

Z 1

0

Z 1

0

.jx C yj � jx � yj// dx dy D
Z 1

0

Z x

0

2y dy dx C
Z 1

0

Z y

0

2x dx dy D 2

3

so that

lim
h!0

R 1
0

R 1
0
A3;t .h; x; y/ dx dy

h
D 4

3
˛2;t .0/:

By (15) this gives (14). ut
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On a Zero-One Law for the Norm Process
of Transient Random Walk

Ayako Matsumoto and Kouji Yano

Abstract A zero-one law of Engelbert–Schmidt type is proven for the norm process
of a transient random walk. An invariance principle for random walk local times and
a limit version of Jeulin’s lemma play key roles.

Keywords Zero-one law � Random walk � Local time � Jeulin’s lemma
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1 Introduction

Let S D .Sn W n 2 Z�0/ be a random walk in Z
d starting from the origin. Let

k � k be a norm on R
d taking integer values on the integer lattice Z

d . The norm k � k
cannot be the Euclidean norm denoted by jxj D

p
jx1j2 C � � � C jxd j2. By the norm

process of the random walk S , we mean the process kSk D .kSnk W n 2 Z�0/. The
purpose of the present paper is to study summability of f .kSnk/ for a non-negative
function f on Z.

Set Xn D Sn � Sn�1 for n 2 Z�1. Then Xn’s are independent identically-
distributed random vectors taking values in Z

d . We suppose that EŒX i1� D 0 and
EŒ.X i1/

2� < 1, i D 1; 2; : : : ; d . Let Q denote the covariance matrix of X1, i.e.,
Q D .EŒX i1Xj1 �/i;j . We introduce the following assumption:

(A0)Q D �2I for some constant � > 0, where I stands for the identity matrix.
We write

B.0I r/ D fx 2 R
d W kxk � rg; (1)

@B.0I r/ D fx 2 R
d W kxk D rg: (2)

A. Matsumoto
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For k 2 Z�0, we set

N.k/ D ].@B.0I k/ \ Z
d / D ]

n
x 2 Z

d W kxk D k
o
: (3)

We call B a d -polytope if B is a bounded convex region in a d -dimensional
space enclosed by a finite number of .d � 1/-dimensional hyperplanes. The part of
the polytope B which lies in one of the hyperplanes is called a cell. (See, e.g., [4]
for this terminology.) We introduce the following assumptions:

(A1) kxk 2 Z�0 for any x 2 Z
d .

(A2) For each k 2 Z�1, the set B.0I k/ is a d -polytope whose vertices are con-
tained in Z

d . Consequently, its boundary @B.0I k/ is the union of all cells of
the d -polytope B.0I k/.

(A3) For any k 2 Z�1, there exists a finite partition of @B.0I 1/, which is denoted
by fU .k/j W j D 1; : : : ;M.k/g, such that the following statements hold:

(i) M.k/ � N.k/ and M.k/=N.k/! 1 as k !1.
(ii) Each U .k/j contains at least one point of @B.0I 1/ \ .k�1

Z
d /.

(iii) The U .k/j ’s for j D 1; : : : ;M.k/ have a common area.

(iv) maxj maxfkx � yk W x; y 2 U .k/j g ! 0 as k !1.

Note that these assumptions (A0)–(A3) imply that N.k/ ! 1 as k ! 1. Our
main theorem is the following:

Theorem 1.1. Suppose that d � 3 and that (A0)–(A3) hold. Then, for any non-
negative function f on Z�0, the following conditions are equivalent:

(I) P

 1X

nD1
f .kSnk/ <1

!

> 0.

(II) P

 1X

nD1
f .kSnk/ <1

!

D 1.

(III) E

" 1X

nD1
f .kSnk/

#

<1.

(IV)
1X

kD1
k2�dN.k/f .k/ <1.

Suppose, moreover, that
(A4) There exists k0 2 Z�1 such that N.k/ is non-decreasing in k � k0.
Then the above conditions are equivalent to

(V)
1X

kD1
kf .k/ <1.

We will prove, in Sect. 5, that (III) and (IV) are equivalent, by virtue of the asymp-
totic behavior of the Green function due to Spitzer [28] (see Theorem 5.1). We will
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prove, in Sect. 6, that (I) implies (IV), where a key role is played by a limit version
of Jeulin’s lemma (see Proposition 3.2). Note that (III) trivially implies (II) and that
(II) trivially implies (I).

Sect. 5

(III) ” (IV)

trivial + * Sect. 6

(II) H) (I)

trivial

The equivalence between (I) and (II) may be considered to be a zero-one law
of Engelbert–Schmidt type; see Sect. 2. However, we remark that this equivalence
follows also from the Hewitt–Savage zero-one law (see, e.g. [2, Theorem 7.36.5]). In
fact, the event fPf .kSnk/ <1g is exchangeable, i.e., invariant under permutation
of any finite number of the sequence .Xn/.

If d D 1 or 2, the random walk S is recurrent, and hence it is obvious that the
conditions (I)–(III) are equivalent to stating that f .k/ � 0. This is why we confine
ourselves to the case d � 3, where the random walk S is transient so that kSnk
diverges as n!1. In the case d � 3, the summability of f .kSnk/ depends upon
how rapidly the function f .k/ vanishes as k ! 1. Theorem 1.1 gives a criterion
for the summability of f .kSnk/ in terms of summability of kf .k/.

Consider the max norm

kxk.d/1 D max
iD1;:::;d

jxi j; x D .x1; : : : ; xd / 2 R
d (4)

and the `1-norm

kxk.d/1 D
dX

iD1
jxi j; x D .x1; : : : ; xd / 2 R

d : (5)

We will show in Sect. 4 that these norms satisfy (A1)–(A4). Thus we obtain the
following corollary:

Corollary 1.2. Let S be a simple random walk of dimension d � 3 and take k � k
as the max norm or the `1-norm. Then, for any non-negative function f on Z�0, the
conditions (I)–(V) are equivalent.

The organization of this paper is as follows. In Sect. 2, we give a brief summary
of known results of zero-one laws of Engelbert–Schmidt type. In Sect. 3, we recall
Jeulin’s lemma. We also state and prove its limit version in discrete time. In Sect. 4,
we present some examples of norms which satisfy (A1)–(A4). Sections 5 and 6
are devoted to the proof of Theorem 1.1. In Sect. 7, we present some results about
Jeulin’s lemma obtained by Shiga (Shiga, unpublished).
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2 Zero-One Laws of Engelbert–Schmidt Type

Let us give a brief summary of known results of zero-one laws concerning finiteness
of certain integrals, which we call zero-one laws of Engelbert–Schmidt type.

1ı/. Let .Bt W t � 0/ be a one-dimensional Brownian motion starting from the
origin. The following theorem, which originates from Shepp–Klauder–Ezawa [27]
with motivation in quantum theory, is due to Engelbert–Schmidt [5, Theorem 1]
with motivation in construction of a weak solution of a certain stochastic differential
equation by means of time-change method.

Theorem 2.1 ([5, 27]). Let f be a non-negative Borel function on R. Then the fol-
lowing conditions are equivalent:

(B1) P
�R t
0
f .Bs/ds <1 for every t � 0

�
> 0.

(B2) P
�R t
0
f .Bs/ds <1 for every t � 0

�
D 1.

(B3) f .x/ is integrable on all compact subsets of R.

The proof of Theorem 2.1 was based on the formula
Z t

0

f .Bs/ds D
Z

R

f .x/LBt .x/dx (6)

where LBt .x/ stands for the local time at level x by time t (see [15]).
Engelbert–Schmidt [6, Theorem 1] proved that a similar result holds for a Bessel

process of dimension d � 2 starting from a positive number.

2ı/. Let .Rt W t � 0/ be a Bessel process of dimension d > 0 starting from the
origin, i.e., Rt D

p
Zt where Zt is the unique non-negative strong solution of

Zt D td C 2
Z t

0

p
jZs jdBs : (7)

The following theorem is due to Pitman–Yor [24, Proposition 1] and Xue
[29, Proposition 2].

Theorem 2.2 ([24, 29]). Suppose that d � 2. Let f be a non-negative Borel func-
tion on Œ0;1/. Then the following conditions are equivalent:

(R1) P
�R t
0
f .Rs/ds <1 for every t � 0

�
> 0;

(R2) P
�R t
0 f .Rs/ds <1 for every t � 0

�
D 1;

(R3) f .r/ is integrable on all compact subsets of .0;1/ and

(R3a)
R c
0 f .r/r.log 1

r
/Cdr <1 if d D 2;

(R3b)
R c
0
f .r/rdr <1 if d > 2

where c is an arbitrary positive number.
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The proof of Theorem 2.2 was done by applying Jeulin’s lemma (see Theorem
3.1 below) to the total local time, where the assumption of Jeulin’s lemma was
assured by the Ray–Knight theorem (see Le Gall [19, pp. 299]).

3ı/. Xue [29, Corollary 4] generalized Engelbert–Schmidt [6, Corollary on pp. 227]
and proved the following theorem.

Theorem 2.3 ([29]). Suppose that d > 2. Let f be a non-negative Borel function
on Œ0;1/. Then the following conditions are equivalent:

(RI) P
�R1
0
f .Rt /dt <1

�
> 0.

(RII) P
�R1
0
f .Rt /dt <1

�
D 1.

(RIII) E
hR1
0
f .Rt /dt

i
<1.

(RIV)
R1
0 rf .r/dr <1.

The proof of Theorem 2.3 was based on Jeulin’s lemma and the Ray–Knight
theorem. Our results (Theorem 1.1 and Corollary 1.2) may be considered to be ran-
dom walk versions of Theorem 2.3. Note that, in Theorem 2.3, the condition (RIII),
which is obviously stronger than (RII), is in fact equivalent to (RII). We remark
that, in Theorem 2.3, we consider the perpetual integral

R1
0
f .Rt /dt instead of the

integrals on compact intervals.

4ı/. Höhnle–Sturm [13, 14] obtained a zero-one law about the event

nR t
0
f .Xs/ds <1 for every t � 0

o
(8)

where .Xt W t � 0/ is a symmetric Markov process which takes values in a Lusin
space and which has a strictly positive density. Their proof was based on excessive
functions. As an application, they obtained the following theorem ([14, pp. 411]).

Theorem 2.4 ([14]). Suppose that 0 < d < 2. Let f be a non-negative Borel
function on Œ0;1/. Then the following conditions are equivalent:

(Ri) P
�R t
0
f .Rs/ds <1 for every t � 0

�
> 0.

(Rii) P
�R t
0
f .Rs/ds <1 for every t � 0

�
D 1.

(Riii) f .x/ is integrable on all compact subsets of Œ0;1/ and
R 1
0 f .x/x

d�1dx <1.

See also Cherny [3, Corollary 2.1] for another approach.

5ı/. Engelbert–Senf [7] studied integrability of
R1
0
f .Ys/ds where .Yt W t � 0/ is

a Brownian motion with constant drift. See Salminen–Yor [26] for a generalization
of this direction. See also Khoshnevisan–Salminen–Yor [18] for a generalization of
the case where .Yt W t � 0/ is a certain one-dimensional diffusion process.
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3 Jeulin’s Lemma and its Limit Version in Discrete Time

3.1 Jeulin’s Lemma

Jeulin [16, Lemma 3.22] gave quite a general theorem about integrability of a func-
tion of a stochastic process. He gave detailed discussions in [17] about his lemma.
Among the applications presented in [17], let us focus on the following theorem:

Theorem 3.1 ([16, 17]). Let .X.t/ W 0 < t � 1/ be a non-negative measurable pro-
cess and ' a positive function on .0; 1�. Suppose that there exists a random variable
X with

EŒX� <1 and P.X > 0/ D 1 (9)

such that

X.t/

'.t/

lawD X holds for each fixed 0 < t � 1: (10)

Then, for any non-negative Borel measure � on .0; 1�, the following conditions are
equivalent:

(JI) P
�R 1
0
X.t/�.dt/ <1

�
> 0.

(JII) P
�R 1
0 X.t/�.dt/ <1

�
D 1.

(JIII) E
hR 1
0
X.t/�.dt/

i
<1.

(JIV)
R 1
0
'.t/�.dt/ <1.

A good elementary proof of Theorem 3.1 can be found in Xue [29, Lemma 2].
For several applications of Jeulin’s lemma (Theorem 3.1), see Yor [30],

Pitman–Yor [23, 24], Xue [29], Peccati–Yor [22], Funaki–Hariya–Yor [11, 12],
and Fitzsimmons–Yano [9].

We cannot remove the assumption EŒX�<1 from Theorem 3.1; see
Proposition 7.1.

3.2 A Limit Version of Jeulin’s Lemma in Discrete Time

For our purpose, we would like to replace the assumption (10) which requires
identity in law by a weaker assumption which requires convergence in law. The
following proposition plays a key role in our purpose (see also Corollary 7.3).

Proposition 3.2. Let .V .k/ W k 2 Z�1/ be a non-negative measurable process and
˚ a positive function on Z�1. Suppose that there exists a random variable X with

P.X > 0/ D 1 (11)
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such that

V.k/

˚.k/

law�! X as k !1: (12)

Then, for any non-negative function f on Z�1, it holds that

P

 1X

kD1
f .k/V .k/ <1

!

> 0 implies
1X

kD1
f .k/˚.k/ <1: (13)

The following proof of Proposition 3.2 is a slight modification of that of [29,
Lemma 2].

Proof. Suppose that P.
P
f .k/V .k/ < 1/ > 0. Then there exists a number C

such that the event

B D
( 1X

kD1
f .k/V .k/ � C

)

(14)

has positive probability. Since P.X � 0/ D 0, there exists a positive number u0
such that P.X � u0/ < P.B/=4. By assumption (12), we see that there exists u1
with 0 < u1 < u0 such that

P.V.k/=˚.k/ � u1/
k!1�! P.X � u1/ <

1

4
P.B/: (15)

Then, for some large number k0, we have

P.V.k/=˚.k/ � u1/ � 1

2
P.B/; k � k0: (16)

Now we obtain

C �E
"

1B

1X

kD1
f .k/V .k/

#

(17)

D
1X

kD1
f .k/˚.k/E

�
1B � V.k/

˚.k/

�
(18)

D
1X

kD1
f .k/˚.k/

Z 1

0

P.B \ fV.k/=˚.k/ > ug/du (19)

�
1X

kDk0
f .k/˚.k/

Z u1

0

ŒP.B/ � P.V.k/=˚.k/ � u/�C/du (20)
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�1
2
P.B/u1

1X

kDk0
f .k/˚.k/: (21)

Since P.B/u1 > 0, we conclude that
P
f .k/˚.k/ <1.

4 Examples of Norms

Let us introduce several notations. For an index set A (we shall take A D Z�0 or
Z
d n f0g later), we denote M.A/ the set of all non-negative functions on A. For

three functions f; g; h 2M.A/, we say that

f .a/ � g.a/ as h.a/!1 (22)

if f .a/=g.a/! 1 as h.a/!1. For two functions f; g 2M.A/, we say that

f .a/ � g.a/ for a 2 A (23)

if there exist positive constants c1; c2 such that

c1f .a/ � g.a/ � c2f .a/ for a 2 A: (24)

For two functionals F;G on M.A/, we say that

F.f / � G.f / for f 2M.A/ (25)

if there exist positive constants c1; c2 such that

c1F.f / � G.f / � c2F.f / for f 2M.A/: (26)

Now let us present several examples of norms which satisfy (A1)–(A4).

Example 4.1 (Max norms). Consider kxk.d/1 D maxi jxi j. It is obvious that the
conditions (A1)–(A3) are satisfied. In fact, the partition of @B.0I 1/ in (A3) can
be obtained by separating @B.0I 1/ by hyperplanes fx 2 R

d W xi D j=kg for
i D 1; : : : ; d and j D �k; : : : ; k. Let us study N.k/ D N .d/1 .k/ and its asymptotic
behavior. For k 2 Z�1, we have

N .d/1 .k/ D ]fx 2 Z
d W kxk � kg � ]fx 2 Z

d W kxk � k � 1g (27)

D .2k C 1/d � .2k � 1/d : (28)

Now we obtain

N .d/1 .k/ � d2dkd�1 as k !1: (29)
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Example 4.2 (`1-norms). Consider

kxk.d/1 D
dX

iD1
jxi j; x 2 R

d : (30)

It is obvious that the conditions (A1)–(A3) are satisfied. In this case,

N.k/ D N .d/
1 .k/ D ]fx 2 Z

d W kxk.d/1 D kg (31)

satisfies the recursive relation

N
.d/
1 .k/ D

kX

jD0
N
.1/
1 .j /N

.d�1/
1 .k � j /; d � 2; k � 0 (32)

with initial condition

N
.1/
1 .k/ D

(
1 if k D 0;
2 if k � 1: (33)

Since the moment generating function may be computed as

1X

kD0
skN

.d/
1 .k/ D

�
1C s
1� s

	d
; 0 < s < 1; (34)

we see, by Tauberian theorem (see, e.g., [8, Theorem XIII.5.5]), that

N
.d/
1 .k/ � 2d

.d � 1/Šk
d�1 as k !1: (35)

Example 4.3 (Weighted `1-norms). Consider

kxk.d/w1 D
dX

iD1
i jxi j; x 2 R

d : (36)

The conditions (A1)–(A3) are obviously satisfied.
Now let us discuss the asymptotic behavior of N .d/

w1 .k/. Note that

N.k/ D N .d/
w1 .k/ D ]fx 2 Z

d W kxk.d/w1 D kg (37)

satisfies the recursive relation

N
.d/
w1 .k/ D

X

j2Z�0Wk�dj�0
N
.1/
1 .j /N

.d�1/
w1 .k � dj /; d � 2; k � 0 (38)
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with initial condition N .1/
w1 .k/ � N

.1/
1 .k/. Then, by induction, we can easily see

that

jN .d/
w1 .k/ � a.d/kd�1j � b.d/kd�2; k 2 Z�1; d � 2 (39)

for some positive constants a.d/; b.d/ where a.d/ is defined recursively as

a.1/ D 2; a.d/ D 2

d.d � 1/a
.d�1/ .d � 2/: (40)

In particular, we see that N .d/
w1 .k/ � a.d/kd�1 as k ! 1. For instance, by easy

computations, we obtain

N
.2/
w1 .k/ D

(
1 if k D 0;
2k if k � 1 (41)

and

N
.3/
w1 .k/ D

8
ˆ̂<

ˆ̂
:

1 if k D 0;
2
3
k2 C 2 if k � 0 modulo 3, k ¤ 0;
2
3
k2 C 4

3
if k � 1; 2 modulo 3:

(42)

Example 4.4 (Transformation by unimodular matrices). LetA be a unimodular d 	
d matrix, i.e. A is a d 	 d matrix whose entries are integers and whose determinant
is 1 or �1. Let k � k0 be a norm on R

d satisfying (A1)–(A3). Then the norm kxk D
kAxk0 also satisfies (A1)–(A3). Note that

]fx 2 Z
d W kxk D kg D ]fx 2 Z

d W kxk0 D kg; k 2 Z�0: (43)

For example, the norm on R
3 defined as

k.x1; x2; x3/k D jx1 � x2j C jx2 � x3j C jx1 � x2 C x3j (44)

satisfies (A1)–(A3).

Remark 4.5. Let us consider the norm 2kxk.d/1 . Then the conditions (A1)–(A2) are
satisfied, but neither of (A3) nor (A4) is; in fact,

N.k/ D
(
N
.d/1 .k=2/ if k is even;

0 if k is odd:
(45)

Nevertheless, we see that the conditions (I)–(IV) are equivalent to each other and
also to
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1X

kD1
kf .2k/ <1; (46)

which is strictly weaker than (V) because there is no restriction on the values of
f .2k C 1/.

5 Equivalence Between (III) and (IV)

Let us introduce the random walk local times:

LSn .x/ D ] fm D 1; 2; : : : ; n W Sm D xg ; x 2 Z
d ; (47)

LkSk
n .k/ D ] fm D 1; 2; : : : ; n W kSmk D kg ; k 2 Z�0: (48)

Then, for any non-negative function g on Z
d , we have

1X

nD1
g.Sn/ D

X

x2Zd

g.x/LS1.x/: (49)

Taking the expectations of both sides, we have

E

" 1X

nD1
g.Sn/

#

D
X

x2Zd

g.x/E
h
LS1.x/

i
: (50)

It is obvious by definition that

E
h
LS1.x/

i
D

1X

nD1
P.Sn D x/ D G.0; x/ (51)

where G.x; y/ is the Green function given as

G.x; y/ D
1X

nD1
Px.Sn D y/: (52)

Let j � j denote the Euclidean norm of R
d , i.e., jxj2 D Pd

iD1.xi /2. We recall the
following asymptotic behavior of the Green function:

Theorem 5.1 ([28]). It holds that

G.0; x/ � � .d=2� 1/
2�d=2

j detQj�1=2.x;Q�1x/1�d=2 as jxj ! 1: (53)



116 A. Matsumoto and K. Yano

In particular, if Q D �2I , then

jxjd�2G.0; x/! � .d=2� 1/
2�d=2

��2 as jxj ! 1: (54)

We can prove Theorem 5.1 in the same way as in Spitzer [28, P26.1], so we omit
the proof.

Proposition 5.2. It holds that

E

" 1X

nD1
g.Sn/

#

� g.0/C
X

x2Zd nf0g
g.x/kxk2�d for g 2M.Zd /: (55)

Proof. Since kxk � jxj for x 2 Z
d , it follows from Theorem 5.1 that

G.0; x/ � kxk2�d for x 2 Z
d n f0g: (56)

Combining it with (50), we obtain the desired result.

Remark 5.3. It is now obvious from Proposition 5.2 that

X

x2Zd

g.x/kxk2�d <1 implies P

 1X

nD1
g.Sn/ <1

!

D 1: (57)

But we do not know whether the converse is true or not.

The following proposition proves part of Theorem 1.1.

Proposition 5.4. Suppose that the condition (A1) is satisfied. Then it holds that

E

" 1X

nD1
f .kSnk/

#

� f .0/C
1X

kD1
f .k/k2�dN.k/ for f 2M.Z�0/ (58)

and, in particular, that (III) and (IV) are equivalent. If, moreover, the condition (A4)
is satisfied, then it holds that

E

" 1X

nD1
f .kSnk/

#

� f .0/C
1X

kD1
kf .k/ for f 2M.Z�0/ (59)

and, in particular, that (IV) and (V) are equivalent.

Proof. The former half of Proposition 5.4 is immediate from Propositions 5.2 and
5.7 for g.x/ D f .kxk/. The latter half is immediate from Proposition 5.7 below.
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Remark 5.5. Let p.x/ denote the probability that the process visits x at least once:

p.x/ D P.LS1.x/ � 1/ D P.Tx <1/; x 2 Z
d (60)

where Tx D inffn � 1 W Sn D xg is the first hitting time of x. Since LS1.x/ D
LS1.x/ ı �Tx C 1 and by translation invariance, we may compute the distribution of
the total local time LS1.x/ as

P.LS1.x/ � n/ D p.x/p.0/n�1; x 2 Z
d ; n D 1; 2; : : : (61)

See [20] for some general discussions for symmetric Markov processes. Note that
the Green functionG.0; x/ may be expressed as

G.0; x/ D E
h
LS1.x/

i
D

1X

nD1
P.LS1.x/ � n/ D

p.x/

1 � p.0/ : (62)

Remark 5.6. We do not know any explicit result about the law of the total local time
L

kSk1 .k/ for the norm process kSk.
Proposition 5.7. Let k � k be a norm on R

d . Suppose that the condition (A4) is
satisfied. Then there exists k1 2 Z�1 such that N.k/ � kd�1 for k � k1.

Proof. By (28), we have

]
n
x 2 Z

d W kxk.d/1 � k
o
� kd for k 2 Z�1: (63)

Note that kxk � kxk.d/1 for x 2 Z
d ; in fact, any two norms on R

d are mutually
equivalent. This immediately implies that

kX

jD0
N.j / D ]

n
x 2 Z

d W kxk � k
o
� kd for k 2 Z�1: (64)

Hence there exist constants c1; c2 such that

c1k
d �

kX

jD0
N.j / � c2kd for k 2 Z�1: (65)

By the condition (A4), we have

kN.k/ D
2kX

jDkC1
N.k/ �

2kX

jDkC1
N.j / � c2.2k/d for k 2 Z�1: (66)
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Now we obtain N.k/ � c3kd�1 with c3 D c22
d . Again by the condition (A4), we

have

kN.k/ D
kX

jD1
N.k/ �

kX

jD0
N.j / � c1kd for k 2 Z�1: (67)

Now we obtain N.k/ � c1kd�1. This completes the proof.

6 Proving that (I) implies (IV)

By the assumption (A2), we may identify each cell of B.0I r/ with a subset of
R
d�1. So we may introduce the area measure � on @B.0I 1/. We define �.�/ D

�.�/=�.@B.0I 1// and call it the uniform measure on @B.0I 1/.
For k 2 Z�1, we define a probability measure on R

d by

�k.A/ D 1

N.k/
]
n
x 2 k�1

Z
d \A W kxk D 1

o
; A 2 B.Rd /: (68)

Proposition 6.1. Suppose that (A1)–(A3) are satified. Then, as k ! 1, the mea-
sure �k converges weakly to �.

Proof. Let fU .k/j W j D 1; : : : ;M.k/g be such as in the assumption (A3). Then we

see that �.U .k/j / D M.k/�1 for any j and any k. For j D 1; : : : ;M.k/, choose

x
.k/
j 2 U .k/j \ .k�1

Z
d /. We may choose fx.k/j W j DM.k/C 1; : : : ; N.k/g so that

fx.k/j W j D 1; : : : ; N.k/g is an enumeration of the points of fx 2 k�1
Z
d W kxkD 1g.

Let f W Rd ! R be a continuous function with compact support. It suffices to
prove that

Z

Rd

f .x/�k.dx/
k!1�!

Z

@B.0I1/
f .x/�.dx/: (69)

Note that

Z

Rd

f .x/�k.dx/ D 1

N.k/

N.k/X

jD1
f .x

.k/
j /: (70)

Since M.k/=N.k/! 1 as k !1, it suffices to prove that

1

M.k/

M.k/X

jD1
f .x

.k/
j /

k!1�!
Z

@B.0I1/
f .x/�.dx/: (71)
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Since @B.0I 1/ D [jU .k/j and �.U .k/j / D M.k/�1, we obtain

ˇ
ˇ
ˇ
ˇ
ˇ̌
1

M.k/

M.k/X

jD1
f
�
x
.k/
j

�
�
Z

@B.0I1/
f .x/�.dx/

ˇ
ˇ
ˇ
ˇ
ˇ̌ (72)

� 1

M.k/

M.k/X

jD1

Z

U
.k/

j

ˇ
ˇ̌
f
�
x
.k/
j

�
� f .x/

ˇ
ˇ̌
�.dx/ (73)

� max
1�j�M.k/

max
x;y2U .k/

j

jf .y/ � f .x/j : (74)

By uniform continuity of f and by the assumption (A3), the quantity (74) converges
to 0 as k !1. Therefore the proof is complete.

Let .Bt / denote a standard Brownian motion of dimension d � 3 starting from
the origin. Set

g.x; y/ D
Z 1

0

ds

.2�s/d=2
exp

�
�jx � yj

2

2s

	
; x; y 2 R

d : (75)

For the uniform measure � on @B.0I 1/, we define

g�.x/ D
Z

Rd

g.x; y/�.dy/; x 2 R
d : (76)

Then it is well-known (see [21]; see also [10, Theorem 5.2.5]) that there exists a
unique positive continuous additive functional .L
t / such that

g�.�Bt / � g�.�B0/C L
t (77)

is a martingale with zero mean. The process .L
t / is called the local time process
on the union of cells @B.0I 1/ for .�Bt /. The relation between the measure � and
the positive continuous additive functional .L
t / is called the Revuz correspondence
(see [25]).

The following theorem is an invariance principle for the random walk local time
of the norm process.

Theorem 6.2. Suppose that (A0)–(A3) are satisfied. Then it holds that

L
kSk1 .k/

k2�dN.k/
law�! L
1 as k !1: (78)
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Proof. Note that

L
kSk1 .k/

k2�dN.k/
D kd�2

1X

nD1
�k

�
Sn

k

�	
: (79)

Hence we obtain the desired result as an immediate consequence of Proposition 6.1
and Bass–Khoshnevisan [1, Proposition 6.3].

Now we are in a position to prove that (I) implies (IV) in Theorem 1.1.

Proof that (I) implies (IV) in Theorem 1.1. Let us check that the assumptions of
Proposition 3.2 are satisfied for V.k/DLkSk1 .k/, ˚.k/D k2�dN.k/ and X DL
1.

By Theorem 6.2, assumption (12) is satisfied.
Let us show that P.L
1 � 0/ D 0. The first hitting place of the union of cells

@B.0I 1/ for the Brownian motion is almost surely an interior point of some cell of
the d -polytope B.0I 1/ by assumption (A2). Hence it holds that, starting afresh at
the first hitting time, the local time on the union of cells @B.0I 1/ is locally equal
to the local time on the hyperplane which contains the cell. Since the local time
at the origin for one-dimensional Brownian motion is positive almost surely at any
positive time, we see that L
1 is positive almost surely.

Thus we may apply Proposition 3.2 (or Corollary 7.3) and we see that (I) implies
(IV). The proof is now complete. ut

7 A Remark on Jeulin’s Lemma

The results of this section are mainly due to Tokuzo Shiga (2007, unpublished).

7.1 Counterexample to Jeulin’s Lemma without EŒX� < 1

The following proposition gives a counterexample to Jeulin’s lemma (Theorem 3.1)
without EŒX� <1.

Proposition 7.1. (Shiga, unpublished) There exist a non-negative measurable pro-
cess .X.t/ W 0 < t � 1/, a positive function ' on .0; 1�, a random variable X , and
a non-negative Borel measure � on .0; 1� such that

EŒX� D 1 and P.X > 0/ D 1; (80)

X.t/
'.t/

lawD X holds for each fixed 0 < t � 1; (81)

Z 1

0

'.t/�.dt/ <1 (82)
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but

P

�Z 1

"

X.t/�.dt/ <1 .8" > 0/;
Z 1

0

X.t/�.dt/ D1
	
D 1: (83)

Proof. Let .X.t// be an ˛-stable subordinator with 0 < ˛ � 1=2. Then we have
(80) and (81) for '.t/ � t1=˛ . Set

�.dt/ D t�1�1=˛.log 1=t/�1=˛dt (84)

so that �..t; 1�/˛ � C t�1.log 1=t/�1 as t ! 0C for some positive constant C .
Thus we obtain (82). Since we have

E

�
exp�

Z 1

0

X.t/�.dt/

�
D exp�

Z 1

0

�..t; 1�/˛dt D 0; (85)

we obtain (83).

7.2 A Limit Version of Jeulin’s Lemma

Theorem 7.2 (Shiga, unpublished). Let .X.t/ W 0 < t � 1/ be a non-negative
measurable process, ' a positive function defined on .0; 1�, and � a non-negative
Borel measure on .0; 1�. Suppose that there exists a random variableX with P.X >

0/ > 0 such that

X.t/

'.t/

law�! X as t ! 0C : (86)

Suppose, moreover, that

Z 1

"

'.t/�.dt/ <1 for every 0 < " < 1: (87)

Then it holds that

P

�Z 1

0

X.t/�.dt/ <1
	
D 1 implies

Z 1

0

'.t/�.dt/ <1: (88)

Proof. Suppose that

P

�Z 1

0

X.t/�.dt/ <1
	
D 1 (89)
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but that
R 1
0
'.s/�.ds/ D1. For each " > 0, we define a probability measure �" by

�".dt/ D C�1
" 1.";1�.t/'.t/�.dt/ with C" D

Z 1

"

'.t/�.dt/ (90)

whereC" is finite by the assumption (87). ThenC" !1 and�"
d�! ı0 as "! 0C,

where ı0 stands for the unit point mass at 0. Using Jensen’s inequality and changing
the order of integration, we have

E

�
exp�C�1

"

Z 1

"

X.t/�.dt/

�
D E

�
exp�

Z 1

"

X.t/

'.t/
�".dt/

�
(91)

�
Z 1

"

E

�
exp�X.t/

'.t/

�
�".dt/: (92)

Hence it follows from (89) and (86) that

1 � lim
t!0CE

�
exp�X.t/

'.t/

�
D E

h
e�Xi ; (93)

which impliesP.X D 0/ D 1. This is a contradiction to the assumption thatP.X >

0/ > 0.

From Theorem 7.2, we obtain another version of Jeulin’s lemma in discrete time.

Corollary 7.3. Let .V .k/ W k 2 Z�1/ be a non-negative measurable process and ˚
a positive function on Z�1. Suppose that there exists a random variable X with

P.X > 0/ > 0 (94)

such that

V.k/

˚.k/

law�! X as k !1: (95)

Then, for any non-negative function f on Z�1, it holds that

P

 1X

kD1
f .k/V .k/ <1

!

D 1 implies
1X

kD1
f .k/˚.k/ <1: (96)

Proof. Take

X.t/ D V.Œ1=t�/; '.t/ D ˚.Œ1=t�/ (97)

where Œx� stands for the smallest integer which does not exceed x and
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� D
1X

kD1
f .k/ı1=k : (98)

Then the desired result is immediate from Theorem 7.2.

Proposition 3.2 and Corollary 7.3 cannot be unified in the following sense:

Proposition 7.4. There exist a non-negative measurable process .V .k/ W k 2 Z�1/,
a positive function ˚ on Z�1, a random variable X , and a non-negative function f
on Z�1 such that

P.X > 0/ > 0;
V .k/

˚.k/

law�! X as k !1; (99)

and

P

 1X

kD1
f .k/V .k/ <1

!

> 0 (100)

but

1X

kD1
f .k/˚.k/ D 1: (101)

Proof. Let X be such that

P.X D 0/ D P.X D 1/ D 1

2
(102)

and set V.k/ D X for k 2 Z�1. Then we have (99)–(101) for ˚.k/ � 1 and
f .k/ � 1.

7.3 A Counterexample

We give a counterexample to the converse of (96) where the assumptions of
Corollary 7.3 are satisfied.

Proposition 7.5. (Shiga, unpublished) There exist a non-negative measurable pro-
cess .V .k/ W k 2 Z�1/, a positive function ˚ on Z�1, and a non-negative function
f on Z�1 such that

V.k/

˚.k/

law�! 1 as k !1 (103)
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and

1X

kD1
f .k/˚.k/ <1: (104)

but

P

 1X

kD1
f .k/V .k/ D 1

!

D 1: (105)

Proof. Let 0 < ˛ < 1=2. Let .V0.k// be a sequence of i.i.d. random variables such
that

EŒe��V0.k/� D e��˛ ; � > 0; k 2 Z�1: (106)

Set ˚.k/ � k and f .k/ � k�1=˛. Then (104) holds and we have

V0.k/

˚.k/

law�! 0 as k !1: (107)

Since we have

E

"

exp�
1X

kD1
f .k/V0.k/

#

D
1Y

kD1
E
h
e�f.k/V0.k/

i
D exp�

1X

kD1
k�1 D 0; (108)

we obtain

P

 1X

kD1
f .k/V0.k/ D1

!

D 1: (109)

Since we may take V.k/ D k C V0.k/, we also obtain (103) and (105). The proof
is now complete.
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On Standardness and I-cosiness

Stéphane Laurent

Abstract The object of study of this work is the invariant characteristics of
filtrations in discrete, negative time, pioneered by Vershik. We prove the equiv-
alence between I-cosiness and standardness without using Vershik’s standardness
criterion. The equivalence between I-cosiness and productness for homogeneous
filtrations is further investigated by showing that the I-cosiness criterion is equiva-
lent to Vershik’s first level criterion separately for each random variable. We also
aim to derive the elementary properties of both these criteria, and to give a survey
and some complements on the published and unpublished literature.

Keywords Standard filtration � Cosy filtration � Self-joining of a filtration

1 Introduction

A filtration F D .Fn/n60 in discrete, negative time, is said to be of local product
type if there exists a sequence .Vn/n60 of independent random variables such that
for each n 6 0, one has Fn D Fn�1 _ �.Vn/ and Vn is independent of Fn�1. Such
random variables Vn are called innovations of F. A typical example is the case of
a filtration generated by a sequence of independent random variables, termed as
filtration of product type.

Originally, the theory of decreasing sequences of measurable partitions investi-
gated by Vershik [35–38, 40] was mainly oriented towards characterizing product-
ness for homogeneous filtrations of local product type, that is, those for which each
innovation Vn has either a uniform distribution on a finite set or a diffuse law. The
standardness criterion introduced by Vershik provides such a characterization under
the assumption that the final �- field F0 of the filtration is essentially separable (in
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other words, it is countably generated up to negligible sets, and we also say that the
filtration is essentially separable).

Vershik’s standardness criterion makes sense not only in the context of filtrations
of local product type, and it characterizes essentially separable filtrations F D
.Fn/n60 having an extension of product type, hereafter called standard filtrations.

Vershik’s theory of filtrations in discrete, negative time remained unknown
to the western probabilistic culture for about 25 years, until Dubins, Feldman,
Smorodinsky and Tsirelson used Vershik’s standardness criterion in [10]. Later,
in [14], Émery and Schachermayer partially translated Vershik’s theory into the
language of stochastic processes, and introduced the I-cosiness criterion, inspired
by the notion of cosiness which Tsirelson devised in [34] and by Smorodinsky’s
proof in [32] that the filtration of a split-word process is not standard. In the context
of essentially separable filtrations, the results of Vershik’s theory of filtrations are
summarized in Fig. 1.

Among the contents of this paper is a proof of the following theorem.

Theorem A. A homogeneous filtration F D .Fn/n60 with an essentially separable
final �- field F0 is I-cosy if and only if it is generated by a sequence of independent
random variables.

The proof of this theorem is incomplete in [14], for only the case of homoge-
neous filtrations with diffuse innovations is considered there. Moreover, Vershik’s
standardness criterion is used to establish this result, whereas we give a more
direct proof without using this criterion, which actually is not even stated in the
present paper.

The proofs given in the literature [14,15,40] of Theorem A, or of the equivalence
between Vershik’s standardness criterion and productness for a homogeneous filtra-
tion, use Vershik’s first level criterion as a key step, without naming it. Vershik’s
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(Vershik’s standardness criterion)
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Fig. 1 Theorems for essentially separable filtrations
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first level criterion is known to be equivalent to productness when the filtration is
essentially separable. Roughly speaking, this criterion says that any random variable
measurable with respect to the final �- field can be approximated by a function of
finitely many innovations.

Thus, Theorem A derives from the equivalence between I-cosiness and Vershik’s
first level criterion for an essentially separable homogeneous filtration. We will see
that this equivalence is still valid without assuming the filtration to be essentially
separable, and thus we will deduce Theorem A from Theorem A’ below.

Theorem A’. A homogeneous filtration F D .Fn/n60 is I-cosy if and only if it
satisfies Vershik’s first level criterion.

Actually all our results will be stated under a weaker assumption than essen-
tial separability of the filtration. Namely, in this paper, the standing assumption on
filtrations is local separability; we say that a filtration is locally separable if it ad-
mits essentially separable increments, with a final �- field which is not necessarily
essentially separable. All these results are summarized in Fig. 2.

For example, Theorem B below admits Theorem B’ as its analogue for locally
separable filtration. Theorems B and B’ are elementarily deduced from Theorems A
and A’ respectively.

Theorem B. An essentially separable filtration F D .Fn/n60 is I-cosy if and only
if it is standard.

Theorem B’. A locally separable filtration F D .Fn/n60 is I-cosy if and only if it
is weakly standard.

productness Vershik’s first level criterion

standardness
I-cosines criterion

Weak standardness
(Vershik’s standardness criterion)
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Fig. 2 Theorems for locally separable filtrations



130 S. Laurent

The definition of weak standardness is analogous to that of standardness,
with productness replaced by Vershik’s first level criterion: whereas a filtration
is standard if it admits an extension of product type, a filtration is weakly standard
if it admits an extension satisfying Vershik’s first level criterion.

Our hypothesis of locally separability, less stringent than requiring the final
�- field to be essentially separable, has no practical interest; but it requires no addi-
tional efforts, and it sometimes provides a better understanding of the results.

Actually, our additional efforts are oriented towards investigating the I-cosiness
criterion for a random variable with respect to a filtration, and not only for the
whole filtration, in the following sense. The definition of the I-cosiness criterion for
a filtration F D .Fn/n60 requires a certain property, say I.X/, to hold for each ‘test’
random variable X measurable with respect to the final �- field F0. This property
I.X/will be called I-cosiness of the random variableX (with respect to F). Shortly:

8X;
I-cosiness ofX
‚…„ƒ
I.X/:

„ ƒ‚ …
I-cosiness of F

Vershik’s first level criterion has the same structure, and we will similarly define
Vershik’s first level criterion for a random variable. Then Theorem A’ will be an
immediate consequence of Theorem A” below.

Theorem A”. Let F D .Fn/n60 be a homogeneous filtration. Then a random vari-
able is I-cosy with respect to F if and only if it satisfies Vershik’s first level criterion
with respect to F.

This theorem is more interesting than Theorem A, and its proof is not simpli-
fied when F is essentially separable. Thus, our generalization to locally separable
filtrations is only a by-product of our investigations of the I-cosiness criterion and
Vershik’s first level criterion at the level of random variables. We will also obtain
the following characterization of I-cosiness for a random variable with respect to a
general locally separable filtration.

Theorem. Let F D .Fn/n60 be a locally separable filtration. Then a random vari-
able is I-cosy with respect to F if and only if it satisfies Vershik’s first level criterion
with respect to a homogeneous extension of F with diffuse innovations.

In the same spirit, Vershik’s standardness criterion, which is not stated in this pa-
per, is investigated “random variable by random variable” in [21], where we show it
to be equivalent to the I-cosiness criterion under the local separability assumption.
The proof is self-contained and no familiarity with the subject is needed. Through-
out this paper, we will sometimes announce results from [21].

1.1 Main Notations and Conventions

By a probability space, we always mean a triple .�;A;P/ where the �- field A is
P-complete. By a �- field C � A we always mean an .A;P/-complete �- field. By a
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random variable on .�;A;P/, we mean a P-equivalence class of measurable maps
from � to a separable metric space. By convention, the �- field generated by an
empty family of random variables equals the trivial �- field f¿; �g up to negligible
sets. A �- field C is essentially separable if it is countably generated up to negligible
sets. Thus a random variable X generates an essentially separable �- field �.X/;
equivalently, an essentially separable �- field is a �- field generated by a real-valued
random variable. We will extensively use the following elementary lemma, which is
often implicit in the probabilistic literature.

Lemma 1.1. On .�;A;P/, let B and C be two �- fields. For any random variable
X measurable with respect to B_C, there exist a B-measurable random variableB
and a C-measurable random variable C such that �.X/ � �.B;C /.

This lemma derives from the equality B _ C D S
B;C �.B;C /, where B and C

range over all B-measurable r.v. and all C-measurable r.v. respectively. Of course
we can also take bounded random variables B and C in this lemma.

We use the notation L0 .CI .E; �// or, shorter L0.CIE/, to denote the metriz-
able topological space of all C-measurable random variables taking their values
in a separable metric space .E; �/; the space L0 .CI .E; �// is endowed with the
topology of convergence in probability; when E D R we just write L0.C/. Simi-
larly, the space L1.CIE/ is the set of all C-measurable random variables X taking
their values in E such that E

�
�.X; x/

�
is finite for some (, for all) x 2 E; the

space L1.CIE/ is endowed with the metric .X; Y / 7! E Œ�.X; Y /�. It is well-
known that L0 .CI .E; �// D L1 .CI .E; � ^ 1//. The set of all simple, E-valued,
C-measurable random variables is a dense subset of L1.CIE/. If F is a finite set,
we denote by L.CIF / the set of all C-measurable random variables taking their
values in F , considered as a metric space with the metric .S; T / 7! PŒS ¤ T �.
Thus L.CIF / D L1.CIF / where F is equipped with the 0 – 1 distance. The Borel
�- field on a separable metric space E is denoted by BE .

A Polish metric space is a complete separable metric space. A Polish space is a
topological space that admits a separable and complete metrization. A Polish prob-
ability space is (the completion of) a probability space on a Polish space with its
Borel �- field. Any Polish space F has the Doob property: for any measurable space
.�;A/, if X W� ! T is a measurable function taking its values in a measurable
space T and Y W�! E is a �.X/-measurable function taking its values in a Polish
space E , then there exists a measurable function f WT ! E such that Y D f .X/

(see for instance [8]). We will sometimes use the Doob property without invoking
its name, or we will also call it Doob’s functional representation theorem.

WhenX is a random variable taking values in a Polish space, the existence of the
conditional law of X given any �- field C is guaranteed (see [11]); we denote it by
L.X jC/. It is itself a random variable in a Polish space. Some details on conditional
laws are provided in Annex 5.1.
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1.2 Lebesgue Isomorphisms

A Lebesgue isomorphism between two probability spaces .E;B; �/ and .F;C; �/ is
a bimeasurable bijection T from a setE0 2 B of full�-measure into a set F0 2 C of
full �-measure, and satisfying T .�/ D �. Any Polish probability space is Lebesgue
isomorphic to the completion of the Borel space R equipped with some probability
measure (see [6, 25, 29]).

1.3 Filtrations in Discrete, Negative Time

On an underlying probability space .�;A;P/, a filtration is an increasing sequence
of sub - �- fields of A indexed by a time-axis. Most filtrations considered in this
paper are indexed by the time axis �N D f: : : ;�2;�1; 0g. If the time axis of a
filtration F is not specified, it will be understood that F D .Fn/n60 is a filtration
in discrete, negative time. We say that a filtration F is essentially separable if the
final �- field F0 is essentially separable; equivalently, each �- field Fn is essentially
separable. We say that a filtration F is Kolmogorovian if the tail �- field F�1 WDT
n60 Fn equals the trivial �- field f¿; �g up to negligible sets. A filtration F is

included in a filtration G, and this is denoted by F � G, if Fn � Gn for each n 6 0.
The supremum F _ G of two filtrations F and G is the smallest filtration containing
both F and G; it is given by .F _ G/n D Fn _ Gn. The independent product of two
filtrations F D .Fn/n60 and G D .Gn/n60 respectively defined on two probability
spaces .�;A;P/ and .�
;A
;P
/ is the filtration F ˝ G defined on the product
probability space .�;A;P/˝ .�
;A
;P
/ by .F˝ G/n D Fn ˝ Gn.

1.4 Random Variables, Processes

It is understood, if not otherwise specified, that a random variable takes its values in
a separable metric space or in R if this is clear from the context. By a process,
we mean a sequence of random variables (each taking its values in a separable
metric space if nothing else is specified). Most processes considered in this pa-
per are indexed by the time-axis �N. Such a process .Xn/n60 generates a filtration
F D .Fn/n60 defined by Fn D �.XmIm 6 n/. The process .Xn/n60 is Markovian
if for each n 6 0 the �- field �.Xn/ is conditionally independent of Fn�1 given
�.Xn�1/. Given a filtration G  F, the process .Xn/n60 is Markovian with respect
to G if for each n 6 0 the �- field �.Xn/ is conditionally independent of Gn�1 given
�.Xn�1/. Equivalently, the process is Markovian and its filtration F is immersed in
G, as we shall see below.
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1.5 Preliminary Notion: Immersion

The notion of immersion will be used throughout all this paper. We say that a
filtration F is immersed in a filtration G if F � G and if every F-martingale is
a G-martingale; the notation F

m� G means that F is immersed in G. Obviously,
the binary relation

m� defines a partial order on the set of filtrations on .�;A;P/.
A typical example is provided by Lemma 1.2 and some usual characterizations of
immersion are given in Lemma 1.3.

Lemma 1.2. Let F and G be two independent filtrations. Then both F and G are
immersed in F _ G.

Two filtrations F and G both immersed in F _ G are said to be jointly immersed;
it suffices that F

m� H and G
m� H for some filtration H.

Lemma 1.3. Let F D .Fn/n60 and G D .Gn/n60 be two filtrations on a probability
space .�;A;P/. The following conditions are equivalent:

(i) F is immersed in G.

(ii) F is included in G and the �- field F0 is conditionally independent of Gn given
Fn for each n 6 0.

(iii) For every random variable X 2 L1.F0/, one has EŒX jGn� D EŒX jFn� for
each n 6 0.

(iv) For every F0-measurable random variable Y taking its values in a Polish
space, one has L.Y jGn/ D L.Y jFn/ for each n 6 0.

Note also that immersion of F in G implies Fn D F0 \ Gn for all n 6 0. Proofs
of the preceding two lemmas are left as an exercise to the reader, as well as those of
the next three lemmas, which will frequently be used in this paper. The third one is
a straightforward consequence of the first two ones.

Lemma 1.4. A filtration F is immersed in a filtration G if and only if F � G and for
every integer n < 0, the �- field FnC1 is conditionally independent of Gn given Fn.

Lemma 1.5. If B, C and D are three �- fields such that B and C are conditionally
independent given D, then D_B and C are also conditionally independent given D.

Lemma 1.6. Let F D .Fn/n60 and G D .Gn/n60 be two filtrations such that F �
G. Let .Vn/n60 be a process such that Fn � Fn�1 _ �.Vn/ for every n 6 0. If
Vn is conditionally independent of Gn�1 given Fn�1 for every n 6 0, then F is
immersed in G.

Here are two straightforward applications of Lemma 1.6. First, the filtration F

generated by an independent sequence .Vn/n60 of random variables is immersed in
a filtration G if and only if F � G and Vn is independent of Gn�1 for every n 6 0.
Second, a Markov process .Vn/n60 is Markovian with respect to a filtration G if and
only if its generated filtration F is immersed in G.
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1.6 Preliminary Notion: Isomorphic � - fields and Filtrations

An embedding‰ between two probability spaces .�;B;P/ and .�0;A0;P0/ is (nec-
essarily injective) map from the quotient �- field B=P to the quotient �- field A0=P0
that preserves the �- field structures and the probabilities. We shortly write ‰WB!
A0. Is is called an isomorphism if moreover it is onto. Up to isomorphism, an es-
sentially separable �- field is characterized by the descending sequence (possibly
empty, finite, or denumerable) of the masses of its atoms. An embedding‰ extends
uniquely to random variables taking their values in a Polish space, and we call‰.X/
the copy of such a random variable X . Details are provided in Annex 5.1. However
this Annex can be skipped since there is no risk when naively using isomorphisms:
any expected property such as ‰ .f .X// D f .‰.X//, ‰.X; Y / D .‰.X/;‰.Y //,
� .‰.X// D ‰ .�.X//, ‰ .EŒX jC�/ D E

0 Œ‰.X/ j‰.C/�, is true.
The definition of isomorphic �- fields extends naturally to filtrations as follows.

Two filtrations F D .Fn/n60 and F0 D .F0
n/n60, defined on possibly different

probability spaces, are isomorphic if there is an isomorphism ‰WF0 ! F0
0 such

that ‰.Fn/ D F0
n for every n 6 0. We say that ‰WF ! F0 is an isomorphism. We

denote by ‰.F/ the filtration .F0
n/n60 D

�
‰.Fn/

�
n60 and we call it the copy of the

filtration F by the isomorphism‰.
A typical example of isomorphic filtrations is the case when F and F0 are respec-

tively generated by two processes .Xn/n60 and .X 0
n/n60 having the same law. In

the case when the Xn (hence the X 0
n) take their values in Polish spaces, there exists

a unique isomorphism ‰WF ! F0 that sends Xn to X 0
n for each n 6 0. This stems

from Lemma 5.7. Another typical example of isomorphic filtrations is provided by
the following lemma.

Lemma 1.7. Let F and G be two independent filtrations. Then F _ G is isomorphic
to the independent product F ˝ G of F and G.

Proof. By Proposition 5.11, there exists a unique isomorphism extending the canon-
ical embeddings �1WF0 ! F0˝G0 and �2WG0 ! F0˝G0 (defined in Example 5.2).
ut

2 Vershik’s First Level Criterion

This section deals with filtrations of product type and Vershik’s first level criterion.

Definition 2.1. A filtration is of product type if it is generated by a sequence of
independent random variables.

As we shall see, productness is equivalent to Vershik’s first level criterion for
an essentially separable filtration of local product type (Theorem 2.25). This re-
sult is far from new: Vershik’s first level criterion appears, but without a name,
in [14, 15, 40]. Corollary 2.46 shows that the assumption of essential separabil-
ity cannot be waived: there exist some filtrations of local product type satisfying
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Vershik’s first level criterion but which are not essentially separable, hence not of
product type.

As said in the introduction, the important Theorem A is deduced from
Theorem A’ and from the equivalence between Vershik’s first level criterion and
productness for essentially separable filtrations of local product type. Vershik’s first
level criterion will also be used in Sect. 3 to extend the notion of standardness to the
notion of weak standardness (Definition 3.21).

Theorem A’ stated in the introduction is directly deduced from Theorem A”;
actually the latter will be proved (in Sect. 4) with the help of the equivalent “self-
joining version” of Vershik’s first level criterion, which we study in Sect. 2.2 and
call Vershik’s self-joining criterion.

In Sect. 2.3 we introduce the filtrations of split-word processes. We state the the-
orems on productness for these filtrations which are found in the literature, and we
initiate the proofs of these theorems assuming some intermediate key results. At this
stage, we will not have at our disposal the tools for finishing these proofs; they will
be pursued at the end of each following section, illustrating the new tools we shall
acquire.

2.1 Productness and Vershik’s First Level Criterion

In this section, we define Vershik’s first level criterion and prove its equivalence
(Theorem 2.25) with productness for an essentially separable filtration of local prod-
uct type (Definition 2.3). We will derive this theorem from Theorem 2.23 which
gives a characterization of Vershik’s first level criterion for filtrations of local prod-
uct type that are not necessarily essentially separable.

With the terminology of Definition 2.2 below, a filtration of product type is a
filtration for which there exists a generating innovation.

Definition 2.2. Given two �- fields B and C such that C � B, an independent
complement of C in B is a random variable V taking its values in a Polish space,
independent of C and such that B D C _ �.V /. An innovation, or a global inno-
vation, of a filtration F D .Fn/n60 is a process .Vn/n60 such that for each n 6 0,
the random variable Vn is an independent complement of Fn�1 in Fn. An innovation
.Vn/n60 is called generating if F is generated by the process .Vn/n60. For two given
integers n0 and m0 such that n0 < m0 6 0, an innovation, or a local innovation of
F from n0 to m0 is a sequence of random variables .Vn0C1; : : : ; Vm0/ such that Vn
is an independent complement of Fn�1 in Fn for each n 2 fn0 C 1; : : : ; m0g.

The random variables Vn appearing in a global or a local innovation of a filtration
F are themselves called innovations of F.

Definition 2.3. A filtration F D .Fn/n60 is of local product type if there exists a
global innovation of F.
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Innovations are not unique in general. They are described by Lemma 2.4 below.
The notion of Lebesgue isomorphism has been recalled in Sect. 1.

Lemma 2.4. Let .�;A;P/ be a probability space, C and B two sub - �- fields of
A, and V an independent complement of C in B taking values in a Polish space
E . Let V 0 be a random variable taking values in a Polish space E 0. Then V 0 is an
independent complement of C in B if and only if there exist a C-measurable random
variable C and a measurable function �WR 	 E ! E 0 such that V 0 D �.C; V /

and, almost surely, the random map TC W v 7! �
�
C; v

�
is a Lebesgue isomorphism

from the probability space induced by V into the probability space induced by V 0.
In particular, the �- fields �.V / and �.V 0/ are isomorphic.

Proof. The ‘if’ part is easy to verify. To show the ‘only if’ part, assume V 0 to be an
independent complement of C in B. There exist (Lemma 1.1) two C-measurable ran-
dom variables C1 and C2 such that �.V 0/ � �.C1; V / and �.V / � �.C2; V 0/. We
introduce a real-valued C-measurable random variable C such that �.C1; C2/ �
�.C / and we denote its law by PC . By Doob’s functional representation theo-
rem, there exist two measurable functions � and  such that V 0 D �.C; V / and
V D  .C; V 0/. Considering the conditional laws given C, we see that �.c; V / has
the same law as V 0 and  .c; V 0/ has the same law as V for PC -almost every c.
Moreover, since

1 D P
�
V 0 D � �C; .C; V 0/

�� D
Z

P
�
V 0 D � �c;  .c; V 0/

��
dPC .c/;

one has V 0 D � .c;  .c; V 0// almost surely for PC -almost every c. In the same
way one has V D  .c; �.c; V // almost surely for PC -almost every c. Hence, for
PC -almost every c, the Borel subset E0 WD fv 2 E j v D  .c; �.c; v//g of E has
full PV -measure, the Borel subset E 0

0 WD fv0 2 E 0 j v0 D � .c;  .c; v0//g of E 0 has
full PV 0-measure, and the maps v 7! �.c; v/ and v0 7!  .c; v0/ define mutual
inverse bijections between E0 and E 0

0. Finally v 7! �.c; v/ defines a Lebesgue
isomorphism from the probability space induced by V into the probability space in-
duced by V 0. Consequently, the �- fields �.V / and �.V 0/ have the same descending
sequences of masses of their atoms, and hence are isomorphic. ut

A straightforward application of Lemma 1.6 gives the following lemma:

Lemma 2.5. Let F D .Fn/n60 be a filtration of local product type and .Vn/n60
an innovation of F. Then the filtration generated by .Vn/n60 is immersed in F.
Consequently one has �.VmIm 6 n/ D Fn \ �.VmIm 6 0/ for each n 6 0.

Now we turn to Vershik’s first level criterion. We shall see at the end of this
section that this criterion is equivalent to productness for an essentially separable
filtration of local product type (Theorem 2.25).
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Definition 2.6. On .�;A;P/, let F D .Fn/n60 be a filtration of local product type.

� Let .E; �/ be a separable metric space andX 2 L1�F0IE
�
. The random variable

X satisfies Vershik’s first level criterion (with respect to F) if for every ı > 0,
there exist an integer n0 < 0, an innovation .Vn0C1; : : : ; V0/ of F from n0 to 0,
and a random variable S 2 L1��.Vn0C1; : : : ; V0/IE

�
such that E

�
�.X; S/

�
< ı.

� A �- field E0 � F0 satisfies Vershik’s first level criterion (with respect to F) if
every random variableX 2 L1 .E0IR/ satisfies Vershik’s first level criterion with
respect to F.

� The filtration F D .Fn/n60 satisfies Vershik’s first level criterion if the �- field
F0 satisfies Vershik’s first level criterion with respect to F.

When there is no ambiguity, we will omit the specification with respect to F in
this definition. We will see (Proposition 2.17) that Vershik’s first level criterion for
a random variable X is equivalent to Vershik’s first level criterion for the �- field
�.X/. It is clear that Vershik’s first level criterion is preserved by isomorphism. The
following proposition is easily established from the definition; its proof is left to the
reader.

Proposition 2.7. Let F D .Fn/n60 be a filtration of local product type and let
.E; �/ be a separable metric space. The set of random variables X 2 L1�F0IE

�

satisfying Vershik’s first level criterion is closed in L1
�
F0IE

�
.

To establish other properties of Vershik’s first level criterion, it will be convenient
to rephrase it with the help of the following notion:

Definition 2.8. Let .�;A;P/ be a probability space and B � A be a �- field.
A family C of sub - �- fields of A is substantial in B if the L1-closure ofS

C2C L
1.�;C;P/ contains L1.�;B;P/.

Thus, we can restate Definition 2.6 of Vershik’s first level criterion for a �- field
as follows.

Definition 2.9. Let F D .Fn/n60 be a filtration of local product type. Call
C loc the family of all �- fields �.Vn0C1; : : : ; V0/ generated by local innovations
.Vn0C1; : : : ; V0/ from n0 to 0, for all n0 < 0. A �- field E0 � F0 satisfies Vershik’s
first level criterion if C loc is substantial in E0.

The notion of substantial family of �- fields appears in [13] in a slightly different
form. Lemma below is a duplicate of Lemma 2 in [13], which could be proved
identically in spite of this difference between the two notions of substantialness.

Lemma 2.10. Let .�;A;P/ be a probability space, B � A a �- field, and C a
family of sub - �- fields of A. The following three conditions are equivalent:

(i) C is substantial in B.
(ii) For each finite set F , the closure of

S
C2C L.CIF / in L.AIF / contains

L.BIF /.
(iii) For each separable metric space E , the closure of

S
C2C L

1.CIE/ in
L1.AIE/ contains L1.BIE/.
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Proposition 2.11. Let F D .Fn/n60 be a filtration of local product type. If a �- field
E0 � F0 satisfies Vershik’s first level criterion, then for any separable metric space
E , every random variable X 2 L1.E0IE/ satisfies Vershik’s first level criterion.

Proof. Left to the reader as an easy application of the definitions and the previous
lemma. ut

The following lemma provides a typical example of substantialness.

Lemma 2.12. Let .�;A;P/ be a probability space and .Bm/m2N
an increasing se-

quence of sub -�- fields of A. Then the family of �- fields fBmIm 2 Ng is substantial
in
W
m Bm.

Proof. A classical result says that for any set B 2 W
m Bm, there exist some

B1; B2; : : : 2 SmBm such that PŒB M Bm� ! 0 (this is easily established by a
monotone class argument). With the help of this, the lemma follows from Lemma
2.10.(ii). ut
Proposition 2.13. Let F D .Fn/n60 be a filtration of local product type and
.Bm/m>0 an increasing sequence of sub -�- fields of F0. If each Bm satisfies Ver-
shik’s first level criterion, then so does

W
mBm.

Proof. Straightforward from the previous lemma and Proposition 2.7. ut
Corollary 2.14. Let F D .Fn/n60 be a filtration of local product type and .Vn/n60
an innovation of F. The �- field �.VnIn 6 0/ satisfies Vershik’s first level criterion.
Consequently, a filtration of product type satisfies Vershik’s first level criterion.

Proof. Obviously, the �- field Bm WD �.VnI �m 6 n 6 0/ satisfies Vershik’s first
level criterion for everym 2 N. Hence, the result derives from Proposition 2.13. ut

This corollary contains the easy implications of the equivalences stated in
Theorems 2.23 and 2.25 towards which we orient the rest of this section.

Lemma 2.16 is the key lemma to prove the equivalence between Vershik’s first
level criterion for a random variable X and Vershik’s first level criterion for the
�- field �.X/. It characterizes substantialness of a family of �- fields in an essen-
tially separable �- field B by a property on a random variable X generating B. It
will be proved with the help of the following lemma, which we shall also use sev-
eral times in the next sections.

Lemma 2.15. Let .�;A;P/ be a probability space and X 2 L1.AIE/ where
.E; �/ is a separable metric space. The set of all random variables of the form
f .X/ where f WE ! R is Lipschitz function, is a dense subset of L1

�
�.X/

�
.

Proof. Let us denote by `.X/ this set of random variables. For every open set
O �R, the sequence of random variables Xm WD .m�.X;Oc// ^ 1 converges al-
most surely to 1lX2O , and x 7! .m�.x;Oc// ^ 1 is a Lipschitz function. It follows
that the L1-closure of `.X/ contains all linear combinations of indicator random
variables 1lfX2Oi g where Oi is an open set, and therefore is dense in L1

�
�.X/

�
. ut
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Lemma 2.16. Let .�;A;P/ be a probability space, .E; �/ a separable metric
space, X 2 L1.AIE/, and C a family of sub - �- fields of A. Then C is substantial
in �.X/ if and only if for every ı > 0, there exist C 2 C and a random variable
C 2 L1.CIE/ such that E Œ�.X;C /� < ı.

Proof. This easily results from Lemma 2.10.(iii) and Lemma 2.15. ut
Proposition 2.17. Let F D .Fn/n60 be a filtration of local product type. Let .E; �/
be a separable metric space and X 2 L0.F0IE/. The following conditions are
equivalent.

(i) The �- field �.X/ satisfies Vershik’s first level criterion.
(ii) For every ı > 0, there exist an integer n0 < 0, an innovation .Vn0C1; : : : ; V0/

of F from n0 to 0, and a random variable S 2 L0��.Vn0C1; : : : ; V0/IE
�

such
that P

�
�.X; S/ > ı

�
< ı.

If X 2 L1.F0IE/, these conditions are also equivalent to

1. X satisfies Vershik’s first level criterion.

Proof. We know (Definition 2.9) that (i) is equivalent to C loc being substantial in
�.X/. Thus, Lemma 2.16 directly shows (i)” (iii), and (i)” (ii) derives from
the same lemma by replacing � with � ^ 1. ut

Most of the results in the sequel of this section will be established with the help
of the following elementary Lemmas 2.18 and 2.19. Lemma 2.18 is a duplicate
of Lemma 3 in [13], which could be proved identically in spite of the difference
between our notion of substantialness and the one given in [13].

Lemma 2.18. Let .�;A;P/ be a probability space, B and D two sub - �- fields of
A, and C a family of sub - �- fields of A. If C is substantial in B, then the family of
�- fields fC _D j C 2 C g is substantial in B _D.

Lemma 2.19. Let .�;A;P/ be a probability space, E � A a �- field, C a family of
sub - �- fields of E, and D a family of sub - �- fields of A such that each D 2 D is
independent of E. If the family of �- fields fC _D j C 2 C ;D 2 Dg is substantial
in a �- field B � E, then C is substantial in B.

Proof. Let X 2 L1.B/ and ı > 0. Assuming that fC _D j C 2 C ;D 2 Dg is sub-
stantial in B, there exist C 2 C , D 2 D, and a C_D-measurable random variable S
such that E ŒjX � S j� < ı. One can write (Lemma 1.1) S D f .C;D/ where C and
D are random variables measurable with respect to C and D respectively and f is
measurable, thus EŒS jE� is measurable with respect to C because EŒS jE� D h.C /
where h.c/ D E Œf .c;D/�. Using the L1-contractivity of conditional expectations,
we get E ŒjX � EŒS jC�j� D E ŒjE.X � S jE/j� < E ŒjX � S j� < ı, which shows
that C is substantial in B. ut

Proposition 2.21 highlights the asymptotic nature of Vershik’s first level criterion.
It is proved with the help of the following lemma.
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Lemma 2.20. Let F D .Fn/n60 be a filtration of local product type and N 6 0 an
integer. If a �- field EN � FN satisfies Vershik’s first level criterion with respect to
F, then it satisfies Vershik’s first level criterion with respect to the truncated filtration
.FNCn/n60.

Proof. This results from Lemma 2.19 by taking E D FN , B D EN , and by con-
sidering the family C consisting of all the �- fields �.Vn0C1; : : : ; VN / generated by
local innovations .Vn0C1; : : : ; VN / of F from n0 to N for all n0 < N; and the fam-
ily D consisting of all the �- fields �.VNC1; : : : ; V0/ generated by local innovations
.VNC1; : : : ; V0/ of F from N to 0. ut
Proposition 2.21. Let F D .Fn/n60 be a filtration of local product type. The fol-
lowing conditions are equivalent:

(i) F satisfies Vershik’s first level criterion.
(ii) For every N 2 �N, the truncated filtration .FNCn/n60 satisfies Vershik’s first

level criterion.
(iii) There exists N 2 �N such that the truncated filtration .FNCn/n60 satisfies

Vershik’s first level criterion.

Proof. Let C be the family of �- fields �.Vn0C1; : : : ; VN / generated by all local in-
novations .Vn0C1; : : : ; VN / from n0 toN for all n0 < N , let D D �.VNC1; : : : ; V0/
where .VNC1; : : : ; V0/ is an innovation of F fromN to 0, and let B D FN . Lemma
2.18 applied with these notations shows that (iii) H) (i); Lemma 2.20 shows that
(i) H) (ii); finally, (ii) H) (iii) is trivially true. ut

The following proposition will help in Sect. 2.3.

Proposition 2.22. Let F D .Fn/n60 be a filtration of local product type, .Vn/n60
an innovation of F, and .Cn/n60 a sequence of �- fields such that Cn � Fn for
each n 6 0 and such that .Cn _ �.VnC1; : : : ; V0//n60 is an increasing sequence of
�- fields. Define C1 DWn Cn. If Cn satisfies Vershik’s first level criterion for every
n 6 0, then C1 _ �.VnIn 6 0/ satisfies Vershik’s first level criterion.

Proof. Thanks to Proposition 2.13, it suffices to show that each �- field Cn _
�.VnC1; : : : ; V0/ satisfies Vershik’s first level criterion. Let C be the family con-
sisting of all the �- fields �.V 0

n0C1; : : : ; V 0
n/ generated by some local innovation

.V 0
n0C1; : : : ; V 0

n/ of F from n0 to n for some n0 < n. By Lemma 2.20, C is substan-
tial in Cn. Let D D �.VnC1; : : : ; V0/. Then apply Lemma 2.18. ut
Theorem 2.23. Let F D .Fn/n60 be a filtration of local product type on .�;A;P/.
Then F satisfies Vershik’s first level criterion if and only if for every separable metric
space E and every random variable X 2 L1.F0IE/, there exists an innovation
.Vn/n60 of F such that X is measurable with respect to �.VnIn 6 0/.

Proof. The ‘if’ part follows from Corollary 2.14 and Proposition 2.11. The ‘only
if’ part is proved as follows. Assume that F satisfies Vershik’s first level criterion
and let X 2 L1.F0IE/. Consider a random variable Y 2 L1.F0IR/ such that
�.X/ D �.Y /. Let .ık/k60 be a sequence of positive numbers such that ık ! 0.



On Standardness and I-cosiness 141

Consider the following construction at rank k: we have an integer nk < 0,
an innovation .VnInk < n 6 0/ of F from nk to 0 and a random variable
Xk 2 L1

�
�.VnInk < n 6 0/

�
such that E

�jY � Xkj
�
< ık . We firstly apply

the Vershik first level property of Y with respect to F to obtain this construction for
k D 0. When the construction is performed at rank k, we perform it at rank k�1 by
exhibiting an innovation .Vnk�1C1; : : : ; Vnk / from an integer nk�1 < nk to nk , and
a random variable Xk�1 2 L1

�
�.VnInk�1 < n 6 0/

�
such that E

�jY � Xk�1j
�
<

ık�1. To do so, we apply Proposition 2.21 to get Vershik’s first level criterion of
the truncated filtration .FnkCn/n60 and then we use the fact, due to Lemma 2.18,
that the family of �- fields of the form �.VmC1; : : : ; Vnk ; VnkC1; : : : ; V0/ where
.VmC1; : : : ; Vnk / is an innovation of F from some m < nk to nk , is substantial
in F0.

Continuing so, we obtain a global innovation .Vn/n60 of F and a sequence of
random variables .Xk/k60 in L1 .�.VnIn 6 0// converging in L1 to Y . ut
Remark 2.24. We do not know if Theorem 2.23 is true “random variable by ran-
dom variable”. More precisely, we do not know if each random variable satisfying
Vershik’s first level criterion is measurable with respect to the �- field generated by
some global innovation of the filtration.

Theorem 2.25 (Vershik’s First Level Criterion). Let F be an essentially separa-
ble filtration of local product type. Then F satisfies Vershik’s first level criterion if
and only if F is of product type.

Proof. The ‘if’ part is given in Corollary 2.14. To show the converse, apply Theo-
rem 2.23 with a random variable X generating F0. This yields a global innovation
.Vn/n60 such that F0 D �.VnIn 6 0/. Therefore Fn\�.VnIn 6 0/ D Fn for every
n 6 0. Consequently Fn D �.VmIm 6 n/ for every n 6 0 because the filtration
generated by .Vn/n60 is immersed in F (Lemma 2.5). ut

Obviously, a filtration of local product type which is not essentially separable
cannot be of product type. However we will see in Sect. 3 that it is possible that
such a filtration satisfies Vershik’s first level criterion (Corollary 2.46). It is then
interesting to notice that a filtration satisfying Vershik’s first level criterion is Kol-
mogorovian, even if it is not of product type.

Corollary 2.26. A filtration of local product type satisfying Vershik’s first level cri-
terion is Kolmogorovian.

Proof. Let F be such a filtration and A 2 F�1. Thanks to Theorem 2.23,
there exists a global innovation .Vn/n60 such that 1lA is measurable with re-
spect to �.VnIn 6 0/. As the filtration generated by .Vn/n60 is immersed in F

(Lemma 2.5), it follows that 1lA is measurable with respect to the trivial �- field
\n�.VmIm 6 n/. ut

Below is another corollary of Theorem 2.23 which will be used in Sect. 3 to prove
a result on weak standardness (Proposition 3.23).
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Corollary 2.27. Let F and G be two independent filtrations of local product type
satisfying Vershik’s first level criterion. Then F _ G is a filtration of local product
type satisfying Vershik’s first level criterion.

Proof. Let R 2 L1 .F0 _ G0I Œ0; 1�/. We can write R D f .X; Y / where X and Y
are random variables measurable with respect to F0 and G0 respectively and f is
a Borelian function. By Theorem 2.23, there exist a global innovation .Vn/n60 of
F and a global innovation .Wn/n60 of G such that X is measurable with respect
to �.VnIn 6 0/ and Y is measurable with respect to �.WnIn 6 0/. Setting Zn D
.Vn;Wn/, then .Zn/n60 obviously is an innovation of F _ G and R is measurable
with respect to �.ZnIn 6 0/. Thus F _ G satisfies Vershik’s first level criterion due
to Theorem 2.23. ut

The converse of Corollary 2.27 holds true; actually we could prove the following
stronger result, but we will not need it: Let F and G be two independent filtrations
of local product type. Let E1 and E2 be Polish spaces, X 2 L1.F0IE1/ and Y 2
L1.G0IE2/. Then X and Y satisfy Vershik’s first level criterion with respect to F

and G respectively, if and only if .X; Y / satisfies Vershik’s first level criterion with
respect to F _ G.

Remark 2.28. If F is a filtration of local product type generated by a martingale
.Mn/n60, then it is possible to show that F satisfies Vershik’s first level criterion
if and only if the random variable M0 satisfies Vershik’s first level criterion. We
will not show this fact as we shall see in the next section that Vershik’s first level
criterion is equivalent to Vershik’s self-joining criterion, and a result in [21] says that
the same fact holds for Vershik’s self-joining criterion. Actually this result says that
the same fact holds more generally for any self-joining criterion, a notion defined
in [21] that includes Vershik’s self-joining criterion and the I-cosiness criterion as
particular cases (see also Remark 3.44 and the first paragraph of Sect. 3.5).

2.2 Rosenblatt’s and Vershik’s Self-Joining Criteria

Given a filtration F of local product type, Proposition 2.33 gives a “self-joining cri-
terion” for a global innovation of F to be generating (Rosenblatt’s self-joining
criterion), and Theorem 2.38 (Vershik’s self-joining criterion) gives a “self-joining
criterion” for F to satisfy Vershik’s first level criterion. More precisely, these criteria
are stated “random variable by random variable”. The terminologies are discussed at
the end of the section. Both these criteria are a particular form of the I-cosiness cri-
terion (Definition 3.29). Rosenblatt’s self-joining criterion will be illustrated by the
example given in Sect. 3.1. Vershik’s self-joining criterion will be used to establish
Theorem A” stated in the introduction (and restated in Theorem 4.4).
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2.2.1 Joinings

As also does the I-cosiness criterion, Rosenblatt’s self-joining criterion and
Vershik’s self-joining criterion involve joinings of filtrations, defined below.

Definition 2.29. Let F be a filtration.

1. A joining of F is a pair .F0;F00/ of two filtrations F0 and F00 defined on the same
probability space which are both isomorphic to F and jointly immersed, that is,
F0 and F00 are both immersed in F0 _ F00 (or, equivalently, in a same filtration).

2. A joining .F0;F00/ of F is independent in small time if the �- fields F0
n0

and F00
n0

are independent for some integer n0 6 0. We also say that .F0;F00/ is a joining
of F independent up to n0 to specify this integer.

A typical example of joining .F0;F00/ is the case where F0 and F00 are two indepen-
dent copies of F (Lemma 1.2).

Rigorously, a joining is the pair .‰0.F/; ‰00.F// given by a probability space
.�;A;P/ and two embeddings ‰0WF0 ! A and ‰00WF0 ! A, with the addi-
tional property of joint immersion. Considering a joining .F0;F00/ of a filtration
F D .Fn/n60, and given a F0-measurable random variable X valued in a Polish
space, we will traditionally denote by X 0 and X 00 the respective copies of X given
by the two underlying embeddings ‰0 and ‰00. Of course, Y 0 and Y 00 will denote
the copies of a F0-measurable random variable Y , and so on. In the same way, the
two copies of a �- field B � F0 will be respectively denoted by B0 and B00, and the
two copies of a filtration E � F will be respectively denoted by E0 and E00. Note
that, given a filtration E immersed in F, a joining .F0;F00/ of F induces a joining
.E0;E00/ of E.

We shall need the following lemma in the proof of Theorem 2.38. Its easy proof
is left to the reader.

Lemma 2.30. Let F D .Fn/n60 be a filtration and n0 6 0 an integer. Let
.F0;F00/ be a joining of F independent up to n0. Then the �- fields F0

0 and F00
n0

are independent.

The next lemma is obvious from the definitions; it will be used to construct join-
ings of a filtration of local product type with the help of innovations.

Lemma 2.31. On .�;A;P/, let F D .Fn/n60 be a filtration and V0 be an inde-
pendent complement of F�1 in F0. On .�;A;P/, let .F0

n/n6�1 and .F00
n/n6�1 be

two jointly immersed isomorphic copies of .Fn/n6�1, given by two isomorphisms
‰0�1WF�1 ! F0�1 and ‰00�1WF�1 ! F00�1, and let V 0

0 and V 00
0 be two random

variables each having the same law as V0 and independent of F0�1 _ F00�1. We put
F0
0 D F0�1 _ �.V 0

0/ and F00
0 D F00�1 _ �.V 00

0 /. Then .F0;F00/ is a joining of F, given
by two unique isomorphisms ‰0 and ‰00 that respectively extend ‰0�1 and ‰00�1 and
respectively send V0 to V 0

0 and V 00
0 .
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Proof. The two isomorphisms ‰0 and ‰00 are given by Corollary 5.12. If .F0
n/n6�1

is immersed in .F0
n _ F00

n/n6�1, then we can see by Lemma 1.4 that F0 is immersed
in F0 _ F00 if and only if F0

0 and F0�1 are conditionally independent given F0�1 _
F00�1. By Lemma 1.5, this conditional independence holds if (and only if) V 0

0 is
independent of F0�1 _ F00�1. Thus F0 is immersed in F0 _ F00 and the same fact
obviously holds for F00. ut

2.2.2 Rosenblatt’s Self-Joining Criterion (for Generatingness)

Let F D .Fn/n60 be a filtration of local product type and .Vn/n60 a global inno-
vation of F. Proposition 2.33 below gives a necessary and sufficient condition for a
random variable to be measurable with respect to the �- field generated by .Vn/n60.
The proposition involves joinings .F0;F00/ constructed as follows.

Given an integer n0 < 0, we consider, on some probability space .�;A;P/,
two copies .F0

n/n6n0 and .F00
n/n6n0 of the filtration .Fn/n6n0 and a random vector

.V 0
n0C1; : : : ; V 0

0/ having the same law as .Vn0C1; : : : ; V0/ and independent of F0
n0
_

F00
n0

. We complete the filtrations .F0
n/n6n0 and .F00

n/n6n0 up to time 0 by putting

F0
n D F0

n0
_ �.V 0

n0C1; : : : ; V 0
n/ and F00

n D F00
n0
_ �.V 0

n0C1; : : : ; V 0
n/

for each n 2 fn0 C 1; : : : ; 0g. Assuming that .F0
n/n6n0 and .F00

n/n6n0 are jointly
immersed, one easily checks with the help of Lemma 2.31 that .F0;F00/ is a joining
of F, given by two isomorphisms ‰0WF ! F0 and ‰00WF ! F00, both of them
sending Vn to V 0

n for each n 2 fn0 C 1; : : : ; 0g. For a time n > n0, the joining can
be pictured as follows:

Such a joining .F0;F00/ is characterized by the fact that V 0
n D V 00

n for every n 2
fn0 C 1; : : : ; 0g.
Definition 2.32 (Rosenblatt’s Self-Joining Criterion). Let F D .Fn/n60 be a
filtration of local product type and .Vn/n60 an innovation of F. Let .E; �/ be a
Polish metric space and X 2 L1.F0IE/. We say that X satisfies Rosenblatt’s self-
joining criterion with .Vn/n60 if for each real number ı > 0, there exists, on some
probability space .�;A;P/, a joining .F0;F00/ of F independent up to an integer
n0 6 0, such that V 0

n D V 00
n for every n 2 fn0 C 1; : : : ; 0g, and for which one has

E
�
�.X 0; X 00/

�
< ı, whereX 0 andX 00 are the respective copies ofX in F0 and in F00.
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Proposition 2.33 (Rosenblatt’s Self-Joining Criterion). Let F D .Fn/n60 be a
filtration of local product type and .Vn/n60 an innovation of F. Let .E; �/ be a
Polish metric space and X 2 L1.F0IE/. Then X is measurable with respect to
�.VnIn 6 0/ if and only if X satisfies Rosenblatt’s self-joining criterion with
.Vn/n60.

Proof. If X is measurable with respect to �.VnIn 6 0/ then, by Lemma 2.12
and Lemma 2.10, for any ı > 0 there exist an integer n0 6 0 and a random
variable S 2 L1

�
�.Vn0C1; : : : ; V0/IE

�
such that E

�
�.X; S/

�
< ı=2. Consider-

ing a joining .F0;F00/ of F independent up to n0 as defined in the proposition,
one has E

�
�.X 0; S 0/

� D E
�
�.X 00; S 00/

� D E
�
�.X; S/

�
due to isomorphisms, and

S 0 D S 00 because S is measurable with respect to �.Vn0C1; : : : ; V0/. This gives
E
�
�.X 0; X 00/

�
< ı by the triangular inequality, thereby showing that X satisfies

Rosenblatt’s self-joining criterion.
Conversely, assume that Rosenblatt’s self-joining criterion holds for X . Then,

considering two independent copies F0 and F
 of F, we see that the family of
�- fields

˚
F

0 _ �.V 0

mIn < m 6 0/ j n < 0� is substantial in �.X 0/ (Definition 2.8
and Lemma 2.16). As F


0 is independent of F0
0, Lemma 2.19 shows that the family

of �- fields f�.V 0
mIn < m 6 0/ j n < 0g is substantial in �.X 0/. Consequently X 0

is measurable with respect to �.V 0
nIn 6 0/, and therefore, due to isomorphism, X

is measurable with respect to �.VnIn 6 0/. ut
Corollary 2.34. Let F D .Fn/n60 be an essentially separable filtration of local
product type and .Vn/n60 an innovation of F. Then the following conditions are
equivalent:

(i) F is the filtration of product type generated by .Vn/n60.
(ii) For every Polish space E , every random variable X 2 L1.F0IE/ satisfies

Rosenblatt’s self-joining criterion with .Vn/n60.
(iii) For some Polish space E , there exists a random variable X 2 L1.F0IE/

generating F0 and satisfying Rosenblatt’s self-joining criterion with .Vn/n60.
(iv) Every random variable X 2 L1 .F0IR/ satisfy Rosenblatt’s self-joining crite-

rion with .Vn/n60.

Proof. The previous proposition shows that (i) H) (ii), (iii), (iv), and that each
of (ii), (iii) and (iv) implies that F0 D �.VnIn 6 0/. As the filtration generated by
.Vn/n60 is immersed in F (Lemma 2.5), this yields �.VmIm 6 n/ D Fn for each
n 6 0. ut

2.2.3 Vershik’s Self-Joining Criterion

Vershik’s self-joining criterion is the “self-joining version” of Vershik’s first level
criterion (Definition 2.6). Given a filtration F of local product type and an innovation
.Vn/n60 of F, its statement involves the joinings .F0;F00/ of F defined as follows
and including as particular cases the joinings involved in Rosenblatt’s self-joining
criterion.
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Given an integer n0 6 0, we consider, on some probability space .�;A;P/,
two copies .F0

n/n6n0 and .F00
n/n6n0 of the filtration .Fn/n6n0 and a random vector

.V 0
n0C1; : : : ; V 0

0/ having the same law as .Vn0C1; : : : ; V0/ and independent of F0
n0
_

F00
n0

. We complete the filtrations .F0
n/n6n0 and .F00

n/n6n0 up to time 0 by defining
F0
n and F00

n for each n 2 fn0 C 1; : : : ; 0g by

F0
n D F0

n0
_ �.V 0

n0C1; : : : ; V 0
n/ and F00

n D F00
n0
_ �.V 00

n0C1; : : : ; V 00
n /;

where the random vector .V 00
n0C1; : : : ; V 00

0 / is constructed as follows. At each step
n 2 fn0 C 1; : : : ; 0g, calling En the Polish state space of Vn, we consider a mea-
surable function �nWR 	 En ! En such that for each fixed x 2 R, the function
v 7! �n.x; v/ is a Lebesgue automorphism of the probability space induced by Vn,
and then we put V 00

n D �n. NHn�1; V 0
n/ where NHn�1 is some random variable mea-

surable with respect to F0
n�1 _ F00

n�1. This construction can be pictured as follows:

It is clear from this construction that V 00
n has the same law as V 0

n and that each of
V 0
n and V 00

n is independent of F0
n�1 _ F00

n�1. Therefore, assuming that .F0
n/n6n0 and

.F00
n/n6n0 are jointly immersed, Lemma 2.31 ensures that .F0;F00/ is a joining of F,

given by two isomorphisms‰0WF ! F0 and ‰00WF ! F00 that respectively send Vn
to V 0

n and V 00
n for each n 2 fn0 C 1; : : : ; 0g. Such joinings will be given a name in

the following definition.

Definition 2.35. Let F D .Fn/n60 be a filtration of local product type and .Vn/n60
an innovation of F. A joining .F0;F00/ of F is permutational after n0 for an integer
n0 6 0 if for each n 2 fn0 C 1; : : : ; 0g we have V 00

n D Tn.V
0
n/ where Tn is a

random Lebesgue automorphism of the probability space induced by Vn, defined by
Tn.�/ D �n. NHn�1; �/ where �n is a measurable function and NHn�1 is some random
variable measurable with respect to F0

n�1 _ F00
n�1.

The joinings featuring in Rosenblatt’s self-joining criterion appear as the particular
case when the Tn are almost surely equal to identity. Note that the definition does not
depend on the choice of the innovation .Vn/n60 in view of Lemma 2.4. Actually we
can see by this lemma that a joining .F0;F00/ permutational after n0 is characterized
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by the fact that F0
n _ F00

n D F0
n _ F00

n0
for each n 2 fn0 C 1; : : : ; 0g, and this

characterization does not involve any innovation of F.
The following easy lemma will be used in the proof of Theorem 2.38 and

Lemma 4.2

Lemma 2.36. In the context of the above definition, and, in addition, given an F0-
measurable random variable X , there exist two Fn0-measurable random variables
Cn0 and Dn0 such that �.X/ � �.Dn0 ; Vn0C1; : : : ; V0/ and it is possible to write

Tn.�/ D  n.C 0
n0
;D00

n0
; V 0
n0C1; : : : ; V 0

n�1; �/

for every n 2 fn0 C 1; : : : ; 0g, where  n is a measurable function.

Proof. The proof is a successive application of Lemma 1.1. We use the nota-
tions of Definition 2.35, thus one has V 00

n D Tn.V
0
n/ where the random trans-

formations Tn are written in form Tn.�/ D �n. NHn�1; �/. To show the lemma, it
suffices to find Cn0 and Dn0 such that �.X 00/ � �.D00

n0
; V 00
n0C1; : : : ; V 00

0 / and

�. NHn�1/ � �.C 0
n0
;D00

n0
; V 0
n0C1; : : : ; V 0

n�1/ for each n 2 fn0 C 1; : : : ; 0g. Note
that .V 0

n0C1; : : : ; V 0
0/ is a local innovation of F0 _ F00 from n0 to 0.

For each n 2 fn0 C 1; : : : ; 0g, take (Lemma 1.1) an .F0
n0
_ F00

n0
/-measurable

r.v. NSnn0 such that �. NHn�1/ � �. NSnn0 ; V 0
n0C1; : : : ; V 0

n�1/. Then, take a r.v. NRn0
such that �. NRn0/ D �

� NSnn0 In 2 fn0 C 1; : : : ; 0g
�
, so that one has �. NHn�1/ �

�. NRn0 ; V 0
n0C1; : : : ; V 0

n�1/ for each n 2 fn0 C 1; : : : ; 0g. Then, take (Lemma 1.1)
an F0

n0
-measurable r.v. C 0

n0
and an F00

n0
-measurable r.v. B 00

n0
such that �. NRn0/ �

�.C 0
n0
; B 00

n0
/, and, finally, take (Lemma 1.1) an F00

n0
-measurable r.v. X 00

n0
such

that �.X 00/ � �.X 00
n0
; V 00
n0C1; : : : ; V 00

0 / and take a r.v. D00
n0

such that �.D00
n0
/ D

�.B 00
n0
; X 00

n0
/. ut

Definition 2.37. Let F D .Fn/n60 be a filtration of local product type, .E; �/ a
Polish metric space, and let X 2 L1.F0IE/. We say that X satisfies Vershik’s self-
joining criterion if for each real number ı > 0, there exist an integer n0 6 0 and,
on some probability space .�;A;P/, a joining .F0;F00/ of F independent up to n0
and permutational after n0 such that one has E

�
�.X 0; X 00/

�
< ı, where X 0 and X 00

are the respective copies of X in F0 and in F00.

Theorem 2.38. Let F D .Fn/n60 be a filtration of local product type. Let .E; �/ be
a Polish metric space and X 2 L1.F0IE/. Then X satisfies Vershik’s self-joining
criterion if and only if X satisfies Vershik’s first level criterion.

Proof. The proof of the ‘only if’ part is similar the proof of the ‘only if’ part of
Proposition 2.33. Indeed, assuming that X satisfies Vershik’s first level criterion,
then for any ı > 0 there exist n0 6 0, a local innovation .eV n0C1; : : : ;eV 0/ from n0
to 0, and a random variable S 2 L1��.eV n0C1; : : : ;eV 0/IE

�
such that E

�
�.X;eS/

�
<

ı=2. Thus Vershik’s self-joining criterion for X can be proved in the same way as
we have proved Rosenblatt’s self-joining criterion forX in the first part of the proof
of Proposition 2.33, by replacing .Vn0C1; : : : ; V0/ with .eV n0C1; : : : ;eV 0/.
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Conversely, assume Vershik’s self-joining criterion holds forX . Fix ı > 0, n0 6 0
and .F0;F00/ as in Definition 2.37. By Lemma 2.36, there are two Fn0-measurable
random variables Cn0 and Dn0 such that �.X/ � �.Dn0 ; Vn0C1; : : : ; V0/ and

Tn.�/ D  n.C 0
n0
;D00

n0
; V 0
n0C1; : : : ; V 0

n�1; �/

for every n 2 fn0 C 1; : : : ; 0g. By taking a Borelian function f such that X D
f .Dn0 ; Vn0C1; : : : ; V0/, one has X 00 D hD00

n0
.C 0
n0
; V 0
n0C1; : : : ; V 0

0/ where, for a
given value y of D00

n0
,

hy.C
0
n0
; V 0
n0C1; : : : ; V 0

0/ D f
�
y;eV n0C1; : : : ;eV 0

�
;

with
eV n D  n.C 0

n0
; y; V 0

n0C1; : : : ; V 0
n�1; V 0

n/;

for each n 2 fn0 C 1; : : : ; 0g, and thus eV n is an independent complement of F0
n�1

in F0
n by Lemma 2.4. In view of Lemma 2.30, the random variable D00

n0
is inde-

pendent of F0
0. The assumption that E Œ�.X 0; X 00/� < ı therefore implies that for

some y, we have E
�
�
�
X 0;eS

��
< ı where eS D hy.C

0
n0
; V 0
n0C1; : : : ; V 0

0/. Thus X 0
satisfies Vershik’s first level criterion with respect to F0 because the random variable
eS is measurable with respect to �.eV n0C1; : : : ;eV 0/. Obviously, Vershik’s first level
criterion with respect to F is satisfied for X due to isomorphism. ut

2.2.4 On the Terminology

We have called the self-joining criterion of Proposition 2.33 Rosenblatt’s self-
joining criterion because this result was often used in the works of Rosenblatt
[26–28] and their further developments [5, 17]. The self-joining criterion in
Definition 2.37 is called Vershik’s self-joining criterion because it is close to the
“combinatorial” standardness criterion stated in Vershik’s works in the particular
case of homogeneous filtrations (defined in the introduction and in Definition 4.1)
with atomic innovations.

2.3 Example: Split-Word Processes

We shall define the split-word processes. Their filtrations are known to be of product
type or not according to some conditions on the parameters defining these processes.
Admitting the key results found in the literature, we will start proving the main
theorem on productness for these filtrations (Theorem 2.39). At this stage we do not
yet have at our disposal the tools needed to entirely prove this theorem; its proof
will be continued at the end of each section.
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To define a split-word process, the first ingredient is a probability space .A;A; �/
called the alphabet. A word on A is an element w 2 A` for some integer ` > 1,
called the length of w, and w.1/, : : :, w.`/ are the letters of w. Given any function
f from A to a set B we naturally define f .w/ 2 B` as the word on B with letters
f
�
w.1/

�
; : : : ; f

�
w.`/

�
in this order.

The second ingredient is the splitting sequence .rn/n60, consisting of inte-
gers rn > 2. Given this sequence, we define the sequence .`n/n60 of lengths by
`n D Q0

kDnC1 rk for all n 6 0; in other words, the sequence .`n/n60 is recursively
defined by `0 D 1 and `n�1 D rn`n.

Then we define the split-word process with alphabet .A;A; �/ and splitting se-
quence .rn/n60 to be the (non time-homogeneous) Markov process .Wn; �n/n60
whose law is characterized by the following two conditions:

˘ For each n 6 0, Wn is a random word on A of length `n, whose letters are i.i.d.
random variables with law �, and �n is independent of Wn and has the uniform
law on the set f1; : : : ; rng.

˘ The transition from n � 1 to n is obtained by taking �n independent of
.Wn�1; �n�1/, and then by choosing Wn as the �n-th subword of Wn�1 con-
sidered as a concatenation of rn subwords of equal length `n.

We denote by F the filtration generated by .Wn; �n/n60. Of course the process
.�n/n60 is an innovation of F. It can be shown that F�1 is degenerate whatever the
alphabet .A;A; �/ and the splitting sequence .rn/n60; the proof is the same as in
[14] where the particular case that rn � 2 and � is uniform on a finite alphabet A is
treated. We will derive the following theorem using results from the literature.

Theorem 2.39. Call .�/ the condition on the splitting sequence .rn/n60:

0X

kD�1

log.rk/

`k
<1: (�)

Then:

(a) If .�/ holds, then F is not of product type unless .A;A; �/ is degenerate.
(b) If .�/ does not hold and if .A;A; �/ is Polish, then F is of product type.

Remark 2.40. As we have seen in this section, part (a) of Theorem 2.39 means
that under condition .�/, Vershik’s first level criterion, or Vershik’s self-joining
criterion, fails to be true for some random variables. It would be interesting to have
more information on those random variables. For example, does the final letter W0
of the split-word process .Wn; �n/n60 never satisfy Vershik’s first level criterion
under condition .�/ on the splitting sequence, whatever the non-trivial alphabet?

Remark 2.41 (Vershik’s Example 1). The similar theorem holds for the so-called Ex-
ample 1 in [40]. Part (a) of Theorem 2.39 for Vershik’s Example 1 is shown in [40]
with the help of its notion of entropy of filtrations. Part (b) is shown by Heicklen in
[18] in the particular case when A is finite and � is the uniform probability on A
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(thus Heicklen shows the analogue of Ceillier’s result 2.44 for Vershik’s Example
1). This example deals with filtrations defined as sequences of the invariant �- fields
of the actions of a decreasing sequence of groups on a Lebesgue probability space.
Unfortunately we have failed to check whether or not Vershik’s Example 1 is ex-
actly the same as the filtrations of the split-word processes, but similar mathematics
appear in the proof of the two theorems. In fact, we know that the following coinci-
dence holds: Vershik’s self-joining criterion of the random variableW0 with respect
to the filtration of the split-word process .Wn; �n/n60 can be expressed in a problem
of purely combinatorial nature, and this problem is also equivalent to Vershik’s self-
joining criterion of a certain random variableW 


0 with respect to the corresponding
filtration of Vershik’s Example 1.1 Other examples of filtrations for which Vershik’s
self-joining criterion of a certain random variable is equivalent to Vershik’s self-
joining criterion of W0, are given in [40].

Remark 2.42 (The scale of an automorphism). Theorem 2.39 is closely related to
the scale of Bernoulli automorphisms. The notion of scale of an automorphism
has been introduced by Vershik in [39]. The scale is a set of sequences of inte-
gers .rn/n60. Vershik asserts in [39], without giving a proof, that .rn/n60 does not
belong to the scale of Bernoulli automorphisms under condition .�/, and he proves
that it belongs to the scale of Bernoulli automorphisms under a stronger condition
than :.�/. We have checked, by using the first definition of the scale given by
Vershik, that a sequence .rn/n60 belongs to the scale of a Bernoulli automorphism
if and only if Vershik’s self-joining criterion holds for a certain random variable with
respect to the filtration F of a split-word process with splitting sequence .rn/n60.
Thus, part (b) of Theorem 2.39 shows that .rn/n60 belongs to the scale of Bernoulli
automorphisms under condition :.�/, thereby improving the proposition in [39].
In [21], we describe this random variable and we argue that Vershik’s self-joining
criterion of this random variable is actually equivalent to productness of F. Finally
Theorem 2.39 then shows that the scale of a Bernoulli automorphism is the set of
sequences .rn/n60 satisfying :.�/.

We shall derive Theorem 2.39 from the following two facts, which will be
admitted:

Result 2.43. If .�/ holds and A is finite, then F is not of product type, unless � is
degenerate.

If rn � 2, condition .�/ holds; in this case, Smorodinsky [32] has shown
that F is not of product type. His proof is copied in [14] with the language of
I-cosiness. Result 2.43 is shown in [20] with the help of Vershik’s self-joining
criterion (Theorem 2.38) and by generalizing some lemmas given in [14] for the

1 With the terminology of [21], the respective sequences of Vershik’s progressive predictions
.�nW0/n60 and .�nW �

0 /n60 of W0 and W �

0 are two processes with the same law; that shows
that the Vershik property, or the I-cosiness, or Vershik’s self-joining criterion, are the same for W0

and W �

0 .
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particular case rn � 2. Result 2.43 is also shown in [7] by means of the I-cosiness
criterion, by a more direct generalization of the proof given in [14].

Result 2.44. IfA is finite and� is the uniform probability onA, then F is of product
type if .�/ does not hold.

Result 2.44 is due to Ceillier [7]. This is the most recent and from some point of
view the most difficult part of Theorem 2.39.

We do not yet have the material needed to prove Theorem 2.39 from these two
results. We will only give, in Result 2.45 below, the first step towards the derivation
of part (b) of the theorem from Result 2.44. Result 2.43 will be discussed in Sect. 3
where we shall demonstrate how to derive part (a) of Theorem 2.39 from this result.
Finally we shall demonstrate in Sect. 4 how to derive part (b) of Theorem 2.39 from
Result 2.45.

Result 2.45. If A D Œ0; 1� and � is the Lebesgue measure, then F is of product type
if .�/ does not hold.

Proof. Consider the split-word process .Wn; �n/n60 on the alphabet A D Œ0; 1�

equipped with the Lebesgue measure, and its generated filtration F. Assuming
Result 2.43, we shall see that F satisfies Vershik’s first level criterion if .�/ does not
hold. This will prove that F is of product type thanks to Vershik’s first level theorem
(Theorem 2.25). By Proposition 2.22, for F to satisfy Vershik’s first level criterion,
it suffices that each �- field �.Wn/ satisfies Vershik’s first level criterion. In turn,
this is proved as follows. For each k 2 N, we define the approximation of identity
f kW Œ0; 1�! Œ0; 1� by

f k.u/ D
2k�1X

iD0

i

2k
1ln i
2k
<u6 iC1

2k

o:

By result 2.44, we can see that
�
f k.Wn/; �n

�
n60 is a split-word process which

generates a filtration Fk of product type. Consequently, each filtration Fk satisfies
Vershik’s first level criterion (Corollary 2.14). Lemma 2.4 shows that any innovation
of a filtration Fk is also an innovation of F. Therefore, all random variables f k.Wn/
satisfy Vershik’s first level criterion with respect to F. Hence, due to Proposition
2.7, the random variableWn satisfies Vershik’s first level criterion with respect to F.
This amounts to saying that the �- field �.Wn/ satisfies Vershik’s first level criterion
(Proposition 2.17). ut

Before turning to the next section, we give a corollary of part (b) of Theorem
2.39 showing that, as announced above Corollary 2.26, there exist some filtrations
of local product type satisfying Vershik’s first level criterion although they are not
of product type. Note that the existence of split-word processes with a non-Polish
alphabet is guaranteed by Ionescu–Tulcea’s theorem.



152 S. Laurent

Corollary 2.46. In the context of Theorem 2.39, if .�/ does not hold, then F satis-
fies Vershik’s first level criterion, whatever .A;A; �/. However, F is not of product
type if .A;A; �/ is not essentially separable.

Proof. By Proposition 2.22, it suffices to show that each �- field �.Wn/ satisfies
Vershik’s first level criterion. Thus, considering a measurable function f WA`n ! R

such that the random variable f .Wn/ is integrable, we have to show that this ran-
dom variable satisfies Vershik’s first level criterion. As f is measurable with respect
to A˝`n , there exist (Lemma 1.1) some essentially separable �- fields C1 � A, : : :,
C`n � A such that f is measurable with respect to C1 ˝ � � � ˝ C`n . Introduce the
essentially separable �- field B D C1_ � � �_C`n ; then f is measurable with respect
to B˝`n . Thus, considering a measurable functionGWA! R such that �.G/ D B,
the random variable f .Wn/ is measurable with respect to the �- field generated by
the random word Xn WD G

�
Wn.1/

�
: : : G

�
Wn.`n/

�
. The process .Xn; �n/n60 is

a split-word process on a Polish alphabet, and thus we know from Theorem 2.39
that it generates a filtration of product type, so the �- field �.Xn/ satisfies Ver-
shik’s first level criterion with respect to the filtration generated by .Xn; �n/n60. By
Lemma 2.4, any innovation of this filtration is also an innovation of F, hence the
�- field �.Xn/ satisfies Vershik’s first level criterion with respect to F, and so does
also the random variable f .Wn/. ut

3 Standardness and I-cosiness

Section 3.1 deals with standard filtrations, defined as filtrations that are immersible
in a filtration (of product type) generated by independent random variables having a
diffuse law. We shall see that any filtration of product type is standard and that being
standard is equivalent to being immersible in a filtration of product type.

In Sect. 3.2, as an example of a sufficient condition for standardness, we provide
an unpublished result from Tsirelson on the existence of a generating parameter-
ization for a filtration under a certain ergodicity condition on a Markov process
generating this filtration. The proof we give makes use of Rosenblatt’s self-joining
criterion (Proposition 2.33). As we shall see, the existence of a generating param-
eterization for a filtration obviously implies standardness, but we disagree with a
result in a literature asserting that the converse is true. This point is discussed in
Sect. 3.3.

In Section 3.4, the notion of standardness is extended to its analogue for locally
separable filtrations (Definition 3.17), namely weak standardness, defined similarly
to standardness but with productness replaced by Vershik’s first level criterion.

Next, the I-cosiness criterion is defined in Sect. 3.5 and its basic properties are
given. The implications productness ) I-cosiness and Vershik’s first level crite-
rion) I-cosiness will be directly deduced from Rosenblatt’s self-joining criterion
and Vershik’s self-joining criterion, defined in the previous section. I-cosiness of
standard or weakly standard filtrations will follow as an obvious consequence of
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I-cosiness being inherited by immersion. As an illustration of the I-cosiness crite-
rion, we give a sufficient condition for a stationary Markov process to generate an
I-cosy filtration.

Finally, in Sect. 3.6, we pursue the proof of Theorem 2.39 (productness of the
filtrations of split-words processes).

3.1 Standardness, Superinnovations, Parameterizations

Two notions must preliminarily be defined before standardness: the notion of a stan-
dard conditionally non-atomic filtration and the notion of an extension of a filtration.

Definition 3.1. A conditionally non-atomic filtration is a filtration of local product
type admitting a global innovation .Un/n60 such that each Un is uniformly dis-
tributed on the interval Œ0; 1�. A standard conditionally non-atomic filtration is a
filtration generated by a sequence .Un/n60 of independent random variables uni-
formly distributed on the interval Œ0; 1�.

Observe that all standard conditionally non-atomic filtrations are isomorphic to
each other. Remark also that “uniformly distributed on the interval Œ0; 1�” in this
definition can equivalently be replaced with “having a diffuse law”. The two lemmas
below respectively characterize standard conditionally non-atomic filtrations and
conditionally non-atomic filtrations.

Lemma 3.2. A filtration is standard conditionally non-atomic if and only if it is of
product type and conditionally non-atomic.

Proof. The ‘only if’ part is obvious. The ‘if’ part follows from the fact that for a
conditionally non-atomic filtration F, any independent complement of Fn�1 in Fn
necessarily has a diffuse law, by virtue of Lemma 2.4. ut
Lemma 3.3. A filtration F D .Fn/n60 is conditionally non-atomic if and only if for
every n 6 0, there exists an Fn-measurable random variable Vn such that Fn�1 _
�.Vn/ D Fn and such that the conditional law L.Vn jFn�1/ is almost surely diffuse.

Proof. The ‘only if’ part is trivially true. For the ‘if’ part, consider Vn as in the
lemma and let F.� jFn�1/ be the conditional cumulative distribution function of Vn
given Fn�1. One easily checks that the random variable F.Vn jFn�1/ is an innova-
tion from Fn�1 into Fn having uniform law on Œ0; 1�. ut

To define standardness, we need one more notion, an extension of a filtration.
Roughly speaking, an extension of F is a filtration in which F “can be immersed”.

Definition 3.4. Let F and G0 be two filtrations defined on possibly different proba-
bility spaces. The filtration F is immersible in the filtration G0, and G0 is an extension
of F, if F is isomorphic to some filtration F0 immersed in G0.
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Lemma 3.5. Let F D .Fn/n60 and G D .Gn/n60 be two filtrations defined on pos-
sibly different probability spaces. Then both F and G are immersible in the product
filtration F ˝ G.

Proof. Let �1WF ! F ˝ G and �2WG ! F ˝ G be the identifications with the first
factor and the second factor respectively (see Example 5.2). Then we know from
Lemma 1.2 that the two independent filtrations �1.F/ and �2.G/ are both immersed
in �1.F/ _ �2.G/ D F ˝ G. ut

Now we turn on to the notion of standard filtrations.

Definition 3.6. A standard filtration is a filtration immersible in a standard condi-
tionally non-atomic filtration.

As obvious facts on standardness, we note:

� Standardness is preserved by isomorphism.
� A standard conditionally non-atomic filtration in the sense of Definition 3.1 is

standard and is conditionally non-atomic. But at this stage we are not yet able to
prove the converse; this will be done in Sect. 4 (Corollary 4.7).

� The standardness property for a filtration is inherited by immersion, i.e., any fil-
tration immersible in a standard filtration is itself standard.

� A standard filtration is essentially separable.

Proposition 3.7. Any filtration of product type is standard, and a filtration is stan-
dard if and only if it is immersible in a filtration of product type.

Proof. The independent product of a filtration F with a standard non-atomic
filtration is an extension of F (Lemma 3.5). Obviously, this product filtration is
itself standard non-atomic if F is of product type, and hence F is standard. Con-
sequently, a filtration is standard if it is immersible in a filtration of product type
because standardness is inherited by immersion. The converse is obvious from the
Definition of standardness. ut

As we know from the pioneering works of Vershik, there exist some Kolmogoro-
vian essentially separable filtrations that are not standard, i.e., which cannot be
immersed in a standard conditionally non-atomic filtration. However Theorem 3.9
below shows that any essentially separable filtration can be immersed in the supre-
mum of two jointly immersed standard conditionally non-atomic filtrations. This
theorem firstly says that an essentially separable conditionally non-atomic filtration
equals the supremum of two jointly immersed standard conditionally non-atomic
filtrations. This is the main assertion and it is due to Parry [24]. The second asser-
tion of this theorem follows from Lemma 3.8 below. An interesting consequence
of Theorem 3.9 is given in [21] and is invoked in our Remark 3.34. Except for this
remark and for the remark below Proposition 3.46, we will never use this theorem.

Lemma 3.8. Any essentially separable filtration admits an essentially separable
conditionally non-atomic extension.
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Proof. Using Lemma 3.3, it is easy to see that the independent product of an
essentially separable filtration and a standard conditionally non-atomic filtration is
an essentially separable conditionally non-atomic filtration. Then the lemma imme-
diately follows from Lemma 3.5. ut
Theorem 3.9. Let F D .Fn/n60 be an essentially separable conditionally non-
atomic filtration. Then F D H1 _H2 where H1 and H2 are two jointly immersed
standard conditionally non-atomic filtrations. Consequently, any essentially sepa-
rable filtration is immersible in such a filtration H1 _H2.

Proof. The consequence follows from Lemma 3.8. To prove the first assertion, we
strictly follow [24]. Consider an essentially separable conditionally non-atomic fil-
tration F D .Fn/n60. Let .Un/n60 be an innovation of F such that each Un is
uniformly distributed on the interval Œ0; 1�. For every n 6 0, let Xn be a random
variable generating Fn. ThenXn necessarily has a diffuse law, and we assume with-
out loss of generality that this is the uniform law on Œ0; 1�. Define Vn D Xn�1CUn
.mod 1/ for every n 6 0. By Lemma 2.4, .Vn/n60 is an innovation of F. It suffices
to define H1 as the filtration generated by .Un/n60 and H2 as the filtration gener-
ated by .Vn/n60. Then we easily see that F D H1 _H2, and the joint immersion of
H1 and H2 is a consequence of Lemma 1.6. ut

A typical example of a standard conditionally non-atomic extension of a filtration
F is the filtration generated by a generating parameterization of F, defined below.

Definition 3.10. A (global) superinnovation of a filtration F D .Fn/n60 is a pro-
cess .Vn/n60 such that for each n 6 0, the random variable Vn takes its values
in a Polish space, is independent of Fn�1 _ �.VmIm 6 n � 1/, and satisfies
Fn � Fn�1 _ �.Vn/. The superinnovation .Vn/n60 is a generating superinnova-
tion if moreover F is contained in the filtration generated by .Vn/n60. A filtration F

admits a superinnovation if there exists a superinnovation of a filtration isomorphic
to F. A superinnovation .Vn/n60 of F is called a parameterization if Vn has the
uniform law on Œ0; 1� for every n 6 0.

Obviously, a filtration admits a parameterization if and only if it admits a superin-
novation .Vn/n60 such that each Vn has a diffuse law. Proposition below shows that
a filtration admitting a generating superinnovation is actually immersed in the filtra-
tion generated by this superinnovation.

Proposition 3.11. On .�;A;P/, let F D .Fn/n60 be a filtration and .Vn/n60 a
process such that each Vn takes its values in a Polish space. Let V D .Vn/n60 be
the filtration generated by .Vn/n60. The following conditions are equivalent:

(i) .Vn/n60 is a superinnovation of F.
(ii) .Vn/n60 is a sequence of independent random variables, one has Fn � Fn�1_

�.Vn/ for each n 6 0, and V is immersed in F _ V.
(iii) .Vn/n60 is a sequence of independent random variables, one has Fn � Fn�1_

�.Vn/ for each n 6 0, and F and V are jointly immersed.
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Consequently, if .Vn/n60 is a generating superinnovation for F, then F is immersed
in V, and hence F is standard.

Proof. If .Vn/n60 is a sequence of independent random variables, then Lemma 1.6
shows that V is immersed in F _ V if and only if Vn is independent of Fn�1 _
�.VmIm 6 n � 1/ for each n 6 0. It follows that (i) ” (ii). If .Vn/n60 is
a superinnovation of F, then F is immersed in F _ V as an easy consequence of
Lemma 1.6. That finally shows that (i)” (ii)” (iii). Consequently, if .Vn/n60
is a generating superinnovation, then F is standard by Proposition 3.7 since it is
immersed in the product type filtration V D F _ V. ut
Remark 3.12. It is claimed in the literature that any standard filtration admits a gen-
erating parameterization. Actually some confusion occurred, and to our knowledge
there exists no valid proof of this assertion. This will be discussed in Sect. 3.3.

3.2 An Example from Tsirelson

Theorem 3.15 below gives a sufficient condition on a Markov process for its gen-
erated filtration to admit a generating parameterization, and hence to be standard
(Proposition 3.11). This result is borrowed from Tsirelson (About Yor’s Problem,
Tel Aviv University, unpublished preprint). Lemma 3.14 is the key point of the
proof. The last part of the proof we give illustrates Rosenblatt’s self-joining cri-
terion (Proposition 2.33).

The following lemma will be used in the proof of Lemma 3.14 (and in the
statement of Lemma 3.24 and the proof of Lemma 3.27). This lemma is a verba-
tim copy of Lemma 6.4.6 in [6].

Lemma 3.13. Let .�;A/ be a measurable space and f W� 	 R ! R a function
satisfying the following conditions: for every fixed t 2 R, the function ! 7! f .!; t/

is A-measurable, and for every fixed ! 2 �, the function t 7! f .!; t/ is right-
continuous. Then the function f is measurable with respect to A˝BR.

The statement and the proof of Lemma 3.14 and Theorem 3.15 involve infimum
of measures. Given two measures �1 and �2 on a measurable space, we denote by
�1 ^ �2 the infimum of �1 and �2. The existence of this measure is guaranteed;
more generally, the infimum of an infinite family of measures always exists (see
[33], Theorem 7.1, or [9], Appendices III & IV.) When �1 D f1�� and �2 D f2��
(Radon-Nikodým derivatives), �1 ^ �2 D .f1 ^ f2/ � �.

Lemma 3.14. Let X and Y be two random variables taking values in some Polish
spaces E and F respectively, and f�xgx2E a regular version of the conditional
law of Y given X . Denote by �1 and �2 the respective laws of X and Y and by
Leb the Lebesgue probability measure on Œ0; 1�. There exists a measurable function
pWE 	 F ! Œ0; 1� such that for �1-almost all x 2 E , the function y 7! p.x; y/

is a Radon-Nikodým derivative of �x ^ �2 with respect to �2, and there exists a
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measurable function ˛WE 	F 	 Œ0; 1�! R such that one has ˛.x; �2 	Leb/ D �x
for every x and ˛.x; y; u/ D y for every x; y; u satisfying u 6 p.x; y/.

Proof. Since any Polish probability space is Lebesgue isomorphic to a probability
space on R, it suffices to do the proof for F D R. Let f be a Radon–Nikodým
derivative of the absolutely continuous part in the Lebesgue decomposition of the
joint distribution of .X; Y / with respect to �1 ˝ �2. The set of values of x 2 E
such that

R
f .x; y/d�2.y/ D 0, is �1-negligible, and for those values of x for

which
R
f .x; y/d�2.y/ ¤ 0, it is not difficult to check that the function px Wy 7!

min
˚
f .x; y/=

R
f .x; z/d�2.z/; 1

�
is a Radon–Nikodým derivative of the measure

�x ^ �2 with respect to �2. We define p by p.x; y/ D px.y/. Now we are going
to construct ˛. The function t 7! �x . ��1; t �/ � .�x ^ �2/ . ��1; t �/ is right-
continuous and increasing, and takes its values in Œ0; 1 �mx� where mx is the total
mass of �x ^�2. Call gx the right-continuous inverse of this function. The function
.x; v/ 7! gx.v/ is measurable by virtue of Lemma 3.13. Then put ˛.x; y; u/ D
gx
�
1�mx
1�px.y/ .1�u/

�
for u 2 �px.y/; 1�. One checks without difficulty that ˛.x; �2	

Leb/ D �x. ut
Theorem 3.15. Consider a Markov process .Xn/n60 where each Xn takes its val-
ues in a Polish space. Denote by �n the law of Xn and by �nxn�1

the conditional law
L.Xn jXn�1D xn�1/. Let mn be the �n�1 ˝ �n�1-essential infimum over x0

n�1,
x00
n�1 of the total masses of the measures �n

x0

n�1

^ �n
x00

n�1

^ �n. If
P
mn D C1,

then the filtration generated by .Xn/n60 admits a generating parameterization.

As an application of this theorem, we can see that the filtration generated by a
stationary random walk on the vertices of a triangle admits a generating parameter-
ization. Note that the number mn defined in Theorem 3.15 satisfies mn > ˇ.�n/

where ˇ.�n/ is the total mass of the essential infimum over all x of the measures
�nx . Thus the condition

P
ˇ.�n/ D C1 guarantees the existence of a generat-

ing parameterization. In the stationary case, this condition is equivalent to the
existence of a positive non-null measure that minorizes the probability measures
L.Xn jXn�1D x/ for almost all x. A weaker minorization condition given in [17]
guarantees the existence of a generating parameterization in the stationary case.

Proof (Proof of Theorem 3.15). Let pn and ˛n be the functions p and ˛ obtained
from Lemma 3.14 applied with X D Xn�1 and Y D Xn. We write pnx.y/ D
pn.x; y/. Now consider the Markov process

�
X 0
n; .Y

0
n; U

0
n/
�
n60 defined as follows:

� For each n 6 0, .Y 0
n; U

0
n/ is independent of the past up to n � 1, Y 0

n has law �n,
U 0
n has the uniform law on Œ0; 1�, Y 0

n and U 0
n are independent.

� X 0
n D ˛n.X 0

n�1; Y 0
n; U

0
n/ for each n 6 0.

Then we know from Lemma 3.14 that .X 0
n/n60 has the same distribution as the

Markov process .Xn/n60, and that X 0
n D Y 0

n if U 0
n 6 pn

X 0

n�1

.Y 0
n/. Let F0 be the

filtration generated by .X 0
n/n60. Obviously, the process .Y 0

n; U
0
n/n60 is a superin-

novation of F0 (Definition 3.10), and we shall show with the help of Rosenblatt’s
self-joining criterion (Proposition 2.33) that this superinnovation is generating ifP
mn D C1.
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Let
�
X

n

�
n60 be a copy of .Xn/n60 lying on the same probability space .�;A;P/

as
�
X 0
n; .Y

0
n; U

0
n/
�
n60 and independent of

�
X 0
n; .Y

0
n; U

0
n/
�
n60. For a given integer

n0 < 0, we define another copy .X 00
n /n60 of .Xn/n60 by setting X 00

n D X

n

for n 6 n0 and X 00
nC1 D ˛n.X

00
n ; Y

0
nC1; U 0

nC1/ for n going from n0 to �1.
By Proposition 2.33, it suffices to show that PŒX 0

n ¤ X 00
n �! 0 as n0 goes to

�1 for each n 6 0. For n > n0 one has .X 0
n D X 00

n/ H) .X 0
nC1 D X 00

nC1/,
so it suffices to show that the inequality PŒX 0

n ¤ X 00
n jX 0

n�1; X 00
n�1� 6 1 �mn al-

most surely holds for every n 2 fn0 C 1; : : : ; 0g, because this yields the inequality
PŒX 0

n ¤ X 00
n � 6

Qn
kDn0C1.1 �mk/. Now one has

P
�
˛n.x

0
n�1; Y 0

n; U
0
n/ D ˛n.x00

n�1; Y 0
n; U

0
n/
�

6 P
�
U 0
n 6 pn

x0

n�1
.Y 0
n/ ^ pnx00

n�1
.Y 0
n/
�
:

But we can see that

P
�
U 0
n 6 pn

x0

n�1
.Y 0
n/ ^ pnx00

n�1
.Y 0
n/
� D

Z
d�n.yn/.p

n
x0

n�1
.yn/ ^ pnx00

n�1
.yn/ ^ 1/

is nothing but the total mass of �n
x0

n�1

^ �n
x00

n�1

^ �n. The proof is over. ut

Remark 3.16. It is known that the total variation k�1 � �2k 2 Œ0; 2� between two
probability measures �1 and �2 on an arbitrary measurable space E satisfies k�1 �
�2k D 2

�
1�.�1^�2/.E/

�
(see [33]). Therefore the numbermn defined in Theorem

3.15 satisfies 2mn 6 2�˛.�n/where ˛.�n/ D ess supx0;x00 k�nx0 � �nx00k. It would be
interesting to know if the condition

P
n

�
2�˛.�n/� D C1 guarantees standardness

of the filtration.

3.3 Erratum on Generating Parameterizations

Some confusion occurred in the articles [15, 30, 32]. It was erroneously claimed
that, for a discrete negative-time filtration, every standard conditionally non-atomic
extension is obviously induced by a generating parameterization (Definition 3.10).
Schachermayer gave a counter-example in [31]. As this (false) claim was consid-
ered as a proof that every standard filtration admits a generating parameterization, a
new proof of the latter fact was needed. Feldman and Smorodinsky claimed in [16]
that this fact is nonetheless true, and gave a proof using results from the literature.
Unfortunately, a confusion of the same kind occurred again in the proof proposed in
[16]. Thus, to our knowledge, there does not exist any proof of this assertion. The
proof given in [20] contains an error too.

The reiterated confusion in the proof proposed in [16] lies on page 1086 of [15],
where it is claimed that if the independent product of a filtration F with a standard
non-atomic filtration is itself standard non-atomic, then any generating innovation
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of the latter is a generating parameterization of F. This is false, as we shall see, and
this is unfortunately an ingredient in the proof proposed in [16]. This confusion is
of the same kind as the one which was pointed out in [31]: a filtration is immersed
in its independent product with another filtration, but a sequence that generates the
product may not be a parameterization of F, even though it generates a standard
conditionally non-atomic extension of F.

Here is a counter-example. It is of the same spirit as the counter-example given
in [31]. On a probability space .�;A;P/, consider a sequence .Un/n60 of inde-
pendent random variables uniformly distributed in Œ0; 1�, and a random variable U 


0

uniformly distributed in Œ0; 1� and independent of .Un/n60. Define X0 D U�1CU0
.mod 1/. Let F be the filtration defined by Fn D f¿; �g for n 6 �1 and
F0 D �.X0/. Let G be the filtration defined by Gn D �.Um; m 6 n/ for n 6 �1
and G0 D G�1 _ �.U 


0 /. Then G is a standard conditionally non-atomic filtra-
tion independent of F. Consider any random variable V0 uniformly distributed
on Œ0; 1� and such that �.V0/ D �.U0; U



0 /. One easily verifies that F _ G is

generated by the sequence of independent random variables .: : : ; U�2; U�1; V0/.
However, .: : : ; U�2; U�1; V0/ is not a parameterization for F, because the inclusion
F0 � F�1 _ �.V0/ does not hold.

So we consider the statement S1: “Standardness is equivalent to the existence
of a generating parametrization” as an open question. Note that S1 is equivalent
to S2: “A filtration immersed in a filtration which admits a generating parame-
terization, admits itself a generating parameterization”. Indeed, if every standard
filtration admits a generating parameterization, then S2 is true owing to the fact that
standardness is inherited by immersion. Conversely, if S2 is true, then every stan-
dard filtration admits a generating parameterization because a standard conditionally
non-atomic filtration obviously admits a generating parameterization.

3.4 Weak Standardness. Locally Separable Filtrations

Obviously, standard filtrations must be essentially separable. For essentially separa-
ble filtrations, it is already known [14] that standardness is equivalent to I-cosiness
(Definition 3.29), and also to Vershik’s standardness criterion (which is not stated in
this paper; see [14,21]). However the I-cosiness criterion and Vershik’s standardness
criterion could a priori be satisfied for a filtration which is not essentially separable.
We shall soon define weak standardness, and we shall see in Sect. 4 that weak stan-
dardness is equivalent to I-cosiness for a locally separable filtration,2 defined as
follows.

Definition 3.17. A filtration F D .Fn/n60 is locally separable if for each n 6 0,
there exists a random variable Vn such that Fn D Fn�1 _ �.Vn/.

2 It is also proved in [21] that the equivalence between I-cosiness and Vershik’s standardness crite-
rion remains true for locally separable filtrations.
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Thus, any essentially separable filtration is locally separable, and filtrations of
local product type (Definition 2.3), obviously are locally separable filtrations. We
take the opportunity of Definition 3.17 to state a conjecture about local separability.

Conjecture 3.18. A filtration immersible in a locally separable filtration is itself lo-
cally separable.

We will later see (Corollary 3.28) that locally separable filtrations are pre-
cisely filtrations that admit a superinnovation or, equivalently, a parameterization
(Definition 3.10).

The notion of weak standardness defined below invokes Vershik’s first level cri-
terion (Definition 2.6, Definition 2.9, Proposition 2.17). The generalization from
standardness to weak standardness is based on the fact that Vershik’s first level cri-
terion is equivalent to productness for an essentially separable filtration (Theorem
2.25). Inspired by Lemma 3.2, we first define a weakly standard conditionally
non-atomic filtration as the following generalization of a standard conditionally
non-atomic filtration.

Definition 3.19. A weakly standard conditionally non-atomic filtration is a condi-
tionally non-atomic filtration satisfying Vershik’s first level criterion.

Lemma 3.20. A filtration is standard non-atomic if and only if it is weakly standard
conditionally non-atomic and essentially separable.

Proof. This follows from Vershik’s first level criterion (Theorem 2.25) and
Lemma 3.2. ut

Then, the notion of weak standardness is defined analogously to the notion of
standardness (Definition 3.6).

Definition 3.21. A filtration is weakly standard if it is immersible in a weakly stan-
dard conditionally non-atomic filtration.

As obvious remarks, we note:

� Weak standardness is preserved by isomorphism.
� If Conjecture 3.18 is true, then every weakly standard filtration is locally

separable.
� Weak standardness is hereditary for immersion: a filtration immersible in a

weakly standard filtration is itself weakly standard.
� As a product type filtration satisfies Vershik’s first level criterion (Theorem 2.25),

standardness implies weak standardness. Thus a standard filtration is weakly
standard and essentially separable. However we are not yet able to show the con-
verse; it will be proved in Sect. 4 (Corollary 4.10).

� Obviously, a weakly standard conditionally non-atomic filtration is weakly stan-
dard and conditionally non-atomic. We will see in Sect. 4 that the converse is true
(Corollary 4.6).
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Proposition 3.23 below is analogous to Proposition 3.7. Its proof invokes the
following lemma.

Lemma 3.22. The independent product of a conditionally non-atomic filtration and
a locally separable filtration is conditionally non-atomic.

Proof. Left to the reader as an easy application of Lemma 3.3. ut
Proposition 3.23. Any filtration satisfying Vershik’s first level criterion is weakly
standard; and a filtration is weakly standard if and only if it is immersible in a
filtration satisfying Vershik’s first level criterion.

Proof. The independent product of a filtration F with a standard conditionally non-
atomic filtration is an extension of F (Lemma 3.5), and this product filtration is
conditionally non-atomic by Lemma 3.22. Moreover, a standard conditionally non-
atomic filtration satisfies Vershik’s first level criterion (Corollary 2.14), hence if F

satisfies Vershik’s first level criterion, then so does this product filtration in view of
Corollary 2.27. Thus we have proved that every filtration satisfying Vershik’s first
level criterion is weakly standard. Consequently, a filtration is weakly standard if
it is immersible in a filtration satisfying Vershik’s first level criterion because weak
standardness is hereditary for immersion. The converse is obviously true from the
definition of weak standardness. ut

Before turning to the next section devoted to I-cosiness, we are going to prove
(Corollary 3.28) that a filtration is locally separable if and only if it admits a global
parameterization (Definition 3.10). We will make use of the following lemma. The
construction appearing in this lemma is the general conditional quantile transfor-
mation (see [23]). In the statement of this lemma, we implicitly use Lemma 3.13 to
justify the measurability of FC and F �

C with respect to C˝BR and the measurability
of GC with respect to C˝ BŒ0;1�.
Lemma 3.24. Let X be a real random variable on a probability space .�;A;P/
and C � A be a �- field. Let FC be the cumulative distribution function of the
conditional law of X given C, and let F �

C .x/ D limx0!x� FC.x
0/ be the left limit of

FC.x
0/ as x0 approaches x. Let � be a random variable with uniform law on Œ0; 1�

and independent of C _ �.X/. We put

U D F �
C .X/C �

�
FC.X/ � F �

C .X/
�
:

Then U is a random variable independent of C, uniformly distributed on Œ0; 1�, and
one has X D GC.U / where GC is the right-continuous inverse function of FC, de-
fined by GC.u/ D inf fx j FC.x/ > ug.
Proof. It suffices to show the lemma in the case when C is degenerate. We write F ,
F� and G instead of FC, F �

C and GC respectively. Denote by S D fx1; x2; : : :g the
denumerable set of atoms of X . Conditionally on the event X D xi , the random
variable U has the uniform law on .F�.xi /; F .xi // and one has X D G.U /; and
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conditionally on the event X … S , one has U D F.X/, so the distribution of U
is uniform on Œ0; 1� n Si ŒF

�.xi /; F .xi /�, and one has X D G.U /. Finally the
distribution of U is the uniform law on Œ0; 1� and one has X D G.U /. ut
Proposition 3.25. Any locally separable filtration admits a global parameterization.

Proof. Let F D .Fn/n60 be a locally separable filtration on .�;A;P/. For each
n 6 0, let Vn be a random variable such that Fn D Fn�1 _ �.Vn/. On some
probability space .�
;C
;P
/, consider a sequence .�n/n60 of independent ran-
dom variables having uniform law on Œ0; 1�. We work on the product probability
space .b�;bA;bP/ WD .�;F0;P/˝ .�
;C
;P
/ and we identify F and .�n/n60 with
their image under the canonical embedding (see Example 5.2) from .�;F0;P/ to
.b�;bA;bP/ and the canonical embedding from .�
;C
;P
/ to .b�;bA;bP/ respectively,
so the sequence .�n/n60 is independent of F0. We denote by D D .Dn/n60 the
filtration generated by .�n/n60. For each n 6 0, the random variable �n is inde-
pendent of F0 _Dn�1 and, since F and D are jointly immersed (Lemma 1.2), one
has L.Vn jFn�1 _ Dn�1/ D L.Vn jFn�1/. For each n 6 0, let Un be the ran-
dom variable called U in Lemma 3.24 when this lemma is applied with X D Vn,
C D Fn�1 _Dn�1 and � D �n. One easily checks that .Un/n60 is a parameteriza-
tion of F. ut
Remark 3.26. Let U D .Un/n60 be the filtration generated by the parameterization
.Un/n60 of F in the preceding proof. It follows from Lemma 1.6 that F _ U is
immersed in F_D. Therefore, if F is standard, then F_U is also standard because
F _ D is standard (Proposition 3.7). It is shown in [21], with the help of Vershik’s
standardness criterion, that this is actually true for an arbitrary parameterization
.Un/n60 of F.

The converse of Proposition 3.25 is an easy consequence of (ii) H) (i) in the
following lemma.

Lemma 3.27. On .�;A;P/, let C and B be two �- fields such that C � B. The
following conditions are equivalent:

(i) There exists a random variable V such that B D C _ �.V /.
(ii) There exists a random variableW such that B � C _ �.W /.

(iii) There exist a probability space .�0;A0;P0/ and an embedding ‰WB ! A0
such that ‰.B/ � ‰.C/ _ �.U 0/ where U 0 is a random variable uniformly
distributed on Œ0; 1� and independent of ‰.C/.

Proof. Obviously, (i) H) (ii) is true. To prove (ii) H) (i) we make the non restric-
tive assumption that W is valued in a Polish space. Then (ii) H) (i) is obtained by
putting V D L.W jB/. Indeed, any bounded random variable X measurable with
respect to C _ �.W / can be written X D f .C;W / where C is a C-measurable
random variable and f is a bounded measurable function (Lemma 1.1); thus
EŒX jB� D R

f .C;w/L.W jB/.dw/ is measurable with respect to C _ �.V /, and
hence B � C_�.V /. To prove (i) H) (iii) we make the non restrictive assumption
that V is real-valued. Consider the product probability space of .�;A;P/ with a
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probability space on which is defined a random variable U 
 having the uniform law
on Œ0; 1�. Let C0 D �1.C/ and U 0 D �2.U


/ respectively be the copies of C and U 

on the product probability space with the canonical embeddings �1WC! C˝�.U 
/
and �2W �.U 
/! C˝ �.U 
/ (see Example 5.2). We introduce the right-continuous
inverse G.� jC0/ of the cumulative distribution function of the copy of the condi-
tional law L.V jC/ with the first embedding �1, and then we put V 0 D G.U 0 jC0/.
Then V 0 is a well-defined random variable by virtue of Lemma 3.13, and, with the
help of Lemma 5.8, it is easy to check that the conditional law L.V 0 jC0/ is the copy
of L.V jC/ with �1, therefore the embedding ‰ is given by Corollary 5.12. Finally,
(iii) H) (i) is a consequence of (ii) H) (i). ut
Corollary 3.28. Let F D .Fn/n60 be a filtration. The following conditions are
equivalent:

(i) F is locally separable.
(ii) For each n 6 0, one has Fn � Fn�1 _ �.Wn/ for some random variableWn.

(iii) F admits a global parameterization.
(iv) F admits a global superinnovation.

Proof. This stems from Lemma 3.27 and Proposition 3.25. ut

3.5 I-cosiness

The I-cosiness criterion introduced in [14] was inspired from two sources: it is a
variant of the notion of cosiness introduced by Tsirelson in [34] in the framework
of continuous time, and the authors of [14] noticed that I-cosiness is used (but not
named) in [32] to prove Result 2.43 about the split-word filtrations. In fact, as was
pointed out in [3], “there is a whole range of possible variations” on the definition
of cosiness introduced in [34], and the main underlying idea, due to Tsirelson, is
what [21] calls a self-joining criterion, which comprises these possible variants of
cosiness and in particular the I-cosiness criterion, as well as Rosenblatt’s self-joining
criterion and Vershik’s self-joining criterion introduced in Sect. 2.2. Actually many
elementary results we give on I-cosiness remain valid for any self-joining criterion,
as defined in [21]. However we prefer not to introduce this notion here: there are
already too many definitions.

It is shown in [14] that standardness and I-cosiness are equivalent properties for
an essentially separable filtration. In the next section, we will give another proof of
this fact and extend it to locally separable filtrations by showing that I-cosiness is
equivalent to weak standardness.

In this section, we define I-cosiness and give more or less elementary results
concerning it. We shall see that, for a filtration of product type and a filtration satis-
fying Vershik’s first level criterion, I-cosiness is straightforward from Rosenblatt’s
self-joining criterion and Vershik’s self-joining criterion respectively (Sect. 2.2).
That a standard or a weakly standard filtration is I-cosy follows from the fact that
I-cosiness, as standardness and weak standardness, is inherited by immersion. We
end this section by giving an example of stationary Markov processes whose filtra-
tions are I-cosy.
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Definition 3.29. Let F D .Fn/n60 be a filtration.

1. Let .E; �/ be a Polish metric space and X 2 L1.F0IE/ We say that the random
variableX is I-cosy (with respect to F) if for each real number ı > 0, there exist
two filtrations F0 and F00 defined on a probability space .�;A;P/ such that:

(i) .F0;F00/ is a joining of F independent in small time (Definition 2.29).
(ii) E

�
�.X 0; X 00/

�
< ı, where X 0 and X 00 are the respective copies of X in F0

and in F00.

2. We say that a �- field E0 � F0 is I-cosy (with respect to F) if every random
variable X 2 L1.E0/ is I-cosy with respect to F.

3. We say that the filtration F is I-cosy if the final �- field F0 is I-cosy with re-
spect to F.

As with Vershik’s first level criterion, we will sometimes omit to specify with
respect to F when no ambiguity is possible. We will see in Proposition 3.36 that
I-cosiness of a random variable X is equivalent to the �- field �.X/ being I-cosy.
It is clear that I-cosiness is preserved by isomorphism. Another obvious property of
I-cosiness is hereditability by immersion, stated in the next lemma.

Lemma 3.30. Let F D .Fn/n60 be a filtration, E a Polish space, X 2 L1.F0IE/,
and E a filtration immersed in F. If X is I-cosy with respect to F and is E0-
measurable, then X is I-cosy with respect to E. Consequently, if F is I-cosy, so
is also E.

Proof. This is a straightforward consequence of the definition of I-cosiness and the
transitivity property of immersion. ut
Proposition 3.31. A filtration of product type is I-cosy. A filtration satisfying Ver-
shik’s first level criterion is I-cosy. More precisely, a random variable, or a �- field,
satisfying Vershik’s first level criterion with respect to a filtration of local product
type, is I-cosy with respect to this filtration.

Proof. This follows from Rosenblatt’s self-joining criterion (Proposition 2.33) and
Vershik’s self-joining criterion (Theorem 2.38). Indeed, each of these criteria is a
particular case of the I-cosiness criterion. ut
Corollary 3.32. Any standard (Definition 3.6) or weakly standard (Definition 3.21)
filtration is I-cosy.

Proof. This follows from Lemma 3.30 and Proposition 3.31. ut
Below we shall list some elementary properties of I-cosiness.

Lemma 3.33. Let F D .Fn/n60 be a filtration and E a Polish metric space.
The random variables X 2 L1.F0IE/ which are I-cosy form a closed subset of
L1.F0IE/.
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Proof. Take R 2 L1.F0IE/ in the L1-closure of the set of I-cosy random vari-
ables X 2 L1.F0IE/. Given ı > 0, there exists an I-cosy X 2 L1.F0IE/ such
that E

�
�.R;X/

�
< ı=3. By I-cosiness, there exists a joining .F0;F00/ such that

E
�
�.X 0; X 00/

�
< ı=3. By isomorphisms, we have E

�
�.X 0; R0/

� D E
�
�.X 00; R00/

�
<

ı=3; so the triangular inequality gives E
�
�.R0; R00/

�
< ı. ut

Remark 3.34. If X and Y are two I-cosy random variables, it is not true in general
that .X; Y / is also I-cosy. This is shown in [21] with the help of Theorem 3.9 and
Vershik’s standardness criterion.

The following lemma plays the same role for I-cosiness as Lemma 2.10 for
Vershik’s first level criterion. In the second condition, we consider L.E0IF / as the
space L1

�
E0I .F; �/

�
where the metric � is the 0 – 1 distance; so E

�
�.X 0; X 00/

� D
PŒX 0¤X 00�.

Lemma 3.35. Let F D .Fn/n60 be a filtration on .�;A;P/ and E0 � F0 a �- field.
The following conditions are equivalent:

(i) The �- field E0 is I-cosy with respect to F.
(ii) For any finite set F � R, every random variable X 2 L.E0IF / is I-cosy with

respect to F.
(iii) For any Polish space E , every random variable X 2 L1 .E0IE/ is I-cosy with

respect to F.

Proof. (iii) H) (i) is trivial.
(i) H) (ii): Fix F finite, R 2 L.E0IF /, and ı > 0. Let a be the minimum

distance js � t j between two distinct elements s, t of F . Applying hypothesis (i),
one obtains a joining .F0;F00/ such that E

�jR0 � R00j� < �ı where � D minfa; ıg;
hence we have P

�jR0 �R00j > �
�
< ı and therefore PŒR0 ¤ R00� < ı.

(ii) H) (iii): Fix X 2 L1�E0I .E; �/
�

and ı > 0. There exist some finite
subset F of E and some R 2 L.E0IF / such that E

�
�.X;R/

�
< ı=3. Call d the

diameter of F . Given a measurable injection �WF ! R and applying hypoth-
esis (ii) to the random variable �.R/, one obtains a joining .F0;F00/ such that
PŒR0 ¤ R00� < ı=.3d/; so E

�
�.R0; R00/

�
< ı=3. Now the isomorphisms give

E
�
�.X 0; R0/

� D E
�
�.X 00; R00/

�
< ı=3, wherefrom E

�
�.X 0; X 00/

�
< ı by the tri-

angular inequality. ut
Proposition 3.36. Let F D .Fn/n60 be a filtration. Let .E; �/ be a Polish metric
space and X 2 L0.F0IE/. The following conditions are equivalent.

(i) The �- field �.X/ is I-cosy.
(ii) For every ı > 0, there exists, on some probability space .�;A;P/, a joining

.F0;F00/ of F independent in small time such that P Œ�.X 0; X 00/ > ı� < ı, where
X 0 and X 00 are the respective copies of X in F0 and in F00.

If X 2 L1.F0IE/, these conditions are also equivalent to:
(iii) X is I-cosy.
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Proof. We first assume that X 2 L1.F0IE/ and show (i) ” (iii). If the �- field
�.X/ is I-cosy, thenX is I-cosy by Lemma 3.35. Conversely, assumeX to be I-cosy.
We know from Lemma 2.15 that the set of random variables of the form f .X/

with f WE ! R Lipschitz, is a dense subset of L1
�
�.X/

�
. It is easy to see that

such a random variable f .X/ is I-cosy. Therefore the �- field �.X/ is I-cosy as a
consequence of Lemma 3.33. The proof that (i) ” (iii). It is then not hard to
derive (i)” (ii) by replacing � with � ^ 1. ut

We will use the following lemma to prove the asymptotic character of I-cosiness
(Proposition 3.38) and to prove Proposition 3.43. This lemma involves I-cosiness
of a filtration .Fn/n6N with time-axis �N\��1; N � for some integer N 6 0,
whereas I-cosiness is defined for a filtration indexed by �N; but it is clear how
to adapt the definition to this time-axis and obviously I-cosiness of .Fn/n6N is
equivalent to I-cosiness of .FNCn/n60.

Lemma 3.37. On .�;A;P/, let F D .Fn/n60 be a filtration and .Vn/n60 a su-
perinnovation of F. Let N < 0 be an integer and EN � FN a �- field. If
EN is I-cosy with respect to the truncated filtration .Fn/n6N , then the �- field
E0 WD .EN _ �.VNC1; : : : ; V0// \ F0 is I-cosy with respect to F.

Proof. We introduce the filtration G D .Gn/n60 defined to be equal to F up to time
N and for which .VNC1; : : : ; V0/ is an innovation from N to 0; precisely, we put

Gn D
(

Fn if n 6 N I
FN _ �.VNC1; : : : ; Vn/ if n 2 fN C 1; : : : ; 0g:

We can see by Lemma 1.6 that F is immersed in G. Now we consider a
random variable X 2 L1 .E0/, and we shall see that X is I-cosy. Take
ı > 0 and take (with Lemma 1.1) a random variable YN 2 L1.EN / such that
�.X/ � �.YN ; VNC1; : : : ; V0/. We put k D jN j C 1 and equip R

k with the
`1-metric. By Lemma 2.15, there exists a Lipschitz function f WRk ! R such that
E ŒjX �Rj� < ı where R D f .YN ; VNC1; : : : ; V0/. Let c be a Lipschitz constant
for f . As YN is I-cosy with respect to the truncated filtration .Fn/n6N , there ex-
ist, on some probability space .�;A;P/, two jointly immersed isomorphic copies
.F0
n/n6N and .F00

n/n6N of .Fn/n6N such that E
�jY 0

N � Y 00
N j
�
< ı=c where Y 0

N and
Y 00
N are the respective copies of YN . We introduce the product probability space

.b�;bA;bP/ D .�;A;P/˝ .�; �.VNC1; : : : ; V0/;P/ ;

and the canonical embeddings �1WA ! bA and �2W �.VNC1; : : : ; V0/ ! bA (see
Example 5.2). We use a “hat” to identify random variables and �- fields through
these embeddings: for example we put bX1 D �1.X1/ and bX2 D �2.X2/ for any
random variables X1 and X2 measurable with respect to A and �.VNC1; : : : ; V0/
respectively. Then, for each n 6 N we definebG0

n D bF0
n andbG0

n D bF0
n, and for each

n 2 fN C 1; : : : ; 0g we define the �- fields
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bG0
n D bF0

N _ �.bV NC1; : : : ;bV n/ and bG00
n D bF00

N _ �.bV NC1; : : : ;bV n/:

Using Lemma 2.31, it is a child’s play to verify that bG0 WD .bG0
n/n60 and bG00 WD

.bG00
n/n60 are two jointly immersed isomorphic copies of G. The respective copies

of R are bR0 D f .bY 0
N ;
bV NC1; : : : ;bV 0/ and bR00 D f .bY 00

N ;
bV NC1; : : : ;bV 0/. Thus

we have bE
�jbR0 � bR00j� 6 cbE

�jbY 0
N � bY 00

N j
�

because f is c-Lipschitz. Due to

isomorphism, we have bE
�jbY 0

N � bY 00
N j
� D E

�jY 0
N � Y 00

N j
�

and bE
�jbX 0 � bR0j� D

bE
�jbX 00 � bR00j� D E

�jX � Rj� where bX 0 and bX 00 are the respective copies of X ;

consequently,bE
�jbX 0 � bX 00j� < 3ı, thereby showing that X is I-cosy with respect to

G. As F is immersed in G, we see that X is I-cosy with respect to F (Lemma 3.30).
ut
Proposition 3.38. Let F D .Fn/n60 be a locally separable filtration. The following
conditions are equivalent:

(i) F is I-cosy.
(ii) For every N 2 �N, the truncated filtration .Fn/n6N is I-cosy.

(iii) There exists N 2 �N such that the truncated filtration .Fn/n6N is I-cosy.

Proof. It is easy to convince oneself that (i) H) (ii). Obviously, (ii) H) (iii) is
true. We now show that (iii) H) (i). Let .Vn/n60 be a superinnovation of F, whose
existence is provided by Corollary 3.28. We assume that the truncated filtration
.Fn/n6N is I-cosy for some N . Then we know from Lemma 3.37 that F is I-cosy
because of F0 � FN _ �.VNC1; : : : ; V0/. ut
Remark 3.39. When F is essentially separable, a result in [12] states that
Proposition 3.38 is more generally true for a truncation with an F-stopping time N .
We have not attempted to generalize this result to locally separable filtrations.

As another application of Lemma 3.37, we shall give a result on I-cosiness for the
filtration generated by processes enjoying the properties of the following definition.

Definition 3.40. Let .Xn/n60 be a process, and let �W �N! �N be a strictly
increasing map with �.0/ D 0.

1. We say that � is a sequence of memory-loss times of type I for .Xn/n60 if Xn
is conditionally independent of �.XmIm < n/ given .X�.k�1/; : : : ; Xn�1/ for
every k; n 2 �N satisfying �.k � 1/ < n 6 �.k/.

2. Let F be the filtration generated by .Xn/n60. We say that � is a sequence
of memory-loss times of type II for .Xn/n60 if there exist a probability space
.�;A;P/, an embedding ‰WF0 ! A, and a parameterization .U 0

n/n60 of the
filtration F0 WD ‰.F/ such that

‰ .�.Xn// � ‰
�
�.X�.k�1//

� _ �.U 0
�.k�1/C1; : : : ; U

0
n/

for every k; n 2 �N satisfying �.k � 1/ < n 6 �.k/.
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Obviously, a process is Markovian if and only if it admits the identity map
�W �N! �N as a sequence of memory-loss times of type I.

Lemma 3.41. Let .Xn/n60 be a process, and let �W �N! �N be a strictly in-
creasing map with �.0/ D 0. If � is a sequence of memory-loss times of type I for
.Xn/n60, then � is a sequence of memory-loss times of type II for .Xn/n60.

In the particular case when .Xn/n60 is a Markov process, this lemma shows that,
up to isomorphism, there is a parameterization .Un/n60 of the filtration F generated
by .Xn/n60 for which �.Xn/ � �.Xn�1; Un/ for every n 6 0. We shall use the
following lemma in the proof of Lemma 3.41, which is copied from Lemma 2.22
in [19].

Lemma 3.42. Let � D f�sgs2S be a probability kernel from a measurable space
S to a Polish space E . Then there exists a measurable function .s; u/ 7! �s.u/
from S 	 Œ0; 1� to E such that for all s 2 S , the probability �s is the image of the
Lebesgue measure on Œ0; 1� under the mapping�sW Œ0; 1�! E .

Proof of Lemma 3.41. We can assume that eachXn takes its values in a Polish space,
by replacing, if needed,Xn with a real-valued random variable generating the same
�- field. Let k; n 2 �N such that n 2 f�.k � 1/C 1; : : : ; �.k/g. By Lemma 3.42,
there exists a measurable functionGk;n.x�.k�1/; : : : ; xn�1; u/ such that the function
u 7! Gk;n.X�.k�1/; : : : ; Xn�1; u/ almost surely carries the Lebesgue measure to
the conditional law L.Xn jX�.k�1/; : : : ; Xn�1/. Consider a process .X 0

n; U
0
n/n60

defined by the following conditions:

� For each time n 6 0, the random variable Un is independent of the past and has
the uniform law Œ0; 1�.

� For each k 6 0, the random variable X 0
�.k/

has the same law as X�.k/.
� We have X 0

n D Gk;n.X
0
�.k�1/; : : : ; X

0
n�1; U 0

n/ for each k; n 2 �N satisfying
�.k � 1/ < n 6 �.k/.

Assuming that � is a sequence of memory-loss times of type I for .Xn/n60, it is
easy to check that these two conditions uniquely define the law of .X 0

n; U
0
n/n60, that

.X 0
n/n60 is a copy of .Xn/n60, and then that � is a sequence of memory-loss times

of type II for .Xn/n60. ut
Proposition 3.43. Let .Xn/n60 be a process, F the filtration it generates, and
�W �N! �N a strictly increasing map with �.0/ D 0, assumed to be a sequence of
memory-loss times of type II for .Xn/n60. Then the following conditions are equiv-
alent:

(i) F is I-cosy.
(ii) For each n 6 0, the �- field �.X�.n// is I-cosy with respect to F.

(iii) For each n 6 0, the �- field �.X�.n// is I-cosy with respect to the truncated
filtration .Fm/m6�.n/.
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Proof. One obviously has (i) H) (ii) H) (iii). Assuming that (iii) holds
for some n 6 0, then it is easy to show with the help of Lemma 3.37 that
�.X�.n/; X�.n/C1; : : : ; X0/ is I-cosy with respect to F when � is a sequence of
memory-loss times of type II for .Xn/n60. Hence, (iii) H) (i) follows from the
L1-closure of the set of I-cosy random variables (Lemma 3.33) and Lemma 2.12. ut
Remark 3.44. If F is the filtration generated by a martingale .Mn/n60, it is possible
to show that F is I-cosy if and only if the random variable M0 is I-cosy. This is
deduced from the same result stated in [21] for a general self-joining criterion (see
also Remark 2.28).

Proposition 3.46 below will be used in the proof of Theorem 4.9. Its proof in-
vokes the following lemma, copied verbatim from [14], to which we refer for a
proof.

Lemma 3.45. On .�;A;P/, let F, G, H, K be four filtrations such that F is im-
mersed in H and G is immersed in K. If H and K are independent, then F _ G is
immersed in H _K.

Proposition 3.46. Let F D .Fn/n60 and G D .Gn/n60 be two filtrations on some
possibly different probability spaces. Let .E1; �1/ and .E2; �2/ be two Polish metric
spaces, X 2 L1.F0IE1/ and Y 2 L1.G0IE2/. If X is I-cosy with respect to F and
Y is I-cosy with respect to G, then .X; Y / is I-cosy with respect to F ˝ G. As a
consequence, the supremum of two independent filtrations is I-cosy if and only if
each of these two filtrations is I-cosy.

However, the supremum of two jointly immersed I-cosy filtrations is not I-cosy in
general; this clearly results from Theorem 3.9.

Proof (Proof of Proposition 3.46). The proof of the consequence is left to the reader
(the ‘only if’ part obviously follows from Lemma 1.2 and Lemma 3.30). Now we
prove the first part of the proposition. Assume I-cosiness of both X and Y . The
random pair .X; Y / takes its values in the Polish metric space E1 	 E2 equipped
with the metric � D �1C �2. Let ı > 0. Let .F0;F00/ be a joining of F on .�;A;P/
independent in small time and such that E

�
�1.X

0; X 00/
�
< ı=2, and let .eG0;eG00/ be a

joining of G on .e�;eA;eP/ independent in small time and such thateE
�
�2.eY 0;eY 00/

�
<

ı=2. LetbE0 andbE00 be the filtrations defined on .b�;bA;bP/ WD .�;A;P/˝ .e�;eA;eP/
bybE0

n D F0
n ˝eG0

n andbE00
n D F00

n ˝eG00
n. It follows from Lemma 3.45 that .bE0;bE00/ is

a joining of F ˝ G, and clearly it is independent in small time. The copies .bX 0;bY 0/
and .bX 00;bY 00/ of .X; Y / in .bE0;bE00/ satisfy bE

�
�1.bX 0; bX 00/

� D E
�
�1.X

0; X 00/
�

and
bE
�
�2.bY 0;bY 00/

� D eE��2.eY 0;eY 00/
�
, thereforebE

�
�
�
.bX 0;bY 0/; .bX 00;bY 00/

��
< ı. ut

Below is a corollary of Proposition 3.46. We commit a slight abuse of language
in assertions (ii) and (iii). Both these assertions say that the �- field E0 is I-cosy with
respect to an extension of the filtration F (it is understood in assertion (ii) that the
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independent product of F with a filtration is an extension of F, which is the content
of Lemma 3.5). This more rigorously means that I-cosiness holds for the image of
E0 under the underlying embedding from F to this extension of F.

Corollary 3.47. Let F be a locally separable filtration and E0 � F0 a �- field. Then
the following facts are equivalent.

(i) E0 is I-cosy with respect to F.
(ii) E0 is I-cosy with respect to the independent product of F with a standard con-

ditionally non-atomic filtration.
(iii) E0 is I-cosy with respect to some conditionally non-atomic extension of F.

Consequently, letting E be a Polish space and X 2 L1.F0IE/, the analogous three
statements with X instead of E0 also are equivalent.

Proof. The consequence follows from Proposition 3.36. Inheritability of I-cosiness
(Lemma 3.30) gives (iii) H) (i). Let G be a standard conditionally non-atomic
filtration. By Lemma 3.22, the product filtration F˝ G is conditionally non-atomic,
which shows that (ii) H) (iii). It remains to show that (i) H) (ii). Assume E0 is
I-cosy with respect to F. As G is I-cosy (Proposition 3.31), the �- field E0 ˝ G0
is I-cosy with respect to F ˝ G by Proposition 3.46. In particular, the image of E0
under the identification with the first factor is I-cosy with respect to F˝ G. ut
Remark 3.48. A stronger result is derived in [21] from the equivalence between
I-cosiness and Vershik’s standardness criterion: in the same context of the above
corollary, if G is a locally separable extension of F, then E0 is I-cosy with respect
to F if and only if E0 is I-cosy with respect to G. We do not know how to prove this
result without using Vershik’s standardness criterion.

3.5.1 Example: Random Dynamical Systems

We will give in Theorem 3.53 a sufficient condition for a stationary Markov process
.Xn/n60 to generate an I-cosy filtration. In the proof we give, we will firstly argu-
ment that, due to Proposition 3.43 and stationarity, it suffices to show I-cosiness of
X0. Theorem 3.53 firstly requires the stationary process to be couplable (Definition
3.49). Assuming this condition will allow us to construct some copies .X 0

n/n60 and
.X 00

n/n60 of .Xn/n60 generating jointly immersed filtrations and independent up to
some time n0 sufficiently small for the random variables X 0

T and X 00
T to be arbi-

trarily close with high probability for some random time T 2 fn0 C 1; : : : ; 0g. The
second condition is the stochastic self-contractivity (Definition 3.52) of the Marko-
vian kernel. This condition will allow us to maintain the distance between X 0

n and
X 00
n for n going from T to 0.

Definition 3.49. Let .E; �/ be a Polish metric space. Let .Xn/n2Z be a stationary
Markov process in E . This process is couplable if for every ı > 0, there exist,
on some probability space .�;A;P/, two jointly immersed copies .F0

n/n>0 and
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.F00
n/n>0 of the filtration generated by .Xn/n>0 such that F0

0 is independent of F00
0

and the stopping time inf fn > 0 j �.X 0
n; X

00
n / < ıg is almost surely finite.

Example 3.50 (Stationary Markov chain on a denumerable space). Let .Xn/n2Z be
a stationary Markov process on a denumerable state space, equipped with the 0 – 1
distance. Considering two independent copies .X 0

n/n>0 and .X 00
n /n>0 of .Xn/n>0,

it is known that the so-called product chain .X 0
n; X

00
n/n>0 is recurrent under the as-

sumption that the Markov kernel of .Xn/n>0 is positive recurrent, irreducible, and
aperiodic (see [33]). In particular the product chain almost surely visits the diag-
onal, and hence .Xn/n2Z is couplable under this assumption. In fact, we can see
that if .Xn/n2Z generates a Kolmogorovian filtration, then the Markov kernel is
positive recurrent, irreducible, and aperiodic. Indeed, it is known (see [19]) that an
irreducible Markov kernel is positive recurrent whenever it admits an invariant prob-
ability measure, and it is not difficult to check that the Markov kernel is irreducible
and aperiodic if .Xn/n2Z generates a Kolmogorovian filtration.

Example 3.51 (Random walk on the circle). Let .Xn/n2Z be the stationary Markov
process on the one-dimensional torus R=Z defined as follows. For a given ˛ 2
R=Z :

� Xn has the uniform distribution on the one-dimensional torus R=Z.
� Given Xn D x, the random variable XnC1 takes as possible values x ˙ ˛ with

equal probability.

When the “step” ˛ is irrational, then the set fx Cm˛ 2 R=Z j m 2 Ng is a dense
subset of the circle R=Z. Thus, considering two independent copies .X 0

n/n>0 and
.X 00

n/n>0 of .Xn/n>0, the product chain .X 0
n; X

00
n/n>0 almost surely visits any open

set because of the property of recurrence of a random walk on Z2. Hence .Xn/n2Z
is couplable when the step is irrational.

Before defining stochastic self-contractivity, we need to introduce the following
decomposition of probability kernels, which is usual in the theory of random dy-
namical systems. Let .Xn/n2Z be a stationary Markov process in a Polish space E ,
with transition kernel fPxg. According to Lemma 3.42, it is always possible to write
the kernel as

Px.f / D
Z
f ı rv.x/d
.v/ (1)

where 
 is a probability measure on some Polish space and .x; v/ 7! rv.x/
is measurable. Given a kernel written in form (1), we can consider a stationary
Markov processes .X 0

n; V
0
n/n60 with probability transition kernel fQx;vg defined

by Qx;v.h/ D
R
h .rt .x/; t/ d
.t/ and instantaneous law � defined by �.h/ DR R

h .rt .x/; t/ d
.t/d�.x/ where � is the instantaneous law of .Xn/n60. Thus
.X 0

n/n60 has the same law as .Xn/n60, the random variable V 0
n is distributed ac-

cording to 
 for every n, one has X 0
nC1 D rV 0

nC1
.X 0

n/ and the process .V 0
n/n60 is a

superinnovation of the filtration F0 generated by .X 0
n/n60 (this is actually our proof

of Lemma 3.41 in the particular case where � is the identity map).
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Definition 3.52. Let .E; �/ be a Polish metric space. Let X D .Xn/n2Z be a sta-
tionary Markov process in E with instantaneous distribution �. If the transition
kernel fPxg can be written as in (1) with the property that there exists a probability
kernel f�x;yg such that �x;y is a joining of 
 (i.e. the margins are both 
 ) for all
.x; y/ and Z

� .rv.x/;rv0 .y// d�x;y.v; v0/ 6 �.x; y/; (2)

then X is said to be stochastically self-contractive.

Example 3.50 (continued). Let .Xn/n2Z be a stationary Markov process on a de-
numerable state space. Given any decomposition (1), and setting �x;y to be the
joining of 
 supported by the diagonal for any x and y, then we see that .Xn/n2Z is
stochastically self-contractive when we consider the discrete 0 � 1 distance on the
denumerable state space.

Example 3.51 (continued). Let .Xn/n2Z be the random walk on the circle. The
natural decomposition (1) consists in taking rv.x/ D x C v˛ and 
 the law of
"n WD 1lfXnDXn�1C˛g. Setting�x;y to be the joining of 
 supported by the diagonal
of f0; 1g2 for any x and y, we see that .Xn/n2Z is stochastically self-contractive.

Theorem 3.53. Let .Xn/n2Z be a stationary Markov process in a Polish bounded
metric space .E; �/. If .Xn/n2Z is couplable and stochastically self-contractive,
then the filtration generated by .Xn/n60 is I-cosy.

Thus, in view of Examples 3.50 and 3.51, we know from this theorem that a
Markov chain on a denumerable state space generates an I-cosy filtration whenever
this filtration is Kolmogorovian, and we know that the random walk on the circle
with an irrational step generates an I-cosy filtration (we still give a remark on this
example at the end of this section).

Lemma 3.54. Let .Xn; Vn/n60 be a Markov process such that each Xn and each
Vn takes its values in a Polish space and such that the process .Vn/n60 is a superin-
novation (Definition 3.10) of the filtration F generated by .Xn/n60 satisfying in
addition �.XnC1/ � �.Xn/ _ �.VnC1/ for every n < 0. We consider a measurable
function fn such that XnC1 D fn.Xn; VnC1/ for every n < 0.

On .�;A;P/, let F0 be a copy of F and .V 00
n /n60 a sequence of independent

random variables having the same law as .Vn/n60. We suppose that the filtration
generated by .V 00

n /n60 and the filtration F0 are jointly immersed in some filtration H.

Let T be a H-stopping time in �N[fC1g. Let .X 00
n /n60 be the process defined

by (
X 00
n D X 0

n if n 6 T I
X 00
nC1 D fn.X 00

n ; V
00
nC1/ for n from T to �1.

Then .X 00
n /n60 is a copy of .Xn/n60 and the filtration it generates is immersed in H.

Proof. Let n 2 �N

. We denote by fP nx g a regular version of the conditional law

of XnC1 given Xn. Let g be a bounded Borelian function. One easily checks that
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1lT>nE
h
g.X 00

nC1/ jHn

i
D 1lT>nP nX 00

n
.g/:

On the other hand, as V 00
nC1 is independent of Hn, we have

1lT6nE
h
g.X 00

nC1/ jHn

i
D 1lT6nE

h
g ı fn.X 00

n ; V
00
nC1/ jHn

i
D 1lT6nP

n
X 00

n
.g/:

Hence, the process .X 00
n/n60 is Markovian with respect to H and has the same

Markov kernels fP nx g as the Markov process .Xn/n60.
It remains to check that X 00

n has the same law as Xn for all n 6 0. For m 6 n,
one has

E

h
g.X 00

n /1lTDm jHm

i
D 1lTDmE

h
h.X 0

m; V
00
mC1; : : : ; V 00

n / jHm

i

where

h.�; vmC1; : : : ; vn/ D g ı fn�1.�; vn/ ı � � � ı fmC1.�; vmC2/ ı fm.�; vmC1/:

But, because .V 00
mC1; : : : ; V 00

n / is independent of Hm, we see that

E

h
h.X 0

m; V
00
mC1; : : : ; V 00

n / jHm

i
D QX 0

m
.g/;

where fQxg a regular version of the conditional law of Xn given Xm, and thus we
have

E

h
h.X 0

m; V
00
mC1; : : : ; V 00

n / jHm

i
D E

h
g.X 0

n/ jHm

i
:

Hence we obtain E
�
g.X 00

n /1lTDm
� D E

�
g.X 0

n/1lTDm
�
: As we obviously have

E
�
g.X 00

n /1lT>n
� D E

�
g.X 0

n/1lT>n
�
; we finally obtain E

�
g.X 00

n /
� D E

�
g.X 0

n/
�
. ut

Proof of Theorem 3.53. Let F be the filtration generated by the stationary Markov
process .Xn/n60. To show that F is I-cosy, it suffices, thanks to Proposition 3.43, to
prove that for each n 6 0, the �- field �.Xn/, or equivalently (Proposition 3.36) the
random variable Xn, is I-cosy with respect to the truncated filtration .Fm/m6n. We
prove this for n D 0 only as our construction will obviously adapt to an arbitrary n
due to stationarity.

Set ı > 0 and define � D ı= diam.E/. As we assume that the stationary Markov
process is couplable (Definition 3.49), it is possible to find some n0 small enough
and a probability space .�;A;P/ with a joining .F0;F00/ of F independent up to n0
such that P

�
T < C1� > 1 � � where T is defined by

T D
(

inf fn j n0 6 n 6 0; �.X 0
n; X

00
n / < ıg if this infimum exists;

C1 otherwise:
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By replacing .�;A;P/with its independent product with a sufficiently rich prob-
ability space, we can assume that we have a sequence .bU n/n60 of independent
random variables bU n each uniformly distributed on Œ0; 1� and that is independent
of F0

0 _ F00
0. We denote by H the supremum of the filtration F0 _ F00 with the filtra-

tion generated by .bU n/n60.
For the sake of convenience, we assume that 
 in the decomposition (1) given by

the stochastic self-contractivity assumption (2), is the Lebesgue measure on Œ0; 1�.
Moreover we write f .x; u/ instead of ru.x/. Let �x;y be given by the stochastic
self-contractivity assumption, and �x;y by Lemma 3.42 applied with �x;y . We de-
fine the processes .bX 0

n/n60, .bX 00
n/n60, .eU 0

n/n60 and .eU 00
n/n60 by letting, for n 6 T ,

8
ˆ̂<

ˆ̂
:

.eU 0
n;
eU 00
n/ D �X 0

n�1
;X 00

n�1
.bU n/;

bX 0
n D X 0

n;

bX 00
n D X 00

n ;

and, for n from T to �1,

8
ˆ̂<

ˆ̂
:

.eU 0
nC1; eU 00

nC1/ D �bX 0

n;bX 00

n
.bU nC1/;

bX 0
nC1 D f .bX 0

n;
eU 0
nC1/;

bX 00
nC1 D f .bX 00

n;
eU 00
nC1/:

Clearly, each of eU 0
nC1 and eU 00

nC1 is independent of Hn, hence each of the filtrations
generated by .eU 0

n/n60 and .eU 00
n/n60 is immersed in H (Lemma 1.6). Therefore,

according to Lemma 3.54, the processes .bX 0
n/n60 and .bX 00

n/n60 are two copies of
.Xn/n60 and generate jointly immersed isomorphic filtrations, and we know that
they are independent up to n0.

By construction, due to the stochastic self-contractivity (2), we have

E
�
�.bX 0

0;
bX 00
0/
ˇ
ˇ F0

n _ F00
n

�
1lTDn 6 �.X 0

n; X
00
n /1lTDn:

Hence we obtain

E
�
�.bX 0

0;
bX 00
0/
ˇ
ˇ .F0 _ F00/T

�
1lT¤C1 6 �.X 0

T ; X
00
T /1lT¤C1 6 ı;

and consequently we have E
�
�.bX 0

0;
bX 00
0/ 1lT¤C1

�
6 ı. As we have in addition

E
�
�.bX 0

0;
bX 00
0/ 1lTDC1

�
6 ı, we finally obtain E

�
�.bX 0

0;
bX 00
0/
�

6 2ı; so X0 is I-cosy.
ut

Remark on Example 3.51. Let .Xn/n60 be the stationary random walk on the circle
with an irrational step. We have seen that Theorem 3.53 applies and thus we know
that the filtration F generated by .Xn/n60 is I-cosy. Note that this filtration is of
local product type: for each n 6 0, the random variable "n WD 1lfXnDXn�1C˛g is
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an independent complement of Fn�1 in Fn. As "n takes two possible values with
equal probability, F is a dyadic filtration, a particular case of homogeneous filtra-
tions (defined in the introduction and in Definition 4.1). Therefore, according to
Theorem A stated in the introduction (or to Corollary 4.5), F is actually a filtration
of product type. A generating innovation for this filtration is constructed in [22].

3.6 Example Continued: Split-Word Processes

We discuss about Result 2.43 and we show how to deduce part (a) of Theorem 2.39
assuming this result. In fact, in references [20] and [7], Result 2.43 is deduced from
the following result:

Result 2.43’. If A is finite, then F is not I-cosy under .�/, unless � is degenerate.

Then Result 2.43 follows from the fact that any filtration of product type is I-cosy
(Proposition 3.31). Now we shall prove part (a) of Theorem 2.39 assuming result
2.43’. Consider an alphabet .A;A; �/ containing at least two letters a and b. Let
f WA! fa; bg be any measurable function such that f .�/ assigns positive measure
to each of a and b. For a given splitting sequence, consider the split-word process
.Xn; "n/n60 on A and define the process .f .Xn/; "n/n60. This latter is the split-
word process on the alphabet fa; bg with the same splitting sequence, and we know
that its generated filtration is not I-cosy under condition .�/ on this splitting se-
quence. By Lemma 1.6, we can see that the filtration generated by .f .Xn/; "n/n60
is immersed in the one generated by .Xn; "n/n60, and thus .Xn; "n/n60 itself does
not generate an I-cosy filtration under .�/, due to inheritance of I-cosiness by
immersion (Lemma 3.30).

4 Theorems

In this section, we restate and prove the theorems stated in the introduction, and
we return to the example of split-word processes in order to finish the proof of
Theorem 2.39. Let us first recall the notion of homogeneous filtrations given in the
introduction.

Definition 4.1. A filtration F D .Fn/n60 is homogeneous if there exists an inno-
vation .Vn/n60 of F such that for each n 6 0, Vn either has a diffuse law or is
uniformly distributed on some finite set.

Thus, any homogeneous filtration is of local product type (Definition 2.3), and a
conditionally non-atomic filtration (Definition 3.1) is a particular homogeneous fil-
tration. But note that no homogeneity in time is required: some Vn may be diffuse,
others may take two values, others three values, etc.
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Theorem 4.4 states the equivalence, separately for each random variable, be-
tween I-cosiness and Vershik’s first level criterion for homogeneous filtrations. As
an intermediate step we use Vershik’s self-joining criterion, which has been shown
to be equivalent to Vershik’s first level criterion in Theorem 2.38. Under the context
of essentially separable filtrations, we have seen that Vershik’s first level criterion is
equivalent to productness (Theorem 2.25), thus Theorem A stated in the introduction
follows as a consequence of our Theorem 4.4. Our generalization to locally sepa-
rable filtrations has no practical interest; however, even in the essentially separable
case, Theorem 4.4 is more precise than Theorem A: it asserts that, for a homo-
geneous filtration, I-cosiness and Vershik’s first level criterion are equivalent for a
random variable, not only for the whole filtration. For a locally separable filtration,
Corollary 4.8 states that I-cosiness for a random variable is equivalent to Vershik’s
first level criterion in a conditionally non-atomic extension of the filtration; this
result is still interesting when restricted to the context of essentially separable fil-
trations. Theorem 4.9 states the equivalence between I-cosiness and standardness
or weak standardness, according as we consider essentially separable filtrations or
locally separable filtrations.

4.1 Theorems

The key theorem is Theorem 4.4. All other theorems stated in the introduction
will easily derive therefrom. The key step in the proof is to consider Vershik’s
self-joining criterion (Definition 2.37 and Theorem 2.38) as an intermediate step
between I-cosiness and Vershik’s first level criterion.

The next two lemmas involve joinings .F0;F00/ of F permutational after an in-
teger (Definition 2.35), as those appearing in Vershik’s self-joining criterion. We
recall the picture to be kept in mind for such joinings:

Lemma 4.2. Let F D .Fn/n60 be a filtration of local product type and .Vn/n60
an innovation of F. We assume that for some integer n0 6 0, each innovation Vn
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is uniformly distributed on a finite set for all n 2 fn0 C 1; : : : ; 0g. Let .E; �/ be
a Polish metric space and X 2 L1.F0IE/, and let .F0;F00/ be a joining of F on a
probability space .�;A;P/.

Then there exists a filtration F000 on .�;A;P/ such that .F0;F000/ is a joining of
F permutational after n0, and such that we have E

�
�.X 0; X 000/

�
6 E

�
�.X 0; X 00/

�

where X 0, X 00 and X 000 are the respective copies of X in F0, F00 and F000.
Proof. By induction on n, it suffices to show the lemma when assuming that
.F0;F00/ is a joining of F permutational after n0 C 1 for an integer n0 < 0. Let
.V 0
n/n60 and .V 00

n /n60 be the respective copies of .Vn/n60 in F0 and F00. Thus we
are assuming that .V 0

n0C2; : : : ; V 0
0/ and .V 00

n0C2; : : : ; V 00
0 / are such that V 00

n D Tn.V 0
n/

for n 2 fn0 C 2; : : : ; 0g where the Tn are the .F0 _ F00/n�1-measurable random
transformations given in Definition 2.35.

We shall firstly write the random transformations Tn and the random vari-
ables X 0 and X 00 in a convenient form in order to express the conditional ex-
pectation E

�
�.X 0; X 00/ jF0

n0
_ F00

n0

�
as a linear function of the conditional law

L.V 0
n0C1; V 00

n0C1 jF0
n0
_ F00

n0
/. By Lemma 2.36, there are two Fn0C1-measurable

random variables Cn0C1 and Dn0C1 such that

Tn.�/ D  n0 .C 0
n0C1;D00

n0C1; V 0
n0C2; : : : ; V 0

n�1; �/

for every n 2 fn0 C 2; : : : ; 0g, where the  n0 are measurable functions. As we have

.F0 _ F00/n0C1 D .F0 _ F00/n0 _ �.V 0
n0C1; V 00

n0C1/;

we can take (Lemma 1.1) an .F0
n0
_ F00

n0
/-measurable random variable NHn0

such that �.C 0
n0C1;D00

n0C1/ � �. NHn0 ; V 0
n0C1; V 00

n0C1/. On the other hand, we
have �.X/ � �.Xn0 ; Vn0C1; : : : ; V0/ for some Fn0-measurable random vari-
able Xn0 (Lemma 1.1). Finally we take a random variable NZn0 such that
�. NZn0/ D �. NHn0 ; X 0

n0
; X 00

n0
/. Thus, we can write

Tn.�/ D  n. NZn0 ; V 0
n0C1; V 00

n0C1; V 0
n0C2; : : : ; V 0

n�1; �/ (3)

for each n 2 fn0 C 2; : : : ; 0g, where  n is measurable, and we can write

X 0 D f . NZn0 ; V 0
n0C1; : : : ; V 0

0/

and

X 00 D f . NZn0 ; V 00
n0C1; : : : ; V 00

0 /

D f � NZn0 ; V 00
n0C1; Tn0C2.V 0

n0C2/; : : : ; T0.V 0
0/
�
;

for some Borelian function f . We denote by h the function such that

X 00 D h. NZn0 ; V 0
n0C1; V 00

n0C1; V 0
n0C2; : : : ; V 0

0/ (4)

which is obtained by combining the later equality with (3).
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Hence, we have

E
�
�.X 0; X 00/ jF0

n0
_ F00

n0

� D L NZn0
�
L.V 0

n0C1; V 00
n0C1 jF0

n0
_ F00

n0
/
�

where, letting F be the state space of Vn0C1 and � a probability on F 	 F ,

Lz.�/ D
Z

E
�
gz.v

0; v00; V 0
n0C2; : : : ; V 0

0/
�

d�.v0; v00/;

where

gz.v
0; v00; V 0

n0C2; : : : ; V 0
0/

D ��f .z; v0; V 0
n0C2; : : : ; V 0

0/; h.z; v
0; v00; V 0

n0C2; : : : ; V 0
0/
�
:

The set of all probability measures on F 	 F having both margins equal to the
uniform probability measure on the finite set F is convex; by Birkhoff–Von Neu-
mann’s theorem (see [1]), its extreme points are the probability measures supported
on graphs of permutations of F . The map � 7! Lz.�/ is linear on this convex set,
thus it reaches its minimum at such an extremal probability measure. For each z, we
measurably select a permutation �z such that Lz attains its minimum at the measure
supported by the graph of �z.

Then we define V 000
n0C1 D � NZn0 .V

0
n0C1/, and V 000

n D T 0
n.V

0
n/ for n 2 fn0 C

2; : : : ; 0g where T 0
n is obtained by replacing V 00

n0C1 with V 000
n0C1 in the expression (3)

of Tn; that is, we put

V 000
n D  nNZn0 ;V 0

n0C1
;V 000

n0C1
;V 0

n0C2
;:::;V 0

n�1

.V 0
n/:

By Lemma 2.4, .V 000
n0C1; : : : ; V 000

0 / is an innovation of F0 _ F00 from n0 to 0. Finally
we define the filtration F000 as the filtration equaling F00 up to time n0 and for which
.V 000
n0C1; : : : ; V 000

0 / is an innovation from n0 to 0; that is, we put F000
n D F00

n for n 6 n0
and F000

n D F000
n0
_ �.V 000

n0C1; : : : ; V 000
n / for n 2 fn0 C 1; : : : ; 0g.

Thus .F0;F000/ is a joining of F permutational after n0. The copy X 000 of
X in F000 is obtained by replacing V 00

n0C1 by V 000
n0C1 in (4), and consequently

E
�
�.X 0; X 000/ jF0

n0
_ F00

n0

�
is the minimum value of L NZn0 . So we have

E
�
�.X 0; X 000/

ˇ
ˇ F0

n0
_ F00

n0

�
6 E

�
�.X 0; X 00/

ˇ
ˇ F0

n0
_ F00

n0

�
;

and then E
�
�.X 0; X 000/

�
6 E

�
�.X 0; X 00/

�
. ut

Lemma 4.3. Let F D .Fn/n60 be a homogeneous filtration. Let .E; �/ be a Polish
metric space and X 2 L1.F0IE/. Let .F0;F00/ be a joining of F on .�;A;P/ and
n0 6 0 an integer.

Then for any � > 0, there exists a filtration F000 on .�;A;P/ such that .F0;F000/ is
a joining of F permutational after n0 such that E

�
�.X 0; X 000/

�
6 E

�
�.X 0; X 00/

�C �
where X 0, X 00 and X 000 are the respective copies of X in F0, F00 and F000.
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Proof. LetF be the subset of fn0C1; : : : ; 0g consisting of those integersn for which
Vn is non-atomic. Without loss of generality, we assume that Vn has the uniform law
Œ0; 1� for n 2 F . Let � > 0. Let k sufficiently large so that, by putting

�0
n D

2k�1X

iD0

i

2k
1ln i
2k
<V 0

n6 iC1

2k

o for n 2 F

and �0
n D V 0

n for n 2 fn0 C 1; : : : ; 0g n F , then there exists a random vari-
able R0 measurable with respect to F0

n0
_ �.�0

n0C1; : : : ; �0
0/ and such that

E
�
�.X 0; R0/

�
6 �=4. Define a filtration E0 D .E0

n/n60 by letting E0
n D F0

n for
n 6 n0 and E0

n D F0
n0
_ �.�0

n0C1; : : : ; �0
n/ for n 2 fn0 C 1; : : : ; 0g. By apply-

ing the preceding lemma to E0, we obtain some random permutations Tn for
n 2 fn0 C 1; : : : ; 0g such that by putting �000

n D Tn.�
0
n/ for those n, we have

E
�
�.R0; R000/

�
6 E

�
�.R0; R00/

�
where R000 is the copy of R0 in the filtration

E000 defined by E000
n D F00

n for n 6 n0 and E000
n D F00

n0
_ �.�000

n0C1; : : : ; �000
n / for

n 2 fn0 C 1; : : : ; 0g. The Tn are naturally extended to the interval Œ0; 1� so that
we can define V 000

n D Tn.V
0
n/ for every n 2 fn0 C 1; : : : ; 0g. Finally one has

E
�
�.X 0; X 000/

�
6 E

�
�.X 0; X 00/

� C � where X 000 is the copy of X 0 in the filtration
F000 defined by F000

n D F00
n for n 6 n0 and F000

n D F00
n0
_ �.V 000

n0C1; : : : ; V 000
n / for

n 2 fn0 C 1; : : : ; 0g. ut
Theorem 4.4. Let F D .Fn/n60 be a homogeneous filtration, E a Polish space
and X 2 L1.F0IE/. Then X is I-cosy if and only if X satisfies Vershik’s first
level criterion. Consequently, a �- field E0 � F0 is I-cosy if and only if it satisfies
Vershik’s first level criterion, and the filtration F is I-cosy if and only if it satisfies
Vershik’s first level criterion.

Proof. The last sentence is obvious from definitions. We have seen in Proposition
3.31 that the ‘if’ part holds more generally true for any filtration of local prod-
uct type. The preceding lemma shows that I-cosiness of X implies that X satisfies
Vershik’s self-joining criterion (Definition 2.37), hence the ‘only if’ part follows
from Theorem 2.38. ut
Corollary 4.5. An essentially separable homogeneous filtration is I-cosy if and only
if it is of product type.

Proof. This results from Theorem 4.4 and Vershik’s first level criterion
(Theorem 2.25). ut

The following two corollaries justify some terminology introduced in Sect. 3.

Corollary 4.6. A filtration is weakly standard conditionally non-atomic accord-
ing to Definition 3.19 if and only if it is both weakly standard and conditionally
non-atomic.

Proof. Obviously, a weakly standard conditionally non-atomic filtration is weakly
standard and conditionally non-atomic. Conversely, let F be a weakly standard fil-
tration which is conditionally non-atomic. Then F is I-cosy by Corollary 3.32, and
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therefore F satisfies Vershik’s first level criterion by Theorem 4.4, thus F is weakly
standard conditionally non-atomic according to Definition 3.19. ut
Corollary 4.7. A filtration is standard conditionally non-atomic according to
Definition 3.1 if and only if it is both standard and conditionally non-atomic.

Proof. The proof is similar to the one of Corollary 4.6 by using Corollary 4.5 instead
of Theorem 4.4. ut

The following corollary of Theorem 4.4 gives a characterization of I-cosiness of
a random variable with respect to a locally separable filtration. In assertions (ii) and
(iii), we commit the same slight abuse of language as in Corollary 3.47.

Corollary 4.8. Let F be a locally separable filtration and E0 � F0 a �- field. Then
the following facts are equivalent:

(i) E0 satisfies the I-cosiness criterion with respect to F.
(ii) E0 satisfies Vershik’s first level criterion with respect to the independent prod-

uct of F with a standard non-atomic filtration.
(iii) E0 satisfies Vershik’s first level criterion with respect to a conditionally non-

atomic extension of F.

Letting E be a Polish space and X 2 L1.F0IE/, these three statements with E0
replaced by X are still equivalent.

Proof. This follows from Theorem 4.4 and Corollary 3.47. ut
Theorem 4.9. Let F be a locally separable filtration. The following assertions are
equivalent:

(a) F is I-cosy (Definition 3.29).
(b) The independent product of F with a standard conditionally non-atomic filtra-

tion is weakly standard conditionally non-atomic (Definition 3.19).
(c) F is weakly standard (Definition 3.21).

If in addition F is essentially separable, then these assertions also are equiva-
lent to:

(b)’ The independent product of F with a standard conditionally non-atomic filtra-
tion is itself standard conditionally non-atomic (Definition 3.1);

(c)’ F is standard (Definition 3.6)

Proof. The independent product of a filtration F with a standard conditionally non-
atomic filtration is an extension of F (Lemma 3.5); that shows that (b) H) (c) and
(b)’ H) (c)’. Corollary 3.32 shows that (c) H) (a) and (c)’ H) (a). It remains
to show that (a) H) (b) and (a) H) (b)’. A standard conditionally non-atomic
filtration is of product type, hence is I-cosy by Proposition 3.31. Therefore, if F is
I-cosy, then so is its independent product with a standard conditionally non-atomic
filtration in view of Proposition 3.46. By Lemma 3.22, this product filtration is con-
ditionally non-atomic. Hence, Theorem 4.4 shows that (a) H) (b) and Corollary
4.5 and Lemma 3.2 show that (a) H) (b)’. ut
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Corollary 4.10. A filtration is standard if and only if it is weakly standard and
essentially separable.

Proof. We have already noticed that a standard filtration obviously is weakly stan-
dard and essentially separable. The converse follows from Theorem 4.9. ut

4.2 Example Continued: Split-Word Processes

We show how to deduce part (b) of Theorem 2.39 assuming Result 2.45. Consider
a split word process .Xn; "n/n60 on the alphabet Œ0; 1� equipped with the Lebesgue
measure. Let � be a probability measure on R and f be the right-continuous inverse
of the cumulative distribution function of �. Then the process .f .Xn/; "n/n60 is
the split-word process on the alphabet .R;BR; �/ with the same splitting sequence
as .Xn; "n/n60. By Lemma 1.6, the filtration F generated by .f .Xn/; "n/n60 is
immersed in the filtration G generated by .Xn; "n/n60. Consequently, if G is I-cosy
then so is F (Lemma 3.30), and F is of product type by Corollary 4.5. If .�/ does
not hold, we know from Result 2.45 that G is of product type, and consequently is
I-cosy (Proposition 3.31). Finally F is of product type if .�/ does not hold. As a
consequence, this is also true if .A;A; �/ is Polish because every Polish probability
space is Lebesgue isomorphic to a probability space on R.

5 Annex

5.1 Isomorphisms

This annex gives definitions and elementary lemmas about isomorphisms between
probability spaces. The classical definition of an embedding between from a prob-
ability space .�;B;P/ into a probability space .�0;A0;P0/ is given in terms of a
Boolean morphism from B=P into A0=P which preserves probabilities; such an em-
bedding extends uniquely to random variables (see [2]) and then the definition is
equivalently rephrased as follows.

Definition 5.1. Let .�;B;P/ and .�0;A0;P0/ be two probability spaces. We say
that an application ‰WL0.�;B;P/ ! L0.�0;A0;P0/, is an embedding from
.�;B;P/ into .�0;A0;P0/ if the following two conditions hold:

(i) For all integer n > 1, for all random variables X1; : : : ; Xn on .�;B;P/,
and all Borelian applications f WRn ! R, one has ‰

�
f .X1; : : : ; Xn/

� D
f
�
‰.X1/; : : : ; ‰.Xn/

�
.

(ii) Each random variable X on .�;B;P/ has the same law as ‰.X/.

The random variable ‰.X/ is also called the copy of the random variable X
by the embedding ‰. We shortly say that ‰ is an embedding from .�;B;P/

into .�0;A0;P0/, and we shortly write ‰WB ! A0. We say that an embedding
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‰WB ! A0 is an isomorphism from B onto A0 if it is surjective. It is trivial that
an embedding is linear, injective, and continuous for the topology of the conver-
gence in probability. If X D 1lB is the indicator function of an event B 2 B,
one can verify that ‰.X/ is the indicator function of an event B 0 2 A0, which
we denote by ‰.B/. One easily verifies that the set ‰.B/ WD f‰.B/ j B 2 Bg is
a �- field and that ‰ defines an isomorphism from .�;B;P/ into

�
�0; ‰.B/;P0�;

thus any ‰.B/-measurable random variable X 0 has form X 0 D ‰.X/ for some B-
measurable random variableX . If B D �.Y / for some random variable Y , it is also
easy to see that ‰.B/ D ��‰.Y /�.
Example 5.2. Let .�;B;P/ and .�
;C
;P
/ be two probability spaces, and let
.b�;bA;bP/ D .�;B;P/˝ .�
;C
;P
/. The identification with the first factor is the
canonical embedding �WB! bA defined by �.X/W .!; !
/ 7! X.!/.

The proof of the following lemma is left to the reader.

Lemma 5.3. Let .�;B;P/ and .�0;A0;P0/ be two probability spaces and ‰WB!
A0 be an embedding. Let X 2 L1.B/ and C � B be a �- field. Then‰ .E ŒX jC�/ D
E

0 Œ‰.X/ j‰.C/�.
As shown below, an embedding also defines uniquely a copy of a random variable

taking its values in a Polish space (a topological space is said to be Polish if it is
separable and admits a complete metrization).

Definition 5.4. Let E be a separable metric space, .�;B;P/ and .�0;A0;P0/ two
probability spaces, X 2 L0.BIE/, and ‰W �.X/ ! A0 an embedding. A random
variable X 0 2 L0.A0IE/ is denoted by ‰.X/ if one has ‰

�
f .X/

� D f .X 0/ for
every Borelian function f WE ! R.

It is straightforward to verify that, given another separable metric space and
a Borelian function gWE ! F , one has ‰

�
g.X/

� D g
�
‰.X/

�
provided that

‰
�
g.X/

�
and ‰.X/ exist.

Lemma 5.5. With the same notations as the preceding definition, when E is Polish,
there exists a unique random variable X 0 D ‰.X/.
Proof. Any Polish probability space is Lebesgue isomorphic to a probability space
on R (see [6, 25, 29]). Hence, there exist a bimeasurable bijection T from a set
E0 � E of full PX -measure, where PX is the law of X , into a set F0 � R of full
�-measure, where � is a probability distribution on R, and T satisfies T .PX / D �.
IfX 0 is a random variable such that‰

�
f .X/

� D f .X 0/ for all Borelian functions f ,
then its law is the same as the one ofX . Thus the random variables T .X/ and T .X 0/
are well-defined and we have ‰

�
T .X/

� D T .X 0/. It makes sense to take the image
under T �1 of this random variable and this yields X 0 D T �1 �‰

�
T .X/

��
. Thus

there is at most one random variable X 0 satisfying the desiderata. Finally, putting
X 0 D T �1 �‰

�
T .X/

��
it is easy to verify that the equality ‰

�
f .X/

� D f .X 0/ is
indeed satisfied for each Borelian function f WE ! R. ut
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Example 5.6. Let .�;B;P/ and .�0;A0;P0/ be two probability spaces and
‰WB! A0 an embedding. Let X1, : : :, Xn be random variables on .�;B;P/

taking their values in possibly different Polish spaces, and consider .X1; : : :; Xn/
as a random variable in the product Polish space. Then ‰.X1; : : : ; Xn/ D
.‰.X1/; : : : ; ‰.Xn//. Indeed each �- field �.Xi / is essentially separable so
it is possible to write Xi D gi .Zi / where Zi takes its values in R. Thus,
‰
�
f .X1; : : : ; Xn/

� D f �g1
�
‰.Z1/

�
; : : : ; gn

�
‰.Zn/

�� D f �‰.X1/; : : : ; ‰.Xn/
�
.

Lemma 5.7. Let E be a separable metric space, .�;B;P/ and .�0;A0;P0/ be two
probability spaces,X 2 L0.BIE/ andX 0 2 L0.A0IE/. IfX andX 0 have the same
law, then �.X/ and �.X 0/ are isomorphic and there exists a unique isomorphism
‰W �.X/! �.X 0/ such that‰.X/ D X 0 (in the sense of Definition 5.4).

Proof. By Doob’s functional representation theorem, any real-valued random vari-
able measurable with respect to �.X/ is of the form f .X/ for a Borelian function
f WE ! R. One easily verifies that we define an isomorphism ‰W �.X/ ! �.X 0/
by putting ‰

�
f .X/

� D f .X 0/. ut

5.2 Copies of Conditional Laws

LetE be a Polish space. On .�;A;P/, ifX is a random variable taking its values in
E , and if C � A is a �- field, then the conditional law LŒ X jC � is a C-measurable
random variable taking its values in the set P.E/ of probability measures on E ,
which is Polish in the weak topology (see [4]), generated by the maps �f W� 7!
�.f / for bounded continuous functionsf WE ! R. The associated Borel �- field on
P.E/ is itself generated by the maps �f for bounded continuous functions f WE !
R. Therefore, the �- field � .LŒ X jC �/ is generated by the conditional expectations
E Œ f .X/ jC � D �f .LŒ X jC �/ for all bounded continuous functions f WE ! R,
and E Œ f .X/ jC � is � .LŒ X jC �/-measurable for all suitable functions f WE ! R.

Lemma 5.8. Let .�;B;P/ and .�0;A0;P0/ be two probability spaces and
‰WB!A0 an embedding. Let E be a Polish space and �W� 	 BE ! Œ0; 1� a
probability kernel from .�;B/ to BE . Thus � defines a random variable taking its
values in the Polish space of probability measures on E . Then one has �0 D ‰.�/

according to Definition 5.4 if and only if �0.f / D ‰
�
�.f /

�
for all bounded

continuous functions f WE ! R.

Proof. If �0 D ‰.�/ then from Definition 5.4 we know that �0.f / D ‰��.f /� for
all suitable functionsf . Conversely, it is well-known that any measurem on a Polish
space E is uniquely determined by the values of m.f / for bounded continuous
functions f WE ! R. ut

The proof of the following lemma is easily derived from Lemma 5.8; we leave it
to the reader.
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Lemma 5.9. On a probability space .�;C;P/, let � be a random probability on
a Polish space E . We define the probabilitybP WD P ˝ � on the measurable space
.b�;bB/ WD �� 	 E;C˝ BE

�
by

bPŒ OB� D E

hZ
1l OB.�; t/ d�.t/

i
:

Then the identification with the first factor �WC! bB is an embedding from .�;C;P/
into .b�;bB;bP/, and one has �.�/ D LŒbV jbC � where OC D �.C/ and bV is the random
variable defined by bV .!; t/ D t .
Lemma 5.10. Let .�;B;P/ and .�0;A0;P0/ be two probability spaces and
‰WB! A0 an embedding. Let E be a Polish space, X 2 L0.BIE/ and C � B be
a �- field. Then ‰

�
LŒX jC�� D L

�
‰.X/ j‰.C/�.

Proof. By Lemma 5.8, it suffices to check that the equalities ‰ .E Œf .X/ jC�/ D
E

0 Œf .‰.X// j‰.C/� hold for all bounded continuous functions f WE ! R. This
stems from Lemma 5.3. ut
Proposition 5.11. Let .�;B;P/ be a probability space and let C1, C2 be two
sub - �- fields of B. Let .�0;A0;P0/ be a probability space, and ‰1WC1 ! A0,
‰2WC2 ! A0 two embeddings. There exists an isomorphism ‰WC1 _ C2 !
‰1.C1/ _ ‰2.C2/ which simultaneously extends ‰1 and ‰2 if and only if one
has ‰1

�
LŒC2 jC1�

� D L
�
‰2.C2/ j‰1.C1/

�
for every C2-measurable random vari-

able C2.

Proof. The ‘only if’ part follows from Lemma 5.10. We show the ‘if’ part. Let
X be a C1 _ C2-measurable random variable. Then, by Lemma 1.1, there exist a
C1-measurable random variable C1, a C2-measurable random variable C2, and a
Borelian function f such that X D f .C1; C2/. If ‰ exists, one must have ‰.X/ D
f .‰1.C1/; ‰2.C2//. The condition ‰1

�
LŒC2 jC1�

� D L
�
‰2.C2/ j‰1.C1/

�

shows that the pair .C1; C2/ has the same distribution as
�
‰1.C1/; ‰2.C2/

�
, so

X has the same law as f .‰1.C1/; ‰2.C2//. To show that ‰ is defined with-
out ambiguity, consider that X D g.D1;D2/ where D1 is a C1-measurable
random variable, D2 is a C2-measurable random variable, and g a Borelian func-
tion. The assumption implies ‰1

�
LŒC2;D2 jC1�

� D L
�
‰2.C2;D2/ j‰1.C1/

�
,

which implies that the four-tuple .C1;D1; C2;D2/ has the same distribution as�
‰1.C1/; ‰1.D1/; ‰2.C2/; ‰2.D2/

�
; so if f .C1; C2/ D g.D1;D2/ almost surely

then f
�
‰1.C1/; ‰2.C2/

� D g
�
‰1.D1/; ‰2.D2/

�
almost surely. Checking condi-

tion (i) in Definition 5.1 is left to the reader. ut
Corollary 5.12. Let .�;B;P/ be a probability space, C � B a �- field, and
V a B-measurable random variable taking values in some Polish space E . Let
.�0;A0;P0/ be a probability space, ‰0WC ! A0 an embedding and V 0 an A0-
measurable random variable taking values in E . Then there exists an isomorphism
‰WC _ �.V / ! ‰0.C/ _ �.V 0/ extending ‰0 and sending V to V 0 if and only if
one has ‰0 .LŒV jC�/ D L ŒV 0 j‰0.C/�.
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Proof. The ‘only if’ part follows from Lemma 5.10. The ‘if’ part follows from
Lemma 5.7, Lemma 5.8, and Proposition 5.11. ut
Corollary 5.13. On .�;A;P/, let C � A be a �- field and let V be a random
variable. We put � D LŒV jC�. Then, with the notations of Lemma 5.9, there exists
an unique isomorphism ‰WC _ �.V /! OC _ �.bV / such that the restriction of ‰ to
C equals the canonical embedding � and ‰.V / D bV .

Acknowledgements Financial support from the IAP research network (grant nr. P6/03 of the
Belgian government, Belgian Science Policy) is gratefully acknowledged. I am also indebted to
M. Émery for helpful and encouraging comments and suggestions on earlier drafts of this paper.

References

1. Bapat, R.B., Raghavan, T.E.S.: Nonnegative matrices and applications. Cambridge University
Press, Cambridge (1997)

2. Barlow, M., Émery, M., Knight, F., Song, S., Yor, M.: Autour d’un théorème de Tsirelson sur
des filtrations browniennes et non-browniennes. In: Séminaire de Probabilités XXXII. Lecture
Notes in Mathematics, vol. 1686, pp. 264–305. Springer, Berlin (1998)

3. Beghdadi-Sakrani, S., Émery, M.: On certain probabilities equivalent to coin-tossing, d’après
Schachermayer. Séminaire de Probabilités XXXIII. Lecture Notes in Mathematics, vol. 1709,
pp. 240–256. Springer, Berlin (1999)

4. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)
5. Blum, J., Hanson, D.: Further results on the representation problem for stationary stochastic

processes with Trivial Tail Field. J. Math. Mech. 12(6), 935–943 (1963)
6. Bogachev, V.I.: Measure Theory, vol. II. Springer, Berlin (2007)
7. Ceillier, G.: The Filtration of the Split-Word Processes. Preprint (2009)
8. Dellacherie, C., Meyer, P.-A.: Probabilités et potentiel, Chapitres I à IV. Hermann, Paris (1975)
9. Doob, J.L.: Classical Potential Theory and its Probabilistic Counterpart. Springer, New York,

(1984)
10. Dubins, L.E., Feldman, J., Smorodinsky, M., Tsirelson, B.: Decreasing sequences of � -fields

and a measure change for Brownian motion. Ann. Probab. 24, 882–904 (1996)
11. Dudley, R.M.: Real Analysis and Probability. Wadsworth and Brooks/Cole Math Series, Pacific

Grove (1989)
12. Émery, M.: Old and new tools in the theory of filtrations. In: Maass, A., Martinez, S., San

Martin, J. (eds.) Dynamics and Randomness, pp. 125–146. Kluwer Academic Publishers,
Massachusetts (2002)

13. Émery, M.: On certain almost Brownian filtrations. Annales de l’I.H.P. Probabilités et statis-
tiques 41(3), 285–305 (2005)

14. Émery, M., Schachermayer, W.: On Vershik’s standardness criterion and Tsirelson’s notion
of cosiness. Séminaire de Probabilités XXXV. Lecture Notes in Mathematics, vol. 1755, pp.
265–305. Springer, Berlin (2001)

15. Feldman, J., Smorodinsky, M.: Decreasing sequences of measurable partitions: product type,
standard and prestandard. Ergod. Theor. Dyn. Syst. 20(4), 1079–1090 (2000)

16. Feldman, J., Smorodinsky, M.: Addendum to our paper ‘Decreasing sequences of sigma fields:
product type, standard, and substandard’. Ergod. Theor. Dyn. Syst. 22(4), 1329–1330 (2002)

17. Hanson, D.L.: On the representation problem for stationary stochastic processes with Trivial
Tail Field. J. Appl. Math. Mech. 12(2), 294–301 (1963)

18. Heicklen, D.: Bernoullis are standard when entropy is not an obstruction. Isr. J. Math. 107(1),
141–155 (1998)



186 S. Laurent

19. Kallenberg, O.: Foundations of Modern Probability. Springer, Berlin, New York (1997)
20. Laurent, S.: Filtrations à temps discret négatif. PhD Thesis, Université de Strasbourg,

Strasbourg (2004)
21. Laurent, S.: On Vershikian and I-cosy random variables and filtrations. Teoriya Veroyatnostei

i ee Primeneniya 55, 104–132 (2010)
22. Leuridan, C.: Filtration d’une marche aléatoire stationnaire sur le cercle. Séminaire de Proba-

bilités XXXVI. Lecture Notes in Mathematics, vol. 1801, pp. 335–347. Springer, Berlin (2002)
23. Major, P.: On the invariance principle for sums of independent identically distributed random

variables. J. Multivariate Anal. 8, 487–517 (1978)
24. Parry, W.: Decoding with two independent processes. In: Mauldin, R.D., Shortt, R.M.,

Silva, C.E. (eds.) Measure and Measurable Dynamics, Contemporary Mathematics, vol. 94,
pp. 207–209. American Mathematical Society, Providence (1989)

25. Rokhlin, V.A.: On the fundamental ideas of measure theory. Am. Math. Soc. Transl. 71, 1–53
(1952)

26. Rosenblatt, M.: Stationary processes as shifts of functions of independent random variables. J.
Math. Mech. 8(5), 665–682 (1959)

27. Rosenblatt, M.: Stationary markov chains and independent random variables. J. Math. Mech.
9(6), 945–949 (1960)

28. Rosenblatt, M.: The representation of a class of two state stationary processes in terms of
independent random variables. J. Math. Mech. 12(5), 721–730 (1963)

29. de la Rue, T.: Espaces de Lebesgue. Séminaire de Probabilités XXVII. Lecture Notes in Math-
ematics, vol. 1557, pp. 15–21. Springer, Berlin (1993)

30. Schachermayer, W.: On certain probabilities equivalent to wiener measure d’après Dubins,
Feldman, Smorodinsky and Tsirelson. In: Séminaire de Probabilités XXXIII. Lecture Notes in
Mathematics, vol. 1709, pp. 221–239. Springer, Berlin (1999)

31. Schachermayer, W.: Addendum to the paper ‘On Certain Probabilities Equivalent to Wiener
Measure d’après Dubins, Feldman, Smorodinsky and Tsirelson’. In: Séminaire de Probabilités
XXXVI. Lecture Notes in Mathematics, vol. 1801, pp. 493–497. Springer, Berlin (2002)

32. Smorodinsky, M.: Processes with no standard extension. Isr. J. Math. 107, 327–331 (1998)
33. Thorrisson, H.: Coupling, Stationarity, and Regeneration. Springer, New York (2000)
34. Tsirelson, B.: Triple points: from non-Brownian filtrations to harmonic measures. Geomet.

Funct. Anal. (GAFA) 7, 1096–1142 (1997)
35. Vershik, A.M.: Theorem on lacunary isomorphisms of monotonic sequences of partitions.

Funktsional’nyi Analiz i Ego Prilozheniya. 2(3), 17–21 (1968) English translation: Functional
analysis and its applications. 2:3, 200–203 (1968)

36. Vershik, A.M.: Decreasing sequences of measurable partitions, and their applications. Sov
Math – Dokl, 11, 1007–1011 (1970)

37. Vershik, A.M.: Continuum of pairwise nonisomorphic diadic sequences. Funktsional’nyi
Analiz i Ego Prilozheniya, 5(3), 16–18 (1971) English translation: Functional analysis and
its applications, 5(3), 182–184 (1971)

38. Vershik, A.M.: Approximation in measure theory (in Russian). PhD Thesis, Leningrad
University, Leningrad (1973)

39. Vershik, A.M.: Four definitions of the scale of an automorphism. Funktsional’nyi Analiz i Ego
Prilozheniya, 7(3), 1–17 (1973) English translation: Functional analysis and its applications,
7(3), 169–181 (1973)

40. Vershik, A.M.: The theory of decreasing sequences of measurable partitions (in Russian).
Algebra i Analiz, 6(4), 1–68 (1994) English translation: St. Petersburg Mathematical Journal,
6(4), 705–761 (1995)



On Isomorphic Probability Spaces

Claude Dellacherie

Abstract In the appendix to his contribution (Laurent, On standardness and
I-cosiness, this volume) to this volume, Stéphane Laurent recalls that if a prob-
ability space .˝;A;P/ is embedded in another probability space .˝ 0;A0;P0/, to
every r.v. X on ˝ the embedding associates a r.v. X 0 on ˝ 0. More precisely, his
Lemma 5.5 states this property when X is valued in a Polish space E . Michel
Émery has asked me the following question: is completeness of E really needed, or
does the property more generally hold for separable, non complete metric spaces?
By means of a counter-example, this short note shows that completeness cannot be
dispensed of.

Keywords Isomorphic probability space � Counterexample

If .˝;A;P/ is a probability space, denote by A=P the quotient �-field obtained
from A by identifying any two events A and A0 such that P.A4A0/ D 0. Observe
that A=P is an abstract �-field endowed with a probability; it need not be a �-field
of subsets of some set.

Define two probability spaces .˝;A;P/ and .˝ 0;A0;P0/ to be isomorphic
whenever A=P and A0=P0 are isomorphic, that is, when there exists a bijection
from A=P to A0=P0 which preserves Boolean operations, monotone limits, and
the probability measures. For instance, if .˝; NA;P/ is obtained from .˝;A;P/ by
P-completion, then .˝; NA;P/ is isomorphic to .˝;A;P/.

It is not difficult to see that if .˝;A;P/ and .˝ 0;A0;P0/ are isomorphic, not
only are their events (modulo P-nullity) in one-to-one correspondence, but so are
also their random variables (defined up to P-a.s. equality); and this easily extends to
r.v. with values in any Polish space. This is a particular instance of Lemma A.5 from
the Appendix of [1]. (Two r.v.X W ˝ ! R andX 0 W ˝ 0 ! R are in correspondence
if so are the events fX 2 Bg and fX 0 2 Bg for each Borel set B � R.)
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Laboratoire Raphaël Salem, C.N.R.S. et Université de Rouen Avenue de l’Université,
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The aim of this short note is to show that this does not extend to random variables
with values in a separable, non complete, metric space. We shall exhibit two isomor-
phic probability spaces .˝;A;P/ and .˝ 0;A0;P0/, a separable (but not complete)
metric space E , and a r.v. X 0 W ˝ 0 ! E such that no r.v. X W ˝ ! E corresponds
to X 0 by the isomorphism.

Take .˝;A;P/ to be the interval Œ0; 1� endowed with the Lebesgue �-field and
the Lebesgue measure (the Lebesgue �-field A is the P-completion of the Borel
�-field B on Œ0; 1�). Let ˝ 0 be any non-measurable subset of ˝ with outer measure
P
.˝ 0/ D 1; so its inner measure verifies P
.˝ 0/ < 1.

The existence of such an˝0 needs the axiom of choice; for instance, ˝0 can be constructed
as the complementary of a set having exactly one point in each equivalence class modulo Q.

Endow˝ 0 with the �-field A0 and the probability P0 inherited from .˝;A;P/ as
follows: a set A0 � ˝ 0 belongs to A0 whenever there exists A 2 A such that A0 D
A \ ˝ 0; then, the probability of A0 is defined by P0.A0/DP.A/. This probability
does not depend upon the choice of A since, for A1 and A2 in A such that A1 \
˝ 0DA2 \˝ 0, the symmetric difference A14A2 is negligible, because it does not
meet ˝ 0 which has outer measure 1.

The map A 7! A \ ˝ 0 from A to A0 can be quotiented by a.s. equality, and
realises an isomorphism between .˝;A;P/ and .˝ 0;A0;P0/. Indeed, since A is P-
complete, a subset A0 � ˝ 0 is P0-negligible if and only if it belongs to A and is
P-negligible; consequently, A0

1 2 A0 and A0
2 2 A0 are P0-a.s. equal if and only if

A0
14A0

2 2 A and P.A0
14A0

2/ D 0.
As a subset of Œ0; 1�, the space E D ˝ 0 endowed with the usual distance is a

separable metric space; its Borel �-field is B0 D fB \˝ 0; B 2 Bg. The identity
map X 0 W ˝ 0 ! E is measurable since B0 � A0; so X 0 is a random variable on ˝ 0
with values in E . We shall see that no r.v. X W ˝ ! E corresponds to X 0 by the
isomorphism. It suffices to establish that no r.v. X W ˝ ! E can have the same law
as X 0.

So let X W .˝;A/! .E;B0/ be any r.v. For each rational interval I � Œ0;1�, the
inverse image X�1.I / belongs to A; hence X�1.I /4NI 2 B for some negligi-
ble NI 2 A. The (countable) union of all the NI is negligible, so it is included
in some negligible Borel set N � Œ0; 1�. For each I , the set X�1.I /\N c D�
X�1.I /4NI

� \ N c is in B. This shows that the restriction of X to the Borel
set N c is a Borel map from N c to Œ0; 1�. Fix some e 2 E and put

Y.!/ D
(
X.!/ if ! 2 N c;

e if ! 2 N I

Y is a Borel map from ˝ to Œ0; 1�, with values in E , and with the same law as X .
It now suffices to prove that Y and X 0 cannot have the same law.

As Y is a Borel map, its image Y.˝/ is an analytic subset of Œ0; 1�, and a for-
tiori, by a classical consequence of Choquet’s capacitability theorem, Y.˝/ 2 A.
From Y.˝/ � E D ˝ 0, one draws P

�
Y.˝/

�
6 P
.˝ 0/ < 1, and so, for

some Borel set B 2 B, one has Y.˝/ � B � Œ0; 1� and P.B/ < 1. The
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set B 0 D B \ E is a Borel subset of the metric space E , and one can write
P0.X 0 2 B 0/ D P0.B \˝ 0/ D P.B/ < 1 D P.˝/ D P.Y 2 B 0/; this shows that
X 0 and Y do not have the same law.
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Cylindrical Wiener Processes

Markus Riedle

Abstract This work is an expository article on cylindrical Wiener processes in
Banach spaces. We expose the definition of a cylindrical Wiener process as a specific
example of a cylindrical process. For that purpose, we gather results on cylindrical
Gaussian measures, 
 -radonifying operators and cylindrical processes from differ-
ent sources and relate them to each other. We continue with introducing a stochastic
integral with respect to cylindrical Wiener processes but such that the stochastic
integral is only a cylindrical random variable. We need not put any geometric con-
straints on the Banach space under consideration. To this expository work we add
a few novel conclusions on the question when a cylindrical Wiener process is a
Wiener process in the original sense and on the relation between different stochastic
integrals existing in the literature.

Keywords Cylindrical Wiener process � Cylindrical process � Cylindrical measure �
Stochastic integral � Stochastic differential equation � Radonifying operator � Repro-
ducing kernel Hilbert space

1 Introduction

Cylindrical Wiener processes appear in a huge variety of models in infinite dimen-
sional spaces as a source of random noise or random perturbation. But there are
various different definitions of cylindrical Wiener processes in the literature. Most
of these definitions suffer from the fact that they do not generalise comprehensibly
the real-valued definition to the infinite dimensional situation. However, this draw-
back might be avoided by introducing a cylindrical Wiener process as a specific
example of a cylindrical process. A cylindrical process is a generalised stochastic
process and it is closely related to cylindrical measures and radonifying operators,
see for example the work by Laurent Schwartz in [8] and [9].
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Although this approach by cylindrical processes is well known, see for example
Kallianpur and Xiong [4] or Métivier and Pellaumail [5], there seems to be no co-
herent work which relates the fundamentals on cylindrical processes and cylindrical
measures with cylindrical Wiener processes in Banach spaces and its stochastic
integral. The main objectives of this work are to provide an introduction to the fun-
damentals and to expose the cylindrical approach for the definition of a cylindrical
Wiener process and its stochastic integral. To this expository work we add a few
novel conclusions on the question when a cylindrical Wiener process is a Wiener
process in the original sense and on the relation between different stochastic inte-
grals existing in the literature.

More in detail, we begin with introducing cylindrical measures which are finitely
additive measures on Banach spaces that have �-additive projections to Euclidean
spaces of all dimensions. We continue with considering Gaussian cylindrical mea-
sures. This part is based on the monograph Vakhaniya et al. [11]. The next section
reviews reproducing kernel Hilbert spaces where we follow the monograph [2] by
Bogachev. In the following section 
 -radonifying operators are introduced as it can
be found in van Neerven [6].

After we have established these fundamentals we introduce cylindrical processes
whose probability distributions are naturally described by cylindrical measures.
We define a weakly cylindrical Wiener process as a cylindrical process which is
Wiener. This definition of a weakly cylindrical Wiener process is a straightforward
extension of the real-valued situation but it is immediately seen to be too general in
order to be analytically tractable. An obvious request is that the covariance operator
of the associated Gaussian cylindrical measures exists and has the analogue prop-
erties as in the case of ordinary Gaussian measures on infinite-dimensional spaces.
This leads to a second definition of a strongly cylindrical Wiener process.

For strongly cylindrical Wiener processes we give a representation by a series
with independent real-valued Wiener processes. On the other hand, we see, that by
such a series a strongly cylindrical Wiener process can be constructed.

The obvious question when a cylindrical Wiener process is actually a Wiener
process in the ordinary sense is the objective of the following section and can be
answered easily thanks to our approach by the self-suggesting answer: if and only
if the underlying cylindrical measure extends to an infinite countably additive set
function, i.e. a probability measure.

For modelling random perturbations in models by a cylindrical Wiener pro-
cess an appropriate definition of a stochastic integral with respect to a cylindrical
Wiener process is required. In Hilbert spaces one can define a stochastic integral
as a genuine random variable in the Hilbert space, see Da Prato and Zabczyk [3].
However, in Banach spaces there is no general theory of stochastic integration
known. We continue our expository work in the final section with introducing a
stochastic integral but such that the integral is only a cylindrical random variable.
This approach is known and can be found for example in Berman and Root [1]. By
requiring that the stochastic integral is only a cylindrical random variable we need
not put any geometric constraints on the Banach space under consideration. We
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finish with two corollaries giving conditions such that the cylindrical probability
distribution of the stochastic integral extends to a probability measure. These
results relate our cylindrical integral to other well known integrals in the
literature.

2 Preliminaries

Throughout this notes let U be a separable Banach space with dual U 
. The dual
pairing is denoted by hu; u
i for u 2 U and u
 2 U 
. If V is another Banach space
then L.U; V / is the space of all linear, bounded operators from U to V equipped
with the operator norm k�kU!V .

The Borel �-algebra is denoted by B.U /. Let � be a subset of U 
. Sets of the
form

Z.u

1; : : : ; u



n; B/ WD fu 2 U W .hu; u


1i; � � � ; hu; u

ni/ 2 Bg;

where u

1; : : : ; u



n 2 � and B 2 B.Rn/ are called cylindrical sets or cylinder

with respect to .U; � /. The set of all cylindrical sets is denoted by Z.U; � /, which
turns out to be an algebra. The generated �-algebra is denoted by C.U; � / and it is
called cylindrical �-algebra with respect to .U; � /. If � D U 
 we write Z.U / WD
Z.U; � / and C.U / WD C.U; � /. If U is separable then both the Borel B.U / and the
cylindrical �-algebra C.U / coincide.

A function � W Z.U / ! Œ0; 1� is called a cylindrical measure on Z.U /, if
for each finite subset � � U 
 the restriction of � on the �-algebra C.U; � / is a
probability measure.

For every function f W U ! C which is measurable with respect to C.U; � /
for a finite subset � � U 
 the integral

R
f .u/ �.du/ is well defined as a Lebesgue

integral if it exists. In particular, the characteristic function '
 W U 
 ! C of a finite
cylindrical measure � is defined by

'
.u

/ WD

Z
eihu;u�i �.du/ for all u
 2 U 
:

In contrast to measures on infinite dimensional spaces there is an analogue of
Bochner’s Theorem for cylindrical measures:

Theorem 1. A function ' W U 
 ! C is a characteristic function of a cylindrical
measure on U if and only if

(a) '.0/ D 0.
(b) ' is positive definite.
(c) The restriction of ' to every finite dimensional subset � � U 
 is continuous

with respect to the norm topology.
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For a finite set fu

1; : : : ; u



ng � U 
 a cylindrical measure � defines by

�u�

1
;:::;u�

n
W B.Rn/! Œ0;1�;

�u�

1
;:::;u�

n
.B/ WD �� fu 2 U W .hu; u


1i; : : : ; hu; u

ni/ 2 Bg

�

a measure on B.Rn/. We call�u�

1
;:::;u�

n
the image of the cylindrical measure� under

the mapping u 7! .hu; u

1i; : : : ; hu; u


ni/. Consequently, we have for the characteris-
tic function '
u�

1
;:::;u�

n
of �u�

1
;:::;u�

n
that

'
u�

1
;:::;u�

n
.ˇ1; : : : ; ˇn/ D '
.ˇ1u


1 C � � � C ˇnu

n/

for all ˇ1; : : : ; ˇn 2 R.
Cylindrical measures are described uniquely by their characteristic functions and

therefore by their one-dimensional distributions �u� for u
 2 U 
.

3 Gaussian Cylindrical Measures

A measure � on B.R/ is called Gaussian with meanm 2 R and variance �2 > 0 if
either � D ım and �2 D 0 or it has the density

f W R! RC; f .s/ D 1p
2��2

exp
�
� 1
2�2

.s �m/2
�
:

In case of a multidimensional or an infinite dimensional space U a measure � on
B.U / is called Gaussian if the image measures �u� are Gaussian for all u
 2 U 
.
Gaussian cylindrical measures are defined analogously but due to some reasons
explained below we have to distinguish between two cases: weakly and strongly
Gaussian.

Definition 1. A cylindrical measure � on Z.U / is called weakly Gaussian if �u� is
Gaussian on B.R/ for every u
 2 U 
.

Because of well known properties of Gaussian measures in finite dimensional
Euclidean spaces a cylindrical measure � is weakly Gaussian if and only if �u�

1
;:::;u�

n

is a Gaussian measure on B.Rn/ for all u

1; : : : ; u



n 2 U 
 and all n 2 N.

Theorem 2. Let � be a weakly Gaussian cylindrical measure on Z.U /. Then its
characteristic function '
 is of the form

'
 W U 
 ! C; '
.u

/ D exp

�
im.u
/ � 1

2
s.u
/

�
; (1)

where the functionsm W U 
 ! R and s W U 
 ! RC are given by

m.u
/ D
Z

U

hu; u
i�.du/; s.u
/ D
Z

U

hu; u
i2�.du/ � .m.u
//2:
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Conversely, if � is a cylindrical measure with characteristic function of the form

'
 W U 
 ! C; '
.u

/ D exp

�
im.u
/ � 1

2
s.u
/

�
;

for a linear functionalm W U 
 ! R and a quadratic form s W U 
 ! RC, then � is
a weakly Gaussian cylindrical measure.

Proof. Follows from [11, Proposition IV.2.7], see also [11, p. 393].

Example 1. Let H be a separable Hilbert space. Then the function

' W H ! C; '.u/ D exp.�1
2
kuk2H /

satisfies the condition of Theorem 2 and therefore there exists a weakly Gaussian
cylindrical measure 
 with characteristic function '. We call this cylindrical mea-
sure standard Gaussian cylindrical measure on H . If H is infinite dimensional the
cylindrical measure 
 is not a measure, see [2, Corollary 2.3.2].

Note, that this example might be not applicable for a Banach space U because
then x 7! kxk2U need not be a quadratic form.

For a weakly Gaussian cylindrical measure � one defines for u
; v
 2 U 
:

r.u
; v
/ WD
Z

U

hu; u
ihu; v
i�.du/�
Z

U

hu; u
i�.du/
Z

U

hu; v
i�.du/:

These integrals exist as � is a Gaussian measure on the cylindrical �-algebra gener-
ated by u
 and v
. One defines the covariance operatorQ of � by

Q W U 
 ! .U 
/0; .Qu
/v
 WD r.u
; v
/ for all v
 2 U 
;

where .U 
/0 denotes the algebraic dual of U 
, i.e. all linear but not necessarily
continuous functionals on U 
. Hence, the characteristic function '
 of � can be
written as

'
 W U 
 ! C; '
.u

/ D exp

�
im.u
/� 1

2
.Qu
/u
� :

The cylindrical measure � is called centred if m.u
/ D 0 for all u
 2 U 
.
If � is a Gaussian measure or more general, a measure of weak order 2, i.e.

Z

U

jhu; u
ij2 �.du/ <1 for all u
 2 U 
;

then the covariance operator Q is defined in the same way as above. However, in
this case it turns out thatQu
 is not only continuous and thus in U 

 but even in U
considered as a subspace of U 

, see [11, Theorem III.2.1]. This is basically due to
properties of the Pettis integral in Banach spaces. For cylindrical measures we have
to distinguish this property and define:
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Definition 2. A centred weakly Gaussian cylindrical measure � on Z.U / is called
strongly Gaussian if the covariance operatorQ W U 
 ! .U 
/0 is U -valued.

Below Example 2 gives an example of a weakly Gaussian cylindrical measure
which is not strongly. This example can be constructed in every infinite dimensional
space in particular in every Hilbert space.

Strongly Gaussian cylindrical measures exhibit an other very important property:

Theorem 3. For a cylindrical measure � on Z.U / the following are equivalent:

(a) � is a continuous linear image of the standard Gaussian cylindrical measure
on a Hilbert space.

(b) There exists a symmetric positive operatorQ W U 
 ! U such that

'
.u

/ D exp

��1
2
hQu
; u
i� for all u
 2 U 
:

Proof. See [11, Proposition VI.3.3].

Theorem 3 provides an example of a weakly Gaussian cylindrical measure which
is not strongly Gaussian:

Example 2. For a discontinuous linear functional f W U 
 ! R define

' W U 
 ! C; '.u
/ D exp

�
�1
2
.f .u
//2

	
:

Then ' is the characteristic function of a weakly Gaussian cylindrical measure due
to Theorem 2 but this measure can not be strongly Gaussian by Theorem 3 because
every symmetric positive operatorQ W U 
 ! U is continuous.

4 Reproducing Kernel Hilbert Space

According to Theorem 3 a centred strongly Gaussian cylindrical measure is the
image of the standard Gaussian cylindrical measure on a Hilbert space H under an
operator F 2 L.H;U /. In this section we introduce a possible construction of this
Hilbert space H and the operator F .

For this purpose we start with a bounded linear operatorQ W U 
 ! U , which is
positive,

hQu
; u
i > 0 for all u
 2 U 
;

and symmetric,

hQu
; v
i D hQv
; u
i for all u
; v
 2 U 
:



Cylindrical Wiener Processes 197

On the range of Q we define a bilinear form by

ŒQu
;Qv
�HQ WD hQu
; v
i:

It can easily be seen that this defines an inner product Œ�; ��HQ . Thus, the range ofQ
is a pre-Hilbert space and we denote by HQ the real Hilbert space obtained by its
completion with respect to Œ�; ��HQ . This space will be called the reproducing kernel
Hilbert space associated with Q.

In the following we collect some properties of the reproducing kernel Hilbert
space and its embedding:

(a) The inclusion mapping from the range of Q into U is continuous with respect
to the inner product Œ�; ��HQ . For, we have

kQu
k2HQ D jhQu
; u
ij 6 kQkU�!U ku
k2 ;

which allows us to conclude

jhQu
; v
ij D ˇˇŒQu
;Qv
�HQ
ˇ
ˇ 6 kQu
kHQ kQv
kHQ

6 kQu
kHQ kQkU�!HQ
kv
k :

Therefore, we end up with

kQu
kU D sup
kv�k61

jhQu
; v
ij 6 kQkU�!HQ
kQu
kHQ :

Thus, the inclusion mapping is continuous on the range of Q and it extends to
a bounded linear operator iQ fromHQ into U .

(b) The operatorQ enjoys the decomposition

Q D iQi
Q:

For the proof we define hu� WD Qu
 for all u
 2 U 
. Then we have iQ.hu�/ D
Qu
 and

Œhu� ; hv� �HQ D hQu
; v
i D hiQ.hu�/; v
i D Œhu� ; i
Qv

�HQ :

Because the range of Q is dense in HQ we arrive at

hv� D i
Qv
 for all v
 2 U 
 (2)

which finally leads to

Qv
 D iQ.hv� / D iQ.i


Qv


/ for all v
 2 U 
:
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(c) By (2) it follows immediately that the range of i
Q is dense in HQ.
(d) the inclusion mapping iQ is injective. For, if iQh D 0 for some h 2 HQ it

follows that

Œh; i
Qu
�HQ D hiQh; u
i D 0 for all u
 2 U 
;

which results in h D 0 because of (c).
(e) If U is separable then HQ is also separable.

Remark 1. Let � be a centred strongly Gaussian cylindrical measure with covari-
ance operatorQ W U 
 ! U . BecauseQ is positive and symmetric we can associate
with Q the reproducing kernel Hilbert space HQ with the inclusion mapping iQ
as constructed above. For the image 
 ı i�1Q of the standard Gaussian cylindrical
measure 
 on HQ we calculate

'�ıi�1
Q
.u
/ D

Z

U

eihu;u�i .
 ı i�1Q /.du/

D
Z

HQ

eihh;i
�

Q
u�i 
.dh/

D exp
�
�1
2



i
Qu


2
HQ

�

D exp
��1

2
hQu
; u
i� :

Thus, �D 
 ı i�1Q and we have found one possible Hilbert space and operator satis-
fying the condition in Theorem 3.

But note, that there might exist other Hilbert spaces exhibiting this feature. But
the reproducing kernel Hilbert space is characterised among them by a certain “min-
imal property”, see [2].

5 �-Radonifying Operators

This section follows the notes [6].
Let .˝;A; P / be a probability space with a filtration fF t gt>0 and U be a sepa-

rable Banach space. The space of all random variables X W ˝ ! U is denoted by
L0.˝IU / and the space of all random variables X W ˝ ! U with E kXkpU < 1
is denoted by Lp.˝IU /. If U D R we write L0.˝/ and Lp.˝/.

LetQ W U 
 ! U be a positive symmetric operator andH the reproducing kernel
Hilbert space with the inclusion mapping iQ W H ! U . If U is a Hilbert space then
it is a well known result by Mourier ([11, Theorem IV.2.4]) thatQ is the covariance
operator of a Gaussian measure on U if and only if Q is nuclear or equivalently if
iQ is Hilbert–Schmidt. By Remark 1 it follows that the cylindrical measure 
 ı i�1Q
extends to a Gaussian measure on B.U / and Q is the covariance operator of this
Gaussian measure.
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The following definition generalises this property of iQ W H ! U to define by
Q WD iQi
Q a covariance operator to the case when U is a Banach space:

Definition 3. Let 
 be the standard Gaussian cylindrical measure on a separable
Hilbert space H . A linear bounded operator F W H ! U is called 
 -radonifying if
the cylindrical measure 
 ı F �1 extends to a Gaussian measure on B.U /.

Theorem 4. Let 
 be the standard Gaussian cylindrical measure on a separable
Hilbert spaceH with orthonormal basis .en/n2N and let .Gn/n2N be a sequence of
independent standard real normal random variables. For F 2 L.H;U / the follow-
ing are equivalent:

(a) F is 
 -radonifying.
(b) The operator FF 
 W U 
 ! U is the covariance operator of a Gaussian mea-

sure � on B.U /.

(c) The series
1X

kD1
GkFek converges a.s. in U .

(d) The series
1X

kD1
GkFek converges in Lp.˝IU / for some p 2 Œ1;1/.

(e) The series
1X

kD1
GkFek converges in Lp.˝IU / for all p 2 Œ1;1/.

In this situation we have for every p 2 Œ1;1/:
Z

U

kukp �.du/ D E










1X

kD1
GkFek











p

:

Proof. As in Remark 1 we obtain for the characteristic function of � WD 
 ı F�1:

'�.u

/ D exp

��1
2
hFF 
u
; u
i� for all u
 2 U 
:

This establishes the first equivalence between (a) and (b). The proofs of the remain-
ing part can be found in [6, Proposition 4.2].

To show that 
 -radonifying operators generalise Hilbert–Schmidt operators to
Banach spaces we prove the result by Mourier mentioned already above. Other
proofs only relying on Hilbert space theory can be found in the literature.

Corollary 1. IfH andU are separable Hilbert spaces then the following are equiv-
alent for F 2 L.H;U /:
(a) F is 
 -radonifying.
(b) F is Hilbert–Schmidt.
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Proof. Let .ek/k2N be an orthonormal basis of H . The equivalence follows imme-
diately from

E











nX

kDm
GkFek











2

D
nX

kDm
kFekk2

for every family .Gk/k2N of independent standard normal random variables.

In general, the property of being 
 -radonifying is not so easily accessible as
Hilbert–Schmidt operators in case of Hilbert spaces. However, for some specific
Banach spaces, as Lp or lp spaces, the set of all covariance operators of Gaussian
measures can be also described more precisely, see [11, Theorems V.5.5 and V.5.6].

It turns out that the set of all 
 -radonifying operators can be equipped with a
norm such that it is a Banach space, see [6, Theorem 4.14].

6 Cylindrical Processes

Similarly to the correspondence between measures and random variables there is an
analogue random object associated to cylindrical measures:

Definition 4. A cylindrical random variable X in U is a linear map

X W U 
 ! L0.˝/:

A cylindrical process X in U is a family .X.t/ W t > 0/ of cylindrical random
variables in U .

The characteristic function of a cylindrical random variable X is defined by

'X W U 
 ! C; 'X .u

/ D EŒexp.iXu
/�:

The concepts of cylindrical measures and cylindrical random variables match
perfectly. Because the characteristic function of a cylindrical random variable is
positive-definite and continuous on finite subspaces there exists a cylindrical mea-
sure � with the same characteristic function. We call � the cylindrical distribution
ofX . Vice versa, for every cylindrical measure� on Z.U / there exists a probability
space .˝;A; P / and a cylindrical random variable X W U 
 ! L0.˝/ such that �
is the cylindrical distribution of X , see [11, Sect 3.2 in Chap. VI].

Example 3. A cylindrical random variable X W U 
 ! L0.˝/ is called weakly
Gaussian, if Xu
 is Gaussian for all u
 2 U 
. Thus, X defines a weakly Gaussian
cylindrical measure � on Z.U /. The characteristic function ofX coincides with the
one of � and is of the form

'X .u

/ D exp.im.u
/� 1

2
s.u
//
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with m W U 
 ! R linear and s W U 
 ! RC a quadratic form. If X is strongly
Gaussian there exists a covariance operatorQ W U 
 ! U such that

'X .u

/ D exp.im.u
/ � 1

2
hQu
; u
i/:

Because 'X .u
/ D 'Xu�.1/ it follows

EŒXu
� D m.u
/ and VarŒXu
� D hQu
; u
i:
In the same way by comparing the characteristic function

'Xu�;Xv� .ˇ1; ˇ2/ D E
�
exp

�
i
�
ˇ1Xu
 C ˇ2Xv
���

D E �exp
�
i
�
X
�
ˇ1u
 C ˇ2v
����

for ˇ1; ˇ2 2 R with the characteristic function of X we may conclude

CovŒXu
; Xv
� D hQu
; v
i:
Let HQ denote the reproducing kernel Hilbert space of the covariance operator Q.
Then we obtain

E jXu
 �m.u
/j2 D VarŒXu
� D hQu
; u
i D 

i
Qu


2
HQ

:

The cylindrical processX D .X.t/ W t > 0/ is called adapted to a given filtration
fF t gt>0, if X.t/u
 is F t -measurable for all t > 0 and all u
 2 U 
. The cylindrical
process X has weakly independent increments if for all 0 6 t0 < t1 < � � � < tn and
all u


1; : : : ; u


n 2 U 
 the random variables

.X.t1/ �X.t0//u

1; : : : ; .X.tn/� X.tn�1//u


n

are independent.

Remark 2. Our definition of cylindrical processes is based on the definitions in [1]
and [11]. In [5] and [10] cylindrical random variables are considered which have
values in Lp.˝/ for p > 0. They assume in addition that a cylindrical random vari-
able is continuous. The continuity of a cylindrical variable is reflected by continuity
properties of its characteristic function, see [11, Proposition IV. 3.4]. The notion of
weakly independent increments origins from [1].

Example 4. Let Y D .Y.t/ W t > 0/ be a stochastic process with values in a
separable Banach space U . Then OY .t/u
 WD hY.t/; u
i for u
 2 U 
 defines a
cylindrical process OY D . OY .t/ W t > 0/. The cylindrical process OY is adapted if and
only if Y is also adapted and OY has weakly independent increments if and only if Y
has also independent increments. Both statements are due to the fact that the Borel
and the cylindrical �-algebras coincide for separable Banach spaces due to Pettis’
measurability theorem.

An Rn-valued Wiener process B D .B.t/ W t > 0/ is an adapted stochastic
process with independent, stationary increments B.t/ � B.s/ which are normally
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distributed with expectation EŒB.t/�B.s/�D 0 and covariance CovŒB.t/�B.s/;
B.t/ � B.s/� D jt � sjC for a non-negative definite symmetric matrix C . If C D
Id we call B a standard Wiener process.

Definition 5. An adapted cylindrical process W D .W.t/ W t > 0/ in U is a weakly
cylindrical Wiener process, if

(a) for all u

1; : : : ; u



n 2 U 
 and n 2 N the Rn-valued stochastic process

�
.W.t/u


1; : : : ;W.t/u


n/ W t > 0

�

is a Wiener process.

Our definition of a weakly cylindrical Wiener process is an obvious extension of
the definition of a finite-dimensional Wiener process and is exactly in the spirit of
cylindrical processes. The multidimensional formulation in Definition 5 would be
already necessary to define a finite-dimensional Wiener process by this approach
and it allows to conclude that a weakly cylindrical Wiener process has weakly inde-
pendent increments. The latter property is exactly what is needed in addition to an
one-dimensional formulation:

Lemma 1. For an adapted cylindrical process W D .W.t/ W t > 0/ the following
are equivalent:

(a) W is a weakly cylindrical Wiener process
(b) W satisfies

(i) W has weakly independent increments
(ii) .W.t/u
 W t > 0/ is a Wiener process for all u
 2 U 


Proof. We have only to show that (b) implies (a) for which we fix some u

1; : : : ; u



n 2

U 
. By linearity we have

ˇ1.W.t/ �W.s//u

1 C � � � C ˇn.W.t/ �W.s//u


n

D .W.t/ �W.s//
 

nX

iD1
ˇiu



i

!

;

for all ˇi 2 R which shows that the increments of ..W.t/u

1; : : : ;W.t/u



n// W t > 0/

are normally distributed and stationary. The independence of the increments follows
by (i).

Because W.1/ is a centred weakly Gaussian cylindrical random variable there
exists a weakly Gaussian cylindrical measure � such that

'W.1/.u

/ D EŒexp.iW.1/u
/� D '
.u
/ D exp

��1
2
s.u
/

�

for a quadratic form s W U 
 ! RC. Therefore, one obtains

'W.t/.u

/ D EŒexp.iW.t/u
/� D EŒexp

�
iW.1/.tu
/

�
� D exp

��1
2
t2s.u
/

�
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for all t > 0. Thus, the cylindrical distributions of W.t/ for all t > 0 are only deter-
mined by the cylindrical distribution of W.1/.

Definition 6. A weakly cylindrical Wiener process .W.t/ W t > 0/ is called strongly
cylindrical Wiener process, if

(b) the cylindrical distribution � of W.1/ is strongly Gaussian.

The additional condition on a weakly cylindrical Wiener process to be strongly
requests the existence of an U -valued covariance operator for the Gaussian cylindri-
cal measure. To our knowledge weakly cylindrical Wiener processes are not defined
in the literature and (strongly) cylindrical Wiener processes are defined by means of
other conditions. Often, these definitions are formulated by assuming the existence
of the reproducing kernel Hilbert space. But this implies the existence of the covari-
ance operator. Another popular way for defining cylindrical Wiener processes is by
means of a series. We will see in the next chapter that this is also equivalent to our
definition.

Later, we will compare a strongly cylindrical Wiener process with an U -valued
Wiener process. Also the latter is defined as a direct generalisation of a real-valued
Wiener process:

Definition 7. An adapted U -valued stochastic process .W.t/ W t > 0/ is called a
Wiener process if

(a) W.0/ D 0 P -a.s.
(b) W has independent, stationary increments.
(c) There exists a Gaussian covariance operatorQ W U 
 ! U such that

W.t/ �W.s/ dD N.0; .t � s/Q/ for all 0 6 s 6 t:

If U is finite dimensional then Q can be any symmetric, positive semi-definite
matrix. In case that U is a Hilbert space we know already that Q has to be nuclear.
For the general case of a Banach space U we can describe the possible Gaussian
covariance operator by Theorem 4.

It is obvious that everyU -valued Wiener processW defines a strongly cylindrical
Wiener process . OW .t/ W t > 0/ in U by OW .t/u
 WD hW.t/; u
i. For the converse
question, if a cylindrical Wiener process can be represented in such a way by an
U -valued Wiener process we will derive later necessary and sufficient conditions.

7 Representations of Cylindrical Wiener Processes

In this section we derive representations of cylindrical Wiener processes and U -
valued Wiener processes in terms of some series. In addition, these representations
can also serve as a construction of these processes, see Remark 5.
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Theorem 5. For an adapted cylindrical process W WD .W.t/ W t > 0/ the following
are equivalent:

(a) W is a strongly cylindrical Wiener process.
(b) There exist a Hilbert space H with an orthonormal basis .en/n2N , F 2

L.H;U / and independent real-valued standard Wiener processes .Bn/n2N
such that

W.t/u
 D
1X

kD1
hFek; u
iBk.t/ in L2.˝/ for all u
 2 U 
:

Proof. (b) ) (a) By Doob’s inequality we obtain for any m; n 2 N

E

2

4 sup
t2Œ0;T �

ˇ̌
ˇ
ˇ
ˇ

nCmX

kDn
hFek; u
iBk.t/

ˇ̌
ˇ
ˇ
ˇ

2
3

5 6 4E

ˇ̌
ˇ
ˇ
ˇ

nCmX

kDn
hFek; u
iBk.T /

ˇ̌
ˇ
ˇ
ˇ

2

D 4T
nCmX

kDn
hek; F 
u
i2

! 0 form; n!1:

Thus, for every u
 2 U 
 the random variables W.t/u
 are well defined and form a
cylindrical process .W.t/ W t > 0/. For any 0 D t0 < t1 < � � � < tm and ˇk 2 R we
calculate

E

"

exp

 

i

m�1X

kD0
ˇk.W.tkC1/u
 �W.tk/u
/

!#

D lim
n!1E

"

exp

 

i

m�1X

kD0
ˇk

nX

lD1
hFel ; u
i.Bl.tkC1/� Bl.tk//

!#

D lim
n!1

m�1Y

kD0

nY

lD1
E
h

exp
�
iˇkhFel ; u
i.Bl.tkC1/� Bl.tk//

� i

D lim
n!1

m�1Y

kD0

nY

lD1
exp

�
� 1
2
ˇ2khFel ; u
i2.tkC1 � tk/

�

D
m�1Y

kD0
exp

�
�1
2
ˇ2k kF 
u
k2H .tkC1 � tk/

�
;

which shows that .W.t/u
 W t > 0/ has independent, stationary Gaussian increments
and is therefore established as a real-valued Wiener process. Similarly, one estab-
lishes that W has weakly independent increments.



Cylindrical Wiener Processes 205

The calculation above of the characteristic function yields

E
�
exp.iW.1/u
/

� D exp
�
�1
2
kF 
u
k2H

�
D exp

��1
2
hFF 
u
; u
i2� :

Hence, the process W is a strongly cylindrical Wiener process with covariance op-
eratorQ WD FF 
.

(a) ) (b): Let Q W U 
 ! U be the covariance operator of W.1/ and H its
reproducing kernel Hilbert space with the inclusion mapping iQ W H ! U . Because
the range of i
Q is dense in H and H is separable there exists an orthonormal basis
.en/n2N �range.i
Q/ of H . We choose u


n 2 U 
 such that i
Qu

n D en for all n 2 N

and define Bn.t/ WD W.t/u

n. Then we obtain

E

ˇ̌
ˇ
ˇ
ˇ

nX

kD1
hiQek; u
iBk.t/ �W.t/u


ˇ̌
ˇ
ˇ
ˇ

2

D E
"

W.t/

 
nX

kD1
hiQek; u
iu


k � u

!#2

D t









i
Q

 
nX

kD1
hiQek; u
iu


k � u

!








2

H

D t











nX

kD1
Œek ; i



Qu
�H ek � i
Qu













2

H

! 0 for n!1:

Thus, W has the required representation and it remains to establish that the Wiener
processes Bn WD .Bn.t/ W t > 0/ are independent. Because of the Gaussian distri-
bution it is sufficient to establish that Bn.s/ and Bm.t/ for any s 6 t and m; n 2 N
are independent:

EŒBn.s/Bm.t/� D EŒW.s/u

nW.t/u



m�

D EŒW.s/u

n.W.t/u



m �W.s/u


m/�C EŒW.s/u

nW.s/u



m�:

The first term is zero by Lemma 1 and for the second term we obtain

EŒW.s/u

nW.s/u



m� D shQu


n; u


mi D sŒi
Qu


n; i


Qu


m�HQ D sŒen; em�HQ :

Hence, Bn.s/ and Bm.t/ are uncorrelated and therefore independent.

Remark 3. The proof has shown that the Hilbert space H in part (b) can be cho-
sen as the reproducing kernel Hilbert space associated to the Gaussian cylindrical
distribution of W.1/. In this case the function F W H ! U is the inclusion
mapping iQ.

Remark 4. LetH be a separable Hilbert space with orthonormal basis .ek/k2N and
.Bk.t/ W t > 0/ be independent real-valued Wiener processes. By setting U DH
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and F D Id Theorem 5 yields that a strongly cylindrical Wiener process .WH .t/ W
t > 0/ is defined by

WH .t/h D
1X

kD1
hek; hiBk.t/ for all h 2 H:

The covariance operator of WH is Id W H ! H . This is the approach how a cylin-
drical Wiener process is defined for example in [2] and [7].

If in addition V is a separable Banach space and F 2 L.H; V / we obtain by
defining

W.t/v
 WD WH .t/.F 
v
/ for all v
 2 V 
;

a strongly cylindrical Wiener process .W.t/ W t > 0/ with covariance operator
Q WDFF 
 according to our Definition 6.

Theorem 6. For an adapted U -valued processW WD .W.t/ W t > 0/ the following
are equivalent:

(a) W is an U -valued Wiener process.
(b) There exist a Hilbert space H with an orthonormal basis .en/n2N , a 
 -

radonifying operator F 2 L.H;U / and independent real-valued standard
Wiener processes .Bn/n2N such that

W.t/ D
1X

kD1
FekBk.t/ in L2.˝IU /:

Proof. (b)) (a): As in the proof of Theorem 5 we obtain by Doob’s Theorem (but
here for infinite-dimensional spaces) for any m; n 2 N

E

2

4 sup
t2Œ0;T �












nCmX

kDn
FekBk.t/












2
3

5 6 4E












nCmX

kDn
FekBk.T /












2

! 0 form; n!1;

where the convergence follows by Theorem 4 because F is 
 -radonifying. Thus, the
random variables W.t/ are well defined and form an U -valued stochastic process
W WD .W.t/ W t > 0/. As in the proof of Theorem 5 we can proceed to establish
that W is an U -valued Wiener process.

(a)) (b): By Theorem 5 there exist a Hilbert spaceH with an orthonormal basis
.en/n2N , F 2 L.H;U / and independent real-valued standard Wiener processes
.Bn/n2N such that

hW.t/; u
i D
1X

kD1
hFek; u
iBk.t/ in L2.˝/ for all u
 2 U 
:
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The Itô-Nisio Theorem [11, Theorem 2.4 in Chapter V] implies

W.t/ D
1X

kD1
FekBk.t/ P -a.s.

and a result by Hoffmann-Jorgensen [11, Corollary 2 in Chapter V, Sect. 3.3] yields
the convergence in L2.˝IU /. Theorem 4 verifies F as 
 -radonifying.

Remark 5. In the proofs of the implication from (b) to (a) we established in both
Theorems 5 and 6 even more than required: we established the convergence of the
series in the specified sense without assuming the existence of the limit process, re-
spectively. This means, that we can read these results also as a construction principle
of cylindrical or U -valued Wiener processes without assuming the existence of the
considered process a priori.

The construction of these random objects differs significantly in the required
conditions on the involved operator F . For a cylindrical Wiener process no condi-
tions are required, however, for an U -valued Wiener process we have to guarantee
Q D FF 
 to be a covariance operator of a Gaussian measure by assuming F to be

 -radonifying.

8 When is a Cylindrical Wiener Process U -Valued?

In this section we give equivalent conditions for a strongly cylindrical Wiener pro-
cess to be an U -valued Wiener process. To be more precise a cylindrical random
variable X W U 
 ! L0.˝/ is called induced by a random variable Z W ˝ ! U ,
if P -a.s.

Xu
 D hZ; u
i for all u
 2 U 
:

This definition generalises in an obvious way to cylindrical processes.
Because of the correspondence to cylindrical measures the question whether

a cylindrical random variable is induced by an U -valued random variable is re-
duced to the question whether the cylindrical measure extends to a Radon measure
([11, Theorem 3.1 in Chapter VI]). There is a classical answer by Prokhorov ([11,
Theorem 3.2 in Chapter VI]) to this question in terms of tightness. A cylindrical
measure � on Z.U / is called tight if for each " > 0 there exists a compact subset
K D K."/ � U such that

�u�

1
;:::;u�

n

�˚
.ˇ1; : : : ; ˇn/ 2 f.hu; u


1i; : : : ; hu; u

ni/ W u 2 Kg�

�
> 1 � "

for all u

1; : : : ; u



n 2 U 
 and all n 2 N.

Theorem 7. For a strongly cylindrical Wiener process W WD .W.t/ W t > 0/ with
covariance operatorQ D iQi
Q the following are equivalent:

(a) W is induced by an U -valued Wiener process.



208 M. Riedle

(b) iQ is 
 -radonifying.
(c) The cylindrical distribution of W.1/ is tight.
(d) The cylindrical distribution of W.1/ extends to a measure.

Proof. (a)) (b) If there exists an U -valued Wiener process . QW .t/ W t > 0/ with
W.t/u
 D h QW .t/; u
i for all u
 2 U 
, then QW .1/ has a Gaussian distribution with
covariance operatorQ. Thus, iQ is 
 -radonifying by Theorem 4.

(b), (c), (d) This is Prokhorov’s Theorem on cylindrical measures.
(b) ) (a) Due to Theorem 5 there exist an orthonormal basis .en/n2N of the

reproducing kernel Hilbert space ofQ and independent standard real-valued Wiener
process .Bk.t/ W t > 0/ such that

W.t/u
 D
1X

kD1
hiQek; u
iBk.t/ for all u
 2 U 
:

On the other hand, because iQ is 
 -radonifying Theorem 6 yields that

QW .t/ D
1X

kD1
iQekBk.t/

defines an U -valued Wiener process . QW .t/ W t > 0/. Obviously, we haveW.t/u
 D
h QW .t/; u
i for all u
.

If U is a separable Hilbert space we can replace the condition (b) by
(b0) iQ is Hilbert–Schmidt

because of Corollary 1.

9 Integration

In this section we introduce an integral with respect to a strongly cylindrical Wiener
processW D .W.t/ W t > 0/ in U . The integrand is a stochastic process with values
in L.U; V /, the set of bounded linear operators from U to V , where V denotes
a separable Banach space. For that purpose we assume for W the representation
according to Theorem 5:

W.t/u
 D
1X

kD1
hiQek; u
iBk.t/ in L2.˝/ for all u
 2 U 
;

where H is the reproducing kernel Hilbert space of the covariance operatorQ with
the inclusion mapping iQ W H ! U and an orthonormal basis .en/n2N of H . The
real-valued standard Wiener processes .Bk.t/ W t > 0/ are defined by Bk.t/ D
W.t/u


k
for some u


k
2 U 
 with i
Qu


k
D ek .
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Definition 8. The set MT .U; V / contains all random variables ˚ W Œ0; T � 	 ˝ !
L.U; V / such that:

(a) .t; !/ 7! ˚
.t; !/v
 is BŒ0; T �˝A measurable for all v
 2 V 
.
(b) ! 7! ˚
.t; !/v
 is F t -measurable for all v
 2 V 
 and t 2 Œ0; T �.
(c)

R T
0 E k˚
.s; �/v
k2U� ds <1 for all v
 2 V 
.

As usual we neglect the dependence of ˚ 2 MT .U; V / on ! and write ˚.s/ for
˚.s; �/ as well as for the dual operator ˚
.s/ WD ˚
.s; �/ where ˚
.s; !/ denotes
the dual operator of ˚.s; !/ 2 L.U; V /.

We define the candidate for a stochastic integral:

Definition 9. For ˚ 2 MT .U; V / we define

It .˚/v

 WD

1X

kD1

Z t

0

h˚.s/iQek; v
i dBk.s/ in L2.˝/

for all v
 2 V 
 and t 2 Œ0; T �.
The stochastic integrals appearing in Definition 9 are the known real-valued Itô

integrals and they are well defined thanks to our assumption on ˚ . In the next
Lemma we establish that the asserted limit exists:

Lemma 2. It .˚/ W V 
 ! L2.˝/ is a well defined cylindrical random variable in
V which is independent of the representation of W , i.e. of .en/n2N and .u


n/n2N .

Proof. We begin to establish the convergence in L2.˝/. For that, let m; n 2 N and
we define for simplicity h.s/ WD i
Q˚
.s/v
. Doob’s theorem implies

E

ˇ̌
ˇ
ˇ
ˇ
ˇ

sup
06t6T

nX

kDmC1

Z t

0

h˚.s/iQek; v
i dBk.s/

ˇ̌
ˇ
ˇ
ˇ
ˇ

2

6 4

nX

kDmC1

Z T

0

E Œek; h.s/�
2
H ds

6 4

1X

kDmC1

Z T

0

E ŒŒek; h.s/�H ek; h.s/�H ds

D 4
1X

kDmC1

1X

lDmC1

Z T

0

E ŒŒek; h.s/�H ek; Œel ; h.s/�H el �H ds

D 4
Z T

0

E k.Id��m/h.s/k2H ds;
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where �m W H ! H denotes the projection onto the span of fe1; : : : ; emg. Because
k.Id��m/h.s/k2H ! 0 form!1 and

Z T

0

E k.Id��m/h.s/k2H ds 6



i
Q




2
U�!H

Z T

0

E k˚
.s; �/v
k2U� ds <1

we obtain by Lebesgue’s theorem the convergence in L2.˝/.
To prove the independence on the chosen representation of W let .fl/l2N be an

other orthonormal basis of H and w

l
2 U 
 such that i
Qw


l
D fl and .Cl.t/ W

t > 0/ independent Wiener processes defined by Cl.t/ D W.t/w

l

. As before we
define in L2.˝/:

QIt .˚/v
 WD
1X

lD1

Z t

0

h˚.s/iQfl ; v
i dCl.s/ for all v
 2 V 
:

The relation Cov.Bk.t/; Cl.t// D t
h
i
Qu


k
; i
Qw


l

i

H
D t Œek; fl �H enables us to

calculate

E
ˇ
ˇIt .˚/v
 � QIt .˚/v
ˇˇ2

D E jIt .˚/v
j2 CE ˇˇ QIt .˚/v
ˇˇ2 � 2E ��It .˚/v
�� QIt .˚/v
��

D
1X

kD1

Z t

0

Eh˚.s/iQek; v
i2 dsC
1X

lD1

Z t

0

Eh˚.s/iQfl ; v
i2 ds

� 2
1X

kD1

1X

lD1

Z t

0

E
h
h˚.s/iQek; v
ih˚.s/iQfl ; v
i �i
Qu


k; i


Qw


l

�
H

i
ds

D 2
Z t

0

E


i
Q˚
.s/v


2

H
ds � 2

Z t

0

E


i
Q˚
.s/v


2

H
ds

D 0;
which proves the independence of It .˚/ on .ek/k2N and .u


k
/k2N .

The linearity of It .˚/ is obvious and hence the proof is complete.

Our next definition is not very surprising:

Definition 10. For ˚ 2MT .U; V / we call the cylindrical random variable

Z t

0

˚.s/ dW.s/ WD It .˚/

cylindrical stochastic integral with respect to W .

Because the cylindrical stochastic integral is strongly based on the well known
real-valued Itô integral many features can be derived easily. We collect the martin-
gale property and Itô’s isometry in the following theorem.
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Theorem 8. Let ˚ be in MT .U; V /. Then we have

(a) For every v
 2 V 
 the family

��Z t

0

˚.s/ dW.s/

	
v
 W t 2 Œ0; T �

	

forms a continuous square-integrable martingale.
(b) The Itô’s isometry:

E

ˇ
ˇ̌
ˇ

�Z t

0

˚.s/ dW.s/

	
v

ˇ
ˇ̌
ˇ

2

D
Z t

0

E


i
Q˚
.s/v


2

H
ds:

Proof. (a) In Lemma 2 we have identified It .˚/v
 as the limit of

Mn.t/ WD
nX

kD1

Z t

0

h˚.s/iQek; v
i dBk.s/;

where the convergence takes place in L2.˝/ uniformly on the interval Œ0; T �. As
.Mn.t/ W t 2 Œ0; T �/ are continuous martingales the assertion follows.

(b) Using Itô’s isometry for real-valued stochastic integrals we obtain

E

ˇ
ˇ
ˇ
ˇ
� Z t

0

˚.s/ dW.s/
�
v

ˇ
ˇ
ˇ
ˇ

2

D
1X

kD1
E

"Z T

0

h˚.s/iQek; v
i dBk.s/

#2

D
1X

kD1

Z T

0

E
�
ek; i



Q˚


.s/v
�2
H

ds

D
Z T

0

E



i
Q˚


.s/v


2
H

ds:

An obvious question is under which conditions the cylindrical integral is induced
by a V -valued random variable. The answer to this question will also allow us to
relate the cylindrical integral with other known definitions of stochastic integrals in
infinite dimensional spaces.

From our point of view the following corollary is an obvious consequence.
We call a stochastic process ˚ 2 MT .U; V / non-random if it does not depend
on ! 2 ˝ .

Corollary 2. For non-random˚ 2MT .U; V / the following are equivalent:

(a)
R T
0
˚.s/ dW.s/ is induced by a V -valued random variable.

(b) There exists a Gaussian measure � on V with covariance operatorR such that:

Z T

0




i
Q˚
.s/v


2

H
ds D hRv
; v
i for all v
 2 V 
:
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Proof. (a)) (b): If the integral IT .˚/ is induced by a V -valued random variable
then the random variable is centred Gaussian, say with a covariance operator R.
Then Itô’s isometry yields

hRv
; v
i D E jIT .˚/v
j2 D
Z T

0




i
Q˚
.s/v


2

H
ds:

(b) ) (a): Again Itô’s isometry shows that the weakly Gaussian cylindrical
distribution of IT .˚/ has covariance operator R and thus, extends to a Gaussian
measure on V .

The condition (b) of Corollary 2 is derived in van Neerven and Weis [7] as a
sufficient and necessary condition for the existence of the stochastic Pettis integral
introduced in this work. Consequently, it is easy to see that under the equivalent
conditions (a) or (b) the cylindrical integral is induced by the stochastic Pettis in-
tegral which is a genuine random variable in the underlying Banach space. Further
relation of condition (b) to 
 -radonifying properties of the integrand ˚ can also be
found in [7].

Our next result relates the cylindrical integral to the stochastic integral in Hilbert
spaces as introduced in Da Prato and Zabczyk [3]. For that purpose, we assume
that U and V are separable Hilbert spaces. Let W be a strongly cylindrical Wiener
process inU and let the inclusion mapping iQ WHQ ! U be Hilbert–Schmidt. Then
there exist an orthonormal basis .fk/k2N in U and real numbers �k > 0 such that
Qfk D �kfk for all k 2 N. For the following we can assume that �k ¤ 0 for all
k 2 N. By defining ek WD

p
�k fk for all k 2 N we obtain an orthonormal basis

ofHQ andW can be represented as usual as a sum with respect to this orthonormal
basis.

Our assumption on iQ to be Hilbert–Schmidt is not a restriction because in gen-
eral the integral with respect to a strongly cylindrical Wiener process is defined in
[3] by extending U such that iQ becomes Hilbert–Schmidt.

Corollary 3. LetW be a strongly cylindrical Wiener process in a separable Hilbert
space U with iQ W HQ ! U Hilbert–Schmidt. If V is a separable Hilbert space
and ˚ 2MT .U; V / is such that

1X

kD1
�k

Z T

0

E k˚.s/iQekk2V ds <1;

then the cylindrical integral

Z T

0

˚.s/ dW.s/

is induced by a V -valued random variable. This random variable is the standard
stochastic integral in Hilbert spaces of ˚ with respect to W .
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Proof. By Theorem 7 the cylindrical Wiener process W is induced by an U -valued
Wiener process Y . We define U -valued Wiener processes .YN .t/ W t 2 Œ0; T �/ by

YN .t/ D
NX

kD1
iQekBk.t/:

Theorem 6 implies that YN .t/ converges to Y in L2.˝IU /. By our assumption on
˚ the stochastic integrals˚ ıYN .T / in the sense of Da Prato and Zabczyk [3] exist
and converge to the stochastic integral ˚ ı Y.T / in L2.˝IV /, see [3, Ch. 4.3.2].

On the other hand, by first considering simple functions˚ and then extending to
the general case we obtain

h˚ ı YN .T /; v
i D
NX

kD1

Z t

0

h˚.s/iQek; v
i dBk.s/

for all v
 2 V 
. By Definition 9 the right hand side converges in L2.˝/ to

 Z T

0

˚.s/ dW.s/

!

v
;

whereas at least a subsequence of .h˚ ı YN .T /; v
i/N2N converges to h˚ ı
Y.T /; v
i P -a.s..

Based on the cylindrical integral one can consider linear cylindrical stochastic
differential equations. Of course, a solution will be in general a cylindrical process
but there is no need to put geometric constrains on the state space under consid-
eration. If one is interested in classical stochastic processes as solutions for some
reasons one can tackle this problem as in our two last results by deriving sufficient
conditions guaranteeing that the cylindrical solution is induced by a V -valued ran-
dom process.

Acknowledgements I thank David Applebaum for his careful review of the original manuscript
and many fruitful discussions.
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A Remark on the 1=H-Variation
of the Fractional Brownian Motion

Maurizio Pratelli

Abstract We give an elementary proof of the following property of H-fractional
Brownian motion: almost all sample paths have infinite 1/H-variation on every
interval.

Keywords Fractional Brownian motion � p-Variation � Ergodic theorem

1 Introduction and Statement of the Result

Let .Bt /t�0 be the Fractional Brownian Motion with Hurst (or self-similarity) pa-
rameter H; 0 < H < 1 (we refer for instance to [2] or [5] or [8] p. 273 for the
definitions): fix t > 0 and let tn

k
D kt

n
for n integer and k D 0; : : : ; n: It is well

known (see e.g. [5] or [9]) that

lim
n!1

n�1X

kD0

ˇ
ˇBtn

kC1
� Btn

k

ˇ
ˇp L1.˝/D

8
ˆ̂
<

ˆ̂
:

C1 p < 1=H

t E
�ˇˇB1

ˇ
ˇ1=H � p D 1=H

0 p > 1=H

:

However, if we define the random variable

V.!/ D V1=H
Œ0;t�

.!/ D sup
n ; 0�t1<t2<:::<tn�t

n�1X

iD1

ˇ
ˇBtiC1.!/ � Bti .!/

ˇ
ˇ1=H

then V.!/D C 1 a.s. (note that V is measurable since the paths of the frac-
tional Brownian motion are continuous and therefore the “sup” can be taken over
rationals ti ).
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This property is well known in the case of standard Brownian Motion (i.e.
H D 1=2): it was stated (but without a rigorous proof) by P. Lévy in [6] p. 190, and
also the excellent book “Revuz-Yor” quotes the result without a proof (see [8] p.
28). A sketch of the proof (always in the case H D 1=2) was given by D. Freedman
in [4] p. 48.

For the standard Brownian Motion, there is a more precise (and more techni-
cal) result due to Taylor (see [11]): given an increasing function  W Œ0;C1/ !
Œ0;C1/ , we can define the  –variation of the function f on the interval Œa; b� as

sup
n ;aDt1<t2<:::<tnDb

 
�jf .tiC1/� f .ti /j

�

(when  .t/ D tp it is called the p–variation).
Taylor showed that the correct function for the variation of the paths of the BM

is the function  1.s/ D s2=2 log
 log
 s (where log
 s D max.1 ; j log sj/) in the
sense that

V �;Œa;b�.!/ D sup
n ; aDt1<t2<:::<tnDb

 
�jBtiC1.!/ � Bti .!/j

�

is a finite r.v. but is infinite if  1 is replaced by any function  such that
 .s/= 1.s/! C1 as s ! 0C .

The impact of the p-variation of the paths for (stochastic) integration is well
highlighted by L. Coutin (see [2]) for the case of FBM and by Dudley and Norvaisa
(see [3]) for more general stochastic processes.

In the general case of the Fractional Brownian Motion, it is well known that
p D 1=H is a limit case, and that sample paths are 
 -hölder continuous for any

 < H . The result of Theorem 1 is known since it is a consequence of Theorem
IV.5.1 of [1]: their proof, however, is based on a complex technology (the theory of
Besov spaces).

The aim of this short note is to give an elementary complete proof suggested by
the argument presented in [4]; I want to thank Sara Biagini and Giorgio Letta for a
discussion on the subject.

Let us fix H with 0 < H < 1 , let .Bt /t�0 be a FBM with parameter H and
continuous sample paths: define

VŒa;b�.!/ D sup
n ;aDt1<t2<:::<tnDb

ˇ
ˇBtiC1.!/ � Bti .!/

ˇ
ˇ1=H

The statement of the result is as follows

Theorem 1. There exists a null-set N � ˝ such that, if ! … N, then for every
a < b, VŒa;b�.!/ D C1 .
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2 The Proof

In the sequel, � is the Lebesgue measure on IRC and p
 is a shorthand for 1=H .
Let U be a finite union of disjoint open intervals �si ; ti Œ of IRC with si ; ti 2 Q and
let U be the collection of such subsets of IRC .

For U D [niD1�si ; ti Œ ( 0 � s1 < t1 � s2 < : : : < tn ), let qU .!/ DPn
iD1 jBti .!/ � Bsi .!/jp�

; note that

VŒa;b�.!/ D sup
U2U ; U�Œa;b�

qU .!/

Lemma 1. Fix m > 0 and let pm D P.jB1jp� � m/. Let Zn D
IfjBn�Bn�1jp� �mg: thenMn D Z1C���CZn

n
converges a.s. to EŒZ1� D pm.

Proof. The sequence of one step increments of B , Xn D Bn � Bn�1, is stationary,
centered Gaussian and with covariance function R.n/ D EŒX1XnC1� which tends
to 0 when n goes to infinity (see e.g. [7] p. 274): therefore .X/n�1 is ergodic (see
[10] p. 413). Now Zn can be written in the form Zn D g.Xn/ with a borel function
g and therefore also .Zn/n�1 is ergodic.

As a consequence of the ergodic theorem (Theorem 3.3 p. 413 of [10]), the se-
quence of the empirical meansM D .Mn/n�1 converges a.s. (and in L1) to EŒZ1�.

The key of the proof is the following result:

Lemma 2. Let I D�s; t Œ be an open interval with s; t 2 Q
C and fix m > 0: let

pm D PfjB1jp� � mg and r < pm . Then there exists a measurable Am � ˝ with
P.Am/ D 1 such that for all ! 2 Am there exists U! 2 U with the properties:

1. U! � I
2. �.U!/ > r �.I /
3. qU! .!/ � m�.U!/
Proof. For n > 1 and i D 0; : : : ; n let tni D s C i

n
.t � s/ and J ni D�tni�1; tni Œ . Set

Sn D
nX

iD1
I jBtn

iC1
�Btn

i
jp� �m .t�s/

n

�

Sn.!/ counts the number of subintervals J ni on which qJn
i
.!/ > m�.J ni /. Thanks

to the self-similarity property of fBm (see e.g. [7] p. 275), Sn is distributed asZn DPn
iD1 IfjBiC1�Bi jp� �mg.
By the Lemma 1, Zn

n
! pm almost surely, whence Sn

n
tends to pm in probability.

Modulo a subsequence,

lim
n

Sn

n
D pm a.s.

Call Am the set on which the above sequence converges: if ! 2 Am then there
exists n! such that Sn

n
.!/ > r for n � n! .
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Select n � n! and among the subintervals J ni exactly those such that qJn
i
.!/ �

m .t�s/
n

and let U! be their union. Then

�.U!/ D Sn.!/ t � s
n

> r �.I /

and

qU! .!/ � Sn.!/m
.t � s/
n
D m�.U!/:

The same result holds evidently for an elementU 2 U . Since U in countable, we
have immediately the following result

Corollary 1. Fixm > 0 and set r D pm=2 : there exists a measurable set Cm � ˝
with P.Cm/ D 1 such that, if ! 2 Cm and V 2 U , there exists U! 2 U andU! � V
such that �.U!/ > r �.V / and qU! .!/ � m�.U!/ .

Lemma 3. Fix 0 � a < b I a; b 2 Q : then VŒa;b�.!/ D C1 a.s.

Proof. Choose m > 0 and apply Lemma 2 to I D�a; bŒ : then for every ! 2 Cm
there exists U 1! � I such that qU 1! .!/ � m�.U 1!/ and �.U 1!/ � r �.I /.

Now iterate the procedure, that is apply Corollary 1 to
�
I n U 1!

� �
U
1

! is the

closure of U 1!
�
: thus there exists U 2! �

�
I n U 1!

�
with qU 2! .!/ � m�.U 2!/ and

�.U 2!/ > r �
�
I n U 1!

�
.

At the .kC1/-th step, we have a subset U kC1
! of

�
I n .U 1! [ : : : [ U k!/

�
such

that �.U kC1
! / > r �

�
I n �U 1! [ : : : [ U k!

��
and q

U
kC1
!

.!/ � m�.U kC1
! /.

Call V k! D U 1! [ : : : [ U k! , then V k! 2 U and

qV k!
.!/ � m�.V k! /

Moreover, by induction �.I n V k!/ � .1� r/k.b � a/ and therefore

sup
k

qV k!
.!/ � m lim

k
�.V k! / D m.b � a/

Now, the intersection C D T
m2IN Cm has probability one and any ! 2 C

satisfies
VŒa;b�.!/ � m.b � a/ 8m 2 IN

whence the thesis.

If NŒa;b� is the null-set
˚
! 2 ˝ˇˇVŒa;b�.!/ < C1

�
, then the countable union of

all NŒa;b� with a < b I a; b 2 Q , satisfies the hypothesis of Theorem 1.
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Simulation of a Local Time Fractional
Stable Motion

Matthieu Marouby

Abstract The aim of this paper is to simulate sample paths of a class of symmetric
˛-stable processes. This will be achieved by using the series expansion of the pro-
cesses seen as shot noise series. In our case, as the general term of the series
expansion has to be approximated, a first result is needed in shot noise theory. Then,
this will lead to a convergence rate of the approximation towards the Local Time
Fractional Stable Motion.

Keywords Stable process � Self similar process � Shot noise series � Local time �
Fractional Brownian motion � Simulation

AMS 2000 Subject Classification: Primary 60G18, Secondary 60F25, 60E07,
60G52

1 Introduction

Fractional fields have often been used to model irregular phenomena. The simplest
one is the fractional Brownian motion introduced in [12] then developed in [17].
More recently, many fractional processes have been studied, usually obtained by
a stochastic integration of a deterministic kernel against a random measure (cf.
among others [3, 11, 13, 16] and [4]). Many different simulation methods have
been discussed in the literature, but shot noise series seem to perfectly fit that kind
of problem. Generalized shot noise series were introduced for simulation in [20],
further developments were done in [21] and [22] and a general framework was de-
veloped in [5]. Moreover, a computer study of the convergence rate of LePage series
to ˛-stable random variables has been done in a particular case in [10].

A shot noise series can be seen as:
1X

nD1
� �1=˛
n Vn
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where .Vn/ are i.i.d. random variables and .�n/ are the arrival times of a Poisson
process. Usually, there is no question about the simulation of Vn. In this paper, we
will consider the convergence rate when Vn can not be simulated but only approx-
imated. The quality of the approximation will be allowed to change depending on
its impact on the overall process. Indeed, in a shot noise series representation of
an ˛-stable process, the first terms are the most significant so one has to minimize
the error made in approximating Vn for small n. Moreover, for small n, � �1=˛

n has
infinite q-moments, which means the corresponding terms will need a particular
treatment. For large n, � �1=˛

n is smaller, so it is not as useful to approximate Vn
with the same precision. The convergence rate towards the limiting process will be
shown depending on the approximation of each term of the series.

Subsequently, this result will be applied to study a particular class of processes
which is the main interest of the paper. In network traffic modeling, properties like
self-similarity, heavy tails and long-range dependance are often needed; see for
example [18]. Moreover, empirical studies like [7] have shown the importance of
self-similarity and long-range dependance in that area.

In [6], the authors introduced “fractional Brownian motion local time fractional
stable motion” as a stochastic integration of a non-deterministic kernel against a ran-
dom measure, which will be our main interest in the second part. Here we will call
it Local Time Fractional Stable Motion (LTFSM). This process has been defined as:

Z

˝0

Z

R

l.x; t/.!0/M.d!0; dx/; for t � 0:

In this expression, l is the local time of a fractional Brownian motion of Hurst pa-
rameterH defined on .˝ 0;F 0;P0/. M is a symmetric alpha stable random measure
(see [23] for more details) with control measure P0 	 Leb (Leb being the Lebesgue
measure on R). LTFSM is ˛-stable but also self-similar and its increments are
long-range dependent.

The first step towards understanding LTFSM is naturally to observe its sample
paths. Unfortunately, the above expression does not directly provide a way to obtain
the sample paths. In the case of Brownian motion local time, this process can be
seen as the limit of a discrete random walk with random rewards model. It is not
completely satisfying for a few reasons: first, it only works for H D 1=2, then,
there is no control of the convergence speed rate towards the limit. This is where
the tool that we have developed in the first part will be used. In this paper, we will
study how we can simulate this process by using the expression given in (5.3) in [6],
which can be seen as a shot noise expansion. In fact, up to a multiplicative constant,
LTSFM has the same distribution as:

1X

nD1
� �1=˛
n Vn;

where Vn depends on independent copies of the fractional Brownian motion local
time. Two kind of approximations will be involved: one from the truncation of the
series, the other one from the approximation of the local time which will be dealt
with in more details later.
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The next section is devoted to the shot noise theory results. In the following
part we will see how LTFSM fits in the general frame we have just developed, how
the local time is approximated and we will be able to obtain a convergence rate in
the case of our process. The last section will be devoted to a quick study of our
simulations with a comparison to the random walk with random rewards model that
was introduced in [6] in the case H D 1=2.

2 Shot Noise Series

In this section, some results on shot noise series will be shown, mainly thanks to
Theorem 2.4 in [21].

Assumption 1. Let EK be the space of continuous functions defined on a compact
subset K � R, equipped with the uniform norm denoted by k�kK . For p � 1, we
will denote by k�kK;p the Lp.K/ norm. For ˛ 2 .0; 2/, let us consider the map
h W RC 	EK ! EK with

h.r; v/ D r�1=˛v: (1)

h is a Borel measurable map. Let .�n/n�1 be the arrival times of a Poisson process
of rate 1 in RC and .Vn/n�1 be a sequence of i.i.d. symmetric random variables
of distribution � with value in EK . Let us assume that .�n/n2N and .Vn/n2N are
independent. Moreover we will suppose that for all q � ˛, there existsMq such that
for all n, EŒkVnkqK � �Mq <1.

Proposition 1. Under Assumption 1, the series
P1
nD1 h.�n; Vn/ converges in EK

almost surely.

Proof. The proof of this proposition simply consists in verifying that the series sat-
isfies the assumptions of Theorem 2.4 in [21].

Now that the series
P1
nD1 h.�n; Vn/ has been proved to be convergent in EK ,

it can be considered as a stochastic process defined on the compact set K . Its char-
acteristic function ˚ can be computed. By considering the process .�n; Vn/ as a
marked Poisson process, Poisson process related techniques can be used to prove
the next proposition. Details of the proof will be skipped.

Proposition 2. Under Assumption 1, E 0
K being the dual space of EK , for all y0 2

E 0
K , if ˚ is defined by

˚.y0/ WD E

h
eihy0 ;

P
1

nD1 h.�n;Vn/ii ;

then

˚.y0/ D exp
Z �

ei<y
0;h.r;v/> � 1 � i < y0; h.r; v/ > 1kh.r;v/kK�1

�
dr�.dv/

where � is the distribution of Vn.
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The following proposition, regarding the Lq distance between the sum of the
series and the truncated sum, is proved with inspiration from [14].

Proposition 3. Under Assumption 1, let us consider the shot noise series

Y D
1X

nD1
h.�n; Vn/:

Denote by YN D PN
nD1 h.�n; Vn/: Take q � 2 as defined in Assumption 1. Then,

for N > q=˛ � 1, we have

EŒjY.t/ � YN .t/jq � � Aq

N q. 2�˛
2˛

/
;

where Aq depends only on q throughMq .

Proof. For N < P , let

RN;P .t/ D
PX

nDNC1
h.�n; Vn/.t/:

According to Proposition 1, RN;P converges in EK uniformly almost surely when
P goes to1.

As h.�n; Vn/.t/ D � �1=˛
n Vn.t/ and because Vn.t/ is symmetric and independent

from �n, h.�n; Vn/.t/ is also symmetric. Therefore, Proposition 2.3 in [15] can be
applied to obtain

E

�
max

NC1�n�P jRN;n.t/j
q

�
� 2EŒjRN;P .t/jq�:

Khintchine inequality can now be applied with a little subtlety. Let "n be a se-
quence of i.i.d. Rademacher random variables, independent from everything else.
Thus "nh.�n; Vn/.t/ has the same distribution as h.�n; Vn/.t/ since it is symmet-
ric. Then, Khintchine inequality claims

E

2

4

ˇ
ˇ
ˇ
ˇ̌

PX

nDNC1
"nh.�n; Vn/.t/

ˇ
ˇ
ˇ
ˇ̌

q ˇˇ
ˇ
ˇ̌.h.�n; Vn/.t//n2N

3

5

1=q

� Bq
 

PX

nDNC1
jh.�n; Vn/.t/j2

!1=2

;

where Bq D
p
2
�
� ..qC1/=2/p

�

�1=q
for q � 2. By taking the expected value on both

sides of the inequality, then using Minkowski’s inequality, we obtain
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E

2

4

ˇ
ˇ
ˇ
ˇ
ˇ

PX

nDNC1
h.�n; Vn/.t/

ˇ
ˇ
ˇ
ˇ
ˇ

q
3

5 � Bqq
 

PX

nDNC1
E
�jh.�n; Vn/.t/jq

�2=q
!q=2

: (2)

There is only E
�jh.�n; Vn/.t/jq

�
left to compute. As Vn and �n are independent,

as we can compute EŒ�
�q=˛
n � and as EŒkVnkqK � �Mq <1, we have

E
�jh.�n; Vn/.t/jq

� �Mq

�
�
n � q

˛

�

� .n/
:

These results can be used in (2), leading to

EŒjRN;P .t/jq� � BqqMq

0

@
PX

nDNC1

 
�
�
n � q

˛

�

� .n/

!2=q1

A

q=2

: (3)

Using Stirling formulae

C1X

nDNC1

 
�
�
n � q

˛

�

� .n/

!2=q
�

C1X

nDNC1

1

n2=˛
� ˛

.2 � ˛/N 2=˛�1 ;

which shows us that the series converges. Let us denote

Hn;q D
�
�
n � q

˛

�
nq=˛

� .n/
: (4)

It can be easily proved that supn�NC1Hn;q D HNC1;q . So Hn;q can be bounded
uniformly in n by Hq . So, we obtain

E

"

sup
M�NC1

jRN;M .t/jq
#

� Aq

N q=2.2=˛�1/ ;

with

Aq D 2BqqHqMq

� ˛

2 � ˛
�q=2

:

Letting M go to infinity yields the conclusion. ut
Proposition 3 can be extended on EK equipped with k�kK;p .

Proposition 4. Under the same assumptions as Proposition 3 and for p � 1 and
.N C 1/˛ > q > max.p; 2/, there exists Aq such that

E

h
kY � YNkqK;p

i
� Vol.K/q=p Aq

N q. 2�˛
2˛

/
:
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where Y and YN are defined in Proposition 3.

Proof. According to Hölder’s inequality,

kY � YN kK;p �
 

Vol.K/1�p=q
�Z

K

jY.t/ � YN .t/jq dt
	p=q!1=p

;

where Vol.K/ D R
R

1K . Thanks to Proposition 3 we have

E

h
kY � YN kqK;p

i
� Vol.K/q=p�1

Z

K

Aq

N q=2.2=˛�1/ dt:

ut
The error coming from the truncation is now explicit thanks to the previous

propositions. Unfortunately, the distribution of Vn is not always easy to simulate
or may even be unknown. From now on, we will consider a sequence of random
variables .Wn;k/n�1 such that limk!1Wn;k D Vn in a sense we will define later.
Here, k is the parameter which will control the closeness between Vn and Wn;k.

Next, we will evaluate the distance between the quantities
PP
nDNC1 h.�n; Vn/.t/

and
PP
nDNC1 h.�n;Wn;k/.t/ in Lq for q > 2. Due to the fact that � �1=˛

n has a
finite q-moment if and only if n > q=˛, we will not always be able to compute the
distance between the sums starting at n D 1.

The next two propositions allow us to evaluate the error when approximating
Vn.t/ by Wn;k.t/, knowing their Lq-distance. The main interest in these proposi-
tions is that the distance between Vn and Wn;k is allowed to grow with n. Indeed,

as � �1=˛
n is decreasing with n, the larger n is, the less significant is the distance

between Vn and Wn;k in the overall distance between the two sums.

Proposition 5. Let us have the same assumption as Proposition 3 and take P > N

and ˛.N C 1/ > q � 2. If .Wn;k/n�1 is a sequence of symmetric random variables
with values in the space of bounded functions onK such that there exists a constant
Mq;k with

E

h


Vn �Wn;k




q
K

i
�Mq;kn

qˇ <1;
for ˇ < 1=˛ � 1=2, then

E

2

4

ˇ
ˇ
ˇ
ˇ̌

PX

nDNC1
h.�n; Vn/.t/ � h.�n;Wn;k/.t/

ˇ
ˇ
ˇ
ˇ̌

q
3

5

� A0
qMq;k

�
1

N 2=˛�ˇ�1 �
1

P 2=˛�ˇ�1

	 q
2

where A0
q depends only on q.
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Proof. Let us denote

RN;P .t/ D
PX

nDNC1
h.�n; Vn/.t/ � h.�n;Wn;k/.t/:

In the same way that we have obtained (3) in the proof of Proposition 3, we have

EŒjRN;P .t/jq� � BqqMq;k

0

@
PX

nDNC1

 

nqˇ
�
�
n � q

˛

�

� .n/

!2=q1

A

q=2

:

Using the same definition of Hn;q as we did in (4), and knowing that
supn�NC1Hn;q D HNC1;q . We can denote by Hq the uniform bound in n of
Hn;q . Using well-known series-integral comparison we obtain

EŒjRN;P .t/jq � � A0
qMq;k

�
1

N 2=˛�ˇ�1 �
1

P 2=˛�ˇ�1

	q=2

where A0
q D BqqHq

�
˛

2�˛ˇ�˛
�q=2

. ut
In the same way we had Proposition 4:

Proposition 6. Under the same assumptions as Proposition 5 we have,

E

2

4












PX

nDNC1
h.�n; Vn/� h.�n;Wn;k/












q

K;p

3

5 � Vol.K/q=pA0
q

Mq;k

�
1

N 2=˛�ˇ�1 �
1

P 2=˛�ˇ�1

	 q
2

:

In the next part, we will use these results to obtain an approximation and a con-
vergence rate towards the LFTSM. Propositions 3 and 6 will be used to balance both
types of errors. In this procedure, an appropriately precise approximation of Vn will
be needed to minimize the error between Vn and Wn;k . As stated before, depend-
ing on the values of q and ˛, we will have to consider the first terms in a specific
manner.

3 Application to the Local Time Fractional Stable Motion

In this section, we will apply the results from Sect. 2 to the process defined in the
introduction. Our precise working definition, coming from (5.3) in [6], is up to a
multiplicative constant:

X

n�1
� �1=˛
n Gne

X 02
n =2˛ln.X

0
n; t/; (5)
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where

� .Gn/n�1 is a sequence of i.i.d. standard Gaussian variables
� .X 0

n/n�1 is another one
� .ln/n�1 are independent copies of a fractional Brownian motion local time, each

one defined on some probability space .˝ 0;F 0; P 0/
� .�n/n�1 are the arrival times of a Poisson process of rate 1 on Œ0;1/
.Gn/, .X 0

n/, .ln/ and .�n/ being independent.
But before that, we will have to prove that this process satisfies the required

assumptions.
In fact, this work has to be generalized for functions that are not local times, in

particular for the approximated local times. The required setup is a family fn of
functions satisfying the following assumptions: fn W R	RC ! R are the indepen-
dent copies of a non negative continuous random function on the probability space
.˝ 0;F 0; P 0/, such that for allK � R compact set, denoting the uniform norm k�kK ,
we have for some p > ˛

E
�kfn.x; �/kpK

�

uniformly bounded in x, and fn.�; t/ has its support included in

S�;n D
�

inf
s�t B

H;n
s � �; sup

s�t
BH;ns C �

�
; (6)

where .BH;n/ are independent fractional Brownian motions with Hurst parameter
H defined on the same probability space as fn and � � 0. In the following, we will
consider

Y.t/ D
X

n�1
� �1=˛
n Gne

X 02
n =2˛fn.X

0
n; t/: (7)

Remark 1. The local time of a fractional Brownian motion obviously satisfies the
support condition with � D 0. It satisfies the other condition because ln.x; �/ is a
non decreasing function so that

sup
t2K

ln.x; t/ D ln.x; t0/;

t0 being the upper bound ofK (see for example [9] for more details on local times).
It simply claims E

�kln.x; t/kpK
� � tp0 .

The following lemma is a direct consequence of the support condition so we will
skip its proof.

Lemma 1. Let fn satisfy the assumptions stated above, fn.x; �/ be a continuous
function on K, k�kK being the uniform norm on K . Let Xn be a sequence of i.i.d.
real random variables independent from everything else whose distribution density
is ' with respect to Lebesgue measure. For q > 0, if for all a > 0,
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Z

R

'.x/�q=˛C1e�ax2 <1;

there exists C such that

E

h



'.Xn/�1=˛fn.Xn; �/







q

K

i
� C sup

x2R

�
E

h
kfn.x; �/kqp0

K

i�1=p0

;

for some p0 > 1.
This result still holds if fn.x; �/ is not continuous but bounded and all the other

assumptions are still satisfied.

We will need to apply Lemma 1 with q > ˛ later, but we can not apply it to
process Y because '.x/ D e�x2 is not a suitable density to apply Lemma 1. To
avoid this problem, we will work with a slightly different process, having the same
distribution as Y . Thus, we will see that the processes Y and Y' are identically
distributed, where

Y'.t/ D
X

n�1
� �1=˛
n Gn'.Xn/

�1=˛fn.Xn; t/;

whereXn are i.i.d. random variables, and ' is the density of their distribution which
satisfies for q > 0, for all a > 0,

R
R
'.x/�q=˛C1e�ax2 <1.

Proposition 7. If for some q > 0 and for all a > 0 we have

Z

R

'.x/�q=˛C1e�ax2 <1;

then processes Y' and Y have the same distribution.

This is a direct consequence of Proposition 2 when replacing the distribution �
by its expression. After a quick calculation, we can see that ' has no influence on
the characteristic function as long as Lemma 1 can be applied for some q.

From now on, we will only use

Y.�/ D
X

n�1
� �1=˛
n Gne

2jXnj=˛fn.Xn; �/; (8)

where Xn has a Laplace distribution of parameters .0; 1=2/, i.e. its density is e�2jxj
with respect to the Lebesgue measure on R. The choice of the Laplace distribu-
tion is not at all significant but this distribution is easy to simulate and satisfies the
assumptions required.
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We will now see how we can apply Propositions 1, 4 and 6.

Remark 2. Denote Vn D Gne2jXnj=˛fn.Xn; �/. For K � RC compact,

Mq WD EŒkVnkqK � <1:

Indeed, by independence of the variables,

Mq D EŒjGnjq�E
h
e
2jXnjq
˛ kfn.Xn; t/kqK

i
;

and the last expectation can be bounded using Lemma 1.

Proposition 8. Let K � RC denote a compact set. The series defining the pro-
cess Y in (8) converges uniformly onK .

Proof. The proof of this proposition simply consists in verifying that Y satisfies the
assumptions of Proposition 1. We only have to check that EŒkVnk˛K � is bounded,
which is the point of the above remark.

Using Remark 2 and Proposition 4, the following corollary is obtained.

Corollary 1. For K � RC compact, there exists a constant C such that for p > 0

and P.˛ C 1/ > q > max.p; 2/

E

h
kY � YP kqK;p

i
� C

P q.
2�˛
2˛

/
:

Now, let us study the non-truncated terms. Denoting

gn;k.x; t/ D
Z

R

'k.y � x/ln.y; t/dy;

where .'k/k is an approximate identity with support in Œ�1=k; 1=k�. We will use
'.x/ D � jxj C 1 on Œ�1; 1�, ' D 0 elsewhere. We will denote 'k.x/ D k'.kx/.
We can rewrite gn;k as

gn;k.x; t/ D
Z t

0

'k.B
H;n
s � x/ds;

where BH;ns is the fractional Brownian motion from which ln.x; t/ is defined. gn;k
is the theoretical approximation of the fractional Brownian motion local time. The
Dirac function in the classical occupation formula density has been replaced by an
approximate identity. We will now denote In;k the discretisation of this integral
calculated with the rectangle method usingmn;k points uniformly spread on Œ0; T �.

In;k.x; t/ D T

mn;k

Œmn;k t=T �X

iD0
'k

�
B
H;n
iT
mn;k

� x
	
;
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where Œx� is the floor function. Vn.�/ D Gne
2jXn j=˛ln.Xn; �/ will be approximated

by Wn;k.�/ D Gne2jXnj=˛In;k.Xn; �/:
In the following, C will denote a generic constant.

Proposition 9. Let K denote a compact subset of RC. For q > 0, for ˇ < 1=˛ �
1=2, for all ı < 1

2H
� 1

2
, if we take mn;k D max.Œk

ıC2

ı0 n� ˇ

ı0 �; 1/ with ı0 < H ,
there exists C such that:

E

h

Vn �Wn;k


q
K

i
� Cnqˇ

kqı
:

Proof. In this proof .!/ will denote a generic random variable with finite moments
of all order.

According to Lemma 1,

E

h


Vn �Wn;k




q
K

i
� C sup

x2R

�
E

h


ln.x; �/ � In;k.x; �/




qp0

K

i�1=p0

; (9)

Let us write

ln.x; t/ � In;k.x; t/ D .ln.x; t/ � gn;k.x; t//C .gn;k.x; t/ � In;k.x; t//:

First, consider ln.x; t/ � gn;k.x; t/ D
R

R
'k.y � x/.ln.x; t/ � ln.y; t//dy. As the

fractional Brownian motion is locally non-deterministic, we can apply Theorem 4
in [19], in order to have for all ı < 1

2H
� 1
2

, there exists .!/ > 0 such that

ˇ
ˇln.x; t/ � gn;k.x; t/

ˇ
ˇ � .!/

kı
: (10)

The random variable .!/ has finite moments of all orders (see for example [25]).
Now, consider

gn;k.x; t/ � In;k.x; t/

D
Œmn;k t=T �X

iD1

Z iT=mn;k

.i�1/T=mn;k

�
'k.B

H;n
s � x/ � 'k

�
B
H;n
.i�1/T
mn;k

� x
		

ds

C
Z t

h
mn;kt

T

i
T

mn;k

'k.B
H;n
s � x/ds � T

mn;k
'k

 

B
H;nh
mn;kt

T

i
T

mn;k

� x
!

: (11)

Remark that 'k is k2-Lipschitz, and that for ı0 < H

sup
s;t2K

ˇ̌
ˇBH;nt � BH;ns

ˇ̌
ˇ

jt � sjı0
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has finite moments of all order. Consequently, using that bound in (11) yields

ˇ
ˇgn;k.x; t/ � In;k.x; t/

ˇ
ˇ � k2.!/

mı
0

n;k

: (12)

Combining (10) and (12) and by takingmn;k D Œk
ıC2

ı0 n� ˇ

ı0 �with ˇ < 1=˛�1=2,
there exists .!/ with finite moments of all order such that

ˇ
ˇln.x; t/ � In;k.x; t/

ˇ
ˇ � .!/nˇ

kı
: (13)

Using the bound (13) in (9) concludes. Note that .!/ may depend on n but its
expectation EŒ.!/� is non-increasing with n.

Using Proposition 6, we get

Corollary 2. For p > 0 and .N C 1/˛ > q > max.p; 2/, for ˇ < 1=˛ � 1=2, for

all ı < 1
2H
� 1
2

, if we take mn;k D Œk
ıC2

ı0 n� ˇ

ı0 � with ı0 < H , there exists C such
that

E

2

4












PX

nDNC1
h.�n; Vn/ � h.�n;Wn;k/












q

K;p

3

5 � C

kqı
1

N q.2=˛�ˇ�1/=2 :

For the last part of this section, let us recall some notations. YN is defined by

YN .t/ D
NX

nD1
� �1=˛
n Gne

2jXnj=˛ln.Xn; t/;

and YN converges uniformly almost surely on every compact towards Y.t/ D
limN!1 YN .t/. Let us denote

ZN;k D
NX

nD1
� �1=˛
n Gne

2jXnj=˛In;k.Xn; t/: (14)

We will consider P

�

Y �ZP;k



K;p

> 3�
�

for .P C 1/˛ > .N C 1/˛ > q >

max.p; 2/ � p � 1.

P

�

Y �ZP;k



K;p

> 3�
�
< P

�kY � YP kK;p > �
�

C P

�


.YP � YN /� .ZP;k �ZN;k/





K;p

> �
�

C P

�


YN �ZN;k





K;p

> �
�
:
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Corollaries 1 and 2 combined with Markov’s inequality allow us to evaluate
without any difficulties both

P
�kY � YP kK;p > �

� � C

�qP q.1=˛�1=2/ (15)

and

P

�


.YP � YN / � .ZP;k �ZN;k/





K;p

> �
�
<

C

�qkqıN q.1=˛�ˇ=2�1=2/ : (16)

Now, we must study the remaining terms h.�n; Vn/� h.�n;Wn;k/ for n � N .
Denote

� 0
n;k.t/ D � �1=˛

n Gne
2jXnj=˛.ln.x; t/ � gn;k.x; t//;

and

� 00
n;k.t/ D � �1=˛

n Gne
2jXnj=˛.gn;k.x; t/ � In;k.x; t//:

Since
PN
nD1 � 0

n;k
C � 00

n;k
D YN .t/ �ZN;k.t/, we have

P

�


YN �ZN;k





K;p

> �
�
�

NX

nD1
P

�




� 0
n;k







K;p

>
�

2N

	

C
NX

nD1
P

�




� 00
n;k







K;p

>
�

2N

	
: (17)

By conditioning with respect to .Gn; Xn; .B
H;n
t /t�0/, we have

P

�



� 0
n;k






K;p

>
�

2N

	

D E

�
P

�
�n <

�
2N

�
jGnj e2jXnj=˛ 

ln � gn;k





K;p

	˛ ˇˇ
ˇ
ˇ.B

Hn ; Gn; Xn/

	�
:

Then, given the density of the distribution of �n and the bound obtained in (10), the
following inequality is obtained:

P

�



� 0
n;k






K;p

>
�

2N

	
� N ˛C

�˛k˛ı
: (18)

The bound obtained in inequality (12) is still true if mn;k is a random variable
only depending on �n but the bound also depends on �n. For n � N settingmn;k D
Œ�

�1=.ı0˛/
n k

2Cı

ı0 � we have
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E

"
�

�q=˛
n

m
ı0q

n;k

#

� C

kq.ıC2/ ;

so we can apply Markov’s inequality on the last term using inequality (12). It
leads to

P

�




� 00
n;k







K;p

>
�

2N

	
� .2N /qC

�qkqı
: (19)

Once these remarks have been made, we can combine these inequalities to obtain
a convergence rate. But first, we must tune the parameters to balance the errors and
obtain a manageable expression.

Tuning procedure 2. We want to approximate process Y with parameters .H; ˛/
by a family .ZP";k"/">0, ZP";k" being a truncated series. In this tuning procedure,
the parameters will be set equal to their bounds for the sake of simplicity.

We can adjust two parameters: P" is the size of the truncation and k" controls
the approximation of the fractional Brownian motion local time approximation. We
will make two kinds of errors, one coming from the truncation itself, and one from
the approximation of the local time.

The error from the truncation can be controlled if we take P" � C"� 2˛
2�˛ in

inequality (15).
The approximation error has two sources: our theoretical approximation of the

local time, and the discretisation used to compute the approximation.
We can deal with the first one by taking k" � C"�1=ı in inequalities (16), (18)

and (19) where ı D 1=.2H/ � 1=2 comes from the Hölder continuity of the frac-
tional Brownian motion local time.

After P , we have to fix N . According to our analysis, we must choose N >

q=˛�1, but otherwise, by combining equations (16), (18) and (19),N is not allowed
to vary with ". Then, N will be a constant later set with computer tests.

Let us recall that mn;k" is the number of points used in the discretisation. In
the series defining Y , the first terms are the most important. We distinguish two

cases. The first N terms, where mn;k is random: mn;k D Œ�
�1=.ı0˛/
n k

2Cı

ı0

" �, where
ı0 D 1=H comes from the Hölder continuity of the fractional Brownian motion. For
the remaining terms, a high level of precision is not as important, so we will need

fewer points in our discretisation. Thus, mn;k D Œk
ıC2

ı0 n� ˇ

ı0 � with ˇ D 1=˛ � 1=2.

Remark 3 (Computational Cost). We will compute the expected value of the com-
putational cost. The predominant operation in the algorithm is the computation of
the fractional Brownian motions. There is P computations of a fractional Brownian
motion, each one needing mn;k logmn;k operations (using the Davies–Harte algo-
rithm introduced in [8]). Using the parameters given in the Tuning procedure 2, the
overall computational cost is

"� ıCı0
�ˇ

ıı0 D "� 2H2.3˛HC2˛�2/
2˛.1�H/ :
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Theorem 3. With Tuning procedure 2, we get a convergence rate for the family of
processes ZP";k" defined in (14). For p � 1 and q � ˛ there exists C and C 0 such
that

P
�

Y �ZP";k"




K;p

> �
�
� C

� "
�

�˛ C C 0
� "
�

�q

with P" � C1"� 2˛
2�˛ , k" � C2"�1=ı and mn;k" as defined in the tuning procedure

Using the same tuning procedure, we have

Theorem 4. Under the assumptions of Theorem 3, ZP";k" converges almost surely
in Lp.K/ towards Y when " tends to 0.

Proof. In the following, take q � 2 and N > q=˛� 1. Using Minkowski’s inequal-
ity, we obtain

E

h


.Y.t/ � YN .t// � .ZP";k" �ZN;k" /




q
K;p

i1=q

� E

h
k.Y � YP"/kqK;p

i1=q C E

h


.YP" � YN / � .ZP";k" �ZN;k" /




q
K;p

i1=q
:

Thanks to Corollaries 1 and 2, using the expression of P", k" and mn;k given in
Tuning procedure 2, we get each term bounded by C". Thus, we can say that

E

h

.Y � YN / � .ZP";k" �ZN;k" /


q
K;p

i1=q � C": (20)

Inequality (20) and Borel-Cantelli lemma implyZP";k"�ZN;k" converges almost
surely towards Y � YN in Lp.K/. We only have to prove ZN;k" converges almost
surely towards YN inLp.K/. But according to (13), using k" andmn;k" as defined in
the Tuning procedure,




ln.x; t/ � In;k.x; t/





K;p

converges almost surely towards 0
so YN �ZN;k" too since only a finite number of terms is considered. Consequently,
YN �ZN;k" converges almost surely to 0 in Lp.K/. ut

4 Simulation

In [6], the authors explained how to simulate the Brownian motion local time stable
motion with a random walk with random rewards approach. They are many advan-
tages of our approach against the random walk with random rewards approach. The
most obvious is that it is valid for all Hurst parameters and not only H D 1=2.
Moreover, we have already highlighted that we have a convergence rate, which was
not the case previously.

Unfortunately, as one can see in our tuning procedure, the parameters we use,
namely P" andmn;k" , depend on ˛ andH . If ˛ is close to 2, the number of terms P
in the sum is too high to be accepted and if H is close to 1, the precision needed
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Fig. 1 Trajectory of Y for H D 0:3 and ˛ D 1:2

in the simulation of the fractional Brownian motion is impossible to achieve. To be
more precise, a run of this program can take from seconds (H and ˛ close to 0)
to several hours (H or ˛ close to their upper bounds). Even if this method is not
perfect for all values of H and ˛, it is still a major improvement since we can have
sample paths for different values ofH with a convergence rate. See for example one
simulation in Fig. 1.

Those sample paths were obtained by a program written in C. To calibrate the
tuning procedure, we must choose all the constants. ı, ı0 and ˇ are chosen equals to
their bounds. The minimum number of points obtained when simulating a fractional
Brownian motion is 1;000, so the same minimal number is used to compute the
numerical integration. The choice ofN does not change the theoretical convergence
rate we had in the previous section. After a testing period,N was fixed arbitrarily at
1;000.

The fractional Brownian motion is simulated using the Davies–Harte algorithm
(see [8, 24]). The Gaussian random variables are simulated using the FL algorithm
(see [2]). Random variables �n and Xn were simulated using exponential random
variables (�n is the sum of n exponential random variables and Xn the difference
of two exponential random variables). Exponential random variables were obtained
using SA algorithm (see [1]).

According to Theorem 5.1 in [6], the Hölder exponent d of our process is such
that d < 1 �H . It means that the closer to 1 H is, the less regular our process is.
See Fig. 2 for sample paths with different values of H and ˛ constant.

Let us make a more convincing comparison of the two ways we have used to
simulate this process. We must take H D 1=2, so that both methods can be used.
A straightforward computation from the result of Proposition 2 in the case ˛ D 1

yields the following characteristic function,
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Fig. 2 Trajectories of Y for H D 0:2, H D 0:4 and H D 0:6 with ˛ D 0:7
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Fig. 3 Plots of log.E
�
eiuY.t/

�
/ with respect to t . Shot noise series method on the first line, and

the random walk method on the second

E

h
eiuY.t/

i
D exp .C juj t/ :

Thus, we are going to check the logarithm of the empirical expectation of this
process using the two different methods and see which one is the closest to a straight
line. This is done by simulating 10;000 processes using each method, then comput-
ing the empirical expectation and taking the logarithm, i.e.:
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log

 
1

10000

10000X

kD1
eiuYk.t/

!

:

Note that the 10;000 simulations of the process require around forty hours.
The result is shown in Fig. 3, the first one being the method developed in this
paper, the second the random walk with random rewards method. Notice that the
shot noise series method yields a graph closer to a straight line than the random
walk method. The scale is very different because in each method, the process is
simulated up to a multiplicative constant and the constants from both methods are
completely different.

Thus we can conclude that even if the random walk method seems a bit quicker,
not only has our method the advantage of being able to consider theH ¤ 1=2 case,
it is also closer to what is theoretically expected.
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21. Rosiński, J.: On series representations of infinitely divisible random vectors. Ann. Probab.

18(1), 405–430 (1990)
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Convergence at First and Second Order of Some
Approximations of Stochastic Integrals

Blandine Bérard Bergery and Pierre Vallois

Abstract We consider the convergence of the approximation schemes related to
Itô’s integral and quadratic variation, which have been developed in Russo and
Vallois (Elements of stochastic calculus via regularisation, vol. 1899, pp. 147–185,
Springer, Berlin, 2007). First, we prove that the convergence in the a.s. sense exists
when the integrand is Hölder continuous and the integrator is a continuous semi-
martingale. Second, we investigate the second order convergence in the Brownian
motion case.

Keywords Stochastic integration by regularization � Quadratic variation � First and
second order convergence � Stochastic Fubini’s theorem

2000 MSC: 60F05, 60F17, 60G44, 60H05, 60J65

1 Introduction

We consider a complete probability space .˝;F ;Ft ; P /, which satisfies the usual
hypotheses. The notation (ucp) will stand for the convergence in probability, uni-
formly on the compact sets in time.

1. Let X be a real continuous .Ft /-semimartingale. In the usual stochastic calculus,
the quadratic variation and the stochastic integral with respect to X play a central
role. In [11–13], Russo and Vallois extended these notions to continuous processes.
Let us briefly recall their main definitions.

Definition 1. Let X be a real-valued continuous process, .Ft /-adapted, andH be a
locally integrable process. The forward integral

R t
0
Hd�X is defined as

Z t

0

Hd�X D lim
!0

.ucp/
1

�

Z t

0

Hu .XuC � Xu/ du;
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if the limit exists. The quadratic variation is defined by

ŒX�t D lim
!0

.ucp/
1

�

Z t

0

.XuC �Xu/
2 du

if the limit exists.

In the article, X will stand for a real-valued continuous .Ft /-semimartingale and
.Ht /t>0 for an .Ft /-progressively measurable process. If H is continuous, then,
according to Proposition 1.1 of [13], the limits in (1) exist and coincide with the
usual objects. In order to work with adapted processes only, we change uC � into
.u C �/ ^ t in the above integrals. This change does not affect the limit (cf. (3.3)
of [10]). Consequently,

Z t

0

HudXu D lim
!0

.ucp/
1

�

Z t

0

Hu
�
X.uC/^t �Xu

�
du; (1)

and

hXit D lim
!0

.ucp/
1

�

Z t

0

�
X.uC/^t �Xu

�2
du (2)

where
R t
0
HudXu is the usual stochastic integral and hXi is the usual quadratic vari-

ation of X .

2. First, we determine sufficient conditions under which the convergences in (1)
and (2) hold in the almost sure sense. Let us mention that some results in this direc-
tion have been obtained in [2] and [5].

We say that a process Y is locally Hölder continuous if, for all T > 0, there exist
˛0 2�0; 1� and a finite (random) constant CY such that

jYs � Yuj 6 CY ju� sj˛0 8u; s 2 Œ0; T �; a.s: (3)

Our first result related to stochastic integral is the following.

Theorem 1. If .Ht /t>0 is adapted and locally Hölder continuous, then

lim
!0

1

�

Z t

0

Hu.X.uC/^t �Xu/du D
Z t

0

HudXu; (4)

in the sense of almost sure convergence, uniformly on the compact sets in time.

Our assumption related to .Ht / is simple but too strong as shows item 1 of
Theorem 4 below. In [5], a general result of a.s. convergence of sequences of
stochastic integrals has been given. However it cannot be applied to obtain (4) (see
Remark 2).
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We now consider the convergence of �-integrals to the bracket of X .

Proposition 1. If X is locally Hölder continuous, then

lim
!0

1

�

Z t

0

.X.uC/^t � Xu/
2du D hXit ; (5)

in the sense of almost sure convergence, uniformly on the compact sets in time.
Moreover, if K is a continuous process,

lim
!0

1

�

Z t

0

Ku.X.uC/^t �Xu/
2du D

Z t

0

Kud hXiu; (6)

in the sense of almost sure convergence.

3. Under the assumptions given in Theorem 1, we have an approximation scheme ofZ �

0

HsdXs which converges a.s. According to Remark 1, the (a.s.) rate of conver-

gence of is of order �˛, whenX has a finite variation andH is ˛-Hölder continuous.
Therefore, it remains to determine the rate of convergence when X is a local mar-
tingale. This leads to introduce

�.H; t/ D 1p
�

�
1

�

Z t

0

Hu.X.uC/^t �Xu/du �
Z t

0

HudXu

�
; t � 0 (7)

whereH is a progressively measurable and locally bounded process.
In order to study the limit in distribution of the family of processes

�
�.H; t/;

t � 0� as � ! 0, a two-steps strategy has been adopted. First, we consider the case
where X D H D B and B denotes the standard Brownian motion. Second, using
a functional theorem of convergence we determine the limit of

�
�.H; t/; t � 0

�
.

Note that in [2], some related results have been proven.

(a) Suppose that X D H D B . In that case, using stochastic Fubini’s theorem
(cf. relation (39) with ˚ D 1) we have:

�.B; t/ D �W.t/CR1 .B; t/;
where

W.t/ D
Z t

0

G.u/dBu; G.u/ D 1

�
p
�

Z u

.u�/C
.Bu � Bs/ds; (8)

and

R1 .B; t/ WD
1p
�

Z t^

0

� s
�
� 1�BsdBs:

From Lemma 6, the process R1 .B; �/ does not contribute to the limit since

R1 .B; �/
.ucp/���! 0, as � ! 0. Therefore, the convergence of �.B; �/ reduces to

the one of W. We determine, more generally, in Theorem 2 below the limit of the
pair

�
W; B

�
.



244 B.B. Bergery and P. Vallois

Theorem 2. .W.t/; Bt /t>0 converges in distribution to .�Wt ; Bt /t>0, as � ! 0,
where W is a standard Brownian motion, independent from B , and �2 D 1

3
.

(b) We now investigate the convergence of .�.H; t//t>0. We restrict ourselves to
processesH of the type Ht D H0 CMt C Vt where:

1. H0 is F0-measurable.

2. Mt is a Brownian martingale, i.e.Mt D
Z t

0

�sdBs , where .�t / is progressively

measurable, locally bounded and is right-continuous with left-limits.
3. V is a continuous process, which is Hölder continuous with order ˛ > 1=2,

vanishing at time 0.

Note that if Vt D
Z t

0

vsds, where .vt /t>0 is progressively measurable and locally

bounded, then above condition 3 holds with ˛D 1 and in that case, .Ht / is a semi-
martingale.

As for X , we assume that it is a Brownian martingale with representation:

Xt D
Z t

0

˚.u/dBu; t � 0 (9)

where .˚.u// is predictable, locally bounded and right-continuous at 0.
From now on,

.Wt / denote a standard Brownian motion independent from .Bt /,
and

� WD 1p
3
:

Using functional results of convergence (Proposition 3.2 and Theorem 5.1 in [4])
and Theorem 2, we obtain the following result.

Theorem 3. 1. For any 0 < t1 < � � � < tn, the random vector .�.H0; t1/;
: : : ; �.H0; tn// converges in law to �H0˚.0/

�
N0; � � � ; N0

�
, whereN0 is a stan-

dard Gaussian r.v, independent from F0.
2. If V is a process which is locally Hölder continuous of order ˛ > 1

2
, then

�.V; t/ converges to 0 in the ucp sense as � ! 0.

3. IfMt D
Z t

0

�sdBs, then the process .�.M; t//t>0 converges in distribution to

.�
R t
0
�u˚.u/dWu/t>0 as � ! 0.

4. If H0 D 0, M and V are as in points .2/ � .3/ above, then .�.M C V; t//t>0
converges in law to .�

R t
0
�u˚.u/dWu/t>0 as �! 0.

Let us discuss the assumptions of Theorem 3. As for item 2, the conclusion is false
if ˛ � 1=2. Indeed, if we take Vt D Bt then, t 7! Vt is ˛-Hölder with ˛ <1=2,
however, as shows Theorem 2, the limit of

�
�.V; t/

�
equals .�Wt / and is not null.

It is likely too strong to suppose that .Ht / is a semimartingale: we can show (see
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Proposition 2 below) that
�
�.H; t/; t � 0

�
converges in distribution where Ht D

h.Bt / and h is only supposed to be of class C 1. Note that in this case .Ht / is
a Dirichlet process. However, if .Ht / is a stepwise and progressively measurable
process then, we have the convergence in law of the finite dimensional distributions
of
�
�.H; t/; t � 0

�
but this family of processes does not converge in distribution

(see Theorem 4 below).
Next, we consider the convergence of �.h.B/; �/ for a large class of functions

h. A function h W R ! R is said to subexponential if there exist C1; C2 > 0 such
that

jh.x/j � C1eC2jxj; x 2 R: (10)

Proposition 2. Suppose that h is a function of class C 1 such that h.0/ D 0 and h0
is subexponential. Then,

�
�.h.B/; t/; t � 0

�
converges in distribution as � ! 0

to
�
�

Z t

0

h0.Bs/˚.s/dWs; t � 0
�
.

According to Exercise 3.13, Chap. V in [8] we have:

h.Bt / D E
�
h.Bt /

�C
Z t

0

H.t; s/dBs ; t � 0

whereH.t; s/ D '.t; s; Bs/ and '.t; s; x/ WD E�h0.x C Bt�s/
�
.

Consequently
�
H.t; s/; 0 � s � t

�
is progressively measurable but depends

on t , therefore item 3 of Theorem 3 cannot be applied.

(c) We now focus on the case where .Ht / is a stepwise and progressively measur-

able process. We study the a.s. convergence of
1

�

Z �

0

Hu
�
X.uC/^t �Xu

�
du towards

Z �

0

HudXu and the convergence in distribution of�.H; �/ as � goes to 0.

Theorem 4. Let .ai /i2N be an increasing sequence of real numbers which satisfies
a0 D 0 and an ! 1. Let h; .hi /i2N be r.v.’s such that hi is Fai -measurable, h is
F0-measurable. Let H be the progressively measurable and stepwise process:

Ht D h1ftD0g C
X

i>0
hi1ft2�ai ;aiC1�g:

1. Suppose that X is continuous, then,
1

�

Z t

0

Hs.X.sC/^t � Xs/ds converges al-

most surely to
Z t

0

HsdXs, uniformly on the compact sets in time, as � ! 0.

2. Suppose h D 0 and X is defined by (9). Associated with a sequence .Ni /i2N of
i.i.d. r.v’s with Gaussian law N .0; 1/, independent from B consider the piece-
wise and left-continuous process:

Zs WD �
�
h0˚.0/N01f0<s�a1gC

X

i�1
.hi�hi�1/˚.ai /Ni1fai<s�aiC1g

�
; s > 0

and Z0 D 0.
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Suppose that ˚ is right-continuous at any point ai . Then, for any fixed times
0 � s1 < � � � < sn,

�
.Bs; s � 0/;

�
�.H; s1/; � � � ; �.H; sn/

��

converges in law to
�
.Bs ; s � 0/;

�
Zs1 ; � � � ; Zsn

��
as � ! 0.

A weak version of Theorem 4 has been given in Sect. 6.3 of [1].
Note that the family of processes

�
�.H; t/; t � 0

�
cannot converge in the

Skorokhod space to a right continuous process
�
Z0.t/; t � 0

�
. Indeed, according

to Theorem 4, the map t 2�0; a1Œ7! Z0.t/ should be constant and not null. This
contradicts the fact that Z0.0/ D 0.

In [13], convergence in distribution of sequences of stochastic integrals are con-
sidered. We discuss in Remark 4 the link between Rootzen’s result and ours.

4. Let us finally present our result of convergence in distribution related to the
quadratic variation.
Let us consider

�.2/ .K; t/ D 1p
�

�
1

�

Z t

0

Ku.B.uC/^t � Bu/
2du �

Z t

0

Kudu

�
; (11)

where.Ks/ is locally bounded and progressively measurable.

Proposition 3. Let .Ks/ be a predictable, right-continuous with left limits and
locally bounded process. Then, .�.2/ .K; t//t>0 converges in distribution to
.2�

R t
0
KudWu/t>0, as �! 0.

5. Let us briefly detail the organization of the paper. Section 2 contains the proofs of
the almost convergence results, i.e. Theorem 1 and Proposition 1. Then, the proof of
Theorem 2 (resp. Propositions 2, 3 and Theorems 3, 4) is (resp. are) given in Sect. 3
(resp. Sect. 4).

In the calculations, C will stand for a generic constant (random or not). We will
use several times a stochastic version of Fubini’s theorem, which can be found in
Sect. IV.5 of [8].

2 Proof of Theorem 1 and Proposition 1

We begin with the proof of Theorem 1 in Points 1–4 below. Then, we deduce
Proposition 1 from Theorem 1 in Point 5.
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1. Let T > 0. We suppose that .Ht /t>0 is locally Hölder continuous of order ˛0 and
we study the almost sure convergence of

I.t/ WD 1

�

Z t

0

Hu.X.uC/^t � Xu/du to I.t/ WD
Z t

0

HudXu;

as �! 0, uniformly on t 2 Œ0; T �.
By stopping, we can suppose that .Xt /06t6T and hXiT are bounded by a

constant.
Let X D X0 C M C V be the canonical decomposition of X , where M is a

continuous local martingale and V is an adapted process with finite variation. It is
clear that I.t/ � I.t/ can be decomposed as

I.t/ � I.t/ D
�
1

�

Z t

0

Hu.M.uC/^t �Mu/du �
Z t

0

HudMu

	

C
�
1

�

Z t

0

Hu.V.uC/^t � Vu/du �
Z t

0

HudVu

	
:

Then, Theorem 1 will be proved as soon as I.t/ � I.t/ converges to 0, in the
case whereX is either a continuous local martingale or a continuous finite variation
process.

We deal with the finite variation case resp. the martingale case in Point 2 resp.
Points 3, 4.

2. Suppose that X has a finite variation, writingX.uC/^t �Xu D
R .uC/^t

u dXs and
using Fubini’s theorem yield to:

I.t/ � I.t/ D
Z t

0

�
1

�

Z s

.s�/C
Hudu �Hs

	
dXs;

D
Z t

0

�
1

�

Z s

.s�/C
.Hu �Hs/du

	
dXs �

Z t^

0

� � s
�

HsdXs:

Using the Hölder property (3) (in the first integral) and the fact that H is bounded
by a constant (in the second integral), we have for all t 2 Œ0; T �:

jI.t/ � I.t/j 6
Z T

0

�
1

�

Z s

.s�/C
CH ju � sj˛du

	
d jX js C

Z 

0

� � s
�

C d jX js

6 CH �
˛ jX jT C C.jX j � jX j0/: (12)

Consequently, I.t/ � I.t/ converges almost surely to 0, as � ! 0, uniformly on
any compact set in time.
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Remark 1. Note that (12) implies that:

sup
0�t�T

ˇ̌
ˇ
Z t

0

Hs
X.sC/^t �Xs

�
ds �

Z t

0

HsdXs

ˇ̌
ˇ � C�˛

when .Ht / is ˛-Hölder continuous and X has finite variation.

3. In the two next points, X is a continuous martingale. We prove that there is a
sequence .�n/n2N such that:

lim
n!1 sup

t2Œ0;T �
jIn.t/ � I.t/j D 0; a:s: (13)

We proceed as in step 2 above: observing that X.uC/^t � Xu D
R .uC/^t

u dXs and
using Fubini’s stochastic theorem come to

I.t/ � I.t/ D
Z t

0

�
1

�

Z s

.s�/C
Hudu�Hs

	
dXs: (14)

Thus, .I.t/� I.t//t2Œ0;T � is a continuous local martingale. Moreover,E.hI� I it /
is bounded since H and hXi are bounded on Œ0; T �.

Let us introduce p D 2.1�˛/
˛2
C1. This explicit expression of p in terms of ˛ will

be used later at the end of Point 4. Burkhölder–Davis–Gundy inequalities give:

E

 

sup
t2Œ0;T �

jI.t/�I.t/jp
!

6 cpE

2

4
 Z T

0

�
1

�

Z s

.s�/C
Hudu �Hs

	2
d hXis

!p
2

3

5 :

The Hölder property (3) implies that:

ˇ
ˇ
ˇ
ˇ
1

�

Z s

.s�/C
Hudu �Hs

ˇ
ˇ
ˇ
ˇ 6 1

�

Z s

s�
jHu �Hs jdu 6 CH �

˛ ; � 6 s;

ˇ̌
ˇ
ˇ
1

�

Z s

.s�/C
Hudu �Hs

ˇ̌
ˇ
ˇ 6 1

�

Z s

0

jHu �Hs jduC � � s
�
jHsj 6 C�˛; s < �:

(a) Suppose that in (3), CH � C for some C . Consequently,

sup
0�s�T

ˇ
ˇ
ˇ
ˇ
1

�

Z s

.s�/C
Hudu �Hs

ˇ
ˇ
ˇ
ˇ � C�˛ (15)

and

E

 

sup
t2Œ0;T �

jI.t/ � I.t/jp
!

6 C�˛pEŒhXiT �p2 6 C�˛p:
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Then, for any ı > 0, Markov inequality leads to:

P

 

sup
t2Œ0;T �

jI.t/ � I.t/j > ı
!

6 C�˛p

ıp
: (16)

Let us now define .�n/n2N? by �n D n� 2
p˛ for all n > 0. Replacing � by �n

in (16) comes to:

P

 

sup
t2Œ0;T �

jIn.t/ � I.t/j > ı
!

6 C

ıp
n�2:

Since
1X

nD1
n�2 <1, the Borel-Cantelli lemma implies (13).

(b) Using localization and Lemma 1 below we can reduce to the case where CH is
bounded by a constant. Then (13) holds.

Lemma 1. Let .Yt / be an adapted process and locally Hölder continuous with
index ˛. Then for any ˇ 2�0; ˛Œ there exists a continuous and adapted process�
Lip.Y; t/

�
such that

jYu � Yvj � Lip.Y; t/ju � vjˇ ; u; v 2 Œ0; t �:

Proof (Proof of Lemma 1). Set:

Lip.Y; t/ WD sup
0�u;v�t

jeY .u; v/j; t � 0

where eY .u; v/ WD Yu � Yv
ju� vjˇ when u 6D v and 0 otherwise.

Lemma 1 follows from the continuity of eY . ut

4. For all � 2�0; 1Œ, let n D n.�/ denote the integer such that � 2��nC1; �n�. Then,
we decompose I.t/ � I.t/ as follows:

I.t/ � I.t/ D .I.t/ � In.t//C .In.t/ � I.t//:

From (13), Theorem 1 is proved if

lim
!0

sup
t2Œ0;T �

jIn.t/ � I.t/j D 0; a:s: .n D n.�//: (17)
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From the definition of I.t/, it is easy to deduce that we have:

I.t/ � In.t/ D
1

�

�Z t

0

HuX.uC/^tdu �
Z t

0

HuX.uCn/^tdu

	

C
�
1

�
� 1

�n

	�Z t

0

Hu.X.uCn/^t � Xu/du

	
:

The changes of variable either v D uC � or v D uC �n lead to

I.t/ � In.t/ D
1

�

Z tC



.Hv� �Hv�n /Xv^tdv (18)

C�n � �
��n

�Z t

n

.Hv�n �Hv/Xvdv
	
CR.t/;

where we gather under the notation R.t/ all the remaining terms. Let us observe
that R.t/ is the sum of terms which are of the form 1



R b
a
: : : dv where ja � bj 6

�n � � or
�
1

� 1
n

� R b
a
: : : dv where ja � bj 6 �n. Since H and X are bounded on

Œ0; T �, we have

jR.t/j 6 C
�n � �
�

8t 2 Œ0; T �: (19)

By Hölder property (3), we get

jHv� �Hv�n j 6 C.�n � �/˛ ; jHv�n �Hvj 6 CH �
˛
n : (20)

Since X andH are bounded, we can deduce from (18), (19) and (20) that:

jI.t/ � In.t/j 6 C

�
.�n � �/˛

�
C .�n � �/�˛n

��n
C � � �n

�

	
; 8t 2 Œ0; T �: (21)

Using the definition of �n, easy calculations lead to:

�n��
�

6 Cn�1;
.�n��/˛

�
6 Cn

2.1�˛/
p˛ �˛;

.�n��/�˛n
��n

6 n� 2
p�1C 2

p˛ 6 n
2.1�˛/
p˛ �˛:

Note that p D 2.1�˛/
˛2
C 1 implies that 2.1�˛/

p˛
� ˛ < 0. As a result, we may deduce

that (17) holds. ut
Remark 2. Let .Ht / be an progressively measurable process. Suppose for simplic-
ity that .Xt / is a local semimartingale. Let .�n/ denote a sequence of decreasing
positive numbers converging to 0 as n ! 1. Applying Theorem 2 in [5] to (14)
gives the a.s. convergence of sup

0�u�T

ˇ̌
In.u/� I.u/

ˇ̌
to 0 as n!1, provided that

X

n�1

 

sup
0�u�T

ˇ
ˇ
ˇHu � 1

�n

Z u

.u�n/C
Hrdr

ˇ
ˇ
ˇ

!2
<1; a:s: (22)
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Suppose that .Ht / is locally Hölder with index ˛. According to (15), relation (22)
holds if

X

n�1
�˛n < 1. To simplify the discussion suppose that �n D 1=n�, with

� > 0. Obviously, the previous sum is finite if and only if �˛ > 1.
Note that inequality (21) permit to prove the a.s. of In.u/ as soon as

lim
n!1

.�n � �/˛
�

D lim
n!1

.�n � �/�˛n
��n

D lim
n!1

� � �n
�
D 0:

Since � varies in Œ�nC1; �n�, then

.�n � �/˛
�

� .�n � �nC1/˛

�nC1
:

It is easy to prove that

.�n � �nC1/˛

�nC1
� �˛

n.1C�/˛�� ; n!1:

Therefore � has to be chosen such that .1 C �/˛ � � > 0, i.e. � <
˛

1 � ˛ . Recall

that � > 1=˛, then
1

˛
<

˛

1 � ˛ . This condition is equivalent to ˛ > ˛0 WD
p
5 � 1
2

.

This inequality is not necessarily satisfied since it is only supposed that ˛ belongs
to �0; 1Œ. Finally, our Theorem 1 is not a consequence of Theorem 2 of [5].

5. In this item X is supposed to be a locally Hölder continuous semimartingale.
Note that replacing X by X � X0 does not change (5). Therefore we may suppose
that X0 D 0.

It is clear that 1


R t
0 .X.uC/^t �Xu/

2du equals

1

�

�Z t

0

X2.uC/^tdu �
Z t

0

X2u du � 2
Z t

0

Xu.X.uC/^t � Xu/du

�
:

Making the change of variable v D uC � in the first integral, we easily get:

1

�

Z t

0

.X.uC/^t �Xu/
2du D X2t �

1

�

Z t^

0

X2vdv �
2

�

Z t

0

Xu.X.uC/^t � Xu/du:

Since X is continuous, 1


R t^
0

X2v dv tends to 0 a.s, uniformly on Œ0; T �. Therefore,
it can be deduced from Theorem 1:

lim
!0

1

�

Z t

0

.X.uC/^t � Xu/
2du D X2t � 2

Z t

0

XudXu .a:s:/:

Itô’s formula implies that the right-hand side of the above identity equals to hXit .
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Replacing .u C �/ ^ t by u C � in either (5) or (6) does not change the limit.
Then, identity (5) may be interpreted as follows: the measures 1


.XuC � Xu/

2du
converges a.s. to the measure d hXiu. That implies the almost sure convergence of
1


R t
0 Ku.X.uC/^t �Xu/

2du to
R t
0 Kud hXiu, for any continuous process K . ut

3 Proof of Theorem 2

Recall that W.t/ and G.t/ are defined by (8). We study the convergence in distri-
bution of the two dimensional process .W.t/; Bt /, as � ! 0.

First, we determine the limit in law of W.t/. In Point 1 we demonstrate prelim-
inary results. Then, we prove the convergence of the moments of W.t/ in Point 2.
By the method of moments, the convergence in law of W.t/ for a fixed time is
proven in Point 3. We deduce the finite-dimensional convergence in Point 4. Fi-
nally, Kolmogorov criterion concludes the proof in Point 5. Then, we briefly sketch
in Point 6 the proof of the joint convergence of .W.t//t>0 and .Bt /t>0. The ap-
proach is close to the one of .W.t//t>0.

1. We begin by calculating the moments of W.t/ and G.u/. We denote by
LD the

equality in law.

Lemma 2. E
h
jG.u/j2

i
D .u^/3

3
�2. Moreover, for all k 2 N, there exists a con-

stant mk such that E
h
jG.u/jk

i
6 mk , 8u > 0; � > 0.

Proof. First, we apply the change of variable s D u � .u ^ �/r in (8). Then, using

the identity .Bu �Bu�vI 0 6 v 6 u/
LD .BvI 0 6 v 6 u/ and the scaling property of

B , we get

G.u/
LD .u ^ �/pu ^ �

�
p
�

Z 1

0

Brdr:

Since
R 1
0
Brdr

LD �N , where �2 D 1=3 andN is a standard gaussian r.v, we obtain

E
h
jG.u/jk

i
D .u ^ �/ 3k2

�
3k
2

�kE
h
jN jk

i
: (23)

Taking k D 2 gives E
h
jG.u/j2

i
D .t^/3

3
�2. Using u ^ � 6 � and (23), we get

EŒjG.u/jk� 6 mk with mk D �kE
�jN jk�. ut

Lemma 3. For all k > 2, there exists a constant C.k/ such that

8t > 0; E
h
jW.t/jk

i
6 C.k/ t

k
2 :
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Moreover, for k D 2, we have

E
h�
W.u/�W..u� �/C/

�2i 6 �2�; 8u > 0:

Proof. The Burkhölder-Davis-Gundy inequality and (8) give

E
h
jW.t/jk

i
6 c.k/E

2

4
�Z t

0

.G.u//
2 du

	k
2

3

5 :

Then, Jensen inequality implies:

E

2

4
�Z t

0

.G.u//
2 du

	 k
2

3

5 6 t
k
2

�1E
�Z t

0

jG.u/jk du

�
:

Finally, applying Lemma 2 comes to

E
h
jW.t/jk

i
6 c.k/mk t

k
2 :

The case k D 2 can be easily treated via (8) and Lemma 2:

E
h�
W.u/�W..u � �/C/

�2i D
Z u

.u�/C
E
h
.G.v//

2
i
dv;

D
Z u

.u�/C
�2
.v ^ �/3
�3

dv 6 �2�:

ut
2. Let us now study the convergence of the moments of W.t/.

Proposition 4.

lim
!0

E
h
.W.t//

2n
i
D E

h
.�Wt /

2n
i
; 8n 2 N; t > 0: (24)

Proof. (a) We prove Proposition 4 by induction on n > 1.
For n D 1, from Lemma 2, we have:

E
�
.W.t//

2
� D

Z t

0

E
h
.G.u//

2
i
du D

Z t

0

�2
.u ^ �/3
�3

du:

Then, E
�
.W.t//

2
�

converges to �2t D EŒ.�Wt /2�.
Let us suppose that (24) holds. First, we apply Itô’s formula to .W.t//

2nC2.
Second, taking the expectation reduces to 0 the martingale part. Finally, we get

E
h
.W.t//

2nC2i D .2nC 2/.2nC 1/
2

Z t

0

E
h
.W.u//

2n .G.u//
2
i
du: (25)
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(b) We admit for a while that

E
h
.W.u//

2n .G.u//
2
i
�! �2E

h
.�Wu/

2n
i
; 8u > 0: (26)

Using Cauchy-Schwarz inequality and Lemmas 2, 3 give:

E
h
.W.u//

2n .G.u//
2
i

6
r

E
h
.W.u//

4n
i
E
h
.G.u//

4
i

6
p
C.4n/u2nm4 6

p
C.4n/m4un:

Consequently, we may apply Lebesgue’s theorem to (25), we have

lim
!0

E
h
.W.t//

2nC2i D .2nC 2/.2nC 1/
2

�2
Z t

0

E
h
.�Wu/

2n
i
du;

D .2nC 2/.2nC 1/
2

�2nC2
Z t

0

un
.2n/Š

nŠ 2n
du;

D .2nC 2/Š
.nC 1/Š 2nC1 .�

p
t /2nC2 D E

h
.�Wt /

2nC2i :

(c) We have now to prove (26). If u D 0, E
h
.W.0//

2n .G.0//
2
i
D 0 D

�2E
h
.�W0/

2n
i
. If u > 0, it is clear that:

E
h
.W.u//

2n .G.u//
2
i
D E

h�
W..u � �/C/

�2n
.G.u//

2
i
C �.u/; (27)

where
�.u/ D E

hn
.W.u//

2n � �W..u � �/C/
�2no

.G.u//
2
i
:

Since G.u/ is independent from F.u�/C , we have

E
h�
W..u � �/C/

�2n
.G.u//

2
i
D E

h�
W..u � �/C/

�2ni
E
h
.G.u//

2
i
:

Finally, plugging the identity above in (27) gives:

E
h
.W.u//

2n .G.u//
2
i
D E

h
.W.u//

2n
i
E
h
.G.u//

2
i
C �.u/C Q�.u/;

where
Q�.u/ D E

h�
W..u� �/C/

�2n � .W.u//2n
i
E
h
.G.u//

2
i
:
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Lemma 2 implies that E
h
.G.u//

2
i

tends to �2 as � ! 0. The recurrence

hypothesis implies that E
h
.W.u//

2n
i

converges to E
h
.�Wu/

2n
i

as � ! 0. It

remains to prove that �.u/ and Q�.u/ tend to 0 to conclude the proof.
The identity a2n � b2n D .a � b/P2n�1

kD0 akb2n�1�k implies that �.u/ is equal
to the sum

P2n�1
kD0 Sk.�; u/, where

Sk.�; u/ D E
h�
W.u/�W..u � �/C/

�
.G.u//

2 .W.u//
k

.W..u � �/C//2n�1�k
i
:

Applying four times the Cauchy–Schwarz inequality yields to:

jSk.�; u/j 6
h
E
�
W.u/�W..u � �/C/

�2i 12 h
E .G.u//

8
i 1
4

	
h
E.W.u//

8k
i 1
8
h
E.W..u � �/C//16n�8�8ki

1
8

:

Lemmas 2 and 3 lead to

jSk.�; u/j 6 C.k/T n� 1
2

p
�; 8u 2 Œ0; T �:

Consequently, �.u/ tends to 0 as � ! 0. Using the same method, it is easy to prove
that Q�.u/ tends to 0 as � ! 0. ut

3. From Proposition 4, it easy to deduce the convergence in law of W.t/ (t being
fixed).

Proposition 5. For any fixed t > 0, W.t/ converges in law to �Wt , as � ! 0.

Remark 3. Using stochastic Fubini theorem we have

W.t/ D 1

�
p
�

Z t

0

�Z u

0

�
v � .u � �/C

�
CdBv

	
dBu:

We keep notation given in [7]. Let us introduce the function f:

f.u; v/ WD 1

�
p
�

�
v � .u � �/C

�
C1f0�v�u�tg:

ConsequentlyW.t/ D J 12 .f/.
It is easy to prove that

�kfk�2t
�2 WD

Z t

0

�Z u

0

f.u; v/
2dv

	
du D �

12
C t � �

3
; t > �:
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Therefore
lim
!0
kfk�2t D �

p
t :

Proposition 3 in [7] ensures that W.t/ converges in distribution to �Wt , as � ! 0

if and only if

lim
!0

Z

Œ0;t �2
F.s1; s2/

2ds1ds2 D 0 (28)

where

F.s1; s2/ WD
Z t

0

�
f.u; s1/f.u; s2/C f.s1; u/f.s2; u/

�
du:

Identity (28) can be shown by tedious calculations. This gives a new proof of
Proposition 5.

Let us recall the method of moments.

Proposition 6. Let X; .Xn/n2N be r.v’s such that E.jX jk/<1, E.jXnjk/<1;
8k; n 2 N and

limk!1
ŒE.X2k/�

1
2k

2k
<1: (29)

If for all k 2 N, limn!1E.Xkn / D E.Xk/, then Xn converges in law to X as
n!1.

Proof (Proof of Proposition 5). Let t > 0 be a fixed time. The odd moments of
W.t/ are null. By Proposition 4, the even moments of W.t/ tends to �Wt . Since
�Wt is a Gaussian r.v. with variance �

p
t , it is easy to check that (29) holds. As a

result, W.t/ converges in law to �Wt . ut
4. Next, we prove the finite-dimensionnal convergence.

Proposition 7. Let 0 < t1 < t2 < � � � < tn. Then, .W.t1/; : : : ;W.tn// converges
in law to

�
�Wt1 ; : : : ; �Wtn

�
, as �! 0.

Proof. We take nD 2 for simplicity. We consider 0< t1< t2 and � 2 �0; t1^.t2�t1/Œ.
Since t1 > �, note that .u � �/C D u � � for u 2 Œt1; t2�. We begin with the
decomposition:

W.t2/ D W.t1/C 1

�
p
�

Z t2

t1C

�Z u

u�
.Bu � Bs/ds

	
dBu CR1 .t1; t2/;

where R1 .t1; t2/ D 1


p


R t1C
t1

�R u
u�.Bu � Bs/ds

�
dBu. Let us note that W.t1/ is

independent from 1


p


R t2
t1C

�R u
u�.Bu � Bs/ds

�
dBu.

Let us introduce B 0
t D BtCt1 � Bt1 ; t > 0. B 0 is a standard Brownian motion.

The changes of variables u D t1Cv and r D s�t1 in
R t2
t1C

�R u
u�.Bu � Bs/ds

�
dBu

leads to
W.t2/ D W.t1/C�.t1; t2/CR2 .t1; t2/CR1 .t1; t2/; (30)
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where

�.t1; t2/ D 1

�
p
�

Z t2�t1

0

�Z v

.v�/C
.B 0
v � B 0

r/dr

	
dB 0

v;

R2 .t1; t2/ D
1

�
p
�

Z 

0

�Z v

0

.B 0
v � B 0

r /dr

	
dB 0

v :

Straightforward calculation shows that E
h�
R1 .t1; t2/

�2i
and E

h�
R2 .t1; t2/

�2i

are bounded by C�. Thus, R1 .t1; t2/ and R1 .t1; t2/ converge to 0 in L2.˝/.
Proposition 5 gives the convergence in law of �.t1; t2/ to �.Wt2 �Wt1/ and the
convergence in law of W.t1/ to �Wt1 , as � ! 0.

SinceW.t1/ and�.t1; t2/ are independent, the decomposition (30) implies that
.W.t1/;W.t2/�W.t1// converges in law to

�
�Wt1 ; �.Wt2 �Wt1/

�
, as � ! 0.

Proposition 5 follows immediately. ut

5. We end the proof of the convergence in law of the process .W.t//t>0 by showing
that the family of the laws of .W.t//t>0 is tight as � 2�0; 1�.
Lemma 4. There exists a constantK such that

E
h
jW.t/ �W.s/j4

i
6 Kjt � sj2; 0 6 s 6 t; � > 0:

Proof. Applying Burkhölder–Davis–Gundy inequality, we obtain:

E
h
jW.t/ �W.s/j4

i
6 cE

"�Z t

s

.G.u//
2 du

	2#

6 c.t � s/
Z t

s

E
�
.G.u//

4
�
du:

Using Lemma 2, we get E
h
jW.t/ �W.s/j4

i
6 cm4.t � s/2 and ends the proof

(see Kolmogorov Criterion in Sect. XIII-1 of [8]). ut

6. To prove the joint convergence of .W.t/; Bt /t>0 to .�Wt ; Bt /t>0, we mimick
the approach developed in Points 1–5 above.

(a) Convergence .W.t/; Bt / to .�Wt ; Bt /, t being fixed. First, we prove that

lim
!0

E.W p
 .t/B

q
t / D E..�Wt /pBqt /; p; q 2 N: (31)

Let us note that the limit is null when either p or q is odd.
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Using Itô’s formula, we get

E
�
.W.t//

p B
q
t

� D p.p � 1/
2

˛1.t; �/C q.q � 1/
2

˛2.t; �/C pq˛3.t; �/;

where

˛1.t; �/ D
Z t

0

E
h
.W.u//

p�2 Bqu .G.u//2
i
du;

˛2.t; �/ D
Z t

0

E
�
.W.u//

p Bq�2
u

�
du;

˛3.t; �/ D
Z t

0

E
h
.W.u//

p�1 Bq�1
u G.u/

i
du:

To demonstrate (31), we proceed by induction on q, then by induction on p, q being
fixed.

First, we apply (31) with q � 2 instead of q, then we have directly:

lim
!0

˛2.t; �/ D
Z t

0

E
�
.�Wu/

p
�
E
�
Bq�2

u

�
du:

As for ˛1.t; �/, we write

.W.u//
p�2 D .W.u//p�2 � �W..u � �/C/

�p�2 C �W..u � �/C/
�p�2

Bqu D Bqu � Bq.u�/C C B
q

.u�/C :

We proceed similarly with ˛3.t; �/. Reasoning as in Point 2 and using the two pre-
vious identities, we can prove:

lim
!0

˛1.t; �/ D �2
Z t

0

E
h
.�Wu/

p�2iE
�
Bqu
�
du and lim

!0
˛3.t; �/ D 0:

Consequently, when either p or q is odd, then lim!0 ˛i .t; �/ D 0; .i D 1; 2/ and
therefore:

lim
!0

E.W p
 .t/B

q
t / D 0 D E..�Wt /pBqt /:

It remains to determine the limit in the case where p and q are even. Let us denote
p D 2p0 and q D 2q0. Then we have

lim
!0

˛1.t; �/ D
Z t

0

�2
.p � 2/Š

2p
0�1.p0 � 1/Šu

p0�1�p�2 qŠ

2q
0

.q0/Š
uq

0

du

D .p � 2/Š qŠ
2p

0Cq0�1 .p0 � 1/Š .q0/Š .p0 C q0/
�ptp

0Cq0

;
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lim
!0

˛2.t; �/ D
Z t

0

pŠ

2p
0

.p0/Š
�pup

0 .q � 2/Š
2q

0�1 .q0 � 1/Šu
q0�1du

D pŠ .q � 2/Š
2p

0Cq0�1 .p0/Š .q0 � 1/Š .p0 C q0/
�ptp

0Cq0

:

Then, it is easy to deduce

lim
!0

E
�
.W.t//

p B
q
t

� D pŠ

2p
0

.p0/Š
�ptp

0 qŠ

2q
0

.q0/Š
tq

0 D E �.�Wt /p
�
E
�
B
q
t

�
:

Next, we use a two dimensional version of the method of moments:

Proposition 8. Let X; Y; .Yn/n2N.Xn/n2N be r.v. whose moments are finite. Let
us suppose that X and Y satisfy (29) and that 8p; q 2 N, limn!1E.X

p
n Y

q
n /

D E.XpY q/. Then, .Xn; Yn/ converges in law to .X; Y / as n!1.

Since Wt and Bt are Gaussian r.v’s, they both satisfy (29). Consequently,
.W.t/; Bt / converges in law to .�Wt ; Bt / as � ! 0.

(b) Finite-dimensional convergence. Let 0 < t1 < t2. We prove that the vec-
tor .W.t1/;W.t2/; Bt1 ; Bt2/ converges in law to .�Wt1 ; �Wt2 ; Bt1 ; Bt2/. We apply
decomposition (30) to W.t2/.

By Point 6(a), .W.t1/; Bt1/ converges in law to .�Wt1 ; Bt1/ and .�.t1; t2/;
Bt2 � Bt1/ converges to .�Wt2 � �Wt1 ; Bt2 �Bt1/. Since .�.t1; t2/; Bt2 �Bt1/ is
independent from .W.t1/; Bt1/, we can conclude that .W.t1/;W.t2/; Bt1 ; Bt2/
converges in law to .�Wt1 ; �Wt2 ; Bt1 ; Bt2/. ut

4 Proofs of Theorems 3, 4 and Propositions 2, 3

1. Convergence in distribution of a family of stochastic integrals
with respect to W .
DenoteC

�
Œ0; T �

�
the set of real valued and continuous functions defined on Œ0; T �.

C
�
Œ0; T �

�
equipped with the uniform norm is a Banach space. Set Bc

�
Œ0; T �

�
the

Borel �-field on C
�
Œ0; T �

�
. LetD

�
Œ0; T �

�
be the space of right-continuous functions

with left-limits equipped with the Skorokhod topology.
Consider a predictable, right-continuous with left-limits process .�u/ such that:

�
�;W

�
converges in distribution to

�
�; �W

�
; � ! 0: (32)

In (32), the pair
�
�;W

�
is considered as an element of D

�
Œ0; T �

� 	 C �Œ0; T ��.
Proposition 9. 1. Let F W

�
˝ 	 C �Œ0; T ��; �.Bu; u � 0/˝ Bc

�
Œ0; T �

��! R be

a bounded an measurable map and such that for any !, F.!; �/ is continuous.
Then:

lim
!0

E
�
F.�;W/

� D E�F.�; �W /�: (33)
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2. Under (32), the process
� Z t

0

�udW.u/
�

t>0
converges in distribution to

�
�

Z t

0

�udWu

�

t>0
as � ! 0, where .�u/ is independent of .Wu/.

Proof (Proof of Proposition 9). (a) Denote H the set of �.Bu; u � 0/-measurable
and bounded r.v.’s A such that

lim
!0

E
�
A�.W/

� D E�A�.�W /� D E.A/E��.�W /�; (34)

where� W C �Œ0; T ��! R is continuous and bounded.
It is clear that H is a linear vector space. Let

�
An; n � 1

�
be a sequence of elements

in H which satisfies

(i)
�
An; n � 1

�
converges uniformly to a bounded element A

either
(ii) n 7! An is non-decreasing and the limit A is bounded.

Since

E
�
A�.W/

�� E�A�.�W /� D E�.A� An/�.W/
�

CE�An�.W/
� �E�An�.�W /

�

E
�
.An � A/�.�W /

�

we have
ˇ
ˇ
ˇE
�
A�.W/

� � E�A�.�W /�
ˇ
ˇ
ˇ � CE�jA� Anj

� C
ˇ
ˇ
ˇE
�
An�.W/

�

�E�An�.�W /
�ˇˇ
ˇ:

Consequently,A 2 H.
Consider the set C of r.v.’s of the type f .Bt1 ; � � � ; Btn/ where f is continuous

and bounded. Theorem 2 implies that C � H. Then, (34) is direct consequence of
Theorem T20 p. 28 in [6].

According to Proposition 2.4 in [3], relations (34) and (33) are equivalent.

(b) Denote F0 W D
�
Œ0; T �

� 	 C �Œ0; T �� ! R a bounded and continuous function.
Property (32) is a direct consequence of item 1 of Proposition 9 applied with:

F.!;w/ WD F0
�
.�s.!/; 0 � s � T /;w

�
; w 2 C �Œ0; T ��:

Recall thatW is a continuous martingale, which converges in distribution to �W as
� ! 0. Then, by Proposition 3.2 of [4], W satisfies the condition of uniform tight-
ness. Consequently, from Theorem 5.1 of [4] and (32), we can deduce that for any

predictable, right-continuous with left-limits process � ,
Z �

0

�udW.u/ converges in

distribution to �
Z �

0

�udW.u/.
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Remark 4. 1. The convergence in item 1 of Proposition 9 corresponds to the stable
convergence, cf. [3].

2. According to relation (14), we have

�.H; t/ D 1p
�

Z t

0

�
1

�

Z s

.s�/C
Hudu �Hs

	
dBs:

Let us apply the general result obtained in [9]. Let .�n/ be a sequence of positive
numbers converging to 0 as n!1. For any t > 0, suppose:

1

�n

Z t

0

�
1

�n

Z s

.s�n/C
Hudu�Hs

	2
ds

.P /�! �.t/; n!1 (35)

and

sup
0�r�t

1p
�n

ˇ
ˇ̌
Z r

0

�
1

�n

Z s

.s�n/C
Hudu �Hs

	
ds
ˇ
ˇ̌ .P /�! 0; n!1 (36)

where
�
�.t/

�
denotes a continuous process and .P / stands for the convergence

in probability.
Then, from Theorem 1.2 in [9] we can deduce that

�
�n.H; t/; t � 0

� .d/�! �
W.�.t// t � 0�; n!1 (37)

where .Wt / is a standard Brownian motion independent from
�
�.t/

�
.

Suppose that .Ht / is of the typeHt D H0C
Z t

0

�sdBsCVt , where .�t / and

.Vt / satisfy the assumptions given in Theorem 3. Note that

�
�

Z t

0

�udWu; t � 0
� .d/D

�
W
�
�2
Z t

0

�2udu
�
; t � 0

�
:

Therefore (37) suggests to prove (35) with

�.t/ WD �2
Z t

0

�2udu; t � 0:
We have tried without any success to directly prove (35) and (36). In the par-
ticular case Ht DBt , the calculations are tractable. Theorem 1.2 in [9] may
be applied:

�
�n.B; t/; t � 0

�
converges in distribution to .�Wt ; t � 0/, as

n ! 1. However, this result is not sufficient to have the convergence of�
�n.H; t/; t � 0

�
since we need the convergence of

�
�n.B; t/; Bt

�
and the

convergence of the previous pair of processes is not given by Theorem 1.2 in [9].
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2. Some preliminary results related to the proof of Theorem 3

Lemma 5. Let
�
�.t/; t � 0

�
be a family of processes. Suppose there exists a

increasing sequence .Tn/n�1 of random times such that Tn " 1 as n ! 1 and
for any n � 1,

�
�.t ^ Tn/; t � 0

�
converges in the ucp sense to 0, as � ! 0.

Then
�
�.t/; t � 0

�
converges in the ucp sense to 0, as � ! 0, i.e. for any T > 0,

sup
0�s�T

j�.s/j ! 0 in probability as � ! 0.

Lemma 6. Denote .Kt / an progressively measurable process which is right-
continuous at 0, K0 D 0 and locally bounded. Set:

R1 .K; t/ WD
1p
�

Z t^

0

Ks
� s
�
� 1�dBs ; t � 0: (38)

Then
�
R1 .K; t/; t � 0

�
converges in the ucp sense to 0.

Proof (Proof of Lemma 6). Since .Kt / is locally bounded there exists a increas-
ing sequence of stopping times .Tn/n�1 such that Tn "1 as n!1 and jK.t ^
Tn/j �n, for any t � 0. Then, according to Lemma 5 it is sufficient to prove that�
R1 .K; t/; t � 0

�
converges in the ucp sense to 0 when .Kt / is bounded. In that

case, using Doob’s inequality we get:

E
�

sup
t2Œ0;T �

�
R1 .K; t/

�2� � C

�
E
�Z 

0

K.s/2
� s
�
� 1�2ds

�
� C sup

0�s�
E
�
K.s/2

�

where T > 0.
Recall that .Ks/ is bounded, s 7! K.s/ is right continuous at 0, K.0/ D 0, then

the dominated convergence theorem implies that lim
!0

�
sup
0�s�

E
�
K.s/2

�� D 0. This

proves that sup
t2Œ0;T �

ˇ
ˇR1 .K; t/

ˇ
ˇ goes to 0 in L2.˝/. ut

Remark 5. Note that under (9), relation (14) implies that:

�.H; t/ D e�.H; t/CR1 .H˚; t/ (39)

where�.H; t/ has been defined by (7) and

e�.H; t/ WD 1

�
p
�

Z t

0

 Z u

.u�/C
.Hs �Hu/ds

!

˚.u/dBu: (40)

Proof (Proof of Proposition 3). Recall that�.2/ .K; t/ is defined by (11). Using Itô’s
formula, we obtain:

.B.sC/^t � Bs/2 D 2
Z .sC/^t

s

.Bu � Bs/dBu C .s C �/ ^ t � s:
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Reporting in �.2/ .K; t/ and applying stochastic Fubini’s theorem lead to

�.2/ .K; t/ D 2
Z t

0

KudW.u/CR1 .t/CR2 .t/;

where

R1 .t/ WD
2

�
p
�

Z t

0

�Z u

.u�/C
.Ks �Ku/.Bu � Bs/ds

�
dBu

R2 .t/ WD
1

�
p
�

Z t

.t�/C
Ks.t � s � �/ds:

Note that Proposition 9 (with � D K) ensures the convergence in distribution ofZ �

0

KudW.u/ to �
Z �

0

KudW.u/.

Since s ! Ks is locally bounded, then lim
!0

sup
t2Œ0;T �

jR2 .t/j D 0 a.s.

To prove that R1
.ucp/���! 0, we may assume that K is bounded (cf. Lemma 5).

Using the Cauchy–Schwarz and Doob inequalities, we obtain successively:

E
�

sup
0�t�T

.R1 /
2
�
� C

�3

Z T

0

E

��Z u

.u�/C
.Ks �Ku/.Bs � Bu/ds

�2	
du

� C

�2

Z T

0

du
Z u

.u�/C

q
E
�
.Ks �Ku/4

�
E
�
.Bs � Bu/4

�
ds

� C
Z T

0

�
sup

s�u�.sC/^t
E
�
.Ks �Ku/

4
��
ds

SinceK is bounded and right-continuous, then the term in the right-hand side of the
above inequality goes to 0 as �! 0. ut
Proof (Proof of Point .1/ of Theorem 3). Using (39) we have:

�.H0; t/ D H0
�e�.1; t/CR1 .˚; t/

� D H0R1 .˚; t/
D H0˚.0/N CH0R1

�
˚ �˚.0/; t�

where � < t and

N WD 1p
�

Z 

0

�u

�
� 1

�
dBu; � < t:

The r.v N has a centered Gaussian distribution, with variance

E.N 2
 / D

Z 

0

�u

�
� 1

�2 du

�
D 1

3
D �:

According to Lemma 6, R1
�
˚ � ˚.0/; �� .ucp/���! 0 as � ! 0. ut
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Proof (Proof of Point .2/ of Theorem 3). Since .Ht / D .Vt / is continuous and

V0 D 0 then, Lemma 6 applied with K D ˚H implies that R1 .˚H; �/
.ucp/���! 0 as

� ! 0.
Let T > 0. According to Lemmas 5 and 1, we may suppose that ˚ is bounded

and:

jVs � Vuj � C ju� vjˇ ; u; v 2 Œ0; T �; ˇ > 1

2
:

As a result,

ˇ
ˇ
ˇ
ˇ
ˇ
1

�
p
�

Z u

.u�/C
.Vs � Vu/ds

ˇ
ˇ
ˇ
ˇ
ˇ

6 1

�
p
�

Z u

u�
C js � ujˇ ds 6 C�ˇ� 12

and
E
�

sup
t2Œ0;T �

�e�.V; t/
�2� � C�2ˇ�1:

Using (39), item 2 of Theorem 3 follows. ut

Proof (Proof of Point 3 of Theorem 3). (a) Recall that Mt D
Z t

0

�rdBr and

e�.M; t/ D � 1

�
p
�

Z t

0

�Z u

.u�/C
.Mu �Ms/ds

	
˚.u/dBu:

Let s < u, we have

Mu �Ms D �.u�/C.Bu � Bs/C
Z u

s

�
�r ��.u�/C

�
dBr :

Using (8) we get:

e�.M; t/ D �
Z t

0

�u�
˚.u/dW.u/CR2 .t/CR3 .t/; (41)

where

R2 .t/ WD �
Z t

0

�
�.u�/C ��u�

�
˚.u/dW.u/

and

R3 .t/ D �
1

�
p
�

Z t

0

 Z u

.u�/C
.r � .u � �/C/.�r ��.u�/C/dBr

!

˚.u/dBu:
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(b) Suppose for a while that R2 and R3 converge in the ucp sense to 0, as
�! 0. Then, Proposition 9 with � D� implies that the convergence of �.H; �/
to �

Z �

0

�u�
˚.u/dWu. Note that

Z �

0

�u˚.u/dWu D
Z �

0

�u�
˚.u/dWu a.s.

(c) Let us prove that R3 converge in the ucp sense to 0. The proof related to R2
is similar and easier; it is left to the reader. From Lemma 5, we can suppose that�
�u; 0 � u � T

�
and

�
˚.u/; 0 � u � T

�
are bounded. Then, using Burkhölder-

Davis-Gundy and Hölder inequalities we get:

E
�

sup
0�t�T

R3 .t/
2
�
� C

�
E

 Z T

0

n Z u

.u�/C
r�.u��/C

�
.�r��.u�/C/dBr

o2

	˚.u/2du

!

� C

�

Z T

0

duE
�n Z u

.u�/C
r � .u � �/C

�
.�r ��.u�/C/dBr

o2�

� C

�

Z T

0

du
Z u

.u�/C

�r�.u��/C
�

�2
E
�
.�r ��.u�/C/

2
�
dr

� C
Z T

0

sup
.u�/C�r<u

�
E
�
.�r ��.u�/C/

2
��
du:

Using the dominated convergence theorem and the fact that t 7! �t has left-limits
we can conclude that the right-hand side in the above inequality goes to 0 as � ! 0.
Consequently, sup

0�t�T
jR3 .t/j goes to 0 in L2.˝/. ut

Proof (Proof of Proposition 2). From (39), we have:

�
�
h.B/; t

� D e�
�
h.B/; t

�CR1
�
h.B/˚; t

�

where

e�
�
h.B/; t

� D 1

�
p
�

Z t

0

�Z u

.u�/C
˚
h.Bs/� h.Bu/

�
ds

	
˚.u/dBu:

Since:

h.Bs/� h.Bu/ D .Bs � Bu/

Z 1

0

h0�Bu C �.Bs � Bu/
�
d�

D .Bs � Bu/h
0.Bu/

C.Bs � Bu/

Z 1

0

n
h0�Bu C �.Bs � Bu/

�� h0.Bu/
o
d�
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then,

�
�
h.B/; t

� D �
Z t

0

h0.Bu/˚.u/dW.u/CR1
�
h.B/˚; t

�CR3 .t/

where
�
W.u/

�
is the process defined by (8) and

R3 .t/ WD
1p
�

Z t

0

(
1

�

Z u

.u�/C
.Bs � Bu/

�Z 1

0

n
h0�Bu C �.Bs � Bu/

�

� h0.Bu/
o
d�

�
ds

�
˚.u/dBu:

Using Proposition 9 (with � D h0.B/˚) implies that
Z �

0

h0.Bu/˚.u/dW.u/, con-

verges in distribution to �
Z �

0

h0.Bu/˚.u/dW.u/, as � ! 0. Since h.0/ D 0,

Lemma 6 may be applied: R1
�
h.B/˚; �� .ucp/���! 0, as � ! 0. We claim that R3

has the same behavior. By localization and Lemma 5 we may suppose that ˚ is
bounded. Using Doob’s and Hölder inequalities we obtain:

E
�

sup
0�t�T

�
R3 .t/

�2� � Cı.h0; �/
�2

Z T

0

( Z u

.u�/C

q
E
�
ŒBs � Bu�4

�
ds

)

du

� Cı.h0; �/

where

ı.�; �/ WD
s

sup
0���1;0�u��s�u�T

E
�˚
�
�
Bu C �.Bs � Bu/

� � �.Bu/
�4�

:

It can be proved that lim
!0

ı.�; �/ D 0 as soon as � is subexponential. As a result,

sup
t�T

ˇ
ˇR3 .t/

ˇ
ˇ goes to 0 in L2.˝/ as � ! 0. ut

Proof (Proof of Theorem 4). (a) The a.s. convergence comes from the continuity of
t 7! Xt and the identity

1

�

Z t

0

Hs
�
XsC �Xs

�
ds D

i�1X

jD0
hj

 
1

�

Z ajC1C

ajC1

Xsds � 1
�

Z ajC

aj

Xsds

!

Chi
�
1

�

Z tC

t

Xsds � 1
�

Z aiC

ai

Xsds

	

where ai � t � aiC1 and i � 0.
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(b) Let us deal the convergence in distribution. Recall that we supposed thatX D B .
Using the definition of �.H; t/, identity (14) and easy calculations we get:

�.H; t/ D h0
n
˚.0/G0.�/CR1

�
˚ � ˚.0/; ��

o
; 0 < t � a1; 0 < � < t

where R1
�
˚ �˚.0/; �� has been defined by (38) and

G0.�/ WD 1p
�

Z 

0

� s
�
� 1

�
dBs:

More generally when t 2�ai ; aiC1�, � < .t � ai / ^ .ai � ai�1/ and i � 1, we have

�.H; t/ D �.H; ai /C .hi � hi�1/
�
˚.ai /Gi .�/C eR1

�

with

Gi .�/ WD 1p
�

Z aiC

ai

�s � ai
�
� 1

�
dBs

eR1 WD
1p
�

Z aiC

ai

�s � ai
�
� 1

��
˚.s/ �˚.ai /

�
dBs

As a result for any t 2�ai ; aiC1� we have:

�.H; t/ D h0˚.0/G0.�/C
�
h1 � h0

�
˚.a1/G1.�/

C � � � C �hi � hi�1
�
˚.ai /Gi .�/C

�
hi � hi�1

�eR1

where
� < .a1 � a0/ ^ � � � ^ .ai � ai�1/ ^ .t � ai /: (42)

Recall that ˚ has been supposed to be right-continuous at ai , then Lemma 6 may

be applied: eR1
.ucp/���! 0, as � ! 0. As a result, the term eR1 gives no contribution to

the limit of �.H; �/.
Note that Gi .�/ is a Gaussian r.v. with variance �2 D 1=3 and under (42) the

r.v.’s G0.�/; � � � ; Gi .�/ are independent and

lim
!0

E
�
BsGi .�/

� D 0; 8 s � 0:

Item 2 of Theorem 4 follows. ut
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Convergence of Multi-Dimensional Quantized
SDE’s

Gilles Pagès and Afef Sellami

Abstract We quantize a multidimensional SDE (in the Stratonovich sense) by
solving the related system of ODE’s in which the d -dimensional Brownian motion
has been replaced by the components of functional stationary quantizers. We make
a connection with rough path theory to show that the solutions of the quantized so-
lutions of the ODE converge toward the solution of the SDE. On our way to this
result we provide convergence rates of optimal quantizations toward the Brownian
motion for 1

q
-Hölder distance, q > 2, in Lp.P/.

Keywords Functional quantization � Stochastic differential equations � Stratonovich
stochastic integral � Stationary quantizers � Rough path theory � Itô map � Hölder
semi-norm � p-variation

1 Introduction

Quantization is a way to discretize the path space of a random phenomenon: a ran-
dom vector in finite dimension, a stochastic process in infinite dimension. Optimal
Vector Quantization theory (finite-dimensional) random vectors finds its origin in
the early 1950s in order to discretize some emitted signal (see [10]). It was further
developed by specialists in Signal Processing and later in Information Theory. The
infinite dimensional case started to be extensively investigated in the early 2000s by
several authors (see e.g. [4, 5, 12, 18–20], etc).
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In [20], the functional quantization of a class of Brownian diffusions has been
investigated from a constructive point of view. The main feature of this class of
diffusions was that the diffusion coefficient was the inverse of the gradient of a
diffeomorphism (both coefficients being smooth). This class contains most (non
degenerate) scalar diffusions. Starting from a sequence of rate optimal quantizers,
some sequences of quantizers of the Brownian diffusion are produced as solutions
of (non coupled) ODE’s. This approach relied on the Lamperti transform and was
closely related to the Doss–Sussman representation formula of the flow of a diffu-
sion as a functional of the Brownian motion. In many situations these quantizers are
rate optimal (or almost rate optimal) i.e. that they quantize the diffusion at the same
rate O..logN/� 12 / as the Brownian motion itself where N denotes the generic size
of the quantizer. In a companion paper (see [27]), some cubature formulas based on
some of these quantizers were implemented, namely those obtained from some op-
timal product quantizers based on the Karhunen–Loève expansion of the Brownian
motion, to price some Asian options in a Heston stochastic volatility model. Rather
unexpectedly in view of the theoretical rate of convergence, the numerical experi-
ments provided quite good numerical results for some “small" sizes of quantizers.
Note however that these numerical implementations included some further speeding
up procedures combining the stationarity of the quantizers and the Romberg extrap-
olation leading to a O..logN/� 32 / rate. Although this result relies on some still
pending conjectures about the asymptotics of bilinear functionals of the quantiz-
ers, it strongly pleads in favour of the construction of such stationary (rate optimal)
quantizers, at least when one has in mind possible numerical applications.

Recently a sharp quantization rate (i.e. including an explicit constant) has been
established for a class of not too degenerate one-dimensional Brownian diffusions.
However the approach is not constructive (see [4]). On the other hand, the stan-
dard rate O..logN/� 12 / has been extended in [22] to general d -dimensional Itô
processes, so including d -dimensional Brownian diffusions regardless of their el-
lipticity properties. This latter approach, based an expansion in the Haar basis, is
constructive, but the resulting quantizers are no longer stationary.

Our aim in this paper is to extend the constructive natural approach initiated
in [20] to general d -dimensional diffusions in order to produce some rate optimal
stationary quantizers of these processes. To this end, we will call upon some seminal
results from rough path theory, namely the continuity of the Itô map, to replace the
“Doss–Sussman setting". In fact we will show that if one replaces in an SDE (written
in the Stratonovich sense) the Brownian motion by some elementary quantizers, the
solutions of the resulting ODE’s make up some rough paths which converge (in
p-variation and in the Hölder metric) to the solution of the SDE. We use her the
rough path theory as a tool and we do not aim at providing new insights on this
theory. We can only mention that these rate optimal stationary quantizers can be
seen as a new example of rough paths, somewhat less “stuck" to a true path of the
underlying process.

This work is devoted to Brownian diffusions which is naturally the prominent ex-
ample in view of applications, but it seems clear that this could be extended to SDE
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driven e.g. by fractional Brownian motions (however our approach requires to have
an explicit form for the Karhunen–Loève basis as far as numerical implementation
is concerned).

Now let us be more precise. We consider a diffusion process

dXt D b.t; Xt / dtC �.t; Xt / ı dWt ; X0 D x2 R
d ; t 2 Œ0; T �;

in the Stratonovich sense where b W Œ0; T � 	 R
d ! R

d and � W Œ0; T � 	 R
d !

M.d 	 d/ are continuously differentiable with linear growth (uniformly with re-
spect to t) and W D .Wt /t2Œ0;T � is a d -dimensional Brownian motion defined on a
filtered probability space .˝;A;P/. (The fact that the state space and W have the
same dimension is in no case a restriction since our result has nothing to do with
ellipticity).

Such an SDE admits a unique strong solution denoted Xx D .Xxt /t2Œ0;T � (the
dependency in x will be dropped from now to alleviate notations). The R

d -valued
process X is pathwise continuous and supt2Œ0;T � jXt j 2 Lr .P/, r > 0 (where j : j
denotes the canonical Euclidean norm on R

d ). In particularX is bi-measurable and
can be seen as an Lr .P/-Radon random variable taking values in the Banach spaces

.L
p

T;Rd
; j : jLp

T
/ where Lp

T;Rd
D L

p

Rd
.Œ0; T �; dt/ and jgjLp

T
D
�R T
0
jg.t/jpdt

� 1
p

denotes the usual Lp-norm when p2 Œ1;1/.
For every integer N � 1, we can investigate for X the level N .Lr .P/; Lp

T
/-

quantization problem for this process X , namely solving the minimization of the
Lr .P/-mean Lp

T;Rd
-quantization error

eN;r.X;L
p/ WD min

n
eN;r.˛;X;L

p/; ˛ � Lp
T;Rd

; card˛ � N
o

(1)

where eN;r .˛;X;Lp/ denotes theLr -mean quantization error induced by ˛, namely

eN;r .˛;X;L
p/ WD

�
E min
a2˛ jX � aj

r
p

� 1
r D







min
a2˛ jX � ajLpT;Rd








Lr .P/

:

The use of “min" in (1) is justified by the existence of an optimal quantizer so-
lution to that problem as shown in [3, 13] in this infinite dimensional setting. The
Voronoi diagram associated to a quantizer ˛ is a Borel partition .Ca.˛//a2˛ such
that

Ca.˛/ �
n
x2 Lp

T;Rd
j jx � ajLp

T;Rd
� min
b2˛
jx � bjLp

T;Rd

o

and a functional quantization of X by ˛ is defined by the nearest neighbour projec-
tion of X onto ˛ related to the Voronoi diagram

bX˛ WD
X

a2˛
a1fX2Ca.˛/g:
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In finite dimension (when considering R
d -valued random vectors instead of

L
p

T;Rd
-valued processes) the answer is provided by the so-called Zador Theorem

which says (see [10]) that if EjX jrCı < C1 for some ı > 0 and if g denotes the
absolutely continuous part of its distribution then

N
1
d eN;r .X;R

d /! eJ r;dkgk
1
r
d
dCr

as N !1 (2)

where eJ r;d is finite positive real constant obtained as the limit of the normalized

quantization error when X
dD U.Œ0; 1�/. This constant is unknown except when

d D 1 or d D 2.
A non-asymptotic version of Zador’s Theorem can be found e.g. in [22]: for every

r; ı > 0 there exists a universal constant Cr;ı > 0 and an integer Nr;ı � such that,
for every random vector˝;A;P/! R

d ,

8N � Nr;ı ; eN;r .X;R
d / � Cr;ıkXkrCıN� 1

d :

The asymptotic behaviour of the Ls.P /-quantization error of sequences of Lr -
optimal quantizers of a random vector X when s > r has been extensively inves-
tigated in [13] and will be one crucial tool to establish our mains results.

In infinite dimension, the case of Gaussian processes was the first to have been
extensively investigated, first in the purely quadratic case (r DpD 2): sharp rates
have been established for a wide family of Gaussian processes including the Brown-
ian motion, the fractional Brownian motions (see [18, 19]). For these two processes
sharp rates are also known for p 2 Œ1;1� and r 2 .0;1/ (see [4]). More recently,
a connection between mean regularity of t 7! Xt (from Œ0; T � into Lr .P/) and the
quantization rate has been established (see [22]): if the above mapping is �-Hölder
for an index �2 .0; 1�, then

eN;r .X;L
p/ D O..logN/�
/; p2 .0; r/:

Based on this result, some universal quantization rates have been obtained for gen-
eral Lévy processes with or without Brownian component some of them turning out
to be optimal, once compared with the lower bound estimates derived from small
deviation theory (see e.g. [11] or [5]). One important feature of interest of the purely
quadratic case is that it is possible to construct from the Karhunen–Loève expansion
of the process two families of rate optimal (stationary) quantizers, relying on

– Sequences .˛.N;prod//N�1 of optimal product quantizers which are rate optimal
i.e. such that eN;r.˛.N/; X;L2/ D O.eN;2.X;L

2// (although not with a sharp
optimal rate).

– Sequences of true optimal quantizers (or at least some good numerical approxi-
mations) .˛.N;
//N�1 i.e. such that eN;r .˛.N;
/; X;L2/ D eN;2.X;L2/.
We refer to Sect. 2.1 below for further insight on these objects (both being avail-

able on the website www.quantize.math-fi.com).
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The main objective of this paper is the following: let .˛N /N�1 denote a
sequence of rate optimal stationary (see (8) further on) quadratic quantizers of
a d 0-dimensional standard Brownian motion W D .W 1; : : : ;W d /. Define the se-
quence xN D .xNn /nD1;:::;N , N � 1, of solutions of the ODE’s

xNn .t/ D x C
Z t

0

b.xNn .s//ds C
Z t

0

�.xNn .s//d˛
N
n .s/; n D 1; : : : ; N:

Then, the finitely valued-process defined by

eXN D
NX

nD1
xNn 1fW2Cn.˛.N//g

converges toward the diffusion X on Œ0; T � (at least in probability) as N !1.

This convergence will hold with respect to distance introduced in the rough path
theory (see [6, 9, 14, 25, 26]) which always implies convergence with respect to
the sup norm. The reason is that our result will appear as an application of (vari-
ants of the) the celebrated Universal Limit Theorem originally established by T.
Lyons in [25]. The distances of interest in rough path theory are related to the 1

q
-

Hölder semi-norm or the q-variation semi-norm both when q > 2 defined for every
x2 C.Œ0; T �;Rd / by

kxkq;Hol D T 1
p sup
0�s<t�T

jx.t/ � x.s/j
jt � sj 1q

� C1;

and

Varq;Œ0;T �.x/ WD sup
n� X

0�`�k�1
jx.t`C1/�x.t`/jq

�1
q

;

0 � t0 � t1 � � � � � tk � T; k � 1
o
� C1

respectively. Note that

kx � x.0/ksup � Varp;Œ0;T �.x/ � kxkp;Hol:

From a technical viewpoint we aim at applying some continuity results estab-

lished on the Itô map by several authors (see e.g. [6,14,16,25]) that is the continuity
of a solution x of the ODE (in a rough path sense)

dxt D f .xt /dyt ; x0 D x.0/;
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as a functional of y. However, the above (semi-)norms associated to a function
x are not sufficient and the natural space to define such rough ODE is not the
“naive” space of paths but a space of enhanced paths, which involves in the case
of a multi-dimensional Brownian motion the mutual Lévy areas of its components.
Convergence in this space is defined by considering appropriate 1

q
-Hölder and

p-variation semi-norms to both the d -dimensional path and the related (pseudo-)
Lévy areas (with different values of q and p, see Sect. 3). Our application to quan-
tized SDE’s will make extensively use the fact that our functional quantizations of
the Brownian motionW will all satisfy a stationary assumption i.e.

bW D E.W j �.bW //

so that we will extend the Kolmogorov criterion satisfied by W to its functional
quantizers bW for free. This approach is rather straightforward and its field of ap-
plication seems more general than our functional quantization purpose: thus the
piecewise affine interpolations of the Brownian motion obviously satisfy such a
property (see Appendix).

The paper is organized as follows. In Sect. 2 we provide some short background
on functional quantization as well as preliminary elementary results on stochastic
integration with respect to a stationary functional quantizer of a d -dimensional stan-
dard Brownian motion. In Sect. 3, we define a quantized approximation scheme of
an SDE (in the Stratonovich sense) driven by a standard Brownian motion by its
functionally quantized counterpart which turns out to be a system of (non-coupled)
ODE’s. To this end we recall some basic facts on rough path theory, in particular
the notion of convergence we need to define on the so-called multiplicative func-
tionals involved in the continuity of the Itô map which, when dealing with Brownian
motion amounts, to some convergence in Hölder semi-norm of the naive path as
well as, roughly speaking, the running (pseudo-)Lévy areas of its components. In
Sects. 4 and 5, we establish successively the convergence in the Hölder distance of
sequences of optimal stationary quantizations bW of the Brownian motion toward
W : Sect. 4 is devoted to the convergence of the “regular" paths whereas Sect. 5
deals with the convergence of the running (pseudo-)Lévy areas (and to the global
convergence of the couple). In both cases we provide some convergence rate in
the .logN/�a, a 2 .0; 1

2
/ scale which is the natural scale for such convergences

since optimal functional quantizations of the Brownian motion are known to con-
verge at a .logN/� 12 -rate for most usual norms (like quadratic pathwise norm on
L2.Œ0; T �; dt/).

Notations. � For every d � 1, one denotes � D .�1; : : : ; �d / a row vector of R
d .

M.d 	 d/ will denote the set of square matrices with d lines.
� j : j denotes the canonical Euclidean norm on R

d .
� We denote .FXt /t�0 the augmented natural filtration of a process X D .Xt /t�0

(so that it satisfies the usual conditions).
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� For a bounded function f W Œ0; T �! R
d , kf ksup WD supt2Œ0;T � jf .t/j. If f is a

Borel function and p2 Œ1;C1/, kf kLp
T;Rd
WD
�R T
0
jf .t/jpdt

� 1
p

.

� For an R
d -valued bi-measurable process X and p 2 Œ1;C1/, we denote

kXkp WD k jX jLp
T;Rd
kp D

�
E
R T
0
jXt jpdt

�1=p
.

� We denote tn
k
D kT

2n
, k D 0; : : : ; 2n, the uniform mesh of the interval Œ0; T �,

T > 0 and In
k
D Œtn

k
; tn
kC1�, k D 0; : : : ; 2n � 1.

� bxc denotes the lower integral part of x2 R.
� Let .an/n�0 and .bn/n�0 be two sequences of real numbers: an � bn if an D
bn C o.bn/ and an � bn if an D O.bn/ and bn D O.an/.

2 Background and Preliminary Results on Functional
Quantization

2.1 Some Background on Functional Quantization

Functional quantization of stochastic processes can be seen as a discretization of the
path-space of a process and the approximation (or coding) of a process by finitely
many deterministic functions from its path-space. In a Hilbert space setting this
reads as follows.

Let .H; h�; �i/ be a separable Hilbert space with norm j � j and letX W .˝;A;P/!
H be a random vector taking its values in H with distribution PX . Assume the
integrability condition

E jX j2 < C1: (3)

For N � 1, the L2-optimal N -quantization problem for X consists in minimizing





min
a2˛ jX � aj






L2.P/

D
�
E min
a2˛ jX � aj

2
�1=2

over all subsets ˛ � H with card.˛/ � N . Such a set ˛ is called N -codebook or
N -quantizer. The minimal quantization error of X at level N is then defined by

e
N
.X;H/ WD inf

n
.E min

a2˛ jX � aj
2/1=2 W ˛ � H; card.˛/ � N

o
: (4)

For a given N -quantizer ˛ one defines an associated nearest neighbour projection

�˛ WD
X

a2˛
a1Ca.˛/

and the induced ˛-(Voronoi)quantization of X by setting

OX˛ WD �˛.X/; (5)
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where fCa.˛/ W a 2 ˛g is a Voronoi partition induced by ˛, that is a Borel partition
of H satisfying

Ca.˛/ � fx 2 H W jx � aj D min
b2˛
jx � bjg (6)

for every a2 ˛. Then one easily checks that, for any random vectorX
0 W ˝!˛�H ,

E jX �X 0 j2 � E jX � OX˛j2 D E min
a2˛ jX � aj

2

so that finally

en.X;H/ D inf





jX � q.X/j






L2.P/

; q W H Borel! H; card.q.H// � N
�

D inf





jX � Y j






L2.P/

; Y W.˝;A/ r:v:! H; card.Y.˝// � N
�
: (7)

A typical setting for functional quantization is H D L2
T
WD L2

R
.Œ0; 1�;dt/

(equipped with hf; gi2 WD
R T
0 fg.t/dt and jf jL2

T
WD phf; f i2). Thus any (bi-

measurable, real-valued) process X D .Xt /t2Œ0;T � defined on a probability space
.˝;A;P/ such that Z T

0

E.X2t /dt < C1

is a random variable X W .˝;A;P/ ! L2
T

. But this Hilbert setting is not the only
possible one for functional quantization (see e.g. [5, 12, 21], etc.) since natural Ba-
nach spaces like Lp

R
.Œ0; T �; dt/ or C.Œ0; T �;R/ are natural path-spaces.

In the purely Hilbert setting the existence of (at least) one optimal N -quantizer
for every integerN � 1 is established so that the infimum in (4) holds as a minimum.
A typical feature of this quadratic Hilbert framework is the so-called stationarity (or
self-consistency) property satisfied by such an optimalN -quantizer ˛.N;
/:

OX˛.N;�/ D E.X j OX˛.N;�//: (8)

This property, known as stationarity, will be used extensively throughout the paper.
This existence property holds true in any reflexive Banach space and L1 path

spaces (see [12] for details).

2.2 Constructive Aspects of Functional Quantization
of the Brownian Motion

2.2.1 Karhunen–Loève Basis (d D 1)

First we consider a scalar Brownian motion .Wt /t2Œ0;T � on a probability space
.˝;A;P/. The two main classes of rate optimal quantizers of the Brownian motion
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are the product optimal quantizers and the true optimal quantizers. Both are based
on the Karhunen–Loève expansion of the Brownian motion given by

Wt D
X

k�1

p
�k �k e

W
k .t/ (9)

where, for every k � 1,

�k D
�

T

�.k � 1=2/
	2

and eWk .t/ D
r
2

T
sin

�
tp
�k

	
(10)

and

�k D
.W j eW

k
/
2p

�k
D
r
2

T

Z T

0

Wt sin.t=
p
�k/

dtp
�k
:

The sequence .eW
k
/k�1 is an orthonormal basis ofL2

T
. The system .�k ; e

W
k
/k�1 can

be characterized as the eigensystem of the symmetric positive trace class covariance
operator of f 7! .t 7! R T

0
.s ^ t/ f .s/ds/� .t 7!E. < f jW >2Wt /. In particular

this implies that the Gaussian sequence .�k/k�1 is pairwise uncorrelated hence i.i.d.,
N .0I 1/-distributed. The Karhunen–Loève expansion ofW plays the role of PCA of
the process: it is the fastest way to exhaust the variance ofW among all expansions
on an orthonormal basis.

The convergence of the series in the right hand side of (9) holds in L2
T

for every
! 2 ˝ and P.d!/-a:s: for every t 2 Œ0; T �. In fact this convergence also holds in
L2.P/ and P.d!/-a:s: for the sup norm over Œ0; T �. The first convergence follows
from Theorem 3.a/ further on applied with X D W and GN D �.�1; : : : ; �N /

and the second one follows e.g. from [21] P.d!/-a:s:. In particular the conver-
gence holds in L2.dP ˝ dt/ or equivalently in L2

L2
T

.P/. Note that this basis has

already been used in the framework of rough path theory for Gaussian processes,
see e.g. [2, 7, 8].

2.2.2 Optimal Product Quantization (d � 1)

B The one-dimensional case d D 1. The previous expansion of the Brownian mo-
tion suggests to define a product quantization of W at levelN by

bW
.N1;:::;NL /

t WD
r
2

T

LX

kD1

p
�kb�

Nk
k

sin

�
tp
�k

	
(11)

where N1; : : : ; NL are non zero integers satisfying N1 � � �NL � N andb�N11 ; : : : ;

b�
N
L

L are optimal quadratic quantizations of �1; : : : ; �L . The resulting (squared)
quadratic quantization error reads
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kW � bW .N1;:::;NL /k2
2
D
X

k�1

�k

N 2
k

: (12)

An optimal productN -quantization bW N;prod is obtained as a solution to the follow-
ing integral bit allocation optimization problem for the sequence .Nk/k�1:

min
n
kW �bW .N1;:::;NL /k

2
; N1; : : : ; NL � 1; N1� � �NL � N; L�1

o
(13)

(see [18] for further details and [27] for the numerical aspects). It is established
in [18] (as a special case of a more general result on Gaussian processes) that

1

T
kW � bW N;prodk

2
� .logN/�

1
2 (14)

Furthermore, the critical dimension L D LW .N / satisfies LW .N / � logN . Nu-
merical experiments carried out in [27] show that

1

T
kW � bW N;prodk

2
� c

W
.logN/� 12

with c
W
� 0:5 (at least up to N � 10;000).

It is possible to get a closed form for the underlying optimal product quantiz-
ers ˛N . First, note that the normal distribution on the real line being log-concave,
there is exactly one stationary quadratic quantizer of full size M for every M � 1
(hence it is the optimal one). So, let N � 1 and let .Nk/k�1 denote its optimal
integral bit allocation for the Brownian motionW . For everyNk � 1, we denote by
ˇ.Nk / WD fˇ.Nk/ik

; 1 � ik � Nkg the unique optimal quantizer of the normal distri-
bution: thus ˛.0/ D f0g by symmetry of the normal distribution. Then, the optimal
quadratic productN -quantizer ˛N;prod (of “true size"N1 	 � � � 	NLW .N/ � N ) can
be described using a multi-indexation as follows:

˛
N;prod
.n1;:::;nk ;:::/

.t/ D
X

k�1
ˇ.Nk /nk

p
�ke

W
k .t/; nk 2 f1; : : : ; Nkg; k � 1:

These sums are in fact all finite so that all the functions ˛N;prod
.i1;:::;in;:::/

are C1 with
finite variation on every interval of RC.

Explicit optimal integral bit allocations as well as optimal quadratic quantiza-
tions (quantizers and their weights) of the scalar normal distribution are available
on the website [28]. Note for practical applications that this optimal product quanti-
zation is based on one-dimensional quantizations of small size of the scalar normal
distribution N .0I 1/. This kind of functional quantization has been applied in [27]
to price Asian options in a Heston stochastic volatility model.
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B The d -dimensional case. Assume now W D .W 1; : : : ;W d / is a d -dimensional
Brownian motion. Its optimal product quantization at level N � 1 will be defined
as the optimal product quantization at level bN 1

d c of each of its d components.

B Additional results on optimal vector quantization of the normal distribution on
R
d . We will extensively make use of the distortion mismatch result established

in [13] that we recall here only in the d -dimensional Gaussian case. Let Z be an
N .0I Id / random vector and let ˛N be an optimal quadratic quantizer at level N of
Z (hence of size N ). Then

.i/ 8p2 .0; 2C d/; 8N � 1; kZ � bZ˛N kp � CZ;pN� 1
d : (15)

.i i/ 8p2 Œ2C d;C1/; 8 �2 .0; d C 2/;8N � 1;
kZ � bZ˛N kp � CZ;p;	N� 2Cd��

dp (16)

where CZ;p and CZ;p;	 are two positive real constants.

2.2.3 Optimal Quantization (d D 1)

It is established in [18] (Theorem 3.2) that the quadratic optimal quantization of the
one-dimensional Brownian motion reads

bW N;opt
t D

r
2

T

dW .N/X

kD1

p
�k .b�NdW .N//

k sin

�
tp
�k

	
(17)

where, for every integer d � 1, �d D Proj?Ed.W /�N .0IDiag.�1; : : : ; �d // with

Ed WDR-span
˚
sin
�
:=
p
�1
�
; : : : ; sin

�
:=
p
�d
��

and b�N
d

is an optimal quadratic
quantization of �d at level (or of size) N .

If one considers an optimal quadraticN -quantizerˇN D fˇNn ; nD 1; : : : ; N g �
R
dW .N/ of the distribution N

�
0IDiag.�1; : : : ; �dW .N//

�
(a priori not unique)

˛N;opt
n .t/ D

dW .N/X

kD1
.ˇ.N/n /k

p
�k e

W
k .t/; n D 1; : : : ; N:

Once again this defines a C1 function with finite variation on every interval of RC.
A sharp rate has been obtained in [19] for the resulting optimal quantization error

kW � bW N;optk
2
� Tcopt

W
.logN/�

1
2 as N !1 (18)

where copt
W
D

p
2
�
� 0:4502.
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The true value of the critical dimension dW .N / is unknown. A conjecture
supported by numerical evidences is that dW .N / � logN . Recently a first step
to this conjecture has been established in [23] by showing that

lim inf
N

dW .N /

log.N /
� 1

2
:

Large scale computations of optimal quadratic quantizers of the Brownian mo-
tion have been carried out (up to N D 10;000 and d D 10). They are available on
the website [28].

In the d -dimensional setting, several definitions of an optimal quantization of the
Brownian motion W D .W 1; : : : ;W d / can be given. For our purpose, it is conve-
nient to adopt the following one:

bW N;opt WD
�
cW i bN 1

d c;opt
�

1�i�d :

Its property of interest is that this definition preserves the componentwise indepen-
dence as well as a stationarity property (see below) since

E

�
W i j bW N;opt

�
D E

�
W i j cW i bN 1

d c;opt� D cW i bN 1
d c;opt ; i D 1; : : : ; d:

2.2.4 Wiener Like Integral with Respect to a Stationary Functional
Quantization (d D 1)

Both types of quantizations defined above share an important property of quantizers:
stationarity.

Definition 1. Let ˛ � L2
T

, ˛ ¤ ;, be a quantizer. The quantizer ˛ is stationary
for the (one-dimensional) Brownian motion W if there is a Voronoi quantization
bW WD bW ˛ induced by ˛ such that

bW D E.W j �.bW // a:s: (19)

where E. : jG/ denotes the functional conditional expectation given the �-field G on
L2
L2
T

.P/ (see Appendix) and �.bW / is the �-field spanned by bW .

Note that if ˛ is stationary for one Brownian motion, so it is for any Brownian
motion since this stationarity property only depends on the Wiener distribution.

In the case of product quantization bW N;prod, this follows from the stationarity
property of the optimal quadratic quantization of the marginals �n (see [18] or [27]).
In the case of optimal quadratic quantization bW N;opt this follows from the optimality
of the quantization of �dW .N/ itself.
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We will now define a kind of Wiener integral with respect to such a stationary
quantization bW of a one-dimensionalW . So we assume that d D 1 until the end of
this section.

First, we must have in mind that if W is an .Ft /-Brownian motion where the
filtration .Ft /t�0 satisfies the usual conditions, one can define the Wiener stochastic
integral (on Œ0; T �) of any process '2 L2.Œ0; T �	˝;B.Œ0; T �/˝F0; dt˝dP/ with
respect to W . The non-trivial case is when FWt ¤ Ft , typically when Ft D FBT _
FWt , t 2 Œ0; T � where B and W are independent. One can see it as a special case
of Itô stochastic integral or as an extended Wiener integral: if .'.t; !//.!;t/2˝	Œ0;T �
denotes an elementary process of the form

'.t; !/ WD
nX

kD1
'k.!/1sk<t�skC1

; 0 D s0 < s1 < � � � < sn�1 < sn D T

where the random variables 'i are F0-measurable (hence independent of W ). Set

I
T
.'/ WD

nX

kD1
'k.WskC1

�Wsk /:

Then, I
T

is an isometry from L2
L2
T

.P/ into L2.F
T
;P/. Furthermore, one easily

checks that

E

 Z T

0

'.s; :/dWs jFW
T

!

D
Z T

0

E

�
'.s; :/ jFW

T

�
dWs

where FW
T

denotes the augmented filtration of W at time T . We follow the same
lines to define the stochastic integral with respect to a stationary quantizer. Set for
the same elementary process '

bI
T
.'/ D

nX

kD1
�k.bW skC1

� bW sk /

so that

bI
T
.'/ D

nX

kD1
�i E.WskC1

�Wsk j bW /

D
nX

kD1
E
�
�k.WskC1

�Wsk / jF0 _ �.bW /
�

D E

 Z T

0

'.t; :/dW t jF0 _ �.bW /

!
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where we used that the �-fields �.bW / and F0 are independent since bW is a Borel
function of W . As a consequence,

kbI
T
.'/k2

2
� kI

T
.'/k2

2
D k j'jL2

T
k2
2
:

Hence, the linear transformation bI
T

extends into a linear continuous mapping on
the whole set L2

L2
T

.F0;P/. Furthermore, one checks, first on elementary processes,

then on L2
L2
T

.F0;P/ by continuity of the (functional) conditional expectation, that

E

�
I
T
.'/ jF0 _ �.bW /

�
DbI

T
.'/:

We will denote from now onbI
T
.'/.!/ as an integral, namely

bI
T
.'/.!/ WD

Z T

0

'.t; !/dbW t .!/:

Now set as usual, for every t 2 Œ0; T �,
Z t

0

'.s; !/d bW s.!/ WD
Z T

0

1Œ0;t �.s/'.s; !/d bW s.!/:

One checks using Jensen and Doob Inequality that,

E sup
t2Œ0;T �

ˇ
ˇ
ˇ̌
Z t

0

'.s; :/d bW s

ˇ
ˇ
ˇ̌
2

� E sup
t2Œ0;T �

ˇ
ˇ
ˇ̌
Z t

0

'.s; :/dWs

ˇ
ˇ
ˇ̌
2

� 4E

Z T

0

'2.s; :/ ds: (20)

Furthermore, as soon as the underlying stationary quantizer ˛ (such that bW D bW ˛)
is made up with pathwise continuous elements, for every elementary process ', its
integral process

Z t

0

'.s; :/ dWs D
nX

kD1
�k.bW skC1^t � bW sk^t /

pathwise continuous as well since bW is ˛-valued. One classically derives, by com-
bining this result with (20) and the everywhere density of elementary processes,
that, for every '2 L2

L2
T

.F0;P/, the process

�Z t

0

'.s; :/d bW s

	

t2Œ0;T �
admits a continuous modification.
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This is always this modification that will be considered from now on. As a matter of
fact, if 'n denotes a sequence of elementary processes in L2

L2
T

.F0;P/ converging

to ', i.e. satisfying

E

Z T

0

.' � 'n/2.s; :/ds �! 0 as n!1:

It follows from (20) that the convergence also holds in L2L1

T

.F0;P/. In particular,

there is a subsequence that converges P-a:s: for the k : ksup which implies the exis-

tence of a continuous modification for
Z t

0

'.s; !/d bW s.!/.

Finally, using the characterization of functional conditional expectation (see
Appendix), it follows that

E

�Z :

0

'.s; :/d bW s ; jF0 _ �.bW /

	
D
Z :

0

'.s; :/d bW s : (21)

Proposition 1. Let W be a (real-valued) Ft -standard Brownian motion. .a/ For
every '2 L2

L2
T

.F0;P/

Z t

0

'.s; :/dWs D
r
2

T

X

k�1
�k

Z t

0

'.s; :/ cos.s=
p
�k/ds (22)

where �k WD .W jeW
k
/
2
=
p
�k are independent, N .0I 1/-distributed (see (9) and

(10)) and independent of '.

.b/ Let bW be a stationary quantization of W . For every '2 L2
L2
T

.F0;P/

Z t

0

'.s; :/d bW s D
r
2

T

X

k�1

.bW jeW
k
/
2p

�k

Z t

0

'.s; :/ cos.s=
p
�n/ds: (23)

In particular if bW is a product quantization, then

.bW jeW
k
/
2p

�k
D .2W jeW

k
/
2p

�k
Db�k:

Proof. .a/ Set for every '2 L2
L2
T

.F0;P/,

J
T
.'/ WD

r
2

T

X

k�1
�k
p
�k

Z T

0

'.s; :/d sin.s=
p
�k/ (24)
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D
r
2

T

X

k�1
�k

Z T

0

'.s; :/ cos.s=
p
�k/ds:

This defines clearly an isometry from L2
L2
T

.F0;P/ into the Gaussian space spanned

by .�n/n�1 since

E.J
T
.'/2/ D 2

T

X

k�1
E.�2k /E

 Z T

0

g.s/
1p
�k

cos.s=
p
�k/ds

!2
D E

Z T

0

g2.t/dt:

The last equality uses that the sequence
�q

2
T

cos.�.k� 1
2
/t=T /

�

k�1 is an orthonor-

mal basis of L2
T

. Finally, note that for every t 2 Œ0; T �, J
T
.1Œ0;t �/ D

q
2
T

P
k�1p

�k �k sin.t=
p
�k/ D Wt . This proves that J

T
D I

T
i.e. is but the (extended)

Wiener integral with respect to W .

.b/ This follows by taking the (functional) conditional expectation of (22). ut

2.2.5 Application to Multi-Dimensional Brownian Motions .d � 2)

Now we apply the above result to a componentwise (stationary) functional quanti-
zation of a multi-dimensional standard Brownian motion.

Proposition 2. Let W DW .W 1; : : : ;W d / denote a d -dimensional standard
Brownian motion and let bW WD .bW 1; : : : ; bW d / be a pathwise continuous sta-
tionary quantization of W (no optimality is requested here). Then, P-a:s:, for every
i ¤ j , i; j 2 f1; : : : ; d g, for every s,t 2 Œ0; T �, 0 � s � t ,

E

�Z t

s

.W i
u �W i

s /dWj
u j �.bW /

	
D
Z t

s

.bW i
s � bW i

s/d
bW j

u :

Proof. All the components of bW being independent, it is clear one can re-
place �.bW / by �.bW i ; bW j /. Then, the stochastic integral

R :
0
W i
s dWj

s coincides
with the (extended) Wiener integral defined with respect to the filtration
Gji;t WD �.FW

i

T
;FW j

t / (it is clear that W j is a Gji;t -standard Brownian motion
still by independence). The result is then a straightforward consequence of (21). ut

Remark. The above result still holds if one considers an additional “0th” component
W 0
t D t to the Brownian motion and to its functional quantization by setting bW 0

t D t
as well.
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3 Convergence of Quantized SDE’s: A Rough Path Approach

3.1 From Itô to Stratonovich

An SDE
dXt D b.t; Xt/dtC �.t; Xt /dWt ; X02 Lp

Rd
.P/

where b W Œ0; T � 	 R
d ! R

d and � W Œ0; T � 	 R
d ! M.d 	 q/ are smooth

enough functions (e.g. continuously differentiable with bounded differentials) and
W D .Wt /t2Œ0;T � is a q-dimensional Brownian motion. First note that without loss
of generality one may assume that q D d by increasing the dimension of W or
adding some identically zero components to X (no ellipticity like assumption is
needed here). This SDE can be written in the Stratonovich sense as follows

dXt D f .Xt / ı dWt ; X02 Lp
Rd
.P/; (25)

where, for notational convenience W D .W 0;W 1; : : : ;W q/ stands for .t;Wt /,
Xt D .X0t ; X1t ; : : : ; Xdt / stands for .t; Xt / and f W Œ0; T � 	 R

d ! M..d C 1/ 	
.d C 1// (with f 0:.t; x/ D .1; 0; : : : ; 0/ as 0th line) is a differentiable function with
bounded differentials.

Following rough paths theory initiated by T. Lyons ([25]) and developed with
many co-authors (see e.g. [9,14,16,26] for an introduction), one can also solve this
equation in the sense of rough paths with finite p-variation, p � 2, since we know
(e.g. from the former Kolmogorov criterion) that W a:s: does have finite 1

q
-Hölder

norm, for any q > 2. Namely this means solving an equation formally reading

dxt D f .xt /dyt ; x02 R
d : (26)

In this equation y does not represent the path (null at 0) yt D Wt .!/, t 2 Œ0; T � itself
but an enhanced path embedded in a larger space, also called geometric multiplica-
tive functional lying on y with controlled 1

q
-Hölder semi-norm, namely a couple

y D ..y1s;t/0�s�t�T ; .y2s;t/0�s�t�T / where y1s;t D yt � ys 2 R
dC1; 0 � s � t � T ,

can be identified with the path .yt / and .y2s;t/0�s�t�T satisfies, y2s;t 2 R
.dC1/2 for

every 0 � s � u � t � T and the following tensor multiplicative property

y2s;t D y2s;u C y2u;t C y1s;u ˝ y1u;t :

Different choices for this functional are possible, leading to different solutions
to the above equation (26). The choice that makes coincide a:s: the solution of (25)
and the pathwise solutions of (26) is given by

y1s;t D Wt .!/ �Ws.!/; y2s;t WD
�Z t

s

.W i
u �W i

s / ı dWj
u

	

i;jD0;:::;d
.!/ (27)
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so that
y1s;u ˝ y1u;t D

�
y1;is;uy1;js;u

�
i;jD0;:::;d :

The term y2s;t is but the “running" Lévy areas related to the components of the
Brownian motion W . The enhanced path of W will be denoted W (although we
will keep the notation y in some proofs for notational convenience). One defines,
for every q � 1, the 1

q
-Hölder distance by setting

�q.y � x/ D ky1 � x1kq;Hol C ky2 � x2kq=2;Hol

where

kx2kq=2;Hol WD T 2
q sup
0�s<t�T

jx2s;t j
jt � sj 2q

:

Remark. Likewise, when p 2 Œ2; 3/, one defines the p-variation distance between
two such multiplicative functionals y, z is defined by

ıp.y; z/ D Varp;Œ0;T �.y
1 � z1/C Varp=2;Œ0;T �.y

2 � z2/

where

Varq;Œ0;T �.y
2/ WDsup

8
<̂

:̂

 
k�1X

`D0
jy2t`;t`C1

jq
! 1
q

; 0� t0� t1�� � �� tk �T; k � 1

9
>=

>;
:

The distance �q has been introduced in [24] although rough path theory was
originally developed for the distance ıp in p-variation. Recently several authors
came back to Hölder distances �q (see e.g. [6, 9, 16]).

The following so-called universal limit theorem (including variants) describes the
continuity of the so-called Itô map y 7! x with respect to both ıp and �p-distances
and will be the key for our main result. It was the starting point of rough path the-
ory initiated by T. Lyons. Several statements (or improvements) can be found e.g.
in [9, 14, 15, 25, 26]. We state here some versions coming from [14, 16].

Theorem 1. Let ˛2 .0; 1�.
.a/ (See [16]) Let f W Œ0; T � 	 R

d !M..d C 1/ 	 .d C 1/, twice differentiable
with a bounded first differential and an ˛-Hölder second differential. Suppose the
multiplicative functional y satisfies ky1 � x1kq;Hol C ky2 � x2kq=2;Hol < C1 for
q2 .2; 2C ˛/. Then (26) has a unique solution starting at x0.

When y D W.!/ (i.e. given by (27)), the first component x1 D x of the so-
lution x D .x1; x2/ a:s: coincides with .Xt .!//t2Œ0;T �, solution to the SDE in the
Stratonovich sense.

Furthermore, the Itô map y 7! x is continuous for the Hölder �q distance (and
locally Lipschitz in sense described in [16]).
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.b/ (See [9,17]) If f 2 C2
�
Œ0; T �	R

d ;M..d C 1/	 .d C 1/� is such that f:rf is
bounded with an ˛-Hölder differential, then the conclusions of claim .a/ still hold.

3.2 Quantization of the SDE and Main Result

Let .˛N /N�1 denote a sequence of quantizers of the Brownian motion. Each
˛N is made up of N functions (or elementary quantizer) ˛Nn W Œ0; T � ! R

d ,
n D 1; : : : ; N . For convenience a component “0” will be added accordingly to
each elementary quantizer ˛Nn by setting ˛N;0n .t/ D t (which exactly quantizes
the function W 0

t D t). We assume that every elementary quantizer ˛Nn is a con-
tinuous function with finite variation over Œ0; T �. The resulting Voronoi quantizer
bW D bW ˛N of W reads

bW t D
NX

nD1
˛Nn .t/1fW 2Cn.˛N /g; t 2 Œ0; T �:

Our aim is to approximate the diffusion process .xt /t2Œ0;T � solution to the
SDE (25) by the solution eXN of the equation

deXNt D f
�eXNt

�
d bW t ; eXN0 D x0:

asN !1. In fact, a less formal expression is available for the process eXN , namely

eXN D
NX

nD1
exNn 1fW 2Cn.˛N /g

where each xNn is solution to the ODE

dexNn .t/ D f .exNn .t// d ˛Nn .t/; exNn .0/ D x0; n D 1; : : : ; N: (28)

Note thatXN is a non-Voronoi quantization of .xt / (at levelN ). The starting natural
idea was to hope thatXN converges to .xt / owing to the convergence of bW N toward
W . . . in an appropriate sense. Since we will use the above Theorem 1, we need to
prove the convergence of the geometric functional bWN related to bW toward that of
W . The quantity bWN is formally defined by mimicking the definition of W, namely,
for every .s; t/2 Œ0; T �, 0 � s < t � T ,

bW1;N.!/ WD bW t .!/ � bW s.!/; bW
2;N
s;t .!/ WD

�Z t

s

.bW i
u � bW i

s/d
bW j

u

	

i;jD0;:::;d
.!/

still with the convention bW 0;N
t D t . The integral must be understood in the usual

Stieltjes sense.
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Theorem 2. Let .bW N /N�1 be a sequence of stationary quadratic functional
quantizers of the Brownian motion converging to W in L2

L2
T

.P/.

Let f be like in claims .a/ or .b/ in Theorem 1. Consider for every N � 1, the
solutions of the quantized ODE

deXNt D f .eXNt / d bW N
t ; N � 1:

as defined by (28). Let X andeXN denote the enhanced paths of X , solution to (25),
and eXN respectively. Then, for every q2 .2; 2C ˛/,

�q.eXN ;X/
P�! 0:

Furthermore if r > 2
3

then

�q.eXbeNr c;X/ a:s:�! 0:

In view of what precedes this result is, as announced, a straightforward corollary
of the continuity of the Itô map established Theorem 1, once the convergence
�q.bWN ;W/ in probability is established for any q 2 .2; 3/. A slightly more de-
railed proof is proposed at the end of Sect. 5.

In fact we will prove a much precise statement concerning the Brownian mo-
tion since we will establish for every q > 2 the convergence in every Lp.P/,
0 < p <1, of �q.bWN ;W/ with an explicitLp.P/-rate of convergence in the scale
.logN/�� , � 2 .0; 1/.

These rates can be transferred to the convergence of the quantized SDE, con-
ditionally to some events on which the Itô map is itself Lipschitz continuous for
the distances �q . Several results of local Lipschitz continuity have been established
recently, especially in [6,9,16,17], although not completely satisfactory from a prac-
tical point of view. So we decided not to reproduce (and take advantage of ) them
here.

The proof is divided into two steps: the convergence for the Hölder semi-norm)
of the regular path component is established in Sect. 4 (in which more general pro-
cesses are considered) and the convergence of approximate Lévy areas in Sect. 5
(entirely devoted to the Brownian case for the sake of simplicity).

Remarks.

� There is a small abuse of notation in the above Theorem since eXN is not a Voronoi
quantizer of X : this quantization of X is defined on the Voronoi partition (for the
L2
T;Rd

-norm) induced by the quantization of the Brownian motionW .
� The same results holds for the Brownian bridge, the Ornstein-Uhlenbeck pro-

cess and more generally for continuous Gaussian semi-martingales that satisfy
the Kolmogorov criterion.
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4 Convergence of the Paths of Processes in Hölder Semi-Norm

4.1 A General Setting Including Stationary Functional
Quantization

In this section we investigate the connections between the celebrated Kolmogorov
criterion and the tightness of some classes of sequences of processes for the
topology of 1

q
-Hölder convergence. In fact this connection is somehow the first step

of the rough path theory, but we will look at it in a slightly different way. Whatso-
ever this naive pathwise convergence is not sufficient to get the continuity of the Itô
map in a Brownian framework and we will also have to deal for our purpose with
the multiplicative functional (see Sect. 5).

But at this stage we aim at showing that when a sequence .Y N/N�1 satisfies some
“stationarity property" with respect to a process Y, several properties of Y can be
transferred to the Y N . Indeed, the same phenomenon will occur for the multiplicative
function (see the next section).

If Y satisfies the Kolmogorov criterion and .GN /N�1 denotes a sequence of sub-
�-fields of A, then a sequence of processes defined by

Y N WD E.Y jGN /; N � 1;

where the conditional expectation is considered in the functional sense (see Ap-
pendix) is (C -tight and) tight for a whole family of topologies induced by conver-
gence in 1

q
-Hölder sense.

Definition 2. Let p � 1, � > 0. A process Y D .Yt /t2Œ0;T � satisfies the
Kolmogorov criterion .Kp;�/ if there is a real constant C Kol

T
>0 such that

8 s; t 2 Œ0; T �; EjYt � Ys jp � C Kol
T
jt � sj1C� and Y02 Lp.P/:

Theorem 3. Let Y WD .Yt /t2Œ0;T � be a pathwise continuous process defined on
.˝;A;P/ satisfying the Kolmogorov criterion .Kp;�/. Let .GN /N�1 be a sequence
of sub-�-fields of A . For every N � 1 set

Y N WD E.Y jGN /:

For every N � 1, Y N has a pathwise continuous version satisfying

8 t 2 Œ0; T �; Y N
t D E.Yt jGN / a:s:

Furthermore, if one of the following conditions is satisfied:

.a/ GN � GNC1,

.b/ There exists an everywhere dense subset D � Œ0; T � such that

8 t 2 Œ0; T �; Y N
t

P�! Yt :
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.c/ jY N � Y jLr
T

P�! 0 for some r � 1,
then

8 q > 1

�
; 8p2 Œ1; q�/; kY � Y Nksup C kY � Y Nkq;Hol

Lp�! 0:

The proof of the theorem is a variant of the proof of the Kolmogorov criterion
for functional tightness of processes. It consists in a string of several lemmas. For
the following classical lemma, we refer to [14] (where it is stated and proved for
semi-norms in p-variation).

Lemma 1. Let x; y2 C.Œ0; T �;Rd / and let q � 1. Then

.a/ kx � x.0/ksup � kxkq;Hol.

.b/ kx C ykq;Hol � kxkp;Hol C kykq;Hol if q � 1,

.c/ For every q > q0 � 1, kxkqq;Hol � .2kxksup/
q�q0kxkq0

q0;Hol.
.d/ Claims .a/–.b/–.c/ remain true with the p-variation semi-norm Varq;Œ0;T � in-

stead of the 1
q

-Hölder semi-norm.

Lemma 2. Let p 2 Œ1;1/. If Y satisfies the Kolmogorov criterion .Kp;�/ then,
for every N � 1, the process Y N defined by Y N

t D E.Yt jGN / has a continuous
modification which is �

0

p
-Hölder continuous for every � 02 .0; �/ (i.e. kY Nk p

� 0
;Hol <

C1 a:s:). Furthermore, the sequence .Y N/N�1 is C -tight and for every � 02 .0; �/,
there exists a random variable Z� 0 2 Lp

R
.P/ such that

P.d!/-a:s: kY.!/k p
� 0
;Hol � Z� 0 (29)

and
8N � 1; kY N.!/k p

� 0
;Hol � E.Z� 0 jGN /.!/: (30)

In particular, the sequence of Hölder semi-norms .kY Nk p
� 0
;Hol/N�1 is Lp-

uniformly integrable.

Remark. As a by-product of the proof we also get that

E.Z
p

� 0
/ � Cp;T;�;� 0C Kol

T

where CT;p;�;� 0 is a finite real constant that only depends upon p, T , � and � 0 (and
not on Y or the �-fields G

N
).

Proof. First it follows form the Kolmogorov criterion that for every N � 1, Y N

admits a continuous modification which is � 0

p
-Hölder for every � 0 2 .0; �/.

Moreover the sequence .Y N/N�1 is C -tight since every Y N satisfies the same
Kolmogorov criterion .Kp;�/ and Y N

0 D E.Y0jGN / is tight on R (see [1, 29] p. 26).
Now, let s; t 2 Œ0; T �, let m; n � 1 be two fixed integers. First note that
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sup
s;t2Œ0;T �; t�s�tC T

2n

jYt � Ysj � 2
X

m�0
max

0�k�2nCm�1
jY
t
nCm
kC1

� Y
t
nCm
k

j (31)

and

max
0�k�2nCm�1

jY
t
nCm
kC1

� Y
t
nCm
k

jp �
2nCm�1X

kD0
jY
t
nCm
kC1

� Y
t
nCm
k

jp:

For every � 02 .0; �/, set

Z� 0 WD 2

T

0

@
X

n�0
2n

� 0

p sup
s;t2Œ0;T �; t�s�tC T

2n

jYt � Ysj
1

A : (32)

Taking the Lp-norm in (31) yields

kZ� 0k
p
�
�
2

T

	 � 0

p X

n�0
2n

� 0

p k sup
s;t2Œ0;T �; t�s�tC T

2n

jYt � Ys jkp

� 2
�
2

T

	 � 0

p X

n�0
2n

� 0

p

X

`�0
k max
0�k�2nCm�1

jY
t
nCm
kC1

� Y
t
nCm
k

jk
p
:

On the other hand, owing to the Kolmogorov criterion .Kp;� /,

E max
0�k�2nCm�1

jY
t
nCm
kC1

� Y
t
nCm
k

jp �
2nCm�1X

kD0
EjY

t
nCm
kC1

� Y
t
nCm
k

jp

� 2nCmC Kol
T 2�.nCm/.1C�/T �.1C�/

D C Kol
T T �.1C�/2�.nCm/� :

Hence

EZ
p

� 0
� C Kol

T Cp;T;�;� 0

0

@
X

n�0

X

m�0
2n

� 0
��
p 2�m �

p

1

A

p

< C1

where the finite real constantCp;T;�;� 0 only depends on p, T , � and � 0. On the other
hand, for every ı2 Œ0; T �, there exists a integer nı � 1 such that 2�.1Cnı/ � ı=T �
2�nı . Hence,

ı�� 0

sup
s;t2Œ0;T �; t�s�tCı

jYt � Ysjp � 2.1Cnı/� 0

T �� 0

	 sup
s;t2Œ0;T �; t�s�tC T

2n

jYt � Ysjp � Zp� 0
:
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Consequently, for every s; t 2 Œ0; T �, and every !2 ˝ ,

jYt .!/� Ys.!/j � Z� 0.!/jt � sj �
0

p

i.e.
kY.!/k p

� 0
;Hol � Z� 0.!/:

Finally, it follows from Jensen’s Inequality that for every s, t 2 Q \ Œ0; T �,

P.d!/-a:s: jY N
t .!/� Y N

s .!/j � E.Z� 0 jGN /.!/jt � sj� 0

:

In particular this means that, for every p � 1 and every � 02 .0; �/,

P.d!/-a:s: kY N.!/k p
� 0
;Hol � E.Z� 0 jGN /.!/ < C1

and satisfies the Lp-uniform integrability assumption. ut
Proof (Proof of Theorem 3). The sequence .Y N/N�1 being C -tight on .C.Œ0; T �;
R
d /; k : ksup/, so is the case of the sequence .Y N ; Y /N�1 on .C.Œ0; T �;R2d /; k : ksup/

since the product topology coincides with the uniform topology. Let Q D w-
limN P.YN

0
;Y / denote a weak functional limiting value of .Y N ; Y /N�1. If 	 D

.	1; 	2/ denotes the canonical process on .C.Œ0; T �;R2d /; k : ksup/, it is clear that
Q�2 D P

Y
.

B Convergence of the sup-norm. Assume that .c/ holds: the functional y 7!
jy1.t/ � y2.t/jLr

T
is continuous on .C.Œ0; T �;R2d /; k : ksup/, consequently, j	1 �

	2jLr
T
D 0 Q-a:s: i.e. Q D P.Y;Y / so that .Y N ; Y /

L.k : ksup/�! .Y; Y / as N ! 1
which simply means that kY N � Y ksup

P�! 0. On the other hand, it follows from
Lemma 2 that, for every N � 1,

kY N � Y kpsup � Cp;T
�
E.Z

p

� 0
jGN /CZp� 0

�
a:s:

(for a given fixed � 0 2 .0; �/) which implies that .kY N � Y kpsup/N�1 is uniformly
integrable. Finally,

E kY N � Y kpsup �! 0 as N !1:

Assume that .b/ holds: it follows that, for every t1; : : : ; tk 2 D, one has

.Y N
t1
; : : : ; Y N

tk
/

P�! .Yt1 ; : : : ; Ytk /, which in turn implies that the convergence

.Y N
t1
; : : : ; Y N

tk
; Yt1 ; : : : ; Ytk /

L�! .Yt1 ; : : : ; Ytk ; Yt1 ; : : : ; Ytk /. This means that Q and
P.Y;Y / have the same finite dimensional marginals i.e. Q D P.Y;Y /. One concludes
like in .c/.

If .a/ holds, for every t 2 Œ0; T �, Y N
t ! Yt P-a:s:, so that .b/ is satisfied.
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B Convergence of the Hölder semi-norm. Let q � 1. As concerns the convergence
of the 1

q
-Hölder semi-norm, one proceeds as follows. Let q0 2 .p

�
; q/ and set � 0 WD

p
q0
2 .0; �/. It follows from Lemma 1.b/–.c/ that

kY � Y Nkq;Hol � 21�q0

q kY � Y Nk1� q0

q
sup 	 �kY kq0;Hol C kY Nkq0;Hol

� q0

q :

Now let Z WD Z� 0 be defined by (32). Then,

kY kq0;Hol C kY Nkq0;Hol � Z C
�
E.Z jG

N
/
�
:

Hence, the sequence .kY kq0;Hol C kY Nkq0;Hol/N�1, is tight since it is Lp-bounded.

On the other hand, kY � Y Nksup
Lp�! 0 so that kY � Y Nkq;Hol

P�! 0 as N !1.
Now let e� D p

q
2 .0; �/. The same argument as above shows that kY �

Y Nkq;Hol � eZCE.eZ jG
N
/ where eZ D Ze� is still given by (32). As a consequence,

.kY � Y Nkpq;Hol/N�1 is uniformly integrable since, for every N � 1, Jensen’s In-
equality implies

kY � Y Nkpq;Hol � 2p�1�eZp C E.eZp jG
N
/
�

which finally implies that kY � Y Nkq;Hol
Lp�! 0. }

4.2 Application to Stationary Quantizations of Brownian Motion:
Convergence and Rates

Theorem 4. .a/ Let .bW N /N�1 be a sequence of stationary quadratic functional
quantizers of a standard d -dimensional Brownian motionW defined by (11) or (17)
converging to W in a (purely) quadratic sense, namely k jW � bW N jL2

T
k2 ! 0 as

N !1. Then, for every q > 2,

8p2 .0;1/; kW � bW N kq;Hol
Lp�! 0 as N !1:

.b/ Let q > 2. If, for every N � 1, bW N is an optimal product quantization at
level N . Then, for every p2 .0;1/,






kW � bW N kq;Hol







p

D o
�
.logN/�

3
2 min

�
1
5 .1� 2

q /;
1
p

�
C˛�; 8˛ > 0:

The proof of this Theorem is a consequence of the above Theorem 3. So we need
to get accurate estimates for the increments of the processes W � bW N . This is the
aim of the following lemma.
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Lemma 3. Let p 2 Œ2;C1/. Let bW N , N � 1, denote a sequence of optimal
product quadratic quantizers. For every � 2 .0; 1

2
/ and every " 2 .0; 3/, for every

s; t 2 Œ0; T �; s � t ,




.Wt �Ws/� .bW N

t � bW N
s /





p

� C�;p;T;d;"jt � sj�.logN/�.
1
2

��/^. 3�"
2p

/: (33)

In particular, if p2 .2; 3/, then






.Wt �Ws/� .bW N

t � bW N
s /






p

� C�;p;T;d jt � sj�.logN/�.
1
2��/: (34)

Proof. We may assume without loss of generality that we deal with a one-
dimensional Brownian motion W, quantized at level N 0 D bN 1

d c since everything
is done component by component. Set for every k � 1, e�k WD �k �b�Nkk where
N1; : : : ; Nk; : : : denotes the optimal bit allocation of an optimal product quadratic
quantization at level N 0. Keep in mind that for every k > L

W
.N 0/, Nk D 1 and

that of course N1 � � �NL
W
.N 0/ � N 0. The random vectors .e�k/k�1 are independent

and centered.
It follows from the K-L expansion of W and its product quantization that

.Wt �Ws/� .bW N 0

t � bW N 0

s / D
X

k�1
�ke�k

�
eWk .t/ � eWk .s/

�
:

Then, it follows from the B.D.G. Inequality for discrete time martingales that






.Wt �Ws/ � .bW N 0

t � bW N 0

s /






p

� Cp;T












X

k�1
�ke�k.eWk .t/ � eWk .s//2













1
2

p
2

� Cp;T
0

@
X

k�1
�
1��
k
ke�kk2p

1

A

1
2

jt � sj�

since, for every k � 1,

.eWk .t/ � eWk .s//2 D
8

T
sin2

� t � sp
�k

�
cos2

� t � sp
�k

�
� 8

T
jt � sj2����

k
:

The random variablesb�Nk
k

being an optimal quadratic quantization of the one-
dimensional normal distribution for every k2f1;: : :; L

W
.N 0/g, it follows from (16)

that, there exists for every "2 .0; 3/, a constant p;" such that

8m � 1; ke�kkp D k� �b�Nkk kp � p;"
1

N
1^ 3�"

p

k
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where b�m denotes the (unique) optimal quadratic quantization at level m of a
normally distributed scalar random variable �. As a consequence,






.Wt �Ws/� .bW N 0

t � bW N 0

s /






p

� Cp;T;"jt � sj�
0

@
X

k�1
�
1��
k

1

N
2.1^ 3�"

p
/

k

1

A

1
2

:

B Temporarily assume that p 2 Œ2; 3/. One may choose " so that 1^ 3�"
p
D 1. Now,

keeping in mind that L0 WD L
W
.N 0/ � logN 0 and �k � c k�2 for a real constant

c > 0, one gets

X

k

�1��
n

1

N 2
k

� ��L0

L0X

kD1

�k

N 2
k

C
X

k>L0

�
1��
k

� C�
0

@.logN 0/2�
L0X

kD1

�k

N 2
k

C .logN/2��1
1

A :

Now, following e.g. [18], we know that the optimal bit allocation yields

L0X

kD1

�k

N 2
k

� C

T
.logN 0/�1

so that, finally






.Wt �Ws/� .bW N 0

t � bW N 0

s /






p

� C�;p;T jt � sj�.logN 0/�� 12 :

B Assume now that p 2 Œ3;C1/ and " 2 .0; 3/. Set Qp D p
3�" > 1 and Qq its

conjugate exponent. Then, Hölder Inequality implies

L0X

kD1

�
1��
k

N
2
Qp

k

�
0

@
L0X

kD1

�k

N 2
k

1

A

1
Qp
0

@
L0X

kD1
�
1� �p

p�3C"

k

1

A

1
Qq

:

We inspect now three possible cases for �.

� If 0 < � < 1
2
.1 � 3�"

p
/, then 1 � �p

p�3C" >
1
2

so that
P
k�1 �

1� �p
p�3C"

k
< C1,

which in turn implies that

L0X

kD1

�
1��
k

N
2
Qp

k

� C�;p;T
�

logN 0
�� 3�"

p

:

Furthermore 1 � �
2
> 3�"

p
.
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� If 1
2
.1 � 3�"

p
/ < � < 1

2
, then, 1 � �

2
< 3�"

p
and 1 � �p

p�3C" D 1
2

so that
P
k�1 �

1� �p
p�3C"

k
< C1

L0X

kD1

�
1��
k

N
2
Qp

k

� C�;p;T
�

logN 0�� 3�"
p 	

�
L
W
.N 0/

2�p
p�3C"

�1�1� 3�"
p

D C�;p;T

�
logN 0�2��1

:

� If 1
2
.1 � 3�"

p
/ D � < 1

2
, then 1 � �

2
D 3�"

p
and 1 � �p

p�3C" D 1
2

so that
PL0

kD1 �
1� �p

p�3C"

k
� C�;p;T log logN 0 (keep in mind L0 D L

W
.N 0/ � logN 0).

Hence, for every "02 .0; "/,
L0X

kD1

�
1��
k

N
2
Qp

k

D o
�
.logN 0/�

3�"0

p

�
:

As conclusion, we get that

 
X

k

�
1��
k
ke�kk2p

! 1
2

�
0

@
X

k

�
1��
k

1

N
2.1^ 3�"

p
/

k

1

A

1
2

D O
�
.logN 0/�.

1
2

��/^. 3�"
2p

/
�

(35)

which completes the proof since log.1 C N 0/ > 1
d

logN (which implies logN 0 >
1
d

log.N=2/). ut
Proof (Proof of Theorem 4). .a/ Owing to the monotonicity of the Lp-norms, it is
enough to show that, the announced convergence holds for every q > 2 and every
p > 2q

q�2 or equivalently for every p > 2 and every q > 2p
p�2 . This statement fol-

lows for the 1
q

-Hölder (semi-)norm follows from Theorem 3.c/. IndeedW satisfies
the Kolmogorov Kp;� with � D p=2 � 1. On the other hand, it follows from [13]
that, for any sequence of (Voronoi) quantizations bW N at level N converging in
L2
L2
T

.P/ towardW , this convergence also holds in the a:s: sense. So Criterion.c/ is

fulfilled.

.b/ Let q > 2. The process W � bW N satisfies Kp;�p�1 for every � 2 . 1
p
; 1
2
/ with

“Kolmogorov constants"

C Kol
T;p D Cp;T;�;d;".logN/�pŒ.

1
2

��/^. 3�"
2p

/�; "2 .0; 3/:

We wish to apply Lemma 2 (and the remark that follows).

B Assume 0 < p < 5q
q�2 . Then there exists � > 0 such that p < p0 D 5q

q�2C	 .

Set � 0 D p0

q
. One checks that 1

p0 C 1
q
< 1

2
so that there exists �0 > 0 such that



Convergence of Multi-Dimensional Quantized SDE’s 297

� D 1
p0 C 1

q
C �0 < 1

2
. Elementary computations show that 1

2
� � < 3

2p
. Let

"2 .0; 3/ such that 1
2
� � < 3

2p
� ". Consequently, Lemma 2 (and the remark that

follows) imply that





kW � bW N kq;Hol






p0

� Cq;	;	0;T;".logN/�.
1
2

��/

and for any small enough ˛ > 0, one my specify �, �0 and " so that 1
2
� � D

3
10
.1 � 2

q
/ � ˛. Finally this bounds holds true for p2 .0; p0/ since the Lp-norm is

non-decreasing.

B Now, if p � 5q
q�2 , one checks that 3

2p
� 1

2
�
�
1
p
C 1

q

�
. It becomes impossible

to specify � 2 .0; 1
2
/ so that � 0 D p

q
< � D �p � 1 and 1 � � > 3

2p
. So the same

specifications as above lead to





kW � bW N kq;Hol






p0

� Cq;	;	0;";T .logN/�
3�"
2p

which yields the announced result. ut

5 Convergence of Stationary Quantizations of the Brownian
Motion for the �q-Hölder Distance

In view of what will be needed to apply this theorem to the Brownian motion and
its functional quantizations, we need to prove a counterpart of Lemmas 2 and 3 for
W2
s;t . However, for the sake of simplicity, by contrast with the previous section, we

will only deal with the case of the Brownian motion and its stationary quantizations.
The main result of this section is the following Theorem.

Theorem 5. Let q > 2.

.a/ Let .bW N /N�1 be a sequence of stationary quadratic functional quantizers of a
standard d -dimensional Brownian motion W defined by (11) or (17) converging to
W in a (purely) quadratic sense, namely k jW � bW N jL2

T
k2 ! 0 asN !1. Then,

8 q > 2; 8p > 0;




�q.W; bWN /






p

�! 0 as N !1:

.b/ Let q > 2. Assume that, for every N � 1, bW N is an optimal product quantiza-
tion at level N of W . Then, for every q > 2 and every p > 0,






kW2 � bW2;N k q

2
;Hol







p

D o
�
.logN/�

3
2 min

�
2
7 .1� 2

q /;
1
p

�
C˛�; 8˛ > 0;

so that, finally,
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�q.W; bWN /







p

D o
�
.logN/�

3
2

min
�
1
7
.1� 2

q
/; 1
p

�
C˛�

; 8˛ > 0:

.c/ If r > 2
3

, then

�q.W; bWbeNr c/ D o
�
N�. 3

2
r�1/ q�2

7q
C˛� 8˛ > 0; P-a:s:

Note that the result of interest for our purpose (convergence on multi-dimensional
stochastic integrals) corresponds to q2 .2; 3/. The proposition below appears as the
counterpart of Lemma 2 on the way to the proof.

Proposition 3. Let p > 2.

.a/ Let W2
s;t be defined by (27). For every Q� 0 2 .0; p � 1/, there exists a random

variable Z.2/Q� 0
2 Lp such that

P-a:s: 8 s; t 2 Œ0; T �; jW2
s;t j � Z.2/Q� 0

jt � sj Q� 0

p :

.b/ Let

bW2;N
s;t .!/ D

�Z t

s

.bW i
u � bW i

s/d
bW j

u

	

i;jD0;:::;d
.!/; s; t 2 Œ0; T �; s � t;

where bW D bW N is a stationary quantization of W (the integration holds in the
Stieltjes sense). Then, for every p > 2 and every Q� 02 .0; p � 1/,

P-a:s: 8 s; t 2 Œ0; T �; jbW2;N
s;t j � E.Z

.2/

p; Q� 0
jG

N
/jt � sj Q� 0

p :

.c/ Let eW2;N
s;t DW2

s;t�bW2;N
s;t where bW D bW N is now an optimal quadratic product

quantization of W at level N . Then, if p > 1
�

, for every Q� 02 .0; p.�C 1
2
/ � 2/, for

every "2 .0; 3/ and every ı > 0, there exists a real constant C�;p;T;d;";ı > 0 such
that 











sup
s;t2Œ0;T �

jeW2;N
s;t j

jt � sj Q� 0

p











p

� C�;p;T;d;";ı
�

logN
��. 12��/^ 3�"

2.pCı/ :

Proof. .a/ The random variable Z.2/Q� 0
of interest is defined by

Z
.2/

Q� 0
WD 2

T

X

n�0
2n

Q� 0

p sup
s�t�sC T

2n

jW2
s;t j:

Let s, t 2 Œ0; T �, s � t � s C T
2n

. We know from the multiplicative tensor property
that, for every u2 Œs; t �,

W2
s;t DW2

s;u CW2
u;t CWs;u ˝Wu;t
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and that, for every i , j 2 f0; : : : ; d g,

jW i
s;u ˝W j

u;t j �
1

2
.jW i

s;uj2 C jW j
u;t j2/:

To evaluate supt2Œs;sC T
2n
�jW2;

s;t j, we may restrict to dyadic numbers owing to the

continuity in .s; t/ of W2
s;t . As a consequence, we have, still following the classical

scheme of Kolmogorov criterion

sup
t2Œs;sC T

2n
�

jW2
s;t j � 2

X

m�0
max

0�k�2nCm�1
jW2

t
nCm
k

;t
nCm
kC1

j

C max
0�k�2nCm�1

jW
t
nCm

k
;t
nCm

kC1

j2:

Now

E max
0�k�2nCm�1

jW2

t
nCm
k

;t
nCm
kC1

jp �
2mCn�1X

`D0
E jW2

t
nCm
`

;t
nCm
`C1

jp

and

E max
0�k�2nCm�1

jW
t
nCm
k

;t
nCm
kC1

jp �
2mCn�1X

`D0
E jW

t
nCm
`

;t
nCm
`C1

jp

where the norms j : j are the canonical Euclidean norms on the spaces M..d C 1/;
.d C 1// and R

dC1 respectively.
It is clear that, for every i ¤ j , i , j � 1 and every t � s,

kW2;ij
s;t kp D









Z t

s

.W i
u �W i

s /dWj
u








p

�








Z t

s

.W i
u �W i

s /dWj
u








p

� C BDG
p










Z t

s

.W i
u �W i

s /
2du










1
2

p
2

� Cpjt 0 � t j

whereas
k jWt 0 �Wt j2kp D jt 0 � t jk jW1jkp D Cp;d jt 0 � t j:

Noting that W 0
t D t and, if i D j , 1 � i � d , W2;i i

s;t D 1
2
.W i

t � W i
s /
2 shows

that the above upper-bound still holds for i D j and i or j D 0. Consequently, we
also have

kW2;ij
s;t kp � Cp;d jt 0 � t j:
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Consequently

E max
0�k�2nCm�1

jW2

t
nCm
k

;t
nCm
kC1

jp � Cp;d
2nCm�1X

kD0

�
T

2nCm

	p
DCp;d;T 2.nCm/.1�p/

so that

kZ.2/Q� 0
k
p
� Cp;d;T

X

n�0
2n

Q� 0

p

X

m�0
2.nCm/. 1

p
�1/ D Cp;d;T

X

n�0
2n.

Q� 0

p
�1/ < C1

since Q� 0 < p � 1.
On the other hand, one has obviously

sup
s;t2Œ0;T �;s¤t

jW2
s;t j

jt � sj Q� 0

p

� Z.2/Q� 0
< C1 a:s:

Lemma 2.a/ applied toW (which satisfies .Kp;p
2

�1/) yields for every � 02 .0; p
2
�1/

the existence of Z.1/2 Lp.P/ such that

sup
s;t2Œ0;T �;s�t

jW1
s;t j

jt � sj � 0

p

� Z.1/
� 0

a:s:

As a consequence, combining these two results shows that, for every q > 2p
p�2 ,

�q.W; 0/ < Z D Z.1/
� 0
CZ.2/Q� 0

2 Lp.P/

where Z.1/ is related to � 0 D p
q
2 .0; p

2
� 1/ and Z.2/ is related to Q� 0 D 2p

q
2

.0; p � 2/.

.b/ If i ¤ j , 0 � i; j � d , it follows from Proposition 2 that bW2;ij;N
s;t D

E.bW2;ij;N
s;t jGN / where GN D �.bW / and bW N D .bW i;N /1�i�d is an optimal prod-

uct quantization at level N (which means that for each componentW i , bW i;N is an
optimal product quantization at level N 0 D bN 1

d c).
When i D j � 1, jbW2;i i;N

s;t j � 1
2
E
�
.W i

t �W i
s /
2 jGN /

�
. One derives that

jbW2;i i;N
s;t j

jt � sj Q� 0

p

� E

 
jW2;i i

s;t j
jt � sj Q� 0

p

jGN
!

� E

�
.Z

.2/

Q� 0
/

Q� 0

p jGN
	
:

When i D j D 0, bW2;i i;N DW2;i i D 1
2
.t � s/2.

.c/ In this claim, the random variable Z.2/;NQ� 0
of interest is defined by



Convergence of Multi-Dimensional Quantized SDE’s 301

eZ.2/;N
� 0 D 2

T

X

n�0
2n

Q� 0

p sup
s�t�sC T

2n

jeW2;N
s;t j

and we aim at showing that it lies in Lp.P/ with a control on its Lp-norm as a
function of N . One first derives for eW2;N

s;t the straightforward identity when s �
u � t

eW2;N
s;t D eW2;N

s;u C eW2;N
u;t C eW N

s;u;t

where

eW N
s;u;t D Ws;u ˝Wu;t � bW N

s;u ˝ bW N
u;t

D .Ws;u � bW N
s;u/˝Wu;t C bW N

s;u ˝ .Wu;t � bW N
u;t / (36)

with Wr;s WD Wr �Ws if r � s, etc. One derives from (36) that

jeW2;N
s;t j � 2

X

m�0
max

0�k�2nCm�1
jeW2;N

t
nCm
k

;t
nCm
kC1

j (37)

C2
X

m;m0�0
max

0�k�2nCm�1
0�k0�2nCm0 �1

jW 2;N

t
nCm
k

;t
nCm
kC1

� bW 2;N

t
nCm
k

;t
nCm
kC1

jjW
t
nCm

k0
;t
nCm

k0
C1

j (38)

C2
X

m;m0�0
max

0�k�2nCm�1
0�k0�2nCm0 �1

jW 2;N

t
nCm
k

;t
nCm
kC1

� bW 2;N

t
nCm
k

;t
nCm
kC1

jjbW
t
nCm

k0
;t
nCm

k0
C1

j: (39)

where we used that ju˝ vj � jujjvj.
We will first deal with deal with the first term in (37). We note that

E max
0�k�2nCm�1

jeW2;N

t
nCm

k
;t
nCm

kC1

jp �
X

0�k�2nCm�1
EjeW2;N

t
nCm

k
;t
nCm

kC1

jp:

Let s, t 2 Œ0; T �, s � t and i , j 2 f1; : : : ; d g, i ¤ j . One checks that the
following decomposition holds

eW2;ij;N
s;t D

Z t

s

W i
s;ud.W

j
u � bW j;N

u /

„ ƒ‚ …
.A/

C
Z t

s

bW j;N
u;t d.W

i
u � bW i;N

u /

„ ƒ‚ …
.B/

:

Let us focus on .A/. First not that, owing to Proposition 1 applied with Ft D
�.W i

u ; u 2 Œ0; T �; W j
s ; s � t/,

.A/ D
X

n�1
e�jn

Z t

s

W i
s;u cos

� up
�n

�
du:
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Using that W i and W j are independent, one derives that .A/ is the terminal value
of a martingale with respect to the filtration �.�j

k
; k � n; W i

u ; 0 � u � T /, n � 1
so that combining B.D.G. and Minkowski inequalities yields, with the notations of
Lemma 3,

E.j.A/jp/ � C BDG
p E

0

@
X

n�1
.e�jn/

2

�Z t

s

W i
s;u cos

� up
�n

�
du

	2
1

A

p
2

� C BDG
p

0

@
X

n�1
ke�jnk2p










Z t

s

W i
s;u cos

� up
�n

�
du










2

p

1

A

p
2

where Q�n D �n �b�Nnn and N1; : : : ; Nn; : : : denote the optimal bit allocation of an
optimal quadratic product quantization at level N 0 (keep in mind that Nk D 1, k >
L
B
.N 0/ andN1 � � �NL

B
.N 0/ � N 0 (B scalar Brownian motion). Now an elementary

integration by parts yields

Z t

s

W i
s;u cos

� up
�n

�
du D

p
�n

Z t

s

�
sin
� tp

�n

�
� sin

� up
�n

��
dWi

u

so that, for every �2 .0; 1
2
/, one checks that, owing to the BDG Inequality,










Z t

s

W i
s;u cos

� up
�n

�
du









p

� C BDG
p Cp;��

1��
2

n jt � sj 12C�:

Finally, for every "2 .0; 3/,

k.A/k
p
� Cp;T;�;"

0

@
X

n�1
�1��
n kQ�nk2p

1

A

1
2

jt � sj 12C�:

One shows likewise the same inequality for .B/ once noted that

Z t

s

bW i;N
s;u cos

� up
�n

�
du D E

�Z t

s

W i
s;u cos

� up
�n

�
du jFbW i;N

T

	

which implies









Z t

s

bW i;N
s;u cos

� up
�n

�
du








p

�








Z t

s

W i
s;u cos

� up
�n

�
du








p

:
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Consequently, for every "2 .0; 3/,

keW2;ij;N
s;t k

p
� Cp;�;T

0

@
X

n�1
�1��
n kQ�nk2p

1

A

1
2

jt � sj 12C�

� Cp;T;�;d;"
�

logN
��. 1

2
��/^ 3�"

2p jt � sj 12C�: (40)

If i D j � 1, then

eW2;i i;N
s;t D 1

2

��
W i
s;t

���bW i;N
s;t /

2
�

so that, using again Hölder Inequality,

keW2;i i;N
s;t k

p
D 1

2
kW i

s;t � bW i;N
s;t kpCı/

kW i
s;t � bW i;N

s;t kp.1C
p
ı
/

and one gets the same bounds as in the case i ¤ j .
If i or j D 0, one gets similar bounds: we leave the details to the reader. Finally,

one gets that, for every i; j 2 f0; : : : ; d g,

keW2;N
s;t kp � Cp;�;T;d;";ı

�
logN

��. 12��/^ 3�"
2.pCı/ jt � sj 12C�:

By standard computations similar to those detailed in Lemma 2, we get

X

m�0
k max
0�k�2nCm�1

jeW2;N

t
nCm
k

;t
nCm
kC1

jk
p
�Cp;�;T;d;";ı

�
logN

��. 1
2

��/^ 3�"
2.pCı/ 2�n. 1

2
C�/:

Let us pass now to the two other sums. We will focus on (38) since both behave
and can be treated similarly.

max
0�k�2nCm�1
0�k0�2nCm0 �1

jW 2;N

t
nCm
k

;t
nCm
kC1

� bW 2;N

t
nCm
k

;t
nCm
kC1

jpjW
t
nCm

k0
;t
nCm

k0
C1

jp

�
X

0�k�2nCm�1
0�k0�2nCm0 �1

jW 2;N

t
nCm
k

;t
nCm
kC1

� bW 2;N

t
nCm
k

;t
nCm
kC1

jpjW
t
nCm

k0
;t
nCm

k0
C1

jp:

Now for every s; u; t 2 Œ0; T �, s � u � t , it follows from Hölder Inequality that

k jWs;u � bW N
s;uj jWu;t jkp � kWs;u � bW N

s;ukpCı
kWu;tkp.1Cp=ı/

� Cp;ıkWs;u � bW N
s;ukpCı

jt � uj 12 :
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Using Inequality (33) from Lemma 3, we get for every p > 2, every �2 .0; 1
2
/,

every "2 .0; 3/, and every s; t 2 Œ0; T �, s � t ,





W i

s;t � bW i;N
s;t







p

� C�;p;T;d;"jt � sj�.logN/�.
1
2

��/^. 3�"
2p

/:

Now,

E max
0�k�2nCm�1
0�k0�2nCm0 �1

jW 2;N

t
nCm
k

;t
nCm
kC1

� bW 2;N

t
nCm
k

;t
nCm
kC1

jpjW
t
nCm

k0
;t
nCm

k0
C1

jp

�
�
C�;p;T;d;ı;".logN/�.

1
2

��/^. 3�"
2.pCı/

/
�p
2.nCm/.1��p/2.nCm0/.1�p

2
/

and we use that � > 1
p

and p > 2 to show that

X

m;m0�0
max

0�k�2nCm�1
0�k0�2nCm0 �1

kjW 2;N

t
nCm
k

;t
nCm
kC1

� bW 2;N

t
nCm
k

;t
nCm
kC1

jpjW
t
nCm

k0
;t
nCm

k0
C1

jk
p

� C�;p;T;d;ı;".logN/�.
1
2��/^ 3�"

2.pCı/ 2n.
2
p

�. 1
2

C�//:

Finally, we get

E

�
eZ.2/;NQ� 0

�p � C�;p;T;d;";ı
�

logN
��p. 12��/^ 3�"

2.pCı/

as soon as Q� 02 .0; Q�/ with Q� D p.�C 1
2
/�2. Now, it follows by standard arguments

that

sup
s;t2Œ0;T �

jeW2;N
s;t j � eZ.2/;NQ� 0

jt � sj Q� 0

p

so that, finally











sup
s;t2Œ0;T �

jeW2;N
s;t j

jt � sj Q� 0

p










p

� C�;p;T;d;";ı
�

logN
��. 12��/^ 3�"

2.pCı/ :

ut

Now, we are in position to prove the main result of this section.

Proof of Theorem 5. .a/ Given Theorem 4, this amounts to proving that kW2 �
bW2;N k q

2
;Hol converges to 0 in every Lp.P/. This easily follows from

Proposition 3.a/–.b/.
.b/ We inspect successively four cases to maximize min.1 � �; 3

2p
/ in � when it is

possible.



Convergence of Multi-Dimensional Quantized SDE’s 305

B q 2 .2; 4/ and p < 7q
2.q�2/ . Let p0 be defined by 1

p0 D 2.q�2/
7q
C ˛

2
with ˛ > 0

small enough so that p0 > p and 1
p0
C 1
q
< 1

2
. Then set �0 D 2

q
C 2
p0
� 1
2
C ˛
2

(note that

�0 > 1
p0 /. One checks that 1

2
��0 D 1�2. 1

p0 C 1
q
/ D 3

7
.1� 2

q
/�˛2 .0; 3�"

2.p0Cı/ ^ 12 /
at least for any small enough ˛, ı D ı.˛; q/ > 0 and " D ".˛; q/ > 0. Now,
Proposition 3.c/ applied with Q� 0 D 2p0

q
< p0.�0 C 1

2
/ � 2 yields the announced

asymptotic rate for





kW2 � bW2;N k q

2 ;Hol







p

, p < p0, since Lp.P/-norms are non-

decreasing in p.

B q 2 .2; 4/ and p � 7q
2.q�2/ . One sets the same specifications as above for � but

with p0 D p. Then 1=2� � > 3
2p

and choose " D ".q; ˛/ > 0 and ı D ı.q; ˛/ > 0
small enough so that 3�"

2.pCı/ � 3
2p
C ˛.

B q 2 Œ4; 20=3/. Then 7q
2.q�2/ <

2q
q�4 and one checks that the cases p2 .2; 7q

2.q�2/ /
and p 2 Œ 7q

2.q�2/ ;
2q
q�4 / can be solved as above. If p � 2q

q�4 (hence � 5), no opti-

mization in � is possible i.e. any admissible � satisfies 1
2
� � > 3

2p
.

B q � 20=3 i.e. 7q
2.q�2/ >

2q
q�4 . If p < 2q

q�4 , set p0 such that 1
p0
D q�4

2q
C ˛0=2,

˛0 > 0 small enough and �0 D 2
q
C 2

p0
� 1
2
C ˛

2
. Doing as above yields min.1 �

�; 3
2p
/ D 2

q
C ˛ for an arbitrary small ˛ > 0. Note that this quantity is greater than

3
7
.1� 2

q
/C ˛ (so in that case our exponent is not optimal). If p � 2q

q�4 , we proceed
to no optimization in �.

.c/ This is a consequence of Borel-Cantelli’s Lemma by considering p > 7q
q�2 . ut

Now we conclude by proving Theorem 2.

Proof (Proof of Theorem 2). First we check using Proposition 3 that �q.bWN ; 0/ and
�q.W; 0/ are a:s: finite since they are integrable. Now we may apply Theorem 1
which yields the announced result. ut
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Appendix: Functional Conditional Expectation

Let .Yt /t2Œ0;T � be a bi-measurable process defined on a probability space .˝;A; P/ such that

Z T

0

E.Y 2t /dt < C1:

One can consider Y as a random variable Y W .˝;A; P/ ! L2
T

WD L2.Œ0; T �; dt/ and more
precisely as an element of the Hilbert space

L2
L2T
.˝;A; P/ WD

n
Y W .˝;A; P/ ! L2

T
; E jY j2

L2T
< C1

o

where jf j2
L2T

D R T
0 f

2.t/dt. For the sake of simplicity, one denotes kY k2 WD
q

E jY j2
L2T

. If B
denotes a sub-� -field of A (containing all P-negligible sets of A) then L2

L2T
.˝;B; P/ is a closed

sub-space of L2
L2T
.˝;A; P/ and one can define the functional conditional expectation of Y by

E.Y jB/ WD Proj?
L2
L2T

.˝;B;P/.Y /:

Functional conditional expectation can be extended to bi-measurable processes Y such that
kY k1 WD E jY jL1T < C1 following the approach used for R

d -valued random vectors. Then,
E.Y jB/ is characterized by: for every B.Œ0; T �/ ˝ B-bi-measurable process Z D .Zt /t2Œ0;T �,
bounded by 1,

E

Z T

0

Zt Yt dt D E

Z T

0

Zt E.Y jB/t dt:

In particular, owing to the Fubini theorem, this implies that as soon as the process .E.Yt jB//t2Œ0;T �
has a B.Œ0; T �/˝B bi-measurable version, the functional conditional expectation could be defined
by setting

E.Y jB/t .!/ D E.Yt jB/.!/; .!; t/2 ˝ 	 Œ0; T �:

Examples: .a/ Let B WD �.NA; Bi ; i 2 I / where .Bi /i2I is a finite measurable partition of ˝
such that P.Bi / > 0, i 2 I .
.b/ Let Y WD .Wt /t2Œ0;T � a standard Brownian motion in R

d and let B WD �.Wt1 ; : : : ; Wtn/ where
0 D t0 < t1 < : : : < tn D T . Then

8 t 2 Œtk ; tkC1/; E.W jB/t D Wtk C t � tk

tkC1 � tk
.WtkC1

�Wtk /:
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Abstract We prove an asymptotic Cramér’s theorem, that is, if the sequence .XnC
Yn/n�1 converges in law to the standard normal distribution and for every n � 1 the
random variablesXn and Yn are independent, then .Xn/n�1 and .Yn/n�1 converge
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the central convergence obtained in terms of Malliavin derivatives.
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1 Introduction

The sum of two independent random variables with Gaussian distribution is a
Gaussian random variable. A famous result by Harald Cramér [1] says that the con-
verse implication is also true. Namely, if the law of X C Y is Gaussian and X and
Y are independent random variables, then X and Y are Gaussian. We study in this
paper the following problem: given two sequences of centered square integrable ran-
dom variables .Xn/n�1 and .Yn/n�1 such that EX2n !n!1 c1 and EY 2n !n!1 c2
with c1; c2 > 0 and c1 C c2 D 1 and assuming that for every n � 1, Xn and Yn
are independent and Xn C Yn !n!1 N.0; 1/ in law, can we get the convergence
of Xn to the normal law N.0; c1/ and the convergence of Yn to the normal law
N.0; c2/? We will say in this case that the central limit of the sum is decoupled. A
partial answer has been given in [9]: here the authors proved that the central limit
for the sum implies the central limit for each term when the random variables Xn
and Yn lives in a Wiener chaos of fixed order. In this work we will prove this result
for a very general class of random variables.
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Then we will try to understand this asymptotic Cramér’s theorem from the
perspective of some recent ideas from [3] and [4] related to the Stein’s method on
Wiener space and some older ideas from [8, 11, 12] where the independence of ran-
dom variables is characterized in terms of the Malliavin derivatives. Let .˝;F ; P /
be a probability space and let .Wt /t2Œ0;1� be a Wiener process on this space. Recall
that a result in [3] says that a sequence of Malliavin differentiable (with respect
to W ) random variables Xn (defined on ˝) converges to the normal law N.0; 1/ if
and only if

E
�
f 0

z .Xn/.1 � hDXn;D.�L/�1Xni/
�!n!1 0

where we denoted by D the Malliavin derivative with respect to W , by L the
Ornstein-Uhlenbeck generator and by fz the solution of the Stein’s equation (for
fixed z 2 R)

1.�1;z�.x/ � P.Z � z/ D f 0.x/ � xf .x/; x 2 R: (1)

(Throughout this paper we denote by h�; �i the scalar product in L2.Œ0; 1�/.) In par-
ticular, if E

�
1� hDXn;D.�L/�1Xni

�2 !n!1 0 thenXn converges toN.0; 1/ as
n ! 1 by using Schwarz’s inequality and the fact that f 0

z is bounded (actually it
suffices to have E

ˇ
ˇ1 � hDXn;D.�L/�1Xni

ˇ
ˇ!n!1 0).

Let us describe the basic idea to treat the convergence of sums of independent
random variables to the normal law. Let Xn; Yn be two sequences as above (that
means Malliavin differentiable with EX2n !n!1 c1 > 0, EY 2n !n!1 c2 > 0 and
c1 C c2 D 1). The fact that Xn C Yn !n!1 N.0; 1/ (in law) implies that

E
�
f 0

z .Xn C Yn/.1 � hD.Xn C Yn/;D.�L/�1.Xn C Yn/i/
�!n!1 0: (2)

Suppose now that Xn and Yn are independent for every n. A result by Üstunel and
Zakai ([11], Theorem 3) says that in this case

E.hDXn;D.�L/�1YnijXn/ D 0 and E.hDYn;D.�L/�1XnijYn/ D 0 a.s: (3)

The relation (3) induces the idea that the summands containing hDXn;D.�L/�1Yni
and hDYn;D.�L/�1Xni could be eliminated from (2). We will see that it is not im-
mediate and that actually a stronger condition than the independence ofXn and Yn is
necessary in order to do this. Therefore our first step is to introduce some classes of
independent random variablesX; Y such that the “mixed" terms hDX;D.�L/�1Y i
and hDY;D.�L/�1Xi vanish. A first class that we consider here is the class of
so-called strongly independent random variables for which every multiple integral
in the chaos decomposition of X is independent of every multiple integral in the
chaos decomposition of Y . We will see that if X and Y are strongly independent,
then hDX;D.�L/�1Y i D hDY;D.�L/�1Xi D 0 almost surely. Another class we
consider is the class of random variablesX; Y that are differentiable in the Malliavin
sense and such that X is independent of the couple .Y; hDY;D.�L/�1Y i/ and Y
is independent of the couple .X; hDX;D.�L/�1Xi/. We will say in this case that
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the couple .X; Y / belongs to the class A. A couple of strongly independent random
variables belongs to A and in this sense this class is an intermediary class between
the independent and strongly independent random variables. For couples in A we
will show that E.hDX;D.�L/�1Y ijXCY / D E.hDY;D.�L/�1XijXCY / D 0
almost surely and it is then again possible to cancel the mixed terms in (2). We
will prove, by an elementary argument coming from the original Cramér’s theo-
rem and without using Malliavin calculus, that for independent random variables
the asymptotic Cramér’s theorem holds. But for random variables in these classes
(in the class A or strongly independent) we can give further results by using the
tools of the Malliavin calculus. Concretely, we will treat the following problem:
suppose that the sum XnCYn converges to the normal law in a strong sense, that is,
the upper bound E

�
1 � hD.Xn C Yn/;D.�L/�1.Xn C Yn/i

�2
converges to zero

as n ! 1. We can interpret this by saying that the sum Xn C Yn is “close" to
N.0; 1/, not in the sense of the rate of convergence but in the sense that Xn C Yn
belongs to a subset of the set of the sequences of random variables converging to
N.0; 1/. Then can we obtain the strong convergence of Xn and Yn to the normal
law, that is E .c1 �GXn /2 !n!1 0 and E .c2 �GYn /2 !n!1 0, where GXn is
given by (12)? We prove that this property is true for strongly independent random
variables while for couples in the class A a supplementary assumption is necessary
in order to ensure the strong convergence of Xn and Yn from the convergence of
Xn C Yn.

The organization of the paper is as follows. Section 2 contains preliminaries on
the stochastic calculus of variations. In Sect. 3 we prove the asymptotic Cramér’s
theorem by using an elementary argument while Sect. 4 contains some thoughts on
this theorem from the perspective of recent results on central limit theorem obtained
via Malliavin calculus.

2 Preliminaries

Let .Wt /t2Œ0;1� be a classical Wiener process on a standard Wiener space .˝;F ;P/.
If f 2 L2.Œ0; 1�n/ with n � 1 integer, we introduce the multiple Wiener-Itô integral
of f with respect to W . The basic references are the monographs [2] or [6]. Let
f 2 Sn be an elementary function with n variables that can be written as

f D
X

i1;:::;in

ci1;:::;in1Ai1	:::	Ain

where the coefficients satisfy ci1;:::;in D 0 if two indices ik and il are equal and the
sets Ai 2 B.Œ0; 1�/ are pairwise disjoint. For such a step function f we define

In.f / D
X

i1;:::;in

ci1;:::inW.Ai1/ : : : W.Ain/
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where we put W.A/ D R 1
0
1A.s/dWs. It can be seen that the application In

constructed above from Sn to L2.˝/ is an isometry on Sn, i.e.

E ŒIn.f /Im.g/� D nŠhf; giL2.Œ0;1�n/ if m D n (4)

and
E ŒIn.f /Im.g/� D 0 if m 6D n:

Since the set Sn is dense in L2.Œ0; 1�n/ for every n � 1 the mapping In can be
extended to an isometry from L2.Œ0; 1�n/ to L2.˝/ and the above properties hold
true for this extension. It also holds that

In.f / D In
� Qf � (5)

where Qf denotes the symmetrization of f defined by Qf .x1; : : : ; xn/ D
1
nŠ

P
�2Sn f .x�.1/; : : : ; x�.n//. We will need the general formula for calculating

products of Wiener chaos integrals of any ordersm; n for any symmetric integrands
f 2 L2.Œ0; 1�˝m/ and g 2 L2.Œ0; 1�˝n/; it is

Im.f /In.g/ D
p^qX

`D0
`ŠC `mC

`
nImCn�2`.f ˝` g/ (6)

where the contraction f ˝` g is defined by

.f ˝` g/.s1; : : : ; sm�`; t1; : : : ; tn�`/

D
Z

Œ0;T �mCn�2`

f .s1; : : : ; sm�`; u1; : : : ; u`/

g.t1; : : : ; tn�`; u1; : : : ; u`/du1 : : : du`: (7)

Note that the contraction .f ˝` g/ is an element of L2.Œ0; 1�mCn�2`/ but it is not
necessary symmetric. We will denote by .f Q̋ `g/ its symmetrization.

We recall that any square integrable random variable which is measurable with
respect to the �-algebra generated by W can be expanded into an orthogonal sum
of multiple stochastic integrals

F D
X

n�0
In.fn/ (8)

where fn 2L2.Œ0; 1�n/ are (uniquely determined) symmetric functions and
I0.f0/ D E ŒF �.

We denote byD the Malliavin derivative operator that acts on smooth functionals
of the form F D g.W.'1/; : : : ;W.'n// (here g is a smooth function with compact
support and 'i 2 L2.Œ0; 1�/ for i D 1; ::; n)

DF D
nX

iD1

@g

@xi
.W.'1/; : : : ;W.'n//'i :
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We can define the i th Malliavin derivative D.i/ defined iteratively. The operator
D.i/ can be extended to the closure D

p;2 of smooth functionals with respect to the
norm

kF k2p;2 D EF 2 C
pX

iD1
EkDiF k2

L2.Œ0;1�i /

The adjoint ofD is denoted by ı and is called the divergence (or Skorohod) integral.
Its domain Dom.ı/ coincides with the class of stochastic processes u 2 L2.˝ 	
Œ0; 1�/ such that

jEhDF; uij � ckF k2
for all F 2 D

1;2 and ı.u/ is the element of L2.˝/ characterized by the duality
relationship

E.F ı.u// D EhDF; ui:
For adapted integrands, the divergence integral coincides with the classical Itô
integral.

Let L be the Ornstein–Uhlenbeck operator defined on Dom.L/ D D
2;2

LF D �
X

n�0
nIn.fn/

if F is given by (8). There exists a connection between ı;D and L in the sense
that a random variable F belongs to the domain of L if and only if F 2 D

1;2

and DF 2 Dom.ı/ and then ıDF D �LF . Also we will need in the paper the
integration by parts formula

F ı.u/ D ı.F u/C hDF; ui (9)

whenever F 2 D
1;2, u 2 Dom.ı/ and EF 2

R 1
0

u2sds <1.

3 Asymptotic Cramér’s Theorem

We start by proving an asymptotic version of the Cramér’s theorem [1]. A particular
case (when the sequences Xn and Yn are multiple integrals in a Wiener chaos of
fixed order) has been proven in [9], Corollary 1. Our proof is based on the Cramér’s
theorem (see [1]) and an idea from [7].

Theorem 1. Suppose that .Xn/n�1 and .Yn/n�1are two sequences of centered ran-
dom variables in L2.˝/ such that EX2n !n!1 c1 > 0 and EY 2n !n!1 c2 > 0

with c1 C c2 D 1. Assume that for every n � 1, the random variables Xn and Yn
are independent. Then

Xn C Yn ! N.0; 1/, .Xn ! N.0; c1/ and Yn ! N.0; c2//:
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Proof. One direction is trivial. Let us assume that Xn C Yn !n!1 N.0; 1/. We
will prove that Xn !n!1 N.0; c1/ and Yn !n!1 N.0; c2/. Since EX2n !n!1
c1 and EY 2n !n!1 c2 it follows that the sequence .Xn; Yn/n�1 is bounded in
L2.˝/. By Prohorov’s theorem it suffices to prove that for any subsequence which
converges in distribution to some random vector .F;G/, then we must have F �
N.0; c1/; G � N.0; c2/ and F;G are independent. Let us consider such an arbitrary
sequence .Xnk ; Ynk / which converges in law to .F;G/ as k ! 1. Because Xnk
and Ynk are independent for each k, it is clear that F and G are independent. Since
Xn C Yn !n!1 N.0; 1/ it follows that F CG � N.0; 1/.

Cramér’s theorem implies that F � N.0; c1/ and G � N.0; c2/. ut
This result can be extended to finite and even infinite sums of independent ran-

dom variables.

Proposition 1. Suppose that for every n � 1, Xn D P
k�1Xnk where for every n

the random variables Xkn ; k � 1 are mutually independent and the series is con-
vergent for every !. Assume also that Xn

k
are centered for every n; k � 1 and

E.Xn
k
/2 !n!1 ck > 0 for every k � 1. Suppose that Xn converging in law to

N.0; 1/ as n!1. Then for every k � 1 the sequenceXn
k

converges to the normal
law as n!1.

Proof. Since Xn D Xn1 C
P
k�2Xnk and the two summands are independent,

Theorem 1 implies that Xn1 converges to the normal law. Inductively, the conclu-
sion can be obtained. ut
Remark 1. When, for every n � 1, Xn D Ik1.f

n/ and Yn D Ik2.g
n/ are multiple

stochastic integrals (possibly of different orders, that can also vary with n) we can
go further by proving the following result. If E.Xn C Yn/2 !n!1 1 and Xn C Yn
converges in law to N.0; 1/, if lim n EX2n > 0 and lim n EY 2n > 0 then

dKol.Xn; N.0;EX2n//!n!1 0 and dKolYn; N.0;EY 2n /!n!1 0 (10)

Here dKol means the Kolmogorov distance (recall that the Kolmogorov distance
between the law of two random variables U and V is given by dKol.U; V / D
supx2R

jP.U � x/ � P.V � x/j). That is, there is an asymptotic Cramér’s theo-
rem even if the variances of Xn and Yn do not converge a priori. Relation (10) can
be proved as follows. First, recall the following bound when X lives in a chaos of
fixed order (see e.g. [5])

dKolX;N.0;EX2/ �
�ˇˇEX4 � 3.EX2/2ˇˇ� 12

EX2
DW .jk4.X/j/

1
2

EX2
(11)

where k4.X/ is the fourth cumulant of X . It is immediate, by the definition of the
cumulant, that k4.XCY / D k4.X/Ck4.Y / ifX and Y are independent. Moreover,
it follows from [5], identity (3.31) that k4.X/ � 0 ifX is a multiple integral. Hence,
if E.Xn C Yn/2 !n!1 1 and Xn C Yn converges in law to N.0; 1/, then
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k4.Xn/C k4.Yn/ D k4.Xn C Yn/ D E.Xn C Yn/4 � 3.E.Xn C Yn/2/2 !n!1 0

and this implies that k4.Xn/!n!1 0 and k4.Yn/!n!1 0. The convergence (10)
is obtained by using (11) and the hypothesis lim n EX2n > 0 and lim n EY 2n > 0.

4 Decoupling Central Limit Under Strong Independence

Let us regard Theorem 1 from the perspective of the results in [3]. In this part all
random variables are centered. We recall some facts related to the convergence of a
sequence of random variables to the normal law in terms of the Malliavin calculus.
For any random variable X 2 D

1;2 we denote by

GX WD hDX;D.�L/�1Xi: (12)

The following result is a slight extension of Proposition 3.1 in [3]. See also Theorem
3 in [10].

Proposition 2. Let .Xn/n�1 be a sequence of square integrable random variables
such that EX2n !n!1 c > 0. Then the following are equivalent:

1. The sequence .Xn/n�1 converges in law, an n ! 1, to the normal random
variable N.0; c/, c > 0

2. For every t 2 R, E
�
ei tXn.c �GXn/

�!n!1 0

3. E ..c �GXn /jXn/!n!1 0 a.s.
4. For every z 2 R, E

�
f 0

z .Xn/.c �GXn/
�!n!1 0

Proof. We follow the scheme 1:) 2:) 3:) 4:) 1. The implications 1:) 2: and
3:) 4:) 1 follow exactly as in [10], Theorem 3. Concerning 2:) 3:, set Fn D
c � GXn for every n� 1. The random variable E.FnjXn/ is the Radon–Nykodim
derivative with respect to P of the measure Qn.A/ D E.Fn1A/, A 2 �.Xn/.
Relation 2. means that E

�
ei tXnE.Fn=Xn/

� D EQn.e
i tXn/ !n!1 0 and henceR

R
eityd.Qn ıX�1

n /.y/!n!1 0. This implies that Qn.A/ D E.Fn1A/!n!1 0

for any A 2 �.Xn/ or E.FnjXn/!n!1 0:

As an immediate consequence we have (see also [3]).

Corollary 1. Suppose that .Xn/n�1 is a sequence of random variables such that
EX2n !n!1 c. suppose that

E.c �GXn/2 !n!1 0: (13)

Then Xn !n!1 N.0; c/.

Remark 2. In the case when the variables Xn live in a fixed Wiener chaos, Xn D
Ik.fn/, then the convergence in distribution of Xn to the normal law is equivalent
to (13), see [7].
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Assume that .Xn/n�1 and .Yn/n�1 are two sequences of random variables such
that: (a) for every n � 1 the random variables Xn and Yn are independent and (b)
Xn C Yn ! N.0; 1/ in distribution as n!1. The quantity GXnCYn , which plays
a central role, can be written as

GXnCYn D GXn CGYn C hDXn;D.�L/�1Yni C hDYn;D.�L/�1Xni:

The force of the Cramér’s theorem can be observed here: the fact that

E .c1 �GXn C c2 �GXn
�hDXn;D.�L/�1Yni � hDYn;D.�L/�1XnijXn C Yn

�

converges to zero implies that E.c1 �GXn jXn/ and E.c2 �GYn jYn/ both converge
to zero. It is not obvious to prove this directly. Note also that the independence ofXn
and Yn does not guarantee a priori that the terms E.hDYn;D.�L/�1XnijXnC Yn/
E.hDXn;D.�L/�1YnijXn C Yn/ vanish. But the situation when these two terms
vanish is also interesting and we will analyze this case in the sequel. We will see
that it requires a slightly stronger assumption than the independence of Xn and Yn.
We introduce the following concept.

Definition 1. Two random variables X D P
n�0 In.fn/ and Y D P

m�0 Im.gm/
are called strongly independent if for every m; n � 0, the random variables In.fn/
and Im.gm/ are independent.

Remark 3. Let us recall the criterion for the independence of two multiple integrals
given in [11]: Let X 0 D Ip.f / and Y 0 D Iq.g/ where f 2 L2.Œ0; 1�p/ and g 2
L2.Œ0; 1�q/ (p; q � 1) are symmetric functions. Then X 0 and Y 0 are independent if
and only if

f ˝1 g D 0 almost everywhere on Œ0; 1�pCq�2:

As a consequence two random variables X and Y as in Definition 1 are strongly
independent if and only if for everym; n � 1, fn˝1 gm D 0 almost everywhere on
Œ0; 1�mCn�2.

Let us also note that the class of strongly independent random variables is strictly
included in the class of independent random variables. Indeed, consider

X1 D
p
2I1

�
1Œ 1
2
;1�

�
and Y1 D

p
2

Z 1
2

0

sign.Ws/dWs:

Then X1 and Y1 are independent standard normal random variables. Define

X D 1p
2
.X1 C Y1/ and Y D 1p

2
.X1 � Y1/:

Then X; Y are also independent standard normal but they are not strongly in-
dependent because for example the chaoses of order one of X and Y are not



Asymptotic Cramér’s Theorem and Analysis on Wiener Space 317

independent (note that the random variable
R 1
2

0 sign.Ws/dWs has only even order
chaos components).

Lemma 1. Assume that X; Y 2 D
1;2 and X; Y are strongly independent. Then

hDX;D.�L/�1Y i D 0 a.s. :

Proof. Suppose first that X D In.f / and Y D Im.g/. Then, since D˛X D
nIn�1.f .�; ˛// and D˛.�L/�1Y D Im�1.g.�; ˛//, using (6)

hDX;D.�L/�1Y i D n
Z 1

0

d˛In�1.f .�; ˛//Im�1.g.�; ˛// D m
.m�1/^.n�1/X

kD0

kŠC km�1C kn�1
Z 1

0

d˛ImCn�2�2k.f .�; ˛/˝k g.�; ˛//

D
.m�1/^.n�1/X

kD0
kŠC km�1C kn�1ImCn�2�2k.f ˝kC1 g/

and this is equal to zero from the characterization of the independence of two mul-
tiple integrals (see Remark 3). The extension to the general case is immediate since,
if X DPn In.fn/ and Y DPm Im.gm/,

hDX;D.�L/�1Y i D
X

m;n

hDIn.fn/;D.�L/�1Im.gm/i:

ut
In view of Lemma 1, the Proposition 2 can be formulated for strongly indepen-

dent random variables as follows: Suppose that .Xn/n�1 and .Yn/n�1 are two se-
quences of centered strongly independent random variables such that EX2n !n!1
c1 and EY 2n !n!1 c2 where c1; c2 > 0 are such that c1 C c2 D 1. Then the
following affirmations are equivalent:

1. The sequence .XnCYn/n�1 converges in law to a standard normal random vari-
able as n!1

2. For every t 2 R, E
�
ei t.XnCYn/.c1 �GXn C c2 �GXn/

�!n!1 0

3. E .c1 �GXn C c2 �GYn jXn C Yn/!n!1 0

4. For every z 2 R, E
�
f 0

z .Xn C Yn/.c1 �GXn C c2 �GYn/
�!n!1 0

Let us assume now that the two sequences of Theorem 1 are strongly
independent. We will also assume that the convergence of the sum Xn C Yn to
N.0; 1/ is strong in the sense that E .1 �GXnCYn/

2 converges to zero as n ! 1.
We can say, somehow, that in this case the sumXnCYn is rather close to the normal
law since the upper bound of the distance between it and N.0; 1/ goes to zero. We
will prove that this implies that the convergence of Xn and Yn to the normal law is
also strong.
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Remark 4. The case of multiple stochastic integrals can be easily understood.
Suppose that Xn D Ik.f

n/ and Yn D Il.g
n/ where for every n � 1 the kernels

f n; gn are in L2.Œ0; 1�k/ and L2.Œ0; 1�l/ respectively. Assume that EX2n !n!1
c1 > 0 and EY 2n !n!1 c2 > 0 such that c1 C c2 D 1. Then if Xn C Yn !n!1
N.0; 1/ and Xn; Yn are independent (thus strongly independent) it follows that
Xn ! N.0; c1/ and Yn ! N.0; c2/ and by Remark 2, E .c1 �GXn /2 !n!1 0

and E .c2 �GYn/2 !n!1 0, so the convergence of Xn and Yn to the normal dis-
tribution is strong.

We will also need the following lemma.

Lemma 2. Assume that X; Y 2 D
1;2 and X; Y are strongly independent. Then the

random variablesGX and GY are strongly independent.

Proof. Let us assume once again that X D In.f / and Y D Im.g/. The result can
easily be extended to the general case. We have

GX D n
n�1X

kD0

�
C kn�1

�2
I2n�2�2k.f ˝kC1 f /

and

GY D m
m�1X

lD0
lŠ
�
C lm�1

�2
I2m�2�2l .g ˝lC1 g/:

It suffices to show that for every k D 1; ::; n � 1 and l D 1; ::; m � 1 the random
variables I2n�2k.f ˝k f / and I2m�2l .g ˝l g/ are independent or equivalently

.f Q̋ kf /˝1 .g Q̋ lg/ D 0 a.e. on Œ0; 1�2m�2kC2m�2l�2 :

But since

.f Q̋ kf /.x1; ::; x2n�2k/

D
X

�2S2n�2k

Z

Œ0;1�k
f .u1; ::; uk ; x�.1/; ::; x�.n�k//

f .u1; ::; uk ; x�.n�kC1/; ::; x�.2n�2k//du1::duk

and

.g Q̋ lg/.y1; ::; y2m�2l /

D
X

�2S2m�2l

Z

Œ0;1�l
g.v1; ::; vl ; y�.1/; ::; y�.m�l//

g.v1; ::; vl ; y�.m�lC1/; ::; y�.2m�2l//dv1::dvl

then .f Q̋ kf /˝1 .g Q̋ lg/D 0 almost everywhere on Œ0; 1�2m�2kC2m�2l�2 by using
Fubini and the fact that
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Z 1

0

d f̨ .u1; ::; uk ; x1; ::; xn�k�1; ˛/g.v1; ::; vl ; y1; ::; ym�lC1; ˛/ D 0

for almost all u1; vi ; xi ; yi . The general case demands to prove that .fn Q̋ kfn0/˝1
.gm Q̋ lgm0/ D 0 almost everywhere for every n; n0; m;m0 � 1 and for every k D
1; ::; n ^ n0 and l D 1; ::; m ^m0 and this can be done similarly as above (note that
the fact that k; l � 1 and the value zero is excluded is essential for the proof). ut
Proposition 3. Suppose that .Xn/n�1 and .Yn/n�1 are two sequences of centered
strongly independent random variables such that EX2n !n!1 c1 and EY 2n !n!1
c2 where c1; c2 > 0 are such that c1 C c2 D 1. Then E .1 �GXnCYn/

2 !n!1 0 if
and only if

E .c1 �GXn /2 !n!1 0 and E .c2 �GYn/2 !n!1 0:

Proof. By using Lemmas 1 and 2 we have

E .1 �GXnCYn/
2 D E .c1 �GXn/2 C E .c2 �GYn /2

and the conclusion is immediate. ut
We will study next if the result in Proposition 3 can be obtained by

relaxing the hypothesis on the strong independence of Xn and Yn for every
n. As we have seen, the strong independence of two variables X and Y

implies that hDX;D.�L/�1Y iD hDY;D.�L/�1XiD 0 a.s. But in order to
eliminate the “mixed" terms we only need E.hDX;D.�L/�1Y ijX C Y /

DE.hDY;D.�L/�1XijX C Y /D 0 a.s. We therefore introduce an intermediary
class between the class of independent random variables and the class of strongly
independent random variables for which this property holds.

Definition 2. We will say that a couple .X; Y / of two random variables in the space
D
1;2 belongs to the class A if the vectorX is independent of the vector .Y;GY / and

Y is independent of the vector .X;GX /.

We will give now examples of random variables in A. First we recall the follow-
ing result from [11].

Lemma 3. Let X 2 D
1;2 and Y;Z 2 L2.˝/. Then X is independent of the pair

.Y;Z/ if and only if for every ˛; ˇ 2 R

E
�
hDX;D.�L/�1ei.˛ZCˇY /ijX

�
D 0 a.s. :

We show that a couple of strongly independent random variables is in the set A.
We consider first the case of multiple integrals.

Lemma 4. Suppose that X D Ip.f / and Y D Iq.g/ where f 2 L2.Œ0; 1�p/ and
g 2 L2.Œ0; 1�q/ (p; q � 1) are symmetric functions. Assume that X and Y are
independent. Then .X; Y / belongs to the class A.
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Proof. We will prove that X is independent of the couple .Y;GY /. Similarly it will
follow that Y is independent of .X;GX /. We prove that

hDX;D.�L/�1ei.˛YCˇGY /i D 0 a.s.

or, since D.�L/�1 D .I C L/�1D,

hDX; .I C L/�1Dei.˛YCˇGY /i D 0 a.s.

Note that Dei.˛YCˇGY / D ei.˛YCˇGY /.i˛DY C iˇDGY /. First we will show that

hDX; ei.˛YCˇGY /DY i D 0 a.s.

Assume that the random variable ei.˛YCˇGY / admits the chaos expansion
ei.˛YCˇGY / D P

N�0 IN .hN / (in the sense that its real part and its imaginary
part admit such a decomposition). Then

ei.˛YCˇGY /D˛Y D q
X

N�0
IN .hN /qIq�1.g.�; ˛//

D q
X

N�0

N^.q�1/X

rD0
rŠC rq�1C rNINCq�1�2r .hN ˝r g.�; ˛//

and

.I C L/�1ei.˛YCˇGY /D˛Y D q
X

N�0

N^.q�1/X

rD0
rŠC rq�1C rN .1CN C .q � 1/� 2r/�1INCq�1�2r .hN ˝r g.�; ˛//:

Therefore

hDX; .I CL/�1Dei.˛YCˇGY /i

D pq
X

N�0

N^.q�1/X

rD0
rŠC rq�1C rN .1CN C .q � 1/� 2r/�1

	
.NCq�1�2r/^.p�1/X

aD0
INCq�1�2rCp�2a

Z 1

0

�
.hN Q̋ rg.�; ˛/˝a f .�; ˛/

�
d˛:

Above, .hN Q̋ rg.�; ˛/means the symmetrization of the function .t1; : : : ; tNCq�1�2r/
! .hN ˝r g.t1; : : : ; tNCq�1�2r ; ˛/ for fixed ˛. In other words the above sym-
metrization does not affect the variable ˛. By interchanging the order of integration
to integrate first with respect to ˛ we will obtain that the last quantity is zero.
Similarly it will follow that hDX; ei.˛YCˇGY /DGY i is almost surely zero. ut
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We can extend the previous result to the case of infinite chaos expansion.

Lemma 5. Assume that X; Y are two strongly independent random variables in
D
1;2. Then .X; Y / belongs to A.

Proof. The proof follows the lines of the proof of Lemma 4. In order to check that

hDX; .I C L/�1Dei.˛YCˇGY /i D 0 a.s.

we write

hDX; .I C L/�1Dei.˛YCˇGY /i

D
X

p;q�1
pq

X

N�0

N^.q�1/X

rD0
rŠC rq�1C rN .1CN C .q � 1/� 2r/�1

	
.NCq�1�2r/^.p�1/X

aD0
INCq�1�2rCp�2a

Z 1

0

�
.hN Q̋ rg.�; ˛//˝a f .�; ˛/

�
d˛

and we can finish as in the proof of the previous lemma. ut
An interesting property of the couples in A is that the conditional ex-

pectation given X C Y of the mixed scalar products hDX;D.�L/�1Y i and
hDY;D.�L/�1Xi vanish.

Lemma 6. Assume that .X; Y / belongs to the class A. Then

E
�
ei t.XCY /hDX;D.�L/�1Y i

�
D 0 a.s.

Proof. We have

E
�
ei t.XCY /hDX;D.�L/�1Y i

�
D E

1

it
hDeitX; eitYD.�L/�1Y i

D 1

it
E
�
eitXı.eitYD.�L/�1Y /�

D 1

it
E
�
eitX

�
eitYıD.�L/�1Y

�i teitY hDY;D.�L/�1Y i��

D 1

it
E
�
eitX

�
eitYY � i teitYGY

��

where we used the fact that since eitY 2 D
1;2 and D.�L/�1Y 2 Dom.ı/, then

eitYD.�L�1/Y 2 Dom.ı/ and by (9) ı.eitY.D.�L/�1Y // D eitYı.D.�L/�1Y /
�i teitY hDY;D.�L/�1Y i. By using the fact that .X; Y / belongs to the class A we
obtain

E
�
ei t.XCY /hDX;D.�L/�1Y i

�
D 1

it
E.eitX/

�
E.eitYY / � i tE.eitYGY /

�
:
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Now, going in the converse direction

E.eitYY /� i tE.eitYGY / D Eı.eitY.D.�L/�1Y // D 0:

ut
We are now answering the following question: let .Xn/n�1 and .Yn/n�1 be two

sequences of random variables such that for every n � 1 the couple .Xn; Yn/ is
in the class A. Suppose that the sum Xn C Yn converges to the normal law and is
such that the upper bound from Stein’s method is attained, in the sense that E.1 �
GXnCYn/2 converges to zero. Could we then conclude that bothXn and Yn converge
in a strong sense to the normal laws N.0; c1/ and N.0; c2/ respectively? We will
see that this is true in some particular case under a supplementary hypothesis on the
sequences Xn and Yn.

4.1 Wiener Chaos Stable Random Variables

Let us denote another class of families of random variables where the central limit of
the sum implies central limit for each component. The idea is to assume a property
on the filtration generated byXnCYn. Let us denote by Jn the orthogonal projection
of L2.˝/ on the n-th Wiener chaos. We recall the following definition (see [8,12]).

Definition 3. We will say that a sigma-algebra � � F is Wiener chaos stable if for
every n, Jn

�
L2.�/

� � L2.�/. In other words, if a random variable F 2 L2.�/ ad-
mits the chaos decomposition F DP

n�0 In.fn/ then for every n � 0 the random
variable In.fn/ is � -measurable.

Remark 5. The Wiener chaos stable property for sigma-algebras is equivalent
to the L�1- stable property. Recall that a sigma-algebra � is L�1 stable if
L�1.L20.�// � L20.�/ where L20.�/ is the set of �-measurable square integrable
random variables with zero expectation. As a matter of fact, the sigma -algebra gen-
erated by Ip.f /; hDIp.f /; h1i; hDIp.f /; h2i; : : : ; hDp�1Ip.f /; hi1˝::˝hip�1

i,
where hi ; i � 1 is a complete orthogonal sequence in L2Œ0; 1�, is Wiener stable
(see [8, 12]).

Theorem 2. Suppose that for every Xn D P
n�1 Ik.f nk / and Yn D P

l�1 Il.gnl /
are such that EX2n !n!1 c1 and EY 2n !n!1 c2 (such that c1; c2 > 0 and
c1 C c2 D 1). Assume that

i. For every n � 1 the couple .Xn; Yn/ belongs to the class A
ii. For every n � 1 the sigma-algebras �.Xn/ and �.Yn/ are Wiener chaos stable

Assume also that E .1 �GXnCYn/
2 !n!1 0: Then

E .c1 �GXn /2 !n!1 0 and E .c2 �GYn/2 !n!1 0:
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Proof. We will show that under assumption ii, the random variable GXn belongs
to �.Xn/ for every n � 1. Since Xn is �.Xn/ measurable and �.Xn/ is Wiener
chaos stable, we get that Ik.f nk / is �.Xn/measurable for every n; k. Consequently,
I n
k
.f n
k
/I n
l
.f n
l
/ is �.Xn/ measurable for every n; k; l and by using the product for-

mula we will have that
IkCl�2r

�
f nk ˝r f nl

�

is �.Xn/measurable for every n; k; l � 1 and r D 0; ::; k^ l . As a consequence we
can easily obtain that GXn is measurable with respect to �.Xn/ and similarly GYn
is measurable with respect to �.Yn/. Assume now that E.1�GXnCYn/2 !n!1 0.
The asymptotic Cramér’s Theorem 1 together with Proposition 2 imply that E.c1 �
GXn jXn/! 0 and E.c2 �GYn jYn/! 0 a.s. and by the measurability of GXn and
GYn we obtain the conclusion. ut

4.2 Vectorial Convergence of Xn C Yn and GXn
C GYn

A second class of sequences of random variables for which the central limit can
be broken in order to ensure the strong convergence of each summand is inspired
by [4].

Theorem 3. Assume that EX2n ! c1 and EY 2n ! c2 (such that c1; c2 > 0 and
c1C c2 D 1). Assume that for every n � 1 the couple of random variables .Xn; Yn/
belongs to A. Suppose moreover that the vector

 

Xn C Yn; c1 �GXn C c2 �GYn
E ..c1 �GXn/2 C .c2 �GYn /2/

1
2

!

(14)

converges as n ! 1 to the vector .N1; N2/ where N1; N2 are standard normal
random variables with correlation �. Then Xn C Yn !n!1 N.0; 1/ implies that

E .c1 �GXn/2 !n!1 0 and E .c2 �GYn/2 !n!1 0

Proof. On one hand, we have that

E
�
f 0

z .Xn C Yn/.c1 �GXn C c2 �GYn/
�!n!1 0: (15)

On the other hand, from the convergence of the vector (14) we get

E
�
f 0

z .Xn C Yn/.c1 �GXn C c2 �GYn /a�1
n

�! f 0
z .N1/N2

where an D E
�
.c1 �GXn /2 C .c2 �GYn/2

� 1
2 . It follows from the proof of

Theorem 3.1 in [4] that we can find a constant c 2 .0; 1/ such that
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ˇ
ˇE
�
f 0

z .XnC Yn/.c1�GXn C c2�GYn/
�ˇˇ2 � cE

�
.c1 �GXn /2C .c2�GYn /2

�2
:

(16)

By combining the relations (15) and (16), we obtain that E
�
.c1 �GXn/2C

.c2 �GYn /2
�2 !n!1 0 and this gives the convergence of Xn and Yn to N.0; c1/

and N.0; c2/ respectively. ut

4.3 Random Variables with Independent Chaos Components

In this part we prove that in the case when the chaotic components appearing in the
decomposition of Xn are mutually independent (and the same is true for Yn) then
the central limit of the sum implies the central limit of the summands (in a strong
sense) under simple independence.

Proposition 4. Assume that for every n � 1, Xn D P
k�1 Ik.f nk / and Yn DP

l�1 Il.gnl / and
EX2n !n!1 c1; EY 2n !n!1 c2

with c1; c2 > 0 and c1C c2 D 1. Suppose that the following conditions are fulfilled

i. For every n � 1 the random variablesXn and Yn are independent
ii. For every n � 1, the random variables .Ik.f nk //k�1 are pairwise independent

the same holds for .Ik.gnl //l�1
Then Xn C Yn ! N.0; 1/ implies

E .c1 �GXn /2 !n!1 0 and E .c2 �GYn/2 !n!1 0:

Proof. The Theorem 1 implies that Xn ! N.0; c1/ and Yn ! N.0; 1/ in law.
Corollary 1 and Assumption ii. gives that for every k the sequence Ik.f nl / converges
to a normal law as k !1. Finally, we use Remark 2 and Lemmas 1, 2. ut
Acknowledgments We wish to thank the anonymous referee for valuable comments on our
manuscript.

References

1. Cramér, H.: Über eine Eigenschaft der normalen Verteilungsfunction. Math. Z. 41(2), 405–414
(1936)

2. Malliavin, P.: Stochastic Analysis. Springer, Berlin (2002)
3. Nourdin, I., Peccati, G.: Stein’s method on Wiener chaos. Probab. Theor. Relat. Field. 145(1),

75–118 (2009)
4. Nourdin, I., Peccati, G.: Stein’s method and exact Berry-Esséen asymptotics for functionals of

Gaussian fields. Ann. Probab. 37(6), 2200–2230 (2009)



Asymptotic Cramér’s Theorem and Analysis on Wiener Space 325

5. Nourdin, I., Peccati, G.: Stein’s method meets Malliavin calculus: a short survey with new es-
timates in Recent Advances in Stochastic Dynamics and Stochastic Analysis. Interdisciplinary
Mathematical Sciences - Vol. 8 edited by J. Duan, S.Luo and C.Wang, World Scientific (2008)

6. Nualart, D.: Malliavin Calculus and Related Topics, 2nd edn. Springer, Berlin (2006)
7. Nualart, D., Ortiz-Latorre, S.: Central limit theorems for multiple stochastic integrals and

Malliavin calculus. Stoch. Proc. Appl. 118, 614–628 (2008)
8. Nualart, D., Üstunel, A.S., Zakai, M.: Some relations among classes of � fields on Wiener

space. Probab. Theor. Relat. Field. 84, 119–129 (1990)
9. Peccati, G., Tudor, C.A.: Gaussian limits for vector-valued multiple stochastic integrals. Sémi-

naire de Probabilités, XXXIV, 247–262 (2004)
10. Tudor, C.A.: On the Structure of Gaussian Random Variables. (preprint) (2009) http://arxiv.

org/PS_cache/arxiv/pdf/0907/0907.2501v2.pdf
11. Ustunel, A.S., Zakai, M.: On independence and conditioning on Wiener space. Ann. Probab.

17(4), 1441–1453 (1989)
12. Ustunel, A.S., Zakai, M.: On the structure of independence on Wiener space. J. Funct. Anal.

90, 113–137 (1990)

http://arxiv.org/PS_cache/arxiv/pdf/0907/0907.2501v2.pdf
http://arxiv.org/PS_cache/arxiv/pdf/0907/0907.2501v2.pdf


Moments of the Gaussian Chaos

Joseph Lehec

Abstract This paper deals with Latała’s estimation of the moments of Gaussian
chaoses. It is shown that his argument can be simplified significantly using Tala-
grand’s generic chaining.

Keywords Wiener chaos �Metric entropy � Chaining

1 Introduction

In the article [3], Latała obtains an upper bound on the moments of the Gaussian
chaos

Y D
X

an1;:::;ndgn1 � � �gnd ;
where g1; g2; : : : is a sequence of independent standard Gaussian random variables
and the an1;:::;nd are real numbers. His bound his sharp up to constants depending
only on the order d of the chaos. The purpose of the present paper is to give another
proof of Latała’s result.

Observe that the case d D 1 is easy, since

�
Ej
X

aigi jp
�1=p D .

X
a2i /

1=2
�
Ejg1jp

�1=p � pp.
X

a2i /
1=2:

When d D 2, Latała recovers a result by Hanson and Wright [2] which involves the
operator and the Hilbert–Schmidt norms of the matrix a D .aij/

�
Ej
X

aijgigj jp
�1=p � ppkakHS C pkakop:

It is known (see [5]) that the moments of the decoupled chaos
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QY D
X

an1;:::;ndgn1;1 � � �gnd ;d
where .gi;j / is a family of standard independent Gaussian variables, are comparable
to those of Y wih constants depending only on d . Using this fact and reasoning by
induction on the order d of the chaos, Latała shows that the problem boils down
to the estimation of the supremum of a complicated Gaussian process. Given a set
T and a Gaussian process .Xt /t2T , estimating E supT Xt amounts to studying the
metric space .T; d/ where d is given by the formula

d.s; t/ D �E.Xs � Xt /2
�1=2

:

Dudley’s estimate for instance, asserts that if the process is centered (meaning that
EXt D 0 for all t 2 T ) then there exists a universal constant C such that

E supTt � C
Z 1

0

p
logN.T; d; �/ d�;

where the entropy number N.T; d; �/ is the smallest number of balls (for the dis-
tance d) of radius � needed to cover T . Let us refer to Fernique [1] for a proof of
this inequality and several applications. However, Dudley’s inequality is not sharp:
there exist Gaussian processes for which the integral is much larger than the ex-
pectation of the sup. Unfortunately, the phenomenon occurs here. Latała is able to
give precise bounds for the entropy numbers, but Dudley’s integral does not give the
correct order of magnitude. Something finer is needed.

The precise estimate of the supremum of a Gaussian process in terms of met-
ric entropy was found by Talagrand. This was the famous Majorizing Measure
Theorem [6], which is now called Generic chaining, see the book [7]. Latała did
not manage to use Talagrand’s theory, and his proof contains a lot of tricky entropy
estimates to beat the Dudley bound. We find this part of his paper very hard to read,
and our purpose is to short-circuit it using Talagrand’s generic chaining.

Lastly, let us mention that we disagree with P. Major who released an article on
arXiv1 in which he claims that Latała’s proof is incorrect. The present paper is all
about understanding Latała’s work, not correcting it.

2 Notations, Statement of Latała’s Result

2.1 Tensor Products, Mixed Injective and L2 Norms

To avoid heavy multi-indices notations, it is convenient to use tensor products. If
X and Y are finite dimensional normed spaces, the notation X ˝ Y stands for
the injective tensor product of X and Y , so that X ˝ Y is isometric to L.X
; Y /
equipped with the operator norm. If X and Y are Euclidean spaces, we denote by

1 http://arxiv.org/abs/0803.1453
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X ˝2 Y their Euclidean tensor product. Moreover, in this case we identify X and
X
, so that X ˝2 Y is isometric to L.X; Y / equipped with the Hilbert–Schmidt
norm.

Throughout the article Œd � denotes the set f1; : : : ; d g. Let E1; : : : ; Ed be Eu-
clidean spaces. Given a non-empty subset I D fi1; : : : ; ipg of Œd �, we let

EI D Ei1 ˝2 � � � ˝2 Eip :
Also, by conventionE; D R. The notation k�kI stands for the norm of EI and

BI D fx 2 EI I kxkI � 1g
for its unit ball. Let A 2 EŒd � and P D fI1; : : : ; Ikg be a partition of Œd �, we let
kAkP be the norm of A as an element of the space

EI1 ˝ � � � ˝ EIk :
When d D 2 for instance, the tensor A can be seen as a linear map from E1 to
E2, then kAkf1gf2g and kAkf1;2g are the operator and Hilbert–Schmidt norms of A,
respectively. Let us give another example: assume that d D 3 and that E1 D E2 D
E3 D L2.�/ for some measure �. Then for any f 2 E1 ˝ E2 ˝ E3 which we
identify L2.�˝3/, we have

kf kf1gf2;3g D sup
�Z

f .x; y; z/u.x/v.y; z/ d�.x/d�.y/d�.z/
�
;

where the sup is taken over all u; v having L2 norms at most 1. Going back to the
general setting, let us define for a non-empty subset I of Œd � and an element x 2 EI
the contraction hA; xi to be the image of x by A, when A is seen as an element of
L.EI ; EŒd �nI /. Then for every partition P D fI1; : : : ; Ikg we have

kAkP D sup
˚hA; x1 ˝ � � � ˝ xkiI xj 2 BIj

�
:

If Q D fJ1; : : : ; Jl g is a finer partition than P (this means that any element of Q is
contained in an element of P) then

fx1 ˝ � � � ˝ xl ; xj 2 BJj g � fy1 ˝ � � � ˝ yk ; yj 2 BIj g;

hence kAkQ � kAkP . In particular,

kAkf1g���fdg � kAkP � kAkŒd �:

2.2 Moments of the Gaussian Chaos

If P is a partition of Œd �, its cardinality cardP is the number of subsets of Œd � in P .
Let E1; : : : ; Ed be Euclidean spaces and A 2 EŒd �. Let X1; : : : ; Xd be independent
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random vectors such that for all i , the vectorXi is a standard Gaussian vector ofEi .
The (real) random variable

Z D hA;X1 ˝ � � � ˝Xd i

is called decoupled Gaussian chaos of order d . Here is the main result of Latała.

Theorem 1. There exists a constant ˛d depending only on d such that for all p � 1
�
EjZjp�1=p � ˛d

X

P
p

card P
2 kAkP ;

the sum running over all partitions P of Œd �.

The following theorem and corollary are intermediate results from which
the previous theorem shall follow; however we believe they are of independent
interest.

Theorem 2. Let F1; : : : ; FkC1 be Euclidean spaces, let A 2 FŒkC1� and X be a
standard Gaussian vector on FkC1, recall that hA;Xi 2 F1 ˝ � � � ˝ Fk . Then for
all � 2 .0; 1/:

EkhA;Xikf1g���fkg � ˇk
X

P
�k�card PkAkP ;

where the sum runs over all partitions P of Œk C 1� and the constant ˇk depends
only on k.

Corollary 3. Under the same hypothesis, we have for all p � 1
�

EkhA;Xikpf1g���fkg
�1=p � ık

X

P
p

card P�k
2 kAkP :

Proof. Let f Wx 2 FkC1 7! khA; xikf1g���fkg. Let us use the concentration property
of the Gaussian measure, which asserts that Lipschitz functions are close to their
means with high probability. More precisely, letting m D Ef .X/, we have for all
p � 1

�
Ejf .X/ �mjp�1=p � ı0ppkf klip;

where kf klip is the Lipschitz constant of f and ı0 is a universal constant. We refer
to [4] for more details on this inequality. Noting that

kf klip D sup
x2BkC1

khA; xikf1g���fkg D kAkf1g���fkC1g:

and using the triangle inequality, we get

�
Ejf .X/jp�1=p � Ef .X/C ı0ppkAkf1g���fkC1g:
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The result then follows from the upper bound on Ef .X/ given by Theorem 2 with
� D p�1=2. ut

Let us prove Theorem 1. We proceed by induction on d . When d D 1, the ran-
dom variable hA;X1i is, in law, equal to the Gaussian variable of variance kAk2f1g.
The p-th moment of the standard Gaussian variable being of order

p
p, we get

�
EjhA;X1ijp

�1=p � ˛ppkAkf1g

for some universal ˛, hence the theorem for d D 1.
Assume that the result holds for chaoses of order d � 1. From now on, if I D

fi1; : : : ; irg is a subset of Œd � we denote the tensor Xi1 ˝ � � � ˝ Xir by XI . Notice
that

hA;XŒd �i D
˝hA;Xd i; XŒd�1�

˛

and apply the induction assumption to the matrix B D hA;Xd i. This yields

E
�jhB;XŒd�1�ijp

ˇ
ˇXd

� � ˛p
d�1

�X

P
p

card P
2 kBkP

�p
;

where the sum runs over all partitions P of Œd � 1�. Taking expectation and the p-th
root, we obtain

�
EjhA;XŒd �ijp

�1=p � ˛d�1

 

E
�X

P
p

card P
2 khA;Xd ikP

�p
!1=p

� ˛d�1
X

P
p

card P
2

�
EkhA;Xd ikpP

�1=p
;

(1)

by the triangle inequality. Let P D fI1; : : : ; Ikg be a partition of Œd � 1�. Let Fi D
EIi for i 2 Œk� and FkC1 D Ed . The tensor A can be seen as an element of FŒkC1�,
let us rename it A0 when we do so. Corollary 3 gives

�
EkhA0; Xd ikpf1g���fkg

�1=p � ıkp�k
2

X

Q
p

card Q
2 kA0kQ;

where the sum is taken over all partitions Q of Œk�. Going back to the space EŒd �,
this inequality translates as

�
EkhA;Xd ikpP

�1=p � ıkp�k
2

X

Q
p

card Q
2 kAkQ; (2)

and this time the sum runs over partitions Q of Œd � such that the partition

˚
I1; : : : ; Ik ; fd g

�
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is finer than Q. However, the inequality still holds if we take the sum over all
partitions of Œd � instead. We plug (2) into (1), the numbers p

card P
2 cancel out and

we get the desired inequality with constant

˛d D ˛d�1
X

P
ıcardP ;

where the sum is taken over all partitions P of Œd � 1�.
So it is enough to prove Theorem 2, this is the purpose of the rest of the article.

3 The Generic Chaining

LetF1; : : : ; FkC1 be Euclidean spaces, letA 2 FŒkC1� andX be a standard Gaussian
vector ofFkC1. For i 2 Œk� letBi be the unit ball of Fi , let T D B1	� � �	Bk . Recall
that for x D .x1; : : : ; xk/ 2 T , the notation xŒk� stands for the tensor x1˝ � � �˝ xk .
Note that

EkhA;Xikf1g���fkg D E sup
x2T
hA; xŒk� ˝Xi D E sup

x2T
˝hA; xŒk�i; X

˛
: (3)

Notice also that .Px/x2T D
�˝hA; xŒk�i; X

˛�
x2T is a Gaussian process. To estimate

E supT Px , we shall study the metric space .T; d/, where

d.x; y/ D �E.Px � Py/2
�1=2

:

This distance can be computed explicitly. Indeed

d.x; y/2 D E
˝hA; xŒk� � yŒk�i; X

˛2 D khA; xŒk� � yŒk�ik2fkC1g: (4)

The generic chaining, introduced by Talagrand, will be our main tool. We sketch
briefly the main ideas of the theory and refer to Talagrand’s book [7] for details.

Let .T; d/ be a metric space. If S is a subset of T we let ıd.S/ be the diameter of S

ıd.S/ D sup
s;t2S

d.s; t/:

Given a sequence
�
An
�
n2N

of partitions of T and an element t 2 T , we let An.t/
be the unique element of An containing t .

Definition 4. Let


d.T / D inf
�

sup
t2T

1X

nD0
ıd
�
An.t/

�
2n=2

�
;
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where the infimum is over all sequences of partitions
�
An
�
n2N

of T satisfying the
cardinality condition

A0 D fT g and 8n � 1; cardAn � 22n : (5)

Notice that 
d.T / � ıd.T /. In particular, if the metric is not trivial then 
d.T / is
non-zero. Thus there exists a sequence of partitions .An/n2N satisfying the cardi-
nality condition and

sup
t2T

1X

nD0
ıd
�
An.t/

�
2n=2 � 2
d.T /:

We recall the all important

Theorem 5 (Majorizing Measure). There exists a universal constant  such that
for any Gaussian process .Xt /t2T that is centered (meaning EXt D 0 for all t 2 T )
we have

1
�

d.T / � E sup

t2T
Xt � 
d.T /;

where the metric d is defined by d.s; t/ D �E.Xs �Xt /2
�1=2

.

Here are two simple lemmas.

Lemma 6. Let .T; d/ be a metric space. Let a; b � 1, and .An/n2N be a sequence
of partitions of T satisfying

8n 2 N; cardAn � 2aCb2n :

Letting 
 D supt2T
P1
nD0 ıd

�
An.t/

�
2n=2, we have


d.T / � �
�p
ab ıd.T /C

p
b 


�
;

for some universal �.

Proof. Let p; q be the smallest integers satisfying a � 2p and b � 2q . Let

Bn D
 fT g if n � p C q
An�q�1 if n � p C q C 1:

If n � p C q C 1 then p � n � 1 so

cardBn � 22pC2n�1 � 22n :

Thus the sequence .Bn/n2N satisfies (5). On the other hand, for all t 2 T
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1X

nD0
ıd
�
Bn.t/

�
2n=2 D

pCqX

nD0
ıd .T /2

n=2 C
1X

nDp
ıd
�
An.t/

�
2
nCqC1
2

� 2
pCqC1

2 �1p
2�1 ıd.T /C 2 qC1

2 
:

Moreover 2p � 2a and 2q � 2b, hence the result. ut
Lemma 7. Let d1; : : : ; dN be distances defined on T and let d DP di . Then


d.T / � �0pN
NX

iD1

di .T /;

where �0 is a universal constant.

Proof. For all i 2 ŒN �, there exists a sequence .Ain/n2N of partitions of T satisfying
the cardinality condition (5) and

sup
t2T

1X

nD0
ıdi

�
Ain.t/

�
2n=2 � 2
di .T /:

Then let
An D fA1 \ � � � \AN ; Ai 2 Aing:

This clearly defines a sequence of partitions of T , and for all n we have

cardAn � 2N2n : (6)

On the other hand, for all t 2 T and i 2 ŒN � we have An.t/ � Ain.t/, so

ıd
�
An.t/

� �
NX

iD1
ıdi

�
An.t/

� �
NX

iD1
ıdi

�
Ain.t/

�
:

Consequently

sup
t2T

1X

nD0
ıd
�
An.t/

�
2n=2 � 2

NX

iD1

di .T /: (7)

By the previous lemma, (6) and (7) yield the result. ut

4 Proof of Theorem 2

The proof is by induction on k. When k D 1 the theorem is a consequence of the
following: let A 2 F1 ˝ F2 and X be a standard Gaussian vector on F2, then

EkhA;Xikf1g �
�
EkhA;Xik2f1g

�1=2 D kAkf1;2g:
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Assume that k � 2 and that the theorem holds for any k0 < k. Let A 2 FŒkC1�.
Recall that for i 2 Œk� the unit ball of Fi is denoted by Bi and the product B1 	
� � � 	 Bk by T . Let I be a non-empty subset of Œk� and dI be the pseudo-metric on
T defined by

dI .x; y/ D khA; xI � yI ikŒkC1�nI : (8)

By the majorizing measure theorem and the (3) and (4), Theorem 2 is equivalent to

Theorem 8. For all � 2 .0; 1/


dŒk�.T / � ˇ0
k

X

P
�k�cardPkAkP ;

with a sum running over all partitions P of Œk C 1�.
Our purpose is to prove Theorem 8 by induction on k. Let � be a fixed positive

real number and let d� be the following metric:

d� D
X

;¨I¨Œk�
�k�card IdI : (9)

Let us sketch the argument. First we use an entropy estimate and the generic chain-
ing to compare 
dŒk�.T / and 
d� .T /, then we use the induction assumption to
estimate the latter.

Here is the crucial entropy estimate of Latała [3, Corollary 2].

Lemma 9. Let S � T , let � 2 .0; 1/ and � D ıd� .S/C �kkAkŒkC1�. Then

N
�
S; dŒk�; �

� � 2ck��2

;

for some constant ck depending only on k.

Let us postpone the proof to the last section.
Let .Bn/n2N be a sequence of partitions of T satisfying the cardinality condition

(5) and

sup
t2T

1X

nD0
ıd�
�
Bn.t/

�
2n=2 � 2
d� .T /: (10)

Let n 2 N and B 2 Bn, set �n D min.�; 2�n=2/ and �n D ıd�n .B/C �kn kAkŒkC1�.
Observe that ��2

n � ��2 C 2n and apply Lemma 9 to B and �n:

N.B; dŒk�; �n/ � 2ck��2
n � 2ck��2Cck2n :

Therefore we can find a partition AB of B whose cardinality is controlled by the
number above and such that any R 2 AB satisfies

ıdŒk�.R/ � 2�n � 2ıd� .B/C 2�kn kAkŒkC1�:
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Indeed �n � � implies that d�n � d� . Then we let An D [fAB I B 2 Bng. This
clearly defines a sequence of partitions of T which satisfies

cardAn � 2ck��2Cck2n cardBn � 2ck��2C.ckC1/2n ; (11)

ıdŒk�

�
An.t/

� � 2ıd�
�
Bn.t/

�C 2�kn kAkŒkC1�; (12)

for all n 2 N and t 2 T . Recall that �n D min.�; 2�n=2/, an easy computation
shows that 1X

nD0
�kn 2

n=2 � C�k�1

for some universal C . Therefore, for all t 2 T , we have

1X

nD0
ıdŒk�

�
An.t/

�
2n=2 � 2

1X

nD0

�
ıd� .Bn.t//C �kn kAkŒkC1�

�
2n=2;

� 4
d� .T /C 2C�k�1kAkŒkC1�:

By (11) and applying Lemma 6, we get for some constant Ck depending only on k


dŒk�.T / � Ck
�

d� .T /C �k�1kAkŒkC1� C ��1ıdŒk�.T /

�
;

� 2Ck
�

d� .T /C �k�1kAkŒkC1� C ��1kAkf1g���fkC1g

�
:

(13)

Indeed
ıdŒk�.T / D 2 sup

x2T
khA; xikfkC1g D 2kAkf1g���fkC1g:

We have not used the induction assumption yet. Let I D fi1; : : : ; ipg be a subset of
Œk�, different from ; and Œk�. For j 2 Œp� let F 0

j D Fij and let F 0
pC1 D FŒkC1�nI .

Since p < k we can apply inductively Theorem 8 to the tensorA seen as an element
of F 0

ŒpC1�. For all � 2 .0; 1/


dI .T / � ˇ0
p

X

Q
�p�cardQkAkQ; (14)

where the sum runs over all partitions Q of Œk C 1� such that the partition
fi1g; : : : ; fipg; Œk C 1�nI is finer than Q. Again, the inequality is still true if we
take the sum over all partitions of ŒkC 1� instead. According to Lemma 7 and since

 is clearly homogeneous, we have


d� .T / � �0pN
X

;¨I¨Œk�
�k�card I
dI .T /

where N is the number of subsets of Œk� which are different from ; and Œk�, namely
2k � 2. By (14) we get
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d� .T / � Dk
X

P
�k�cardPkAkP ;

for some Dk depending only on k. This, together with (13), concludes the proof of
Theorem 8.

In the last section we prove Lemma 9, this is essentially Latała’s proof.

5 Proof of the Entropy Estimate

Let x D .x1; : : : ; xk/ 2 F1	� � �	Fk , let jxi j be the norm of xi inFi . LetX1; : : : ; Xk
be independent standard Gaussian vectors on F1; : : : ; Fk , respectively.

Lemma 10. For all semi-norm k�k on FŒk�, we have

P
�
kXŒk� � xŒk�k � E

X

;¨I�Œk�
4cardIkXI ˝ xŒk�nI k

�
� 2�ke� 1

2

Pk
iD1jxi j2 :

Proof. Let us start with an elementary remark. Let x 2 R
n, let K be a symmetric

subset of R
n, and 
n be the standard Gaussian measure on R

n. Then


n.x CK/ � 
n.K/e�1
2

jxj2 : (15)

Indeed, the symmetry ofK and the convexity of the exponential function imply that

Z

xCK
e� 12 jzj2 d z D

Z

K

1
2
.e� 12 jxCyj2 C e� 12 jx�yj2 / dy

�
Z

K

e� 12 .jxj2Cjyj2/ dy

which proves (15).
Let us prove the lemma by induction on k.
If k D 1, applying (15) to K D fy 2 F1; kyk � 4EkX1kg and x D x1, we get

P
�kX1 � x1k � 4EkX1k

� � e� 12 jx1j2 P
�kX1k � 4EkX1k

�
:

Besides, by Markov we have P
�kX1k � 4EkX1k

� � 1
4
� 1

2
, hence the result for

k D 1.
Let k � 2 and assume that the result holds for k � 1. Let

S D
X

;¨I�Œk�1�
4cardIkXI ˝ xŒk�1�nI ˝Xkk

T D
X

;¨I�Œk�1�
4cardIkXI ˝ xŒk�1�nI ˝ xkk
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and let A, B and C be the events

A D ˚kxŒk�1� ˝ .Xk � xk/k � 4EkxŒk�1� ˝Xkk
�

B D ˚k.XŒk�1� � xŒk�1�/˝Xkk � E.S jXk/
�

C D ˚E.S jXk/ � 4ES C ET
�
:

By the following triangle inequality

kXŒk� � xŒk�k � kxŒk�1� ˝ .Xk � xk/k C k.XŒk�1� � xŒk�1�/˝Xkk;

when A, B and C occur we have

kXŒk� � xŒk�k � 4EkxŒk�1� ˝Xkk C 4ES C ET

D E
X

;¨I�Œk�
4cardIkXI ˝ xŒk�nI k:

Assume that Xk is deterministic, and apply the induction assumption to the spaces
F1; : : : ; Fk�1 and to the semi-norm kyk1 D ky ˝Xkk for all y 2 FŒk�1�, then

P.B jXk/ � 2�kC1e� 1
2

Pk�1
iD1 jxi j2 :

Since A and C depend only on Xk , this implies that

P.A \ B \ C/ � P.A\ C/2�kC1e� 12
Pk�1
iD1 jxi j2 :

So it is enough to prove that P.A\ C/ � 2�1e� 12 jxk j2 . For all y 2 Fk we let

kyk2 D kxŒk�1� ˝ yk;
kyk3 D E

X

;¨I�Œk�1�
4card IkXI ˝ xŒk�1�nI ˝ yk:

So that

A D ˚kXk � xkk2 � 4EkXkk2
�
;

C D ˚kXkk3 � 4EkXkk3 C kxkk3
�
:

Let

K D fy 2 Fk; kyk2 � 4EkXkk2g \ fy 2 Fk; kyk3 � 4EkXkk3g;

then, by the triangle inequality, the eventXk 2 xk CK is included in A\C . Using
(15), we get

P.A\ C/ � P.Xk 2 xk CK/ � e� 1
2

jxk j2 P.Xk 2 K/:
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Therefore, it is enough to prove that P.Xk 2 K/ � 1
2

, and this is a simple
application of Markov again. ut

Let FkC1 be another Euclidean space and let A 2 FŒkC1�. Recall that for I D
fi1; : : : ; ipg � Œk C 1�, we let

FI D Fi1 ˝2 � � � ˝2 Fip
and k�kI be the corresponding (Euclidean) norm. Our purpose is to apply the pre-
vious lemma to the semi-norm defined by kyk D khA; yikfkC1g, for all y 2 FŒk�.
Notice that for all x 2 F1 	 � � � 	 Fk and for all ; ¨ I ¨ Œk�

EkXI ˝ xŒk�nI k �
�
EkXI ˝ xŒk�nI k2

�1=2

D khA; xŒk�nI ikI[fkC1g;

which, according to the definition (8), is equal to dŒk�nI .0; x/. In the same way, when
I D Œk�

EkhA;XŒk�ikfkC1g � kAkŒkC1�:

We let the reader check that Lemma 10 then implies the following: for all � 2 .0; 1/
and x 2 T , letting �x D d� .x; 0/C �kkAkŒkC1�, we have

P
�
dŒk�.x; �X/ � �x=2

� � 2�ck��2

(16)

for some constant ck depending only on k.
Lemma 9 follows easily from this observation. Indeed let S � T , since S and

its translates have the same entropy numbers, we can assume that 0 2 S . Then
�x � � WD ıd� .S/C �kkAkŒkC1� for all x 2 S . Let S 0 be a subset of S satisfying:

(i) For all x; y 2 S 0, dŒk�.x; y/ � �.
(ii) The set S 0 is maximal (for the inclusion) with this property.

By maximality S 0 is an �-net of S , soN.S; dŒk�; �/ � cardS 0. On the other hand,
by (i) the balls (for dŒk�) of radius �=2 centered at different points of S 0 do not
intersect. This, together with (16), implies that

2�ck��2

cardS 0 �
X

x2S 0

P
�
dŒk�.x; �X/ � �=2

� � 1;

hence the result.
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The Lent Particle Method for Marked Point
Processes

Nicolas Bouleau

Abstract Although introduced in the case of Poisson random measures (cf. Bouleau
and Denis [2, 3]), the lent particle method applies as well in other situations. We
study here the case of marked point processes. In this case the Malliavin calculus
(here in the sense of Dirichlet forms) operates on the marks and the point process
does not need to be Poisson. The proof of the method is even much simpler than in
the case of Poisson random measures. We give applications to isotropic processes
and to processes whose jumps are modified by independent diffusions.

Keywords Poisson random measure � Lent particle method �Marked point process �
Isotropic process � Dirichlet form � Energy Image Density property � Lévy process �
Wiener space � Ornstein-Uhlenbeck form �Malliavin calculus

1 Construction of the Upper Dirichlet Structure

(a) Marked point processes. Let .X;X / and .Y;Y/ be two measurable spaces such
that fxg 2 X 8x 2 X and fyg 2 Y 8y 2 Y .

Let C.X/ be the configuration space of X i.e. the space of countable sum m

of Dirac masses such that mfxg 2 f0; 1g 8x 2 X , so that m may be indentified
with its support. C.X/ is equipped with the smallest �-field FX s.t. the maps ! 7!
card.! \ A/ be measurable for any A 2 X .

Similarly we consider C.X 	 Y / equipped with FX	Y .
Let � be a probability measure on .Y;Y/ and Q a probability measure on

.C.X/;FX /. Let us denote by M the random measure on X with law Q.
For F a function FX	Y -measurable and bounded, we may define a linear opera-

tor S by putting

S.F / D
Z
F..x1; y1/; : : : ; .xn; yn/; : : :/ �.dy1/ � � ��.dyn/ � � �
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e-mail: bouleau@enpc.fr

C. Donati-Martin et al. (eds.), Séminaire de Probabilités XLIII, Lecture Notes in Mathematics
2006, DOI 10.1007/978-3-642-15217-7__14, c� Springer-Verlag Berlin Heidelberg 2011

341

bouleau@enpc.fr


342 N. Bouleau

the integral does not depend on the order of the numbering.S.F / is FX -measurable.
Thus by

P.F / D
Z
S.F / dQ

we define a probability measure on .C.X 	Y /;FX	Y /. We will say that P is the law
of the random measureM marked by�. It will be convenient to denoteN DMˇ�
this random measure of law P.
(b) Dirichlet structure on a marked point process. We suppose that the measure � is
such that there exists a local Dirichlet structure with carré du champ .Y;Y; �;d; 
/.
Although not necessary, we assume for simplicity that constants belong to dloc (see
Bouleau–Hirsch [5], Chap. I, Definition 7.1.3.)

1 2 dloc which implies 
Œ1� D 0:
By the same argument as the theorem on products of Dirichlet structures ([5],
Chap. V, Sect. 2.2), the domain

D D ˚F 2 L2.P/; for Q-a.e.m DP "xi ;8i; for �-a.e.u1; : : : ; �-a.e.ui�1;

�-a.e.uiC1; : : :

F ..x1; u1/; : : : ; .xi�1; ui�1/; .xi ; : /; .xiC1; uiC1/ : : :/ 2 d

and EP

�P
i .
ŒF �/.ui /

�
< C1g

and the operator � ŒF � DPi .
ŒF �/.ui / define a local Dirichlet structure

.C.X 	 Y /;FX	Y ;P;D; � /:

(c) Let us recall the Energy Image Density property. For a �-finite measure � on
some measurable space, a Dirichlet form on L2.�/ with carré du champ 
 is said to
satisfy (EID) if for any d and for any R

d -valued function U whose components are
in the domain of the form

U
Œ.det
ŒU;U t �/ � ��� �d

where U
 denotes taking the image measure by U , det denotes the determinant, and
�d the Lebesgue measure on R

d .
For a local Dirichlet structure with carré du champ, the above property is always

true for real-valued functions in the domain of the form (Bouleau [1], Bouleau–
Hirsch [5], Chap. I, Sect. 7). It has been conjectured in 1986 (Bouleau–Hirsch [4],
p. 251) that (EID) were true for any R

d -valued function whose components are
in the domain of the form for any local Dirichlet structure with carré du champ.
This has been shown for the Wiener space equipped with the Ornstein-Uhlenbeck
form and for some other structures by Bouleau–Hirsch (cf. [5], Chap. II, Sect. 5 and
Chap. V, Example 2.2.4) and also for the Poisson space by A. Coquio [6] when the
intensity measure is the Lebesgue measure on an open set, and in more general
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cases in [2] thanks to a result of Song [8]. But this conjecture being at present
neither refuted nor proved in full generality, the property has to be established in
every particular setting.

Lemma 1. If the structure .Y;Y; �;d; 
/ is such that any finite product .Y;Y; �;
d; 
/n, n 2 N, satisfies then the structure .C.X	Y /;FX	Y ;P;D; � / satisfies (EID).

Proof. This is an application of Proposition 2.2.3 and Theorem 2.2.1 of Chap. V
of [5].

(d) The lent particle method. Let us denote $ the current point of the space
C.X 	 Y /, and let us introduce the operators

"C
.x;u/$ D $ [ f.x; u/g "�

.x;u/$ D $ \ f.x; u/gc

then we have the lent particle formula

8F 2 D � ŒF � D
Z
"�
"CF dN (1)

Proof. For F 2 D we have

"CF D F..x; u/; .x1; u1/; : : : ; .xi ; ui /; : : :/

"CF D 
ŒF..x; :/; .x1; u1/; : : : ; .xi ; ui /; : : :/�.u/

and
R
"�
"CF dN is the sum, when .x; u/ varies among the points .xi ; ui / 2 $

of the preceding result. This makes

X

i


i ŒF �;

exactly what we obtained by the product construction. This shows also, by the
definition of D, that the integral

R
"�
"CF dN exists and belongs to L1.P/. ut

(e) Gradient. Let us explain how could be done the construction of a gradient for
the structure .C.X 	 Y /;FX	Y ;P;D; � / starting from a gradient for the structure
.Y;Y; �;d; 
/.

Let us suppose that the structure .Y;Y; �;d; 
/ is such that the Hilbert space d
be separable. Then by a result of Mokobodzki (see Bouleau–Hirsch [5], Exercise
5.9, p. 242) this Dirichlet structure admits a gradient operator in the sense that there
exists a separable Hilbert space H and a continuous linear map D from d into
L2.Y; �IH/ such that

� 8u 2 d, kDŒu�k2H D 
Œu�.
� If F W R! R is Lipschitz then

8u 2 d; DŒF ı u� D .F 0 ı u/Du:
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� If F is C1 (continuously differentiable) and Lipschitz from R
d into R (with

d 2N) then

8u D .u1; � � � ; ud / 2 dd ; DŒF ı u� D
dX

iD1
.F 0
i ı u/DŒui �:

As only the Hilbertian structure of H plays a role, we can choose for H a space
L2.R;R; �/ where .R;R; �/ is a probability space such that the dimension of
the vector space L2.R;R; �/ is infinite. As usual, we identify L2.�IH/ and
L2.Y 	R;Y ˝R; � 	 �/ and we denote the gradientD by [:

8u 2 d; Du D u[ 2 L2.Y 	R;Y ˝R; � 	 �/:

Without loss of generality, we assume moreover that operator [ takes its values in the
orthogonal space of 1 in L2.R;R; �/, in other words we take for H the orthogonal
of 1. So that we have

8u 2 d;
Z

u[d� D 0 �-a:e:

Finally, by the hypothesis on 
 we have

1 2 dloc which implies 
Œ1� D 0 and 1[ D 0:

With these tools and hypotheses we obtain easily a gradient for the structure
.C.X 	 Y /;FX	Y ;P;D; � /. We have to follow the same construction as above re-
placing the measure Q 	 �N by the measure Q 	 �N 	 �N. This yields a random
measure N ˇ � D M ˇ � 	 � defined under the probability measure P 	 �N.

Now it is straightforward to show that the formula

F ] D
Z
"�."CF /[ dN ˇ �

for F 2 D defines a gradient for the structure .C.X 	 Y /;FX	Y ;P;D; � / with
values in L2.P 	 �N/. The existence of the integral

R
"�."CF /[ dN ˇ � comes

from the fact that it is controlled by that of
R
"�
"CF dN thanks to

�N

(�Z
"�."CF /[ dN ˇ �

	2)

D
Z Z

."�."CF /[/2d�dN D
Z
"�
Œ"CF �dN

(similar formula as in Corollary 12 of [2]).
Example. If F D e�N.f /, then

"C
.x;u/F D e�N.f /e�f.x;u/
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"C
.x;u/F D e�2N.f /e�2f.x;u/
Œf �

Z
"�
"CF dN D e�2N.f /N.
Œf �/ .D e�2N.f /� ŒN.f /�/

(� ŒN.f /� D N.
Œf �/ even in the non Poissonian case).

Let us summarize this construction which gives a result, similar to Theorem 17
of [2], obtained much more easily here for marked point processes than for random
Poisson measures.

Theorem 1. The carré du champ operator of the upper Dirichlet structure
.C.X 	 Y /;FX 	Y ;P;D; � / satisfies 8F 2 D

� ŒF � D
Z
"�
Œ"CF �dN

and this structure satisfies as soon as every finite product .Y;Y; �;d; 
/n satisfies
(EID).

2 Application to Isotropic Processes

Let us consider a Lévy processZ D .Z1; Z2/ with values in R
2 and Lévy measure

�.dx; dy/ D �.dr/�.d�/ where � is the uniform probability on the circle. Let us
suppose thatZ is centered without Gaussian part and that � integrates r2 D x2Cy2.
Let N be the Poisson measure such that for any h1 and h2 in L2.ds/

Z t

0

h1.s/dZ
1
s C h2.s/dZ2s D

Z
1Œ0;t �.s/.h1.s/x C h2.s/y/ QN.dsdxdy/:

Let us construct the upper Dirichlet structure starting from the classical structure on
the unit circle with domain H 1. And let us consider as illustration the very simple
functional F D Zt D .rt cos �t ; rt sin �t /

"C
.t0;r0;�0/

F D .Z1t C 1t�t0r0 cos �0; Z2t C 1t�t0r0 sin �0/


 "CF D 1t�t0
 

sin2 �0 cos �0 sin �0

cos �0 sin �0 cos2 �0

!

r20

� ŒF � D R "�
 "CF dN D R t
0
r2

 
sin2 � cos � sin �

cos � sin � cos2 �

!

N.dsdrd�/:

As soon as � has an infinite mass, 8t > 0; 9r1 ¤ 0; r2 ¤ 0 et �1 ¤ �2 s.t.
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� ŒF � � r21 ^ r22
�

sin2 �1 C sin2 �2 cos �1 sin �1 C cos �2 sin �2
cos �1 sin �1 C cos �2 sin �2 cos2 �1 C cos2 �2

	

in the sense of positive symmetric matrices. Hence it follows that

det� ŒF � � .r21 ^ r22 /2 sin2.�1 � �2/ > 0:

So that Zt possesses a density on R
2, as soon as �.R
C/ D C1. This result is

probably known although not contained in the criterion of Sato [7] which supposes
� absolutely continuous. (Here � may be possibly a weighted sum of Dirac masses
because it does not carry any Dirichlet form).

The measure on the circle need not to be uniform provided that it carries a Dirich-
let form such that its n-th powers satisfy (EID). The idea generalizes obviously
replacing the circle by a d -dimensional sphere.

Actually, the process Z does not need to be Lévy. The method applies as well
for instance to a real process purely discontinuous if we modify its jumps by i.i.d.
transformations.

3 Insight on Transform of Lévy Processes by Diffusions

Since the Wiener measure is a probability measure we may take for .Y;Y; �/ the
Wiener space equipped with the Ornstein–Uhlenbeck structure. We know that is
fulfilled as asked in Theorem 2.

Let us consider the SDE

Xxt D x C
dX

jD1

Z t

0

Aj .X
x
� ; x/dB

j
� C

Z t

0

B.Xx� ; x/d� (2)

where x 2 R
m. The coefficients are C1 \ Lip with respect to the first argument.

Let us take for .X;X / the Euclidean space .RC	 R
m;B.RC	 R

m//. Let M be
a random Poisson measure on RC 	R

m with intensity ds 	 � and law Q associated
with a Lévy process Z. We denote$ DP˛ ".s˛;x˛/ the current point of C.X/.

Equation (2) is not that of a homogeneous Markov process because of the second
argument in the coefficients. We can nevertheless define ˘t;x.d�/ to be the law of
Xxt and �˘t D

R
�.dx/˘t;x to be the law of Xt starting with the measure �.

Lemma 2. If the coefficients Aj , B are Lipschitz with respect to the first argument
with constant independent of x and vanish at zero, the transition˘t preserves Lévy
measures and measures integrating x 7! jxj ^ 1.

Proof. By Gronwall lemma for p D 1 or p D 2, EjXxt jp � kjxjpekt , this means
that �˘t is a Lévy measure for any Lévy measure � and the lemma is proved. ut
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The transformed Lévy process .Tt .Z//s whose jumps are modified independently
by the diffusion (2), which is a Lévy process with Lévy measure �˘t , is a functional
F of the marked point process. Let us suppose for simplicity that the jumps of Z
are summable, i.e. that � integrates x 7! jxj ^ 1, then F may be written

F D
Z

Œ0;s�	Rm	Y
Xxt .y/N.dsdxdy/

with as above N DM ˇ �. The lent particle formula gives

F ] D
Z

Œ0;s�	Rm	Y	R
.Xxt /

[ d.N ˇ �/

and

� ŒF � D
Z

Œ0;s�	Rm	Y

ŒXxt � dN:

Now .Xxt /
[ and 
ŒXxt � are known by the usual Malliavin calculus : .:/[ is a gradient

on the Wiener space associated with the O-U structure, for which we can choose
(cf. [5]) the operator defined by

�Z
h.s/dBjs

	[
D
Z
h.s/d OBjs h 2 L2.RC/

where OBj are independent copies of Bj .

.Xxt /
[ D Kt

R t
0
K�1
v �.Xxv ; x/ � d OBv


ŒXxt � D Kt
hR t
0
K�1
v �.Xxv ; x/�


.Xxv ; x/.K�1
v /
dv

i
K

t

where � is the matrix whose columns are theAj j D 1; : : : ; d andK the continuous
invertible matrix valued process solution of

Kx
t D I C

dX

jD1

Z t

0

@Aj .Xxv ; x/K
x
v dBjv C

Z t

0

@B.Xxv ; x/K
x
v dv:

where @Aj and @B are the Jacobian matrices with respect to the first argument.
We can write

� ŒF � D
Z

Œ0;s�	Rm	Y

�
Kx
t

�Z t

0

.Kx
v /

�1�.Xxv ; x/�
.Xxv ; x/.Kx
v /

�1
dv
�
.Kx

t /


	

.y/M ˇ �.dudxdy/
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By the (EID) property, for F to possess a density it suffises that the vector space
V spanned by the column vectors of the matrices

�
Kx
t .K

x
v /

�1�.Xxv ; x/
�
.y/ 0 � v � t; x 2 R

m; y 2 Y;

be m-dimensional a.s.
If we restrict the study to the case where the diffusion coefficients do not depend

on the first argumentAj .Xxu ; x/ D Aj .x/, i.e. for the SDE

Xxt D x C
dX

jD1
Aj .x/B

j
t C

Z t

0

B.Xxv ; x/dv

then, taking v close to t , the space V contains the vectors

Aj .�Zu/ j D 1; : : : ; d u 2 JT .Z/

where JT .Z/ denotes the jump times of Z before s and we have

Proposition 1. Let us suppose the Lévy measure � infinite. If the vectors Aj .x/ are
such that for any infinite sequence xn 2 R

m, xn ¤ 0, tending to 0, the vector space
spanned by the vectors

Aj .xn/; j D 1; : : : ; d; n 2 N

is m-dimensional then the Lévy process .Tt .Z//s has a density on R
m.

Proof. The result comes from the above condition by the fact that Z has infinitely
many jumps of size near zero. ut

As in part 2, the fact thatZ be a Lévy process does not really matter. The method
applies to the transform of the jumps of any process as soon as the perturbations are
i.i.d and carry a Dirichlet form yielding (EID).
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Ewens Measures on Compact Groups
and Hypergeometric Kernels

Paul Bourgade, Ashkan Nikeghbali, and Alain Rouault

Abstract On unitary compact groups the decomposition of a generic element into
product of reflections induces a decomposition of the characteristic polynomial into
a product of factors. When the group is equipped with the Haar probability measure,
these factors become independent random variables with explicit distributions. Be-
yond the known results on the orthogonal and unitary groups (O.n/ and U.n/),
we treat the symplectic case. In U.n/, this induces a family of probability changes
analogous to the biassing in the Ewens sampling formula known for the symmetric
group. Then we study the spectral properties of these measures, connected to the
pure Fisher-Hartvig symbol on the unit circle. The associated orthogonal polynomi-
als give rise, as n tends to infinity to a limit kernel at the singularity.

Keywords Decomposition of Haar measure � Random matrices � Characteristic
polynomials � Ewens sampling formula � Correlation kernel

1 Introduction

In this paper, U.n;K/ is the unitary group over K D R;C or H (the set of real
quaternions).
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Let U be distributed with the Haar measure on U.n;C/. The random variable
det.Idn �U / has played a crucial role in recent years in the study of some connec-
tions between random matrix theory and analytic number theory (see [21] for more
details). In [10], the authors show that det.Idn �U / can be decomposed as a product
of n independent random variables:

det.Idn �U / lawD
nY

kD1

�
1 � ei!k

p
B1;k�1

�
; (1)

where !1; : : : ; !n; B1;0; : : : ; B1;n�1 are independent, the !0
k
s being uniformly dis-

tributed on .��; �/ and the B1;j ’s (0 � j � n � 1) being beta distributed with
parameters 1 and j (with the convention that B1;0 D 1). In particular, from such
a decomposition, fundamental quantities such as the Mellin-Fourier transform of
det.Idn �U / follow at once. The main ingredient to obtain the decomposition (1) is a
recursive construction of the Haar measure using complex reflections. In particular,
every U 2 U.n;C/ can be decomposed as a product of n independent reflections.
More precisely, it is proved in [10] that if s1; : : : ; sn are n independent random vari-
ables such that for every k � n, sk is uniformly distributed on the kth dimensional
unit sphere S k in C

k and if R.k/ is the reflection of C
k mapping sk onto the first

vector of the canonical basis, then

R.n/
�

Id1 0

0 R.n�1/
	
: : :

�
Idn�2 0

0 R.2/

	�
Idn�1 0

0 R.1/

	
� �U.n;C/;

where �U.n;C/ stands for the Haar measure on U.n;C/. At this stage two remarks
are in order. First, a similar method works to generate the Haar measure on the
orthogonal group O.n;R/ (see [10]) and this was already noticed by Mezzadri in
[24] using Householder reflections. But as already noticed in [10], Householder re-
flections would not work for U.n;C/ (see next section for more details). Moreover
in [10], a decomposition such as (1) could not be obtained for the symplectic group
USp.2n;C/, which also plays an important role in the connections between random
matrix theory and the study of families of L functions (see [19, 20]). Indeed, there
does not seem to be a natural way to generate recursively the Haar measure on this
group.

Question 1. Is there any decomposition of det.Idn �U / as a product of independent
variables of the type (1), when U is drawn from USp.2n;C/, according to the Haar
measure?

In this paper we shall prove that, in a sense to be made precise, if a subgroup
G of U.n;K/ contains enough reflections, then one can recursively generate the
Haar measure and obtain a decomposition of the type (1) for det.Idn �U /, U 2 G.
In particular this will apply to U.n;H/ which can be identified with the symplec-
tic group, hence answering question 1 above. Our recursive decomposition of the
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Haar measure also applies to the symmetric group. This leads us to our second
remark concerning the generation of the Haar measure obtained in [10] and ex-
plained above. Indeed, this way of generating an element of U.n;C/ which is
Haar distributed by choosing a vector .s1; : : : ; sn/ of independent variables from
S 1 	 : : : 	S n, each si being uniformly distributed, is reminiscent of the genera-
tion of a random permutation according to the so-called Chinese restaurant process
which we briefly describe (see [29] for a complete treatment). Let Œn� denote the set
f1; : : : ; ng and Sn the symmetric group of order n. It is known that for n � 2, every
permutation � 2 Sn can be decomposed in the following way:

� D �n ı � � � ı �2 (2)

where for k D 2; : : : ; n, either �k is the identity or �k is the transposition .k;mk/
for some mk 2 Œk � 1�. In the first case we will say by extension that it is the
transposition .k;mk/ with mk D k. This decomposition is unique, see Tsilevich
[32], the lemma p. 4075. It corresponds to the Chinese restaurant generation of a
permutation. Let us consider cycles as “tables”. Integer 1 goes to the first table. If
�2 6D Id, then integer 2 goes to the first table, at the left of 1. If �2 D Id, it goes to
a new table. When integers 1; : : : ; k are placed, then k C 1 goes to a new table if
�kC1 D Id, and goes to the left of �kC1.k C 1/ D mkC1 if not. We get a bijection
between Œ1� 	 Œ2� 	 � � � 	 Œn� ! Sn. It is projective (or consistent) in the sense that
if � is in SnC1 the restriction of � to Œn� is in Sn.

In this setting, the number of cycles k� of a permutation � is the number of
tables, i.e. the number of Id in (2) i.e.1

k� D
nX

1

�r ; (3)

where �r D 1.�r D Id/. For a matricial rewriting, we make a change of basis. Let
e0
j D en�jC1 and let R.k/ be the restriction of �k to Œk�. Then the product in (2) is

represented by

R.n/
�

Id1 0

0 R.n�1/
	
: : :

�
Idn�2 0

0 R.2/

	
:

If at each stage, the integermk is chosen uniformly in Œk�, then the induced measure
on Sn is the uniform distribution denoted by �Sn .

Actually, one can more generally generate in this way the Ewens measure on
Sn (see Tsilevich [32] and Pitman [29]). The Ewens measure �.�/, � > 0, is a
deformation of �Sn obtained by performing a change of probability measure or a
sampling in the following way:

��n.�/ D
�k�

.�/n
� �Sn.�/ : (4)

1 The other construction of a random permutation named Feller’s coupling ([3]) uses the variables
in the reverse order �n; � � � ; �1, but this construction is not projective.
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To generate ��n, one has to pick n integers m1; m2; : : : ; mn, independently, from
Œ1� 	 � � � 	 Œn� according to the probability distribution

P.mk D k/ D �

� C k � 1 ; P.mk D j / D 1

� C k � 1 j D 1; � � � ; k � 1 :

Question 2. Is there an analogue of the Ewens measure on the unitary group
U.n;C/?

We shall see in this paper that there indeed exists an analogue of the Ewens
measure on U.n;C/: more precisely we generalize (4) to unitary groups and a par-
ticular class of their subgroups. The analogue of transpositions are reflections and
the weight of the sampling is now det.Id�U /ı det.Id�U /ı , ı 2 C, Re.ı/ > �1=2,
so that the measure �.ı/

U.n/
on U.n/, which is defined by

E


.ı/

U.n/

.f .U // D
E
U.n/

�
f .U / det.Id�U /ı det.Id�U /ı

�

E
U.n/

�
det.Id�U /ı det.Id�U /ı

�

for any test function f , is the analogue of the Ewens measure. Such samplings with
ı 2 R have already been studied on the finite-dimensional unitary group by Hua
[18], and results about the infinite dimensional case (on complex Grassmannians)
were given by Pickrell ([27, 28]). More recently, Neretin [26] also considered this
measure, introducing the possibility ı 2 C. Borodin and Olshanski [7] have used the
analogue of this measure in the framework of the infinite dimensional unitary group
and proved ergodic properties. Forrester and Witte in [34] referred to this measure
as the cJUE distribution. We also studied this ensemble in [12] in relation with the
theory of orthogonal polynomials on the unit circle. Following [12,34] we shall call
the ensemble of unitary matrices endowed with this sampled measure the circular
Jacobi ensemble.

It is natural to ask whether the circular Jacobi ensemble has some interesting
properties: indeed, the case ı D 0 corresponds to the Haar measure and it is well
known this ensemble enjoys many remarkable spectral properties. For instance,
the point process associated to the eigenvalues is determinantal and the associated
rescaled kernel converges to the sine kernel. The projection of the measures �.ı/

U.n/

on the spectrum has the density

1

Zn

nY

jD1
wT.ei�j /

Y

1�i<j�n
jei�i � ei�j j2

where the weight wT on T D fei� ; � 2 Œ��; ��g is defined by

wT.ei� / D .1 � ei� /
Nı.1 � e�i� /ı D .2 � 2 cos �/ae�b.� sgn���/ ;

.ı D aC ib/ and Zn is a normalization constant. Note that when b 6D 0, an asym-
metric singularity at 1 occurs. The statistical properties of the �k’s depend on the
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successive orthonormal polynomials .'k/ with respect to the normalized versionewT

of wT and the normalized reproducing kernel

eKT

n.e
i� ; ei� / D

q
ewT.ei� /ewT.ei� /

n�1X

`D0
'`.ei� /'`.e

i� / :

In [7] the authors consider the image of �.ı/
U.n/

by the Cayley transform on the
set of Hermitian matrices and make a thorough study of the spectral properties of
this random matrix ensemble. In particular they prove that the eigenvalues form
a determinantal process and show that the associated rescaled kernel converges to
some hypergeometric kernel. As expected, we shall see that the eigenvalues process
of the circular Jacobi ensemble is also determinantal and for every n, we identify
the hypergeometric kernelK.ı/

n associated with it.

Question 3. Is there an appropriate rescaling of the kernels K.ı/
n such that the

rescaled kernels converge to some kernelK.ı/1 ‹

We shall see that the answer to Question 3 is positive and that the kernel K.ı/1
is a confluent hypergeometric kernel, with a natural connection to that obtained by
Borodin and Olshanski in [7] on the set of Hermitian matrices. The case ı D 0

corresponds to the sine kernel.
The weight wT is a generic example leading to a singularity

c.C/j� j2a1�>0 C c.�/j� j2a1�<0
at � D 0, with distinct positive constants c.C/ and c.�/. The confluent hypergeo-
metric kernel, depending on the two parameters a and b D 1

2�
log.c.�/=c.C//, is

actually universal for the measures presenting the above singularity, as proved in
a forthcoming paper, following the method initiated by Lubinsky ([22, 23]). For a
universality result when ı is real see [30].

The layout of the paper is as follows. In Sect. 2 we present the generation
by reflections and deduce a splitting formula for the characteristic polynomial
(Theorem 2). As an application, we define the generalized Ewens measure depend-
ing on the complex parameter ı (Theorem 3). Section 3 is devoted to a study of
the kernel which governs the correlations of eigenvalues when the unitary group is
equipped with this measure and its asymptotics (Theorem 5). The main properties of
the families of hypergeometric functions 2F1 and 1F1 are recalled in the Appendix.

2 Generating the Haar Measure and the Generalized Ewens
Measure

2.1 Complex Reflections

Reflections play a central role in the generation of the Haar measure for the clas-
sical compact groups. In the case of O.n/ the decomposition into a product of
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reflections is well known, see [15] and other references as explained in [24].
Householder reflections are generally used in the case of O.n/, but they are not
suitable for U.n;C/. Indeed, recall that Householder reflections are of the form
Hv D Id�2vhvj �i. For every unit y, it is possible to choose v such thatHvy D ˛e1
with ˛ D ˙ y1jy1j , where e1 is the first element of the canonical basis. So when the
ground field is C, then ˛ ¤ 1 in general and there does not exist a Householder
reflection which maps y onto e1, whereas this can always be achieved when the
ground field is R. That is why it is not possible to directly extend the arguments
in [24] to U.n;C/. In [10] and [12] it is proposed to use complex (resp. quater-
nionic) proper reflections, that is norm preserving automorphisms of C

n (resp. H
n)

that leave exactly one hyperplane pointwise fixed. So a reflection will be either the
identity or a unitary transformation U such that I � U is of rank one. It may be
written as

sa;�.y/ D y � a .1 � �/ha; yijaj2
where a 2 H

n and � 2 H with j�j D 1 (� is the second eigenvalue). If x 6D e1,
there exists a reflection mapping e1 onto x. It is enough to take a D e1 � x and
� D �.1 � x1/.1� Nx1/�1 where x1 D he1; xi.

2.2 Generating the Haar Measure on U.n; K/

and on some of its Subgroups

We first give conditions under which an element of a subgroup of U.n;K/ (under
the Haar measure) can be generated as a product of independent reflections. This
will lead to some remarkable identities for the characteristic polynomial.

Let .e1; : : : ; en/ be an orthonormal basis of K
n. Let G be a subgroup of U.n;K/

and for all 1 � k � n � 1, let

Hk D fG 2 G j G.ej / D ej ; 1 � j � kg ;

the subgroup of G which stabilizes e1; : : : ; ek . We set H0 D G. For a generic com-
pact group A, we write �A for the unique Haar probability measure on A. Finally
for all 1 � k � n let pk be the map U 7! U.ek/.

Proposition 1. Let G 2 G and H 2 H1 be independent random matrices, and
assume that H � �H1 . Then GH � �G if and only if G.e1/ � p1.�G/.

Proof. The proof is exactly the same as in [10] Proposition 2.1, changingU.nC 1/
into G and U.n/ into H.

Definition 1. A sequence .�0; : : : ; �n�1/ of probability measures on G is said to be
coherent with �G if for all 0 � k � n� 1,

�k.Hk/ D 1 and pkC1.�k/ D pkC1.�Hk / :
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In the following, �0 ? �1 ? � � � ? �n�1 stands for the law of a random variable
H0H1 : : : Hn�1 where all Hi ’s are independent and Hi � �i . Now we can pro-
vide a general method to generate an element of G endowed with its Haar measure.

Theorem 1. If G is a subgroup of U.n;K/ and .�0; : : : ; �n�1/ is a sequence of
coherent measures with �G , then we have:

�G D �0 ? �1 ? � � � ? �n�1:

Proof. It is sufficient to prove by induction on 1 � k � n that

�n�k ? �n�kC1 ? � � � ? �n�1 D �Hn�k
;

which gives the desired result for k D n. If k D 1 this is obvious. If the result is
true at rank k, it remains true at rank k C 1 by a direct application of Proposition 1
to the groups Hn�k�1 and its subgroup Hn�k .

As an example, take the orthogonal group O.n/. Let S .k/
R

be the unit sphere

fx 2 R
k j jxj D 1g and, for sk 2 S .k/

R
, let R.k/ be the matrix of the reflection

which transforms sk into e1. If sk is uniformly distributed on S .k/
R

and if all the sk
are independent, then by Theorem 1, the matrix

R.n/
�
1 0

0 R.n�1/
	
: : :

�
Idn�2 0

0 R.2/

	�
Idn�1 0

0 R.1/

	
:

is �O.n/ distributed.

2.3 Splitting of the Characteristic Polynomial

In view to phrase a general version of formula (1) which is proved in [10], we need
the following definition:

Definition 2. Note Rk the set of elements in Hk which are reflections. If for all
0 � k � n � 1

fR.ekC1/ j R 2 Rkg D fH.ekC1/ j H 2 Hkg;

the group G will be said to satisfy condition (R) (R standing for reflection).

Remark 1. It is easy to see that U.n;K/ and Sn satisfy condition (R). In the next
subsection we shall see more examples.

Lemma 1. Let G be a subgroup of U.n;K/ which satisfies condition (R). Let G 2
G. Then there exist reflections Rk 2 Rk , 0 � k � n � 1, such that

G D R0R1 : : : Rn�1: (5)
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Proof. This result has been established in [12] when G D U.n;C/. The proof in
this more general case goes exactly along the same line.

The following deterministic lemma is a key result to obtain a decomposition of
det.Idn �U / as a product of independent random variables:

Lemma 2. If for k D 1; : : : ; n � 1, Rk 2 Rk , then

det.Idn �R0 � � �Rn�1/ D
n�1Y

kD0
.1 � hekC1; Rk.ekC1i/ : (6)

Proof. We start with det.Idn �RH/ D .detH/ det.H
�R/. SinceH (henceH
),
stabilizes e1, we have

i) .H
 �R/.e1/ D e1 � R.e1/ DW a (say),
ii) for w ? e1, H
.w/ ? e1 and since R is a reflection, R.w/ � w is a scalar

multiple of a.

By the multilinearity of the determinant, we get

det.H
 � R/ D he1; e1 �R.e1/i det.�.H
/ � Idn�1/

which yields

det.Idn �RH/ D .1 � he1; R.e1/i/ det.Idn�1��.H// :

Iterating, we can conclude. ut
The following result now follows immediately from Theorem 1 and Lemmas 1

and 2.

Theorem 2. Let G be a subgroup of U.n;K/ satisfying condition (R), and let
.�0; : : : ; �n�1/ be coherent with �G . If G � �G , then

det.Id�G/ lawD
n�1Y

kD0
.1 � hekC1;Hk.ekC1/; i/ :

where Hk � �k , 0 � k � n � 1, are independent.

2.4 Applications

2.4.1 The Symmetric Group

Consider now Sn the group of permutations of size n. An element � 2 Sn can be
identified with the matrix .ıj

�.i/
/1�i;j�n (ı is Kronecker’s symbol). It is clear that 1
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is eigenvalue of this matrix, with eigenvector e1 C � � � C en. Ben Hambly et al. [17]
considered the characteristic polynomial at s 6D 1. To make relevant our problem
of determinant splitting, we introduce wreath products, following the definition of
Wieand [33].

Let F be a subgroup of T D ˚
x 2 C j jxj2 D 1�, endowed with the Haar prob-

ability measure �F . Then the wreath product F o Sn provides another example of
determinant-splitting. An element of F n can be thought of as a function from the set
Œn� to F . The group Sn acts on F n in the following way: if f D .f .1/; : : : ; f .n// 2
F n and � 2 Sn, define f� 2 F n to be the function f� D f ı ��1. Finally take
the product on F n to be .f .1/; : : : ; f .n// � .g.1/; : : : ; g.n//D .fg.1/; : : : ; fg.n//.
The wreath product of F by Sn , denoted F o Sn , is the group of elements
f.f I s/ W f 2 F n; � 2 Sng with multiplication

.f I �/ � .hI � 0/ D .f h� I �� 0/ :

If we represent .f I �/ by the matrix .f .i/ıi
�.j /

/1�i;j�n, then the product in F o
Sn corresponds to the usual matricial product which makes F o Sn a subgroup of
U.n;C/. The usual examples are F D f1g, F D Z2 and F D T.

Corollary 1. Let G 2 G.D F o Sn/ be �G distributed. Then

det.Idn �G/ lawD
nY

jD1

�
1� "jXj

�
;

with "1; : : : ; "n; X1; : : : ; Xn independent random variables, the "j ’s�F distributed,
P.Xj D 1/ D 1=j , P.Xj D 0/ D 1 � 1=j .

Proof. We apply Theorem 2. As reflections correspond now to transpositions, con-
dition (R) holds. Moreover Rk.ekC1/ is uniformly distributed on the set FekC1 [
� � � [ Fen, so that hekC1; Rk.ekC1/i is 0 with probability 1� 1

n�k and otherwise, it
is uniform on F . ut
Remark 2. Notice that if G D .f I �/ with � D �n ı � � � ı �2 (cf. (2)), then Xj is the
indicator function of �j D Id.

2.4.2 Unitary and Orthogonal Groups

Take G D U.n;C/. Then �Hk D fk.�U.n�k;C// where fk W A 2 U.n � k;C/ 7!
Idk˚A. As all reflections with respect to a hyperplane of C

n�k are elements of
U.n � k;C/, one can apply Theorem 1 and Lemma 2. The Hermitian products
hek; hk.ek/i are distributed as the first coordinate of the first vector of an element
of U.n � k;C/, that is to say the first coordinate of the .n � k/-dimensional unit
complex sphere with uniform measure:

hekC1;Hk.ekC1/i lawD ei!n
p
B1;n�k�1
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with !n uniform on .��; �/ and independent of B1;n�k�1, a beta variable with
parameters 1 and n � k � 1.

Therefore, as a consequence of Theorem 2, we obtain the following decompo-
sition formula derived in [10]. For g 2 U.n;C/ which is �U.n;C/ distributed, one
has

det.Idn �G/ lawD
nY

kD1

�
1 � ei!k

p
B1;k�1

�
;

with !1; : : : ; !n; B1;0; : : : ; B1;n�1 independent random variables, the !k’s uni-
formly distributed on .��; �/ and the B1;j ’s (0 � j � n�1) being beta distributed
with parameters 1 and j (by convention,B1;0 D 1).

A similar reasoning may be applied to SO.2n/ (with the complex unit spheres
replaced by the real ones) to yield the following: let G 2 SO.2n/ be �SO.2n/
distributed, then (Corollary 6.2 in [10])

det.Id2n �G/ lawD 2

2nY

kD2

�
1 � �k

q
B 1
2
; k�1
2

	
:

2.4.3 The Quaternionic Group

Our goal with this example is to solve Question 1 which was raised in the Intro-
duction. To this end we establish an analogous to Lemma 2 and use the fact that
U.n;H/ Š USp.2n/ which is also denoted Sp.n/, see for instance [24] Theorem
2. Then we apply Theorem 1. Let us give details. Recall that the symplectic group
USp.2n;C/ is defined as USp.2n;C/ D fU 2 U.2n;C/ j UJn tU D Jng, with

Jn D
�

0 Idn
� Idn 0

	
: (7)

Let

� W
8
<

:

H ! M.2;C/

aC ib C jc C kd 7!
�
aC ib c C id
�c C id a � ib

	
;

be the usual representation of quaternions. It is a continuous injective ring morphism
such that �. Nx/ D �.x/
. It induces the ring morphism

˚ W


M.n;H/ ! M.2n;C/

.aij /1�i;j�n 7! .�.aij //1�i;j�n
:

In particular

˚.U.n;H// D fG 2 U.2n;C/ W G QZn tG D QZng
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where QZn D J1˚� � �˚J1 and J1 D
�
0 1

�1 0
	

. Since QZn is conjugate to Jn, defined

by (7), the set ˚.U.n;H// is therefore conjugate to USp.2n;C/. We can therefore
consider det.I � ˚.G//
Lemma 3. If for k D 1; : : : ; n � 1, Rk 2 Rk , then

det.Id2n �˚.R0 � � �Rn�1// D
n�1Y

kD0
det.Id2 ��.hekC1; Rk.ekC1i// : (8)

Proof. Let us first remark that the canonical basis e1; : : : ; en of H
n is mapped by

˚ into the canonical basis "1; : : : ; "2n of C
2n, where the 2n	 2 matrix Œ"2k�1; "2k�

is exactly ˚.ek/. Moreover, if R is a proper reflection (leaving invariant an hyper-
plane), ˚.R/ is a bireflection of C

2n i.e. a unitary transformation leaving invariant
a vector space of codimension 2.

We start with

det
�
.Id2n �˚.RH/

� D det
�

Id2n �˚.R/˚.H/
� D det˚.H/ det

�
˚.H
/�˚.R/�

SinceH (henceH
) stabilizes e1, then ˚.H/ (and ˚.H/
) stabilizes "1 and "2, so
we have:

i) .H
 �R/.e1/ D e1 � R.e1/ DW a D Œa1; a2� (say), hence, for i D 1; 2,

.˚.H
/� ˚.R//."i/ D "i � ˚.R/."i / DW ai :

ii) Assume that he1;wi D 0. Trivially, he1;H
.w/i D 0 hence ˚.H
/.w/ is a
matrix whose column vectors are orthogonal to "1 and "2. Moreover, since R
is a quaternionic reflection, R.w/ � w is a (right) scalar multiple of a (see [14]
Proposition 1.6), so ˚ .R.w/� w/ is a 2n 	 2 matrix whose columns are in
Span .a1; a2/.

By the multilinearity of the determinant, we get

det
�
˚.H/
 � ˚.R/� D det

�h�i ; aj i1�i;j�2
�

det.�.H
/� Id2n�2/

which yields

det.Idn �˚.RH// D det.Id2��.he1; R.e1/i// det.Id2n�2 ��.H// :

Iterating, we can conclude. ut
Corollary 2 (Symplectic group). Let G 2 USp.2n;C/ be �USp.2n;C/ distributed.
Then

det.Id2n �G/ lawD
nY

kD1

�
.ak � 1/2 C b2k C c2k C d 2k

�
;
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where the vectors .ak; bk ; ck; dk/, 1 � k � n are independent and .ak ; bk; ck ; dk/
are 4 coordinates of the 4k-dimensional real unit sphere endowed with the uniform
measure.

Remark 3. We have .ak ; bk; ck ; dk/
lawD 1q

N2
1

C���CN2
4k

.N1;N2;N3;N4/, with the

N 0
i s i.i.d. N .0; 1/. Now, since for p < q

N 2
1 C � � � CN 2

p

N 2
1 C � � � CN 2

q

lawD Bp
2
;
q�p
2
;

we get the somehow more tractable identity in law

det.Id2n �G/ lawD
nY

kD1

��
1C �k

q
B 1
2
;2k� 1

2

�2 C
�
1 � B 1

2
;2k� 1

2

�
B 0
3
2 ;2k�2

	
;

with all variables independent, P.�k D 1/ D P.�k D �1/ D 1=2.
This method can be applied to other interesting groups such as USp.2n;R/ D

fu 2 U.2n;R/ j uz tu D zg thanks to the morphism

� W
8
<

:

C ! M.2;R/

aC ib 7!
�
a �b
b a

	
:

The traditional representation of the quaternions in M.4;R/

� W

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

C ! M.4;R/

aC ib C jc C kd 7!

0

B
B
@

a �b �c �d
b a �d �c
c d a �b
d �c b a

1

C
C
A

gives another identity in law for a compact subgroup of U.4n;R/.

2.5 The Generalized Ewens Measure

In this section we wish to define a generalization of the Ewens measure on U.n;K/
and some of its subgroups which will agree with the classical definition on the sym-
metric group. We first recall the definition of the Ewens measure on the symmetric
group and how it can be generated.
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2.5.1 The Ewens Measure on Sn

Recall (see (2) Section 1) that every permutation � 2 Sn can be decomposed in the
following way:

� D �n ı � � � ı �2 (9)

where for k D 2; : : : ; n, �k is either the identity or the transposition .k;mk/ for
some mk 2 Œk � 1�. In the first case we will say by extension that it is the trans-
position .k;mk/ with mk D k. The number of cycles in the decomposition of � is
denoted k� . The system of Ewens measures of parameter � > 0 consists in choosing
the mk; k D 1; : : : ; n independently, with distribution

P.mk D k/ D �

� C k � 1 I P.mk D j / D 1

� C k � 1 ; j D 1; : : : ; k � 1:

It is known that the induced probability on Sn is

��n.�/ D
�k�

.�/n
: (10)

2.5.2 The Generalized Ewens Measure

In the following, G is any subgroup of U.n;K/. Take ı 2 C such that

0 < E
G

�
det.Idn�G/ı det.Idn �G/ı

�
<1: (11)

For 0 � k � n � 1 we note

exp.k/
ı
W
(
G ! R

C

G 7! .1 � hekC1; G.ekC1/i/ı.1 � hekC1; G.ekC1/i/ı
:

Moreover, define detı as the function

detı W
(
G ! R

C

G 7! det.Idn �G/ı det.Idn �G/ı :

Then the following generalization of Theorem 1 (which corresponds to the case
ı D 0) holds. However, note that, contrary to Theorem 1, in the following result we
need that the coherent measures be supported by the set of reflections.

Theorem 3 (Generalized Ewens sampling formula). Let G be a subgroup of
U.n;K/ checking condition (R) and (11). Let .�0; : : : ; �n�1/ be a sequence of mea-
sures coherent with �G , with �k.Rk/ D 1. We note �.ı/G the detı -sampling of �G

and �.ı/
k

the exp.k/
ı

-sampling of �k . Then
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�
.ı/
0 ? �

.ı/
1 ? � � � ? �.ı/n�1 D �.ı/G ;

i.e., for all test functions f on G,

E
�
.ı/
0
?���?�.ı/

n�1

.f .R0R1 : : : Rn�1// D
E
G

�
f .G/ det.Idn �G/ı det.Idn�G/ı

�

E
G

�
det.Idn �G/ı det.Idn �G/ı

� :

Proof. From Theorem 1, G
lawD R0 : : : Rn�1, hence

E
G

�
f .G/ det.Idn �G/ı det.Idn�G/ı

�

D E�0?:::?�n�1

�
f .R0: : :Rn�1/ det.Idn �R0: : :Rn�1/ı det.Idn �R0: : :Rn�1/ı

�
:

From Lemma 2, det.Idn�R0 : : : Rn�1/ DQn�1
kD0.1 � hekC1; Rk.ekC1/i/, hence

E�0?���?�n�1

�
f .R0 : : : Rn�1/ det.Idn�R0 : : : Rn�1/ı det.Idn�R0 : : : Rn�1/ı

�

D E�0?���?�n�1

 

f .R0 : : : Rn�1/
n�1Y

kD0
exp.k/

ı
.Rk/

!

:

By the definition of the measures �.ı/
k

, this is the desired result. ut
Before exploring properties of this measure, let us give two examples of

ı-samplings.
First we check that we can recover the classical Ewens measure on the symmetric

group. Consider G D Z2 o Sn. For ı > 0, the ı-sampling in Z2 o Sn induces a
� D 22ı�1 sampling on Sn.

Proposition 2. For ı > 0, the pushforward of �.ı/
Z2oSn by the projection .f; �/ 7! �

is ��n with � D 22ı�1.

Similarly, if we associate with each transposition of the decomposition (9) a
Rademacher variable, we get easily a sequence of reflections, and if �k denotes the
kth corresponding measure, then the system .�0; � � � ; �n�1/ is coherent with �Z2oSn .

The pushforward of �.ı/
k

under the projection is a transposition biased by � , so we
recover the Ewens sampling formula.

Proof. Recall that the generic element of Z2 oSn is denoted .f; �/. Let C.�/ the set
of cycles of � . If c D .d1; : : : ; dj / is such a cycle, let `.c/ D j and w.f I c/ D
Qj
1 f .dj /. Then it is clear that

det .x Idn �.f I �// D
Y

c2C.�/

�
x`.c/ � w.f I c/

�
;
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and in particular,

det .Idn �.f I �// D

0 if 9c 2 C.�/ W w.f I c/ D 1
2k� if 8c 2 C.�/ W w.f I c/ D �1: (12)

Let P stand for �Z2oSn i.e. the uniform distribution on Z2 o Sn. For any test func-
tion F

E

�
F.�/j det.Idn �.f; �//j2ı

�
D E

h
F.�/E

�
j det.Idn �.f; �//j2ı j�

�i
:

Now, conditionally on � , the weights of the cycles are independent Rademacher
variables (i.e.˙1 with probability 1=2). So,

P
�\c2C.�/fw.f; �/ D �1gj�

� D 2�k�

and, due to (12)

E

�
j det.Idn �.f; �//j2ı j�

�
D 2.2ı�1/k� ;

which easily yields

E


.ı/
Z2oSn

F.�/ D
Z

Sn
F.�/d��n.�/ :

ut
The fundamental example remains U.n;C/. In the following section, we will

study the determinantal sructure of this model for Re ı > �1=2. In [12] a precise
analysis of the reflections involved in the decomposition is given. The case ı D 1

has a specific interest. If .�1; : : : ; �n/ are the eigenangles of a unitary matrix, we
have

j det.Id�U /j2 D
nY

jD1
j1 � ei�j j2 ;

which, thanks to the density of the eigenangles, yields

E


.1/

U.n/

.f .�1; : : : ; �n//

D cst
Z

.��;�/n
f .�1; : : : ; �n/

Y

j<k

jei�j � ei�k j2
nY

lD1
j1 � ei�l j2d�1 : : : d�n:

This means that the distribution of the eigenangles .�1; : : : ; �n/ of a random matrix
drawn according to �.1/

U.n/
is the same as the distribution of the n first eigenangles

.�1; � � � ; �n/ of a random matrix drawn according to �U.nC1;C/, conditionally on
�nC1 D 0, or, as seen in [34], as the distribution of .�1 � �nC1; � � � ; �n � �nC1/.
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More generally, in [11], Bourgade gives a geometrical characterisation of this kind
of measures for ı=2 2 N, defining the notion of conditional Haar measure.

Remark 4. A generalized Ewens sampling formula could also be stated for ˚.G/,
with G checking condition (R) and ˚ the ring morphism previously defined.

3 A Hypergeometric Kernel

In this section, we study the correlations of the point process of eigenvalues under
the measure �.ı/

U.n;C/
and answer Question 3 (see Introduction) asked by Borodin-

Olshanski in [7] Sect. 8. Let us recall some basic facts on determinantal processes
and correlations, referring to the books [1] 4.2 or [6] or [16] Chap. 4.

Let � D R or T D fz 2 C W jzj D 1g D fei� I � 2 Œ��; ��g and let us fix an
integer n. The collection of eigenvalues .�1; : : : ; �n/ of a random n 	 n Hermitian
(resp. unitary) matrix can be viewed as a point process on� , i.e. a random counting
measure �n D ı�1 C � � � C ı�n . Let us consider a simple point process � on �. If
there exists a sequence of locally integrable functions �k such that for any mutually
disjoint family of subsets D1; : : : ;Dk of �

E

"
kY

iD1
�.Di /

#

D
Z

Qk
iD1Di

�k.x1; : : : ; xk/dx1 : : : dxk

then the functions �k are called the correlation functions, or joint intensities of the
point process. In this case, the process is said to be determinantal with kernel K if
its correlation functions �k are given by

�k.x1; : : : ; xk/ D
k

det
i;jD1K.xi ; xj / :

For � D �n we denote the correlations by �k;n for k � n. When the joint density of
the eigenvalues is proportional to

nY

kD1
w.xk/

Y

1�j<k�n
jxk � xj j2

for some weight w, the orthogonal poynomial method shows that the point pro-
cess of eigenvalues is determinantal. The use of Cayley transform allows to connect
Hermitian matrices and unitary matrices. We give a detailed description of the con-
sequence of this connection for the corresponding eigenvalue processes in Sect. 3.1,
and its impact on the circular Jacobi ensemble in Sect. 3.2. Finally, we study the
asymptotic behavior in Sect. 3.3.
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3.1 Determinantal Processes and Cayley Transform

We follow the approach of Forrester ([16] 2.5 and 4.1.4). We start with a weight
(positive integrable function) wT on T. The pushforward of the measure

Y

jD1
wT.ei�j /

Y

1�j<k�n
jei�k � ei�j j2d�1 � � � d�n

by the stereographic projection (Cayley transform)

� D i
1 � ei�

1C ei�
D tan

�

2
I ei� D 1C i�

1 � i�

gives the measure

2n
2

nY

jD1
wT

�
1C i�j
1� i�j

	
.1C �2j /�n

Y

1�j<k�n
j�k � �j j2d�1 � � � d�n:

We define the weight wR on R as

wR.x/ D .1C x2/�nwT

�
1C ix

1 � ix

	
:

Conversely

wT.ei� / D
�

cos
�

2

	2n
wR

�
tan

�

2

	
:

If the monomials 1; x; : : : ; xn are in L2.wR.x/dx/, then the orthogonal polynomial
method gives

1

ZR
n

nY

jD1
wR.�j /

Y

1�j<k�n
j�k � �j j2 D det

�eKR

n.�j ; �k/
�
1�j;k�n

where ZR

n is a normalization constant and where

eKR

n.x; y/ D
p

wR.x/wR.y/ KR

n .x; y/

KR

n .x; y/ D
n�1X

`D0
pR

` .x/p
R

` .y/

and the pR

`
are orthonormal with respect to the measure wR.x/dx. The Christoffel–

Darboux formula gives another expression for the kernel
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KR

n .x; y/ D
n�1
n

pR

n .x/p
R

n�1.y/ � pR

n�1.x/pR

n .y/

x � y

where j is the coefficient of xj in pR

j .x/. In terms of the monic orthogonal poly-
nomials P0; � � � ; Pn, this yields

KR

n .x; y/ D
n�1X

`D0

P`.x/P`.y/

kP`k2 (13)

D P R

n .x/P
R

n�1.y/� P R

n�1.x/P R

n .y/

kPn�1k2.x � y/ : (14)

Besides, on the unit circle, we consider the polynomials '` (resp. ˚`) orthonor-
mal (resp. monic orthogonal) with respect to the measure wT.ei� /d� , and their
reciprocal defined by

˚?` .z/ D z`˚`.1=Nz/ ; '?` .z/ D z`'`.1=Nz/ :

We have then

1

ZT
n

nY

jD1
wT.ei�j /

Y

1�j<k�n
jei�k � ei�j j2 D det

�eKT

n.e
i�j ; ei�k /

�
1�j;k�n

with
eKT

n.z; �/ D
p

wT.z/wT.�/ KT

n .z; �/

and

KT

n .z; �/ D
n�1X

`D0
'`.z/'`.�/ :

The Christoffel–Darboux formula is now

KT

n .z; �/ D
'

n.z/'



n.�/� 'n.z/'n.�/
1 � Nz� (15)

(see [31] 1.12 and 3.2), or

KT

n .z; �/ D
˚

n .z/˚



n .�/ � ˚n.z/˚n.�/
k˚nk2.1 � Nz�/ : (16)

The kernel eKR

n (resp. eKT

n) rules the correlation function �R

n;m.�1; : : : ; �m/ (resp.
�C

n;m.e
i�1 ; : : : ; ei�m/) for m D 1; : : : ; n.
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3.2 Our Weights and their Characteristics

For the sake of simplicity we use the polygamma symbol

�

�
a; b; � � �
c; d; � � �

�
WD � .a/� .b/ � � �

� .c/� .d/ � � � :

For ı D aC ib 2 C with a > �1=2, we will consider two weights on .��; �/

wT

1.e
i� / D .1 � ei� /ı.1 � e�i� /ı D .2 � 2 cos �/ae�b.� sgn ���/ (17)

wT

2.e
i� / D .1C ei� /ı.1C e�i� /ı D .2C 2 cos �/ae�b� (18)

These are “pure” Fisher-Hartwig functions. We can go from wT

1 to wT

2 by the trans-
form

� 7! � WD �� C �.sgn �/ (19)

which carries the discontinuity in � D 0 to the edges˙� , so that

ei� D �e�i� and wT

1.e
i� / D wT

2.e
�i� / : (20)

For a > �1=2, the Fourier coefficients of w1 are known ([9] Lemma 2.1)

1

2�

Z �

��
wT

1.e
i� /e�in�d� D .�1/n�

�
1C ı C Nı

Nı � nC 1; ı C nC 1
�
:

With

c.ı/ D 1

2�
�

�
1C ı; 1C Nı
1C ı C Nı

�
;

the functionewT

1.e
i� / D c.ı/wT

1 .e
i� / is a probability density on .��; �/. For w2, we

note that Z �

��
wT

1.e
i� /e�in�d� D .�1/n

Z �

��
wT

2 .e
i� /ein�d�:

Moreover we go from one system of polynomials to the other by the mapping
z 7! � z.

It is known from [4] p. 304 and [5] p. 31–34 that for n � 0 the nth orthonormal
polynomial with respect toewT

1.e
i� /d� is

˚n.z/ D �
�
ı C n; Nı C 1
Nı C nC 1; ı

�

2F1

��n; Nı C 1
1 � n � ı I z

	
(21)

with

k˚nk2 D �
�
ı C Nı C nC 1; nC 1; Nı C 1; ı C 1
Nı C nC 1; ı C nC 1; ı C Nı C 1

�
; (22)
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(see also [16] Proposition 4.8 in the case ı real). With the complement formula (48)
we get the other form

˚n.z/ D �
�
ı C Nı C 1C n; Nı C 1
Nı C nC 1; ı C Nı C 1

�

2F1

��n; Nı C 1
ı C Nı C 1 I 1 � z

	
: (23)

In view of (47) and (21) we identify ˚

n as

˚

n .z/ D 2F1

� �n; Nı
�n � ı I z

	
; (24)

or, using (48) again

˚

n .z/ D �

�
ı C Nı C 1C n; ı C 1
ı C nC 1; ı C Nı C 1

�

2F1

� �n; Nı
ı C Nı C 1 I 1 � z

	
: (25)

Borodin and Olshanski considered the following weight on R :

2�ı�NıwR

2 .x/ D .1C ix/�ı�n.1 � ix/�Nı�n : (26)

Since this weight depends on n, the reference measure has only a finite set of
moments so that there is only a finite set of orthogonal polynomials (these are the
pseudo-Jacobi polynomials)

pm.x/ D .x � i/m 2F1

� �m; ı C n �m
ı C Nı C 2n � 2m I

2

1C ix

	
(27)

m < aC n � 1
2

. Let us call eKR

2;n the corresponding kernel.

3.3 Asymptotic Behavior

For the weight wR

2 , Borodin and Olshanski considered the (thermodynamic) scaling
limit � 7! n� and proved ([7] Theorem 2.1):

Theorem 4 (Borodin-Olshanski). Let Reı > �1=2.

1. We have

lim
n
.sgn x sgn y/nneKR

2;n.nx; ny/ D eKR1.x; y/ (28)

uniformly for x; y in compact sets of R
? 	 R

?, where (for x 6D y)



Ewens Measures on Compact Groups and Hypergeometric Kernels 371

eKR1.x; y/ WD
1

2�
�

�
ı C 1; Nı C 1

ı C Nı C 1; ı C Nı C 2
� eP .x/Q.y/ �Q.x/eP .y/

x � y (29)

eP.x/ D
ˇ
ˇ
ˇ
ˇ
2

x

ˇ
ˇ
ˇ
ˇ

ıCNı
2

e� i
xC� .ı�Nı/ sgnx

4 1F1

�
ı

ı C Nı C 1 I
2i

x

	
(30)

Q.x/ D 2

x

ˇ
ˇ̌
ˇ
2

x

ˇ
ˇ̌
ˇ

ıCNı
2

e� i
x

C� .ı�Nı/ sgnx
4 1F1

�
ı C 1

ı C Nı C 2 I
2i

x

	
: (31)

2. The limiting correlation is given by

lim
n
nm�R

n;m.n�1; � � � ; n�m/ D det
�eKR1.�i ; �j /

�
1�i;j�m : (32)

The kernel eKR1.1=x; 1=y/ is called the confluent hypergeometric kernel in [8].
For the circular model, we choose the set-up w1 for the sake of consistency with

the above sections. The singularity is in z D 1 i.e. � D 0. To study the asymptotic
behavior of the point process on T at the singularity (edge) we have two ways:
either take the thermodynamic scaling � 7! �=n, or use the result on R.

Theorem 5. Let Reı > �1=2.

1. With the weight w1,

lim
n
n�1eKT;1

n .ei�=n; ei�=n/ D eKT1.�; �/ (33)

with, for � 6D �

eKT1.�; �/ D
1

2i�
�

�
1C ı; 1C Nı

1C ı C Nı; 1C ı C Nı
�
P T.�/P T.�/ � P T.�/P T.�/

� � �
(34)

where

P T.�/ WD j� j ıCNı
2 ei �

2
��
4
.ı�Nı/ sgn �

1F1

�
ı

ı C Nı C 1 I �i�

	
D eP

� � 2��1� ;

(35)

and

eKT1.�; �/ D
j� jıC Nı

2�
�

�
1C ı; 1C Nı

1C ı C Nı; 1C ı C Nı
�

Re

�

1F1

�
ı

ı C Nı C 1 I �i�

	�

1F1

� Nı
ı C Nı C 1 I i�

	
� 2 1F1

� Nı C 1
ı C Nı C 2 I i�

	��

(36)
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2. The limiting correlation is given by

lim
n
nm�T;1

n;m.e
i�1=n; � � � ; ei�m=n/ D det

�eKT1.�i ; �j /
�
1�i;j�m : (37)

Proof. We begin with a direct proof of (33) when � 6D � , and then proceed with the
proof of (33) when � D � , which directly yields (37) and we end with an alternate
proof of (37) using (32) and the Cayley transform.

1) The following lemma describes the asymptotical behavior of the quantities
entering in the kernel.

Lemma 4. When n!1

lim
n
k˚nk2 D �

� Nı C 1; ı C 1
ı C Nı C 1

�
(38)

Moreover if n�n ! � , then (uniformly for � in a compact set)

lim n�ı˚n.ei�n/ D �

� Nı C 1
ı C Nı C 1

�

1F1

� Nı C 1
ı C Nı C 1 I i�

	
; (39)

lim n�Nı˚?n .ei�n/ D �

�
ı C 1

ı C Nı C 1
�

1F1

� Nı
ı C Nı C 1 I i�

	
; (40)

lim n�NıC1.˚?n /0.ei�n/ D Nı�
�

ı C 1
ı C Nı C 2

�

1F1

� Nı C 1
ı C Nı C 2 I i�

	
: (41)

Proof. Let us first recall that, as n!1,

� .c C n/
� .n/

� nc ; (42)

which gives immediately (38). The limits in (39) and (40) are then consequences of
(23), (25) and the limiting relation (50). Besides, in view of (49) and (25),

.˚?n /
0.z/ D n Nı

ı C Nı C 1�
�

ı C Nı C n; ı C 1
ı C Nı C 1; ı C nC 1

�

2F1

��nC 1; Nı C 1
ı C Nı C 2 I 1 � z

	
:

It remains to apply (50). ut
A) For � 6D � , we have, by the Christoffel–Darboux formula (15):

lim
n

i.� � �/� .ı C Nı C 1/n�.ıC NıC1/KT;1
n .ei�=n; ei�=n/

D1F1
�

ı

ı C Nı C 1 I �i�

	

1F1

� Nı
ı C Nı C 1 I i�
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�1F1
�

ı C 1
ı C Nı C 1 I �i�

	

1F1

� Nı C 1
ı C Nı C 1 I i�

	

Now, applying the Kummer’s formula (52)

1F1

�
ı C 1

ı C Nı C 1 I �i�

	
D e�i�

1F1

� Nı
ı C Nı C 1 I i�

	

1F1

� Nı C 1
ı C Nı C 1 I i�

	
D ei�

1F1

�
ı

ı C Nı C 1 I �i�

	

Besides we have (recall that we usedew1)

eKT;1
n .ei�=n; ei�=n/

K
T;1
n .ei�=n; ei�=n/

D c.ı/
q

w1.ei�=n/w1.ei�=n/

and from the very definition of w1

limn2.ıC Nı/w1.ei�=n/w1.ei�=n/ D j�� j2Reıe�Imı�.sgn �Csgn�/

We conclude that (33) holds true.

B) On the diagonal In the following z and � are elements of T. If F and G are
differentiable functions on T, the de l’Hospital rule gives

lim
�!z

F.z/G.�/� F.�/G.z/
z � � D F 0.z/G.z/ � F.z/G0.z/ :

Taking
F.z/ D z�n˚n.z/ ; G.z/ D ˚n.z/ ;

so that
F 0.z/ D �nz�n�1˚n.z/C z�n˚ 0

n.z/ ; G
0.z/ D �z�2˚ 0

n.z/

we get the value of the kernel on the diagonal:

lim
�!z

˚

n .z/˚



n .�/�˚n.z/˚n.�/
1 � Nz� D �nj˚n.z/j2 C 2ReŒ˚n.z/z˚

0
n.z/�

D nj˚

n .z/j2 � 2ReŒ˚


n .z/z.˚


n /

0.z/�:
(43)

It remains to apply the lemma.
Notice that

lim
n
n�.1CıC Nı/KT;1

n .1; 1/ D 1

� .ı C Nı C 2/ :
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2) Alternate proof of (37)
The pushforward of the measure

�R;2
n .x1; � � � ; xn/dx1 : : : dxn

by the Cayley transform is

2�n�R;2
n

�
tan

�1

2
; � � � ; tan

�n

2

	 nY

kD1
cos�2 �k

2
d�1 : : : d�n

which, at the level of kernels gives

�T;2
n;m.e

i�1 ; � � � ; ei�m/ D det

�
eKR;2
n

�
tan

�i

2
; tan

�j

2

	
1

2 cos �i cos �j

�

1�i;j�m
:

Coming back to the superscript 1 with the help of (19) we obtain

�T;1
n;m.e

i�1 ; � � � ; ei�m// D det
�
Hn.�i /;Hn.�j /

�
1�i;j�m

with

Hn.�; �
0/ D eKR;2

n

�
� cot

�

2
;� cot

� 0

2

	
1

2j sin �
2

sin � 0

2
j :

Let us rescale the angles. Since limn n tan �
n
D � , limn n tan � 0

n
D � 0 and since

the limit in (28) is uniform on compact subsets, we get

lim
1

n
Hn

�
�

n
;
� 0

n

	
D 2

j�� 0j
eKR1

�
� 2
�
;� 2
� 0

	
:

We remark that P T.�/ D eP .x/ with x� D �2. Moreover, from (53), we have

i
Nı C ı C 1Q.x/ D P

T.�/ � P T.�/

so that, if � D �2=y
i

Nı C ı C 1
�eP.x/Q.y/ � eP.y/Q.x/� D P T.�/P T.�/ � P T.�/P T.�/

and consequently
��

2
eKT1.�; �/ D eKR1.x; y/ : (44)

ut
Remark 5. 1. To have a graphical point of view of this kernel, we refer to [13]

p. 56–60.
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2. In [25], the behavior of the limiting kernel on R is used to study asymptotics of
the maximal eigenvalue of the generalized Cauchy ensemble.

3. An easy computation shows that for ı real, ı > �1=2, we recover the Bessel
kernel

KT1 D
�

2

p
��
JıC 1

2
.��
2
/Jı� 1

2
.��
2
/� Jı� 1

2
.��
2
/JıC 1

2
.��
2
/

2.� � �/ ;

and for ı D 0 the sine kernel

KT1 D
sin. ���

2
/

�.� � �/ :

4 Appendix: Hypergeometric Functions

For a classical reference on hypergeometric functions, see [2].
The Gauss hypergeometric function is defined as

2F1

�
a; b

c
I z

	
D

1X

kD0

.a/k.b/k

.c/k

zk

kŠ
(45)

where .x/n stands for the Pochhammer symbol .x/k D x.x C 1/ : : : .x C k � 1/,
with the convention .x/0 D 1. When a D �n 2 �N0, it is a polynomial

2F1

��n; b
c
I z

	
D

nX

kD0
.�1/k

 
n

k

!
.b/k

.c/k
zk : (46)

The following relations are useful:

zn 2F1

��n; b
c
I z�1

	
D .�1/n .b/n

.c/n
2F1

��n;�n � c C 1
�n � b C 1 I z

	
(47)

2F1

��n; b
c
I 1 � z

	
D .c � b/n

.c/n
2F1

� �n; b
�nC b C 1 � c I z

	
(48)

d

d z
2F1

�
a; b

c
I z

	
D ab

c
2F1

�
aC 1; b C 1

c C 1 I z

	
: (49)

It is known that, uniformly for z in a compact set, for b; c fixed

lim
N

2F1

��N; b
c
I � z

N

	
D 1F1

�
b

c
I z

	
(50)
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where

1F1

�
b

c
I z

	
D

1X

kD0

.b/k

.c/k

zk

kŠ
(51)

is the confluent hypergeometric function.
It satisfies Kummer’s formula:

ez
1F1

�
a

c
I �z

	
D 1F1

�
c � a
c
I z

	
; (52)

the recursion formula

1F1

�
a

c
I z

	
D 1F1

�
a � 1
c
I z

	
C z

c
1F1

�
a

c C 1 I z

	
; (53)

and the derivative formula

d

d z
1F1

�
a

c
I z

	
D a

c
1F1

�
aC 1
c C 1 I z

	
: (54)
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Discrete Approximation of the Free Fock Space

Stéphane Attal and Ion Nechita

Abstract We prove that the free Fock space F
�
L2.RCIC/�, which is very

commonly used in Free Probability Theory, is the continuous free product of
copies of the space C

2. We describe an explicit embedding and approximation of
this continuous free product structure by means of a discrete-time approximation:
the free toy Fock space, a countable free product of copies of C

2. We show that
the basic creation, annihilation and gauge operators of the free Fock space are also
limits of elementary operators on the free toy Fock space. When applying these con-
structions and results to the probabilistic interpretations of these spaces, we recover
some discrete approximations of the semi-circular Brownian motion and of the free
Poisson process. All these results are also extended to the higher multiplicity case,
that is, F

�
L2.RCICN /� is the continuous free product of copies of the space C

NC1.

Key words and Phrases: Free probability � Free Fock space � Toy Fock space �
Limit theorems
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60F05

1 Introduction

In [1] it is shown that the symmetric Fock space �s.L2.R
CIC// is actually the con-

tinuous tensor product ˝t2R
C C

2. This result is obtained by means of an explicit
embedding and approximation of the space �s.L2.RCIC// by countable tensor
products˝n2hN C

2, when h tends to 0. The result contains explicit approximation
of the basic creation, annihilation and second quantization operators by means of
elementary tensor products of 2 by 2 matrices.

When applied to probabilistic interpretations of the corresponding spaces (e.g.
Brownian motion, Poisson processes), one recovers well-known approximations
of these processes by random walks. This means that these different probabilistic
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situations and approximations are all encoded by the approximation of the three
basic quantum noises: creation, annihilation and second quantization operators.

These results have found many interesting applications and developments in
quantum statistical mechanics, for they furnished a way to obtain quantum Langevin
equations describing the dissipation of open quantum systems as a continuous-time
limit of basic Hamiltonian interactions of the system with the environment: repeated
quantum interactions (cf. [4, 7, 8] for example).

When considering the fermionic Fock space, even if it has not been written
anywhere, it is easy to show that a similar structure holds, after a Jordan–Wigner
transform on the spin-chain representation.

It is thus natural to wonder if, in the case of the free Fock space, a similar struc-
ture, a similar approximation and similar probabilistic interpretations exist. Whereas
the continuous tensor product structure of the bosonic Fock space exhibits natural
tensor-independence structure, it is natural to think that the free Fock space will
exhibit a similar property with respect to free independence, as defined in Free Prob-
ability Theory [12, 15].

A key element of our construction is the free product of Hilbert spaces. We
needed to make explicit the constructions of countable free products, as a first step.
We introduce the free toy Fock space, the smallest non-commutative probability
space supporting a sequence of free Bernoulli random variables. Then, by an ap-
proximation method, we define the structure of continuous free products of Hilbert
spaces. This structure appears to be exactly the natural one which describes the free
Fock space and its basic operators.

The paper is structured as follows. Section 2 contains a brief review of the Fock
space construction in Free Probability Theory; Sects. 3 and 4 deal with free products
of Hilbert spaces and the construction of the discrete free toy Fock space. Sec-
tions 5 and 6 contain the main techniques and results of the paper: the embedding
of the toy Fock space in the free Fock space and the main approximation result,
Theorem 1. In Sect. 7, we develop applications of our results to free probability and
finally, Sect. 8 contains a generalization of the setup to the higher multiplicity case
F
�
L2.RCICN /�.

2 Free Probability and the Free Fock Space

Let us start by recalling the general framework of non commutative probability
theory. A non commutative probability space is a couple .A; '/, where A is a com-
plex ��algebra (in general non commutative) and ' is a faithful positive linear form
such that '.1/ D 1. We shall call the elements of A non commutative random vari-
ables. The distribution of a family .xi /i2I of self-adjoint random variables of A is
the function which maps any non-commutative polynomial P 2 ChXi ji 2 I i to
its moment '.P..xi /i2I //. Thus, the map ' should be considered as the analogue
of the expectation from classical probability theory. From this abstract framework,
one can easily recover the setting of classical probability theory by considering a
commutative algebra A (see [10, 12, 14]).
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In order to have an interesting theory, one needs a notion of independence for
non commutative probability spaces. However, classical (or tensor) independence
is not adapted in this more general setting. Free independence was introduced by
Voiculescu in the 1980s in order to tackle some problems in operator algebras,
and has found many applications since, mainly in random matrix theory. Freeness
provides rules for computing mixed moments of random variables when only the
marginal distributions are known. More precisely, unital sub-algebras .Ai /i2I of
A are called free (or freely independent) if '.a1 � � �an/ D 0 for all n 2 N and
ai 2 Aj.i/ whenever '.ai / D 0 for all i and neighboring ai do not come from the
same sub-algebra: j.1/ ¤ j.2/ ¤ � � � ¤ j.n/. This definition allows one to com-
pute mixed moments of elements coming from different algebras Ai , when only the
distributions inside each algebra Ai are known. Note that freeness is a highly non
commutative property: two free random variables commute if and only if one of
them is constant.

A remarkable setting in which freeness appears naturally is provided by creation
and annihilation operators on the full Fock space. Let us now briefly describe this
construction. Consider a complex Hilbert space H and define

F.H/ D
1M

nD0
H˝n;

where H˝0 is a one-dimensional Hilbert space we shall denote by C˝ .˝ 2 F.H/
is a distinguished norm one vector which is called the vacuum vector and it will
play an important role in what follows. For each f 2 H, we define the left creation
operator `.f / and the left annihilation operator `
.f / by

l.f /˝ D f; l.f /e1 ˝ � � � ˝ en D f ˝ e1 ˝ � � � ˝ enI
l
.f /˝ D 0; l
.f /e1 ˝ � � � ˝ en D hf; e1ie2 ˝ � � � ˝ en:

For every T 2 B.H/, the gauge (or second quantization) operator �.T / 2
B.F.H// is defined by

�.T /˝ D 0; �.T /e1 ˝ � � � ˝ en D T .e1/˝ e2 ˝ � � � ˝ en:

All these operators are bounded, with kl.f /k D kl
.f /k D kf k and k�.T /k D
kT k. On the space B.F.H// of bounded operators on the full Fock space we con-
sider the vector state given by the vacuum vector

�.X/ D h˝;X˝i; X 2 B.F.H//:

The usefulness of the preceding construction when dealing with freeness comes
from the following result ([12], Ex. 7.26, pp. 110).

Proposition 1. Let H be a complex Hilbert space and consider the non commu-
tative probability space .B.F.H//; �/. Let H1; : : : ;Hn be a family of orthogonal
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subspaces of H, and, for each i , let Ai be the unital �-algebra generated by the set
of operators

fl.f /jf 2 Hi g [ f�.T /jT 2 B.H/; T .Hi/ � Hi and T vanishes on H?
i g:

Then the algebras A1; : : : ;An are free in .B.F.H//; �/.

In the present note, we shall be concerned mostly with the case of H D
L2.RCIC/, the complex Hilbert space of square integrable complex valued func-
tions; in Sect. 8 we shall consider the more general case ofL2.RCICN /. Until then,
we putˆ D F.L2.RCIC//, and we call this space the free (or full) Fock space. An
element f 2 ˆ admits a decomposition f D f0˝ CPn>1 fn, where f0 2 C and
fn 2 L2.RnC/. In this particular case we shall denote the creation (resp. annihila-
tion) operators by aC (resp. a�):

aC.h/˝ D h; aC.h/fn D Œ.x1; x2; : : : ; xn; xnC1/ 7! h.x1/fn.x2; : : : ; xnC1/�;

a�.h/˝ D 0; a�.h/fn D Œ.x2; : : : ; xn/ 7!
Z
h.x/fn.x; x2 : : : ; xn/dx�;

where h is an arbitrary function of L2.RC/. For a bounded function b 2 L1.RC/,
let aı.b/ be the gauge operator associated to the operator of multiplication by b:

aı.b/˝ D 0; aı.b/fn D Œ.x1; x2; : : : ; xn/ 7! b.x1/fn.x1; : : : ; xn/�;

and a	.b/ the scalar multiplication by
R
b:

a	.b/˝ D
Z
b.x/dx �˝;

a	.b/fn D Œ.x1; x2; : : : ; xn/ 7!
�Z

b.x/dx

	
� fn.x1; : : : ; xn/�:

Finally, we note 1t D 1Œ0;t/ the indicator function of the interval Œ0; t/ and, for all
t 2 RC and " 2 fC;�; ı;	g, we put a"t D a".1Œ0;t//. Obviously, a	

t D t � Id.

3 The Free Product of Hilbert Spaces

In the previous section we have seen that the algebras generated by creation, anni-
hilation and gauge operators acting on orthogonal subspaces of a Hilbert space H
are free in the algebra of bounded operators acting on the full Fock space F.H/.
However, one would like, given a family of non commutative probability spaces, to
construct a larger algebra which contains the initial algebras as sub-algebras which
are freely independent. In classical probability (usual) independence is achieved
by taking the tensor products of the original probability spaces. This is the reason
why classical independence is sometimes called tensor independence. In the free
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probability theory, there is a corresponding construction called the free product. Let
us recall briefly this construction (see [14, 15] for further details).

Consider a family .Hi ;˝i /i2I where the Hi are complex Hilbert spaces and˝i
is a distinguished norm one vector of Hi . Let Ki be the orthocomplement of ˝i in
Hi and define the free product

.H;˝/ D F
i2I
.Hi ;˝i / WD C˝ ˚

M

n>1

M

i1¤i2¤���¤in
Ki1 ˝ � � � ˝Kin ; (1)

where the direct sums are orthogonal and, as usual, k˝k D 1. As in [14] (Sects. 1:9
and 1:10), we proceed with the identification of the algebras of bounded operators
B.Hi / inside B.H/. To this end, we shall identify an operator Ti 2 B.Hi /, with the
operator QTi 2 B.H/ which acts in the following way:

QTi .˝/ D Ti .˝i / (2)

QTi .ki ˝ kj1 ˝ � � � ˝ kjn / D Ti .ki /˝ kj1 ˝ � � � ˝ kjn (3)

QTi .kj1 ˝ � � � ˝ kjn / D Ti .˝i /˝ kj1 ˝ � � � ˝ kjn (4)

where j1 ¤ i and we identify an element of Hi with the corresponding element of
H. The main interest of this construction is the following straightforward result.

Proposition 2. The algebras fB.Hi/gi2I are free in .B.H/; �/.

Proof. Consider a sequence Ti.1/; : : : ; Ti.n/ of elements of B.Hi.1//; : : : ;B.Hi.n//

respectively such that i.1/ ¤ i.2/ ¤ � � � ¤ i.n/ and h˝i.k/; Ti.k/˝i.k/iD 0 for
all k. By the definition of freeness, it suffices to show that h˝; QTi.1/ � � � QTi.n/˝iD 0.
Using the previously described embedding, we get QTi.n/˝DTi.n/˝i.n/.

Since i.n � 1/ ¤ i.n/ and QTi.n/˝ … C˝ , it follows that QTi.n�1/ QTi.n/˝D
ŒTi.n�1/˝i.n�1/� ˝ ŒTi.n/˝i.n/�. Continuing this way, it is easy to see that
QTi.1/ � � � QTi.n/˝D ŒTi.1/˝i.1/�˝ � � � ˝ ŒTi.n/˝i.n/�, and the conclusion follows. ut

We look now at the free Fock space of a direct sum of Hilbert spaces. In the
symmetric case (see [1]), it is known that one has to take the tensor product of the
symmetric Fock spaces in order to obtain the Fock space of the sum. The free setting
admits an analogous exponential property, where instead of the tensor product one
has to use the free product introduced earlier.

Lemma 1. Consider a family of orthogonal Hilbert spaces .Hi /i2I . Then

F.˚i2IHi / DFi2I F.Hi /: (5)

Proof. Fix for each Hi an orthonormal basis .Xj .i//j2B.i/. Then, an orthonormal
basis of F.˚Hi / is given by f˝g[fXj1.i1/˝� � �˝Xjn.in/g, where n > 1, ik 2 I
and jk 2 B.ik/ for all 1 6 k 6 n. One obtains a Hilbert space basis of FF.Hi / by
grouping adjacent elements of Xj1.i1/˝ � � � ˝Xjn.in/ with the same i -index (i.e.
belonging to the same Hi ). Details are left to the reader. ut
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4 The Free Toy Fock Space

In this section we introduce the free toy Fock space, the main object of interest in our
paper. From a probabilistic point of view, it is the “smallest” non commutative prob-
ability space supporting a free identically distributed countable family of Bernoulli
random variables (see Sect. 7).

The free toy Fock space is a countable free product of two-dimensional complex
Hilbert spaces: in (1), take Hi D C

2 for all i . In order to keep track of which copy of
C
2 we are referring to, we shall label the i th copy with C

2
.i/. Each copy is endowed

with the canonical basis f˝i D .1; 0/>; Xi D .0; 1/>g. Since the orthogonal com-
plement of the space C˝i is simply CXi , we obtain the following simple definition
of the free toy Fock space Tˆ:

.Tˆ;˝/ WD F
i2N

.C2.i/;˝i / D C˝ ˚
M

n>1

M

i1¤���¤in
CXi1 ˝ � � � ˝CXin ;

where, as usual, ˝ is the identification of the vacuum reference vectors ˝i
(k˝k D 1). Note that the orthonormal basis of Tˆ given by this construction
is indexed by the set of all finite (eventually empty) words with letters from N

with the property that neighboring letters are distinct. More formally, a word
� D Œi1; i2; : : : ; in� 2 N

n is called adapted if i1 ¤ i2 ¤ � � � ¤ in. By conven-
tion, the empty word ; is adapted. We shall denote by Wn (resp. W


n ) the set
of all words (resp. adapted words) of size n and by W (resp. W
) the set of all
words (resp. adapted words) of finite size (including the empty word). For a word
� D Œi1; i2; : : : ; in�, let X� be the tensor Xi1 ˝ Xi2 ˝ � � � ˝ Xin and put X; D ˝ .
With this notation, an orthonormal basis of Tˆ is given by fX�g�2W� .

We now turn to operators on C
2
.i/ and their embedding into B.Tˆ/. We are in-

terested in the following four operators acting on C
2:

aC D
�
0 0

1 0

�
; a� D

�
0 1

0 0

�
; aı D

�
0 0

0 1

�
; a	 D

�
1 0

0 0

�
:

For " 2 fC;�; ı;	g, we shall denote by a"i the image of a" acting on the i th
copy of C

2, viewed (by the identification described earlier in (2)–(4)) as an operator
on Tˆ. The action of these operators on the orthonormal basis of Tˆ is rather
straightforward to compute (� D Œ�1; : : : ; �n� is an arbitrary non-empty adapted
word and 1 is the indicator function):

aC
i ˝ D Xi ; aC

i X� D 1�1¤iXŒi;��I (6)

a�
i ˝ D 0; a�

i X� D 1�1DiXŒ�2;:::;�n�I (7)

aı
i˝ D 0; aı

iX� D 1�1DiX� I (8)

a	
i ˝ D ˝; a	

i X� D 1�1¤iX� : (9)
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5 Embedding of the Toy Fock Space into the Full Fock Space

Our aim is now to show that the free toy Fock space can be realized as a closed
subspace of the full (or free) Fock space ˆ D F.L2.RCIC// of square integrable
functions. What is more, to each partition of RC we shall associate such an embed-
ding, and, as we shall see in the next section, when the diameter of the partition
becomes small, one can approximate the full Fock space with the (much simpler)
toy Fock space. These results follow closely similar constructions in the bosonic
case (see [1] or [11], Chap. II).

Let S D f0 D t0 < t1 < � � � < tn < � � � g be a partition of RC of diameter
ı.S/ D supi jtiC1� ti j. The main idea of [1] was to decompose the symmetric Fock
space of L2.RC/ along the partition S. In our free setting we have an analogous
exponential property (see (5)):

ˆ D F
i2N

ˆi ;

where ˆi D F.L2Œti ; tiC1//, the countable free product being defined with respect
to the vacuum functions. Inside each Fock spaceˆi , we consider two distinguished
functions: the vacuum function ˝i and the normalized indicator function of the
interval Œti ; tiC1/:

Xi D
1Œti ;tiC1/p
tiC1 � ti D

1tiC1 � 1tip
tiC1 � ti :

These elements span a two-dimensional vector space C˝i ˚ CXi inside each ˆi .
The toy Fock space associated to the partition S is the free product of these two-
dimensional vector spaces:

Tˆ.S/ D F
i2N

.C˝i ˚ CXi /:

Tˆ.S/ is a closed subspace of the full Fock space ˆ and it is naturally isomorphic
(as a countable free product of two-dimensional spaces) to the abstract free toy Fock
space Tˆ defined in the previous section. It is spanned by the orthonormal family
fX�g�2W� , where X� D X� .S/ is defined by

X� D X�1 ˝X�2 ˝ � � � ˝X�n D
"

.x1; : : : ; xn/ 7!
Qn
jD1 1Œt�j ;t�jC1/.xj /
Qn
jD1

p
t�jC1 � t�j

#

;

with � D Œ�1; : : : ; �n�. We shall denote by PS 2 B.ˆ/ the orthogonal projector on
Tˆ.S/. For a function f 2 ˆ, which admits a decompositionf D f0˝CPn>1 fn
with f0 2 C and fn 2 L2.RnC/, the action of PS is straightforward to compute:

PSf D f0˝ C
X

n>1

X

�2W�

n

hX� ; fniX� ; (10)

where the scalar products are taken in the correspondingL2 spaces.
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We ask now how the basic operators a"t , " 2 fC;�; ı;	g, t 2 R
C of the free

Fock space relate to their discrete counterparts a"i . In order to do this, we consider
the following rescaled restrictions of aC

t , a�
t and aı

t on the toy Fock space Tˆ.S/:

aC
i .S/ D PS

aC
tiC1
� aC

tip
tiC1 � ti PS D PSa

C
�

1Œti ;tiC1/p
tiC1 � ti

	
PS I (11)

a�
i .S/ D PS

a�
tiC1
� a�

tip
tiC1 � ti PS D PSa

�
�

1Œti ;tiC1/p
tiC1 � ti

	
PS I (12)

aı
i .S/ D PS.a

ı
tiC1
� aı

ti
/PS D PSa

ı �1Œti ;tiC1/
�
PS : (13)

The operators a"i .S/ 2 B.ˆ/ are such that a"i .S/.Tˆ.S// � Tˆ.S/ and they
vanish on Tˆ.S/?, so one can also see them as operators on Tˆ.S/. For " D 	,
one can not define a	

i .S/ from a	
t as it was done in (11)–(13). Instead, we define it

as the linear extension of a	
i (via the isomorphism Tˆ ' Tˆ.S/) which vanishes

on Tˆ.S/?. Hence, a	
i .S/ D PS.Id�aı

i .S//PS .

Proposition 3. For " 2 fC;�; ı;	g, the operators a"i .S/, acting on the toy Fock
space Tˆ.S/, behave in the same way as their discrete counterparts a"i , i.e. they
satisfy (6)–(9).

Proof. For each � D Œ�1; �2; : : : ; �n� 2W
, consider the corresponding basis func-
tion of Tˆ.S/:

X� .S/ D 1� .S/Qn
jD1

p
t�jC1 � t�j

;

where 1� .S/ is the indicator function of the rectangle 	njD1Œt�j ; t�jC1/. We have:

aC
i .S/X� .S/ D PS

aC.1Œti ;tiC1//p
tiC1 � ti X� .S/ D PSXŒi;��.S/ D 1�1¤iXŒi;��.S/;

a�
i .S/X� .S/ D PS

a�.1Œti ;tiC1//p
tiC1 � ti X� .S/ D PS1�1DiXŒ�2;:::;�n�.S/

D 1�1DiXŒ�2;:::;�n�.S/;
aı
i .S/X� .S/ D PSa

ı.1Œti ;tiC1//X� .S/ D PS1�1DiX� .S/ D 1�1DiX� .S/:

These relations are identical to the action of the corresponding operators a"i on the
abstract toy Fock space Tˆ ' Tˆ.S/ (compare to (6)–(8)). For a	

i .S/, the conclu-
sion is immediate from the last equation above and its definition:

a	
i .S/X� .S/ D PS ŒId�aı

i .S/�X� .S/ D X� .S/ � 1�1DiX� .S/
D 1�1¤iX�.S/:

ut
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6 Approximation Results

This section contains the main result of this work, Theorem 1. We show that the toy
Fock space Tˆ.S/ together with its operators a"i approach the full Fock space ˆ
and its operators a"t when the diameter of the partition S approaches 0.

Let us consider a sequence of partitions SnDf0D t .n/0 < t
.n/
1 < � � � < t .n/

k
< � � � g

such that ı.Sn/! 0. In order to lighten the notation, we put Tˆ.n/DTˆ.Sn/,
PnDPSn and a"i .n/D a"i .Sn/.
Theorem 1. For a sequence of partitions Sn of RC such that ı.Sn/ ! 0, one has
the following approximation results:

1. For every f 2 ˆ, Pnf ! f

2. For all t 2 RC, the operators

aṫ .n/ D
X

i Wt .n/
i

6t

q
t
.n/
iC1 � t .n/i ai̇ .n/;

aı
t .n/ D

X

i Wt .n/
i

6t

aı
i .n/;

a	
t .n/ D

X

i Wt .n/
i

6t

�
t
.n/
iC1 � t .n/i

�
a	
i .n/

converge strongly, when n!1, to aṫ , aı
t and a	

t respectively

Proof. For the fist part, consider a (not necessarily adapted) word � D Œ�1; : : : ; �k �
and denote by 1.n/� the indicator function of the rectangle	kjD1Œt

.n/
�j ; t

.n/
�jC1/ of R

kC. It
is a classical result in integration theory that, since ı.Sn/! 0, the simple functions
f1.n/� g�2Wk ;n>1 are dense in L2.RkC/ for all k. It is obvious that the result still holds
when replacing Wk with the smaller set of adapted words W


k
. Since Pnf is an

element of the vector space generated by the set f1.n/� g�2W�

k
, the result of the first

part follows.
As for the second statement of the theorem, let us start by treating the case of

aC
t . For fixed n and t , let t .n/ D t

.n/
iC1 , where i is the last index appearing in the

definition of aC
t .n/, i.e. t .n/i 6 t < t

.n/
iC1. With this notation, we have aC

t .n/ D
P
i Wt .n/
i

6t

q
t
.n/
iC1 � t .n/i aC

i .n/ D Pna
C
t .n/
Pn. Hence, for any function f 2 F , we

obtain:

kaC
t .n/f � aC

t f k
D kPnaC

t .n/
Pnf � aC

t f k
6 kPnaC

t .n/
Pnf � PnaC

t .n/
f k C kPnaC

t .n/
f � PnaC

t f k C kPnaC
t f � aC

t f k
6 kPnaC

t .n/
kk.Pn � I /f k C kPnaC1Œt;t .n//kkf k C k.Pn � I /.aC

t f /k:
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By the first point, Pn ! I strongly, hence the first and the third terms above
converge to 0. The norm of the operator appearing in the second term is bounded
by the L2 norm of 1Œt;t .n// which is infinitely small when n!1. Hence, the entire
quantity converges to 0 and we obtained the announced strong convergence. The
proof adapts easily to the cases of a�

t and aı
t .

Finally, recall that a	
i .n/ D Pn.Id�aı

i .n//Pn. Hence, with the same notation as
above,

X

i Wt .n/
i

6t

�
t
.n/
iC1 � t .n/i

�
a	
i .n/ D t .n/Pn �

X

i Wt .n/
i

6t

�
t
.n/
iC1 � t .n/i

�
aı
i .n/:

The second term above converges to zero in the strong operator topology thanks to
the factor t .n/iC1 � t .n/i which is less than ı.Sn/, and thus we are left only with t .n/Pn
which converges, by the first point, to t � Id. ut

7 Applications to Free Probability Theory

This section is more probabilistic in nature. We use the previous approximation
result to show that the free Brownian motion and the free Poisson operators can be
approached, in the strong operator topology, by sums of free Bernoulli-distributed
operators living on the free toy Fock space. We obtain, as corollaries, already known
free Donsker-like convergence results.

Let us start by recalling some basic facts about free noises and their realiza-
tion on the free Fock space ˆ. The free Brownian motion Wt and the free Poisson
process Nt were constructed in [13] as free analogues of the classical Brownian
motion (or Wiener process) and, respectively, classical Poisson jump processes.
Recall that a process with stationary and freely independent increments is a col-
lection of non commutative self-adjoint random variables .Xt /t with the following
properties:

1. For all s < t , Xt � Xs is free from the algebra generated by fXu; u 6 sg
2. The distribution of Xt � Xs depends only on t � s
A free Brownian motion is a process with stationary and freely independent incre-
ments .Wt /t such that the distribution ofWt�Ws is a semi-circular random variable
of mean 0 and variance t � s. Recall that a standard (i.e. mean zero and variance
one) semicircular random variable has distribution

d�.x/ D 1

2�

p
4 � x21Œ�2;2�.x/dx:

If X is a standard semicircular random variable, then
p
t � sX is semicircular of

variance .t � s/. In an analogous manner, a free Poisson process is a process with
stationary and freely independent increments .Nt /t such that the distribution of
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Nt �Ns is a free Poisson random variable of parameter � D t � s. In general,
the density of a free Poisson random variable is given by

d��.x/ D

8
<̂

:̂

p
4��.x�1��/2

2�x
#.x/dx if � > 1;

.1 � �/ı0 C
p
4��.x�1��/2

2�x
#.x/dx if 0 < � < 1;

where # is the indicator function of the interval Œ.1 �p�/2; .1Cp�/2�.
The free Brownian motion and the free Poisson process can be realized on the

full Fock space ˚ asWt D aC
t Ca�

t and, respectively,Nt D aC
t Ca�

t Caı
t C t � Id.

Generalization of these processes and stochastic calculus were considered in [5,6,9].
For the sake of simplicity, throughout this section we shall consider the sequence

of partitions Sn D fk=nI k 2 Ng; obviously ı.Sn/ D 1
n
! 0. The following result

is an easy consequence of Theorem 1.

Proposition 4. Consider the operators X .n/i D aC
i .n/ C a�

i .n/, i 2 N, acting on
ˆ. Then

1. For all n > 1, the family fX .n/i gi2N is a free family of Bernoulli random variables
of distribution 1

2
ı�1 C 1

2
ı1.

2. For all t 2 RC, the operator

W
.n/
t D 1p

n

bntcX

iD0
X
.n/
i

converges in the strong operator topology, when n!1, to the operator of free
Brownian motion Wt D aC

t C a�
t .

Let us show now that the strong operator convergence implies the con-
vergence in distribution of the corresponding processes. Let t1; : : : ; ts 2 RC
and k1; : : : ; ks 2 N. Since, by the previous result, W .n/

t ! Wt strongly, and
multiplication is jointly strongly continuous on bounded subsets, we get that
.W

.n/
t1
/k1 � � � .W .n/

ts
/ks ! W

k1
t1
� � �W ks

ts
strongly. Strong convergence implies con-

vergence of the inner products h˝; �˝i and thus the following corollary (which is a
direct consequence of the Free Central Limit Theorem, see [12], Lecture 8 or [15])
holds.

Corollary 1. The distribution of the family fW .n/
t gt2RC

converges, as n goes to
infinity, to the distribution of a free Brownian motion fWtgt2RC

.

We move on to the free Poisson process Nt and we state the analogue of
Proposition 4.

Proposition 5. Consider the operators Y .n/i D aC
i .n/ C a�

i .n/ C
p
naı
i .n/ C

1p
n
a	
i .n/, acting on ˆ. Then
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1. For all n > 1, the family fY .n/i gi2N is a free family of Bernoulli random
variables of distribution 1

nC1ı nC1
p

n

C n
nC1ı0.

2. For all t 2 RC, the operator

N
.n/
t D 1p

n

bntcX

iD0
Y
.n/
i

converges strongly, when n ! 1, to the operator of the free Poisson process
Nt D aC

t C a�
t C aı

t C a	
t .

Proof. As an operator on C
2, Y .n/i has the form

Y
.n/
i D

"
1p
n
1

1
p
n

#

:

For all k > 1, the kth moment of Y .n/i is easily seen to be given by the formula

h˝; .Y .n/i /k˝i D 1

nC 1
�
nC 1p
n

	k
;

which is the same as the kth moment of the probability distribution 1
nC1ı nC1

p

n

C
n
nC1ı0, and the first part follows. For the second part, we have

N
.n/
t D 1p

n

bntcX

iD0
Y
.n/
i D

X

i It .n/
i

6t

�
1p
n
aC
i .n/C

1p
n
a�
i .n/C aı

i .n/C
1

n
a	
i .n/

�

D
X

i It .n/
i

6t

q
t
.n/
iC1 � t .n/i

�
aC
i .n/C a�

i .n/
�C

X

i It .n/
i

6t

aı
i .n/

C
X

i It .n/
i

6t

�
t
.n/
iC1 � t .n/i

�
a	
i .n/:

Using Theorem 1, one obtains N .n/
t ! Nt in the strong operator topology. ut

Again, we obtain as a corollary the convergence in distribution of the process
.N

.n/
t /t to the free Poisson process, which is in fact a reformulation of the Free

Poisson limit theorem ([12], pp. 203).

Corollary 2. The distribution of the family fN .n/
t gt2RC

converges, as n goes to
infinity, to the distribution of a free Poisson process fNtgt2RC

.
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8 Higher Multiplicities

We generalize now the previous construction of the free toy Fock space by replacing
C
2 with the N C 1-dimensional complex Hilbert space C

NC1. Much of what
was done in C

2 extends easily to the generalized case, so we only sketch the
construction, leaving the details to the reader (for an analogous setup in the sym-
metric Fock space, see [3]). In what follows, N > 1 is a fixed integer, called the
multiplicity of the Fock space.

Start with a countable family of copies of C
NC1, each endowed with a fixed

basis .˝;X1; : : : ; XN /. We shall sometimes note X0 D ˝ . We introduce the free
toy Fock space of multiplicity N (see Sect. 4):

Tˆ D F
i2N

C
NC1.i/;

where the countable tensor product is defined with respect to the stabilizing se-
quence of vectors ˝.i/ 2 C

NC1.i/. An orthonormal basis of this space is indexed
by the set WN
 of generalized adapted words � D Œ.i1; j1/; .i2; j2/; : : : ; .in; jn/�,
where n 2 N, i1 ¤ i2 ¤ � � � ¤ in and j1; : : : ; jn 2 f1; : : : ; N g, the corresponding
basis element being X� D Xj1.i1/˝Xj2.i2/˝ � � � ˝Xjn .in/.

On each copy of C
NC1 we introduce the matrix units aij defined by

aijX
k D ıikXj ; i; j; k D 0; 1; : : : ; N:

We shall now show how the discrete structure of the free toy Fock space of mul-
tiplicity N approximates the free Fock space ˆ D F.L2.RCICN //. To this end,
consider a partition S D f0 D t0 < t1 < � � � < tn < � � � g of RC and recall the de-
composition of the free Fock space of multiplicity N as a free product of “smaller”
Fock spaces:

F.L2.RCICN // D F
i2N

F.L2.Œti ; tiC1/ICN //:

In each factor of the free product we consider N C 1 distinguished functions: the
constant function ˝i (sometimes denoted by X0.i/) and the normalized indicator
functions

Xj .i/ D
1j
Œti ;tiC1/p
tiC1 � ti D

1jtiC1 � 1jtip
tiC1 � ti ; 1 6 j 6 N;

where 1jA.x/ D .0; : : : ; 0; 1; 0; : : : ; 0/> with the 1 in the j th position if x 2 A and
0 otherwise. For a generalized word � D Œ.i1; j1/; .i2; j2/; : : : ; .in; jn/�, define the
element X�.S/ 2 ˆ by

X� .S/ D Xj1.i1/˝ � � � ˝Xjn.in/ D Œ.x1; : : : ; xn/ 7!
Qn
kD1 1jk

Œtik
;tikC1/

.xk/
Qn
kD1
p
tikC1 � tik

�;
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with � D Œ.i1; j1/; .i2; j2/; : : : ; .in; jn/�. The toy Fock space associated to S
(denoted by Tˆ.S/) is the span of X� .S/ for all generalized adapted words
� 2 WN
. Tˆ.S/ is a closed subspace of the full Fock space ˆ and it is natu-
rally isomorphic to the abstract toy Fock space of multiplicity N , Tˆ. For a given
sequence of refining partitions Sn whose diameters converge to zero, the toy Fock
spaces and the operators aij approximate the Fock space ˆ and its corresponding
operators (compare with Theorem 1):

Theorem 2. Let ˆ be the free Fock space of multiplicity N and Sn a sequence of
refining partitions of RC such that ı.Sn/! 0. Then one has the following approxi-
mation results:

1. For every f 2 ˆ, Pnf ! f

2. For i; j 2 f0; 1; : : : ; N g, define "ij D 1
2
.ı0i C ı0j /. Then, for all t 2 RC, the

operators
X

kWt .n/
k

6t

.t
.n/

kC1 � t .n/k /"ij aij .k/

converge strongly, when n!1, to aij .t/

8.1 An Example for N D 2

Let us end this section by constructing an approximation of a two-dimensional free
Brownian motion constructed on a free Fock space of multiplicity N D 2. To this
end, define the free Fock space ˚ D F.L2.RCIC2// and its discrete approxima-
tion, the free toy Fock space Tˆ D Fk2N C

3
.k/. The simplest realization of two

freely independent free Brownian motions on ˆ is the pair of operator processes
W1.�/;W2.�/ 2 B.ˆ/ defined by:

W1.t/ D a01.t/C a10.t/ andW2.t/ D a02.t/C a20.t/:

First of all, it is obvious that both W1.�/ and W2.�/ are free Brownian motions (see
Sect. 7). Moreover, the families .W1.t//t and .W2.t//t are freely independent since
the functions 11s and 12t are orthogonal in F.L2.RCIC2// (see Proposition 1). We
consider, as we did in Sect. 7, the sequence of refining partitions Sn D fk=nI k 2
Ng. We introduce the following two families of operators:

Y1.k/ D a01.k/C a10.k/;
Y2.k/ D a02.k/C a20.k/;

and respectively

Z1.k/ D a01.k/C a10.k/ � a22.k/;
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Z2.k/ D a02.k/C a20.k/ � Œa12.k/C a21.k/C a22.k/�;

for k 2 N. It follows from Theorem 2 that for all t 2 RC, both families are approx-
imations of a two-dimensional Brownian motion:

1p
n

0

@
bntcX

iD0
Y1.n/;

bntcX

iD0
Y2.n/

1

A �!
n!1 .W1.t/;W2.t//

and

1p
n

0

@
bntcX

iD0
Z1.n/;

bntcX

iD0
Z2.n/

1

A �!
n!1 .W1.t/;W2.t// ;

where the limits hold in the strong operator topology. However, the building blocks
of these approximating processes have completely different behaviors at fixed k. To
start, note that the self-adjoint operators Y1.k/ and Y2.k/, represented, in the basis
.˝;X1; X2/, by the hermitian matrices

Y1 D
2

4
0 1 0

1 0 0

0 0 0

3

5 and Y2 D
2

4
0 0 1

0 0 0

1 0 0

3

5

do not commute. Hence, they do not admit a classical joint distribution, i.e. it does
not exist a probability measure � on R

2 such that

Z

R
2
ym1 y

n
2d�.y1; y2/ D h˝;Y m1 Y n2 ˝i: (14)

On the contrary, for each k, the operatorsZ1.k/ and Z2.k/, which act on C
3 as the

matrices

Z1 D
2

4
0 1 0

1 0 0

0 0 �1

3

5 and Z2 D
2

4
0 0 1

0 0 �1
1 �1 �1

3

5 ;

commute and they admit the following classical joint distribution (in the sense
of (14)):

� D 1

2
ı.1;0/ C 1

3
ı.�1;1/ C 1

6
ı.�1;�2/:

More details on high multiplicity Fock spaces and the analogue construction in the
commutative case can be found in [2, 3].

Acknowledgements We thank the referee for several helpful remarks that improved the presenta-
tion of the paper.
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Abstract Consider an R
d -valued semimartingale S and a sequence of R

d -valued
S -integrable predictable processes Hn valued in some closed convex set K � R

d ,
containing the origin. Suppose that the real-valued sequence Hn � S converges to
X in the semimartingale topology. We would like to know whether we may write
X DH 0 � S for some R

d -valued, S -integrable processH 0 valued in K? This ques-
tion is of crucial importance when looking at superreplication under constraints.
The paper considers a generalization of the above problem to K D K.!; t/ possibly
time dependent and random.
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d.X; Y / D sup
jJ j�1

0

@
X

n�1
2�n

E Œ1 ^ j.J � .X � Y //nj�
1

A

where .J � X/t WD
R t
0 JudXu, and the supremum is taken over all predictable pro-

cesses J bounded by 1. Émery [1] shows that with respect to this metric the
space of semimartingales is complete. For a given R

d -valued semimartingale S we
write L.S/ for the space of R

d -valued, S -integrable, predictable processes H and
La
loc
.S/ for those processes in L.S/ for which H �S is locally bounded from below.

By construction H � S is a real-valued semimartingale being the vector stochastic
integral of an R

d -valued process H with respect to the R
d -valued semimartingale

S ; see Jacod and Shiryaev [5] Sect. III.6. We write L.S/ for the space of all equiv-
alence classes in L.S/ with respect to the quasi-norm (in the sense of Yosida [18]
Definition I.2.2),

dS .H1;H2/ D d.H1 � S;H2 � S/:

We defineLa
loc
.S/ analogously. Hence in L.S/ we identify all processes H 2 L.S/

that yield the same stochastic integral H � S . Mémin [10] Theorem V.4 shows that
L.S/ is a complete topological vector space with respect to dS . Equivalently, the
space of stochastic integrals

fH � S jH 2 L.S/g

is closed in the semimartingale topology.
A natural question to ask is the following. Given a sequence Hn 2 L.S/ and a

process H 0 2 L.S/ with dS .Hn;H 0/ converging to 0 and a closed convex set K,
where K � R

d contains the origin, suppose that Hn
t 2 K a.s. for all t and n 2 N,

can we deduce thatH 0
t 2 K a.s. for all t? More precisely, we assume that each class

Hn 2 L.S/ has a representative Hn 2 L.S/ with Hn
t 2 K a.s. for all t , and we ask

whether the classH 0 admits a representative H0 such that H0
t 2 K a.s. for all t . For

brevity we write H 0 2 L.S/ and H 0
t 2 K a.s. for all t , etc.

This question is closely related to finding a constrained optional decomposition
for a given process. Form the set of K-valued integrands

J WD ˚H 2 Laloc.S/ j Ht 2 K a.s. for all t
�

(where we have slightly abused notation as pointed out above). This defines a family
of semimartingales via

S WD fH � S j H 2 J g : (1.1)

Föllmer and Kramkov [2] characterize those locally bounded below processes Z
which may be written as

Z D Z0 CHZ � S � CZ (1.2)
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for some increasing nonnegative optional process CZ and some HZ 2 J . In math-
ematical finance S is the discounted asset price process and Z is typically related
to some contingent claim. The existence of a decomposition (1.2) means that Z
can be superreplicated by a K-valued portfolio HZ with initial endowment Z0.
Karatzas and Z̆itković [7], in the context of utility maximization with consumption
and random endowment, and Pham [11, 12], in the setting of utility maximization
and shortfall risk minimization, apply [2] Theorem 4.1 to deduce the existence of
a constrained optimal solution. A crucial condition on the set S needed for [2]
Theorem 4.1 to hold is the following:

Assumption 1.1 ([2, Assumption 3.1]). If Hn � S is a sequence in S, uniformly
bounded from below, which converges in the semimartingale topology to X then
X 2 S.

Consider the set S defined by (1.1). Let us discuss whether it satisfies the above
assumption. Suppose Hn � S is a uniformly bounded below sequence converging
in the semimartingale topology to X . Since fH � S j H 2 L.S/g is closed in the
semimartingale topology and convergence in that topology implies uniform con-
vergence on compacts in probability it follows that there exists H 0 2 La

loc
.S/

with X DH 0 � S . Thus we see that it is sufficient to check whether S verifies the
following:

Assumption 1.2. If Hn � S is a sequence in S which converges in the semimartin-
gale topology to H 0 � S then H 0 � S 2 S.

When K ¤ R
d we are led to investigate whether we can find a representative H0

of the class H 0 which is K-valued. This is precisely the problem considered in the
main result of the present paper, Theorem 3.5. Note that we only require one, not
every, representative of the limit class in L.S/ to be K-valued.

In [11,12] it is shown that pointwise properties are preserved under the additional
conditions that S is continuous and satisfies dŒS; S�t D �tdt for a matrix-valued
process �t , assumed positive definite a.s. for all t . In this case positive definiteness
implies that all components of the integrands converge pointwise a.s. for each t
and therefore the closedness of K gives that the limit is again in K. In incomplete
markets �t is generally only positive semi-definite and one cannot argue in this way.

In [7] it is implicitly assumed that Assumption 1.2 is valid when K is an arbitrary
(fixed) closed convex cone K and S is any R

d -valued semimartingale satisfying
an absence of arbitrage assumption. In Sect. 2 we give a counterexample to show
that this is false in general. We show that (without imposing extra conditions on S )
to obtain a positive answer to the question of whether the limit class of integrands
admits a representative which is K-valued, one must restrict K. In fact it is sufficient
that K be either a continuous or a polyhedral set.

The main contribution of this paper is to show that for these two choices of K
the sets S defined by (1.1) satisfy Assumption 1.2 and [2] Theorem 4.1 may be ap-
plied. This covers many examples currently in the literature. In particular, as shown
in Sect. 4, that of no-short-selling constraints and upper and lower bounds on the
number of shares of each asset held, listed as examples in [2] without proof.
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The layout of the paper is as follows: Sect. 2 contains two insightful examples,
Sect. 3 provides the main result (Theorem 3.5), Sect. 4 gives some applications and
Sects. 5 and 6 contain the proof.

2 Motivating Examples

To illustrate some of the problems that can arise we give the following examples.
They show that, without further conditions on S , for arbitrary closed convex sets it
may not be possible to find an appropriate representative of the limiting class H 0.
Note that in this section and throughout, all vectors are column vectors.

2.1 Example 1

Let W denote a standard 1-dimensional Brownian motion and � be the stopping
time defined by

� WD inf ft � 0 j jWt j D 1g :
We let S WD .W � ; 0/> so that we have

d hS; Sit D
�
1 0

0 0

	
Ift��gdtC

�
0 0

0 0

	
Ift>�gdt

WD C Ift��gdtC 0Ift>�gdt:

The matrix C is not positive definite and the kernel of C is given by Ker.C / D
f�.0; 1/> j � 2 Rg. Set

K WD

.x; y/> 2 .�1;1/ 	 R

ˇ
ˇ
ˇ̌ y � 1

x C 1 � 1
�
:

This is a closed convex set containing the origin. We define, for n 2 N, a sequence
of (constant) processes valued on the boundary of K,

Hn WD .�1C 1=n; n� 1/> :
The Hn do not converge pointwise, their norms are unbounded. Observe that pro-
jecting Hn onto the orthogonal complement of Ker.C / gives another representative
of Hn which we call OHn. Thus we have

OHn D .�1C 1=n; 0/> ;
OHn � S D Hn � S; n 2 N:

If we define the (constant) process H0 D .�1; 0/> then
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Hn � S D .1 � 1=n/.H0 � S/:

It then follows that Hn � S converges in the semimartingale topology to H0 � S .
We seek a representative of the class H 0 which is K-valued. By construction,

the stochastic integral of each R
2-valued predictable process, valued in Ker.C /

on ft � �g dP ˝ dt-a.e., is zero. This implies that the equivalence class of
the process 0 2 L.S/ consists up to dP ˝ dt-a.e. equality of the processes
G1.0; 1/> C G2.1; 0/>Ift>�g, where G1 and G2 are some real-valued predictable
processes. Since adding a representative of 0 to some element of L.S/ does not
change its equivalence class, we obtain that the equivalence class H of any given
H 2 L.S/ is given up to dP˝ dt-a.e. equality by

H D ˚HC G1.0; 1/> C G2.1; 0/>Ift>�g
ˇ
ˇ G1;G2

real-valued predictable processes
�
:

However, due to the vertical asymptote of K at x D �1 we have

˚
.�1; 0/> C �.0; 1/>�\K D ; for all � 2 R:

In particular, adding vectors valued in the kernel of C to H0 will never give a
K-valued integrand and therefore one cannot find an appropriate representative QH0

of H 0. This illustrates that, without making further assumptions on S , one cannot
allow arbitrary closed convex sets. The crucial point here is that K is not a contin-
uous set. One may hope that by imposing some other restriction, for instance that
K is a cone, the closure property may still be proved. The following example shows
that this is not the case.

2.2 Example 2

LetW D .W 1;W 2;W 3/> be a 3-dimensional Brownian motion and set Y D � �W
where

� D
0

@
1 0 0

0 1 �1
0 �1 1

1

A :

The matrices �> andC WD ��> have nontrivial kernel spanned by wD 1p
2
.0; 1; 1/>

i.e.,

Ker.C / D Ker.��>/ D Rw D

1p
2
.0; �; �/> j � 2 R

�
:
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As in the previous example we obtain that the stochastic integral of each R
3-

valued predictable process, valued in Ker.C / dP ˝ dt-a.e., is zero and therefore
that the equivalence class H of any given H 2 L.Y / is given up to dP ˝ dt-a.e.
equality by

H D fHC Gw j G a real-valued predictable processg:

Let K be the closed convex cone

˚
.x; y; z/> 2 R

3
ˇ̌
x2 C y2 � z2; z � 0�:

Choose a sequence .zn/n2N in Œ1;1/ tending to infinity and define the sequence of
(constant) processes .Hn/n2N by Hn D .1;

p
z2n � 1; zn/> for each n 2 N. Then

each Hn is K-valued and we obtain

E

h��
Hn � Y �

t
�W 1

t

�2i D E
�˝
Hn � Y �W 1;Hn � Y �W 1

˛
t

�

D
Z t

0

�
Hn
s � .1; 0; 0/>

�>
Cs
�
Hn
s � .1; 0; 0/>

�
ds

D
Z t

0

2

"

2z2n

 

1 �
s

1 � 1

z2n

!

� 1
#

ds

D
Z t

0

2

�
2z2n

�
1 �


1 � 1

2z2n
CO

�
1

z4n

	�	
� 1

�
ds

D tO

�
1

z2n

	
: (2.1)

Hence Hn �Y converges toW 1 locally in M2;1.P/ (the space of P-square-integrable
1-dimensional martingales) and thus by [10] Theorem IV.5 also in the semimartin-
gale topology. However the (constant) process .1; 0; 0/> having stochastic integral
.1; 0; 0/> � Y D W 1 is not K-valued.

Recall that we identify processes in L.Y / yielding the same stochastic integral
and therefore it would be sufficient to find one predictable process equivalent to
.1; 0; 0/> and valued in K a.s. for each t . As discussed above the equivalence class
of .1; 0; 0/> is, up to dP˝ dt-a.e. equality,

˚
.1; 0; 0/> C Gw

ˇ
ˇ G a real-valued predictable process

�
:

For every fixed t and ! these have the form

�
1;

Gt .!/p
2
;
Gt .!/p
2

	>
:
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It follows from the definition of K that there is no predictable process equivalent to
.1; 0; 0/> which is K-valued. Defining the stopping time

� WD inf
˚
t � 0 ˇˇ kWtkR3 D 1

�
:

and setting S D Y � and defining S by (1.1) gives an example which does not satisfy
Assumption 1.1. (For reference observe that we write k � k

Rd
for the Euclidean

norm on R
d ). Thus we have a counterexample to the implicit claim in [7] as S is a

bounded martingale and therefore satisfies the no arbitrage assumption therein.
Exactly as in the previous example convergence of the stochastic integrals Hn �S

does not necessarily imply that the representatives Hn satisfying the constraints
converge pointwise. Therefore one cannot argue using the pointwise closedness of
K to obtain that the limit is again valued in K. Indeed, in this case kHnk

R3 Dp
2zn and the sequence of representatives actually diverges. Thus, for a general

closed convex cone K, one cannot show that S is closed in the semimartingale
topology.

However although the Hn need not converge pointwise, we can always find a
related sequence of representatives OHn that do. The issue then is that these need not
be K-valued anymore. To obtain the OHn, as in the previous example, we project onto
the orthogonal complement of Ker.C / D Ker.��>). The eigenvalue decomposition
of C is given by C D P>DP with

P D

0

B
@

1 0 0

0 1p
2
� 1p

2

0 1p
2

1p
2

1

C
A ; D D

0

@
1 0 0

0 4 0

0 0 0

1

A :

Define Gn WD PHn and recall from (2.1) that

�
Hn � .1; 0; 0/>�>C �Hn � .1; 0; 0/>� (2.2)

converges to 0 in dP˝ dt-measure, hence dP ˝ dt-a.e. along a subsequence, also
indexed by n. Using the decomposition of C and writing Gn;i for the i th component
of Gn, (2.2) is equivalent to

.Gn;1 � 1/2 C 4.Gn;2/2 �! 0; dP˝ dt-a.e.

Therefore, dP ˝ dt-a.e., Gn;1 converges to 1 and Gn;2 to 0. The vectors
v1D .1; 0; 0/>, v2 D 1p

2
.0; 1;�1/> together with w D 1p

2
.0; 1; 1/> form an

orthonormal basis of R
3. The decomposition of Hn with respect to v1; v2 and w is

given by

Hn D �
.Hn/>v1

�
v1 C

�
.Hn/>v2

�
v2 C

�
.Hn/>w

�
w

D Gn;1v1 C Gn;2v2 C Gn;3w:
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If we now define OHn D Gn;1v1 C Gn;2v2 then we obtain that, for each n 2 N,
Hn� OHn is valued in Ker.C / dP˝dt-a.e. and therefore Hn and OHn are in the same
equivalence class. Moreover, OHn converges to .1; 0; 0/> dP˝dt-a.e., and hence for
all ! and t if we set OHn equal to .1; 0; 0/> on the null set where this convergence
does not hold.

Motivated by these examples we now study those convex sets for which we can
use such pointwise convergence to deduce the existence of a K-valued representative
of the limit class.

3 Main Results

We work on the filtered probability space .˝;F ; .Ft /;P/, which is assumed to
satisfy the usual conditions. This space supports an R

d -valued semimartingale S ,
which one may think of as an asset price process. For notational simplicity the in-
dex t is valued in Œ0; 1�, the extension to the case when t 2 RC is straightforward.
The predictable �-field on ˝ 	 Œ0; 1� generated by all left-continuous adapted
processes is denoted by P . For an R

d -valued S -integrable predictable process
H 2 L.S/ we writeH �S for the stochastic integral ofH with respect to S and refer
to [5] Sect. III.6 for the theory of stochastic integration of vector valued processes.

We consider possibly random and time dependent K D K.!; t/ and for this
we need the notion of a measurable multivalued mapping, taken from Rockafellar
[13, 15] and Wagner [16]. Recently the idea to formulate constraints via measur-
able multivalued mappings has been used in Karatzas and Kardaras [6] to study the
numéraire portfolio under convex constraints. Let T be a set together with AT , a
�-field of subsets of T . We write 2R

d
for the power set of R

d .

Definition 3.1. A multivalued mapping F W T ! 2R
d

is called measurable if, for
all closed subsetsQ of R

d ,

F�1.Q/ WD ft 2 T j F.t/ \Q ¤ ;g 2 AT :

When F.t/ is a closed (convex) set for all t 2 T it is said to be closed (convex).

We say F is predictably measurable when T D ˝ 	 Œ0; 1� and AT D P . Motivated
by the examples in Sect. 2 we place more restrictions on K in order to obtain a
positive answer to the question posed in the introduction. The following definition
is from Gale and Klee [3].

Definition 3.2. A convex set Q � R
d is called continuous if it is closed and its

support function
�.u/ D sup

q2Q
�
q>u

�

is continuous for all vectors u 2 R
d with kuk

Rd
D 1.

The set Q may be unbounded and hence we allow � to take the value C1, with
continuity at u for which �.u/ D C1 defined in the usual way.
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We can treat another type of K, for this we use the definition of a polyhedral
convex set, taken from Rockafellar [14]. By Theorem 19.1 therein this coincides
with that of a finitely generated convex set.

Definition 3.3. A closed convex set Q � R
d is called polyhedral if there exists

m 2 N, real numbers r1; : : : ; rm and vectors p1; : : : ; pm such that

Q D
n
q 2 R

d
ˇ
ˇ p>

i q � ri for 1 � i � m
o
:

We make the following assumption throughout the rest of this paper.

Assumption 3.4. The multivalued mapping K is closed convex and predictably
measurable with 0 2 K.�; t/ a.s. for all t . For each t , K.�; t/ is a.s. either contin-
uous or a polyhedral set.

With all the necessary preliminaries introduced we can now state our main result.

Theorem 3.5. Let K satisfy Assumption 3.4 and Hn 2 L.S/ be a sequence of
predictable processes with

(i) Hn
t 2 K.�; t/ a.s. for all t and n 2 N, i.e., there exists a representative Hn of

each equivalence class Hn such that Hn
t 2 K.�; t/ a.s. for all t .

(ii) Hn � S converges in the semimartingale topology to some semimartingale X .

Then there exists H 0 in L.S/ such that X D H 0 � S andH 0
t 2 K.�; t/ a.s. for all t .

More precisely, there exists a representative H0 of the equivalence class H 0 such
that H0

t 2 K.�; t/ a.s. for all t .

Before we proceed to the proof we give some important situations where one can
apply Theorem 3.5.

4 Applications

4.1 Optional Decomposition Under Constraints

We suppose there exists m 2 N and that for 1 � i � m there are predictable
processes Ii andGi , valued in R

d and RC respectively. We define a set of integrands
J1 via

J1 WD

H 2 Laloc.S/

ˇ
ˇ
ˇ̌ I>
i H

i � Gi for 1 � i � m
�
: (4.1)

In the above all the inequalities are to be understood in the sense of Assumption 3.4.
For example, in the above, we have that for 1 � i � m,

Ii .�; t/>H i .�; t/ � Gi .�; t/ P � a.s for all t:
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By comparison with Definition 3.3 this is equivalent to saying that the integrandH
is valued in the closed convex polyhedral set

K1.!; t/ WD

k 2 R

d

ˇ
ˇ
ˇ
ˇ
�
Ii .!; t/

�>
k � Gi .!; t/ for 1 � i � m

�
:

Contained within this framework are a very large class of examples. In particular
no short selling as well as upper and lower bounds on the number of shares of each
asset held; both given in [2] as examples to which their Theorem 4.1 applies. Define

S1 WD fH � S jH 2 J1g:

As discussed in the introduction we need only show thatS1 satisfies Assumption 1.2,
more precisely that if Hn � S converges to H 0 � S then there exists an appropriate
representative of the limiting class. This will follow from Theorem 3.5 once we
show that the set K1.!; t/ is predictably measurable.

The mapping �i ..!; t/; x/ WD Ii .!; t/
>x is continuous in x and predictably

measurable. Moreover the mapping

K0
i .!; t/ WD fk 2 R j k � Gi .!; t/g

is closed and predictably measurable. By definition we have

K1.!; t/ D
m\

iD1


k 2 R

d

ˇ
ˇ
ˇ
ˇ �i ..!; t/; k/ 2 K0

i .!; t/

�

and the result now follows from Definition 5.4 and Lemmas 5.3 and 5.5 (see
Sect. 5.3). We have shown that sets defined by (4.1) are valid examples to which
the optional decomposition theorem under constraints applies.

4.2 Utility Maximization

In [7], within the framework of a utility maximization problem the authors propose
the set

J2 WD
˚
H 2 Laloc.S/ j x CH � S � 0 and Ht 2 K2 a.s. for all t 2 Œ0; 1�� ;

where K2 is a closed convex cone in R
d containing the origin. The set

S2 WD fx CH � S jH 2 J2g is the family of nonnegative wealth processes with
initial capital x and cone constraints on the investment strategy.

The existence of a solution to the utility maximization problem posed in [7]
depends crucially on Proposition 2.13 therein, a dual characterization of superrepli-
cable consumption processes. It is established by an application of [2, Theorem 4.1]
to S2. It is not immediately clear from [7] that S2 satisfies Assumption 1.2, more
specifically that a representative H0 of the limit class H 0 may be chosen to be
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K2-valued. As illustrated by Example 2 in Sect. 2, this is not true for general closed
convex cones.

However when K2 is additionally assumed polyhedral, we can show the exis-
tence of a suitable representation. Indeed one has that K2 is now a closed convex
polyhedral cone containing 0 which is independent of .!; t/ and hence predictably
measurable. Applying Theorem 3.5 now shows that Assumption 1.2 holds for S2.

One may also use Theorem 3.5 in utility maximization on the whole real line
under cone constraints and we refer the reader to Westray and Zheng [17] for more
details.

5 Measurable Selection

We review some results on stochastic processes, separation of convex sets and mea-
surable selection. We then prove Lemma 5.9 which is crucial in establishing our
main result, Theorem 3.5.

5.1 Stochastic Processes

We define all processes up to indistinguishability. We use the phrase “for all t",
implicitly meaning “for all t 2 Œ0; 1�". Throughout we write X for the process
.Xt /t2Œ0;1�. We reserve n for sequences and i for components of vectors in the sense
that Xn;i denotes the process formed from the i th-component of Xn.

The R
d -valued semimartingale S may be decomposed as S D QM C QA where

QM is a P-local martingale and QA a process of finite variation. We write M2;d .P/

for the space of d -dimensional square-integrable martingales and A1;d .P/ for the
space of d -dimensional predictable processes of integrable variation on the space
.˝;F ; .Ft /;P/. These are turned into Banach spaces by equipping them with the
norms

k QMkM2;d .P/ D
 

E

"
dX

iD1
h QM i ; QM ii1

#! 1
2

; k QAkA1;d .P/ D E

"
dX

iD1

Z 1

0

jd QAit j
#

:

Here QM i is a P-square-integrable martingale for 1 � i � d and in the above we
have written h QM i ; QM ii for the predictable compensator of Œ QM i ; QM i � satisfying,

E
�
. QM i

t /
2
� D E

�
Œ QM i ; QM i �t

� D E
�h QM i ; QM iit

�
for all t and 1 � i � d:

In addition, for each i , jd QAi j denotes the differential of the total variation
process j QAi j.

By [5, Propositions II.2.9 and II.2.29] there exist an increasing Q-integrable, pre-
dictable process V , an R

d -valued predictable process B together with a predictable
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process C , taking values in the set of symmetric positive semi-definite d 	d matri-
ces, such that for 1 � i; j � d

Ai D B i � V and hM i ;M j i D C ij � V: (5.1)

By adding t to V and applying the Radon-Nikodym theorem, exactly as in the proof
of [5, Proposition II.2.29], we may, without loss of generality, assume that V is
strictly increasing. There exist many processes V , B and C satisfying (5.1), but our
results do not depend on the specific choice we make.

We are only interested in the representation of a real-valued semimartingale X ,
which is the limit of a sequence of stochastic integralsHn �S converging in the semi-
martingale topology. Hence we can, as in the proof of [10, Theorem V.4], switch to
an equivalent probability measure Q and find a subsequence, also indexed by n,
such that S DM CA 2M2;d .Q/˚A1;d .Q/,Hn �S 2M2;1.Q/˚A1;1.Q/ and
H n � S converges to X in M2;1.Q/ ˚ A1;1.Q/. It then follows that X is given by
H 0 � S for some H 0 2 L2.M;Q/\ L1.A;Q/.

Let us explain the previous notation. L2.M;Q/ (compare L.S/) is the set of
M -integrable predictable processes H for which

EQ

�hH �M;H �M i1
� D EQ

2

4
dX

i;jD1

��
HiHj

� � hM i ;M j i�
1

3

5 <1:

The set of equivalence classes in L2.M;Q/ with respect to the relation

H1 � H2 iff EQ

�h.H1 �H2/ �M; .H1 �H2/ �M i1
� D 0

is then denotedL2.M;Q/. For the set of A-integrable predictable processes H such
that

EQ

�Z 1

0

jd.H �A/t j
�
<1

we writeL1.A;Q/. As in the martingale caseL1.A;Q/ is then the set of equivalence
classes in L1.A;Q/ with respect to the relation

H1 � H2 iff EQ

�Z 1

0

ˇ
ˇd
�
.H1 �H2/ � A�

t

ˇ
ˇ
�
D 0:

It follows that a predictable process H in L2.M;Q/ \ L1.A;Q/ has stochastic in-
tegral H � S D 0 if and only if

EQ

�hH �M;H �M i1
�C EQ

�Z 1

0

ˇ̌
d.H � A/t

ˇ̌� D 0:

Using (5.1) this may be equivalently written as
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EQ

�Z 1

0

H>
t CtHtdVt

�
C EQ

�Z 1

0

jH>
t Bt jdVt

�
D 0:

Therefore the equivalence class of 0 in L2.M;Q/ \ L1.A;Q/ consists of those
predictable processes which are valued in Ker.B/\Ker.C / dQ˝dV -a.e. If we add
processes which are equivalent to 0 we do not change the equivalence class. Hence
there exist different predictable processes in L2.M;Q/\L1.A;Q/, not dQ˝ dV -
a.e. equal, which have the same stochastic integral whenever Ker.B/ \ Ker.C / is
nontrivial.

Recall that the stochastic integral is invariant under a change to an equivalent
probability measure so that any representation we derive under Q also holds under P.

5.2 Separation Theorems

Here we collect separation theorems which are used in the proof of Theorem 3.5 and
motivate Assumption 3.4. First we consider continuous sets, as in Definition 3.2, and
refer to [3] for further discussion.

Given two compact convex subsets it is known that their sum and the convex hull
of their union are again compact and convex. If in addition they are disjoint then
there exists a linear functional which strongly separates them.

In [3] it is shown that these three properties hold for a wider class of sets. This is
the class of continuous sets and contains convex compact sets as a proper subclass.
An example of a continuous set which is not compact is the area enclosed by a
parabola, e.g. f.x; y/> 2 R

2 j y � x2g: The key theorem on continuous sets we use
is the following.

Theorem 5.1 ([8, Theorem 2]). Let Q1;Q2 be disjoint nonempty convex subsets
of R

d . If Q1 is continuous and Q2 is closed then they can be strongly separated.
That is to say there exist � 2 R

d , a 2 R and ı > 0 such that

�>q1 � aC ı > a � �>q2; for all q1 2 Q1; q2 2 Q2:

There are however many sets which are not continuous. In fact any cone with
a ray in its boundary is not continuous. In Sect. 4 it is shown that the case when
K is a cone is of interest, thus we want to find a restriction on the type of convex
sets which allows us to prove our result and includes some interesting examples.
The class we consider is polyhedral sets, see Definition 3.3, and we refer to [4] and
[14] for further details and properties. We are particularly interested in separation
theorems for these sets and the important result is the following.

Theorem 5.2 ([14, Corollary 19.3.3]). Let Q1;Q2 be disjoint nonempty polyhe-
dral convex subsets of R

d . Then they can be strongly separated; there exist � 2 R
d ,

a 2 R and ı > 0 such that

�>q1 � aC ı > a � �>q2; for all q1 2 Q1; q2 2 Q2:
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5.3 Measurable Selection

We recall some results from measurable selection and refer the reader to [13,15,16]
for more details. The setup is as in Definition 3.1, we have a set T together with AT ,
a �-field of subsets of T . We begin with a result on the intersection of measurable
mappings.

Lemma 5.3 ([13, Corollary 1.3]). Let fFi j i 2 I g be a countable collection of
closed measurable multivalued mappings from T to 2R

d
. Then the multivalued

mapping
F W t !

\

i2I
Fi .t/

is measurable.

The following is taken from Rockafellar [15].

Definition 5.4. A mapping �.t; x/ W T 	 R
d ! R

m is called Carathéodory if
�.t; x/ is measurable with respect to t and continuous with respect to x.

The next lemma shows that Carathéodory mappings preserve measurability.

Lemma 5.5 ([15, Corollary 1Q]). Let F 0 W T ! 2R
m

be a closed measurable
multivalued mapping and � W T 	 R

d ! R
m be a Carathéodory mapping. Then

F W T ! 2R
d

given by

F.t/ D fx 2 R
d j �.t; x/ 2 F 0.t/g

is a closed measurable multivalued mapping.

Definition 5.6. A measurable selector for F is a measurable function f W T ! R
d

such that f .t/ 2 F.t/ for all t 2 T .

In Sect. 6 we are interested in finding such a measurable selector. The major theorem
in this area is the following.

Theorem 5.7 ([9]). Let F W T ! 2R
d

be a measurable multivalued mapping such
that F.t/ is a nonempty closed set for all t 2 T . Then there exists a measurable
selector for F .

Remark 5.8. As in [13], if F W T ! 2R
d

is a closed measurable multivalued map-
ping, then the set

T0 D ft 2 T j F.t/ ¤ ;g
is measurable. The restriction of F to T0 is then a measurable multivalued mapping
F0 W T0 ! 2R

d
of the type to which Theorem 5.7 applies.

The setting in which we apply these results is with T D ˝ 	 Œ0; 1� and AT D P ,
the predictable �-field on˝	 Œ0; 1�. As described after Definition 3.1, any multival-
ued mapping F measurable with respect to P is called predictably measurable. This
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is to emphasize the fact that any measurable selector of F is a predictable process.
For a predictable process H define the multivalued mapping

FH.!; t/ D fHt .!/C Ker.Bt .!// \Ker.Ct .!//g \K.!; t/;

where B and C are from (5.1). Note that in the above for a vector q 2 R
d we set

Ker.q/ WD fp 2 R
d j q>p D 0g:

The following result is the principal one of this section.

Lemma 5.9. The multivalued mapping FH is closed and predictably measurable.

Proof. FH is closed as the intersection of two closed sets. The multivalued mapping
K.!; t/ is predictably measurable by Assumption 3.4. Since we have

FH.!; t/ D fHt .!/C Ker.Bt .!// \Ker.Ct .!//g \K.!; t/
D fHt .!/C Ker.Bt .!//g \ fHt .!/C Ker.Ct .!//g \K.!; t/;

by Lemma 5.3 we only need to show the measurability of

F 1.!; t/ WD fHt .!/C Ker.Bt .!//g and F 2.!; t/ WD fHt .!/CKer.Ct .!//g :

Define the Carathéodory mappings

�1
�
.!; t/; x

� D �Bt .!/
�>�

x �Ht .!/
�
;

�2
�
.!; t/; x

� D Ct .!/
�
x �Ht .!/

�
:

A calculation shows that

F 1.!; t/ D
n
x 2 R

d
ˇ
ˇ �1

�
.!; t/; x

� 2 f0g
o
;

F 2.!; t/ D
n
x 2 R

d
ˇ
ˇ �2

�
.!; t/; x

� 2 f0g
o
:

ThusF 1 andF 2 are the preimages of the closed predictably measurable multivalued
mapping F 0 � f0g (0 taken in R and R

d respectively). Thus by Lemma 5.5 they are
predictably measurable and the proof is complete.

6 Proof of Theorem 3.5

The main difficulty (as in Sect. 2) comes from the fact that the pointwise constraints
need only be satisfied for one representative Hn within the equivalence class Hn.
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However, we only assume convergence of the equivalence classes and this does not
necessarily imply pointwise convergence of the representatives Hn which satisfy
the constraints.

Proof (Proof of Theorem 3.5). Let Hn
t be in K.�; t/ a.s. for all t and n 2 N. Sup-

pose that the sequence Hn � S converges in the semimartingale topology to X .
As discussed in Sect. 5.1 we can find a measure Q equivalent to P and a subse-
quence, also indexed by n, such that S D M C A 2M2;d .Q/˚A1;d .Q/ and

.Hn �H 0/ � S �! 0 in M2;1.Q/˚A1;1.Q/:

From the proof of [10] Theorem V.4 we may pass to a subsequence, also indexed
by n and find representatives OHn and OH0 of the corresponding equivalence classes
Hn and H 0 such that OHn

t .!/ converges to OH0
t .!/ for all .!; t/. For each n 2 N

the stochastic integrals of Hn � S and OHn � S coincide and thus their difference
.Hn � OHn/ is valued in Ker.B/ \ Ker.C / dQ˝ dV -a.e. Consider the predictable
and dQ˝ dV -null set

� WD
1[

nD1

˚
.!; t/ 2 ˝ 	 Œ0; 1� j �Hn.!/� OHn

t .!/
� … Ker.Bt .!// \Ker.Ct .!//

�
:

We set Hn and OHn, for n 2 N, as well as OH0, to be zero on�. This does not change
the stochastic integrals with respect to S and now, in addition, .Hn � OHn/ is valued
in Ker.B/ \ Ker.C / for all .!; t/ and n 2 N. Since 0 2 K.�; t/ a.s. for all t the Hn

remain in K.�; t/ a.s. for all t and for all n 2 N. Observe also that OHn now converges
pointwise to OH0 for all .!; t/. Define the multivalued mapping

F OH0.!; t/ D
n OH0

t .!/C Ker.Bt .!// \ Ker.Ct .!//
o
\K.!; t/; (6.1)

which is closed and predictably measurable by Lemma 5.9. We want to make OH0
t

valued in K.�; t/ a.s. without altering the stochastic integral. We must therefore add
a predictable process valued in Ker.Bt .!// \Ker.Ct .!// to get back into K.!; t/,
which motivates the choice of F OH0 .

We now want to apply Theorem 5.7 to find a measurable selector for F OH0 .
In particular we must check that the mapping FH0 defined by (6.1) is nonempty.

Fix .!; t/ such that for all n 2 N, Hn
t .!/ is in K.!; t/ and K.!; t/ is either a

continuous or a polyhedral set. Suppose for a contradiction that F OH0.!; t/ D ;. By
Theorem 5.1 or Theorem 5.2 the sets K.!; t/ and

n OH0
t .!/C Ker

�
Bt .!/

� \ Ker
�
Ct .!/

�o

may be strongly separated. In particular there exist � 2 R
d , a 2 R and ı > 0 such

that for all k 2 K.!; t/ and q 2 Ker
�
Bt .!/

� \Ker
�
Ct .!/

�
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�>k � aC ı > a � �>. OH0
t .!/C q/: (6.2)

Since, for each n 2 N, Hn
t .!/ 2 K.!; t/ and Hn

t .!/ � OHn
t .!/ is an element of

Ker
�
Bt .!/

� \Ker
�
Ct .!/

�
, (6.2) implies that for all n 2 N,

�>Hn
t .!/ � aC ı > a � �>� OH0

t .!/CHn
t .!/ � OHn

t .!/
�
:

It then follows that, for all n 2 N,

�>� OHn
t .!/� OH0

t .!/
� � ı:

However we now have a contradiction as OHn
t .!/ converges to OH0

t .!/. Recall the
definition of F OH0 from (6.1) and define the set

� WD ˚.!; t/ 2 ˝ 	 Œ0; 1� ˇ̌ F OH0.!; t/ ¤ ;
�
:

By the above reasoning we have that F OH0.!; t/ ¤ ; for those .!; t/ 2 ˝ 	 Œ0; 1�
such that Hn

t .!/ is in K.!; t/ for all n 2 N and K.!; t/ is either a continuous or a
polyhedral set. Since these conditions hold P-a.s. for all t , and hence Q-a.s. for all t ,
we can find, for each t , a Q-null set �1t such that


.!; t/ 2 ˝ 	 Œ0; 1�

ˇ̌
ˇ
ˇ ! 2

�
�1t
�c
�
� �:

Exactly as in Remark 5.8 the restriction of F OH0 to � is a closed, nonempty, pre-
dictably measurable, multivalued mapping to which Theorem 5.7 applies. Thus we
get a measurable selector I, a predictable process defined on � , with It .!/ 2
K.�; t/. We now construct a representative H0 of H 0 which is in K.�; t/ Q-a.s. for
all t by setting

H0 WD OH0
I� c C II� :

The stochastic integral is invariant under a change to an equivalent probability mea-
sure, i.e.,H 0 �S is the same under P as under Q. In particularH 0 is valued in K.�; t/
P-a.s. for all t and this completes the proof.
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Closedness in the Semimartingale Topology
for Spaces of Stochastic Integrals
with Constrained Integrands

Christoph Czichowsky and Martin Schweizer

Abstract Let S be an R
d -valued semimartingale and . n/ a sequence of C -valued

integrands, i.e. predictable, S -integrable processes taking values in some given
closed set C.!; t/ � R

d which may depend on the state ! and time t in a pre-
dictable way. Suppose that the stochastic integrals . n � S/ converge to X in the
semimartingale topology. When can X be represented as a stochastic integral with
respect to S of some C -valued integrand? We answer this with a necessary and suf-
ficient condition (on S and C ), and explain the relation to the sufficient conditions
introduced earlier in (Czichowsky, Westray, Zheng, Convergence in the semimartin-
gale topology and constrained portfolios, 2010; Mnif and Pham, Stochastic Process
Appl 93:149–180, 2001; Pham, Ann Appl Probab 12:143–172, 2002). The exis-
tence of such representations is equivalent to the closedness (in the semimartingale
topology) of the space of all stochastic integrals of C -valued integrands, which is
crucial in mathematical finance for the existence of solutions to most optimisation
problems under trading constraints. Moreover, we show that a predictably convex
space of stochastic integrals is closed in the semimartingale topology if and only if
it is a space of stochastic integrals of C -valued integrands, where each C.!; t/ is
convex.

Key words: Stochastic integrals � Constrained strategies � Semimartingale topol-
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1 Introduction

In mathematical finance, proving the existence of a solution to optimisation
problems like superreplication, utility maximisation or quadratic hedging usu-
ally boils down to the same abstract problem: One must show that a subsequence of
(predictably) convex combinations of an optimising sequence of wealth processes,
i.e. stochastic integrals with respect to the underlying price process S , converges
and that the limit is again a wealth process, i.e. can be represented as a stochastic
integral with respect to S . As the space of all stochastic integrals is closed in the
semimartingale topology, this is the suitable topology to work with.

For applications, it is natural to include trading constraints by requiring the strat-
egy (integrand) to lie pointwise in some set C ; this set is usually convex to keep the
above procedure applicable, and one would like it to depend on the state and time
as well. Examples of interest include no shortselling, no borrowing or nonnegative
wealth constraints; see e.g. [4, 16]. As pointed out by Delbaen [8] and Karatzas and
Kardaras [16], a natural and convenient formulation of constraints is in terms of
correspondences, i.e. set-valued functions. This is the approach we also advocate
and use here.

For motivation, consider a sequence of (predictably convex combinations of )
strategies and suppose (as usually happens by the convexification trick) that this
converges pointwise. Each strategy is predictable, so constraints should also be “pre-
dictable” in some sense. To have the limit still satisfy the same restrictions as the
sequence, the constraints should moreover be of the form “closure of a sequence
. n.!; t// of random points,” since this is where the limit will lie. But if each
 n.!; t/ is a predictable process, the above closure is then a predictable corre-
spondence by the Castaing representation (see Proposition 2.3). This explains why
correspondences come up naturally.

In our constrained optimisation problem, assuming that we have predictable,
convex, closed constraints, the same procedure as in the unconstrained case yields
a sequence of wealth processes (integrals) converging to some limit which is a can-
didate for the solution of our problem. (We have cheated a little in the motivation –
the integrals usually converge, not the integrands.) This limit process is again a
stochastic integral, but it still remains to check that the corresponding trading strat-
egy also satisfies the constraints. In abstract terms, one asks whether the limit of a
sequence of stochastic integrals of constrained integrands can again be represented
as a stochastic integral of some constrained integrand or, equivalently, if the space
of stochastic integrals of constrained integrands is closed in the semimartingale
topology. We illustrate by a counterexample that this is not true in general, since
it might happen that some assets become redundant, i.e. can be replicated on some
predictable set by trading in the remaining ones. This phenomenon occurs when
there is linear dependence between the components of S .

As in [3,4,19,21], one could resolve this issue by simply assuming that there are
no redundant assets; then the closedness result is true for all constraints formulated
via closed (and convex) sets. Especially in Itô process models with a Brownian fil-
tration, such a non-redundancy condition is useful (e.g. when working with artificial



Closed Spaces of Stochastic Integrals with Constrained Integrands 415

market completions), but it can be restrictive. Alternatively, as in [6,15,25], one can
study only constraints given by polyhedral or continuous convex sets. While most
constraints of practical interest are indeed polyhedral, this is conceptually unsatis-
factory as one does not recover all results from the case when there are no redundant
assets. A good formulation should thus account for the interplay between the con-
straints C and redundancies in the assets S .

To realise this idea, we use the projection on the predictable range of S . This
is a predictable process taking values in the orthogonal projections in R

d ; it has
been introduced in [8, 9, 24], and allows us to uniquely decompose each integrand
into one part containing all relevant information for its stochastic integral and an-
other part having stochastic integral zero. This reduces our problem to the question
whether or not the projection of the constraints on the predictable range is closed.
Convexity is not relevant for that aspect. Since that approach turns out to give a nec-
essary and sufficient condition, we recover all previous results in [4,6,15,19,21] as
special cases; and in addition, we obtain for constant constraints C.!; t/ � C that
closedness of the space of C -constrained integrands holds for all semimartingales
if and only if all projections of C in R

d are closed. The well-known characteri-
sation of polyhedral cones thus implies in particular that the closedness result for
constant convex cone constraints is true for arbitrary semimartingales if and only if
the constraints are polyhedral.

For a general constraint set C.!; t/ which is closed and convex, the set of
stochastic integrals of C -constrained integrands is the prime example of a pre-
dictably convex space of stochastic integrals. By adapting arguments from [8], we
show that this is in fact the only class of predictably convex spaces of stochastic
integrals which are closed in the semimartingale topology. So this paper makes both
mathematical contributions to stochastic calculus and financial contributions in the
modelling and handling of trading constraints for optimisation problems from math-
ematical finance.

The remainder of the article is organised as follows. In Sect. 2, we formulate
the problem in the terminology of stochastic processes and provide some results
on measurable correspondences and measurable selectors. These are needed to in-
troduce and handle the constraints. Section 3 contains a counterexample which
illustrates where the difficulties arise and motivates in a simple setting the defini-
tion of the projection on the predictable range. The main results discussed above
are established in Sect. 4. Section 5 gives the construction of the projection on the
predictable range as well as two proofs omitted in Sect. 4. Finally, Sect. 6 briefly
discusses some related work.

2 Problem Formulation and Preliminaries

Let .˝;F ; P / be a probability space with a filtration F D .Ft /0�t<1 satisfying the
usual conditions of completeness and right-continuity. For all notation concerning
stochastic integration, we refer to the book of Jacod and Shiryaev [14].
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Set ˝ WD ˝ 	 Œ0;1/. The space of all R
d -valued semimartingales is denoted

by S0;d .P / WD S0.P IRd /, or simply S.P / if the dimension is clear. The Émery
distance (see [10]) of two semimartingalesX and Y is

d.X; Y / D sup
j#j�1

 
X

n2N

2�nE
�
1 ^ j.# � .X � Y //nj

�
!

;

where .# � X/t WD
R t
0 #sdXs stands for the vector stochastic integral, which is by

construction a real-valued semimartingale, and the supremum is taken over all R
d -

valued predictable processes # bounded by 1. With this metric, S.P / is a complete
topological vector space, and the corresponding topology is called the semimartin-
gale topology. For brevity, we say “in S.P /” for “in the semimartingale topology”.
For a given R

d -valued semimartingaleS , we write L.S/ for the space of R
d -valued,

S -integrable, predictable processes # and L.S/ for the space of equivalence classes
Œ#� D Œ#�S D f' 2 L.S/ j ' � S D # � Sg of processes in L.S/ which yield
the same stochastic integral with respect to S , identifying processes equal up to
P -indistinguishability. By Theorem V.4 in [20], the space of stochastic integrals
f# � S j # 2 L.S/g is closed in S.P /. Equivalently, L.S/ is a complete topologi-
cal vector space with respect to dS

�
Œ#�; Œ'�

� D d.# � S; ' � S/; where # and ' are
representatives of the equivalence classes Œ#� and Œ'�.

In this paper, we generalise the above closedness result from [20] to integrands
restricted to lie in a given closed set, in the following sense. Let C.!; t/ be a
non-empty, closed subset of R

d which may depend on ! and t in a predictably
measurable way. Definition 2.2 below makes this precise: C should be a predictable
correspondence with closed values. Denote by

C WD CS WD ˚ 2 L.S/
ˇ
ˇ  .!; t/ 2 C.!; t/ for all .!; t/

�
(2.1)

the set of C -valued or C -constrained integrands for S . If . n/ is a sequence in CS
such that . n � S/ converges to some X in the semimartingale topology, does there
exist a  in CS such that X D  �S ? In general, the answer is negative, as a simple
counterexample in the next section illustrates, and so we ask under which conditions
the above is true. By the closedness in S.P / of the space of all stochastic integrals,
the limit X can always be represented as some stochastic integral # � S . Thus it is
enough to decide whether or not there exists for the limit class Œ#� a representative
 which is C -valued. Equivalently, one can ask whether CS � S is closed in S.P /
or if the corresponding set

ŒC� WD ŒC�S WD ˚Œ#� 2 L.S/ ˇˇ Œ#� \ C ¤ ;�

of equivalence classes of elements of CS is closed in
�
L.S/; dS

�
.

As already explained, this question arises naturally in mathematical finance for
various optimisation problems under trading constraints; see [5, 11, 15, 19, 21, 22].
But not all papers make it equally clear whether the procedure outlined in the intro-
duction can be or is being used. For [15,19], this is clarified in [5]. Under additional
assumptions, the closedness of CS �S in the semimartingale topology is sufficient to



Closed Spaces of Stochastic Integrals with Constrained Integrands 417

apply the results of Föllmer and Kramkov [11] on the optional decomposition under
constraints, which give a dual characterisation of payoffs that can be superreplicated
by constrained trading strategies. This is used in [17,21,22] to prove the existence of
solutions to constrained utility maximisation problems. The results in [11] are for-
mulated more generally for sets of (special) semimartingales which are predictably
convex.

Definition 2.1. A set S of semimartingales is called predictably convex if we have
h � X C .1 � h/ � Y 2 S for all X and Y in S and all Œ0; 1�-valued predictable
processes h. Analogously, a set C � L.S/ of integrands is predictably convex if
h#C .1�h/' 2 C for all # and ' in C and all Œ0; 1�-valued predictable processes h.

The prime example of predictably convex sets of integrands is given by
C -constrained integrands when C is convex-valued. Theorem 4.11 below shows
that all predictably convex spaces C of integrands must be of this form if C � S is in
addition closed in S.P /.

To formulate precisely the assumptions on the (random and time-dependent) set
C , we adapt the language of measurable correspondences to our framework of pre-
dictable measurability and recall for later use some of the results in this context.
Note that the general results we exploit do not depend on special properties of the
predictable �-field on˝ . However, we do use that the range space R

d is metric and
�-compact; this ensures by Proposition 1A in [23] or the proof of Lemma 18.2 in
[1] that weak measurability and measurability for a closed-valued correspondence
coincide in our setting.

Definition 2.2. A mapping C W ˝ ! 2R
d

is called an (Rd -valued) correspon-
dence. Its domain is dom.C / WD ˚

.!; t/
ˇ
ˇ C.!; t/ ¤ ;�: We call a correspondence

C predictable if C�1.F / WD ˚
.!; t/

ˇ
ˇ C.!; t/ \ F ¤ ;� is a predictable set

for each closed F � R
d . A correspondence has predictable graph if its graph

gr.C / WD ˚
.!; t; x/ 2 ˝ 	 R

d
ˇ
ˇ x 2 C.!; t/� is in P ˝ B.Rd /: A predictable

selector of a predictable correspondence C is a predictable process  which satis-
fies  .!; t/ 2 C.!; t/ for all .!; t/ 2 dom.C /.

The following results ensure the existence of predictable selectors in all situations
relevant for us.

Proposition 2.3. (Castaing). For a correspondence C W ˝ ! 2R
d

with closed
values, the following are equivalent:

(1) C is predictable.
(2) dom.C / is predictable and there exists a Castaing representation of C , i.e. a

sequence . n/ of predictable selectors of C such that

C.!; t/ D f 1.!; t/;  2.!; t/; : : :g for each .!; t/ 2 dom.C /.

Proof. See Corollary 18.14 in [1] or Theorem 1B in [23].

Proposition 2.4. (Aumann). Let C W ˝ ! 2R
d

be a correspondence with non-
empty values and predictable graph and � a finite measure on

�
˝;P

�
. Then there

exists a predictable process  with  .!; t/ 2 C.!; t/ �-a.e.
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Proof. See Corollary 18.27 in [1]. ut
The proof of Proposition 2.4 is based on the following result on projections to which
we refer later.

Proposition 2.5. Let .R;R; �/ be a �-finite measure space, R
 the �-field of
�-measurable sets and A in R
 ˝ B.Rd /. Then the projection �R.A/ of A on R
belongs to R
.

Proof. See Theorem 18.25 in [1]. ut
Measurability and graph measurability of a correspondence are linked as follows.

Proposition 2.6. Let C W ˝ ! 2R
d n f;g be a correspondence. If C is predictable,

its closure correspondenceC given by C.!; t/ WD C.!; t/ has a predictable graph.

Proof. See Theorem 18.6 in [1]. ut
Since we require in (2.1) for our integrands  that  .!; t/ 2 C.!; t/ for all

.!; t/, we shall assume, as motivated in the introduction, that C is predictable and
has closed values. Then Proposition 2.3 guarantees the existence of predictable se-
lectors. Moreover, we shall use that predictable measurability of a correspondence
is preserved under transformations by Carathéodory functions and is stable under
countable unions and intersections. Recall that a function f W ˝ 	 R

n ! R
m is

called Carathéodory if f .!; t; x/ is predictable with respect to .!; t/ and continu-
ous in x.

Proposition 2.7. Let C W ˝ ! 2R
d

be a predictable correspondence with closed
values and f W ˝ 	 R

m ! R
d and g W ˝ 	 R

d ! R
m Carathéodory functions.

Then C 0 and C 00 given by

C 0.!; t/ D fy 2 R
m j f .!; t; y/ 2 C.!; t/g

and
C 00.!; t/ D fg.!; t; x/ j x 2 C.!; t/g

are predictable correspondences with closed values.

Proof. See Corollaries 1P and 1Q in [23]. ut
Proposition 2.8. Let C n W ˝ ! 2R

d
for each n 2 N be a predictable cor-

respondence with closed values and define the correspondences C 0 and C 00 by
C 0.!; t/ D T

n2N

C n.!; t/ and C 00.!; t/ D S

n2N

C n.!; t/. Then C 0 and C 00 are pre-

dictable and C 0 is closed-valued.

Proof. See Theorem 1M in [23] and Lemma 18.4 in [1]. ut
To establish a relation between predictably convex spaces of integrands and
C -valued integrands, we later use the following result, which is a reformulation
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of the contents of Theorem 5 in [8]. We view an R
d -valued predictable process

on ˝ as a P-measurable R
d -valued mapping on ˝ , take some probability � on

�
˝;P

�
and denote by B.0; r/

L1

and B.0; r/ the closures of a ball of radius r in

L1�˝;P ; �IRd � and in R
d , respectively. Predictable convexity is understood as

in the second part of Definition 2.1.

Proposition 2.9. Let K be a predictably convex and �-weak
-compact subset

of B.0; r/
L1

with 0 2 K. Then there exists a predictable correspondence
K W˝ ! 2B.0;r/ n f;g, whose values are convex and compact and contain zero,
such that

K D
n
# 2 L1�˝;P ; �IRd �

ˇ̌
ˇ #.!; t/ 2 K.!; t/ �-a.e.

o
:

Proof. In the proof of Theorem 5 in [8], the set C� defined there for � > 0 contains
zero and is by Lemmas 10 and 11 in [8] a predictably convex and weak
-compact

subset of B.0; �/
L1

. No other properties of C� are used. So we can modify the
proof of Theorem 5 in [8] by replacing the use of the Radon–Nikodým theorem of
Debreu and Schmeidler (Theorem 2 in [7]) with that of Artstein (Theorem 9.1 in
[2]). This yields that K WD ˚r constructed in that proof is predictably measurable
and has not only (as argued in [8]) predictable graph. Replacing the correspondence
K coming from this construction by K \ B.0; r/ then gives that K is valued in
2B.0;r/. ut

3 A Motivating Example

In this section, we give a simple example of a semimartingale Y and a predictable
correspondenceC with non-empty, closed, convex cones as values such that CY � Y
is not closed in S.P /. This illustrates where the problems with our basic question
arise and suggests a way to overcome them. The example is the same as Example
2.2 in [6], but we use it here for a different purpose and with different emphasis.

LetW D .W 1;W 2;W 3/> be a 3-dimensional Brownian motion and Y D � �W ,
where

� D
0

@
1 0 0

0 1 �1
0 �1 1

1

A :

The matrix � and hence Oc D ��> have a non-trivial kernel spanned by
w D 1p

2
.0; 1; 1/>, i.e. Ker. Oc/ D Ker.�/ D R w D spanfwg. By construction,

the stochastic integral of each R
3-valued predictable process valued in Ker. Oc/

dP ˝ dt-a.e. is zero, and vice versa. Thus the equivalence class Œ#�Y of any given
# 2 L.Y / is given by

Œ#�Y D f# C hw j h is a real-valued predictable processg
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up to dP ˝ dt-a.e. equality, since adding a representative of 0 to some element of
L.Y / does not change its equivalence class. LetK be the closed and convex cone

K D ˚.x; y; z/> 2 R
3
ˇ
ˇ x2 C y2 � z2; z � 0�

and C the (constant) predictable correspondence with non-empty and closed values
given by C.!; t/ D K for all .!; t/ 2 ˝ . Define the sequence of (constant) pro-
cesses . n/ by  n D .1;

p
n2 � 1; n/> for each n 2 N. In geometric terms, K is

a circular cone around the z-axis, and . n/ is a sequence of points on its surface
going to infinity. (Instead of n, any sequence zn !1 in Œ1;1/ would do as well.)
Each  n is C -valued, and we compute

 n � Y D .� n/ �W D W 1 C �
p
n2 � 1 � n�.W 2 �W 3/:

Using this explicit expression yields by a simple calculation that  n � Y ! W 1

locally in M2.P / and therefore in S.P /; see [6] for details. However, the
(constant) process e1 WD .1; 0; 0/> leading to the limiting stochastic integral
e1 � Y DW 1 does not have values in C , and since its equivalence class is˚
e1Chw

ˇ
ˇ h is a real-valued predictable process

�
, also no other integrand equivalent

to e1 does. Thus CY � Y is not closed in S.P /.
To see why this causes problems, define � WD inf

˚
t > 0

ˇ
ˇ jWt j D 1

�
and set

S WD Y � . The arguments above then imply that the sequence . n � Y � / is bounded
from below (uniformly in n; t; !) and converges in S.P / to .W 1/� , which cannot
be represented as  � S for any C -valued integrand  . Thus the set CS � S does not
satisfy Assumption 3.1 of the optional decomposition theorem under constraints in
[11]. But for instance the proof of Proposition 2.13 in [17] (see p. 1835) explicitly
uses that result of [11] in a setting where constrained integrands could be given
by C -valued integrands as above. So technically, the argument in [17] is not valid
without further assumptions (and Theorem 4.5 and Corollary 4.9 below show ways
to fix this).

What can we learn from the counterexample? The key point is that the conver-
gence of stochastic integrals  n � Y need not imply the pointwise convergence of
their integrands. Without constraints, this causes no problems; by Mémin’s theo-
rem, the limit is still some stochastic integral of Y , here e1 � Y . But if we insist on
having C -valued integrands, the example shows that we ask for too much. Since K
is closed, we can deduce above that .j nj/ must diverge (otherwise we should get
along a subsequence a limit, which would be C -valued by closedness), and in fact
j nj D p2 n ! 1. But at the same time, .� n/ converges to e1 D .1; 0; 0/>–
and this observation brings up the key idea of not looking at  n, but at suitable
projections of  n linked (via �) to the integrator Y .

To make this precise, denote the orthogonal projection on Im.��>/ by

˘Y D 1d	d � ww> D
0

@
1 0 0

0 1
2
�1
2

0 �1
2

1
2

1

A :
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Then ˘Y n D �
1; 1
2
.
p
n2 � 1 � n/;�1

2
.
p
n2 � 1 � n/�> converges to the limit

integrand .1; 0; 0/> D e1. We might worry about the obvious fact that ˘Y n

does not take values in C ; but for the stochastic integrals, this does not matter
because .˘Y n/ � Y D  n � Y . Indeed, any # 2 L.Y / can be written as a sum
# D ˘Y # C .ww>/# of one part with values in Im.��>/ and another
part orthogonal to the first one; and since �>wD 0 implies that�
.ww>/#

� � Y D .#>ww>�/> � W D 0, the claim follows. Going a little fur-

ther, we even have for any # 2 L.Y / and any R
d -valued predictable process ' that

' 2 L.Y / with ' � Y D # � Y ” ˘Y ' D ˘Y # dP ˝ dt-a.e., (3.1)

by using that Ker.��>/\Im.��>/Df0g and that �>.˘Y v/ D �>v for all v 2 R
d

to check the Y -integrability of '. The significance of (3.1) is that the stochastic in-
tegral # �Y is uniquely determined by˘Y # , and so˘Y # gives a “minimal” choice
of a representative of the equivalence class Œ#�Y . Moreover, ˘Y gives via (3.1)
a simple way to decide whether or not a given R

d -valued predictable process '
belongs to the equivalence class Œ#�Y .

Coming back to the set K , we observe that

˘YK D
(�
x;
1

2
.y � z/;�1

2
.y � z/

	> ˇˇ̌
ˇ
ˇ
x2 C y2 � z2; z � 0

)

is the projection of the cone K on the plane through the origin and with the nor-
mal vector .0; 1; 1/>. In geometric terms, the projection of each horizontal slice of
the cone transforms the circle above the x-y-plane into an ellipse in the projection
plane having the origin as a point of its boundary. As we move up along the z-axis,
the circles become larger, and so do the ellipses which in addition flatten out to-
wards the line through the origin and the point e1 D .1; 0; 0/>. But since they never
reach that line although they come arbitrarily close,˘YK is not closed in R

d – and
this is the source of all problems in our counterexample. It explains why the limit
e1 D limn!1˘Y n is not in˘YK , which implies by (3.1) that there cannot exist
any C -valued integrand  such that ˘Y D e1. But the insight about ˘YK also
suggests that if we assume for a predictable correspondenceC that

˘YC.!; t/ is closed dP ˝ dt-a.e.; (3.2)

we ought to get that CY �Y is closed in S.P /. This indeed works (see Theorem 4.5),
and it turns out that condition (3.2) is not only sufficient, but also necessary.

The above explicit computations rely on the specific structure of Y , but they
nevertheless motivate the approach for a general semimartingale S . We are going
to define a predictable process ˘S taking values in the orthogonal projections in
R
d and satisfying (3.1) with dP ˝ dt replaced by a suitable measure on

�
˝;P

�

to control the stochastic integrals with respect to S . The process ˘S will be called
the projection on the predictable range and will allow us to formulate and prove our
main results in the next section.
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4 Main Results

This section contains the main results (Theorems 4.5 and 4.11) as well as some
consequences and auxiliary results. Before we can formulate and prove them, we
need some facts and results about the projection on the predictable range of S . For
the reader’s convenience, the actual construction of ˘S is postponed to Sect. 5.

As in [14], Theorem II.2.34, each semimartingale S has the canonical represen-
tation

S D Sc CeAC Œx1fjxj�1g� � .� � �/C Œx1fjxj>1g� � �
with the jump measure � of S and its predictable compensator �. Then the triplet
.b; c; F / of predictable characteristics of S consists of a predictable R

d -valued pro-
cess b, a predictable nonnegative-definite matrix-valued process c and a predictable
process F with values in the set of Lévy measures such that

eA D b � B; ŒSc ; Sc � D c � B and � D F � B; (4.1)

where B WDPd
iD1

�
ŒSc ; Sc �i;i C Var.eAi /

�C .jxj2 ^ 1/ � �.
Note that B is locally bounded since it is predictable and increasing. Therefore

P ˝B is �-finite on
�
˝;P

�
and there exists a probability measure PB equivalent to

P ˝B . By the construction of the stochastic integral, S -integrable, predictable pro-
cesses which are PB -a.e. equal yield the same stochastic integral with respect to S
(up to P -indistinguishability). Put differently, ' D # PB -a.e. implies for the equiv-
alence classes in L.S/ that Œ'� D Œ#�. But the converse is not true; a sufficient and
necessary condition involves the projection˘S on the predictable range of S , as we
shall see below. Because S is now (in contrast to Sect. 3) a general semimartingale,
the actual construction of˘S and the proof of its properties become more technical
and are postponed to the next section. We give here merely the definition and two
auxiliary results.

Definition 4.1. The projection on the predictable range of S is a predictable process
˘S W ˝ ! R

d	d which takes values in the orthogonal projections in R
d and has

the following property: If # 2 L.S/ and ' is predictable, then ' is in L.S/ with
' � S D # � S if and only if ˘S# D ˘S' PB -a.e. We choose and fix one version
of ˘S .

Remark 4.2. There are many possible choices for a processB satisfying (4.1). How-
ever, the definition of ˘S is independent of the choice of B in the sense that (with
obvious notation) ˘S;B# D ˘S;B' PB -a.e. if and only if ˘S;B0

# D ˘S;B0

'

PB0 -a.e. This is because stochastic integrals of S do not depend on the choice of B .

As illustrated by the example in Sect. 3, the convergence in S.P / of stochastic in-
tegrals does not imply in general that the integrands converge PB -a.e. But like in
the example, a subsequence of the projections of the integrands on the predictable
range does.

Lemma 4.3. Let .#n/ be a sequence in L.S/ such that #n � S ! # � S in S.P /.
Then there exists a subsequence .nk/ such that ˘S#nk ! ˘S# PB -a.e.
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Lemma 4.4. Let C W ˝ ! 2R
d n f;g be a predictable correspondence with closed

values and such that the projection on the predictable range of S is not closed, i.e.

eF D ˚.!; t/ 2 ˝ ˇ
ˇ˘S .!; t/C.!; t/ is not closed

�

has outer PB -measure > 0. Then there exist # 2 L.S/ and a sequence . n/ of
C -valued integrands such that  n � S ! # � S in S.P /, but there is no C -valued
integrand such that  �S D # �S . Equivalently, there exists a sequence

�
Œ n�

�
in

ŒC�S such that Œ n�
L.S/! Œ#� but Œ#� … ŒC�S , i.e. ŒC�S is not closed in L.S/.

Lemmas 4.3 and 4.4 as well as the existence of˘S will be shown in Sect. 5. Admit-
ting that, we can now prove our first main result; related work in [16] is discussed
in Sect. 6. Recall the definition of C WD CS from (2.1).

Theorem 4.5. Let C W ˝ ! 2R
d nf;g be a predictable correspondence with closed

values. Then CS � S is closed in S.P / if and only if the projection of C on the pre-
dictable range of S is closed, i.e. ˘S .!; t/C.!; t/ is closed PB -a.e. Equivalently:
There exists a C -valued integrand  with X D  � S for any sequence . n/ of
C -valued integrands with  n �S ! X in S.P / if and only if the projection of C on
the predictable range of S is closed.

Proof. “)”: This implication follows immediately from Lemma 4.4.
“(”: Let . n/ be a sequence in C with  n � S ! X in S.P /. Then there

exist by Mémin’s theorem # 2 L.S/ with X D # � S and by Lemma 4.3 a subse-
quence, again indexed by n, with ˘S n ! ˘S# PB -a.e. So it remains to show
that we can find a C -valued representative  of the limit class Œ#� D Œ˘S#�. To
that end, we observe that the PB -a.e. closedness of ˘S .!; t/C.!; t/ implies that
˘S# D limn!1˘S n 2 ˘SC PB -a.e. By Proposition 2.7, the correspondences
given by f˘S .!; t/#.!; t/g, C 0.!; t/ D f˘S .!; t/#.!; t/g \ ˘S .!; t/C.!; t/

and
C 00.!; t/ D ˚z 2 R

d
ˇ
ˇ ˘S .!; t/z 2 C 0.!; t/

� \ C.!; t/
are predictable and closed-valued. Indeed, ˘S# is a predictable process, and˚
z 2 R

d
ˇ
ˇ ˘S .!; t/z 2 C 0.!; t/

�
and ˘SC D ˘SC are the pre-image and

(the closure of ) the image of a closed-valued correspondence under a Carathéodory
function, respectively. Thus C 0 and C 00 are the intersections of two predictable
and closed-valued correspondences and therefore predictable by Proposition 2.8.
So there exists by Proposition 2.3 a predictable selector  of C 00 on

dom.C 00/ D ˚.!; t/ ˇˇ˘S .!; t/#.!; t/ 2 ˘S .!; t/C.!; t/
�
:

This  can be extended to a C -valued integrand by using any predictable selec-
tor on the PB -nullset

�
dom.C 00/

�c
. By construction,  is then in C and satisfies

˘S D ˘S# PB -a.e., so that  2 Œ#� by the definition of˘S . This completes the
proof. ut
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Theorem 4.5 gives as necessary and sufficient condition for the closedness of the
space of C -constrained integrals of S that the projection of the constraint set C
on the predictable range of S is closed. This uses information from both the semi-
martingale S and the constraints C , as well as their interplay. We shall see below
how this allows to recapture several earlier results as special cases.

Corollary 4.6. Suppose that S D S0CM CA is in S2
loc
.P / and define the process

a via A D a � B . If

Œ0�M D ˚ha ˇ̌ h is real-valued and predictable
�

(4.2)

up to PB -a.e. equality, then CS � S is closed in S.P / for all predictable correspon-
dences C W ˝ ! 2R

d n f;g with closed values.

Proof. By Lemma 5.1 below, (4.2) implies Œ0�S D Œ0�M \ Œ0�A D f0g and therefore
˘S D 1d	d by (5.2) below. So the projection of any closed-valued correspon-
dence C on the predictable range of S is closed, which gives the assertion by
Theorem 4.5. ut
In applications from mathematical finance, S often satisfies the so-called structure
condition (SC), i.e. S D S0 CM C A is in S2

loc
.P / and there exists an R

d -valued
predictable process � 2 L2

loc
.M/ such thatA D ��hM;M i or, equivalently, a D Oc�

PB -a.e.; this is a weak no-arbitrage type condition. In this situation, Lemma 5.1
below gives Œ0�M � Œ0�A, and thus condition (4.2) holds if and only if Œ0�M D f0g
(up to PB -a.e. equality), which means that Oc is PB -a.e. invertible. This is the case
covered in Lemma 3.1 in [21], where one has conditions only on S but not on C .
Basically this ensures that there are no redundant assets, i.e. every stochastic integral
is realised by exactly one integrand (up to PB -a.e. equality).

The opposite extreme is to place conditions only on C that ensure closedness
of CS � S for arbitrary semimartingales S , as in Theorem 3.5 of [6]. We recover
this as a special case in the following corollary; note that in a slight extension over
[6], the constraints need not be convex. Recall that a closed convex set K � R

d is
called continuous if its support function ı.vjK/ D supw2K w>v is continuous for
all vectors v 2 R

d with jvj D 1; see [13].

Corollary 4.7. LetC W ˝ ! 2R
d nf;g be a predictable correspondence with closed

values. Then CY �Y is closed in S.P / for all semimartingales Y if with probability 1,
for all t � 0 all projections ˘C.!; t/ of C.!; t/ are closed in R

d . In particular, if
with probability 1, every C.!; t/, t � 0, is compact, or polyhedral, or a continuous
and convex set, then CY � Y is closed in S.P / for all semimartingales Y .

Proof. If a set is compact or polyhedral, all its projections have the same property
(see Corollary 2.15 in [18]) and are thus closed. For a continuous convex set, every
projection is closed by Theorem 1.3 in [13]. Now if with probability 1, for all t � 0
all projections ˘C.!; t/ of C.!; t/ are closed, the projection ˘YC of C on the
predictable range of every semimartingale Y is closed P ˝ BY -a.e. So CY � Y is
closed in S.P / by Theorem 4.5. ut
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Combining Theorem 4.5 with the example in Sect. 3, we obtain the following
corollary. It is formulated for fixed sets K , but can probably be generalised to pre-
dictable correspondencesC by using measurable selections.

Corollary 4.8. Suppose .˝;F ; P / is sufficiently rich. Fix K � R
d and define as

in (2.1) KY D ˚
 2 L.Y /

ˇ
ˇ  .!; t/ 2 K for all .!; t/

�
: Then KY � Y is closed in

S.P / for all R
d -valued semimartingales Y if and only if all projections ˘K of K

in R
d are closed.

Proof. The “if” part follows immediately from Theorem 4.5. For the converse, as-
sume by way of contradiction that there is a projection˘ in R

d such that˘K is not
closed. LetW be a d -dimensional Brownian motion and set Y D ˘> �W . Then˘
is the projection on the predictable range of Y , and therefore KY � Y is not closed
by Theorem 4.5. ut
If the constraints are not only convex, but also cones, a characterisation of convex
polyhedra due to Klee [18] gives an even sharper result.

Corollary 4.9. Let K � R
d be a closed convex cone. Then KY � Y is closed in

S.P / for all R
d -valued semimartingales Y if and only if K is polyhedral.

Proof. By Corollary 4.8, KY �Y is closed in S.P / if and only if all projections˘K
are closed in R

d . But Theorem 4.11 in [18] says that all projections of a convex
cone are closed in R

d if and only if that cone is polyhedral. ut
Remark 4.10. Armed with the last result, we can briefly come back to the proof of
Proposition 2.13 in [17]. We have already pointed out in Sect. 3 that the argument in
[17] uses the optional decomposition under constraints from [11], without verifying
its Assumption 3.1. In view of Corollary 4.9, we can now be more precise: The argu-
ment in [17] as it stands (i.e. without assumptions on S ) only works for polyhedral
cone constraints; for others, one could by Corollary 4.9 construct a semimartingale
S giving a contradiction.

We now turn to our second main result. Recall again the definition of C from (2.1)
and note that for a correspondence C with convex values, C is the prime example
of a predictably convex space of integrands. The next theorem shows that this is
actually the only class of predictably convex integrands if we assume in addition
that the resulting space C �S of stochastic integrals is closed in S.P /. The result and
its proof are inspired from Theorems 3 and 4 in [8], but require quite a number of
modifications.

Theorem 4.11. Let C � L.S/ be non-empty. Then C � S is predictably convex and
closed in the semimartingale topology if and only if there exists a predictable corre-
spondenceC W ˝ ! 2R

d nf;g with closed convex values such that the projection of
C on the predictable range of S is closed, i.e. ˘S .!; t/C.!; t/ is closed PB -a.e.,
and such that we have C � S D CS � S , i.e.

C � S D f � S j  2 Cg
D f � S j  2 L.S/ and  .!; t/ 2 C.!; t/ for all .!; t/g:
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Proof. “(”: The pointwise convexity of C immediately implies that CS � S is pre-
dictably convex, and closedness follows from Theorem 4.5.

“)”: Like at the end of Sect. 2, we view predictable processes on ˝ as
P-measurable random variables on ˝ D ˝ 	 Œ0;1/. Since we are only inter-
ested in a non-empty space of stochastic integrals with respect to S , we lose no
generality if we replace C by f# � ' 2 L.S/ j # 2 ŒC�g for some ' 2 C and
identify this with a subspace of L0

�
˝;P ; PB IRd

�
which contains zero. Indeed, if

the assertion is true for C � ' with a correspondence eC , it is also true for C with
C D eC C ', which is a predictable correspondence by Proposition 2.7. In order to
apply Proposition 2.9, we truncate C to get

Cq D ˚ 2 C
ˇ
ˇ k kL1 � q� D C \ B.0; q/L

1

for q 2 QC.

Then Cq inherits predictable convexity from C and is thus a convex subset of

B.0; q/
L1

. Moreover, Cq is closed with respect to convergence in PB -measure
since its elements are uniformly bounded by q and C � S is closed in S.P /; this
uses the fact, easily proved via dominated convergence separately for the M - and
A-integrals, that for any uniformly bounded sequence of integrands . n/ converging
pointwise, the stochastic integrals converge in S.P /. By a well-known application
of the Krein–Šmulian and Banach–Alaoglu theorems (see Theorems A.62 and A.63
and Lemma A.64 in [12]), Cq is thus weak
-compact, and Proposition 2.9 gives a
predictable correspondence C q W ˝ ! 2B.0;q/ n f;g with convex compact values
containing zero such that

Cq D ˚ 2 L0�˝;P ; PB IRd
� ˇˇ  .!; t/ 2 C q.!; t/ PB -a.e.

�
:

By the definition of Cq we obtain, after possibly modifying the sets on a PB -nullset,
that

C q2.!; t/ \ B.0; q1/ D C q1.!; t/ for all .!; t/ 2 ˝ (4.3)

for 0 < q1 � q2 <1 by Lemma 12 in [8], since the graph of eachC q is predictable
by Proposition 2.6. Using the characterisation of closed sets in metric spaces as limit
points of converging sequences implies with (4.3) that the correspondence C given
by

C.!; t/ WD
[

q2QC

C q.!; t/

has closed values. Moreover, each C.!; t/ is convex as the union of an increasing
sequence of convex sets, and it only remains to show that C � S D C � S:

Suppose first that  is in C. By predictable convexity and since 0 2 C,
 n WD1fj j�ng is in Cn and therefore C n- and hence C -valued. Since . n/ con-
verges pointwise to , the closedness ofC implies that isC -valued, so that 2 C
and C � S � C �S . Conversely, if  is in C, then  n WD 1fj j�ng is C n-valued and
hence in Cn � C. But . n � S/ converges to  � S in S.P / and C � S is closed in
S.P /. So the limit  � S is in C � S and hence  2 C and C � S � C � S . Finally,
C � S D C � S is closed in S.P /, and therefore˘SC is closed PB -a.e. by Theorem
4.5. This completes the proof. ut
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Remark 4.12. (1) Theorem 4.11 can be used as follows. Start with any convex-
valued correspondence C , form the space C � S of corresponding stochastic
integrals and take its closure in S.P /. Then Theorem 4.11 tells us that we
can realise this closure as a space of stochastic integrals from eC -constrained
integrands, for some predictable correspondence eC with convex and closed

values. In other words, C � SS.P / D eC � S ; and one possible choice of eC is
eC D �

˘S
��1

.C /. Another possible choice would be eC D C CN, where
N denotes the correspondence of null investments for S ; see Sect. 6.

(2) If we assume in Theorem 4.11 that C � Lp
loc
.S/ for p 2 Œ1;1/, then

C � S � Sp
loc
.P /, and C � S is closed in Sp.P / if and only if there exists

C as in the theorem. This can be useful for applications (e.g., mean–variance
hedging under constraints, with p D 2).

5 Projection on the Predictable Range

In this section, we construct the projection˘S on the predictable range of a general
semimartingale S in continuous time. The idea to introduce such a projection comes
from [9,24], where it was used to prove the fundamental theorem of asset pricing in
discrete time. It was also used for a continuous local martingale in [8] to investigate
the structure of m-stable sets and in particular the set of risk-neutral measures.

As already explained before Definition 4.1, a sufficient condition for
' � S D # � S (up to P -indistinguishability) or, equivalently, ' D # in L.S/
or Œ'� D Œ#�, is that ' D # PB -a.e. If we again view predictable processes
on ˝ as P-measurable random variables on ˝ D ˝ 	 Œ0;1/, i.e. elements
of L0

�
˝;P IRd �, then ' D # PB -a.e. is the same as saying that ' D # in

L0
�
˝;P ; PB IRd

�
. But to get a necessary and sufficient condition for Œ#� D Œ'�,

we need to understand not only what 0 2 L.S/ looks like, but rather the precise
structure of (the equivalence class) Œ0�. This is achieved by ˘S .

The construction of ˘S basically proceeds by generalising that of ˘Y in the
example in Sect. 3 and adapting the steps in [9] to continuous time. The idea is as
follows. We start by characterising the equivalence class Œ0� as a linear subspace
of L0

�
˝;P ; PB IRd

�
. Since this subspace satisfies a certain stability property, we

can construct predictable processes e1; : : : ; ed which form an “orthonormal basis”
of Œ0� in the sense that Œ0� equals up to PB -a.e. equality their linear combinations
with predictable coefficients, i.e.

Œ0� D
(

dX

jD1
hj ej

ˇ
ˇ
ˇ
ˇ
ˇ
h1; : : : ; hd are real-valued predictable

)

(5.1)

up to PB -a.e. equality. But these linear combinations contribute 0 to the integral
with respect to S ; so we filter them out to obtain the part of the integrand which
determines the stochastic integral, by defining
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˘S WD 1d	d �
dX

jD1
ej .ej />: (5.2)

This construction then yields the projection on the predictable range as in
Definition 4.1.

To describe Œ0� D Œ0�S as a linear subspace of L0
�
˝;P ; PB IRd

�
, we exploit

that although we work with a general semimartingale S , we can by Lemma I.3
in [20] switch to an equivalent probability Q under which S is locally square-
integrable. Since the stochastic integral and hence Œ0�S are invariant under a change
to an equivalent measure, any representation we obtain Q ˝ B-a.e. also holds
PB -a.e., as PB � P ˝ B � Q ˝ B . Let S D S0 C MQ C AQ be the canoni-
cal decomposition of S underQ into an R

d -valued square-integrableQ-martingale
MQ 2 M2;d

0 .Q/ null at 0 and an R
d -valued predictable process AQ 2 A1;d .Q/

of Q-integrable variation Var.AQ/ also null at 0. By Propositions II.2.9 and II.2.29
in [14], there exist an increasing, locally Q-integrable, predictable process BQ, an
R
d -valued process aQ and a predictable R

d	d -valued process OcQ whose values are
positive semidefinite symmetric matrices such that

.AQ/i D .aQ/i � BQ and
˝
.MQ/i ; .MQ/j

˛Q D . OcQ/ij � BQ (5.3)

for i; j D 1; : : : ; d . By expressing the semimartingale characteristics of S underQ

by those under P via Girsanov’s theorem, writing AQ and
˝
MQ;MQ

˛Q
in terms of

semimartingale characteristics and then passing to differential characteristics with
B as predictable increasing process, we obtain that we can and do choose BQ D B
in (5.3); see Theorem III.3.24 and Propositions II.2.29 and II.2.9 in [14]. Using the
canonical decomposition of S under Q as auxiliary tool then allows us to give the
following characterisation of Œ0�S .

Lemma 5.1. Let Q � P such that S D S0 CMQ C AQ 2 S2
loc
.Q/. Then

(1) Œ0�M
Q D ˚' 2 L0

�
˝;P IRd � ˇˇ OcQ ' D 0 PB -a.e.

�
.

(2) Œ0�A
Q D ˚' 2 L0

�
˝;P IRd � ˇˇ .aQ/>' D 0 PB -a.e.

�
.

(3) Œ0�S D Œ0�MQ \ Œ0�AQ .

Moreover, Œ0�M
Q

, Œ0�A
Q

and Œ0�S all do not depend on Q.

Proof. The last assertion is clear since the stochastic integral of a semimartingale
(like MQ, AQ, S ) is invariant under a change to an equivalent measure. Because
also PB � Q˝B , we can argue for the rest of the proof under the measureQ. Then
the inclusions “�” follow immediately from the definition of the stochastic integral
with respect to a square-integrable martingale and a finite variation process, since
the conditions on the right-hand side ensure that ' is in L2.MQ/ and L1.AQ/. For
the converse, we start with ' 2 Œ0�S and set 'n WD 1fj'j�ng'. Then 'n � S D 0

implies that 'n �MQ D 0 and 'n � AQ D 0 by the uniqueness of the Q-canonical
decomposition of 'n � S ; this uses that 'n is bounded. Therefore we can reduce
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the proof of “�” for (3) to that for (1) and (2). So assume now that ' is in either
Œ0�M

Q

or Œ0�A
Q

so that 'n �MQ D 0 or 'n � AQ D 0. But 'n is bounded, hence in
L2.MQ/ or L1.AQ/, for each n, and by the construction of the stochastic integral,
we obtain that OcQ 'n D 0 or .aQ/>'n D 0 Q ˝ B-a.e. and hence PB -a.e. Since
.'n/ converges pointwise to ', the inclusions “�” for (1) and (2) follow by passing
to the limit. ut

The following technical lemma, which is a modification of Lemma 6.2.1 in [9],
gives the announced “orthonormal basis” of Œ0�S in the sense of (5.1).

Lemma 5.2. Let U � L0
�
˝;P ; PB IRd

�
be a linear subspace which is closed

with respect to convergence in PB -measure and satisfies the following stability
property:

'11F C '21F c 2 U for all '1 and '2 in U and F 2 P :

Then there exist ej 2 L0�˝;P ; PB IRd
�

for j D 1; : : : ; d such that

(1) fejC1 ¤ 0g � fej ¤ 0g for j D 1; : : : ; d � 1.
(2) jej .!; t/j D 1 or jej .!; t/j D 0.
(3) .ej />ek D 0 for j ¤ k.
(4) ' 2 U if and only if there are h1; : : : ; hd in L0

�
˝;P ; PB IR

�
such that

' DPd
jD1 hj ej , i.e.

U D
(

dX

jD1
hj ej

ˇ̌
ˇ
ˇ
ˇ
h1; : : : ; hd are real-valued predictable

)

:

Proof. The predictable processes e1; : : : ; ed with the properties (1)–(4) are the col-
umn vectors of the measurable projection-valued mapping constructed in Lemma
6.2.1 in [9]. Therefore their existence follows immediately from the construction
given there. ut
By Lemma I.3 in [20], there always exists a probability measure Q as in Lemma
5.1, and therefore the space Œ0�S satisfies the assumptions of Lemma 5.2. So we take
a “basis” e1; : : : ; ed as in the latter result and define ˘S as in (5.2) by

˘S WD 1d	d �
dX

jD1
ej .ej />:

Then ˘S .!; t/ is the projection on the orthogonal complement of the linear space
spanned in R

d by e1.!; t/; : : : ; ed .!; t/ so that ˘S .!; t/
 is orthogonal to all
ei .!; t/ for each 
 2 R

d ; and Lemma 5.2 says that each element of Œ0�S is a
(random and time-dependent) linear combination of e1; : : : ; ed , and vice versa. In
particular, # � ˘S# is in Œ0�S for every predictable R

d -valued # . The next result
shows that ˘S satisfies the properties required in Definition 4.1. Note that ˘S is
only defined up to PB -nullsets since the ej are; so we have to choose one version
for˘S to be specific.
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Lemma 5.3. (Projection on the predictable range of S). For a semimartingale S ,
the projection˘S on the predictable range of S exists, i.e. there exists a predictable
process ˘S W ˝ ! R

d	d which takes values in the orthogonal projections in R
d

and has the following property: If # 2 L.S/ and  is an R
d -valued predictable

process, then

 2 L.S/ with  � S D # � S ” ˘S D ˘S# PB -a.e. (5.4)

Proof. If we define ˘S as above, Lemma 5.2 implies that ˘S is predictable and
valued in the orthogonal projections in R

d , and it only remains to check (5.4).
So take # 2 L.S/ and assume first that ˘S# D ˘S PB -a.e. The definition
of ˘S and Lemma 5.1 then yield that # � ˘S# and ˘S# � ˘S are in Œ0�S ,
which implies that ˘S# D # � �# � ˘S#

�
and ˘S are in L.S/ and also that

# � S D .˘S#/ � S D .˘S / � S . Because also  � ˘S is in Œ0�S � L.S/,
we conclude that  2 L.S/ with # � S D  � S . Conversely, if  � S D # � S ,
then  � # 2 Œ0�S , and we always have . � #/ �˘S . � #/ 2 Œ0�S . Therefore
˘S . � #/ 2 Œ0�S which says by Lemma 5.2 that for PB -a.e. .!; t/,
˘S . � #/.!; t/ is a linear combination of the ei .!; t/. But the column vec-
tors of ˘S are orthogonal to e1; : : : ; ed for each fixed .!; t/, and so we obtain
˘S . � #/ D 0 PB -a.e., which completes the proof. ut
With the existence of the projection on the predictable range established, it remains
to prove Lemmas 4.3 and 4.4, which we recall for convenience.

Lemma 4.3. Let .#n/ be a sequence in L.S/ such that #n � S ! # � S in S.P /.
Then there exists a subsequence .nk/ such that ˘S#nk ! ˘S# PB -a.e.

Proof. As in the proof of Theorem V.4 in [20], we can switch to a probabil-
ity measure Q � P such that dQ

dP
is bounded, S � S0 D MQ C AQ is in

M2;d .Q/ ˚ A1;d .Q/ and #n � S ! # � S in M2;d .Q/˚ A1;d .Q/ along a sub-
sequence, again indexed by n. Since #n � S ! # � S in M2;1.Q/˚ A1;1.Q/, we
obtain by using (4.1) with BQ D B that

EQ

�Z 1

0

.#ns � #s/> OcQs .#ns � #s/dBs C
Z 1

0

ˇ
ˇ.#ns � #s/>aQs

ˇ
ˇdBs

�
�! 0

as n!1, which implies that there exists a subsequence, again indexed by n, such
that

.#n � #/> OcQ.#n � #/! 0 and j.#n � #/>aQj ! 0 Q˝ B-a.e. (5.5)

Since PB � Q˝ B , Lemma 5.1 gives

Œ0�S D ˚' 2 L0
�
˝;P IRd � ˇ̌ OcQ' D 0 and .aQ/>' D 0 Q˝ B-a.e.

�
:

Let e1; : : : ; ed be predictable processes from Lemma 5.2 which satisfy properties
(1)–(4) for Œ0�S and set
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U D
n
 2 L0

�
˝;P IRd �

ˇ̌
ˇ  >' D 0 Q˝ B-a.e. for all ' 2 Œ0�S

o
;

V D
n
 2 L0

�
˝;P IRd �

ˇ
ˇ
ˇ  >' D 0 Q˝ B-a.e. for all ' 2 Œ0�MQ

o

so that loosely speaking, U? D Œ0�S and V ? D Œ0�M
Q
: Then Œ0�M

Q \ U and
Œ0�A

Q \ V satisfy the assumptions of Lemma 5.2 and thus there exist predictable
processes u1; : : : ; ud and v1; : : : ; vd with the properties (1)–(4) for Œ0�M

Q \ U
and Œ0�A

Q \ V , respectively. By the definition of U and V we also obtain, using
Œ0�S D Œ0�MQ \ Œ0�AQ , that

.ej />uk D .ej />vk D .uj />vk D 0 Q˝ B-a.e. for j; k D 1; : : : ; d

and

Œ0�M
Q D

(
dX

jD1
hj ej C

dX

kD1
hdCkuk

ˇ
ˇ
ˇ
ˇ
ˇ
h1; : : : ; h2d real-valued predictable

)

;

Œ0�A
Q D

(
dX

jD1
hj ej C

dX

kD1
hdCkvk

ˇ̌
ˇ
ˇ
ˇ
h1; : : : ; h2d real-valued predictable

)

up to Q˝ B-a.e. equality. Therefore˘MQ
and˘AQ can be written as

˘MQ D 1d	d �
dX

jD1
ej .ej /> �

dX

kD1
uk.uk/>;

˘AQ D 1d	d �
dX

jD1
ej .ej /> �

dX

kD1
vk.vk/>;

and we have

 
dX

kD1
vk.vk/>

!

˘AQ#n D
 

dX

kD1
vk.vk/>

!

#n; (5.6)

all up to Q ˝ B-a.e. equality. Since ˘MQ

.#n � #/ and ˘AQ .#n � #/ are by
Lemma 5.1Q˝B-a.e. valued in Im. OcQ/ and Im

�
.aQ/>

�
, respectively, (5.5) yields

˘MQ
#n ! ˘MQ

# and ˘AQ#n ! ˘AQ# Q ˝ B-a.e. From the latter conver-
gence and (5.6), it follows that

 
dX

kD1
vk.vk/>

!

#n !
 

dX

kD1
vk.vk/>

!

# Q˝B-a.e.,
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and since Q˝B � PB and

˘S D ˘MQ C
dX

kD1
vk.vk/> Q˝ B-a.e.;

we obtain that ˘S#n ! ˘S# PB -a.e. by combining everything. ut
The only result whose proof is now still open is Lemma 4.4. This provides the
general (and fairly abstract) version of the counterexample in Sect. 3, as well as the
necessity part for the equivalence in Theorem 4.5.

Lemma 4.4. Let C W ˝ ! 2R
d n f;g be a predictable correspondence with closed

values and such that the projection on the predictable range of S is not closed, i.e.

eF D ˚.!; t/ 2 ˝ ˇ̌
˘S .!; t/C.!; t/ is not closed

�

has outer PB -measure > 0. Then there exist # 2 L.S/ and a sequence . n/ of
C -valued integrands such that  n � S ! # � S in S.P /, but there is no C -valued
integrand such that  �S D # �S . Equivalently, there exists a sequence

�
Œ n�

�
in

ŒC�S such that Œ n�
L.S/! Œ#� but Œ#� … ŒC�S , i.e. ŒC�S is not closed in L.S/.

Proof. The basic idea is to construct a # 2 L.S/ which is valued in ˘SC n˘SC

on some F 2 P with F � eF and PB .F / > 0, and in C on F c . Then there exists no
C -valued integrand  2 Œ#� by the definition of ˘S since ˘S# … ˘SC on F ; but
one can construct a sequence . n/ of C -valued integrands with ˘S n ! ˘S 

pointwise since ˘S# 2 ˘SC . However, this is technically a bit more involved for
several reasons: While C , ˘SC and ˘SC are all predictable, .˘SC/c need not
be; so eF need not be predictable, and one cannot use Proposition 2.3 to obtain a
predictable selector. In addition,˘SC n˘SC need not be closed-valued.

We first argue that eF is PPB -measurable. Let B.0; n/ be a closed ball of ra-
dius n in R

d . Then ˘S
�
C \ B.0; n/� is compact-valued as C is closed-valued.

Since C is predictable and ˘S .!; t/x with x 2 R
d is a Carathéodory function,

˘SC is predictable by Proposition 2.7. By the same argument,

˘S
�
C \ B.0; n/� D ˘S

�
C \ B.0; n/�

is predictable since C \B.0; n/ is, and then so is˘SC D
1S
nD1

˘S
�
C \B.0; n/� as

a countable union of predictable correspondences; see Proposition 2.8. Then Propo-
sition 2.6 implies that ˘SC and ˘S

�
C \ B.0; n/� have predictable graph; hence

so does˘SC . Therefore gr.˘SC/\ �gr.˘SC/
�c

is P ˝ B.Rd /-measurable, and
so by Proposition 2.5,

eF D ˚.!; t/ 2 ˝ ˇ̌
˘S .!; t/C.!; t/ is not closed

�

D ˚.!; t/ 2 ˝ ˇ
ˇ˘S .!; t/C.!; t/ n˘S .!; t/C.!; t/ ¤ ;�

D �˝
�

gr.˘SC/\ �gr.˘SC/
�c�
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is indeed PPB -measurable. Thus there exists a predictable set F � eF with
PB .F / > 0.

Now fix some C -valued integrand e 2 L.S/ and define the correspondence
C 0 by

C 0.!; t/ D
(
˘S .!; t/C.!; t/ n˘S .!; t/C.!; t/ for .!; t/ 2 F;
e .!; t/ else:

Then C 0 has non-empty values and predictable graph and therefore admits a
PB -a.e. predictable selector # by Proposition 2.4. By possibly subtracting a pre-
dictable PB -nullset from F , we can without loss of generality assume that #
takes values in C 0. Moreover, the predictable sets Fn WD F \ fj#j � ng in-
crease to F and so we can, by shrinking F to some Fn if necessary, assume
that # is uniformly bounded in .!; t/ on F . Let f'm j m 2 Ng be a Castaing
representation of C as in Proposition 2.3. Then ˘SC D f˘S'm j m 2 Ng,
and because # 2 ˘SC , we can find for each n 2 N a predictable process  n

such that ˘S .!; t/ n.!; t/ 2 #.!; t/ C B.0; 1
n
/ on F and  n D e on F c .

Note that on F , we have # 2 ˘SC � ˘S
R
d and therefore ˘S# D # ; so

˘S# D 1F # C1F c˘
Se and this shows that˘S n ! ˘S# uniformly in .!; t/

by construction. Since ˘S# 2 L.S/ because # is bounded on F , we thus first get
˘S n 2 L.S/, hence  n 2 L.S/, and then also that  n � S ! # � S in S.P / by
dominated convergence. But now f˘S#g \˘SC D ; on F shows by Lemma 5.3
that there exists no C -valued integrand  2 Œ#� and therefore Œ#� … ŒC�S . This ends
the proof. ut

6 Related Work

We have already explained how our results generalise most of the existing literature
on optimisation problems under constraints. In this section, we discuss the relation
to the work of Karatzas and Kardaras [16].

We start by introducing the terminology of [16]. For a given S with triplet
.b; c; F /, the linear subspace of null investments N is given by the predictable
correspondence

N.!; t/ WD ˚
z 2 R

d
ˇ
ˇ z>c.!; t/ D 0; z>b.!; t/ D 0

and F.!; t/.fx j z>x ¤ 0g/ D 0�

(see Definition 3.6 in [16]). Note that we useF instead of � and that ourB is slightly
different than in [16]. But this does not affect the definition of N. As in Definition
3.7 in [16], a correspondence C W ˝ ! 2R

d

is said to impose predictable closed
convex constraints if:
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(0) N.!; t/ � C.!; t/ for all .!; t/ 2 ˝
(1) C.!; t/ is a closed and convex set for all .!; t/ 2 ˝
(2) C is predictable

To avoid confusion, we call constraints with (0)–(2) KK-constraints in the sequel.
In the comment following their Theorem 4.4 on p. 467 in [16], Karatzas and

Kardaras (KK) remark that C � S is closed in S.P / if C describes KK-constraints.
For comparison, our Theorem 4.5 starts with C which is predictable and has closed
values, and shows that C � S is then closed in S.P / if and only if ˘SC is closed
PB -a.e. So we do not need convexity of C , and our condition on C and S is not
only sufficient, but also necessary.

Before explaining the connections in more detail, we make the simple but impor-
tant observation that

(0) plus (1) imply that C CN D C (for all .!; t/ 2 ˝). (6.1)

Indeed, each N.!; t/ is a linear subspace, hence contains 0, and so C � C C N.
Conversely, 1

"
z 2 N � C for every z 2 N and " > 0 due to (0); so for every c 2 C ,

.1 � "/c C z 2 C by convexity and hence c C z D lim
"&0

.1 � "/c C z is in C by

closedness, giving C CN � C .
As a matter of fact, KK say, but do not explicitly prove, that C � S is closed in

S.P /. However, the clear hint they give suggests the following reasoning. Let .#n/
be a sequence in C such that .#n � S/ ! X in S.P /. By the proof of Theorem V.4
in [20], there exist e#n 2 Œ#n� and # 2 L.S/ such that # � S D X and e#n ! #

PB -a.e. From the description of N in Section 3.3 in [16], e#n 2 Œ#n� translates into
e#n � #n 2 N PB -a.e. ore#n 2 #n CN PB -a.e. Because each #n has values in C ,
(6.1) thus shows that eache#n can be chosen to be C -valued, and by the closedness
of C , the same is then true for the limit # of .e#n/. Hence we are done.

In order to relate the KK result to our work, we now observe that

(0) plus (1) imply that˘SC is closed PB -a.e.

To see this, we start with the fact that the null investments N and Œ0�S are linked by

Œ0�S D f' j ' is R
d -valued predictable with ' 2 N PB -a.e.gI (6.2)

see Sect. 3.3 in [16]. Recalling that ˘S is the projection on the orthogonal com-
plement of Œ0�S , we see from (6.2) that the column vectors of ˘S are PB -a.e. a
generating system of N? so that the projection of # 2 L.S/ on the predictable
range of S can be alternatively defined PB -a.e. as a predictable selector of the
closed-valued predictable correspondence f# CNg \ N? or PB -a.e. as the point-
wise projection ˘N.!;t/#.!; t/ in R

d of #.!; t/ on N.!; t/, which is always a
predictable process. This yields ˘SC D fC C Ng \ N? PB -a.e.; but by (6.1),
C CN D C due to (0) and (1), and so ˘SC is PB -a.e. closed like C and N?.
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In the KK notation, we could reformulate our Theorem 4.5 as saying that for
a predictable and closed-valued C , the space C � S is closed in S.P / if and only
if C C N is closed PB -a.e. This is easily seen from the argument above showing
that ˘SC D fC C Ng \ N? PB -a.e. If C is also convex-valued, (0) is a simple
and intuitive sufficient condition; it seems however more difficult to find an elegant
formulation without convexity.

The difference between our constraints and the KK formulation in [16] is as
follows. We fix a set C of constraints and demand that the strategies should lie in C
pointwise, so that #.!; t/ 2 C.!; t/ for all .!; t/. KK in contrast only stipulate that
#.!; t/ 2 C.!; t/CN.!; t/ or, equivalently, that Œ#� 2 ŒC�. At the level of wealth
(which is as usual in mathematical finance modelled by the stochastic integral # �S ),
this makes no difference since all N-valued processes have integral zero. But for
practical checking and risk management, it is much simpler if one can just look at
the strategy # and tick off pointwise whether or not it lies in C . If S has complicated
redundancy properties, it may be quite difficult to see whether one can bring # into
C by adding something from N. Of course, when discussing the closedness of the
space of integrals # � S , we face the same level of difficulty when we have to check
whether ˘SC is closed PB -a.e. But for actually working with given strategies, we
believe that our formulation of constraints is more natural and simpler to handle.
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On Martingales with Given Marginals
and the Scaling Property

David Baker and Marc Yor

Abstract In this short note, we draw the reader’s attention to a number of construc-
tions of martingales with given marginals.

Key words: Martingales � Brownian scaling �Marginal distributions

(a) In recent years, a number of papers have been devoted to the study of the follow-
ing martingale-marginal problems (MMP): let � denote a probability measure
on R which satisfies:

Z 1

1
jxjd�.x/ <1; and

Z 1

�1
x d�.x/ D 0: (1)

The MMP is to find a martingale .Mt ; t � 0/ such that:

M1 � � (2)

and which enjoys the Brownian scaling property:

8c 2 R; .Mc2t ; t � 0/ .law/D .cMt ; t � 0/: (3)

(b) Of course, this MMP is a particular case of the more general problem of finding
a martingale .Mt / with given marginals .�t /t�0. This problem has been solved,
at least in theoretical terms, by Kellerer [5] who proved (following previous im-
portant studies by Strassen and Doob) that a necessary and sufficient condition
on the family .�t /t�0 for the existence ofM is that .�t /t�0 be increasing in the
convex order.
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Recently, Lowther [6] has offered a uniqueness result for the Kellerer
framework. He achieves uniqueness by adding the condition that the marginals
.�t / be weakly continuous and by restricting the martingales used for fitting to
ones which are almost continuous diffusions.

The monograph Peacocks and associated martingales [4] is entirely devoted
to explicit constructions of .Mt / for given .�t /.

(c) However, let us come back to the particular MMP (2)–(3), which although sim-
pler than the general problem, is still of interest, and has the merit of having
only one parameter �, instead of the family .�t /.

For a given �, we denote by M
;s, the set consisting of (the laws of) martin-
gales which satisfy (2)–(3).

In part B of [3], when � admits a second moment, a Skorokhod embed-
ding construction provides a purely discontinuous element of M
;s. A differ-
ent Skorokhod embedding based on the Azéma–Yor algorithm is provided in
Madan–Yor [7] and studied in detail in part A of [3], for measures � such that:

D
.a/ � a

 
.a/
; a � 0; is increasing

where  
 denotes the Hardy Littlewood function associated to �:

 
.a/ D 1

�.Œa;1//
Z

Œa;1Œ

xd�.x/ � EŒM1jM1 � a�:

(d) Given that the constructions made in [3] only generate purely discontinuous
martingales, it is natural to study M.c/


;s the set of continuous martingales, with
the Brownian scaling property, such that: M1 � �. A natural question is: for
which probability laws � which satisfy (1), is it true that Mc


;s is non-empty?

When this is the case, we say that � is continuous(ly) admissible and we write:
� (or X ) is CA (or: belongs to CA).

Here are some remarks, and our best knowledge so far about the probabilities �
which belong to CA:

(i) if � � X is CA and Y is integrable and is independent from X, then XY is CA
(Proof: If .Mt / belongs to Mc

X;s , then (YMt ; t � 0), with Y independent from
.Mt /, also belongs to Mc

XY;s).
Thus, if � is CA, then all its “multiples” that is, the laws � of variables of the
form: YX , with Y independent from X , and X � �, are CA.

(ii) Albin [1] has shown that if g is the standard gaussian, then M.c/
g;s contains

other elements than Brownian motion. Baker, Donati-Martin, Yor [2] develop
Albin’s method further.

(iii) Many elements ofM.c/

;s are constructed in Madan–Yor [7] and Chapter 6 of the

Monograph. In particular the “classical” symmetric laws i.e.: symmetrized beta
(on [�1, 1]), symmetrized gamma, symmetrized powers of gamma, are CA!
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A Sequence of Albin Type Continuous
Martingales with Brownian Marginals
and Scaling

David Baker, Catherine Donati-Martin, and Marc Yor

Dedicated to Lester Dubins (1921–2010) to whom the third
author owes a lot.

Abstract Closely inspired by Albin’s method which relies ultimately on the dupli-
cation formula for the Gamma function, we exploit Gauss’ multiplication formula
to construct a sequence of continuous martingales with Brownian marginals and
scaling.

Key words: Martingales � Brownian marginals

1 Motivation and Main Results

(1.1) Knowing the law of a “real world" random phenomena, i.e. random process,
.Xt ; t � 0/ is often extremely difficult and in most instances, one avails only of the
knowledge of the 1-dimensional marginals of .Xt ; t � 0/. However, there may be
many different processes with the same given 1-dimensional marginals.

In the present paper, we make explicit a sequence of continuous martingales
.Mm.t/; t � 0/ indexed by m 2 N such that for each m:

(i) .Mm.t/; t � 0/ enjoys the Brownian scaling property: for any c > 0,

.Mm.c
2t/; t � 0/ .law/D .cMm.t/; t � 0/

(ii) Mm.1/ is standard Gaussian.
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Note that, combining (i) and (ii), we get, for any t > 0

Mm.t/
.law/D Bt ;

where .Bt ; t � 0/ is a Brownian motion, i.e. Mm admits the same 1-dimensional
marginals as Brownian motion.

(1.2) Our main result is the following extension of Albin’s construction [1] from
m D 1 to any integerm.

Theorem 1. Letm 2 N. Then, there exists a continuous martingale .Mm.t/; t � 0/
which enjoys (i) and (ii) and is defined as follows:

Mm.t/ D X .1/t : : : X
.mC1/
t Zm (1)

where .X .i/t ; t � 0/, for i D 1; : : : ; mC 1, are independent copies of the solution of
the SDE

dXt D 1

mC 1
dBt

Xmt
I X0 D 0 (2)

and, furthermore, Zm is independent from .X .1/; : : : ; X .mC1// and

Zm
.law/D .mC 1/1=2

0

@
m�1Y

jD0
ˇ

�
1C 2j
2.mC 1/ ;

m � j
mC 1

	
1

A

1
2.mC1/

(3)

where ˇ.a; b/ denotes a beta variable with parameter .a; b/ with density

� .aC b/
� .a/� .b/

xa�1.1 � x/b�11Œ0;1�.x/

and the beta variables on the right-hand side of (3) are independent.

Remark. For m D 1, Z1 D
p
2
�
ˇ.1

4
; 1
2
/
�1=4

and we recover the distribution of
Y WD Z1 given by (2) in [1].

(1.3) For the convenience of the reader, we also recall that, if one drops the conti-
nuity assumption when searching for martingales .M.t/I t � 0/ satisfying (i) and
(ii), then, the Madan-Yor construction [5] based on the “Azéma-Yor under scaling"
method provides such a martingale.

Precisely, starting from a Brownian motion .Bu; u � 0/ and denoting Su D
sups�u Bs , introduce the family of stopping times

�t D inffu; Su �  t .Bu/g

where  t denotes the Hardy-Littlewood function associated with the centered
Gaussian distribution �t with variance t , i.e.
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 t .x/ D 1

�t .Œx;1Œ /
Z 1

x

y exp

�
�y

2

2t

	
dyp
2�t

D pt exp

�
�x

2

2t

	
=N .x=

p
t /

where N .a/ D R1
a

exp.�y2
2
/dy. Then, Mt D B�t is a martingale with Brownian

marginals.
Another solution has been given by Hamza and Klebaner [4].

(1.4) In Sect. 3, we prove that Theorem 1 is actually the best we can do in our
generalisation of Albin’s construction: we cannot generalize (1) by allowing the
X .i/’s to be solution of (2) associated to differentmi ’s.

Finally, we study the asymptotic behavior of X .1/t : : : X
.mC1/
t as m�!1.

2 Proof of Theorem 1

Step 1: For m 2 R and c 2 R, we consider the stochastic equation:

dXt D c dBt
Xmt

; X0 D 0:

This equation has a unique weak solution which can be defined as a time-changed
Brownian motion

.Xt /
.law/D W.˛.�1/.t//

whereW is a Brownian motion starting from 0 and ˛.�1/ is the (continuous) inverse
of the increasing process

˛.t/ D 1

c2

Z t

0

W 2m
u du:

We look for k 2 N and c such that .X2kt ; t � 0/ is a squared Bessel process of
some dimension d . It turns out, by application of Itô’s formula, that we need to take
k D mC 1 and c D 1

mC1 . Thus, we find that .X2.mC1/
t ; t � 0/ is a squared Bessel

process with dimension d D k.2k � 1/c2 D 2mC1
mC1 .

Note that the law of a BESQ(d ) process at time 1 is well known to be that of
2
d=2, where 
a denotes a gamma variable with parameter a. Thus, we have:

jX1j .law/D
�
2
 2mC1

2.mC1/

� 1
2.mC1/

(4)

Step 2: We now discuss the scaling property of the solution of (2). From the scaling
property of Brownian motion, it is easily shown that, for any � > 0, we get:
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.X�t ; t � 0/ .law/D .�˛Xt ; t � 0/

with ˛ D 1
2.mC1/ , that is, the process .Xt ; t � 0/ enjoys the scaling property of

order 1
2.mC1/ .

Step 3: Consequently, if we multiply m C 1 independent copies of the process
.Xt ; t � 0/ solution of (2), we get a process

Yt D X .1/t : : : X
.mC1/
t

which is a martingale and has the scaling property of order 1
2

.

Step 4: Finally, it suffices to find a random variableZm independent of the processes
X
.1/
t ; : : : ; X

.mC1/
t and which satisfies:

N
.law/D X

.1/
1 : : : X

.mC1/
1 Zm (5)

where N denotes a standard Gaussian variable. Note that the distribution of any of
the X .i/1 ’s is symmetric. We shall take Zm � 0; thus, the distribution ofZm shall be
determined by its Mellin transform M.s/ D E.Zsm/. From (5), M.s/ satisfies:

EŒ.2
1=2/
s=2� D

�
E

h
.2
d=2/

s=2.mC1/
i�mC1

M.s/

with d D 2mC1
mC1 , that is:

2s=2
� .1Cs

2
/

�
�
1
2

� D 2s=2
0

@
�
�
d
2
C s

2.mC1/
�

� .d
2
/

1

A

mC1

M.s/

that is precisely:

� .1Cs
2
/

�
�
1
2

� D
0

@
�
�
2mC1Cs
2.mC1/

�

� . 2mC1
2.mC1/ /

1

A

mC1

M.s/: (6)

Now, we recall Gauss multiplication formula ([2], see also [3])

� .kz/ D kkz�1=2

.2�/
k�1
2

k�1Y

jD0
�

�
zC j

k

	
(7)

which we apply with k D mC 1 and z D 1Cs
2.mC1/ . We then obtain, from (7)
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� .1Cs
2
/p

�
D .mC 1/s=2

.2�/m=2
1p
�

mY

jD0
�

�
1C s C 2j
2.mC 1/

	
(8)

D .mC 1/s=2
mY

jD0

0

@
�
�
1CsC2j
2.mC1/

�

�
�
1C2j
2.mC1/

�

1

A (9)

since the two sides of (8) are equal to 1 for s D 0. We now plug (9) into (6) and
obtain

.mC 1/s=2
mY

jD0

0

@
�
�
1CsC2j
2.mC1/

�

�
�
1C2j
2.mC1/

�

1

A D
0

@
�
�
2mC1Cs
2.mC1/

�

�
�
2mC1
2.mC1/

�

1

A

mC1

M.s/ (10)

We note that for j D m, the same term appears on both sides of (10), thus (10) may
be written as:

.mC 1/s=2
m�1Y

jD0

0

@
�
�
1CsC2j
2.mC1/

�

�
�
1C2j
2.mC1/

�

1

A D
0

@
�
�
2mC1Cs
2.mC1/

�

�
�
2mC1
2.mC1/

�

1

A

m

M.s/ (11)

In terms of independent gamma variables, the left-hand side of (11) equals:

.mC 1/s=2E

2

6
4

0

@
m�1Y

jD0


.j /
1C2j
2.mC1/

1

A

s
2.mC1/

3

7
5 (12)

whereas the right-hand side of (11) equals:

E

2

6
4

0

@
m�1Y

jD0


.j /
1C2m
2.mC1/

1

A

s
2.mC1/

3

7
5M.s/ (13)

where the 
 .j /aj denote independent gamma variables with respective parameters aj .
Now, from the beta-gamma algebra, we deduce, for any j � m � 1:



.j /
1C2j
2.mC1/

.law/D 

.j /
1C2m
2.mC1/

ˇ

�
1C 2j
2.mC 1/ ;

m � j
mC 1

	
:

Thus, we obtain, again by comparing (12) and (13):
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M.s/ D .mC 1/s=2 E

2

6
4

0

@
m�1Y

jD0
ˇ

�
1C 2j
2.mC 1/ ;

m � j
mC 1

	
1

A

s
2.mC1/

3

7
5

which entails:

EŒZsm� D .mC 1/s=2 E

2

6
4

0

@
m�1Y

jD0
ˇ

�
1C 2j
2.mC 1/ ;

m� j
mC 1

	
1

A

s
2.mC1/

3

7
5

that is, equivalently,

Zm
.law/D .mC 1/1=2

0

@
m�1Y

jD0
ˇ

�
1C 2j
2.mC 1/ ;

m � j
mC 1

	
1

A

1
2.mC1/

3 Some Remarks About Theorem 1

3.1 A Further Extension

We tried to extend Theorem 1 by taking a product of independent martingalesX .i/,
solution of (2) with differentmi ’s. Here are the details of our attempt. We are look-
ing for the existence of a variableZ such that the martingale

M.t/ D
0

@
p�1Y

jD0
X
.mj /
t

1

AZ

satisfies the properties i) and ii). Here p; .mj /0�j�p�1 are integers and X .mj / is
the solution of the EDS (2) associated to mj , the martingales being independent
for j varying. In order that M enjoys the Brownian scaling property, we need the
following relation

p�1X

jD0

1

mj C 1 D 1: (14)

Following the previous computations, see (6), the Mellin transform M.s/ of Z
should satisfy

�
�
1Cs
2

�

�
�
1
2

� D
0

@
p�1Y

jD0

�
�
2mjC1Cs
2.mjC1/

�

�
�
2mjC1
2.mjC1/

�

1

AM.s/: (15)

We recall (see (9)) the Gauss multiplication formula
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�
�
1Cs
2

�

p
�
D ps=2

p�1Y

jD0

0

@
�
�
1CsC2j
2p

�

�
�
1C2j
2p

�

1

A (16)

To find M.s/ from (15), (16), we give some probabilistic interpretation:

�
�
1CsC2j
2p

�

�
�
1C2j
2p

� D E

h


s=2p

.1C2j /=2p
i

whereas
�
�
2mjC1Cs
2.mjC1/

�

�
�
2mjC1
2.mjC1/

� D E

h


s=2.mjC1/
.1C2mj /=2.mjC1/

i
:

Thus, we would like to factorize



1=2p

.1C2j /=2p
.law/D 


1=2.mjC1/
.1C2mj /=2.mjC1/z

.j /
mj ;p

(17)

for some variable z.j /mj ;p to conclude that

Z D p1=2
p�1Y

jD0
z.j /mj ;p:

It remains to find under which condition the identity (17) may be fulfilled. We write


.1C2j /=2p
.law/D 


p=.mjC1/
.1C2mj /=2.mjC1/.z

.j /
mj ;p

/2p: (18)

Now, if 1C2j
2p

<
1C2mj
2.mjC1/ , we may apply the beta-gamma algebra to obtain


.1C2j /=2p
.law/D 
.1C2mj /=2.mjC1/ˇ

�
1C 2j
2p

;
1C 2mj
2.mj C 1/ �

1C 2j
2p

	

but in (18), we need to have on the right-hand side 

p=.mjC1/
.1C2mj /=2.mjC1/ instead of


.1C2mj /=2.mjC1/.
However, it is known that


a
.law/D 
ca
a;c

for some variable 
a;c independent of 
a for any c 2 .0; 1�. This follows from the
self-decomposable character of ln.
a/. Thus, we seem to need p

mjC1 � 1. But, this
condition is not compatible with (14) unless mj D m D p � 1.
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3.2 Asymptotic Study

We study the behavior of the product X .1/1 : : : X
.mC1/
1 , resp. Zm, appearing in the

right-hand side of the equality in law (5), when m�!1. Recall from (4) that

jX1j .law/D
�
2
 2mC1

2.mC1/

� 1
2.mC1/

:

We are thus led to consider the product

�
.p/

a;b;c
D
 
pY

iD1


.i/

a�b=p

!c=p

where in our set up of Theorem 1, p D mC 1, a D 1, b D c D 1=2.

E

h�
�
.p/

a;b;c

�si D
pY

iD1
E

��


.i/

a�b=p
�cs=p�

D
0

@
�
�
a � b

p
C cs

p

�

�
�
a � b

p

�

1

A

p

D exp

�
p

�
ln

�
�

�
aC cs � b

p

		
� ln

�
�

�
a � b

p

			�

�!
p!1 exp

�
� 0.a/
� .a/

cs

	
:

Thus, it follows that

�
.p/

a;b;c

P�!
p!1 exp

�
� 0.a/
� .a/

c

	
;

implying that

jX .1/1 : : : X
.mC1/
1 j P�!

m!1 exp.�
=2/ (19)

and

exp.�
=2/Zm .law/�!
m!1 jN j: (20)

where 
 D �� 0.1/ is the Euler constant.
We now look for a central limit theorem for �.p/

a;b;c
. We consider the limiting

distribution of
p
p

(
c

p

pX

iD1
ln
�


.i/

a�b=p
�
� c �

0.a/
� .a/

)

:
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E

 

exp

"

cs
p
p

(
1

p

pX

iD1
ln
�


.i/

a�b=p
�
� �

0.a/
� .a/

)#!

D E

"
pY

iD1

�


.i/

a�b=p
�cs=pp

#

exp

�
�cspp�

0.a/
� .a/

	

D E

��


.i/

a�b=p
�cs=pp�p

exp

�
�cspp�

0.a/
� .a/

	

D
0

@
�
�
a � b

p
C csp

p

�

�
�
a � b

p

�

1

A

p

exp

�
�cspp�

0.a/
� .a/

	

D exp

�
p

�
ln

�
�

�
a � b

p
C csp

p

		
� ln

�
�

�
a � b

p

			
� cspp�

0.a/
� .a/

�

D exp

�
c2s2

2
.ln.� //00.a/CO.m�1=2/

	

We thus obtain that

p
p

(
c

m

mX

iD1
ln.
 .i/

a�b=m/� c
� 0.a/
� .a/

)
.law/�! N.0; �2/ (21)

where N.0; �2/ denotes a centered Gaussian variable with variance:

�2 D c2.ln.� //00.a/ D c2
"
� 00.a/
� .a/

�
�
� 0.a/
� .a/

	2#

:

or, equivalently

�
�
.p/

a;b;c
exp

�
� 0.a/
� .a/

c

		p
p
.law/�!
p!1 exp.N.0; c2.ln.� //00.a///: (22)
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1 General Introduction

1.1 Our General Program

This work consists of two parts, Sects. 2 and 3 which both have the same purpose,
i.e.: to construct a large class of martingales .Mt ; t � 0/ which satisfy the two
additional properties:

(a) .Mt ; t � 0/ enjoys the Brownian scaling property:

8c > 0; .Mc2t ; t � 0/ (law)D .cMt ; t � 0/

(b) .Mt ; t � 0/ is (inhomogeneous) Markovian.

The paper by Madan and Yor [MY02] developed three quite different methods to
achieve this aim. In the following Sects. 2 and 3, we further develop two different
Skorokhod embedding methods for the same purpose. In the end, the family of laws
� � M1 which are reached in Sect. 2 is notably bigger than in [MY02], while the
method in Sect. 3 allows to reach any centered probability measure � (with finite
moment of order 1).

1.2 General Facts about Skorokhod Embeddings

For ease of the reader, we recall briefly the following facts:

� Consider a real valued, integrable and centered random variable X . Realizing a
Skorokhod embedding ofX into the Brownian motion B , consists in constructing
a stopping time � such that:

.Sk1/ B�
(law)D X

.Sk2/ .Bu^� ; u � 0/ is a uniformly integrable martingale.

There are many ways to realize such a Skorokhod embedding. J. Oblój [Obl04]
numbered twenty one methods scattered in the literature. These methods separate
(at least) in two kinds:

– The time � is a stopping time relative to the natural filtration of the Brownian
motion B;

– The time � is a stopping time relative to an enlargement of the natural
filtration of the Brownian motion, by addition of extra random variables, in-
dependent of B .

In the second case, the stopping time � is called a randomized stopping time. We
call the corresponding embedding a randomized Skorokhod embedding.
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� Suppose that, for every t � 0, there exists a stopping time �t satisfying (Sk1)
and (Sk2) with

p
t X replacing X . If the family of stopping times .�t ; t � 0/ is

a.s. increasing, then the process .B�t ; t � 0/ is a martingale and, for every fixed
t � 0 and for every c > 0,

B�
c2t

(law)D c
p
t X

(law)D c B�t ;

which, a priori, is a weaker property than the scaling property (a). Nevertheless,
the process .B�t; t � 0/ appears to be a good candidate to satisfy (a), (b) and

B�1
(law)D X .

� Section 2 consists in using the Azéma-Yor algorithm, which yields a Skorokhod
embedding of the first kind, whereas Sect. 3 hinges on a Skorokhod embedding
of the second kind, both in order to obtain martingales .B�t ; t � 0/ which satisfy
(a) and (b).

Of course at the beginning of each section, we shall give more details, per-
taining to the corresponding embedding, so that Sects. 2 and 3 may be read
independently.

1.3 Examples of Such Martingales

The most famous examples of martingales satisfying (a) and (b) are, without any
contest, Brownian motion .Bt ; t � 0/ and the Azéma martingale .�t WD sgn.Bt /p
t � gt ; t � 0

�
where gt WD supfs � t IBs D 0g.

The study of the latter martingale .�t ; t � 0/, originally discovered by Azéma
[Azé85], was then developed by Emery [Éme89, Éme90], Azéma-Yor [AY89],
Meyer [Mey89a]. In particular, M. Emery established that Azéma martingale enjoys
the Chaotic Representation Property (CRP). This discovery and subsequent studies
were quite spectacular because, until then, it was commonly believed that the only
two martingales which enjoy the CRP were Brownian motion and the compensated
Poisson process. In fact, it turns out that a number of other martingales enjoying the
CRP, together with (a) and (b), could be constructed, and were the subject of stud-
ies by P.A. Meyer [Mey89b], M. Emery [Éme96], M. Yor [Yor97, Chap. 15]. The
structure equation concept played quite an important role there. However, we shall
not go further into this topic, which lies outside the scope of the present paper.

1.4 Relations with Peacocks

Since X is an integrable and centered r.v., the process .
p
tX; t � 0/ is increas-

ing in the convex order (see [HPRY10]). We call it a peacock. It is known from
Kellerer [Kel72] that to any peacock .˘t ; t � 0/, one can associate a (Markovian)
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martingale .Mt ; t � 0/ such that, for any fixed t � 0, Mt
(law)D ˘t , i.e.: .Mt ; t � 0/

and .˘t ; t � 0/ have the same one-dimensional marginals. Given a peacock, it is
generally difficult to exhibit an associated martingale. However, in the particular
case ˘t D

p
tX which we consider here, the process .B�t ; t � 0/ presented above

provides us with an associated martingale.

1.5 A Warning

It may be tempting to think that the whole distribution of a martingale .Mt ; t � 0/
which satisfies (a) and (b) is determined by the law ofM1. This is quite far from be-
ing the case, as a number of recent papers shows; the interested reader may look
at Albin [Alb08] (see also in this volume Baker-Donati-Martin-Yor [BDMY10]
who develop Albin’s construction further), Oleszkiewicz [Ole08], Hamza-Klebaner
[HK07]. We thank David Baker (personal communication, 2009) and David Hobson
(personal communication, 2009) for pointing out, independently, these papers to us.

2 Construction via the Skorokhod Embedding of Azéma-Yor

2.1 Introduction

2.1.1 Program

The methodology developed in this section is AYUS (=Azéma-Yor Under Scaling),
following the terminology in [MY02]. Precisely, given a r.v. X with probability
law �, we shall use the Azéma-Yor embedding algorithm simultaneously for all
distributions �t indexed by t � 0 where:

8t � 0; �t �
p
tX: (1)

More precisely, if .Bt ; t � 0/ denotes a Brownian motion and .St WD sup
u�t

Bu;

t � 0/, we seek probability measures � such that the family of stopping times:

T
t WD inffu � 0ISu �  
t .Bu/g

where

 
t .x/ D
1

�t .Œx;C1Œ /
Z

Œx;C1Œ

y�t .dy/
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increases, or equivalently, the family of functions
�
 
t .x/ D

p
t 


�
xp
t

��

t�0
increases (pointwise in x). (Since � D �1, we write  
 for  
1). This program
was already started in Madan-Yor, who came up with the (easy to prove) necessary
and sufficient condition on �:

a 7�! D
.a/ WD a

 
.a/
is increasing on RC. (M �Y )

Our main contribution in this Sect. 2 is to look for nice, easy to verify, sufficient
conditions on � which ensure that .M �Y / is satisfied. Such a condition has been
given in [MY02] (Theorems 4 and 5). In the following Sect. 2:

– We discuss further this result of Theorem 4 by giving equivalent conditions for
it; this study has a strong likeness with (but differs from) Karamata’s represen-
tation theorem for slowly varying functions (see, e.g. Bingham–Goldie–Teugels
[BGT89, Chap. 1, Theorems 1.3.1 and 1.4.1])

– Moreover, we also find different sufficient conditions for .M �Y / to be satisfied.
With the help of either of these conditions, it turns out that many subprobabili-

ties � on RC satisfy .M�Y /; in particular, all beta and gamma laws satisfy .M�Y /.

2.1.2 A Forefather

A forefather of the present paper is Meziane–Yen–Yor [MYY09], where a martin-
gale .Mt ; t � 0/ which enjoys (a) and (b) and is distributed at time 1 as "

p
g with

" a Bernoulli r.v. and g an independent arcsine r.v. was constructed with the same
method. Thus, the martingale .Mt ; t � 0/ has the same one-dimensional marginals
as Azéma’s martingale .�t ; t � 0/ presented in Sect. 1.3 although the laws of M
and � differ. Likewise in [MY02], Madan and Yor construct a purely discontinuous
martingale .Nt ; t � 0/ which enjoys (a) and (b) and has the same one-dimensional
marginals as a Brownian motion .Bt ; t � 0/.

2.1.3 Plan

The remainder of this part is organized as follows: Sects. 2.2–2.4 deal with the case
of measures � with support in � � 1; 1�, 1 belonging to the support of �, while
Sect. 2.5 deals with a generic measure � whose support is R. More precisely:

� First, Sect. 2.2 consists in recalling the Azéma-Yor algorithm and the Madan-
Yor condition .M � Y /, and then presenting a number of important quantities
associated with �, whether or not .M � Y / is satisfied. Elementary relations
between these quantities are established, which will ease up our discussion
later on.

� Section 2.3: when .M �Y / is satisfied, it is clear that there exists a subprobability
�
 on �0; 1Œ such that:
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D
.a/ D �
. �0; aŒ /; a 2 Œ0; 1�: (2)

We obtain relations between quantities relative to � and �
.
In particular:

– In Sect. 2.3.4, we establish a one-to-one correspondence between two sets of
probabilities � and �.

– Section 2.3.5 consists in the study in the particular case of .M �Y / when:

a

 
.a/
D 1

Z

Z C1

0

.1� e�ax/�.dx/

for certain positive measures �, where Z D
Z C1

0

.1 � e�x/�.dx/ is the

normalizing constant which makes: D
.a/ D a

 
.a/
a distribution function

on Œ0; 1�.
– Section 2.3.6 gives another formulation of this correspondence.

� Section 2.4 consists in the presentation of a number of conditions .S0/�.S5/ and
subconditions .S 0

i / which suffice for the validity of .M �Y /.
� Section 2.5 tackles the case of a measure � whose support is R, and gives a

sufficient condition for the existence of a probability �
 which satisfies (2).
� Finally, in Sect. 2.6, many particular laws � are illustrated in the form of graphs.

We also give an example where .M�Y / is not satisfied, which, given the preceding
studies, seems to be rather the exception than the rule.

2.2 General Overview of this Method

2.2.1 The Azéma-Yor Algorithm for Skorokhod Embedding

We start by briefly recalling the Azéma-Yor algorithm for Skorokhod embedding.
Let � be a probability on R such that:

Z C1

�1
jxj�.dx/ <1 and

Z C1

�1
x�.dx/ D 0: (3)

We define its Hardy-Littlewood function  
 by:

 
.x/ D 1

�.Œx;C1Œ /
Z

Œx;C1Œ

y�.dy/:

In the case where there exists x � 0 such that �.Œx;C1Œ / D 0, we set ˛ D
inffx � 0I�.Œx;C1Œ / D 0g and  
.x/ D ˛ for x � ˛. Let .Bt ; t � 0/ be a
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standard Brownian motion. Azéma-Yor [AY79] introduced the stopping time:

T
 WD infft � 0ISt �  
.Bt /g

where St WD sup
s�t

Bs and showed:

Theorem 1 ([AY79]).
.1/ .Bt^T	 ; t � 0/ is a uniformly integrable martingale.

.2/ The law of BT	 is �: BT	 � �.

To prove Theorem 1, Azéma-Yor make use of the martingales:

�
'.St /.St � Bt /C

Z C1

St

dx'.x/; t � 0
	

for any ' 2 L1.RC; dx/. Rogers [Rog81] shows how to derive Theorem 1 from
excursion theory, while Jeulin-Yor [JY81] develop a number of results about the

laws of
Z T	

0

h.Bs/ds for a generic function h.

2.2.2 A Result of Madan-Yor

Madan-Yor [MY02] have exploited this construction to find martingales .Xt ; t � 0/
which satisfy (a) and (b). More precisely:

Proposition 1. Let X be an integrable and centered r.v. with law �. Let, for every
t � 0, eX t WD

p
tX . Denote by �t the law of eX t and by  t .D  
t / the Hardy-

Littlewood function associated to �t :

 t .x/ D 1

�t .Œx;C1Œ/
Z

Œx;C1Œ

y�t .dy/ D
p
t 1

�
xp
t

	

and by T .
/t the Azéma-Yor stopping time (which we shall also denote T t ):

T
.
/
t WD inffu � 0ISu �  t .Bu/g (4)

(Theorem 1 asserts that B
T
.	/
t
� �t ). We assume furthermore:

t 7�! T
.
/
t is a.s. increasing (I)
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Then:

.1/ The process
�
X
.
/
t WD B

T
.	/
t
; t � 0

�
is a martingale, and an (inhomogeneous)

Markov process.

.2/ The process
�
X
.
/
t ; t � 0

�
enjoys the Brownian scaling property, i.e for every

c > 0: �
X
.
/

c2t
; t � 0

�
(law)D

�
cX

.
/
t ; t � 0

�

In particular,
�
X
.
/
t WD B

T
.	/
t
; t � 0

�
is a martingale associated to the peacock

.
p
tX; t � 0/ (see Introduction).

Proof (Proof of Proposition 1). Point .1/ is clear. See in particular [MY02] where
the infinitesimal generator of .X .
/t ; t � 0/ is computed. It is therefore sufficient to
prove Point .2/. Let c > 0 be fixed.

.i/ From the scaling property of Brownian motion:

.Sc2t ; Bc2t ; t � 0/ (law)D .cSt ; cBt ; t � 0/ ;

and the definition (4) of T t , we deduce that:

�
BT t ; t � 0

� (law)D
�

cBT
 
.c/
t

; t � 0
	

(5)

with  .c/t .x/ WD 1

c
 t .cx/.

.ii/ An elementary computation yields:

 t .x/ D
p
t 

�
xp
t

	
(6)

with  WD  1 D  
. We obtain from (6) that:

 
.c/

c2t
.x/ D 1

c
 c2t .cx/ D

p
t 

�
xp
t

	
D  t .x/: (7)

Finally, gathering .i/ and .ii/, it holds:

�
X
.
/

c2t
WD BT 

c2t
; t � 0

�
(law)D

�
cBT

 
.c/

c2t

; t � 0
	

(from (5))

(law)D
�
cBT t D cX .
/t ; t � 0

�
(from (7)):

ut
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Remark 1 (Due to P. Vallois). It is easy to prove (see [AY79, Proposition 3.6]) that,
for every x � 0:

P
�
ST	 � x

� D exp

 

�
Z x

0

dy

y �  �1

 .y/

!

where �1

 is the right-continuous inverse of 
. Replacing� by�t in this formula,

and using  �1

t
.y/ D pt �1




�
yp
t

	
, we obtain:

P
�
ST	t � x

� D exp

 

�
Z x

0

dy

y �  �1

t
.y/

!

D exp

0

@�
Z x

0

dy

y �pt �1



�
yp
t

�

1

A

D exp

 

�
Z x

p

t

0

du

u �  �1

 .u/

!

:

Thus, for every x � 0, the function t 7�! P
�
ST	t � x

�
is increasing and, con-

sequently, even without the .M �Y / hypothesis (see Lemma 1 below), the process
.S
T
.	/
t

; t � 0/ is stochastically increasing. Note that, under .M �Y /, this process is

a.s. increasing, which of course implies that it is stochastically increasing.

2.2.3 Examples

In the paper [MYY09] which is a forefather of the present paper, the following
examples were studied in details:

.i/ The dam-drawdown example:

�t .dx/ D 1p
t

exp

�
� 1p

t
.x Cpt/

	
1Œ�p

t ;C1Œ.x/dx

which yields to the stopping time Tt WD inffu � 0ISu�Bu D
p
tg. Recall that

from Lévy’s theorem, .Su � Bu; u � 0/ is a reflected Brownian motion.
.ii/ The “BES(3)-Pitman” example:

�t .dx/ D 1

2t
1Œ�p

t;
p
t�.x/dx

which corresponds to the stopping time Tt WD inffu � 0I 2Su � Bu D
p
tg.

Recall that from Pitman’s Theorem, .2Su�Bu; u � 0/ is distributed as a Bessel
process of dimension 3 started from 0.
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.iii/ The Azéma-Yor “fan”, which is a generalization of the two previous examples:

�.˛/.dx/ D ˛p
t

�
˛ � .1� ˛/xp

t

	 2˛�1
1�˛

1h�p
t ;
˛

p

t
1�˛

i.x/dx; .0 < ˛ < 1/

which yields to the stopping time T .˛/t WD inffu � 0ISu D ˛.Bu C
p
t/g.

Example .i/ is obtained by letting ˛ ! 1�.

2.2.4 The .M �Y / Condition

Proposition 1 highlights the importance of condition .I / (see Proposition 1 above)
for our search of martingales satisfying conditions (a) and (b). We now wish to
be able to read “directly” from the measure � whether .I / is satisfied or not. The
answer to this question is presented in the following Lemma:

Lemma 1 ([MY02], Lemma 3). Let X � � satisfy (3). We define:

D
.x/ WD x�.x/
R
Œx;C1Œ

y�.dy/
with �.x/ WD P.X � x/ D

Z

Œx;C1Œ

�.dy/:

Then .I / is satisfied if and only if :

x 7�! D
.x/ is increasing on RC. (M �Y )

Proof (Proof of Lemma 1). Condition .I / is equivalent to the increase, for any given

x 2 R, of the function t 7�!  t .x/. From (6),  t .x/ D
p
t 

�
xp
t

	
, hence, if

x � 0, since  is a positive and increasing function, t 7�!  t .x/ is increasing. For

x > 0, we set at D xp
t

; thus:

 t .x/ D
p
t 

�
xp
t

	
D x .at /

at
;

and, t 7�! at being a decreasing function of t , condition .I / is equivalent to the

increase of the function a 7�! a

 .a/
D D
.a/. ut

A remarkable feature of this result is that .I / only depends on the restriction
of � to RC. This is inherited from the asymmetric character of the Azéma-Yor
construction in which RC, via .Su; u � 0/ plays a special role.
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Now, let e� be a probability on R satisfying (3). Since our aim is to obtain
conditions equivalent to .M �Y /, i.e.:

x 7�! De
.x/ WD
x
R
Œx;C1Œ

e�.dy/
R
Œx;C1Œ

ye�.dy/
increases on RC, (8)

it suffices to study De
 on RC. Clearly, this function (on RC) depends only on
the restriction of e� to RC, which we denote by �. Observe that .M �Y / remains
unchanged if we replace � by �� where � is a positive constant.

Besides, we shall restrict our study to the case wheree� is carried by ��1; k�, i.e.
where � D e�jRC

is a subprobability on Œ0; k�. To simplify further, but without loss
of generality, we shall take k D 1 and assume that 1 belongs to the support of �. In
Sect. 2.5, we shall study briefly the case where � is a measure whose support is RC.

2.2.5 Notation

In this section, we present some notation which shall be in force throughout the
remainder of the paper. Let � be a positive measure on Œ0; 1�, with finite total mass,
and whose support contains 1. We denote by � and �, respectively its tail and its
double tail functions:

�.x/ D
Z

Œx;1�

�.dy/ D �.Œx; 1�/ and �.x/ D
Z 1

x

�.y/dy:

Note that � is left-continuous, � is continuous, and � and � are both decreasing
functions. Furthermore, it is not difficult to see that a function � W Œ0; 1� �! RC
is the double tail function of a positive finite measure on Œ0; 1� if and only if �
is a convex function on Œ0; 1�, left-differentiable at 1, right-differentiable at 0, and
satisfying �.1/ D 0.

We also define the tails ratio u
 associated to �:

u
.x/ D �.x/=�.x/; x 2 Œ0; 1Œ:

Here is now a lemma of general interest which bears upon positive measures:

Lemma 2 ([Pie80] or [RY99], Chap. VI Lemma 5.1).

.1/ For every x 2 Œ0; 1Œ:

�.x/ D �.0/u
.x/ exp

�
�
Z x

0

u
.y/dy

	
(9)

and u
 is left-continuous.
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.2/ Let v W Œ0; 1Œ�! RC be a left-continuous function such that, for all x 2 Œ0; 1Œ:

�.x/ D �.0/v.x/ exp

�
�
Z x

0

v.y/dy

	

Then, v D u
.

Proof (Proof of Lemma 2).

.1/ We first prove Point .1/. For x 2 Œ0; 1Œ, we have:

�
Z x

0

�.y/

�.y/
dy D

Z x

0

d�.y/

�.y/
D �log�.y/

�x
0
D log�.x/ � log�.0/;

hence,

�.0/u
.x/ exp

�
�
Z x

0

u
.y/dy

	
D �.0/�.x/

�.x/
exp

 

log
�.x/

�.0/

!

D �.x/:

.2/ We now prove Point .2/. Let U
.x/ WD
R x
0

u
.y/dy and V.x/ WD R x
0
v.y/dy.

Relation (9) implies:

u
.x/ exp
��U
.x/

� D v.x/ exp .�V.x// ; i.e.
�
exp

��U
.x/
��0 D .exp .�V.x///0 ; hence

exp
��U
.x/

� D exp .�V.x//C c:

(The above derivatives actually denote left-derivatives). Now, since, U
.0/ D
V.0/ D 0, we obtain c D 0 and U
 D V . Then, differentiating, and using the
fact that u
 and v are left-continuous, we obtain: u
 D v. ut
Remark 2. Since � is a decreasing function, we see, by differentiating (9), that the
function u
 satisfies:

– If � is differentiable, then so is u
 and u0

 � u2
,

– More generally, the distribution on �0; 1Œ: u2
 � u0

, is a positive measure.

Note that if �.dx/ D h.x/dx, then:

u2
 � u0

 D

�
�=�

�2 �
 
�2 � h�
�
2

!

D h=� � 0:

By (9), we have, for any x 2 Œ0; 1Œ,

�.x/ D �.0/ exp

�
�
Z x

0

u
.y/dy

	
:
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Since �.0/ D
Z

Œ0;1�

y�.dy/ > 0 and �.1/ D 0, we obtain:

8x < 1;
Z x

0

u
.y/dy <1 and
Z 1�

u
.y/dy D C1 (10)

As in Sect. 2.2.1, we now define the Hardy-Littlewood function  
 associated to �:

8
<

:

 
.a/ D 1

�.Œa; 1�/

Z

Œa;1�

y�.dy/; a 2 Œ0; 1Œ
 
.1/ D 1

and the Madan-Yor function associated to �:

D
.a/ D a

 
.a/
; a 2 Œ0; 1�:

In particular,D
.1/ D 1 andD
.0/ D 0. Note that, integrating by parts:

�.a/ D
Z 1

a

.y � a/�.dy/ D �.a/ � 
.a/� a
�
;

hence, u
.a/ D 1

 
.a/ � a and, consequently:

D
.a/ D a

 
.a/ � aC a D
a

�
1=u
.a/

�C a D
au
.a/

au
.a/C 1 : (11)

We sum up all the previous notation in a table, for future references:

�.dx/ A finite positive measure on Œ0; 1�

whose support contains 1.

�.a/ D �.Œa; 1�/ Tail function associated to �

�.a/ D
Z 1

a

�.x/dx Double tail function associated to �

u�.a/ D �.a/=�.a/ D 1

 �.a/� a
Tails ratio function associated to �

 �.a/ D 1

�.a/

Z

Œa;1�

x�.dx/ Hardy-Littlewood function associated to �

D�.a/ D a

 �.a/
D au�.a/

au�.a/C 1
Madan-Yor function associated to �
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2.3 Some Conditions Which Are Equivalent to .M �Y /

2.3.1 A Condition Which Is Equivalent to .M �Y /

Let � denote a positive measure on Œ0; 1�, with finite total mass, and whose support
contains 1. We now study the condition .M �Y / in more details.

2.3.2 Elementary Properties of D�

.i/ From the obvious inequalities, for x 2 Œ0; 1�:

x�.x/ D x
Z

Œx;1�

�.dy/ �
Z

Œx;1�

y�.dy/ �
Z

Œx;1�

�.dy/ D �.x/

we deduce that  
 and D
 are left-continuous on �0; 1�, and for every
x 2 Œ0; 1�,

x �  
.x/ � 1 and x � D
.x/ � 1: (12)

.ii/ We now assume that � admits a density h; then:

– If h is continuous at 0, then: D0

.0

C/ D �.0/=�.0/,
– If h is continuous at 1, and h.1/ > 0, then:D0


.1
�/ D 1

2
,

– If h admits, in a neighborhood of 1, the equivalent:

h.1 � x/ D
x!0

Cx˛ C o.x˛/, with C; ˛ > 0 then:D0

.1

�/ D 1

2C ˛ .

These three properties are consequences of the following formula, which holds
at every point where h is continuous:

D0

.x/

D
.x/
D 1

x
� h.x/1 �D
.x/

�.x/
:

2.3.3 A Condition Which Is Equivalent to .M �Y /

Theorem 2. Let � be a finite positive measure on Œ0; 1� whose support contains 1,
and u
 its tails ratio. The following assertions are equivalent:

.i/ D
 is increasing on Œ0; 1�, i.e. .M �Y / holds.
.ii/ There exists a probability measure �
 on �0; 1Œ such that:

8a 2 Œ0; 1�; D
.a/ D �
. �0; aŒ /: (13)

.iii/ a �! au
.a/ is an increasing function on Œ0; 1Œ.
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Proof (Proof of Theorem 2). Of course, the equivalence between .i/ and .ii/ holds,
since D
.0/ D 0 and D
.1/ D 1. As for the equivalence between .i/ and .iii/, it
follows from (11):

D
.a/ D au
.a/

au
.a/C 1:

ut
Remark 3.

.1/ The probability measure �
 defined via (13) enjoys some particular properties.
Indeed, from (13), it satisfies

�
. �0; aŒ /

a
D D
.a/

a
D 1

 
.a/
:

Thus, since the function  
 is increasing on Œ0; 1�, the function a 7�!
�
. �0; aŒ /

a
is decreasing on Œ0; 1�, and lim

a!0C

�
. �0; aŒ /

a
D 1

 
.0/
.

.2/ From (11), we have �
. �0; aŒ / D D
.a/ D au
.a/

au
.a/C 1 , hence, for every

a2 �0; 1Œ:
u
.a/ D �
. �0; aŒ /

a�
.Œa; 1Œ /
;

and, in particular, �
.Œa; 1Œ / > 0. Thus, with the help of (10), �
 necessarily
satisfies the relation: Z 1�

da

�
.Œa; 1Œ /
D C1:

.3/ The function D
 is characterized by its values on �0; 1Œ (since D
.0/ D 0

and D
.1/ D 1). Hence, D
 only depends on the values of  
 on �0; 1Œ, and
therefore,D
 only depends on the restriction of � to �0; 1�. The value of �.f0g/
is irrelevant for the .M �Y / condition.

2.3.4 Characterizing the Measures ��

Theorem 2 invites to ask for the following question: given a probability measure
� on �0; 1Œ, under which conditions on � does there exists a positive measure � on
Œ0; 1� with finite total mass1 such that � satisfies .M �Y /?

In particular, are the conditions given in Point .1/ and .2/ of the previous
Remark 3 sufficient? In the following Theorem, we answer this question in the
affirmative.

1 Note that since D� remains unchanged if we replace � by a multiple of �, � can always be
chosen to be a probability.
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Notation. We adopt the following notation:

� P1 denotes the set of all probabilities� on Œ0; 1�, whose support contains 1, and
which satisfy .M �Y /.

� P01 D f� 2 P1I�.f0g/ D 0g.
� P 0

1 denotes the set of all probabilities � on �0; 1Œ such that:

.i/ �.Œa; 1Œ / > 0 for every a 2�0; 1Œ,
.ii/ a 7�! �. �0; aŒ /

a
is a decreasing function on �0; 1� such that

c� WD lim
a!0C

�. �0; aŒ /

a
<1,

.iii/
Z 1�

da

�.Œa; 1Œ /
D C1.

� We define a map � on P1 as follows: if � 2 P1, then � .�/ is the measure � on
�0; 1Œ such that

D
.a/ D �. �0; aŒ /; a 2 Œ0; 1�:
In other words, � .�/ D �
 defined by (13).

With the help of the above notation, we can state:

Theorem 3.

(1) � .P01 / D � .P1/ D P 0
1.

(2) If � 2 P1 and �0 2 P01 , then

� .�/ D � .�0/ if and only if � D �.f0g/ı0 C .1 � �.f0g//�0
(where ı0 denotes the Dirac measure at 0).

As a consequence of 1) and 2), � induces a bijection between P01 and P 0
1.

Proof (Proof of Theorem 3).

.a/ Remark 3 entails that:
� .P01 / � � .P1/ � P 0

1:

.b/ We now prove P 0
1 � � .P01 /. Let � 2 P 0

1. We define u.�/ by:
8
<̂

:̂

u.�/.x/ WD �.�0; xŒ/

x.1 � �.�0; xŒ// for x 2�0; 1Œ,
u.�/.0/ WD c� D lim

x!0C

u.�/.x/;

and we set, for x 2 Œ0; 1Œ:

m.x/ D 1

c�
u.�/.x/ exp

�
�
Z x

0

u.�/.y/dy

	
: (14)

We remark that m is left-continuous on �0; 1Œ, right-continuous at 0 and
m.0/D 1. To prove that m is decreasing on Œ0; 1Œ, it suffices to show that
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m is decreasing on �0; 1Œ or, equivalently (see Remark 2), that the distribution

on �0; 1Œ:
�
u.�/

�2 � �u.�/�0, is a positive measure.
Now, from the definition of u.�/, and setting:

�.a/ WD �. �0; aŒ /;

we need to prove that (on �0; 1Œ):

�2.a/da � a.1 � �.a//d�.a/� �.a/.1 � �.a//daC a�.a/d�.a/
” �2.a/da � ad�.a/� �.a/�1 � �.a/�da
” 0 � ad�.a/� �.a/da
” 0 � d

�
�.a/

a

	
:

The latter is ensured by Property .ii/ in the definition of P 0
1. Hence, there exists

a probability � on Œ0; 1� such that

�.x/ D m.x/; x 2 Œ0; 1Œ:

In particular, since m is right-continuous at 0, �.f0g/ D 0. Using Property .iii/
in the definition of P 0

1, we obtain from (14), by integration:

�.0/ D 1

c�
:

Therefore, by Lemma 2, u.�/ D u
, or:

u
.a/ D �. �0; aŒ /

a.1 � �. �0; aŒ // ; a 2�0; 1Œ:

Consequently,

D
.a/ D au
.a/

au
.a/C 1 D �. �0; aŒ /; a 2�0; 1Œ;

and hence, � 2 P01 and � .�/ D �.
.c/ We now prove Point .2/. Suppose first that � 2 P1, �0 2 P01 and � .�/ D

� .�0/. We then have:

u
.a/ D u
0.a/; a 2�0; 1Œ:

By Lemma 2, this entails that there exists � > 0 such that:

�.x/ D ��0.x/; x 2�0; 1Œ
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and therefore, by differentiation, the restriction of � to �0; 1� is equal to ��0.
Consequently, � D �.f0g/ı0 C ��0 and, since � is a probability, � D 1 �
�.f0g/.

Conversely, suppose that � D �.f0g/ı0 C .1 � �.f0g//�0. Since 1 belongs
to the support of �, �.f0g/ < 1. Therefore, 
.x/ D  
0.x/ for x 2�0; 1�, and
hence,D
.a/ D D
0.a/ for a 2�0; 1�, which entails � .�/ D � .�0/.

ut
Example 1. If � is a measure which admits a continuous density g which is de-
creasing on �0; 1Œ, and strictly positive in a neighborhood of 1, then � 2 P 0

1.

For example, let us take for ˇ � 2˛ > 0, g.x/ D ˇ � 2˛x
ˇ � ˛ 1�0;1Œ.x/. Then,

�. �0; xŒ / D ˇx � ˛x2
ˇ � ˛ , and some easy computations show that:

�.x/ D ˇ � ˛x
ˇ

�
1 � x� ˛

ˇ�2˛

�
1 � ˛x

ˇ � ˛
	� ˇ�˛

ˇ�2˛

:

In particular, letting ˛ tend to 0, we obtain: 8x 2 Œ0; 1�, �.x/ D 1, i.e. the corre-
spondence:

�.dx/ D 1�0;1Œ.x/dx  ! �.dx/ D ı1.dx/
where ı1 denotes the Dirac measure at 1.

2.3.5 Examples of Elements of P 0
1

To a positive measure � on �0;C1Œ such that
R C1
0

y�.dy/ <1, we associate the
measure:

�. �0; aŒ / D 1

Z

Z C1

0

.1 � e�ay/�.dy/

where Z WD R C1
0

.1 � e�y/�.dy/ is such that �.�0; 1Œ/ D 1. Clearly, a 7�!
�. �0;aŒ /

a
D 1

Z

R C1
0

e�au�.u/du, where �.u/ D �. �u;C1Œ /, is decreasing and

c� D 1
Z

R C1
0

y�.dy/ <1. Furthermore, lim
a!1�

�.Œa;1Œ /
1�a D 1

Z

R C1
0

ye�y�.dy/>0,

hence
R 1 da

�.Œa;1Œ /
D C1, and Theorem 3 applies.

We now give some examples:

.i/ For �.dx/ D e��xdx .� > 0/, we obtain: �. �0; aŒ / D .�C 1/a
�C a .a 2 Œ0; 1�/

and

�.a/ D 1

1 � a exp

�
�
Z a

0

�C 1
�

dx

1 � x
	
D .1 � a/1=�
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.ii/ For �.dx/ D P.� 2 dx/ where � is a positive r.v. with finite expectation, we
obtain

�. �0; aŒ / D P

� e

�
� aˇˇ e

�
� 1

�

where e is a standard exponential r.v.independent from � . In this case, we also
note that:

1

 
.a/
D �. �0; aŒ /

a
D K

Z C1

0

e�ax
P.� > x/dx

D KE

"Z �

0

e�axdx
#

D K

a
E

h
1 � e�a� i

whereK D 1=E
h
1 � e�� i. Consequently, the Madan-Yor function

D
.a/ D a

 
.a/
D KE

h
1 � e�a� i

is the Lévy exponent of a compound Poisson process.

.iii/ For �.dx/ D e��x

x
dx, we obtain: �. �0; aŒ / D log.1C a/

log.2/
.

2.3.6 Another Presentation of Theorem 2

In the previous section, we have parameterized the measure � by its tail func-
tion �.x/ WD R

Œx;1�
�.dy/ and its tails ratio u
 (cf. Lemma 2). Here is another

parametrization of � which provides an equivalent statement to that of Theorem 3.

Theorem 4. Let � be a finite positive measure on Œ0; 1� whose support contains 1.
Then, � satisfies .M �Y / (i.e. D
 is increasing on Œ0; 1�) if and only if there exists a
function ˛
 W�0; 1Œ�! RC such that:

.i/ ˛
 is an increasing left-continuous function on �0; 1Œ,
.ii/

�
˛2
.x/C ˛
.x/

�
dx � xd˛
.x/ is a positive measure on �0; 1Œ,

.iii/ lim
x!0C

˛
.x/

x
<1, and

Z 1�

˛
.x/dx D C1
and such that:

�.x/ D �.0/ exp

�
�
Z x

0

˛
.y/

y
dy

	
: (15)

Proof (Proof of Theorem 4). Properties .i/, .ii/ and .iii/ are equivalent to the fact
that the measure �, defined on �0; 1Œ by

�.�0; xŒ/ D ˛
.x/

˛
.x/C 1
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belongs to P 0
1. By Theorem 3, this is equivalent to the existence of � 2 P1 such that

� .�/ D �, which, in turn, is equivalent to

u
.x/ D ˛
.x/

x
; x 2�0; 1Œ;

and, finally, is equivalent to (15). ut

2.4 Some Sufficient Conditions for .M �Y /

Throughout this section, we consider a positive finite measure � on RC which
admits a density, denoted by h. Our aim is to give some sufficient conditions on
h which ensure that .M �Y / holds. We start with a general lemma which takes up
Madan-Yor condition as given in [MY02, Theorem 4] (this is Condition .iii/ below):

Proposition 2. Let h be a strictly positive function of C1 class on �0; lŒ .0 < l �
C1/. The three following conditions are equivalent:

.i/ For every c 2�0; 1Œ, a 7�! h.a/

h.ac/
is a decreasing function.

.ii/ The function ".y/ WD �yh
0.y/

h.y/
is increasing.

.iii/ h.a/ D e�V.a/ where a 7�! aV 0.a/ is an increasing function.

We denote this condition by .S0/.
Moreover, V and " are related by, for any a; b 2�0; lŒ:

V.a/ � V.b/ D
Z a

b

dy
".y/

y
;

so that:

h.a/ D h.b/ exp

�
�
Z a

b

".y/

y
dy

	
:

Remark 4. Here are some general observations about condition .S0/:

– If both h1 and h2 satisfy condition .S0/, then so does h1h2.
– If h satisfies condition .S0/, then, for every ˛ 2 R and ˇ � 0, so does a 7�!
a˛h.aˇ /.

– As an example, we note that the Laplace transform h.a/ D E

h
e�aXi of a

positive self-decomposable r.v.X satisfies condition .i/. Indeed, by definition,
for every c 2 Œ0; 1�, there exists a positive r.v. X .c/ independent from X such
that:

X
(law)D cX CX .c/:
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Taking Laplace transforms of both sides, we obtain:

h.a/ WD E

h
e�aX

i
D E

h
e�acX

i
E

h
e�aX.c/

i
;

which can be rewritten:

h.a/

h.ac/
D E

h
e�aX.c/i :

– We note that in Theorem 5 of Madan-Yor [MY02], the second and third
observations above are used jointly, as the authors remark that the function:

k.a/ WD E

h
e�a2X

i
D h.a2/ for X positive and self-decomposable satis-

fies .S0/.

Proof (Proof of Proposition 2).

.1/ We prove that .i/” .ii/
The implication .ii/ H) .i/ is clear. Indeed, for c 2�0; 1Œ, we write:

h.a/

h.ac/
D exp

�
�
Z a

ac

".y/

y
dy

	
D exp

�
�
Z 1

c

".ax/

x
dx

	
(16)

which is a decreasing function of a since " is increasing and 0 < c < 1.
We now prove that .i/ H) .ii/. From (16), we know that for every c 2�0; 1Œ,
a 7�!

Z a

ac

".x/

x
dx is an increasing function. Therefore, by differentiation,

8a 2�0; lŒ; 8c 2�0; 1Œ; ".a/� ".ac/ � 0

which proves that " is an increasing function.
.2/ We prove that .ii/” .iii/

From the two representations of h, we deduce that V.a/ D
Z a

b

".y/

y
dy �

lnh.b/, which gives, by differentiation:

aV 0.a/ D ".a/: (17)

This ends the proof of Proposition 2.
ut

In the following, we shall once again restrict our attention to probabilities � on
Œ0; 1�, and shall assume that they admit a density h which is strictly positive in a
neighborhood of 1 (so that 1 belongs to the support of �). We now give a first set
of sufficient conditions (including .S0/) which encompass most of the examples we
shall deal with in the next section.
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Theorem 5. We assume that the density h of � is continuous on �0; 1Œ. Then, the
following conditions imply .M �Y /:
.S0/ h is strictly positive on �0; 1Œ and satisfies condition .i/ of Proposition 2.

.S1/ for every a 2�0; 1Œ

�.a/ WD
Z 1

a

h.x/dx � a.1 � a/h.a/:

.S 0
1/ the function a 7�! a2h.a/ is increasing on �0; 1Œ.

.S2/ the function a 7�! log.a�.a// is concave on �0; 1Œ and
lim
a!1�

.1 � a/h.a/ D 0.

Proof (Proof of Theorem 5).

.1/ We first prove: .S0/ H) .M �Y /
We write for a > 0:

1

D
.a/
D
R 1
a
yh.y/dy

a�.a/
D Œ�y�.y/�1a C

R 1
a
�.y/dy

a�.a/
D 1C

Z 1=a

1

�.ax/

�.a/
dx:

Clearly, .M �Y / is implied by the property: for all x > 1, a 7�! �.ax/

�.a/
is a

decreasing function on
�
0; 1
x

�
. Differentiating with respect to a, we obtain:

@

@a

�
�.ax/

�.a/

	
D �xh.ax/�.a/C h.a/�.ax/

.�.a//2
:

We then rewrite the numerator as:

h.a/

Z 1

ax

h.y/dy � xh.ax/
Z 1

a

h.u/du

D xh.a/
Z 1=x

a

h.ux/du � xh.ax/
Z 1

a

h.u/du

D xh.a/
Z 1=x

a

h.u/

�
h.ux/

h.u/
� h.ax/
h.a/

	
du� xh.ax/

Z 1

1=x

h.u/du � 0

from assertion .i/ of Proposition 2, since for x > 1, the function u 7�!
h.ux/

h.u/
D h.ux/

h
�
ux 1

x

� is decreasing.

.2/ We now prove: .S1/ H) .M �Y /
We must prove that under .S1/, the function D
.a/ WD a�.a/

R 1
a
xh.x/dx

is

increasing. Elementary computations lead, for a 2�0; 1Œ, to:
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D0

.a/

D
.a/
D 1

a
� h.a/1 �D
.a/

�.a/
: (18)

From .S1/ and (12):

0 � h.a/

�.a/
.1 �D
.a// � 1

a.1 � a/.1 � a/ D
1

a
:

Hence, from (18):
D0

.a/

D
.a/
� 1

a
� 1
a
D 0:

.3/ We then prove: .S 0
1/ H) .S1/, hence .M �Y / holds

We have, for a > 0:

�.a/ WD
Z 1

a

h.x/dx D
Z 1

a

x2h.x/

x2
dx

� a2h.a/
Z 1

a

1

x2
dx (since x 7�!x2h.x/ is increasing.)

D a2h.a/
�
1

a
� 1

	
D ah.a/.1 � a/:

.4/ We finally prove: .S2/ H) .M �Y /
We set �.a/ D log.a�.a//. Since

Z 1

a

th.t/dt D a�.a/C
Z 1

a

�.t/dt

by integration by parts, we have, for a 2�0; 1Œ,

D
.a/ D e�.a/

e�.a/ C R 1
a
1
t
e�.t/dt

:

Therefore, we must prove that the function a 7�! e��.a/
Z 1

a

1

t
e�.t/dt is de-

creasing. Differentiating this function, we need to prove:

l.a/ WD � 0.a/
Z 1

a

1

t
e�.t/dt C 1

a
e�.a/ � 0:



474 F. Hirsch et al.

Now, since lim
a!1�

�.a/ D �1, an integration by parts gives:

l.a/ D
Z 1

a

1

t
e�.t/.� 0.a/ � � 0.t//C

Z 1

a

1

t2
e�.t/dt;

and, � 0 being a decreasing function, this last expression shows that l is also a
decreasing function. Therefore, it remains to prove that:

lim
a!1�

�.a/ � ah.a/
�.a/

Z 1

a

�.t/dt � 0

or

lim
a!1�

h.a/

�.a/

Z 1

a

�.t/dt D 0:

Since
Z 1

a

�.t/dt � .1 � a/�.a/, the result follows from the assumption

lim
a!1�

.1 � a/h.a/ D 0.

ut
Here are now some alternative conditions which ensure that .M �Y / is satisfied:

Proposition 3. We assume that � admits a density h of C1 class on �0; 1Œ which is
strictly positive in a neighborhood of 1. The following conditions imply .M �Y /:
.S3/ a 7�! a3h0.a/ is increasing on �0; 1Œ.
.S4/ a 7�! a3h0.a/ is decreasing on �0; 1Œ.
.S 0
4/ h is decreasing and concave.

(Clearly, .S 0
4/ implies .S4/).

.S5/ h is a decreasing function and a 7�! ah.a/

1� a is increasing on �0; 1Œ.

.S 0
5/ 0 � h0.x/ � �4h.x/. (In particular, h is decreasing).

Proof (Proof of Proposition 3).

.1/ We first prove: .S3/ H) .S 0
1/

We denote ` WD lim
a!0C

a3h0.a/ � �1. If ` < 0, then, there exists A > 0 and

" 2�0; 1Œ such that for x 2�0; "Œ, h0.x/ � � A
x3

. This implies:

h."/ � h.x/ � A

2

�
1

"2
� 1

x2

	
i.e. h.x/ � C C A

2x2
;



Constructing Self-Similar Martingales via Two Skorokhod Embeddings 475

which contradicts the fact that
R 1
0
h.x/dx <1. Therefore ` � 0, h is positive

and increasing and h.0C/ WD lim
x!0C

h.x/ exists. We then write:

a2h.a/ D a2
�
h.0C/C

Z a

0

h0.x/dx
	
D a2h.0C/C a3

Z 1

0

h0.ay/dy

D a2h.0C/C
Z 1

0

dy

y3
.ay/3h0.ay/;

which implies that a 7�! a2h.a/ is increasing as the sum of two increasing
functions.

.2/ We now prove: .S4/ H) .M �Y /
We set b�.a/ WD

Z

Œa;1�

x�.dx/. Thus: D
.a/ WD a�.a/

b�.a/
and, differentiation

shows that D0

.a/ � 0 is equivalent to:


.a/ WD �.a/b�.a/C a2h.a/�.a/ � ah.a/b�.a/ � 0 a 2�0; 1� (19)

We shall prove that, under .S4/, 
.1�/ D 0, 
 0.1�/ D 0 and that 
 is
convex, which will of course imply that 
 � 0 on �0; 1�. We denote ` WD
lim
a!1�

a3h0.a/ � �1. Observe first that h.1�/ is finite. Indeed, if ` is fi-

nite, then h0.1�/ exists, and so does h.1�/, while if ` D �1, then lim
a!1�

h0.a/ D �1, hence h is decreasing in the neighborhood of 1 and h being
positive, h.1�/ also exists. Therefore, letting a ! 1 in (19), we obtain that

.1�/ D 0. Now differentiating (19), we obtain:


 0.a/ D �2h.a/b�.a/C ah.a/�.a/C ah0.a/.a�.a/ �b�.a//;

and to prove that 
 0.1�/ D 0, we need to show, since b�.a/ � a�.a/ D �.a/,
that:

lim
a!1�

h0.a/
Z 1

a

�.t/dt D 0:

If h0.1�/ is finite, this property is clearly satisfied. Otherwise lim
a!1�

h0.a/ D
�1. In this case, we write for a in the neighborhood of 1:

0 � �h0.a/
Z 1

a

�.t/dt � �h0.a/.1 � a/�.a/;

and it is sufficient to prove that:

lim
a!1�

.1 � a/h0.a/ D 0: (20)
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Now, since x 7�! x3h0.x/ is decreasing:

h.1�/�h.a/ D
Z 1

a

h0.x/dx � a3h0.a/
�
� 1

2x2

�1

a

D a.1C a/
2

h0.a/.1�a/ � 0

and (20) follows by passing to the limit as a! 1.
Finally, denote by ' the decreasing continuous function: a 7�! a3h0.a/.

Then:


 0.a/ D �'.a/�.a/
a2
� h.a/ ��.a/Cb�.a/� :

Consequently, 
 0 is a continuous function with locally finite variation, and we
obtain by differentiation:

d
 0.a/ D ��.a/
a2

d'.a/C h.a/ .ah.a/C �.a// da:

Hence, d
 0 is a positive measure on �0; 1Œ, which entails that 
 is convex on
�0; 1Œ.

.3/ We then prove: .S5/ H) .M �Y /
From (19), to prove that D
 is increasing, we need to show that:

�.a/ WD �.a/b�.a/
ah.a/

C a�.a/�b�.a/ � 0:

Under .S5/, h is decreasing and hence, for a 2�0; 1Œ,

�.a/ � h.a/.1 � a/: (21)

Consequently, lim
a!1

�.a/ D 0, and it is now sufficient to see that �0.a/ � 0 on

�0; 1Œ.

�0.a/ D ��.a/b�.a/
a2h2.a/

�
h.a/C ah0.a/

� � b�.a/
a

hence, the assertion �0.a/ � 0 on �0; 1Œ is equivalent to:

� 1

ah.a/
� h0.a/
h2.a/

� 1

�.a/
: (22)

But, under .S5/, a 7�! ah.a/

1 � a is increasing, and therefore we have, for a 2
�0; 1Œ,

1

a.1 � a/ C
h0.a/
h.a/

� 0: (23)
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Then, using (21) and (23), we obtain:

� 1

ah.a/
� h0.a/
h2.a/

� � 1

ah.a/
C 1

a.1 � a/h.a/

D 1

ah.a/

�
1

1 � a � 1
	
D 1

h.a/.1 � a/ �
1

�.a/

which gives (22).

.4/ We finally prove: .S 0
5/ H) .S5/

We must prove that a 7�! ah.a/

1 � a is increasing. Differentiating, we obtain:

�
ah.a/

1� a
	0
D h.a/

1 � a
�

1

a.1 � a/ C
h0.a/
h.a/

	
D h.a/

1 � a
�

1

a.1 � a/ �
ˇ̌
ˇ
ˇ
h0.a/
h.a/

ˇ̌
ˇ
ˇ

	

� h.a/

1 � a
�

1

a.1 � a/ � 4
	
� 0

since, for a 2 Œ0; 1�, a.1 � a/ � 1
4

.
ut

Remark 5. We observe that there exist some implications between these conditions.
In particular:

� .S 0
1/ H) .S2/. Indeed, note first that since .S 0

1/ implies .S1/, the relation
�.a/ � a.1 � a/h.a/ holds, and implies lim

a!1�

.1 � a/h.a/ D 0. Then, for

a 2�0; 1Œ, condition .S 0
1/ is equivalent to 2h.a/C ah0.a/ � 0 and we can write:

�
�

log

�
a

Z 1

a

h.x/dx

		00
D 1

a2
C h0.a/�.a/C h2.a/

�2.a/

D h.a/

a�.a/

�
�.a/

ah.a/
C ah0.a/

h.a/
C ah.a/

�.a/

	

� h.a/

a�.a/

�
ah0.a/
h.a/

C 2
	

(since for x � 0, x C 1

x
� 2)

D 1

a�.a/

�
ah0.a/C 2h.a/� � 0: (24)

This is condition .S2/, i.e. a 7�! log.a�.a// is a concave function.
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� .S 0
4/ implies both .S0/ and .S5/.

– .S0/ is satisfied since the function y �! yh0.y/
h.y/

is clearly decreasing.

– To prove that .S5/ is satisfied, we write:

h.1/�h.a/ D
Z 1

a

h0.x/dx D
Z 1

a

x2h0.x/
x2

dx � a2h0.a/
Z 1

a

dx

x2
D ah0.a/.1�a/;

hence:
h.a/

1 � a C ah
0.a/ � h.1/

1 � a � 0:

We sum up the implications between these different conditions in the following
diagram:

.S 0
4/

�� �
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
�

�� �����
���

���
���

.S 0
5/

��
Proposition 3 .S3/

��

.S4/ .S5/

Theorem 5 .S 0
1/

�����
���

���
���

�� ���
������
���

.S1/ .S2/ .S0/

Remark 6. Let h be a decreasing function with bounded derivative h0. Then, for
large enough c, the measure �.c/.dx/ WD .h.x/ C c/dx satisfies condition .S 0

5/,
hence .M �Y /. Indeed, for h.c/.x/ D h.x/C c, we have:

ˇ
ˇ
ˇ̌h
.c/0.x/
h.c/.x/

ˇ
ˇ
ˇ̌ D jh0.x/j

h.x/C c �����!c!C1 0

This convergence being uniform, for large enough c, we obtain:

sup
x2Œ0;1�

ˇ
ˇ̌
ˇ
h.c/0.x/
h.c/.x/

ˇ
ˇ̌
ˇ � 4:

2.5 Case Where the Support of � Is RC

In this section, we assume that �.dx/ D h.x/dx is a positive measure whose
density h is strictly positive a.e. on RC. The following theorem gives sufficient
conditions on h for the function D
 to be increasing and converging to 1 when a
tends toC1.
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Theorem 6. We assume that � admits a density h on RC which satisfies .S0/ (see
Proposition 2).

.1/ Then, there exists � > 2 (possiblyC1) such that:

8 c 2�0; 1Œ; lim
a!C1

h.a/

h.ac/
D c�: (25)

Furthermore:

� D lim
a!C1 ".a/ D lim

a!C1 aV 0.a/:

.2/ D
 is an increasing function which converges towards ` with:

– If � < C1, then ` D � � 2
� � 1

– If � D C1, then ` D 1.

In particular, if � D C1, then, there exists a probability measure �
 such that:

D
.a/ D �
. �0; aŒ /; a � 0:

Remark 7.

– Point .1/ of Theorem 6 casts a new light on Proposition 2. Indeed, from (25), we
see that h is a regularly varying function in the sense of Karamata, and Proposi-
tion 2 looks like a version of Karamata’s representation Theorem (see [BGT89,
Chap. 1, Theorems 1.3.1 and 1.4.1]).

– The property that the function a 7�! h.a/

h.ac/
is decreasing is not necessary to

obtain the limit of D
, see [BGT89, Theorem 8.1.4].

Proof (Proof of Theorem 6).

.1/ We first prove Point .1/
We assume that h satisfies .S0/ on RC. Therefore the decreasing limit 
c WD

lim
a!C1

h.a/

h.ac/
exists and belongs to Œ0; 1�. Then, for all c; d 2�0; 1Œ:


cd D lim
a!C1

h.a/

h.acd/
D lim

a!C1
h.a/

h.ac/

h.ac/

h.acd/
D 
c
d :

This implies that 
c D c� with � 2 RC. Now, let �.a/ D
Z C1

a

yh.y/dy. For

A > 1, we have
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�.a/ D
Z C1

a

yh.y/dy D a2
Z C1

1

zh.az/d z � a2
Z A

1

z
h.az/

h.z/
h.z/d z

� a2 h.aA/
h.A/

Z A

1

zh.z/d z

�����!
A!C1 a2��

Z C1

1

zh.z/d z:

Letting a tend toC1, we obtain, since �.a/ �����!
a!C1 0, that necessarily � > 2.

Then, passing to the limit in (16), we obtain:

c� D exp

�
�
Z 1

c

".C1/
y

dy

	
; i.e. ".C1/ D �:

The last equality is a direct consequence of (17).

.2/ We now prove that D
 is increasing and converges towards `

As in Theorem 1, we denote �.a/ D
Z C1

a

h.y/dy. Then:

1

D
.a/
D Œ�y�.y/�C1

a C R C1
a

�.y/dy

a�.a/
D 1C

Z C1

1

�.ax/

�.a/
dx: (26)

Now, the proof of the increase of D
 is exactly the same as that of the im-
plication S0 H) .M �Y / (see Theorem 5). Then, D
 being bounded by 1, it
converges towards a limit `, and it remains to identify `. We write, for x > 1:

�.a/

�.ax/
D

Z C1

a

h.y/dy

Z C1

ax

h.y/dy

D

Z C1

1

h.au/du

Z C1

x

h.au/du

D

Z x

1

h.au/du

Z C1

x

h.au/du

C 1

D

Z x

1

h.ax u
x
/

h.ax/
du

Z C1

x

h.au/

h
�
auxu

�du

C 1

�����!
a!C1

Z x

1

�x
u

��
du

Z C1

x

�x
u

��
du

C 1

from (25). Now, we must discuss different cases:
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– If � D C1, then lim
a!C1

�.a/

�.ax/
D C1, and plugging this limit into (26),

we obtain ` D 1.
– If � < C1, we obtain:

lim
a!C1

�.a/

�.ax/
D 1

x1�� :

Plugging this into (26), we obtain:

1

`
D 1C

Z C1

1

dx

x��1 D 1 �
1

2 � � D
1 � �
2 � � :

ut
Remark 8. More generally, for p � 1, there is the equivalence:

Z C1
yph.y/dy <1” � > p C 1:

The implicationH) can be proven in exactly the same way as Point .1/. Conversely,
since ".y/ tends to � when y tends toC1, there exists A > 0 and � > 0 such that:
8y � A, ".y/ � p C 1C � . Then applying Proposition 2, we obtain:

h.a/ D h.A/ exp

�
�
Z a

A

".y/

y
dy

	
� h.A/ exp

�
�.p C 1C �/

Z a

A

dy

y

	

D h.A/
�
A

a

	pC1C�
:

We note in particular that � admits moments of all orders if and only if � D C1.

2.6 Examples

We take �.dx/ D h.x/dx and give some examples of functions h which enjoy
the .M �Y / property. For some of them, we draw the graphs of h, D
, u
 and

a 7�! �
. �0; aŒ /

a
.

2.6.1 Beta Densities h.x/ D x˛.1 � x/ˇ1�0;1Œ.x/ .˛; ˇ > �1/

.i/ For�1 < ˇ � 0 (and ˛ > �1), the function x 7�! x2h.x/ is increasing, hence
from .S 0

1/, condition .M �Y / holds.
.ii/ For ˇ � 0:

h.a/

h.ac/
D 1

c˛

�
1 � a.1 � c/

1 � ac
	ˇ

which, for 0 < c < 1, is a decreasing function of a, hence condition .S0/ is
satisfied and .M �Y / also holds in that case. See Fig. 1.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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7 α=0.5, β=−0.5

uμ(a)

h(a)

Dμ(a)

νμ(]0,a[)/a

Fig. 1 Graphs for h.x/ D
r

x

.1� x/
1Œ0;1Œ.x/

2.6.2 Further Examples

– The function h.x/ D x˛

.1C x2/ˇ 1Œ0;1�.x/ .˛ > �1; ˇ 2 R/ satisfies .M �Y /.
Indeed, for ˇ � 0, x 7�! x2h.x/ is an increasing function on Œ0; 1�, hence
condition .S 0

1/ holds, while, for ˇ � 0, condition .S0/ is satisfied.

– The function h.x/ D x˛

.1 � x2/ˇ 1Œ0;1�.x/ .˛ > �1; ˇ < 1/ satisfies .M �Y /. As

in the previous example, for 0 � ˇ � 1, the function x 7�! x2h.x/ is increasing
on Œ0; 1�, and for ˇ � 0, this results from condition .S0/.

2.6.3 h.x/ D j cos.�x/jm1Œ0;1�.x/ .m 2 RC/

We check that this example satisfies condition .S1/. Indeed, for a � 1
2

, a 7�! h.a/

is increasing, hence:

Z 1

a

j cos.�x/jmdx � j cos.�a/jm.1 � a/ � aj cos.�a/jm.1 � a/:

For a � 1
2

we write by symmetry. See Fig. 2:

Z 1

a

j cos.�x/jmdx D
Z 1�a

0

j cos.�x/jmdx

�
Z a

0

j cos.�x/jmdx
� aj cos.�a/jm � aj cos.�a/jm.1 � a/:
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uμ(a)

νμ(]0,a[)/a
h(a)

Dμ(a)

Fig. 2 Graphs for h.x/ D j cos.�x/j3=21Œ0;1�.x/
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7 α=−0.5, λ=1

uμ(a)h(a)

νμ(]0,a[)/a

Dμ(a)

Fig. 3 Graphs for h.x/ D e�x

p
x
1�0;1�.x/

Remark 9. More generally, every function which is symmetric with respect to the
axis x D 1

2
, and is first decreasing and then increasing, satisfies condition .S1/.

2.6.4 h.x/ D x˛e�x	

1�0;1�.x/ .˛ > �1; 	 2 R/

This is a direct consequence of .S0/. See Fig. 3.
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2.6.5 An Example Where .M �Y / is Not Satisfied

Let � be the measure with density h defined by:

h.x/ D c1Œ0;pŒ.x/C e1Œp;1�.x/ .c; e � 0; p 2�0; 1Œ /:

For a < p, it holds:

D
.a/ WD 2a .c.p � a/C e.1� p//
c.p2 � a2/C e.1 � p2/ :

D
 is C1 on Œ0; pŒ, and, for a < p, we have:

D0

.a/ D 2

c2p.p � a/2 C e2.1 � p/2.1C p/C ec.1 � p/ �.p � a/2 C p2 C p � 2a�
�
c.p2 � a2/C e.1� p2/�2

and

D0

.p

�/ D 2e
2.1 � p/2 �1C p �1 � c

e

��

e2.1 � p2/2 D 21C p
�
1 � c

e

�

.1C p/2 :

Therefore, it is clear that, for
c

e
large enough, D0


.p
�/ < 0, hence D
 is not in-

creasing on Œ0; 1�. Note that, if e � c (h is increasing), then D0

 � 0 (see condition

.S 0
1/), and that D
 is increasing if and only if D0


.p
�/ � 0, i.e.

c

e
� 1C 1

p
. See

Figs. 4 and 5.
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Fig. 4 Graph of D� for h.x/ D c1Œ0;1=2Œ.x/C 1Œ1=2;1�.x/
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Fig. 5 Graphs for h.x/ D 61Œ0;1=2Œ.x/C 1Œ1=2;1�.x/
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Dμ(a)

Fig. 6 Graphs for h satisfying neither condition .Si /iD0:::5

2.6.6 A Situation Where Neither Condition .Si /iD0:::5 Is Satisfied,
But .M �Y / Is

Let h be a function such that, for a 2 Œ1=2; 1�, D0

.a/ > 0. We define h on Œ0; 1=2�

such that
R 1=2
0

h.x/dx < " and sup
x2Œ0;1=2�

h.x/ � �. Then, for " > 0 and � � 0 small

enough, the measure �.dx/ D h.x/dx satisfies .M �Y / and h may be chosen in
such a way that none of the preceding conditions is satisfied. See Fig. 6.
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3 Construction of Randomized Skorokhod Embeddings

3.1 Introduction

In this Sect. 3, our aim is still to construct martingales satisfying the properties (a)
and (b), this time by a (seemingly) new Skorokhod embedding method, in the spirit
of the original Skorokhod method, and of the so-called Hall method (see [Obl04] for
comments and references; we also thank J. Oblój (personal communication, 2009)
for writing a short informal draft about this method).

Our method of randomized Skorokhod embedding will ensure directly that the
family of stopping times .�t ; t � 0/ is increasing.

Here is the content of this Sect. 3:

� In Sect. 3.2, we consider a real valued, integrable and centered random variable
X . We prove that there exist an RC-valued random variable V and an R


�-valued
random variableW , with V andW independent and independent of .Bu; u � 0/,
such that, denoting:

� D inffu � 0 I Bu D V or Bu D W g;

Property (Sk1) is satisfied by this randomized stopping time � , i.e:B�
(law)D X . To

prove this result we use, as an essential tool, the Schauder-Tychonoff fixed point
theorem (see [DS88]).

� In Sect. 3.3, we prove that the stopping time � defined in Sect. 3.2 satisfies (Sk2),
i.e: the martingale B� WD .Bu^� ; u � 0/ is uniformly integrable. Moreover, for
every p � 1, we state conditions ensuring that B� is a martingale belonging to
the space Hp consisting of all martingales .Mt ; t � 0/ such that sup

t�0
jMt j 2 Lp .

Recall that, for p > 1,Hp consists of uniformly integrable martingales .Mt ; t �
0/ such that M1 2 Lp , and, from Doob’s Lp inequality:

E

" 

sup
t�0
jMt j

!p#

�
�

p

p � 1
	p

EŒjM1jp�: (27)

� In Sect. 3.4, we follow the method presented in the general introduction, and
construct an increasing family of randomized stopping times .�t ; t � 0/, such
that .B�t ; t � 0/ is a martingale satisfying properties (a) and (b).
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3.2 Randomized Skorokhod Embedding

3.2.1 Notation

We denote by RC (resp. R

� ) the interval Œ0;C1Œ (resp. � �1; 0Œ ), and by

MC (resp. M� ) the set of positive finite measures on RC (resp. R

� ), equipped

with the weak topology:

�.MC ; C0.RC// (resp. �.M� ; C0.R
�// )

where C0.RC/ (resp. C0.R
�/ ) denotes the space of continuous functions on RC
(resp. R


� ) tending to 0 atC1 (resp. at 0 and at �1).
B D .Bu; u � 0/ denotes a standard Brownian motion started from 0.
In the sequel we consider a real valued, integrable, centered random variable X ,

the law of which we denote by �. The restrictions of � to RC and R

� are denoted

respectively by �C and �� .

3.2.2 Existence of a Randomized Stopping Time

This section is devoted to the proof of the following Skorokhod embedding method.

Theorem 7.

(i) There exist an RC-valued random variable V and an R

�-valued random vari-

able W , V and W being independent and independent of .Bu; u � 0/, such
that, setting

� D inffu � 0 I Bu D V or Bu D W g ;
one has: B�

(law)D X .
(ii) Denoting by 
C (resp. 
� ) the law of V (resp. W ), then:

�C � 
C � �C and �� � 
� � ��:

Moreover,
EŒV ^ .�W /� � EŒjX j� � 2EŒV ^ .�W /� (28)

and, for every p > 1,

1

2
E
�
.V ^ .�W // �V p�1 C .�W /p�1��

� EŒjX jp � � E
�
.V ^ .�W // �V p�1 C .�W /p�1�� (29)

Proof (Proof of Theorem 7). In the following, we exclude the case � D ı0, the
Dirac measure at 0. Otherwise, it suffices to set: V D 0. Then, .i/ is satisfied since
� D 0, and .ii/ is also satisfied except the property 
� � �� (since �� D 0).
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1. We first recall the following classical result: Let b < 0 � a and

Tb;a D inffu � 0 I Bu D a or Bu D bg:

Then,

P.BTb;a D a/ D
�b
a � b and P.BTb;a D b/ D

a

a � b :

2. Let V and W be respectively an RC-valued random variable and an R

�-valued

random variable, V andW being independent and independent of B , and let � ,

C, 
� be defined as in the statement of the theorem. As a direct consequence

of Point 1, we obtain that B�
(law)D X if and only if:

�C.dv/ D
 Z

R�

�

�w

v � w

�.dw/

!


C.dv/ on RC (30)

��.dw/ D
 Z

RC

v

v � w

C.dv/

!


�.dw/ on R

� (31)

As 
C and 
� are probabilities, the above equations entail:


C.dv/ D �C.dv/C
 Z

R�

�

v

v � w

�.dw/

!


C.dv/ on RC (32)


�.dw/ D ��.dw/C
 Z

RC

�w

v � w

C.dv/

!


�.dw/ on R

� (33)

To prove Point i/ of the theorem, we shall now solve this system of equations
(32) and (33) by a fixed point method, and then we shall verify that the solution
thus obtained is a pair of probabilities, which will entail (30) and (31).

3. We now introduce some further notation. If .a; b/ 2MC 	M� and " > 0, we
set

a."/ D
Z
1�0;"Œ.v/ a.dv/ and b."/ D

Z
1��";0Œ.w/ b.dw/:

We also set: mC D
R
�C.dv/, m� D

R
��.dw/. We note that, since � is

centered and is not the Dirac measure at 0, then mC > 0 and m� > 0. We then
define:

�."/ WD 4 sup
�
�C."/m�1C ; ��."/m�1�

�
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and

� WD f.a; b/ 2MC 	M� I a � �C; b � ��;
Z
a.dv/C

Z
b.dw/ � 2

and for every " � "0, a."/ � �."/ and b."/ � �."/g

where "0 will be defined subsequently.
Finally, we define � D .�C; ��/ WMC 	M� �!MC 	M� by:

�C.a; b/.dv/ D �C.dv/C
 Z

R�

�

v

v � w
b.dw/

!

a.dv/

��.a; b/.dw/ D ��.dw/C
 Z

RC

�w

v � w
a.dv/

!

b.dw/

Lemma 3. � is a convex compact subset of MC 	M� (equipped with the
product of the weak topologies), and � .�/ � �.

Proof (Proof of Lemma 3). The first part is clear. Suppose that .a; b/ 2 �. By
definition of � , we have:

�C.a; b/ � �C ; ��.a; b/ � ��

and
Z
�C.a; b/.dv/C

Z
��.a; b/.dw/ D 1C

�Z
a.dv/

	�Z
b.dw/

	
: (34)

Consequently,

Z
�C.a; b/.dv/C

Z
��.a; b/.dw/ � 2

and Z
�C.a; b/.dv/ � 2 �m� ;

Z
��.a; b/.dw/ � 2 �mC: (35)

On the other hand,

�C.a; b/."/ D �C."/C
Z
1�0;"Œ.v/ a.dv/

Z
1��v;0�.w/

v

v � w
b.dw/

C
Z
1�0;"Œ.v/ a.dv/

Z
1��1;�v�.w/

v

v � w
b.dw/:

Since
v

v � w
� 1, and

v

v � w
� 1=2 if w � �v, taking into account (35) we

obtain:
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�C.a; b/."/ � �C."/C a."/ b."/C a."/
�
1 � mC

2

�
:

Hence,

�C.a; b/."/ � �2."/C �."/
�
1 � mC

2

�
C �C."/:

In order to deduce from the preceding that: �C.a; b/."/ � �."/, it suffices to
prove:

�2."/ � mC
2
�."/C �C."/ � 0

or

�."/ 2
�
1

4
.mC �

q
m2C � 16�C."//;

1

4
.mC C

q
m2C � 16�C."//

�
;

which is satisfied for " � "0 for some choice of "0, by definition of �. The proof
of ��.a; b/."/ � �."/ is similar. ut
Lemma 4. The restriction of the map � to � is continuous.

Proof (Proof of Lemma 4). We first prove the continuity of �C. For " > 0, we
denote by h" a continuous function on R


� satisfying:

h".w/ D 0 for � " < w < 0 ; h".w/ D 1 for w < �2 "

and, for every w < 0, 0 � h".w/ � 1. We set: � "C.a; b/ D �C.a; h" b/. Then,
� "C.a; b/ � �C.a; b/ and

0 �
Z
�C.a; b/.dv/�

Z
� "C.a; b/.dv/ � 2 �.2 "/ ;

which tends to 0 as " tends to 0. Therefore, by uniform approximation, it suffices
to prove the continuity of the map � "C.

Let .an; bn/ be a sequence in �, weakly converging to .a; b/, and let ' 2
C0.RC/. It is easy to see that the set:


v '.v/

v � � h".�/ I v � 0
�

is relatively compact in the Banach space C0.R
�/. Consequently,

lim
n!1

Z
v '.v/

v � w
h".w/ bn.dw/ D

Z
v '.v/

v � w
h".w/ b.dw/ (36)

uniformly with respect to v. Since

ˇ
ˇ
ˇ
ˇ

Z
v '.v/

v � w
h".w/ bn.dw/

ˇ
ˇ
ˇ
ˇ � 2 j'.v/j ; (37)
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then Z
v '.v/

v � w
h".w/ bn.dw/ I n � 0

�

is relatively compact in the Banach space C0.RC/. Therefore,

lim
n!1

Z
'.v/ � "C.an; bp/.dv/ D

Z
'.v/ � "C.a; bp/.dv/

uniformly with respect to p, and, by (36) and (37):

lim
n!1

Z
'.v/ � "C.a; bn/.dv/ D

Z
'.v/ � "C.a; b/.dv/:

Finally,

lim
n!1

Z
'.v/ � "C.an; bn/.dv/ D

Z
'.v/ � "C.a; b/.dv/ ;

which proves the desired result.
The proof of the continuity of �� is similar, but simpler since it does not need

an approximation procedure. ut
As a consequence of Lemmas 3 and 4, we may apply the Schauder–Tychonoff
fixed point theorem (see, for instance, [DS88, Theorem V.10.5]), which yields
the existence of a pair .
C; 
�/ 2 � satisfying (32) and (33). We set

˛C D
Z

C.dv/ ; ˛� D

Z

�.dw/

and we shall now prove that ˛C D ˛� D 1.
4. By (34) applied to .a; b/ D .
C; 
�/, we obtain:

˛C C ˛� D 1C ˛C ˛�

and therefore, ˛C D 1 or ˛� D 1. Suppose, for instance, ˛C D 1. Since
˛C C ˛� � 2, then ˛� � 1. We now suppose ˛� < 1. By (32), 
C �
�C C ˛� 
C, and hence, 
C � .1� ˛�/�1 �C. Consequently,

Z
v 
C.dv/ � .1 � ˛�/�1

Z
v �C.dv/ <1:

We deduce from (32) and (33) that, for every r > 0,

Z 1

0

v 
C.dv/C
Z 0

�r
w 
�.dw/

D "1.r/C "2.r/C
Z 1

0


C.dv/
Z 0

�r

�.dw/.v C w/ (38)
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with

"1.r/ D
Z C1

�r
x �.dx/ and

"2.r/ D
Z 1

0


C.dv/
Z �r

�1

�.dw/

v2

v � w
:

Since X is centered, lim
r!C1 "1.r/ D 0. On the other hand,

"2.r/ �
�Z

v 
C.dv/
	�Z �r

�1

�.dw/

	

and therefore, lim
r!C1 "2.r/ D 0. Since ˛C D 1, we deduce from (38):

�Z
v 
C.dv/

	�
1 �

Z 0

�r

�.dw/

	
D "1.r/C "2.r/:

Since� is not the Dirac measure at 0, then 
C.�0;C1Œ/ > 0. Therefore, letting
r tend to 1, we obtain ˛� D 1, which contradicts the assumption ˛� < 1.
Thus, ˛� D 1 and ˛C D 1.

5. We now prove Point ii). We have already seen: 
C � �C and 
� � ��. The
property: 
C � �C follows directly from (30). More precisely, the Radon-
Nikodym density of 
C with respect to �C is given by:

 Z

R�

�

�w

v � w

�.dw/

!�1
;

which is well defined since 
� is a probability and
�w

v � w
is > 0 for w < 0

and v � 0. On the other hand, since � is not the Dirac measure at 0, then

C.�0;C1Œ/ > 0. By (31), this easily entails the property: 
� � ��, the
Radon–Nikodym density of 
� with respect to �� being given by:

 Z

RC

v

v � w

C.dv/

!�1
:

On the other hand, we have for v � 0 and w < 0,

1

2
.v ^ .�w// � �vw

v � w
� v ^ .�w/: (39)

Moreover, we deduce from (30) and (31)

E ŒjX jp� D
Z Z �vw

v � w

�
vp�1 C .�w/p�1� 
C.dv/
�.dw/ (40)
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for every p � 1. Then, (28) and (29) in Theorem 7 follow directly from (39)
and (40).

ut
We have obtained a theorem of existence, thanks to the application of the

Schauder-Tychonoff fixed point theorem, which, of course, says nothing about the
uniqueness of the pair .
C; 
�/ of probabilities satisfying the conditions (30) and
(31). However, the following theorem states that this uniqueness holds.

Theorem 8. Assume � ¤ ı0. Then the laws of the r.v.’s V and W satisfying Point
.i/ in Theorem 7 are uniquely determined by �.

Proof (Proof of Theorem 8). Consider
�


.j /
C ; 
 .j /�

�
, j D 1; 2, two pairs of proba-

bilities in MC 	MC satisfying (30) and (31). We set, for j D 1; 2, v � 0 and
w < 0,

a.j /.v/ D
Z

R�

�

�w

v � w

 .j /� .dw/; (41)

b.j /.w/ D
Z

RC

v

v � w


.j /
C .dv/: (42)

By (30) and (31), we have:



.j /
C D 1

a.j /
�C and 
 .j /� D 1

b.j /
��: (43)

On the other hand, the following obvious equality holds:

Z Z

RC	R�

�

v � w

v � w

�


.1/
C .dv/C 
 .2/C .dv/

� �

 .1/� .dw/C 
 .2/� .dw/

�
D 4: (44)

Therefore, developing (44) and using (41), (42) and (43), we obtain:

Z

RC

�
a.1/.v/C a.2/.v/

�� 1

a.1/.v/
C 1

a.2/.v/

	
�C.dv/

C
Z

R�

�

�
b.1/.w/C b.2/.w/

�� 1

b.1/.w/
C 1

b.2/.w/

	
��.dw/ D 4 (45)

Now, for x > 0, x C 1

x
� 2, and x C 1

x
D 2 if and only if x D 1. Therefore,

�
a.1/.v/C a.2/.v/

�� 1

a.1/.v/
C 1

a.2/.v/

	
� 4
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and
�
a.1/.v/C a.2/.v/

�� 1

a.1/.v/
C 1

a.2/.v/

	
D 4 if and only if a.1/.v/ D

a.2/.v/, and similarly with b.1/.w/ and b.2/.w/. Since � is a probability, we de-
duce from (45) and the preceding that:

a.1/.v/ D a.2/.v/ �C-a.s. and b.1/.w/ D b.2/.w/ ��-a.s.

We then deduce from (43):



.1/
C D 
 .2/C and 
 .1/� D 
 .2/� ;

which is the desired result. ut

3.2.3 Remark

We have:

8v � 0; 8w < 0;
�w

v � w
� 1

.v _ 1/
�w

1 � w
:

Therefore, by (30), for p > 1:

EŒV p�1� �
�Z �w

1 � w

�.dw/

	�1 Z
.v _ 1/ vp�1 �C.dv/ ;

and similarly for EŒ.�W /p�1�. Consequently,

EŒjX jp � <1 H) EŒV p�1� <1 and EŒ.�W /p�1� <1:

However, the converse generally does not hold (see Example 4 below), but it holds
if p � 2 (see Remark 3.3.2).

3.2.4 Remark

If we no longer require the independence of the two r.v.’s V and W , then, easy
computations show that Theorem 7 is still satisfied upon taking for the law of the
couple .V;W /:

2 .EŒjX j�/�1 .v � w/ d�C.v/d��.w/: (46)

This explicit formula, which results at once from [Bre68, 13.3, Problem 2], appears
in [Hal68]. The results stated in the following Sects. 3.3 and 3.4 remain valid with
the law of the couple .V;W / given by (46), except that, in Theorem 10, one must
take care of replacing EŒV �EŒ�W � by EŒ�V W �. Thus the difference between our
embedding method and the one which relies on the Breiman-Hall formula is that we
impose the independence of V and W . We then have the uniqueness of the laws of
V and W (Theorem 8) but no general explicit formula.
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3.2.5 Some Examples

In this section, we develop some explicit examples. We keep the previous notation.
For x 2 R, ıx denotes the Dirac measure at x.

Example 2. Let 0 < ˛ < 1 and x > 0. We define �C D ˛ ıx and we take for ��
any measure in M� such that

Z
��.dw/ D 1 � ˛ and

Z
w��.dw/ D �˛ x:

Then, the unique pair of probabilities .
C; 
�/ satisfying (30) and (31) is given by:


C D ıx and 
�.dw/ D
�
1 � w

x

�
��.dw/:

Example 3. Let 0 < ˛ < 1 and 0 < x < y. We consider a symmetric measure �

such that:

�C D 1

2
.˛ ıx C .1� ˛/ ıy/:

By an easy computation, we obtain that the unique pair of probabilities .
C; 
�/
satisfying (30) and (31) is given by:


C D y �p.1 � ˛/ y2 C ˛ x2
y � x ıx C �x C

p
.1 � ˛/ y2 C ˛ x2
y � x ıy

and 
�.dw/ D 
C.�dw/.

Example 4. Let 0 < ˛ < 1 and 0 < ˇ < 1 such that ˛ C ˇ > 1. We define � by:

�C.dv/ D sin˛�

�

v˛�1

.1C vˇ / .1C 2v˛ cos˛� C v2˛/ dv

and

��.dw/ D sinˇ�

�

.�w/ˇ�1

.1C .�w/˛/ .1C 2.�w/ˇ cosˇ� C .�w/2ˇ /
dw:

Then, the unique pair of probabilities .
C; 
�/ satisfying (30) and (31) is given by:


C.dv/ D sin ˛�

�

v˛�1

1C 2v˛ cos˛� C v2˛ dv D .1C vˇ /�C.dv/
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and


�.dw/ D sinˇ�

�

.�w/ˇ�1

1C 2.�w/ˇ cosˇ� C .�w/2ˇ
dw D .1C .�w/˛/��.dw/:

This follows from the classical formula, which gives the Laplace transform of the
resolvent of index 1 of a stable subordinator of index ˛ (see Chaumont-Yor [CY03,
Exercise 4.21]):

1

1C v˛ D
sin ˛�

�

Z C1

0

w˛

.v C w/ .1C 2w˛ cos˛� C w2˛/
dw:

We note that, in this example, if p > 1, the condition: EŒjX jp� < 1 is sat-
isfied if and only if p < ˛ C ˇ, whereas the conditions: EŒV p�1� < 1
and EŒ.�W /p�1� < 1 are satisfied if and only if p < 1 C ˛ ^ ˇ. Now,
˛ C ˇ < 1C ˛ ^ ˇ since ˛ _ ˇ < 1. This illustrates Remark 3.2.3.

Example 5. We now consider a symmetric measure � such that:

�C.dv/ D 2

�
.1C v2/�2 .1C 2

�
v log v/ dv:

By an easy computation, we obtain that the unique pair of probabilities .
C; 
�/
satisfying (30) and (31) is given by:


C.dv/ D 2

�
.1C v2/�1 dv

and 
�.dw/ D 
C.�dw/.

Example 6. Let � be a symmetric measure such that:

�C.dv/ D 1

�

 
1

p
v .1 � v/ �

1p
1 � v2

!

1�0;1Œ.v/ dv:

Then, the unique pair of probabilities .
C; 
�/ satisfying (30) and (31) is given by:


C.dv/ D 1

�

1
p
v .1 � v/ 1�0;1Œ.v/ dv

and 
�.dw/ D 
C.�dw/. Thus, 
C is the Arcsine law.
This follows from the formula:

1

�

Z 1

0

w

v C w

1
p

w .1 � w/
dw D 1 �

r
v

1C v ;

which can be found in [BFRY06, (1.18) and (1.23)].
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3.3 Uniform Integrability

In this section, we consider again an integrable, centered, real-valued r.v.X , and we
keep the notation of Theorem 7. We shall study the properties of uniform integra-
bility of the martingale: B� WD .Bu^� ; u � 0/.
Theorem 9. The martingaleB� is uniformly integrable. Moreover, if EŒ�.X/� <1
where � W R ! RC is defined by �.x/ D jxj logC.jxj/, then, the martingale B�

belongs to H 1, i.e. E

"

sup
u�0
jB�u j

#

<1.

Proof (Proof of Theorem 9).

1. We first prove that B� is bounded in L1. We denote by EW;V the expectation
with respect to the law of .W; V /, and by EB the expectation with respect to the
law of Brownian motion B .

sup
u�0

E
�jB�u j

� D lim
u!C1 " E

�jB�u j
�

D lim
u!C1 " EW;V

�
EB

�jBu^TW;V j
��

D EW;V

�
lim

u!C1 " EB

�jBu^TW;V j
��

D EW;V

�
EB

�jBTW;V j
��

(by the dominated convergence theorem,

since jBu^TW;V j � V _ .�W //
D E ŒjB� j� D EŒjX j�:

2. We have:

�P

 

sup
u�0
jB�u j � �

!

D EW;V

"

�PB

 

sup
u�0
jBu^TW;V j � �

!#

: (47)

Now, since sup
u�0
jBu^TW;V j � V _ .�W /,

�PB

 

sup
u�0
jBu^TW;V j � �

!

�����!
�!C1

0;

and from Doob’s maximal inequality and Point 1.:

�PB

 

sup
u�0
jBu^TW;V j � �

!

� sup
u�0

EB

�jBu^TW;V j
� D EB

�jBTW;V j
�
;
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which is PW;V integrable. Therefore, applying the dominated convergence theo-
rem to the right hand side of (47), we obtain:

�P

 

sup
u�0
jB�u j � �

!

�����!
�!C1

0:

Since B� is bounded in L1, this proves, from Azéma-Gundy-Yor [AGY80,
Théorème 1], the uniform integrability of B� .

3. We now suppose that EŒ�.X/� < 1. Applying the previous computation of
Point 1. to the submartingale .�.B�u /; u � 0/ (� is convex), we obtain

sup
u�0

E
�
�.B�u /

� D lim
u!C1 " E

�
�.B�u /

� D E Œ�.B� /�

D E Œ�.X/� <1: (48)

Note that, under the hypothesis E Œ�.X/� < 1, (48) gives another proof of the
fact that B� is a uniformly integrable martingale ([Mey66, Chap. 2, Théorème
T22]).

On the other hand, from Doob’s L logL inequality [RY99, p. 55],

E

"

sup
u�0
jB�u j

#

� e

e � 1

 

1C sup
u�0

E
�
�.B�u /

�
!

D e

e � 1 .1C E Œ�.X/�/ <1

from (48). Therefore,B� belongs toH 1. Actually, the martingaleB� belongs to
the L logL class (cf. [RY99, Exercise 1.16]).

ut

3.3.1 Remark

By Azéma-Gundy-Yor [AGY80, Théorème 1], we also deduce from the above
Points 1. and 2. that:

lim
�!C1

�P
�p
� � �� D 0:

We now complete Theorem 9 when the r.v. X admits moments of order p > 1.
We start with p D 2.

Theorem 10. The following properties are equivalent:

(i) EŒV � <1 and EŒ�W � <1.
(ii) EŒX2� <1.

(iii) EŒ� � <1.
(iv) The martingale B� is in H 2.
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Moreover, if these properties are satisfied, then

EŒX2� D EŒV �EŒ�W � D EŒ� �:

Proof (Proof of Theorem 10). We deduce from (30) and (31) by addition:

EŒX2� D EŒV �EŒ�W �:

This entails the equivalence of properties i/ and i i/.

On the other hand, if b � 0 and a < 0, the martingale
�
B2u^Ta;b � .u ^ Ta;b/;

u � 0/ is uniformly integrable and hence, EŒTa;b � D E

h
B2Ta;b

i
D �ab. Conse-

quently,
EŒ� � D EŒTW;V � D �EŒW V � D EŒV �EŒ�W �:

This shows that properties .i/ and .iii/ are equivalent.

By Doob’s L2 inequality,

E

2

4
 

sup
u�0
jB�u j

!23

5 � 4 sup
u�0

E

h�
B�u
�2i D 4EŒ� �

Hence, .iii/ H) .iv/. The converse follows from:

E Œu ^ �� D E

h�
B�u
�2i � E

2

4
 

sup
u�0
jB�u j

!23

5 ;

upon letting u tend toC1. Therefore:

EŒ� � � E

2

4
 

sup
u�0
jB�u j

!23

5 � 4EŒ� �:

ut
We now replace the L2 space by Lp for p > 1.

Theorem 11. Let p > 1. The following properties are equivalent:

(i) EŒ.V ^ .�W //.V p�1 C .�W /p�1/� <1.
(ii) EŒjX jp � <1.

(iii) EŒ�p=2� <1.
(iv) The martingale B� is in Hp .
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Proof (Proof of Theorem 11).

1. By (29), properties .i/ and .ii/ are equivalent.
2. Since we know from Theorem 9 that B� is uniformly integrable under the con-

dition that X is integrable and centered, then properties .ii/, .iii/ and .iv/ are
well-known to be equivalent, see (27).

ut

3.3.2 Remark

If p � 2, the property E ŒjX jp� < 1 is equivalent to: EŒV p�1� < 1 and
EŒ.�W /p�1� <1. This is proven in Theorem 10 for p D 2.

Now, suppose p > 2. We saw in Remark 3.2.3 that:

EŒjX jp � <1 H) EŒV p�1� <1 and EŒ.�W /p�1� <1:

Conversely, suppose EŒV p�1� < 1 and EŒ.�W /p�1� < 1. In particular, EŒV � <

1 and EŒ.�W /� <1. We deduce from (30) and (31):

EŒjX jp � � EŒ�W � EŒV p�1�C EŒV � EŒ.�W /p�1�

which entails EŒjX jp � <1.

3.4 Construction of Self-similar Martingales

In this section, we consider a real valued, centered, random variable X . Let V , W,
be as in Theorem 7. We set:

�t D inf fu � 0 I Bu D
p
t V or Bu D

p
t W g:

Theorem 12.

(i) The process .B�t ; t � 0/ is a left-continuous martingale such that, for every

fixed t , B�t
(law)D pt X .

(ii) For any c > 0,

.B�
c2t
; t � 0/ (law)D .c B�t ; t � 0/:

(iii) The process .B�t ; t � 0/ is an inhomogeneous Markov process.

In particular, .B�t ; t � 0/ is a martingale associated to the peacock .
p
tX; t � 0/

(see Sect. 1.4 in the General Introduction).
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Proof (Proof of Theorem 12).

1. By the definition of times �t and the continuity of B , one easily sees that the
process .�t ; t � 0/ is a left-continuous increasing process. As a consequence,
.B�t ; t � 0/ is a left-continuous process.

2. Since, for a given t � 0, .Mu WD Bu^�t ; u � 0/ is a uniformly integrable
martingale, and for s < t , �s � �t , then .B�t ; t � 0/ is a martingale.

Let, for c > 0, .B.c/t WD c Bc�2t ; t � 0/, and denote by .�
.c/
t / the family

of stopping times associated with the Brownian motion B.c/. In other words,

�
.c/
t D inffu � 0 I B.c/u D pt V or B.c/u D pt W g:

We easily obtain, for every t � 0, � .c/t D c2 �c�2t and then, B.c/
�
.c/

c2t

D c B�t ,

which proves Point iii) since .B.c/t ; t � 0/
(law)D .Bt ; t � 0/. Moreover, since

B�1
(law)D X , we also have, for every t � 0, B�t

(law)D pt X .
3. We now consider the Brownian motion B as a strong Markov process in R. We

may definee� t by:

e� t D inffu � 0 I Bu 62�
p
t W;
p
t V Œg:

(Note thate� t D �t under P0, whereas, if x ¤ 0, thene� t ¤ �t under Px.) For
s < t , we have with the usual notation about time translation operators .�u/,

e� t De� s Ce� t ı �e�s
and consequently: Be� t D Be� t ı �e�s , which entails, for f a bounded Borel
function,

EŒf .Be� t / j Fe�s � D EBe�s
Œf .Be� t /� ;

which proves Point ii). More precisely, the transition semi group: .Ps;t ; 0 �
s < t/ is given by:

Ps;tf .x/

D E

" 

f .
p
t V /

x �pt Wp
t .V �W /

C f .pt W / �x C
p
t Vp

t .V �W /

!

1�
p
t W;

p
t V Œ.x/

#

Cf .x/P
�
x 62 �pt W;pt V Œ

�
:

Thus, .Ps;t ; 0 � s < t/ is a transition semi group of a very special kind since,
actually, Ps;t does not depend on s 2 Œ0; t Œ.

ut



502 F. Hirsch et al.

References

Alb08. Albin, J.M.P.: A continuous non-Brownian motion martingale with Brownian motion
marginal distributions. Stat. Probab. Lett. 78(6), 682–686 (2008)

Azé85. Azéma, J.: Sur les fermés aléatoires. In: Séminaire de probabilités, XIX, 1983/84.
Lecture Notes in Mathematics, vol. 1123, pp. 397–495. Springer, Berlin (1985)

AGY80. Azéma, J., Gundy, R.F., Yor, M.: Sur l’intégrabilité uniforme des martingales contin-
ues. In: Séminaire de Probabilités, XIV (Paris, 1978/1979) (French). Lecture Notes in
Mathematics, vol. 784, pp. 53–61. Springer, Berlin (1980)

AY89. Azéma, J., Yor, M.: Étude d’une martingale remarquable. In: Séminaire de Proba-
bilités, XXIII. Lecture Notes in Mathematics, vol. 1372, pp. 88–130. Springer, Berlin
(1989)

AY79. Azéma, J., Yor, M.: Une solution simple au problème de Skorokhod. In: Séminaire
de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78). Lecture Notes in Math-
ematics, vol. 721, pp. 90–115. Springer, Berlin (1979)

BDMY10. Baker, D., Donati-Martin, C., Yor, M.: A sequence of Albin type continuous martin-
gales, with Brownian marginals and scaling. In this volume (2010)

BFRY06. Bertoin, J., Fujita, T., Roynette, B., Yor, M.: On a particular class of self-
decomposable random variables: the durations of Bessel excursions straddling inde-
pendent exponential times. Probab. Math. Stat. 26(2), 315–366 (2006)

BGT89. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular variation. Encyclopedia of Math-
ematics and its Applications, vol. 27. Cambridge University Press, Cambridge (1989)

Bre68. Breiman, L.: Probability. Addison-Wesley, Reading, MA (1968)
CY03. Chaumont, L., Yor, M.: Exercises in probability. Cambridge Series in Statistical and

Probabilistic Mathematics. A guided tour from measure theory to random processes,
via conditioning, vol. 13. Cambridge University Press, Cambridge (2003)

DS88. Dunford, N., Schwartz, J.T.: Linear operators. Part I. Wiley Classics Library. Wiley,
NY (1988). General theory, with the assistance of William G. Bade and Robert G. Bar-
tle. Reprint of the 1958 original, A Wiley-Interscience Publication

Éme89. Émery, M.: On the Azéma martingales. In: Séminaire de Probabilités, XXIII. Lecture
Notes in Mathematics, vol. 1372, pp. 66–87. Springer, Berlin (1989)

Éme96. Émery, M.: On the chaotic representation property for martingales. In: Probability
theory and mathematical statistics (St. Petersburg, 1993), pp. 155–166. Gordon and
Breach, Amsterdam (1996)

Éme90. Émery, M.: Sur les martingales d’Azéma (suite). In: Séminaire de Probabilités,
XXIV, 1988/89. Lecture Notes in Mathematics, vol. 1426, pp. 442–447. Springer,
Berlin (1990)

Hal68. Hall, W.J.: On the Skorokhod embedding theorem. In: Technical Report, vol. 33.
Stanford University, Department of Statistics, (1968)

HK07. Hamza, K., Klebaner, F.C.: A family of non-Gaussian martingales with Gaussian
marginals. J. Appl. Math. Stoch. Anal. ID 92723, 19 pp. (2007)

HPRY10. Hirsch, F., Profeta, C., Roynette, B., Yor, M.: Peacocks and associated martingales.
(Submitted to Bacconi-Springer) (2010)

JY81. Jeulin, T., Yor, M.: Sur les distributions de certaines fonctionnelles du mouve-
ment brownien. In: Séminaire de Probabilités, XV (Univ. Strasbourg, Strasbourg,
1979/1980) (French). Lecture Notes in Mathematics, vol. 850, pp. 210–226. Springer,
Berlin (1981)

Kel72. Kellerer, H.G.: Markov-Komposition und eine Anwendung auf Martingale. Math.
Ann. 198, 99–122 (1972)

MY02. Madan, D.B., Yor, M.: Making Markov martingales meet marginals: with explicit
constructions. Bernoulli 8(4), 509–536 (2002)

Mey89a. Meyer, P.-A.: Construction de solutions d’ “équations de structure”. In: Séminaire de
Probabilités, XXIII, Lecture Notes in Mathematics, vol. 1372, pp. 142–145. Springer,
Berlin (1989)



Constructing Self-Similar Martingales via Two Skorokhod Embeddings 503

Mey89b. Meyer, P.-A.: Équations de structure des martingales et probabilités quantiques.
In: Séminaire de Probabilités, XXIII, Lecture Notes in Mathematics, vol. 1372,
pp. 139–141. Springer, Berlin (1989)

Mey66. Meyer, P.-A.: Probabilités et potentiel. Publications de l’Institut de Mathéma-
tique de l’Université de Strasbourg, No. XIV. Actualités Scientifiques et Industrielles,
No. 1318. Hermann, Paris (1966)

MYY09. Meziane, K., Yen, J.-Y., Yor, M.: Some examples of Skorokhod embeddings obtained
from the Azéma-Yor algorithm. In preparation (2009)

Obl04. Oblój, J.: The Skorokhod embedding problem and its offspring. Probab. Surv. 1,
321–390 (electronic) (2004)

Ole08. Oleszkiewicz, K.: On fake Brownian motions. Stat. Probab. Lett. 78(11), 1251–1254
(2008)

Pie80. Pierre, M.: Le problème de Skorokhod: une remarque sur la démonstration d’Azéma-
Yor. In: Séminaire de Probabilités, XIV (Paris, 1978/1979) (French). Lecture Notes
in Mathematics, vol. 784, pp. 392–396. Springer, Berlin (1980)

RY99. Revuz, D., Yor, M.: Continuous martingales and Brownian motion. Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
vol. 293, 3rd edn. Springer, Berlin (1999)

Rog81. Rogers, L.C.G.: Williams’ characterisation of the Brownian excursion law: proof
and applications. In: Séminaire de Probabilités, XV (Univ. Strasbourg, Strasbourg,
1979/1980) (French). Lecture Notes in Mathematics, vol. 850, pp. 227–250. Springer,
Berlin (1981)

Yor97. Yor, M.: Some aspects of Brownian motion. Part II: Some recent martingale problems.
Lecture Notes in Mathematics ETH Zürich. Birkhäuser, Basel (1997)



Lecture Notes in Mathematics
For information about earlier volumes
please contact your bookseller or Springer
LNM Online archive: springerlink.com

Vol. 1819: D. Masser, Yu. V. Nesterenko, H. P. Schlick-
ewei, W. M. Schmidt, M. Waldschmidt, Diophantine
Approximation. Cetraro, Italy 2000. Editors: F. Amoroso,
U. Zannier (2003)
Vol. 1820: F. Hiai, H. Kosaki, Means of Hilbert Space
Operators (2003)
Vol. 1821: S. Teufel, Adiabatic Perturbation Theory in
Quantum Dynamics (2003)
Vol. 1822: S.-N. Chow, R. Conti, R. Johnson, J. Mallet-
Paret, R. Nussbaum, Dynamical Systems. Cetraro, Italy
2000. Editors: J. W. Macki, P. Zecca (2003)
Vol. 1823: A. M. Anile, W. Allegretto, C. Ringhofer,
Mathematical Problems in Semiconductor Physics.
Cetraro, Italy 1998. Editor: A. M. Anile (2003)
Vol. 1824: J. A. Navarro González, J. B. Sancho de Salas,
C1 – Differentiable Spaces (2003)
Vol. 1825: J. H. Bramble, A. Cohen, W. Dahmen, Mul-
tiscale Problems and Methods in Numerical Simulations,
Martina Franca, Italy 2001. Editor: C. Canuto (2003)
Vol. 1826: K. Dohmen, Improved Bonferroni Inequal-
ities via Abstract Tubes. Inequalities and Identities of
Inclusion-Exclusion Type. VIII, 113 p, 2003.
Vol. 1827: K. M. Pilgrim, Combinations of Complex
Dynamical Systems. IX, 118 p, 2003.
Vol. 1828: D. J. Green, Gröbner Bases and the Computa-
tion of Group Cohomology. XII, 138 p, 2003.
Vol. 1829: E. Altman, B. Gaujal, A. Hordijk, Discrete-
Event Control of Stochastic Networks: Multimodularity
and Regularity. XIV, 313 p, 2003.
Vol. 1830: M. I. Gil’, Operator Functions and Localization
of Spectra. XIV, 256 p, 2003.
Vol. 1831: A. Connes, J. Cuntz, E. Guentner, N. Hig-
son, J. E. Kaminker, Noncommutative Geometry, Martina
Franca, Italy 2002. Editors: S. Doplicher, L. Longo (2004)
Vol. 1832: J. Azéma, M. Émery, M. Ledoux, M. Yor
(Eds.), Séminaire de Probabilités XXXVII (2003)
Vol. 1833: D.-Q. Jiang, M. Qian, M.-P. Qian, Mathe-
matical Theory of Nonequilibrium Steady States. On the
Frontier of Probability and Dynamical Systems. IX, 280
p, 2004.
Vol. 1834: Yo. Yomdin, G. Comte, Tame Geometry with
Application in Smooth Analysis. VIII, 186 p, 2004.
Vol. 1835: O.T. Izhboldin, B. Kahn, N.A. Karpenko,
A. Vishik, Geometric Methods in the Algebraic Theory
of Quadratic Forms. Summer School, Lens, 2000. Editor:
J.-P. Tignol (2004)
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Editorial Policy (for Multi-Author Publications: Summer Schools/Intensive Courses)

1. Lecture Notes aim to report new developments in all areas of mathematics and their
applications - quickly, informally and at a high level. Mathematical texts analysing new
developments in modelling and numerical simulation are welcome. Manuscripts should be
reasonably self-contained and rounded off. Thus they may, and often will, present not only
results of the author but also related work by other people. They should provide sufficient
motivation, examples and applications. There should also be an introduction making the
text comprehensible to a wider audience. This clearly distinguishes Lecture Notes from
journal articles or technical reports which normally are very concise. Articles intended for
a journal but too long to be accepted by most journals, usually do not have this “lecture
notes” character.

2. In general SUMMER SCHOOLS and other similar INTENSIVE COURSES are held to
present mathematical topics that are close to the frontiers of recent research to an audience
at the beginning or intermediate graduate level, who may want to continue with this area of
work, for a thesis or later. This makes demands on the didactic aspects of the presentation.
Because the subjects of such schools are advanced, there often exists no textbook, and so
ideally, the publication resulting from such a school could be a first approximation to such
a textbook. Usually several authors are involved in the writing, so it is not always simple
to obtain a unified approach to the presentation.

For prospective publication in LNM, the resulting manuscript should not be just a col-
lection of course notes, each of which has been developed by an individual author with
little or no co-ordination with the others, and with little or no common concept. The subject
matter should dictate the structure of the book, and the authorship of each part or chapter
should take secondary importance. Of course the choice of authors is crucial to the quality
of the material at the school and in the book, and the intention here is not to belittle their
impact, but simply to say that the book should be planned to be written by these authors
jointly, and not just assembled as a result of what these authors happen to submit.

This represents considerable preparatory work (as it is imperative to ensure that the
authors know these criteria before they invest work on a manuscript), and also consider-
able editing work afterwards, to get the book into final shape. Still it is the form that holds
the most promise of a successful book that will be used by its intended audience, rather
than yet another volume of proceedings for the library shelf.

3. Manuscripts should be submitted either online at www.editorialmanager.com/lnm/ to
Springer’s mathematics editorial, or to one of the series editors. Volume editors are ex-
pected to arrange for the refereeing, to the usual scientific standards, of the individual
contributions. If the resulting reports can be forwarded to us (series editors or Springer)
this is very helpful. If no reports are forwarded or if other questions remain unclear in
respect of homogeneity etc, the series editors may wish to consult external referees for an
overall evaluation of the volume. A final decision to publish can be made only on the basis
of the complete manuscript; however a preliminary decision can be based on a pre-final
or incomplete manuscript. The strict minimum amount of material that will be considered
should include a detailed outline describing the planned contents of each chapter.

Volume editors and authors should be aware that incomplete or insufficiently close
to final manuscripts almost always result in longer evaluation times. They should also
be aware that parallel submission of their manuscript to another publisher while under
consideration for LNM will in general lead to immediate rejection.



4. Manuscripts should in general be submitted in English. Final manuscripts should contain
at least 100 pages of mathematical text and should always include

– a general table of contents;
– an informative introduction, with adequate motivation and perhaps some historical

remarks: it should be accessible to a reader not intimately familiar with the topic
treated;

– a global subject index: as a rule this is genuinely helpful for the reader.
Lecture Notes volumes are, as a rule, printed digitally from the authors’ files. We strongly
recommend that all contributions in a volume be written in the same LaTeX version,
preferably LaTeX2e. To ensure best results, authors are asked to use the LaTeX2e style
files available from Springer’s web-server at

ftp://ftp.springer.de/pub/tex/latex/svmonot1/ (for monographs) and
ftp://ftp.springer.de/pub/tex/latex/svmultt1/ (for summer schools/tutorials).

Additional technical instructions are available on request from: lnm@springer.com.
5. Careful preparation of the manuscripts will help keep production time short be-

sides ensuring satisfactory appearance of the finished book in print and online. After
acceptance of the manuscript authors will be asked to prepare the final LaTeX source
files and also the corresponding dvi-, pdf- or zipped ps-file. The LaTeX source files are
essential for producing the full-text online version of the book. For the existing online vol-
umes of LNM see: http://www.springerlink.com/openurl.asp?genre=journal&issn=0075-
8434.

The actual production of a Lecture Notes volume takes approximately 12 weeks.
6. Volume editors receive a total of 50 free copies of their volume to be shared with the

authors, but no royalties. They and the authors are entitled to a discount of 33.3% on the
price of Springer books purchased for their personal use, if ordering directly from Springer.

7. Commitment to publish is made by letter of intent rather than by signing a formal contract.
Springer-Verlag secures the copyright for each volume. Authors are free to reuse material
contained in their LNM volumes in later publications: a brief written (or e-mail) request
for formal permission is sufficient.
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