
7. An Assignment Problem

7.1 Introduction

Given positive numbers c(i, j), i, j ≤ N , the assignment problem is to find

min
σ

∑

i≤N

c(i, σ(i)) , (7.1)

where σ ranges over all permutations of {1, . . . , N}. In words, if c(i, j) rep-
resents the cost of assigning job j to worker i, we want to minimize the total
cost when exactly one job is assigned to each worker.

We shall be interested in the random version of the problem, where the
numbers c(i, j) are independent and uniformly distributed over [0, 1].

Mézard and Parisi [103], [104] studied (7.1) by introducing a suitable
Hamiltonian, and conjectured that

lim
N→∞

E min
σ

∑

i≤N

c(i, σ(i)) =
π2

6
. (7.2)

This was proved by D. Aldous [2]. Aldous takes advantage of a feature of
the present model, that makes it rather special among the various models we
studied: the existence of a “limiting object” (which he discovered [1]).

In a related direction, G. Parisi conjectured the following remarkable
identity. If the r.v.s c(i, j) are independent exponential i.e. they satisfy
P(c(i, j) ≥ x) = e−x for x ≥ 0, then we have

E min
σ

∑

i≤N

c(i, σ(i)) = 1 +
1
22

+ · · · + 1
N2

. (7.3)

The link with (7.2) is that it can be shown that if the r.v.s c(i, j) are
i.i.d., and their common distribution has a density f on R

+ with respect
to Lebesgue measure, then if f is continuous in a neighborhood of 0, the
limit in (7.2) depends only on f(0). (The intuition for this is simply that all
the numbers c(i, σ(i)) relevant in the computation of the minimum in (7.2)
should be very small for large N , so that only the part of the distribution of
c(i, j) close to 0 matters.) Thus it makes no difference to assume that c(i, j)
is uniform over [0, 1] or is exponential of mean 1.
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Vast generalizations of Parisi’s conjecture have been recently proved [109],
[96]. Yet the disordered system introduced by Mézard and Parisi remains of
interest. This model is obviously akin to the other models we consider; yet it
is rather different. In the author’s opinion, this model demonstrates well the
far-reaching nature of the ideas underlying the theory of mean field models
for spin glasses.

It is a great technical challenge to prove rigorously anything at all concern-
ing the original model of Mézard and Parisi. This challenge has yet to be met.
We will consider a slightly different model, that turns out to be easier, but
still of considerable interest. In this model, we consider two integers M,N ,
M ≥ N . We consider independent r.v.s (c(i, j))i≤N,j≤M that are uniform
over [0, 1]. The configuration space is the set ΣN,M of all one-to-one maps σ
from {1, . . . , N} to {1, . . . ,M}. On this space we consider the Hamiltonian

HN,M (σ) = βN
∑

i≤N

c(i, σ(i)) , (7.4)

where β is a parameter. The reader observes that there is no minus sign in
this formula, that is, the Boltzmann factor is

exp
(
−βN

∑

i≤N

c(i, σ(i))
)

.

Given a number α > 0, we will study the system for N → ∞, M = �N(1+α)�,
and our results will hold for β ≤ β(α), where, unfortunately, limα→0 β(α) = 0.
The original model of Mézard and Parisi is the case M = N , i.e. α = 0. A
step towards understanding this model would be the following.

Research Problem 7.1.1. (Level 2) Extend the results of the present chap-
ter to the case β ≤ β0 where β0 is independent of α.

Even in the domain β ≤ β(α) our results are in a sense weaker than those
of the previous chapters. We do not study the model for given large values
of N and M , but only in the limit N → ∞ and M/N → α, and we do not
obtain a rate for several of the convergence results.

One of the challenges of the present situation is that it is not obvious
how to formulate the correct questions. We expect (under our condition that
β is small) that “the spins at two different sites are nearly independent”.
Here this should mean that when i1 �= i2, under Gibbs’ measure the variables
σ 	→ σ(i1) and σ 	→ σ(i2) are nearly independent. But how could one quantify
this phenomenon in a way suitable for a proof by induction?

We consider the partition function

ZN,M =
∑

σ

exp(−HN,M (σ)) , (7.5)
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where the summation is over all possible values of σ in ΣN,M . Throughout
the chapter we write

a(i, j) = exp(−βNc(i, j)) , (7.6)

so that
ZN,M =

∑

σ

∏

i≤N

a(i, σ(i)) .

The cavity method will require removing elements from {1, . . . , N} and
{1, . . . , M}. Given a set A ⊂ {1, . . . , N} and a set B ⊂ {1, . . . ,M} such that
N − cardA ≤ M − cardB, we write

ZN,M (A; B) =
∑

σ

∏
a(i, σ(i)) .

The product is taken over i ∈ {1, . . . , N}\A and the sum is taken over
the one-to-one maps σ from {1, . . . , N}\A to {1, . . . , M}\B. Thus ZN,M =
ZN,M (∅; ∅). When A = {i1, i2, . . .} and B = {j1, j2, . . .} we write

ZN,M (A, B) = ZN,M (i1, i2, . . . ; j1, j2, . . .) .

Rather than working directly with Gibbs’ measure, we will prove that

ZN,M (i; j)
ZN,M


 ZN,M (∅; j)
ZN,M

ZN,M (i; ∅)
ZN,M

. (7.7)

It should be obvious that this is a very strong property, and that it deals with
independence. One can also get convinced that it deals with Gibbs’ measure
by observing that

G({σ(i) = j}) = a(i, j)
ZN,M (i, j)

ZN,M
.

We consider the quantities

uN,M (j) =
ZN,M (∅; j)

ZN,M
; wN,M (i) =

ZN,M (i; ∅)
ZN,M

. (7.8)

These quantities occur in the right-hand side of (7.7). The number uN,M (j)
is the Gibbs probability that j does not belong to the image of {1, . . . , N}
under the map σ. In particular we have 0 ≤ uN,M (j) ≤ 1. (On the other
hand we only know that wN,M (i) > 0.)

Having understood that these quantities are important, we would like
to know something about the family (uN,M (j))j≤M (or (wN,M (i))i≤N ). An
optimistic thought is that this family looks like an i.i.d. sequence drawn out
of a certain distribution, that we would like to describe, probably as a fixed
point of a certain operator. Analyzing the problem, it is not very difficult to
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guess what the operator should be; the unpleasant surprise is that it does
not seem obvious that this operator has a fixed point, and this contributes
significantly to the difficulty of the problem. In order to state our main result,
let us describe this operator. Of course, the motivation behind this definition
will become clear only gradually.

Consider a standard Poisson point process on R
+ (that is, its intensity

measure is Lebesgue’s measure) and denote by (ξi)i≥1 an increasing enumer-
ation of the points it produces. Consider a probability measure η on R

+, and
i.i.d. r.v.s (Yi)i≥1 distributed according to η, which are independent of the
r.v.s ξi. We define

A(η) = L
(

1∑
i≥1 Yi exp (−βξi/(1 + α))

)
(7.9)

B(η) = L
(

1
1 +

∑
i≥1 Yi exp(−βξi)

)
, (7.10)

where of course L(X) is the law of the r.v. X. The dependence on β and α
is kept implicit.

Theorem 7.1.2. Given α > 0, there exists β(α) > 0 such that for β ≤ β(α)
there exists a unique pair μ, ν where μ is a probability measure on [0, 1] and
ν is a probability measure on R

+ such that
∫

xdμ(x) =
α

1 + α
; μ = B(ν) ; ν = A(μ) . (7.11)

Moreover if M = �N(1 + α)�, we have

μ = lim
N→∞

L(uN,M (M)) ; ν = lim
N→∞

L(wN,M (N)) . (7.12)

Research Problem 7.1.3. (Level 2) Find a direct proof of the existence of
the pair (μ, ν) as in (7.11).

One intrinsic difficulty is that there exists such a pair for each value of α
(not too small); so one cannot expect that the operator B ◦A is a contraction
for a certain distance. The way we will prove (7.11) is by showing that a
cluster point of the sequence (L(uN,M (M)),L(wN,M (N))) is a solution of
these equations.

While it is not entirely obvious what are the relevant questions one should
ask about the system, the following shows that the objects of Theorem 7.1.2
are of central importance.

Theorem 7.1.4. Given α, for β ≤ β(α) we have

lim
N→∞

1
N

E log ZN,M = −(1 + α)
∫

log xdμ(x) −
∫

log xdν(x) . (7.13)
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7.2 Overview of the Proof

In this section we try to describe the overall strategy. The following funda-
mental identities are proved in Lemma 7.3.4 below

uN,M (M) =
1

1 +
∑

k≤N a(k, M)wN,M−1(k)
(7.14)

wN,M (N) =
1∑

�≤M a(N, 
)uN−1,M (
)
. (7.15)

Observe that in the right-hand side of (7.14) the r.v.s a(k, M) are independent
of the numbers wN,M−1(k), and similarly in (7.15). We shall prove that

wN,M (k) 
 wN,M−1(k) 
 wN,M−2(k) . (7.16)

This fact is not easy. It is intimately connected to equation (7.7), and is
rigorously established in Theorem 7.4.7 below.

Once we have (7.16) we see from (7.14) that

uN,M (M) 
 1
1 +

∑
k≤N a(k, M)wN,M−2(k)

, (7.17)

and by symmetry between M and M − 1 that

uN,M (M − 1) 
 1
1 +

∑
k≤N a(k, M − 1)wN,M−2(k)

. (7.18)

As a consequence, given the numbers wN,M−2(k), the r.v.s uN,M (M) and
uN,M (M − 1) are nearly independent. Their common law depends only on
the empirical measure

1
N

∑

i≤N

δwN,M−2(i) ,

which, by (7.16), is nearly

νN =
1
N

∑

i≤N

δwN,M (i) . (7.19)

We consider an independent sequence of r.v.s (Xk)k≥1 uniformly dis-
tributed on [0, 1], independent of all the other sources of randomness, and
we set

a(k) = exp(−βNXk) . (7.20)

The reason this sequence is of fundamental importance for the present model
is that, given j, the sequence (a(k, j))k of r.v.s has the same distribution
as the sequence (a(k))k, and, given i, this is also the case of the sequence
(a(i, k))k.
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Consider the random measure μN on [0, 1] given by

μN = La

(
1

1 +
∑

k≤N a(k)wN,M (k)

)
,

where La denotes the law in the randomness of the variables a(k), when all
the other sources of randomness are fixed.

Thus, given the numbers wN,M (k), the r.v.s uN,M (M) and uN,M (M − 1)
are nearly independent with common law μN . By symmetry this is true for
each pair of r.v.s uN,M (j) and uN,M (k).

Therefore we expect that the empirical measure

μN =
1
M

∑

j≤M

δuN,M (j)

is nearly μN .
Since μN is a continuous function of νN , it follows that if νN is concen-

trated (in the sense that it is nearly non-random), then such is the case of
μN , that is nearly concentrated around its mean μ′

N , and therefore μN itself
is concentrated around μ′

N .
We can argue similarly that if μN is concentrated around μ′

N , then νN

must be concentrated around a certain measure ν′
N that can be calculated

from μN . The hard part of the proof is to get quantitative estimates showing
that if β is sufficiently small, then these cross-referential statements can be
combined to show that both μN and νN are concentrated around μ′

N and
ν′

N respectively. Now, the way μ′
N is obtained from ν′

N means in the limit
that μ′

N 
 B(ν′
N ). Similarly, ν′

N 
 A(μ′
N ). Also, μ′

N = L(uN,M (M)) and
ν′

M = L(wN,M (N)), so μ = limN L(uN,M (M)) and ν = limN L(wN,M (N))
satisfy μ = B(ν) and ν = A(μ).

7.3 The Cavity Method

We first collect some simple facts.

Lemma 7.3.1. If i /∈ A, we have

ZN,M (A; B) =
∑

�/∈B

a(i, 
)ZN,M (A ∪ {i} ; B ∪ {
}) . (7.21)

If j /∈ B, we have

ZN,M (A; B) = ZN,M (A; B ∪ {j}) +
∑

k/∈A

a(k, j)ZN,M (A ∪ {k} ; B ∪ {j}) .

(7.22)
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Proof. One replaces each occurrence of ZN,M (·; ·) by its value and one checks
that the same terms occur in the left-hand and right-hand sides. �

The following deserves no proof.

Lemma 7.3.2. If M /∈ B, we have

ZN,M (A; B ∪ {M}) = ZN,M−1(A; B) . (7.23)

If N /∈ A, we have

ZN,M (A ∪ {N}; B) = ZN−1,M (A; B) . (7.24)

In (7.24), and in similar situations below, we make the convention that
ZN−1,M (·; ·) is considered for a parameter β′ such that β′(N − 1) = βN .

The following is also obvious from the definitions, yet it is fundamental.

Lemma 7.3.3. We have
∑

�≤M

ZN,M (∅; 
) = (M − N)ZN,M (7.25)

and thus ∑

�≤M

uN,M (
) = M − N . (7.26)

To prove (7.26) we can also observe that uN,M (
) is the Gibbs probability
that 
 does not belong to the image under σ of {1, · · · , N}, so that the left-
hand side of (7.26) is the expected number of integers that do not belong to
this image, i.e. M −N . In particular (7.26) implies by symmetry between the
values of 
 that EuN,M (M) = (M − N)/M 
 α/(1 + α), so that any cluster
point μ of the sequence L(uN,M (M)) satisfies

∫
xdμ(x) = α/(1 + α).

Lemma 7.3.4. We have

uN,M (M) =
ZN,M−1

ZN,M
=

1
1 +

∑
k≤N a(k, M)wN,M−1(k)

(7.27)

wN,M (N) =
ZN−1,M

ZN,M
=

1∑
�≤M a(N, 
)uN−1,M (
)

. (7.28)

Proof. We use (7.22) with A = B = ∅ and j = M to obtain

ZN,M = ZN,M (∅; M) +
∑

k≤N

a(k, M)ZN,M (k; M) .

Using (7.23) with A = ∅ or A = {k} and B = ∅ we get
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ZN,M = ZN,M−1 +
∑

k≤N

a(k, M)ZN,M−1(k; ∅)

= ZN,M−1

(
1 +

∑

k≤N

a(k, M)wN,M−1(k)
)

. (7.29)

This proves (7.27). The proof of (7.28) is similar, using now (7.21) and (7.24).
�

It will be essential to consider the following quantity, where i ≤ N :

LN,M (i) =
ZN,M ZN,M−1(i; ∅) − ZN,M (i; ∅)ZN,M−1

Z2
N,M

. (7.30)

The idea is that (7.7) used for j = M implies that ELN,M (i)2 is small.
(This expectation does not depend on i.) Conversely, if ELN,M (i)2 is small
this implies (7.7) for j = M and hence for all values of j by symmetry.

We will also use the quantity

RN,M (j) =
ZN,M ZN,M−1(∅; j) − ZN,M (∅; j)ZN,M−1

Z2
N,M

. (7.31)

It is good to notice that |RN,M (j)| ≤ 2. This follows from (7.23) and the fact
that the quantity ZN,M (A, B) decreases as B increases.

The reason for introducing the quantity RN,M (j) is that it occurs natu-
rally when one tries to express LM,N (i) as a function of a smaller system (as
the next lemma shows).

Lemma 7.3.5. We have

LN,M (N) = −
∑

�≤M−1 a(N, 
)RN−1,M (
) − a(N, M)uN−1,M (M)2
(∑

�≤M a(N, 
)uN−1,M (
)
)2 (7.32)

RN,M (M − 1) = −
∑

k≤N a(k, M)LN,M−1(k)
(
1 +

∑
k≤N a(k, M)wN,M−1(k)

)2 . (7.33)

Proof. Using the definition (7.31) of RN,M (j) with j = M − 1, we have

RN,M (M − 1) =
ZN,M ZN,M−1(∅; M − 1) − ZN,M (∅; M − 1)ZN,M−1

Z2
N,M

.

(7.34)
As in (7.29), but using now (7.22) with B = {M − 1} and j = M we obtain:

ZN,M (∅; M − 1) = ZN,M−1(∅; M − 1)

+
∑

k≤N

a(k, M)ZN,M−1(k; M − 1) . (7.35)

Using this and (7.29) in the numerator of (7.34), and (7.29) in the denomina-
tor, and gathering the terms yields (7.33). The proof of (7.32) is similar. ��

We end this section by a technical but essential fact.
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Lemma 7.3.6. We have
∑

j≤M−1

RN,M (j) = −uN,M (M) + uN,M (M)2 . (7.36)

Proof. From (7.25) we have
∑

j≤M−1

ZN,M (∅; j) = (M−N)ZN,M−ZN,M (∅; M) = (M−N)ZN,M−ZN,M−1,

and changing M into M − 1 in (7.25) we get
∑

j≤M−1

ZN,M−1(∅, j) = (M − 1 − N)ZN,M−1 .

These two relations imply (7.36) in a straightforward manner. �

7.4 Decoupling

In this section, we prove (7.7) and, more precisely, the following.

Theorem 7.4.1. Given α > 0, there exists β(α) > 0 such that if β ≤ β(α)
and M = �N(1 + α)�, then for βN ≥ 1

E LN,M (N)2 ≤ K(α)
N

(7.37)

E RN,M (M − 1)2 ≤ K(α)
N

. (7.38)

The method of proof consists of using Lemma 7.3.5 to relate ERN,M (M −
1)2 with ELN,M−1(N)2 and ELN,M (N)2 with ERN−1,M (M − 1)2, and to it-
erate these relations. In the right-hand sides of (7.32) and (7.33), we will first
take expectation in the quantities a(N, 
) and a(k, M), that are probabilisti-
cally independent of the other quantities (an essential fact). Our first task is
to learn how to do this.

We recall the random sequence a(k) = exp(−βNXk) of (7.20), where
(Xk) are i.i.d., uniform over [0, 1], and independent of the other sources of
randomness. The following lemma is obvious.

Lemma 7.4.2. We have

E a(k)p =
1

βpN
(1 − exp(−βpN)) ≤ 1

βpN
. (7.39)

Lemma 7.4.3. Consider numbers (xk)k≤N . Then we have

E

(∑

k≤N

a(k)xk

)2

≤
(

1
2β2N

+
1

2βN

) ∑

k≤N

x2
k . (7.40)
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Proof. Using (7.39) we have

E

(∑

k≤N

a(k)xk

)2

=
∑

k≤N

x2
k E a(k)2 +

∑

k �=�

xk x� E a(k)E a(
)

≤ 1
2βN

∑

k≤N

x2
k +

(
1

βN

)2 ∑

k �=�

|xk| |x�| .

Now, the Cauchy-Schwarz inequality implies:

∑

k �=�

|xk| |x�| ≤
1
2

(∑

k≤N

|xk|
)2

≤ N

2

∑

k≤N

x2
k . ��

Corollary 7.4.4. If β ≤ 1 we have

E RN,M (M − 1)2 ≤ 1
β2

E LN,M−1(N)2 .

Proof. From (7.33) we have

RN,M (M − 1)2 ≤
(

∑

k≤N

a(k, M)LN,M−1(k)

)2

.

The sequence (a(k, M))k≤N has the same distribution as the sequence
(a(k))k≤N , so that taking expectation first in this sequence and using (7.40)
we get, assuming without loss of generality that β ≤ 1,

E RN,M (M − 1)2 ≤ 1
β2N

∑

k≤N

E LN,M−1(k)2 =
1
β2

E LN,M−1(N)2

by symmetry between the values of k. �
This is very crude because in (7.33) the denominator is not of order 1, but

seems to be typically much larger. In order however to prove this, we need to
know that a proportion of the numbers (wN,M−1(k))k≤M are large. We will
prove that this is indeed the case if β ≤ β(α), but we do not know it yet. To
improve on the present approach it seems that we would need to have this
information now. We could not overcome this technical difficulty, that seems
related to Research Problem 7.1.1.

We next turn to the task of taking expectation in (7.32). The rela-
tion (7.26) is crucial here. Since 0 ≤ uN,M (
) ≤ 1 and M − N 
 Nα,
this relation implies that at least a constant proportion of the numbers
(u(
))�≤M = (uN,M (
))�≤M is not small. To understand what happens, con-
sider an independent sequence X� uniformly distributed over [0, 1] and note
that if we reorder the numbers (NX�)�≤M by increasing order, they look like
the sequence (ξi/(1 + α)) (where (ξi)i≥1 is an enumeration of the points of
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a Poisson point process on R
+). The sum

∑
�≤N a(
)u(
) then looks like the

sum
∑

�≤N exp(−βξ�/(1+α))u(σ(
)) where σ is a random permutation, and
it is easy to get convinced that typically it cannot be too small. The precise
technical result we need is as follows.

Proposition 7.4.5. Consider numbers 0 ≤ u(
), u′(
) ≤ 1, for 
 ≤ M . As-
sume that

∑
�≤M u(
) ≥ 4 and

∑
�≤M u′(
) ≥ 4. Consider b with Nb ≤∑

�≤M u(
) and Nb ≤
∑

�≤M u′(
). Then if βN ≥ 1 and if β ≤ b/40, for any
numbers (y(
))�≤M we have

E

(∑
�≤M a(
)y(
)

)2

(∑
�≤M a(
)u(
)

)2(∑
�≤M a(
)u′(
)

)2 ≤ Lβ2

b4

(
1
N

∑

�≤M

y(
)
)2

+
Lβ3

b6N

∑

�≤M

y(
)2 , (7.41)

where a(
) = exp(−βNX�) and L denotes a universal constant.

As will be apparent later, an essential feature is that the second term of this
bound has a coefficient β3 (rather than β2).

Corollary 7.4.6. If β ≤ α/80, βN ≥ 1, M ≥ �N(1 + α)�, M ≤ 3N , we
have

ELN,M (N)2 ≤ Lβ3

α6
ERN−1,M (M − 1)2 +

K(α)
N

. (7.42)

Proof. For 
 ≤ M , let u(
) = uN−1,M (
), and a(
) = a(N, 
). For 
 ≤ M −1
let y(
) = RN−1,M (
), and let y(M) = −uN−1,M (M)2. By (7.32) we have

LN,M (N)2 =

(∑
�≤M a(
)y(
)

)2

(∑
�≤M a(
)u(
)

)4 .

We check first that
∑

�≤M u(
) ≥ 4. Then (7.26) implies

∑

�≤M

u(
) = M − (N − 1) ≥ �N(1 + α)� − N = �Nα� ,

and if β ≤ α/80 and βN ≥ 1, then Nα ≥ 80 and this is certainly ≥ 4. Also

b :=
1
N

∑

�≤M

u(
) ≥ �Nα�
N

≥ α

2

if Nα ≥ 2 and in particular if Nβ ≥ 1 and β ≤ α/80. We then have β ≤ b/40.
Taking expectation in the r.v.s a(
), we can now use (7.41) with u′(
) = u(
)
to obtain
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EaLN,M (N)2 ≤ Lβ2

α4

(
1
N

∑

�≤M

y(
)
)2

+
Lβ3

α6N

∑

�≤M

y(
)2 , (7.43)

where Ea denotes expectation in the r.v.s a(
) only. By (7.36) we have
∣∣∣∣

∑

�≤M

y(
)
∣∣∣∣ = |uN−1,M (M)| ≤ 1

and y(M)2 = uN−1,M (M)4 ≤ 1. Thus (7.43) implies

EaLN,M (N)2 ≤ K(α)
N

+
Lβ3

α6N

∑

�≤M−1

y(
)2 . (7.44)

To prove (7.42) we simply take expectation in (7.44), using that M ≤ 3N
and observing that Ey(
)2 = ERN−1,M (M − 1)2 for 
 ≤ M − 1. ��

Proof of Theorem 7.4.1. To avoid trivial complications, we assume α ≤ 1.
Let us fix N , let us assume M = �N(1 + α)�, and, for k ≤ N let us define

V (k) = E RN−k,M−k(M − k − 1)2 .

In this definition we assume that the values of ZN−k,M ′ that are relevant
for the computation of RN−k,M−k have been computed with the parameter
β replaced by the value β′ such that β′(N − k) = βN . We observe that
M − k = �N(1 + α) − k� ≥ �(N − k)(1 + α)� and M − k ≤ 3(N − k).
Combining Corollaries 7.4.6 and 7.4.4, implies that if β′(N − k) = βN ≥ 1
and β′ ≤ α/80 we have

V (k) ≤ Lβ

α6
V (k + 1) +

K(α)
N

. (7.45)

Let us assume that k ≤ N/2, so that b′ ≤ 2b. Then (7.45) holds whenever
β ≤ α/160. Thus if Lβ/α6 ≤ 1/2, k ≤ N/2 and βN ≥ 1, we obtain

V (k) ≤ 1
2
V (k + 1) +

K(α)
N

.

Combining these relations yields

V (0) ≤ 2−kV (k) +
K(α)

N
≤ 2−k+2 +

K(α)
N

since V (k) ≤ 4. Taking k 
 log N proves (7.38), and (7.37) follows by (7.42).
�

Theorem 7.4.7. Under the conditions of Theorem 7.4.1, for j ≤ M − 1,
i ≤ N − 1 we have
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E
(
uN,M (j) − uN,M−1(j)

)2 ≤ K(α)
N

(7.46)

E
(
uN,M (j) − uN−1,M (j)

)2 ≤ K(α)
N

(7.47)

E
(
wN,M (i) − wN,M−1(i)

)2 ≤ K(α)
N

(7.48)

E
(
wN,M (i) − wN−1,M (i)

)2 ≤ K(α)
N

. (7.49)

Proof. The proofs are similar, so we prove only (7.46). We can assume j =
M − 1. Using (7.29) and (7.35) we get

uN,M (M − 1) =
ZN,M (∅; M − 1)

ZN,M

=
ZN,M−2

ZN,M−1

(
1 +

∑
k≤N a(k, M)wN,M−2(k)

1 +
∑

k≤N a(k, M)wN,M−1(k)

)
.

We observe the identity

LN,M (i) =
ZN,M−1

ZN,M
(wN,M−1(i) − wN,M (i)) ,

which is obvious from (7.30). Using this identity for M − 1 rather than M ,
we obtain

uN,M (M − 1) − uN,M−1(M − 1)

=
ZN,M−2

ZN,M−1

(
1 +

∑
k≤N a(k, N)wN,M−2(k)

1 +
∑

k≤N a(k, N)wN,M−1(k)
− 1

)

=

∑
k≤N a(k, N)LN,M−1(k)

1 +
∑

k≤N a(k, N)wN,M−1(k)
.

Thus (7.47) follows from (7.37) and Lemma 7.4.3. �
We turn to the proof of Proposition 7.4.5, which occupies the rest of this

section. It relies on the following probabilistic estimate.

Lemma 7.4.8. Consider numbers 0 ≤ u(
) ≤ 1, and let b = N−1
∑

�≤M u(
).
Then if βN ≥ 1 and β ≤ b/20 we have for k ≤ 8 that

E

(
∑

�≤M

a(
)u(
)

)−k

≤ Lβk

bk
, (7.50)

where a(
) is as in (7.20).
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There is of course nothing magic about the number 8, this result is true for
any other number (with a different condition on β). As the proof is tedious,
it is postponed to the end of this section.

Proof of Proposition 7.4.5. First we reduce to the case u(
) = u′(
) by
using that 2cc′ ≤ c2 + c′2 for

c =
( ∑

�≤M

a(
)u(
)
)−2

; c′ =
( ∑

�≤M

a(
)u′(
)
)−2

.

Next, let ȧ(
) = a(
) − Ea(
) = a(
) − Ea(1), so that

∑

�≤M

a(
)y(
) = Ea(1)
( ∑

�≤M

y(
)
)

+
∑

�≤M

ȧ(
)y(
)

and since Ea(1) ≤ 1/(βN),
( ∑

�≤M

a(
)y(
)
)2

≤ 2
β2

(
1
N

∑

�≤M

y(
)
)2

+ 2
( ∑

�≤M

ȧ(
)y(
)
)2

.

Using (7.50) for k = 4, it suffices to prove that

E

(∑
�≤M ȧ(
)y(
)

)2

(∑
�≤M a(
)u(
)

)4 ≤ Lβ3

b6N

∑

�≤M

y(
)2 . (7.51)

Expending the square in the numerator of the left-hand side, we see that it
equals I + II, where

I =
∑

�′≤M

y(
′)2E
ȧ(
′)2

(∑
�≤M a(
)u(
)

)4 (7.52)

II =
∑

�1 �=�2

y(
1)y(
2)E
ȧ(
1)ȧ(
2)(∑

�≤M a(
)u(
)
)4 .

To bound the terms of I, let us set S�′ =
∑

��=�′ a(
)u(
), so

E
ȧ(
′)2

(∑
�≤M a(
)u(
)

)4 ≤ E
ȧ(
′)2

S4
�′

= Eȧ(
′)2E
1

S4
�′

by independence. Now since
∑

�≤M u(
) ≥ 4 and u(
′) ≤ 1, we have

∑

��=�′

u(
) ≥ 3
4

∑

�≤M

u(
) ≥ 3
4
b , (7.53)

so using (7.50) for M − 1 rather than M and 3b/4 rather than b we get
ES−4

�′ ≤ Lβ4/b4; since Eȧ(
′)2 ≤ Ea(
′)2 ≤ 1/βN , we have proved that, using
that b ≤ 1 in the second inequality
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I ≤ Lβ3

Nb4

∑

�≤M

y(
)2 ≤ Lβ3

Nb6

∑

�≤M

y(
)2 .

To control the term II, let us set

S(
1, 
2) =
∑

��=�1,�2

a(
)u(
)

and
U = a(
1)u(
1) + a(
2)u(
2) ≥ 0 .

Thus
∑

�≤M a(
)u(
) = S(
1, 
2)+U . Since U ≥ 0, a Taylor expansion yields

1
(∑

�≤M a(
)u(
)
)4 =

1
(S(
1, 
2))4

− 4U

S(
1, 
2)5
+

R
S(
1, 
2)6

(7.54)

where |R| ≤ 15U2. Since S(
1, 
2) is independent of a(
1) and a(
2), and since
Eȧ(
1)ȧ(
2)U = 0, multiplying (7.54) by ȧ(
1)ȧ(
2) and taking expectation
we get

∣∣∣∣∣E
ȧ(
1)ȧ(
2)(∑

�≤M a(
)u(
)
)4

∣∣∣∣∣ ≤ E
15|ȧ(
1)ȧ(
2)|U2

S(
1, 
2)6

= 15E(|ȧ(
1)ȧ(
2)|U2)E
1

S(
1, 
2)6
.

Since U2 ≤ 2(a(
1)2 + a(
2)2) and |ȧ(
2)| ≤ 1, independence implies

E(|ȧ(
1)ȧ(
2)|U2) ≤ 4E(|ȧ(
1)||ȧ(
2)|a(
2)2) ≤ 4E(|ȧ(
1)|)Ea(
2)2 .

Now, Ea(
)2 ≤ 1/(2βN) and E|ȧ(
)| ≤ 2Ea(
) ≤ 2/(βN). Therefore we have

E(|ȧ(
1)ȧ(
2)|U2) ≤ L

(βN)2
.

We also have that ES(
1, 
2)−6 ≤ Lβ6/b6 by (7.50) (used for k = 6 and M−2
rather than M , and proceeding as in (7.53)). Thus

II ≤ Lβ4

b6N2

∑

�1 �=�2

|y(
1)y(
2)| ≤
Lβ4

b6N2

( ∑

�≤M

|y(
)|
)2

≤ Lβ4

b6N

∑

�≤M

y(
)2 ,

and we conclude using that β ≤ 1. ��

The following prepares the proof of Lemma 7.4.8.
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Lemma 7.4.9. If βN ≥ 1 and λ ≥ 1 we have

E exp(−λa(1)) ≤ exp
(
− log λ

2βN

)
.

Proof. Assume first λ ≤ exp βN , so that log λ ≤ βN and

P(λa(1) ≥ 1) = P(expβNX1 ≤ λ) = P

(
X1 ≤ log λ

βN

)
=

log λ

βN
.

Thus, since exp(−x) ≤ 1/2 for x ≥ 1, we have

E exp(−λa(1)) ≤ 1 − 1
2
P(λa(1) ≥ 1)

≤ exp
(
−1

2
P(exp(βNX1) ≤ λ)

)

= exp
(
− log λ

2βN

)
.

Consider next the case λ ≥ exp βN . Observe first that the function θ(x) =
x/ log x increases for x ≥ e so that θ(λ) ≥ θ(exp βN), i.e. λ/ log(λ) ≥
(exp βN)/βN , that is λ exp(−βN) ≥ log λ/βN . Now, since a(1) ≥ exp(−βN)
we have

E exp(−λa(1)) ≤ E exp(−λ exp(−βN)) ≤ exp
(
− log λ

βN

)
. ��

Proof of Lemma 7.4.8. We use the inequality (A.8):

P(Y ≤ t) ≤ (exp λt)E exp(−λY ) (7.55)

for Y =
∑

�≤M a(
)u(
) and any λ ≥ 0. We have

E exp(−λY ) = E exp
(
−λ

∑

�≤M

a(
)u(
)
)

=
∏

�≤M

E exp(−λu�a(
)) .

Since u(
) ≤ 1, Hölder’s inequality implies

E exp(−λu�a(
)) ≤
(
E exp(−λa(
))

)u(�) =
(
E exp(−λa(1))

)u(�)
.

Therefore, assuming λ ≥ 1, and using Lemma 7.4.9 in the second line,

E exp(−λY ) ≤
(
E exp(−λa(1))

)P
�≤M u(�)

≤ exp
(
−

( ∑

�≤M

u(
)
)

log λ

2βN

)

= exp
(
−b log λ

2β

)
, (7.56)



7.5 Empirical Measures 413

using that bN =
∑

�≤M u(
). Thus from (7.55) we get

P

(
Y ≤ tb

2eβ

)
≤ exp

(
− b

2β

(
log λ − λt

e

))
. (7.57)

For t ≤ 1, taking λ = e/t, and since then log λ− λt/e = log e/t− 1 = − log t,
we get

P

(
Y ≤ tb

2eβ

)
≤ tb/2β .

Therefore whenever t ≥ 1, the r.v. X = 1/Y satisfies

P

(
X ≥ 2teβ

b

)
≤ t−b/2β . (7.58)

Now we use (A.33) with F (x) = xk to get, making a change of variable
in the second line,

EXk =
∫ ∞

0

ktk−1P(X ≥ t)dt

=
(

2eβ

b

)k ∫ ∞

0

ktk−1P

(
X ≥ 2eβt

b

)
dt .

We bound P(X ≥ 2eβt/b) by 1 for t ≤ 1 and using (7.58) for t ≥ 1 to get

EXk ≤
(

2eβ

b

)k(
1 + k

∫ ∞

1

t−b/(2β)+k−1dt

)
=

(
2eβ

b

)k(
1 +

k

b/(2β) − k

)
,

from which (7.50) follows since k ≤ 8 and b/(2β) ≥ 10. ��

Exercise 7.4.10. Prove that for a r.v. Y ≥ 0 one has the formula

EY −k =
1

(k − 1)!

∫ ∞

0

tk−1E exp(−tY )dt ,

and use it to obtain the previous bound on EXk = EY −k directly from (7.56).

7.5 Empirical Measures

Throughout the rest of this section, we assume the conditions of Theorem
7.4.1, that is, βN ≥ 1, M = �N(1 + α)� and β ≤ β(α).

Let us pursue our intuition that the sequence (uN,M (j))j≤M looks like it
is i.i.d. drawn out of a certain distribution. How do we find this distribution?
The obvious candidate is the empirical measure
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μN =
1
M

∑

j≤M

δuN,M (j) . (7.59)

We will also consider
νN =

1
N

∑

i≤N

δwN,M (i) . (7.60)

We recall the sequence a(k) = exp(−βNXk), where (Xk) are i.i.d., uni-
form over [0, 1] and independent of the other sources of randomness. Consider
the random measure μN on [0, 1] given by

μN = La

(
1

1 +
∑

k≤N a(k)wN,M (k)

)
,

where La denotes the law in the randomness of the variables a(k) with all
the other sources of randomness fixed. Thus, for a continuous function f on
[0, 1] we have

∫
fdμN = Eaf

(
1

1 +
∑

k≤N a(k)wN,M (k)

)
,

where Ea denotes expectation in the r.v.s a(k) only. Consider the (non-
random) measure μ′

N = EμN , so that
∫

fdμ′
N = Ef

(
1

1 +
∑

k≤N a(k)wN,M (k)

)
.

In this section we shall show that μN 
 μ′
N , and that, similarly, νN 
 ν′

N

where ∫
fdν′

N = Ef

(
1∑

�≤M a(
)uN,M (
)

)
.

In the next section we shall make precise the intuition that “ν′
N determines

μ′
N” and “μ′

N determines ν′
N” to conclude the proof of Theorem 7.1.2.

It is helpful to consider an appropriate distance for probability measures.
Given two probability measures μ, ν on R, we consider the quantity

Δ(μ, ν) = inf E(X − Y )2 ,

where the infimum is over the pairs (X,Y ) of r.v.s such that X has law
μ and Y has law ν. The quantity Δ1/2(μ, ν) is a distance. This statement
is not obvious, but is proved in Section A.11, where the reader may find
more information. This distance is called Wasserstein’s distance between μ
and ν. It is of course related to the transportation-cost distance considered in
Chapter 6, but is more convenient here. Let us observe that since E(X−Y )2 ≥
(EX − EY )2 we have

(∫
xdμ(x) −

∫
xdν(x)

)2

≤ Δ(μ, ν) . (7.61)
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Theorem 7.5.1. The conditions of Theorem 7.4.1 imply

lim
N→∞

EΔ(μN , μ′
N ) = 0 ; lim

N→∞
EΔ(νN , ν′

N ) = 0 . (7.62)

We first collect some simple facts about Δ.

Lemma 7.5.2. We have

Δ

(
1
N

∑

i≤N

δxi ,
1
N

∑

i≤N

δyi

)
= inf

σ

1
N

∑

i≤N

(xi − yσ(i))2 , (7.63)

where the infimum is over all permutations σ of {1, . . . , N}.

We will use this lemma when xi = wN,M (i), and almost surely any two of
these points are distinct. For this reason, we will give the proof only in the
(easier) case where any two of the points xi (resp. yi) are distinct.

Proof. The inequality ≤ should be obvious. To prove the converse inequality,
we observe that if X has law N−1

∑
i≤N δxi and Y has law N−1

∑
i≤N δyi ,

then
E (X − Y )2 =

∑

i,j≤N

P (X = xi, Y = yj)(xi − yj)2 .

We observe that the bistochastic matrices are exactly the matrices aij =
NP(X = xi, Y = yj). Thus the left-hand side of (7.63) is

1
N

inf
∑

i,j≤N

aij(xi − yj)2 ,

where the infimum is over all bistochastic matrices (aij). The infimum is at-
tained at an extreme point, and it is a classical result (“Birkhoff’s theorem”)
that this extreme point is a permutation matrix. �

Lemma 7.5.3. Given numbers w(k), w′(k) ≥ 0 we have

E

(
1

1 +
∑

k≤N a(k)w(k)
− 1

1 +
∑

k≤N a(k)w′(k)

)2

≤ 2
β2N

∑

k≤N

(w(k) − w′(k))2 . (7.64)

Consequently

Δ

(
L

(
1

1 +
∑

k≤N a(k)w(k)

)
,L

(
1

1 +
∑

k≤N a(k)w′(k)

))

≤ 2
β2N

∑

k≤N

(w(k) − w′(k))2 . (7.65)
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Proof. We use Lemma 7.4.3 together with the inequality

(
1

1 +
∑

k≤N a(k)w(k)
− 1

1 +
∑

k≤M a(k)w′(k)

)2

≤
(∑

k≤N

a(k)(w(k) − w′(k))
)2

. ��

The following fact is crucial.

Lemma 7.5.4. For any continuous function f we have

lim
N→∞

E

(
f(uN,M (M)) −

∫
fdμN

) (
f(uN,M (M − 1)) −

∫
fdμN

)
= 0 .

(7.66)

Proof. Recalling the numbers a(k, 
) of (7.6), let us consider

u =
1

1 +
∑

k≤N a(k, M)wN,M−2(k)
.

Using (7.27), (7.64) and (7.48) (with M − 1 instead of M) we obtain

E(uN,M (M) − u)2 ≤ K

N
.

Exchanging the rôles of M and M − 1 shows that if

u′ =
1

1 +
∑

k≤N a(k, M − 1)wN,M−2(k)

we have
E(uN,M (M − 1) − u′)2 = E(uN,M (M) − u)2 ≤ K

N
.

Therefore to prove (7.66) it suffices to prove that

lim
N→∞

E

(
f(u) −

∫
fdμN

) (
f(u′) −

∫
fdμN

)
= 0 . (7.67)

Now by definition of μN we have

E

(
f(u) −

∫
fdμN

)(
f(u′) −

∫
fdμN

)
= E(f(u) − f(u1))(f(u′) − f(u′

1)) ,

where

u1 =
1

1 +
∑

k≤N a(k)wN,M (k)
; u′

1 =
1

1 +
∑

k≤N a′(k)wN,M (k)
,
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and where a(k) = exp(−βNXk) and a′(k) = exp(−βNX ′
k) are independent

of all the other r.v.s involved. Let

u2 =
1

1 +
∑

k≤N a(k)wN,M−2(k)
; u′

2 =
1

1 +
∑

k≤M a′(k)wN,M−2(k)
.

Using again (7.64) and (7.48) we get

E(u1 − u2)2 ≤ K

N
; E(u′

1 − u′
2)

2 ≤ K

N
.

Therefore, to prove (7.67) it suffices to show that

lim
N→∞

E(f(u) − f(u2))(f(u′) − f(u′
2)) = 0 .

Let us denote by Ea expectation only in the r.v.s a(k), a′(k), a(k,M) and
a(k,M − 1), which are probabilistically independent of the r.v.s wN,M−2(k).
Then, by independence,

Ea(f(u) − f(u2))(f(u′) − f(u′
2)) = (Eaf(u) − Eaf(u2))(Eaf(u′) − Eaf(u′

2)).

This is 0 because Eaf(u) = Eaf(u2), as is obvious from the definitions. ��

Corollary 7.5.5. For any continuous function f we have

lim
N→∞

E

(∫
fdμN −

∫
fdμN

)2

= 0 . (7.68)

Proof. We have ∫
fdμN =

1
M

∑

�≤M

f(uN,M (
))

so that, expanding the square and by symmetry

E

(∫
fdμN −

∫
fdμN

)2

=
1
M

E

(
f(uN,M (M)) −

∫
fdμN

)2

+
M − 1

M
E

(
f(uN,M (M)) −

∫
fdμN

) (
f(uN,M (M − 1)) −

∫
fdμN

)
.

We conclude with Lemma 7.5.4. ��
It is explained in Section A.11 why Wasserstein distance defines the weak

topology on the set of probability measures on a compact space. Using (A.73)
we see that (7.68) implies the following.

Corollary 7.5.6. We have

lim
N→∞

EΔ(μN , μN ) = 0 . (7.69)
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Lemma 7.5.7. Consider an independent copy μ̂N of the random measure
μN . Then, recalling that μ′

N = EμN , we have

EΔ(μN , μ′
N ) ≤ EΔ(μN , μ̂N ) . (7.70)

Proof. Let C be the class of pairs f, g of continuous functions such that

∀x, y , f(x) + g(y) ≤ (x − y)2 ,

so that by the duality formula (A.74) and since μ′
N = EμN = Eμ̂N ,

EΔ(μN , μ′
N ) = E sup

(f,g)∈C

(∫
fdμN + E

∫
gdμ̂N

)

≤ E sup
(f,g)∈C

(∫
fdμN +

∫
gdμ̂N

)
= EΔ(μN , μ̂N ) ,

using Jensen’s inequality. ��

Lemma 7.5.8. Consider an independent copy ν∼
N of the random measure νN

defined in (7.60). Then we have

EΔ(μN , μ̂N ) ≤ 2
β2

EΔ(νN , ν∼
N ) .

Proof. Let ν∼
N = N−1

∑
k≤N δw∼

N,M (k), where (w∼
N,M (k))k≤N is an inde-

pendent copy of the family (wN,M (k))k≤N . By Lemma 7.5.2 we can find a
permutation σ with

1
N

∑

k≤N

(
wN,M (k) − w∼

N,M (σ(k))
)2 = Δ(νN , ν∼

N )

and by Lemma 7.5.3 we get

Δ(μN , μ̂N ) ≤ 2
β2

Δ(νN , ν∼
N ) (7.71)

where

μ̂N = La

(
1

1 +
∑

k≤N a(k)w∼
N,M (σ(k))

)
= La

(
1

1 +
∑

k≤N a(k)w∼
N,M (k)

)
.

Taking expectation in (7.71) concludes the proof, since μ̂N is an independent
copy of μ̃N . ��

Let us observe the inequality

Δ(μ1, μ2) ≤ 2(Δ(μ1, μ3) + Δ(μ3, μ2)) , (7.72)

which is a consequence of the fact that Δ1/2 is a distance.
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Proposition 7.5.9. We have

lim sup
N→∞

EΔ(μN , μ′
N ) ≤ 4

β2
lim sup
N→∞

EΔ(νN , ν∼
N ) . (7.73)

Consequently, if μ∼
N denotes an independent copy of the random measure μN ,

we have
lim sup
N→∞

EΔ(μN , μ∼
N ) ≤ 16

β2
lim sup
N→∞

EΔ(νN , ν∼
N ) . (7.74)

Proof. Inequality (7.72) implies

Δ(μN , μ′
N ) ≤ 2Δ(μN , μN ) + 2Δ(μN , μ′

N ) .

Therefore (7.69) yields

lim sup
N→∞

EΔ(μN , μ′
N ) ≤ 2 lim sup

N→∞
EΔ(μN , μ′

N ) .

By (7.70) and Lemma 7.5.8 this proves (7.73). To prove (7.74) we simply use
(7.72) to write that

Δ(μN , μ∼
N ) ≤ 2Δ(μN , μ′

N ) + 2Δ(μ′
N , μ∼

N ) ,

and we note that EΔ(μ′
N , μ∼

N ) = EΔ(μN , μ′
N ). ��

At this point we have done half of the work required to prove Theorem 7.5.1.
The other half is as follows.

Proposition 7.5.10. We have

lim sup
N→∞

EΔ(νN , ν′
N ) ≤ Lβ3

α6
lim sup
N→∞

EΔ(μN , μ∼
N ) (7.75)

and

lim sup
N→∞

EΔ(νN , ν∼
N ) ≤ Lβ3

α6
lim sup
N→∞

EΔ(μN , μ∼
N ) . (7.76)

It is essential there to have a coefficient β3 rather than β2. Combining (7.76)
and (7.74) shows that

lim sup
N→∞

EΔ(νN , ν∼
N ) ≤ Lβ3

α6
lim sup
N→∞

EΔ(μN , μ∼
N )

≤ Lβ3

α6

16
β2

lim sup
N→∞

EΔ(νN , ν∼
N ) ,

so that if 16Lβ/α6 < 1 then

lim sup
N→∞

EΔ(νN , ν∼
N ) = lim sup

N→∞
EΔ(μN , μ∼

N ) = 0

and (7.73) and (7.75) prove Theorem 7.5.1.
The proof of Proposition 7.5.10 is similar to the proof of Proposition 7.5.9,

using (7.41) rather than (7.40). Let us first explain the occurrence of the all
important factor β3 in (7.76).
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Lemma 7.5.11. Consider numbers u(
), u′(
) ≥ 0 for 
 ≤ M and assume
that

∑
�≤M u(
) =

∑
�≤M u′(
) ≥ Nα/2. Then we have

E

(
1∑

�≤M a(
)u(
)
− 1∑

�≤M a(
)u′(
)

)2

≤ Lβ3

α6N

∑

�≤M

(u(
) − u′(
))2 .

(7.77)
Consequently we have

Δ

(
L

(
1∑

�≤M a(
)u(
)

)
,L

(
1∑

�≤M a(
)u′(
)

))
≤ Lβ3

α6N

∑

�≤M

(u(
)−u′(
))2 .

(7.78)

Proof. We write
(

1∑
�≤M a(
)u(
)

− 1∑
�≤M a(
)u′(
)

)2

≤
(∑

�≤M (u(
) − u′(
))a(
)
)2

(∑
�≤M u(
)a(
)

)2(∑
�≤M u′(
)a(
)

)2 ,

and we use (7.41) with y(
) = u(
) − u′(
), so that
∑

�≤M y(
) = 0. ��

Consider the random measure νN on R
+ given by

νN = La

(
1∑

�≤N a(
)uN,M (
)

)
,

so that ν′
N = EνN . We denote by ν̂N an independent copy of νN . We recall

that μ∼
N denotes an independent copy of μN .

Lemma 7.5.12. We have

EΔ(νN , ν̂N ) ≤ Lβ3

α6
EΔ(μN , μ∼

N ) .

Proof. Let μ∼
N = M−1

∑
�≤M δu∼

N,M (�), where (u∼
N,M (
))�≤M is an inde-

pendent copy of the family (uN,M (
))�≤M . By Lemma 7.5.2 we can find a
permutation σ with

1
M

∑

�≤M

(
uN,M (
) − u∼

N,M (σ(
))
)2 = Δ(μN , μ∼

N ) .

The essential point now is that (7.26) yields
∑

�≤M

uN,M (
) =
∑

�≤M

u∼
N,M (σ(
)) = M − N ≥ αN/2 ,
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so that we can use Lemma 7.5.11 to get

Δ(νN , ν̂N ) ≤ Lβ3

α6
Δ(μN , μ∼

N ) (7.79)

where

ν̂N = La

(
1∑

�≤M a(
)u∼
N,M (σ(
))

)
= La

(
1∑

�≤M a(
)u∼
N,M (
)

)
.

Taking expectation in (7.79) concludes the proof, since ν̂N is an independent
copy of ν̃N . ��

The rest of the arguments in the proof of Proposition 7.5.10 is very sim-
ilar to the arguments of Proposition 7.5.9. One extra difficulty is that the
distributions νN (etc.) no longer have compact support. This is bypassed by
a truncation argument. Indeed, it follows from (7.28) and (7.50) that

Ew4
N,M (i) ≤ K(α) .

If b ≥ 0 is a truncation level, the quantities wN,M,b(i) := min(wN,M (i), b)
satisfy

E(wN,M (i) − wN,M,b(i))2 ≤ E
(
w2

N,M (i)1{wN,M (i)≥b}
)
≤ K(α)

b2
.

If we define νN,b = N−1
∑

i≤N δwN,M,b(i), then

Δ(νN,b, νN ) ≤ 1
N

∑

i≤N

(wN,M (i) − wN,M,b(i))2

so that

EΔ(νN,b, νN ) ≤ K(α)
b2

, (7.80)

and using such a uniformity, rather than (7.75) it suffices to prove for each b
the corresponding result when in the left-hand side “everything is truncated
at level b”. More specifically, defining ν′

N,b by
∫

fdν′
N,b = Ef

(
min

(
b,

1∑
�≤M a(
)uN,M (
)

))
,

one proves that

lim sup
N→∞

EΔ(νN,b, ν
′
N,b) ≤

Lβ3

α6
lim sup
N→∞

EΔ(μN , μ∼
N ) ,

and one uses that (7.80) implies

lim sup
N→∞

EΔ(νN , ν′
N ) ≤ lim sup

N→∞
EΔ(νN,b, ν

′
N,b) +

K(α)
b2

.

The details are straightforward.
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7.6 Operators

The definition of the operators A and B given in (7.9) and (7.10) is pretty,
but it does not reflect the property we need. The fundamental property of
the operator A is that if the measure M−1

∑
�≤M δu(�) approaches the mea-

sure μ, the law of
(∑

�≤M aN (
)u(
)
)−1 approaches A(μ), where aN (
) =

exp(−NβX�), M/N 
 1 + α, and where of course the r.v.s (X�)�≥1 are
i.i.d. uniform over [0, 1]. Since the description of A given in (7.9) will not be
needed, its (non-trivial) equivalence with the definition we will give below in
Proposition 7.6.2 will be left to the reader.

In order to prove the existence of the operator A, we must prove that if
two measures

1
M

∑

�≤M

δu(�) and
1

M ′

∑

�≤M ′

δu′(�)

both approach μ, and if M/N 
 M ′/N ′, then

L
(

1∑
�≤M aN (
)u(
)

)

 L

(
1∑

�≤M ′ aN ′(
)u′(
)

)
.

This technical fact is contained in the following estimate.

Proposition 7.6.1. Consider a number α > 0. Consider integers M , N ,
M ′, N ′ with N ≤ M ≤ 2N , N ′ ≤ M ′ ≤ 2N ′ and numbers 0 ≤ u(
) ≤ 1 for

 ≤ M , numbers 0 ≤ u′(
) ≤ 1 for 
 ≤ M ′. Let

η =
1
M

∑

�≤M

δu(�) ; η′ =
1

M ′

∑

�≤M ′

δu′(�) .

Assume that
∫

xdη(x) ≥ α/4 and
∫

xdη′(x) ≥ α/4. Assume that βN ≥
1, βN ′ ≥ 1 and β ≤ α/80. Then, with aN (
) = exp(−βNX�) as above, we
have

Δ

(
L

(
1∑

�≤M aN (
)u(
)

)
,L

(
1∑

�≤M ′ aN ′(
)u′(
)

))

≤ K(α)
(

1
N

+
1

N ′ +
∣∣∣∣
M

N
− M ′

N ′

∣∣∣∣

)

+
Lβ3

α6
Δ(η, η′) +

Lβ2

α4

(∫
xdη(x) −

∫
xdη′(x)

)2

. (7.81)

Let us state an important consequence.

Proposition 7.6.2. Given a number α > 0 there exists a number β(α) > 0
with the following property. If β ≤ β(α) and if μ is a probability measure on
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[0, 1] with
∫

xdμ(x) ≥ α/4, there exists a unique probability measure A(μ) on
R

+ with the following property. Consider numbers 0 ≤ u(
) ≤ 1 for 
 ≤ M ,
and set

η =
1
M

∑

�≤M

δu(�) .

Then

Δ

(
A(μ),L

(
1∑

�≤M aN (
)u(
)

))
≤ K(α)

(
1
N

+
∣∣∣∣
M

N
− (1 + α)

∣∣∣∣

)

+
Lβ2

α4

(∫
xdμ(x) −

∫
xdη(x)

)2

+
Lβ3

α6
Δ(μ, η) . (7.82)

Moreover, if μ′ is another probability measure and if
∫

xdμ′(x) ≥ α/4, we
have

Δ(A(μ), A(μ′)) ≤ Lβ2

α4

(∫
xdμ(x) −

∫
xdμ′(x)

)2

+
Lβ3

α6
Δ(μ, μ′) . (7.83)

A little bit of measure-theoretic technique is required again here, because
we are dealing with probability measures that are not supported by a compact
interval. In the forthcoming lemma, there is really nothing specific about the
power 4.

Lemma 7.6.3. Given a number C, consider the set D(C) of probability mea-
sures θ on R

+ that satisfy
∫ ∞
0

x4dθ(x) ≤ C. Then D(C) is a compact metric
space for the distance Δ.

Proof. The proof uses a truncation argument similar to the one given at
the end of the proof of Proposition 7.5.10. Given a number b > 0 and a
probability measure θ in D(C) we define the truncation θb as the image of
θ under the map x 	→ min(x, b). In words, all the mass that θ gives to the
half-line [b,∞[ is pushed to the point b. Then we have

Δ(θ, θb) ≤
∫ ∞

0

(x − min(x, b))2dθ(x) ≤
∫ ∞

b

x2dθ(x) ≤ C

b2
. (7.84)

Consider now a sequence (θn)n≥1 in D(C). We want to prove that it has a
subsequence that converges for the distance Δ. Since for each b the set of
probability measures on the interval [0, b] is compact for the distance Δ (as is
explained in Section A.11), we assume, by taking a subsequence if necessary,
that for each integer m the sequence (θm

n )n≥1 converges for Δ to a certain
probability measure λm. Next we show that there exists a probability measure
λ in D(C) such that λm = λm for each m. This is simply because if m′ < m
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then λm′

m = λm′ (the “pieces fit together”) and because
∫ ∞
0

x4dλm(x) ≤ C
for each m. Now, for each m we have limn→∞ Δ(θm

n , λm) = 0, and (7.84) and
the triangle inequality imply that limn→∞ Δ(θn, λ) = 0. ��
Proof of Proposition 7.6.2. The basic idea is to define A(μ) “as the limit”
of the law λ of

(∑
�≤M aN (
)u(
)

)−1 as M−1
∑

�≤M δu(�) → μ, M, N →
∞, M/N → (1 + α). We note that by (7.50) used for k = 8, whenever∑

�≤M u(
) ≥ αN/8, (and β < β(α)) we have
∫

x4dλ(x) ≤ L. Thus, recalling
the notation of Lemma 7.6.3, we have λ ∈ D(L), a compact set, and therefore
the family of these measures has a cluster point A(μ), and (7.82) holds by
continuity. Moreover (7.83) is a consequence of (7.82) and continuity (and
shows that the cluster point A(μ) is in fact unique). ��
We recall the probability measures μN , νN , ν′

N , μ′
N of Section 7.5.

Proposition 7.6.4. We have

lim
N→∞

Δ(ν′
N , A(μ′

N )) = 0 . (7.85)

Proof. First we recall that by (7.26) we have
∫

xdμN (x) =
1
M

∑

�≤M

uN,M (
) =
M − N

M
≥ α

2

for M = �N(1 + α)� and N large. Since Theorem 7.5.1 asserts that
EΔ(μ′

N , μN ) → 0, (7.61) implies that

E

(∫
xdμN (x) −

∫
xdμ′

N (x)
)2

→ 0

and thus
∫

xdμ′
N (x) ≥ α/4 for N large. Therefore we can use (7.82) for

μ = μ′
N and η = μN to get (using (7.61) again)

Δ

(
A(μ′

N ),La

(
1∑

�≤M aN (
)uN,M (
)

))

≤ K(α)
N

+ L

(
β2

α4
+

β3

α6

)
Δ(μ′

N , μN ) . (7.86)

The expectation of the right-hand side goes to zero as N → ∞ by Theorem
7.5.1. Since by definition

ν′
N = ELa

(
1∑

�≤M aN (
)uN,M (
)

)
,

taking expectation in (7.86) and using Jensen’s inequality as in (7.70) com-
pletes the proof. ��

Proposition 7.6.4 is of course only half of the work because we also have
to define the operators B. These operators B have the following defining
property.



7.6 Operators 425

Proposition 7.6.5. To each probability measure ν on R
+ we can attach

a probability measure B(ν) on [0, 1] with the following property. Consider
numbers w(k) ≥ 0 for k ≤ N , and let

η =
1
N

∑

k≤N

δw(k) .

Then

Δ

(
B(ν),L

(
1

1 +
∑

k≤N aN (k)w(k)

))
≤ K

N
+

L

β2
Δ(ν, η) . (7.87)

Moreover
Δ(B(ν), B(ν′)) ≤ L

β2
Δ(ν, ν′) . (7.88)

Proof. Similar, but simpler than the proof of Proposition 7.6.2. ��

Proposition 7.6.6. We have

lim
N→∞

Δ(μ′
N , B(ν′

N )) = 0 . (7.89)

Proof. Similar (but simpler) than the proof of (7.85). ��

Proof of Theorem 7.1.2. It follows from the definition of ν′
N and (7.50)

that
∫

x4dν′
N (x) ≤ L, so that, recalling the set D(L) of Lemma 7.6.3, we

have ν′
N ∈ D(L). Since μ′

N lives on [0, 1], we can find a subsequence of the
sequence (μ′

N , ν′
N ) that converges for Δ to a pair (μ, ν). Using (7.85) and

(7.89) we see that this pair satisfies the relations (7.11):
∫

xdμ(x) =
α

1 + α
; μ = B(ν) , ν = A(μ) . (7.90)

The equations (7.90) have a unique solution. Indeed, if (μ′, ν′) is another
solution (7.83) implies

Δ(ν, ν′) ≤ Lβ3

α6
Δ(μ′, μ)

and by (7.88) we have

Δ(μ, μ′) ≤ L

β2
Δ(ν, ν′)

so that
Δ(μ, μ′) ≤ Lβ

α6
Δ(μ, μ′)

and Δ(μ, μ′) = 0 if Lβ/α6 < 1. Let us stress the miracle here. The condition
(7.26) forces the relation

∫
xdμ(x) = α/(1 + α), and this neutralizes the first
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term on the right-hand side of (7.83). This term is otherwise devastating,
because the coefficient Lβ2/α4 does not compensate the coefficient L/β2 of
(7.88).

Since the pair (μ, ν) of (7.90) is unique, we have in fact that μ = limμ′
N ,

ν = lim ν′
N . On the other hand, by definition of μN we have EμN =

L(uN,M (M)), so Jensen’s inequality implies as in (7.70) that

Δ(L(uN,M (M)), μ′
N ) ≤ EΔ(μN , μ′

N ) ,

so limN→∞ L(uN,M (M)) = μ by (7.62). Similarly limN→∞ L(wN,M (N)) = ν.
��

We turn to the proof of Proposition 7.6.1. Let us start by a simple obser-
vation.

Proposition 7.6.7. The bound (7.81) holds when M = M ′.

Proof. Without loss of generality we assume that N ′ ≤ N . Let S =∑
�≤M aN (
)u(
) and S′ =

∑
�≤M aN ′(
)u′(
). Then

Δ

(
L

(
1
S

)
,L

(
1
S′

))
≤ E

(
1
S

− 1
S′

)2

= E
(S − S′)2

S2S′2 ≤ I + II (7.91)

where

I = 2E

(∑
�≤M (aN (
) − aN ′(
))u′(
)

)2

S2S′2 ;

II = 2E

(∑
�≤M aN (
)(u(
) − u′(
))

)2

S2S′2 .

We observe since N ′ ≤ N that a′
N (
) ≥ aN (
), so that

S′ ≥ S∼ :=
∑

�≤M

aN (
)u′(
) ,

and

II ≤ 2E

(∑
�≤M aN (
)(u(
) − u′(
))

)2

S2S∼2
.

To bound this quantity we will use the estimate (7.41). The relations∫
xdη(x) ≥ α/4 and

∫
xdη′(x) ≥ α/4 mean that

∑
�≤M u(
) ≥ αM/4 ≥

αN/4 and
∑

�≤M u′(
) ≥ αM/4 ≥ αN/4. Thus in (7.41) we can take b = α/4.
This estimate then yields

II ≤ Lβ2

α4

(
M

N

)2 (∫
xdη(x) −

∫
xdη′(x)

)2

+
Lβ3

α6

1
N

∑

�≤M

(u(
) − u′(
))2 .

(7.92)
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We can assume from Lemma 7.5.2 that we have reordered the terms u′(
) so
that M−1

∑
�≤M (u(
) − u′(
))2 ≤ Δ(η, η′), and then the bound (7.92) is as

desired, since M ≤ 2N .
To control the term I, we first note that 0 ≤ aN ′(
) − aN (
) ≤ 1 since

N ′ ≤ N ; and
∑

�≤M (aN ′(
)−aN (
))u(
) ≤ M since 0 ≤ u′(
) ≤ 1. Therefore

I ≤ 2M
∑

�≤M

E
aN ′(
) − aN (
)

S2S′2 .

We control this term with the same method that we used to control the term
(7.52). Namely, we define S� =

∑
�′ �=� aN (
′)u(
′) and S′

� similarly, and we
write, using independence and the Cauchy-Schwarz inequality that

E
aN ′(
) − aN (
)

S2S′2 ≤ E
aN ′(
) − aN (
)

S2
� S′

�
2

≤ E(aN ′(
) − aN (
))
(

E
1
S4

�

)1/2(
E

1
S′4

�

)1/2

.

Using (7.50), and since
∑

��=�′ u(
) ≥ Nα/4−1 ≥ Nα/8 because Nβ ≥ 1 and
β ≤ α/80, we get (

E
1
S4

�

)1/2

≤ K(α)β2 ,

and similarly for S′
�. Using (7.39) for p = 1, we obtain

E(aN ′(
) − aN (
)) ≤ L

β

(
1

N ′ −
1
N

)
.

The result follows. ��

The main difficulty in the proof of Proposition 7.6.1 is to find how to relate
the different values M and M ′. Given a sequence (u(
))�≤M and an integer
M ′, consider the sequence (u∼(
))�≤MM ′ that is obtained by repeating each
term u(
) exactly M ′ times.

Proposition 7.6.8. We have

Δ

(
L

(
1∑

�≤M aN (
)u(
)

)
,L

(
1∑

�≤MM ′ aNM ′(
)u∼(
)

))
≤ K

N
. (7.93)

Proof of Proposition 7.6.1. The meaning of (7.93) is that within a small
error (as in (7.81)) we can replace M by MM ′ and N by NM ′. Similarly, we
replace M ′ by MM ′ and N ′ by N ′M , so we have reduced the proof to the
case M = M ′ of Proposition 7.6.7 (using that Δ1/2 is a distance). ��

The proof of Proposition 7.6.8 relies on the following.
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Lemma 7.6.9. Consider independent r.v.s X�, X, uniform over [0, 1]. Con-
sider an integer R ≥ 1, a number γ ≥ 2 and the r.v.s

a = exp(−γX) ; a′ =
∑

�≤R

exp(−γR X�) .

Then we can find a pair of r.v.s (Y, Y ′) such that Y has the same law as the
r.v. a and Y ′ has the same law as the r.v. a′ with

E|Y − Y ′| ≤ L

γ2
, E(Y − Y ′)2 ≤ L

γ2
. (7.94)

Proof of Proposition 7.6.8. We use Lemma 7.6.9 for γ = βN , R = M ′.
Consider independent copies (Y�, Y

′
� ) of the pair (Y, Y ′). It should be obvious

from the definition of the sequence u∼(
) that S′ :=
∑

�≤M Y ′
� u(
) equals∑

�≤MM ′ aMM ′(
)u∼(
) in distribution. Writing S =
∑

�≤M Y�u(
), the left-
hand side of (7.93) is

Δ

(
L

(
1
S

)
,L

(
1
S′

))
≤ E

(
1
S

− 1
S′

)2

= E

(∑
�≤M (Y� − Y ′

� )u(
)
)2

S2S′2 ,

≤ E

(∑
�≤M |Y� − Y ′

� |
)2

S2S′2 .

We expand the square, and we use (7.94) for γ = βN and one more time
the method used to control (7.52) to find that this is ≤ K(α)/N . ��
Proof of Lemma 7.6.9. Given any two r.v.s a, a′ ≥ 0, there is a canonical
way to construct a coupling of them. Consider the function Y on [0, 1] given
by

Y (x) = inf{t ; P(a ≥ t) ≤ x} .

The law of Y under Lebesgue’s measure is the law of a. Indeed the definition
of Y (x) shows that

P(a ≥ y) > x ⇒ Y (x) > y

P(a ≥ y) < x ⇒ Y (x) < y ,

so that if λ denotes Lebesgue measure, we have λ({Y (x) ≥ y}) = P(a ≥
y). Moreover “the graph of Y is basically obtained from the graph of the
function t 	→ P(a ≥ t) by making a symmetry around the diagonal”. Define
Y ′ similarly. The pair (Y, Y ′) is the pair we look for, although it will require
some work to prove this. First we note that

E|Y − Y ′| =
∫ 1

0

|Y (x) − Y ′(x)|dx .

This is the area between the graphs of Y of Y ′, and also the area between
the graphs of the functions t 	→ P(a ≥ t) and t 	→ P(a′ ≥ t) because these
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two areas are exchanged by symmetry around the diagonal (except maybe
for their boundary). Therefore

E|Y − Y ′| =
∫ ∞

0

|P(a ≥ t) − P(a′ ≥ t)|dt .

The rest of the proof consists in elementary (and very tedious) estimates of
this quantity when a and a′ are as in Lemma 7.6.9. For t ≤ 1 we have

P(a ≥ t) = P(exp(−γX) ≥ t) = P

(
X ≤ 1

γ
log

1
t

)
= min

(
1,

1
γ

log
1
t

)
,

and similarly

P(exp(−γRX�) ≥ t) = min
(

1,
1

γR
log

1
t

)
.

Since a′ ≥ t as soon as one of the summands exp(−γRX�) exceeds t, inde-
pendence implies

P(a′ ≥ t) ≥ 1 −
(

1 − min
(

1,
1

γR
log

1
t

))R

:= ψ(t) .

Since (1 − x)R ≥ 1 − Rx for x ≥ 0, we have

ψ(t) ≤ R min
(

1,
1

γR
log

1
t

)
= min

(
R,

1
γ

log
1
t

)
,

and since ψ(t) ≤ 1, we have in fact

ψ(t) ≤ min
(

1,
1
γ

log
1
t

)
= P(a ≥ t) .

We note that

x ≥ 0 ⇒ (1 − x)R ≤ e−Rx ≤ 1 − Rx +
R2x2

2
.

Using this for

x = min
(

1,
1

Rγ
log

1
t

)

this yields that

ψ(t) = 1 − (1 − x)R ≥ Rx − R2x2

2
and

0 ≤ P(a ≥ t) − ψ(t) ≤ min
(

1,
1
γ

log
1
t

)
− Rx +

R2x2

2
.

Since
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min
(

1,
1
γ

log
1
t

)
≤ Rx ≤ 1

γ
log

1
t

,

we have proved that

0 ≤ P(a ≥ t) − ψ(t) ≤ 1
2

(
1
γ

log
1
t

)2

. (7.95)

For a real number y we write y+ = max(y, 0), so that |y| = −y + 2y+. We
use this relation for y = P(a ≥ t) − P(a′ ≥ t), so that since P(a′ ≥ t) ≥ ψ(t)
we obtain

y+ ≤ (P(a ≥ t) − ψ(t))+ = P(a ≥ t) − ψ(t) ,

and

|P(a ≥ t) − P(a′ ≥ t)| ≤ P(a′ ≥ t) − P(a ≥ t) + 2(P(a ≥ t) − ψ(t)) . (7.96)

Since a ≤ 1, for t > 1 we then have

|P(a ≥ t) − P(a′ ≥ t)| = P(a′ ≥ t) = P(a′ ≥ t) − P(a ≥ t) . (7.97)

Using (7.96) for t ≤ 1 and (7.97) for t > 1 we obtain, using (7.95) in the
second inequality,

∫ ∞

0

|P(a ≥ t) − P(a′ ≥ t)|dt ≤ 2
∫ 1

0

(P(a ≥ t) − ψ(t)) dt

+
∫ ∞

0

P(a′ ≥ t) dt −
∫ ∞

0

P(a ≥ t) dt

≤ L

γ2
+ Ea′ − Ea .

Finally we use that by (7.39) we have |Ea − Ea′| ≤ L/γ2, and this concludes
the proof that E |Y − Y ′| ≤ L/γ2.

We turn to the control of E(Y − Y ′)2. First, we observe that

E(Y − Y ′)2 ≤ 2E(Y − min(Y ′, 2))2 + 2E(min(Y ′, 2) − Y ′)2 .

Now, since Y ≤ 1, we have

E(Y − min(Y ′, 2))2 = E(min(Y, 2) − min(Y ′, 2))2

≤ 2E|min(Y, 2) − min(Y ′, 2)|

≤ 2E|Y − Y ′| ≤ L

γ2
.

The r.v. A = Y ′ − min(Y ′, 2) satisfies

A > 0 ⇒ A = Y ′ − 2 ,
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so that if t > 0 we have P(A ≥ t) = P(Y ′ ≥ t + 2). Since Y ′ and a′ have the
same distribution, it holds:

E(min(Y ′, 2) − Y ′)2 = EA2 = 2
∫ ∞

0

tP(Y ′ ≥ t + 2)dt

= 2
∫ ∞

0

tP(a′ ≥ t + 2)dt .

To estimate P(a′ ≥ t), we write, for λ > 0

P(a′ ≥ t) ≤ exp(−λ t)E exp λa′

= exp(−λ t)
(
E exp(λ exp(−γ R X))

)R

and, using (7.39) in the second inequality, and a power expansion of eλ to
obtain the third inequality, we get

E exp(λ exp(−γ R X)) =
∑

p≥0

λp

p!
E exp(−γ R pX)

≤ 1 +
∑

p≥1

λp

p! p γ R
≤ 1 +

eλ

γ R

≤ exp
(

eλ

γ R

)

so that

P(a′ ≥ t) ≤ exp
(

eλ

γ
− λ t

)
.

Taking λ = log γ > 0, we get

P(a′ ≥ t) ≤ L γ−t

so that since γ ≥ 2 we obtain
∫ ∞

0

t P(a′ ≥ t + 2) dt ≤ L

γ2
. ��

Research Problem 7.6.10. (Level 2) Is it true that given an integer n,
there exists a constant K(α, n), and independent r.v.s U1, . . . , Un of law μ
with

E
∑

i≤n

(uN,M (i) − Ui)2 ≤ K(α, n)
N

? (7.98)

Proof of Theorem 7.1.2. We will stay somewhat informal in this proof.
We write AN,M = E log ZN,M , so that
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AN,M − AN,M−1 = E log
ZN,M

ZN,M−1
= −E log uN,M (M − 1)

AN,M − AN−1,M = E log
ZN,M

ZN−1,M
= −E log wN,M (N) .

By Theorem 7.1.2, these quantities have limits −
∫

log xdμ (x) and −
∫

log x
dν (x) respectively. (To obtain the required tightness, we observe that from
(7.27), (7.28) and Markov’s inequality we have P(uN,M (M − 1) < t) ≤ Kt
and P(wN,M (N) < t) ≤ Kt.) Setting M(R) = �R(1 + α)�, we write

AN,M − A1,1 = I + II ,

where

I =
∑

2≤R≤M

AR,M(R) − AR−1,M(R)

II =
∑

2≤R≤M

AR−1,M(R) − AR−1,M(R−1) .

For large R we have

AR,M(R) − AR−1,M(R) 
 −
∫

log xdν(x) ,

and since M(R) − 2 ≤ M(R − 1) ≤ M(R) − 1, we also have

AR−1,M(R) − AR−1,M(R−1) 
 −(M(R) − M(R − 1))
∫

log xdμ(x) .

The result follows. �
A direction that should be pursued is the detailed study of Gibbs’ mea-

sure; the principal difficulty might be to discover fruitful formulations. If G
denotes Gibbs’ measure, we should note the relation

G({σ(i) = j}) = a(i, j)
ZN,M (i; j)

ZN,M

 a(i, j)wN,M (i)uN,M (j) . (7.99)

Also, if i1 �= i2 and j1 �= j2, we have

G({σ(i1) = j1 ; σ(i2) = j2}) = a(i1, i2)a(j1, j2)
ZN,M (i1, i2; j1, j2)

ZN,M
. (7.100)

One can generalize (7.7) to show that

ZN,M (i1, i2; j1, j2)
ZN,M


 wN,M (i1)wN,M (i2)uN,M (j1)uN,M (j2)

so comparing (7.99) and (7.100) we get

G({σ(i1) = j1 ; σ(i2) = j2}) 
 G({σ(i1) = j1})G({σ(i2) = j2}) .

The problem however to find a nice formulation is that the previous relation
holds for most values of j1 and j2 simply because both sides are nearly zero!
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7.7 Notes and Comments

A recent paper [169] suggests that it could be of interest to investigate the
following model. The configuration space consists of all pairs (A, σ) where
A is a subset of {1, . . . , N}, and where σ is a one to one map from A to
{1, . . . , N}. The Hamiltonian is then given by

HN ((A, σ)) = −CcardA + βN
∑

i∈A

c(i, σ(i)), (7.101)

where C is a constant and c(i, j) are as previously. The idea of the Hamil-
tonian is that the term −CcardA favors the pairs (A, σ) for which cardA is
large. It seems likely that, given C, results of the same nature as those we
proved can be obtained for this model when β ≤ β(C), but that it will be
difficult to prove the existence of a number β0 such than these results hold
for β ≤ β0, independently of the value of C, and even more difficult to prove
that (as the results of [169] seem to indicate) they will hold for any value of
C and of β.
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