
6. The Diluted SK Model and the K-Sat
Problem

6.1 Introduction

In the SK model, each individual (or spin) interacts with every other indi-
vidual. For large N , this does not make physical sense. Rather, we would like
that, as N → ∞, a given individual typically interacts only with a bounded
number of other individuals. This motivates the introduction of the diluted
SK model. In this model, the Hamiltonian is given by

− HN (σ) = β
∑

i<j

gijγijσiσj . (6.1)

As usual, (gij)i<j are i.i.d. standard Gaussian r.v.s. The quantities γij ∈
{0, 1} determine which of the interaction terms are actually present in the
Hamiltonian. There is an interaction term between σi and σj only when γij =
1. The natural choice for these quantities is to consider a parameter γ > 0
(that does not depend on N) indicating “how diluted is the interaction”,
and to decide that the quantities γij are i.i.d. r.v.s with P(γij = 1) = γ/N ,
P(γij = 0) = 1 − γ/N , and are independent from the r.v.s gij . Thus, the
expected number of terms in (6.1) is

γ

N

N(N − 1)
2

=
γ(N − 1)

2
,

and the expected number of terms that contain σi is about γ/2. That is,
the average number of spins that interact with one given spin is about γ/2.
One should observe that the usual normalizing factor 1/

√
N does not occur

in (6.1).
If we draw an edge between i and j when γij = 1, the resulting random

graph is well understood [12]. When γ < 1, this graph has only small con-
nected components, so there is no “global interaction” and the situation is
not so interesting. In order to get a challenging model we must certainly allow
the case where γ takes any positive value.

In an apparently unrelated direction, let us remind the reader that the
motivation of Chapter 2 is the problem as to whether certain random subsets
of {−1, 1}N have a non-empty intersection. In Chapter 2, we considered “ran-
dom half-spaces”. These somehow “depend on all coordinates”. What would
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326 6. The Diluted SK Model and the K-Sat Problem

happen if instead we considered sets depending only on a given number p of
coordinates? For example sets of the type

{
σ ; (σi1 , . . . , σip) �= (η1, . . . , ηp)

}
(6.2)

where 1 ≤ i1 < i2 < . . . < ip ≤ N , and η1, . . . , ηp = ±1?
The question of knowing whether M random independent sets of the type

(6.2) have a non-empty intersection is known in theoretical computer science
as the random K-sat problem, and is of considerable interest. (There K is
just another notation for what we call p. “Sat” stands for “satisfiability”, as
the problem is presented under the equivalent form of whether one can assign
values to N Boolean variables in order to satisfy a collection of M random
logical clauses of a certain type.) By a random subset of the type (6.2), we of
course mean a subset that is chosen uniformly at random among all possible
such subsets. This motivates the introduction of the Hamiltonian

− HN (σ) = −β
∑

k≤M

Wk(σ) (6.3)

where Wk(σ) = 0 if (σi(k,1), . . . , σi(k,p)) �= (ηk,1, . . . , ηk,p), and Wk(σ) = 1
otherwise. The indices 1 ≤ i(k, 1) < i(k, 2) < . . . < i(k, p) ≤ N and the
numbers ηk,i = ±1 are chosen randomly uniformly over all possible choices.
The interesting case is when M is proportional to N .

In a beautiful paper, S. Franz and S. Leone [60] observed that many
technicalities disappear (and that one obtains a similar model) if rather than
insisting that the Hamiltonian contains exactly a given number of terms, this
number of terms is a Poisson r.v. M (independent of the other sources of
randomness). Since we are interested in the case where M is proportional to
N we will assume that EM is proportional to N , i.e. EM = αN , where of
course α does not depend on N .

To cover simultaneously the cases of (6.1) and (6.3), we consider a ran-
dom real-valued function θ on {−1, 1}p, i.i.d. copies (θk)k≥1 of θ, and the
Hamiltonian

− HN (σ) =
∑

k≤M

θk(σi(k,1), . . . , σi(k,p)) . (6.4)

Here, M is a Poisson r.v. of expectation αN , 1 ≤ i(k, 1) < . . . < i(k, p) ≤
N , the sets {i(k, 1), . . . , i(k, p)} for k ≥ 1 are independent and uniformly
distributed, and the three sources of randomness (these sets, M , and the
θk) are independent of each other. There is no longer a coefficient β, since
this coefficient can be thought of as a part of θ. For example, a situation
very similar to (6.1) is obtained for p = 2 and θ(σ1, σ2) = βgσ1σ2 where g
is standard Gaussian. It would require no extra work to allow an external
field in the formula (6.4). We do not do this for simplicity, but we stress
that our approach does not require any special symmetry property. (On the
other hand, precise specific results such as those of [78] seem to rely on such
properties.)
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It turns out that the mean number of terms of the Hamiltonian that
depend on a given spin is of particular relevance. This number is γ = αp
(where α is such that EM = αN), and for simplicity of notation this will be
our main parameter rather than α.

The purpose of this chapter is to describe the behavior of the system
governed by the Hamiltonian (6.4) under a “high-temperature condition”
asserting in some sense that this Hamiltonian is small enough. This condition
will involve the r.v. S given by

S = sup |θ(σ1, . . . , σp)| , (6.5)

where the supremum is of course over all values of σ1, σ2, . . . , σp = ±1, and
has the following property: if γ (and p) are given, then the high-temperature
condition is satisfied when S is small enough.

Generally speaking, the determination of exactly under which conditions
there is high-temperature behavior is a formidable problem. The best that
our methods can possibly achieve is to reach qualitatively optimal conditions,
that capture “a fixed proportion of the high-temperature region”. This seems
to be the case of the following condition:

16pγE S exp 4S ≤ 1 . (6.6)

Since the mean number of spins interacting with a given spin remains
bounded independently of N , the central limit theorem does not apply, and
the ubiquitous Gaussian behavior of the previous chapters is now absent.
Despite this fundamental difference, and even though this is hard to express
explicitly, there are many striking similarities.

We now outline the organization of this chapter. A feature of our approach
is that, in contrast with what happened for the previous models, we do not
know how to gain control of the model “in one step”. Rather, we will first
prove in Section 6.2 that for large N a small collection of spins are approx-
imately independent under a condition like (6.6). This is the main content
of Theorem 6.2.2. The next main step takes place in Section 6.4, where in
Theorem 6.4.1 we prove that under a condition like (6.6), a few quantities
〈σ1〉, . . . , 〈σk〉 are approximately independent with law μγ where μγ is a prob-
ability measure on [0, 1], that is described in Section 6.3 as the fixed point of a
(complicated) operator. This result is then used in the last part of Section 6.4
to compute limN→∞ pN (γ), where pN (γ) = N−1E log

∑
exp(−HN (σ)), still

under a “high-temperature” condition of the type (6.6). In Section 6.5 we
prove under certain conditions an upper bound for pN (γ), that is true for all
values of γ and that asymptotically coincides with the limit previously com-
puted under a condition of the type (6.6). In Section 6.6 we investigate the
case of continuous spins, and in Section 6.7 we demonstrate the very strong
consequences of a suitable concavity hypothesis on the Hamiltonian, and we
point out a number of rather interesting open problems.
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6.2 Pure State

The purpose of this section is to show that under (6.6) “the system is in a
pure state”, that is, the spin correlations vanish. In fact we will prove that

E |〈σ1σ2〉 − 〈σ1〉〈σ2〉| ≤
K

N
(6.7)

where K depends only on p and γ. The proof, by induction over N , is similar
in spirit to the argument occurring at the end of Section 1.3. In order to make
the induction work, it is necessary to carry a suitable induction hypothesis,
that will prove a stronger statement than (6.7). This stronger statement will
be useful later in its own right.

Given k ≥ 1 we say that two functions f, f ′ on Σn
N depend on k coordinates

if we can find indices 1 ≤ i1 < . . . < ik ≤ N and functions f, f
′

from
{−1, 1}kn to R such that

f(σ1, . . . ,σn) = f(σ1
i1 , . . . , σ

1
ik

, σ2
i1 , . . . , σ

2
ik

, . . . , σn
i1 , . . . , σ

n
ik

)

and similarly for f ′. The reason we define this for two functions is to stress
that both functions depend on the same set of k coordinates.

For i ≤ N , consider the transformation Ti of Σn
N that, for a point

(σ1, . . . ,σn) of Σn
N , exchanges the i-th coordinates of σ1 and σ2, and leaves

all the other coordinates unchanged.
The following technical condition should be interpreted as an “approxi-

mate independence condition”.

Definition 6.2.1. Given three numbers γ0 > 0, B > 0 and B∗ > 0, we
say that Property C(N, γ0, B, B∗) holds if the following is true. Consider two
functions f, f ′ on Σn

N , and assume that they depend on k coordinates. Assume
that f ≥ 0, that for a certain i ≤ N we have

f ′ ◦ Ti = −f ′ , (6.8)

and that for a certain number Q we have |f ′| ≤ Qf at each point of Σn
N .

Then if γ ≤ γ0 we have

E

∣∣∣∣
〈f ′〉
〈f〉

∣∣∣∣ ≤
(kB + B∗)Q

N
. (6.9)

Condition C(N, γ0, B, B∗) is not immediately intuitive. It is an “approx-
imate independence condition” because if the spins were really independent,
the condition f ′ ◦Ti = −f ′ would imply that 〈f ′〉 = 〈f ′ ◦Ti〉 = 〈−f ′〉 so that
〈f ′〉 = 0.

To gain intuition, let us relate condition C(N, γ0, B, B∗) with (6.7). We
take n = 2, f = 1,

f ′(σ1, σ2) = σ1
1(σ1

2 − σ2
2) ,
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so that (6.8) holds for i = 2, k = 2 and |f ′| ≤ 2f . Thus under condition
C(N, γ0, B, B∗) we get by (6.9) that

E |〈σ1
1(σ1

2 − σ2
2)〉| ≤ 2B + B∗

N

i.e.
E |〈σ1σ2〉 − 〈σ1〉〈σ2〉| ≤

2B + B∗

N
,

which is (6.7). More generally, basically the same argument shows that when
condition C(N, γ0, B, B∗) holds (for each N and numbers B and B∗ that
do not depend on N), to compute Gibbs averages of functions that depend
only on a number of spin that remains bounded independently of N , one
can pretend that these spins are independent under Gibbs’ measure. We will
return to this important idea later.

Theorem 6.2.2. There exists a number K0 = K0(p, γ0) such that if γ ≤ γ0

and
16γ0pE S exp 4S ≤ 1, (6.10)

then Property C(N, γ0, K0, K0) holds for each N .

When property C(N, γ0, K0, K0) holds, for two functions f, f ′ on Σn
N ,

that depend on k coordinates, and with f ≥ 0, |f ′| ≤ Qf , then under (6.8),
and if γ ≤ γ0, we have

E

∣∣∣∣
〈f ′〉
〈f〉

∣∣∣∣ ≤
(kK0 + K0)Q

N
≤ 2kK0Q

N
. (6.11)

The point of distinguishing in the definition of C(N, γ0, B, B∗) the values B
and B∗ will become apparent during the proofs.

To prove Theorem 6.2.2, we will proceed by induction over N . The small-
est value of N for which the model is defined is N = p. We first observe that
|〈f ′〉| ≤ Q〈f〉, so that C(p, γ0, K1, K

∗
1 ) is true if K1 ≥ p. We will show that

if K1 and K∗
1 are suitably chosen, then under (6.10) we have

C(N − 1, γ0, K1, K
∗
1 ) ⇒ C(N, γ0, K1, K

∗
1 ) . (6.12)

This will prove Theorem 6.2.2.
The main idea to prove (6.12) is to relate the N -spin system with an

(N − 1)-spin system through the cavity method, and we first need to set up
this method. We write −HN (σ) = −HN−1(σ) − H(σ), where

− HN−1(σ) =
∑

θk(σi(k,1), . . . , σi(k,p)) , (6.13)

where the sum is over those k ≤ M for which i(k, p) ≤ N − 1, and where
H(σ) is the sum of the other terms of (6.4), those for which i(k, p) = N .
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Since the set {i(k, 1), . . . , i(k, p)} is uniformly distributed over the subsets of
{1, . . . , N} of cardinality p, the probability that i(k, p) = N is exactly p/N .

A remarkable property of Poisson r.v.s is as follows: when M is a
Poisson r.v., if (Xk)k≥1 are i.i.d. {0, 1}-valued r.v.s then

∑
k≤M Xk and∑

k≤M (1−Xk) are independent Poisson r.v.s with mean respectively EMEXk

and EME(1 − Xk). The simple proof is given in Lemma A.10.1. Using this
for Xk = 1 if i(k, p) = N and Xk = 0 otherwise implies that the numbers of
terms in H(σ) and HN−1(σ) are independent Poisson r.v.s of mean respec-
tively (p/N)αN = γ and αN − γ. Thus the pair (−HN−1(σ),−H(σ)) has
the same distribution as the pair
( ∑

k≤M ′

θ′k(σi′(k,1), . . . , σi′(k,p)),
∑

j≤r

θj(σi(j,1), . . . , σi(j,p−1), σN )
)

. (6.14)

Here M ′ and r are Poisson r.v.s of mean respectively αN − γ and γ; θ′k
and θj are independent copies of θ; i′(k, 1) < . . . < i′(k, p) and the set
{i′(k, 1), . . . , i′(k, p)} is uniformly distributed over the subsets of {1, . . . , N −
1} of cardinality p; i(j, 1) < . . . < i(j, p − 1) ≤ N − 1 and the set Ij =
{i(j, 1), . . . , i(j, p−1)} is uniformly distributed over the subsets of {1, . . . , N−
1} of cardinality p − 1; all these random variables are globally independent.

The following exercise describes another way to think of the Hamilto-
nian HN , which provides a different intuition for the fact that the pair
(−HN−1(σ),−H(σ)) has the same distribution as the pair (6.14).

Exercise 6.2.3. For each p-tuple i = (i1, . . . , ip) with 1 ≤ i1 < . . . < ip ≤ N ,
and each j ≥ 1 let us consider independent copies θi,j of θ, and define

−Hi(σ) =
∑

j≤ri

θi,j(σi1 , . . . , σip) ,

where ri are i.i.d. Poisson r.v.s (independent of all other sources of random-
ness) with

Eri =
αM(
M
p

) .

Prove that the Hamiltonian HN has the same distribution as the Hamiltonian∑
i Hi .

Since the properties of the system governed by the Hamiltonian HN de-
pend only of the distribution of this Hamiltonian, from now on in this section
we will assume that, using the same notation as in (6.14),

− HN (σ) = −HN−1(σ) − H(σ) , (6.15)

where
− HN−1(σ) =

∑

k≤M ′

θ′k(σi′(k,1), . . . , σi′(k,p)) , (6.16)
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and
− H(σ) =

∑

j≤r

θj(σi(j,1), . . . , σi(j,p−1), σN ) . (6.17)

Let us stress that in this section and in the next, the letter r will stand
for the number of terms in the summation (6.17), which is a Poisson r.v. of
expectation γ.

We observe from (6.16) that if we write ρ = (σ1, . . . , σN−1) when σ =
(σ1, . . . , σN ), −HN−1(σ) = −HN−1(ρ) is the Hamiltonian of a (N − 1)-spin
system, except that we have replaced γ by a different value γ−. To compute
γ− we recall that the mean number of terms of the Hamiltonian HN−1 is
αN − γ, so that the mean number γ− of terms that contain a given spin is

γ− =
p

N − 1
(αN − γ) = γ

N − p

N − 1
, (6.18)

since pα = γ. We note that γ− ≤ γ, so that

γ < γ0 ⇒ γ− ≤ γ0 , (6.19)

a fact that will help the induction.
Given a function f on Σn

N , the algebraic identity

〈f〉 =
〈Av fE〉−
〈Av E〉−

(6.20)

holds. Here,

E = E(σ1, . . . ,σn) = exp
(∑

�≤n

−H(σ�)
)

, (6.21)

and as usual Av means average over σ1
N , . . . , σn

N = ±1. Thus Av fE is a
function of (ρ1, . . . ,ρn) only, and 〈Av fE〉− means that it is then averaged
for Gibbs’ measure relative to the Hamiltonian (6.13).

In the right-hand side of (6.20), we have two distinct sources of random-
ness: the randomness in 〈·〉− and the randomness in E . It will be essential
that these sources of randomness are probabilistically independent. In the
previous chapters we were taking expectation given 〈·〉−. We find it more
convenient to now take expectation given E . This expectation is denoted by
E−, so that, according to (6.20) we have

E

∣∣∣∣
〈f ′〉
〈f〉

∣∣∣∣ = E

∣∣∣∣
〈Av f ′E〉−
〈Av fE〉−

∣∣∣∣ = EE−

∣∣∣∣
〈Av f ′E〉−
〈Av fE〉−

∣∣∣∣ . (6.22)

After these preparations we describe the structure of the proof. Let us
consider a pair (f ′, f) as in Definition 6.2.1. The plan is to write

Av f ′E =
1
2

∑

s

f ′
s
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for some functions f ′
s on Σn

N−1, such that the number of terms does not
depend on N , and that all pairs (f ′

s, Av fE) have the property of the pair
(f ′, f), but in the (N − 1)-spin system. Since

Avf ′E
Av fE =

1
2

∑

s

f ′
s

Av fE ,

we can now apply the induction hypothesis to each term to get a bound for
the sum and hence for

E−

∣∣∣∣
〈Av f ′E〉−
〈Av fE〉−

∣∣∣∣ ,

and finally (6.22) completes the induction step.
We now start the proof. We consider a pair (f ′, f) as in Definition 6.2.1,

that is |f ′| ≤ Qf , f ′ ◦ Ti = −f ′ for some i ≤ N , and f, f ′ depend on k
coordinates. We want to bound E|〈f ′〉/〈f〉|, and for this we study the last
term of (6.22). Without loss of generality, we assume that i = N and that f
and f ′ depend on the coordinates 1, . . . , k−1, N . First, we observe that, since
we assume |f ′| ≤ Qf , we have |f ′E| ≤ QfE , so that |Av f ′E| ≤ Av |f ′E| ≤
QAv fE , and thus

E−

∣∣∣∣
〈Av f ′E〉−
〈Av fE〉−

∣∣∣∣ ≤ Q . (6.23)

We recall (6.21) and (6.17), and in particular that r is the number of terms
in the summation (6.17) and is a Poisson r.v. of expectation γ. We want to
apply the induction hypothesis to compute the left-hand side of (6.23). The
expectation E− is expectation given E , and it helps to apply the induction
hypothesis if the functions Avf ′E and AvfE are not too complicated. To
ensure this it will be desirable that all the points i(j, 	) for j ≤ r and 	 ≤ p−1
are different and ≥ k. In the rare event Ω (we recall that Ω denotes an event,
and not the entire probability space) where this not the case, we will simply
use the crude bound (6.23) rather than the induction hypothesis. Recalling
that i(j, 1) < . . . < i(j, p − 1), to prove that Ω is a rare event we write
Ω = Ω1 ∪ Ω2 where

Ω1 =
{
∃j ≤ r , i(j, 1) ≤ k − 1

}

Ω2 =
{
∃j, j′ ≤ r , j �= j′ , ∃	, 	′ ≤ p − 1 , i(j, 	) = i(j′, 	′)

}
.

These two events depend only on the randomness of E . Let us recall that for
j ≤ r the sets

Ij = {i(j, 1), . . . , i(j, p − 1)} (6.24)

are independent and uniformly distributed over the subsets of {1, . . . , N −1}
of cardinality p − 1. The probability that any given i ≤ N − 1 belongs to
Ij is therefore (p − 1)/(N − 1). Thus the probability that i(j, 1) ≤ k − 1,
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i.e. the probability that there exists 	 ≤ k − 1 that belongs to Ij is at most
(p − 1)(k − 1)/(N − 1). Therefore

P(Ω1) ≤
(p − 1)(k − 1)

N − 1
Er ≤ kpγ

N
.

Here and below, we do not try to get sharp bounds. There is no point in
doing this, as anyway our methods cannot reach the best possible bounds.
Rather, we aim at writing explicit bounds that are not too cumbersome. For
j < j′ ≤ r, the probability that a given point i ≤ N − 1 belongs to both
sets Ij and Ij′ is ((p − 1)/(N − 1))2. Thus the random number U of points
i ≤ N − 1 that belong to two different sets Ij for j ≤ r satisfies

E U = (N − 1)
(

p − 1
N − 1

)2

E
r(r − 1)

2
≤ p2γ2

2N
,

using that Er(r − 1) = (Er)2 since r is a Poisson r.v., see (A.64). Since U is
integer valued, we have P({U �= 0}) ≤ EU and since Ω2 = {U �= 0} we get

P(Ω2) ≤
p2γ2

2N
,

so that finally, since Ω = Ω1 ∪ Ω2, we obtain

P(Ω) ≤ kpγ + p2γ2

N
. (6.25)

Using (6.22), (6.23) and (6.25), we have

E

∣∣∣∣
〈f ′〉
〈f〉

∣∣∣∣ = E

(
1ΩE−

∣∣∣∣
〈Av f ′E〉−
〈Av fE〉−

∣∣∣∣

)
+ E

(
1ΩcE−

∣∣∣∣
〈Av f ′E〉−
〈Av fE〉−

∣∣∣∣

)

≤ kpγ + p2γ2

N
Q + E

(
1ΩcE−

∣∣∣∣
〈Av f ′E〉−
〈Av fE〉−

∣∣∣∣

)
. (6.26)

The next task is to use the induction hypothesis to study the last term above.
When Ω does not occur (i.e. on Ωc), all the points i(j, 	), j ≤ r, 	 ≤ p − 1
are different and are ≥ k. Recalling the notation (6.24) we have

J = {i(j, 	); j ≤ r, 	 ≤ p − 1} =
⋃

j≤r

Ij ,

so that cardJ = r(p − 1) and

J ∩ {1, . . . , k − 1, N} = ∅ . (6.27)

For i ≤ N −1 let us denote by Ui the transformation of Σn
N−1 that exchanges

the coordinates σ1
i and σ2

i of a point (ρ1, . . . ,ρn) of Σn
N−1, and that leaves

all the other coordinates unchanged. That is, Ui is to N − 1 what Ti is to N .
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Lemma 6.2.4. Assume that f ′ satisfies (6.8) for i = N , i.e. f ′ ◦ TN = −f ′

and depends only on the coordinates in {1, . . . , k − 1, N}. Then when Ω does
not occur (i.e. on Ωc) we have

(Av f ′E) ◦
∏

i∈J

Ui = −Av f ′E . (6.28)

Here
∏

i∈J Ui denotes the composition of the transformations Ui for i ∈ J
(which does not depend on the order in which this composition is performed).
This (crucial. . .) lemma means that something of the special symmetry of f ′

(as in (6.8)) is preserved when one replaces f ′ by Av f ′E .

Proof. Let us write T =
∏

i∈J Ti. We observe first that

f ′ ◦ T = f ′

because f ′ depends only on the coordinates in {1, . . . , k−1, N}, a set disjoint
from J . Thus

f ′ ◦ T ◦ TN = f ′ ◦ TN = −f ′ (6.29)

since f ′ ◦ TN = −f ′. We observe now that T ◦ TN exchanges σ1
i and σ2

i for
all i ∈ J ∪ {N}. These values of i are precisely the coordinates of which E
depends, so that

E ◦ T ◦ TN (σ1,σ2, . . . ,σn) = E(σ2,σ1, . . . ,σn) = E(σ1,σ2, . . . ,σn) ,

and hence
E ◦ T ◦ TN = E .

Combining with (6.29) we get

(f ′E) ◦ T ◦ TN = (f ′ ◦ T ◦ TN )(E ◦ T ◦ TN ) = −f ′E

so that, since T 2
N is the identity,

(f ′E) ◦ T = −(f ′E) ◦ TN . (6.30)

Now, for any function f we have Av(f ◦TN ) = Avf and Av(f ◦T ) = (Avf)◦∏
i∈J Ui. Therefore we obtain

Av ((f ′E) ◦ TN ) = Av f ′E

Av((f ′E) ◦ T ) = (Av f ′E) ◦
∏

i∈J

Ui ,

so that applying Av to (6.30) proves (6.28). �
Let us set k′ = r(p − 1) = cardJ , and let us enumerate as i1, . . . , ik′ the

points of J . Now (6.28) implies
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Av f ′E =
1
2

(
Av f ′E − (Av f ′E) ◦

∏

s≤k′

Uis

)
=

1
2

∑

1≤s≤k′

f ′
s , (6.31)

where
f ′

s = (Av f ′E) ◦
∏

u≤s−1

Uiu − (Av f ′E) ◦
∏

u≤s

Uiu . (6.32)

Since U2
i is the identity, we have

f ′
s ◦ Uis = −f ′

s . (6.33)

In words, (6.31) decomposes Av f ′E as a sum of k′ = r(p − 1) pieces that
possess the symmetry property required to use the induction hypothesis. In
order to apply this induction hypothesis, it remains to establish the property
that will play for the pairs (f ′

s, AvfE) the role the inequality |f ′| ≤ Qf plays
for the pair (f ′, f). This is the purpose of the next lemma. For j ≤ r we set

Sj = sup |θj(ε1, ε2, . . . , εp)| ,

where the supremum is over all values of ε1, ε2, . . . , εp = ±1. We recall the
notation (6.24).

Lemma 6.2.5. Assume that Ω does not occur and that is ∈ Iv for a certain
(unique) v ≤ r. Then

|f ′
s| ≤ 4QSv exp

(
4
∑

u≤r

Su

)
Av fE . (6.34)

A crucial feature of this bound is that it does not depend on the number n
of replicas.

Proof. Let us write

E ′ = exp
( ∑

3≤�≤n

−H(σ�)
)

; E ′′ = exp
(∑

�=1,2

−H(σ�)
)

,

so that E = E ′E ′′. Since |H(σ)| ≤
∑

j≤r Sj , we have

E ′′ ≥ exp
(
−2
∑

j≤r

Sj

)
,

and therefore

E ≥ E ′ exp
(
−2
∑

j≤r

Sj

)
. (6.35)

This implies

Av fE ≥ (Av fE ′) exp
(
−2
∑

j≤r

Sj

)
. (6.36)
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Next,

f ′
s = (Av f ′E) ◦

∏

u≤s−1

Uiu − (Av f ′E) ◦
∏

u≤s

Uiu

= Av
(

(f ′E) ◦
∏

u≤s−1

Tiu − (f ′E) ◦
∏

u≤s

Tiu

)

= Av

(
f ′
(
E ◦
∏

u≤s−1

Tiu − E ◦
∏

u≤s

Tiu

))
, (6.37)

using in the last line that f ′ ◦ Tiu = f ′ for each u, since f ′ depends only on
the coordinates 1, . . . , k − 1, N . Recalling that E = E ′′E ′, and observing that
for each i, we have E ′ ◦ Ti = E ′, we get

E ◦
∏

u≤s−1

Tiu − E ◦
∏

u≤s

Tiu = E ′
(
E ′′ ◦

∏

u≤s−1

Tiu − E ′′ ◦
∏

u≤s

Tiu

)
,

and, if we set

Δ = sup
∣∣∣∣E

′′ ◦
∏

u≤s−1

Tiu − E ′′ ◦
∏

u≤s

Tiu

∣∣∣∣ = sup |E ′′ − E ′′ ◦ Tis | ,

we get from (6.37) that, using that |f ′| ≤ Qf in the first inequality and (6.35)
in the second one,

|f ′
s| ≤ ΔAv (|f ′|E ′) ≤ QΔAv(fE ′) ≤ QΔAv(fE) exp

(
2
∑

j≤r

Sj

)
. (6.38)

To bound Δ, we write E ′′ =
∏

j≤r Ej , where

Ej = exp
∑

�=1,2

θj(σ�
i(j,1), . . . , σ

�
i(j,p−1), σ

�
N ) .

We note that Ej ◦ Tis = Ej if j �= v, because then Ej depends only on the
coordinates in Ij , and is /∈ Ij if j �= v, since is ∈ Iv and Ij ∩ Iv = ∅. Thus

E ′′ − E ′′ ◦ Tis = (Ev − Ev ◦ Tis)
∏

j 	=v

Ej .

Now, using the inequality |ex − ey| ≤ |x − y|ea ≤ 2aea for |x|, |y| ≤ a and
a = 2Sv, we get

|Ev − Ev ◦ Tis | ≤ 4Sv exp 2Sv .

Since for all j we have Ej ≤ exp 2Sj , we get Δ ≤ 4Sv exp 2
∑

j≤r Sj . Com-
bining with (6.38) completes the proof. �
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Proposition 6.2.6. Assume that N ≥ p + 1 and that condition C(N −
1, γ0, B, B∗) holds. Consider f ′ and f as in Definition 6.2.1, and assume
that γ ≤ γ0. Then

E

∣∣∣∣
〈f ′〉
〈f〉

∣∣∣∣ ≤
Qp

N

(
k(γ +4BD exp 4D)+4pBUEr2V r−1 +pγ2 +4B∗D exp 4D

)
,

(6.39)
where

D = γE S exp 4S .

Proof. We keep the notation of Lemmas 6.2.4 and 6.2.5. Since γ− ≤ γ, we
can use C(N − 1, γ0, B, B∗) to conclude from (6.33) and (6.34) that, since
f ′

s and Av Ef depend on k − 1 + r(p − 1) ≤ k + rp coordinates, and since
1/(N − 1) ≤ 2/N because N ≥ 2, on Ωc we have

E−

∣∣∣∣
〈f ′

s〉−
〈Av fE〉−

∣∣∣∣ ≤
8Q

N
((k + rp)B + B∗)Sv exp

(
4
∑

j≤r

Sj

)
.

Let us denote by Eθ expectation in the r.v.s θ1, . . . , θr only. Then we get

EθE−

∣∣∣∣
〈f ′

s〉−
〈Av fE〉−

∣∣∣∣ ≤
8Q

N
((k + rp)B + B∗)UV r−1 ,

where
U = E S exp 4S ; V = E exp 4S .

Combining with (6.31), and since there are k′ = r(p − 1) ≤ rp terms we get

Eθ E−

∣∣∣∣
〈Av f ′E〉−
〈Av fE〉−

∣∣∣∣ ≤
4Qp

N
((kr + r2p)B + rB∗)UV r−1 .

This bound assumes that Ω does not occur; but combining with (6.26) we
obtain the bound

E

∣∣∣∣
〈f ′〉
〈f〉

∣∣∣∣ ≤
Qp

N

(
kγ + pγ2 + 4B

(
kUErV r−1 + pUEr2V r−1

)
+ 4B∗UErV r−1

)
.

Since r is a Poisson r.v. of expectation γ a straightforward calculation shows
that ErV r−1 = γ exp γ(V − 1). Since ex ≤ 1 + xex for all x ≥ 0 (as is trivial
using power series expansion) we have V ≤ 1+4U , so exp γ(V −1) ≤ exp 4γU
and UErV r−1 ≤ D exp 4D. The result follows. �
Proof of Theorem 6.2.2. If

D0 = γ0E S exp 4S

is small enough that 16pD0 ≤ 1 then

4pD0 exp 4D0 ≤ 1/2 , (6.40)
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and (6.39) implies

E

∣∣∣∣
〈f ′〉
〈f〉

∣∣∣∣ ≤
Q

N

(
k

(
pγ0 +

B

2

)
+ 4p2BUEr2V r−1 + p2γ2 +

B∗

2

)
.

Thus condition

C(N, γ0, pγ0 + B/2, 4p2BUEr2V r−1 + p2γ2
0 + B∗/2)

holds. That is, we have proved under (6.40) that

C(N − 1, γ0, B, B∗) ⇒ C(N, γ0, pγ0 +B/2, 4p2BUEr2V r−1 + p2γ2
0 +B∗/2)) .

(6.41)
Now, we observe that UEr2V r−1 ≤ K∼ and that if K1 = 2pγ0 and K∗

1 =
8p2K1K

∼ + 2p2γ2
0 , (6.41) shows that (6.12) holds, and we have completed

the induction. �
Probably at this point it is good to stop for a while and to wonder what

is the nature of the previous argument. In essence this is “contraction ar-
gument”. The operation of “adding one spin” essentially acts as a type of
contraction, as is witnessed by the factor 1/2 in front of B and B∗ in the
right-hand side of (6.41). As it turns out, almost every single argument used
in this work to control a model under a “high-temperature condition” is of
the same type, whether this is rather apparent, as in Section 1.6, or in a
more disguised form as here. (The one exception being Latala’s argument of
Section 1.4.)

We explained at length in Section 1.4 that we expect that at high-
temperature, as long as one considers a number of spins that remains bounded
independently of N , Gibbs’ measure is nearly a product measure. For the
present model, this property follows from Theorem 6.2.2 and we now give
quantitative estimates to that effect, in the setting we need for future uses.

Let us consider the product measure μ on ΣN−1 such that

∀ i ≤ N − 1 ,

∫
σi dμ(ρ) = 〈σi〉− ,

and let us denote by 〈·〉• an average with respect to μ. Equivalently, for a
function f on ΣN−1, we have

〈f〉• = 〈f(σ1
1 , . . . , σN−1

N−1)〉− , (6.42)

where σi
i is the i-th coordinate of the i-th replica ρi. The following conse-

quence of property C(N, γ0, K0, K0) will be used in Section 6.4. It expresses,
in a form that is particularly adapted to the use of the cavity method the fact
that under property C(N, γ0, K0, K0), a given number of spins (independent
of N) become nearly independent for large N .
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Proposition 6.2.7. If property C(N, γ0, K0, K0) holds for each N , and if
γ ≤ γ0, the following occurs. Consider for j ≤ r sets Ij ⊂ {1, . . . , N} with
card Ij = p, N ∈ Ij, and such that j �= j′ ⇒ Ij ∩ Ij′ = {N}. For j ≤ r
consider functions Wj on ΣN depending only on the coordinates in Ij and
let Sj = sup |Wj(σ)|. Let

E = exp
∑

j≤r

Wj(σ) .

Then, recalling the definition (6.42), we have

E−

∣∣∣∣
〈Av σNE〉−
〈Av E〉−

− 〈Av σNE〉•
〈Av E〉•

∣∣∣∣ ≤
8r(p − 1)2K0

N − 1

∑

j≤r

exp 2Sj . (6.43)

This is a powerful principle, since it is very much easier to work with
the averages 〈·〉• than with the Gibbs averages 〈·〉−. We will use this result
when r is as usual the number of terms in (6.17) but since in (6.43) the
expectation E− is only in the randomness of 〈·〉− we can, in the proof, think
of the quantities r and Wj as being non-random.
Proof. Let f ′ = Av σNE and f = Av E . For 0 ≤ i ≤ N − 1, let us define

fi = fi(ρ1, . . . ,ρN−1) = f(σ1
1 , σ2

2 , . . . , σi
i , σ

1
i+1, . . . , σ

1
N−1)

and f ′
i similarly. The idea is simply that “we make the spins independent one

at a time”. Thus

〈Av σNE〉−
〈Av E〉−

=
〈f ′

1〉−
〈f1〉−

;
〈Av σNE〉•
〈Av E〉•

=
〈f ′

N−1〉−
〈fN−1〉−

, (6.44)

and the left-hand side of (6.43) is bounded by

∑

2≤i≤N−1

E−

∣∣∣∣
〈f ′

i−1〉−
〈fi−1〉−

− 〈f ′
i〉−

〈fi〉−

∣∣∣∣ .

The terms in the summation are zero unless i belongs to the union of the
sets Ij , j ≤ r, for otherwise f ′ and f do not depend on the i-th coordinate
and fi = fi−1, f ′

i = f ′
i−1. We then try to bound the terms in the summation

when i ∈ Ij for a certain j ≤ r. Since |f ′
i | ≤ fi we have

∣∣∣∣
〈f ′

i−1〉−
〈fi−1〉−

− 〈f ′
i〉−

〈fi〉−

∣∣∣∣ ≤
∣∣∣∣
〈f ′

i−1 − f ′
i〉−

〈fi−1〉−

∣∣∣∣+
∣∣∣∣
〈f ′

i〉− 〈fi−1 − fi〉−
〈fi−1〉− 〈fi〉−

∣∣∣∣

≤
∣∣∣∣
〈f ′

i−1 − f ′
i〉−

〈fi−1〉−

∣∣∣∣+
∣∣∣∣
〈fi−1 − fi〉−

〈fi−1〉−

∣∣∣∣

so that, taking expectation in the previous inequality we get
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E−

∣∣∣∣
〈f ′

i−1〉−
〈fi−1〉−

− 〈f ′
i〉−

〈fi〉−

∣∣∣∣ ≤ E−

∣∣∣∣
〈f ′

i−1 − f ′
i〉−

〈fi−1〉−

∣∣∣∣+ E−

∣∣∣∣
〈fi−1 − fi〉−

〈fi−1〉−

∣∣∣∣ . (6.45)

We will use C(N − 1, γ0, K0, K0) to bound these terms. First, we observe
that the function f ′

i−1 − f ′
i changes sign if we exchange σ1

i and σi
i . Next, we

observe that since Wu does not depend on σi for u �= j (where j is defined
by i ∈ Ij) we have

E ′ := exp
∑

u 	=j

Wu(σ1
1 , σ2

2 , . . . , σi
i , σ

1
i+1, . . . , σ

1
N )

= exp
∑

u 	=j

Wu(σ1
1 , σ2

2 , . . . , σi−1
i−1 , σ1

i , σ1
i+1, . . . , σ

1
N ) .

Then
fi−1 = Av E(σ1

1 , . . . , σi−1
i−1 , σ1

i , . . . , σ1
N ) ≥ exp(−Sj)Av E ′,

where Av denotes average over σ1
N = ±1. In a similar fashion, we get |f ′

i−1| ≤
exp SjAv E ′, |f ′

i | ≤ exp SjAv E ′, and thus

|f ′
i−1 − f ′

i | ≤ (2 exp 2Sj)fi−1 ,

so that using (6.11) property C(N − 1, γ0, K0, K0) implies

E−

∣∣∣∣
〈f ′

i−1 − f ′
i〉−

〈fi−1〉−

∣∣∣∣ ≤
4K0

N − 1
r(p − 1) exp 2Sj , (6.46)

because these functions depend on r(p−1) coordinates. We proceed similarly
to handle the last term on the right-hand side of (6.45). We then perform the
summation over i ≤ N − 1. A new factor p − 1 occurs because each set Ij

contains p − 1 such values of i. �

6.3 The Functional Order Parameter

As happened in the previous models, we expect that if we fix a number n and
take N very large, at a given disorder, n spins (σ1, . . . , σn) will asymptoti-
cally be independent, and that the r.v.s 〈σ1〉, . . . , 〈σn〉 will asymptotically be
independent. In the case of the SK model, the limiting law of 〈σi〉 was the
law of th(βz

√
q + h) where z is a standard Gaussian r.v. and thus this law

depended only on the single parameter q.
The most striking feature of the present model is that the limiting law is

now a complicated object, that no longer depends simply on a few parameters.
It is therefore reasonable to think of this limiting law μ as being itself a kind
of parameter (the correct value of which has to be found). This is what the
physicists mean when they say “that the order parameter of the model is a
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function” because they identify a probability distribution μ on R with the
tail function t �→ μ([t,∞)).

The purpose of the present section is to find the correct value of this
parameter. As is the case of the SK model this value will be given as the
solution of a certain equation. The idea of the construction we will perform
is very simple. While using the cavity method in the previous section, we
have seen in (6.34) (used for n = 1 and f(σ) = σN ) that

〈σN 〉 =
〈AvσNE〉−
〈AvE〉−

, (6.47)

where
E = exp

∑

j≤r

θj(σi(j,1), . . . , σi(j,p−1), σN ) . (6.48)

In the limit N → ∞ the sets Ij = {i(j, 1), . . . , i(j, p−1)} are disjoint. The
quantity E depends on a number of spins that in essence does not depend
on N . If we know the asymptotic behavior of any fixed number (i.e. of any
number that does not depend on N) of the spins (σi)i<N , we can then com-
pute the behavior of the spin σN . This behavior has to be the same as the
behavior of the spins σi for i < N , and this gives rise to a “self-consistency
equation”.

To define formally this equation, consider a Poisson r.v. r with Er = γ,
and independent of the r.v.s θj . For σ ∈ {−1, 1}N and ε ∈ {−1, 1} we define

Er = Er(σ, ε) = exp
∑

1≤j≤r

θj(σ(j−1)(p−1)+1, . . . , σj(p−1), ε) . (6.49)

This definition will be used many times in the sequel. We note that Er

depends on σ only through the coordinates of rank ≤ r(p − 1).
Given a sequence x = (xi)i≥1 with |xi| ≤ 1 we denote by λx the prob-

ability on {−1, 1}N that “has a density
∏

i(1 + xiσi) with respect to the
uniform measure”. More formally, λx is the product measure such that∫

σidλx(σ) = xi for each i. We denote by 〈·〉x an average for λx.
Similarly, if x = (xi)i≤M we also denote by λx the probability measure

on ΣM = {−1, 1}M such that
∫

σidλx(σ) = xi and we denote by 〈·〉x an
average for λx, so that we have

〈f〉x =
∫ ∏

i≤M

(1 + xiσi)f(σ)dσ ,

where dσ means average for the uniform measure on ΣM .
These definitions are also of central importance in this chapter. The

idea underlying these definitions has already been used implicitly in (6.42)
since for a function f on ΣN−1 we have

〈f〉• = 〈f〉Y , (6.50)
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where Y = (〈σ1〉−, . . . , 〈σN−1〉−).
Consider a probability measure μ on [−1, 1], and an i.i.d. sequence X =

(Xi)i≥1 such that Xi is of law μ. We define T (μ) as the law of the r.v.

〈Av εEr〉X
〈Av Er〉X

, (6.51)

where Av denotes the average over ε = ±1. We note that E depends on σ
and ε, so that Av εEr and Av Er depend on σ only and (6.51) makes sense.
The intuition is that if μ is the law of 〈σi〉 for i < N , then T (μ) is the law
of 〈σN 〉. This is simply because if the spins “decorrelate” as we expect, and
if in the limit any fixed number of the averages 〈σi〉i are i.i.d. of law μ, then
the right-hand side of (6.47) will in the limit have the same distribution as
the quantity (6.51).

Theorem 6.3.1. Assume that

4γpE(S exp 2S) ≤ 1 . (6.52)

Then there exists a unique probability measure μ on [−1, 1] such that

μ = T (μ) .

The proof will consist of showing that T is a contraction for the Monge-
Kantorovich transportation-cost distance d defined in (A.66) on the set of
probability measures on [−1, 1] provided with the usual distance. In the
present case, this distance is simply given by the formula

d(μ1, μ2) = inf E|X − Y | ,

where the infimum is taken over all pairs of r.v.s (X,Y ) such that the law
of X is μ1 and the law of Y is μ2. The very definition of d shows that to
bound d(μ1, μ2) there is no other method than to produce a pair (X,Y ) as
above such that E|X − Y | is appropriately small. Such a pair will informally
be called a coupling of the r.v.s X and Y .

Lemma 6.3.2. For a function f on {−1, 1}N, we have

∂

∂xi
〈f〉x = 〈Δif〉x (6.53)

where Δif(η) = (f(η+
i )− f(η−

i ))/2, and where η+
i (resp. η−

i ) is obtained by
replacing the i-th coordinate of η by 1 (resp. −1).

Proof. The measure λx on {−1, 1} such that
∫

η dλx(η) = x gives mass
(1 + x)/2 to 1 and mass (1− x)/2 to −1, so that for a function f on {−1, 1}
we have
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〈f〉x =
∫

f(η) dλx(η) =
1
2
(f(1) + f(−1)) +

x

2
(f(1) − f(−1)) .

Thus, using in the second inequality the trivial fact that a = 〈a〉x for any
number a implies

d
dx

〈f〉x =
1
2
(f(1) − f(−1)) =

〈
1
2
(f(1) − f(−1))

〉

x

. (6.54)

Since λx is a product measure, using (6.54) given all the coordinates different
from i, and then Fubini’s theorem, we obtain (6.53). �

Lemma 6.3.3. If Er is as in (6.49), if 1 ≤ j ≤ r and if (j − 1)(p− 1) < i ≤
j(p − 1), then ∣∣∣∣

∂

∂xi

〈Av εEr〉x
〈Av Er〉x

∣∣∣∣ ≤ 2Sj exp 2Sj

where Sj = sup |θj |. For the other values of i the left-hand side of the previous
inequality is 0.

Proof. Lemma 6.3.2 implies:

∂

∂xi

〈Av εEr〉x
〈Av Er〉x

=
〈Δi(Av εEr)〉x

〈Av Er〉x
− 〈Av εEr〉x〈ΔiAv Er〉x

〈Av Er〉2x
. (6.55)

Now
|Δi(Av εEr)| = |Av (εΔiEr)| ≤ Av |ΔiEr| .

We write Er = E ′E ′′, where E ′ = exp θj(σ(j−1)(p−1)+1, . . . , σj(p−1), ε), and
where E ′′ does not depend on σi. Thus, using that |ex−ey| ≤ |x−y|ea ≤ 2aea

for |x|, |y| ≤ a, we get (keeping in mind the factor 1/2 in the definition
of Δi, that offsets the factor 2 above) that ΔiE ′ ≤ Sj expSj , and since
E ′′ ≤ Er exp Sj we get

|ΔiEr| = |E ′′ΔiE ′| ≤ (Sj exp Sj)E ′′ ≤ (Sj exp 2Sj)Er

and thus ∣∣∣∣
〈Δi(Av εEr)〉x

〈Av Er〉x

∣∣∣∣ ≤ Sj exp 2Sj .

The last term of (6.55) is bounded similarly. �
Proof of Theorem 6.3.1. This is a fixed point argument. It suffices to prove
that under (6.52), for any two probability measures μ1 and μ2 on [−1, 1], we
have

d(T (μ1), T (μ2)) ≤
1
2
d(μ1, μ2) . (6.56)

First, Lemma 6.3.3 yields that given x,y ∈ [−1, 1]N it holds:
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∣∣∣∣∣
〈Av εEr〉x
〈Av Er〉x

−
〈Av εEr〉y
〈Av Er〉y

∣∣∣∣∣ ≤ 2
∑

j≤r

Sj exp 2Sj

∑

(j−1)(p−1)<i≤j(p−1)

|xi − yi| .

(6.57)
Consider a pair (X, Y ) of r.v.s and independent copies (Xi, Yi)i≥1 of this pair.
Let X = (Xi)i≥1, Y = (Yi)i≥1, so that from (6.57) we have
∣∣∣∣
〈Av εEr〉X
〈Av Er〉X

− 〈Av εEr〉Y
〈Av Er〉Y

∣∣∣∣ ≤ 2
∑

j≤r

Sj exp 2Sj

∑

(j−1)(p−1)<i≤j(p−1)

|Xi − Yi| .

(6.58)
Let us assume that the randomness of the pairs (Xi, Yi) is independent of the
other sources of randomness in (6.58). Taking expectations in (6.58) we get

E

∣∣∣∣
〈Av εEr〉X
〈Av Er〉X

− 〈Av εEr〉Y
〈Av Er〉Y

∣∣∣∣ ≤ 2γ(p − 1)(ES exp 2S)E|X − Y | . (6.59)

If X and Y have laws μ1 and μ2 respectively, then

〈Av εEr〉X
〈Av Er〉X

and
〈Av εEr〉Y
〈Av Er〉Y

have laws T (μ1) and T (μ2) respectively, so that (6.59) implies

d(T (μ1), T (μ2)) ≤ 2γ(p − 1)(ES exp 2S)E|X − Y | .

Taking the infimum over all possible choices of X and Y yields

d(T (μ1), T (μ2)) ≤ 2γ(p − 1)d(μ1, μ2)ES exp 2S ,

so that (6.52) implies (6.56). �
Let us denote by Tγ the operator T when we want to insist on the de-

pendence on γ. The unique solution of the equation μ = Tγ(μ) depends on
γ, and we denote it by μγ when we want to emphasize this dependence.

Lemma 6.3.4. If γ and γ′ satisfy (6.52) we have

d(μγ , μγ′) ≤ 4|γ − γ′| .

Proof. Without loss of generality we can assume that γ ≤ γ′. Since μγ =
Tγ(μγ) and μγ′ = Tγ′(μγ′), we have

d(μγ , μγ′) ≤ d(Tγ(μγ), Tγ(μγ′)) + d(Tγ(μγ′), Tγ′(μγ′))

≤ 1
2
d(μγ , μγ′) + d(Tγ(μγ′), Tγ′(μγ′)) , (6.60)

using (6.56). To compare Tγ(μ) and Tγ′(μ) the basic idea is that there is
natural coupling between a Poisson r.v. of expectation γ and another Poisson
r.v. of expectation γ′ (an idea that will be used again in the next section).
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Namely if r′′ is a Poisson r.v. with Er′′ = γ′′ := γ′−γ, and r′′ is independent of
the Poisson r.v. r such that Er = γ then r+r′′ is a Poisson r.v. of expectation
γ′. Consider Er as in (6.49) and, with the same notation,

E ′ = exp
∑

r<j≤r+r′′

θj(σ(j−1)(p−1)+1, . . . , σj(p−1), ε) ,

so that ErE ′ = Er+r′′ . Consider an i.i.d. sequence X = (Xi)i≥1 of common
law μ. Then the r.v.s

〈Av εEr〉X
〈Av Er〉X

and
〈Av εErE ′〉X
〈Av ErE ′〉X

have respectively laws Tγ(μ) and Tγ′(μ). Thus

d(Tγ(μ), Tγ′(μ)) ≤ E

∣∣∣∣
〈Av εEr〉X
〈Av Er〉X

− 〈Av εErE ′〉X
〈Av ErE ′〉X

∣∣∣∣ (6.61)

≤ 2P(r′′ �= 0) = 2(1 − e−(γ′−γ)) ≤ 2(γ′ − γ) ,

so that (6.60) implies that d(μγ , μγ′) ≤ d(μγ , μγ′)/2 + 2(γ′ − γ), hence the
desired result. �

Exercise 6.3.5. Consider three functions U, V, W on Σn
N . Assume that

V ≥ 0, that for a certain number Q, we have |U | ≤ QV , and let S∗ =
supσ1,...,σn |W |. Prove that for any Gibbs measure 〈·〉 we have

∣∣∣∣
〈U exp W 〉
〈V exp W 〉 −

〈U〉
〈V 〉

∣∣∣∣ ≤ 2QS∗ exp 2S∗.

Exercise 6.3.6. Use the idea of Exercise 6.3.5 to control the influence of
E ′ in (6.61) and to show that if γ and γ′ satisfy (6.52) then d(μγ , μγ′) ≤
4|γ − γ′|ES exp 2S.

6.4 The Replica-Symmetric Solution

In this section we will first prove that asymptotically as N → ∞ any fixed
number of the quantities 〈σi〉 are i.i.d. of law μγ , where μγ was defined
in the last section. We will then compute the quantity limN→∞ pN (γ) =
limN→∞ N−1E log ZN (γ).

Theorem 6.4.1. Assume that

16pγ0ES exp 4S ≤ 1 . (6.62)

Then there exists a number K2(p, γ0) such that if we define for n ≥ 0 the
numbers A(n) as follows:
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A(0) = K2(p, γ0)E exp 2S , (6.63)

A(n + 1) = A(0) +
(
40p3(γ0 + γ3

0)ES exp 2S
)
A(n) , (6.64)

then the following holds. If γ ≤ γ0, given any integers k ≤ N and n we can
find i.i.d. r.v.s z1, . . . , zk of law μγ such that

E
∑

i≤k

|〈σi〉 − zi| ≤ 21−nk +
k3A(n)

N
. (6.65)

In particular when
80p3(γ0 + γ3

0)ES exp 2S ≤ 1 , (6.66)

we can replace (6.65) by

E
∑

i≤k

|〈σi〉 − zi| ≤
2k3K2(γ0, p)

N
E exp 2S . (6.67)

The last statement of the Theorem simply follows from the fact that under
(6.66) we have A(n) ≤ 2A(0), so that we can take n very large in (6.90).
When (6.66) need not hold, optimisation over n in (6.65) yields a bound
≤ KkN−α for some α > 0 depending only on γ0, p and S.

The next problem need not be difficult. This issue came at the very time
where the book was ready to be sent to the publisher, and it did not seem ap-
propriate to either delay the publication or to try to make significant changes
in a rush.

Research Problem 6.4.2. (level 1-) Is it true that (6.67) follows from
(6.62)? More specifically, when γ0 � 1, and when S is constant, does (6.67)
follow from a condition of the type K(p)γ0S ≤ 1?

Probably the solution of this problem will not require essentially new
ideas. Rather, it should require technical work and improvement of the esti-
mates from Lemma 6.4.3 to Lemma 6.4.7, trying in particular to bring out
more “small factors” such as ES exp 2S, in the spirit of Exercice 6.3.6. It
seems however that it will also be necessary to proceed to a finer study of
what happens on the set Ω defined page 349.

It follows from Theorem 6.2.2 that we can assume throughout the proof
that property C(γ0, N, K0, K0) holds for every N . It will be useful to consider
the metric space [−1, 1]k, provided with the distance d given by

d((xi)i≤k, (yi)i≤k) =
∑

i≤k

|xi − yi| . (6.68)

The Monge-Kantorovich transportation-cost distance on the space of proba-
bility measures on [−1, 1]k that is induced by (6.68) will also be denoted by
d. We define
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D(N, k, γ0) = sup
γ≤γ0

d
(
L(〈σ1〉, . . . , 〈σk〉), μ⊗k

γ

)
(6.69)

where L(X1, . . . , Xk) denotes the law of the random vector (X1, . . . , Xk).
By definition of the transportation-cost distance in the right-hand side

of (6.69), the content of Theorem 6.4.1 is that if γ0 satisfies (6.62) we have
D(N, k, γ0) ≤ 21−nk +k3A(n)/N for each k ≤ N and each n. This inequality
will be proved by obtaining a suitable induction relation between the quan-
tities D(N, k, γ0). The overall idea of the proof is to use the cavity method
to express 〈σ1〉, . . . , 〈σk〉 as functions of a smaller spin system, and to use
Proposition 6.2.7 and the induction hypothesis to perform estimates on the
smaller spin system.

We start by a simple observation. Since
∑

i≤k |xi − yi| ≤ 2k for xi, yi ∈
[−1, 1], we have D(N, k, γ0) ≤ 2k. Assuming, as we may, that K2(p, γ0) ≥ 4p,
we see that there is nothing to prove unless N ≥ 2pk2 so in particular N ≥
p + k and N ≥ 2k. We will always assume below that this is the case. We
also observe that, by symmetry,

L(〈σ1〉, . . . , 〈σk〉) = L(〈σN−k+1〉, . . . , 〈σN 〉) .

The starting point of the proof of Theorem 6.4.1 is a formula similar to (6.20),
but where we remove the last k coordinates rather than the last one. Writing
now ρ = (σ1, . . . , σN−k), we consider the Hamiltonian

− HN−k(ρ) =
∑

s

θs(σi(s,1), . . . , σi(s,p)) , (6.70)

where the summation is restricted to those s ≤ M for which i(s, p) ≤ N − k.
This is the Hamiltonian of an (N − k)-spin system, except that we have
replaced γ by a different value γ−. To compute γ− we observe that since
the set {i(s, 1), . . . , i(s, p)} is uniformly distributed among the subsets of
{1, . . . , N} of cardinality p, the probability that i(s, p) ≤ N − k, i.e. the
probability that this set is a subset of {1, . . . , N − k} is exactly

τ =

(
N−k

p

)

(
N
p

) ,

so that the mean number of terms of this Hamiltonian is Nατ , and

γ−(N − k) = pNατ = γNτ ,

and thus

γ− = γ
(N − k − 1) · · · (N − k − p + 1)

(N − 1) · · · (N − p + 1)
. (6.71)

In particular γ− ≤ γ0 whenever γ ≤ γ0. Let us denote again by 〈·〉− an
average for the Gibbs measure with Hamiltonian (6.70). (The value of k will
be clear from the context.) Given a function f on ΣN , we then have
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〈f〉 =
〈Av fE〉−
〈Av E〉−

, (6.72)

where Av means average over σN−k+1, . . . , σN = ±1, and where

E = exp
∑

θs(σi(s,1), . . . , σi(s,p)) ,

for a sum over those values of s ≤ M for which i(s, p) ≥ N −k+1. As before,
in distribution,

E = exp
∑

j≤r

θj(σi(j,1), . . . , σi(j,p)) , (6.73)

where now the sets {i(j, 1), . . . , i(j, p)} are uniformly distributed over the
subsets of {1, . . . , N} of cardinality p that intersect {N − k + 1, . . . , N}, and
where r is a Poisson r.v. The expected value of r is the mean number of terms
in the Hamiltonian −HN that are not included in the summation (6.70), so
that

Er = αN

⎛

⎝1 −

(
N−k

p

)

(
N
p

)

⎞

⎠ =
γN

p

(
1− (N − k) · · · (N − k − p + 1)

N · · · (N − p + 1)

)
. (6.74)

The quantity r will keep this meaning until the end of the proof of The-
orem 6.4.1, and the quantity E will keep the meaning of (6.73). It is good to
note that, since N ≥ 2kp, for 	 ≤ p we have

N − k − 	

N − 	
= 1 − k

N − 	
≥ 1 − 2k

N
.

Therefore

(N − k) · · · (N − k − p − 1)
N · · · (N − p + 1)

≥
(
1 − 2k

N

)p

≥ 1 − 2kp

N
, (6.75)

and thus
Er ≤ 2kγ . (6.76)

We observe the identity

L(〈σN−k+1〉, . . . , 〈σN 〉) = L
(
〈Av σN−k+1E〉−

〈Av E〉−
, . . . ,

〈Av σNE〉−
〈Av E〉−

)
. (6.77)

The task is now to use the induction hypothesis to approximate the right-
hand side of (6.77); this will yield the desired induction relation. There are
three sources of randomness on the right-hand of (6.77). There is the ran-
domness associated with the (N − k)-spin system of Hamiltonian (6.70); the
randomness associated to r and the sets {i(j, 1), . . . , i(j, p)}; and the random-
ness associated to the functions θs, s ≤ r. These three sources of randomness
are independent of each other.
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To use the induction hypothesis, it will be desirable that for j ≤ r the
sets

Ij = {i(j, 1), . . . , i(j, p − 1)} (6.78)

are disjoint subsets of {1, . . . , N − k}, so we first control the size of the rare
event Ω where this is not the case. We have Ω = Ω1 ∪ Ω2, where

Ω1 =
{
∃j ≤ r, i(j, p − 2) ≥ N − k + 1

}

Ω2 =
{
∃ j, j′ ≤ r, j �= j′ , ∃ 	, 	′ ≤ p − 1 , i(j, 	) = i(j′, 	′)

}
.

Proceeding as in the proof of (6.25) we easily reach the crude bound

P(Ω) ≤ 4k2

N
(γp + γ2p2) . (6.79)

We recall that, as defined page 341, given a sequence x = (x1, . . . , xN−k)
with |xi| ≤ 1 and a function f on ΣN−k, we denote by 〈f〉x the average of f
with respect to the product measure λx on ΣN−k such that

∫
σi dλx(ρ) = xi

for 1 ≤ i ≤ N − k.
We now start a sequence of lemmas that aim at deducing from (6.77) the

desired induction relations among the quantities D(N, k, γ0). There will be
four steps in the proof. In the first step below, in each of the brackets in the
right-hand side of (6.77) we replace the Gibbs measure 〈·〉− by 〈·〉Y where
Y = (〈σ1〉−, . . . , 〈σN−k〉−). The basic reason why this creates only a small
error is that C(N, γ0, K0, K0) holds true for each N , a property which is used
as in Proposition 6.2.7.

Lemma 6.4.3. Consider the sequence

Y = (〈σ1〉−, . . . , 〈σN−k〉−) .

Set

u� = 〈σN−k+�〉 =
〈Av σN−k+�E〉−

〈Av E〉−
; v� =

〈Av σN−k+�E〉Y
〈Av E〉Y

.

Then we have

d(L(u1, . . . , uk),L(v1, . . . , vk)) ≤ k3

N
K(p, γ0)E exp 2S . (6.80)

Proof. From now on E− denotes expectation in the randomness of the N −k
spin system only. When Ω does not occur, there is nothing to change to the
proof of Proposition 6.2.7 to obtain that

E−|u� − v�| ≤
8r(p − 1)2K0

N − k

∑

j≤r

exp 2Sj ,
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where we recall that r denotes the number of terms in the summation in
(6.73), and is a Poisson r.v. which satisfies Er ≤ 2kγ. We always have E−|u�−
v�| ≤ 2, so that

E−|u� − v�| ≤
8r(p − 1)2K0

N − k

∑

j≤r

exp 2Sj + 21Ω . (6.81)

Taking expectation in (6.81) then yields

E|u� − v�| ≤
8(p − 1)2K0

N − k
E exp 2S Er2 + 2P(Ω)

≤ k2K(p, γ0)
N

E exp 2S ,

using (6.79), that N − k ≥ N/2 and that Er2 = Er + (Er)2 ≤ 2γk + 4γ2k2 .
Since the left-hand side of (6.80) is bounded by

∑
�≤k E|u� − v�|, the result

follows. �
In the second step, we replace the sequence Y by an appropriate i.i.d.

sequence of law μγ− . The basic reason this creates only a small error is the
“induction hypothesis” i.e. the control of the quantities D(N − k, m, γ0).

Proposition 6.4.4. Consider an independent sequence X = (X1, . . . , XN−k)
where each Xi has law μ− := μγ− . We set

w� =
〈Av σN−k+�E〉X

〈AvE〉X
, (6.82)

and we recall the quantities v� of the previous lemma. Then we have

d(L(v1, . . . , vk),L(w1, . . . , wk)) ≤ k3

N
K(p, γ0) (6.83)

+ 4ES exp 2SED(N − k, r(p − 1), γ0) ,

where the last expectation is taken with respect to the Poisson r.v. r.

The proof will rely on the following lemma.

Lemma 6.4.5. Assume that Ω does not occur. Consider 	 ≤ k and

E� = exp
∑

θj(σi(j,1), . . . , σi(j,p−1), σN−k+�) , (6.84)

where the summation is over those j ≤ r for which i(j, p) = N − k + 	. Then
for any sequence x we have

〈Av σN−k+�E〉x
〈Av E〉x

=
〈Av σN−k+�E�〉x

〈Av E�〉x
. (6.85)

Consequently
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∂

∂xi

〈Av σN−k+�E〉x
〈Av E〉x

= 0 (6.86)

unless i ∈ Ij for some j with i(j, p) = N−k+	. In that case we have moreover
∣∣∣∣

∂

∂xi

〈Av σN−k+�E〉x
〈Av E〉x

∣∣∣∣ ≤ 4Sj exp 2Sj . (6.87)

Proof. Define E ′
� by E = E�E ′

�. Since Ω does not occur, the quantities
σN−k+�E� and E�′ depend on disjoint sets of coordinates. Consequently

Av σN−k+�E = (Av σN−k+�E�)(Av E ′
�) (6.88)

Av E = (Av E�)(Av E ′
�) . (6.89)

In both (6.88) and (6.89) the two factors on the right depend on disjoint sets
of coordinates. Since 〈·〉x is a product measure, we get

〈Av σN−k+�E〉x = 〈Av σN−k+�E�〉x〈Av E ′
�〉x

and similarly with (6.89), so that (6.85) follows, of which (6.86) is an obvious
consequence. As for (6.87), it is proved exactly as in Lemma 6.3.3. �
Proof of Proposition 6.4.4. The strategy is to construct a specific realiza-
tion of X for which the quantity E

∑
�≤N−k |v�−w�| is small. Consider the set

J =
⋃

j≤r Ij (so that cardJ ≤ (p − 1)r). The construction takes place given
the set J . By definition of D(N − k, r(p − 1), γ0), given J we can construct
an i.i.d. sequence (Xi)i≤N−k distributed like μ− that satisfies

E−
∑

i∈J

|Xi − 〈σi〉− | ≤ 2D(N − k, r(p − 1), γ0) . (6.90)

We can moreover assume that the sequence (θj)j≥1 is independent of the
randomness generated by J and the variables Xi. The sequence (Xi)i≤N−k

is our specific realization. It is i.i.d. distributed like μ−.
It follows from Lemma 6.4.5 that if Ω does not occur,

|w� − v�| =
∣∣∣∣
〈Av σN−k+�E〉X

〈Av E〉X
− 〈Av σN−k+� E〉Y

〈Av E〉Y

∣∣∣∣

≤
∑(∑

i∈Ij

|Xi − 〈σi〉− |
)

2Sj exp 2Sj ,

where the first sum is over those j ≤ r for which i(j, p) = N − k + 	. By
summation over 	 ≤ k, we get that when Ω does not occur,

∑

�≤k

|w� − v�| ≤ 2
∑

i∈J

|Xi − 〈σi〉− |Sj(i) exp 2Sj(i) ,
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where j(i) is the unique j ≤ r with i ∈ Ij . Denoting by Eθ expectation in the
r.v.s (θj)j≥1 and using independence we get

Eθ

∑

�≤k

|w� − v�| ≤ 2
∑

i∈J

|Xi − 〈σi〉− |ES exp 2S .

Taking expectation E− and using (6.90) implies that when Ω does not occur,

EθE−
∑

�≤k

|w� − v�| ≤ 4(ES exp 2S)D(N − k, r(p − 1), γ0) ,

i.e.

1ΩcEθE−
∑

�≤k

|w� − v�| ≤ 4(ES exp 2S)D(N − k, r(p − 1), γ0) . (6.91)

On the other hand, on Ω we have trivially

EθE−
∑

�≤k

|w� − v�| ≤ 2k ,

and combining with (6.91) we see that

EθE−
∑

�≤k

|w� − v�| ≤ 4(ES exp 2S)D(N − k, r(p − 1), γ0) + 2k1Ω .

Taking expectation and using (6.79) again yields

E
∑

�≤k

|w� − v�| ≤
k3K(p, γ0)

N
+ 4(ES exp 2S)ED(N − k, r(p − 1), γ0) ,

and this implies (6.83). �
Now comes the key step: by definition of the operator T of (6.51) the r.v.s

w� of (6.82) are nearly independent with law T (μ−).

Proposition 6.4.6. We have

d(L(w1, . . . , wk), T (μ−) ⊗ · · · ⊗ T (μ−)) ≤ k2

N
K(p, γ0) . (6.92)

Proof. Let us define, for 	 ≤ k

r(	) = card
{
j ≤ r; i(j, p − 1) ≤ N − k, i(j, p) = N − k + 	

}
, (6.93)

so that when Ω does not occur, r(	) is the number of terms in the summation
of (6.84), and moreover for different values of 	, the sets of indices occurring
in (6.84) are disjoint. The sequence (r(	))�≤k is an i.i.d. sequence of Poisson
r.v.s. (and their common mean will soon be calculated).
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For 	 ≥ 1 and j ≥ 1 let us consider independent copies θ�,j of θ and for
m ≥ 1 let us define, for σ ∈ R

N,

E�,m = E�,m(σ, ε) = exp
∑

1≤j≤m

θ�,j(σ(j−1)(p−1)+1, . . . , σj(p−1), ε) ,

a formula that should be compared to (6.49).
For 	 ≤ k, let us consider sequences X� = (Xi,�)i≥1, where the r.v.s Xi,�

are all independent of law μ−. Let us define w′
� = w� when Ω occurs, and

otherwise

w′
� =

〈
Av εE�,r(�)

〉
X�

〈Av E�,r(�)〉X�

. (6.94)

The basic fact is that the sequences (w�)�≤k and (w′
�)�≤k have the same law.

This is because they have the same law given the r.v. r and the numbers
i(j, 1), . . . , i(j, p) for j ≤ r. This is obvious when Ω occurs, since then w′

� =
w�. When Ω does not occur we simply observe from (6.85) and the definition
of w� that

w� =
〈Av σN−k+�E�〉X

〈Av E�〉X
.

We then compare with (6.94), keeping in mind that there are r(	) terms in
the summation (6.84), and then using symmetry.

Therefore we have shown that

L(w1, . . . , wk) = L(w′
1, . . . , w

′
k) . (6.95)

Since the sequence (r(	))�≤k is an i.i.d. sequence of Poisson r.v.s, the sequence
(w′

�)�≤k is i.i.d. It has almost law T (μ−), but not exactly because the Poisson
r.v.s r(	) do not have the correct mean. This mean γ′ = Er(	) is given by

γ′ =
Nγ

p

(
N−k
p−1

)

(
N
p

) = γ
(N − k) · · · (N − k − p + 2)

(N − 1) · · · (N − p + 1)
≤ γ .

To bound the small error created by the difference between γ and γ′ we
proceed as in the proof of Lemma 6.3.4. We consider independent Poisson
r.v.s (r′′(	))�≤k of mean γ − γ′, so that s(	) = r(	) + r′′(	) is an independent
sequence of Poisson r.v.s of mean γ. Let

w′′
� =

〈
Av εE�,s(�)

〉
X�〈

Av E�,s(�)

〉
X�

.

The sequence (w′′
� )�≤k is i.i.d. and the law of w′′

� is T (μ−). Thus (6.95) implies:

d(L(w1, . . . , wk), T (μ−) ⊗ · · · ⊗ T (μ−)) = d(L(w′
1, . . . , w

′
k),L(w′′

1 , . . . , w′′
k))

≤
∑

�≤k

E|w′
� − w′′

� | .



354 6. The Diluted SK Model and the K-Sat Problem

Now, since w′′
� = w′

� unless Ω occurs or s(	) �= r(	), we have

E|w′
� − w′′

� | ≤ 2
(
P(s(	) �= r(	)) + P(Ω)

)

and
P(s(	) �= r(	)) = P(r′′(	) �= 0) ≤ γ − γ′ .

Moreover from (6.75) we see that γ − γ′ ≤ 2γkp/N. The result follows. �
The next lemma is the last step. It quantifies the fact that T (μ−) is nearly

μ.

Lemma 6.4.7. We have

d(T (μ−)⊗k, μ⊗k) ≤ 4γk2p

N
. (6.96)

Proof. The left-hand side is bounded by

kd(T (μ−), μ) = kd(T (μ−), T (μ)) ≤ k

2
d(μ, μ−) ≤ 2k(γ − γ−) ,

using Lemma 6.3.4. The result follows since by (6.75) we have γ − γ− ≤
2kpγ/N . ��
Proof of Theorem 6.4.1. We set B = 4ES exp 2S. Using the triangle in-
equality for the transportation-cost distance and the previous estimates, we
have shown that for a suitable value of K2(γ0, p) we have (recalling the defi-
nition (6.63) of A(0)),

d
(
L(〈σN−k+1〉 , . . . , 〈σN 〉), μ⊗k

)
≤ k3A(0)

N
+ BED(N − k, r(p − 1), γ0) .

(6.97)
Given an integer n we say that property C∗(N, γ0, n) holds if

∀p ≤ N ′ ≤ N , ∀k ≤ N ′ , D(N ′, k, γ0) ≤ 21−nk +
k3A(n)

N ′ . (6.98)

Since D(N ′, k, γ0) ≤ 2k, C∗(N, γ0, 0) holds for each N . And since A(n) ≥
A(0), C∗(p, γ0, n) holds as soon as K2(γ0, p) ≥ 2p, since then D(p, k, γ0) ≤
2k ≤ k3A(0)/p ≤ k3A(n)/p. We will prove that

C∗(N − 1, γ0, n) ⇒ C∗(N, γ0, n + 1) , (6.99)

thereby proving that C∗(N, γ0, n) holds for each N and n, which is the content
of the theorem.

To prove (6.99), we assume that C∗(N − 1, γ0, n) holds and we consider
k ≤ N/2. It follows from (6.98) used for N ′ = N − k ≤ N − 1 and r(p − 1)
instead of k that since k ≤ N/2 we have

D(N−k, r(p−1), γ0) ≤ 21−nrp+
p3r3A(n)
N − k

≤ 21−nrp+
2p3r3A(n)

N
, (6.100)
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and going back to (6.97),

d
(
L(〈σN−k+1〉 , . . . , 〈σN 〉), μ⊗k

)
≤ 21−npBEr +

k3A(0)
N

+
2p3A(n)

N
BE(r3) .

(6.101)
Since r is a Poisson r.v., (A.64) shows that Er3 = (Er)3 + 3(Er)2 + Er, so
that since Er ≤ 2kγ we have crudely

Er3 ≤ 20(γ + γ3)k3 , (6.102)

using that γ2 ≤ γ + γ3. Since pBEr = 2pBkγ ≤ k/2 by (6.62), using (6.102)
to bound the last term of (6.101) we get

d
(
L(〈σN−k+1〉 , . . . , 〈σN 〉), μ⊗k

)
≤ 2−nk +

k3

N
(A(0) + 40p3(γ + γ3)BA(n)) ,

and since this holds for each γ ≤ γ0, the definition of D(N, k, γ0) shows that

D(N, k, γ0) ≤ 2−nk+
k3

N
(A(0)+40p3(γ0 +γ3

0)BA(n)) = 2−nk+
k3A(n + 1)

N
.

(6.103)
We have assumed k ≤ N/2, but since D(N, k, γ0) ≤ 2k and A(n+1) ≥ A(0),
(6.103) holds for k ≥ N/2 provided K2(γ0, p) ≥ 8. This proves C∗(N, γ0, n+1)
and concludes the proof. ��

We now turn to the computation of

pN (γ) =
1
N

E log
∑

σ

exp(−HN (σ)) . (6.104)

We will only consider the situation where (6.66) holds, leaving it to the reader
to investigate what kind of rates of convergence she can obtain when assum-
ing only (6.62). We consider i.i.d. copies (θj)j≥1 of the r.v. θ, that are inde-
pendent of θ, and we recall the notation (6.49). Consider an i.i.d. sequence
X = (Xi)i≥1, where Xi is of law μγ (given by Theorem 6.3.1). Recalling the
definition (6.49) of Er we define

p(γ) = log 2 − γ(p − 1)
p

E log 〈exp θ(σ1, . . . , σp)〉X + E log 〈Av Er〉X . (6.105)

Here as usual Av means average over ε = ±1, the notation 〈·〉X is as in e.g.
(6.51), and r is a Poisson r.v. with Er = γ.

Theorem 6.4.8. Under (6.62) and (6.66), for N ≥ 2, and if γ ≤ γ0 we
have

|pN (γ) − p(γ)| ≤ K log N

N
, (6.106)

where K does not depend on N or γ.
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As we shall see later, the factor log N above is parasitic and can be removed.

Let γ− = γ(N − p)/(N − 1) as in (6.18). Theorem 6.4.8 will be a conse-
quence of the following two lemmas, that use the notation (6.104), and where
K does not depend on N or γ.

Lemma 6.4.9. We have

|NpN (γ) − (N − 1)pN−1(γ−) − log 2 − E log 〈Av Er〉X| ≤ K

N
. (6.107)

Lemma 6.4.10. We have
∣∣∣∣(N − 1)pN−1(γ) − (N − 1)pN−1(γ−)

− γ
p − 1

p
E log 〈exp θ(σ1, . . . , σp)〉X

∣∣∣∣ ≤
K

N
. (6.108)

Proof of Theorem 6.4.8. Combining the two previous relations we get

|NpN (γ) − (N − 1)pN−1(γ) − p(γ)| ≤ K

N
,

and by summation over N that

N |pN (γ) − p(γ)| ≤ K log N . ��

The following prepares for the proof of Lemma 6.4.10.

Lemma 6.4.11. We have

p′N (γ) =
1
p
E log 〈exp θ(σ1, . . . , σp)〉 . (6.109)

Proof. As N is fixed, it is obvious that p′N (γ) exists. A pretty proof of (6.109)
is as follows. Consider δ > 0, i.i.d. copies (θj)j≥1 of θ, sets {i(j, 1), . . . , i(j, p)}
that are independent uniformly distributed over the subsets of {1, . . . , N} of
cardinality p, and define

− Hδ
N (σ) =

∑

j≤u

θj(σi(j,1), . . . , σi(j,p)) , (6.110)

where u is a Poisson r.v. of mean Nδ/p. All the sources of randomness in
this formula are independent of each other and of the randomness in HN . In
distribution, HN (σ) + Hδ

N (σ) is the Hamiltonian of an N -spin system with
parameter γ + δ, so that

pN (γ + δ) − pN (δ)
δ

=
1

Nδ
E log

〈
exp(−Hδ

N (σ))
〉

. (6.111)
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When u = 0, we have Hδ
N ≡ 0 so that log

〈
exp(−Hδ

N (σ))
〉

= 0. For very
small δ, the probability that u = 1 is at the first order in δ equal to Nδ/p.
The contribution of this case to the right-hand side of (6.111) is, by symmetry
among sites,

1
p
E log

〈
exp θ1(σi(1,1), . . . , σi(1,p))

〉
=

1
p
E log 〈exp θ(σ1, . . . , σp)〉 .

The contribution of the case u > 1 is of second order in δ, so that taking the
limit in (6.111) as δ → 0 yields (6.109). ��

Lemma 6.4.12. Recalling that X = (Xi)i≥1 where Xi are i.i.d. of law μγ

we have ∣∣∣∣p
′
N (γ) − 1

p
E log 〈exp θ(σ1, . . . , σp)〉X

∣∣∣∣ ≤
K

N
. (6.112)

Proof. From Lemma 6.4.11 we see that it suffices to prove that

∣∣E log 〈exp θ(σ1, . . . , σp)〉 − E log 〈exp θ(σ1, . . . , σp)〉X
∣∣ ≤ K

N
. (6.113)

Let us denote by E0 expectation in the randomness of 〈·〉 (but not in θ), and
let S = sup |θ|. It follows from Theorem 6.2.2 (used as in Proposition 6.2.7)
that

E0

∣∣〈exp θ(σ1, . . . , σp)〉 −
〈
exp θ(σ1

1 , . . . , σp
p)
〉∣∣ ≤ K

N
expS .

Here and below, the number K depends only on p and γ0, but not on S or
N . Now 〈

exp θ(σ1
1 , . . . , σp

p)
〉

= 〈exp θ(σ1, . . . , σp)〉Y ,

where Y = (〈σ1〉 , . . . , 〈σp〉). Next, since
∣∣∣∣

∂

∂xi
〈exp θ(σ1, . . . , σp)〉x

∣∣∣∣ ≤ exp S ,

considering (as provided by Theorem 6.4.1) a joint realization of the sequences
(X,Y) with E0|X� −〈σ�〉 | ≤ K/N for 	 ≤ p, we obtain as in Section 6.3 that

E0

∣∣〈exp θ(σ1, . . . , σp)〉X − 〈exp θ(σ1, . . . , σp)〉Y
∣∣ ≤ K

N
expS .

Combining the previous estimates yields

E0

∣∣〈exp θ(σ1, . . . , σp)〉 − 〈exp θ(σ1, . . . , σp)〉X
∣∣ ≤ K

N
exp S .

Finally for x, y > 0 we have

|log x − log y| ≤ |x − y|
min(x, y)
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so that

E0

∣∣log 〈exp θ(σ1, . . . , σp)〉 − log 〈exp θ(σ1, . . . , σp)〉X
∣∣ ≤ K

N
exp 2S ,

and (6.113) by taking expectation in the randomness of θ. ��
Proof of Lemma 6.4.10. We observe that

pN−1(γ) − pN−1(γ−) =
∫ γ

γ−
p′N−1(t)dt .

Combining with Lemma 6.4.12 and Lemma 6.3.4 implies

γ− ≤ t ≤ γ ⇒
∣∣∣∣p

′
N−1(t) −

1
p

log 〈exp θ(σ1, . . . , σp)〉X

∣∣∣∣ ≤
K

N

and we conclude using that

γ − γ− = γ

(
1 − N − p

N − 1

)
= γ

(
p − 1
N − 1

)
. ��

Proof of Lemma 6.4.9. Let us denote by 〈·〉− an average for the Gibbs
measure of an (N − 1)-spin system with Hamiltonian (6.13). We recall that
we can write in distribution

−HN (σ) D= −HN−1(ρ) +
∑

j≤r

θj(σi(j,1), . . . , σi(j,p−1), σN ) ,

where (θj)j≥1 are independent distributed like θ, where r is a Poisson r.v.
of expectation γ and where the sets {i(j, 1), . . . , i(j, p − 1)} are uniformly
distributed over the subsets of {1, . . . , N − 1} of cardinality p − 1. All these
randomnesses, as well as the randomness of HN−1 are globally independent.
Thus the identity

E log
∑

σ

exp(−HN (σ)) = E log
∑

ρ

exp(−HN−1(ρ))

+ log 2 + E log 〈Av E〉− (6.114)

holds, where

E = E(ρ, ε) = exp
∑

j≤r

θj(σi(j,1), . . . , σi(j,p−1), ε) .

The term log 2 occurs from the identity a(1) + a(−1) = 2Av a(ε). Moreover
(6.114) implies the equality

NpN (γ) − (N − 1)pN−1(γ−) = log 2 + E log 〈Av E〉− .

Thus (6.107) boils down to the fact that
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∣∣E log 〈Av E〉− − E log 〈Av Er〉X
∣∣ ≤ K

N
. (6.115)

The reason why the left-hand side is small should be obvious, and the argu-
ments have already been used in the proof of Lemma 6.4.12. Indeed, it follows
from Theorems 6.2.2 and 6.4.1 that if F is a function on the (N − 1)-spin
system that depends only on k spins, the law of the r.v. 〈F 〉− is nearly that of
〈F 〉Y where Yi are i.i.d. r.v.s of law μ− = μγ− (which is nearly μγ). The work
consists in showing that the bound in (6.115) is actually in K/N . Writing the
full details is a bit tedious, but completely straightforward. We do not give
these details, since the exact rate in (6.107) will never be used. As we shall
soon see, all we need in (6.106) is a bound that goes to 0 as N → ∞. ��

Theorem 6.4.13. Under (6.62) and (6.66)we have in fact

|pN (γ) − p(γ)| ≤ K

N
. (6.116)

Proof. It follows from (6.112) that the functions p′N (γ) converge uni-
formly over the interval [0, γ0]. On the other hand, Theorem 6.4.8 shows
that p(γ) = lim pN (γ). Thus p(γ) has a derivative p′(γ) = limN→∞ p′N (γ), so
that (6.112) means that |p′N (γ) − p′(γ)| ≤ K/N , from which (6.116) follows
by integration. ��
Comment. In this argument we have used (6.106) only to prove that

p′(γ) =
1
p
E log 〈exp θ(σ1, . . . , σp)〉X .

One would certainly wish to find a simple direct proof of this fact from the
definition of (6.105). A complicated proof can be found in [56], Proposi-
tion 7.4.9.

6.5 The Franz-Leone Bound

In the previous section we showed that, under (6.62), the value of pN (γ) is
nearly given by the value (6.105). In the present section we prove a remarkable
fact. If the function θ is nice enough, one can bound pN (γ) by a quantity
similar to (6.105) for all values of γ. Hopefully this bound can be considered
as a first step towards the very difficult problem of understanding the present
model without a high-temperature condition. It is in essence a version of
Guerra’s replica-symmetric bound of Theorem 1.3.7 adapted to the present
setting.

We make the following assumptions on the random function θ. We assume
that there exists a random function f : {−1, 1} → R such that

exp θ(σ1, . . . , σp) = a(1 + bf1(σ1) · · · fp(σp)) , (6.117)
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where f1, . . . , fp are independent copies of f , b is a r.v. independent of
f1, . . . , fp that satisfies the condition

∀n ≥ 1, E(−b)n ≥ 0 , (6.118)

and a is any r.v. Of course (6.118) is equivalent to saying that Eb2k+1 ≤ 0
for k ≥ 0. We also assume two further conditions:

|bf1(σ1) · · · fp(σp)| ≤ 1 a.e., (6.119)

and
either f ≥ 0 or p is even. (6.120)

Let us consider two examples where these conditions are satisfied. First,
let

θ(σ1, . . . , σp) = βJσ1 · · ·σp ,

where J is a symmetric r.v. Then (6.117) holds for a = ch(βJ), b = th(βJ),
f(σ) = σ, (6.118) holds by symmetry and (6.120) holds when p is even.

Second, let

θ(σ1, . . . , σp) = −β
∏

j≤p

(1 + ηjσj)
2

,

where ηi are independent random signs. This is exactly the Hamiltonian
relevant to the K-sat problem (6.2). We observe that for x ∈ {0, 1} we have
the identity exp(−βx) = 1 + (e−β − 1)x. Let us set fj(σ) = (1 + ηjσ)/2 ∈
{0, 1}. Since θ(σ1, . . . , σp) = −βx for x = f1(σ1) · · · fp(σp) ∈ {0, 1} we see
that (6.117) holds for a = 1, b = e−β − 1 and fj(σ) = (1 + ηjσ)/2; (6.118)
holds since b < 0, and (6.120) holds since f ≥ 0.

Given a probability measure μ on [−1, 1], consider an i.i.d. sequence X
distributed like μ, and let us denote by p(γ, μ) the right-hand side of (6.105).
(Thus, under (6.62), μγ is well defined and p(γ) = p(γ, μγ)).

Theorem 6.5.1. Conditions (6.117) to (6.119) imply

∀γ, ∀μ, pN (γ) =
1
N

E log
∑

σ

exp(−HN (σ)) ≤ p(γ, μ) +
Kγ

N
, (6.121)

where K does not depend on N or γ.

Let us introduce for ε = ±1 the r.v.

U(ε) = log 〈exp θ(σ1, . . . , σp−1, ε)〉X ,

and let us consider independent copies (Ui,s(1), Ui,s(−1))i,s≥1 of the pair
(U(1), U(−1)).
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Exercise 6.5.2. As a motivation for the introduction of the quantity U
prove that if we consider the 1-spin system with Hamiltonian −

∑
s≤r Ui,s(ε),

the average of ε for this Hamiltonian is equal, in distribution, to the quantity
(6.51). (Hence, it is distributed like T (μ).)

For 0 ≤ t ≤ 1 we consider a Poisson r.v. Mt of mean αtN = γtN/p,
and independent Poisson r.v.s ri,t of mean γ(1 − t), independent of Mt. We
consider the Hamiltonian

− HN,t(σ) =
∑

k≤Mt

θk(σi(k,1), . . . , σi(k,p)) +
∑

i≤N

∑

s≤ri,t

Ui,s(σi) , (6.122)

where as usual the different sources of randomness are independent of each
other, and we set

ϕ(t) =
1
N

E log
∑

σ

exp(−HN,t(σ)) .

Proposition 6.5.3. We have

ϕ′(t) ≤ −γ(p − 1)
p

E log 〈exp θ(σ1, . . . , σp)〉X +
Kγ

N
. (6.123)

This is of course the key fact.

Proof of Theorem 6.5.1. We deduce from (6.5.3) that

pN (γ) = ϕ(1) ≤ ϕ(0) − γ(p − 1)
p

E log 〈exp θ(σ1, . . . , σp)〉X +
Kγ

N
.

Therefore to prove Theorem 6.5.1 it suffices to show that ϕ(0) = log 2 +
E log 〈Av Er〉X. For t = 0 the spins are decoupled, so this reduces to the case
N = 1. Since r1,0 has the same distribution as r, we simply observe that if
(Xs)s≤r are independent copies of X, the quantity

∏

s≤r

〈exp θs(σ1, . . . , σp−1, ε)〉Xs

has the same distribution as the quantity 〈Av Er〉X. Therefore,

E log
∑

ε=±1

exp
∑

s≤r

U1,s(ε) = E log
∑

ε=±1

∏

s≤r

〈exp θs(σ1, . . . , σp−1, ε)〉Xs

= log 2 + E log〈Av Er〉X ,

and this completes the proof of Theorem 6.5.1. ��

We now prepare for the proof of (6.5.3).
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Lemma 6.5.4. We have

ϕ′(t) ≤ γ

p

(
1

Np

N∑

i1,...,ip=1

E log
〈
exp θ(σi1 , . . . , σip)

〉

− p

N

∑

i≤N

E log 〈expU(σi)〉
)

+
Kγ

N
. (6.124)

Here, as in the rest of the section, we denote by 〈·〉 an average for the Gibbs
measure with Hamiltonian (6.122), keeping the dependence on t implicit. On
the other hand, the number K in (6.124) is of course independent of t.

Proof. In ϕ′(t) there are terms coming from the dependence on t of Mt and
terms coming from the dependence on t of ri,t.

As shown by Lemma 6.4.11, the term created by the dependence of Mt

on t is

γ

p
E log 〈exp θ(σ1, . . . , σp)〉 ≤

γ

pNp

N∑

i1,...,ip=1

E log
〈
exp θ(σi1 , . . . , σip)

〉
+

γK

N
,

because all the terms where the indices i1, . . . , ip are distinct are equal. The
same argument as in Lemma 6.4.11 shows that the term created by the de-
pendence of ri,t on t is −(γ/N)E log 〈expU(σi)〉. ��

Thus, we have reduced the proof of Proposition 6.5.3 (hence, of Theo-
rem 6.5.1) to the following:

Lemma 6.5.5. We have

N∑

i1,...,ip=1

1
Np

E log
〈
exp θ(σi1 , . . . , σip)

〉
− p

N

∑

i≤N

E log 〈exp U(σi)〉

+(p − 1)E log 〈exp θ(σ1, . . . , σp)〉X ≤ 0 . (6.125)

The proof is not really difficult, but it must have been quite another matter
when Franz and Leone discovered it.

Proof. We will get rid of the annoying logarithms by power expansion,

log(1 + x) = −
∑

n≥1

(−1)n xn

n

for |x| < 1. Let us denote by E0 the expectation in the randomness of X and
of the functions fj of (6.117) only. Let us define

Cn = E0 〈f(σ1)〉nX (6.126)

Aj,n = Aj,n(σ1, . . . ,σn) =
1
N

∑

i≤N

∏

�≤n

fj(σ�
i ) (6.127)
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Bn = Bn(σ1, . . . ,σn) = E0Aj,n . (6.128)

We will prove that the left-hand side quantity (6.125) is equal to

−
∞∑

n=1

E(−b)n

n
E
〈
Bp

n − pBnCp−1
n + (p − 1)Cp

n

〉
. (6.129)

The function x �→ xp is convex on R
+, and when p is even it is convex on

R. Therefore xp − pxyp−1 + (p − 1)yp ≥ 0 for all x, y ∈ R
+, and when p is

even this is true for all x, y ∈ R. Now (6.120) shows that either Bn ≥ 0 and
Cn ≥ 0 or p is even, and thus it holds that Bp

n − pBnCp−1
n + (p − 1)Cp

n ≥ 0.
Consequently the right-hand side of (6.129) is ≤ 0 because E(−b)n ≥ 0 by
(6.118).

By (6.117) we have

exp θ(σ1, . . . , σp) = a(1 + b
∏

j≤p

fj(σj)) , (6.130)

so that, taking the average 〈·〉X and logarithm, and using (6.119) to allow
the power expansion in the second line,

log 〈exp θ(σ1, . . . , σp)〉X = log a + log
(

1 + b

〈∏

j≤p

fj(σj)
〉

X

)

= log a −
∞∑

n=1

(−b)n

n

〈∏

j≤p

fj(σj)
〉n

X

. (6.131)

Now, by independence

E0

〈∏

j≤p

fj(σj)
〉n

X

= E0

∏

j≤p

〈fj(σj)〉nX = Cp
n

so that

E0 log 〈exp θ(σ1, . . . , σp)〉X = E0 log a −
∞∑

n=1

(−b)n

n
Cp

n .

As in (6.131),

1
Np

N∑

i1,...,ip

log
〈
exp θ(σi1 , . . . , σip)

〉

= log a −
∞∑

n=1

(−b)n

n

(
1

Np

N∑

i1,...,ip=1

〈∏

j≤p

fj(σij )
〉n
)

.

Using replicas, we get
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〈∏

j≤p

fj(σij )
〉n

=
〈∏

�≤n

∏

j≤p

fj(σ�
ij

)
〉

,

so that, using (6.127) in the second line yields

1
Np

N∑

i1,...,ip=1

〈∏

j≤p

fj(σij )
〉n

=
〈

1
Np

N∑

i1,...,ip=1

∏

�≤n

∏

j≤p

fj(σ�
ij

)
〉n

=
〈∏

j≤p

Aj,n

〉
.

Now from (6.128) and independence we get E0

∏
j≤p Aj,n = Bp

n, so that

E0
1

Np

N∑

i1,...,ip=1

log
〈
exp θ(σi1 , . . . , σip)

〉
= E0 log a −

∞∑

n=1

(−b)n

n
〈Bp

n〉 .

In a similar manner, recalling the definition of U , one shows that

E0
1
N

∑

i≤n

log 〈exp U(σi)〉 = E0 log a −
∞∑

n=1

(−b)n

n

〈
BnCp−1

n

〉
,

and this concludes the proof of Lemma 6.5.5. ��

6.6 Continuous Spins

In this section we consider the situation of the Hamiltonian (6.4) when the
spins are real numbers. There are two motivations for this. First, the “main
parameter” of the system is no longer “a function” but rather “a random
function”. This is both a completely natural and fun situation. Second, this
will let us demonstrate in the next section the power of the convexity tools
we developed in Chapters 3 and 4. We consider a (Borel) function θ on R

p,
i.i.d. copies (θk)k≥1 of θ, and for σ ∈ R

N the quantity HN (σ) given by (6.4).
We consider a given probability measure η on R, and we lighten notation by
writing ηN for η⊗N , the corresponding product measure on R

N . The Gibbs
measure is now defined as the random probability measure on R

N which has
a density with respect to ηN that is proportional to exp(−HN (σ)). Let us fix
an integer k and, for large N , let us try to guess the law of (σ1, . . . , σk) under
Gibbs’ measure. This is a random probability measure on R

k. We expect that
it has a density Yk,N with respect to ηk = η⊗k. What is the simplest possible
structure? It would be nice if we had

Yk,N (σ1, . . . , σk) � X1(σ1) · · ·Xk(σk) ,
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where X1, . . . , Xk ∈ L1(η) are random elements of L1(η), which are proba-
bility densities, i.e. Xi ∈ D, where

D =
{

X ∈ L1(η) ; X ≥ 0 ;
∫

Xdη = 1
}

. (6.132)

The nicest possible probabilistic structure would be that these random ele-
ments X1, . . . , Xk be i.i.d, with a common law μ, a probability measure on the
metric space D. This law μ is the central object, the “main parameter”. (If
we wish, we can equivalently think of μ as the law of a random element of D.)
The case of Ising spins is simply the situation where η({1}) = η({−1}) = 1/2,
in which case

D = {(x(−1), x(1)) ; x(1), x(−1) ≥ 0 , x(1) + x(−1) = 2}

and

D can be identified with the interval [−1, 1]
by the map (x(−1), x(1)) �→ (x(1) − x(−1))/2 . (6.133)

Thus, in that case, as we have seen, the main parameter is a probability
measure on the interval [−1, 1].

We will assume in this section that θ is uniformly bounded, i.e.

S = sup
σ1,...,σp∈R

|θ(σ1, . . . , σp)| < ∞ (6.134)

for a certain r.v. S. Of course (Sk)k≥1 denote i.i.d. copies of S with Sk =
sup |θk(σ1, . . . , σp)|. Whether or how this boundedness condition can be weak-
ened remains to be investigated. Overall, once one gets used to the higher
level of abstraction necessary compared with the case of Ising spins, the proofs
are really not more difficult in the continuous case. In the present section we
will control the model under a high-temperature condition and the extension
of the methods of the previous sections to this setting is really an exercise.
The real point of this exercise is that in the next section, we will succeed
to partly control the model without assuming a high-temperature condition
but assuming instead the concavity of θ, a result very much in the spirit of
Section 3.1.

Our first task is to construct the “order parameter” μ = μγ . We keep the
notation (6.49), that is we write

Er = Er(σ, ε) = exp
∑

1≤j≤r

θj(σ(j−1)(p−1)+1, . . . , σj(p−1), ε) ,

where now σi and ε are real numbers.
Given a sequence X = (Xi)i≥1 of elements of D, for a function f of

σ1, . . . , σN , we define (and this will be fundamental)
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〈f〉X =
∫

f(σ1, . . . , σN )X1(σ1) · · ·XN (σN )dη(σ1) · · · dη(σN ) , (6.135)

that is, we integrate the generic k-th coordinate with respect to η after making
the change of density Xk.

For consistency with the notation of the previous section, for a function
h(ε) we write

Avh =
∫

h(ε)dη(ε) . (6.136)

Thus
AvEr =

∫
Er(σ, ε)dη(ε)

is a function of σ only, and 〈AvEr〉X means that we integrate in σ1, . . . , σN ,
as in (6.135). We will also need the quantity 〈Er〉X, where we integrate in
σ1, . . . , σN as in (6.135), but we do not integrate this factor in ε. Thus 〈Er〉X
is a function of ε only, and by Fubini’s theorem we have Av〈Er〉X = 〈AvEr〉X.
In particular, the function f of ε given by

〈Er〉X
〈AvEr〉X

(6.137)

is such that f ≥ 0 and Avf = 1, i.e. f ∈ D.
Consider a probability measure μ on D, and (Xi)i≥1 a sequence of el-

ements of D that is i.i.d. of law μ. We denote by T (μ) the law (in D) of
the random element (6.137) when X = (Xi)i≥1. When the spins take only
the values ±1, and provided we then perform the identification (6.133), this
coincides with the definition (6.51).

Theorem 6.6.1. Assuming (6.52), i.e. 4γp(ES exp 2S) ≤ 1, there exists a
unique probability measure μ on D such that μ = T (μ).

On D, the natural distance is induced by the L1 norm relative to η, i.e.
for x, y ∈ D

d(x, y) = ‖x − y‖1 =
∫

|x(ε) − y(ε)|dη(ε) . (6.138)

The key to prove Theorem 6.6.1 is the following estimate, where we
consider a pair (X, Y ) of random elements of D, and independent copies
(Xi, Yi)i≥1 of this pair. Let X = (Xi)i≥1 and Y = (Yi)i≥1.

Lemma 6.6.2. We have
∥∥∥∥

〈Er〉X
〈AvEr〉X

− 〈Er〉Y
〈AvEr〉Y

∥∥∥∥
1

≤ 2
∑

j≤r

Sj exp 2Sj

∑

(j−1)(p−1)<i≤j(p−1)

‖Xi − Yi‖1 .

(6.139)
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Once this estimate has been obtained we proceed exactly as in the proof
of Theorem 6.3.1. Namely, if μ and μ′ are the laws of X and Y respectively,
and since the law of the quantity (6.137) is T (μ), the expected value of
the left-hand side of (6.139) is an upper bound for the transportation-cost
distance d(T (μ), T (μ′)) associated to the distance d of (6.138) (by the very
definition of the transportation-cost distance). Thus taking expectation in
(6.139) implies that

d(T (μ), T (μ′)) ≤ 2γp(ES exp 2S)E‖X − Y ‖1 .

Since this is true for any choice of X and Y with laws μ and μ′ respectively,
we obtained that

d(T (μ), T (μ′)) ≤ 2γp(ES exp 2S)d(μ, μ′) ,

so that under (6.52) the map T is a contraction for the transportation-cost
distance. This completes the proof of Theorem 6.6.1, modulo the fact that
the set of probability measures on a complete metric space is itself a complete
metric space when provided with the transportation-cost distance.

Proof of Lemma 6.6.2. It is essentially identical to the proof of (6.57),
although we find it convenient to write it a bit differently “replacing Yj by
Xj one at a time”. Let

X(i) = (X1, . . . , Xi, Yi+1, Yi+2 . . .) .

To ease notation we write
〈·〉i = 〈·〉X(i) ,

so that
〈Er〉X

〈AvEr〉X
=

〈Er〉r(p−1)

〈AvEr〉r(p−1)
;

〈Er〉Y
〈AvEr〉Y

=
〈Er〉0

〈AvEr〉0
,

and to prove (6.136) it suffices to show that if (j − 1)(p − 1) < i ≤ j(p − 1)
we have

∥∥∥∥
〈Er〉i

〈AvEr〉i
− 〈Er〉i−1

〈AvEr〉i−1

∥∥∥∥
1

≤ (2Sj exp 2Sj)‖Xi − Yi‖1 . (6.140)

We bound the left-hand side by I + II, where

I =
∥∥∥∥
〈Er〉i − 〈Er〉i−1

〈AvEr〉i

∥∥∥∥
1

(6.141)

II =
∥∥∥∥
〈Er〉i−1(〈AvEr〉i − 〈AvEr〉i−1)

〈AvEr〉i〈AvEr〉i−1

∥∥∥∥
1

. (6.142)

Now we observe that to bound both terms by Sj exp 2Sj‖Xi −Yi‖1 it suffices
to prove that
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|〈Er〉i − 〈Er〉i−1| ≤ Sj exp 2Sj‖Xi − Yi‖1〈Er〉i , (6.143)

(where both sides are functions of ε). Indeed to bound the term I using (6.143)
we observe that ∥∥∥∥

〈Er〉i
〈AvEr〉i

∥∥∥∥
1

= Av
〈Er〉i

〈AvEr〉i
= 1 (6.144)

and to bound the term II using (6.143) we observe that

|〈AvEr〉i − 〈AvEr〉i−1| ≤ Av|〈Er〉i − 〈Er〉i−1|
≤ Sj exp 2Sj‖Xi − Yi‖1Av〈Er〉i

and we use (6.144) again (for i − 1 rather than i).

Thus it suffices to prove (6.143). For this we write Er = E ′E ′′, where

E ′ = exp θj(σ(j−1)(p−1)+1, . . . , σj(p−1), ε) ,

and where E ′′ does not depend on σi. Therefore

A := 〈E ′′〉i = 〈E ′′〉i−1 .

Since E ′ and E ′′ depend on different sets of coordinates, we have

〈Er〉i = 〈E ′〉i〈E ′′〉i = A〈E ′〉i ; 〈Er〉i−1 = 〈E ′〉i−1〈E ′′〉i−1 = A〈E ′〉i−1 .

Let us define B = B(σi, ε) the quantity obtained by integrating E ′ in each
spin σk, k < i, with respect to η, and change of density Xk and each spin σk,
k > i with respect to η with change of density Yk. Integrating first in the σk

for k �= i we obtain

〈E ′〉i =
∫

BXi(σi)dη(σi) ; 〈E ′〉i−1 =
∫

BYi(σi)dη(σi) ,

and therefore

〈Er〉i = A

∫
BXi(σi)dη(σi) ; 〈Er〉i−1 = A

∫
BYi(σi)dη(σi) . (6.145)

Consequently,

〈Er〉i − 〈Er〉i−1 = A

∫
B(Xi(σi) − Yi(σi))dη(σi)

= A

∫
(B − 1)(Xi(σi) − Yi(σi))dη(σi) (6.146)

because
∫

Xidη =
∫

Yidη = 1. Now, since |θj | ≤ Sj , Jensen’s inequality shows
that | log B| ≤ Sj . Using that | exp x−1| ≤ |x| exp |x| for x = log B we obtain
that |B − 1| ≤ Sj exp Sj . Therefore (6.146) implies
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|〈Er〉i − 〈Er〉i−1| ≤ ASj expSj‖Xi − Yi‖1 . (6.147)

Finally since exp(−Sj) ≤ E ′ we have exp(−Sj) ≤ B, so that exp(−Sj) ≤∫
BXi(σi)dη(σi). The first part of (6.145) then implies that A exp(−Sj) ≤

〈Er〉i and combining with (6.147) this finishes the proof of (6.143) and
Lemma 6.6.2. ��

A suitable extension of Theorem 6.2.2 will be crucial to the study of the
present model. As in the case of Theorem 6.6.1, once we have found the
proper setting, the proof is not any harder than in the case of Ising spins.

Let us consider a probability space (X , λ), an integer n, and a family
(f ′

ω)ω∈X of functions on (RN )n. We assume that there exists i ≤ N such that
for each ω we have

f ′
ω ◦ Ti = −f ′

ω , (6.148)

where Ti is defined as in Section 6.2 i.e. Ti exchanges the ith components σ1
i

and σ2
i of the first two replicas and leaves all the other components unchanged.

Consider another function f ≥ 0 on (RN )n. We assume that f and the
functions f ′

ω depend on k coordinates (of course what we mean here is that
they depend on the same k coordinates whatever the choice of ω). We assume
that for a certain number Q, we have

∫
|f ′

ω|dλ(ω) ≤ Qf . (6.149)

Theorem 6.6.3. Under (6.10), and provided that γ ≤ γ0, with the previous
notation we have

E

∫
|〈f ′

ω〉|dλ(ω)
〈f〉 ≤ K0kQ

N
. (6.150)

Proof. The fundamental identity (6.20):

〈f〉 =
〈Av fE〉−
〈Av E〉−

remains true if we define Av as in (6.136). We then copy the proof of Theorem
6.2.2 “by replacing everywhere f ′ by the average of f ′

ω in ω” as follows. First,
we define the property C(N, γ0, B, B∗) by requiring that under the conditions
of Theorem 6.6.3, rather than (6.9):

E

∣∣∣∣
〈f ′〉
〈f〉

∣∣∣∣ ≤
Q(kB + B∗)

N
,

we get instead

E

∫
|〈f ′

ω〉|dλ(ω)
〈f〉 ≤ Q(kB + B∗)

N
.

Rather than (6.32) we now define
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f ′
ω,s = (Av f ′

ωE) ◦
∏

u≤s−1

Uiu − (Av f ′
ωE) ◦

∏

u≤s

Uiu .

We replace (6.34) by
∫

|f ′
ω,s|dλ(ω) ≤ 4QSv exp

(
4
∑

u≤r

Su

)
Av fE ,

and again the left-hand side of (6.39) by

E

∫
|〈f ′

ω〉|dλ(ω)
〈f〉 . ��

We now describe the structure of the Gibbs measure, under a “high-
temperature” condition.

Theorem 6.6.4. There exists a number K1(p) such that whenever

K1(p)(γ0 + γ3
0)ES exp 4S ≤ 1 , (6.151)

if γ ≤ γ0, given any integer k, we can find i.i.d. random elements X1, . . . , Xk

in D of law μ such that

E

∫
|YN,k(σ1, . . . , σk) − X1(σ1) · · ·Xk(σk)|dη(σ1) · · · dη(σk)

≤ k3K(p, γ0)
N

E exp 2S , (6.152)

where YN,k denotes the density with respect to ηk = η⊗k of the law of
σ1, . . . , σk under Gibbs’ measure, and μ is as in Theorem 6.6.1 and where
K(p, γ0) depends only on p and γ0.

It is convenient to denote by
⊗

�≤k X� the function

(σ1, . . . , σk) �→
∏

�≤k

X�(σ�) ,

so that the left-hand side of (6.152) is simply E‖YN,k −
⊗

�≤k X�‖1.
Overall the principle of the proof is very similar to that of the proof of

Theorem 6.4.1, but the induction hypothesis will not be based on (6.152).
The starting point of the proof is the fundamental cavity formula (6.72),
where Av now means that σN−k+1, . . . , σN are averaged independently with
respect to η. When f is a function of k variables, this formula implies that

〈f(σN−k+1, . . . , σN )〉 =
〈Avf(σN−k+1, . . . , σN )E〉−

〈AvE〉−

= Av
(

f(σN−k+1, . . . , σN )
〈E〉−

〈AvE〉−

)
. (6.153)
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The quantity 〈E〉− is a function of σN−k+1, . . . , σN only since (σ1, . . . , σN−k)
is averaged for 〈·〉−, and (6.153) means that the density with respect to ηk

of the law of σN−k+1, . . . , σN under Gibbs’ measure is precisely the function

〈E〉−
〈AvE〉−

. (6.154)

Before deciding how to start the proof of Theorem 6.6.4, we will first take
full advantage of Theorem 6.6.3. For a function f on R

N−k we denote

〈f〉• = 〈f(σ1
1 , σ2

2 , . . . , σN−k
N−k)〉− ,

that is, we average every coordinate in a different replica. We recall the set
Ω of (6.79).

Proposition 6.6.5. We have

E1ΩcAv
∣∣∣∣

〈E〉−
〈AvE〉−

− 〈E〉•
〈AvE〉•

∣∣∣∣ ≤
k2K

N
E exp 2S . (6.155)

Here and in the sequel, K denotes a constant that depends on p and γ0

only. This statement approximates the true density (6.154) by a quantity
which will be much simpler to work with, since it is defined via integration
for the product measure 〈·〉•.

The proof of Proposition 6.6.5 greatly resembles the proof of Proposition
6.2.7. Let us state the basic principle behind this proof. It will reveal the
purpose of condition (6.149), that might have remained a little bit mysterious.

Lemma 6.6.6. For j ≤ r consider sets Ij ⊂ {1, . . . , N} with cardIj = p,
cardIj ∩ {N − k + 1, . . . , N} = 1, and assume that

j �= j′ ⇒ Ij ∩ Ij′ ⊂ {N − k + 1, . . . , N} ,

or, equivalently, that the sets Ij\{1, . . . , N−k} for j ≤ r are all disjoint. Con-
sider functions Wj(σ), depending only on the coordinates in Ij, and assume
that supσ |Wj(σ)| ≤ Sj. Consider

E = exp
∑

j≤r

Wj(σ) .

Then we have

E−Av
∣∣∣∣

〈E〉−
〈AvE〉−

− 〈E〉•
〈AvE〉•

∣∣∣∣ ≤
4K0k(p − 1)

N − k

∑

j≤r

exp 2Sj . (6.156)
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Here E− means expectation in the randomness of 〈·〉− only.

Proof. We “decouple the spins one at a time” for i ≤ N − k, that is, we
write

Ei = E(σ1
1 , σ2

2 , . . . , σi
i , σ

1
i+1, . . . , σ

1
N ) ,

so that
〈E〉−

〈AvE〉−
=

〈E1〉−
〈AvE1〉−

;
〈E〉•

〈AvE〉•
=

〈EN−k+1〉−
〈AvEN−k+1〉−

.

We bound

E−Av
∣∣∣∣

〈Ei〉−
〈AvEi〉−

− 〈Ei−1〉−
〈AvEi−1〉−

∣∣∣∣ . (6.157)

When i belongs to no set Ij this is zero because then Ei = Ei−1. Suppose
otherwise that i ∈ Ij for a certain j ≤ r. The term (6.157) is bounded by
I + II, where

I = E−Av
∣∣∣∣
〈Ei − Ei−1〉−
〈AvEi〉−

∣∣∣∣ ; II = E−Av
∣∣∣∣
〈Ei〉−〈Av(Ei − Ei−1)〉−
〈AvEi〉−〈AvEi−1〉−

∣∣∣∣ .

We first bound the term II. We introduce a “replicated copy” E ′
i of Ei defined

by
E ′

i = E(σN+1
1 , σN+2

2 , . . . , σN+i
i , σN+1

i+1 , . . . , σN+1
N )

and we write

〈Ei〉−〈Av(Ei − Ei−1)〉− = 〈E ′
iAv(Ei − Ei−1)〉− .

Exchanging the variables σi
i and σ1

i exchanges Ei and Ei−1 and changes the
sign of the function f ′ = E ′

iAv(Ei − Ei−1). Next we prove the inequality

|Ei − Ei−1| ≤ (2 exp 2Sj)Ei−1 .

To prove this we observe that E is of the form AB where A does not depend on
the ith coordinate and exp(−Sj) ≤ B ≤ exp Sj . Thus with obvious notation
|Bi − Bi−1| ≤ 2 exp Sj ≤ 2 exp 2SjBi−1 and since A does not depend on the
ith coordinate we have Ai = Ai−1 and thus

|Ei − Ei−1| = |AiBi − Ai−1Bi−1| = Ai−1|Bi − Bi−1|
≤ 2 exp 2SjAi−1Bi−1 = (2 exp 2Sj)Ei−1 .

Therefore
|Av(Ei − Ei−1)| ≤ (2 exp 2Sj)AvEi−1

and
Av|f ′| ≤ (2 exp 2Sj)AvE ′

iAvEi−1 . (6.158)

Thinking of Av in the left-hand side as averaging over the parameter ω =
(σ�

i )N−k<i≤N,�≤N+1, we see that (6.158) is (6.149) when A = 2 exp 2Sj and
f = AvE ′

iAvEi−1. Applying (6.150) to the (N−k)-spin system we then obtain
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II ≤ (2 exp 2Sj)
K0k

N − k
.

Proceeding similarly we get the same bound for the term I (in a somewhat
simpler manner) and this completes the proof of (6.156). ��

Proof of Proposition 6.6.5. We take expected values in (6.156), and we
remember as in the Ising case (i.e. when σi = ±1) that it suffices to consider
the case N ≥ 2k. ��

It will be useful to introduce the following random elements V1, . . . , Vk of
D. (These depend also on N , but the dependence is kept implicit.) The func-
tion V� is the density with respect to η of the law of σN−k+� under Gibbs’ mea-
sure. Let us denote by Y ∗

k the function (6.154) of σN−k+1, . . . , σN , which, as
already noted, is the density with respect to ηk of the law of σN−k+1, . . . , σN

under Gibbs’ measure. Thus V� is the 	th -marginal of Y ∗
k , that is, it is ob-

tained by averaging Y ∗
k over all σN−k+j for j �= 	 with respect to η.

Proposition 6.6.7. We have

E

∥∥∥∥Y
∗
k −
⊗

�≤k

V�

∥∥∥∥
1

≤ Kk3

N
E exp 2S . (6.159)

Moreover, if E� is defined as in (6.84), then

∀	 ≤ k , E

∥∥∥∥V� −
〈E�〉•

〈AvE�〉•

∥∥∥∥
1

≤ Kk2

N
E exp 2S . (6.160)

The L1 norm is computed in L1(ηk) in (6.159) and in L1(η) in (6.160). The
function

⊗
�≤k V� in (6.159) is of course given by

(⊗

�≤k

V�

)
(σN−k+1, . . . , σN ) =

∏

1≤�≤k

V�(σN−k+�) .

Proof. Consider the event Ω as in (6.79). Using the L1-norm notation as in
(6.159), (6.155) means that

E1Ωc

∥∥∥∥
〈E〉−

〈AvE〉−
− 〈E〉•

〈AvE〉•

∥∥∥∥
1

≤ Kk2

N
E exp 2S . (6.161)

When Ω does not occur, we have E =
∏

�≤k E�, and the quantities E� depend
on different coordinates, so that

〈E〉• =
∏

�≤k

〈E�〉• .

Also, 〈E�〉• depends on σN−k+� but not on σN−k+�′ for 	 �= 	′ and thus
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Av
∏

�≤k

〈E�〉• =
∏

�≤k

Av〈E�〉• .

Therefore
〈E〉•

〈AvE〉•
=
∏

�≤k

U� , (6.162)

where

U� =
〈E�〉•

〈AvE�〉•
.

Let us think of U� as a function of σN−k+� only, so we can write for consistency
of notation

∏
�≤k U� =

⊗
�≤k U�. Thus (6.161) means

E1Ωc

∥∥∥∥Y
∗
k −
⊗

�≤k

U�

∥∥∥∥
1

≤ Kk2

N
E exp 2S .

Now ‖Y ∗
k −
⊗

�≤k U�‖1 ≤ 2, and combining with (6.79) we get

E

∥∥∥∥Y
∗
k −
⊗

�≤k

U�

∥∥∥∥
1

≤ Kk2

N
E exp 2S . (6.163)

Now, we have

‖V� − U�‖1 ≤
∥∥∥∥Y

∗
k −
⊗

�≤k

U�

∥∥∥∥
1

,

because the right-hand side is the average over σN−k+1, . . . , σN of the quan-
tity |Y ∗

k −
⊗

�≤k U�|, and if one averages over σN−k+�′ for 	′ �= 	 inside the
absolute value rather than outside one gets the left-hand side. Thus (6.160)
follows from (6.163). To deduce (6.159) from (6.163) it suffices to prove that

∥∥∥∥
⊗

�≤k

V� −
⊗

�≤k

U�

∥∥∥∥
1

≤
∑

�≤k

‖V� − U�‖1 . (6.164)

This inequality holds whenever V�, U� ∈ D, and is obvious if “one replaces V�

by U� one at a time” because

‖V1 ⊗ · · · ⊗ V� ⊗ U�+1 ⊗ · · · ⊗ Uk − V1 ⊗ · · · ⊗ V�−1 ⊗ U� ⊗ · · · ⊗ Uk‖1

= ‖V1 ⊗ · · · ⊗ V�−1 ⊗ (V� − U�) ⊗ U�+1 ⊗ · · · ⊗ Uk‖1 = ‖V� − U�‖1

since V�′ , U�′ ∈ D for 	′ ≤ k. ��

We recall that YN,k denotes the density with respect to ηk of the law of
σ1, . . . , σk under Gibbs’ measure. Let us denote by Y� the density with respect
to η of the law of σ� under Gibbs’ measure. We observe that YN,k corresponds
to Y ∗

k if we use the coordinates σ1, . . . , σk rather than σN−k+1, . . . , σN , and
similarly Y1, . . . , Yk correspond to V1, . . . , Vk. Thus (6.159) implies
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E‖YN,k −
⊗

Y�‖1 ≤ Kk3

N
E exp 2S .

Using as in (6.164) that
∥∥∥∥
⊗

�≤k

Y� −
⊗

�≤k

X�

∥∥∥∥
1

≤
∑

�≤k

‖Y� − X�‖1 ,

then (6.159) shows that to prove Theorem 6.6.4, the following estimates suf-
fices.

Theorem 6.6.8. Assuming (6.151), if γ ≤ γ0, given any integer k, we can
find i.i.d. random elements X1, . . . , Xk in D with law μ such that

E
∑

�≤k

‖Y� − X�‖1 ≤ k3K(p, γ0)
N

E exp 2S . (6.165)

We will prove that statement by induction on N . Denoting by D(N, γ0, k)
the quantity

sup
γ≤γ0

inf
X1,...,Xk

E
∑

�≤k

‖Y� − X�‖1 ,

one wishes to prove that

D(N, γ0, k) ≤ k3K

N
E exp 2S .

For this we relate the N -spin system with the (N − k)-spin system. For this
purpose, the crucial equation is (6.162). The sequence V1, . . . , Vk is distributed
as (Y1, . . . , Yk). Moreover, if for i ≤ N − k we denote by Y −

i the density with
respect to η of the law of σi under the Gibbs measure of the (N − k)-spin
system, we have, recalling the notation (6.135)

〈E�〉• = 〈E�〉Y ,

where Y = (Y −
1 , . . . , Y −

N−k), so that (6.160) implies

∑

�≤k

E1Ωc

∥∥∥∥V� −
〈E�〉Y

〈AvE�〉Y

∥∥∥∥
1

≤ Kk3

N
E exp 2S . (6.166)

We can then complete the proof of Theorem 6.6.8 along the same lines as in
Theorem 6.4.1. The functions (E�)�≤k do not depend on too many spins. We
can use the induction hypothesis and Lemma 6.6.2 to show that we can find a
sequence X = (X1, . . . , XN−k+1) of identically distributed random elements
of D, of law μ− (= μγ− , where γ− is given by (6.74)), so that
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E
∑

�≤k

1Ωc

∥∥∥∥V� −
〈E�〉X

〈AvE�〉X

∥∥∥∥
1

is not too large. Then the sequence (〈E�〉X/〈AvE�〉X)�≤k is nearly i.i.d. with
law T (μ−), and hence nearly i.i.d. with law μ. Completing the argument
really amounts to copy the proof of Theorem 6.4.1, so this is best left as an
easy exercise for the motivated reader. There is nothing else to change either
to the proof of Theorem 6.4.13.

We end this section by a challenging technical question. The relevance
of this question might not yet be obvious to the reader, but it will become
clearer in Chapter 8, after we learn how to approach the “spherical model”
through the “Gaussian model”. Let us consider the sphere

SN = {σ ∈ R
N ; ‖σ‖ =

√
N} (6.167)

and the uniform probability λN on SN .

Research Problem 6.6.9. Assume that the random function θ is Borel
measurable, but not necessarily continuous. Investigate the regularity prop-
erties of the function

t �→ ψ(t) =
1
N

E log
∫

exp
∑

k≤M

θk(tσi(k,1), . . . , tσi(k,p))dλN (σ) .

In particular, if M is a proportion on N , M = αN , is it true that for large
N the difference ψ(t) − ψ(1) becomes small whenever |t − 1| ≤ 1/

√
N?

The situation here is that, even though each of the individual functions
t �→ θ(tσi(k,1), . . . , tσi(k,p)) can be wildly discontinuous, these discontinuities
should be smoothed out by the integration for λN . Even the case θ is not
random and p = 1 does not seem obvious.

6.7 The Power of Convexity

Consider a random convex set V of R
p, and (Vk)k≥1 an i.i.d. sequence of

random convex sets distributed like V . Consider random integers i(k, 1) <
. . . < i(k, p) such that the sets Ik = {i(k, 1), . . . , i(k, p)} are i.i.d. uniformly
distributed over the subsets of {1, . . . , N} of cardinality p. Consider the i.i.d.
sequence of random convex subsets Uk of R

N given by

σ ∈ Uk ⇔ (σi(k,1), . . . , σi(k,p)) ∈ Vk .

We recall that λN is the uniform probability measure on the sphere SN ,
and that M is a Poisson r.v. of expectation αN .
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Research Problem 6.7.1. (Level 3) Prove that, given p, V and α, there is
a number a∗ such that for N large

1
N

log λN

(
SN ∩

⋂

k≤M

Uk

)
� a∗ (6.168)

with overwhelming probability, and compute a∗.

The value a∗ = −∞ is permitted; in that case we expect that given any
number a > 0, for N large we have λN (SN ∩

⋂
k≤M Uk) ≤ exp(−aN) with

overwhelming probability. Problem 6.7.1 makes sense even if the random
set V is not convex, but we fear that this case could be considerably more
difficult.

Consider a number κ > 0, and the probability measure η (= ηκ) on R

of density
√

κ/π exp(−κx2) with respect to Lebesgue measure. After reading
Chapter 8, the reader will be convinced that a good idea to approach Problem
6.7.1 is to first study the following, which in any case is every bit as natural
and appealing as Problem 6.7.1.

Research Problem 6.7.2. (Level 3) Prove that, given p, V, α and κ there
is a number a∗ such for large N we have

1
N

log η⊗N

( ⋂

k≤M

Uk

)
� a∗ (6.169)

with overwhelming probability, and compute a∗.

Here again, the value a∗ = −∞ is permitted.

Consider a random concave function θ ≤ 0 on R
p and assume that

V = {θ = 0} .

Then, denoting by θ1, . . . , θM i.i.d. copies of θ, we have

η⊗N

( ⋂

k≤M

Uk

)
= lim

β→∞

∫
exp
(

β
∑

k≤M

θk(σi(k,1), . . . , σi(k,p))
)

dη⊗N (σ) .

(6.170)
Therefore, to prove (6.169) it should be relevant to consider Hamiltonians of
the type

− HN (σ) =
∑

k≤M

θk(σi(k,1), . . . , σi(k,p)) , (6.171)

where θ1, . . . , θk are i.i.d. copies of a random concave function θ ≤ 0. These
Hamiltonians never satisfy a condition supσ1,...,σp∈R |θ(σ1, . . . , σp)| < ∞ such
as (6.134) unless θ ≡ 0, and we cannot use the results of the previous sec-
tions. The purpose of the present section is to show that certain methods
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we have already used in Chapter 4 allow a significant step in the study of
the Hamiltonians (6.171). In particular we will “prove in the limit the funda-
mental self-consistency equation μ = T (μ)”. We remind the reader that we
assume

θ is concave, θ ≤ 0 . (6.172)

We will also assume that there exists a non random number A (possibly very
large) such that θ satisfies the following Lipschitz condition:

∀σ1, . . . , σp, σ
′
1, . . . , σ

′
p , |θ(σ1, . . . , σp) − θ(σ′

1, . . . , σ
′
p)| ≤ A

∑

j≤p

|σj − σ′
j | .

(6.173)
The Gibbs measure is defined as usual as the probability measure on R

N

with density with respect to η⊗N that is proportional to exp(−HN (σ)), and
〈·〉 denotes an average for this Gibbs measure.

Lemma 6.7.3. There exists a number K (depending on p,A, α and κ) such
that we have

E

〈
exp

|σ1|
K

〉
≤ K . (6.174)

Of course it would be nice if we could improve (6.174) into E〈exp(σ2
1/K)〉 ≤

K.

Lemma 6.7.4. The density Y with respect to η of the law of σ1 under Gibbs’
measure satisfies

∀x, y ∈ R , Y (y) ≤ Y (x) exp rA|y − x| (6.175)

where r = card{k ≤ M ; i(k, 1) = 1}.

This lemma is purely deterministic, and is true for any realization of the
disorder. It is good however to observe right away that r is a Poisson r.v.
with Er = γ, where as usual γ = αp and EM = αN .

Proof. Since the density of Gibbs’ measure with respect to η⊗N is propor-
tional to exp(−HN (σ)), the function Y (σ1) is proportional to

f(σ1) =
∫

exp(−HN (σ))dη(σ2) · · · dη(σN ) .

We observe now that the Hamiltonian HN depends on σ1 only through the
terms θk(σi(k,1), . . . , σi(k,p)) for which i(k, 1) = 1 so (6.173) implies that
f(σ′

1) ≤ f(σ1) exp rA|σ′
1 − σ1| and this in turn implies (6.175). ��

Proof of Lemma 6.7.3. We use (6.175) to obtain

Y (0) exp(−rA|x|) ≤ Y (x) ≤ Y (0) exp rA|x| . (6.176)
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Thus, using Jensen’s inequality:

1 =
∫

Y dη ≥ Y (0)
∫

exp(−rA|x|)dη(x) ≥ Y (0) exp
(
−rA

∫
|x|dη(x)

)

≥ Y (0) exp
(
−LrA√

κ

)

≥ Y (0) exp(−rK) ,

where, throughout the proof K denotes a number depending on A, κ and p
only, that may vary from time to time. Also,

〈
exp

κ

2
σ2

1

〉
=
∫

exp
κ

2
x2Y (x)dη(x)

≤ Y (0)
∫

exp
κx2

2
exp rA|x|dη(x)

= Y (0)
√

κπ

∫
exp
(
−κx2

2

)
exp rA|x|dx

≤ KY (0) exp Kr2

by a standard computation, or simply using that −κx2/2+rA|x| ≤ −κx2/4+
Kx2. Combining with (6.176) yields

〈
exp

κ

2
σ2

1

〉
≤ K expKr2 (6.177)

so that Markov’s inequality implies

〈1{|σ1|≥y}〉 ≤ K exp
(

Kr2 − κy2

2

)
.

Using this for y = K ′x, we obtain

r ≤ x ⇒ 〈1{|σ1|≥Kx}〉 ≤ K exp(−x2) .

Now, since r is a Poisson r.v. with Er = αp we have E exp r ≤ K, and thus

E〈1{|σ1|≥Kx}〉 ≤ K exp(−x2) + P(r > x) ≤ K exp(−x) ,

from which (6.174) follows. ��

The essential fact, to which we turn now, is a considerable generalization
of the statement of Theorem 3.1.11 that “the overlap is essentially constant”.
Throughout the rest of the section, we also assume the following mild condi-
tion:

Eθ2(0, . . . , 0) < ∞ . (6.178)
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Proposition 6.7.5. Consider functions f1, . . . , fn on R, and assume that
for a certain number D we have

|f (�)
k (x)| ≤ D (6.179)

for 	 = 0, 1, 2 and k ≤ n. Then the function

R = R(σ1, . . . ,σn) =
1
N

∑

i≤N

f1(σ1
i ) · · · fn(σn

i ) (6.180)

satisfies

E〈(R − E〈R〉)2〉 ≤ K√
N

, (6.181)

where K depends only on κ, n, D and on the quantity (6.178).

The power of this statement might not be intuitive, but soon we will
show that it has remarkable consequences. Throughout the proof, K denotes
a number depending only on κ, n, A, D and on the quantity (6.178).

Lemma 6.7.6. The conditions of Proposition 6.7.5 imply:

〈(R − 〈R〉)2〉 ≤ K√
N

. (6.182)

Proof. The Gibbs’ measure on R
Nn has a density proportional to

exp
(
−
∑

�≤n

HN (σ�) − κ
∑

�≤n

‖σ�‖2

)

with respect to Lebesgue’s measure. It is straightforward that the gradient
of R at every point has a norm ≤ K/

√
N , so that

R has a Lipschitz constant ≤ K

N
. (6.183)

Consequently (6.182) follows from (3.17) used for k = 1. ��
To complete the proof of Proposition 6.7.5 it suffices to show the following.

Lemma 6.7.7. We have

E(〈R〉 − E〈R〉)2 ≤ K√
N

. (6.184)

Proof. This proof mimics the Bovier-Gayrard argument of Section 4.5. Writ-
ing ηN = η⊗N , we consider the random convex function

ϕ(λ) =
1
N

log
∫

exp
(
−
∑

�≤n

HN (σ�) − κ
∑

�≤n

‖σ�‖2 + λNR

)
dσ1 · · ·dσn ,
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so that
ϕ′(0) = 〈R〉 .

We will deduce (6.184) from Lemma 4.5.2 used for k = 1 and δ = 0,
λ0 = 1/K, C0 = K, C1 = K, C2 = K/N , and much of the work consists
in checking conditions (4.135) to (4.138) of this lemma. Denoting by 〈·〉λ
an average for the Gibbs’ measure with density with respect to Lebesgue’s
measure proportional to

exp
(
−
∑

�≤n

HN (σ�) − κ
∑

�≤n

‖σ�‖2 + λNR

)
, (6.185)

we have ϕ′(λ) = 〈R〉λ, so |ϕ′(λ)| ≤ K and (4.135) holds for C0 = K. We now
prove the key fact that for λ ≤ λ0 = 1/K, the function

−
∑

�≤n

HN (σ�) − κ

2

∑

�≤n

‖σ�‖2 + λNR (6.186)

is concave. We observe that (6.179) implies
∣∣∣∣∣

∂2R

∂σ�
i∂σ�′

j

∣∣∣∣∣ ≤
K

N
,

and that the left-hand side is zero unless i = j. This implies in turn that at
every point the second differential D of R satisfies |D(x,y)| ≤ K‖x‖‖y‖/N
for every x,y in R

Nn. On the other hand, the second differential D∼ of the
function −κ

∑
�≤n ‖σ�‖2/2 satisfies at every point D∼(x,x) = −κ‖x‖2 for

every x in R
Nn. Therefore if Kλ ≤ κ, at every point the second differential

D∗ of the function (6.186) satisfies D∗(x,x) ≤ 0 for every x in R
Nn, and

consequently this function is concave. Then the quantity (6.185) is of the
type

exp
(

U − κ

2

∑

�≤n

‖σ�‖2

)

where U is concave; we can then use (6.183) and (3.17) to conclude that

ϕ′′(λ) = N〈(R − 〈R〉λ)2〉λ ≤ K ,

and this proves (4.137) with δ = 0 and hence also (4.136). It remains to prove
(4.138). For j ≤ N let us define

−H ′
j =

∑

k≤M,i(k,p)=j

θk(σi(k,1), . . . , σi(k,p)) .

The r.v.s H ′
j are independent, as is made obvious by the representation of HN

given in Exercise 6.2.3. For m ≤ N we denote by Ξm the σ-algebra generated
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by the r.v.s H ′
j for j ≤ m, and we denote by Em the conditional expectation

given Ξm, so that we have the identity

E(ϕ(λ) − Eϕ(λ))2 =
∑

0≤m<N

E(Em+1ϕ(λ) − Emϕ(λ))2 .

To prove (4.138), it suffices to prove that for any given value of m we have

E(Em+1ϕ(λ) − Emϕ(λ))2 ≤ K

N2
.

Consider the Hamiltonian

− H∼(σ) = −
∑

j 	=m+1

H ′
j (6.187)

and

ϕ∼(λ) =
1
N

log
∫

exp
(∑

�≤n

H∼(σ�) − κ
∑

�≤n

‖σ�‖2 + λNR

)
dσ1 · · ·dσn .

It should be obvious that (since we have omitted the term H ′
m+1 in (6.187))

Emϕ∼(λ) = Em+1ϕ
∼(λ) ,

so that

E
(
Em+1ϕ(λ) − Emϕ(λ))2 = E(Em+1(ϕ(λ) − ϕ∼(λ)) − Em(ϕ(λ) − ϕ∼(λ))

)2

≤ 2E
(
Em+1(ϕ(λ) − ϕ∼(λ))

)2

+ 2E
(
Em(ϕ(λ) − ϕ∼(λ))

)2

≤ 4E(ϕ(λ) − ϕ∼(λ))2 .

Therefore, it suffices to prove that

E(ϕ(λ) − ϕ∼(λ))2 ≤ K

N2
. (6.188)

Thinking of λ as fixed, let us denote by 〈·〉∼ an average on R
Nn with

respect to the probability measure on R
Nn of density proportional to

exp
(
−
∑

�≤n

H∼(σ�) − κ
∑

�≤n

‖σ�‖2 + λNR

)
.

We observe the identity

ϕ(λ) − ϕ∼(λ) =
1
N

log

〈
exp
(
−
∑

�≤n

(HN (σ�) − H∼(σ�))
)〉

∼

.
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Now HN = H∼ + H ′
m+1 and therefore

ϕ(λ) − ϕ∼(λ) =
1
N

log

〈
exp
(
−
∑

�≤n

H ′
m+1(σ

�)
)〉

∼

. (6.189)

Since −H ′
m+1 ≤ 0 we have ϕ(λ) − ϕ∼(λ) ≤ 0. Let us define

r = card{k ≤ M ; i(k, p) = m + 1} ,

the number of terms in H ′
m+1, so that r is a Poisson r.v. with

Er = αN

(
m

p−1

)
(
N
p

) ≤ αp .

From (6.189) and Jensen’s inequality it follows that

0 ≥ ϕ(λ) − ϕ∼(λ) ≥ 1
N

〈
−
∑

�≤n

H ′
m+1(σ

�)
〉

∼
, (6.190)

and thus

(ϕ(λ)−ϕ∼(λ))2 ≤ 1
N2

〈
−
∑

�≤n

H ′
m+1(σ

�)
〉2

∼
≤ 1

N2

〈(∑

�≤n

H ′
m+1(σ

�)
)2
〉

∼

.

Therefore it suffices to prove that for 	 ≤ n we have

E〈H ′
m+1(σ

�)2〉∼ ≤ K . (6.191)

Writing ak = |θk(0, . . . , 0)| and using (6.173) we obtain

|θk(σ�
i1 , . . . , σ

�
ik

)| ≤ ak + A
∑

s≤p

|σ�
is
| , (6.192)

and therefore
|H ′

m+1(σ
�)| ≤

∑

k∈I

ak + A
∑

i≤N

ni|σ�
i | ,

where ni ∈ N and
∑

ni = rp, because each of the r terms in H ′
m+1 creates at

most p terms in the right-hand side. The randomness of H ′
m+1 is independent

of the randomness of 〈·〉∼, and since Er2 ≤ K and Ea2
k < ∞, by (6.178) it

suffices to prove that if i ≤ N then E〈(σ�
i )

2〉∼ ≤ K. This is done by basically
copying the proof of Lemma 6.7.3. Using (6.183) the density Y with respect
to η of the law of σ�

i under Gibbs’ measure satisfies

∀x, y ∈ R , Y (x) ≤ Y (y) exp
(
(riA + K0/N)|x − y|

)
,

where ri = card{k ≤ M ; ∃s ≤ p, i(k, s) = i}. The rest is as in Lemma 6.7.3.
��
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The remarkable consequence of Proposition 6.7.5 we promised can be
roughly stated as follows: to make any computation for the Gibbs measure
involving only a finite number of spins, we can assume that different spins
are independent, both for the Gibbs measure and probabilistically. To make
this idea precise, let us recall the notation D of (6.132) (where now η has
density proportional to exp(−κx2)). Keeping the dependence on N implicit,
let us denote by μ (= μN ) the law in D of the density X with respect to η
of the law of σ1 under Gibbs’ measure. Let us denote by X = (X1, . . . , XN )
an i.i.d. sequence of random elements of law μ and recall the notation 〈·〉X
of (6.135).

Theorem 6.7.8. Consider two integers n, k. Consider continuous bounded
functions U1, . . . , Uk from R

n to R, and a continuous function V : R
k → R.

Then

lim
N→∞

|EV (〈U1(σ1, . . . , σn)〉, 〈U2(σ1, . . . , σn)〉, . . . , 〈Uk(σ1, . . . , σn)〉)

−EV (〈U1(σ1, . . . , σn)〉X, . . . , 〈Uk(σ1, . . . , σn)〉X)| = 0 . (6.193)

We leave to the reader to formulate and prove an even more general
statement involving functions on several replicas.

Proof. Since U1, . . . , Uk are bounded, on their range we can uniformly ap-
proximate V by a polynomial, so that it suffices to consider the case where
V is a monomial,

V (x1, . . . , xk) = xm1
1 · · ·xmk

k . (6.194)

The next step is to show that we can assume that for each j ≤ k we have

lim
(σ1,...,σn)→∞

Uj(σ1, . . . , σn) = 0 . (6.195)

To see this, we first note that without loss of generality we can assume that
|Uj | ≤ 1 for each j. Consider for each j ≤ k a function U∼

j with |U∼
j | ≤ 1

and assume that for some number S we have

∀i ≤ n , |σi| ≤ S ⇒ U∼
j (σ1, . . . , σn) = Uj(σ1, . . . , σn) . (6.196)

Then
|Uj(σ1, . . . , σn) − U∼

j (σ1, . . . , σn)| ≤
∑

s≤n

1{σs≥S} ,

and therefore

|〈Uj(σ1, . . . , σn)〉 − 〈U∼
j (σ1, . . . , σn)〉| ≤

∑

s≤n

〈1{σs≥S}〉 .

We note that for numbers x1, . . . , xk and y1, . . . , yk, all bounded by 1, we
have the elementary inequality
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|xm1
1 · · ·xmk

k − ym1
1 · · · ymk

k | ≤
∑

j≤k

mj |xj − yj | . (6.197)

It then follows that if we set

C = 〈U1(σ1, . . . , σn)〉m1 · · · 〈Uk(σ1, . . . , σn)〉mk

C∼ = 〈U∼
1 (σ1, . . . , σn)〉m1 · · · 〈U∼

k (σ1, . . . , σn)〉mk

then
|C − C∼| ≤

∑

j≤k

mj

∑

s≤n

〈1{σs≥S}〉 ,

and therefore

|EC − EC∼| ≤
∑

j≤k

mj

∑

s≤n

E〈1{σs≥S}〉 = n
∑

j≤k

mjE〈1{σ1≥S}〉 .

By Lemma 6.7.3, the right-hand side can be made small for S large, and since
we can choose the functions Uj that satisfy (6.196) and Uj(σ1, . . . , σn) = 0 if
one of the numbers |σs| is ≥ 2S, this indeed shows that we can assume (6.195).

A function Uj that satisfies (6.195) can be uniformly approximated by a
finite sum of functions of the type

f1(σ1) · · · fn(σn) ,

where |f (�)
s | is bounded for s ≤ n and 	 = 0, 1, 2. By expansion we then reduce

to the case where

Uj(σ1, . . . , σn) = f1,j(σ1) · · · fn,j(σn) (6.198)

and we can furthermore assume that |f (�)
s,j | is bounded for 	 = 0, 1, 2 and

s ≤ n. Assuming (6.194) and (6.198) we have

B := EV (〈U1(σ1, . . . , σn)〉, . . . , 〈Uk(σ1, . . . , σn)〉)
= E〈f1,1(σ1) · · · fn,1(σn)〉m1 · · · 〈f1,k(σ1) · · · fn,k(σn)〉mk .

We will write this expression using replicas. Let m = m1 + · · · + mk. Let
us write {1, . . . ,m} as the disjoint union of sets I1, . . . , Ik with cardIj = mj ;
and for 	 ∈ Ij and s ≤ n let us set

gs,� = fs,j ,

so that in particular for 	 ∈ Ij we have
∏

s≤n gs,�(σs) =
∏

s≤n fs,j(σs). Then,
using independence of replicas in the first equality, we get

〈∏

�≤m

∏

s≤n

gs,�(σ�
s)
〉

=
∏

�≤m

〈∏

s≤n

gs,�(σs)
〉

=
〈∏

s≤n

fs,1(σs)
〉m1

· · ·
〈∏

s≤n

fs,k(σs)
〉mk

,
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and therefore

B = E

〈∏

�≤m

∏

s≤n

gs,�(σ�
s)
〉

= E

〈∏

s≤n

∏

�≤m

gs,�(σ�
s)
〉

.

By symmetry among sites, for any indexes i1, . . . , in ≤ N , all different, we
have

B = E

〈∏

s≤n

∏

�≤m

gs,�(σ�
is

)
〉

. (6.199)

Therefore, for a number K that does not depend on N , we have
∣∣∣∣B − E

1
Nn

∑

i1,...,in

〈∏

s≤n

∏

�≤m

gs,�(σ�
is

)
〉∣∣∣∣ ≤

K

N
, (6.200)

where the summation is over all values of i1, . . . , in. This is seen by using
(6.199) for the terms of the summation where all the indices are different and
by observing that there are at most KNn−1 other terms. Now

1
Nn

∑

i1,...,in

∏

s≤n

∏

�≤m

gs,�(σ�
is

) =
∏

s≤n

(
1
N

∑

i≤N

∏

�≤m

gs,�(σ�
i )
)

.

Defining

Rs =
1
N

∑

i≤N

∏

�≤m

gs,�(σ�
i ) ,

we obtain from (6.200) that
∣∣∣∣B − E

〈∏

s≤n

Rs

〉∣∣∣∣ ≤
K

N
.

Proposition 6.7.5 shows that for each s we have E〈|Rs − ERs|〉 ≤ KN−1/4,
so that, replacing in turn each Rs by E〈Rs〉 one at a time,

∣∣∣∣E
〈∏

s≤n

Rs

〉
−
∏

s≤n

E〈Rs〉
∣∣∣∣ ≤

K

N1/4
,

and therefore ∣∣∣∣B −
∏

s≤n

E〈Rs〉
∣∣∣∣ ≤

K

N1/4
. (6.201)

Now, using symmetry among sites in the first equality,

E〈Rs〉 = E

〈∏

�≤m

gs,�(σ�
s)
〉

= E
∏

�≤m

〈gs,�(σs)〉 = E
∏

j≤k

〈fs,j(σs)〉mj ,

and we have shown that
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lim
N→∞

∣∣∣∣B −
∏

s≤n

E
∏

j≤k

〈fs,j(σs)〉mj

∣∣∣∣ = 0 . (6.202)

In the special case where V is given by (6.194) and Uj is given by (6.198),
we have

EV (〈U1(σ1, . . . , σn)〉X, . . . , 〈Uk(σ1, . . . , σn)〉X) =
∏

s≤n

E
∏

j≤k

〈fs,j(σs)〉mj ,

so that (6.202) is exactly (6.193) in this special case. As we have shown, this
special case implies the general one. ��

Given n, k, and a number C, inspection of the previous argument shows
that the convergence is uniform over the families of functions U1, . . . , Uk that
satisfy |U1|, . . . , |Uk| ≤ C.

We turn to the main result of this section, the proof that “in the limit
μ = T (μ)”. We recall the definition of Er as in (6.49), and that r is a Poisson
r.v. of expectation αp. Let us denote by X = (Xi)i≥1 an i.i.d. sequence,
where Xi ∈ D is a random element of law μ = μN (the law of the density
with respect to η of the law of σ1 under Gibbs’ measure), and let us define
T (μ) as follows: if

Y =
〈Er〉X

〈AvEr〉X
∈ D ,

then T (μ) is the law of Y in D. The following asserts in a weak sense that in
the limit T (μN ) = μN .

Theorem 6.7.9. Consider an integer n, and continuous bounded functions
f1, . . . , fn on R. Then

lim
N→∞

∣∣∣∣∣E〈f1(σ1)〉 · · · 〈fn(σ1)〉 − E
〈Avf1(ε)Er〉X

〈AvEr〉X
· · · 〈Avfn(ε)Er〉X

〈AvEr〉X

∣∣∣∣∣ = 0 .

(6.203)

To relate (6.203) with the statement that “T (μ) = μ”, we note that

〈Avfs(ε)Er〉X
〈AvEr〉X

=
∫

Y fsdη ,

so that writing X = X1, (6.203) means that

lim
N→∞

∣∣∣∣∣E
∫

f1Xdη · · ·
∫

fnXdη − E

∫
f1Y dη · · ·

∫
fnY dη

∣∣∣∣∣ = 0 . (6.204)

In a weak sense this asserts that in the limit the laws of X (i.e μ) and Y (i.e.
T (μ)) coincide.
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While we do not know how to prove this directly, in a second stage we
will deduce from Theorem 6.7.9 that, as expected,

lim
N→∞

d(μN , T (μN )) = 0 , (6.205)

where d is the transportation-cost distance.
Let us now explain the strategy to prove (6.203). The basic idea is to

combine Theorem 6.7.8 with the cavity method. We find convenient to use
the cavity method between an N -spin and an (N + 1)-spin system. Let us
define α′ by

α′(N + 1)

(
N
p

)
(
N+1

p

) = αN , (6.206)

and let us consider a Poisson r.v. r′ with Er′ = α′p. The letter r′ keeps this
meaning until the end of this chapter. For j ≥ 1, let us consider independent
copies θj of θ, and sets {i(j, 1), . . . , i(j, p− 1)} that are uniformly distributed
among the subsets of {1, . . . , N} of cardinality p − 1. Of course we assume
that all the randomness there is independent of the randomness of 〈·〉. Let us
define

−H(σ, ε) =
∑

j≤r′

θj(σi(j,1), . . . , σi(j,p−1), ε)

and E = E(σ, ε) = exp(−H(σ, ε)). Recalling the Hamiltonian (6.171), the
Hamiltonian −H ′ = −HN −H is the Hamiltonian of an (N +1)-spin system,
where the value of α has been replaced by α′ given by (6.206). Let us denote
by 〈·〉′ an average for the Gibbs measure relative to H ′. Writing ε = σN+1,
symmetry between sites implies

E〈f1(σ1)〉′ · · · 〈fn(σ1)〉′ = E〈f1(ε)〉′ · · · 〈fn(ε)〉′ . (6.207)

Now, for a function f = f(σ, ε), the cavity formula

〈f〉′ =
〈AvfE〉
〈AvE〉

holds, where Av means integration in ε with respect to η, and where E =
E(σ, ε) = exp(−H(σ, ε)). We rewrite (6.207) as

E
〈f1(σ1)AvE〉

〈AvE〉 · · · 〈fn(σ1)AvE〉
〈AvE〉 = E

〈Avf1(ε)E〉
〈AvE〉 · · · 〈Avfn(ε)E〉

〈AvE〉 . (6.208)

We will then use Theorem 6.7.8 to approximately compute both sides of
(6.208) to obtain (6.203). However an obstacle is that the denominators can
be very small, or, in other words, that the function x/y is not continuous at
y = 0. To solve this problem we consider δ > 0 and we will replace these
denominators by δ + 〈AvE〉.

We will need to take limits as δ → 0, and in order to be able to exchange
these limits with the limits as N → ∞ we need the following.
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Lemma 6.7.10. Assume that f = f(σ, ε) is bounded. Then

lim
δ→0

sup
N

E

∣∣∣∣∣
〈AvfE〉
〈AvE〉 − 〈AvfE〉

δ + 〈AvE〉

∣∣∣∣∣ = 0 .

Proof. First, if |f | ≤ C, we have
∣∣∣∣∣
〈AvfE〉
〈AvE〉 − 〈AvfE〉

δ + 〈AvE〉

∣∣∣∣∣ =
δ|〈AvfE〉|

〈AvE〉(δ + 〈AvE〉) ≤ Cδ

δ + 〈AvE〉 .

Next, we have

E
δ

δ + 〈AvE〉 ≤
√

δ + P(〈AvE〉 ≤
√

δ) ,

and, writing H = H(σ, ε),

〈AvE〉 = 〈Av exp(−H)〉 ≥ exp〈−AvH〉 ,

so that

P
(
〈AvE〉 ≤

√
δ
)
≤ P

(
〈−AvH〉 ≥ log

1√
δ

)
≤ E〈Av|H|〉

log(1/
√

δ)
.

It follows from (6.173) that

|H(σ, ε)| ≤
∑

j≤r′

(
|θj(0, . . . , 0)| + A

( ∑

s≤p−1

|σi(j,s)| + |ε|
))

,

so that (6.178) and Lemma 6.7.3 imply that supN E〈Av|H|〉 < ∞ and the
lemma is proved. ��

Lemma 6.7.11. We have

lim
N→∞

∣∣∣∣∣E
〈f1(σ1)AvE〉

〈AvE〉 · · · 〈fn(σ1)AvE〉
〈AvE〉 −E〈f1(σ1)〉 · · · 〈fn(σ1)〉

∣∣∣∣∣ = 0 . (6.209)

Proof. Consider the event Ω = Ω1 ∪ Ω2 ∩ Ω3, where

Ω1 = {∃j ≤ r′ , i(j, 1) = 1}
Ω2 = {∃j, j′ ≤ r′ , j �= j′ , ∃	, 	′ ≤ p − 1 , i(j, 	) = i(j′, 	′)} (6.210)
Ω3 = {(p − 1)(r′ + 1) ≤ N} , (6.211)

so that as we have used many times we have

P(Ω) ≤ K

N
. (6.212)
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Let us now define

U = Av exp
∑

1≤j≤r′

θj(σj(p−1)+1, . . . , σ(j+1)(p−1), ε) (6.213)

when (r′ + 1)(p − 1) ≤ N and U = 1 otherwise. The reader observes that
U depends only on the spins σi for i ≥ p. On Ωc we have i(j, 1) > 1 for all
j < r, and the indexes i(j, 	) are all different. Thus symmetry between sites
implies that for any δ > 0,

E

(
1Ωc

〈f1(σ1)AvE〉
δ + 〈AvE〉 · · · 〈fn(σ1)AvE〉

δ + 〈AvE〉

)

= E

(
1Ωc

〈f1(σ1)U〉
δ + 〈U〉 · · · 〈fn(σ1)U〉

δ + 〈U〉

)
. (6.214)

We claim that

lim
N→∞

∣∣∣∣E
〈f1(σ1)U〉
δ + 〈U〉 · · · 〈fn(σ1)U〉

δ + 〈U〉

− E
〈f1(σ1)〉X〈U〉X

δ + 〈U〉X
· · · 〈fn(σ1)〉X〈U〉X

δ + 〈U〉X

∣∣∣∣ = 0 . (6.215)

To see this we simply use Theorem 6.7.8 given r′ and the functions θj , j ≤ r′.
Since by (6.212) the influence of Ω vanishes in the limit, we get from (6.214)
that

lim
N→∞

∣∣∣∣∣E
〈f1(σ1)AvE〉
δ + 〈AvE〉 · · · 〈fn(σ1)AvE〉

δ + 〈AvE〉

− E
〈f1(σ1)〉X〈U〉X

δ + 〈U〉X
· · · 〈fn(σ1)〉X〈U〉X

δ + 〈U〉X

∣∣∣∣∣ = 0 . (6.216)

Without loss of generality we can assume that |fs| ≤ 1 for each s. The
inequality (6.197) and Lemma 6.7.10 yield

lim
δ→0

sup
N

∣∣∣∣E
〈f1(σ1)AvE〉
δ + 〈AvE〉 · · · 〈fn(σ1)AvE〉

δ + 〈AvE〉 − E
〈f1(σ1)AvE〉

〈AvE〉 · · · 〈fn(σ1)AvE〉
〈AvE〉

∣∣∣∣

= 0 . (6.217)

Proceeding as in Lemma 6.7.10, we get

lim
δ→0

sup
N

E

∣∣∣∣
〈U〉X

δ + 〈U〉X
− 1
∣∣∣∣ = 0 , (6.218)

and proceeding as in (6.217) we obtain

lim
δ→0

sup
N

∣∣∣∣E〈f1(σ1)〉X · · · 〈fn(σ1)〉X−E
〈f1(σ1)〉X〈U〉X

δ + 〈U〉X
· · · 〈fn(σ1)〉X〈U〉X

δ + 〈U〉X

∣∣∣∣∣ = 0.
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Combining with (6.217) and (6.216) proves (6.209) since 〈fs(σ1)〉 = 〈fs(σ1)〉X.
��

To complete the proof of Theorem 6.7.9, we show the following, where we
lighten notation by writing fs = fs(ε).

Lemma 6.7.12. We have

lim
N→∞

∣∣∣∣∣E
〈Avf1E〉
〈AvE〉 · · · 〈AvfnE〉

〈AvE〉 − E
〈Avf1Er〉X
〈AvEr〉X

· · · 〈AvfnEr〉X
〈AvEr〉X

∣∣∣∣∣ = 0 .

Proof. We follow the method of Lemma 6.7.11, keeping its notation. For
s ≤ n we define

Us = Avfs(ε) exp
∑

1≤j≤r′

θ(σj(p−1)+1, . . . , σ(j+1)(p−1), ε)

when (r′ + 1)(p − 1) ≤ N and Us = 1 otherwise. Consider δ > 0. Recalling
(6.211) and (6.213), symmetry between sites yields

E

(
1Ωc

〈Avf1E〉
δ + 〈AvE〉 · · ·

〈AvfnE〉
δ + 〈AvE〉

)

= E

(
1Ωc

〈U1〉
δ + 〈U〉 · · ·

〈Un〉
δ + 〈U〉

)
. (6.219)

Moreover Theorem 6.7.8 implies

lim
N→∞

∣∣∣∣∣E
〈U1〉

δ + 〈U〉 · · ·
〈Un〉

δ + 〈U〉 − E
〈U1〉X
δ + 〈U〉X

· · · 〈Un〉X
δ + 〈U〉X

∣∣∣∣∣ = 0 .

Since the influence of Ω vanishes in the limit, and exchanging again the limits
N → ∞ and δ → 0 as permitted by Lemma 6.7.10 (and a similar argument
for the terms E〈Us〉X/(δ + 〈U〉X)), we obtain

lim
N→∞

∣∣∣∣∣E
〈Avf1E〉
〈AvE〉 · · · 〈AvfnE〉

〈AvE〉 − E
〈U1〉X
〈U〉X

· · · 〈Un〉X
〈U〉X

∣∣∣∣∣ = 0 .

It then remains only to show that

lim
N→∞

∣∣∣∣∣E
〈U1〉X
〈U〉X

· · · 〈Un〉X
〈U〉X

− E
〈Avf1Er〉X
〈AvEr〉X

· · · 〈AvfnEr〉X
〈AvEr〉X

∣∣∣∣∣ = 0 ,

which should be obvious by the definitions of U , Er and Us and since r′ is a
Poisson r.v. and, as N → ∞, Er′ = α′p → αp = Er. ��

We now state the desired strengthening of Theorem 6.7.9.
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Theorem 6.7.13. If d denotes the transportation-cost distance associated to
the L1 norm in D, we have

lim
N→∞

d(μN , T (μN )) = 0 . (6.220)

As we shall see, the sequence μ = μN is tight, and (6.220) implies that
any cluster point of this sequence is a solution of the equation μ = T (μ). If
we knew that this equation has a unique solution, we would conclude that
the sequence (μN ) converges to this solution, and we could pursue the study
of the model and in particular we could compute

lim
N→∞

1
N

E log
∫

exp(−HN (σ) − κ‖σ‖2)dσ .

Thus, further results seem to depend on the following.

Research Problem 6.7.14. (Level 2) Prove that the equation μ = T (μ)
has a unique solution.

One really wonders what kind of methods could be used to approach this
question. Even if this can be solved, the challenge remains to find situations
where in the relation (see (6.170))

E
1
N

log η⊗N

( ⋂

k≤M

Uk

)

= lim
β→∞

1
N

E log
∫

exp β
∑

k≤M

θk(σi(k,1), . . . , σi(k,p))dη⊗N (σ)

one can exchange the limits N → ∞ and β → ∞. A similar problem in a
different context will be solved in Chapter 8.

We turn to the technicalities required to prove Theorem 6.7.13. They
are not difficult, although it is hard to believe that these measure-theoretic
considerations are really relevant to spin glasses. For this reason it seems that
the only potential readers for these arguments will be well versed in measure
theory. Consequently the proofs (that use a few basic facts of analysis, which
can be found in any textbook) will be a bit sketchy.

Lemma 6.7.15. Consider a number B and

D(B) = {f ∈ D ; ∀x, y , f(y) ≤ f(x) exp B|y − x|} .

Then D(B) is norm-compact in L1(η).

Proof. A function f in D(B) satisfies

f(0) exp(−B|x|) ≤ f(x) ≤ f(0) exp B|x| ,
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so that since
∫

f(x)dη(x) = 1, we have K−1 ≤ f(0) ≤ K where K depends
on B and κ only. Moreover D(B) is equi-continuous on every interval, so a
sequence (fn) in D(B) has a subsequence that converges uniformly in any
interval; since, given any ε > 0, there exists a number x0 for which

f ∈ D(B) ⇒
∫

|x|≥x0

|f(x)|dη(x) ≤ ε ,

it follows that this subsequence converges in L1(η). ��
We recall the number A of (6.173).

Lemma 6.7.16. For each N and each k we have

μ(D(kA)) ≥ P(r ≤ k) , (6.221)

where r is a Poisson r.v. of mean αp.

Proof. This is a reformulation of Lemma 6.7.4 since (6.175) means that
Y ∈ D(rA). ��

Proof of Theorem 6.7.13. The set of probability measures μ on D that
satisfy (6.221) for each k is tight (and consequently is compact for the
transportation-cost distance). Assuming if possible that (6.220) fails, we can
find ε > 0 and a converging subsequence (μN(k))k≥1 of the sequence (μN )
such that

∀k , d(μN(k), T (μN(k))) ≥ ε .

We defined T (ν) for ν = μN . We leave it to the reader to define (in the
same manner) T (ν) for any probability measure ν on D and to show that
the operator T is continuous for d. So that if we define ν = limk μN(k), then
T (ν) = limk T (μN(k)) and therefore d(ν, T (ν)) ≥ ε. In particular we have
ν �= T (ν). On the other hand, given continuous bounded functions f1, . . . , fn

on R, since μN is the law of Y (the density with respect to η of the law of σ1

under Gibbs’s measure) in D we have

E〈f1(σ1)〉 · · · 〈fn(σ1)〉 = E

(∫
f1Y dη · · ·

∫
fnY dη

)

=
∫ (∫

f1Y dη · · ·
∫

fnY dη

)
dμN (Y ) . (6.222)

The map

ν �→ ψ(ν) :=
∫ (∫

f1Y dη · · ·
∫

fnY dη

)
dν(Y )

is continuous for the transportation-cost distance; in fact if |fs| ≤ 1 for each
s, one can easily show that |ψ(ν) − ψ(ν′)| ≤ nd(ν, ν′). Therefore the limit of
the right-hand side of (6.222) along the sequence (N(k)) is
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∫ (∫
f1Y dη · · ·

∫
fnY dη

)
dν(Y ) .

Also, the definition of T (μN ) implies

E
〈Avf1Er〉X
〈AvEr〉X

· · · 〈AvfnEr〉X
〈AvEr〉X

=
∫ (∫

f1Y dη · · ·
∫

fnY dη

)
dT (νN )(Y ) (6.223)

and the limit of the previous quantity along the sequence (N(k)) is
∫ (∫

f1Y dη · · ·
∫

fnY dη

)
dT (ν)(Y ) .

Using (6.203) we get
∫ (∫

f1Y dη · · ·
∫

fnY dη

)
dν(Y )

=
∫ (∫

f1Y dη · · ·
∫

fnY dη

)
dT (ν)(Y ) . (6.224)

We will now show that this identity implies ν = T (ν), a contradiction which
completes the proof of the theorem. Approximating a function on a bounded
set by a polynomial yields that if F is a continuous function of n variables,
then

∫
F

(∫
f1Y dη, . . . ,

∫
fnY dη

)
dν(Y )

=
∫

F

(∫
f1Y dη, . . . ,

∫
fnY dη

)
dT (ν)(Y ) .

Consequently, ∫
ϕ(Y )dν(Y ) =

∫
ϕ(Y )dT (ν)(Y ) , (6.225)

whenever ϕ(Y ) is a pointwise limit of a sequence of uniformly bounded func-
tions of the type

Y �→ F

(∫
f1Y dη, . . . ,

∫
fnY dη

)
.

These include the functions of the type

ϕ(Y ) = min
(

1, min
k≤k1

(ak + ‖Y − Yk‖1)
)

, (6.226)

where ak are ≥ 0 numbers. This is because
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ϕ(Y ) = min

(
1, min

k≤k1

(
ak + max

∣∣∣∣
∫

fY dη −
∫

fYkdη

∣∣∣∣

))
,

where the maximum is over |f | ≤ 1, f continuous. Any [0, 1]-valued, 1-
Lipschitz function ϕ on D is the pointwise limit of a sequence of functions of
the type (6.226). It then follows that (6.225) implies that ν = T (ν). ��

6.8 Notes and Comments

The first paper “solving” a comparable model at high temperature is [153].
A version of Theorem 6.5.1 “with replica symmetry breaking” is presented

in [115], where the proof of Theorem 6.5.1 given here can be found. This proof
is arguably identical to the original proof of [60], but the computations are
much simpler. This is permitted by the identification of which property of θ
is really used (i.e. (6.117)). Another relevant paper is [78], but it deals only
with a very special model.

An interesting feature of the present chapter is that we gain control of
the model “in two steps”, the first of which is Theorem 6.2.2. It would be
esthetically pleasing to find a proof “in one step” of a statement including
both Theorems 6.2.2 and 6.4.1.

There is currently intense interest in specific models of the type considered
in this chapter, see e.g. [51] and [102].
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