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Preface

This book contains the articles presented at the 11th International Conference on
the Simulation of Adaptive Behavior (SAB 2010), which was held at the Museum
d’Histoire Naturelle and at the University Pierre et Marie Curie of Paris during
August 25–27, 2010. On August 28, the attendees moved to Le Clos Lucé – the
last home of Leonardo da Vinci – where the 20th anniversary of the conference
was celebrated.

The objective of the biennial SAB Conference is to bring together researchers
in computer science, artificial intelligence, artificial life, complex systems, robotics,
neurosciences, ethology, evolutionary biology, and related fields so as to further
our understanding of the behaviors and underlying mechanisms that allow nat-
ural and artificial animals to adapt and survive in uncertain environments.

Adaptive behavior research is distinguished by its focus on the modelling
and creation of complete animal-like systems, which – however simple at the
moment – may be one of the best routes to understanding intelligence in natural
and artificial systems. The conference is part of a long series that started with
the first SAB Conference held in Paris in September 1990, which was followed
by conferences in Honolulu 1992, Brighton 1994, Cape Cod 1996, Zürich 1998,
Paris 2000, Edinburgh 2002, Los Angeles 2004, Rome 2006 and Osaka 2008. In
1992, the MIT Press introduced the quarterly journal Adaptive Behavior, now
published by SAGE Publications. The establishment of the International Society
for Adaptive Behavior (ISAB) in 1995 further underlined the emergence of adap-
tive behavior as a fully fledged scientific discipline. The present proceedings are
a comprehensive and up-to-date resource for the latest progress in this exciting
field.

The articles cover all main areas in animat research, including perception
and motor control, action selection, motivation and emotion, internal models
and representation, collective behavior, language evolution, evolution and learn-
ing. The authors focus on well-defined models, computer simulations or robotic
models, that help to characterize and compare various organizational principles,
architectures, and adaptation processes capable of inducing adaptive behavior
in real animals or synthetic agents, the animats.

This conference and its proceedings would not exist without the substantial
help of a wide range of people. Foremost, we would like to thank the members of
the Program Committee, who thoughtfully reviewed all the submissions and pro-
vided detailed suggestions on how to improve the articles. We also acknowledge
the significant contribution of Chantal Iannarelli to the conference’s organiza-
tion. And, once again, we warmly thank Jean Solé for the artistic conception of
the SAB 2010 poster and the proceedings cover.
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Benôıt Girard, France
Faustino Gomez, Switzerland
Osamu Hanagata, Japan
Inman Harvey, UK
Mark Humphries, France



VIII Organization

Phil Husbands, UK
Fumiya Iida, Switzerland
Hiroyuki Iizuka, Japan
Auke Jan Ijspeert, Switzerland
Takashi Ikegami, Japan
Akio Ishiguro, Japan
Koji Ito, Japan
Naoto Iwahashi, Japan
Frederic Kaplan, Switzerland
Kuniaki Kawabata, Japan
Mehdi Khamassi, France
Toshiyuki Kondo, Japan
Robert Kozma, USA
Yasuo Kuniyoshi, Japan
Hanspeter Mallot, Germany
Davide Marocco, Italy
Alcherio Martinoli, Switzerland
Francois Michaud, Switzerland
Francesco Mondada, Switzerland
Jean-Baptiste Mouret, France
Kazuyuki Murase, Japan
Ryohei Nakano, Japan
Ulrich Nehmzow, Ireland
Stefano Nolfi, Italy
Tetsuya Ogata, Japan
Pierre-Yves Oudeyer, France
Pietro Pantano, Italy
Jan Peters, Germany

Rolf Pfeifer, Switzerland
Tony Prescott, UK
Mikhail Prokopenko, Australia
Marc Schoenauer, France
Michele Sebag, France
Noel Sharkey, UK
Denis Sheynikhovich, France
Olivier Sigaud, France
Olaf Sporns, USA
Kenneth Stanley, USA
Kenji Suzuki, Japan
Jun Tani, Japan
Charles Taylor, USA
Tim Taylor, UK
Vadim Tikhanoff, UK
Peter Todd, Germany
Elio Tuci, Italy
Eiji Uchibe, Japan
Richard Vaughan, Canada
Paul Vogt, The Netherlands
Hiroaki Wagatsuma, Japan
Barbara Webb, UK
Janet Wiles, Australia
Myra S. Wilson, UK
Rachel Wood, UK
Florentin Woergoetter, Germany
Tom Ziemke, Sweden



Organization IX

Sponsoring Institutions

We are greatly indebted to our sponsors:



Table of Contents

Animat Approaches for Adaptive Behaviour

From Mirror Writing to Mirror Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Michael A. Arbib

How Virtual Machinery Can Bridge the “Explanatory Gap”, in Natural
and Artificial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Aaron Sloman

Do Empirical Models of Robot-Environment Interaction Have a
Meaning? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Ulrich Nehmzow, Phillip J. McKerrow, and Steve A. Billings

Information Dynamics of Evolved Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Paul L. Williams and Randall D. Beer

Taming the Beast: Guided Self-organization of Behavior in Autonomous
Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Georg Martius and J. Michael Herrmann

Perception and Motor Control

Slime Mold Inspired Chemical Sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
R. Andrew Russell

A Conserved Network for Control of Arthropod Exteroceptive Optical
Flow Reflexes during Locomotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Daniel Blustein and Joseph Ayers

Modifying Directionality through Auditory System Scaling in a Robotic
Lizard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Danish Shaikh, John Hallam, and Jakob Christensen-Dalsgaard

SCRATCHbot: Active Tactile Sensing in a Whiskered Mobile Robot . . . . 93
Martin J. Pearson, Ben Mitchinson, Jason Welsby, Tony Pipe, and
Tony J. Prescott

Toward a Spiking-Neuron Model of the Oculomotor System . . . . . . . . . . . 104
Jan Morén, Tomohiro Shibata, and Kenji Doya

An Integrated Neuromimetic Model of the Saccadic Eye Movements for
the Psikharpax Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Steve N’Guyen, Patrick Pirim, Jean-Arcady Meyer, and
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From Mirror Writing to Mirror Neurons 

Michael A. Arbib 

Computer Science, Neuroscience and the USC Brain Project 
University of Southern California, Los Angeles, CA 90089-2520, USA 

arbib@usc.edu 

Abstract. The article offers a personal perspective on Simulation of Animal 
Behavior, starting with the inspiration of Norbert Wiener’s 1948 Cybernetics 
for the publication of Brains, Machines, and Mathematics in 1964. This led to a 
range of simulations of the brains and behaviors of frogs (Rana computatrix), 
rats, monkeys and humans. Such work is paralleled by work in biologically-
inspired robots, traceable back to Grey Walter’s Machina speculatrix of 1953. 
Recent work includes detailed modeling of hand control, mirror neurons and 
sequencing as part of a program to determine “What the Macaque Brain Tells 
the Human Mind”. The Mirror System Hypothesis for the evolution of the lan-
guage-ready brain suggests a path for evolution of brain mechanisms atop the 
mirror system for grasping, with new processes supporting simple imitation, 
complex imitation, gesture, pantomime and finally protosign and protospeech. 
It is argued that this progression suggests the “dead end of the simple model” if 
we are to fully explore the lessons of Simulation of Animal Behavior for  
computational neuroscience and biologically-inspired robotics. 

Keywords: cybernetics, Rana computatrix, schema theory, biologically-
inspired robots, hand control, mirror neurons mirror system hypothesis,  
language evolution. 

1   Mirror Writing 

The allusion to “mirror writing” in the title is not to define a precursor of the study of 
mirror neurons, but simply to mark a major theme of SAB2010, a celebration of a 
most distinguished predecessor, Leonardo da Vinci, whose work grounded both art 
and technology in the careful study of animal form and mechanism. Jean-Arcady 
Meyer’s talk on “Leonardo’s automata” initiates this celebration, which culminates on 
the last day of the conference at Le Clos Luce, last home of Leonardo da Vinci. Leo-
nardo’s notebooks were not only written in a form of shorthand that he invented him-
self but also used "mirror writing", starting at the right side of the page and moving to 
the left. The talk will open discussion of the extent to which mirror neurons should be 
part of the next generation of animal-inspired animats whose control systems are 
inspired by the study of the brains or nervous systems of diverse animals. But there is 
much to talk about before that. 



2 M.A. Arbib 

 

2   Fifty Years of Brains, Machines and Mathematics 

My own interest in SAB themes started in the late 1950s when, until then a pure 
mathematician, I was captivated by the themes of Norbert Wiener’s Cybernetics, or 
Control and Communication in the Animal and the Machine [1]. This book led me to 
the work of Warren McCulloch and Walter Pitts. Their 1943 characterization of neu-
rons as threshold logic units [2] showed that a neural network could serve as the 
“brain” for any Turing machine [3]. Such ideas, plus much reading in automata theory 
and computability, led to my 1960 Honours Thesis in Mathematics at Sydney Univer-
sity on “Turing Machines, Finite Automata and Neural Nets”, published a year later in 
the Journal of the Association for Computing Machinery [4]. Then the visual neuro-
physiologist Bill Levick introduced me to the 1959 paper “What the Frog’s Eye Tells 
the Frog’s Brain”[5] written by neurophysiologist Jerry Lettvin and neuroanatomist 
Humberto Maturana in collaboration with McCulloch & Pitts to provide neuro-
ethological exploration of the ideas of their 1947 group-theoretic approach to pattern 
recognition[6]. This led me to an interest in neural networks not only as mathematical 
automata but as models of processes in real brains. 

Inspired by all this, I moved to MIT in January of 1961. On summer vacation in 
1962, I spent the winter term at the University of New South Wales back in Sydney, 
giving a course of lectures on Brains, Machines and Mathematics that were published 
in 1964 as my first book [7]. A brief review of each chapter will help us see what was 
in place almost 50 years ago, and what has changed since. 

Chapter 1. Neural Nets, Finite Automata, and Turing Machines showed how 
any finite automaton could be simulated by a McCulloch-Pitts network. It then intro-
duced Turing machines and the basics of recursive sets and regular and realizable 
events. It thus located neural networks within the domain of discrete mathematics. 

Chapter 2. Structure and Randomness focused first on Lettvin et al.’s approach 
to the visual system of the frog, offering a brief comparison with the work of Hubel 
and Wiesel on the discovery of simple and complex cells in the visual cortex of cats 
[8]. The intriguing issue was why the ganglion cells of the frog’s retina should already 
be computing features of apparent relevance to the frog’s behavior (responsive to 
local cues for prey-like and predator-like stimuli) while the cat’s primary visual cortex 
was extracting edge information of no direct behavioral relevance. The chapter then 
turned to an exposition of Rosenblatt’s Perceptron [9] to introduce the theme of su-
pervised learning in neural networks. A glaring omission was discussion of Hebb’s 
formulation of cell assemblies and the unsupervised learning that formed them [10]. 

Chapter 3. The Correction of Errors in Communication and Computation fo-
cused on the challenge of understanding how reliable brains could be composed from 
unreliable neurons, and started with von Neumann's multiplexing scheme [11]. An 
exposition of Shannon's theory of reliable computation in the presence of noise [12] 
grounded the Cowan-Winograd theory of reliable automata, which took a neural net-
work and made it more reliable by introducing redundancy in a fashion guided by any 
suitable code from communication theory. 

Chapter 4. Cybernetics started with the study of feedback and oscillation that was 
central to Wiener’s insights that mathematics developed for control systems could 
also help us understand biological function and its disorders, while the section on 
resonant frequencies in neural networks explored ideas of Peter Greene [13]. Further 
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topics included a brief look at prosthesis and homeostasis, the Pitts & McCulloch [6] 
model of gestalt and universals, and a brief look at links to artificial intelligence, 
including the hierarchical Test-Operate-Test-Exit units of Miller, Galanter and Pri-
bram [14] and the work on machine learning of checkers by Samuel [15]. 

Finally, Chapter 5. Gödel's Incompleteness Theorem started with a tour of the 
foundations of mathematics then developed the notions of recursive and arithmetical 
logics as a basis for the proof of Kurt Gödel's incompleteness theorem [16] which 
shows that any consistent logic L from whose axioms one can recursively prove theo-
rems about arithmetic must be incomplete – there will be true properties of the inte-
gers that cannot be deduced from L’s axioms. The book closed by showing why this 
result does not bar machine intelligence – for surely an intelligent person can make 
mistakes (and thus would not be consistent) and learn from those mistakes, as should 
any machine that is potentially intelligent.  

3   Simulation of Animal Behavior 

In reviewing Brains, Machines and Mathematics in Scientific American, Jacob 
Bronowski complained that it did not provide a proper mathematics of the brain. Sub-
sequent years have seen the development of detailed neural modeling of neurons 
based on compartmental modeling [17], dynamic systems, optimization principles, 
diverse learning theories and so on. But here I want to stress that my entry into the 
simulation of animal behavior came a few years later with Rich Didday in asking 
What the Frog’s Eye Tells the Frog, inspired by the work of David Ingle [18] on the 
prey catching behavior of frogs. We developed perhaps the first Winner-Take-All 
model in providing a distributed neural model of prey selection [19]. This work 
opened up a series of investigations of Rana computatrix, the frog which computes, 
yielding eleven post-Didday Ph.D. theses, spanning such contributions as those of 
Rolando Lara [20], Donald House [21], DeLiang Wang [22], and Fernando Corbacho 
[23]. These papers introduced the major themes of computational neuroethology: 
linking behavior to interaction of specific neurons in specific brain regions of the 
animal under study. Our work did not culminate in a single overall model embedded 
in a robot, but the work of House did inspire Ron Arkin’s first venture into biologi-
cally-inspired robotics [24]. 

However, the simulation of animal behavior does not always require neural verisi-
militude. In my own work, this led to the development of schema theory. “Pure” 
schema theory studies schemas as dynamical, interacting systems which underlie 
mental and overt behavior. “Neural” schema theory uses data from neurophysiology, 
lesion studies and brain imaging to relate schemas to distributed neural mechanisms, 
with an initial schema model being reformulated in the light of these “sub-behavioral” 
data. Mary Hesse and I went one step further up the hierarchy – introducing “social” 
schema theory to relate "schemas in the head" to the collective representations of a 
society – whether a language, religion, ideology, myth, or scientific society [25]. 

An early example of schema-based interpretation for visual scene analysis is the 
VISIONS system [26]. When a new image is presented, low-level processes build a 
representation in the intermediate database − current estimates including contours and  
 



4 M.A. Arbib 

 

surfaces tagged with features such as color, shape, and location. A Long Term  
Memory contains the schemas for scene interpretation organized in networks so that 
activation of certain schemas increases (cooperation) or decreases (competition) the 
confidence level for other schemas. For a given image, the activation of schema  
instances continues until the image is interpreted. However, attending to details or 
regions that had not yet been fully analyzed may lead to top-down commands to up-
date the intermediate database. The Working Memory (WM) then provides a set of 
schema instances each linked to a certain region of the image, and provided with 
certain cross-linkages (e.g., a roof is part of a house) as well as certain parameters 
(e.g., the size, shape, location and color of the roof). 

A touchstone for “not-so-neural” simulation of animal behavior – and the even 
more relaxed notion of “cognitive robotics”, combining action-oriented perception 
[27] & embodied cognition – is Grey Walter’s Machina speculatrix (whose name, 
perhaps subconsciously, inspired that of Rana computatrix), the famous 1953 robot 
that would “explore” until its battery ran low, at which time it would revisit its 
“hutch” to recharge [28]. Grey Walter’s influence was itself recharged by the publica-
tion of Valentino Braitenberg’s Vehicles in 1984 [29], and celebrated on the 50th an-
niversary of its publication with a conference held in Bristol– the proceedings were 
published as a 2003 theme issue of the Philosophical Transactions of the Royal Soci-
ety, Biologically inspired robotics, compiled by R. I. Damper, and include several 
contributions by researchers familiar in SAB circles. 

My group has a track record of simulating not only frogs but also mammals, start-
ing with studies of depth perception [30] and cerebellum [31] and including study of 
rat navigation, yield the Taxon Affordance and World Graph Models [32, 33]. How-
ever, a crucial impetus to new research was provided by data on preshaping of hand 
movements by Jeannerod and Biguer [34] which led me to develop an influential 
schema-theoretic model of the reach-to-grasp [35]. The resultant misleading impres-
sion of expertise concerning hand movements led to an invitation to the IUPS Satellite 
Symposium on Hand Function and the Neocortex, Melbourne, 1983 which required a 
flurry of effort with Thea Iberall & Damian Lyons on coordinated control programs 
for movements of the hand [36, 37] to turn impression into reality. 

At UMass, my group developed a new approach to how interacting brain regions 
support language – embedding language mechanisms in a framework of action-
oriented perception [38, 39]. After I moved to USC in 1986, nothing much happened 
in my language research for more than 10 years. However, in 1990, Marc Jeannerod 
(Lyon, France), Giacomo Rizzolatti (Parma, Italy) & Hideo Sakata (Tokyo, Japan) 
invited me to join their HFSP project to explore mechanisms of hand-eye coordination 
in macaque and human. Work with Jeannerod and his colleagues led to a control 
systems recasting of optimization for arm movements and its extension to arm-hand 
coordination [40], and integrated modeling of the superior colliculus (frog tectum 
redux), the basal ganglia, and their interaction with parietal and frontal cortex in 
learning and controlling conditional and compound actions. The collaboration with 
Rizzolatti & Sakata led to the FARS (Fagg-Arbib-Rizzolatti-Sakata) model of parie-
tal-premotor interactions in primate control of grasping [41]. During this collabora-
tion, the Parma group discovered mirror neurons [42] and we developed the first 
model of mirror neurons, showing how they could be formed by learning [43]. 
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All this established a program to determine “What the Macaque Brain Tells the 
Human Mind”. The aim is to exploit more data on macaque brain regions which are 
possible homologues of human brain areas relevant to language, and add data on the 
connectivity of these areas in both human and macaque, to yield improved estimates 
of degrees of homology [44]. This program will be furthered by methods of Synthetic 
Brain Imaging to predict the results of human studies from models inspired by the 
findings of animal neurophysiology. [43, 45, 46]. The remaining sections chart some 
of our recent progress concerning the transition from action to language. 

4   Modeling Hand Control, Mirror Neurons and Sequencing 

The key idea of the FARS model [47] is that parietal area AIP does not “know” the 
identity of an object to be grasped, but can only extract affordances (opportunities for 
grasping for the object viewed as an unidentified solid); prefrontal cortex uses the IT 
(inferotemporal) identification of the object, in concert with task analysis and working 
memory, to help AIP select the appropriate action from its “menu”. Neurons in an 
area of premotor cortex of the macaque monkey called F5 then instruct the primary 
motor cortex F1 (M1) to command the grasp. 

A neuron is called a mirror neuron if its firing correlates with both execution of a 
specific action and observation of more-or-less related actions. Mirror neurons for 
different manual actions were first discovered in F5 [48] and later found in parietal 
cortex. The MNS (Mirror Neuron System) model [43] then showed how mirror neu-
rons could be formed by a learning process: The training signal is provided by activa-
tion of canonical neurons which encode a grasp in the animal’s repertoire. Training 
enables mirror neurons to learn to fire in response to appropriate patterns of hand 
movement relative to object affordances – thus becoming able to respond to the ob-
served actions of others. A major goal of the proposed work is to extend MNS & its 
extension, MNS2 [49], to handle the compound actions involved in tool use – in some 
of which the hand is the end effector, while in others part of the tool is the end  
effector [50]. For example, the blade of a screwdriver must be matched against the 
affordance of the groove in the screw head, shifting the locus of visual attention, and 
modifying the interpretation of haptic feedback. 

To model compound actions, we start from the observation that a sequence may re-
sult from competitive queuing [CQ; 51, 52]: At any time neurons representing differ-
ent actions are activated with different priority signals; a WTA process then selects 
the action associated with the largest priority. The “winner” is then inhibited and the 
competition begins anew to choose the next action. By setting initial activation appro-
priately, one may be able to guarantee the execution of a specific sequence. We have 
recently developed a more powerful methodology, augmented competitive queuing 
(ACQ) [53]. A key difference between ACQ and classical CQ is that the activation 
level of motor program elements is dynamically computed in each “time step” rather 
than being completely specified before sequence execution. We define the executabil-
ity of an action as a measure of how readily it can be executed based on available 
affordances – decreasing with the effort required, and 0 if the action is currently im-
possible. The desirability of each action represents the expected reinforcement that 
will follow if the action is executed in the current circumstances (an action desirable 
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when one is hungry may not be desirable when one is thirsty) and is learned via tem-
poral difference [TD] learning [54]. We then define the (context-dependent) priority 
of an action A at any particular time t by the formula:  

priority(A, t) = executability(A, t) * desirability(A, t). 
The goal of opening a bottle requires a motor program with 2 distinct movement 

patterns – turning the cap, and pulling the cap off. If a reward is given for opening the 
bottle, TD learning would eventually leave cap pulling with a higher desirability 
value than cap turning. Until cap pulling is executable, cap turning would repeatedly 
be selected, unscrewing the cap. Once executable, cap pulling’s higher desirability 
value will dominate the ACQ network, it will be selected for execution, and the bottle 
will be opened. The dissociation of motor schema executability from desirability 
allows formation of dynamic motor sequences with goal-oriented, repetitive elements 
that can take advantage of serendipitous events and skip unnecessary steps. 

A crucial feature of ACQ is an expanded role for the Mirror System. Where previ-
ous discussions of the mirror system have it encoding either the action intended by the 
agent, or the action of another as recognized by the agent, ACQ posits that during 
self-action, the mirror system can be activated in two ways: by corollary discharge 
which encodes the intended action, and by analysis of visual input so that recognition 
may encompass apparent actions as well as intended actions. Moreover, we add that 
the mirror system can signal when it observes that the intended action was not per-
formed successfully. As a result, TD learning can update estimates of expected rein-
forcement (desirability) for (i) the intended action (specified by the output from the 
Actor) unless it is blocked by a lack-of-success signal, as well as (ii) any other actions 
that appear to have been performed. Similarly, estimates of whether or not an action 
was executed successfully are used to update estimates of executability for the in-
tended action when performed for the currently perceived environmental state. 

5   The Mirror System Hypothesis (MSH) 

Macaque area F5 is homologous to human Brodmann’s area 44, which is part of 
Broca’s area, an area traditionally associated with the production of speech. More-
over, human brain imaging studies (e.g., [55]) show activation for both grasping and 
observation of grasping in or near Broca’s area, though we do not have data on activ-
ity of individual neurons in this mirror system. But why might a mirror system for 
grasping be associated with an area traditionally associated with speech production? 
The answer starts with the observation that for deaf people, language may take the 
form of a signed language. We thus now associate Broca’s area with language produc-
tion as a multimodal performance rather than speech alone [56]. This led Rizzolatti 
and myself [57] to formulate the Mirror System Hypothesis – that mechanisms for the 
parity property of language (the receiver often recognizes what the sender means) 
evolved atop mirror systems for grasping. Chimpanzees typically take ten or more 
trials to learn to “imitate” a behavior, paying more attention to where the manipulated 
object was being directed than to the movements of the demonstrator [58]. Such imi-
tation is laborious compared to the rapidity with which humans can imitate novel 
sequences – this is the contrast between “simple” imitation and “complex” imitation. 
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My hypothesized sequence [59] leading to protosign and beyond is that complex imi-
tation of praxic actions grounded evolution of mechanisms for: 

(1) Pantomime. Whereas imitation is the generic attempt to reproduce praxic 
movements performed by another, pantomime is communicative, intended to get the 
observer to think of a specific action, object or event.  

(2) Protosign is a system of conventionalized gestures adopted by a community to 
exploit the semantic richness of pantomime while avoiding its ambiguities and cost. 
The claim is that conventional symbols emerged to expand and then replace the com-
municative capacities of pantomiming. 

MSH can also be seen as a hypothesis about language mechanisms in the human 
brain (Figure 1). The core idea [60] is that, just as macaque mirror neurons are related 
to specific actions, so does the human brain contain mirror neurons related to specific 
words – but to words as articulatory actions, not to words as semantic units. Rather, 
semantics is provided by linkages to schema networks in the ventral stream and pre-
frontal cortex which support both perception and the planning of action. Supporting 
evidence comes from Hickok & Poeppel [61] who observe that speech perception 
diverges into a dorsal stream which maps sound onto articulatory-based representa-
tions and a ventral stream which maps sound onto meaning. Schema activity can 
control the execution of actions via the dorsal pathway; conversely, mirror system 
recognition of actions can update motor schemas in the schema assemblage (see the 2 
connections at right of Figure 1). 

 

Fig. 1. This overview [60] shows that the mirror system for action recognition (shared by ma-
caque & human) has an evolutionary relationship to the human mirror system for the phono-
logical form of words and constructions but that these systems are not linked by a direct flow of 
data. Instead, the phonological form gains its meaning by being linked to an assemblage of 
perceptual and motor schemas which support both perception and the planning of action. As in 
the FARS model, the dorsal stream is responsible for setting the parameters of action while the 
ventral system is responsible for selection among possible actions. 
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The key data for MSH place a mirror system for grasping, and thus (inferentially) 
for language, in Broca’s area, and so one might infer that the prime effect of damage 
to Broca’s area would be the inability to pronounce words. However, although pro-
duction is indeed effortful in Broca’s aphasia, a major factor there is agrammatism, a 
pattern of syntactically defective speech that may range in severity from production 
only of one-word utterances, completely lacking in grammatical organization, to 
mildly 'telegraphic' speech. There has been much detailed and systematic description 
of the linguistic output in agrammatic speech, and cross linguistic comparisons have 
revealed that the features of agrammatism are not fixed, but are conditioned by the 
grammatical structure of the speaker's language. 

6   SemRep – Capturing the Basic Elements and Relationships in a 
Scene or Episode 

We sought a flexible framework within which to characterize the relation between 
form and function, but with the freedom to modify it as research proceeds, importing 
mechanisms from frameworks such as those cited above only when appropriate for 
our neurolinguistic modeling. Our choice is Construction Grammar (CG) [62], which 
defines a more or less language-specific set of constructions each of which combines 
syntax with semantics. CG respects the diversity of the grammatical systems of differ-
ent languages, yet can encompass categories grounded in semantic and pragmatic 
prototypes as well as syntactic parameters. 

CG neither supports nor refutes the Mirror System Hypothesis but will allow our 
modeling to assess data from experiments designed to test localization of components 
posited in different models of grammar. Kemmerer [e.g., 63] has made explicit the 
relevance of CG to neurolinguistics and has used it to present the major semantic 
properties of action verbs and to argue that the linguistic representation of action is 
grounded in the mirror neuron system. A key issue for us, then, is to define a seman-
tics which includes action and has links to mirror systems as well as CG. 

We are currently applying CG to the description of visual scenes. As background, 
recall the view on the non-linguistic representation of such scenes by assemblages of 
instances of visual schemas in the VISIONS system. Itti & Arbib [64] added the cu-
mulative action of attention to VISIONS and outlined its extension to a dynamic vis-
ual environment. Arbib and Lee [65] introduced SemRep as a hierarchical graph-like 
semantic representation of a visual scene, an abstraction from the assemblages of 
schema instances generated in the VISIONS system WM, but with the crucial addi-
tion of actions and events extended in time but related to objects linked to specific 
regions of the spatial frame defined by vision. We are developing Template Construc-
tion Grammar (TCG) as a specific implementation of CG processing to support mod-
eling of the relation between vision and language (for somewhat related efforts, see 
[67, 68]). Our key innovation is that the meaning of an utterance is given as a SemRep 
graph (with suitable extensions to be provided in further work). A SemRep may yield 
one or more sentences as TCG finds ways to “cover” the relevant portion of the given 
SemRep with a set of small subgraphs chosen so that a construction is available which 
expresses that subgraph in the given language. In production mode, the template acts 
to match constraints for selecting proper constructions by being superimposed on the 
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SemRep graph. The semantic constraint of each construction is considered to be en-
coded in the template since the template specifies concepts as well as the topology of 
a SemRep graph. Thus, constructions are applied recursively, starting with lexical 
constructions, which have no variables and then by applying higher-level construc-
tions in such a way that slots are matched to the results of earlier application of  
constructions whose category matches that of the slot. In this way, the scheme for 
VISIONS may be lifted to a structure in which the Working Memory for the present 
state of applying constructions to the current SemRep provides the workspace for the 
operation of construction selection and attachment. 

7   Impasse du Petit Modèle 

In June of 2005, I gave the Closing Address at the Ecole d'été Maths et Cerveau at the 
Institut Henri Poincaré in Paris. In preparing the address, I had chosen the theme that, 
although different specific models may be appropriate for different circuits, subsys-
tems or functionalities of the brain, no single model will suffice for the challenges of 
building an integrative computational approach appropriate to cognitive neuroscience. 
It thus came as an amazing coincidence to discover that the alleyway next to Hotel 
Jack’s, where I had been given a room by the School’s organizers, was called “Im-
passe du Petit Modèle”, the very theme of my talk. Yet in asserting the dead end of 
the little model, I am flying in the face of the observation that much of the best sci-
ence is done by focusing on a very narrow problem which nonetheless promises to 
shed light on a large range of topics. Nonetheless, further progress in the Simulation 
of Adaptive Behavior demands a “balancing act” between large scale models and 
focused research, as demonstrated by the “big model” of neurolinguistics inspired by 
the Mirror System Hypothesis, which can be used to provide a framework for a num-
ber of more focused efforts in computational neuroscience and biologically-inspired 
robotics. 
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1 Introduction: A Problem for Darwin

A problem that puzzled Darwin and fired up his critics, was how mental
phenomena could fit into the theory of evolution by natural selection.

There was evidence for evolution of physical forms, including: fossil records
showing gradual changes in skeletal structures, existing species that have
been shown to adapt physical features and behaviours to meet changing
circumstances, and artificially bred variants of animals and plants. Such evidence
convinced Darwin and many of his contemporaries that random mutations and
environmental selection pressures could, over time, produce radical changes.
Despite gaps in the evidence, most scientists now seem to accept that the whole
process, starting from complex molecules and leading to the existence of all the
biological diversity now on earth, can be explained in roughly Darwinian terms
– though there remain disagreements on some of the mechanisms, e.g. in [11].

However, since Darwin’s time till the present day, many serious thinkers,
including some of his leading supporters, have doubted that there is compelling
evidence for the claim that mental functioning evolved in the same way, and

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 13–24, 2010.
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some think there is no evidence that human minds, or other animal minds,
could be products of Darwinian evolution. For some, that is because all the
evidence available supports only the hypothesis that evolutionary mechanisms
can produce physical changes of shape and detailed physiology and to some
extent also physical behaviour, such as feeding behaviours, mating behaviours,
caring for offspring, and ways of escaping from predators.

If it were clear how physical changes can produce mental changes, that
could help to provide an account of how evolution could produce new mental
phenomena, and the behaviours that seem to require specifically human mental
processes, such as production and enjoyment of poetry, stories, music and
dancing, and the advance of mathematics, science and technology. For it could be
argued that evolution can produce mental phenomena by producing the required
physical mechanisms. But many cannot conceive of physical matter producing
mental processes and some even deny that it is possible at all, because of the
huge gulf in kind between, on the one hand, behaviours of atoms, molecules,
and larger structures composed of those, and, on the other hand, processes of
experience, thought, pleasure, pain, and self-awareness.

Even one of Darwin’s strongest supporters, T.H. Huxley, is widely reported to
have written “How it is that anything so remarkable as a state of consciousness
comes about as a result of irritating nervous tissue, is just as unaccountable as
the appearance of the Djin when Aladdin rubbed his lamp”1. He was not alone.
Romanes wrote in [18] “But we are totally in the dark as to the causal connection,
if any, between such a state of turmoil in the ganglion and the occurrence
of consciousness.”(p75) (quoted in Whittaker’s review [27]). Moreover, Alfred
Wallace, co-inventor of the theory of evolution by natural selection, doubted
that evolution could produce anything like states of consciousness.

This problem was later labelled the “explanatory gap”. Individuals use
different names for what it is that they are opposing to physical phenomena.
Huxley and Romanes used “consciousness”. Some use “sentience”. Following
Block [3], many now refer to “Phenomenal Consciousness” (PC) in contrast
with “Access Consciousness” (AC), or, in the terminology of Chalmers [4],
distinguish the so-called “Hard Problem” of consciousness from a (relatively)
“Easy Problem”. Such formulations presuppose a dichotomy: a binary divide
between things that do and things that do not have the problematic extra feature
over and above their physical features. Later we shall challenge the use of a binary
division (as Thomas Whittaker did as long ago as 1884).

Debates about evolution of mind echoed and extended older philosophical
discussions about the nature of mind and the relations between mind and
body. Not only philosophers, but also psychologists, neuroscientists, physicists,
anthropologists, biologists and more recently AI researchers, roboticists and
cognitive scientists of various sorts have all been exercised about this. Responses
to the questions about whether natural selection can produce mental competences
and consciousness, and whether physical processes can produce mental processes,

1 The source is alleged to be [10], though I could not find the words in an online

version.
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vary. The variations include: rejection of the problem as somehow due to a deep
muddle [19], claiming that it is a real problem but lacking any solution that human
minds can understand [13], offering a reformulation of the problem alleged to solve
it [7], resurrecting the problem with a new label [14,3,4], proposing a philosophical
or scientific research project to solve it [2,5], offering specific solutions that appeal
to recent advances in physics or mathematics [15,20], assembling experimental
and observational data about it [2], producing working computer models of
various kinds [21], developing new technical philosophical concepts in the hope of
clarifying it [12], and many more. In 1978, I proposed that the best way to make
progress on the philosophical problems was to use new opportunities provided
by the development of computers to investigate ways of designing working minds
possibly starting with working fragments [22, Chapter 1]. This has been ignored
by most philosophers and the majority of psychologists. Those who tried have
generally underestimated the problems, expecting success too soon.

Nevertheless, much has been learnt, including a great deal about the diversity
of the phenomena involving consciousness and other aspects of mentality. This
includes studies of development of various mental competences from infancy, e.g.
[9,17], various “disorders of consciousness” caused by brain-damage, physical or
mental abuse, and the effects of drugs of various kinds, including local and global
anaesthetics used medically.

2 Causes of Difficulty

Despite the vast amount in print, there does not seem to be any clear consensus
that one theory of the relationship between mind and brain is right, or even
along the right lines. I think there are two main reasons why philosophy has got
stuck, and with it theoretical psychology and biology.

The first hurdle is the difficulty of identifying the problems in a form that
genuinely addresses all the main concerns that have arisen in the history pointed
to here. Part of the explanation for the difficulty is that there is no one problem:
rather biological evolution had to solve many design problems in the long slow
march from microbes to species clearly demonstrating mental competences. This
is related to the claim in [24,26] that there is no one thing referred to by the noun
“consciousness”, because the concept of being conscious of something is highly
polymorphic – it refers tomanydifferent types of phenomena, whichvary according
to which kind of thing is conscious and what kind of thing it is conscious of. For
example being conscious of a pain in your leg is very different from being conscious
of your growing unpopularity at work. Both are different from a fly escaping a
swatter because it was consciousof the motion. In a biological context this diversity
is to be expected: diversity is a pervasive aspect of products of evolution.

The second reason for lack of progress is that most researchers lack conceptual
tools adequate for the task of formulating answers with explanatory power. I shall
try to show that people working in computer science and software engineering
have, over several decades, unintentionally provided new concepts and tools for
thinking about, modelling and explaining some of the kinds of phenomena cited
by objectors to Darwinism. The key idea is that all organisms use information:
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living things are informed control systems – they use information in making
control decisions, i.e. selecting between alternative possible actions, internal or
internal. This idea is not new. But it is often ignored by people who ask how
matter can produce or influence mind without asking how mind can influence
matter and its motion, which it clearly does, e.g. as I type these words.

Early versions of this claim are in books by Craik and Wiener, [6,28] published
in 1943 and 1948. But we have learnt much since then. In particular, whereas
early information-based machines (e.g. Jacquard looms) used information to
control physical actions, the information-processing machinery developed using
computers has increasingly been concerned with acting on information, and
acting on abstract mechanisms for acting on information (a possibility Ada
Lovelace foresaw). Most of what computers now do is not describable in the
language of physics: they run processes in virtual machines that are implemented
in physical machines though what the virtual machines are and what they
do cannot be fully described using the language of the physical sciences. For
example, the concepts of “winning” and “losing”, required to describe the
operation of a computer-based chess program, refer not to physical processes
but to more abstract interactions between competing agents [23].

3 Towards Better Conceptual Tools

The conceptual tools required for building, testing, debugging, extending,
comparing and explaining such virtual machines were developed piecemeal over
several decades by hardware and software engineers solving different problems.
Portions of the story are in [8]. We need to understand what they have achieved
and its relevance to information processing in organisms.

It is sometimes suggested that if you describe a computer as running a certain
virtual machine, e.g. a chess playing virtual machine, you are merely hallucinating
a pattern onto the physical changes occurring, like choosing to see a rectangular
array of dots as composed of horizontal rows of dots, or of vertical columns of dots,
implying that virtual machines exist only in the eye (or mind) of the beholder, and
cannot do anything. But that ignores the causal interactions that occur within
virtual machines and also between virtual and physical processes. Chess virtual
machines really do consider the consequences of certain options and on that basis
choose one of them in deciding what move to make next – which in turn causes
further changes within the virtual machine and in the computer’s memory and
possibly also on the screen. For blind human users it may utter the coordinates of
the move. The causation is not hallucinated.

We may fancy that one piece of shadow on a forest floor chases another, or
that an arrow shaped shadow points at a patch of light, whereas in fact there is
no chasing or pointing: the visible patterns are mere by-products of interactions
between wind, leaves, branches and rays of sunlight. If an arrow-shaped shadow
appears to point at a patch of light that is mere coincidence. In contrast, engineers
have learnt how to make enduring, active patterns in computers that really do
influence other patterns, which may themselves be influencing or referring to other
patterns, or even to themselves. We depend on this in flight control systems.
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Fig. 1. In (a), illustrating epiphenomenalism, physical changes produce patterns visible

to a viewer, which do not themselves interact causally, whereas (b) illustrates two-way

interaction between physical mechanisms and mechanisms in virtual machines, which

interact both with one another and with the physical substrate and environment

Concurrency of interactions is important, as we’ll see, and does not match the
common view of a computer as a Turing machine.

In Figure 1, (b) schematically indicates a physical system on which is
implemented complex virtual machinery composed of enduring, interacting
subsystems which can influence and be influenced by other patterns and physical
structures and processes. The causal arrows go up and down as well as sideways.
In modern computers, such enduring but changing virtual machinery co-exists
with, and influences, underlying physical machinery, which it helps to control,
even though the virtual machinery is all fully implemented in deterministic
physical machinery. Rules running in a virtual machine can cause changes in the
physical memory and attached devices (including screens, motors, speakers, and
network links to computers). The use of “cause” there is justified because so much
engineering has gone into making a complex collection of conditional statements
true, including counter-factual conditionals about what would or would not have
happened in various possible situations. A web of connected hardware, software,
and firmware subsystems whose overall structure is very complex, and can even
change rapidly between and during causal interactions, makes those conditional
statements true, by ensuring that the connections are not mere coincidences.
That includes not only causation between processes in virtual machinery, but also
causation across levels, e.g. using mechanisms that ensure that a decision taken
at a high level causes certain changes in physical memory, or causes appropriate
signals to go to an attached device. All that uses very complex technology,
unimaginable in Darwin’s time. However, engineers can make mistakes, and bugs
in the virtual machinery are detected and removed, usually by altering a textual
specification that drives the creation of the web.

The technology supporting all that functionality includes (in no significant
order): memory management, paging, cacheing, interfaces of many kinds,
interfacing protocols, protocol converters, device drivers, interrupt handlers,
schedulers, privilege mechanisms, resource control mechanisms, file-management
systems, interpreters, compilers, “run-time systems” for various programming
languages, garbage collectors, varied types of data-structure and operations on
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them, debugging tools, pipes, sockets, shared memory systems, firewalls, virus
checkers, security systems, network protocols, operating systems, application
development systems, name-servers, and more. Concurrency does not require
multiple CPUs, since enduring process records in memory allow a paused process
to continue to influence running processes through the latter’s memory accesses.
However, insofar as a computer has sensors and other interfaces connected with
the environment there will be many concurrent processes not wholly under the
control of the computer, interacting partly as a result of external interrupts.

Some people find it hard to see how virtual machines can cause anything to
happen because they fail to make a three-way distinction, between:

1. Mathematical Models (MMs), e.g. numbers, sets, grammars, proofs, ...
2. Physical Machines (PMs), including atoms, voltages, chemical processes, ...
3. Running Virtual Machines (RVMs), e.g. calculations, games, formatting,

proving, checking spelling, handling email, self-monitoring, ...

MMs are static abstract structures, like proofs, and axiom systems that never
do anything. Unfortunately some uses of “virtual machine” refer to MMs, e.g.
“the Java virtual machine”. These are abstract, inactive, mathematical entities,
not RVMs, whereas PMs and RVMs are active and cause things to happen both
internally and in external environments. Millions of computer users use RVMs
every day, with little knowledge of what they are using. Different computer
scientists and software engineers, know about different sub-sets, and the whole
system is rarely described adequately. For instance, Pollock’s mostly excellent
[16], over-simplifies by frequent references to “the machine table”, ignoring the
layered implementations used by most application software.

The technology summarised above allows physical machines on our desks to
support varying collections of non-physical machinery made up of various kinds
of concurrently interacting components whose causal powers operate in parallel
with the causal powers of underlying machines, and help to control those physical
machines. However, the non-physical (virtual) machinery has different levels of
granularity and different kinds of functionality from the physical machines. The
coarser granularity is indispensable for processes of design, testing, debugging,
and also for run-time self-monitoring and control, which would be impossible to
specify at the level of individual transistors (because of explosive combinatorics,
especially with time-sharing). We need to understand the variety of uses of virtual
machinery, compared with physical information-processing machinery, including
the importance of the coarser granularity, in order to understand the evolutionary
pressures that could have produced biological (e.g. brain-based) virtual machines.

4 What Exactly Needs to Be Explained?

Thinkers are divided as to the kind of diversity of mental phenomena found
in nature. Some believe that there is a major dichotomy separating conscious
organisms and the rest. Others claim there are only differences of degree,
with gradually increasing sophistication and complexity of mental phenomena
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emerging from gradually increasing complexity of the physical substrate.
However, claims regarding continuity (in the mathematical sense) in biological
evolution are implausible (a) because all biological phenomena are implemented
in chemical mechanisms (e.g. using DNA), and there are only discrete ways
of transforming one molecular structure to another, and (b) the fact that
evolutionary changes occur only across generations implies that between any
two evolutionary stages there can be only a finite number of intervening stages:
which rules out continuous change. Biological changes must be discontinuous,
whether small or large. So, instead of seeking a single major dichotomy between
conscious organisms and the rest, or hoping to find continuous variation, we
need to understand a large collection of discontinuous design changes, with both
small and large differences in structure, behaviour and functionality.

Specifying a good conceptual framework for studying that variety is not
easy. Evolution produced widely varying physical structures, and also myriad
behavioural capabilities and internal information-processing capabilities, with
different subsets of capabilities shared between different species. Even humans
differ widely. E.g. new-born infants appear to be unable to perceive, think
about, or communicate about most of the things older humans can, and some
older humans are also limited in their mental capacities by effects of genetic
abnormality, injury, disease, or degeneration. There are also differences in mental
functioning that come from cultural influences – e.g. whether people can think
in Chinese, or whether they can understand harmonic progressions in music.

Whittaker’s review of Romanes [27] asks whether mind-like features are
present in all living things, raising the possibility “that the lowest animals, ...
have the beginnings not only of sensibility but also of will and intelligence.”2

His use of “will” implied causal powers. In more neutral language: all organisms
are informed control systems. In deploying stored energy, they select between
alternatives (e.g. both external and internal behaviours) on the basis of available
information. Whittaker also made an important point about the structure of the
space of possible minds: “The development of mind is represented as proceeding
only in a single line. .... Nothing is said as to the possibility that at the same
level of general intelligence there may be essentially different mental types, ....”
(page 294). In a note in Mind 1984, Romanes claimed Whittaker had misread
his meaning, showing that he too assumed non-linear mental diversity.

That diversity is important when we discuss the evolution of mentality, when
we try to design and build working models of mentality and when we try to
explain the relationships between matter and mind. If many different things
evolved, using many different kinds of working mechanism, then that diversity
must be explained by any satisfactory answer to the question of how physical
phenomena can produce mental phenomena. The variations in design produced
by evolution will be responses to variations in pressures, needs and opportunities.
We can summarise that by saying there are many different sets of requirements

2 No doubt the idea has occurred to many people. I was unaware of Whittaker’s work

when I presented a similar idea in “What Has Life Got To Do With Mind? Or vice

versa?”: http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#maggiefest
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NICHE SPACE

DESIGN SPACE

Fig. 2. The space of possible sets of requirements (niches), the space of possible

designs, and the complex structural relationships between designs and requirements.

Relationships between requirements and designs are often represented as numerical

fitness functions. But numerical fitness values cannot do justice to the diversity of ways

of satisfying or failing to satisfy a set of requirements. Compare descriptive consumer

reports on products.

(i.e. different niches) as well as different designs – satisfying different sets of
requirements, as indicated crudely in Figure 2.

We have rejected (a) continuous variation, (b) the use of a dichotomy, and (c) a
linear arrangement of types of mentality. What alternatives remain? If we analyse
environments in depth, we can systematically develop different combinations of
requirements that can arise, for instance, requirements related to the spatial
separation of different sources of food and drink, requirements based on different
kinds of fixed and changing features of the environment (including obstacles,
passage-ways,etc.),differentkindsofmaterialsavailablethatcanbemanipulatedto
meetvariousneeds,differentsortsof food (e.g. foodthattries toescapeandfoodthat
doesn’t) different sorts of predators, and different sorts of competitors for the same
resources. These (and many other) differences in requirements3 entail advantages
and disadvantages in both physical design features, e.g. strength, speed of motion,
camouflage, types of gripper, etc., and also designs for virtual machinery for
processing information – e.g. factual information about the environment (including
other agents), control information aboutwhat todowhen,meta-information about
information, and meta-control information about good and bad ways to acquire,
processanduse information.Longbeforehumanengineers foundtheneedtodevelop
virtual machinery, could biological evolution have responded to similar pressures,
andproducedsolutions to thoseproblems,whichwedonotyetunderstand?Seeking
evidence will be difficult, but potentially enormously important.

Conceptual tools and engineering advances in the last half century have made
a huge difference to our ability to think about these requirements and design
options. But we have not yet developed a biologically adequate theory of types

3 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/creativity-boden.html
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of virtual machinery. On the contrary, we are still a long way from that.4 But
we have made progress that was unimaginable by Darwin and his peers.

5 In Defense, and Explanation, of Qualia

Our task is to produce a new characterisation and explanation of the phenomena
that led to views about contents of experience that (a) are private to the
individual concerned, (b) have a character that is utterly distinct from physical
structures and processes, (c) seem to be produced by physical and chemical
processes in brains and environments perceived or acted on, yet seem to be of a
kind that cannot be produced by physical processes.

Necker Cube Duck-rabbit

(a) (b)

Fig. 3. Each of the two figures is ambiguous and flips between two very different views.

(a) can be seen as a 3-D wire frame cube. For most people it flips between two different

views of the cube, in which the 3-D locations, orientations and other relationships vary.

In (b), the flip involves changes in body parts, the facing direction, and likely motion

– requiring a very different ontology.

Despite deep confusions about consciousness and qualia, noted by Ryle,
Dennett and others, it is clear that such things exist. Although hard to
characterise and to identify in other individuals and other species, we need to
study examples, to determine requirements for explanatory mechanisms. Their
existence and some of their diversity can be demonstrated using the examples in
Figure 3. Stare at each of them for a few minutes.5 When your interpretation of a
picture flips, only changes in you occur, apparently involving states and processes
that are private to you, and somehow directly accessible by you. Describing
carefully how the content changes when the interpretations flip, reveals that
very different vocabularies are required, using a purely geometric ontology for
(a) and an ontology of animal parts and capabilities in (b). A cube cannot be
experienced as “looking to left or to right”, whereas a duck, or rabbit can.

These and other phenomena can be used to demonstrate that there are mental
states and processes involving mental entities within us even though they cannot
be observed by opening up the skull, using the most powerful physical and
chemical measuring instruments. How can biological evolution produce states
within an organism that are closely tied to sensory input but can change
spontaneously and which have semantic content referring to possible external
4 See http://www.cs.bham.ac.uk/research/projects/cogaff/talks/
5 See http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#cons09

http://www.cs.bham.ac.uk/research/projects/cogaff/talks/
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entities describable only using a complex ontology? Until recently the status of
such entities was highly problematic, but I claim that we can now see, at least
in outline, how to explain their occurrence: the entities with semantic content
occur in a virtual machine that rapidly produces various layers of interpretation
of the sensor input using different ontologies, as proposed in [22, Ch 9].

We already know how to produce computing systems that can observe some
of their own internal information processes by recording the existence and
properties of abstract data-structures that occur, procedures that are followed,
and difficulties and successes encountered. Very often the contents of such self-
observations are not the physical states of the computer components but the
components and contents of virtual machines. What now need to collect many
examples of the types of qualia that might occur in a human-like robot and
develop designs that could explain both the occurrence of those cases and their
roles in information-processing systems of various kinds. E.g. one of many ways
in which it can be useful to attend to your internal data-structures rather
than the full structure of perceived entities, is that you can use your internal
data-structures to drive a process of communication with others, perhaps using
drawings and gestures, to show them what experiences they can expect if they
visit certain terrain, for example. Some of the requirements for such mechanisms
have been described in presentations on my web site6, though most of them still
leave many problems unsolved and much work to be done.

One of the important facts relating to the diversity of kinds of mind referred
to by Whittaker is that not all organisms that have qualia know that they
have them! We can separate the occurrence of mental contents in an organism
from their detection by the organism, which requires additional architectural
complexity to support self-observation and self-description mechanisms. Many
organisms can (I suspect) create and use such entities without having the meta-
semantic mechanisms required to detect and represent that fact, as humans do. It
is very likely that the vast majority of organisms have very little self-observation
capability, despite having conscious (but not self-conscious) contents, used to
guide behaviour. We still need to understand why and how evolution produced
those that are capable of introspection. For the others it can be said that they
have and use potential contents of experience, but they do not experience them!
However it is not likely to be a binary divide but a collection of sub-divisions
with more or less functionality, depending on the species. I expect we shall need
to experiment with a range of increasingly complicated working examples, using
different kinds of mechanism, in order to understand better some of the questions
to be asked about about mental phenomena in biological organisms. This is very
close to Arbib’s research programme described in [1].

6 What Next?

Long experience of philosophical debates shows that there are thinkers whose
belief in an unbridgeable mind/body explanatory gap will be unshaken by all
6 http://www.cs.bham.ac.uk/research/projects/cogaff/talks/
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this. As argued in [26], some cases of opposition will be based on use of incoherent
concepts (e.g. a concept of “phenomenal consciousness” defined to involve no
causal or functional powers). One way to test these ideas, outlined in [25], is to
use the ideas to specify a robot design that starts off with the cognitive capacities
of a human infant and develops its own architecture in way that produces human-
like growth in cognitive sophistication, including development of introspective
capabilities that can be focused on experience of things like Figure 3, until it
reaches the stage where it becomes puzzled as to how its own internal states and
processes, detected at a virtual machine level, can exist in a physical world.

After reading about philosophy of mind, and having philosophical discussions
with others, different individual robots that all start from the same design
should be able to develop philosophical beliefs about the nature of the mind-
body relationship. However, just as the same language learning capability in
infant humans can lead to the use of very different languages, depending on the
environment in which the infant grows up, so should the same starting design
(robot genome) be able to produce “adult” robots whose philosophical views
differ as widely as those of human philosophers, such as Renee Descartes, John
Searle, Daniel Dennett and the author of this paper. This would not imply that
philosophical beliefs about the nature of mind are merely cultural phenomena
(like languages): some of them may be, while others are based both on personal
(including robotic) experience, and deep scientific and technical knowledge,
which other robots starting from the same initial design may never acquire.

If we, who have designed all the robots, can tell which one is right about how
it works, and how its mental processes are related to physical processes in and
around it, then that would demonstrate at least the possibility that humans with
those theories are also right about how they work!

Alas: we are nowhere near being able to build such robots, since current
achievements in AI vision, motor-control, concept-formation and other forms of
learning, language understanding and use, motive-generation, decision-making,
plan-formation, problem-solving, and many other areas are still (mostly) far
inferior to those of humans. And if we omit the competences that appear unique
to humans, current robots are still far inferior to other animals. No easy way to
close those gaps is visible on the horizon. But there are many things to try.
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Abstract. The “meaning” of an empirical model of a physical system

such as a mobile robot is an ill-defined concept, and clearly it would

strengthen any hypotheses based on empirical models if some formal

model verification was possible.

In this paper, we present experiments on empirical modelling of mobile

robot operation, in which the interactions of Scitos G5 and Magellan Pro
mobile robots with purposefully designed environments are measured and

modelled through system identification. The experimental setups chosen

were such that we could determine from theoretical considerations what

the models should be.

The comparison between the actually obtained empirical models and

the theoretically correct solutions demonstrates that, in the experiments

conducted, the obtained empirical models are “correct”.

1 Empirical Models of Physical Systems

1.1 Definitions

We discuss two types of models of mobile robot behaviour in this paper: theoret-
ical and empirical. We derive the empirical models from measurements made by
the robot’s sensors while it is performing the behaviour that we wish to model.
The empirical models are parameterised, numerical representations of a physical
process that is used for guiding physical experiments, making predictions about
the behaviour of the physical system under investigation, and to capture the laws
that govern the observed behaviour. It is especially this last point — scientific
theory — that we are interested in.

[1] argues that the utility of empirical models for prediction is limited. In
robotics this certainly is true because of the usually chaotic nature of robot-
environment interaction [3], which precludes long-term accurate predictions.
However, in this paper we demonstrate that empirical models in robotics can
help to understand the fundamental laws that govern robot-environment interac-
tion, and demonstrate in four experiments that it is possible to obtain empirical
models that reflect the — in this case known — true relationship accurately.

We derive the theoretical model from a geometric analysis of the robot’s mo-
tion. A robot’s behaviour is a dynamical system that changes the location of
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the robot over time. Both model types express the behaviour as a set of equa-
tions that establish relationships between sensed variables as the robot moves
from one state to another over the course of time. We have chosen four experi-
ments where the theoretical models describe the behaviour in terms of intrinsic
properties of the path traversed, such as radius of curvature. If the models are
true representations of the robot’s behaviour, then the dynamic invariants of
the models and the underlying system should be the same. Establishing that the
empirical models match the theoretical models gives us confidence to use them
as simulation models in visualisations of robot behaviour and as control models
to calculate driving commands.

1.2 Model Verification and Validation

[2] have argued that a formal verification (“demonstration of truth”) and val-
idation (“demonstration of truth”) of empirical models of natural systems is
impossible. However, proof exists within a set of axioms, and a statement is
considered to be proven if it is consistent with those assumptions.

There is the further dilemma that often more than one empirical model will
produce the same output (non-uniqueness of models). When faced with two mod-
els that give the same results, we either have to demonstrate their equivalence (as
in Section 2.1), demonstrate that one empirical model is a better match to the
theoretical model than the other (as in Section 2.4), or choose the simplest and
most transparent model. Narmax system identification (Section 1.6) attempts
to do the latter when it derives a model from measured data.

1.3 Background: Numerical Modelling of Robot-Environment
Interaction

We have shown elsewhere [4,5] that it is possible to express certain input-output
relationships pertaining to a (mobile) robot’s interaction with its environment
in closed mathematical form (for instance sensor-motor couplings — in other
words, robot control code — in the form of polynomials [7] [6]). These models
contrast to models of the internal structure of the robot, such as for instance
the one given in [8], where the mapping from wheel rotation to robot motion is
modelled with an odometer calibration matrix plus a steering equation.

To illustrate the main point of this paper, we will look at the example of
the wall-following behaviour of a Magellan Pro mobile robot. This robot was
programmed by a trained roboticist to use its laser range readings over an arc
of 180◦ ahead of it (see figure 1) to achieve a wall-following behaviour (figure 2).

We then obtained a very simple linear polynomial representation of the robot’s
turning speed ω as a function of two of its laser perceptions, using Armax system
identification [12]. This polynomial model is given in equation 1.

ω(t) = 0.119 . . . − 0.135 ∗ Laser1(t)
−1

+ (1)

0.258 ∗ Laser90(t)
−1.
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0 degrees180 degrees

90 degrees

Fig. 1. The Magellan’s laser sensor field of view spans 180◦, at a resolution of 1◦, with

direct ahead being 90◦
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Fig. 2. The Magellan’s right-hand wall-following trajectory (left - units are in cm)

and turning speed plotted against time (right)

1.4 Modelling Mobile Robot Behaviours

Mobile robots perform tasks that involve motion (velocity or position controlled).
They perform those tasks within an environment and, so, their behaviour is
influenced and effected by that environment. Thus, when achieving a given task,
a robot’s behaviour is considered to emerge from the interaction of the robot
with the world.

The relationship between the task, the robot and the environment is a robot
behaviour that describes the interaction between the robot and the environ-
ment as it achieves the task. Usually, more complex environments require more
complex behaviours. Our hypothesis is that the interaction can be empirically
modelled by a function that can be found by observing the robot’s behaviour
(figure 3).

Fig. 3. Relationship between task, robot and environment

The command to carry out a task (figure 3) sets sets the robot in motion.
As the robot moves, it interacts with the world, and that interaction results in
changes to the robot’s motion. After a sequence of motions and interactions the
robot completes its task. The arrows in figure 3 indicate the direction of causality
The commands to the robot result in its motion, a one-to-one mapping. The
inverse process of trying to infer the commands from the motion is potentially
a one-to-many process and is much harder to model.
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Achieving the task, changes the state of the world. This is a forward process
with a one-to-one mapping. Trying to infer the task from the change in the
state of the world is an inverse process that may have a one-to-many mapping.
Similarly, inferring a robot’s location from its sensor data is a many-to-many
mapping that we try to fuse into a many-to-one mapping in localisation and
calibration [8].

1.5 Mobile Robot Action Behaviours

A mobile robot is a machine that moves in (x, y, θ, t) coordinates. Its motion can
be decomposed into several basic behaviours:

1. Translation by a distance Δd in a straight line from point (x1, y1, t1) to
(x2, y2, t2).

2. Rotation by an angle Δθ from heading (θ1, t1) to (θ2, t2).
3. Combined translation and rotation from point to point along a curved path.
4. Linear velocity (vr , t1) in the heading (θ1, t1).
5. Rotational velocity (ωr, t1) around the point (x, y, t1).
6. Combined linear and angular velocity to follow a trajectory from

(x1, y1, θ1, t1) to (x2, y2, θ2, t2).

Any motion of a mobile robot can be described by a combination of these ac-
tion behaviours. Higher-level behaviours combine these action behaviours with
perception behaviours to enable a mobile robot to interact with the world to
perform a task. The design of the following experiments was guided by the aim
of producing simple tasks where we:

1. know the correct theoretical model a priori,
2. use one action behaviour,
3. test either the action behaviour or control an action behaviour to achieve a

perception behaviour, and
4. we modify one of the three components in the Task-Robot-World relationship

in a known way and model the relationship between the other two.

In thisway, it shouldbepossible to reduce the system to its underlying components.

1.6 Experimental Setup

We used the following four scenarios of robot-environment interaction , in which
the mathematical relationship between the variables under consideration was
known a priori to investigate the question posed in section 1.3:

1. A mobile robot moves in a straight line along a sinusoidal wall, and we model
the range reading of the wall-facing sensor as a function of position (Section
2.1).

2. A mobile robot follows a straight wall in a sinusoidal fashion, and again we
model the range reading of the wall-facing sensor as a function of position
(Section 2.2).
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3. A mobile robot is placed at an unknown position in a circular environment,
and we model the robot’s position (x, y) as a function of the robot’s sensory
perception (Section 2.3).

4. A mobile robot turns at constant rate while moving forward at constant
velocity, which results in a circular trajectory. We model the relationship
between x(t) and y(t) (Section 2.4).

Robot and Environment. All experiments were conducted in a 100 m2 circu-
lar robotics arena. The arena is equipped with a motion tracking system which
gives the robot’s position in 3D (ground truth).

The robot used in the first three experiments was a Scitos G5 mobile robot
(Dax). We used its Hokuyo laser range finder for our experiments.

The robot used in the final experiment was a Magellan Pro mobile robot.
Like the Scitos G5, this robot is equipped with laser and sonar range sensors.
We coarse coded the laser readings into 10 sectors (u1 to u10) by averaging 62
readings for each 24 degree intervals. The robot’s two degrees of freedom used
here were translational and rotational velocity.

Empirical models of the form given in equation 1 were obtained using the
Narmax system identification process [9], [10], [11].

2 Robot Experiments

2.1 Experiment 1: Following a Sinusoidal Wall

In the first experiment we drove Dax in a straight line along a sinusoidal wall
(Figure 4).

We then collected range data from the robot’s wall-facing laser range sensor
during 13 traversals of the route (figure 4). We removed the DC component
(mean) from the logged data and subsampled it so that 10 sampling points per
period remained, and modelled it using an Armax process [12].

Knowing that the wall is — as much as experimentally possible — sinusoidal,
we expect to obtain a model of the form d(t) ∝ sin(t). The model we actually

Fig. 4. Left: Experimental setup for the first experiment: the robot drives in a straight

line along a sinusoidal wall. Middle: Range data logged in the first experiment. Right:

Actually observed sensor reading and time series generated by equation 2 (experiment

1).
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obtained is given in equation 2, and appears to have a different form at first
sight.

d(t) = 0.9 ∗ d(t − 1) + 0.14 ∗ d(t − 2) − 0.7 ∗ d(t − 3), (2)

where d(t) is the perceived distance to the wall at time t.
However, under the assumption that d(t) = sin(t) and for a sufficiently high

sampling rate (i.e. small Δt) equation 2 can be rewritten as shown in equation 3.

d(t) = .9 d(t − 1) + .14 d(t − 2) − .7 d(t − 3) (3)

= .9 sin(t − Δt) + .14 sin(t − 2Δt) − .7 sin(t − 3Δt)

= .9 (sin tcosΔt − cos tsin Δt)

+.14 (sin tcos 2Δt − cos tsin 2Δt)

−.7(sin tcos 3Δt − cos tsin 3Δt)

≈ .9 sin t + .14 sin t − .7 sin t

= 0.34 sin t.

Equation 3 therefore confirms our expectation that the empirical model reflects
the true relationship between the modelled variables. However, it also illustrates
that the output from the modelling process may not resemble the a priori model.
In such cases, as in this example, it is unwise to immediately jump to the con-
clusion that the empirical model is not “correct”. We may, as here, need to
reformulate the equations first. When the empirical model (Equation 4) is used
to predict the behaviour we get a close fit to the measured behaviour (Figure 4).

2.2 Experiment 2: Sinusoidally Following a Straight Wall

The second experiment is essentially a variant of experiment 1, this time however
the environment is “simple” while the robot’s behaviour is more “complex”: the
robot followed a straight wall, whilst its steering commands were governed by
the mathematical sine function. This experimental setup is shown in figure 5.

We logged the range reading of the robot’s laser range sensors during 9 passes
along the straight wall. As the robot turned, the sensor pointing at the wall

Fig. 5. Left: Experimental setup for the second experiment: the robot drives in a

sinusoidal line along a straight wall. Middle: The robot’s perceived distance to the wall

in the second experiment. Right:Actual range data, and model-predicted range data

(experiment 2.)
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changed, so we selected the minimum range reading as the distance to the wall.
The robot’s perceived distance to the wall is shown in figure 5. As before, we
modelled the perceived distance d as a function of t, expecting a relationship
d(t) ∝ sin(t). The empirical model obtained is given in equation 4.

d(t) = 1.6 ∗ d(t − 1) − d(t − 2). (4)

Rewritten (equation 3) this becomes d(t) ≈ 0.6 ∗ sin t, again confirming our
expectation. Figure 5 demonstrated the numerical agreement between model-
predicted and actually observed range data.

2.3 Experiment 3: Self-localisation in a Circular Arena

In our third experiment we placed Dax in a circular arena (figure 6). Here, we
were interested in modelling x and y (defined in figure 6) as a function of the
robot’s laser range readings. The theoretical solution, derived from figure 6, is
given in equation 5.

2yc = Df + Db

yr + Df = yc

yr − Db = −yc → Db − yr = yc

→ yr + Df = Db − yr → 2yr = Db − Df

→ yr = 0.5 ∗ Db − 0.5 ∗ Df , (5)

with Df and Db being the range readings at the front and back of the robot
respectively. Analogously follows

xr = 0.5 ∗ Dleft − 0.5 ∗ Dright. (6)

Having logged all laser range readings L over the entire arc of 240◦ available, we
determined the model of the robot’s (xr, yr) position as a function of L given
in equation 7. This model is very close to the ground truth established by the
theoretical considerations of equations 5 and 6. The empirical model uses range
readings D93◦ in terms of the angle of the laser beam to the front direction of
the robot. So D6◦ in Equation 7 is equivalent to Dright in Equation 6.

(X ,Y )r r

(X ,Y )c c

(X ,−Y )c c

= robot position

x

y

D

D

f

b

Fig. 6. Experiment 3: Definitions and Experimental Setup
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xr = 0.02m − 0.50 ∗ D6◦ + 0.49 ∗ D183◦ (7)

yr = 0.02m − 0.51 ∗ D93◦ + 0.49 ∗ D273◦ .

2.4 Experiment 4

The previous experiments have demonstrated that in many cases system identi-
fication will result in empirical models that capture the true theoretical relation-
ship between model inputs and outputs. The final experiment will confirm this
observation, but show that model structure identification is an essential compo-
nent of the modelling process, and that selecting an inappropriate structure may
result in good approximations, but not true models. Modelling y(t) = f(x(t)) we
establish that the correct empirical model can be found, but only if knowledge
about the experimental setup is taken into account.

Experimental Setup. In this experiment a Magellan Pro robot moved with a
constant translational velocity of 0.15 m/s, while constantly turning at an angu-
lar speed of 0.1 rad/s. The resulting trajectory of the robot, shown in figure 7,
should be a sector of a circle.
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Fig. 7. Logged trajectory of the robot, moving at a constant forward speed of 15 cm/s

while turning constantly at 1rad/s

Without any consideration of the physical properties of the experiment, the
data shown in figure 7 can be modelled, and results in the model given in equa-
tion 8.

y(t) = 0.36 − 0.78x(t) − 0.05x(t − 1) (8)

−0.7x2
(t) − 0.08x2

(t − 1)

+0.25y(t − 1) − 0.37y2
(t − 1).

This empirical model (equation 8) matches the data of figure 7 reasonably,
although not particularly well (figure 8) — it is not the true model of this
experiment!

In fact, it is obvious that the trajectory of a robot moving at a constant
velocity whilst turning at a constant rate will be a circle. That is, the theoretical
model is a circle with an origin and a radius. Taking this additional knowledge
into account, a better (in the sense of truer) model can be obtained.
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True trajectory

Narmax model
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Fig. 8. The model given in equation 8 will explain the robot’s trajectory to some

degree, but it does not explain the true relationship between x and y (experiment 4)
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Fig. 9. The robot’s trajectory (thick line) fits the circle (x+1.02)2+(y+0.74)2 = 1.552

(dotted line). Origin and radius of circle estimated by graphical interpolation.

Using a graphical method, we estimate that the robot’s trajectory lies on a
circle of (x + 1.02)2 + (y + e)2 = 1.552, see figure 9.

Exploiting this information, can obtain a model (y + 0.74)2 = f((x + 1.02)2)
(instead of y = f(x)), obtaining the model given in equation 9, which represents
the correct relationship between x and y as given in figure 9.

(y + 0.74)2 = 2.39 − 0.999(x + 1.02)2 (9)

→ (y + 0.74)2 + 0.999(x + 1.02)2 = 1.552

To obtain the model given in equation 9 we estimated the origin of the circle
graphically, which is imprecise, and in fact not necessary. Knowing by experi-
mental consideration that the trajectory lies on a circle is sufficient to identify
origin and radius of the circle correctly, using an Armax process.

Knowing that the trajectory shown in figure 7 lies on a circle segment, it obeys
equation 10.

(x − c)2 + (y − d)2 = r2 (10)
→ x2 − 2cx + c2 + y2 − 2dy + d2 = r2

→ y = −r2 − c2 − d2

2d
+

x2

2d
+

y2

2d
+

cx

d

Identifying equation 10 as the appropriate Armax process y = f(x, x2, y2) we
obtain the empirical model given in equation 11

y = −1.39x− 0.64x2 − 0.67y2 + 0.54, (11)
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Equations 10 and 11 can be rewritten as shown in (12) to give the final empirical
model in equation 13, which indeed agrees with our earlier graphical estimate
(figure 9).

1
2d

= −0.64 and
1
2d

= −0.67 → d ≈ −0.76, (12)
c

d
= −1.39 → c = −1.06,

r2 − 1.062 − 0.762

2 ∗ 0.76
= 0.54 → r2 = 2.52.

(x + 1.06)2 + (y + 0.76)2 = 1.592 (13)

2.5 Wall-Following Revisited

Returning to the model of a Magellan’s wall-following behaviour, introduced
earlier in equation 1, we will now analyse that model in order to understand
better how the wall-following behaviour actually works, and whether it is in fact
a wall-following behaviour.

The model is given again in table 1, together with each term’s sensitivity index
Si = ai

σi

σω
, with ai being each term’s coefficient, and σi the standard deviation

of the sensor signal used in term i. σω is the standard deviation of the model
output, the robot’s turning speed.

Table 1. Model of wall-following behaviour and normalised sensitivity indices (SI) for

each model term

Term SI Explanation

+0.119 Bias left turn

−0.135 ∗ Laser1(t)
−1 40.4%

+0.258 ∗ Laser90(t)
−1 59.6% Left turn near obstacle

There are a number of conclusions concerning the robot’s wall-following be-
haviour we can draw from the model:

– The behaviour is not “symmetrical”, such as for instance a balancing between
attractive and repulsive forces. Instead, the robot will turn left at 0.119 rad/s
in the absence of any sensor perception. Thus, the constant term indicates
that the robot exhibits an anti-clockwise circle following behaviour.

– Although all 180 laser readings were used as input to the system identifica-
tion step, only a few sensors from the right hemisphere of the robot were
selected. This is in accordance with what one would expect: if following
a right-hand wall, the only sensors that matter are towards the right and
straight ahead.
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– There are only two sensors needed to model the robot’s apparent wall-
following behaviour: the sensor straight to the front (Laser90), and the sensor
straight to the right (Laser1). The negative value of term 2 (Laser1) causes
the robot to turn to the right, with velocity increasing the smaller the range
to the wall. The third term causes the robot to turn left, with velocity in-
creasing as the free space ahead decreases.

– Having thus identified the behaviour shown in figure 2, one can see that
it does not actually implement a behaviour comprising a wall-seeking and
an obstacle-avoiding behaviour, but instead implements a robot that turns
always left, unless a compensating right-turn component results in a straight
motion. This right-turn compensation term is surprising, in that it increases
as the robot gets closer to a right-hand wall. However, a collision with the
wall is avoided, because Laser90, which looks straight ahead, will produce
a left-turn component as it gets closer to obstacles. This intricate balance
between left-turn bias and compensating right-turn and left-turn components
explains why the trajectory in figure 2 is not parallel to the wall and follows
a rounded square path even though the room is rectangular.

– Analysing the significance indices, one can see that both laser sensors are
highly important, and needed to implement this behaviour.

3 Discussion

“I often say that when you can measure what you are speaking about,
and express it in numbers, you know something about it; but when you
cannot measure it, when you cannot express it in numbers, your knowl-
edge is of a meager and unsatisfactory kind.” [13]

Empirical modelling of robot-environment interaction is an important tool for
the roboticist, as is identifying the underlying dynamics, the veracity of the
model being a key issue. Unlike opaque modelling methods, transparent mod-
elling methods like Narmax are capable of identifying true input-output rela-
tionships [17,16], and are therefore particularly interesting for a formal anal-
ysis of robot-environment interaction. Most modelling methods are well able
to allow predictions of system states, but fail to model the system’s underly-
ing dynamics. Often, all they do is fit measurements to a curve with a small
mean squared error. Narmax methods have been shown to capture the dynamics
of physical systems (qualitative validation, [14,15]), and ongoing work in our
laboratories investigates this property with respect to mobile robot dynamics.
Our experiments indicate that we can capture the true relationship between
input and output variables, as well as an agreement between their numerical
values.

Example Finally, we show that our modelling approach identifies functional
components of a robot’s behaviour, and allows us to identify the “true” un-
derlying behaviours giving rise to the observed behaviour. In the case of the
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wall-following robot (figure 2), for example, the observed trajectory suggests a
wall-following behaviour. Analysis of the model (table 1) reveals that actually
the robot performs a continuous left turn, which is compensated for by a right
turn when no obstacles are present, resulting in a straight motion. The “wall-
following” of figure 2, therefore, is not achieved by a balance between seeking
and avoiding a wall, but by a continuous left turn which is corrected into a
straight-line movement when there are no obstacles in front of the robot.

This example demonstrates that meaning can be assigned to the parameters
of empirical models of robot behaviour. Also, it shows the importance of that
understanding to analysing robot behaviours correctly.
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Abstract. Information-theoretic techniques have received much recent attention
as tools for the analysis of embodied agents. However, while techniques for quan-
tifying static information structure are well-established, the application of infor-
mation theory to the analysis of temporal behavior is still in its infancy. Here we
formulate a novel information-theoretic approach for analyzing the dynamics of
information flow in embodied systems. To demonstrate our approach, we apply it
to analyze a previously evolved model of relational categorization. The results of
this analysis demonstrate the unique strengths of our approach for exploring the
detailed structure of information dynamics, and point towards a natural synergy
between temporally-extended information theory and dynamical systems theory.

1 Introduction

From its origins in the study of communication networks, information theory has de-
veloped into a powerful general framework for the analysis of complex systems. In re-
cent years, information theory has also been increasingly applied to the study of model
brain-body-environment systems, as well as in neuroscience more broadly, as a means
of exploring the mechanistic underpinnings of intelligent behavior. The core concepts
of information theory are a set of general measures for quantifying the uncertainty as-
sociated with individual variables and for characterizing the nonlinear relationships be-
tween them [4]. Applied to brain-body-environment systems, these measures can be
used to quantify relationships between sensory, neural and motor components, or be-
tween such components and features of the external world. For example, using a variety
of robotic and simulation platforms, information-theoretic techniques have been used
to investigate the ways in which embodied agents select and shape information from
their environment [14,12]. Information-theoretic techniques have also been applied to
uncover the latent structure of sensory and motor variables based on the time course of
activity that they produce [12]. Finally, through a clever inversion of the evolutionary
agent approach, information-theoretic techniques have also been used as fitness func-
tions to evolve adaptive behavior, demonstrating that intelligent solutions often result
when agents are selected simply to maximize informational structure [15,20,9].

For the most part, information-theoretic analyses of brain-body-environment systems
have ignored the interesting temporal behavior of these systems, instead collapsing over
time to apply static measures of information structure [10,19,22]. More recently, though,
other studies have begun to apply information theory to analyze the temporal behavior
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Fig. 1. Relational agent and environment. (A) The agent moves horizontally while circles fall
towards it from above. (B) The agent is controlled by a 5-node (3 interneuron, 2 motor) CTRNN.

of these systems, characterizing the structure of interactions between components in
terms of information flow [11,18,9]. However, work in this vein has thus far been of a
very preliminary nature. For example, studies have characterized the average strength of
interactions between components but not their detailed time course, and the behaviors
studied so far have been limited to simple kinds of object tracking.

This paper aims to extend this line of work by formulating a novel toolset for analyz-
ing the information dynamics of embodied systems, and by demonstrating its applica-
tion to a previously developed model of relational categorization [23].

2 A Model of Relational Categorization

The relational categorization agent was developed as an extension of earlier studies
of object discrimination [2], and uses the same model body and environment as these
earlier studies. The agent moves back and forth along a horizontal line while circular
objects fall toward it from above (Fig. 1A). Using an array of seven rays, the agent can
sense the distance to each intersection between a ray and a falling object. The agent
is controlled by a 5-node (3 interneuron, 2 motor) CTRNN (Fig. 1B) whose parame-
ters were evolved so as to minimize the final horizontal separation for certain objects
(“catch”) and to maximize the separation for others (“avoid”). Specifically, on each
trial, the agent is first presented with one circular object. Then, a second circular object
is presented, differing in size from the first, and the agent’s task is to catch this second
object when it is smaller than the first and to avoid it when it is larger. Thus, the agent
must classify the second object based on the relational category smaller. Overall, agents
evolved to be highly proficient at this task, with the best agent in each evolutionary run
attaining a fitness of 90% or higher. In previous analysis and in this paper, we consider
only the best-evolved agent, which achieved an average performance of 99.83%. Behav-
iorally, this agent was found to passively observe the first falling object without moving,
and then move to catch or avoid the second falling object as appropriate.

A dynamical analysis of this agent revealed several key features of its underlying
neural mechanism. First, we examined how the size of the first circle is “stored” so that
it can influence the agent’s behavior on the second object. To determine this, we exam-
ined the state variables of the agent—its neural outputs and body position—at the time
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Fig. 2. A summary of previous dynamical analysis. (A) The state of N3 at the trial midpoint stores
the size of the first object. (B) Trajectories of N1 for a range of second object sizes; whether
or not N1 switches off determines the catch/avoid response. (C) A bistable region determines
the behavior of N1. Trajectories of N1 are shown for different first object sizes along with the
equilibrium points (EPs). Blue EPs are stable and green EPs are saddles.

when the first object is removed, and found that a single neuron (N3) correlates with the
size of the object at this time (Fig. 2A). Then, we examined how the agent’s response
to the second object is triggered. We found another neuron (N1) whose switching on
or off at a particular point in time determines whether the agent catches or avoids the
second object (Fig. 2B). We next explored how these two features of the neural dynam-
ics interface with one another. That is, we examined how the first object’s size stored in
N3 comes to determine whether or not the second object switches the agent into catch
or avoidance behavior. We found that the dynamics of the evolved CTRNN is unistable
when objects are far away or very close, but bistable when objects are at intermediate
distances, with saddle-node bifurcations separating these unistable and bistable regions
(Fig. 2C). Crucially, the timing and location of these bifurcations were found to corre-
late with the second circle’s size. Depending on the state that the first object leaves N3
in, N1 is pulled toward the catch or avoid attractor after a saddle-node bifurcation oc-
curs. Thus, the relational agent’s behavior arises from an interaction between build-up
of state during the first circle presentation and the timing and location of a saddle-node
bifurcation in the CTRNN dynamics. It was a desire to better understand how multiple
sources of information interact over time to produce this behavior that first led us to the
information-theoretic approach described here.

3 Overview of Information Dynamics

The central idea of our information dynamics approach is to explore how informa-
tion about particular stimulus features flows through a brain-body-environment system.
For example, in our analysis of the relational agent, the stimulus features that we con-
sider are the sizes of the first and second objects presented to the agent. Traditionally,
information-theoretic analyses have focused on static measures of informational struc-
ture. In contrast, our approach is to unroll these static measures across time to explore
how informational structure evolves over the course of behavior. In addition, by further
unrolling across values of the stimulus feature, we are able to trace how information
about particular stimuli flows through the system.
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The first step in our analysis is to evaluate the agent’s behavior for a uniformly dis-
tributed sample of the stimulus feature, recording the trajectories of all neural and bodily
state variables for each stimulus presentation. From the values taken on by each state
variable at each moment in time and the corresponding stimuli that produced them, we
then estimate a joint probability distribution over values of the state variable and the
stimulus feature. In other words, the stimulus feature is treated as a random variable
(henceforth F ), and each state variable of the agent system (its sensors, neurons, and
body position) is treated as a random process—a time-indexed sequence of random
variables—and we estimate joint distributions for F paired with each time-indexed ran-
dom variable. To estimate these distributions, we use average shifted histograms, a kind
of kernel density estimation, for their beneficial trade-off between computational and
statistical efficiency, though other approaches could certainly be used [17].

The second step is to measure the amount of information that each state variable
contains about the stimulus feature as a function of time. Using the standard concepts
of information theory [4], the information that one random variable X contains about
another random variable Y (and vice versa) is given by their mutual information:

I(X ; Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

p(x, y)
p(x)p(y)

. (1)

So, for instance, if Vt is a random variable corresponding to a particular state variable
V at time t, then I(F ; Vt) gives the amount of information that V contains about the
stimulus feature F at time t. We measure the mutual information I(F ; Vt) for each
state variable V and time index t, thereby generating a flow of information for each
state variable of the system.

To better understand the dynamic properties of these information flows, we next
apply measures of information gain and loss to the flow for each state variable. Each of
these measures derives from the formula for conditional mutual information between
two random variables, X and Y , given a third random variable Z:

I(X ; Y |Z) =
∑
x∈X

∑
y∈Y

∑
z∈Z

p(x, y, z) log2

p(x, y|z)
p(x|z)p(y|z)

. (2)

The conditional mutual information quantifies the amount of information shared by X
and Y when Z is known. Using this formula, the information gain for state variable V
at time t is given by:

IG(F, V, t) = I(F ; Vt|Vt−1) (3)

which, in words, corresponds to the new information that V contains about F at time
t when the information that it already contained at t − 1 is excluded. This measure of
information gain can also be understood as a form of transfer entropy [16], where trans-
fer is quantified from the stimulus feature to the state variable. By similar reasoning, a
measure of information loss can also be attained:

IL(F, V, t) = I(F ; Vt−1|Vt). (4)

In words, information loss for a state variable V is the amount of information that
V contained about F in the preceding time step that it now lacks. Taken together,
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information gain and loss specify how the information contained by a component
changes from one moment to the next:

I(F ; Vt) = I(F ; Vt−1) − IL(F, V, t) + IG(F, V, t). (5)

The primary benefit of treating information gain and loss separately is that, while loss of
information about external features happens generically for components of a dissipative
dynamical system, a gain in information signals the influence of another component (or,
in the case of a sensor, direct influence from the stimulus) in transferring information to
the specified component. Thus, identifying information gain provides a basis for char-
acterizing how information is transferred between components of the system. Although
the present study focuses solely on information flow in individual state variables, the
transfer of information between state variables is a direction we plan to pursue in future
work (see [8] for related ideas applied to cellular automata).

The final element of our approach explores the structure of information flow at a
finer level of detail. The key insight here is that mutual information measures the aver-
age (expected) information that one variable provides about another, averaged over all
outcomes for the two variables. Thus, by unrolling this average in various ways, it is
possible to examine the specific relationships between combinations of outcomes that
contribute to these averaged quantities. In neuroscience, for example, this idea has been
applied to examine which specific neural responses are most informative about a stim-
ulus ensemble [5], and which stimuli tend to evoke the most informative responses [3].
Using this idea, we define a measure of specific information:

I(F = f ; V ) =
∑
v∈V

p(v|f)
[

log2

1
p(f)

− log2

1
p(f |v)

]
(6)

which quantifies the information that a state variable V provides about a particular
stimulus f (e.g., a particular circle size). The quantity log2

1
p(f) is called the surprise of

f , so, translated literally, I(F = f ; V ) is the average reduction in surprise of f resulting
from knowledge of V (see also [3], where I(F = f ; V ) is called the specific surprise).
Using specific information, we expand our analysis of information flow to consider the
information that each state variable V provides about each particular stimulus f at each
time t. Similarly, applying specific information to expand our measures of information
gain and loss, we explore how state variables gain and lose information about particular
stimuli as a function of time.

4 Information Dynamics of Relational Categorization

To demonstrate our information dynamics approach, we next apply it to explore two
questions about the relational categorization agent. First, we examine how the agent
extracts information about first object size. Then, we explore how the agent integrates
size information from the first and second objects. For all of the following results, the
agent was evaluated on circle sizes in the range [20, 50] (the same used during evo-
lution) sampled at an interval of 0.01. Probability distributions were estimated using
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Fig. 3. Flow of information for sensors S1-S3. All plots throughout are normalized to [0,1].

average shifted histograms with 100 bins and 8 shifts, though the results reported were
qualitatively robust over a broad range of discretization (20 to 200 bins).

We begin by examining what information about first object size (henceforth F ) is
available to the agent. In general, this amounts to examining the flow of information
for F in each of the agent’s seven sensors. However, since the agent uses a passive
strategy and objects are always presented at the agent’s midline, information from the
sensors is bilaterally symmetric and thus we can simplify our analysis by considering
the sensors on only one side. Plots of the information flow for sensors S1-S3 are shown
in Fig. 3, where specific information is plotted as a function of object size and time. The
flow of information for each sensor exhibits the same prominent feature: a high “ridge”
of information that begins first for large sizes and travels across to successively smaller
sizes. However, the time at which this ridge forms varies for the three sensors, beginning
first for the innermost sensor (S3) and later for sensors further from the agent’s midline.

What do these plots tell us about the information available to the agent? Recall that
a high value for the specific information indicates that a particular object size is un-
surprising given the state of the sensor at a certain point in time. This means that the
sensor tends to take on distinct values for that object size, serving to distinguish that
object size from differently sized objects. Thus, the high ridge of information informs
us that the state of each sensor first distinguishes large objects, then objects successively
smaller in size. Furthermore, examining the path of the object, the origin of these ridges
becomes immediately clear: the peak value in information for each object size occurs at
precisely the time when objects of that size first intersect the corresponding ray sensor.
Since larger objects intersect earlier, the sensors first provide information about these
sizes. Thus, the primary information available to the agent stems from the timing of
when differently sized objects intersect each ray sensor, with this timing information
varying for each of the three sensors.

The next step is to inspect how size information flows through other components of
the brain-body-environment system. In general, this includes both the interneurons and
the position of the agent’s body; however, since the agent uses a passive strategy, we
can simplify our analysis by considering only neural state variables. Each of the three
interneurons shows a markedly different pattern of information flow (Fig. 4). First, con-
sider the information contained by each neuron at time 70, which corresponds to the
time when the first object is removed. Previously, we noted the primary role played by
N3 in storing information about F , a fact that is also evident from the plots of informa-
tion flow. When the object is removed, N3 contains a high amount of information about
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Fig. 4. Flow of information for neurons N1-N3

all object sizes, while N1 and N2 contain no information. However, crucially, while our
previous observation about N3 was based on a single snapshot of the agent’s state, the
plots in Fig. 4 depict the entire temporally extended process that leads to this eventual
state. Thus, by examining information flow, we can move beyond considering simply
how information ends up stored, and instead explore the dynamic process that results in
this storage. In particular, the plots in Fig. 4 make clear that, although size information
ends up concentrated in N3, both N1 and N2 also contain size information at earlier
times in the trial. N1 contains a high amount of information about small and large sizes
late in the trial, while N2 contains information first about small and then about large
sizes. Thus, contrary to the picture of N3 as the sole bearer of size information, these
observations suggest that N1 and N2 may also play an important informational role, an
idea that we return to momentarily.

Nonetheless, the most striking feature of these information flow plots is the grad-
ual build-up of size information in N3 (Fig. 4C). In contrast with N1 and N2, which
both gain and subsequently lose information, N3 continually accumulates information
through a succession of information “waves”. To better understand the source of these
waves, we next examine the dynamics of information gain for N3 (Fig. 5). Comparing
Figures 4C and 5 reveals that the waves of information flow translate to ridges of infor-
mation gain. In particular, the plot of information gain shows a series of three prominent
ridges, each traveling across from large to small sizes, as well as some other secondary
ridge-like features. Importantly, each prominent ridge of information gain closely aligns
with a corresponding ridge of information for one of the three sensors (Fig. 3). Recall
that the latter are produced by objects intersecting the ray sensors at different times de-
pending on their size. Thus, together these observations suggest a hypothesis for how
the agent extracts size information: N3 primarily integrates information available from
the sensors, stemming from the timing of when each sensor is broken by differently
sized objects.

To test this hypothesis, we next explored the impact of removing information from
each of the sensors, using an approach based on informational lesioning [6]. The ba-
sic idea of informational lesioning is to systematically diminish a component’s ability
to convey information while simultaneously minimizing its deviation from normal be-
havior. In this way, the informational contribution of a component can be quantified
independently from other functional roles that the component might play. For each of
the sensors, normal behavior is essentially the same: it remains off for a certain period
before intersecting the object, then begins to increase monotonically, with the timing of
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Fig. 5. Information gain for N3

this transition dependent on object size. Additionally, the rate at which sensor values
increase, i.e., the curvature of the sensory trajectory, also varies with object size. Thus,
size information actually comes from two features of the sensory input: the timing of
the off/on transition, and the curvature of the subsequent trajectory. In order to isolate
timing information, which our analysis predicts to be the most salient, we first removed
information due to varying curvatures. This was done by replacing the curved portion of
sensor trajectories with a single best-fit linear approximation formed separately for each
sensor, so that trajectories for a given sensor differed only in the timing of their off/on
transition. Performing this manipulation simultaneously on all sensors had essentially
no impact on performance (99.67%), thus confirming that timing information is primar-
ily what the agent uses. Next, to test the prediction that timing information from differ-
ent sensors is integrated, we independently removed the timing information from each
symmetric pair of sensors by setting their values according to the mean off/on transition
time. Under this manipulation, performance dropped to 71.84% for S1/S7, 92.53% for
S2/S6, and 96.93% for S3/S5. Thus, timing information clearly is integrated from the
different sensor pairs, though with varying contributions made by each. Interestingly,
the relative contribution from each pair correlates with the magnitude of information
gain that each produces for N3 (height of ridges in Fig. 5). For example, the greatest
impact on performance results from lesioning S1/S7, which also produce the largest
information gain for N3. Thus, not only does information flow analysis yield a correct
qualitative prediction for how information is extracted, but also points to some quanti-
tative features of this process.

However, as alluded to earlier, this explanation does not provide the full story. In
particular, the other two interneurons also contain size information at different times,
and thus may also contribute to the information stored in N3. To explore this possibility,
we performed similar lesion experiments for N1 and N2. Omitting details, the results
were a minimal change in performance when N1 was lesioned (98.59%) but a consider-
able decrease when N2 was lesioned (92.27%). Thus, the results indicate that N2 also
plays a significant informational role with respect to F . In particular, it is likely that
N2 accounts for the secondary features in the plot of information gain for N3 (Fig. 5),
though further testing is needed to bear this out. However, in general the results make
clear that, contrary to the view of one neuron capturing size information, information
is in fact distributed both spatially—across different components of the system—and
temporally—with different components carrying information at various times.

Let us now examine how the agent integrates information about first and second ob-
ject size (abbreviated S). Rather than an exhaustive informational analysis, our primary
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interest here will be to compare with previous dynamical findings; thus, we will con-
sider only N1, which we know plays a critical role in triggering the agent’s decision. To
understand the information flow for each feature, we found it most useful to consider
different fixed values of the other stimulus, instead of averaging over them. Thus, we
first examined the flow of information for F with different fixed values of S. An exam-
ple is shown in Fig. 6A for S = 35, with qualitatively similar results for other values
of S. In examining these plots, we can ignore values occurring after time 110, which
happen after the catch/avoid decision is made, and also the narrow band of high values
occurring around size 35, which correspond to values of F too similar to S for the agent
to discriminate. Thus, the predominant feature is a rapid increase in information about
all sizes, followed by a sudden collapse just prior to the catch/avoid decision. For dif-
ferent values of S, this same feature is also present, but with the timing of the collapse
occurring earlier or later depending on S. Moreover, examining the flow of information
about S for different fixed values of F (Fig. 6B), we find essentially the same pattern.
N1 quickly gains information about S, then loses it all just before the response is made.
Thus, somewhat strangely, although we know that N1 plays a crucial role in driving the
agent’s response, N1 suddenly loses all information about first and second object size
just prior to the decision being made.

Of course, this result is not actually strange when we consider that what matters for
categorization is not the size of either object individually, but rather their relative size.
To investigate relative size information, we can define a binary random variable R cor-
responding to whether or not the second object is smaller than the first. The flow of
information for R is shown in Fig. 6C for several different values of S. As expected,
these plots show a rapid increase in relative size information for N1, reflecting the neu-
ral precursor to the agent’s behavioral response. In addition, the slope of this increase
can be seen to vary for different values of S, corresponding to the varying time of the
agent’s decision for different second object sizes. The timing of this increase in rela-
tive size information also coincides with the collapse in information about F and S,
so that collectively these features signal the integration of size information in N1. In-
terestingly, this timing also aligns with the timing of the underlying bifurcation that
occurs to split the trajectories into catch and avoid bundles [23]. Thus, we can observe
an agreement between the dynamical and informational accounts, with each providing
a different view of how the behavioral response is produced. Dynamically, this response
is carried out through the timing of a bifurcation relative to a previous build-up of state,
while informationally the response is captured by a sudden increase in size information
for both objects, followed by a collapse in information about individual object size and
a corresponding rise in information about relative size.

5 Future Directions

Current work is aimed at extending the analytical techniques described here in sev-
eral ways. First, we are developing tools to characterize how information is transferred
between components of a brain-body-environment system. While the techniques de-
scribed above consider the flow of information in individual state variables with the
rest of the system treated as an undifferentiated information source, these tools will
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Fig. 6. Information flow in N1 during the second half of the trial

allow us to understand the interactions between state variables that produce their re-
spective flows. Second, we are working on techniques to explore how information may
be distributed across multiple components of a system through synergistic or redundant
encodings. As with measures of information transfer, these techniques are designed to
move beyond the flow of information in individual components to begin to understand
the significance of their interactions. Finally, we are currently extending our analytical
toolset to include additional interventional methods. Interventional methods are needed
to supplement purely observational ones in order to distinguish information transfer
from spurious correlations [13,1]. The informational lesioning experiments described
above provide one preliminary example along these lines.

One of the primary strengths of information-theoretic techniques is that they extend
naturally to situated and embodied aspects of behavior. Techniques for analyzing infor-
mation dynamics, demonstrated above for sensory and neural variables, apply just as
readily to bodily and environmental state variables, and thus can be used to investigate
interactions that span the brain-body and body-environment boundaries. In future work,
we plan to apply these techniques to analyze agents that exhibit interestingly embodied
and extended solutions to cognitive tasks. For example, although embodiment did not
play a significant role in the relational agent’s behavior due to its passive strategy, an-
other previously evolved agent was found to actively scan objects before categorizing
them [2]. We plan to investigate what role this scanning behavior may play in allowing
the agent to elicit and structure information from its environment. As a second example,
another agent evolved for the relational categorization task was found to use its position
in the environment, rather than its neural state, to store information about first object
size. Thus, this agent exhibits a simple form of information offloading, where aspects of
cognitive processing are shifted to the body or environment. Using information dynam-
ics, we plan to examine the process of extraction that results in this stored information,
similar to the analysis presented here though with the caveat that extraction and storage
in this case spread across the brain-body and body-environment divides.

Finally, a significant consequence of extending information-theoretic techniques to
the temporal domain is that it opens up the possibility of exploring the relationship
between informational and dynamical approaches to embodied systems. Although the
analysis presented here was preliminary in nature, it already points to some promising
possibilities along these lines. For example, the two approaches were found to provide
distinct yet compatible accounts for how the agent makes its categorical discrimination
regarding relative object size. In informational terms, this was manifested by a sudden
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gain and then loss in information about both first and second object size in N1, followed
by rapid gain in information about relative size, while dynamically this was explained
by an appropriately timed bifurcation in the underlying dynamics. In addition, one can
begin to see how the two approaches might complement one another. Using informa-
tional techniques, it was natural to explore how the agent extracts size information, a
question that would be difficult to address or even formulate in dynamical terms. Con-
versely, the bifurcation identified via dynamical analysis helps to explain why the infor-
mation flow in N1 exhibits a sudden collapse in information about particular sizes and
increase in information about relative size.

More generally, it is our view that informational and dynamical approaches are likely
to provide complementary insights, as a result of the unique perspectives and strengths
that each approach affords. Dynamical tools are especially well-suited for character-
izing the long-term behavior of systems, the stability of this behavior in response to
perturbations, and the changes in long-term behavior that systems undergo when as-
pects of their structure are modified. In contrast, informational tools offer a view of
how the behavior of a system is realized in terms of the specific interactions between its
components, and may be especially useful for characterizing the non-autonomous and
transient aspects of behavior that are tied to specific external features. As well as these
differences, informational and dynamical ideas also share deep similarities, and it will
undoubtedly be informative to explore this common ground as it relates to properties
of brain-body-environment systems. For example, information gain and loss are closely
related to the divergence or convergence of trajectories in phase space [7], which are
characterized dynamically by the Lyapunov exponents [21]. In general, the divergence
of trajectories leads to an increase in information, while convergence leads to its loss.
Similarly, the limit sets and basin boundaries of a system also relate directly to its
properties of convergence and divergence, and thus are likely to play a significant role
in shaping the flow of information. However, the true test for all of these ideas will
be to apply both dynamical and informational techniques to analyze concrete systems
and to compare and contrast the resulting insights that each provides. The analysis pre-
sented here can be viewed as an initial step in this direction. Ultimately, such work may
hopefully begin to reconcile the dynamical and information theoretic perspectives on
intelligent agents which has generated so much controversy in recent years.
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Abstract. Self-organizing processes are crucial for the development of
living beings. Practical applications in robots may benefit from the self-
organization of behavior, e.g. for the increased fault tolerance and en-
hanced flexibility provided that external goals can also be achieved. We
present several methods for the guidance of self-organizing control by
externally prescribed criteria. We show that the degree of self-organized
explorativity of the robot can be regulated and that problem-specific er-
ror functions, hints, or abstract symbolic descriptions of a goal can be
reconciled with the continuous robot dynamics.

1 Introduction

Intrinsically motivated but non-trivial behavior is an important prerequisite for
autonomous robot development. Self-organization of robot control is a promising
approach, where the resulting behavior is characterized by on-going exploration
or by a refinement of those behavioral traits that can be called natural for a spe-
cific robot in a particular environment [1,2]. Animals, including humans, acquire
their behavioral repertoire in a similar way, behavioral elements are developed
autonomously and are further refined during the whole life span. Nevertheless,
modulatory effects on the self-organizing behavior can be imposed as well by
the environment. Animals can learn by imitation or by downright teaching from
superior fellows. Furthermore, behavior is subject to the dictate of drives that
are partly intrinsic and partly external to the agent. Finally, humans derive goals
for their own behavior from rational reasoning.

Incentives for behavioral adaptation is an interesting subject for study in be-
havioral science where the interference of such higher forms of learning with the
underlying self-organization does not seem to be a problem. In robotics, how-
ever, the situation is different. Although promising examples exist [1,3,4], self-
organization of behavior is still a field of active exploration. Further questions such
as the interaction of learning by self-organization and learning by supervision or
by external reinforcement are just starting to gain scientific interest.
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Usually, goal-oriented behavior is achieved by directly optimizing the parame-
ters of a control program such that the goal is approached more closely. The learn-
ing system must receive information about whether or not the behavior actually
approaches the goal. This information may be available via a reward signal in rein-
forcement learning or by a fitness function in evolutionary algorithms. We will al-
low for different types of goal-related information when aiming at a combination of
self-organizing control with external drives. For this combination the term guided
self-organization (GSO) was proposed [5,6]. In this general perspective, GSO is
the combination of goal-oriented learning and developmental self-organization.
Each of the two learning paradigms bring about their particular benefits and GSO
aims at combining them in an optimal manner. Self-organizing systems tend to
have a high tolerance against failures and degrade gracefully, which is an advan-
tage that should not be given up when developing systems aiming to achieve tasks
in practical applications. Although being interested in the wider context, we will
be dealing in this particular study with a specific approach to self-organizing con-
trol, namely homeokinetic learning [7].

What can we expect from a guided homeokinetic controller? It has been shown
earlier that a variety of behaviors can emerged from the principle of homeo-
kinesis [1,2]. This process of self-organization selects certain elements from the
space of action sequences such that a set of behaviors is realized. The emerging
behaviors show a coherent sensorimotor dynamics of the particular robot in its
environment. The goal is now to shape the self-organization process to produce
desired or preferred behaviors within a short time. Part of the idea is to channel
the exploration of the homeokinetic controller around certain behaviors, such
that control modes can be found which match the given robotic task.

In the present paper, we will discuss three mechanisms of guidance. The first
one uses online reward signals to shape the emerging behaviors and is briefly
discussed in Section 3. A second mechanism for guiding consists in the incorpo-
ration of supervised learning e. g. by specific nominal motor commands that we
call teaching signals (Section 4). Using distal learning [8] we study the utilization
of teaching signals in terms of sensor values in Section 5. In Section 6 we propose
a third mechanism that allows for the specification of mutual motor teaching.
The latter two are presented here for the first time.

2 Self-organized Closed Loop Control

Self-organizing control for autonomous robots can be achieved by establishing
an intrinsic drive towards behavioral activity as described by the homeokinetic
principle [7], for details cf. [1,2].

The dynamical evolution of the sensor values x ∈ R
n of the robot is described

by
xt+1 = ψ(xt) = M(xt, yt,A) + ξt+1. (1)

where M is the internal predictive model that maps the sensations x and the
actions y ∈ R

m to the predicted sensory inputs, A is a set of parameters and ξ
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is the mismatch between the predicted and the actually observed sensor values.
In this study, the internal model M is implemented as a linear neural network:

M(xt, yt,A) = Ayt + Sxt + b, (2)

where A = (A, S, b). The actions y are generated by a controller function

yt = K (xt, C, h) = g (Cxt + h) (3)

where g(·) is a componentwise sigmoidal function, we use gi(z) = tanh(zi), C is
a weight matrix and h is a bias vector.

The parameters A of the model are adapted online to minimize the prediction
error ‖ξ‖2 (Eq. 1) via gradient descent. However, the minimization is ambiguous
with respect to A and S because y is a function of x, see (3). In contrast to
our earlier approach [5], we introduce a bias into the model learning in order to
capture the essential part of the mapping by the matrix A. This is achieved by
the adaptation of A based on a prediction error that is obtained for a discounted
S term, i. e.

ΔA = εA (ξt+1 + δSxt) y�
t , (4)

ΔS = εAξt+1x
�
t , (5)

where a small value of δ = 0.001 fully serves the purpose and εA = 0.1 is a
learning rate.

If the parameters of the controller (C, h) are also adapted by the minimiza-
tion of the prediction error ‖ξ‖2 then stable but typically trivial behaviors are
achieved. The robot may get trapped in any state with ξ = 0 which happens
prevalently when it is doing nothing. There are, however, specific cases where
such a principle can be successfully applied: If the drive for activity is pro-
vided from outside or brought about by e. g. evolution [9], or if a homeostatic
rule is applied to, for instance, the neural activity [10,11]. The homeokinetic
paradigm [7,1] instead suggests to use the so-called postdiction error. This error
is the mismatch

vt = xt − x̂t (6)

between true sensor values xt and reconstructed sensor values x̂t that are defined
using Eq. 1 as

x̂t = ψ−1 (xt+1) (7)

assuming that ψ is invertible. If x̂t (rather than xt) had been actually observed
then by definition the best possible prediction based on the present model M (1)
would have been made. The error functional minimizing the postdiction error vt

is called time-loop error (TLE) and can be approximated by

ETLE = ‖vt‖2 = ξ�t+1

(
LtL

�
t

)−1
ξt+1, (8)

where Lt,ij = ∂ψ(xt)i

∂xt,j
is the Jacobian matrix of ψ at time t. Thus another impor-

tant feature of this error quantity becomes evident: The minimization of v entails
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the minimization of the inverse Jacobian. This in turn means that small eigen-
values of L are increased. Thus the controller performs stabilization in inverted
time, i. e. destabilization in forward time. This eliminates the trivial fixed points
(in sensor space) and enables spontaneous symmetry breaking phenomena. The
reader might wonder why the system does not start to behave chaotically or reach
uncontrollable oscillations. The reason is that the destabilization is limited by
the nonlinearities g(·) and that the TLE is invariant to oscillation frequencies as
discussed in [12]. Intuitively, the homeokinesis can be understood as the drive
to sustain a non-trivial behavior that can be predicted by the internal model.
Since the internal model is very simple smooth behaviors are preferred. Fig. 1
illustrates how the homeokinetic controller is connected to a robot.
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Fig. 1. The Homeokinetic controller connected to the Spherical robot in the sen-
sorimotor loop. The Spherical robot is driven by weights that are moved along the
axes by actuator and is equipped with axis-orientation sensors (xi). The homeokinetic
controller consists of the controller function K and the predictor M , both together
form ψ (Eq. 1). The TLE is obtained by propagating ξt+1 through ψ in inverted time.

The TLE (8) can be minimized by gradient descent which gives rise to a
parameter dynamics that evolves simultaneously with the state dynamics:

xt+1 = ψ (xt) + ξt+1, (9)

Ct+1 = Ct − εC
∂

∂C
ETLE and ht+1 = ht − εh

∂

∂h
ETLE , (10)

where εC = εh = 0.1 is chosen for the learning rate. We use a fast synaptic
dynamic for the learning of the controller and the model such that the system
adapts quickly. Assuming sensory noise, the TLE is never zero nor has a vanishing
gradient such that the rule (10) produces an itinerant trajectory in the parameter
space, i. e. the robot traverses a sequence of behaviors that are determined by
the interaction with the environment. These behaviors are, however, waxing and
waning and their time span and transitions are hard to predict.

Let us consider as a first example a robot with two wheels that is equipped
with wheel velocity sensors. In the beginning the robot rests, but after a short
time it autonomously starts to drive forward and backward and to turn. If a
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wall is encountered such that the wheels stop the robot will immediately stop
the motors and eventually drive in the free direction. A more complex exam-
ple for the self-organization of natural behaviors is provided by the Spherical
robot (Fig. 1) which starts to roll around different internal axes as we will see be-
low. Furthermore, high-dimensional systems such as snake- or chain-like robots,
quadrupeds, and wheeled robots have been successfully controlled [13]. It is of
particular interest that the control algorithm induces a preference for movements
with a high degree of coordination among the various degrees of freedom. All
the robotic implementations demonstrate the emergence of play-like behavior,
which are characterized by coordinated whole body movements seemingly with-
out a specific goal. The coordination among the various degrees of freedom arises
from their physical coupling that is extracted and enhanced by the controller,
because each motor neuron is adapted to be sensitive to coherent changes in all
degrees of freedom due to Eq. 10. In this paper we will propose a mechanism to
guide the self-organizing behaviors towards desired behaviors.

3 Guided Self-organizing Control

How can we guide the learning dynamics such that a given goal is realized by
the self-organizing process? One option is to modify the lifetime of the transient
behaviors depending on a given reward signal. For this purpose we can explicitly
modify the frequencies of occurrence of different behaviors and obtain more of
a desired and less of an undesired behavior. The prediction error ξ occurs as a
factor in the learning rule (8), i. e. the lifetime of well predictable behavior is
extended such that the original TLE already contains a reward for predictability
in this formalism. When applying this method to the Spherical robot (Fig. 1)
we can, for example, achieve fast locomotion by rewarding high velocity and
obtain curved driving and spinning modes when rewarding rotational velocity
around the upwards axis, see [5] for more details.

A second and more stringent form of guidance will be studied in the present
paper. We will formulate the problem in terms of problem-specific error functions
(PSEF) that indicate an external goal by minimal values. A trivial example of
such an error function is the difference between externally defined and actually
executed motor actions. This is a standard control problem which, however,
becomes hard if the explorative dynamics is to be preserved.

Guided self-organization (GSO) focuses on this interplay between the explo-
rative dynamics implied by homeokinetic learning and the additional drives. The
challenge in the combination of a self-organizing system with external goals be-
comes clear when recalling the characteristics of a self-organizing system. One
important feature is the spontaneous breaking of symmetries of the system.
This is a prerequisite for spontaneous pattern formation and is usually achieved
by self-amplification, i.e. small noisy perturbations cause the system to choose
one of several symmetric options while the intrinsic dynamics then causes the
system to settle into this asymmetric state. A nonlinear stabilization of the self-
amplification forms another ingredient of self-organization. These two conditions
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which we will call our working regime, are to be met for a successful guidance of
a self-organizing system. There are a number of ways to guide the homeokinetic
controller which we will discuss in the following.

4 Guidance by Teaching

First we will describe how the problem-specific error functions (PSEF) can be
integrated and then we will consider a few examples. Recall that the adaptation
of the controller parameters is done by performing a gradient descent on the time-
loop error. The PSEF must depend functionally on the controller parameters
in order to allow the same procedure. Unfortunately, the simple sum of both
gradients is likely to steer the system out of its working regime and we cannot
easily identify a fixed weighting between the two gradients that would satisfy an
adequate pursuit of the goal and maintaining explorativity. One reason is that
the nonlinearities (cf. Eq. 3) in the TLE cause the gradient to vary over orders of
magnitude. A solution to this problem can be obtained by scaling the gradient of
the PSEF according to the Jacobian matrix of the sensorimotor loop such that
both gradients become compatible. It turns out that this transformation can be
obtained using the natural gradient with the Jacobian matrix of the sensorimotor
loop as a metric. The update for the controller parameters C is now given by

1
εC

ΔCt = −∂ETLE

∂C
− γ

∂EG

∂C

(
LtL

�
t

)−1
, (11)

where EG is the PSEF and γ > 0 is the guidance factor deciding the strength
of the guidance. For γ = 0 there is no guidance and we obtain the unmodified
dynamics, cf. (10).

For clarity we will start with a very simple goal, namely we want a robot
to follow predefined motor actions called teaching signals in addition to the
homeokinetic behavior. We can define the PSEF as the mismatch ηG

t between
motor teaching signals yG

t and the actual motor values, thus

EG = ‖ηG
t ‖2 = ‖yG

t − yt‖2. (12)

Since yt is functionally dependent on the controller parameters (3), the gra-
dient descent can be performed, i.e. the derivative reads ∂EG

∂Cij
= −ηG

t,i g′i xt,j ,

where g′i = tanh′
(∑n

j=1 Cijxt,j + hi

)
. A similarly motivated approach is homeo-

taxis [14], where an action error is added to the TLE as well, however the error
was minimized in one step, and not along its gradient.

An evaluation of the guidance mechanism has been performed using the
TwoWheeled robot, which was simulated in our realistic robot simulator
LpzRobots [15]. The motor values determine the nominal wheel velocities and
the sensor values report the actual wheel velocities of both wheels. We provided
to both motors the same oscillating teaching signal. The resulting behavior is a
mixture between the taught behavior and self-organized dynamics depending the
value of γ. For γ = 0.01 the teaching signals are followed most of the time but
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with occasional exploratory interruptions, especially when the teaching signals
have a small absolute value. In this case the system is closer to the bifurcation
point where the two stable fixed points for forward and backward motion meet.
These interruptions cause the robot, for example, to move in curved fashion in-
stead of strictly driving in a straight line as the teaching signals dictate. The
exploration around the teaching signals might be useful in general to find modes
which are better predictable or more active.

5 Sensor Teaching and Distal Learning

Let us now transfer the motor teaching paradigm to sensor teaching signals.
This is a useful way of teaching because desired proprioceptive sensor values
can be more easily obtained than motor values, for instance by passively moving
the robot or parts of the robot. This kind of teaching is also commonly used
when humans learn a new skill, e. g. think of a tennis trainer that teaches a new
stroke by moving the arm and the racket of the learner. Thus, a series of nominal
sensations can be acquired that can serve as teaching signals. Setups where the
desired outputs are provided in a different domain than the actual controller
outputs are called distal learning [8]. Usually a forward model is learned that
maps actions to sensations (or more generally to the space of the desired output
signals). Then the mismatch between a desired and actual sensation can be back-
propagated to obtain the required change of action. The back-propagation can
also be done using an inversion of the forward model which we have already
at hand, see Eqs. 1 and 7. The idea is actually very simple, namely calculating
motor teaching signals from sensor teaching signal using the inverted model by
solving xD

t = M(xt−1, y
G
t−1,A) w.r.t. yG, cf. Eq. 2, which can in turn be inserted

into Eq. 12. Afterwards we apply the motor teaching mechanism (Section 4).
The potential of this method will become more obvious in the following more

complex example. We use a simulated robot named the Spherical which is of
relatively simple shape, but involves a complicated control problem, see Fig. 1.
We will consider the goal of restricting the movements of the robot to rotations
around one of its axes. The robot is actuated by three internal weights that
are movable along orthogonal axes. Thus a single change in the positions of
the weights results in a change of the center of mass of the robots and thus
in a certain rolling movement. Control has to take into account strong inertia
effects and a non-trivial map between motor actions and body movements. Let
us first consider the behavior without guidance (γ = 0). From a resting initial
situation, the rule (10) induces an increasing sensitivity by noise amplification
until a coherent physical movements develop. Shortly afterwards a regular rolling
behavior is executed which breaks down infrequently to give way for different
movement patterns. In particular the rolling modes around one of the internal
axes are seen to occur preferably, see Fig. 2(a,b). This modes are characterized
by small sensor values for the rotation axis whereas the remaining two sensor
values oscillate.
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Fig. 2. The Spherical robot without guidance explores its behavioral options. With
guidance it prefers a specific axis of rotation. (a) Amplitudes of the motor value oscil-
lations (y1...3) and the TLE (ETLE) averaged over 10 sec (scaled for visibility) without
guidance (γ = 0). Corresponding behaviors are indicated with letters A-D. (b) Sketch
of four typical behaviors (A-D), namely the rolling mode around the three internal
axis (A-C) and around any other axis (D); (c) Behavior for the distal learning task.
The percentage of rotation around each of the internal axes is shown for different values
of the guidance factor γ (no teaching for γ = 0). The rotation around the red (first)
axis is clearly preferred for non-zero γ (mean and standard deviation are plotted for
10 runs each of a duration of 60min).

In order to guide the robot into the rotation around the first axis we use
a distal teaching signal where the first component is zero and the remaining
two components contain the current sensor values such that they do not gener-
ate any learning signal (i.e. the mismatch is zero). The teaching signal vector
is formally xG

t = (0 xt,2 xt,3)
�, where xt,1...3 are the sensor values at time

t. As a descriptive measure of the behavior, we used the index of the internal
axis around which the highest rotational velocity was measured at each mo-
ment of time. Figure 2(c) displays for different values of the guidance factor (γ)
and for each of the axes the percentage of time it was the major axis of rota-
tion. Without guidance there is no preferred axis of rotation as expected. With
distal learning the robot shows a significant preference for a rotation around
the first axis up to 75 %. For overly strong teaching, a large variance in the
performance occurs. This is caused by a too strong influence of the teaching
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signal on the learning dynamics. Remember that the rolling modes can emerge
due to the fine regulation of the sensorimotor loop to the working regime of
the homeokinetic controller, which cannot be maintained for large values of γ.
We may ask why is it not possible to force the controller to stay in the rota-
tional mode around the first axis? When the robot is in this rotational mode the
teaching signal is negligible. However, the controller’s drive to be sensitive will
increase the influence of the first sensor such that the mode becomes unstable
again.

To summarize, the Spherical robot with the homeokinetic controller can be
guided to move mostly by rotation around one particular axis, by specifying the
constancy of a single sensor as a teaching signal.

6 Guidance by Cross-Motor Teaching

Finally we will propose a guidance mechanism with internal teaching signals. As
an example we want to influence the controller to prefer a mirror-symmetry in
the motor patterns. This can be achieved by using the motor value of one motor
as the teaching signal for another motor and vice versa. For two motors, this
can be expressed as: yG

t,1 = yt,2 and yG
t,2 = yt,1, where yG

t is again the nominal
motor value vector, see Eqs. 11 and 12. This self-supervised teaching induces soft
constraints which reduce the effective dimension of the sensorimotor dynamics
and thus guide the self-organization along a sub-space of the original control
problem.

Let us consider the TwoWheeled robot again and suppose the robot should
move mostly straight, not get stuck at obstacles or in corners and cover sub-
stantial parts of its environment. We will see that all this can be achieved by a
simple guidance of the homeokinetic controller where both motors are mutually
teaching each other.

For experimental evaluation we placed the robot in an environment cluttered
with obstacles and performed many trials for different values of the guidance
factor. In order to quantify the influence of the guidance we recorded the tra-
jectory, the linear velocity, and the angular velocity of the robot. We expect
an increase in linear velocity because the robot is to move straight instead of
turning. For the same reason the angular velocity should be lowered. In Fig. 3
the behavioral quantification and a sample trajectory are plotted. Additionally
the relative area coverage is shown, which reflects how much more area of the
environment was covered by the robot with guidance compared to freely moving
robot. As expected, the robot shows a distinct decrease in mean turning veloc-
ity and a higher area coverage with increasing values of the guidance factor.
Note that the robot is still performing turns and drives both backwards and
forwards and that it does not get stuck at the walls, as seen in the trajectory
in Fig. 3(b), such as sensitivity (exploration) and predictability (exploitation)
remain.
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Fig. 3. Behavior of the TwoWheeled robot when guided to move preferably straight.
(a) Mean and standard deviation (of 5 runs each 20 min) of the area coverage (area),
the average velocity 〈|v |〉, and the average angular velocity 〈|ωz|〉 for different values
of the guidance factor γ. Area coverage (box counting method) is given in percent of
the case without guidance (γ=0) (right axis). The robot is driving straighter and its
trajectory covers more area for larger γ; (b) An example trajectory of the robot with
γ = 0.005.

7 Discussion

We have presented here two new methods for guiding self-organizing behavior
that are based on teaching signals. Desired motor patterns were specified by
means of an error function that was integrated into the learning dynamics. The
strength of guidance can be conveniently adjusted. Because teaching information
is often given in the sensor space whereas learning is performed in the motor
representation, a transformation is necessary which is obtained from the adaptive
internal world model. The feasibility of both approaches was demonstrated by
robotic experiments.

We introduced cross-motor teachings in order to be able to specify relations
between different motor channels. If it is known or desired that certain degrees
of freedom of a robot should move in a coherent way, e. g. symmetrical or anti-
symmetrical, then these relation can be injected as soft constraints that reduce
the effective dimensionality of the system. As an example, the TwoWheeled
robot showed that by enforcing the symmetry between the left and right wheel
the behavior changes qualitatively to straight motion.

The exploratory character of the controller is nevertheless retained and helps
to find a behavioral mode even if the specification of the motor couplings is par-
tially contradictory. The resulting behaviors are not enforced by the algorithm.
For example the TwoWheeled robot can choose freely between driving forward
or backward whereas in direct teaching the direction of driving is obviously dic-
tated by an external teacher. Furthermore, it is evident that the robot remains
sensitive to small perturbations and continues to explore its environment.
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Guided self-organization using cross-motor teachings shares some properties
with other approaches to autonomous robot control such as evolutionary algo-
rithms [16] and reinforcement learning (RL) [17]. Evolutionary algorithms can
optimize the parameters of the controller and are able to produce the same be-
haviors as we found in this study, cf. [18,19,20]. A critical experiment would
investigate high-dimensional systems that cannot be decomposed into identical
components.

A further difference is that self-organizing control is merely modulated by
guidance, whereas evolutionary algorithms tend to converge to a static con-
trol structure. RL uses discrete actions or a parametric representation of the
action space. In either case, high-dimensional systems will cause slow conver-
gence. Preliminary experiments with a chain-like robot (cf. [13]) show a clear
advantage of cross-motor teaching in comparison to generic RL although similar
relations among the actions in RL compensate part of this drawback. Natural
actor-critics [21] may bring a further improvement of the RL control, but natu-
ral gradients can also be incorporated here. A decisive advantage of cross-motor
teaching may be that goal-directed behaviors emerge within the self-organization
of the dynamics from a symbolic description of the problem and do not need con-
tinuous training data such as in imitation learning [22].

It is, however, clearly an interesting option to adapt cross-motor teaching to
an imitation learning scenario. Although delayed rewards are still non-trivial for
continuous domains, RL can cope with them in principle, while the guidance
with rewards [5] requires instantaneous rewards.
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Abstract. This paper describes the biological motivation, design and testing of 
a novel obstacle sensor system based on the chemical sounding mechanism ob-
served in slime molds. The sensor system emits a volatile sounding chemical 
and adjacent obstacles reduce the dispersion of the chemical. The resulting  
increase in chemical concentration is detected and interpreted as indicating an 
obstacle. To demonstrate the capabilities of the sensor it was mounted on an 
omnidirectional mobile base. Using direct sensor/actuator connection appropri-
ate for a fungus-like organism the robot was able to demonstrate simple  
obstacle avoidance. 

Keywords: Slime mold, biomimetics, chemical sounding. 

1   Introduction 

In robotics research it is widely recognised that biology and particularly animals pro-
vide useful inspiration in terms of mechanisms, algorithms and techniques [1]. How-
ever, there are valuable lessons to be learnt from plants, fungi and similar organisms. 
These organisms can sense chemicals, light clues, touch, gravity, temperature, humid-
ity and even magnetism [2]. They can also respond to sensory stimuli in a number of 
different ways, including by moving. Some movements involved in catching animals 
for food, dispersing seeds, defending against attack and cross-pollination require quite 
rapid responses. However, plants, fungi and slime molds have only a rudimentary 
nervous system at best and so their ‘processing’ of sensory signals and patterns of 
resulting behaviour are naturally limited. Because the structure and life-style of these 
organisms are so different from animals it could be expected that they will have 
evolved some unique capabilities.  

Although quite primitive in terms of evolution, slime molds are of interest for ro-
boticists. They have been used as a model for self-assembly [3] and their ability to 
perform computations has also been investigated [4]. One of the other interesting 
capabilities of slime molds is their ability to detect and respond to obstacles using 
chemical sounding. This paper describes a project to implement chemical sounding in 
a robotic system. There is interest in building ever smaller robots and currently  
popular robotic sensors including vision, ultrasonic and laser scanners may prove 
difficult to miniaturise for use on these robots.  For these kinds of systems novel 
forms of sensing, including chemical sounding may find an application. The project 
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also investigated robot structures and direct sensor/actuator coupling appropriate for 
modelling chemical sounding in slime molds.  

2   Chemical Sounding 

Sensing methods can be classified as either active or passive techniques [5]. In pas-
sive sensing such as mammalian vision the receiver only collects the sensory stimuli 
that originate elsewhere. Active sensing involves the sensor system emitting some 
form of energy or material and then receiving it back again after it has been modified 
by the environment (bat echo location would be an example). The form of modifica-
tion allows the receiver to infer something about its external environment. In chemical 
sounding volatile chemicals are released, modified by the surrounding environment 
and then detected.  

2.1   Chemical Sounding in Nature  

The slime mold Phycomyces is a type of organism that grows in the form of thin fila-
ments. Reproduction starts with the growth of sporangiophores (fruiting bodies) that 
propagate perpendicular to the substrate. A sphere containing spores develops on the 
end of the sporangiphore and the spores are released from the tip. In order to distrib-
ute the spores they must be released into air currents beyond the thin layer of stagnant 
air close to the substrate surface. It is hypothesised that the sporangiophores emit a 
chemical signal and use the increased concentration caused by obstacles to grow away 
from any nearby surfaces and clear of stagnant air [6].  

2.2   Chemical Sounding in Nature  

The slime mold relies on diffusion to transport its sounding chemical. This will work 
in a reasonable time frame for distances of the order of 1mm. Diffusion of chemical 
from a point source is governed by the following equation [7]: 
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where: 
D = diffusion constant (m2/s) for the specific chemical  
(typical value is 2x10-5 in air), 
t = time, 
r = radius, and 
F = continuous point source intensity. 
 

If it takes 1 second for the chemical concentration to reach a particular value 10mm 
from the source then approximately the same concentration will be observed at 40mm 
after 60 seconds, 80mm after an hour and 95mm after one day. From this it appears 
that diffusion could not be used in robotic experiments because it is too slow and also 
influenced by natural airflow fluctuations at the scale of easily constructed robots 
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(about 100mm). For this reason in this experiment the sounding chemical was actively 
dispersed using a small cooling fan. In order to test the viability of chemical sounding 
at the scale of easily manufactured robots the prototype sensor illustrated in Fig. 1 
was constructed. 

 

Fig. 1. The prototype chemical sounding sensor 

 

Fig. 2. Sounding sensor response to a 10cm by 10cm target at varying distances from the  
sensor. During the first 60 seconds no target was present. The dashed lines show the average 
sensor response over each 60 second period where the target distance was held constant. 

As shown in Fig. 2 the results from the prototype sensor indicate that chemical sound-
ing can be used to detect adjacent obstacles. 

3   The Slime Mold Robot 

When Phycomyces is growing its sporangiphore (which employs chemical sounding) 
in many ways it behaves like a plant and is rooted in one place. However, it was  
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decided to implement the chemical sounding system on a mobile robot in order to 
clearly demonstrate the action of the sensor and control system.  

The structure of an organism/robot and the way it interacts with its environment 
can have a strong bearing on its ability to perform tasks, and therefore the apparent 
‘intelligence’ of the creature. In the case of walking machines it has been pointed out 
by Blickhan, et al. [8] that creating self-stable mechanisms may reduce the computa-
tional burden and control effort required. Similar ideas in a more general problem-
solving context are discussed by Barras [9]. Therefore, to investigate the capabilities 
of chemical sounding as it occurs in slime molds it is necessary to match the actuation 
and sensor/actuator coupling implemented on the robot with the biological correlate. 
Because the slime mold has many of the characteristics of a plant it is instructive to 
consider the characteristics of plant tropisms. 

 

A list of the characteristics of plant tropisms adapted from Hart [10]: 
 

a) movement is initiated by a strongly directional stimulus 

b) a stimulus is usually detected by a specific receptor and this evokes a specific 
movement via a direct pathway 

c) the response involves a change of organ orientation and the direction of 
which is related to the direction of the stimulus 

d) a tropic growth response usually involves stimulation and inhibition and of-
ten occurs in regions of the organ other than those directly receiving the 
stimulus 

e) there is usually a non-linear relationship between the level of the stimuli and 
the extent of the response, and often some form of sensory adaptation to the 
stimulus. 

To provide the robot with an overall directional motivation it was made sensitive to 
light so that it could be attracted towards sources of light. This could be equated to 
growth of the slime mold’s sporangiphore. In addition, the robot was equipped with a 
chemical sounding sensor that produced an avoidance response to avoid collisions. 
The light and obstacle stimuli are both directional as required by point (a) above. It is 
assumed that the sporangiphore is equally sensitive to obstacles at any point around 
its axis and could respond by bending in any direction. For this reason the robot was 
built with omnidirectional sensing and movement capabilities. Direct connections 
were made between sensors and actuators (point (b) above) and the direction of 
movement was related to the sensing direction of the sensor (point (c) ). Sensors and 
actuators were physically separated (point (d) above) and the introduction of sensor 
thresholds resulted in a non-linear relationship between stimuli and response (point 
(e)).  The major elements of the resulting robot are discussed below. 

3.1   Control Algorithm 

To make the robot modular and extensible it was formed from a number of identical 
facets. Each facet contains the full set of sensors (light and chemical sounding) and a 
wheel drive unit. Control consists of direct sensor/actuator connections as follows: 
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• If a facet detects a light intensity greater than the minimum of all facets then 
the associated motor drives forward a distance proportional to light intensity 
and this moves the facet towards the light source. 

• If a facet detects an obstacle the motor drive (or two drives if there are an odd 
number of facets) opposite the facet is driven forwards and this moves the ro-
bot away from the obstacle. The distance moved is about twice the maximum 
distance that the robot moves in response to the light sensor.  

 

Because of the relatively slow response time of the chemical sounding sensor the 
robot control program consisted of a repeated sequence of sense/move operations. In 
order to implement omnidirectional sensing and movement using the concept of facets 
the sensors and actuators were implemented as follows. 

 3.2   Light Sensing  

Matched Light Dependent Resistors (LDRs) were used to detect the light intensity 
falling on each of the facets of the robot. The receptive field of an LDR is close to 
180˚. A diffuser made from a section of ping-pong ball extended the receptive field 
beyond 180˚ (Fig. 3). The prototype robot was implemented with 3 facets angled at 
0˚, 120˚ and 240˚. Therefore, even a point source of light can be detected by two sen-
sors at more than half of the possible headings around the robot. A more widely dis-
persed light source, such as the table lamp used in these experiments, would usually 
be detected by two sensors. Sensing by two sensors allows the robot to move towards 
the light by a comparatively smooth zigzag path.  
 

 

Fig. 3. Receptive field of the light sensor 

3.3   Chemical Sounding  

Each of the robot’s facets also incorporates a chemical sounding sensor. A single 
chemical source (methylated spirits container with a wick) and fan feeds methylated 
spirits/air mixture into a central plenum. A vent on each facet releases a stream of 
chemical/air from the plenum and build-up of methylated spirits vapour is monitored 
by a TGS2600 gas sensor (Taguchi tin oxide gas sensor manufactured by Figaro En-
gineering Inc.). 

3.4   Omnidirectional Wheel Drive System 

To allow direct connection between each sensing facet of the robot and the motor 
drive system it was necessary for the robot to be able to move in the direction of each  
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Fig. 4. Motor/wheel unit for the intermittent omnidirectional drive 

facet. For simple plant-like actuation it was desirable to eliminate the necessity for the 
robot to turn. This required an omnidirectional drive system and a simple and inex-
pensive system was developed for this project.  

Each facet of the robot is associated with a drive unit (Fig. 4) consisting of a 
geared motor (200:1) directly coupled to a rubber wheel. The wheel incorporates two 
flat areas and when the wheel rolls onto these areas the wheel unit is lowered onto a 
low friction skid. A microswitch ensures that the wheel unit always stops in the low-
friction position shown in Fig. 4a. When balanced on the skid one of the other wheel 
units can pull the robot in its direction. Thus, with three facet/motor units the robot 
can move at three headings spaced 120˚ apart, or at a heading in between by combin-
ing the action of two motor units activated sequentially. The prototype robot  
(Fig. 5) consists of three identical facets. Sensor reading and motor control is coordi-
nated by an Arduino Pro Mini microcontroller (http://arduino.cc/en/Main/ 
ArduinoBoardProMini/) with a small amount of support electronics. The major source 
of power consumption for the slime mold robot is the heaters in the three TGS2600 
chemical sensors which together draw 126mA at 5V (630mW). The microcontroller 
and support electronics consumes an additional 42mA (210mW) and when running 
the drive motors draw 15mA (75mW).  
 

 

Fig. 5. The chemical sounding robot 
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4   Results 

The robot responds to two aspects of its environment. Initially, the light seeking and 
obstacle avoidance systems were tested in isolation. When these systems were shown 
to be functioning correctly they were combined. 

4.1   Phototaxis 

In order to test the light seeking capabilities of the robot, it was started about 680mm 
from a table lamp. Different starting positions and a number of starting orientations 
were tested. In each case the robot successfully made its way towards the light.  Three 
recorded trajectories of the robot are shown in Fig.6. In this case the robot was released 
with three different starting orientations and from two different starting locations. 

 

Fig. 6. Robot response to a light stimulus with no obstacles present 

4.2   Chemotaxis 

When deployed on the mobile robot for obstacle avoidance each chemical sensor is 
sampled 30 times at one second intervals. These samples are then averaged to give the 
sensor output. On start up in an area free of obstacles an initial group of sensor read-
ing is taken. To avoid spurious responses a threshold equivalent to a change of sensor 
output of 0.24V with respect to the initial value is set. A sensor change of greater than 
0.24V is taken as evidence of an obstacle. With this threshold the obstacle sensor can 
detect a 160mm by 140mm rectangular obstacle at a range of 100mm from the sensor.  

4.3   Combined Response 

In the first test of the robot response with both the light and chemical sounding sen-
sors active the experimental area was set up as shown in Fig. 7. The robot started at 
location (0mm, 0mm). A table lamp served as the light source and it was located at 
(800mm, 200mm). The light illuminated two of the robot’s facets (facets 2 and 3). 
After the chemical sounding sensor had stabilised and established sensor readings 
corresponding to ‘no obstacles present’ an obstacle 40mm by 140mm by 160mm 
made of polystyrene foam was positioned adjacent to the robot. When the robot was  
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Fig. 7. Starting close to an obstacle the robot moves clear before continuing towards the light 

enabled the chemical sounding sensors on facets 1 and 2 detected the obstacle and the 
robot manoeuvred away from the obstacle.  Once clear of the obstacle the robot 
homed-in on the light. In this test the time response of the sensor was less critical 
because the time required to set up the experiment allowed the chemical concentration 
around the robot to accommodate to the presence of the obstacle.  

As a final test the polystyrene foam obstacle was positioned between the robot and 
the lamp so that the robot would collide with it if it moved directly towards the light. 
Fig. 8 shows that initially the robot headed towards the light. After 4 sense/movement 
cycles the sensor detected the obstacle and the robot took an avoiding action (indi-
cated by the dashed line). Once clear of the obstacle the robot then continued to track 
towards the light source. In this experiment, because of the movement of the robot, 
the chemical sounding sensor had less time to accommodate to the presence of the  
 

 

Fig. 8. Avoiding an obstacle while attracted to a light source 
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obstacle. However, the robot successfully detected and avoided the obstacle. It should 
be noted that due to imperfections in its construction there was a slight tendency for 
the robot to rotate counter clockwise as it moved. 

5   Conclusions 

This project has demonstrated the implementation of biologically inspired chemical 
sounding in a robot system. The chemical sounding sensor system can detect obsta-
cles at a range of 10cm. Simple direct connection between sensors and actuators to-
gether with broadly omnidirectional sensing and actuation mimic the associated capa-
bilities of the slime mold Phycomyces. Using the chemical sounding sensor the robot 
is able to demonstrate simple obstacle detection and avoidance. Because of the direct 
sensor/actuator connection obstacle avoidance is very unsophisticated. The avoidance 
system cannot deal with situations where attractive and repulsive signals balance or 
environments with complex obstacles fields where the robot can become trapped. For 
a robot that is 20cm high and 15cm diameter the sensing range of 10cm is adequate. 
However, the sensor response time of 30 seconds would be too slow for many mobile 
robot applications. The chemical sounding sensor also works best in environments 
where there is very little air movement.  

In spite of the current limitations of the chemical sounding sensor, in the future 
there may be a niche for this mode of robot sensing. The potential dimensions of 
robots could range from the size of a bacterium to that of an elephant and working 
environments may include underwater, underground and terrestrial. Within this spec-
trum many different modes of sensing will be required. Currently, the majority of 
mobile robots use computer vision, ultrasonics or laser range finders as their main 
navigational sensors. These sensing modes are only viable for a limited spectrum of 
robot applications. For example, as robot dimensions are reduced below 1cm or the 
surroundings become turbid they will be less able to function effectively. In these 
situations other sensing modes such as chemical sounding may be more viable. At this 
early stage of development the sensor response time is quite long. However, with 
further refinement, particularly involving improvements to the chemical sensors, this 
time can be reduced. 
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Abstract. We have developed an exteroceptive reflex network of sen-

sory interneurons and command neurons that simulates arthropod opti-

cal reflexes based on current ethological and neurophysiological models.

The simple neural network was instantiated in software with discrete-

time map-based neurons and synapses and can mediate four forms of

optomotor reflexes in arthropods: (1) translational responses to pure

translational optic flow; (2) rotational responses to pure angular rotation

and (3) combinations of translation and rotation that occur during ob-

stacle avoidance and (4) yaw. Simple neural networks are well suited for

controlling robots and can be used to test neurophysiological hypotheses,

particularly related to sensory fusion in arthropods.

1 Introduction

Animals make use of optomotor responses that integrate the optical flow input
of their moving surroundings into their behavioral output. The role of optical
flow information is a key research thrust within both biology and robotics. The
biologist Jacques Loeb introduced the tropism theory of animal conduct which
describes the behavior of symmetrical organisms driven by bilateral sensors [1].
Braitenberg [2] promoted the importance of decussating fibers: sensory informa-
tion that inputs contralaterally into the motor system of an organism. Using
simple vehicles Braitenberg illustrated how layered decussating and ipsilaterally
projecting sensors were capable of mediating most positive and negative taxic
behavior [3].

In walking arthropods such as crustaceans, the ethological and neurophysio-
logical bases for optomotor responses have been well studied. Crabs exposed to
the angular rotation generated by a rotating striped circular arena turn in place
in an attempt to stabilize their surroundings [4]. Lobsters placed on treadmills
within moving striped bars walk forward when exposed to rearward transla-
tional optical flow and backward with anterior translational flow. The walking
direction and speed of the lobster depends on the respective characteristics of
the optical flow [5]. Combinations of translational and angular flow elicit yawing
movements to correct for disturbances during locomotion. We have previously
shown that these responses can be mediated by a simple decussating network [6].
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This model can explain optomotor responses in flying arthropods including the
fly which generates torque in the rotational direction of an imposed optical flow
stimulus in each axis [7,8]. Other observations from flying insects however are
unexplained by the current model and serve the reformation of the model.

Visually-mediated obstacle avoidance behaviors in flying arthropods including
the centering response in bees [9], saccades in flies [10], and correctional steering
maneuvers in locusts [11] are unsupported by the previously proposed model.
A centering response occurs in bees as they fly through a tunnel: they slow
as the tunnel narrows or if optical flow is experimentally increased [12]. This
occurs as optical flow is balanced bilaterally and suggests the presence of high
threshold lateral flow detectors that mediate obstacle avoidance. In a saccade,
a fly turns away from a region of high optical flow or visual expansion [13].
Locust lobula giant movement detector (LGMD) neurons responsive to looming
objects are thought to utilize edge-detection by way of lateral inhibition [14] to
elicit an avoidance response via the descending contralateral movement detector
interneuron (DCMD) [15]. Even though the avoidance of areas of high optical
flow and of looming objects are distinct mechanisms that allow for successful
locomotion, they represent functionally interrelated components of optomotor
reflex networks. During forward locomotion, for example, a looming object will
also present an area of increased translational optical flow. We have chosen to
incorporate high threshold optical flow detectors into our network to account for
the described behavioral observations (Fig. 1).

As in lobsters [5], the rate of optical flow effects the level of motor output
in flying arthropods. Changes in wing beat frequency in tethered locusts [16]
and flight speed adjustments in free flying bees [17] are both modulated by op-
tical flow. However, there are notable differences between flying and walking
arthropods at the effector level [18]. Backward walking represents a change in
the pattern of coordination relative to forward walking; direction of flight does
not share this characteristic. Transitions between forward and backward flight in
insects occur through changes in the tilt of the wing stroke plane [19]. This dif-
ference is illustrated in locusts as progressive (ie. front to back) fields of optical
flow initiate forward flight but regressive flow fields inhibit flight entirely [16].
Another difference between walking and flying arthropods is in the biomechanics
of steering. Walking arthropods steer by independently controlling left and right
sets of walking legs. Flight control though, is the result of the input of visual in-
terneurons onto various elements of the motor system including the head, wings,
abdomen, and halteres [20]. Production of yaw torque in flies is nearly passive
as the wing’s high angle of attack on one side creates high drag and a turn to
that side [19,21]. There is also evidence for differences in wingstroke amplitude
underlying yaw control [13]. Regardless of these differences in the nature of the
effectors, the conserved features of walking and flying arthropod systems can be
used to inform robotic implementation of optical processing using simple neural
networks.
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LF LB RB RF

RM

RLLLLL

RHLLHL

LM

Fig. 1. Proposed optical flow neural network for arthropods. White circles are sensory

neurons receiving optical flow information from the eye with arrows denoting directional

sensitivity. Sensory neuron signals are passed through synapses (lines) to the command

neurons (black circles). Lines with open triangle ends represent excitatory connections;

filled circles ends, inhibitory connections. Optical flow sensory interneurons: LM, left

medial; LLL, left low threshold lateral; LHL, left high threshold lateral; RM, right

medial; RLL, right low threshold lateral; RHL, right high threshold lateral. Command

neurons: LF, left forward; LB, left backward; RF, right forward; RB, right backward.

2 Methods

We are developing neural circuit based controllers for both walking and flying
biomimetic robots and plan to use optical flow sensors to modulate behavioral
output. Our goal in the present experiments is to evaluate a neuronal circuit
controller which will use optical flow to control both walking and flight. Neu-
rophysiological studies have identified direction-sensitive sensory neurons in the
optic nerve of crayfish [22] and in the visual systems of various flying insects (in
locust: [23]; in honeybee: [24]; in butterfly: [25]; in hawk moth: [26]; in fly: [27]).
The sensor we will use for transduction of optical flow is an analog optical flow
chip.1 In the descending fibers of the crayfish, Bowerman and Larimer [28] dis-
covered command neurons for various stereotyped behaviors including forward
and backward locomotion. In the robot controllers we use similar commands to
activate and modulate the central pattern generators (CPGs). While distinct
commands for locomotory direction are compatible with terrestrial robots, we
are evaluating commands for wing plane alterations to control the direction of
flight in flying robots.

1 Centeye, Inc, Washington, DC.
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Ayers and Rulkov [6] presented a hypothetical neural network based on de-
cussation to account for translational and rotational components of optical flow
responses. Since this network lacks a mechanism for obstacle avoidance, we have
added high threshold lateral flow detectors inspired by Srinivasan et al. [12] to
mediate this function (Fig. 1).

Our proposed neural network is implemented as a simulation in LabVIEW2

using a discrete time map-based (DTM) model for each component neuron and
synapse [29]. The individual neurons and synapses are instantiated as LabVIEW
Virtual Instruments and connected by LabVIEW “wire” in the G Programming
language. A complete explanation of the neuron and synapse equations and
their software implementation has been previously described [30]. The DTM
mathematical model is well suited for robotic implementation because it uses
computationally-efficient difference equations that mimic neural dynamics rather
than processor-intensive differential equations that model ionic conductances. It
can approximate a variety of neural integrative processes including tonic firing,
bursting, intrinsic silence and chaotic activity as well as synaptic integration and
dynamics.

3 Results

The neural simulation was run with a variety of different optical flow milieus.
Under purely translational optical flow propagating from tail to head in the
medial direction, the corresponding optical flow sensory interneurons fire and
excite both backward commands (Fig. 2). This output matches the observed
behavioral response under conditions of medial optical flow resulting from a rear
to front translational optical flow stimulus [5].

In a lobster exposed to purely angular optical flow in the clockwise direction,
medial left and low threshold lateral right sensory interneurons fire initiating
forward walking on the left side and backward walking on the right. This causes
the animal to rotate clockwise in place (Fig. 3) as described by Bethe [4].

By integrating angular and translational optical flow, animals are able to avoid
obstacles and maintain a desired course. If a forward-flying bee approaches an
obstacle on its right side (Fig. 4A), the high rate of optical flow will cause the cor-
responding high-threshold sensory interneuron to fire (Fig. 4C). This excites the
ipsilateral forward command while simultaneously partially inhibiting the connec-
tion between the low-level lateral detector and the contralateral forward command
resulting in an avoidance turn while maintaining forward flight (Fig. 4).

Wind and water currents present additional optical flow situations that arthro-
pods encounter. When a forward walking lobster is pushed off course by surge, a
yawing response is observed (Fig. 5, left panel). With surge coming from the left
side, the lobster experiences translational plus angular optical flow on the ipsi-
lateral side and translational minus angular flow on the side contralateral to the
surge. This results in a compensatory turn into the surge in order to maintain the

2 Version 2009, National Instruments, Austin, TX.
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Sensory Interneurons

Command Neurons
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Fig. 2. Medial translational flow initiates backward walking. Left panel. Representation

of optical flow neural network. White rectangles and circles represent active sensory in-

terneurons and walking commands, respectively. Black arrows mark direction of optical

flow and white arrows denote directional sensitivity of sensory neurons. For clarity, re-

ciprocal inhibitory connections between opposing walking commands have been omitted

in this and subsequent figures. Right panel. Neural activity of sensory interneurons and

walking commands. Neural network and abbreviations are described in Fig. 1.
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Fig. 3. Clockwise angular optical flow initiates rotation in place. Left panel. Repre-

sentation of optical flow neural network. White rectangles and circles represent active

sensory interneurons and walking commands, respectively. Black arrows mark direction

of optical flow and white arrows denote directional sensitivity of sensory neurons. Right
panel. Neural activity of sensory interneurons and walking commands. Forward walk-

ing on left and backward walking on right elicits clockwise rotation. Neural network and

abbreviations are described in Fig. 1.
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Sensory Interneurons

Command Neurons
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LFLF RBRBLBLB RFRF
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Fig. 4. Optical flow-mediated obstacle avoidance. A. Flight path of honeybee with a

right side obstacle. Opaque bee marks point of activation of high threshold lateral de-

tector and initiation of avoidance turn. B. Representation of optical flow neural network

at location of opaque bee in A. White rectangles and circles represent active sensory in-

terneurons and flight commands, respectively. Black arrows mark direction of optical

flow, arrow thickness depicts relative magnitude of flow rate. White arrows denote di-

rectional sensitivity of sensory neurons. C. Neural activity of sensory interneurons and

flight attitude commands represented in B. A high rate of optical flow on the right side

activates RHL which excites RF and inhibits RLL. The activity of LF drops due to de-

creased excitatory input from RLL. Since the firing rate of RF becomes greater than

that of LF at the location of the opaque bee in A, an avoidance turn is initiated. Neural

network and abbreviations are described in Fig. 1.
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Sensory Interneurons

Command Neurons
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Fig. 5. Optical flow-mediated yawing. Left panel. Walking path of lobster submitted

to strong surge from the left. Right panel. Neural activity of sensory interneurons

and walking commands. Numbers correspond to different phases of the response. At 1

the lobster is walking forward and there is steady lateral optical flow. The lobster en-

counters surge at 2 which results in the yaw response. After the lobster’s compensatory

turn, forward walking resumes at 3. Abbreviations are described in Fig. 1.

intended direction of locomotion. The neural activity of this reflex is outlined in
the right panel of Fig. 5.

4 Discussion

We have demonstrated that a simple decussating network between unidirectional
optical flow sensory neurons and motor commands can mediate four forms of op-
tomotor reflexes in arthropods: (1) translational responses to pure translational
optic flow; (2) rotational responses to pure angular rotation and (3) combinations
of translation and rotation that occur during obstacle avoidance and (4) yaw. As
the sensory interneurons are operating in their linear range where discharge fre-
quency is proportional to the rate of optical flow, the responses are proportional
and symmetric. Assuming that in flying insects the commands would regulate
the pitch angle of wing beats and that in walking arthropods they would act
on motor commands for walking in the different directions, this is a conserved
model.

Of the neural networks we constructed for this simulation, we present only
the most stable and robust system that accurately resolved sensory inputs and
behavioral outputs. Nevertheless, there are several components of the model
that can be enhanced. The resolution between translational and angular optical
flow in biology is unclear. Locusts seem to separate the rotatory and translatory
components of optical flow but Drosophila appear to sum the sensory inputs
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[31]. Tests of the network in a robotic platform could help inform this distinc-
tion. Additionally, optical flow-mediated odometry could be incorporated into
the network as observed in bees [12]. Robotic implementation of the expanded
neural networks could help reveal mechanisms for such visually-mediated odom-
etry. It is important to note that there may be different mechanisms present
in walking arthropods as crabs have been shown to perform odometry through
proprioceptive feedback rather than visual processing [32].

The described optical flow neural network has particular application in the
field of robotics. Biomimicry-driven development of robotic control systems,
rather than engineering from the ground up, shows particular promise in the cre-
ation of adaptively behaving machines. Robots built with neurons will be more
like their animal analogues and will present stable and flexible behavioral output
as observed in nature. To date biology has inspired robotics tremendously, specif-
ically in optical flow driven control. ‘Bee-bot’ uses the centering error described
by Srinivasan between bilateral low resolution sensors to steer itself between ob-
stacles [33]. The Closed Quarter Aerial Robot employs insect flight principles to
maneuver around obstacles and to land safely [34]. The demonstrated success
of biologically-inspired robots is promising but can be extended by incorporat-
ing modeled neurons and synapses into the control architecture. We hypothesize
that by replacing algorithmic processing with neurons and synapses, robots will
output more robust and adaptive behavior. The inherent variability of neurons
and our capability to model chaotic neural activity will translate to a more var-
ied behavioral output that will create new solutions to unfamiliar environmental
challenges.

The next step in the development of biomimetic robots is resolving the ques-
tion of sensory fusion: how do fused sensory modalities contribute to the basic
behavioral commands? There are a variety of sensory inputs that contribute to
reflexive behavioral outputs in arthropods. Sherman and Dickinson [20] showed
that the visual system of flies was more sensitive to optical flow when rotated
at low angular velocities but with increased flow speeds the input from this
system decreased and mechanosensory input from the halteres predominated.
Mechanosensory wind inputs may serve to sustain forward flight in flies by
counteracting the repulsive effects of visual expansion due to self-motion [35].
Integration of multi-modal inputs is not just limited to flying insects though.
Statocyst-driven unidirectional rotation sensors have been found in the optic
nerve of crayfish that are active without optical input [36]. Further, gravity-
mediated righting, chemotaxis, escape reflexes, and antennal rheotaxis all inte-
grate to produce coherent locomotion in walking arthropods.

We can implement these different exteroceptive reflexes and layer the re-
spective neural networks to create a biologically-faithful nervous system for a
biomimetic robot. The performance of the robot can inform our biological un-
derstanding as well. As an example, rheotaxic antennal reflexes are important for
the stabilization and directed locomotion of lobsters in turbulent marine environ-
ments. However, the integration of antennal and optic inputs has not been well
studied and presents an exciting opportunity for the application of this model.
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By comparing the behavior of a robot controlled by our neural network with
that of a behaving organism, the contribution of different sensory modalities to
the nervous system can be resolved.
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Abstract. The peripheral auditory system of a lizard is strongly direc-

tional. This directionality is created by acoustical coupling of the two

eardrums and is strongly dependent on characteristics of the middle ear,

such as interaural distance, resonance frequency of the middle ear cav-

ity and of the tympanum. Therefore, directionality should be strongly

influenced by their scaling. In the present study, we have exploited an

FPGA–based mobile robot based on a model of the lizard ear to inves-

tigate the influence of scaling on the directional response, in terms of

the robot’s performance in a phonotaxis task. The results clearly indi-

cate that the model’s frequency response scales proportionally with the

model parameters.

1 Introduction

The peripheral auditory system of lizards [1,2], such as Mabuya macularia and
Gecko gecko, is amazingly directional. The directionality is generated by acous-
tical coupling of the two eardrums, created by very efficient transmission of
sound through internal pathways in the head. This transmission is strongly in-
fluenced by the properties of these internal pathways, as well as by head size and
is therefore frequency dependent. Since the properties of the internal pathways
scale with size of the lizard it is important to understand how scaling changes
the directional characteristics of the system.

The system is nominally symmetrical with respect to the median plane and
relatively simple in design. It is smaller in size than the wavelength of the sounds
that lizards react to and consequently the incident sound waves diffract around
the animal’s head and body. Therefore the sound pressure at the two ears is
essentially the same. However, the phase difference between the sound waves ar-
riving at either side contains valuable information regarding the direction from
which the sound appears to originate relative to the animal, and it is this small
phase difference cue that is converted by the auditory system into a relatively
larger difference in the perceived amplitude of the sound on either side. As shown

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 82–92, 2010.
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in Fig. 1(a), the auditory system is composed of a tympanum (TM) or eardrum
on each side of the head. Wide internal tubes called Eustachian tubes (ET)
connect the tympani to each other through the central mouth cavity. Thus, for
example, when external sound waves impress upon the right ear, they cause
vibration of the right tympanum, and this in turn produces an internal sound
pressure on inside of the right tympanum. This sound pressure generates internal
sound waves which travel via the Eustachian tubes, through the mouth cavity,
to the left side and affect the sound pressure on the inside of the left tympa-
num. Since there are external sound waves impressing upon the left tympanum
as well, the motion of the tympanum is the result of the superposition of ex-
ternal and internal pressures. The resulting motion of the left tympanum is due
to the difference between instantaneous sound pressures on either side, which
depends on the relative phases of the external sound pressure at the two ears.
This process occurs simultaneously in the opposite direction as well, i.e. from
left to right. This acoustical coupling [3] transforms the lizard’s auditory system
into a pressure difference receiver with the highest directionality reported for any
vertebrate [4].

Pressure difference receiver ears have been quite widely studied both theo-
retically and experimentally. They occur in lizards [4], frogs [1,3], birds [5] and
crickets [6,7]. Zhang et al. have implemented a model of the lizard’s peripheral
auditory system as a set of coupled digital filters and used it in step-control of
a mobile robot in a phonotaxis task [8]. This work has been extended by Shaikh
et al. [9,10] to the continuous control of a mobile robot based on a Braitenberg
vehicle [11]. In this paper we present a re-implementation of the ear model and
investigate its performance in a phonotaxis task, with a Field Programmable
Gate Array (FPGA) based mobile robot platform.

Zhang et al.’s model is matched to a nominal ear separation of 13mm. It
can be hypothesised that any scaling of the ear separation and the ear model
parameters should result in a corresponding scaling in the frequency response as
well. Consistently scaled models may be expected to perform equivalently while
inconsistent scaling of ear separation and model parameters may result in loss of
directional acuity. We test this hypothesis by scaling the ear model parameters
to match three sample peak frequencies (i.e. frequencies for which the model
has peak response) taken from the low, mid and high frequency ranges with
respect to the ear model, and then observing the performance of the robot in
the phonotaxis task for various degrees of ear separation.

The remainder of this paper is organized as follows. In Sect. 2 we present
a simple theoretical model [12] of the lizard auditory system and discuss the
hypothesis of auditory system scaling versus directionality in more detail. The
robotic implementation and the experimental setup are described in Sect. 3.
In Sect. 4 we describe the experiments performed with the robot, present the
performance results obtained and subsequently discuss and justify the same.
Finally, we conclude this paper in Sect. 5.
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2 Theoretical Background

2.1 Theoretical Model of the Lizard Peripheral Auditory System

Figure 1(b) shows the equivalent electrical circuit model [13] of the pressure
difference receiver ear model. Voltages V1 and V2 model sound pressures P1 and
P2 at the left and right ear respectively. Currents i1 and i2 model the left and
right tympanic motion in response to the sound pressures acting upon them.
Impedance Zr models the total effect of tympanal mass and stiffness and the
Eustachian tubes connecting the tympani to the central cavity, while Zv models
the central cavity itself. Zr is the same for both left and right sides since, for
the sake of simplicity, the ear structure is assumed to have left–right symmetry.
Voltage V3 represents the sound pressure generated in the central cavity due
to the interaction of the sound pressures experienced from the left and right
side. This causes current i3 to flow through the impedance Zv, modelling the
movement of sound waves inside the central cavity as the pressure inside it varies.
All impedances are complex numbers with frequency-dependent values.

(a)

Zr Zr

Zv��

��

��

��
P1 P2�

� �

� �V1 V2
V3

i1 i2i3

(b)

Fig. 1. Peripheral auditory system of a lizard. (a) Lizard ear structure [8], showing the

tympanal membrane TM, the Eustachian tubes ET, the middle ear cavity MEC, the

cochlea C, the round window RW and the oval window OW. (b) Lumped-parameter

model of lizard ears. Voltages V1, V2 and V3 model sound pressures at the left, right

and central cavity respectively, while currents i1, i2 and i3 model the tympanic motion

in response to the sound pressures.

The physical amplitude of the external sound waves is the same at both the
tympani due to diffraction effects mentioned in Sect. 1, and thus V1 and V2 differ
only in terms of their phase. On the other hand, i1 and i2 differ in both phase
and amplitude, because of the interaction between the left and right internal
sound pressures and this difference represents the proximity of either of the ears
to the sound source. We can represent this difference mathematically [8] as∣∣∣∣ i1i2

∣∣∣∣ = ∣∣∣∣GI · V1 + GC · V2

GC · V1 + GI · V2

∣∣∣∣ =
∣∣∣∣∣GI + GC · V2

V1

GC + GI · V2
V1

∣∣∣∣∣ , (1)
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where GI =
Zr + Zv

Zr(Zr + 2Zv)
and GC = − Zv

Zr(Zr + 2Zv)
.

Frequency-dependent gains GI and GC model the effect of sound pressure on the
motion of the ipsilateral and contralateral tympani respectively. In digital signal
processing terminology these gains are analogue filters and their coefficients have
been experimentally determined, by taking measurements of the tympanic mem-
brane vibrations via laser vibrometry, by Christensen-Dalsgaard and Manley [4].
Expressing i1 and i2 in dB, (1) can be rewritten as

iratio = 20 (log |i1| − log |i2|) dB . (2)

A plot of the current ratio given by (2) is shown in Fig. 2(b) for different fre-
quencies and radial positions θ of the sound source S with respect to the left (L)
and right (R) ears (refer to Fig. 2(a)). The model responds well to a wide range
of frequencies (about 1000Hz–2200Hz), with a peak response around 1500Hz.
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Fig. 2. (a) Sound source placement with respect to ears, taken and redrawn from [8].

(b) Current ratio iratio plot from (2) in dB. Positive values indicate |i1| > |i2| and

negative values indicate vice versa. The model shows strong directionality over a wide

range of frequencies.

2.2 Auditory System Scaling and Frequency Response

There have been extensive studies of hearing mechanisms and sound localization
abilities of a number of species of animals [14]. Early results however, have been
obtained via behavioural experiments and therefore show behavioural response
of the animal, produced by neural processes, to auditory stimuli. Later, tech-
niques such as laser doppler vibrometry have been employed with animals to
study the underlying biophysical mechanisms, and have allowed researchers to
build accurate artificial models of their auditory systems. The focus there is on
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what frequencies can animals detect and localize rather than their behavioural
response to them. Traditional explanations rely on physical factors such as head
size and the acoustical physics involved. The two physical cues available for
sound localization are the interaural time difference (ITD) and interaural level
or intensity difference (ILD or IID). Both of these cues are higher in magnitude
for animals with larger heads (and consequently greater separation between the
ears), because a) sound requires more time to travel between the ears, thereby
generating a larger ITD cue, and b) the larger the head, the lower the frequen-
cies that it can block, thereby creating a sound intensity difference between the
ears. This would suggest that having smaller heads implies the ability to hear
higher frequencies as compared with larger heads. This has been confirmed for
mammalian species [15].

In the case of lizards, the only cue available is the ITD for the reasons outlined
in Sect. 1. The ear model parameters are also matched to a nominal ear sepa-
ration of approximately 13mm, resulting in strong directionality over 1000Hz–
2200Hz with a peak at about 1500Hz. This leads to a two-fold hypothesis. First,
for a given ear model, matched to a given ear separation, if we physically vary
the ear separation, the directionality should a) improve if the ear separation is
greater than the matched one, as long as separation is less than half the wave-
length and b) degrade if the ear separation is less than the matched one. This
is because greater ear separation implies greater ITD cues while smaller ear
separation implies smaller ITD cues, relative to the ITD cues available at the
matched ear separation. Second, scaling the ear model by a given factor should
result in a proportional scaling of the frequency response of the model as well.
This is because, by scaling the ear model, we are matching it to a proportionally
different ear separation, and thereby to a proportionally different magnitude of
the binaural ITD cues.

3 Robotic Implementation

The physical robot (refer to Fig. 3(a)) consists of an Xilinx XtremeDSP Starter
Platform FPGA board with the lizard ear model implemented on it as digi-
tal filters using Verilog Hardware Description Language (VHDL), mounted on
a mobile platform assembled with electro-mechanical parts from the Robotics
Starter Kit from Digilent Inc., USA. The sole processing unit on the board is
the Xilinx Spartan R©-3A DSP 1800A, an FPGA chip optimized for DSP applica-
tions. The main reasons for choosing this particular platform were its generous
logic gate count (1.8 million gates) and flexibility. Two omnidirectional micro-
phones (model FG-23329-P07 from Knowles Electronics, USA) are mounted at
the front of the robot on worm gears, allowing the separation to be changed with
millimeter precision between 3 mm to 120mm. The voltage signals from these
microphones are pre-amplified, digitised and fed into the FPGA, where they are
processed by the lizard ear model and left and right output power is computed.
These power values are fed into the decision model. The decision model is basi-
cally a set of if –then control rules, namely, 1) if sound is coming from left then
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(a) The robotic platform.

θ

θ = 26.565◦

2m

2.12m
2m 2.236m

Center-line

(b) The experimental setup

in the arena.

Fig. 3. Robotic implementation. The full arena is 3.17 m×2.34 m in size.

turn left on-the-spot at full speed, 2) if sound is coming from right then turn
right on-the-spot at full speed, and 3) if sound is coming from front then go
forward with a fixed speed. The speed values of the motors varied from 0-255,
which determine the power applied to the motor (0 means 0 % power, motor is
not running) and 255 means 100% power, motor is running at full speed).

The experimental setup (refer to Fig. 3(b)) is similar to the one used in
[8]. Two standard audio loudspeakers placed 2m apart served as continuous
single tone sound sources. The robot started from a fixed starting point 2 m
behind the mid-point between the loudspeakers, facing straight forward, and
was allowed to move autonomously within the test arena boundaries until it a)
hit the loudspeaker, b) moved behind the loudspeaker or c) moved outside the
arena boundaries. During the movement of the robot, its position in terms of
(x,y) coordinates was recorded via an overhead infrared camera system, which
tracked an infrared LED (Light Emitting Diode) on top and in the center of the
robot’s body.

4 Experiments and Results

We are interested in exploring our hypothesis, presented in Sect. 2.2, that the
frequency response of the ear model should scale in proportion to the ear separa-
tion and parameters of the ear model. The following experiments were performed
to test this hypothesis.

First, we set the ear model parameters (i.e. the filter coefficients) to their
default values (for the normal 13mm ear separation), so that the ear model was
matched to the default peak frequency of 1500Hz (i.e. the peak response was
at 1500Hz). Then we varied the separation between the microphones (hence-
forth referred to as the ear separation) using 3 mm, 6.23mm, 13mm, 36mm and
100mm, labelled as min, small, normal, large and max respectively. These val-
ues represent a uniform change on a logarithmic scale in the ear separation with
respect to the normal 13mm ear separation. For each of the 5 ear separation
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values, 13 sets of experiments were performed in the frequency range of 1200Hz
to 1800Hz in steps of 50Hz, within the 1000Hz–2200Hz range of the ear model.
In each set, one of the loudspeakers continuously emitted a tone of the selected
frequency, and the path of the robot was tracked from the starting point un-
til the one of the three finishing conditions was met. This was done 10 times
in total per set, 5 trials with the left loudspeaker activated and 5 trials with
the right loudspeaker activated. In order to minimise any “memory effects”, we
randomised the experiments by a) alternating between the left and right sides,
b) randomising the order of selection of the frequencies and c) randomising the
order of selection of the ear separations. Second, we scaled the ear model parame-
ters to match it to the max ear separation of 100mm, so that the peak response
of the model was at 1500 Hz × ( 13 mm

100mm

)
= 195 Hz (rounded up to 200Hz for

purely aesthetics reasons). For each of the 5 ear separations, we repeated the
experiments described above for the frequency range of 160Hz–240Hz in steps
of 10Hz, resulting in 7 sets of experiments per ear separation. Finally, we scaled
the ear model parameters to match it to the min ear separation of 3mm, so
that the peak response of the model was at 1500 Hz× ( 13 mm

3mm

)
= 6500 Hz. For

each of the 5 ear separations, we repeated the experiments described above for
the frequency range of 5200Hz–7800Hz in steps of 325Hz, resulting again in
7 sets of experiments per ear separation. The final outcome of each trial was
classified as either a hit (the robot hits the loudspeaker), a near hit (the robot
passes within a circle of radius 20 cm around the loudspeaker) or a miss (the
robot stays outside the circle). In all three cases above, the total number of hits,
near hits and misses were individually summed over the 10 trials, for each sound
frequency and ear separation combination. Figure 4 illustrates these results.

4.1 Trajectory Directness

In order to determine the performance of the robot in terms of its trajectory, we
use a “directness” statistic given by (3) defined in [8]. It measures the average
heading of a given robot trajectory vector from the starting point to the loud-
speaker. A given trajectory is divided into n vectors (n = 13 in our case), each
of length l. For each vector, the heading θ relative to the position of the loud-
speaker is calculated. Then these are averaged over the total number of vectors,
and we get the average heading. This procedure is repeated for all trajectories.

vavg =
1∑n

i=1 li

(
n∑

i=1

li cos θi,

n∑
i=1

li sin θi

)
. (3)

Keeping in mind the large volume of data generated in this manner, a more
visually comparative method of presenting the data is needed. This is achieved
with Fig. 5, depicting the angular error θerr in degrees between the average
headings and the ideal heading of 0◦.
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Fig. 4. Total number of hits, near-hits and misses by the robot for each combination of

sound frequency and ear separation. The ear model parameters are matched to 100 mm

in Fig. (a)–(c), to 13 mm in Fig. (d)–(f) and to 3mm in Fig. (g)–(i). Note that Fig. (c)

and Fig. (f) have reversed ear separation axes for best visibility of all data points.

4.2 Discussion

We can see that the robot shows strong directionality for all three ear model scal-
ing factors, consistent with our hypothesis that scaling the ear model parameters
results in a directly proportional scaling in the frequency response. In terms of
the number of hits and misses, we see in Fig. 4 that in almost all cases the robot
performs better when the actual ear separation is greater than the matched ear
separation, and worse when the actual ear separation is less than the matched
one. In terms of the average angular error in trajectory heading, again we see
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Fig. 5. Average angular error θerr in the trajectory heading with respect to the ideal

heading of 0◦. Figures (a), (c) and (e) correspond to the tests performed with the left

speaker activated and Fig. (b), (d) and (f) correspond to the tests performed with the

right speaker activated. Note that the x and y axes have been rotated for best visibility

of the entire error surface gradient.

in Fig. 5 that the error decreases when actual ear separation is greater than
the matched ear separation, and increases when the actual ear separation is less
than the matched one. These results confirm our hypothesis that greater ITD
cues improve directionality. But when the ear model is matched to 3mm ear
separation (6500Hz peak frequency) and the actual separation is 100mm, there
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are no hits (Fig. 4(g), 4(h) and 4(i)), and the angular error is maximum (Fig.
5(e) and 5(f)); the directionality degrades strongly. This is explained by the fact
that the wavelength λ of a 6500Hz sound wave is 340ms−1

6500 ≈ 52 mm, and the
100mm ear separation is about twice this wavelength. The phase difference be-
tween the sound waves incident from either side, at 90 ◦ from the center of the
robot, is zero for ear separation of kλ

2 , for all k ∈ N. Therefore for this 100mm
ear separation, the phase difference between the sound waves at either side varies
periodically with angle of incidence and is negligible for sounds incident at 90 ◦

from the center of the robot. This results in the apparent sound source direc-
tion being correctly related to the direction for relatively few incidence angles.
Consequently, the decision model is unable to steer the robot to the source, as
confirmed by the error surface plots.

5 Conclusions

We have presented a mobile robot implementation of a lizard ear model, and
investigated its behaviour in a phonotaxis task. We experimentally tested the
hypothesis that the frequency response scales proportionally with the ear model
parameters and the ear separation, by scaling the parameters to match various
peak frequencies, for various ear separations and then comparing the perfor-
mance of the robot.

In this paper, we assumed that the physical presence of the head does not
affect the directionality. In the future, mounting a physical 3D model of a real
lizard’s “head” on the robot, with the microphones located at its ear cavities,
and then investigating the phonotaxis performance could prove to be interesting.
It might provide some information about whether the directionality of a lizard’s
peripheral auditory system is influenced by its head, and if so, the manner in
which it is influenced.
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SCRATCHbot: Active Tactile Sensing in a
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Abstract. The rodent vibrissal (whisker) system is one of the most

widely investigated model sensory systems in neuroscience owing to its

discrete organisation from the sensory apparatus (the whisker shaft) all

the way to the sensory cortex, its ease of manipulation, and its presence

in common laboratory animals. Neurobiology shows us that the brain

nuclei and circuits that process vibrissal touch signals, and that control

the positioning and movement of the whiskers, form a neural architec-

ture that is a good model of how the mammalian brain, in general, co-

ordinates sensing with action. In this paper we describe SCRATCHbot,

a biomimetic robot based on the rat whisker system, and show how this

robot is providing insight into the operation of neural systems underly-

ing vibrissal control, and is helping us to understand the active sensing

strategies that animals employ in order to boost the quality and quantity

of information provided by their sensory organs.

1 Introduction

In order to cope with nocturnal or poorly-lit environments mammals have evolved
a range of non-visual sensory capacities many of which have not been successfully
replicated in robots. One such capacity is the tactile hair (vibrissal) sensory system
[1] [2]. Tactile hairs are found in all mammals, except for man, and are highly de-
veloped in many rodent species (such as rats and mice) and in a variety of aquatic
mammals such as seal, walruses, and manatees. Research interest has centred on
the facial vibrissae, or whiskers, and our own research has focused on the vibrissae
of murid rodents such as rats and mice.

Our approach to this system begins with neuroethology, wherein we study vib-
rissal neural systems holistically, including the observation of natural behaviour
as well as comparative and evolutionary data, and leading to computational
models. We then expose these models to the complexities of real-world oper-
ation, and the demands of functional robotics, revealing shortcomings that do
not manifest in simulation. This engineering process feeds back, raising questions
that are not raised (or addressed) by current biological data, and guiding us in
the design of future biological experiments. Along the way, we hope to show that
whiskers can be a useful robotic sensory system.

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 93–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Below, we briefly review the ethology of rat whisking behaviour, including
results from behavioural experiments conducted in our own laboratory. We then
go on to describe our current whiskered robotic platform, SCRATCHbot (the
robot name is derived from the acronym Spatial Cognition and Representation
through Active TouCH). In this paper we focus on the active sensing and whisker
control aspects of the SCRATCHbot platform in comparison to the whisking be-
haviour of rodents. Some of our recent work on tactile sensing and discrimination
using artificial whiskers is described in a companion paper [3], and therefore is
not discussed in any detail here. Our work builds on, and was inspired by, a
large number of previous research efforts in robotic tactile sensing systems that
we have recently reviewed in [1]. SCRATCHbot also replaces and improves on
our own earlier whiskered robot, Whiskerbot [6], which was simpler in both
mechanical and control terms.

2 Neuroethology of Rat Whisking Behaviour

The whiskers of murid rodents are of two types. The ‘macrovibrissae’ form two
regular grids of longer whiskers (approximately 30 per side) emerging from the
‘mystacial pads’ on either side of the snout and can be moved back and forth in
a behaviour known as ‘whisking’. The ’microvibrissae’ are shorter, non-actuated
whiskers, that are distributed over the front and underside of the snout in a
less regular pattern. Rats generally whisk their macrovibrissae when they are
exploring an environment or attempting most forms of tactile discrimination.
In neurobiological investigations of this system, studies of neural responses to
‘passive’ whisker deflection are, therefore, beginning to give way to studies of
more natural ‘active’ deflection where moving whiskers encounter objects in the
world. These studies show that whisker motion plays a key role in signal forma-
tion within the brain, hence one of our main goals in developing SCRATCHbot
is to get better insight into the effects of this active sensing control on the signals
processed by the vibrissal system.

Macrovibrissal movements are driven by a complex musculature. This includes
intrinsic muscles within the pad, that allow for some individual control of whisker
motion, and extrinsic muscles that move all of the whiskers in the pad together or
that alter the relative positions of the whiskers by changing the shape of the pad.
The principal, and first-described, component of whisker motion is the anterior-
posterior (AP) movement of all macrovibrissae together. A smaller synchronised
up-down component to this motion has been identified (that is, a typical whisk
is reminiscent of a ‘rowing’ action), as has a torsional rotation of the shaft during
the whisk cycle. Furthermore, the whisker columns move at somewhat different
speeds during the AP sweeps with the net effect that the angular separation, or
spread, between the whiskers varies significantly within each whisk cycle. Finally,
the whiskers do not always move in concert on the two sides of the face, and the
mystacial pad moves substantially during whisking. Nonetheless, AP motion of
all whiskers together describes a large proportion of overall whisker motion [5].
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Whisking motor patterns vary substantially with behavioural circumstance,
but discernible ‘bouts’ of more-or-less periodic whisking at 6-10Hz interspersed
by periods of inactivity, are typical. Whisk frequency tends to be relatively con-
stant within a bout but other kinematic parameters can vary substantially. The
strongest observed external influence is whisker-environment contact. For in-
stance, a unilateral unexpected whisker-environment contact generally leads to
suppression of protraction ipsilaterally (i.e. on the side the contact was made)
and to increased protraction amplitude contralaterally [4] [5] (see figure 1 left).
We have hypothesised that this is the outcome of a control policy we term ‘Min-
imal Impingement, Maximal Contact’ (MIMC), which tends to maximise the
count of whisker-environment contacts, whilst keeping the depth of those con-
tacts within a managed range to maintain signal quality. A further observation
[5] that spread between whisker columns is reduced during environmental contact
is consistent with this policy, with rearward, non-contacting, whiskers brought
forward to meet an ipsilateral obstruction. In addition to these asymmetries, a
temporary loss of bilateral synchrony in whisker movements is often observed
following a unilateral contact [4], whilst repeated contacts with the environment
can lead to longer periods of desychronization (unpublished results from our
laboratory).

Fig. 1. Natural and artificial vibrissal systems. Left. Frame from a high-speed video

sequence recorded in our laboratory, showing an exploring rat with whiskers at the

maximum protraction phase of the whisk cycle. Right. The SCRATCHbot robot plat-

form has two 3x3 arrays of actuated whiskers and a single central array of non-actuated

microvibrissae. Control uses biomimetic algorithms based on reverse-engineering of rat

neural systems for vibrissal sensory processing and actuation in order to generate life-

like active sensing behaviours.

Psychophysical and behavioural experiments (see [8] for review) show that,
using only the data gathered by their macrovibrissae, rats can locate objects ac-
curately in space, perform fine textural discriminations, judge gap widths, and
that both macro- and micro- vibrissae are required for effective prey capture.
However, a reasonable hypothesis is that macrovibrissae are primarily used for
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locating objects, and then microvibrissae are brought to bear for close investiga-
tion. As a consequence of these findings, and from inspecting many in-house video
recordings of rats exploring environments, we consider the ‘orient’ behaviour, in
which a rat positions its head so that the front of its snout is brought to bear on
its apparent focus of attention, to be a key component of active sensing. Indeed,
orienting should perhaps be considered as the primary active sensing strategy
employed by the animal, with repetitive whisker motion (whisking) adding a
second component that allows better exploration of space, increased frequency
of contact, and more precise control over the nature of those contacts. If we
allow that the body must also be moved if the rat is to orient its snout to lo-
cations a little distance away, then we could consider that locomotion of a rat
in a novel environment may be largely the consequence of a stream of orients to
one location after another. That is, the rat shifts its focus of attention and the
head, whiskers, and body follow. Thus, we might consider orienting to consti-
tute the foundation of exploratory behaviour in general, and therefore to be a
prerequisite for effective active sensing in any whiskered entity, animal or robot.

After orienting, the animal will often keep its snout near to an attended
object for a few whisks in order to investigate it more closely using the sensory
equipment around the snout. This activity can be complex, and is thus less easy
to describe, but we often see an investigative behaviour we refer to as ‘dabbing’,
whereby the microvibrissae are lightly touched or brushed against the object in
synchrony with macrovibrissal protractions. The result is that tactile information
is obtained at high spatial density towards the centre of the dab, through the
microvibrissal array, whilst, within the same narrow time window, surrounding
surfaces are sampled in a sparser fashion by the macrovibrissae.

3 Toward a Robot Model of Vibrissal Active Sensing

Based on the experimental data reviewed above, we have identified a number of
specific co-ordinated motor actions as pre-requisites for effective active vibrissal
sensing. Next we briefly describe the robot hardware and software architecture
that we have developed to support this active sensing control.

3.1 Hardware

The SCRATCHbot platform (see figure 1 right) is built from 3 main components:
a head, on to which the whisker arrays are mounted; a neck, that allows the head
to be moved in 3d and independently from the body; and a body that carries
the computing resources, locomotion systems, and power supply.

The head is designed to carry six independent columns of three ’macrovibris-
sae’, with each column driven in a single axis (anterior-posterior) by a small dc
motor and gearbox. These columns are arranged into two arrays of three, pro-
jecting from opposing sides of the head chassis, and coupled for a second axis of
rotation (array tilt). A third, non-actuated, ’microvibrissal’ array of nine short
whiskers is mounted between the bi-lateral active arrays. The cross-sections of
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the macrovibrissae are tapered toward the tip and their lengths (160 - 220mm)
are approximately four times larger than the long whiskers of a typical adult
rat. To measure deflections of the whisker shaft caused by environmental con-
tact a small magnet is bonded to the base of each whisker and a Hall effect
sensor used to sample the displacements of the magnet in two directions. To
maintain the pose of each whisker, and to return it to its resting angle after
deflection, the whisker base is mounted into a polyurethane rubber plug. The
non-actuated whiskers (microvibrissae) have the same transduction technology
and polymer return mechanism but are shorter (80mm) and mounted into a
single polyurethane casting. Dedicated microcontrollers are used to sample the
different whisker arrays and to control the rotation of the whisker columns. The
neck component enables the head to be moved with three degrees of freedom:
elevation, pitch and yaw, each axis actuated by a brush-less dc motor and har-
monic drive gearbox, and controlled by seperate micro-controllers. The robot
chassis is a single sheet of aluminium onto which three independently-controlled
motor drive units and the neck are mounted. The central computing resources
consist of a PC-104+ reconfigurable computing platform, composed of a single
board Computer and a closely coupled array of FPGAs for hardware accelerated
processing.

3.2 Processing Architecture

The control architecture implemented on the robot takes inspiration from the
neural pathways identified in the rat whisker sensory system [1] [2]. Neural struc-
tures such as the trigeminal sensory complex, superior colliculus and basal gan-
glia are modelled and developed in software, at various levels of modelling ab-
straction, and integrated into a unified system for testing using the BRain And
Head Modelling System (BRAHMS) execution framework [7]. To allow indepen-
dent development of robot hardware and software neural models, a platform
simulator has been written which can be inserted into the BRAHMS system in
place of the robot interface. Figure 2 is a block diagram of the components that
make up the current processing architecture. At the bottom left is the inter-
face to the hardware consisting of the sensors (x, y, θ) and actuators (whiskers,
wheels, neck). The remainder of the architecture can be described as an inner
loop (blue arrow) mediating whisking pattern modulation, and a middle loop
(green arrow) mediating the orient to point of contact behaviour described be-
low. Higher loops (orange arrow) model cortical and hippocampal systems, for
such competences as object discrimination and spatial mapping, are the subject
of current work in our laboratory.

4 Active Sensing Behaviour

In this section we describe some of the active sensing control strategies that we
have so far implemented and tested on the robot platform. For details of recent
and ongoing work on tactile sensory processing please see [11] [3].
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Fig. 2. Overview of control architecture of SCRATCHbot. Arrows indicate control

loops within our model whisker sensory system that correspond to current understand-

ing of the real sensory system. See text for details.

4.1 Feedback Modulated Whisking Pattern Generation

The Whisking Pattern Generator (WPG) in SCRATCHbot is a model of the
central pattern generator present, though not yet located, in the rat brain and
whose activity underlies the rhythmic whisker motions observed in the behaving
animal. Typical rat whisking, as described above, can be broadly described as
modulated periodic oscillations. The simplest possible model is a single oscillator
generating the angular position of each separate whisker through a gain. In such
a model, the whiskers would be constrained to move synchronously (all whiskers
in phase), symmetrically (whisking on the two sides having the same profile),
and periodically (each whisking cycle is identical). However, as previously noted,
although bilaterally synchonized and symmetric movements are sometimes ob-
served in the animal, this simple model is inadequate to describe rat whisking
generated under natural circumstance of exploration and object contact. There-
fore, in our robotic models, we gradually relax these constraints by testing more
complex WPG models in order to investigate the impact of different modula-
tion strategies. For instance, in our original whisking robot (Whiskerbot) we
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Fig. 3. Comparing the x-component of single whisker deflections sampled in a 70ms

time window immediately following contact during bouts of 3Hz active whisking of

SCRATCHbot. Left) traces from 40 contacts with the Minimal Impingement feedback

control strategy active, Right) 40 contacts with MI switched off. The black dotted trace

in each plot is the mean signal across all samples in each set. Magnitude of deflection

has been normalised to the 10-bit ADC sample range of the whisker, i.e., ±512.

used a single WPG to generate a base whisking signal and derived movement
patterns for each whisker using this signal. This WPG model was used to test
the likely consequences of a Minimal Impingement (MI) control strategy on the
whisker deflection signals processed in the brain. As noted previously, our own
behavioural observations in animals had indicated that whiskers rapidly cease to
protract following contact with an object during exploration. We hypothesized
that this result implied a control strategy that sought to minimize the extent to
which whiskers were allowed to bend against surfaces. To implement MI in our
robot control architecture the total activity across all whisker deflection cells on
one side of the face was fed back to suppress activity in the ipsilateral WPG
relay. This has the desired effect that protraction ceased rapidly after contact.
With MI enabled, the signals were also cleaner and more closely matched those
observed in the animal [6]. In previous work [11] it was found that the most
useful phase in the whisk cycle for extracting textural information was immedi-
ately following contact with the surface. Similarly, it has also been shown that
radial distance estimation (contact point along the length of a flexible beam)
can be determined by observing the frequencies of oscillation just after impact
[13]. Therefore, we focus here on this phase of the whisk cycle to intuit any
advantages that the proposed MI approach may afford an artificial system or,
by inference, suggest why the rat might adopt such strategy. Figure 3 compares
the x-component of deflection during a 70ms time window immediately following
contacts sampled from a single whisker during bouts of 3Hz whisking with the
MI feedback control switched on and off. The experimental setup is shown in
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figure 4, with the data sampled from the middle whisker of the front column
with contact incidence determined off-line using a simple thresholding function
applied to each sample set. As expected the range of deflection signals with the
MI feedback active is significantly less than without, which invites an improve-
ment in sensory resolution by simply scaling the sample range. By comparing
the average standard deviation across each data set (normalised to the sample
range) it is also clear that with the MI strategy active the variation in response
profiles between subsequent contacts is constrained (0.1727 versus 0.2329 with-
out MI active). Such repeatability between contacts will inevitably improve the
confidence of classification algorithms applied to extract information such as
radial distance to contact or surface texture (an example of which is currently
being evaluated [3]).

Predictable variation in whisker spread (the angular separation between the
whiskers) was noted previously as a characteristic of animals that are exploring
surfaces [5]. To investigate the possible causes of this variability we extended the
modulation options of SCRATCHbot’s WPG by implementing a separate relay

Fig. 4. Investigating the impact of per-column MIMC on whisking patterns. For this

experiment we fixed the robot head in a position facing a stationary ‘wall’. The first

whisk against the wall is unmodulated (left upper panel), and shows that the more

rostral column whiskers are heavily deflected, whilst the most caudal column whiskers

do not touch the wall at all. On the second whisk, the MIMC modulation has taken

effect (right upper panel), the rostral whiskers are less protracted and thus are de-

flected less heavily, and the caudal whiskers are brought forward (i.e. whisker ‘spread’

is reduced) and generate contacts with the wall. The effect of this modulation on the

contact signals collected can be seen in the lower panel – across the three columns,

there is a tendency towards normalisation of contact depth.
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for each column (rather than having just one for each side of the head). Whisker-
environment contact excites all of these relays, whilst suppressing only those
relays driving the whiskers that contacted the environment. The result is that,
in addition to the per-side MIMC elicited in Whiskerbot, more rearward whiskers
move more rapidly than they would otherwise, and are thus brought forward to
meet a contacted obstacle. The net result is a reduction in inter-column spread
following contact as seen in the animal. Another way of putting this, is that,
by implementing MIMC at the per-column level, ‘control’ of whisker spread
appears as an automatic consequence of this general active sensing strategy -
the whiskers are brought forward to meet the environment wherever possible,
whilst being restrained from bending too far against it. In experiments with
SCRATCHbot platform (see Figure 4) we have been able to demonstrate that
per-column MIMC is effective in cleaning up contacts on multiple whiskers and
in generating more contacts than would otherwise have occurred.

4.2 Orienting to Point of Contact

The tendency of rats to direct their snout and micro-vibrissal array toward
unexpected macrovibrissal contacts was chosen as a second behaviour suitable
for investigation by physical modelling. For this purpose our control system
implements the hypothesis that a region of the mammalian brain known as the
superior colliculus (SC) is used by the rat to control orienting to tactile stimuli
[9]. A model SC was designed, implemented in software, and integrated into the
BRAHMS processing framework for demonstration on SCRATCHbot.

There is no evidence of proprioception in the whisker musculature, instead, an-
gle cells innervating the follicle are thought to provide the information necessary
to transform deflections of moving whiskers into an appropriate head-centred
reference frame. Our robotic model therefore integrates whisker deflection in-
formation (from the Hall effect sensors) with shaft encoding of whisker column
angles in order to map environmental contacts onto a 3-D representation of the
space surrounding the robot’s head. The most salient contact point then primes
a request for an appropriate series of orienting motor commands that move the
tip of the snout to that position. The request to perform orienting competes
with other salient behaviours for control of the motor plant. This competition
is resolved using an action selection mechanism modelled on a group of brain
structures known as the basal ganglia [10].

A key task for the motor system is to generate control signals for the wheels
and neck that achieve the desired snout movement; this takes place in the Motor
Translation Layer of our control architecture. Conventional robotic approaches
to this problem (e.g. potential-field or sampling-based) can be expensive to
solve, and are not generally bioplausible. We use, instead, an algorithm we
call ‘Snake’, which takes a bio-inspired approach, causing free (uncontrolled)
nodes of the mechanics adjacent to a controlled node (the snout, in this case)
to follow it. Thus, actuators are ‘recruited’ to contribute to the movement in
a distal-first pattern, as has been seen in the animal during fictive orienting,
and more massy central nodes tend to be moved less than lightweight peripheral
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Fig. 5. Frames taken during an orient towards a point of whisker contact, along with

plots of data recorded during the run. The upper plot shows the unfiltered x-component

output from two whiskers on the left side of the robot (normalised to the maximum

calibration range). The second plot has the re-afferent component of these signals

removed, greatly improving the signal-to-noise ratio. The third plot displays the current

angular position of the rear 2 whisker columns, π radians indicating straight ahead.

The lower plot shows the saliency of the orient behaviour. Frame 1: contact on whisker

5 (Blue trace) during retraction leads to an increase in saliency of orient ; this action

is selected, and the orient begins. Additional contacts during the orient (frames 2 and

3) are ignored. In frame 4 the snout arrives at the initial point of whisker contact,

completing the orient, and saliency is reduced. In frame 5 the micro-vibrissae are used

for fine inspection of the contacted feature.

nodes. This algorithm results in motion that appears quite natural to the human
observer.

Figure 5 shows video stills from a typical robot experiment demonstrating
the orient to contact response. Implementing this task for our whiskered robot
provided insight into some additional problems that the rat must also encounter
and has overcome through the mechanisms of evolution and neural plasticity.
Specifically, it was evident that there is a significant noise component in the
whisker deflection signals that is due to self-motion (i.e. caused by the whisking
and head movements) and can cause the robot to make orients to ghost objects
that are not actually present. This motivated us to look for brain structures that
might function to remove this noise, a prime candidate being the cerebellum.
Interestingly, the cerebellar-inspired algorithms that we have implemented to
successfully remove this re-afferent noise [12] essentially learn the dynamics of
each whisker as it is moved. Therefore, if a whisker shaft were to be damaged or
replaced, the new dynamics would be acquired and integrated into the control
system without the need for manual calibration. This tolerance to damage of
individual whiskers and the gradual degradation in performance afforded by an
array-based system could provide significant advantages to platforms operating
over long periods or in remote environments.
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The future work plan for the SCRATCHbot platform is to investigate tech-
niques and algorithms applicable to the field of Spatial Localisation And Map-
ping (SLAM) using active whisker touch, and the enhancement of the superior
colliculus and cerebellar models toward predictive prey pursuit behaviour and
tactile saliency mapping. Both of these developments move the bio-mimetic sen-
sory technology of active whisker based touch closer toward mobile robotic ap-
plications such as search and rescue, remote sensing or underwater exploration.
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Abstract. We present a physiologically plausible spiking neuron-level

model of the superior colliculus as part of the saccade-generating visual

system. Two major features of the area are the bursting behavior of its

output neurons that drive eye movements, and the spreading neuron ac-

tivation in the intermediate layer during a saccade. We show that the

bursting activity profile that drives the main sequence behavior of sac-

cadic eye movements can be generated by a combination of NMDA and

cholinergic receptors driven by a local circuit. We also show how the

long-range spreading activation can occur, and propose that the func-

tional role for this mechanism is to track the general activity level and

trigger a system-wide reset at the end of a saccade.

1 Introduction

We are designing a system-scale spiking-neuron model of the visually guided sac-
cadic system. Our aim is to understand the neural basis of a complete perception-
action loop, and to explore the functional significance of neurophysiological
features in the studied system. We currently focus on modeling the superior col-
liculus, the point of sensorimotor integration in the early visuo-motor system.
We implement bursting neurons with an NMDA (membrane voltage-dependent)
synapse-augmented spiking neuron model and a realistic local circuit, and propose
a mechanism and a functional role for the spreading activation behavior observed
in the intermediate layers of the superior colliculus in vitro [1].

The broad outlines of the early visuomotor pathways and the saccade
mechanism are becoming well understood. System-scale modeling has advanced
from simple single-step models to fairly detailed models of individual sensori-
motor structures that take physiological and mechanical features of the visuo-
motor system into account [2]. While these models are becoming detailed and
multifaceted, they are still at the computational level in nature and do not
try to model these areas at a neurological level. A large-scale spiking neuron
model allows us to bring together such models with neurophysiological data
and answer questions about the neuron-level implementation of the observed
functionality.

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 104–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1.1 Neurophysiology

The retina performs initial processing of visual inputs and projects the result
to the superficial superior colliculus (SC) directly as well as through the lateral
geniculate nucleus. Visual input also reaches the area from cortical visual areas.
The superficial SC in turn relays the data to the intermediate SC (SGI) directly
and through the parabigeminalis. These steps evaluate the low-level short-term
saliency of the incoming visual features. Auditory and somatosensory areas pro-
duce sensory data for the SGI in a similar manner.

SGI representation of saccade targets is retinotropic, and the bursting activity
of its output neurons is relayed to pons and midbrain areas in the brainstem that
in turn generate horizontal and vertical saccade eye muscle activity respectively.
The Frontal Eye Fields (FEF) in the cortex projects top-down saccade informa-
tion through the SC and to the brainstem directly; this redundancy allows either
FEF or the SC to generate saccades independently of the other. The cerebellum
regulates and tunes activity in both brainstem areas and the SC. See Sparks [3]
for an overview.

The Superior Colliculus. The superficial SC consists of two interconnected
layers and two major cell types – wide-field and narrow-field receptive cells –
that project to the intermediate areas. The intermediate and deep SC consists
of cells with multiple types of activity, although they are morphologically similar.
Regular spiking neurons form burst and buildup cells, while separate populations
form inhibitory interneurons within the SGI, as well as in the deep SC [4]. The
burst cells form the major output of the SC.

A major regulatory input comes from the Substantia Nigra pars reticulata
(SNpr) in the basal ganglia that tonically inhibits the SC [5]. The SGI outputs
to the brainstem areas where it drives the saccade-generating circuitry; to the
contralateral SC; and projects back to the FEF via the thalamus to form a
saccade feedback circuit for cortical visual systems.

One focus of this paper is the burst neurons in the intermediate layer. Burst
neurons act as regular spiking neurons when stimulated directly but exhibit
bursting behavior when they receive inputs via the superficial layers [6]. They
have NMDA as well as cholinergic inputs [7], and it is likely that the membrane
potential-dependent characteristics of the NMDA receptor is a factor in this
behavior [8].

Burst neuron activity is self-limited through local circuits in the SGI, but they
do not exhibit the spike number constancy found in behaving animals [8]. This
suggests that the spike number constancy is an effect of an extrinsic feedback
loop from the saccade motor-related areas such as the central mesencephalic
reticular formation (cMRF) [9], and that the feedback acts to counteract a local
inhibitory mechanism in the intermediate and deep SC [10].

We are also interested in the poorly understood phenomena of spreading ac-
tivation in the SGI. There is considerable evidence for asymmetric large-scale
spreading activation occurring in the SGI during saccades in many animals [1].
But while connections in the superficial SC are long-range, both excitatory and
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inhibitory intraconnections within the intermediate SC seem to be spatially lim-
ited to 500μm or less [11]. The spreading actiation can thus not be a direct effect
of long-range activation within the intermediate areas. The asymmetry may arise
from the complex-logarithmic mapping from the retina to the SC [12] but that
still leaves open the question both of the functional significance of the spreading
activation and of the mechanism by which is it achieved.

Collicular Models. Retinotropic SC activation was once thought to indicate
saccade amplitude and direction only. The overall activity in the intermediate SC
was treated as a form of vector averaging where the average position of activity
in the SC corresponded to to a particular saccade, and the activity of the neurons
determined the speed but not the magnitude of the saccade or movement profile.
The SC itself was considered upstream of any saccade feedback control, though
later models have involved the SC directly in the feedback loop. Some models
have sought to incorporate the spreading activity in the intermediate SC by
treating it as a moving hill of activity that encodes eye position or movement
error, but this has since largely been refuted at least in the case of primates [13].

Current models posit that the SC is part of the saccadic feedback loop, and
that each burst neuron spike encodes a movement segment with a direction given
by the position of the neuron in the collicular map, and the magnitude given by
the weight of the connection to the brainstem areas [14]. The activity is thus
not encoding a vector, but is driving a movement trajectory directly, and the
resulting trajectory is the sum of bursting activity in the SC during the saccade.
This movement is inhibited through downstream feedback limiting the saccade
magnitude [15].

Experimental data supporting this view shows that a saccade to the same
point will always elicit the same total number of spikes from the neurons involved,
and an on-line disturbance will be fed back to the intermediate SC and adjust
the firing rate to produce a constant number of spikes [16]. A review of models
of systems involved in saccade generation is found in Girard and Berthoz [2].

2 The Superior Colliculus Model Design

We consider the known neurophysiological features on one hand, and behav-
ioral and theoretical functional models on the other, to build a set of spiking
neuron-level models of the visual areas related to saccade generation. Our overall
system organization is summarized in figure 1(a), and we show an overview of
the superior colliculus model that is the focus of this paper in figure 1(b).

The superficial SC is topmost in Figure 1(b). For this study we have two
neuron types – wide-field, with weak but broad activation, and narrow-field
with focused, strong activation – with no interconnections. They project to the
quasivisual neurons, and to the buildup neuron layer.

Quasivisual (QV) neurons receive inputs from the superficial SC and from
cortical and other sensory areas, and act as one of the two major input layers for
the intermediate SC. They project on to the buildup neuron layer, and also to
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(a) (b)

Fig. 1. (a): The principal components in the early saccade vision system. The retina

and lateral geniculate nucleus does early vision processing; the SC and related areas

integrate sensory data to generate motor commands; the brainstem systems regulate

muscle activity; the cerebellum tunes the other systems over time. (b): Block diagram

of the superior colliculus model. White triangles are excitatory connections and black

triangles are inhibitory. Dashed connections are external inputs. Dotted connections

are not used in this paper. QV: Quasivisual; SNpr: Substantia nigra pars reticulata;

cMRF: Central mesencephalic reticular formation.

the burst neuron layer through NMDA synapses to give them their characteristic
bursting behavior.

Buildup neurons receive inputs from superficial SC and QV neurons, and
project on to the burst neurons. They have mutual short-range excitatory con-
nections, but are reciprocally inhibited by interneurons that limit activity spread.

Burst neurons activate strongly only when receiving inputs from both qua-
sivisual and buildup layers. The resulting burst primarily excites ipsilateral eye
muscle motoneuron systems, and inhibits the contralateral SC and motoneuron
system.

The burst is also projected to an area in the cMRF where burst neuron activity
is integrated at the time scale of 100ms. This integrated signal projects back to
inhibit the burst neuron layer and the buildup inhibitory interneurons. The net
effect is to limit the total number of spikes generated in the burst neuron layer,
and - through the differential activation strength of central versus peripheral
burst neurons - create a rapid but controlled drop off in the spike rate. This
directly generates the saccade main-sequence velocity profile.

The SNpr (not implemented in this paper) acts as a latch. It tonically inhibits
output-related structures in the intermediate SC, but the inhibition is released
when inhibited by cortical signals through secondary structures, and triggers the
currently prepared saccade. Inhibition is reestablished through the inhibitory
burst from deep layer interneurons below.

Deep layer interneurons are locally interconnected and get inputs from burst
and buildup neurons. They are near silent until the inputs reach a critical level,
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AEIaF Neuron Params

C = 62 pF Vt = -47 mV
gl = 4 nS Vτ = -65 mV
El = -65 mV Δt = 2.0 mV

Adaptation
a = 0.2 nS τw = 20 ms
b = 30 pA

Synapses
Ee = 0.0 mV Ei = -75.0 mV
We = 0.72 nS Wi = 0.04 nS
τe = 0.2 ms τi = 3.0 ms

En = 0.0 mV Vmax = -43.6 mV
Wn = 1.2 nS Vmin = -60 mV
τn = 3.0 ms g = 3.0

(a) neuron parameters
(b) neuron model and measured data

Fig. 2. (a): Parameters used for the AEIaF neuron for the simulation model. (b): 400

ms spiking response to input currents by the AEIaF neuron with model parameters

specified on left; and by SC regular spiking neuron in the rat (from Saito and Isa, [8]).

at which point they fire a burst of inhibitory activity that resets burst layers,
buildup layers and associated structures like the cMRF.

Spreading Activation. One focus of this model is the asymmetric spreading
activation in the SGI. We assume that the spreading occurs among buildup neu-
rons, while burst neuron activity remains confined to a restricted area around the
stimulus origin. Nakahara et. al. [12] posit that the spreading asymmetry is a side
effect of the logarithmic mapping from early vision areas. We approximate the
asymmetry with rostrally shifted wide-field efferent projections and buildup neu-
ron short-range interconnections. The Inhibitory interneurons restrict buildup-
neuron activity, and their inhibition allows buildup neuron activity to spread.
But what is the functional significance of this activity?

We propose that the spreading activation loosely keeps track of overall sys-
tem activity to act as a local shutdown mechanism. Buildup neuron activity
increases along with burst neurons, and eventually triggers the deep layer in-
hibitory neurons that in turn inhibits collicular areas, resets the cMRF integrator
and reestablishes inhibitory control from the SN.

2.1 Neuron Model

SGI burst neuron behavior has been shown to be mediated through NMDA
receptors in combination with local interconnections. We need a neuron model
that is complex enough to reproduce non-linear membrane potential-dependent
synapse properties, and that can be fitted roughly to the behavior patterns of SC
neurons. On the other hand, a large-scale realistic neuronal simulation is resource
intensive, and any unneeded complexity will greatly increase development and
simulation time without any concomitant improvement of the results.

We use an implementation of the Adaptive Exponential Integrate and Fire
(AEIaF) neuron model of Brette and Gerstner [17] as implemented in the NEST
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(a) (b)

Fig. 3. (a): Activation of the NMDA synapse as a function of membrane potential. Dot-

ted line shows the sigmoid activation profile. Solid line shows the resulting conductance-

based synapse activation. (b): model neuron response to a spike train input to a regular

synapse (top) and NMDA synapse (bottom). A 50 mA input current is added between

50 ms and 100 ms. Model parameters in figure 2(a).

simulator [18], and extend it with a membrane voltage-dependentNMDA synapse.
The AEIaF model is a conductance-based integrate-and-fire model with an expo-
nential soft spiking threshold rather than a hard threshold, and with a second state
variable that recreates membrane potential- and spike-adaptation effects. With
this model we can deploy model neurons with parameters and behavior similar to
corresponding real neurons.

C
dV

dt
= −gl(V − El) + glΔte

V −Vt
Δt + Ie(V − Ee)

+Ii(V − Ei) + In(V − En) + I + w,
(1)

where C is the membrane potential, gl is the leak conductance, El is the resting
potential, and the exponential term creates a soft spiking threshold around Vt

with softness determined by Δt. Ie, Ii and In are the excitatory, inhibitory and
NMDA synaptic inputs respectively, with synaptic reversal potentials E∗.

The synaptic inputs are shaped by an alpha function with time constant τ :

I =
t

τ
e

1−t
τ (2)

w is an adaptation current with time constant τw and sub-threshold adaptation
level set by a:

τw
dw

dt
= a(V − El)− w (3)

A spike event is triggered when the membrane potential diverges due to the
exponential term; in practice a spike is triggered when V reaches a sufficiently
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large value such as 0 mv. When a spike occurs the membrane potential is reset
to Vr and a spike adaptation b is added to the adaptation current w:

V > Vlarge :
{

V = Vr

w = w + b
(4)

NMDA synapses are glutaminergic receptors sensitive to membrane potential.
They have a pivotal role in Hebbian associative learning but here we are fo-
cused only on their non-linear voltage-dependent response. We model an NMDA
synapse as a sigmoid function with gain g where In → 0 at voltage Vmin, In →
Wn at voltage Vmax:

In =
Wn

1 + e
−4g(

V −Vmin
Vmax−Vmin

− 1
2 )

(5)

The activation function is depicted as a dotted line in figure 3(a). When multi-
plied by the voltage-dependent conductance In(V −En), the resulting activation
function will asymptotically approach the conductance gradient resulting in a
lower, shifted peak activation as shown by the solid curve.

The response to regular and to NMDA input is shown in figure 3(b), top
and bottom. The NMDA synapse is unresponsive to input when near the rest-
ing potential. When the membrane potential is raised through a direct current
injection or cholinergic synapse input the NDMA synapse becomes responsive.
The activation is self-sustaining, and needs no further secondary input. This
mechanism forms one part of the burst neuron behavior.

2.2 Spatial Model

The current model focuses on the local network within the superior colliculus.
It is implemented in NEST [18], a simulator for large-scale spiking neuron net-
works, using the AEIaF neuron from the previous section. To ease visualization,
each neuron type is laid out in its own 3x3mm spatial layer; in a biological sys-
tem several of these types are physically intermingled. The superficial, QV and
buildup layers are 40x40 elements or 1600 neurons each. The burst and deep
layer interneurons are 20x20 elements for 400 neurons and a relative density of
25%; it is estimated to be 15-30% in biological systems. The total number of
model elements is 8850 neurons, on the order of 1/20 of the primate SC.

The interconnections have a gaussian weight distribution and 1ms delay unless
otherwise specified. Input → wide-field, QV → build neurons and the build →
build intraconnection have their connection weight center shifted rostrally to
approximate the effect of asymmetric interconnections. The parameters are listed
in table 1.

The model behavior is illustrated in figure 4. The superficial SC layers (not
shown) projects a constant input at 〈2.0, 0.0〉, and the burst neurons are in-
hibited for the first 50ms. The quasivisual and buildup neurons activate from
superficial input. Buildup neuron activity spread is limited by interneuron nega-
tive feedback. When burst neuron inhibition is removed, the NMDA input from
QV neurons and cholinergic input from buildup neurons trigger a burst.
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Fig. 4. Intermediate SC model activity in response to a steady input. From top to

bottom: Quasivisual neuron layer (QV); buildup neuron layer; inhibitory interneurons;

burst neuron layer; and deep layer inhibitory neurons. Superficial SC and synthetic

cMRF integrator not shown. Burst neuron layer inhibited for the first 50ms.

On the left, 10ms averaged spatial activity in spikes/s of each area at 10ms (stimulus

onset), 80ms (burst neuron peak), 120 ms (buildup neuron spreading activity) and 190

ms (deep layer inhibition). On the right, averaged activity traces of neurons in a 300μm

radius around the stimulation center, with the spike train of each center neuron at the

bottom. Dotted lines mark the 10, 80, 120 and 190ms time points. Note the buildup

neuron spreading activation over time on the left and gamma-shaped burst neuron

activity on the right.

Burst neuron activity is integrated in the cMRF (implemented as a set of
50 stochastic spike-summing units). The integrator linearly inhibits the burst
neuron layer. The combination of bursting and gradual inhibition gives us the
characteristic gamma-shaped burst neuron activity profile seen on the fourth
row, right.

Table 1. Model interconnection parameters. r: projection radius; var: gaussian vari-

ance; w: weight (in terms of synaptic conductance); k: proportion of pairwise connec-

tions; τi: excitatory synapse time constant. nr: narrow field neuron; inh: deep layer

inhibitory neuron; IntN: inhibitory interneurons; INT: cMRF integrator.

Model parameters

wide→QV r : 0.2 v : – w : 1.2We

wide→build r : 0.2 v : – w : 1.2We

nr→QV r : 0.2 v : – w : 1.2We

nr→build r : 0.2 v : – w : 1.2We

QV→Build r : 0.5 v : 0.2 w : We

QV→Burst r : 0.5 v : 0.2 w : 2Wn

Build→Build r : 0.5 v : 0.6 w : 2We k : 0.7
Build→Burst r : 0.5 v : 0.6 w : 0.5We

Build→Inh r : 1.5 v : 1.0 w : We k : 0.25

Model parameters

Build→IntN r : 0.6 v : 0.4 w : We

IntN→Build r : 0.6 v : 0.4 w : Wi τi : 1.5

Burst→Inh r : 0.5 v : 0.1 w : 0.5We k : 0.1

Inh→Inh r : 0.5 v : 0.4 w : We

Inh→Burst r : 0.5 v : 0.3 w : 0.5Wi k : 0.2
Inh→QV r : 0.5 v : 0.3 w : 2Wi

Burst→INT w : 1.0
INT→Burst w : −0.04
INT→IntN w : −0.01
INT→Inhib w : −0.04
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The integrator also inhibits the buildup interneurons to allow buildup neuron
activity to spread. As the interconnections are asymmetrical the spreading is
lateromedial and rostral but only weakly caudal, as seen in the second row, left.
This activation spread gradually activates the deep-layer inhibitory neurons and
triggers an inhibitory burst that silences intermediate layer activity and resets
the integrator.

3 Discussion

The saccadic visual system is the most direct visual perception-action loop in
the mammal. The superior colliculus is a major component of this system and
has a direct, functional role in directing saccadic eye movements. CS output to
the brainstem motoneuron systems comes from a population of bursting cells
that directly drive the saccade. It has recently been shown that this burst is
not intrinsic but generated by a local circuit mediated by NMDA receptors. The
precise circuit and the way in which it interacts with NMDA receptors has not
been clearly elucidated. We implemented a straightforward NMDA receptor-like
nonlinear input in a spiking neuron model. When interconnected in a spatial
model consistent with known neurophysiological data, the burst neuron popula-
tion exhibits the expected gamma-shaped bursting behavior.

A distinctive and puzzling feature of the intermediate superior colliculus is
the presence of spreading activation around the time of a saccade. There have
been several suggested reasons for this behavior, none of which seem to fit ob-
served data in the primate. We propose that the behavior acts as a local activity
tracker that triggers a subsystem-wide shutdown in order to avoid tonic activa-
tion. Interconnections within the intermediate SC may be strictly local, so we
show how this spreading activation can occur through local interactions between
buildup and inhibitory interneurons, regulated by an inhibitory input from the
cMRF.

We are developing the superficial SC in a similar manner. This model is be-
ing connected with an eye motoneuron system model also in development, and
with a retinal model to form a complete perception-action loop. This integrated
system is expected to let us model neural-level interaction based on real-world
interactions.

Acknowledgements. The authors gratefully acknowledge the Brain and Neu-
ral Systems Team, Computational Science Research Program, RIKEN for the
support.
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Abstract. We propose an integrated model of the saccadic circuitry in-

volved in target selection and motor command. It includes the Superior

Colliculus and the Basal Ganglia in both cortical and subcortical loops.

This model has spatial and feature-based learning capabilities which are

demonstrated on various saccade tasks on a robotic platform. Results

show that it is possible to learn to select saccades based on spatial in-

formation, feature-based information and combinations of both, without

the necessity to explicitly pre-define eye-movement strategies.

1 Introduction

For living organisms, the ability to filter out the complex noisy sensory envi-
ronment in order to focus attention on relevant events only is crucial. As this
work contributes to the Psikharpax project [1] – which aims at designing a bio-
inspired rat-like robot – we designed a robotic neuromimetic system capable of
triggering gaze orientation movement toward salient stimuli. The combination
of both Superior Colliculus (SC) and Basal Ganglia (BG) is known to be funda-
mental for this capability [2]. Dominey & Arbib [3,4,5] designed a now classical
system level model of the saccadic circuitry, which provided a global explana-
tion of the role and interactions of the implied brain regions. Nevertheless, some
of their design choices are now outdated given the accumulated neurobiological
data concerning this circuit. The present work thus proposes a new model of
the saccadic circuitry including the integration of more up-to-date SC and BG
models. This is the first neuromimetic model of saccadic circuitry with target
selection learning capabilities implemented on a robotic platform. This model
will be tested on various tasks, demonstrating its capability to behave correctly
and to learn to associate spatial or feature-based cues to a reward.

Neurobiology of the circuit. The brain saccadic circuitry involves a number of
cortical and subcortical areas, organized in two main pathways (Fig. 1, left). In

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 114–125, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Input
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Fig. 1. (Left) Saccadic circuitry in the macaque monkey, subcortical pathway in dotted,

cortical pathway in hatched. BG: basal ganglia; CBLM: cerebellum; FEF: frontal eye

fields; LIP: lateral intraparietal cortex; SBG: saccade burst generator; SC: superior

colliculus; TH: thalamus. (Right) Structure of the model , SCi : intermediate layers of

the SC; SCs: superficial layer of the SC; lower dashed box: [6] SC model, upper-right

dashed box: [7] CBTC model.

the subcortical one, retinal input projects directly to the superficial layers of the
superior colliculus (SC), whose deep layers then projects to the saccade burst
generator (SBG), which drives the extraocular muscles. Two derivations are
added to this basic circuit: a superior colliculus-thalamus-basal ganglia-superior
colliculus (STBS) loop [8], which is probably involved in target selection, and
the superior colliculus-cerebellum-saccade burst generator circuit, probably in-
volved in the calibration of the system. The cortical pathway goes from the
retina through the cortical visual areas, to the lateral intraparietal cortex (LIP)
and the frontal eye fields (FEF); LIP and FEF then project to the subcorti-
cal pathway through the SC (minor FEF-SBG projections also exist). Finally,
a cortico-baso-thalamo-cortical loop (CBTC) affects selection processes in the
cortical pathway.

The visual cortex, the LIP, the FEF and the SC are organized in layers of
retinotopic maps representing the visual field. In the rat, the SC maps topology
seem to be linear [9], i.e. position of targets are encoded in a retinotopic space
with a linear mapping (this mapping is logarithmic in primate). As the SBG
is divided in four circuits – respectively responsible for the upward, downward,
leftward and rightward movements – the spatial encoding of the maps has to be
decomposed in burst signals, the so-called spatio-temporal transformation.

In the present work we propose a model of the saccadic circuitry including
the SC and the BG interacting through different loops. We then test this model
on a robotic platform in various saccade learning tasks involving spatial and
feature-based information. Finally, the proposed model is discussed with regard
to previous system level models of the saccadic circuitry.
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Fig. 2. Feature to location transformation. Assuming that each feature channel (e.g.

each color) is modulating the whole activity of a feature map (e.g. color map), each

perceived object is represented by a gaussian activity which location is retinotopically

preserved. The activity amplitude represents the feature amplitude (e.g. quantity of a

given color in the object).

2 Material and Methods

2.1 Model

Our model (Fig. 1, right) selects the target of the upcoming saccade based on
its location in the visual field and on its features; it can learn which locations
and features to favor, using temporal-difference learning (TD). It is then able to
generate the saccadic orders driving the motors.

The previously evoked problem of transformation from the topological encod-
ing of the selected target position in the colliculus output (Motor map on Fig. 1,
right) into a two dimensional output command is solved using the superior col-
liculus model proposed in [6], simplified to use linear maps of the visual field.
This model is fed with a map merging both location and feature information
(Fusion map) – on which the most salient target is selected using a model of
the subcortical basal ganglia circuit – and is based on the basal ganglia model
proposed in [7], in which the cortical components have been removed and the
position of the thalamus changed. According to neuroanatomy of the STBS loop,
the target location information is provided by the visual apparatus of the robot
(see Sect. 2.2) and corresponds to the direct projections of the retina onto the
SC superficial layers. The visual feature detection is fed into the cortical part of
our model, where the selection of the relevant features is operated by a CBTC
loop using the [7] model1.

Concerning visual features, the model’s inputs are a family of maps, each of
them encodes in retinotopic coordinates the activity of neurons responding to a
specific feature only (Fig. 2, left). The selection of the visual features to favor
in the CBTC is based on feature channels receiving the sum of the activity of
the feature maps (Fig. 2, middle). On the output, the interaction with both FC
and BG creates new modulated channels (FC tends to amplify channels and BG
1 Available in Python on ModelDB http://senselab.med.yale.edu/modeldb/
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tends to disinhibit only the maximum channel). The resulting channel amplitude
is the FC activity minus GPi activity, a strong channel will be amplified by FC
and fully disinhibited by BG, where a weak channel will be slightly amplified by
FC but inhibited by BG. Here, the learning capability allows the biasing of BG
disinhibition toward the rewarded features. Finally, normalized feature maps
are multiplied by these channel values in order to obtain modulated feature
maps. The global Fusion map which represents saliency (Fig. 2, bottom right) is
obtained by summing all the modulated feature maps and feeds the previously
described STBS loop.

The parameters of both BG models were adapted as to operate correctly with
the number of channels required by our implementation (720 in STBS and 16 in
CBTC, see below).

The strength of the projections of the inputs of the basal ganglia circuits
(in gray on Fig. 1, right) is learnt using the basic implementation of the neu-
romimetic actor-critic algorithm proposed in [10]. This allows the system to learn
that a location (resp. a feature) is more rewarded than another one, and thus to
bias the selection process when multiple targets are perceived.

In both STBS and CBTC loops, reinforcement learning is computed as follows
(cf. Fig. 3 (right)):
We first compute the TD-error δ

δ = Rt + (γ × Vt)− Vt−1 with Vt = WCritic · Inputt

Vt being the estimated value function at time t, WCritic the Critic input weights,
Inputt the input matrix and γ the discount factor, γ = 0.7 for all. We then
update the Critic weights using eligibility traces:

WCritic ←WCritic + η × δ × ECritic with ECritic ← α× ECritic + Inputt−1

Fig. 3. (Left) Classical Actor-Critic. (Right) Implementation of the Actor-Critic learn-

ing in the Basal Ganglia model. Eligibility traces, acting as memory, are not represented
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Fig. 4. (Left) Picture of the Psikharpax robotic platform.(Right) Schematic of the

experimental protocol. Example for a fixation cue followed by a black screen and then

2 targets.

η is the learning rate and is fixed to 0.0005 and α is the eligibility trace decay
factor fixed to 0.9 (these parameter values are identical in both BG circuits). The
Critic’s weights vector size is N , the size of the Input vector, so connexions are
“all-to-one”. We then compute the Action vector, which is the weighted input:

At = WActor · Inputt

Actor’s weights are updated following:

WActor ←WActor+η×δ×EActor with EActor ← α×EActor+Inputt−1⊗A′
t−1

and A′
t−1 = 1−GPit−1

Actor’s weights size is N × N , connexions are “all-to-all”. So here, compared
to “traditional” reinforcement learning (cf. Fig. 3 (left)), we can see that the
“States” are inputs to be selected, “Actions” are weighted inputs according to
the reward bias. The Basal Ganglia performs the selection on this weighted input
and then the GPi project back to the SC, eventually triggering an action.

2.2 Experimental Settings

Experiments were conducted using our robotic platform Psikharpax (cf. Fig. 4,
left). This platform is equipped with 2 miniatures VGA cameras (Field of view of
approximately 60 ◦ horizontally and 45 ◦ vertically) each mounted on a pan-tilt
mechanism driven by servomotors. Visual processing was real time computed us-
ing 2 BVS BIPS2 processors. This system provides objects’ position and various
features such as movement (speed and direction), color, saturation, luminance
and edges (with edges orientations and corners) but for this experiment we only
used position and color.

The visual input related to target positions is a retinotopic map composed of
120× 23 lPDS neurons [7] with a linear geometry representing a sensory field of
240 ◦ by 45 ◦ (notice that the total sensory field is wider than the field of view
for future usage). All the SC maps in the model have the same size, geometry

2 http://www.bvs-tech.com
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and neurons model. Each unit of the Striatum part of the BG (in the STBS
loop) receives input from 4 SC units. And reciprocally the GPi projects back
to 4 SC units, trying to mimic the “funnel” property of SC-BG connectivity
[11]. Hence the BG in the STBS loop is composed of 60 × 12 (720) channels.
In the non-spatial loop (CBTC), colors are decomposed in 16 values, thus the
corresponding BG entails 16 channels.

The behavior of the system was tested in a number of tasks by putting the
robot’s head in front of a 100cm diameter wide LCD screen at a distance of 65cm
(Fig. 4, right) on which we simply displayed colored fixation and targets cues
over a black background according to experimental protocols classically used
with animals [12].

3 Results

3.1 Basic Behavior

We first tested the operation of the system by reproducing basic behaviors de-
scribed in [12], namely the “saccade task”, the “fixation task” and the “overlap
task”. These tasks where learned using a conditioning paradigm according to
which the system received a positive reward when it succeeded and a negative

Fig. 5. (A) Saccade task. (B) Fixation task. (C) Overlap task. System activity in F:

fixation cue. T: target cue. SCs F: SCs unit at the center of the field of view. SCs T:

SCs unit at the target position. GPi F: GPi unit corresponding to SCs F. GPi T: GPi

unit corresponding to SCs T. SCi: SCi unit corresponding to SCs T. SCi M: SCi unit

on the motor layer corresponding to SCi. E: eye position.
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one when it failed. One can notice that, as our model doesn’t contain any work-
ing memory, we cannot reproduce the “delayed task”. Results are summarized
in figure 5.

– Saccade task: The basic saccade behavior is well reproduced as, when the
target appears, the corresponding GPi unit disinhibits the SCi Motor area
and then triggers a saccade.

– Fixation task: The system succeeds in learning to continuously fixate the
fixation cue while ignoring the distractor. The activity of the GPi at the
location of the distractor shows no disinhibition, preventing any activity on
the motor layer of the SCi and thus no saccade.

– Overlap task: Here again the system successfully learned to perform this
task. The GPi unit corresponding to the target starts to disinhibit only when
the fixation cue disappears. The resulting saccade is not triggered when the
target appears (target+fixation) but when the fixation disappears (target
only).

3.2 Elaborated Behavior

As the system behaves correctly on simple minimal tasks, we now proceed to
some more complex experiments.

We previously described our model as composed of 2 separated loops. The
STBS loop dealing with spatial knowledge and the CBTC loop dealing with
non-spatial knowledge. As both loops are provided with independent learning
capabilities, it should be possible to learn to associate a specific place or a specific
color to a reward.

Spatial reward: The corresponding procedure calls upon a black screen step
(2.5s) followed by a fixation step (4s) during which a central cue (red square)
appears until the robot fixates it. Then the fixation cue disappears and 2 targets
appear (two colored disks, one actual target and one distractor) for 6s maximum
until a saccade is done. Then the procedure restarts with the black screen and so
on. A positive reward is given if a saccade to the desired location is done (always
left or always right) and a negative one if a saccade to the wrong location is done.
Averaging saccades3 are not rewarded. Color of targets are randomly alternated
(blue or green) between trials. Fig. 6A shows the mean results obtained from
10 runs of 100 trials each. We can see that the learning starts to correctly bias
the behavior from around the 50th trial, and stabilizes with a mean performance
of 80%. We can also notice that the learned behavior doesn’t fully block other
behaviors, as a low level of both wrong saccades and averaging saccades still
remains which is largely due to perception variability.

3 Both targets are selected simultaneously and provoke a saccade to the center of

gravity. This behavior is observed in animals.



An Integrated Neuromimetic Model of the Saccadic Eye Movements 121

Fig. 6. A: Results of the “spatial reward” task. B: results of the “color reward” task.

C: Performance of the “spatial/color” task. D: details of types of errors in task “spa-

tial/color” for negative cases.

Non-spatial reward: The procedure for this task is the same than the pre-
ceding one, but we now reward a color based saccade (always green or always
blue with randomly alternating position between trials). Here again, the system
successfully learned the desired behavior quite similarly to the “spatial reward”
task (cf. Fig. 6B). However, the mean performance here is slightly lower and
variability higher. This can be explained by the competition between spatial
and non-spatial learning. Observed behavior shows that spatial learning seems
to have a stronger impact on behavior, so that having the correct colored target
consecutively located at the same place will trigger spatial learning which will
degrade further performance. Indeed, as the fusion map influenced by the CTBC
loop projects to the SBTS loop, the spatial learning has got the “final word”
and thus is more directly involved in behavior.

Combination of spatial and non-spatial: Here we combine the 2 preceding
tasks by rewarding only a specific color at a specific location. This experiment
seems more difficult as, in this case, spatial and non spatial learning are compet-
ing, but performance of good saccade in positive case – i.e. when a good saccade
is possible – rises quickly to near 95% and, after 100 trials, wrong saccades (sac-
cade to both wrong location and wrong color) almost never appear again (cf.
Fig. 6C). So, here, the difficulty is more to learn not to saccade when a negative



122 S. N’Guyen et al.

case appears – i.e. when no good saccade is possible – as the percentage of cor-
rect behavior in this case does not exceed 40%. Fig. 6D shows the details of the
type of error occurring in negative cases. After 100 trials, saccades to the wrong
location fall to near zero. Thus, at the end of the learning, most of the errors are
saccades to the right place but when the wrong color appears. This result is in
accordance with the “color task” where we observed a dominance of the spatial
loop (SBTS).

4 Discussion

We proposed an integrated model of Superior Colliculus and Basal Ganglia based
on recent models [6,7]. To the best of our knowledge, this is the first system
level neuromimetic model of the saccadic circuitry implemented in a robot, that
includes subcortical selection of spatial information (in a STBS loop) and cortical
selection of features (in a CBTC loop) with learning capabilities.

Moreover we demonstrated basic functioning capabilities on classical target
selection tasks. Results have shown to be efficient although the proposed system
is purely reactive, i.e. doesn’t involve any working memory.

We also observed that in our model the spatial learning has a slightly stronger
impact on behavior than the non-spatial one, because it is more directly involved
in motor commands. Indeed, we can see in Figure 1 (right) that the spatial
learning occurs at a lower level, i.e. nearer the output motor map, and thus
has the “final word” on selection. Even if this property should be adjusted by
appropriate weighting, the question whether animals can learn more easily a
spatial reward than a non-spatial one has to be addressed, as this is what the
current version of our model predicts.

The basic learning algorithm used here proved to be sufficient when the system
had to learn simple sensorimotor associations with easily discriminable stimuli
and without long behavioral sequences leading to the reward. Naturally, to deal
with more complex situations, the learning algorithm must be improved [13].

Moreover, following computational considerations, we decided to separate the
STBS and the CBTC learning capabilities. This solution has proved to be effi-
cient, even if our model clearly lacks a cortical spatial selection loop, involving
the FEF, which would allow cognitive control on top of our reactive model and
would probably affect the spatial predominance.

Contrary to previous work, our model does not explicitly contain any explo-
ration behavior module. Indeed at the beginning of the learning task no bias
already exists between targets and thus a systematic averaging saccade should
be done, but inherent noise in “real world” sometime provokes varying delay
in target detection or variations in color perception value. Explicit exploration,
which can be view as noise in selection is here replaced by implicit exploration,
i.e. natural noise in environment. So here, the robotic implementation naturally
solves the exploration problem allowing for a more parsimonious model. This
solution is not said to be the best one, but has proven to be sufficient for the
considered tasks.
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4.1 Related Work

The seminal model of Dominey & Arbib [3,4,5] has memory and sequence learn-
ing capabilities that we have not replicated yet, and is thus more complete with
regards to these points. Nevertheless, it is outdated on at least two aspects.
First, while they integrate BG models in cortical loops only, we took into ac-
count the now clearly identified STBS loop, which can operate faster than the
cortical circuitry. Second, their basal ganglia model is oversimplified: it is based
on the direct/indirect interpretation of the BG connectivity [14], from which it
keeps the direct pathway only. Consequently, simultaneously presented targets
do not interact in the BG circuitry, preventing the resolution of conflicts. Their
SC motor layer thus requires an ad hoc winner-takes-all mechanism. Our BG
model, using most of the known BG connectivity, solves such conflicts.

More recently, Brown et al. [15] proposed a model including a CBTC loop
dedicated to saccade strategy selection, and a STBS loop dedicated to target
selection. Here again they include working memory mechanisms that we have
not yet included. Their strategies specify whether the saccade will be based on
the fixation point, the target position or target features. We showed here that
such an explicit strategy selection is not necessary for the basic tasks they tested
and that we implemented, our cortical feature selection circuit modulating the
subcortical location selection circuit is sufficient. Moreover, their STBS does not
stand on its own as it is strictly driven by cortical inputs, while our decorticated
system is still able to learn and generate location- or fixation-based saccades.
The details of their BG circuitry also suffer from limitations, discussed in details
in [16].

Finally, Chambers et al. [11] proposed a model integrating both the subcorti-
cal and cortical pathways, where a single BG model dedicated to location-based
selection integrates FEF and SC inputs. Using the various positive feedback
loops of this circuitry, they show that manipulating the level of dopamine in
their BG model generates reaction time and saccade size modifications remi-
niscent of Parkinson’s disease patient behavior. Unfortunately, they rely on a
single thalamus module, receiving both SC and FEF inputs, while it is clearly
established that CBTC loops run through the ventral anterior and ventral lateral
nuclei and the STBS loops through the pulvinar and intralaminar nuclei.

4.2 Future Work

It has been explained that, unlike previous works, the proposed model doesn’t
contain any working memory and thus cannot reproduce memory related tasks.
Working memory related activity has been demonstrated in quasi-visual cells in
the FEF, the LIP, the SC and the BG. Many models of these cells have been
proposed (e.g. [17,18]) Therefore, we will add such a capability in future work.

Moreover, the SC is known to integrate vision, audition and tactile information
[19]. In this work we only used visual information in order to test our model,
but as our robotic platform is also equipped with auditory [20] and tactile [21]
capabilities, we intend to extend it to these modalities.
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Abstract. When attempting to model and understand bat biosonar be-

haviour, it would be very useful to know exactly what calls the bat emits,

that is, what it really says, in the course of its exploration of the world.

Calls could be recorded by miniature radio microphone, but such sys-

tems are complex and not all bats are sufficiently strong to carry one. In

this paper we describe a technique for reconstructing the actual emitted

signal of a bat using recordings collected by an array of remote micro-

phones. The theory of the technique is described, experimental results

with laboratory-recorded data (for which ground truth is available) are

presented, and the performance of the method is discussed.

Keywords: signal, reconstruction, bat, behaviour, robotics, sensor.

1 Introduction

Echo-locating bats are among the most sophisticated users of sonar sensing sys-
tems, prompting engineers to try to discover how they adapt their emitted calls
for the various tasks in which they engage. Unfortunately, it is usually not pos-
sible to record the call as actually emitted by the bat. First, the acoustic energy
in the call is not emitted uniformly in all directions. The shape of the bat’s head
interacts with the sound field emitted by the bat’s mouth and/or nostrils, and
the resulting pattern of interference means that certain frequencies are radiated
more strongly in some directions than in others.

If the call can be recorded locally, using a small telemetric microphone for
example [6], a reasonable approximation of the emitted call can be obtained —
although the microphone cannot be placed directly in front of the bat’s mouth
without interfering with normal behaviour: it usually sits on top of the head,
between the ears. Also, not all bats can carry such a microphone: either the
system must be miniaturised, or the bat must be sufficiently large.

On the other hand, bat calls are often recorded using arrays of distant mi-
crophones arranged around the bat’s workspace, capturing a variety of different
recordings of the bat’s vocalisations. Unfortunately, propagation of ultrasound

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 126–135, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Reconstructing the Acoustic Signal of a Sound Source 127

through air results in substantial frequency-dependent attenuation of the signal,
and such recordings are therefore filtered versions of the emitted call with the
filtering depending on the direction from emitter to microphone combined with
the effect of the path between the two.

Clearly, in principle, if one knows the directivity of a sound source — that
is the relative intensity of sounds emitted in differing directions — and the
positions of remote microphones with respect to that source, it should be possible
to compute the filtering effects and invert them to recover the signal emitted by
the source. This is the key idea of the technique described in this paper.

Bat positions associated with calls can be recovered by processing microphone
recordings to determine differences in arrival time of the signals. These differences
are sufficient to determine the position of the source, given at least four micro-
phones in general positions. [1] and [2] describe the basic technique and ways to
improve it. Bat emission directivity can be computed from knowledge of the actual
shape of the bat’s head, using acoustic simulation techniques [7], [8]. Microphone
positions must also be known, but these are relatively easy to obtain.

Thus, we wish to reconstruct the signal emitted by a broadband directional
sound source of known directivity, using recordings from a number of micro-
phones whose positions in a global reference frame are known. We assume that
the position of the sound source is known, but its orientation with respect to the
global frame is not, and must be estimated from the recorded signals.

Orientation estimation, using the technique outlined below, has already been
tested through simulations on PC, [3], and experiments performed in a labora-
tory environment with a Polaroid transducer as sound source, [4] and [5], using
a setup illustrated in Fig. 1. In both cases, orientation estimation was found to
be very accurate even in noisy conditions, as the error between estimated and
real source orientation was at most than 6◦ in the worst case. Data from the
same experimental setup is used in this paper to assess the performance of the
signal reconstruction method.

Fig. 1. Experiment: Polaroid transducer on

tip of robot arm in front of 13 microphones

(white circles). Axes X, Y, Z define world ref-

erence frame.

 

Sθ
Sφ

X

Y

Z

M
MX

MY

MZ

Fig. 2. Bat orientation gived

by azimuth and elevation an-

gles (θS , φS); microphone M po-

sition with respect to it by

(XM , YM , ZM )



128 F. Guarato, J. Hallam, and D. Vanderelst

The paper is structured as follows. Section 2 gives a mathematical formula-
tion of the problem and its solution, section 3 contains experiment results and
their discussion with particular attention to method limitations, while section 4
summarizes the work described herein and illustrates the future strategies to be
considered for improving its performances.

2 Reconstructing Source Signals

2.1 Problem Setting

A sound source with known directionality is placed at a fixed position in three-
dimensional space and produces an acoustic signal having definite amplitude
at a sufficient number of frequencies. Several microphones record the signal at
different locations around the source; source and microphone positions in a world
reference frame are known. In such a situation, a source reference frame centered
at the source and aligned with the source directivity can be defined, and the
microphone positions can be referred to it. Then, given the source directivity, the
problem is to reconstruct the signal produced by source as it is a few millimeters
in front of the source, so that the reconstructed signal is not filtered throughout
distance and source directivity.

Fig. 2 illustrates the reference frame in which the position of microphone M
is representd by the vector of Cartesian coordinates (XM , YM , ZM ). The true
source orientation we look for is given by the pair of azimuth and elevation
angles (θS , φS) which relate the source reference frame to the global frame.

2.2 Analytical Solution

Let D(f, v) be the function describing the source directivity, that is, the relative
amplitude (and phase) of an acoustic signal at frequency f measured to position
v = (x, y, z), the vector describing a microphone position in three-dimensional
space with respect to the source reference frame. Let (θS , φS) be the azimuth
and elevation angles defining the orientation of the source in three-dimensional
space. From source directivity, source orientation and microphone positions with
respect to the source, it is in theory possible to calculate the amplitude of the
acoustic signal recorded by each microphone at each frequency for any orien-
tation the source can assume. The prediction of the amplitude of the acoustic
signal received by microphone m at frequency f is

gmf = efD(f, RS(vm)) = efD(f, vS
m) , (1)

where vS
m represents the position of microphone m rotated by RS , that is by

the two angles (θS , φS) in order to transform from the global to the source
reference frame. The term ef is a proportionality factor depending on frequency
and represents the unknown spectrum of the call given by unknown intrinsic
properties of the source (e.g. a bat) itself. Eq. 1 holds for all M microphones
and all F frequencies present in the acoustic signal. RS , which expresses the
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relationship between the source reference frame and the global reference frame,
is the rotation corresponding to the source orientation we look for.

The estimate of the true rotation RS should take into account the difference
between the calculated amplitude corresponding to the general rotation R and
the true measured amplitude gmf at microphone m

gmf − ef (R)D(f, R(vm)) , (2)

for all microphones, for all frequencies. An error function E(ef , R) is built up
from (2), see [3]-[5], as function of rotation R the source assumes. Function E
is linear in the unknown call spectrum ef and is minimized for a given rotation
when ef has the following expression:

ef (R) =
∑M

m=1 ĝmfD(f, R(vm))∑M
m=1 [D(f, R(vm))]2

. (3)

Expression (3) for ef can be substituted into E(ef , R) so that it depends only
on the variable R, see [3]-[5]. The true rotation of the source should correspond
to the rotation minimizing E(R), that is,

R̂S = arg min
R

E(R) , (4)

being the estimation of the source orientation in terms of its azimuth and eleva-
tion angles (θ̂S , φ̂S).

The spectrum of the signal produced by the source, ef , can in theory be
reconstructed by substituting the estimated orientation R̂S as R in (3) and
calculating the amplitude of the signal emitted by source for each frequency of
the signal. The time-domain signal is obtained by inverse Fourier transform

rt = F−1 [ef ] . (5)

Expression (5) can be implemented as a linear combination of filtered microphone-
recorded signals, thus. Let

Γmf =
D(f, R(vm))∑
m D2(f, R(vm))

and γmt = F−1 [Γmf ] , ∀f, ∀m , (6)

in the time domain, representing the estimated inverse filter from microphone
m to the composite reconstructed signal. The component of the reconstruction
provided by microphone m can be computed convolving recordings gmt and γmt

ρmt = gmt ∗ γmt = gmt ∗ F−1

[
D(f, R(vm))∑
m D2(f, R(vm))

]
, ∀ m = 1, . . . , M . (7)

At this point, by superposition (addition) of ρmt terms (one for each micro-
phone), the final reconstructed signal is

rt =
M∑

m=1

ρmt . (8)

Note that in this computation both the amplitude and the relative phase of each
microphone signal is needed.
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3 Experiments

The experiments described in this section make use of a Polaroid transducer
as sound source whose acoustic signal we aim to reconstruct according to (5)-
(8). Data collected in these experiments were previously used for estimating
transducer orientations using (2)-(4), see [4]-[5]. In the following, knowledge of
transducer orientation is used as input for reconstructing its signal. The following
results were obtained by processing a set of 1500 samples, corresponding to the
duration of the signal emitted by the transducer, of microphone recordings. The
first sample of each portion was determined analytically in the recordings by
considering the distance of each microphone from transducer, and so the time
delay between emission and reception, or manually by inspection of the recorded
signal traces.

The Polaroid transducer sound source used in the experiments has a directiv-
ity quite well approximated by a piston in an infinite baffle,

DT (f, v) =
1
d
· 2 · |J1(ka sinψ)|

|ka sin ψ| , (9)

where the source reference frame is chosen aligned with the piston axis, d =√
x2 + y2 + z2 is the distance of the listener whose position with respect to

source is given by v = (x, y, z), k = 2πf/c with c being the velocity of sound
in the air is the wavenumber of the emitted signal, a is the diameter of the
transducer (26mm for the Polaroid) and ψ = arccos(cosφ cos θ), θ and φ be-
ing azimuth and elevation angles defining the orientation of vector v in three-
dimensional space with respect to the transducer axis. The directivity of (9) is
further corrected for the frequency-dependent absorbtion of ultrasound by air.

Using the Polaroid transducer in a laboratory setting means that ground truth
information about the transducer position, orientation and emitted call spectrum
is readily available.

3.1 Experimental Setting

A 13 microphone array was set in a laboratory environment for recording the
acoustic signal produced by a Polaroid transducer placed in front of it, see Fig.
1. Microphone and transducer positions are shown in Table 1 with respect to the
global reference frame of Fig. 1. The transducer was oriented as desired using a
robot arm and produced an acoustic signal that was recorded by microphones.

In the processing of the signals collected in the experiments, temperature value
and percentage of humidity were both taken into account, as causes affecting the
the amplitude of an acoustic signal spreading out into the environment. Results
presented below were obtained using averaged data from 50 calls of the Polaroid
transducer collected at each position and orientation.

3.2 Results

Fig. 3 is the original acoustic signal, we aim to reconstruct, at a distance of
4mm from the transducer. It is a down-swept frequency modulated chirp in the
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Table 1. Experiments. Positions (cm): x, y and z Cartesian coordinates.

Microphone M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 Transducer

X 76 96 131 131 131 131 95 74 131 131 131 131 131 47

Y 22 22 15 25 45 76 15 15 12 32 52 62 82 42

Z 0 0 6 6 6 6 0 0 26 26 26 26 26 27

range [30kHz, 90kHz], modelled on the typical call of the bat Myotis daubentonii .
Fig. 4 is the reconstruction associated with (0◦,−20◦) orientation. The time
domain signal presents a small notch around sample 1000: this affects the Fourier
transform at low frequencies, as its modulus reveals a smaller amplitude at low
frequencies than the one of Fig. 3.

Orientation (20◦,−20◦) gives the reconstruction of Fig. 5. Several significant
notches are present. If the sample at which the recording of each microphone
starts is manually chosen by checking the time domain recordings, the recon-
struction is that of Fig. 6: notches disappear and modulus of the Fourier trans-
form presents values higher than in the original signal at low frequencies.

Transducer orientation (20◦, 0◦) gives the reconstruction of Fig. 7: it presents
notches, even they are not as significative as the ones in Fig. 5. If starting sample
of each recording is manually chosen, reconstruction becomes that of Fig. 8.

Fig. 9 shows the differences between the modulus of the Fourier transform
of the reconstructed signal and the modulus of the original one in two cases:
orientation (0◦,−20◦) and orientation (20◦,−20◦). In the latter, reconstruction
with both analytically and manually chosen starting samples of the recorded
signals are presented.

3.3 Discussion

Results in the previous section show signal reconstructions whose accuracy de-
pends on transducer orientation and on precision in choosing the first sample of
transducer’s signal in each microphone recording. Indeed, the sample at which
each microphone recording is supposed to start was calculated through the usual
analytical formula considering the distance between transducer and each micro-
phone. Reconstruction corresponding to orientation (0◦,−20◦), Fig. 4, is similar
to the true signal and Fig. 9 (A) shows an error between the Fourier transforms
whose values are smaller than 0.4 in the low frequency range, otherwise less
than 0.1. The biggest value appears in the low frequency range and corresponds
to the notch in the time-domain signal of Fig. 4. Fig. 5 depicts a signal very
different from the original one, as all notches are visible in Fig. 9 (B). Manually
choosing first samples of transducer’s signal in microphone recordings gives a
reconstruction, Fig. 6, where notches are not present and the difference in Fig. 9
(C) is much reduced. However, manual selection of starting samples when trans-
ducer orientation is (20◦, 0◦), Fig.s 7, 8, does not make difference because the
beginning of each recording was hard to determine even manually.
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(B) orientation (20◦,−20◦); (C) orientation (20◦,−20◦) samples manually chosen

Manual choice of the sample at which each microphone recording starts guar-
antees better reconstructions as it is generally more accurate than the calcula-
tion of the same samples based on the distance between the microphone and
the transducer. To see why this is so, consider that the reconstructed signal is
a superposition of signal estimates from the various microphones. Equation (3)
can, because the Fourier transform is a linear operation, also be written as

rt =
M∑

m=1

F−1

⎡⎢⎣ gmfD(f, R̂(vm))∑M
m=1

[
D(f, R̂(vm))

]2
⎤⎥⎦ , (10)

that is, rt is expressed as superposition of inverse Fourier transforms, one provid-
ing the estimated signal contribution for each microphone. An incorrect selection
of the sample at which each microphone starts recording the transducer signal
is equivalent to applying a delay to the corresponding component; the phase of
its Fourier transform is changed and the microphone’s contribution in (10) may
interfere destructively with others resulting in notches in the final reconstructed
signal, like the case of Fig. 5. The separation of the notches in the frequency
domain is related to the relative delays of the signals being combined. The same
argument has been proposed to account for how bats may distinguish closely
spaced reflections from an object [10,11].

Nevertheless, manually choosing the starting samples is not enough for our
purposes, see Figs. 7-8 where manual selection of samples does not guarantee
a good reconstruction. This may be due to the combination of microphone po-
sitions and transducer orientation, such that at high frequencies (which occur
at the start of the chirp) some microphones receive a zero- or low-amplitude
signal, as their positions correspond to a null in transducer directivity. Hence,
manual selection of the signal starting point identifies a sample located late
with respect to the true start and the incorrect alignment of the signal provokes
a reconstructed signal different from the original one. This problem could be
overcome by using a better technique for determining true signal start in the
recordings.

Fourier transforms depicted in section 3.2 were all normalized with respect
to the highest value of the modulus of the original signal Fourier transform.
Differences in Fig. 9 were calculated considering the normalized functions.
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4 Conclusions and Future Work

This paper presented a method for reconstructing the acoustic signal produced
by a directional sound source provided that its signal is recorded through a
set of microphones whose positions with respect to source are known as well as
source directivity. The method estimates source orientation relative to the global
(microphone) reference frame, which is needed as an intermediate in the signal
reconstruction. A mathematical formulation of the method was given and ex-
periments in a laboratory environment for testing it in ordinary conditions were
described. Some reconstructions of the original signal produced by a Polaroid
transducer were chosen to be shown: the first one resembles the original signal,
the second needs manual selection of the sample when transducer’s signal starts
to be recorded in order to return a better approximation of the original signal
whereas the third one does not improve even with manual selection.

Section 3.3 points out how reconstruction strongly depends on the right selec-
tion of the samples in the recordings that should correspond to the start of signal
reception in each microphone. In particular, the case of Figs. 5-6 clearly shows
how a correct selection of these samples leads to a signal much more similar to
the original one, though in the case depicted in Figs. 7-8 even a careful man-
ual selection of the samples does not greatly improve the result. Mathematical
formulation of the problem is correct, but developing a strategy for correctly
selecting the initial samples in microphone recordings is needed.

Results presented in this paper are to be considered as a first application of
the method in order to check which problems need to be solved before applying
it to investigating the behaviour of real bats. It is important to say that this is an
intermediate step: in the paper we focused on the lacks and defects of the method
and suggested what we think are the causes, in order to show the next research to
perform. As a future subject, a strategy for automatically selecting the starting
sample of each recording is needed. In [9] a method based on using the reflected
intensity distribution to discriminate time delays between three or more closely
spaced object echoes is proposed. Another strategy to try is the spectrogram
correlation and transformation model (SCAT) receiver [11] that has been used
for modelling the high accuracy of FM bats in discriminating arrival times of
different overlapping echoes. Both of these possible solutions take the bat receiver
system as an example of accuracy. These methods could be used for estimating
the exact samples in microphone recordings where the transducer signal starts by
incrementally accumulating microphone contributions into the reconstruction,
at each step checking to see whether the signal appears to contain “multiple
echoes” (the effect of adding an incorrectly-delayed signal being equivalent to
that generated when receiving multiple echoes from close spatial positions).

The ultimate goal for the technique presented in this paper is application to
real bats whose calls have been recorded through a microphone array, for ex-
tracting two acoustic behavioural features: bat head orientation when emitting
a call and the call itself. Knowledge of the emission pattern of the bat is also
needed. Reliability of the method when reconstructing bat calls could be verified
by comparing the reconstructed signal with one recorded through a telemike-like
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telemetry system [6] mounted on the head of the bat. The bat of primary interest
for that work, N. leporinus, is large enough to carry a telemetry system. Noctilio
directivity could be recovered through acoustic simulation, see [7], provided that
a 3D model of its head is available, though still a first evaluation of the per-
formance of the method might be pursued by using an approximate transducer
directivity such as (9).
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Abstract. It has been suggested that it is advantageous for bats to

adapt their emission beam pattern depending on the situation. Hart-

ley [9] has proposed that bats could steer the direction in which they

emit most energy by controlling the phase relationship between the sound

emerging from both nostrils. In this paper, we evaluate based on sim-

ulations, whether such an adaptive mechanism would be viable in FM

bats given their specialized facial morphology. We find that these bats

could indeed relocate the center of their emission beam pattern using a

phased array mechanism. Furthermore, we list two ways in which this

would help bats localizing target objects.

1 Introduction

All bats of the suborder Microchiroptera use biosonar as a means of navigating
and hunting in dark and complex environments [8]. These animals emit short
ultrasonic pulses and derive information about the environment and prey from
the returning echoes. A number of studies have revealed that bats use their
sonar systems adaptively. They have been found to change the bandwidth, the
frequency and the duration of their emissions to better suit the task require-
ments [24, 22, 3]. In addition to actively controlling the properties of individual
emissions, bats are also known to adapt the properties of the emitted sequence
of calls [23,13] to different stages of the same task e.g., systematic changes in the
inter pulse interval when homing in on prey. Social constraints on top of task
constraints can also induce bats to alter the properties of their emissions. It has
recently been shown that individual bats hunting in a group shift the frequencies
of their emission to avoid jamming [25, 3] or stop echolocating altogether [2].

So far, one type of adaptation has received little attention. Bats could assign
more energy to a part of space (a direction) that is of particular interest to them
by either moving their heads or by actively shaping the radiation pattern of their
emissions (i.e. their emission beam pattern).
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In an experiment, the bat Eptesicus fuscus was found to actively probe the
boundaries of a passage through an obstacle [22]. This indicates that bats select
what parts of the environment they ensonify. In addition, evidence suggests that
bats actively shape their emission beam pattern. Surlykke and colleagues [24]
suggested that Myotis daubentonii can vary the width of its emission beam
pattern. According to these authors, this bat focuses its emitted energy to be able
to detect targets from a larger distance if needed. Rhinolophus ferrumequinum
has been found to vary it emission beam pattern considerably despite fixing
the head-aim [17]. This last finding has let Hartley [9] to suggest a mechanism
by which CF-FM bats calling through their nose could alter the shape of their
emission beam pattern. He proposed that these bats could control the horizontal
position of the acoustical axis by actively varying the phase relationship between
the sound waves emerging from both nostrils. CF-FM bats emit calls that mainly
consist of a long narrow band component of constant frequency. The proposal of
Hartley [9] was inspired by existing radar technology, i.e. Phased Array Beam
Steering. Indeed, varying the phase difference between the nostrils would enable
the bat to steer the direction of the mainlobe of the emissions in the fashion of a
Phased Array [19]. So far, the results of Schnitzler and Grinnell [17] are the only
evidence that indicates inter call variation in the emission beam pattern in a
bat species emitting through its nose. Interestingly, Schnitzler and Grinnell [17]
have not elicited calls from (partially) sedated bats by external brain stimulation
as is typically done (e.g. [10, 18, 21]). Instead, their test subjects were awake.
Therefore, the animals in their experiments might have been more in control of
their vocalizations than is usually the case.

Here we numerically evaluate whether the suggested beam steering mecha-
nisms could be of practical use to bats. Hartley [9] has evaluated his proposal
only by considering the beam emission pattern of two baffled pistons represent-
ing the nostrils of a bat. However, in bats the nostrils are typically embedded in
a facial morphology that is assumed to have evolved to support the beamforming
of the bat. Most bats that call through their nose are equipped with a promi-
nent noseleaf [14]. In the few species studied, these structures have been shown
to play an important role in directing the emitted pulses [17, 18, 10]. Removing
or altering the noseleaf results in a broadened or changed emission beam respec-
tively. The noseleaf, as well as the rest of the facial morphology, could constrain
the directionality of the emission beam pattern and reduce the range over which
the beam can be relocated. Furthermore, in his original proposal, Hartley [9]
did not evaluate how the spatial sensitivity of a bats complete sonar system
(i.e. both hearing and emission) is altered by beamsteering. We want to evaluate
how relocating the emission beam changes the sensitivity of the complete sonar
system.

Several authors have reported that bats can move their noseleaf back and
forth [10, 18, 26]. Hence, as suggested by these authors, noseleaf deformation
could be an additional mechanism by which these animals could actively al-
ter their emission beam patterns. Therefore, we also test whether, controlling



138 D. Vanderelst, F. De Mey, and H. Peremans

Fig. 1. Views of the 3D model of M. microtis: (a) perspective view of the model; (b)

Model with noseleaf removed ; (c) Illustration of the bending of the noseleaf: (1) original

position of the noseleaf; (2) bent position of the noseleaf; (d) Detail and measurements

of the noseleaf.

the horizontal position of the emission beam pattern would be compatible with
control over the vertical position due to noseleaf movement.

We test Hartely’s [9] hypothesis by simulating both the emission beam pattern
and the spatial hearing sensitivity of the neotropical bat Micronycteris microtis.
This bat emits broadband pulses containing several harmonics between 50 and
160 kHz [7] making its noseleaf, measuring about 7 mm in length, quite large with
respect to both the wavelengths in the emission and the bat’s body dimensions
(length: 35-51 mm, [16]).

2 Methods

The complete head of a Micronycteris microtis specimen (see figure 1) was
scanned using a Skyscan 1076 Microtomography machine at a resolution of 35
μm. After reconstruction a 3D mesh model was extracted using standard biomed-
ical software. This initial model was semi-automatically simplified and smoothed
(see [4] for details of the procedure).

The final model was subjected to an acoustic 3D boundary element simulation
[15]. This simulation technique has been validated against measurements of the
spatial hearing pattern for the bat Phyllostomus discolor [4]. Virtual receivers
were placed on an imaginary sphere with a radius of 1 m centered around the
bat. Virtual point sources were placed at the location of the nostrils to simulate
the emission beam pattern The simulations were run for different versions of the
bat model: the intact model, a model from which the noseleaf is removed (figure
1b) and a model in which the noseleaf is bent forward about 10 degrees (figure
1c). Based on the spectrum of the calls of M. microtis reported by Geipel [7], we
simulated the emission patterns from 50 kHz to 160 kHz in steps of 500 Hertz.
Emission beam patterns are simulated with a spatial resolution of 2.5 degrees in
azimuth (θ) and elevation (φ) over a range of -90 to +90 degrees (the resolution
is given by the position of the virtual receivers).

The spatial hearing sensitivity was simulated by placing five virtual point
sources in the right ear canal [4]. The same virtual receivers as for simulating
the emission pattern were used. We can use sources instead of receivers to sim-
ulate the spatial hearing sensitivity of the bat due the reciprocity principle [19].
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We report on the simulated sound pressure picked up by the virtual receivers
averaged across the five sources.

Below, we report on the normalized acoustic energy radiated or received per
unit solid angle in each direction as given by [19],

Eθ,φ = 10 · log 10

⎡⎣∑
f

P 2
f,θ,φ

Maxf,θ,φ P 2
f,θ,φ

⎤⎦ (1)

with Pf,θ,φ denoting the magnitude of the pressure and f the frequency. In this
equation, Maxf,θ,φ P 2

f,θ,φ denotes the maximum magnitude across all azimuth
and elevation positions for each frequency. The simulated emission beam pattern
is independently normalized for each frequency such that∑

θ,φ

P 2
f,θ,φ cosφΔθΔφ = 1. (2)

Hence, the results presented below assume that the bat emits calls with a flat
spectrum in the range 50 to 160 kHz. Additionally, we assume that all radiated
energy stays within the frontal hemisphere.

We conjecture that, because M. microtis uses broadband signals, azimuthal
beam steering is most easily achieved by differentially varying the path lengths
of the sound channels. Anatomical findings support the hypothesis that bats
can deform the nasal tract [6]. Furthermore, from our CT data of M. microtis
we found that the complex cavities leading up to both nostrils are bifurcated
for about 10 mm (see figure 2). This distance seems long enough for the bats
to be able to impose a functionally relevant path length difference between the
sound channels leading up to the left and the right nostril. In the current report,
we investigate the effect of a path length difference up to 1 mm. It should be
noted that, to achieve this, the bat needs only be capable of creating an opposite
change of ∓ 0.5 mm in the length of each of the paths leading to the right and
the left nostril.

Fig. 2. (a) Top view of a 3D model of the nasal and paranasal cavities of the scanned

specimen of M. microtis. (b) The same 3D model embedded in a rendering of the skull

for reference. All measures in millimeter.
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Fig. 3. The emission beam pattern for the 3 bat models and the baffled pistons as

a function of three imposed path length differences (-1 mm, 0 mm and 1 mm).The

patterns are in dB and normalized (max. = 0). The contours are spaced 3 dB apart.

Orig.: Original model, Bent: Model with bent noseleaf, Cut: Model without noseleaf,

Pol.: Baffled pistons.

3 Results

We first discuss the effects of the introduced path length differences on the
simulated emission beam pattern of M. microtis. In a subsequent section we
discuss the effect on the combined spatial sensitivity of the bat sonar system
(emission beam pattern convolved with the hearing spatial sensitivity).

3.1 Emission Beam Pattern

We calculated the emission beam patterns for the different 3D models by im-
posing a difference in path length varying between -1 mm and 1 mm in steps
of 0.25 mm (-1 mm corresponding with the path length leading up to the left
nostril being 1 mm longer than that of the right nostril). The resulting emission
patterns are illustrated in figure 3. For each imposed path length difference we
extracted the centroid of the main lobe in the emission pattern of the different
models. The main lobe is defined as the region within the -3 dB contour and
its centroid gives a stable estimate of the direction in which the most energy is
radiated [4, 5, 1].
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Fig. 4. (a) The location of the centroid for the 3D bat model as a function of imposed

path length difference between the nostrils. The circles depict the data for the original

model while the triangles indicate the data for the model with the bent noseleaf. (b)

Idem, but for the model without the noseleaf. (c) Idem, but for the baffled pistons

placed in the same configuration as the nostrils of the bat specimen. (d) This figure

indicates which part of the frontal hemisphere is plotted in figures a-c.

Imposing a path length difference of 1 mm between the sound channels leading
up to the left and the right nostril causes the main lobe of the emission beam
pattern to shift in azimuth over a range of approximately 50 degrees (figure 4a).
Bending the noseleaf 10 degrees forward shifts the mainlobe to a new position 13
degrees lower in elevation. Furthermore, the results show that both mechanisms
can be combined to steer the sonar beam in both azimuth and elevation. Indeed,
imposing the same path length differences between the nostrils with the noseleaf
bent down yields about the same sweep of the main lobe in azimuth than for
the model with the noseleaf in the upright position (figure 4a).

The simulation approach used here allows to investigate the limitations im-
posed on beam steering by the facial morphology of M. microtis. For that pur-
pose, a simulation of a model with the noseleaf removed (see figure 1b) is in-
cluded. The results in figure 3 show that the radiation pattern of the bat model
without the noseleaf is significantly elongated along the elevation dimension
showing that the noseleaf’s role is mostly, as expected from its shape, focusing
the energy radiated along the elevation dimension. However, the results in figure
4b show that the beam steering is not enhanced by removal of the noseleaf.

We also tested whether the facial morphology, apart from the noseleaf, of M.
microtis imposes any limits on the beam steering. To this end, the emission
beam pattern of two baffled pistons [19] was evaluated. The diameter and the
orientation of the pistons were chosen to provide an optimal fit to the radiation
pattern of both nostrils. The nostrils turned out to be best fitted by pistons with
a diameter of 1 mm and an orientation of 0 degrees in azimuth and -13 degrees
in elevation (fitting data and procedure omitted due to space constraints). The
pistons were spaced 1.53 mm apart in the horizontal direction. This is the dis-
tance between the nostrils of the M. microtis specimen used to create the model.



142 D. Vanderelst, F. De Mey, and H. Peremans

Fig. 5. (a) The spatial sensitivity of the right ear of the 3D bat model. The values are

in dB and the contourlines are spaced 3 dB apart. (b) The combined spatial sensitivity

of the sonar systems’ right ear as function of the imposed path length difference.

For a sinusoidal excitation, the magnitude of the far-field pressure produced by
the baffled piston emitters [19] is calculated using the equation derived by [20].

Figures 3 and 4c show that both the extent of the sweep of the combined
piston model as well as the overall shape of the radiation patterns correspond
quite well with the bat model with the removed noseleaf.

The results presented so far indicate that the morphology of the emission
system of the bat allows for phased array beam steering. Moreover, the facial
morphology does not constrain this ability as the azimuthal sweep for the original
model had the same extent as that of two pistons placed in the same configuration
as the nostrils.

3.2 Combined Spatial Sensitivity

The spatial hearing sensitivity of the right ear of the model is displayed in figure 5a.
We convolved the hearing sensitivity of the left ear of the model with the emission
beam pattern to arrive at the combined spatial sensitivity of the complete sonar
system. The combined spatial sensitivity of the system for the nine path length
differences is plotted in 5b. From these plots, it can be seen that the direction of
highest sensitivity shifts with the introduced path length difference.

3.3 Gained Localization Performance

In the previous paragraphs we discussed how the simulated emission beam pat-
tern and the complete spatial sensitivity of the bat model changed as a function
of the imposed path length difference. Here we briefly indicate how these changes
could support better localization by the bat.

By sweeping the center of the emission beam pattern through a number of
known azimuth positions, the bat could locate an object by noting the imposed
path length difference that returns the strongest echo [9]. Indeed, as illustrated
in figure 6a, for a wide range of azimuths, the path length difference resulting in
the strongest echo is related to the azimuthal position of the target. Therefore,
relocating the main beam of the emission pattern allows for a simple azimuth
determination in the range -40 to +40 degrees.
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Fig. 6. (a) Energy in the received echo as a function of imposed path length difference

and azimuthal target position for 0 degrees elevation. (b) The gain in energy as a function

of space by imposing a path length difference between the nostrils of -1 and +1 mm.

Sweeping the emission beam, also allows the bat to assign energy to a region
of space for which its ears are marginally sensitive. As illustrated in figure 6b,
imposing a path length difference of -1 or +1 increases the energy assigned to
certain peripheral regions by up to 10 dB. This might allow the bat to exploit
the spectral localization cues generated in the periphery by the filtering of the
ears that are not usable when the echo is too weak.

4 Conclusion

Phased Array beam steering has been used in sonar applications for a long time.
Both medical and industrial applications make use of phased array principles.
Exactly 20 years ago, Hartley [9] must have been the first to propose that an-
imals, in casu bats, might steer their sound emissions by introducing a phase
shift between two sites of sound production, i.e. the left and the right nostril.
We investigated whether the facial morphology of a bat allows for this. From
the results presented here we conclude that, theoretically at least, M. microtis
is able to use both path length differences and noseleaf movements to shift the
location of the main lobe of its spatial sensitivity. Steering the emission beam
by phase differences in addition to head movements might have evolved as a
energetically efficient and fast way of relocating the focus of attention (akin to
eye movements in mammals). Moreover, being able to shift the emission beam
without moving the head could be interesting for flying and swimming animals
when fluid dynamics do not allow for large head movements.

FM bats typically emit rather short pulses. For example, M. microtis emits
pulse of less than 1 ms. Therefore, it is probably impossible for these animals
to deform their noseleaf or change the path a length differences between the
nostrils during the course of a call. However, the bat could relocate the main
beam of its spatial sensitivity from call to call. When positioning the main at
different azimuthal positions, a simple search for the loudest echo yields a stable
cue about the azimuthal location of a target. Additionally, bats could allocate
more energy to the periphery and thus exploit the spectral cues generated by
the ears in this part of the frontal hemisphere. However, these are but two
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simple ways in which a movable main beam could be of use to a bat. It is
possible that other uses of a movable mainlobe might provide the bat with more
interesting cues about the location or the identity of targets. To investigate this, a
theoretical framework must be employed that allows to quantify the contribution
of the alterations to the spatial sensitivity of the bat to the localization and
identification performance. Yovel and colleagues [27] have recently shown that
Rousettus aegyptiacus alternates the direction in which it emits most energy
when tracking a target. Moreover, they were showed that this strategy makes
sense based on information-theoretic calculations. However, in this paper we
content ourselves by confirming that the mechanism proposed by Hartley [9]
is indeed allowed for the by facial morphology of the bat species under study.
Indeed, our CT data indicates that the tracts leading up to the nostrils might be
long enough for the proposed deformation to take place. Thus far, the evidence
indicating that bats use a mechanism akin to phased array beam steering is very
sparse but we hope that our analysis leads to experiments that verify directly
whether bats do actually use these strategies or not.

Recently, bottlenose dolphins (Tursiops truncatus) have been found to be
able to steer their sonar beams over an angle of 20 degrees without moving
their heads [12]. The mechanism behind this might be akin to that of a phased
array as Beluga whales (Delphinapterus leucas) were found to have two sites to
produce echolocation clicks that can be controlled independently [11]. If dolphins
and/or bats would turn out to be steering their beams using Phased Arrays
this would be another example illustrating that Nature has little to learn from
engineers. Indeed, technology thought up for our animats (i.e. industrial and
medical appliances) has often existed for millions of years in animals.
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Abstract. In the field of developmental robotics, a lot of attention

has been devoted to algorithms that allow agents to build up skills

through sensorimotor interaction. Such interaction is largely affected by

the agent’s morphology, that is, its shape, limb articulation, as well as

the position and density of sensors on its body surface. Despite its impor-

tance, the impact of morphology on behavior has not been systematically

addressed. In this paper, we take inspiration from the human vision sys-

tem, and demonstrate using a binocular active vision platform why sensor

morphology in combination with other properties of the body, are essen-

tial conditions to achieve coordinated visual behavior (here, vergence).

Specifically, to evaluate the effect of sensor morphology on behavior, we

present an information-theoretic analysis quantifying the statistical regu-

larities induced through sensorimotor interaction. Our results show that

only for an adequate sensor morphology, vergence increases the amount

of information structure in the sensorimotor loop.

Keywords: Embodied cognition, visual development, sensor morphol-

ogy, information structure.

1 Introduction

In nature, living organisms are embodied and embedded in their ecological niches.
Their neural structures have evolved to sample and process sensor inputs to create
adaptive neural representations, and to select and control motor outputs to posi-
tion their bodies or to impose changes on the environment [1]. Such sensorimotor
activity involves a dynamic reciprocal coupling between organism and environ-
ment known as embodiment [2]. The implications of embodiment are far reaching
and go beyond the mere interaction between a body and the environment in which
it is embedded, to include also as the information-theoretic interrelations among
the sensory system, the body, the environment, and the controller. Embodiment
is understood as a fundamental aspect to develop cognitive capabilities because
it enables a continuous flow of information between sensors, neural units, and ef-
fectors. The pattern of information flow defines complex sensorimotor networks,
consisting of structured relations and dependencies among sensor, neural, and mo-
tor variables. This information structure, such as correlations, redundancies, and
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invariances in the sensorimotor loop makes learning, prediction, action selection,
adaptability and developmental process possible [1],[3], [4].

Some algorithms employed to bootstrap the development of skills [5], [6], [7]
are designed to restrict the action selection (repertoire) in order to increase pre-
dictability of the sensorimotor loop. In these cases, the objective function that
drives the development of the agent is some quantitative measure of the agent’s
sensorimotor interaction (e.g. information gain, transfer entropy, the prediction
error of the next sensor input, and the improvement in the prediction in the
sensor input). Generally, in these mathematical frameworks, embodiment is sim-
plified to the interaction with the environment.

In the application of the developmental algorithms there are some limitations,
such as the number of sensor inputs, degrees of freedom (DOF), and convergence
time among others. We claim that because of the embodiment, the sensor mor-
phology and the robot body should be taken into account in order to exploit
statistical dependencies and causal relations in the sensorimotor loop. Therefore
appropriate sensor morphology could be the mechanism not only to decrease
the convergence time, but also to sense information flow which increases the
predictability, limiting the action space naturally.

In the first months of life, a child is able to develop sensorimotor competencies
almost from scratch [8]. Behaviors such as tracking, saccadic movements and
fixation start to develop at the beginning of a child’s life and are mature after
about three months [9], [10]. The development of behaviors like vergence could
be explained as the result of the increment in predictability among actions and
sensor inputs.

In this paper, we provide an information theoretical analysis that shows why
the sensor morphology, and the sensorimotor coupling could bootstrap the devel-
opment of vergence. The latter behavior increases the causality among actions
and sensors, hence increasing the predictability of the future sensor stimulation,
and enabling the agent to develop a model of the environment. In order to mea-
sure how much the agent can predict given specific sensor morphology we used
transfer entropy as a measure of causality [11].

This paper is organized as follows. First, we describe the robot head plat-
form used for our experiment, the sensor morphology, and the causality measure
employed to quantify the results in the experiment. Then, we present the ex-
periment and the related results. Before concluding the paper, we discuss our
results and some of their implications for theories of infant development.

2 Materials and Methods

2.1 Robot

Our experimental testbed was the iCub robot head [12]. The iCub is an open
humanoid platform, developed in the context of the RobotCub project, to pro-
mote studies in cognitive systems and embodied cognition. In contrast with other
humanoid robots as QRIO, ASIMO, HOAP-2, the iCub robot head has 6 DOF
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Fig. 1. iCub robot head

(Fig. 1) in order to emulate behaviors like vergence, smooth pursuit, and sac-
cades, typical of the vision system. Both eyes can pan independently, and the
common tilt movement is actuated by a belt system placed between the cam-
eras. 3 DOF are used to control the neck of the head, while the other 3 DOF are
used to control the cameras. Our experiments were conducted controlling just
the latter 3 DOF. The neck of the robot was immobile during all the procedure.
The image delivered by each camera has a resolution of 640x480 at 30 fps.

2.2 Sensor Morphology

The human vision system has to interpret a 3D world from 2D projections, and
in this process the ocular movements play an important role. These motions are
not an innate feature, but are developed through a prolonged interaction with
the environment. Moreover, abilities such as stereopsis (depth perception from
binocular vision that exploits parallax disparities) are a result of this develop-
ment in the first months of life [13], [14].

The question is what mechanism drives this process, and what could be the
contribution of the morphology of the eyes and the ocular muscles. In order to
address this matter, we implemented a set of biologically plausible information
processing mechanisms in the iCub head. Based on the results from Nothdurf
(1990) [15], who showed how neurons respond to simple features such as inten-
sity contrast, color, orientation, and motion, color was the main feature used
in our experiments. These features define the pre-attentive visual cues [16]. In
addition, the human vision is capable of binocular fusion; i.e. a single image is
seen although each eye has a different image of the environment [17]. In our
implementation we applied the average of both cameras to create the binocular
single image. Another important aspect is foveation. Our eye has, in its center,
a greater number of receptors than in the periphery. This was modeled with the
log-polar transform, which changes the coordinate system from Cartesian (x,y)
to the logarithm of the magnitude and the angle:

ρ(x, y) = M · log(
√

(x2 + y2)) . (1)
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Fig. 2. Log-polar transform of 60x60 image. (A) Raw image. (B) Log-polar transform

of A with M = 40. (C) Inverse log-polar transform from B. (D) Log-polar transform of A

with M=12. (E) Inverse log-polar transform from D. Notice that the inverse transform

is the reconstruction of the image with fewer pixels in peripheral area.

ϕ = arctan(
y

x
) . (2)

Where x and y are the coordinates of the pixel in the picture, ρ is the logarithm
of the magnitude and ϕ is the angle. The parameter M was used to increase
or decrease the number of pixels used in the log-polar transform (Fig. 2). In
our experiments, these aspects (color, foveation and image composition from
the two cameras) were used to find out whether the vergence behavior increases
information structure.

2.3 Information Metric

In order to present how the causality among the variables (actuators and sensors)
relies on the morphology and specific behaviors, we used the transfer entropy
[11]. This measure was selected to compare the results of the experiments, due
to its capacity to find the nonlinear statistical dependencies which can be used
to understand why a specific behavior could yield better causal relations among
the data.

Originally, transfer entropy was introduced to identify the directed flow or
transfer of information (also referred to as “causal dependency”) between time
series [11]. Given two time series X and Y, transfer entropy essentially quantifies
the deviation from the generalized Markov property: p(xt+1 | xt)= p(xt+1 | xt,
yt ) , where p denotes the transition probability. If this deviation is small, then Y
does not have relevance on the transition probabilities of system X. Otherwise, if
the deviation is large, then the assumption of a Markov process is not valid, The
deviation of the assumption can be quantified by the transfer entropy, formulated
as the Kullback-Leibler entropy:
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T (Y → X) =
∑
Xt+1

∑
Xt

∑
Yt

p(xt+1, xt, yt)log(
p(xt+1|xt, yt)
p(xt+1|xt)

) . (3)

Where the sums are over all amplitude states, and the index T(Y → X) indi-
cates the influence of Y on X. The transfer entropy is explicitly nonsymmetrical
under the exchange of X and Y — a similar expression exists for T(X → Y) —
and can thus be used to detect the directed exchange of information (e.g., infor-
mation flow, or causal dependency) between two systems. As a special case of
the conditional Kullback-Leibler entropy, transfer entropy is non-negative, any
information flow between the two systems resulting in T > 0. In the absence of
information flow, i.e., if the state of system Y has no influence on the transition
probabilities of system X, or if X and Y are completely synchronized, T(Y →
X) = 0 bit.

2.4 Data Analysis

All numerical computations for data analysis were carried out in Matlab (Math-
works, Natick, MA), and were performed for data samples of 12,300 time steps.
The resolution of the cameras was reduced to 60x60 pixels to facilitate the calcu-
lations. We used gray scale images to reduce computational costs for analyzing
causal relations among sensor and motor variables. Given that the proposed
sensor morphology is defined by the binocular single image and the foveation,
we can still evaluate the effect of our proposed sensor for vergence. In order to
calculate the transfer entropy between the images and the actions, we first gen-
erated a causality measure for each pixel, which was the sum of transfer entropy
between each DOF and the pixel (Eq. 4). The causality of the image then was
measured as the average causality of all the pixels (Eq. 5)

Tpj =
∑
Ei

T (Ei → pj) (4)

TI =

∑
pj

Tpj

|p| , (5)

where Ei is the ith DOF time series, pj is the jth pixel time series, Tpj is the
causality induced by the 3DOF to the jth pixel. TI is the average causality
in the frame averaging all the causality measured in each pixel. To calculate
transfer entropy, time series were discretized to 8 states (3 bits) and joint prob-
abilities and conditional probabilities were estimated using the naive histogram
technique, that is, as normalized histograms. Temporal delays in [-25, 25] time
steps across time series were introduced by shifting one time series relative to
the other, thus allowing the evaluation of causal relationships across variable
time offsets. Delayed causality was potentially introduced by the discrete nature
of the updating of the control architecture and by the temporal persistence of
sensor and motor states.
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3 Experiment

In this experiment we compare different sensor morphologies and controllers in
a fixed task. First, we tested different morphologies to find out which one could
reduce the number of inputs to the system. Second, we tested different controllers
to see how the sensor morphology restricts the space of coordinated behavior in
terms of predictability.

In the setup we place the robot in front of four different cups (Fig. 3A). The ob-
jectswere distributed in the field of view to force the robot to change the value of the
3DOFof the cameras.The robot had to look at all of them in a predefined sequence.
We used the color based tracker to change the attention of the robot to 4 different
objects. In order to measure the influence of sensor morphology on vergence, we
developed three different controllers: (1) the left camera performed random move-
ments while the right one followed the sequence; (2) a controller that allowedparal-
lel motions of the left and right camera; and (3) a controller that forced the vergence
with both cameras to focus the object. We expect that the control quality (behav-
ior) can affect the predictability, that is the possibility to explain the future based
in the actual data and actions, hence validating that vergence is a behavior capable
of increasing the causal relations among the pixels and the actions.

3.1 Setup

For the three controllers we tested four different sensor configurations: (1) the
average of the left and right image. (2) The inverse log-polar of the average of
the left and right image. (3) The log-polar of the average of the left and right
image, and (4) a single image, the left camera (Fig. 3B). We used four different
log-polar transformations (M = 8, 12, 20 and 40 which reduce the size of the
image to 17%, 27%, 43%, and 83% respectively.) For each transformation we ran
8 different experiments for all different kinds of images.

3.2 Results

First, we compared different morphologies using a controller which performs an
appropriate vergence. We evaluated in the experiment how the proposed sensor
morphology can keep the predictability while it reduces the number of pixels. We
compared the measures of transfer entropy of the left image against the average
and the inverse average log-polar. As we can see in Figs. 4A-C the causality in
all these sensor morphologies changes less than 5%, which means that the pixels
in the center are dominant in the causal relation.

The tracker kept the zero disparity region in the center of the image. There-
fore, in the log-polar transformation the receptors sample more the object than
the periphery. We tested different number of receptors in the average log-polar
morphology to see how the causality could be affected. In Figs. 4D-G we pre-
sented the results for four different examples. We found out that the reduction
of receptors does not decrease the causality. Therefore this sensor morphology
keeps the information structure with fewer pixels. This result could be used
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Fig. 3. Experimental setup. (A) The robot is looking at the different cups in the

sequence given by the numbers, after 7 the robots starts again with 1. (B) Causal

analysis among different sensor and control configurations.

in order to reduce the number of inputs in a developmental algorithm, taking
advantage of the sensor morphology.

The different controllers represent different “qualities” of the vergence behav-
ior. As shown in Figs. 4G-I the more accurate the control for vergence, the more
causality appears in the sensorimotor loop. From this result we imply that that
if the robot looks for predictability in terms of its sensorimotor coupling it has
to do vergence.

4 Discussion

The log-polar transform and the average of the two images force the robot to
develop vergence, because on the one hand, the log-polar transform allows to
better sample the center of the image, and on the other hand, the average of
both cameras blurred regions in the image that are not in the zero disparity
region. Therefore vergence is aligning the zero disparity region in the center of
the image, where the robot has more receptors. The more precise this behavior,
the bigger the causal relation among pixels and actions.

The log-polar transform reduces the computational load, and additionally im-
proves the learning, because these are the pixels with the higher causal relations
even when the inputs are reduced to 17%. With a normal Cartesian pixel array
the rest of the pixels in the learning process are just noise, due to the lack of
structure, and in this sense the perception of the agent is decreased.

The causality can be interpreted as the predictability, which allows the agent
to develop a model of the world [18]. If the agent is not able to perform vergence
then the predictability decreases as it is presented in the experimental results.
This means that the learning capability is limited by the predictive capacity of
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Fig. 4. Transfer entropy among pixels and motor signals. Plots A to I display the

average causality as in Eq.(5), TS→M (blue), TM→S (red). In plots A to G the 3 DOF

of the active vision system were controlled independently. (A) Left image. (B) Average

image. (C) Average inverse log-polar image with M=8. (D) Average log-polar image

with M=40. (E) Average log-polar image with M=20. (F) Average log-polar image with

M=12. (G) Average log-polar image with M=8. (H) One camera tracked the object

while the other mirrors its movement. The causality was calculated using the average

log-polar transform with M=8. (I) The controller is equal to the one used in A, but

with the addition of noise in the control signal sent to the left camera. The causality

presented in (I) is using the average log-polar transform with M=8.
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the sensorimotor loop. In other words, the robot is limited by the “quality” of
its control. In this sense the sensor morphology and the combination of different
sensor modalities shape the possible developmental behavior.

5 Conclusions

In this study, we implemented a set of biologically plausible information process-
ing mechanisms based on the human vision system. We analyzed the transfer
entropy as a function of the sensor morphology and the controller. Our experi-
mental results demonstrate how an appropriate morphology reduces the amount
of inputs and increases the predictability in the sensorimotor loop. The reduction
of inputs to a system, and the increment of causal relations among motor ac-
tions and inputs are key aspects that increase the applicability of developmental
algorithms in robots.

The vision system allows us to generate a belief of the environment beyond the
simple 3D perception or spatial distribution. Thanks to the interaction with the
world and the coupling with other sensor inputs, visual information allows pre-
diction. Our capacity to use our attention towards what it is needed, like a reflex,
and the capacity of prediction of our visual system, are two features that makes
our vision system a fascinating tool to handle the world, and it is an incredibly
complex system that is not easy to isolate or emulate in an artificial platform. In
this experiment we show how from the coupling between the visual system and the
proprioceptive system the vergence could emerge under the developmental mech-
anism of predictability. The possible extension of this result might be the devel-
opment of an attention systems based not just on visual data but in the relations
among different sensor systems. The development of the attention system then
enables the agent to extract the information relevant for its own tasks providing
the substrate for the emergence of behaviors such as eye hand coordination.

In the perspective of human infants our results show that the build up of
behavior might be a result of better information structure. Actions like vergence
allow us to predict better to understand better the environment, and the inte-
gration of several sensor modalities can therefore generate more complex final
behaviors in order to achieve structure in several sensor systems.

Acknowledgments. This work was supported in part by the EU Project
IST-2004-004370 ROBOTCUB and by the EU Project FP7-ICT-231864 EC-
CEROBOT. We would also like to thank Alejandro Hernandez for his valuable
comments.

References

1. Lungarella, M., Sporns, O.: Mapping information flow in sensorimotor networks.

PLoS Comp. Bio. 2(10), e14 (2006)

2. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologi-

cally inspired robotics. Science 318, 1088–1093 (2007)



On the Influence of Sensor Morphology on Vergence 155

3. Koerding, K.P., Wolpert, D.M.: Bayesian decision theory in sensorimotor control.

Trends Cogn. Sci. 10, 319–326 (2006)

4. Thelen, E., Smith, L.: A dynamic systems approach to the development of cognition

and action. MIT Press/Bradford (1994)

5. Schmidhuber, J.: Driven by Compression Progress: A Simple Principle Explains

Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Atten-

tion, Curiosity, Creativity, Art, Science, Music, Jokes. In: Anticipatory Behavior

in Adaptive Learning Systems, from Sensorimotor to Higher-level Cognitive Capa-

bilities. LNCS (LNAI), pp. 48–76. Springer, Heidelberg (2009)

6. Oudeyer, P.-Y., Kaplan, F., Hafner, V.: Intrinsic Motivation Systems for Au-

tonomous Mental Development. IEEE Trans. on Evol. Comp. 11(2), 265–286 (2007)

7. Barto, A., Singh, S., Chentanez, N.: Intrinsically motivated learning of hierarchical

collections of skills. In: 3rd Int. Conf. Devel. Learn., pp. 112–119. IEEE Press, San

Diego (2004)

8. Smith, P., Cowie, H., Blades, M.: Understanding children’s development. Blackwell,

Malden (1998)

9. Tondel, G., Candy, T.: Human infants’ accommodation responses to dynamic stim-

uli. Investigative Ophthalmology & Visual Science 48(2), 949–956 (2007)

10. Aslin, R.N.: Development of binocular fixation in human infants. Journal of Exp.

Child Psy. 23(1), 133–150 (1977)

11. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)

12. Beira, R., Lopes, M., Praça, M., Santos-Victor, J., Bernardino, A., Metta, G.,

Becchi, F., Saltarén, R.: Design of the Robot-Cub (iCub) Head. In: Conf. on Rob.

and Auto., pp. 94–100. IEEE Press, Orlando (2006)

13. Birch, E., Petrig, B.: FPL and VEP Measures of Fusion, Stereopsis and Stereoacuity

in Normal Infants. Vision Res. 36(9), 1321–1327 (1996)

14. Birch, E., Morale, S., Jeffrey, B., Oconnor, A., Fawcett, S.: Measurement of

stereoacuity outcomes at ages 1 to 24 months: Randot stereocards. Journal of

Ame. Asso. for Ped. Opht. and Stra. 9(1), 31–36 (2005)

15. Nothdurf, H.: Texture discrimination by cells in the cat lateral geniculate nucleus.

Exp. Brain Res. 82, 48–66 (1990)

16. Itti, L., Koch, C.: Computational Modeling of Visual Attention. Nat. Rev.

Neuro. 2(3), 194–203 (2001)

17. Wheatstone, C.: Contributions to the physiology of vision.-Part the First. On some

remarkable, and hitherto unobserved, phenomena of binocular vision. Phil. Trans.

of the Royal Soci. of London 128, 371–394 (1838)

18. Pearl, J.: Causality: Models, reasoning, and inference. Cambridge University Press,

Cambridge (2000)



Adapting Preshaped Grasping Movements Using
Vision Descriptors

Oliver Krömer, Renaud Detry, Justus Piater, and Jan Peters

Max Planck Inistitute for Biological Cybernetics
Spemannstr. 38, 72076 Tübignen, Germany

{oliverkro,Jan.Peters}@tuebingen.mpg.de,
{Renaud.Detry,Justus.Piater}@ulg.ac.be

Abstract. Grasping is one of the most important abilities needed for fu-
ture service robots. In the task of picking up an object from between clut-
ter, traditional robotics approaches would determine a suitable grasping
point and then use a movement planner to reach the goal. The planner
would require precise and accurate information about the environment
and long computation times, both of which are often not available. There-
fore, methods are needed that execute grasps robustly even with impre-
cise information gathered only from standard stereo vision. We propose
techniques that reactively modify the robot’s learned motor primitives
based on non-parametric potential fields centered on the Early Cogni-
tive Vision descriptors. These allow both obstacle avoidance, and the
adapting of finger motions to the object’s local geometry. The methods
were tested on a real robot, where they led to improved adaptability and
quality of grasping actions.

1 Introduction

Consider grasping an object at a specific point in a cluttered space, a common
task for future service robots. Avoiding collisions is easy for humans, as is pre-
shaping the hand to match the shape of the object to be grasped. Most adults
perform these actions quickly and without excessive planning. All of these ac-
tions occur before the hand comes into contact with the object, and can therefore
be accomplished using stereo vision [1,2]. In contrast, robots often struggle with
executing this task, and rely on specially designed sensors (e.g., laser scanner,
ERFID) to get accurate and complete representations of the object and environ-
ment [3, 4], followed by lengthy planning phases in simulation [5].

To avoid excessive planning, a robot can employ a sensor-based controller,
which adjusts its motions online when in the proximity of obstacles or other ex-
ternal stimuli [6]. Sensors such as time-of-flight cameras, ultrasonic sonar arrays,
and laser range finders are favored for these purposes due to their relatively dense
sampling abilities [7,8]. Stereo vision systems, while usually giving sparser read-
ings, have also been used for obstacle detection, especially in the field of mobile
robots. However, these methods often rely on task-specific prior knowledge (e.g,
assume the ground is flat) and are designed to avoid obstacles completely [8,9],

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 156–166, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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A. Scene B. ECV Representation

Fig. 1. A) The robot used in our experiments and an example of a grasping task in a
cluttered environment. B) The green ECVDs represent the object to be grasped, while
the surrounding ECVDs in the scene are clutter. The coordinate frame of one of the
robot’s fingers and variables used in section 2 are shown. The x-y-z coordinate system
is located at the base of the finger, with z orthogonal to the palm, and y in the direction
of the extended finger. The marked ECVD on the left signifies the jth descriptor, with
its position at vj = (vjx, vjy , vjz)

T , and edge direction ej = (ejx, ejy, ejz)
T of unit

length. The position of the finger tip is given by p = (px, py, pz)
T .

while the robot must get close to the object for grasping tasks. In terms of robot
manipulators, the research has focused on coarse object representations of novel
objects [10,11,12,13] and using additional sensor arrays when in close proximity
to the object [14, 15].

In this paper, we propose a sensor-based robot controller that can perform
human inspired grasping motions, including preshaping of the hand, smooth and
adaptive motion trajectories, and obstacle avoidance, using only stereo vision to
detect the environment. The controller uses potential field methods [6], which
treat the robot’s state as a particle in a force-field; i.e. the robot is attracted to
a goal state, and repelled from obstacles.

The system uses the dynamical system motor primitive (DMP) framework [16,
17] for the attractor field, which are capable of encoding complex trajectories
and adapting to different grasp locations. These DMPs are implemented as a
passive dynamical system superimposed with an external force; i.e.,

ÿ = αz(βzτ
−2(g − y)− τ−1ẏ) + aτ−2f(x), (1)

where αz and βz are constants, τ controls the duration of the primitive, a is an
amplitude, f(x) is a nonlinear function, and g is the goal for the state variable y.
The variable x ∈ [0, 1] is the state of a canonical system ẋ = −τx, which ensures
that the different hand and arm motions are synchronized. The function f(x)
is used to encode the trajectory for reaching the goal state, and takes the form
f (x) = (

∑M
i=1 ψi)−1

∑M
j=1 ψj(x)wjx, where ψ(x) are M Gaussian basis func-

tions, and w are weights. The weights w can be programmed through imitation
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learning [18]. The DMPs treat the goal state g as an adjustable variable and
ensure that this final state is always reached.

The scene’s visual representation is used to augment the DMP motions and
form the basis of the repelling field. The scene description needs to be in 3D, work
at a fine scale to maintain geometric details, and represent the scene sparsely to
reduce the number of calculations required per time step. The Early Cognitive
Vision system of Pugeault et al. [19, 20] (see Fig. 1) fulfills these requirements
by extracting edge features from the observed scene. The system subsequently
localizes and orientates these edges in 3D space [21], with the resulting features
known as early cognitive vision descriptors (ECVD) [19]. By using a large number
of small ECVDs, any arbitrary object/scene can be represented.

The methods for generating the DMP and ECVD based potential fields are
detailed in Section 2. In Section 3, the system is tested on a real robot and
shown to be capable of avoiding obstacles and adapting the fingers to the local
geometry of the object for improved grasps using only stereo vision.

2 Methods for Reactive Grasping

The methods proposed in this section were inspired by human movements. Hu-
man grasping movements can be modeled as two linked components, transporta-
tion and preshaping, synchronized by a shared timer or canonical system [22,23].
Transportation refers to the actions of the arm in moving the hand, while the
preshaping controls the opening and subsequent closing of the fingers [24].

Humans perform the reaching/transportation component in a task-specific
combination of retina and hand coordinates [25], which allows for easier specifi-
cation of object trajectories in a manipulation task than joint coordinates would
and also results in a reduction in dimensionality.

Similar to the transportation component, the main purpose of the finger pos-
ture component is to preshape the hand by extending the fingers sufficiently for
them to pass around the object upon approach, and then close on the object si-
multaneously for a good grasp [22,24]. Over-extending the fingers is undesirable
as it makes collisions with the environment more likely and is usually restricted
to situations where the shape of the object is uncertain [22, 26].

The DMP and ECVD based potential field implementations are described in
Sections 2.1 and 2.2. Section 2.3 proposes methods that improves the interpola-
tion of grasping movements to new grasp locations.

2.1 Regular Dynamical Motor Primitives for Grasping

The first step towards specifying the grasping movements is to define an attractor
field as a DMP that encodes the desired movements given no obstacles. The
principal features that need to be defined for these DMPs are the goal positions,
and the generic shape of the trajectories to reach the goal.

Determining the goal posture of the hand using the ECVDs has been investi-
gated in a previous paper [27]. Possible grasp locations were hypothesized from
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the geometry and color features of the ECVDs, and subsequently used to create
a kernel density estimate of suitable grasps. It was then refined by evaluating
grasps on the real system. However, this grasp synthesizer only gives the desired
location and orientation of the hand and not the exact finger locations.

Using the ECVDs, the goal position of each finger is determined by first es-
timating a local contact plane for the object in the finger coordinate system
shown in Fig. 1. If the region to be grasped is not planar, it can still be linearly
approximated as such for each finger to give good results. To ensure the approx-
imation is accurate in the proximity of the finger, the influence of the ith ECVD
is weighted by wi = exp(−σ−2

x v2
ix − σ−2

y v2
iy − σ−2

z v2
iz), where σx, σy, and σz are

length scale constants that reflect the finger’s length and width, and vi is the
position of the ECVD in the finger reference frame. The hand orientation was
chosen such that the Z direction of the finger should be approximately parallel
to the contact plane, which reduces the problem to describing the plane as a
line in the 2D X-Y space. The X-Y gradient of the plane is approximated by
φ = (

∑N
i=1 wi)−1

∑N
i=1 wi arctan(eiy/eix), where N is the number of vision de-

scriptors, and ei is the direction of the ith edge. The desired Y position of the
fingertip is then given by p̃y = (

∑N
i=1 wi)−1

∑N
i=1(wiviy − tan(φ)wivix), which

can be converted to joint angles using the inverse kinematics of the hand.
Many of the beneficial traits of human movements, including smooth motions

and small overshoots for obstacle avoidance [28, 24, 23], can be transferred to
DMPs through imitation learning. To demonstrate grasping motions, we used
a VICON motion tracking system to record the movements of a human test
subject during a grasping task. It is not necessary for the object used for the
demonstration to match that grasped by the robot later. VICON markers were

A. Proposed DMP coordinate system B. Example Trajectories

Fig. 2. A)The above diagram shows the the coordinate systems for the transportation
DMPs. The axes Xw-Yw-Zw are the world coordinate system, while Xp-Yp-Zp is the
coordinate system in which the DMP is specified. The trajectory of the DMP is shown
by the pink line, starting at the green point, and ending at the red point. Axis
Xp is parallel to the approach direction of the hand (the black arrow a). Axis Yp is
perpendicular to Xp, and pointing from the start s towards the goal g.
B) The plot shows reaching trajectories, wherein the x and y values are governed
by two DMPs sharing a canonical system. The standard DMPs and the augmented
DMPs described in Section 2.3 are presented along with their respective final approach
directions.
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only required on the back of the hand and finger tips. As the reaching trajectories
are encoded in task space rather than joint space, the correspondence problem
of the arm was not an issue for the imitation learning step. Details for imitation
learning of DMPs using locally weighted regression can be found in [18].

As DMPs are provably stable [17], they are safe to execute on a robot and
also ensure that the final arm and finger postures will also always be achieved
when physically possible. The repelling field must maintain this stability.

2.2 Adapting the Motor Primitives with Vision Descriptors

Having specified the basic grasping movements, a repelling field refines the mo-
tions in order to include obstacle avoidance for the transportation and ensure
that the finger tips do not collide with the object during the hand’s approach.

The repelling field is based on ECVDs, which can be understood as small
line segments of an object’s edges localized in 3D (see Fig. 1). The repelling

A. Preshaping B. Grasping

C. Lifting

Fig. 3. The three main phases of a basic
grasp are demonstrated. The preshaping of
the hand (A) tries to pose the fingers to
match the object’s geometry. The grasping
(B) then closes the three fingers at the same
rate until they secure the object. Finally
(C) the object is lifted. The objects on the
bottom A and B are clutter that had to be
avoided.

potential fields for ECVDs are charac-
terized by two main features; i.e., the
repelling forces of multiple ECVDs
describing a single line do not su-
perimpose, and the field should not
stop DMPs from reaching their ulti-
mate goals. The system therefore uses
a Nadaraya-Watson model [29] of the
form

ua = −s(x)
∑N

i=1 ricai∑N
j=1 rj

,

to generate a suitable repelling field,
where ri is a weight assigned to the ith

ECVD, s is the strength of the over-
all field, x is the state of the DMPs’
canonical system, and cai is the re-
pelling force for a single descriptor.
Subscript a specifies if the detractor
field is for the finger motions “f ” or
the reaching movements “h”.

The weight of an ECVD for col-
lision avoidance is given by ri =
exp(−(vi − p)Th(vi − p)), where vi

is the position of the ith ECVD in the local coordinate system, h is a vector of
width parameters, and p is the finger tip position, as shown in Fig. 1. A suitable
set of width parameters are h = 2[w, l, l]T, where w and l are the width and
length of the finger respectively.

The reaching and finger movements react differently to edges and employ dif-
ferent types of basis functions cfi and chi for their potential fields. For the fingers,
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the individual potential fields are logistic sigmoid functions about the edge of each
ECVD of the form ρ(1 + exp(diσ

−2
c ))−1, where di =

∥∥(p− vi)− ei(p− vi)Tei

∥∥
is the distance from the finger to the edge, ρ ≥ 0 is a scaling parameter, and σc ≥ 0
is a length parameter. Differentiating the potential field results in a force term of
cfi = ρ exp

(
diσ

−2
c

) (
1 + exp

(
diσ

−2
c

))−2. As the logistic sigmoid is monotonically
increasing, the repelling always forces the fingers open further to move their tips
around the ECVDs and thus ensure that they always approach the object from
the outside. Similarly, a symmetrical potential function can be employed to force
the hand closed when near ECVDs pertaining to obstacles.

The reaching motion uses basis functions of the form � exp(−0.5dT
i diσ

−2
d ),

where di = (q−vi)−ei(q−vi)Tei is the distance from the end effector position,
q, to the edge, and � ≥ 0 and σd ≥ 0 are scale and length parameters respectively.
Differentiating the potential with respect to di gives a force term in the Y
direction of chi = �(di.Y)σ−2

d exp(−0.5dT
i diσ

−2
d ), which can be interpreted as a

radial force from the edge with an exponentially decaying magnitude.
To synchronize the repelling field with the DMPs and ensure the repelling

strength is zero at the end of a motion, the strength s is coupled to the canon-
ical system of the DMPs. Hence, s(x) = (

∑M
j=1 ψj(x))−1

∑M
i=1 ψi(x)wix, where

x is the value of the canonical system, ψ are the DMP basis functions, and w
specify the varying strength of the field during the trajectory. To reflect the
human tendency towards more precise movements during the last 30% of a mo-
tion [28], the strength function was set to give the highest strengths during the
first 70% of the motion for the reaching trajectories, and the last 30% for the
finger movements.

The repelling fields of both the grasping and reaching components have now
been defined, and can be superimposed into the DMP framework as

ÿ =
(
αz(βzτ

−2(g − y)− τ−1ẏ) + aτ−2f(x)
)− τ−2ua,

which then represents the complete ECVD and DMP based potential field.

2.3 Generalizing Dynamical Motor Primitives for Grasping

Having defined the potential field for a single grasping motion, we must gener-
alize the movements to new target grasps. By interpolating the trajectories in
a task-specific manner, the number of example trajectories required from the
demonstrator for imitation learning can be greatly decreased. While the goal
states of DMPs can be set arbitrarily, the approach direction to the grasp can-
not be easily defined and the amplitude of the trajectory can be unnecessarily
sensitive to changes in the start position y0 and the goal position g.

The correct approach direction can be maintained by using a task-specific
coordinate system. We propose the Xp-Yp-Zp coordinate system shown in Fig. 2,
which dedicates one axis xp specifically to the approach direction. The majority
of the unobstructed reaching motion will lie in a plane defined by the starting
point, the goal location, and the final approach direction, which we use to define
our second axis yp. The final axis zp is given by zp = xp × yp.



162 O. Krömer et al.

Fig. 4. Examples of different approach di-
rections are presented, all based off of a sin-
gle human demonstration

The second problem relates to
the sensitivity of scaling motions
with ranges greater than ‖y0 − g‖,
which grasping motions require to
move around the outside of ob-
jects. The system can be desen-
sitized to variations in y0 − g
by employing the amplitude term
a = ‖η(g − y0) + (1 − η)(gT − y0T )‖
instead of the standard a = (g − y0)
[16], where gT and y0T are the goal
and start positions of the training
data respectively, and η ∈ [0, 1] is a
weighting hyperparameter that con-
trols how conservative the generaliza-
tion is. By taking the absolute value
of the amplitude, the approach direc-
tion is specified solely by the choice of
Xp-Yp-Zp coordinate system and not the amplitude term. This amplitude term
is a generalization of the amplitude proposed by Park et al. [12], which corre-
sponds to the special case of η = 0. Example interpolations of a transportation
trajectory can be seen in Fig. 2.

3 Grasping Experiments

The methods described in Section 2 were implemented and evaluated on a real
robot platform consisting of a Videre stereo camera, a Barrett hand, and a 7-
degrees-of-freedom Mitsubishi PA10 arm, as shown in Fig. 1.

3.1 Grasping Experiment Procedure

To test the system’s obstacle avoidance ability, the robot was given the task of
grasping an object without hitting surrounding clutter (see Fig. 1). Each trial
begins with an estimate of the pose of the object relative to the robot [30] and
setting the desired grasp location. The model’s ECVD are then projected into
the scene, and the robot attempts to perform the grasp and lift the object off
the table.

If the hand collides with an obstacle or knocks the object down during its
approach, the trial is marked as a failure. Grasp locations on the object were
predefined, and all successful trials had to lift the object from its stand (see
Fig. 3). After each grasp attempt, the hand reverses along the same approach
direction, but with a static preshaping of the hand in order to determine if
collisions would have occurred if the proposed controller had not been used. The
experiment consisted of 50 trials and were varied to include different approach
directions and locations around the object.
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A. Flat B. Slanted C. Cylindrical Handle

D. Arched Handle E. Knob F. Extreme Point

Fig. 5. Pictures A and B show the system adjusting to different plane angles. Images
C and D demonstrate the preshaping for different types of handles. Picture E shows
the preshaping for a circular disc structure, such as a door knob, and manages to get
its fingers closely behind the object. Picture F shows a preshape where the object was
too far away to be reached by two of the fingers, but still hooks the object with 1 finger.

Additional trials were performed on another object to further explore how the
system’s preshaping ability adapts to different object geometries. The clutter was
removed in these trials to demonstrate the range of grasps that a single human
demonstration can easily be generalized to.

3.2 Experimental Results

The repelling field and preshaping of the hand allowed the system to handle
the cluttered environment that the object had been placed in, which was not a
trivial task. The hand came into contact with the clutter for an estimated 8% of
the grasp attempts, but never more than a glancing contact. When the proposed
controller was deactivated and a static preshape was used, the hand collided with
one or more pieces of clutter in 86% of the trials. Thus, the proposed sensor-
based controller led to a factor of ten decrease in the number of contacts with
the clutter. The few instances when the hand did collide with the obstacles were
the result of obstacles being partially occluded, and thus not fully represented by
the ECVDs. This problem represents the main restriction of the current method,
which can be overcome by simply using multiple views to accumulate the ECVD
representation of the scene, as described in [19, 20]. The repelling fields of the
fingers ensured that the hand always opened sufficiently to accept the object
without colliding with it.

Using only a single human demonstration, the robot could perform a wide
range of reaching movements with varied approach directions, as demonstrated
in Fig. 4. Requiring fewer demonstrations hastens the imitation learning process,
while still allowing the robot to perform smooth and natural reaching motions.
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A. Preshaping

B. Grasping

Fig. 6. The preshaping allows for more
controlled grasping. (A) The preshape has
matched the local geometry of the object.
When grasping, the two fingers on the left
immediately pinch the paddle, while the fin-
ger on the right turns the paddle about
the pinched point. (B) The grasping ends
when the paddle has become aligned with
all three finger tips.

The incorporation of ECVDs al-
lowed the fingers to adapt to a wide
variety of different object geometries,
as shown in Fig. 5, and place the fin-
ger tips very close to the object be-
fore applying the grasp. This close
proximity to the object restricts how
much the object can move during the
final grasping phase, as the fingers
make contact with the object at ap-
proximately the same time, and leads
to grasps being applied in a more
controlled manner. An example of a
controlled grasp is shown in Fig. 6,
which would not be possible without
the proposed preshaping, as the fin-
ger on the right would have made first
contact with the paddle and simply
knocked it down.

The results ultimately show that
our hypothesis was correct and the
proposed methods represent a suit-
able basis for avoiding obstacles with-
out relying on a complicated path
planner, and using only stereo vision
information.

4 Conclusions

The proposed methods augment dynamical system motor primitives to incor-
porate Early Cognitive Vision descriptors by using potential field methods, and
represent important tools that a robot needs to execute preshaped grasps of an
object in a cluttered environment using stereo vision. The techniques allow for
preshaping the fingers to match the geometry of the object and shaping the tra-
jectory of the hand around objects. The controller was tested on a real robot,
and was not only successful at performing the task, but also requires very few
demonstrations for imitation learning, improves obstacle avoidance, and allows
for more controlled grasps to be performed.
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Abstract. A combination of behavioural testing and robotic modelling

was used to investigate the interaction between sound localisation (phono-

taxis) and optomotor following in crickets. Three hypotheses describing

simple interactions — summation, gain modulation and chaining — were

eliminated, leaving efference copy as the most likely mechanism. A spec-

ulative but plausible model for predicting re-afference was implemented

and evaluated on a robot.

1 Introduction

Nervous systems process afferent sensory signals to produce efferent motor out-
put. Afferent signals can be further subdivided into those that originate from
external causes (exafferent signals) and those arising due to self-generated causes
(reafferent signals). For example, in an insect’s natural habitat, exafferent optical
flow might be caused by the wind blowing it around as it flies. In an experimen-
tal situation, a visual pattern rotated around an insect provides an exafferent
signal that usually evokes the optomotor response, i.e., the insect rotates in the
same direction, to stabilise itself with respect to its surroundings. But optical
flow is also produced whenever the insect moves itself, e.g., when a female cricket
steers towards the sound of a chirping male (Fig. 1, top-left). The motion sensi-
tive visual neurons involved in the optomotor response will be activated by this
reafferent signal, but responding in the same way as to exafferent input could
be maladaptive.

von Holst was first to note explicitly that if an animal were to respond to reaf-
ferent optical flow with an optomotor response, this would tend to counteract all
self-initiated turns [1]. He proposed that the solution is for the animal to predict
(and thus eliminate) the reafferent signal based on copies of its efferent (motor)
signals (Fig. 1, top-right). However, using efference copy is not trivial because the
sensory consequences of an action are generally quite different in magnitude, du-
ration or shape from the motor command, hence a predictive (forward) model is
required to calculate the transformation, as shown in the diagram.

Before assuming that efference copy is necessary, and hence examining how
it might be implemented in insect brains, it is important to exclude alternative
simpler possibilities. Efference copy is an example of a more general class of
signals termed corollary discharges. These are branching pathways from motor
outputs that may influence other sensory systems by inhibition, facilitation, or

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 167–177, 2010.
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any other kind of modulation (Fig. 1, bottom-right). A special instance of this
arrangement would be where the corollary discharge modulates the optomotor
gain to zero (outright inhibition), i.e., the animal simply ignores all (rotational)
optical flow when generating its own (turning) movements. A further possibility
is the “chained subsystem” hypothesis, in which auditory signals control turning
via the optomotor pathway, by altering the optic flow signal in such a way that
the resulting optomotor response will include a turn in the required direction
(Fig. 1, bottom-left). Finally, it is also possible that simple summation (Fig. 1,
top-left) might suffice, despite von Holst’s argument. For example, intentional
turns could be too fast or too slow to activate the optomotor response; this has
been proposed to hold for flies making rapid saccades [2].

The four possibilities outlined in Fig. 1 have been previously investigated for
crickets using hardware models of auditory and visual sensors on a robot [3] [4],
inspired by mathematical and analogue electronic models in Collett’s investiga-
tion of behavioural co-ordination in hoverflies [5]. However a major limitation
in these earlier studies was a lack of behavioural data characterising the cricket
optomotor response. Here we combine behavioural experiments on crickets with
robotic models to enable stronger conclusions to be drawn regarding the possible
mechanisms of multimodal control.
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Fig. 1. Combining auditory and visual signals. In summation, the two systems act in

parallel and do not distinguish exafferent and reafferent inputs. In efference copy, a

copy of the motor command from the phonotaxis system is modified by a predictive

model and interacts with the afferent visual signal, cancelling out the portion due

to reafference. In modulation, the auditory pathway branches as for efference copy,

but interacts with the optomotor pathway simply by modifying its gain. In chained

subsystems the auditory pathway is arranged in series with the optomotor pathway.
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2 Methods

Cricket Experiments: Behavioural tests were performed using an open-loop
trackball system, described in [6]. Female crickets (Gryllus bimaculatus, 7–20
days post-moult) were tethered using a pin attached to the third thoracic ter-
gites, and were placed so that their legs turned a light air-suspended sphere
(diameter 56.5 mm, weight 3 g). Movements of the ball were registered with
an optical mouse chip and recorded using PC software written in Labview. The
trackball was located inside a darkened anechoic box. Visual stimuli were pro-
vided by a translucent vertically-striped cylinder which could be rotated around
the insects using a programmable servomotor. The pattern was illuminated by a
circular fluorescent tube around the outside of the cylinder. The auditory stim-
uli consisted of simulated cricket songs played from a speaker that could be
positioned at different azimuth angles, 57 cm from the animal.

Robot Experiments: A Khepera II (K-Team, Switzerland) was used as the
mobile base. A custom-made auditory sensor based on [7] and a camera (K-Team
K2D), fitted with a hemispherical mirror that gave it a 360-degree view of the
horizon, were added to model the crickets’ ears and eyes. The control programme
was executed on a PC communicating with the robot over a serial cable. The
robot was tested in a sound-proofed box of dimensions 122 × 175 × 122 cm
using the same simulated songs as used for the cricket. Visual stimuli consisted
of black stripes fixed to the white internal walls. The robot’s path was recorded
using an overhead camera.

The robot’s auditory system uses a neural network as described in [4], which
replicates both the directionality and pattern selectivity of female cricket re-
sponses to calling songs. The output of the network is two spike trains, one for
each side of the body, and the relative activity can be used to determine the
robot’s direction of rotation. The optomotor system is based on two previous
models of optomotor behaviour in flies [8][9]. 360 intensity values are extracted
around the horizon, and the transient nature of the response of lamina monopolar
cells is simulated by passing these through a high-pass filter with time constant
τ = 58 ms. Local motion detection is accomplished, following the Hassenstein-
Reichardt model [10], by correlating the output of each unit with the signal from
the adjacent unit delayed via a low-pass filter with τ = 93 ms. The local motion
signals are summed to provide the optomotor signal which can drive rotation of
the robot in the corresponding direction.

The interaction of the two sensory systems is described in the appropriate
sections below. For full implementation details of the robot’s controller see [11].

3 Results

Characterising the optomotor response rules out chained subsystems:
Data to characterise the optomotor response of the cricket were collected us-
ing the open loop trackball and visual stimulus apparatus described in section 2.
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Fig. 2. Left: Characteristic curve for unidirectional pattern motion. Centre: Amplitude

/ frequency plot showing ratio between observed steering amplitude and reference

steering amplitude (assuming no filtering) for frequencies from 0.1 to 0.4 Hz. Right:

Phase / frequency plot. Dotted line shows phase for a first order low-pass filter with

cut-off frequency 0.3Hz and lag 76 ms.

Figure 2 (left) shows the asymptotic turning speed of the cricket for unidirec-
tional visual rotation at pattern frequencies up to 6 Hz. This curve has the log-
normal shape characteristic of motion detection based on the delay-and-correlate
principle [10]. The maximum response was produced for a pattern frequency of
2 Hz.

Stimulation of the crickets with an oscillating grating resulted in an oscillating
steering pattern. Fourier transforms of the steering traces were computed, and
the amplitudes and phase lags were read off for input frequencies from 0.05 to
4 Hz. These were used to check for temporal filtering effects. In the absence of
temporal filtering the response to an oscillating grating would be predicted by
applying the characteristic function of Fig. 2 (left) to the sine wave describing the
stimulus motion. In fact, the amplitudes read off from the transformed cricket
data became progressively smaller relative to this reference value as the input
frequency increased. Figure 2 (centre) shows this relationship in the standard
form of the Bode amplitude plot. Although it is noisy, the amplitude plot is
comparable to that which would be expected for a first-order low pass filter with
a cut-off frequency between 0.2 and 0.4 Hz. This interpretation is supported by
an examination of the phase-lag of the cricket’s movements (Fig. 2, right) if a
short fixed lag is introduced. This lag is assumed to represent the combination
of synaptic and axonal delays.

The chained subsystems hypothesis (Fig. 1, bottom-left), by requiring that
phonotaxis responses pass through the optomotor pathway, would predict that
phonotaxis behaviour should show comparable amplitude and phase characteris-
tics. We can test this by looking the phonotactic steering responses of the cricket
to certain song patterns, and comparing this to the response predicted by apply-
ing low-pass filters with different frequency cut-offs to the same song patterns.
The two patterns used are a typical calling song of pulses of around 4.7 kHz with
a pulse repetition interval 42 ms grouped into six-pulse “chirps”, and a “split”
song in which alternate sound pulses are presented from opposite sides of the
body. Looking at the ratio of the steering amplitudes to these two stimuli gives
an indication of the likely frequency cut-off for phonotactic steering. Fig. 3 shows
that this ratio for the cricket (1.7/1.3 = 1.3) is much higher than that seen for a
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Fig. 3. Standard calling song and split song patterns (top row), averaged steering

pattern of female crickets to each song (second row, redrawn from [6]) and effect of

low-pass filtering of song patterns with cutoff frequencies of 0.3 Hz and 3 Hz (lower
two rows). The crickets’ phonotaxis response is matched by the 3 Hz cut-off, not the

0.3 Hz that would be predicted if the chained subsystems hypothesis were to hold.

filter with 0.3 Hz cut-off (0.126/0.041 = 3.1) and is better matched with cut-off
frequency of 3 Hz. This is much faster than the optomotor system, so it seems
unlikely that the chained subsystems hypothesis is correct.

Cricket behaviour with both stimuli rules out modulation: The mod-
ulation model (Figure 1, bottom-right) predicts that the influence of a moving
grating (as characterised in Fig. 2, left) will be altered, and possibly inhibited
entirely, in the presence of an active response of the cricket to calling song. As
this response depends on the direction of the song, it might be expected the
modulation should be more pronounced for a more laterally located song. We
tested for this, following [12], by measuring the turning response of the cricket to
sound broadcast at 0◦, ±45◦ and ±90◦ under three different visual conditions:
with a stationary black and white striped grating of period sixty degrees, or
rotating the grating to create leftward optical flow or rightward optical flow at
a pattern frequency of 1 Hz.

Figure 4 (left) shows that the characteristic curve for open-loop turning to
sound within the stationary visual environment is shifted up or down by optical
flow. In order to test the possibility that the size of the shift alters depending on
the direction of the sound a one-way repeated measures ANOVA was conducted
on the difference between the upper and lower curves. No significant effect of
speaker direction was found (F=2.1, p=0.1038). The average size of shift is
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Fig. 4. Walking speeds for nine crickets stimulated with calling song and grating com-

bined (left), means ± standard error. Mean L–R speed over one chirp period during

positive, negative and open-loop visual stimulation (right), means from 13 crickets.

0.91 cm/s (SD across crickets = 0.33). This is not significantly smaller than the
shift (0.98 cm/s) that would be predicted by interpolation from the characteristic
curve of Figure 2 (unpaired t-test (2-tailed), t = -0.5981, df = 8, p = 0.57).
Phonotaxis does not appear to modulate the optomotor response.

However, the auditory stimuli used, standard calling song (Fig. 3, upper left),
mixes pulses of sound with periods of silence. Perhaps the modulation only oc-
curs during pulses, so looking at the averaged turning response is misleading. We
thus carried out a further experiment in which the visual stimulus was moved
only when a phonotactic turning response was detected. The movement either
simulates the visual flow that a cricket would experience in normal closed loop
behaviour so that a left turn results in rightward visual motion and vice-versa
(negative feedback), or is inverted (positive feedback). Figure 4 shows the aver-
age rotation of crickets during a 500 ms chirp period. It is clear that different
optomotor stimuli experienced during rotation to sound produce different re-
sponses, with the response for negative feedback significantly weaker than for
no feedback (Wilcoxon signed ranks test, T=0, p<0.0003) and the response for
positive feedback significantly stronger( T=1, p<0.0005). Turning to sound does
not suppress the optomotor response.

Robot behaviour with both stimuli rules out summation: In the above
experiments, the shift in the turning responses to combined sound and optical
flow could be characterised as addition, i.e., it is quite well predicted by simply
summing the responses seen to each stimulus on its own. However, it is also
consistent with efference copy: under this hypothesis, the open-loop behaviour
would already represent the animal responding to the absence of the expected
re-afference; turning should be reduced if the correct negative feedback is ex-
perienced, and increased if the incorrect postive feedback is experienced. To
distinguish between these possibilities we tested the summation hypothesis on
the robot in closed loop control, to determine whether von Holst’s argument
— an optomotor response running in parallel with phonotaxis would stop the
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Fig. 5. Sound localisation behaviour of the robot for 10 trials for each speaker (squares).

Arena (97 × 128 cm) shown in plan view, arrow shows initial robot position and

orientation. Auditory system alone (left) and with optomotor system added (right).

animal from making its intended turns — applies in practice if we tune the dy-
namics of the two subsystems to match the observed response of the cricket to
the individual stimuli. The tuning (frequency response and gain) of the robot’s
auditory and visual systems were tuned using the data above and also using
observed turning and walking speeds of crickets moving freely in an arena.

Fig. 5 (left) shows that when the phonotaxis system alone was active the
robot initially made a tight turn and then proceeded towards the active speaker.
When the optomotor system was also active (Fig. 5 (right)) the turns were much
broader in radius, and the robot encountered the edge of the arena before being
able to turn and face the speaker. It appears the tendency of the optomotor sys-
tem to stabilise the robot’s course does interfere substantially with the attempt
to turn towards sound.

4 A Robot Model with Efference Copy

So far we have argued that a close characterisation of the cricket’s optomotor
response is inconsistent with three hypotheses about how it may be combined
with phonotaxis. First, the phonotaxis response seems to be filtered at a higher
cut-off frequency than that found for the optomotor response, suggesting it is
unlikely that the former is controlled via the latter as a chained subsystem. Sec-
ond, adding optomotor stimuli during phonotaxis leads to a consistent shift in
angular velocity for all sound directions, both during and between actual phono-
tactic turns, which makes it unlikely that the phonotaxis system is modulating
(certainly it is not simply suppressing) the optomotor response. Third, if the
two systems are simply run in parallel with the outputs added, the optomotor
response should dramatically interfere with turning towards sound, yet this is
clearly not a problem for the cricket under normal conditions.

Consequently we suggest that the cricket uses efference copy to cancel out
expected optic flow, but still reacts to any difference in the optic flow from that
expected. We propose here a speculative model for efference copy circuitry in the
insect brain, shown schematically in Fig. 6. Added to the existing phonotaxis
and optomotor systems is a predictive system. This receives as input a copy of
the auditory system’s output, via two delay lines set to 170 ms to compensate
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Fig. 6. Architecture of the neural controller showing signals of the reflex pathways
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for the delay inherent in the robot’s visual feedback. The output is a continuous
prediction of the output of the optomotor system, and this quantity is subtracted
from the optomotor reflex pathway, in order to allow the robot to respond only
to the exafferent component of the optical flow signal.

Unlike the auditory and optomotor pathways this predictive component can-
not be based upon known neural circuitry from the cricket or other insects.
Instead a liquid state machine (LSM) neural network is used [13]. It is not
claimed that any particular part of the cricket brain is equivalent to an LSM;
this type of model is preferred to alternatives only because it provides the nec-
essary functionality using principles that exist in insect and other brains. The
most important of these is the idea that memory and sustained activity can
be produced through reverberating activity in recurrent networks. These effects
are essential to the cross-model prediction under consideration, since filtering
in both the motor and optical systems means that sequences of short, discrete
sound pulses may result in continuous movement with sensory consequences that
last beyond the duration of the input.

The particular implementation of the LSM uses a pool of 135 integrate-and-fire
neurons, randomly interconnected with a mixture of excitatory and inhibitory
synapses. Each input spike train was connected by excitatory synapses to ran-
domly chosen 30 % of the neurons of this recurrent pool. Pulses of sound picked
up by the auditory system result in reverberating activity which decays away
over time. The statistics of the connectivity within the recurrent pool came from
[13], which was based on rat cortex, although these are not the only possible val-
ues that could produce a viable LSM.

The output of the LSM is calculated by a linear “readout unit”, which receives
one input from all the recurrent neurons and computes a weighted sum. To find
a set of weights for the readout unit the output of the predictive model was
disconnected from the optomotor pathway, and the auditory system was used
to perform phonotaxis while the outputs of both the recurrent neurons and
the optomotor system were recorded. Having collected this training set, linear
regression could be used to calculate a least-squares fit. In principle, this learning
could occur online, i.e., the weights could be continuously adapted to improve the
prediction, using the error between the prediction and the observed optomotor
signal.
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Auditory Only Auditory + Opto Efference Copy

Fig. 7. Tracks of the robot turning towards a standard calling song in the arena under

conditions of random motor disturbance. Phonotaxis system only (left), phono and

opto systems summed at the output (middle) and with directional prediction (right).
Black bars indicate the visual pattern, squares the speaker locations.

The robot was tested using the auditory system alone, using simple summa-
tion of auditory and optomotor output, and using the prediction mechanism
just described, under conditions of random motor disturbances. This was a ran-
dom rotatory bias, superimposed on the robot’s motor output, and changed at
random intervals with a mean interval of one second. Without the optomotor
system, the robot can only correct for these disturbances by re-orienting to sound
(Fig. 7, left), whereas it should be able to detect and compensate for them more
smoothly by using the resulting optic flow. Under simple summation (Fig. 7,
middle), it should also ‘correct’ for optic flow detected when turning towards
sound, so the efference copy mechanism (Fig. 7, right) should produce the most
successful behaviour. The behaviour of the robot in Fig. 7 shows less difference
between the controllers than expected. For the phonotaxis system alone (left),
the robot generally manages to reach the active speaker, although the paths are
far more convoluted than seen without the added random turns (Figure 5, left).
Adding the optomotor system (middle) does seem to make the paths straighter,
suggesting that it can compensate for the random turns. However, unlike the
previous test (Figure 5, right) the robot does not need to make a tight turn
to reach the speaker, so the optomotor system is not actively interfering with
phonotaxis. The results with prediction (right) are rather mixed, with particu-
larly smooth paths to the right-hand speaker but substantial deviations in its
approach to the left hand speaker. We suppose this may be due to some asym-
metries in sound propagation in the two corners of the arena. As a consequence,
a comparison of the directness of the paths (using an ANOVA on the D statis-
tic defined in [4]) under the three conditions showed a non-significant difference
(F=0.82, p=0.4029). It may be that a more challenging task is needed to reveal
whether the efference copy mechanism is indeed the most efficacious solution.

5 Discussion

The idea of efference copy — a copy of a motor command that is transformed
to act as a sensory prediction — is an elegant and general model of how animals
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might deal with the sensory consequences of their own actions. It is also a po-
tentially complex model, since the prediction task is essentially that of forward
modelling. While the existence of such internal models seems increasingly well
established for vertebrates [14] it seems plausible that simpler animals such as
insects might employ more basic mechanisms for dealing with the problem. We
have examined three possible alternatives for cricket auditory and visual con-
trol: chained subsystems, modulation/inhibition of one system by the other, and
simple summation under the assumption that the subsystems do not actively
interfere with each other.

Our behavioural experiments on the cricket, characterising the sensitivity and
frequency response of the optomotor system, suggest that the auditory steering
signal is not subjected to the same kind of filtering as the optomotor response,
which makes the chained subsystems hypothesis unlikely. We also found no evi-
dence of inhibition or modulation of the optomotor response during turns made
to sound. Using this behavioural data to constrain a robot model, we found that
simple summation would predict strong interference between the subsystems.
Consequently we believe the cricket may indeed be predicting its own re-afferent
visual input.

Where might such a predictive component be found in the cricket brain?
The mushroom bodies are a structure which might merit investigation from
this point of view. Although their primary inputs are apparently olfactory, the
lobe-extrinsic neurons that connect with other parts of the protocerebrum are
highly multimodal [15], form recurrent connections, display sustained activity,
and thus might support the computation of cross-modal predictions between
multiple sensory systems. Certainly the numbers of neurons and connections
used in the current model are small enough not to preclude the possibility that
insects might compute with similarly complex forward models.
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Abstract. Rats and other whiskered mammals are capable of making sophis-
ticated sensory discriminations using tactile signals from their facial whiskers
(vibrissae). As part of a programme of work to develop biomimetic technolo-
gies for vibrissal sensing, including whiskered robots, we are devising algorithms
for the fast extraction of object parameters from whisker deflection data. Previ-
ous work has demonstrated that radial distance to contact can be estimated from
forces measured at the base of the whisker shaft. We show that in the case of
a moving object contacting a whisker, the measured force can be ambiguous in
distinguishing a nearby object moving slowly from a more distant object mov-
ing rapidly. This ambiguity can be resolved by simultaneously extracting object
position and speed from the whisker deflection time series – that is by attending
to the dynamics of the whisker’s interaction with the object. We compare a sim-
ple classifier with an adaptive EM (Expectation Maximisation) classifier. Both
systems are effective at simultaneously extracting the two parameters, the EM-
classifier showing similar performance to a handpicked template classifier. We
propose that adaptive classification algorithms can provide insights into the types
of computations performed in the rat vibrissal system when the animal is faced
with a discrimination task.

Introduction

Rats, mice and other whiskered mammals can discriminate a variety of tactile object
properties using only their facial whiskers (vibrissae). For instance, rats are able to dis-
criminate surface textures, with different degrees of roughness, with similar acuity to the
human fingertip [4]; the Etruscan shrew - the smallest living mammal - can recognise
and localise prey animals (insects) from a small number of fleeting whisker contacts,
sufficient to allow fast and precisely targeted attacks [1]; and sea mammals such as
seals and walruses are able to make judgements about object size, shape, and direction
of movement, using only tactile signals from their vibrissae [5].

Several properties of the vibrissal system make it stand out as an interesting model
system in which to investigate theories about the sensory guidance of behaviour. First, in
tactile sensing systems generally, the sensory apparatus is usually brought into contact

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 178–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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with objects in a deliberate and controlled manner. Whether it is a person exploring an
object contour with their fingertips or a rat palpating (whisking) its vibrissae against
a surface, purposive control or active sensing is key to information acquisition [14].
Second, the processing of tactile signals may require a relatively small number of stages.
For instance, in the rat, there are multiple closed loops connecting vibrissal signals to
actuation mechanisms such that new information can begin to influence behaviour after
passing through just a small number of synapses [12]. Processing can also be very
fast. For instance, whisker contact signals can reach the barrel cortex – from where
they can begin to effect processing in behaviour-related areas such as the motor cortex,
the superior colliculus, and cerebellum – in just 7 milliseconds [7]. The rat brain thus
appears to be tuned to pick out the behaviourally-relevant aspects of vibrissal signals
rapidly and in just a small number of steps.

Inspired by the vibrissal systems of mammals, we are working to develop artificial
whisker systems for fast and accurate tactile discrimination – which could be useful
for mobile robots – and at the same time can be used to test theories of mammalian
sensorimotor control. Previous work has shown that information about texture, distance
to contact, and shape can be extracted from signals obtained when an artificial whisker
is moved against a surface [9] [8] [11] [6]. Our current work extends these findings in
several directions. First, by exploring how classifier systems can be trained to extract
a range of different tactile properties from whiskers signals with relatively little pre-
processing of the sensor input. Second, by showing that such systems can extract mul-
tiple features simultaneously from the same signal. Third, by investigating the effects
of active control of the sensor apparatus on the problem of tactile feature discrimina-
tion. At the same time, though described elsewhere, we are developing decision-making
algorithms for these systems that can optimise the speed-accuracy tradeoff [13].

Developing models of whisker based perception has been problematic. In passive
sensory modalities such as vision and audition it is generally quite easy to present stim-
uli to a passive sensor on a robot, or images and tones can be simulated and used to train
a computational model. There is no obvious analog for tactile stimuli, and the true na-
ture of tactile stimuli is too poorly understood to be simulated accurately. Whiskers are
especially difficult to simulate accurately, as they have very low mass but high spring
constants when modelled as a series of masses on rotational springs, leading to numer-
ical instabilities. Additionally when the parameters of a whisker-object contact become
more numerous (e.g. speed and radial distance to contact, surface texture, orientation
and softness etc) it becomes very difficult to constrain the contact and generate reliable
signals in either simulated or physical robots. For these reasons acquiring sufficient ex-
amples of carefully controlled whisker contacts with tactile stimuli to train models and
classifiers has proved difficult. To facilitate the study of artificial vibrissal sensing we
therefore present here a novel system for generating large sets of tactile stimuli and
deflection signals. An XY positioning robot is programmed to move objects into an ar-
tificial whisker sensor in an accurate and highly repeatable manner (Fig.1). Deflections
for the whisker are streamed to a PC, and can be processed in real time to control sub-
sequent movement of the robot arm. Under passive deflections the object moved by the
robot arm makes contact with the artificial whisker and deflects the whisker through a
large angle. When deflection reaches a critical point the whisker loses friction with the
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object, deforms and deflects past the object and goes through oscillatory ringing until
the energy dissipates and the whisker comes to rest. However, in addition to passive
touch experiments we are also able to use our experimental setup to investigate active
sensing. In this case we mimic a control policy that we have observed in rats in our own
laboratory whereby the protraction of a whisker ceases rapidly on contact with a sur-
face and whisker then begins to retract [14]. In contrast to the passive case, this policy,
which we call Minimal Impingement (MI), keeps the amplitude and duration of whisker
deflection within a limited range, and also keeps whisker ringing after contact to a min-
imum. An additional benefit is that the forces acting on the whisker are much smaller,
meaning whisker breakage is less likely – an important consideration for autonomous
robotics.

The remainder of this paper motivates and describes a discrimination algorithm de-
veloped using this test-bed and shows its utility under differing parameters for accu-
rately extracting object features from vibrissal deflection signals. In future work these
algorithms will be transferred to operate in less constrained circumstances onboard mo-
bile robot platforms such the SCRATCHbot robot described in our partner paper [15].

(a) (b)

Fig. 1. The XY positioning robot (a) from above, to show the range of movement available. (b)
From the side.

Simultaneous Radial Distance and Speed Task

The object properties we chose to manipulate and attempt to recognize were radial
distance to contact from the base, and contact speed. The task is to recognise these two
parameters simultaneously. To investigate this problem we presented a vertical pole to
the whisker at a range of radial distances from the base, and at different movement
speeds. We show that, depending on the features used for classification, radial distance
detection is confounded with contact speed. Previous work [3] [10] has shown that a rat
could encode the radial distance to contact along a whisker by monitoring the magnitude
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of forces (or moments) at the base. Others have suggested that the increased firing rate
of cells in the whisker sensory nerve, for contacts close to the base, could be due to
the increased moments at the whisker base. Static beam equations, and analyses relying
on instantaneous measures of moments do not account for the dynamic properties of
objects. If an object collides with a whisker at the same location but at different speeds
it will induce different forces at the base. For example, under the right conditions the
moment at the base will be the same for a slowly moving object contacting near the base,
and a fast object near the tip (see Fig.2 for a demonstration of this). This ambiguity in
the signal cannot be accounted for with a single observation, an additional observation
or feature must be found in order to discriminate these two properties of the collision.
Successful classification relies either on finding the contact speed before conducting
a radial distance estimation, or discriminating both properties simultaneously. In the
analysis we assess a simple template-based classifier and compare its performance to a
classification using an adaptive template classifier, or EM (Expectation Maximisation)
algorithm [2] based classifier. Previously we have shown that templates can be used for
discriminating tactile features in simulation [8], and that spectral templates can be used
to discriminate whisker deflection signals from floor surface textures in a real world
environment [6]. In these cases the templates were hand-picked from the data set for
better classification. In the present study we show that template based classification can
be used to successfully discriminate ambiguous whisker signals in hardware, and that
the templates can be found adaptively using a simple Hebb-like learning algorithm.

Methods

The XY positioning robot. An XY positioning robot (Yamaha-PXYX, Yamaha
Robotics) (see Fig.1) was used to move objects into the whisker. The robot has a move-
ment range of 350x650mm, and can move up to 720mm/s. Repeatability of the robot
is ±0.01mm, and the maximum load it can carry is 1.5kg. Objects are carried by the
robot into an artificial whisker fixed to the table, as this allows us to control the contact
as carefully as possible. Moving the whisker into an object would cause the whisker to
oscillate unpredictably during movement between contacts, and as a result each contact
would be slightly different. A controller (Yamaha RCX 222, 2-axis robot controller)
takes instructions from a PC through an RS232 cable, and the controller interprets the
instructions, completes path integration, and drives the motors. Instructions for the robot
are generated inside a Matlab (www.mathworks.com) loop, and can be easily updated
during robot operation, depending on the whisker input.

The Whisker. A whisker sensor was taken from the SCRATCHbot robot platform (de-
scribed in detail in [15] [16]). Technical details of the whisker can be found in [6]. A
tapered, flexible plastic whisker, ≈5 times scale models of a rat whisker, was mounted
into an inflexible rubber-filled ’follicle’ case (Fig.3(a)). A tri-axis hall effect sensor
mounted in the follicle case measures the deflection of a magnet fixed to the base of the
whisker shaft (Fig.3(b). The hall effect sensor IC was programmed to generate two volt-
ages, corresponding to the magnitude of the whisker base deflection in two directions,
x and y.
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Fig. 2. Peak deflection magnitude for each speed-radial distance pair. Deflection magnitude
(brightness of pixel), or force, has been used in the past as a discriminator of radial distance
to contact. Here a given radial distance results in differing deflection magnitudes depending on
movement speed. If deflection magnitude were a sufficient criteria for radial distance estimation,
the brightness would decrease evenly across all speeds (Y axis).

(a) (b)

Fig. 3. Artificial whisker shaft and follicle, with a UK 1 pence coin for scale (b)Diagram of the
artificial whisker Hall effect sensor

Data. Deflections of the whisker were transmitted through the hall effect sensors to a
LabJack UE9 USB data acquisition card (www.labjack.com) at a rate of 1 kHz for each
of the x and y directions. Each trial lasted 4s. This data was sent to a computer through
the BRAHMS middle- ware (brahms.sourceforge.net) for analysis in Matlab.

Robot control. Minimal impingement was implemented by instructing the robot to
move an object into the whisker at a given speed until a deflection threshold is crossed,
at which point the robot retracts the object as fast as possible (720mm/s). Temporal
latency for the loop is ≈ 300ms from initial contact due to the controller duty cycle.
Though this latency is short enough for the present study, we are working to reduce this
latency by gaining more direct control over the robot motors.

The task. Preliminary investigations highlighted that the closest contact that could be
made by the whisker at any reasonable speed without saturating the Hall effect sen-
sor was ≈80mm from the base. Contacts at less than 5mm from the tip did not deflect
the base of the whisker for long enough before slipping past to allow an MI type con-
tact. Therefore, the 185mm length whiskers provide a 100mm range of radial distances.
Contact speeds above 216mm/s either cause the whisker to slip past the object before a



Tactile Discrimination Using Template Classifiers 183

retraction, or saturates the sensors. 36mm/s was the lower bound on the speed here. Con-
tacts were sampled at radial distance intervals of 1mm, and speed intervals of ≈7mm/s
over the previously described ranges. In total 101 radial distances and 26 speeds were
sampled, giving 2626 different radial distance and speed combinations. Contact combi-
nations were randomly interleaved to limit any affects of changing whisker properties.
For each contact combination the whisker was deflected by the robot in both a clock-
wise and anticlockwise directions (-ve and +ve in x), ensuring that the whisker did not
bend over time through repeated unilateral deflections. The experiment was performed
twice to generate sufficient data for classification.

Data from each trial was stored separately. Deflections from the clockwise robot
movement trials (-ve in x) were converted so all data samples were equivalent. Trials
were ordered into arrays by speed and radial distance to contact. Each trial was aligned
to peak deflection, and shortened to only the 325ms either side of the peak deflection
(751 data samples in total).

Analysis

The data were separated into training and test sets that were each complete data sets of
26 speeds and 101 radial distances. Signals were placed in the training or test sets at
random from the original data. In each case classifiers were developed on the training
sets, and performance was determined on the test set.

Template based classification. Template based classification involves recording exam-
ple sensory data as templates during a training phase, and comparing the stored tem-
plates to novel data during the test phase. By systematically comparing the novel data to
signals encountered previously, a classification can be made by declaring which of the
stored templates the novel signal is most similar to. In the present study each template
corresponds to a speed-radial distance pair. Classification based on these templates is
therefore simultaneous classification of both speed and radial distance. From the train-
ing data set a subset of trials – representative of the larger set – were stored in an array
as templates. The number of templates chosen were dependent on the experimental con-
dition. During the test phase, trials were taken at random from the test set as inputs to
the classifier. An element-wise sum of squared errors calculation was made between the
input I and each template Ti,

e(Ti) =
n

∑
t=1

(I(t)−Ti(t))2. (1)

where n is the length of the template, in samples. The template with the lowest sum of
squared error was determined the winner, and a recording was made in an output array
of the estimated speed and radial distance to contact of the input trial. We conducted
the experiment with a full complement of templates (26x101) as a benchmark for clas-
sification, as well as with two reduced sets of templates, (13x50 and 7x26 templates
respectively).

Adaptive EM template based classifier. Picking templates by hand, though successful,
is an inefficient method of developing a classifier. A better method is to adaptively learn
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a set of templates in an unsupervised way, to find a set that covers the bulk of the data
space for a given number of templates. Such adaptation can be performed with an EM
algorithm [2]. Each time a classification is made it is verified against the true value
of the two contact parameters. If the classification was correct, the winning template
is modified to be more like the input pattern. If the classification was incorrect, the
appropriate losing template is modified to be more like the input pattern. This template
modification is achieved by taking a weighted mean of the template and the input,

T =
(I + αT )

1 + α
(2)

where α is the learning rate of the classifier. By increasing alpha it is possible to learn
quicker, but it is less likely that an optimal value will be reached. (The positive and neg-
ative modifications to templates may be viewed as Hebbian and anti-Hebbian learning
respectively, for templates as linear neurons.) We decided to run the adaptive classifier
with a reduced set of templates (13x50), to see if it was possible to achieve performance
close to or equivalent to that of hand picked templates.

Results

Template based classifier. The template based classifier with 13x50 templates was ca-
pable of successfully classifying 65% of inputs to within 50mm/s of speed and 10mm of
radial distance. This performance decreases as the number of templates used is reduced.

Adaptive EM template classifier. We found that after training the Adaptive EM tem-
plate classifier was capable of classifying 66% of inputs to within 50mm/s of speed and
10mm of radial distance.

Fig.5 shows the results in graphical format. Input signals are shown, arranged for
speed and radial distance. Pixel brightness indicates the value assigned to that input

(a) (b)

Fig. 4. Mean classification error for each radial distance along the whisker, for different numbers
of templates. Y axis corresponds to mean distance between the real and predicted values of speed
(a) and radial distance (b). Error is at its lowest in the portion of the whisker near, though not at,
the tip.
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(a)

(b)

Fig. 5. Classification performance of the EM template classifier (a), against that of a classifier
with hand picked templates

signal. A completely correct classification of speed (Fig.5(a) would appear as a gradual
transition from dark to light vertically along the Y axis, and a corresponding transition
from light to dark horizontally along the X axis for correct radial distance detection
(Fig.5b). We can see that both classifiers achieve some degree of correct classification,
as well as a number of mistakes. Classification tends to be best for larger radial distances
(contacts nearer the tip, lower right region of each plot). Contacts at high speed and near
the base tend to be systematically misclassified (upper left region of each plot). Fig.4
shows the mean error of classification for each point along the whisker. Error is low-
est in the region near, though not at, the whisker tip. Performance of the classifiers with
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reduced sets of templates is good, though the performance of the classifier with the
fewest (7x25) templates is less reliable over certain regions of the space.

Discussion

By collecting a large data set and exhaustively tiling a feature space we have shown
that certain features in the whisker signal that are ambiguous in isolation can be simul-
taneously discriminated using a robust, and computationally cheap adaptive classified
system. Previously we have shown [9][6] that successful classification of surface prop-
erties, such as texture, is highly dependent on knowing the location of the surface and
the nature of the contact. We believe that the first steps towards the goal of simultane-
ously extracting a range of relevant object properties have now been taken. The success
of the classifiers at contacts nearer the tip may also go some way to explain the whisk-
ing behaviour seen in rats. Rats appear to control their whiskers so as to make contacts
at or near the whisker tip [14], possibly because this creates signals that vary more
predictably across contact parameters allowing the animal to make better judgements.
More generally, keeping whisker deflection amplitude and duration within a limited
range using active sensing strategies will allow the development of classifiers that are
more sensitive to smaller changes in the input. Indeed, the data presented here sug-
gests that contacts of this type are easier to discriminate over a particular section of
the whisker, suggesting a ’sweet spot’ of whisk speed and whisker contact location.
The development of fast, adaptive classifiers for tactile feature discrimination could
also provide insights into signal processing in areas of the vibrissal system such as
the barrel cortex where the rat is known to be able to rapidly extract behaviourally-
relevant properties of the stimulus in a small number of processing stages. Ullman et al
[17] have proposed that the visual system operates through hierarchies of progressively
more complex adaptive feature-matching templates. The ideas investigated in the cur-
rent paper might therefore be considered as the first step towards identifying a similar,
general scheme for understanding cortical processing in the domain of touch.
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Abstract. Audition and touch endow spectral processing abilities allow-

ing texture recognition and discrimination. Rat whiskers sensory system

exhibits, as the cochlea, resonance property decomposing the signal over

frequencies. Moreover, there exists strong psychophysical and biologi-

cal interactions between auditory and somatosensory corteces concern-

ing texture analysis. Inspired by these similarities, this paper introduce

a “supramodal” model allowing both vibrissa tactile and auditory tex-

ture recognition. Two gammatone based resonant filterbanks are used for

cochlea and whiskers array modeling. Each filterbank is then linked to a

feature extraction algorithm, inspired by data recorded in the rats barrel

cortex, and finally to a multilayer perceptron. Results clearly show the

ability of the model for texture recognition in both auditory and tactile

tuning. Moreover, recent studies suggest that this resonance property

plays a role in texture discrimination. Experiments presented here pro-

vide elements in the direction of this resonance hypothesis.

1 Introduction

Spectral information carried by the tactile and auditory systems is a primary
cue used in cognitive tasks like speech or music perception in audition as well
as surface or object recognition in touch. These abilities depend strongly on our
perception of complex stimuli like surface textures through the skin or acoustic
timbres through audition. Humans are able to discriminate textured surfaces
by touch only, by auditory signals only and both touch and audition [1], with
similar discrimination performance in each case.

Among the somatosensory systems, rat whiskers are capable of fine texture
discrimination. By actively whisking their vibrissae, rats extract information
about the spatial properties of a surface or object, including size, shape and
texture [2][3]. Each vibrissa has a strong frequency tuning around a resonant
frequency [4][5], allowing to increase the sensitivity of the vibrissa sensory sys-
tem to an ecologically relevant range of low-amplitude, high-frequency stimuli
[6]. The rat facial whiskers array allows the decomposition of the signal into an
ensemble of components at different frequencies. There exist strong parallels be-
tween vibrissa tactile and auditory encoding. Inner hair cells - sensitive cells of

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 188–198, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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the auditory system disposed along the basilar membrane of the cochlea - have
also a strong frequency selectivity and decompose the auditory signal over reso-
nant frequencies, from high frequencies in the cochlear base to low frequencies in
the apex [7]. Thus, both cochlea and whiskers decompose a signal into frequency
components, each sensory cell tuned to a particular resonant frequency. A tono-
topic organization is found in the auditory pathway [7], especially in subcortical
centers, as well as in the somatosensory pathway [8].

More recently, it has been shown that auditory and somatosensory systems
interact in texture perception, both on psychophysical and biological levels (see
[9] for a recent review). For example, Yau et al. [10] found a cross-sensory in-
terference between auditory and touch temporal frequency channels in human:
a touch-based texture discrimination task could be disturbed by a frequency-
dependent auditory signal in a systematic manner. More precisely, given that
the auditory system is specialized for spectral analysis, Yau et al. [11] recently
suggested that spectral analysis of tactile signals is processed in the caudo-medial
belt area, a region of the auditory cortex. They also proposed clear and testable
predictions about underlying physiology.

This present contribution propose a same model for both vibrissa tactile and
auditory texture recognition. In this way it can be characterized as supramodal.
This work is inspired by the strong parallels between vibrissa and cochlea trans-
duction in the one hand, and by crossmodal auditory and tactile interaction
within texture discrimination in the other hand. We propose in Section 2 a
whiskers array model based on a classical cochlear model using gammatone
filterbank [12]. Each filterbank output is then plugged to a bioinspired mul-
tichannel feature extraction algorithm presented in Section 3. By estimating
the instantaneous amplitude-frequency product of the signal, this algorithm is
closely inspired by data recorded in the rat somatosensory cortex, which are
supposed to be related to temporal frequency estimation [8]. Then, a multilayer
perceptron is used to discriminate textures with this feature. Section 4 is devoted
to the experimental part of this paper. A set of experiences are proposed in order
to show texture classification skills for both tactile and auditory modalities with
several sets of textures. A specific attention will be made to the influence of the
resonance effect on the performance. Finally, a discussion about the results and
there incidence is provided in Section 5.

2 Cochlear and Whiskers Array Models

There exists several cochlear models in the literature. Some trying to reproduce
internal (both active and passive) phenomena in the cochlea, e.g. basilar mem-
brane elasticity or fluid mechanics [13]. In a more abstract level, the cochlea
can be seen as a filterbank [14], decomposing the signal over frequency channels.
One classical filterbank cochlear model is the gammatone auditory filterbank
introduced by Patterson et al. in [12].

Rat whiskers have also been modeled, both with mathematical models and
robotic implementations. Neimark et al. [4] proposed a model of vibrissa as a thin
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elastic beam, extended in [5], and have experimentally tested resonance-related
predictions. These studies suggest to their author that whiskers resonance should
be an important property for performing fine texture discrimination. Whiskered
robotic sensors have also been developed for texture discrimination, both with
real rat whiskers [15] or with artificial systems [16], [17]. Nevertheless, in spite of
the similarities between cochlear and whiskers resonance properties, filterbank
based whiskers modeling has not been investigated yet.

In one hand we briefly introduce gammatone filters and their use in a cochlea
tuning. Because there exist fine parameters for human cochlea modeling which
are not provided for rat cochlea, human parameters are used in this paper. On
the second hand, we propose an adaptation of this cochlear model for modeling
a rat whiskers array. The free C implementation of gammatone filters provided
by Ma1 is used in this paper.

2.1 Gammatone Filterbank for Cochlear Modeling

Gammatone filters are well know to fit basilar membrane response to an impulse
stimuli [12]. It appears that this is still similar for the movements of a vibrissa
base [5]. In temporal domain, the impulse response of a gammatone filter is:

g(t) = atn−1cos(2πfct + φ)e−2πbt. (1)

Parameters of the filter are fc, b and n: fc is the center frequency of the filter, b
determines the duration of the impulse response and thus the bandwidth of the
filter, n is the order of the filter and largely determines the slope of the skirts. A
gammatone of order 4 best fits human auditory filter shapes and is used in this
paper. Slaney proposed in [18] a general formulation of the bandwidth of a 4th

order filter in function of the center frequency fc, the asymptotic filter quality at
large frequencies qear and the minimum bandwidth for low frequencies channels
bmin. Glasberg and Moore [19] estimated these parameters from psychoacoustical
human data and proposed qear = 9.26 and bmin = 24.7.

Moreover Slaney [18] addresses a solution for channel spacing along the fre-
quency axis, assuming the number of channels nc, the lowest and the highest
center frequencies fl and fh are known. Transfer functions of a 50 channels gam-
matone filterbank tuned as cochlear model are plotted on Fig. 1(a). The human
auditive frequency range were used (fl = 20 Hz and fh = 20 kHz) both with the
Glasberg and Moore parameters.

2.2 Adaptations for Whiskers Array Modeling

As we said above, the filterbank model of whiskers array is derived from the
human cochlear one. It means that each vibrissa is represented by a well-tuned
gammatone filter. There are two strong arguments in favor of this approach for

1 Ma, N.: On efficient implementation of gammatone filters.

http://www.dcs.shef.ac.uk/∼ning/resources/gammatone.
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Fig. 1. Transfer functions of the gammatone filterbanks. (a): cochlear model, 50 chan-

nels, fl = 20 Hz, fh = 20 kHz, qear = 9.26 and bmin = 24.7. (b): whisker array model,

20 vibrissae, center frequencies from [4], qear = 35 and bmin = 15.

modeling whiskers. Firstly, it emphasis on the resonance phenomena which is
understood as a key mechanism for temporal frequency perception and thus for
texture discrimination. Secondly, gammatone filter and rat vibrissa have quite
similar impulse responses [5].

The problem is now to adapt the whiskers model from the cochlea to fit as
close as possible biomechanical properties of rat’s whiskers. In [4], Neimark et al.
provided the center frequencies of 20 vibrissa measured on a living rat. 5 vibrissa
arcs are described, each composed of 4 whiskers. These values are used in order
to fix the center frequency of each whisker gammatone filter. Andermann et al.
[20] identified populations of neurons in the trigeminal ganglion and the primary
somatosensory cortex of rats that respond to whisker vibrations only within a
narrow band of frequencies centered at resonance. Nevertheless, to the best of
our knowledge, there doesn’t exist any experimental data directly concerning
the bandwidth of whisker filters. Assuming the lack of data, we fixed qear =
35 and bmin = 15. These values provide a bandwidth from 111 Hz from low
resonant whiskers to 233 Hz for high resonant ones (mean frequency is 145 Hz). In
comparison with other existent models, this approach deals with simplicity and
offers a functional view of vibrissa transcription mechanisms: as in the cochlear
model, biomechanical details of whisker transduction are omitted. Obviously,
the counterpart is a lack a biological fidelity. Transfer functions of the generated
filters used as whiskers array model are showed in Fig. 1(b).

3 Feature Extraction for Texture Discrimination

Model presented in the precedent section aim to reproduce basilar membrane
and vibrissa motion in response to a stimuli. To serve as basis for feature ex-
traction, a peak extractor algorithm is plugged to each filterbank channel output,
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mimicking the sensory nerve spike train activity. If the current sample is not
a local extrema of the signal, its value is set to 0. This approach relies on the
strong hypothesis that the peaks thus characterized provide enough information
to describe a texture. Such hypothesis is reinforced by the fact that, when Lick-
lider and Pollack [21] assessed the effects of various signal distortions in human
speech recognition, they found that “infinite clipping” - a treatment that only
kept a signal’s periodicity - did not prevent speech recognition in humans.

In a previous work [16], we experienced texture discrimination on a whiskered
robotic platform with a feature extraction algorithm inspired by data recorded
in the rat’s barrel cortex, which estimates the instantaneous mean power of a
multichannel spike train. Using an elastomer-based whiskers array [22], the robot
was able to discriminate 8 different sandpapers with a mean performance above
90%.

Each rat’s whisker projects to a precise part of its somatosensory cortex,
in a structure named “barrel cortex”. A barrel is a discrete neural structure
that receives an input principally from a given whisker, with a little influence
from neighboring ones [23]. Neuronal base of texture representation have been
investigated in anesthetized rats’s barrel cortex [8]. By stimulating a whisker
with a pure sinusoid fully described by its amplitude A and its frequency f and
by recording the induced neural activity in the barrel cortex, it appears that the
neural activity most probably encodes a quantity homogeneous to the product
Af and called the equivalent noise level.

The feature extraction algorithm used in this paper estimates the instanta-
neous frequency f through the inverses of the time intervals between successive
peaks. Thus the peak amplitude is multiplied by the estimate frequency and ac-
cumulates within a time window. In addition of this instantaneous mean power
calculation, we also use in Section 4 both A and f alone as features for texture
discrimination. These three feature extraction algorithms are summarized in
Fig. 2.

Fig. 2. Feature extraction algorithms for a single channel. From left to right: equivalent

noise level estimation by Af product, amplitude A only, frequency f only. Accumula-

tion is done over a constant time window.
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4 Experiments

In order to demonstrate that the two models presented above are able to discrim-
inate textures, several sets of experiences are proposed. The first one presents
the texture discrimination skills, both in cochlear and whiskers tuning. The
other ones are focusing on precise aspects of the model in order to illustrate the
resonance effect and the whiskers bandwidth influence on the results. These ex-
periments share the same data acquisition which is described before the results.

4.1 Experimental Device

Sets of sandpapers are classically used in texture discrimination experiments
on whiskers system. Neimark et al. [4] modeled a sandpaper in the frequency
domain as a three peaks spectrum, with a dominant activity of low frequencies.
According to this, a set of 8 textures is generated for each experiment (see
Fig. 3). The lowest frequency peak is amplified to 6 dB whereas the two others
are amplified to 3 dB. Other frequencies are attenuated to -3 dB. 40 seconds
input files are generated with a sample frequency of 44100 Hz for the cochlea
textures set and 5000 Hz for the whiskers set. Thus, each file is passed through
its associate gammatone filterbank and feature extraction algorithms. The time
window is set to 100 ms, which match the period of a typical rat whisking
movement. For each texture 400 data vectors is computed, 300 for learning and
100 for testing. Vectors dimension is equal to the number of channels of their
related filterbank and each vector contains values accumulated by the feature
extraction algorithm over one time window.

Having thus obtained an input vector for each trial, we fed it into a simple
three layer perceptron to perform supervised learning. The hidden layer had
the same dimension than the input layer and the input vector. Obviously the
output layer contains 8 neurons, one per texture. We used the FANN library [24]
with the iRPROP training algorithm [25]. The final classification was done by a
winner take all on the 8 output neurons.

4.2 Experimental Results

The first experiment presents the texture discrimination skills of the cochlear
and whiskers array model described above. Filterbanks used are those showed
in Fig. 1 and cover a frequency range between 20 Hz and 20 kHz for the cochlea
and between 80 Hz and 800 Hz for whiskers. For each experience, the three
feature extraction algorithms are compared over a set of 8 different textures.
Classification results are presented in Fig. 3, both with the detailed spectral
composition of the different textures. This experiment clearly shows the ability
of the model for texture discrimination, with a mean classification rate near 90%
for Af and A features. Moreover, it is shown that the f feature alone is irrelevant
for texture discrimination: results are greater than the chance level (12.5% for 8
textures) but clearly under the amplitude based features (see Fig. 3 for details).
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Texture Peak 1 Peak 2 Peak 3

1 250 420 710

2 100 200 500

3 90 350 800

4 200 350 800

5 250 500 600

6 65 250 600

7 90 600 800

8 150 550 850
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(a) Whiskers model texture discrimination. Mean rate: Af = 90.4%, A = 89.5%
and f = 41.5%

Texture Peak 1 Peak 2 Peak 3

1 1000 3000 5000

2 100 1000 10000

3 500 2000 7000

4 150 3000 7000

5 200 10000 15000

6 300 5000 10000

7 500 1000 3000

8 200 1000 2000
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(b) Cochlear model texture discrimination. Mean rate: Af = 92.5%, A = 95.4%
and f = 26.0%

Fig. 3. Classification results for the model in cochlea tuning and whiskers array tun-

ing, tested with 8 different textures. Left column: three peaks textures set used for

discrimination, frequencies are given in Hz. Right column: classification rate for the 8

textures and the 3 features (Af in dark grey, A in pure grey and f in clear grey).

As showed in Fig. 4, where the comparison of the A and f features response
to a pure sinus near the resonance frequency of the A4 vibrissa (cf = 630 Hz)
is provided, the f feature is sensitive to the resonance effect lesser than the A
feature. The frequency based pattern becomes consequently less discriminative
than the amplitude based pattern, that explains the irrelevance of the f feature
for texture discrimination.

The major limitation of the gammatone based whiskers array model, as we
said above, is the lack of biological data concerning the bandwidth of the filters.
In the previous experiments, we used arbitrary fixed bandwidth values. Figure
5 shows the evolution of the mean classification rate in function of the whiskers
filters mean bandwidth, from 5 Hz to 500 Hz. The same textures as in Fig. 3(a)
are used on the three features Af , A and f . Experimental results confirm those
of Fig. 3(a) by showing the weak performance of the f feature alone. Moreover,
one can observe that the model follows the same behavior for the three features:
it doesn’t work with minimal bandwidth value (the classification rate is equal
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Fig. 4. Comparison of the A and f fea-

tures response to a pure sinus near the

resonance frequency of the A4 vibrissa

(cf = 630 Hz)
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Fig. 5. Influence of the whiskers filters

mean bandwidth on the classification

rate. The set of 8 textures of Fig. 3(a)

is used for the 3 features Af , A and f .
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(a) Cochlear model
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(b) Whiskers array model

Fig. 6. Influence of the number of filters on the mean classification rate of a set of

textures. Input textures are the same as in Fig. 3. Af feature is used.

to the chance level upon 30 Hz) but quickly rises the maximal classification rate
for a mean bandwidth near 200 Hz for Af and A or near 300 Hz for f . Above
this value, the mean performance is slowly decreasing.

The last experiment, presented in Fig. 6, tests the influence of the number
of channels on the discrimination performance. Input textures were the same
as previously (see Fig. 3) for both modalities and the equivalent noise level
estimation Af was the only feature took into account. Nevertheless, due to
morphological differences between the cochlea and a whiskers array, channel
reduction is done by a different way. Thus, cochlear channels are disposed along
a frequency range thanks to the Slaney channel spacing solution [18]: decreasing
the number of channels will reduce the channel density but the same frequency
range will be covered. Fig. 6(a) plots the evolution of the mean classification
rate from 1 to 60 cochlear channels. In the other way, whiskers are organized
in arcs over the rat’s face [4], each arc containing whiskers with similar length
and resonance properties. The channel reduction is done arc by arc following the
length gradient from rostral arcs to caudal ones. Figure 6(b) plots the evolution
of the mean classification rate from 1 to 5 arcs composing the whiskers array
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model. Results summarized on Fig. 6 show that the percentage of successful
discrimination quickly rises with the number of channels and reaches values over
80% when 20 channels or 2 arcs at least are concerned. This result confirms
previously obtained ones in [15], [16] about whiskers.

5 Discussion

Audition and touch endow spectral processing abilities allowing texture dis-
crimination. Rat whiskers sensory system exhibits, as the cochlea, resonance
property decomposing the signal over frequencies. Moreover, there exists strong
psychophysical and biological interactions between auditory and somatosensory
corteces concerning texture analysis. Inspired by these similarities, this paper
proposes a vibrissa tactile model and auditory model sharing exactly the same
mechanisms for texture recognition.

Based on gammatone filterbanks, cochlea and whiskers array models aim at re-
producing the sensitive cell motion and offer a simple functional view of transduc-
tion. Nevertheless important aspects of transduction are omitted. Thus, active
perception skills (such as damping adaptation or whisking movements in touch or
cochlear adaptation in audition) are not modeled here, as well as mechanorecep-
tors, viewed as simple peak extractors. More specifically on the whiskers model,
the lack of biological records about vibrissae bandwidth is a key problem for
having precise parameters values. Moreover, by viewing the whiskers pad as a
filterbank, we omit the spatial organization of vibrissae over the face and are
only interested in its spectral organization, through the reproduction of the first
order resonance frequency of whiskers.

Feature extraction used for texture discrimination is inspired by biological
data recorded in the rat barrel cortex. Confirming previously obtained results
on elastomer-based artificial whiskers [16], our results (Fig. 3) show that the
Af feature allows fine texture discrimination in both artificial and simulated
context. This finding is an argument in favor of the so-called kinetic signature
hypothesis [8] which stands that each vibrissa encodes a specific signature of the
touched surface in term of magnitude and temporal pattern. Nevertheless one
can observe on Fig. 3 that the A feature alone have a very similar performance
than Af , whereas the mean inter-peak frequency f is not able to fine texture
recognition. The amplitude A reproduces the motion of the basilar membrane
and the base of a vibrissa. Thus, when a filter resonates, its “motion” becomes
more important and this activity is reflected by the A pattern. In the other
way, the instantaneous frequency estimation f is not sharply sensitive to this
resonance phenomena, as plotted in Fig. 4. From these findings we suggest that,
by changing the A pattern over frequencies, the resonance property improves
the discrimination skills of the model and thus its global performance. This
suggestion is enhanced by the results presented in Fig. 4 and Fig. 6. Likewise, the
fact that our results suggest that the texture discrimination capacities depends
both on the number of channels and amplitude activity patterns seems to back
up the resonance hypothesis [4]. This hypothesis stands that the self resonance
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property of the vibrissa plays a crucial role in vibration transduction and helps
to enhance texture perception.

The whiskers array and cochlea model used in this paper provide a supramodal
representation of the input signal. Although two distinct feature extractors are
used in spite of a real crossmodal one as hypothesized in [11], this work is going
in the direction of a multimodal integration of low-level fundamental sensory di-
mensions. Future work will be devoted to the implementation of this supramodal
model on a robotic platform [26] in order to investigate crossmodal recognition
of vibrissa tactile sensory signal and auditory signal produced by the contact of
whiskers on a surface.

This paper shows that gammatone based filters, in spite of the lack of biome-
chanical precision, are suitable filters for texture discrimination. This kind of
functional model may help in tactile transduction and neural spectral process-
ing understanding by proposing a more abstract view of the transduction process
and enhancing the resonant property.

Acknowledgment

This work as been funded by the EC Integrated Project ICEA (Integrating
Cognition, Emotion and Autonomy), IST-027819-IP.

References

1. Lederman, S.J.: Auditory texture perception. Perception 8, 93–103 (1979)

2. Carvell, G.E., Simons, D.J.: Biometric analyses of vibrissal tactile discrimination

in the rat. J. Neurosci. 10(8), 2638–2648 (1990)

3. Brecht, M., Preilowski, B., Merzenich, M.M.: Functional architecture of the mysta-

cial vibrissae. Behav. Brain Res. 84, 81–97 (1997)

4. Neimark, M.A., Andermann, M., Hopfield, J., Moore, C.: Vibrissa resonance as a

transduction mechanism for tactile encoding. J. Neurosci. 23(16), 6499–6509 (2003)

5. Hartmann, M.J., Johnson, N.J., Towal, R.B., Assad, C.: Mechanical characteristics

of rat vibrissae: Resonant frequencies and damping in isolated whiskers and in the

awake behaving animal. J. Neurosci. 23(16), 6510–6519 (2003)

6. Andermann, M., Moore, C.: Mechanical resonance enhances the sensitivity of the

vibrissa sensory system to near-threshold stimuli. Brain Res. 1235, 74–81 (2008)

7. Warren, R.M.: Auditory Perception: An Analysis and Synthesis. Cambridge Uni-

versity Press, Cambridge (2008)

8. Arabzadeh, E., Panzeri, S., Diamond, M.E.: Whisker vibration information carried

by rat barrel cortex neurons. J. Neurosci. 24(26), 6011–6020 (2004)

9. Foxe, J.J.: Multisensory integration: frequency tuning of audio-tactile integration.

Curr. Biol. 19(9), R373–R375 (2009)

10. Yau, J.M., Olenczak, J.B., Dammann, J.F., Bensmaia, S.J.: Temporal frequency

channels are linked across audition and touch. Curr. Biol. 19(7), 561–566 (2009)

11. Yau, J.M., Hollins, M., Bensmaia, S.J.: Textural timbre: the perception of sur-

face microtexture depends in part on multimodal spectral cues. Commun. Integr.

Biol. 2(4), 1–3 (2009)



198 M. Bernard et al.

12. Patterson, R., Robinson, K., Holdsworth, J., McKeown, D., Zhang, C., Allerhand,

M.: Complex sounds and auditoty images. In: Auditory Physiology and Perception,

Proc. 9th Int. Symp. on Hearing (1992)

13. Givelberg, E., Bunn, J.: A comprehensive three-dimensional model of the cochlea.

J. Comput. Phys. 191(2), 377–391 (2003)

14. Lyon, R.: A computational model of filtering, detection, and compression in the

cochlea. In: IEEE Int Conf. of Acoustics, Speech, and Signal Processing, pp. 1282–

1285 (1982)

15. Fend, M., Bovet, S., Yokoi, H., Pfeifer, R.: An active artificial whisker array for

texture discrimination. In: IROS IEEE/RSJ Int. Conf., pp. 1044–1049 (2003)

16. N’Guyen, S., Pirim, P., Meyer, J.-A.: Tactile texture discrimination in the robot-

rat psikharpax. In: BIOSIGNALS 2010, 3rd Int. Conf. on Bio-Inspired Systems

and Signal Processing, Valencia, Spain (2010)

17. Pearson, M.J., Pipe, A.G., Melhuish, C., Mitchinson, B., Prescott, T.J.: Whisker-

bot: A robotic active touch system modeled on the rat whisker sensory system.

Adapt. Behav. 15, 223–240 (2007)

18. Slaney, M.: An efficient implementation of the patterson-holdsworth auditory filter

bank. Technical report, Apple Computer Technical Report 35 (1993)

19. Glasberg, B., Moore, B.: Derivation of auditory filter shapes from notched-noise

data. Hear. Res. 47, 103–138 (1990)

20. Andermann, M., Ritt, J., Neimark, M.A., Moore, C.: Neural correlates of vibrissa

resonance: Band-pass and somatotopic representation of high-frequency stimuli.

Neuron 42, 451–463 (2004)

21. Licklider, J.C., Pollack, I.: Effects of differentiation, integration and infinite peak

clipping upon the intelligibility of speech. Am. Acoust. Soc. J. 20(1), 42–51 (1948)

22. N’Guyen, S., Pirim, P., Meyer, J.-A.: Elastomer-based tactile sensor array for the

artificial rat psikharpax. In: ISEF 2009 - XIV Int. Symp. on Electromagnetic Fields

in Mechatronics, Electrical and Electronic Engineering (2009)

23. Petersen, R.S., Diamond, M.E.: Spatial-temporal distribution of whisker-evoked

activity in rat somatosensory cortex and the coding of stimulus location. J. Neu-

rosci. 20(16), 6135–6143 (2000)

24. Nissen, S.: Implementation of a fast artificial neural network library. Technical

report, Department of Computer Science University of Copenhagen (2003)
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Abstract. One of the main claims of the active vision framework is that

finding data on the basis of task requirements is more efficient than re-

constructing the whole scene by performing a complete visual scan. To

be successful, this approach requires that agents learn visual routines to

direct overt attention to locations with the information needed to accom-

plish the task. In ecological conditions, learning such visual routines is

difficult due to the partial observability of the world, the changes in the

environment, and the fact that learning signals might be indirect. This

paper uses a reinforcement-learning actor-critic model to study how vi-

sual routines can be formed, and then adapted when the environment

changes, in a system endowed with a controllable gaze and reaching

capabilities. The tests of the model show that: (a) the autonomously-

developed visual routines are strongly dependent on the task and the

statistical properties of the environment; (b) when the statistics of the

environment change, the performance of the system remains rather sta-

ble thanks to the re-use of previously discovered visual routines while the

visual exploration policy remains for long time sub-optimal. We conclude

that the model has a robust behaviour but the acquisition of an optimal

visual exploration policy is particularly hard given its complex depen-

dence on statistical properties of the environment, showing another of

the difficulties that adaptive active vision agents must face.

1 Introduction

The information-processing framework of vision, initiated with Marr’s theory
[1], describes attention and vision as processes aimed at building ‘objective’
general-purpose representations of the environment that can be used to guide
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any relevant perceptual process and action [2]. This approach has a strong limit
in that building representations totally detached from the specific needs of the
system produces scene representations with an overwhelming amount of non-
needed information. The active vision approach [3] proposes instead to use a
perceptual system with a highly-sensitive fovea to explore the environment and
extract only the information needed to pursue current goals. This dramatically
reduces visual computations as these can be performed only on limited portions
of the scene, similarly to what happens in humans [4].

Given this strategy, the difficulty of performing complex reconstruction of
the environment is in great part transferred to the difficulty of controlling the
gaze in an efficient manner. Experiments on overt visual attention in ecological
conditions show that eye-movement patterns are organised on the basis of task-
dependent visual routines [5,6]. These are stereotyped sequences of elemental
operations related to the accomplishment of specific perceptual or sensorimotor
tasks, which involve eye movements and specific processing of foveated scene
regions (e.g. contour tracing and location storing). Visual routines are a fun-
damental concept for active vision as they constitute the means through which
visual behaviour actually selects only specific portions of the scenes to perform
high cost visual-processing operations. Several behavioural studies, on tasks like
face recognition [7] and visuo-motor control [8,9], have shown that human are
able to readapt their visual routines for task specific demands.

In ecological conditions, learning visual routines is difficult due to: (a) the
many dimensions of the visual space; (b) the partial observability caused by the
environment properties and by the presence of a fovea and a periphery with a
limited perception; (c) the need to pursue goals in changing conditions; (d) the
fact that the mechanisms learning to control the eye can make leverage only
on indirect rewarding signals, for example related to the effects of manipulation
actions and not directly to eye movements.

Notwithstanding the importance of visual routines and these difficulties, most
studies on active perception and autonomous robotics have not studied the pro-
cesses of learning and re-adaptation related to them. In this respect, the goal of
this work is starting to study in a systematic fashion how visual routines are first
learned and then re-adapted when the environment changes. To this purpose, we
use a reinforcement-learning bio-inspired embodied model controlling a camera-
arm robot (some components of the architecture were presented in [10] and [11]).
The system has some features which make it well suited for this study within a
bio-inspired active vision context: (a) it assumes a strong coupling between vi-
sual and arm control; (b) has a simplified bottom-up attention component and a
rather sophisticated top-down attention component; (c) is based on neural maps
which allow the formation of distributed quantitative internal representations
easily studied in a graphical way.

Related studies. Previous studies on adaptive active vision have so far fo-
cused the previously mentioned topics in isolation. In [12] an artificial fovea is
controlled by an adaptive neural controller. Without a teacher, this learns trajec-
tories causing the fovea to find targets in simple visual scenes and to track moving
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targets. In [13] a model is proposed which integrates bottom-up and top-down
attention processes. The system used Q-learning to find objects located in fixed
positions in crowded rooms. Although interesting, the model needs hand-made
knowledge of the target appearance and learning is specific for objects in one
specific context, so it has to be retrained when objects move or scenes change.
In [14] a model is proposed to solve active sensing problems under uncertainty.
A reinforcement learning algorithm allows it to develop active sensing strategies
to decide which uncertainties to reduce. However, in this study the model of the
task is known a-priori and motor control is hardwired. In [15,16,17] evolutionary
learning techniques are used for developing adaptive active vision systems. These
approaches are robust to the perceptual aliasing problem, however they do not
allow on-line adaptation to changing environments.

2 The Model

The architecture of the model (Figure 1.a) integrates two components: (a) an
attention control component formed by a bottom-up and top-down attention
sub-component; (b) an arm control component. These components are based on
common bio-inspired computational principles: (a) population codes (here 2D
neural maps) used to represent sensorimotor information [18,19]; (b) dynamic
neural-field networks used to integrate information and select actions based on
neural competitions [20,21]; (c) a progressive development of skills (cf. [11]). We
now present an overview of the components and then describe them in detail.

The setup used to test the model is a simulated version of a real system pre-
sented in [10] (see Figure 1.a), formed by a down-looking camera and a 2-DOFs
robotic arm. The arm horizontal working plane is made up by a computer screen
where the task stimuli appear. The input image of the model activates a periph-
ery map that implements bottom-up attention. The central part of the input
image (fovea) feeds a reinforcement-learning actor-critic component that learns
to predict the position of relevant visual elements based on foveated cues (top-
down attention). A leaky-neuron potential action map (PAM) integrates in time
these predictions. A saliency map sums up the information from the periphery
map and the PAM and selects the next eye movement corresponding to the most
active neurons (neural competition). Each eye fixation point, encoded in a eye
posture map, suggests a potential arm target to an arm posture map which (a)
performs the eye posture → arm posture inverse kinematic and (b) implements
a second neural competition which triggers reaching movements when the eye
fixates the same location for about three consecutive time steps. If the reached
target is the correct one (red object), the actor-critic component gets rewarded
otherwise it gets slightly punished (as a metaphor of energy consumption).

2.1 Attention Control Components

Periphery Map (Bottom-Up Attention). The input image is a 240 × 320 pixel
RGB image. A 30 × 40 gray periphery map pm is extracted from it: first the
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Fig. 1. (a) Eye-arm control architecture. (b) Example of environment from family L,

with target (gray = red) on the left, a distractor (dark gray = blue) on the right of a

line of 2 to 5 cues (light grey = green). (c) Example of environment from family R,

with switched placement of the target and distractor.

input image is divided into 30×40 blocks of 8×8 pixels each, then the RGB color
values of the pixels of each block are averaged to obtain a gray value. As objects
(uniformly coloured squares) are shown on a black background, the simple gray
image is enough to reveal their presence: a more sophisticated bottom-up saliency
(e.g. as that of [22]) is not needed for the purposes of this work.

Actor-Critic Component (Top-Down Attention) The fovea is composed of a
2 × 2 RGB pixel image (encoded in vector f) extracted from the centre of the
input image. The fovea image is fed into two feedforward neural networks forming
a reinforcement-learning actor-critic architecture [23], a biologically plausible
model of trial-and-error learning in organisms [24,25]. The critic is a network
with a linear output unit vt which learns to evaluate the current state on the basis
of the expected future discounted rewards. The system gets a reward rt after the
execution of a reaching action, and this, together with vt, is used to compute
the surprise signal st (or ‘TD error’, [23]) used to update the critic’s weights
(vector wc) and the actor’s weights (matrix Wa). The actor is a network whose
output layer is a vote map of 60 × 80 sigmoid neurons (encoded in vector vm)
which signal to the PAM the possible positions of rewarded targets with respect
to the currently foveated visual cue (γ = 0.9; T is the transpose operator):

vt = wcT f st = (rt + γ vt)− vt−1 (1)

vm = g [Waf ] g[x] = 1/(1 + e−x) (2)
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The critic is trained on the basis of st, used as error signal, and the input f [23].
The actor is trained with a Hebb rule involving the activation of the saliency
map (vector smt), which encodes the last eye displacement (see below), and the
input f , so as to increase or decrease the probability of doing the same saccadic
movement again on the basis of the surprise signal st [10] (ηc = 10−7, ηa = 10−5;
• is the entrywise product operator):

wc
t+1 = wc

t + ηc st ft (3)

Wa
t+1 = Wa

t + ηa st smt • (vmt • (1− vmt)) fT
t (4)

Potential Action Map (Top-Down Attention Memory). The PAM is formed by
60× 80 leaky neurons (vector pam) and accumulates evidence, furnished by the
vote map vm via topological connections, on the possible positions of rewarded
targets. Importantly, during each saccade the map activation is shifted in the
direction opposite to the eye motion to maintain eye-centred representations (as
it might happen in real organisms, see [26]). The PAM is reset each time the
input image changes (also this might happen in real organisms [27]).

Saliency Map. The 60×80 saliency map (encoded in vector sm) selects saccade
movements on the basis of the sum of the topological input signals pm and
pam. The saccade movement is selected by first identifying the unit with the
maximum activation and then by activating the map with a Gaussian population
code centred on it (the Gaussian function has a width σ = 1). The eye movement
is the average of the winning neurons’ preferred eye displacement (Δx, Δy). This
selection mechanism, based on the maximum function, is a computationally fast
approximation of a neural dynamic competition process (e.g., cf. [21]).

Biology. Empirical evidence indicates that the cortical area of the frontal eye
field (FEF) exhibits properties similar to those of the saliency map integrating
bottom-up and top-down information to drive overt and covert attention [28].
Another possible location for this integration is the posterior parietal cortex [29].
Bottom-up (pre-attentive) saliency processes take place in a parallel in relation
to various aspects of the retina image such as color, orientation, and motion, and
the resulting information is then integrated at higher levels such as the FEF and
the parietal cortex. These processes are performed with increasing abstraction in
the retina, the lateral geniculate nucleus, the visual cortex, and the extrastriate
visual cortex. The top down influence on attention control mainly originates
from prefrontal cortex based on the subject’s goals and motivations and the
environment context. One type of top-down influence reaching FEF neurons is
related to a template of the target to which attention must be allocated. Other
type is related to the spatial relationship between objects that human can acquire
even unconsciously as shown in experiment on contextual cueing [30]. This kind
of knowledge might be encoded in the hippocampal system. Neurobiologial data
on how and where saliency maps can be implemented in the brain can be found in
[31,32,29]. The trial-and-error learning processes performed by the model might
correspond to the processes taking place in the portions of the basal ganglia
dedicated to the control of the eye (striatum and substantia nigra pars reticulata
[33]).
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2.2 Arm Control Components

As the paper is focussed on attention processes, we now illustrate the main
aspects of the arm control components and refer the reader to [11] for details.

Eye Posture Map. This 30× 40 neuron map encodes the current eye posture
as a Gaussian population code (encoded in vector emp; σ = 0.3).

Arm Posture Map. This is a 40× 40 map (vector apm) which represents the
output layer of a neural network whose weights (Wapmk) are pre-trained with
a Kohonen algorithm to encode the arm postures in a 2D space. During tests, a
neural neural competition [21] takes place in the map (similarly to what happens
in real organisms [20]), selects a target for reaching actions, and triggers them
when any neuron achieves a certain threshold.

Arm Posture Readout Layer. This is a layer of four sigmoid neurons (vector
aprl) that encode the desired arm joint angles issued to the arm simulated
servos. The map is activated by the arm posture map through connection weights
encoded in the matrix Waprl.

Training. The arm components were trained before the experiments illustrated
in Section 3. This pre-training is divided in three succeeding learning phases
based on random movements of the arm (motor babbling). In these phases the
system: (a) performs a vector quantization of postures within the arm posture
map on the basis of the Kohonen algorithm; (b) learns with a delta rule the
inverse kinematic mapping (Wapm) between the gaze direction corresponding
to the seen hand (epm) and the corresponding arm posture encoded by the
Kohonen map (apm) on the basis of Wapmk; (c) trains the arm posture readout
map (Waprl) with a delta rule.

3 Experimental Setup

In a previous work we showed that the system was able to learn in few trials to
interact with several environments sharing an underling structure, like an simpli-
fied tree where the target was an apple always under the foliages. To test how the
architecture behaves when exposed to environments based on contrasting rules
a task was designed where the environment was randomly selected from one of
2 ‘families’ of environments in every trial. We wanted also to study what could
happen when the system has to update its knowledge to tackle a new context for
which it is good but not optimal. To test this, the two families were presented
with unbalanced frequencies and then these frequencies were switched.

The objects of both families of environments were uniformly-coloured red/
green/blue rectangles with width 2.96cm and height 2.94cm and were placed on
the vertexes of a 5×6 grid spaced 5.2cm and 3.8cm apart. In the family L (which
stands for ‘Left’), used in 75% of trials, the red target was on the left of a ‘line’
formed by 2 to 5 green cues (randomly positioned on one of the 2nd, 3rd, 4th or
5th column of vertexes). A blue distractor was set on the right side of the cue
line (see Figure 1.b). In the family R (‘Right’), presented in 25% of trials, the
placement of the target and distractor was switched with respect to the cue line
(see Figure 1.c). The attentional system was first trained for 60,000 steps in this
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condition, and then for further 60,000 steps with the frequency of presentation
of environments of family L and R switched to respectively 75% and 25%.

4 Results

Figure 2.a shows the average reward during learning, measured for the two differ-
ent families of environments separately. The performance with L environments
increases quickly and then reaches a stable steady state whereas for R environ-
ments increases slower and shows oscillations.

Figure 2.b shows the evolution of the average number of saccades per trial
during learning divided for the two different families of environments. Learning
time looks similar for the two families with some advantages for L, but R shows
oscillations. The final average number of saccades is 5.86 for L and 7.08 for R.
Both plots reach a steady level, so the final different number of saccades with
L in comparison to R (approximately one saccade less on average) does not
reflect a different level of skill but rather a different strategy. In this respect, the
analysis of the behaviour of the system shows that it learns an exploration policy
that initially assumes to tackle an environment from family L. In the presence
of an environment from family R this assumption fails, and the system looks
directly on the other side of the array rather than exploring the cues again. This
strategy allows the system to solve the task with only one additional step.

Figure 3 presents an analysis of visual routines. In particular, Figure 3.a shows
the most frequent sequences (during learning) of the first three ‘eye actions’ (sac-
cade towards left, saccade towards right, saccade on the current object column)
per trial. Figure 3.c shows the evolution of the frequencies of the same sequences
during learning. The most frequent action sequence is ‘left, stay, stay’, and is the
sequence the model uses when exposed to environments of family L. The second
most frequent sequence is ‘stay, stay, stay’. This sequence is the most selected in
the first trials, when the system oscillates between cues, whereas its frequency

(a) (b)

Fig. 2. (a) Average reward of the system (y-axis) during learning (x-axis) measured

separately for the two families of environments. Using a moving window of 100 trials,

the trials inside the window were separated in two groups corresponding to the two

families and the total reward taken for each group was divided by the number of trials

in each group. (b) Average number of saccades per trial (y-axis) during learning (x-axis)

measured separately for the two families of environments.
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(a)

(b) (c)

Fig. 3. (a,b) Different eye-action sequences (segmented histogram bars: only three ac-

tions per sequence are considered) with the ten highest frequencies (gray bars) exhib-

ited by the system during learning. For each sequence, the colours of the bars represent

three different possible eye-actions: saccades towards left (gray), towards right (white),

and on the current column (black). Note that the first action of each new trial/scene

was removed when the agent gazed the background, and kept when it gazed an object,

as the first action depended on the random starting position of the eye. (c) Evolution

of eye movement sequences during learning. The plots are sorted by the max frequency

they had during learning. Only the first five sequences are shown.

lowers as soon as the system learns to inhibit the entire column of cues, and is
then used only when the system reaches the target to trigger the arm movement.
The third most frequent sequence, ‘left, right, stay’, has the same first action of
the most frequent sequence but then takes the gaze back to the right and then
stops: this is the sequence used by the system to solve an environment of family
R. This sequence is the last to be learnt, and together with the first and second
sequences covers about 90% of all sequences. Overall, this strategy shows that
the system initially acts as if it were in an L environment, and when it collects
information contrary to this assumption it goes straight from the distractor to
the target. The other sequences reach a relatively high frequency after the sys-
tem learns to inhibit the column of cues, and the system has not yet discovered
the relationship between the cues and the target, but then they get a rather low
frequency after the system has learned the whole strategy.

This policy, acquired by the model to tackle the two environment families is
not a composition of the two policies which the system acquires to tackle each
family separately. In fact, if a simulation is run with only one of the two families,
the family L and the family R lead to the use of respectively the first sequence
of Figure 3.a and the first sequence of Figure 3.b with a frequency, in each case,
of about 90%. The internal representations of stimuli acquired by the system are
not a simple combination of the representations of the strategies for the two fam-
ilies of environments. Figures 4.a,b show the activation patterns of the vote map
when the system foveates a cue or a distractor after it has been trained with envi-
ronments chosen from families L and R with a frequency of respectively 75% and
25%. Figures 4.c,d show the activation patterns of the vote map after the system
has been trained with environments drawn from only family L (the patterns after
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(a)Cue

(b)Distractor

(c)Cue

(d)Distractor

(e)Cue

(f)Distractor

(g)Cue

(h)Distractor

Fig. 4. (a,b) Vote map activation patterns in correspondence to a cue or a distractor

after 60,000 training steps with environments of both families. (c,d) Vote map activa-

tion patterns in correspondence to a cue or a distractor after 60,000 training steps with

environments of family L. (e,f) Vote map activation patterns in correspondence to a

cue or a distractor after 10,000 training steps with environments of both families. (g,h)

Vote maps on the stimuli of the model after 60,000 training step when exposed to both

families of environments after changing frequency of family L to 25% and frequency of

family R to 75%.

training with only family R have a mirror structure with respect to the vertical
axis). Figures 4.a,b show that the patterns developed with both families is not a
combination of the maps obtained with the separate training with each family as
such combination would have been something like an average of topologically cor-
responding locations of the patterns related to the two families learned singularly.
Rather, it contains features which allow the system to express the visual routines
described above. This is shown especially by the activation pattern related to the
distractor when the system is trained with only a family. In such pattern, contrary
to what happens with the training with both families, there is no coding for the
position of the target but rather for a movement back to the cue.

The structure of the vote-map activation patterns can also help clarifying the
oscillations of performance observed with family R and shown in Figure 2.a.
Considering the vote map activation patterns built in the first learning phase
(Figure 4.e,f), the final vote map activation patterns (Figure 4.a,b), and the
vote map activation patterns developed when the system is exposed only to one
family (Figure 4.c,d), it is apparent that the most frequent task interferes with
the exploration of the less frequent one during learning (see also Figure 2.b).

4.1 Readapting to New Environment Statistics

After 60,000 steps of training with the families L and R at respectively 75%
and 25%, the two frequencies were switched. As we have seen, at this point the
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(a)

(b) (c)

Fig. 5. (a) Average reward during learning after changing the frequency of family L
and R to respectively 25% and 75%. (b) Average number of saccades during learning

after changing the frequency of family L and R to respectively 25% and 75%. (c)

Frequencies of the five most frequent saccade sequences (first 3 saccades per trial)

during learning, after changing the frequency of family L and R to respectively 25%

and 75%.

system has already stabilised on its maximum level of performance. Switching
the frequencies of the two tasks does not substantially affect the performance, as
shown in Figure 5.a. The performance with family L has some decrease whereas
the performance with family R has a little increment, but after a transient phase
performance with both families is again at about the same maximum level and
the performance oscillations with family R are even reduced.

Interestingly, Figure 5.b shows that after about 2,000 trials the system be-
comes faster in solving the tasks of family R than those of family L, so following
the switch in frequency of the two families. The nature of this policy shift is
revealed by Figure 5.c. This indicates that after switching the former most fre-
quent sequence, ‘left, stay, stay’, progressively decreases to a very low level. The
optimal policy for family R, ‘right, stay, stay’, steadily increases until becomes
the new most frequent sequence. The sequence ‘right, left, stay’ appears slowly:
this is the ‘back-up’ sequence for the new infrequent environments of family L
which allows going directly to the target after finding the distractor.

The re-adaptation of the policy is quite slow because the difference in perfor-
mance is rather stable after the shift, and this implies a small error signal for the
actor. In particular, right after the shift the distractor (now encountered often)
is a predictor of the target, so the value that the critic assigns to it is close to
that of the target and the corresponding error is low. Moreover, when the switch
takes place the connection weights are already rather high but often with a sign
opposite to the required one (compare Figure 4.a,b and Figure 4.g,h).
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5 Conclusions

This work used a bio-inspired reinforcement-learning model for controlling an
eye-arm system to study learning and readaptation of visual routines. The model
was tested with two contrasting tasks which posed aliasing problems and were
presented with different frequencies. The model solved the two tasks by devel-
oping visual routines dependent on both on the structure and frequency of the
tasks. The analysis of the internal representations revealed how the system or-
ganised to support such visual routines. Interestingly, the system starts exploring
the environment on the basis of the expectation of tackling the most frequent
task. If evidence is collected against this expectation, the system changes it and
solves the less frequent task with only one additional saccade. The analysis of
representations also indicates that the system has learned the spatial (stochas-
tic) relationships between the elements of the objects useful for finding the task-
dependent information within the scene. When after learning the frequency of
presentation of the environments is switched the performance of the system does
not substantially decrease thanks to the re-use of the previously acquired visual
routines, then slowly improved on the basis of the reward feedback.

Overall, the study shows that when active vision systems have learning capa-
bilities the discovery and re-adaptation of visual routines generates a number of
very interesting phenomena such as the ability to tackle several environments at
the same time, and the dependency of the optimal visual exploration policy on
the statistical properties of the environment.
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Abstract. The weakly electric fish have a specialized sensor system of

electrolocation. They use the electric field to identify the location of a

target object. When the object is near the electric fish, the distortion of

electric field is observed and this distortion draws a bell-shaped curve

along electroreceptors on the whole surface of weakly electric fish. The

ratio of maximal slope to maximal amplitude in this electric image is

called relative slope. It is already known that the relative slope can be

a distance measure of a target object. However, if there are more than

one object, a bell-shaped electric image for each object is superposed. So

it is difficult to extract the relative slope information for each object. It

means that the location of each target object can hardly be estimated

among background objects. In this paper, we provide a new mechanism

to figure out the position of a target object, based on the spatiotemporal

information of electrosenses.

Keywords: weakly electric fish, electrosensory system, electrolocation,

relative slope, distance measure, spatiotemporal sensing.

1 Introduction

Weakly electric fishes have a specialized electrolocation system to identify a
target object, explore in their surroundings, and communicate with conspecifics.
The weakly electric fish generates the electric field and detect the distortion of
the electric field. Readings of many electroreceptors generate the electric image.
Electric images give us the information of how weakly electric fish find preys
or recognize the environment. They have tuberous receptors on the whole skin
surface, and the sensor readings are recorded as the intensity of electric potential
dependent on the distance of a target object from the receptor.

Sensory systems can be divided into two types, passive and active sensory
systems. The electrosensory system of the weakly electric fish belongs to active
sensory system, because they use their electric organ (EO) as a source of energy.
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Weakly electric fish emit self-generated electric field and detect the reflected
signal from any object. The bell-shaped curve of electric potential influenced by
an object can be observed with a lot of electroreceptors on the skin surface along
the rostrocaudal line. This electric signal possesses the information to localize
the target object. The localization of the target is a fundamental and necessary
function of animals to capture preys and avoid their predators. Weakly electric
fish use electrolocation to localize the target with electric image. In the three-
dimensional space, weakly electric fish have to identify rostrocaudal (from head
to tail), lateral (side direction), and dorsoventral (from dorsal to ventral) position
of a target object.

A weakly electric fish has about 14,000 ‘tuberous electroreceptors’ and read-
ings of these electroreceptors produce an electric image [1]. The stimulus inten-
sity is inversely proportional to the distance of an object from the fish. When
we see the sensor readings of electroreceptors along the rostrocaudal axis, the
position of maximum amplitude is the same as the rostrocaudal position of an
object. However, identifying the lateral distance of a target object is not simple.
The distance from the midline of a fish, the conductivity and size of a target
object, all of them influence the electric image. There have been researches to ob-
serve changes of electric field on the skin surface along the rostrocaudal line and
it is demonstrated that the ratio of the maximal slope to maximal amplitude is
dependent on the distance of a target object but has no change for varying sizes
of the object [2,3,4]. It suggests a possible distance measure with electrosenses
of weakly electric fish [5].

Chen et al. [6] showed an experiment with a moving object near the body
surface of weakly electric fish. Stimulus due to a moving object has been recorded
at a specific sensory position on the surface of the weakly electric fish with a given
time span. In this case, the time spot with the maximal intensity indicates the
time when the distance between the target object and the sensor is shortest. Also
the full-width at half-maximum (FWHM) can be used as a distance measure,
irrespective of the conductivity and size of a target object.

The relative slope and FWHM have different measure styles; the one is related
to a spatial distribution of sensor readings, and the other has temporal property.
However, both measures take sensor readings for a target object at varying po-
sitions of electroreceptors. Weakly electric fish swim back and forth frequently
when they capture their prey [7]. We suggest that weakly electric fish can take
an advantage of spatiotemporal information acquired from a distribution of elec-
trosenses with their active movements. In this paper, we will see the effect of the
back and forth swimming with spatiotemporal information when there are more
than one object near the fish. It is expected the combination of the spatial and
temporal information processing can give us a hint about how weakly electric
fish discriminate a target object from background objects. We introduce par-
ticular features acquired from the spatiotemporal pattern of electric image and
further explain the mechanism of how weakly electric fish identify target objects
in complex environment. This study can provide us with a possible localization
mechanism of an aquatic vehicle in the underwater.
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2 Method

2.1 Modeling Electric Field

A weakly electric fish has an electric organ (EO) transformed from muscle and
nerve cells [8,9]. We study the electroreception mechanism of the electric fish
Apteronotus albifrons. The electric field is produced by the EO and the EO is
modeled as a set of positive and negative poles [10,6]. The simulation of elec-
trosenses can gives a good illustration about the mechanism of how weakly
electric fish use their electrolocation to identify a target object although the
measured values of a sensor is extremely small to obtain clean electric image
[11].

The EO is composed of n positive poles and one negative pole and the sum of
charges of electric poles are zero. These are distributed along the mid-line axis
of the weakly electric fish with a fixed interval. The electric potential, V (x), and
electric field, E(x), measured at x are derived, respectively as,

V (x) =
n∑

i=1

q/n

|x− xi
P |
− q

|x− xN | (1)

E(x) = −∇V (x) =
n∑

i=1

q/n

|x− xi
P |3

(x− xi
P )− q

|x− xN |3 (x− xN ) (2)

where xi
P is the position of the i-th positive pole, xN the position of one negative

pole, and q is the normalized magnitude of electric charge that has generally
the value from 8mV to 20mV [6]. To consider the normal component for an
electroreceptor, the transdermal potential difference Vtd(xs) is calculated as,

Vtd(x) = E(x) · n̂(x)ρ (3)

where n̂(x) is the normal vector at the measured point, and ρ is the ratio of
resistivity of the surface of the fish and water, ρskin/ρwater. The distortion of
the electric field due to a spherical object at x can be derived [10,6] as,

ΔV (x) = χ
r3E(xobj) · (x− xobj)

|x− xobj |3 (4)

where E(xobj) is the electric field at the center position, r the radius of a sphere,
and χ is the electrical contrast that ranges from 1 at a perfect conductor to −0.5
at a perfect insulator [6].

Weakly electric fish have a lot of electroreceptors over the surface of the body
and in this paper we consider a group of electroreceptors distributed along the
rostrocaudal axis. The collection of stimulus at each electroreceptor forms a
spatial electric image (one-dimensional curve). The electroreceptor reads the
distortion of transdermal potential caused by an object.
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Fig. 1. Electric images with fixed lateral distance and size of a target object (a) spatial

sensor readings with varying rostrocaudal positions of a target object from the mouth

(b) temporal sensor readings with varying sensor positions from the mouth (the velocity

of the weakly electric fish is 1m/sec)

2.2 Electrolocation and Relative Slope

Weakly electric fish use electrolocation to localize a target object. Fig. 1 (a)
shows sensor readings of electroreceptors on the skin surface. It displays spatial
electric images when the lateral distance and size of a target object are fixed. The
maximal amplitude depends on the relative rostrocaudal and lateral position
as well as the size and conductivity of the target object. It is noted that the
rostrocaudal position of the target object can be found in the electric image
with the position of the maximum intensity. For spatial electric image (Fig. 1
(a)), the position with maximum intensity matches the rostrocaudal position of
the target object from the mouth of a fish. We also simulate the sensor value
of a specific electroreceptor when the fish moves forward. For temporal electric
image - see Fig. 1 (b), which shows sensor readings of an electroreceptor in
the time course, the maximal amplitude can be observed at the time when the
distance between the target object and the measured point is shortest. However,
the lateral distance is not directly extracted in the electric images for both
experiments, unlike the rostrocaudal position of a target object.

When there is only one target object near the weakly electric fish, the local-
ization is simple. The rostrocaudal position of a target object is identified by
the position of a maximal amplitude. The relative slope and FWHM are the
measure of the lateral distance of a target object [2,3,4,5,6]. The relative slope
is the ratio of the maximum slope to the maximum amplitude in the curve of
sensor readings. Eventually the relative slope can be applied to both spatial
sensor readings and temporal sensor readings in Fig. 1. However, it may not be
suitable to estimate the distances with relative slope when there are multiple
neighboring objects close each other. Still unknown is the mechanism to extract
the distance infomation of a target object when there exist background signals
or more than one target object.

Assume there are n electroreceptors at x1, x2, ..., xn on the skin surface along
the mid-line rostrocaudal axis. Each electroreceptor measures the transdermal
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Fig. 2. Relative slopes with the lateral distance of the target object from 2cm to

5cm (a) spatial relative slope with varying rostrocaudal positions from the mouth (b)

temporal relative slope with varying sensor positions from the mouth (the velocity of

the weakly electric fish is 1m/sec)

potential difference at a given position xi in a given time t, that is, I(xi, t). We
define spatial relative slope as relative slope with respect to the spatial axis, that
is, maxi {I(xi+1, t)− I(xi, t)}/maxi {I(xi, t)}.

Similarly we also define temporal relative slope as relative slope with respect
to the temporal axis, that is, maxk {I(x, tk+1)− I(x, tk)}/maxk {I(x, tk)}.

3 Experiments

3.1 Relative Slope

Fig. 2 (a) shows spatial relative slopes for varying rostrocaudal positions of a
target object. When the rostrocaudal position of the object is changed, the rela-
tive slope curve changes. The variation of relative slope due to the rostrocaudal
position is displayed in Fig. 3. If the position is closer to the tail, the slope
curve moves to the lower level. Relative slopes are significantly affected by the
rostrocaudal position of the object. Thus, to estimate the distance of an object,
we need to record all the set of relative slope curves for varying rostrocaudal
positions.

Now consider the temporal relative slope at one specific electroreceptor. How
are temporal relative slopes changed when the stimulus-recording position is
changed? Fig. 2 (b) shows relative slope curves at each measured point of sensors
when the fish swims forward. We observe almost no change of relative slope
pattern (see Fig. 3), since the sensors follow nearly the same track of body
movement with a static target object.

In fact, electroreceptors are not uniformly distributed and the spatial relative
slope can be affected by this distribution. In contrast, the temporal relative slope
with a fish’s movements seems to be independent of the relative rostrocaudal
position of the target object. When the weakly electric fish swims forward or
the target object moves along the rostrocaudal line, the recording of a sensor
depends only on the relative lateral distance. Measuring the sensor readings even
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Fig. 3. Relative slopes with fixed lateral distance and size of the target object (o: spatial

relative slope with varying rostrocaudal positions of the target object from the mouth,

x: temporal relative slope with a static target object and varying sensor positions from

the mouth)

at different sensor positions can only slightly influence the temporal relative
slope. This property is useful to detect the lateral distance of a target object.
We will see whether or not this property is still valid for multiple objects.

3.2 Electric Image with More Than One Object

From the back and forth swimming of a weakly electric fish, we can obtain the
spatiotemporal information of an electric image. From this spatiotemporal in-
formation, we suggest the mechanism of identifying positions of multiple objects
with the relative slopes. We consider differentiating electric image at spatial and
temporal axis.

We can see the intensity difference of neighboring electroreceptors, I(xi+1, t)−
I(xi, t), along the spatial axis (see Fig. 4 (b)) or along the temporal axis (see
Fig. 4 (c)). For both cases, we can easily find two peak amplitudes each of which
corresponds to an object, and say two different objects are detectable with the
electrosenses.

Similar to the above procedure, the relative difference of sensor intensity be-
tween neighboring time spots can be calculated, that is, I(x, tk+1) − I(x, tk), -
see Fig. 4 (d). It corresponds to the temporal slope, if |tk+1− tk| is small enough.
The temporal slope can be measured along the spatial axis and the temporal
axis, respectively. Those examples are displayed in Fig. 4 (e)-(f).

Here, we consider four cases for spatiotemporal information processing, spa-
tial slope along the spatial axis and the temporal axis, and also temporal slope
along the spatial axis and the temporal axis. This idea can be extended into
the relative slope concept with respect to the spatial axis and time axis, which
requires calculating the ratio of maximum slope to maximal amplitude. For each
maximal slope, the local maximal value of an electric image can be found and
thus we can obtain spatial relative slopes and temporal relative slopes in the local
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Fig. 4. Differentiation of electric images over two objects (a) spatial slope diagram

(b) intensity difference between neighboring sensors along the spatial axis (c) along

the time axis (d) temporal slope diagram (e) temporal intensity difference along the

spatial axis (f) along the time axis (two objects whose radius is 0.8cm, 1.2cm are

located at 7cm, 12cm from the mouth, respectively)

zone of time and space. Each local zone is assigned for one object. Localization
of each object can be obtained through the relative slope in the local zone.

Fig. 5 (a)-(b) show the spatial slope, that is, differentiation with respect to
rostrocaudal position, along the spatial axis and the temporal axis, respectively.
For each case, the relative slope is calculated with the maximum amplitude along
its reference axis. Fig. 5 (a) is equivalent to the spatial relative slope. We can
redefine the spatial relative slope as a space-to-spatial slope.

Space–to–spatial slope =
maxi {I(xi+1, tk)− I(xi, tk)}

maxi {I(xi, tk)} (5)

Fig. 5 (b) shows the relative slope curves when a pair of sensor positions change
along the rostrocaudal line of a fish with two static target objects. The spatial
slope along the temporal axis can be defined as a time-to-spatial slope.

T ime–to–spatial slope =
maxk {I(xi+1, tk)− I(xi, tk)}

maxk {I(xi, tk)} (6)

The relative slopes for small and large objects are closely overlapped. It implies
that the relative slopes can be used for distance measure, irrespective of the size
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Fig. 5. Spatial slopes of electric image with two objects along the reference axis (a)

spatial slope along the spatial axis (b) spatial slope along the time axis; ‘solid line’ first

small object ‘dotted line’ large object (more detailed explanation is given in the text)

of multiple target objects. The measure seems less affected by the superposition
of electric potentials from multiple objects.

Fig. 6 (a)-(b) show the temporal slope, that is, differentiation with respect to
time, along the spatial axis and the temporal axis, respectively. Similar to the
above procedure, the relative slope is calculated with the maximum amplitude
along its reference axis. A space-to-temporal slope which is the temporal slope
with respect to the spatial axis can be defined as

Space–to–temporal slope =
maxi {I(xi, tk+1)− I(xi, tk)}

maxi {I(xi, tk)} (7)

and space-to-temporal slope curves of two objects are shown in Fig. 6 (a).
Fig. 6 (b) diagram is equivalent to the temporal relative slope mentioned

above. It is redefined as a time-to-temporal slope as,

T ime–to–temporal slope =
maxk {I(xi, tk+1)− I(xi, tk)}

maxk {I(xi, tk)} (8)

The temporal slope pattern over the spatial axis depends on the size of object
and the rostrocaudal position. So it would not be a good distance measure of
multiple objects. Temporal relative slope is nearly independent of the rostrocau-
dal position and sensor position, if only one target object is available - see Fig. 2
(b). Here, when multiple objects are near the fish, the transdermal potential of
an electroreceptor is influenced by those objects, and the relative slope pattern
changes depending on the object size - see Fig. 6 (b). This discrepancy is related
to the effect of superposition of each electric potential curve, which modifies the
maximal amplitude and maximal temporal slope. Especially, the effect of size
and rostrocaudal position is larger for a small-sized object, since the electric
potential from the larger object makes more distortion over the electric field of
the small-sized object.

From the experimental result, the spatial slope along the temporal axis as
shown in Fig. 5 (b) provides a reasonable measure for the lateral distance inde-
pendent of the size of objects. This measure can be applied to multiple target
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Fig. 6. Temporal slopes of electric image with two objects along the reference axis (a)

temporal slope along the spatial axis (b) temporal slope along the time axis (solid:

small object, dotted: large object, more detailed explanation is given in the text)

objects in the environment, if the inter-distance between a pair of objects is not
too small, assuming only small distortion of electric potentials is given. Thus,
the spatiotemporal information of electroreceptors is more useful for multiple
target objects than a pure spatial information or a pure temporal information.

When there are three objects near a weakly electric fish, the effect of superpo-
sition is larger, and the relative slope variation becomes remarkable depending
on varying sizes and varying rostrocaudal positions. However, if the distance
between objects is large enough to keep a little distortion of electric potentials,
the spatial slope along the temporal axis provides the distance information of
multiple objects.

In fact, electric images are affected by surroundings such as rocks, water
plants, conspecifics, or preys [12]. Therefore, the electric image is the result
of ‘superposition’ of electric potentials influenced by each single object. In this
study, we suggest a possible localization method when there are multiple objects
near a weakly electric fish. Intensity difference of two neighboring sensors along
the temporal axis shows the relative distance of objects approximately. However,
when a pair of objects are very close, each relative slope is severely affected by
the interference of electric potentials by the objects and in this case it is difficult
to extract relative slopes or the distance information appropriately.

4 Conclusion

The relative slope, the ratio of maximum slope to maximal amplitude over elec-
troreceptor readings, is known as a distance measure independent of the size
and conductivity of a target object [2,3,4]. However, if there are multiple objects
near the weakly electric fish, the localization problem of objects appears.

The relative slope or FWHM has difficulty in estimating the distance of multi-
ple target objects. The intensity difference of electrosenses between neighboring
sensors can be monitored along the time axis when the fish swims forward or
backward. It provides the spatiotemporal relative slope and furthermore, the
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lateral distance of multiple objects from the fish body. The measure is indepen-
dent of the size of objects.

Electrolocation can be used to localize target objects in the underwater. The
mechanism of localizing multiple objects is helpful to develop the electrosen-
sory system of aquatic robots. The electrosensory system can find not only a
position of a target but also another properties, size and electrical characteris-
tics [10,2,3,4], In this paper, we assume the electrosensor signal for each object
is preserved and the signals are superposed for multiple objects. Interference
among the signals has been ignored in this paper but we need to consider it for
accurate modeling of electrosenses in the future work.

Acknowledgement. This work was supported by the Korea Science and En-
gineering Foundation(KOSEF) grant funded by the Korea government(MEST)
(No.2009-0080661).
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Abstract. Human adults know that usually, big objects are heavier

than small ones if these objects are quite similar, in the same material

for example. They have a general idea of the weight affordances about the

every-day life objects. This paper presents a neural network architecture

coupled with a simple linear actuator using force control, designed to use

sensory-motor and visual informations during manipulation to learn how

to recognize objects of different masses. After learning the association of

sensory-motor informations through time with a particular object, our

architecture can discriminate different masses and give relevant infor-

mation for unknown objects, consequently, the objects are associated to

some of their inferred physical properties.

1 Introduction

Muscles determine a part of the abilities of the intelligence of a system, as showed
in [1]. Muscles properties are indeed important in motor control[2]. Nowadays,
almost all used actuators in robotics are electrical motors associated with gear-
box reduction allowing usually only speed or position control. Such actuators
are subjected to friction and the command given does not correspond exactly to
the effect. These two problems represent a loss of information. This is usually
solved thanks to addition of sensors on the above mentioned actuators. Further-
more, the power to size ratio is relatively small for electric motors inducing an
increase for the mass whenever high power is needed. To minimize information
loss and have better size-power compromise, linear hydraulic motors can be an
interesting alternative and could be a better model of muscle since it will be able
to reproduce either isotonic (i.e constant passive force) or isometric (i.e. fixed
configuration with controlled force) functioning modes. Indeed, in this paper, we
will present a neural network architecture inspired from the cerebellum [3], [4],
[5] which uses a force control (as human muscles) to recognize objects thanks
to the alteration of sensory-motor informations due to their different masses.

� This work is within the ANR project Interact ANR-09-CORD-014. The authors
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We show that weight affordances [6] can emerge from the prediction learning of
hand trajectory when lifting objects. This architecture will be implemented in
a further work on a 2 degrees of freedom (d.o.f) hydraulic robot equipped with
differential pressure sensors (fig.1 right) but yet only simulations have been per-
formed. In the first part, the simulation model is presented. In the second part, a
first learning architecture is used to learn sensory-motor consequences of motor
orders i.e. predicts which errors are made when the mass is changed. Finally, a
more complete neural network learns to recognize object, thanks to the previous
architecture. The results presented here used the simulated physical system of
fig.1(left). Some of the tests have been also performed with a simulated actuator
of fig.1(middle) and the results are discussed in the last part.

2 Simulated Physical System

The linear hydraulic motor allows force control. However, it is difficult to model
such an actuator. Our main interest is not to provide an accurate simulation of
the linear hydraulic motor itself (because it will be replaced by the real physical
device) but rather to study how a force control can be exploited to learn object
discrimination through sensory-motor associations. This is a first step to validate
the architecture in a simple case. Our simulation simply models a force on an
object, and presented as follow (fig. 1). An object of a mass m is pulled with a
linear actuator with a force F . For the sake of simplicity, only one translational
d.o.f is used along the vertical axis, with a minimal and a maximal position. The
forces applied to the system are the weight m.g with g the gravity acceleration
(9.80 m.s−2), friction k.v(t) where v(t) is the speed (velocity) and k a coefficient
of friction(7.0 kg.s−1) and finally a(t) the current acceleration. Applying Newton
equation to the pulled mass leads to : m.a(t) = F (t)−m.g− k.v(t). Integrating
the above equation with (0, 0) as initial conditions on speed and position and
constant force F (t) = F yields to the following solutions for speed v(t) and
actuator top position z(t) :

v(t) = −mg − F

k
e(−k

m t) +
mg − F

k
; z(t) =

(m.g − F )m
k2

e(−k
m t) +

m.g − F

k
t (1)

The simulation system returns v(t) and z(t). In order to use the same tools for
simple and complex simulations (where no analytical solution is available) v(t)
and z(t) are computed according to a fourth-order Runge-Kutta method. Two
sensors scale them between 0 and 1. The simulated physical system is calibrated
to obtain a credible trajectory, i.e. not always flat or always crashed at maximum
position.

3 Learning Speed and Position through Time

The mass cannot be determined easily from equation 1 alone since z(t) is non
linear from m and the inversion is not easy (at least with a simple on line neural
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Fig. 1. left: The object of mass m can be moved within the range (zmin, zmax). A

modifiable force F, its weight P and friction force are applied to this object. middle:

Same but with a rotational d.o.f. right: The hydraulic actuator built by the firm BIA

allowing force control for the future experiments.

network). In a static experiment, a differential pressure sensor could give the
mass of an object, but we want the actuator to interact with the object and let the
property emerge without such a sensor. Our aim is to allow our architecture to
detect changes in sensory-motor perception to recognize objects and associate a
mass. In this part, sensory-motor perception is learned with different interactions
with the same object to know if a simple system can learn several interactions
and an interaction is better than another to detect the changes.

In a first approach, preliminary experiments showed that (1) Kohonen maps[7]
are not sufficient to achieve proper categorization regrouping v(t), z(t) and F(t).
Because of the different dynamics of the variables, after learning the map can
only discriminate the values of one or two variables but nenver simultaneously
the force, speed and position 1. (2) in the case of position control the force profile
is too complex to be learned (too much variations and oscillations and changed
only during the transitory state).

Therefore our architecture is based on the learning of v(t) and z(t). The sub-
system that enables learning (fig. 2) is composed of a spectrum generator and a
group performing the least mean square algorithm [8]. The spectrum generator
is activated each time the actuator is interacting with the object and returns a
battery of activities (fig. 2). It matches to a model of the parallel fibers in the
cerebellum, which send a spectral response to a given event [3]. These activities
allow the learning subsystem to associate the interaction to its consequences
through time. The least mean square algorithm used to model conditioning tries
to predict (v(t), z(t)) from the time spectrum generator. The learning equation
is the Widrow-Hoff rule [8], Δwij = ε ∗ (Sd − S) ∗ Iij , where wij is the weight
between one granular cell j of the line i of the spectrum generator, Iij the activ-
ity of the same cell, Sd the variable to learn (v and z) returned by the sensors,

1 The only way to allow map convergence would be to perfectly now the time scales

of each variable to adapt the learning rates and neighborhoods, hence this learning

would be pointless.
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Fig. 2. For one interaction, one command is activated. A force is applied to the

physical system. The object is of mass m. Each battery of the spectrum generator is

activated by one command. For each battery, 30 cells were used (not all represented in

the figure), which represent the granular cells (GC). The GC interact with a mossy cell

(MC) (not all links represented), Their resulting activities are different gaussians. The

gaussian shape is related to the size of the GC. Each GC is linked to the two learning

neurons (not all links represented). These neurons match their activities to the sensors

activities.

S what the learning subsystem returns as estimate position or speed, and ε the
learning rate. The activities of the cells of the spectrum generator are corre-
sponding to a gaussian exp(−(t−mei)

2

σ2
i

), where mei and σi are the mean and
standard deviation of each cells, plus an offset in time. This mean and stan-
dard deviation increased in a linear way according to the size of the granular
cells. It is now well know that least mean square algorithm is equivalent to the
Rescorla-Wagner [9] brain conditioning rule [10]. A sensory-motor feedback of
position exists with the tendon proprioception. The speed is in fact only a sub-
traction of two positions, so it is not irrelevant to use information of speed also.
The use of linear hydraulic motors which have a force control corresponds to
the force control of muscles through the activation process. All these aspects
make our architecture biologically plausible. It is interesting to know if there is
a better interaction to use in order to detect the sensory-motor alterations when
the mass is changed. Our architecture thus learns to match different force to
their consequences. The architecture needs several examples for each sensory-
motor experiment to learn accurately. Each example is divided in three phases,
(that is to say three interactions with an object). During each phase, the linear
actuator pulls the mass with a given force. For each different force, a different
row of the spectrum generator is activated and the force set is different. The
three phases are repeated until the convergence of the learning subsystem. After
running various simulations with an increasing number of examples, it appears
that a really good approximation was obtained when the number of examples
is near 3000 for each phase. For a position and a speed which vary between 0
and 1, the normalized mean square error was under 2.5 ∗ 10−4 for both and the
standard deviation of these errors is around 5 ∗ 10−4. This high number of inter-
actions will imply a long learning phase on a real robot which may be a strong
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Fig. 3. From up to bottom : Activities of the spectrum generator for each manip-

ulation. Speed estimate and real speed, position estimate and real position (real in

solid line and estimate in dotted line). The results presented are obtained after 300

interactions for each manipulation. The first phase begins at t = 1000.

limitation for the proposed architecture. The results on fig. 3 show that good
estimations can be obtained after 300 interactions (mean square error around
6 ∗ 10−3 and standard deviation around 9 ∗ 10−3), which is still a large number,
but allows several experiments in a reasonable time. An important point is that
the least mean square convergence assumes a stochastic gradient descent, while
here, the examples are presented continuously through time. Consequently, the
time sequence is not well learned. To solve this problem, the learning subsystem
learns at a given iteration of the Runge Kutta algorithm only with a probability
of 1/N , (N is fixed during the experiment), otherwise, weights are not modified.
This randomization could correspond to a neuromodulation effect or more sim-
ply to the dynamics of an inhibitory network inducing a rhythmic activity. If the
frequency of this rhythm is coprime to the frequency of the experiment, some
kind of random learning is obtained. The synapses are assumed to be randomly
selected. In order to keep the architecture simple, global random triggering of
the learning is chosen. The fig.4 (left) shows the progress of the errors according
to N . The increase of the randomization leads to better results, for both errors
and their standard deviations. However, the gain is in fact even greater, because
the learning subsystem has an expected value of learning of only one time out
of N , so N times less informations from the sensors are actually used to learn.
With a normalization, the results presented in fig. 4 (middle) are obtained. Since
we want to minimize the number of samples to implement our architecture on
a real actuator and have fast on line adaptation, only the real number of sam-
ples is important. The fig. 4(right) shows the improvement of the mean square
position error function of the increase of number of sensory-motor experiments.
The random rule always reduces drastically the error level. The speed error, the
standard deviations of speed error and position error have the same kind of evo-
lution profile and the same order of magnitude. Thanks to the sensory-motor
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Fig. 4. Results of the mean square errors on position and speed estimations and their

standard deviations functions of N , with 1/N the probability that the weights are

changed due to learning for one iteration of the simulation. On the left: number of

non normalized examples. In the middle : number of normalized examples. On the

right: results of the mean square position error estimation functions of N , showing the

influence of the number of examples presented to the learning subsystem.

interactions, our architecture can learn the different consequences on our actua-
tor for a given experiment. Using a random learning increases precision. Learning
the speed and position for a given mass allows us to detect a change in the mass.

4 Sensory-Motor Prediction and Error Detection

Once the learning is completed, it is interesting to see if the architecture is
able to discriminate learned objects. The actuator interacts with objects and
tries to predict their speeds and positions. The manipulated objects can be one
which has been used for learning, called a learned object with its learned mass,
or another one with a different mass. The mass used during one interaction
is called the test mass of the test object. The errors for each couple (Learned
Mass, Test Mass) were calculated and reported in fig.5. The same kind of figures
can be observed with the standard deviation of position error, the speed and
the standard deviation of the speed error. With heavy objects or with very light
objects, the actuator is blocked to a maximal error when the mass is too far from
the learned mass because of the maximal and minimal positions of the actuator.
A comparison of the different phases leads to the following observation: the
larger the amplitude of movement is, the higher the errors are, including the
error on the learned object. This could be a problem, however, it is in fact good
news : even if the error on the learned object is greater, the difference between
this error and the others is greater too. Consequently, large movements give
more discernible errors, and our architecture can be improved to exploit these
differences of errors. For a test mass far from the learned mass, the manipulation
error is always greater that the error on the learned object; so a minimum valley
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Fig. 5. Mean square position error (vertical axis) in function of test mass (TM) and

learned mass (LM). For |TM−LM | < TM/10 , a minimum valley is observed. However,

the minimum is not always reached for TM = LM.

can be observed. However, for some test mass too close to the learned mass,
the manipulation error may be smaller than the error on the learned object, i.e.
the argument of the minimum of error during manipulation is not always the
learned mass. This property can be explained by a non-perfect learning. The
very heavy objects are easy to learn, because the actuator cannot move them,
so the position and speed are always equal to zero. However, when the learned
mass is heavy but can be slightly moved, these small movements are not learned.
The error during manipulation is greater than if the actuator tries to interact
with a too heavy object, because for this one the error will always be null.

Hence, we know that error in sensory-motor prediction increases when the
system does not use the right hypothesis (i.e. the right predictor). However, the
result can be exploited only at the end of the interaction : during one particular
interaction, the current manipulation error can be greater than the error on the
learned object, even if the used mass is far from the learned mass. This is also
due to an imperfect or incomplete learning. Thanks to this experiment, we know
that our model can be used to detect a change in the mass of an object. If several
neurons learn to predict the speed and position according to a given object and
command profile then the cumulative error in prediction is lower on the neurons
trained with the nearest mass. Next section will focus on using this property to
build an architecture able to recognize an object according to its perceived mass.

5 Object Discrimination from Sensory-Motor Perception

Once the meaning of errors is understood, our learning subsystem is changed to
use these errors to recognize objects (fig. 6). Only the information of position
error is chosen, because it had better results than the informations given by
speed or standard deviations of the different errors. M objects, each one with a
different mass were considered. The actuator executes only one phase instead of
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Fig. 6. The object triggers one learning estimator during the learning part. During

the test part, each learning estimator return an estimate position. For each estimate

position, a current square error is calculated. The errors are cumulated to get an

equivalent to the mean square errors. The learning estimator with the lower mean

square error is the winner and corresponds to the label recognized by our architecture.

three, with large movements while avoiding the maximal position. Consequently,
only one row of cells is used in the spectrum generator. The learning subsystem
is divided in M estimators. Each of them is associated with one object. To do so,
when one part of the actuator is interacting with a specific object, the learning
rates of the M−1 other estimators are set to zero. It could represent the effect of
visual perception for instance, which triggers only one learning estimator. Once
learning achieved, the actuator interacts with different objects. Some of them
correspond to one of learned masses while some others not. The current square
error is calculated during the manipulation for the M estimators. Accumulators
sum the errors through time. Then, a weight labelling group selects the estimator
that obtained the lower accumulated error. The object which has been learned
by this estimator is considered as the recognized object. At the beginning of a
new manipulation, the error accumulators are reset to zero. The results through
time are presented in fig. 7. One can see on these figures that through time,
the architecture associates the learned object of decreasing weights successively
until it reaches the true one and stabilizes. This can be explained by the fact
that the learning estimators learn the movement mean. As the actuator moves
the object up, the mean position is always increasing. The heavier is the ob-
ject, the lower the trajectory will be, so the mean of this trajectory increases
when weight of the object decreases. Consequently, when the errors are accumu-
lated, the heaviest object is recognized because the position is still low, but when
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Fig. 7. Left picture: Results obtained after the interaction with the different objects

(mass of 1.3, 1.0, 0.7, 8.15 and 1.15 kg). The three first objects were learned. Upper

part: number returned by the labelling group. Lower part: label of the test object

(from 1 to 3). The learning was performed for 60 sensory-motor experiments for each

object. We can see that the learning is sufficient to recognize correctly the 3 objects.

Right picture: Results obtained after the interaction with the different objects, mass

of 1.3, 1.1, 9.0, 0.7, 1.15 and 1.0 kg. The four first objects were learned. Upper part,

number returned by the labelling. Lower part, label of the test object (from 1 to 4).

The learning was performed for 60 sensory-motor experiments by object.

the mean position continues to increase, the error corresponding to the heaviest
object increases more. Even with a low number of samples, a good discrimination
can be obtained, as shown in the fig. 7. If the number of examples drops too low
(under 60), the discrimination can fail. The unknown objects are recognized as
one of the learned object with a close mass, and we can see that even if the neural
network recognizes the unknown objects as one of the nearest object in term of
weight, the final response is not reached at the same time than for the learned
object. So it is possible to estimate for how long the architecture recognized the
object. This estimation is related to the reliability of the discrimination.

6 Discussion, Conclusion and Further Work

These experiments show that thanks to a rough model of the cerebellum activity,
a force control and a simple mechanism to extract errors on predicted measures,
it is possible to associate an object to specific sensory-motor feedback. The larger
the movement is, the easier the alterations in the sensory-motor are detected,
even if it is better to avoid the maximum and minimum positions. A random
learning on the sequence improves also the learning. Each final response is as-
sociated to a specific time, which can provide an information of quality (by
the delay), so we could then change our architecture to learn to estimate the
properties of such information.

Some problems are coming from the simulated actuator. First, the applied
force is the asked one, but with the real actuator, the asked force will not per-
fectly correspond to the effective force, so we will have to look again at the force
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proprioception. The coefficient of friction is set by hand and is not realistic, but is
set to observe some non linear behavior. This simulation just represents a falling
mass in a changing gravity well, which does not correspond to a real actuator.
During the experiment it also appeared that the range of possible masses was
small due to our simulation, that is why we cannot learn a lot of different mass
and the trajectories are relatively simple. In a further work, this architecture
will be implemented on a real robot arm and will have to be tested on it, we
hope to access a larger panel of masses, from a few grams to several kilos. In
addition, some similar tests have just been performed with a simulation of an
arm as presented in fig. 1(middle). The results are close to those presented in
this paper, and our architecture is still able to recognize objects. Although, the
speed variable was more pertinent than the position variable.

The fact that weight is learned by the association of sensory-motor informa-
tion from the muscles is relevant from a biological point of view: in [11], it is
shown that weight perception is linked to the inertial tensor of an object, (i.e.
difficulties to make it move around an axis), which corresponds to the effort of
muscles acting around the elbow when moving an object. Other experiments
are planed after the implementation on a robot arm, to test the size-weight il-
lusion [12] (when someone is confronted with two objects of same weights but
with one larger than the other, the person says the smaller is heavier). Then
we could present a new architecture that could associate size to sensory-motor
feedback. Another point that makes our architecture biologically plausible is the
independence in perception and sensory-motor predictions for the size-weight
illusion[13]. Such illusion could not be observed with only a static measure, it
has to be related to visual perception. A vision learning subsystem should be
added to our architecture and used as the learning trigger, in order to observe
such illusion. The size illusion has an influence on how we lift objects [14], so
we would like to observe such behavior on our future architecture. We could
also generalize and use the global context instead of only a vision subsystem, to
increase the system efficiency to discriminate different sensory-motor situations,
in order to have a context-dependent sequence learning [15]. In further work, we
would like to have a control model of the manipulation of different objects. In
order to have a framework for control and social interaction [16], the MOSAIC
model [17] could be a base for this future work. Because this architecture allows
to predict the sensory-motor perception, we will be able to have a control on it
[18]. We will also base our future work on [19], to use the prediction of the cere-
bellum to have a good control strategy. We planned to set up same experiments
taken from [20]. One of them is described as follows : a human person stands,
his hand on the trajectory of a pendulum. He will try to stop its run without
moving. The force of the hand is measured to know how the person prepares
and predicts the effect of the pendulum function of what he knows about this
object. Our architecture could learn to recognize an object and then prepare to
interact with it. Finally, the implementation on a real actuator (fig.1 right) is
currently carried out.
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Abstract. We present two models of the behaviour of the hawkmoth

Manduca sexta when it approaches an artificial flower with an olfactory,

visual or multimodal cue. The first model treats each condition separately

while the second model combines both types of sensory cues in a single

model. Both models reproduce several characteristic properties of the

hawkmoth behaviour including its goal direction and velocity profile for

different stimulus types. In addition, the second model accounts for the

interaction between visual and olfactory cues.

1 Introduction

Two important sensory modalities for most insects during foraging are vision
and olfaction. Depending on whether the insect is day or night active, one of
these modalities is often more important than the other [1][2]. When a nectar
feeding insect approaches a flower it could use either visual or olfactory cues. It
is also possible that the insect combines both modalities since multisensory cues
enhance reaction times and lower error rates [3].

We have used the hawkmoth Manduca sexta as a basis for building compu-
tational models that investigate multi-modal interactions between colour and
odour. This is an ideal animal for this type of studies since we know a lot about
their receptors and the processing of both olfactory and visual information. M.
sexta is a crepuscular-nocturnal hawkmoth native to the Americas and the larva
is a pest on the tobacco plant. It is a pollinator that is a fast flyer that hovers
in front of flowers while extending its proboscis to probe the flower and drink
the nectar. The proboscis is very long (8-10 cm) and is probably guided by both
vision and mechanoreceptors.

The eyes of M. sexta are superposition compound eyes with well developed
tapeta adapted to activity during night. The moth has visual receptors in the
green, blue and ultraviolet range. They have an innate preference for blue flowers
even though most blooming flowers during the night are white or bright yellow.
This shows that they can quickly learn to visit the white and yellow flowers
instead of endlessly searching for blue flowers during the night.

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 232–241, 2010.
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In behavioural experiments with hawkmoths we have shown that colour can
overshadow odour learning [4]. We also discovered that colour could both en-
hance and suppress processing of different odour responses in the mushroom
body of hawkmoths [5]. There is thus clear evidence for an interaction between
vision and olfaction in the selection of flowers.

Approach behaviours have been much studied within the modeling community
staring with Braitenberg’s vehicles that illustrated how simple systems can show
goal-directed behaviours [6]. However, such models have usually only addressed on
a modality at a time, whether it be vision [7], olfaction [8][9] or phonotaxis [10].
Here we address the question of how the different modalities interact in the control
of flight as the moth approaches a flower. There are easily observed differences in
the behaviour of the moths dependning on the available stimulus modalities [11].
For the multimodal and visual stimulus, the moths slow down as they approach the
flower and hover a few centimetres in front of it while extending their proboscis to
feed. In some cases, the moths circle around the flower as they feed. For the odour
stimulus the behaviour is different as the moths do not slow down completely and
will instead pass over the target only to turn quickly back as they pass apparently
in an attempt to find the invisible flower.

To develop a model of these behaviours, the flight paths of the moths were
recorded using unimodal visual or odour cues or using a cue consisting of both
modalities. In a second step, a tracking system was used to determine the posi-
tion and orientation of the moth at 100 Hz during the approach of the flowers.
Finally, a model was developed that could reproduce the behaviour of the moth
in the three conditions. The parameters of the model were fitted using system
identification methods [12].

The goal of the simulation model was to characterise these behaviour and
to investigate how complex a model would have to be to reproduce them. Are
different models needed for the different sensory conditions? Is it sufficient to
use the angle and distance to the target as input? Are linear models sufficient
or are more complex relations between input and behaviour control necessary?

2 Data Collection

The hawkmoth Manduca sexta (Lepidoptera: Sphingidae) was used for the ex-
periments where they were allowed to fly in a circular arena with a diameter of
1.5 m. The arena was surrounded by a wall with a height of 0.5 m and covered
with a transparent net. One of three different feeding-targets was placed at the
centre of the arena: a flower-like blue target; an invisible, scented target; or a
scented flowerlike blue target. The odour used to scent the targets was Bergamot
oil that contains odours that many night-blooming flowers release [13]. The ap-
proach of a hawkmoth to the feeding target could thus be analysed under three
experimental conditions: only a visual stimulus (V), only an odour stimulus (O)
or a multimodal stimulus consisting of the artificial flower with an odour (M).

The image of the arena was recoded at 100 frames/s. The moths were released
into the circular arena one at the time, and always from different directions. The
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recording of the state variables started the first time the moth came closer to
the centrally placed target than 400 mm. The locations of the target stimulus
was manually indicated in one of the images, 〈xT , yT 〉 under each experimental
condition.

The analysis of the recorded image sequences was done in four stages: First
the animals were localised using an adaptive foreground detection method [14]
followed by the removal of shadows. Next, the detected foreground pixels were
clustered to find the centroid of the foreground pixels which indicates the pre-
liminary position of the moth [15]. Finally, a number of positions before and
after the current time where averaged using a Gaussian window to produce a
smooth trajectory. The result of the preliminary tracking was used to initiate
the position of an active shape model [16]. The shape model consisted of a num-
ber of contour points around the moth together with contour normals estimated
from a standard moth image. The initial orientation of the model was set to the
direction of the second moment of the foreground pixels. In addition, the last
estimated position and orientation of the moth was used as an alternative hy-
pothesis. The best match of the shape model was iteratively calculated and the
relative match of the different hypotheses were compared to obtain the estimated
location and orientation of the moth 〈x, y, θ〉. The resulting position estimation
was accurate to approximately a pixel resolution which corresponds to 1.7 mm
in the recorded scene.

In the last, stage a number of values were calculated (Fig. 1). For the moth the
velocity was mapped onto forward, lateral and rotational components 〈vx, vy, vθ〉.
The distance and direction to the target stimulus, 〈dT , θT 〉 relative to the moth
were also calculated.

vθ
θT

θ

dT

vy

vx

x, y
xT, yT

Fig. 1. The parameters used to describe the flight of the moth

3 Separate Models

To obtain a model of the behaviour of the moths in the experiments, we first
set up a model equation for the moth. The velocity vector was considered as a
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function of the two variables θT and dT . There are however several symmetries
in the behaviour that we need to take into account to get an accurate model.
We must assume that if the forward acceleration depends on the direction of the
target, it should be the same whether the target is on the left or the right side. We
thus used the absolute value of θT in the equation for the forward acceleration.
Since the opposite must be true for the turning and lateral movement, these
equations used the original value of θT . An interaction term between the two
variables was also included in the model. We consequently get the following
initial model equations for the velocity vector:

v∗x = α0 + α1|θT |+ α2dT + α3|θT |dT

v∗y = β0 + β1θT + β2dT + β3θT dT

v∗θ = γ0 + γ1θT + γ2dT + γ3θT dT

(1)

Since we assumed that the moth would not turn or move laterally without any
detected target, the values of β0 and γ0 were set to 0. The other parameters
were individually estimated for each of the three velocity components using the
following procedure. Starting with the first order model we first calculated the
Akaike’s information measure for each possible first order model. In the second
step we selected the model with the lowest entropy and tested whether the
addition of the interaction term would decrease the entropy measure. Finally,
the optimal parameters for the selected model were calculated for each of the
three conditions.

Although this procedure resulted in model parameters that very closely fit the
recorded data, the simulations (described below) showed that there was a clear
case of overfitting since the model did not generalize to new initial conditions.
The problem was identified as the relatively large coefficients that the method
had assigned to the correlation terms. To increase the generality of the generated
models we removed the interaction term for all equations. This resulted in the
values presented in Table 1. The estimated parameters for dT were 0 for lateral
velocity and rotation and are not shown in the table.

Table 1. Parameters

condition α0 α1 α2 β1 γ1

V vx -0.0008942 -0.0009464 0.0168 vy -0.0295 vθ 0.0033

M -0.0004606 0.0014671 0.0055 -0.0145 0.0004

O 0.0016516 0.0001849 0.0105 -0.0064 -0.0001

Based on Eq. 1 and the estimated parameters we simulated the behaviour of
the moth in using two sets of equations. First, the desired velocities calculated
by Eq. 1 were used as the set-ponts for a proportional controller:
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V.

M.

O.

.

Fig. 2. The simulated approach behaviour of the moth toward a visual (V), multimodal

(M) and olfactory (O) stimulus. The dot indicates the head of the simulated moth and

the line shows the direction of the body. The circle in the middle marks the location of

the target stimulus. The left and the right figures shows the behaviour for two different

initial conditions.
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vx,t+1 = vx,t + p(v∗x,t − vx,t)
vy,t+1 = vy,t + p(v∗y,t − vy,t)
vθ,t+1 = θt + p(v∗θ,t − vθ,t)

(2)

The constant p is the gain of the controller and was set to 0.1 in the simulations.
Given a starting position 〈x0, y0, θ0〉, subsequent positions were calculated using
Euler’s method by first calculating the velocities from the accelerations given by
Eq. 1 and then updating the position in the following way:

θt+1 = θt + vθ,t+1

xt+1 = xt + vx,t+1cosθt+1 + vy,t+1sinθt+1

yt+1 = yt + vy,t+1sinθt+1 − vy,t+1cosθt+1

(3)

Fig. 2 shows six simulations of the approach of the flower for each of the three
stimulus conditions. The behaviour for the visual (V) and multimodal (M) con-
ditions are very similar although the velocity profiles are somewhat different.
In both cases the simulated moth turns toward the target and slows down as
it approaches it and stops a small distance from the flower. This is the phase
where the real moths hover while foraging from the flower.

The simulated behaviour when there is no visual cue also parallel that of the
real moth. The speed is higher overall and although the speed decreases as the
target is approached, it does not reach zero and the simulated moth will pass
the target. In parallel with the real moth, the model moth will turn back as it
has passed the target location. The model also illustrates that the turning of
the moth is not sufficient to reach the target if the initial angle to the target
is too large. This results in a much more spread out flight when there is only a
unimodal odour stimulus.

To reproduce the circling around the flower as the moths fed, we hypothesised
that the shape of the artificial flowers used, where the proboscis was inserted in a

Fig. 3. The model accurately predicts that the moth will rotate around the flower
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thin slit that went around the flower, would produce a lateral force on the animal
through the proboscis. When such a force was added to the model, the behaviour
in Fig. 3 was generated. Here, the simulated moth stays at approximately the
same distance from the flower during foraging but circles around it in the way
seen in some of the experiments with real moths.

4 A Combined Model

The model above uses different sets of parameters for each of the stimulus condi-
tions. To develop a single model that could be used in all conditions, we repeated
the procedure above with two additional inputs V and O that indicated whether
a visual or an odour input was available. A value of 1 indicates that the corre-
sponding modality is present and a value of 0 indicates that it is not.We also
included a new variable cT = (1 − dT ) that better captures that the speed in-
creases at increased distance from the target. Since we only investigate data close
to the target, we need not consider the case when dT > 1 which means that cT

is always positive.
To simplify the model, we gradually removed parameters that made no sig-

nificant contribution to the final equations. This procedure reduced the three
separate models with 18 parameters to a single model with only 6 parame-
ters. The resulting equations are show below and the parameters are listed in
Table 2.

v∗x = α0 + V α1 + α2cT

v∗y = V βθT

v∗θ = γ0θT + V γ1θT

(4)

As can be seen, the variable O is not used in the final model as it did not con-
tribute to its performance. This implies that the model gives identical predictions
for visual and multimodal stimuli. Note also that the model can not be used to
describe the behaviour of the moth when no target is present at all. If this had
been the goal, it is unlikely that the variable O could have been omitted.

Table 2. Parameters for the combined model

α0 α1 α2 β γ0 γ1

0.010 0.002 -0.008 0.0003 -0.005 -0.008

The combined model was simulated in the same way as the previous models
and the results for the same initial conditions as the separate models are shown in
Fig. 2. As can be seen in Fig. 4, the combined model produces similar behaviour
as the three separate models although it uses much fewer parameters.
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V.

M.

O.

Fig. 4. The simulated behaviour of the combined model toward a visual (V), multi-

modal (M) and olfactory (O) stimulus. Although much fewer parameters are used, the

behaviours are very similar to those in Fig. 2.
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5 Discussion

We have presented a model of the approach behaviour of the hawkmoth M.
sexta close to a flower stimulus. The model reproduces the behaviour of the
moth for visual, olfactory and multimodal cues and is able to account for the
interaction between the two modalities (Eq. 4). It was shown that a single linear
model with six parameters could describe the behaviour of the moths in all
stimulus conditions. This model only needed the location of target relative to
the animal as input together with one signal that indicates the presence of a
visual stimulus.

The model captures both that the velocity of the speed is higher when a visual
stimulus is not present and that it decelerates as it approaches the target. In
addition, the model describes that the moth only flies sideways when it can see
the target and that a purely olfactory stimulus does not induce lateral movement.
Finally, the model illustrates the differences in turning velocity toward the target
between an olfactory and a visual stimulus.

Although our initial goal was to generate the model entirely from the data,
it was clear that this was not possible. There were two factors that needed to
be considered to obtain a satisfactory model. The first was that we needed to
include a number of assumptions to limit the structure of the model. One of
these was that the behaviour of the moth was symmetrical with respect to the
direction to the flower. Without this assumption, the generated model would
include a bias toward turning in one direction as a result of a corresponding bias
in the collected data. Since this only reflects that a different number of animals
approached the flower from the left or the right, it should clearly not be included
in the model.

Another problem with the method used was that it was very prone to over-
fitting. When the higher order interaction terms were included in the model
equations, these would generally be included by the automatic method to obtain
a better fit to the collected data. However, this would dramatically decrease the
generality of the model as it would no longer be able to reproduce the behaviour
at arbitrary starting positions. These terms were consequently removed from the
models equations which resulted in much simpler and more robust models. It is
possible that the higher order terms could have been included if we had used a
larger data set and this is something that will be investigated in the future.

Another extension would be to investigate non-linear model equations. Such
equations will give a much larger set of possible models, but this too would
require a much larger data set to determine if the more complex models would
add anything to the explanation of the behaviour of the moths. In the future
we would like to extend this work with a more realistic model of the sensory
processing of the moth. This would allow us to study the influence of different
visual configurations on the reliability of the estimation of θT and dT . Some first
steps toward this goal was taken in our previous model of learning in the moth
[17]. We would also like to include the behaviour further away from the flower
since the present model only addresses the final phase of foraging.
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Abstract. We investigating the role of anticipation and attention in a

dynamic environment in a number of large scale simulations of an agent

that tries to negotiate a number of gates that continuously open and

close. In particular we have looked at learning mechanisms that can pre-

dict the future positions of the gates and control strategies that will allow

the agent to pass through the gates unharmed. The simulations reported

below use the AARC architecture [1]. This architecture combines a large

number of different cognitive mechanisms. In Experiment 1, the task for

the agent is to pass through a single gate and in Experiment 2, to pass

through three successive gates. The results shows that the AARC ar-

chitecture is flexible enough to handle very diverse situations. It is also

somewhat surprising that linear predictors are sufficient in most cases.

1 Introduction

Imagine yourself in the depths of the Peruvian jungle trying to avoid a number
off traps inside an ancient temple. Any careless step will set off the traps or even
trigger the occasional giant boulder. As doors open and close, you have to predict
the right time to negotiate the deadly obstacles and your movements need to be
timed with utmost precision. You need to decide how long to study the different
obstacles before trying to move forward. Wait too long and the giant boulder
will hit you from behind. Act too soon and you will not have a correct picture
of the movements of the doors and risk getting crushed.

Even in less adventurous situations it is often necessary to adapt actions to
dynamic objects in the environment, for example when crossing the street or
while catching a ball. There are many cognitive mechanisms that need to work
together in such a situation. We need to attend to the relevant aspects of the
environment to learn about the dynamics of different objects. If many things are
happening at once, it becomes necessary to choose where to look at each time.
We can also perform epistemic actions of different kinds. An example would be

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 242–251, 2010.
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to move around to get a better view of some object. A more advanced action
would influence the environment in some way to increase our knowledge of it.
Furthermore, we need to adapt our actions so that they interact appropriately
with objects. This involves moving in phase with dynamic objects and producing
the correct timing of movements.

Very little research has previously addressed the problem of prediction in dy-
namical environment although some work have been done within the RoboCup
community [2][3][4][5]. However, this work has focused on the behavior of other
agents rather than on inherently dynamic environments. Similarly, within con-
trol engineering there is an extensive literature on tracking, but it is mainly
directed towards pursuit of freely moving objects [6][7][8][9][10]. We have previ-
ously shown that anticipation can be of great benefit for a robot in situations
that are too complicated for a purely reactive system to handle [11]. Anticipa-
tory agents can have an advantage over systems that typically do not handle
dynamic changes in the environment. Although anticipation may help agents
to avoid future problems, more anticipation is not necessarily better [12]. If an
agent anticipates too far into the future, there is a risk that it will see too many
potential problems and avoid doing anything at all.

Here we investigate the cognitive mechanisms that are required to control
movements in these types of situations and have performed a number of large
scale simulations of an agent that tries to negotiate a number of gates that contin-
uously open and close. In particular we have looked at learning mechanisms that
can predict the future positions of the gates and control strategies that will allow
the agent to pass through the gates unharmed. This also involves the control of
attention in such a way that the agent can learn about the obstacles in an op-
timal way. The simulations reported below use the AARC architecture [1]. This
architecture emphasizes the role of (A)nticipation and (A)ttention in (R)obot
(C)ontrol and combines a large number of different cognitive mechanisms to pro-
duce behaviors that includes low-level motor control, path-planning, control of
attention and anticipatory mechanisms that compensate for different types of
system delays as well as anticipation of future states of the world. Currently,
the largest implementation of the AARC architecture consists of more than 300
modules implementing different algorithms and 1000 connections between these
modules. AARC is built on top of the Ikaros framework that provides an in-
frastructure for cognitive simulation and robot control [13]. AARC and Ikaros
together offer a simple way to switch between experiments in real robots and pure
simulations. The experiments reported below were run as large-scale simulations
on the parallel computer Milleotto at the Center for Scientific and Technical
Computing for Research at Lund University (LUNARC). Milleotto is an IBM
blade-centre solution with a total of 1008 processor cores.

2 The Architecture

For the task in this paper, four parts of the AARC architecture are especially
important: The visual part of the agent, the learning system that learns the
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Fig. 1. Overview of the AARC architecture with the gate predictor (A) and epistemic

action control (B)

behavior of each gate, the epistemic action control and the agent control system.
These parts consist of a number of Ikaros modules and are connected as shown
in Fig. 1. Only the most important connections are shown in this figure.

The behavior of each simulated gate is controlled by a gate module. These
modules regulate the opening duration, the position of the gate and possible
movements of the gate over time. The gate module can open the gates, either at
a constant velocity or by following a sinusoidal function. The gate information is
subsequently filtered through a visual filter module. The filter module conceals
the parameters of the gate, if the agent is not currently able to see the gate due
to obstacles or because it is attending a different area in the environment.

Part A of Fig. 1 shows the gate learning and the prediction part of the system.
Two linear associators learn the position of the gate and how the gates open and
close. This learning is based on a sequence of coordinates that describe the posi-
tion and opening of the gates. The predicted positions of the gates are formed as
linear combinations of these sequences. The learning of the linear associators can
be adjusted by changing the learning rate α and the learning momentum β [14].

The predicted position and the predicted gate opening are then passed forward
to the Gate Passer module. The linear associators calculate a prediction error
between the predicted values and the actual values. The average prediction errors
are also forwarded to the Gate Passer module. The gate’s average error are also
sent to the Epistemic Action Control system which is indicated in part B of
Fig. 1.
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The Epistemic Action Control directs the attention of the agent according
to one of several attention strategies. Either it can direct the attention toward
the next coming gate, the gate with the highest prediction error or the gate
farthest away etc. The Epistemic Action module forwards the selected interest
point in the agent’s environment to the Agent Head module, which then tries to
direct the attention towards this area. The agent’s new head direction is then
forwarded to the Visual Limiter. If the Epistemic Action module cannot find
any interesting focus point in its surroundings, it will start to explore the world
using random head movements.

All the inputs from the linear associators and the average modules are con-
nected to the Gate Passing module. This module predicts how long it will take
for the agent to get to the gate from its current position, and compares this to
the predicted input, to decide if it possible to pass though the gate. The output
from the Gate Passing module indicates if the gate can be passed from the cur-
rent position together with an estimation of how certain this prediction is. All
the modules in part A, together with the gate and visual limiter module, are
duplicated for each gate that are present in the environment.

For each of the gates in the environment, part A is connected to the Goal
Chooser module which determines a local goal for the agent. To decide on a
local goal, it uses the global goal provided and divides it into subgoals for each
gate. If the certainties of the gates are lower than the confidence threshold, the
agent is not allowed to try to pass though the gates. Instead it will stop the
agent and allow it to explore its surrounding further using the epistemic action
control.

The control system uses the local goal position to steer the agent to this point.
The control part is not shown in this overview but consist of a large number of
modules like agent navigation, environment modeling and latency compensation
and has been thoroughly described elsewhere [15]. The simulation of the agent
is performed on a very low level where all the details of the motor control and
the physical properties of the agent are included.

3 Experiment 1: A Single Gate

In experiment 1, the task for the agent was to move from left to right in a
simple environment with a single gate that opens and closes at regular intervals
Fig. 2A. The agent must learn to predict when the gate will be open and use this
information to select when to pass. The agent can move freely in the environment,
but has a specific goal on the other side of the gate that it attempts to reach.
To observe the gate and learn about its behavior, the agent must learn about
the movements of the gate through directing its attention toward it. Finally, the
agent needs to decide when its model of the gate is sufficiently accurate to allow
it to pass through without risk.

Simulation 1A investigated the role of the two learning parameters α and β
on the success of the learning. During this simulation, the agent did not move
around in the environment. Its only function was to look at the gate to try
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Fig. 2. The behavior of the simulated agent (circle) over time in (A) Experiment 1 and

(B) Experiment 2. The black regions indicate the walls and the moving gates. See text

for further explanation.

to predict how it would behave. Since the gates only opened and closed and
did not move in this simulation, there is only a single value that needs to be
predicted. The value of α was varied from 0.001 to 0.4096 with a doubling for
each new session. The value of β was varied from 0.0 to 1.0 in steps of 0.1. Each
data point represents the average of 20 trials with identical α and β, but with
different initial position of the gate. There were 2860 trials in total.

Simulation 1B looked at the role of the gate confidence level γ. This parameter
was varied from 0.001 to 1.024 with a doubling between each measurement. We
measured the time of a single trial where the agent first had to learn the behavior
of the gate and then had to pass to the other side. The maximal time allowed
for a trial was 500 seconds. After that time, the trial was considered a failure
if the agent had not passed the gate. The trial also failed if the agent did not
manage to pass through the gate. We also measured the number of trials that
succeeded for each confidence level. Each value is an average of 30 trials. There
were 330 trials in total.

Simulation 1C tested how important the time margin δ was for the success on
the task. We changed both the margin before and after passing the gate. As in
experiment 1B, we measured the success rate and the average time of 20 trials
for each time margin. The total number of trials was 1980.

Fig. 2A shows a typical simulation run for a single agent. The black regions
show a single gate that opens and closes at regular intervals. As can be seen, the
agent which is represented by the small circle approaches the gate in such a way
that it will pass when it is open. The line connected to the agent shows the 100
previous positions of the agent.

The result of the first simulation are shown in Fig. 3. As can be seen, the
values of α and β are not critical since the system learned the behavior of the
gate very quickly in all but the borderline cases with very low α or β.

The second simulation showed that the confidence level did not influence the
result very much over 0.2 (Fig. 3). With a lower value, the success rate decreases
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Fig. 3. A., B. The effect of different values of α and β on the learning of the single

gate in Experiment 1. C. The trial time as a function of the confidence level γ. D.

The success rate as a function of the confidence level γ. E. Number of valid trails for

different safety margins before and after the gate. F. Trial time as a function of the

safety margins before and after the gate.
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quickly and the time for a trial gradually increases to its maximum level. Finally,
the third simulation showed that the safety margins before and after the gate
had similar influence on the success and timing of the task (Fig. 3).

4 Experiment 2: Three Successive Gates

The simulations in Experiment 2 followed a similar pattern as Experiment 1
with the important distinction that the agent had to pass three successive gates.
This makes the problem much harder and shows the power of the suggested
mechanisms.

Simulation 2A investigate the role of the two learning parameters α and β
on the success of the learning. As in experiment 1, the value of α was varied
from 0.001 to 0.4096 with a doubling for each new session. The value of β was
varied from 0.0 to 1.0 in steps of 0.1. Each data point represents the average of
20 trials with identical α and β, but with different initial position of the gates.
There were 2860 trials in total.

Simulation 2B looked at the role of the gate confidence level γ. This parameter
was varied from 0.001 to 1.024 with a doubling between each measurement. Each
value was tested in 30 trials.

Simulation 2C tested how important the time margin δ was for the success
on this extended task. We changed both the margin before and after passing the
gate. As in experiment 1CB, we measured the success rate and the average time
of 20 trials for each time margin. The total number of trials was 1980.

Fig. 2B shows the typical behavior of the agent in the environment with three
successive gates. The agent first approaches the gates, but then stops and waits
until the positions of the three gates will allow the agent to pass. Note that the
last two gates are not open when the agent enters, but as can be seen, the last
three images, the gates open just before the agent passes.

As in experiment 1, the results are relatively insensitive to the values of αand
β. This is true for the first as well as the last gate (Fig. 4). In experiment 2B, the
number of valid trials decreased with increased confidence threshold while the
trial time decreased (Fig. 4). Finally in experiment 2C, it was shown that the
safety margin made an abrupt change in the trial time above 5 for the ‘before
margin’. For a lower ‘before margin’, the trial time is much reduced regardless
of the value for the ‘after margin’ (Fig. 4).

5 Discussion

We have shown in two simulation experiments how it is possible to use linear
predictive systems to anticipate how one or several successive moving obstacles
will behave which will allow a simulated robot to pass through the obstacles
unharmed. This ability depends on an initial learning phase were the agent
allocates it attentional resources in such a way that it is able to observe the
behavior of the obstacles in an efficient way. We also shows how the agent is able
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to measure how confident it is about the behavior of the obstacles and how this
could guide attention.

Experiment 2B showed a similar results as experiment 1B for the trail time
for different confidence levels. However, the number of valid trials is markedly
lower. The number of valid trials also decreases with increased confidence level
which can be contrasted with the result from experiment 1 where the success
rate did not change with the confidence value.

It is also somewhat surprising that linear predictors are sufficient in most
cases. However, in earlier experiments with gates that moved according to a
triangle wave rather than a sinusoidal, the linear system did not work as well.
Although it would be possible to use a non-liner system instead, we believe that
a better solution is to add systems that detect changes in simple behaviors rather
than building very large models (cf. [16]). For example, a triangular movement
can be seen as two simple linear movements after each other. Each of these are
simple to learn and if this is combined with a system for switching between
models, it will become trivial to anticipate this type of movement.

In the future, we would like to investigate how the AARC architecture can
be used in more complex situations involving many different types of moving
obstacles as well as other goal directed agents. More challenging environments
could be investigated by interfacing the system to different types of computer
games [17].

In summary, we have shown how a robot control system can be designed that
is able to autonomously learn about the properties of dynamic objects in the
environment and accurately time its movement to avoid such objects.
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Attentional Mechanisms for Lateral Line Sensing
through Spectral Analysis
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Abstract. For autonomy in underwater robotics it is essential to de-

velop context-driven controllers, capable of leading from perception to

action without human intervention. One of the key challenges in this

area is to extract reliable information from noisy sensor signals in a

fast and efficient manner. In this context, we present a novelty-detection

mechanism for lateral line sensing; this mechanism is meant to highlight

interesting stimuli and separate them from the background, by bringing

into focus new frequencies appearing in the environment. The method is

fast and computationally cheap; additionally, it paves the way for char-

acterization and classification of detected novelties. We present a testing

framework to explore how to integrate frequency-related, temporal and

spatial information and we demonstrate the viability of this approach in

a multiple dipole-source environment.

1 Introduction

Sonar and vision systems for underwater robots can cover many operational
niches but are of limited applicability in close-distance, low-visibility scenarios
or when awareness of currents is key. Studies in hydrodynamic imaging and infor-
mation extraction from artificial lateral lines [1, 2, 3] stand out as an alternative,
inspired by the main sensing organ of fish.

The lateral line is a distributed sensor system composed of specialized cell sen-
sors known as neuromasts. Fish are equipped with two types of sensors (canal and
surface neuromasts), which respectively vehicle pressure and flow information.
The sensing properties of a neuromast are critically dependent on its gelatinous
cap, the cupula, which serves as the mechanical link between the environment
and the neuromast itself.

There has been significant effort in understanding how fish exploit the lateral
line to recognize different flow regimes, differentiate between prey and preda-
tors and interact with vortices to harvest energy in organized turbulence. Such
understanding may lead to developing fast and efficient bio-inspired signal pro-
cessing algorithms – and thus to providing autonomous underwater vehicles with
real-time contextual guidance in complex environments.

So far, lateral line research has been focused on detecting and characterizing
the flow field generated by a constant-volume sinusoidally vibrating sphere (lo-
calization [4, 5, 6, 7], object recognition [8]). The vibrating sphere emulates the
beating tail of aquatic animals that generate dipole-dominant flow fields ([9]).

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 252–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The scenarios generally investigated consist of a single dipole source excited
in still water. The lateral line organ is simulated as an array of sensors fixed in
place – most often as a linear array, although 3D spatial arrangements have also
been explored ([10]). Considerations on how the environment reflects on signal
propagation from source to sensors are generally omitted in theoretical studies;
experimental studies so far place artificial sensors only in still water.

On the other hand, in real-world scenarios such as the deployment of an under-
water robot, the signal detected by the lateral line is heavily influenced by flow
alterations, related to: i) other objects moving nearby, ii) effects of the fish’s own
movement and iii) the environmental currents in the surrounding water. Such
“background” signals collectively behave as highly non-linear interference, which
makes direct analysis of lateral line signals rather complex, if not impossible in
real time. Therefore, intermediate signal processing mechanisms are needed to
separate interesting information from the rest, for further elaboration. Filtering
hydrodynamic background signals is not a straightforward task and there are no
established techniques available as of now.

1.1 Problem Definition: Filtering Background Signals

In this paper, we address the background filtering problem from a control-related
point of view. We interpret as the background the perception of fish when fish-
flow interaction in a given environment is in a steady state (stable) — eg. fish
Kármán gaiting in Kármán streets ([11]) or free swimming in steady flows. Our
goal is highlighting where sensor signals start differing from the expected ones.
Such differences are relevant from a control perspective, as they suggest some
variations in fish-flow interaction — eg. fish losing stability in Kármán streets
or a new object appearing in the proximity of a steadily-swimming fish. In these
circumstances, further processing is necessary to select the appropriate control
action.

Within this context, we instantiate a novelty-detection approach as a method
for filtering background signals. Our method consists of two phases: i) initial-
izing the filter to the background by modeling “common” perception, and ii)
highlighting any perception that differs significantly from the model. The pro-
posed method is inspired by novelty detection in animals; however, it should
be considered as an engineering solution, rather than an attempt to model a
biological system.

In general, attentional mechanisms are used to select particular inputs of
interest from the sensor signals, thus reducing the computational cost and the
complexity of dealing with the world. Recent studies in fish neural circuitry
suggest that fish may employ similar mechanisms for filtering out the effects of
their own motion. For instance, the octavolateralis efferent system in the central
nervous system functions as a part of a feedback or feed-forward control system,
which modifies the sensitivity of the lateral line to flows created by the animal’s
own movement ([12, 13]).
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2 Novelty Filter

Sensor readings during stable fish-flow interactions usually exhibit a high degree
of periodicity — eg. stable vortex shedding frequency in schools and in Kármán
streets. Thus, we find it advantageous to model common perception in the fre-
quency domain. This choice is encouraged by recent studies on fish, suggesting
that the lateral line organ is mechanically engineered to detect frequency-related
information and that fish neural processing is attuned to frequency information.
The filtering properties of neuromasts can vary significantly depending on the
size, shape and elastic properties of their cupulae. Resonating cupulae with high
stiffness are particularly interesting, because they can be tuned to detect narrow
frequency bands. Lateral line canals also behave as high-pass filters ([14, 15]).

Initializing the novelty filter: In Phase I, for each sensor i on the lateral line,
we observe the input signal for T1 seconds and consider it on N̄ subintervals
of equal duration; we compute the frequency spectrum on each subinterval and
calculate the mean mi(f) and standard deviation σi(f) of each frequency in the
N̄ spectra. In this study we consider spectral amplitude only. The mean mi(f)
and standard deviation σi(f) become the coefficients of the novelty filter; mi(f)
describes the expected frequency spectrum for common perception and σi(f)
indicates how much deviation from mi(f) occurs due to uncertainties in lateral
line sensing (environmental variations, measurement noise, etc.).

Novelty detection: After identifying the filter coefficients, in Phase II we high-
light where current perception differs from the model. The novelty detection
mechanism is represented in Figure 1.

Fig. 1. The novelty detection schema. The i-th sensor computes |ri(f)| as

(||F [si(t)]| − mi(f)| ≥ C1σi(f)), whereas the overall filter calculates out(f) as(∑N
k=1 |rk(f)| ≥ C2N

)
. The sign of ri(f) follows that of (|F [si(t)](f)| − mi(f)).

For each sensor i, we first compute the difference di(f) between the amplitude
of the frequency spectrum Si(f) of the current input signal and the expected
spectrum mi(f). If di(f) is larger than C1σi(f), the sensor fires (|ri(f)| = 1),
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indicating that something unusual has been detected at frequency f . Finally,
if the number of sensors firing at f exceeds C2 percent of the total number of
sensors, the filter agrees on novelty (out(f) = 1).

The threshold parameters C1 and C2 determine the sensitivity of the novelty
filter. In environments with a high degree of uncertainty, choosing large C1 and
C2 helps to reduce false novelty detections but may also lead to missing some
novel stimuli.

3 Materials and Methods

We test our novelty-detection method through experiments in Matlab. All ex-
periments are carried out within the xy-plane (2D). We choose the randomly
generated 9 dipole-source scenario in Figure 2a as the experimental environ-
ment. Each dipole source oscillates sinusoidally around a fixed position; the pa-
rameters of each dipole source are shown in Table 1. We consider the flow field
generated by the 9 dipole sources as the background. Changes in the characteris-
tic parameters of a dipole source in the scenario (position or angle of vibration)
and addition or removal of a dipole source into or from the environment are
considered events leading to a novel situation.

(a) (b)

Fig. 2. The 9 dipole source scenario (left). Positions are random within an L-by-7.5cm
rectangular region. Flow readings νr along the lateral line at two different time stamps

(right).

3.1 A Testing Framework for Information Extraction

In this paper we also propose a framework to combine novelty detection with tem-
poral and spatial information. We test novelty detection in four different experi-
mental situations (adding or removing a dipole source, relocating it, changing its
direction of oscillation) and systematically explore how different events reflect in
the sensor picture. We also wish to relate spatial position of the source involved
in the novel event and number of sensors detecting novelty; furthermore, we test
the spatial thresholds of sensitivity for novelty detection of the individual events.
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Table 1. Diameter (a), position (x0, y0), oscillation frequency (f) and angle (α) for

each of the dipole sources in the experimental scenario of figure 2a

d1 d2 d3 d4 d5 d6 d7 d8 d9

x0 (cm) 0 2 -8 -5 -3 6 -4 1 9

y0 (cm) 4.1 1.9 5 3 1 6 1.5 2.3 5.5

α (deg.) 0 90 45 0 30 10 5 70 25

f (hz) 10 15 20 50 55 60 90 95 100

a (cm) 1 0.94 0.89 0.52 0.48 0.50 0.2 0.25 0.19

The combined information leads to successful 2D localization of a source of
novelty that is moving in space. The overall goal is organizing parallel processing
of sensor data to relate spatio-temporal information to frequency information
and build a coherent picture from the sensor stream.

3.2 Simulating the Sensor Readings in the Dipole Source Scenario

We focus on modeling the flow parallel to the lateral line (x-direction), to sim-
ulate the sensor inputs of surface neuromast. We consider a sphere, initially
placed in (x0, y0), which oscillates in still water in the plane of the lateral line
and moves with μ(t) = ρw2a3

y3
0

sin(wt); here ρ is the density of water, a is the
diameter of the sphere, w is the pulse and t is the time stamp. The flow field ν
generated by the sphere, for an arbitrary axis of vibration making an angle α
with the x-axis, is described by [16]:

ν(x, y, t) = ν‖(x, y = 0, t)cos(α) + ν⊥(x, y = 0, t)sin(α) (1)

Here ν‖ and ν⊥ are, respectively, the flow field functions — as read along the
x-axis— in case of parallel (α = 0) and perpendicular (α = 90) dipole vibration
with respect to the lateral line:

ν‖(x, y, t) = −μ(t)

4π

[
(y − y0)

2 − 2(x − x0)
2

[(x − x0)2 + (y − y0)2]
5
2

+
(y + y0)

2 − 2(x − x0)
2

[(x − x0)2 + (y + y0)2]
5
2

]
,

ν⊥(x, y, t) =
3μ(t)

4π

[
(y − y0)(x − x0)

[(x − x0)2 + (y − y0)2]
5
2
− (y + y0)(x − x0)

[(x − x0)2 + (y + y0)2]
5
2

]
(2)

In order to scale up to the 9 dipole source scenario, the overall flow field νr is
obtained as the superposition of the individual flow fields. To make data more
realistic, we also introduce white noise n̂ with SNR = 10 into the resultant flow
readings. If νj is the flow generated by the j-th dipole source, then νr(t) =∑9

j=1 νj(t) + n̂(t) along a lateral line of length L = 20cm. We consider N = 201
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equally spaced sensors; intersensor distance is l = 0.1cm. The lateral line is fixed
in space and its center located at (0, 0). The sampling rate of the sensors is
chosen as 200Hz, so as to capture the frequency band up to 100Hz; a sampling
rate of 200Hz is biologically plausible ([7]). Figure 2b illustrates flow readings
along the lateral line at two different time stamps (t = 10, t = 20).

Modeling common perception through spectral analysis. To model
“usual” perception in the 9 dipole-source scenario, for each sensor i we observe
the input readings for 10s and consider the signal on 10 subintervals of equal
duration (1s each). For each subinterval, we compute the amplitude of the fre-
quency spectrum. We sample the resulting frequency band (0−100Hz) with 100
points (uniform frequency spacing with 1Hz intervals). Finally, we calculate the
mean mi(f) and standard deviation (σi(f)) of the 10 spectra. Figure 3 illustrates
the m(f) values of three lateral line sensors (s51, s101 and s151). Note that the
expected spectrum varies significantly across sensors, depending on which dipole
sources lie in the proximity. For instance, the vibration frequency of dipole source
d5 (f = 55Hz) is detected easily by s51 but not by s151, as s51 is much closer to
d5 than s151.

(a) (b) (c)

Fig. 3. The expected frequency spectrum mi(f) for sensor 51 (a), sensor 101 (b) and

sensor 151 (c). Note that sensor 1 is located at the left extremity of the lateral line.

4 Experiments and Results

After modeling the background, we test our novelty filter in four different test
conditions: i) when a new dipole source (x0 = 4cm, y0 = 2cm, α = 0◦, f = 2Hz
and a = 0.78cm) is introduced, ii) when dipole source d7 is removed, iii) when
dipole source d1 is moved to a different position and iv) when the angle of
vibration of d1 is changed. We chose the threshold parameters of the filter as
C1 = 3 and C2 = 10%; thus, a minimum of 20 sensors simultaneously reporting
novelty are needed to reach a consensus on novelty for a particular frequency.
Figure 4 presents the response of the novelty filter in each scenario, according
to the processing steps described in Figure 1.

Exp 1. Introducing a new dipole source: Figure 4 (top left) presents
a histogram showing the number of sensors that output 1 at each frequency,
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Fig. 4. Exp. 1: source addition (first row); Exp. 2: source removal (second row), Exp.

3: source displacement (third row), Exp. 4: source rotation (last row). The red dashed

line shows the minimum number of sensors required to agree on novelty.
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when the new dipole source has been introduced. At f = 2Hz, the number of
sensors exceeds 20, resulting in novelty detection. Figure 4 (top right) shows
the behavior of each sensor at f = 2Hz: the difference between the current
and expected frequency spectrum (above) and the response ri(2) of each sensor
(below).

We also examine the relationship between the position of the new dipole
source and the number of sensors detecting it. We change the position of the
dipole source and count the number of sensors with positive response. When
moving the dipole source away from the lateral line (along the y-axis), fewer
sensors fire —the influence of the dipole source on the lateral line decreases with
distance. After 5cm, the number drops below 20 and the filter stops detecting
novelty. When moving the dipole source along the x-axis, the highest number of
active sensors (153 sensors) is obtained when the dipole source is close to the
center of the lateral line; as expected, the effective area of the dipole source is
maximized at the center. The number of active sensors decreases symmetrically
as we move away from the center (Figure 5a).

Exp 2. Removing dipole source d7: After removing dipole source d7 from
the environment, the filter detects novelty at f = 90Hz (Figure 4 (second row)).
The negative difference indicates that the frequency component at 90Hz is not
as strong as it used to be, suggesting that a source is no longer present.

Exp 3. Changing the position of dipole source d1: When dipole source
d1 is moved from (0, 4.1) to (1, 3.5), the filter responds with a peak at f = 10Hz
(Figure 4 (third row)). To measure the sensitivity of the filter to minimum posi-
tional difference, we first change the position of d1 gradually in the x-direction.
The filter first detects a novelty at a distance of 1cm. With d1 closer to the
lateral line, the filter detects smaller differences, as the intensity of the dipole
stimulus increases with proximity. (Figure 5b).

Exp 4. Changing the angle of vibration of d1: We also evaluate the
performance of the filter by changing the oscillation angle of d1. The minimum

(a) (b)

Fig. 5. Position of the new dipole source versus the number of sensors with positive

response (left). The minimum positional and angular change that can be detected by

the filter depending on the position of the new dipole source (right).
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angular difference detected by the filter is 22◦, when d1 is positioned at x = 0,
y = 4.1 (Figure 4, bottom left). Again, the closer the dipole source is, the higher
the sensitivity (Figure 5b).

5 Characterization of the Detected Novelty

Highlighting novel frequencies as soon as they appear in the environment is quite
useful for fish. For instance, fish entering into a Kármán street can harvest energy
by synchronizing the tail beat frequency with the vortex shedding frequency
([11]). Moreover, a preliminary classification between prey and predators can be
made on the basis of frequency by interpreting a novel frequency as the tail beat
frequency of an incoming moving agent (fish). The tail beat frequency reveals
information about the size and family of a fish —for example, for subcarangiform
swimmers body length and tail beat frequency are inversely proportional ([17]).

In the case of Experiment 1 and 2, the difference between the current and
expected frequency spectrum in the novelty filter (Figure 4, right column) is
equivalent to the flow field generated by the added/removed dipole source. This
flow field is a well-defined one-to-one function, which depends on (x0, y0, α)
(see Section 3). Therefore, pattern recognition techniques (eg. RBF networks,
SOM, support vector machines, or other) can be used to identify a dipole source
and estimate its position concurrently. Additionally, assuming that the detected
novelty is to be identified as a dipole source, several methods to estimate position
have been proposed in the literature; examples are wavelet decomposition ([5]) or
analysis of the main features (local minima, maxima and zero crossing points) of
the detected signal ([4]). For instance, in Exp. 1 the sensor with highest novelty
response (s141) indicates the position of the dipole source in the x-direction,
whereas the distance between the two sensors detecting local minima (s128 and
s155) is proportional to the position in y-direction (Figure 4 (top, right)).

Motion detection: To detect the motion of a dipole source, one possibility is
estimating its position continuously using one of the techniques just mentioned.An
alternative and simpler technique exploits the novelty filter: to detect motion along
the y-axis,we analyze the number of sensorswith positive response, as a function of
time. If the number is approximately constant, we deduce that the object is at same
distance, whereas gradual increments suggests that the object is moving towards
the lateral line. Figure 6a illustrates the trends in sensor number for five different
types of dipole source motion: i) stationary (m1), ii) moving away from the lateral
line (m2), iii) approaching the lateral line (m3), iv) moving parallel to the lateral
line (m4) and iv) moving in a closed loop trajectory (circle, m5).

To detect motion along the x-axis, we also track the position of the sensor
experiencing the strongest difference between actual and expected frequency
content. To estimate motion along the y-axis, we rely on the relation between y-
position of a novel dipole source and number of sensors detecting novelty, derived
from Experiment 1 (Figure 5a); the relation is injective and its inverse can be
employed to yield an estimate of distance. The combined estimates for position
in x and y yield a rough estimate for the 2D trajectory of a moving object in
the field of view of the lateral line (Figure 6b).
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(a) (b)

Fig. 6. Total number of sensors with positive response in case of a moving dipole

source (left). Extracting the 2D trajectory of the moving dipole source (right). Red

circle, dashed and continuous lines are, respectively, the starting position, the estimated

trajectory and the actual trajectory of the dipole source. Position in the y-axis is

estimated though the number of active sensors, by exploting the implicit relation given

in Figure 5a.

6 Conclusion and Future Work

In this paper we have presented a method for processing information from a lat-
eral line sensor array, combining novelty detection with event characterization.
Signals are processed in parallel to highlight significant events on the basis of
frequency information; interesting stimuli are thus separated from their hydro-
dynamic background and can be further explored in terms of space and time
information. The main advantage of the proposed method lies in reducing the
complexity of the signals to process. We show that our method leads naturally
towards characterization of the detected novelties and propose a testing frame-
work to systematically explore the link between events and sensor readings. We
successfully tested our method in a multi-dipole source environment and demon-
strated the usefulness of our approach by achieving 2D localization of a moving
source of novelty.

Future work: We are currently investigating scenarios in which the lateral
line is not fixed in place and can also be subject to changes in shape, in order
to reproduce the bending curve of fish. Preliminary results favor our method.
The fact that fish employ different locomotion patterns in different flow regimes
also leads to further interest in characterizing highlighted novelties in terms of
flow changes. We are also working on improving our method by introducing
phase analysis of the frequency spectrum. Phase information can be useful in
detecting flow direction and speed in streams, in localizing nearby objects and in
synchronizing with the vortices in Kármán streets. Finally, we are also developing
an artificial lateral line to test our method in real-world experiments.

This work and its proposed developments form part of the ongoing research in
project FILOSE (Fish LOcomotion and SEnsing), supported by the European
Union under the Seventh Framework Programme (FP7-ICT-2007-3).
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Abstract. We introduce a new bee-inspired routing protocol for mobile

ad hoc networks. Emphasis is given to the ability of bees to evaluate

paths by considering several quality factors. In order to achieve similar

behaviour in the networking environment, BeeIP is using cross-layering.

Fetching parameters from the lower PHY and MAC layers to the core

of the protocol, offers the artificial bees the ability to make predictions

about the link’s future performance. Our approach is compared with

two well-known routing protocols in the area, the destination sequenced

distance-vector protocol (DSDV), and the adaptive on-demand distance

vector protocol (AODV). The outcome shows that BeeIP achieves higher

data delivery rates and less control overhead than DSDV, and slightly

better results compared to AODV, initializing less route discovery pro-

cesses.

Keywords: Bee-Inspired, Network, Routing, Cross-Layer, MANETs.

1 Introduction

Nodes in a mobile ad hoc environment face two major challenges, the mobility of
the network participants and their resource constraints. Firstly, the movement of
the nodes lead to network topology changes and frequent path breaks. Secondly,
as nodes act as both transmission endpoints and routers, they generate their
own traffic as well as route the traffic generated by others. This requires more
energy being spent, and also, increases the complexity of routing. [1]

The routing algorithms for mobile ad hoc networks (MANETs) can be broadly
categorized as proactive, reactive or hybrid. Protocols that use proactive algo-
rithms periodically send control packets to collect information about the network
state and update their routing tables accordingly. Such examples are the des-
tination sequenced distance-vector protocol (DSDV) [2] and the optimized link
state routing protocol (OLSR) [3].

Contrarily, reactive algorithms find routes on-demand. They do not maintain
routes between all the nodes in the topology. Rather, routes are established
only when needed through a route discovery process, in which a route request is
broadcast. Examples of reactive protocols are the dynamic source routing (DSR)
[4] and the adaptive on-demand distance vector (AODV) [5].

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 263–272, 2010.
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The third category, hybrid, contains ideas borrowed from both proactive and
reactive paradigms. Generally, hybrid protocols separate the network topology
into zones. Routing is determined proactively within each zone, and reactively
outside it. The advantage of such a combination is the increased overall scala-
bility and optimization within the zones. One well-known hybrid example is the
zone routing protocol (ZRP) [6].

All these approaches point out the need for adaptation in routing. Protocols
have to be able to adapt to topological changes and provide optimal results.
Examples of such adaptive behaviour come from the study of Nature and in
particular natural networks (e.g. insects). The first algorithm which presented
a detailed scheme for network routing based on ant colony principles is ARA
[7]. This routing algorithm is inspired by the pheromone laying behaviour of ant
colonies.

In this paper we present a new routing protocol for MANETs, called BeeIP,
which is designed to provide routing solutions inspired by the foraging principles
of bees. Cross-layering is used in order to utilize parameters of lower layers and
be able to calculate the performance of the links between the sources and the
destinations [8].

2 Related Work

In 2004, H.F. Wedde, M. Farooq, and Y. Zhang were the first to present BeeHive
[9], a novel routing algorithm for wireless networks inspired by the communica-
tive and evaluative methods and procedures of bees.

More specifically, BeeHive is built around two types of agents, the short dis-
tance and the long distance agents which are proactively generated at the nodes
and are designed after the way bee foragers respond to bee dances. The responsi-
bility of both types of agents is to explore the network and to evaluate the quality
of paths that they traverse, in order to update node routing tables. Short dis-
tance agents are allowed to move only up to a restricted number of hops in the
network, whereas long distance agents have to collect and disseminate routing
information in the complete topology.

Moreover, BeeHive has been extensively tested and evaluated. Its results con-
clude that while it achieves similar or better performance compared to state-
of-the-art routing algorithms, bee agents occupy smaller bandwidth and require
significantly less processing time compared to the agents of existing algorithms.

BeeHive has been an inspiration to further research and enhancements. In
2005, H.F. Wedde et al have proposed BeeAdHoc [10], a routing algorithm for
energy efficient routing in MANETs. By utilizing two types of agents, scouts
and foragers, BeeAdHoc is able to reactively search for routing solutions, con-
suming less energy compared to existing state-of-the-art approaches. The major
difference of our approach and BeeAdHoc is on how the quality of the links is
calculated, and the way of evaluating their performance. Due to the early stage
of this work, we were not able to present a comparison between our approach
and BeeAdHoc, however, this is part of our future plan.
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The rest of this paper is organized as follows. In Section 3 we give an overview
of the key points of biological bee behaviour in respect to both scouting and
foraging. In Section 4 we present our design model. Section 5 includes the first
simulation experiments and results. Section 6 contains our conclusion and plan
for future work.

3 Biological Background

In Nature, a bee explores the surroundings of the hive in order to detect possible
sources of food. Once a source is found, the scout returns back to the hive to
report her findings and to recruit other hive members to start foraging. Both
reporting and recruiting are done by performing a special dance.

In his book [11] von Frisch presented the understanding of the dependence
of the bee dances on the profitability of foraging activity. He has shown that
although the pattern of bees’ dance is determined fundamentally by the distance
of and direction to a source of food, whether dancing will take place depends
on many factors that may significantly change the bees’ behaviour. Examples
of such factors are the sweetness of the sugar solution in the food, the ease of
obtaining and carrying it back to the hive, the distance of the food source to the
hive, and the amount of energy required during the particular foraging process.

It is also crucial to mention that the special dance is not performed only by
scout bees. Each time a successful forager returns back to the hive she can also
perform the foraging dance (serving as a scout at the same time), and report
any improvement or deterioration of the currently working path. Furthermore, if
the path’s reliability is becoming very poor, the forager can also refuse to dance
and, hence, stop recruiting new members.

4 Design Model

BeeIP is a routing protocol which models the collaborative behaviour of simple
artificial bee agents to build enough knowledge in order to establish communi-
cation links between two nodes, and allow data to be transferred across them.

The base of any assumptions made in our design is that every time there is
a need for a link to be established, the sender node will behave as being the
hive, the destination node will behave as being the source of food, and all the
intermediate nodes will consistite the path that a bee forager needs to traverse
while flying from one endpoint to the other.

4.1 Agents

The model uses three types of agents in the form of data packets. The scout, the
ack scout, and the forager.
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Scout: They are sent when a scouting process is initialized in order to discover
new paths towards a given destination. This happens each time there is a new
request from the upper layer and previous routing knowledge is unsatisfactory.
A scout is transmitted using broadcast to all neighbouring nodes. This technique
benefits not only the propagation of the initial request, but also the introduction
of the transmitting node to its neighbourhood.

Apart from the details of the scouting process, scouts also carry important
information about their sender’s state. A node’s state is a group of attributes
that describe the situation in which the node is at the time of broadcasting the
scout packet. Cross-layering between PHY, MAC and network layers allows the
routing protocol to know the current energy and speed levels of the node, as well
as the size of the interface queue.

Furthermore, upon receiving a scout, neighbouring nodes are able to discover
evidence about the link’s quality between them and the scout’s sender. This
evidence is the one-way transmission delay of the link, and the scout packet’s
signal power. The latter is an indication of the distance and the clearance of
the intermediate area. The information above is stored internally and is used to
calculate the local reliability level of the pair, i.e. the sender and the receiver of
the scout packet. The local reliability level plays a very important role to the
overall path quality and the decision making of the foragers.

Following that, the receiving node can either propagate the scout packet fur-
ther if it is not the scout’s destination, or create an ack scout to send back.
Loops are avoided by tagging each scout packet with a unique scouting ID.

Ack scout: Once the scout reaches its destination the scouting is considered
successful and an ack scout packet is created. Ack scouts use a source routing
fashion to travel back to the source, using unicast transmission. Therefore, the
route that was followed towards the destination is used in reverse. On their way
back, ack scouts acknowledge the success of the scouting to both the intermediate
nodes and the source node.

Forager: When BeeIP is unable to transmit a data packet, it stores it into a
local queue and starts a new scouting process for its destination. This decreases
the packet loss due to incomplete routing information. Once an ack scout returns
back and acknowledges the existence of a path, all packets for the corresponding
destination in the queue are being transmitted.

The way they do this, is by using the most important agent type of BeeIP,
the forager. Foragers are specially crafted packets that have three important
roles. Firstly, they carry (in form of payload) the data packets from the source
to the destination. Secondly, they are used to update neighbouring nodes’ states
and links’ information, just like scouts did in the first place. Thirdly, foragers
are constantly monitoring the path they traverse for any improvements. Techni-
cally speaking, foragers collect the differences between the local reliability levels,
calculated by using the current forager, and the local reliability levels calcu-
lated by the previous forager’s visit, and report the summation back to the
hive. In a TCP connection, this is done when carrying TCP ACK packets. The
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summation represents the total reliability level of the path, hence, the global
reliability level.

4.2 Local Reliability Level

The local reliability level describes the one-way performance between a pair of
nodes in the topology. It is the BeeIP’s way of measuring how good or bad a
transmission can be, by using this particular pair. The direction of the measure-
ment is towards the source of the transmission and it is a combination of the
neighbour’s state and the network link between the endpoints.

Fig. 1. A simple scouting

Figure 1 illustrates a simple example. Node A is the source (hive), node E is
the destination (flower), and nodes B, C and D consistute the intermediate path
from A to E. A forager that returns back to A has to follow the path through the
nodes D, C, B, and A, pick up each pair’s reliability improvement, and submit
the result to A. Furthermore, the reliability level of pair (E,D) is a combination
of E’s state, and the path E → D.

In total, there are five parameters that can be extracted from a node’s state
and a path such as the above. (i) E’s speed level, (ii) E’s energy level, (iii) the
path’s transmission delay based on the forager packet, (iv) the forager packet’s
transmission power, and (v) the queuing delay of the path, based on E’s reported
queue size.

Each one of the above parameter plays a significant role in the local quality of
the pair. The speed of a node affects their transmissions and can lead to a weak or
even broken link. Similarly, the energy level of the node dominates its ability to
transmit clear signals to full transmission range. The signal power of the orager
packet is used to give an idea for both the distance and the area between the
nodes. Finally, both queueing and transmission delays alter the quality of the
link. On one hand, the transmission delay describes the difficulties experienced
because of the bandwidth of the link. On the other hand, the queueing delay
describes the difficulties caused by traffic loads. Note that the propagation and
processing delays are factored out, since they are insignificantly small.

Although the parameters’ similarity is that they all affect the reliability level
of the pair, their values are of different scales. Table 1 shows the minimum and
maximum accepted values for each parameter during the simulation experiments.
In order to use them properly, all values need to be normalized to the same scale:
min 0, max 20. BeeIP achieves scale normalization of values by performing linear
transformation. If α1, β1 and α2, β2 the minimum and maximum numbers of
the first and second scale respectively, and χ is the number to be normalized to
ψ then,
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ψ =
α2 + (χ − α1) ∗ (β2 − α2)

(β1 − α1)
(1)

Notice that speed, and both queueing and transmission delays are adversely
affecting the performance. For instance, a node’s speed equal to 0 does not
affect the transmission, as it does not alter the distance between the transmission
endpoints. In order to tackle this issue, these three parameters are normalized
in reverse.

Table 1. Local reliability parameters and scales

Signal Pow1 Speed Energy Q-Delay2 Tx-Delay3

min 1.258925e-10 W (-69 dBm) 0 m/s 0 W*h 0 s 0.0006 s

max 7.943282e-10 W (-61 dBm) 10 m/s 10 W*h 0.075 s 0.0120 s

Once all values are put on the same scale, the local reliability level is calcu-
lated using a simple weighting system. This is required because not all of the
parameters have the same influence on the performance. Obviously, a very weak
signal strength can be an indication of either a long distance between two nodes
or the appearance of an obstacle. In both cases, it requires immediate action.
This does not happen with the queueing delay. The latter may affect the per-
formance, however, it does not necessarily involve a link break. The weighting
system is shown at Table 2.

Table 2. Weighting system and factors

Parameter: Signal Pow Speed Energy Q-Delay Tx-Delay

Weight (w): 0.40 0.20 0.20 0.15 0.05

Then, the local reliability level of the pair is finally defined by the formula:

rellocal = pow′ ∗ wpow + speed′ ∗ wspeed + energy′ ∗ wenergy + qd′ ∗ wqd + txd′ ∗ wtxd (2)

where pow′ is the normalized value of the signal’s power, etc.
Every time a forager visits a new node during its flight back to the hive,

the knowledge it brings with it as well as its own transmission are used to
calculate the new local reliability level of the corresponding pair. Once calculated,
the number is compared with the previous available local reliability level. The
difference of the two is then reported back to the forager which continues its
journey to the next hop in the path.

The difference of the two local reliability levels, previous and new, describes
the improvement of the pair since the last use. In addition, the new local relia-
bility level is stored internally to be used for future calculations.
1 Proxim. ORiNOCO 11b Client PC Card Specification for open range environment.
2 Maximum queue size is set to 50 packets.
3 11Mbit bandwidth. Minimum 76 bytes and maximum 1500 bytes packet size.
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4.3 Global Reliability Level

A bee forager that finally arrives at its hive, carries the summation of all the
local reliability differences collected on its way back. This number is called the
global reliability level and is an indication of the link’s quality as experienced
during the last forager’s flight. In BeeIP it is defined as follows:

relglobal =

m∑
n=1

(rellocal−newNn+1→Nn
− rellocal−prevNn+1→Nn

) (3)

where m is the total number of nodes in an numerically ordered path, and
Nn+1 → Nn the pair of nodes with direction towards the source node (N1).

Likewise in local, the global reliability level is compared to the one obtained
from the previous flight. The difference of the two represents the improvement
or the deterioration of the quality of the path. However, the number by itself
can only give a dim idea since it is a result of one transmission only, which,
depending on the environmental and network conditions may lead to negative
assumptions. In order to utilize these numbers correctly and be able to make
predictions about the quality of the link and its status in future, we use a 10x2
matrix of the last 10 instances of incoming foragers and apply regression analysis
to the values. Time is used for the first column, and the difference of the new
and previous global reliability levels for the second column. The output matrix
has the form of: ⎛⎜⎝ 2.823042 0.32

2.825661 1.46
..

2.854530 −0.25

⎞⎟⎠

Using Pearson’s correlation coefficient [12], we are allowed to make predictions
based on the strength of the linear dependence between the two. The correlation
coefficient r is defined by the formula:

r =

∑k
i=1(ti − μt)(relglobali

− μrelglobal)√∑
k
i=1(ti − μt)2

√∑
k
i=1(relglobali

− μrelglobal)2
(4)

where ti the time of receiving relglobali , μt the mean of the time column values,
and k the matrix row number (10 by default).

The correlation coefficient result ranges from -1 to 1. A value of 1 implies
that a linear equation describes the relationship between t’s and global reliability
differences perfectly, i.e. when t increases, the improvement increases too. On the
contrary, a value of -1 implies that the improvement decreases as t increases, i.e.
the path becomes weak. Values near 0 imply that there is no linear correlation
between the two, and we are not able to make any serious predictions.

Similarly to Nature, where bee foragers may dance vigorously if the quality
of the path is becoming better or even stop dancing when the path is very poor,
artificial foragers are able to judge whether to recruit other members or initialize
a new scouting process. At this early stage of this work, BeeIP is able to detect
weak links by comparing r to a threshold (-0.8) and re-send new scouts if it finds
it necessary.
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5 Simulation Experiments and Results

In order to evaluate the performance of BeeIP, we have used ns-2 network simula-
tor. We have performed experiments with static scenarios of 20, 40, 60, 80 and 100
nodes in 300x300 m2, 500x00 m2, .., and 1100x1100 m2 areas. Each node carries
a single wireless card, the configuration of which is set to match ORiNOCO11b
Wireless Card, 11Mbps, 802.11b for 160m in open range environment.

The nodes are moving in random directions with randomly selected speeds be-
tween 1m/s (walking speed) and maximum 10m/s. Two nodes, fairly far from each
other, are picked up to serve as the source (bee hive) and the destination (flower) of
an TCP/FTP connection in each scenario. The initial energy level is set to 36000
Joules (or 10 watt-hours).4The simulation time is set to 600 seconds. Our results
are compared to those of AODV and DSDV protocols, under the same topological
conditions. In order to factor out any implementation related errors to our com-
parisons, we use the implementations which are distributed with ns-2 simulator.

In figure 2, we study the successful packet delivery ratio of the three protocols.
Unsurprisingly, the reactive nature of BeeIP has a clear advantage over DSDV
which becomes weaker as the number of nodes is increased. This is due to the
large number of required control packets, in order to collect enough information
and build DSDV routing tables. Compared to AODV, BeeIP has a slightly better
performance. The reason behind that, is that although they both apply reactive
schemes, BeeIP is able to detect when a link is about to break faster, and then
switches to another one.

Fig. 2. Packet delivery ratio vs. number of nodes

Furthermore, we have measured the packet loss of the three approaches (figure
3). For a number of nodes lower than 40, BeeIP scores less packet loss than
AODV. Between 40 and 60 nodes, BeeIP performs quite steadily and better than
AODV. However, we notice a big increase after 60 nodes, which although is still
better than AODV’s, it triggers our interest for future improvements. Finally,
both BeeIP and AODV packet losses are significantly lower than DSDV’s.
4 Almost 1/25 of the battery capacity of a fully charged Pioneer P3-AT all-terrain robot

(http://www.activrobots.com/ROBOTS/specs.html).
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Fig. 3. Packet loss vs. number of nodes

The control overhead of the three protocols is shown in figure 4. Although
things get worse for higher number of nodes, under the same circumstances,
BeeIP sends less control packets during the static simulation scenario, than
AODV and DSDV protocols.

Fig. 4. Control overhead vs. number of nodes

In a reactive point of view, BeeIP and AODV are compared based on the
successful route discoveries and the successful data packet deliveries. All experi-
ments have shown that BeeIP managed to deliver more data packets successfully
using less route discoveries. Table 3 summarizes these results. For example, BeeIP
was able to send 369399 data packets by using 14 links during the simulation,
whereas AODV sent 310912 using 15 links.

Table 3. Successfully established links during simulation (packets sent)

20 40 60 80 100

BeeIP: 14 (369399) 27 (333449) 146 (381166) 184 (355629) 271 (163024)

AODV: 15 (310912) 39 (330284) 196 (374010) 220 (354899) 343 (157042)
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6 Conclusion

In this paper we have introduced BeeIP, a new bee-inspired routing protocol for
mobile ad hoc networks. We have also compared the first simulation results of our
approach with two state-of-the-art protocols, AODV and DSDV. The simulation
experiments have shown that BeeIP performs better than DSDV and slightly bet-
ter than AODV in terms of packet delivery ratio and packet loss. Furthermore,
BeeIP was able to deliver more data packets successfully, initializing less route
discovery processes than AODV under the same network conditions.

Our future work includes the improvement of our design, in order to sup-
port multiple paths for each transmission which will be selected based on their
quality via artificial bee dancing. This will increase the life of the network and
the delivery ratio of the protocol. Finally, we need to add support for stateless
transport protocols such as UDP. The results of these improvements as well as
new features, will be compared to AODV, DSDV and the biologically inspired
AntHocNet and BeeAdHoc, something that we did not include in this paper due
to the early stage of the work.
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Abstract. Playing table tennis is a difficult motor task which requires

fast movements, accurate control and adaptation to task parameters.

Although human beings see and move slower than most robot systems

they outperform all table tennis robots significantly. In this paper we

study human table tennis and present a robot system that mimics human

striking behavior. Therefore we model the human movements involved

in hitting a table tennis ball using discrete movement stages and the

virtual hitting point hypothesis. The resulting model is implemented on

an anthropomorphic robot arm with 7 degrees of freedom using robotics

methods. We verify the functionality of the model both in a physical re-

alistic simulation of an anthropomorphic robot arm and on a real Barrett

WAMTM.

Keywords: biomimetic table tennis, anthropomorphic robot arms.

1 Introduction

Table tennis has long fascinated roboticists as a particularly difficult task. The
main work on robot table tennis started in 1983 [3] with a robot ping pong com-
petition and ended in 1993 [2,12,9,10,8] when the competition came to an end,
but single groups continued work until today [15,14,1]. These early approaches
used smart engineering to overcome inherent problems like movement generation,
orientation of the racket and vision in an human inhabited environment. Fur-
thermore, they used a much smaller table and modified table tennis rules [3]. In
contrast to these approaches, we use an anthropomorphic robot arm with seven
degrees of freedoms (DoFs) and concentrate on generating smooth movements
that properly distribute the forces over the different DoFs. Therefore, we employ
a biomimetic approach for trajectory generation and movement adaptation.

Table tennis requires fast and accurate movements to achieve high playing
performance. However, for such quick and forceful movements, the human central
nervous system has little time to process feedback about the environment and
has to rely largely on feedforward components [21] such as accurate task models
as well as predictions about the opponent and the ball. Understanding how
humans perform so well in such a complex task as table tennis may yield essential
knowledge for skill execution in robotics. In this project, it is our goal to construct
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a model of table tennis striking movements based on known hypotheses of human
motor control in table tennis. We want to get a step closer to understanding
which basic building blocks are required for generic robot skill execution systems.
We describe the construction of a robot ping pong player, with seven DoFs, that
is capable of returning a ball on an International Table Tennis Federation (ITTF)
standard sized table served by a ball cannon. We focus particularly on modeling
the arm trajectories in striking movements based on human table tennis data
using a multi-stage model [16]. We end up with a method that successfully adapts
the stroke according to the movement of the ball. The setup works sufficiently
well in simulation and on a real Barrett WAM1.

In this paper, we will proceed as follows. In Section 2, we present all relevant
background on modeling a table tennis stroke based on biological hypotheses
such that we are able to obtain a model of a table tennis stroke in Section 3.
In Section 4, we present the results of our implementation and show that the
proposed model works well in simulation and on the real robot.

2 Modeling Striking Movement in Human Table Tennis

In this section, we present background information on modeling table tennis
from a racket sports perspective. In particular, we focus on movement stages,
motion selection and parameterization, and movement generation. At the end of
each of these sections, we will outline which computational concepts arise from
the biological hypotheses.

2.1 Movement Stages of a Stroke

Table tennis exhibits a regular, modular structure that has been studied by
Ramanantsoa and Durey [16]. They analyzed a top player and proposed a spatial
adjustment of four movement stages with respect to certain ball events, i.e.,
bouncing, net crossing and stroke. According to their hypothesis, the following
four stages can be distinguished during playing of experts and, to make them
more understandable, we have labeled them according to their functionality:

Awaiting Stage. The ball moves towards the opponent who hits it back to-
wards the net. The racket is moving downwards. At the end of this stage the
racket will be in a plane parallel to the table surface.

Preparation Stage. The ball comes towards the player, has already passed
the net and will bounce off the table during this stage. The racket is moving
backwards in order to prepare the stroke. For forehand strokes the racket
is in the same plane as it is in the awaiting phase. For backhand strokes
the racket moves on a frontal plane nearly perpendicular to the plane in the
awaiting stage. The player chooses a hitting point where he plans to hit the
ball to which we refer as the virtual hitting point.

1 Note, that a preliminary version with no real robot results and a simplified dynamical

model has been presented at a German local conference.
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(a) Awaiting Stage (b) Preparation St.

(c) Hitting Stage (d) Finishing Stage

Fig. 1. This figure illustrates the four movement stages of Ramanantsoa et al. [16]

recorded in a Vicon motion capture system where (a) shows the Awaiting Stage in

which the opponent is observed, (b) the Preparation Stage in which the stroke is

prepared, (c) the Hitting Stage in which the ball is intercepted, and (d) the Finishing

Stage. The red arrow shows the movement of the ball in the phase and the blue arrow

the movement of the racket.

Hitting Stage. The ball moves towards the virtual hitting point where the
player intercepts it. In a first substage final adjustments are done. In the
second substage the racket moves towards the virtual hitting point until it
hits the ball in a circular movement. For expert players the duration of this
phase appears to be constant and lasts approximately 80ms. At the point of
impact the lateral velocity (in the direction of the small table side) is zero
and the velocity in direction of the long table side reaches its apex.

Finishing Stage. After having been hit, the ball is on the return path to the
opponent while the racket is moving upwards to a stopping position. This
stage ends with the ball crossing the net and the velocity of the racket tending
to zero.

We have verified the stages suggested by Ramanantsoa and Durey [16] in a
VICON motion capture setup for two intermediate players where each of the
stages can be observed distinctively (see Figure 1). From a computational point
of view, this model corresponds to a finite state automaton.

2.2 Movement Selection and Goal Determination

As humans appear to rely on elementary motor programs [18], it is likely that
pre-structured movement commands are employed for each of the four stages.



276 K. Mülling, J. Kober, and J. Peters

These motor programs are adapted to the environmental stimuli at the beginning
of each stage. Motor programs determine the order and timing of the muscle
contractions and, by doing so, define the shape of the action produced. Sensory
information can further modify motor programs to generate rapid corrections
in the case of changing environmental demands as found in table tennis [5].
The system is only altering the parameters of the movement such as duration,
amplitude, and the final goal position of the movement [18]. This is supported
by the experiments in [20], which demonstrated that expert players exhibit a
consistent spatial and temporal movement pattern in table tennis. The authors
of [20] concluded that a professional player chooses a movement program for
which the execution time is known from their repertoire and decides when to
initiate the drive. This observation is known as operational timing hypothesis.

The problem of what information is used for initiating the movement is not
yet solved. Most likely humans use the so-called time to contact, i.e., is the time
until an object reaches the observer, to control the timing of their stroke stages.
Lee [13] suggested that humans determine the time to contact by an optical
variable τ that is specified as the inverse of the relative rate of dilation of a
retinal image of an object. Using the operational timing hypothesis, biomimetic
system has to initiate the chosen movement program when τ reaches a critical
value.

We represent one set of movement programs for a specific forehand as splines.
The start and end position, velocity and acceleration of the stages as well as the
durations of the movements are given by pre-defined values which are fixed while
the end and start conditions of the hitting and finishing stage, respectively, can
be selected freely. Here we use the hitting point which is adapted according to
the incoming ball and the desired return.

2.3 Movement Generation

Assuming that movement stages, selection and initiation are known, we need to
discuss how the different strokes are generated. There are infinitely many ways
to generate racket trajectories and, due to redundancies in the arm, there are
also numerous different arm posture to execute the same task-space trajectory
in joint-space. In order to find generative principles underlying the movement
generation, neuroscientists often turn to optimal control [19]. One approach is
the use of cost functions which allow the computation of trajectory formation for
arm movements. Most cost functions focus primarily on reaching and pointing
movements where one can observe a bell-shape velocity curve as well as a clear
relationship between movement duration and amplitude. However, this does not
hold for striking sports. Cruse et al. [6] suggested a cost function for the con-
trol of the human arm movement based on the comfort of the posture. For each
joint, the cost is induced by proximity to a comfort posture in joint-space, i.e.,
the cost is minimal if the joint angles are the same as for the comfort posture
and increases with the distance between comfort posture and joint position. For
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movement generation, this cost is minimized. We employ this cost function to
select a comfortable joint configuration at the hitting point (see Section 3.3).

3 A Biologically-Inspired Trajectory Generator for Table
Tennis Strokes

In this section, we will discuss how the parts of the behavioral model presented
in Section 2 can be implemented as a mathematical model suitable for real-time
execution on a robot. For doing so, we proceed as follows: first, we present all
required components in an overview. Subsequently, we discuss the details of the
dynamics model for table tennis in Section 3.2, the computation of the goal
parameters in Section 3.3 and the trajectory generation in Section 3.4.

3.1 General Assumptions

As outlined in Section 2.1, we assume the movement stages of the model by
Ramanantsoa et al. [16] and use a finite state automaton to represent this model.
In order to realize each of these four stages, the system has to detect the ball
and determine its position pb. Due to noise in the vision processing, the system
needs to filter this information.

To generate the arm trajectories, we have to determine the constraints for the
movements of each joint of the arm in each stage. While desired final joint con-
figurations suffice for the awaiting, preparation and finishing stages, the hitting
stage requires a well-chosen movement goal which is the hardest to realize. The
system has to first choose a point on the court of the opponent where the ball
needs to be returned2. Secondly, we have to determine the intersection point of
the ball and the racket, which specify the virtual hitting point pe. The hitting
point is determined by the location where the ball trajectory intersects a virtual
hitting plane in the forehand area of the robot. Based on the choice of these
two points, the necessary batting position, orientation and velocity of the racket
are chosen as goal parameters for the hitting movement. More details on the
computations involved are given in Section 3.3.

Movement initiation is triggered in accordance with the movement stages and
using the movement goals, i.e., when the time of the predicted ball intersecting
the virtual hitting point pe is less than a threshold, the hitting movement is ini-
tiated. This step requires the system to predict when the ball is going to reach
the virtual hitting plane. The current hitting time can be determined by predict-
ing the trajectory of the ball using the physical model of the aerodynamic and
bouncing behavior of the ball described in Section 3.2. Following the suggestion
in [4] that some online adaptation of the movement can take place, we update
the virtual hitting point if the estimates changes drastically. For the determina-
tion of the movement program, we rely upon a spline-based representation for
encoding the trajectory. More details are given in Section 3.4.
2 Humans choose this point as part of a higher level strategy. To date, we choose them

in an ad-hoc fashion not conditioned on the opponent.
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3.2 Dynamics Model

To predict the position and velocity of the ball at time t1 based on the ones
at time t0, we have to model the aerodynamics of the ball and the physics of a
ball’s bounce off of a table. For modeling the ballistic flight of the ball we have
to consider air drag, gravity and spin. As the latter is hard to determine, our
model currently neglects the spin. For a table tennis ball we can assume that the
air drag is proportional to the square of the velocity of the ball. Using symplectic
Euler integration, we can implement the following model in discrete time form:

ak = g − C‖vk‖vk vk+1 = vk + akΔt pk+1 = pk + vk+1Δt, (1)

where p denotes the position of the ball, v is the velocity, a denotes the accel-
eration, g = −9.81m/s2[0, 0, 1]T is the gravity, C = cwρA/(2m), cw is the drag
coefficient, ρ is the density of the air, A is the size of the ball surface and m is
the mass of the table tennis ball.

For the bouncing behavior of the ball we assume a velocity change in z-
direction only. This change in velocity vz = −εT vz is determined by the coeffi-
cient of restitution εT .

3.3 Determining the Goal Parameters

After determining the virtual hitting point, the system can freely choose the
height znet at which the returning ball passes the net as well as the positions
xb, yb where the ball will bounce on the opponents courts. The y-axis is along
the net and the x-axis is aligned with the long side of the table. The choice of
these three variables belongs to the higher level functionality and is not covered
in this model, we instead draw them from a distribution of plausible values. To
determine the goal parameters, we have to first calculate the desired outgoing
velocity vector O of the ball which corresponds to the desired velocity of the
ball after the impact with the racket. Directly from it, we can also determine
the required velocity and orientation of the racket.

Desired Outgoing Vector. Based on the dynamics model derived in Section 3.2,
we obtain 5 non-linear equations with 5 unknowns, i.e., the time until the ball
reaches the opponents court, the time until the ball reaches the net and the de-
sired outgoing vector (3 components). Since these equations are non linear in the
variables of interests, we have to solve the problem numerically. Therefore, we
need to use a globally convergent solver for nonlinear equation systems, which
combines the Newton-Raphson update with a modification for global conver-
gence [7].

Goal Orientation. The orientation of the end-effector is specified as a rotation
that transforms the normal vector ne to the desired normal vector ned given by

nrd =
O − I

‖O − I‖ , (2)
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(a) Awaiting Stage (b) Preparation St. (c) Hitting Stage (d) Finishing Stage

Fig. 2. The figure shows the different phases on the real robot. Note that the black

circles are part of our safety system and have nothing to do with the task.

where O is the velocity of the outgoing ball after the ball-racket impact and
I is the velocity vector of the incoming ball at the virtual hitting point before
impact. Note that we assume only a speed change O−I in the normal direction
n. The rotation is defined in terms of quaternions by

qed′ = qrdqyrot, (3)

where qyrot is the quaternion that describes the rotation from the racket to the
end-effector and qrd = (cos (θ/2) , u sin (θ/2)), with θ = nT

e nrd/(‖ne‖‖nrd‖) and
u = ne × nrd/‖ne × nrd‖, is the quaternion that defines the transformation of
the normal of the end-effector ne to the desired racket normal nrd. As there
exist infinitely many racket orientations that have the same racket normal, we
need to determine the final orientation depending on a preferred end-effector
position. The resulting quaternion of the end-effector qed is determined by the
rotation about the normal of the racket. The orientation with the corresponding
joint values is chosen to yield the minimum distance to the comfort position in
joint space is used as a desired racket orientation.

Required Racket Velocity. Next we have to calculate the velocity vector for the
end-effector at the time of the ball’s interception. We can describe the relation
between the components of the incoming and ingoing velocity vector parallel to
the racket norm using

O|| − v = εR(−I|| + v), (4)

where εR denotes the coefficient of restitution of the racket and v the speed
of the racket along its normal. This equation can be solved for v yielding the
desired racket velocity.

3.4 Trajectory Generation

For the execution of the movements, we need a representation to obtain position
q(t), velocity q̇(t) and accelerations q̈(t) of the joints of the manipulator at each
point in time t so that it can be executed with an inverse dynamics based con-
troller. We used fifth order polynomials q =

∑5
j=0 ajt

j to represent the trajectory
of all stages. Such polynomials are the minimal sufficient representation, generate
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Fig. 3. This figure shows the movement of the racket and the ball on the real robot

for one stroke movement. The hitting point is indicated by the black triangle.

smooth trajectories and can be evaluated quickly as well as easily. Applying the
four stage model of Ramanantsoa et al. [16], we can determine four different spline
phases consisting of splines interpolating between fixed initial and final positions.
As the trajectory of the hitting and finishing state depends on the hitting point,
trajectories have to be calculated jointly at the beginning of the hitting stage and
have to be recalculated every time the virtual hitting point is updated.

4 Evaluations

In this section, we demonstrate that the presented biomimetic robot table tennis
model can be used effectively in a setup where the ball is served by a ball cannon.
Firstly, we present the simulated setup for the table tennis task. Secondly, we
implement the model on a real robot.

We employ a Barrett WAM arm with seven DoFs that is capable of high speed
motion. A standard table tennis racket is attached to the end-effector. The robot
arm interacts with a standard sized table and a table tennis ball according to
the ITTF rules. The ball is served randomly by a ball cannon to the right half of
the table. This range corresponds roughly to an area of 1m2. The virtual hitting
point is determined as the intersection point of the ball and the virtual hitting
plane discussed in Section 3 (it covers the whole 1m2). The ball is tracked using a
stereo vision system with a sampling rate of 60 frames per second and the vision
information is filtered using an extended Kalman Filter based on the dynamics
model described in Section 3.2

4.1 Simulated Setup

We employed the SL framework [17] to create a simulation of an anthropomor-
phic robot arm. Subsequently, we used a model of the flight and the bouncing
behavior of the ball as described in Section 3.2. We model the noise and de-
lay of the vision system. The coefficients of restitution of both racket-ball and
ball-table interactions were determined in a VICON setup.

The table tennis system is capable of returning an incoming volley to the
opponents court which was served by a ball cannon at random times and to
randomly selected positions. In an evaluation setup where the ball cannon served
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Fig. 4. This figure shows the trajectories for representative joint positions and velocities

for one stroke movement. Note that the tracking errors are often due to low-gain control.

the ball 10,000 times to a random position in the work-space of the robot, the
system was able to return 98% of the balls. In 75% of the trials the ball was
returned to the opponent’s court. The mean distance of the position of the racket
mid point from the ball at the moment of contact is 1.8 cm. This result could be
further improved by optimizing the trajectory generation in joint space.

4.2 Application on a Barrett WAMTM

We have subsequently set up the same framework on a real robot using two
partially overlapping stereo-setups for visual input.We are going to detail the
arising differences here. An extended Kalman filter, based on a ballistic flight
model with estimated restitution factors, tracks the ball well. However, the pre-
diction of the virtual hitting point and time is less accurate due to unobserved
spin and an underestimated initial velocity of the ball. These predictions are
updated frequently and the trajectory generation is adapted. Nevertheless, the
robot manages to hit the ball reliably. The main problem for missing balls and
underestimating the velocity of the ball up to now is the limited field of view
of the camera setup. See Figure 3 for the trajectories of the racket and the ball
of the real system, Figure 4 for trajectories of individual joints and Figure 2 for
snapshots of the movement.

5 Conclusion

Using knowledge on human table tennis, we have created a biomimetic model
for striking movements. This model is realized in a computational form. We have
shown that the resulting model can be used as an explicit policy for returning in-
coming table tennis balls to the opponent’s court using a real seven DoF Barrett
WAM. Our setup, with an anthropomorphic arm and a cluttered environment, is
significantly more challenging than the tailored ones of previous robot table ten-
nis players. The biomimetic model with its four stages of the stroke and the goal
parameterization using virtual hitting points and pre-shaping of the orientation
has proven to be successful in operation.

Our future work will concentrate on improving the precision in returning the
ball to a desired point on the table and to improve the transition between fore-
and backhand. Furthermore, we plan to replace the spline based trajectory for
movement generation by dynamic systems motor primitives [11] for each of the
four stages suggested by Ramanantsoa.
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Abstract. In this paper, we investigate simple attentional mechanisms

suitable for sensing rate regulation and action coordination in the pres-

ence of mutually dependent behaviors. We present our architecture along

with a case study where a real robotic system is to manage and harmo-

nize conflicting tasks. This research focuses on attentional mechanisms

for regulating the frequencies of sensor readings and action activations in

a behavior-based robotic system. Such mechanisms are to direct sensors

toward the most salient sources of information and filter the available

sensory data to prevent unnecessary information processing.

1 Introduction

The main goal of our current research is the design of a behavior-based robotic
architecture that has the capability of adapting behaviors activations both to
the rate of change of the environment and to changes of its internal states. For
this purpose, attentional mechanisms, balancing sensors elaboration and actions
execution, can play a crucial role. In particular, attentional processes play two
main roles: direct sensors towards the most salient sources of information; filter
the available sensory data to prevent unnecessary information processing. As
a result of the application of these mechanisms, the robot should react faster
and more effectively to task-related or safety critical stimuli because processing
resources are focused on relevant stimuli. Attentional mechanisms applied to
autonomous robotic systems have been proposed elsewhere, mainly for vision
based robotics. However, attentional mechanisms are necessary not only to focus
the attention on salient regions of the space, but also to distribute resources and
activities in time [7,10,12]. Also in neuroscience researchers started to investigate
the temporal domain of neural activity (for example neural synchrony [11]),
and relate such activity to different cognitive processes such as binding, sensory
motor-coordination, attentional selection and executive functions.
� The research leading to these results has received funding from the European

Community’s 7th Framework Programme (FP7/2007-2013) under grant agreement

no.216239.
�� The Authors want to thank MariaRosaria Ambrosino for the support provided in

the creation of this work.
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In this direction, our working hypothesis is that attentive and adaptive be-
haviors can be achieved starting from self-regulated periodic mechanisms, which
modulate sensory readings and behaviors activations. In previous papers [4,5],
we introduced the Adaptive Innate Releasing Mechanisms (AIRMs) to speed up
or slow down the period of behaviors activation and thereby the reading fre-
quency of the sensors, according to both the robot-environment interactions and
the interactions that may arise within the robots itself [13].

In the AIRMs, each behavior is endowed with an independent regulation mech-
anism directly depending on internal and external stimuli, while the mutual
influence, among the parallel behaviors, is left as a consequence of the overall
self-regulating emergent behavior. However, the notion of divided attention [14]
suggests that a limited amount of attention is allocated to tasks, when resources
are shared in multi-task behavior, and attention can be available in graded quan-
tity for each task. Indeed, the activations of some behaviors may directly require
the activation or the inhibition of other behaviors: two behaviors may not be
able to activate themselves as frequently as they need without a degrade of per-
formances (e.g. cognitive load and interference [8]); otherwise, the activations
of one behavior may directly induce the activation or synchronization of other
behaviors (e.g. synchrony in attentional selection [11]).

The human behavior provides several examples of tasks that, while apparently
conflicting, are simultaneously carried on. For example, some research analyzed
the human behavior while driving and achieving a parallel task, such as talking
over a mobile phone [15,8]. Driving a car is a complex behavior that requires
the extraction and integration of information from multiple sources. Most of
the information relevant for driving are taken by the view, so every change in
the visual exploration can be significant for a safe driving. For example, in [8]
the authors tried to experimentally assess the effects of cognitive load caused
by a secondary task, simultaneously executed. Their results have shown that
drivers, under a high cognitive load, execute less saccadic movements consistently
with an increase of fixation time and a smaller exploration of the visual field.
These experiments show that subjects are able to complete tasks in parallel,
but the resources allocated to each task must dynamically adapt themselves
to environmental conditions and to cognitive and physical capabilities of the
subject.

In this paper, we describe our cognitive/attentive general framework obtained
as an extension of the AIRM architecture [4,5] that integrates mechanisms for
mutual influence among attentive behaviors. For this purpose, we introduce sim-
ple constraints among the behaviors’ sampling rates. This mutual influence can
work both as an inhibitory or facilitatory process [6]. To assess our framework,
inspired by the studies on cognitive distraction [15,8], we define a case study
where a real robot is to achieve two conflicting goals. In this context, we com-
pare performances of this architecture with respect to non attentive versions of
the same system. The empirical evaluation shows that the proposed framework
is capable of harmonizing conflicting goals and distracting activities while main-
taining the features of adaptability and reactivity of the previous architecture.
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2 Adaptive Periodic Behaviors Modulation

In previous papers [4,5], we introduced the AIRM (Adaptive Innate Releasing
Mechanisms) architecture. In the AIRM framework, the robotic system is con-
trolled by a behavior-based executive, where each behavior can be described
by a schema theory model [1]. Each behavior is characterized by a Perceptual
Schema (PS), which elaborates sensor data, a Motor Schema (MS), producing
the pattern of motor actions, and a control mechanism, based on a combination
of a clock and a releaser (see Fig.1). The releaser enables/disables the activation
of the MS, according to the sensor data. The adaptive clock controls the PS, it is
active with a base period and it enables/disables data flow from sensors to PS.
When the activation is disabled, sensor data are not processed (yielding to sen-
sory readings reduction). Furthermore, the clock regulates its period p (ranging
the values in the interval [pmin, pmax]), hence the frequency of data processing,
using a feedback mechanism.

Fig. 1. Schema theory representation of AIRMs

3 Attentive Monitoring and Mutual Influence

Our goal is to develop attentional mechanisms supporting a supervisory atten-
tional system [12] and providing a kind of divided attention [14], which focuses
sensory resources and modulates tasks activations taking into account mutual
influences and constraints among the behaviors.

Attentive Monitoring. Our framework combines the following design principles:

– Behavior-based control: the executive control is obtained from the interaction
of a set of parallel behaviors working at different level of abstraction;

– Attention filtering and focusing: Attention modulation mechanisms consist
in focusing monitoring and control activities on relevant behaviors and ex-
ternal stimuli. For each behavior, the process of changing the rate of sensory
readings may be interpreted as an increase or decrease of attention towards a
particular aspect of the environment the robotic system is interacting with;
The higher is the frequency of the sampling rate associated with one behav-
ior, the higher is the resolution at which this is monitored and controlled.

– Internal and external sources of saliency: The sources of salience are behav-
ior and task dependent, and these can depend on either internal states or
external stimuli;
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Mutual Influence. In our attentive framework, the attention modulation strate-
gies should be suitably regulated not only with respect to the internal or external
saliency, but also with respect to attentional demand of other behaviors. To ac-
count of the problem of mutual influence among attentional behaviors, in this
work, we propose an extension of the AIRM architecture endowed with explicit
constraints among the internal clocks and regulation mechanisms able to respect
these constraints. The aim is to capture mutual dependencies in terms of interre-
lations among the clocks’ sampling rates and then to regulate the clocks’ frequen-
cies according to the presence of conflicting or synergetic behaviors. For example,
given two mutually exclusive processes, since these are to be interleaved, the as-
sociated clock periods should be opportunely changed to allow their alternated
execution; on the other hand, for two concurrent behaviors, the associated clocks
are to be aligned: when the frequency of one clock increases/decreases the other
clock should be accelerated/decelerated and vice versa. However, we want to add
this simple mechanism while maintaining the main features of the AIRM model:
the periodic activation of behaviors should provide both a relative decrease in
the computational burden and the ability to monitor the internal/external en-
vironment (e.g. the robot reads sensors more often if there is a dangerous or
salient situation and less often in cases of a safe operational situation).

In this new setting, for each set of clocks p1, ..., pn, we can introduce a relation-
ship R(p1, ..., pn) that specifies the mutual influence. However, in this paper, we
mainly focus on the relationships between couple of behaviors. In particular, we
consider binary constraints R(pA, pB) like mutex or synchronization constraints.
In this case, the frequencies of the clocks pA and pB, associated with the two
behaviors, depend not only on the salience of the tasks, but also on the joint
frequencies. Examples of these constraints will be provided in the case study
presented in the following section.

Related Work. The problem of mutual influence among behaviors were tackled
in different approaches. For example, in [9] the author presents a homeostatic
system where couples of behaviors are connected through “successor” or “con-
flicter links” to inhibit or activate each other. These links play a role which is
analogous to that of our mutual constraints; however, our regulation mecha-
nisms are different because they are based on attentional modulation of clocks
sampling rates. Moreover, our focus is not on the constraint per se, but on the
effects of constraints on our architecture.

Concurrent tasks interacting with the attentive processes are considered in
[16] where a robot architecture integrates active vision and tasks execution.
However, mutual influence is not considered while attentive and goal-directed
behaviors are integrated and coordinated using a perceptual memory.

Our attentive sampling can be also related to flexible scheduling for periodic
tasks in real-time systems. In [3], period modulation is exploited only to keep the
system load balanced. Similar techniques can be incorporated in our framework,
however, in our case sampling rate and interaction among behaviors depend not
only on the computational load, but also on saliencies due to environmental
changes, internal states, and goals.
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4 Case Study

Inspired by the studies on cognitive distraction during driving activities [15,8],
we designed a case study with two conflicting goals. In a hallway there are some
clusters of green blobs distributed on the left and on the right wall. The robot
has the task of running across the hallway in the shortest time possible, while
counting all the green blobs (see Fig.2(a)(b)). The two tasks conflict on the speed
of the robot. In fact, the first task would require a high speed, while the second,
in order to effectively count all the blobs, would require a slow one.

Environment. The hallway is straight, without obstacles, 14m long and has
a width of 1.60m (see Fig.2(a)). All along the walls there are 27 green blobs
arranged in 3 clusters of 9 blobs each, symmetrically disposed as a 3x3 grid (see
Fig.2(b)). The three grids are randomly distributed along the walls.

(a) (b)

Fig. 2. (a) A snapshot of the robot in the environment. (b) A snapshot of the robot

field of view with a superimposed grid to identify different areas.

Behaviors. In order to accomplish the two tasks we implemented three behaviors:
RUN, SEARCH and SCAN (see Fig. 3).

SEARCH looks for green blobs on the left and right wall. When the behavior is
activated, it causes a random movement of the pan-tilt camera. This behavior
is activated every machine cycle until it detects a green area. In this case, the
period is increased from 1 to 9 machine cycles proportionally to the amount of
green color detected in the wall (i.e. the minimum time to allow to the SCAN
behavior to identify the 9 blobs composing the cluster) (see Sec. 4.1).

SCAN counts the blobs once a salient area is identified. According to active
vision [2] approach, in order to count an object on the wall, the camera has to
center the object in its field of view, simulating a saccadic movement. For this
purpose, we split the field of view of the camera into nine areas (see Fig.2(b)).

RUN sets the speed of the robot. Differently from the previous behaviors, the
effect of the activation of such behavior continues even when the behavior is off.
In fact, after the behavior has sent a command to the motors, the controller of
the robotic system will keep such speed until a new command will arrive. The
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value of the speed is in inverse proportion to the value of its period. The range
of allowed speeds is from 0.01m/s to 0.24m/s.

The system starts with a medium speed, looking for green objects on the walls
of the corridor. Its behavior will change according to the visual percept. When
the system detects a green object, the SCAN behavior period decreases, allowing
the robot to slow down its speed and to count the objects it detects. Similarly, if
no green objects are detected, SEARCH and RUN periods become smaller, allowing
a more accurate exploration (moving several times right and left the camera
looking for objects), and increasing the system speed in order to reach the end
of the corridor as fast as possible.

4.1 Mutual Influence Rules

The regulation of mutual influence of two clocks, with periods pA and pB, de-
pends on the statical and the dynamical priorities between behaviors and the
relationship R(pA, pB).

Priorities. Priorities in changing periods depend on the importance of the behav-
ior in accomplishing the task and in ensuring the safety of the robot. Behaviors
that are safety critical have the maximal priority, hence the other behaviors will
be activated consequently. In the case of behaviors with the same priority, the
policy for updating the value of the period is “the first takes all”, i.e., at each
machine cycle, the first behavior that changes its period has to notify to other
behaviors such variation. The other behaviors have to modulate their periods
accordingly.

Relationship. If two behaviors A and B, with respectively pA and pB periods
and with ranges [pAmin, pAmax] and [pBmin, pBmax], share the same resources
and are potentially in conflict, we have to define a relationship between these
two values. To better understand, we consider what happens in the frequency
domain in which a low pass filter prevents the passage of frequencies below
a particular cutoff frequency. If K is this cutoff frequency (i.e. in some way
the maximum bandwidth available) representing in our case the maximum rate
of behavior activation, and fA = 1

pA
and fB = 1

pB
respectively represent the

activation frequencies of two conflicting behavior, with the relation: fA+fB ≤ K,
we indicate that each frequency will benefit from the breadth bandwidth not
used by the other and vice versa. Likewise, if the activation period pA assumes
a particular value within its allowed range [pAmin, pAmax], the period pB can
only assume a value within [pBmin, pBmax], limited to the remaining bandwidth.
However, if two behaviors need to be executed simultaneously in order to realize
a macro behavior, or if their outputs may be summed and are not in conflict,
we may assume the following synchrony relationship: |pA − pB| = 0. In our
architecture we have that the SCAN behavior (with period pSc) and the SEARCH
behavior (with period pSr) cooperate on the achievement of one of the tasks, but
conflicts on the use of the pan/tilt camera. On the contrary, RUN (with period
pR) conflicts with SCAN on tasks. Indeed, the first one has the goal to reach
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the end of the corridor as soon as possible, while the second one needs to slow
down as much as possible the speed of robot in order to optimize the counting
phase. Finally, the RUN behavior and the SEARCH behavior can cooperate in the
achievement of their own task. In fact, both require a high speed. Let α, β, and
γ be constants equal to α = pScmax +pSrmin, β = 0 and γ = pScmax +pRmin , in
this test the relationships among the periods of these behaviors can be formalized
as α ≥ pSc+pSr (or α = pSc+pSr if we want a strong dependence), β = |pSr−pR|
and γ ≥ pSc + pR (or α = pSc + pSr if we want a strong dependence).

Fig. 3. Control architecture for the mobile robot

4.2 Results

In order to evaluate the performances of our system, we compared three dif-
ferent architectures, each with different behaviors settings, implemented on a
Pioneer 3DX, equipped with a pan/tilt camera and range sonar (see Fig.2(a)),
and defined as follows:

– AIRM: all behaviors are equipped with adaptive clocks;
– AIRM v max: adaptive clocks only in SCAN and SEARCH; the speed of RUN

is kept constant at the highest value (0.24m/s);
– AIRM v med: adaptive clocks only in SCAN and SEARCH; the speed of RUN

is set to a medium value (0.11m/s);
– SC2SR8 v med: the behavior activation is periodic (for SCAN pSc = 2, for

SEARCH pSR = 8 and for RUN pR = 1), while the speed of the system is kept
constant to a medium value (0.11m/s);

– SC5SR5 v med: the same as the previous case with different periods (for
SCAN pSc = 5, for SEARCH pSR = 5 and for RUN pR = 1);

– Sub v max: the behaviors are active at every machine cycle and they are
coordinated by a subsumption architecture (i.e., SCAN subsumes SEARCH).
The speed is equal to 0.24m/s;

– Sub v med: the behaviors are active at every machine cycle as in Sub v
max, but the speed is equal to 0.11m/s.
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In Figure 4(a), we summarize the results collected during the tests, considering
the number of counted blobs and the time spent to complete the task. For each
setting, we performed 10 tests. The AIRM architecture performed well in terms
of number of blobs counted. In fact, the AIRM implementation counts an average
of 17.8 blobs. In the case of the AIRM architecture with adaptive clocks only
for SCAN and SEARCH, the speed of the RUN behavior is kept constant during
the tests. In these two cases, the number of counted up blobs is smaller than
the AIRM case. However, for the AIRM v max, time performances are better,
while in the case of medium speed the average time (127.7s) is comparable with
the AIRM case (123s). Another important thing to highlight is that, while the
average speeds in the medium case and in the AIRM v med case are comparable,
the number of counted blobs is better in the AIRM case. This is because the
system will adapt itself to the surrounding environment speeding up or slowing
down, taking advantages of empty areas to accelerate, while decelerating when
it perceives blobs to count.

In the cases of periodic (not adaptive) activation of behaviors (SC5SR5 and
SC2SR8), the performances with respect to the number of counted blobs are
worst than in the AIRM case. The case SC5SR5 presents the worst results in
terms of counted blobs. We experienced a little improvement in the case of
more frequent activation of SCAN (SC2SR8). However, we have to highlight that
the periodic activation of behaviors in the case of SC2SR8 determines a higher
number of activation of perceptual schemas (i.e. wasting more resources) with
respect to the AIRM case, elaborating camera data even during the exploration
of empty areas.

In the last set of tests, we evaluated the performances of a subsumption ar-
chitecture (Sub). In this implementation SCAN subsumes SEARCH. The speed of
RUN is kept constant at 0.24m/s and 0.11m/s. The performances of Sub v med
result to be better with respect to the other cases except for the AIRM that
performs the best. Indeed, the subsumption architecture resolves potential con-
flicts on resources (i.e. the pan/tilt of the camera) while, without an arbitrator
module, such conflicts may reduce performances. However, in this case, similarly
to the periodic activation of behaviors, we have a higher number of activations of
the SCAN perceptual schema that elaborates camera data at each machine cycle.
These results make us foresee that in the case of a higher elaboration load an
adaptive architecture may significantly improve performances.

In Figure 4(c), we plotted the cost/benefit (time/counted blobs) evaluation.
Also from this point of view, the AIRM implementation performs better than the
others. However, this plot shows that the AIRM case presents a greater standard
deviation in the time performances. A high standard deviation implies a high
variability of the test results. This variability is caused by the adaptability of
the system with respect to the environment and, consequently, to the changes
of the system speed.

Finally, in Figure 4(b) we evaluated the error on the number of counted blobs
for units of time. This error is evaluated as (nB − nCB)/t, where nCB is the
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(a)

n of blobs time (s)

AIRM 17.8 ± 3.22 123 ± 11.25

AIRM v med 7.6 ± 2.76 127.7 ± 1.64

AIRM v max 5.9 ± 1.45 60.4 ± 1.84

SC5SR5 v med 4.6 ± 1.07 127.5 ± 1.96

SC2SR8 v med 9.9 ± 2.08 128.7 ± 3.37

Sub v med 13.8 ± 2.49 127.4 ± 2.01

Sub v max 7.4 ± 1.17 61.7 ± 2.83

(b)

error

AIRM 0.07

AIRM v med 0.15

AIRM v max 0.35

SC5SR5 v med 0.18

SC2SR8 v med 0.13

Sub v med 0.10

Sub v max 0.32

(c) AIRM sub v max sub v med AIRM v max Sc2Sr8 v med AIRM v med Sc5Sr5 v med
0
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Fig. 4. (a) Performances and standard deviations in term of number of counted blobs

and time spent to accomplish the task. (b) Error on the number of counted blobs for

units of time. (c) Plot of costs/benefits of the tests. C/b is evaluated as time/counted

blobs.

number of counted blobs, nB is the total number of blobs in the environment
and t is the time spent to accomplish the task.

5 Conclusion

In this paper, we investigated simple attentional mechanisms for coordinat-
ing competitive and cooperative behaviors in a behavior-based robotic system.
The results show that the AIRM mechanisms are effective in adapting the
frequency of behaviors activations according to the particular circumstances,
incrementing or decreasing the attention toward salient aspects of the robot en-
vironment or the internal state. We compared our architecture w.r.t. different
architectures not endowed with attentional mechanisms. In summary, we ob-
serve that the proposed architecture performs better than the others in terms
of: number of detected blobs (effectiveness); tradeoff between time and counted
blobs (cost/benefit); error of detection (precision); less activations of the per-
ceptual schema (efficiency). Basically, the system can modulate the activation
frequencies on the basis of the available resources and external conditions. In-
deed, by using the adaptive clocks, the number of behaviors activations substan-
tially decreases compared to the case in which the control system enables the
robot’s behaviors at each machine cycle, and this results in a substantial gain in
performances.
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An Empirical Evidence of Braitenberg Vehicle
2b Behaving as a Billiard Ball
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Abstract. Braitenberg vehicles have been used for decades on an em-

pirical basis to implement different tasks. Grounded on a mathematical

model of vehicle 2b, this paper presents empirical evidence that some

theoretical results from billiard ball dynamics can be used to analyse the

behaviour of the vehicle. The possibility to use such vehicles to cover a

region is presented as a consequence of the its behaviour.

1 Introduction

Braitenberg vehicles have been used for decades in robotics on an empirical
and intuitive basis. Each vehicle displays a different behaviour according to a
thought experiment presented in [3]. Complexity on their behaviour emerges
from the interaction of the vehicle with an external stimulus, not from the inter-
nal mechanisms that generate the behaviour. They were used as a justification
of the simplicity of the behaviour based approach to robotics [4]. Braitenberg
vehicles were also successfully used in earlier works of artificial life [14] [17], but
they can be used to model animal behaviour as well.

Different kinds of Braitenberg vehicles have been used to provide robots with
several abilities like obstacle avoidance [2], local navigation [18], chemical source
seeking [6] [9], and even complex tasks like football playing [10], yet always
based on empirical evidence. However, since the original work is both qualita-
tive and very intuitive there has been no effort in trying to build a quantitative
framework for a further development. In fact, besides purely empirical imple-
mentations, Braitenberg vehicles are used as test-bed for evolutive behaviour
generation [15] [7], where usually neural networks act as controllers of the ve-
hicles [8]. Neural networks are selected as controllers so they can be evolutively
adjusted to perform well, but also because of their properties to deal with noise
and approximate any function with no need of design knowledge.

As we will see later, one of the applications of Braitenberg 2b vehicles is
coverage, a well studied problem on robotics with many applications. In [5] a
classification of coverage techniques as heuristic or complete is performed. Com-
plete techniques treat coverage as a multiple sequential planning problem, the
execution of a sequence of planned trajectories, which turns it into a time expen-
sive and complexity growing problem. On the other hand, heuristic techniques

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 293–302, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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are based on sequencing behaviours or random motions, making hard to treat
them formally or to measure its performance. The use of Braitenberg vehicle 2b
for coverage could be included in the heuristic category, though it can be treated
theoretically under some circumstances. This paper will show that a single mech-
anism, the Braitenberg vehicle 2b, can be used to generate covering trajectories
in simple scenarios. Although the simplicity of the mechanism, the resulting be-
haviour is difficult to analyse, in the most general case, since it is modelled as a
nonlinear differential equation with no equilibrium point. However, we will see
experimentally, that mathematical theory of billiard can be used to explain its
behaviour under some circumstances. This allows the application of theoretical
results to the behaviour of Braitenberg vehicles.

The rest of the paper is organised as follows: Section 2 reviews Braitenberg
vehicle 2b and presents some results of its behaviour under the influence of a
bounded stimulus with a single point maximum. When the stimulus maxima can
be approximated by a region a new behaviour appears as presented in Section 3.
Conclusions and further work lines are drawn in Section 4. Each section includes
its corresponding simulated results.

2 Braitenberg Vehicle 2b in Bounded Stimuli with
Point-Like Maximum

The Braitenberg vehicle 2b consists on a dual-drive wheeled vehicle with two
point-like frontal sensors arranged symmetrically. The connections between the
sensors and the motors are shown in Figure 1. Each sensor is linked to the
wheel on the opposite side in an increasing way. The sensors capture some scalar
stimulus S(x) from the environment D. The stronger the stimulus is perceived
on the sensor, the faster the opposite wheel spins, that is what the ‘+’ sign on
the figure means. The overall effect is making the robot turn in the direction
of the stimulus. Moreover, as the stimulus intensity grows, the linear velocity of
the vehicle increases, since both wheels turn faster. Therefore, the vehicle heads
the stimulus while increases its velocity. If the stimulus is generated by a point
source, the vehicle will eventually reach the source with a maximal speed, this is
the reason why the behaviour was originally named aggression. Before drawing
any conclusion of the behaviour, we will present the formal model of the vehicle
and derive some theoretical results.

Let D ⊂ �2 denote an open set such that D ∪ ∂D is connected and compact,
this will represent the workspace of the vehicle and its boundary. A stimulus
function can be modelled as a C2 function S : D∪∂D → �+∪{0} (a function with
second order continuous derivatives), a single absolute maximum and such that
S(∂D) = 0 but S(D) �= 0. This represents a scalar stimulus from a point source
with a bounded effect, vanishing as we move away from the source. The stimulus
is time independent, i.e., even there is spatial variation, it remains constant in
time. A Braitenberg 2b connection function is a function F (s), F : �+ ∪ {0} →
�+∪{0}, with second order continuous derivatives such that dF (s)

ds > 0∀s ∈ �+∪
{0} and F (0) = 0. This function models the increasing connection between the
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Fig. 1. Internal structure of the Braitenberg vehicle 2b

sensors and the motors. The fact that it cannot take negative values implies the
vehicle cannot move backward. This has a biological justification since animals
usually do not move backward. The condition F (0) = 0 can be replaced by
F (Smin) = 0, which makes the vehicle move until it reaches a stimulus threshold.
Under these conditions ∂D will be replaced by a closed curve Γ defined by the
level set on S(Γ ) = Smin. These two functions are the basis for modelling the
differential equation governing the behaviour of the Braitenberg vehicle 2b. The
actual state space of the vehicle is �2×S1 since its heading has to be considered.
We will denote the Cartesian coordinates x = (x, y) and θ will be the vehicle
heading. Therefore, the whole state will be (x, θ) = (x, y, θ).

Assuming the wheel radius is a multiplying factor included in F (s), the
velocities of the right and left wheels of the vehicle are vr = F (S(xl)) and
vl = F (S(xr)), where xr and xl are the positions of the right and left sensors
respectively. Since both, functions S(x) and F (s) are C2, the velocities can be
approximated as a first order Taylor series around the midpoint between the
sensors x as:

vr ≈ F (S(x)) +
δ

2
∇F (S(x)) · êp (1)

vl ≈ F (S(x)) − δ

2
∇F (S(x)) · êp (2)

where δ is the distance between the sensors, ∇F (S(x)) is the gradient of the
compound connection-stimulus function and êp = [− sin θ cos θ]T is a unitary
vector orthogonal to the vehicle’s head direction pointing to its left. Assuming
a point like differential-drive vehicle, its state evolves according to the following
system of differential equations:

ẋ = F (S(x)) cos θ (3)
ẏ = F (S(x)) sin θ (4)

θ̇ =
δ

d
∇F (S(x)) · êp (5)
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where d is the wheelbase of the vehicle (see [13] for more details). It is worth
noting that the dynamical system describing the behaviour of the vehicle has no
stability point in D since equations (3) and (4) never vanish simultaneously.

Intuitively the vehicle will never stop but it will slow down as it approaches
∂D since F (s) ∈ C2 and F (S(∂D)) = 0. It can be proved that the vehicle will
not move outside D, i.e. that the solution x(t), θ(t) of the Cauchy problem (3),
(4), (5), x0 ∈ D and θ0 ∈ (−π, π] stays in D for all t. In fact, the solution of the
Cauchy problem will stay on the configuration space D×S1. For a solution going
outside the configuration space, the flow defined by the dynamical system (3),
(4) and (5) should have a component pointing outside the surface ∂D×S1. Since
the first two components of the flow are zero at the boundary (F (S(∂D)) = 0),
and the normal to the boundary has no angular component, the dot product of
the flow and the normal vector to ∂D× S1 is zero, and therefore either the flow
vanishes in ∂D×S1 or is tangent to ∂D×S1. From this, we can deduce that there
can be stability points of the dynamical system on the boundary of D where the
gradient ∇F (S(x)) is orthogonal to êp. This means that the vehicle can, under
some circumstances, move towards some point of ∂D, though it can be shown
that these points are unstable equilibria of the dynamical system. Formally, the
points (x, θ) ∈ ∂D × S1 where ∇F (x) · êp = 0 are unstable equilibria of the
dynamical system.

A special case with analytic solution to the Braitenberg vehicle 2b model
appears when the stimulus function has circular symmetry. This is common for
some real stimulus and is treated in [12]. It can be shown that if a positive real
value r0 such that F (S(r)) + r δ

d
∂F (S(r))

∂r = 0 exists, two circular trajectories
of radius r0 are solutions of the differential equations with the proper initial
conditions. If equations (3), (4) and (5) are converted to polar coordinates, they
can be linearised around the trajectory r0(t) = r0, ψ0(t) = ω0t + ψ0 and θ0(t) =
ω0t + ψ0− π/2, where (r, ψ) are the polar coordinates. This leads to the system
of linear differential equations⎡⎢⎣ ˙̃r

˙̃
ψ
˙̃
θ

⎤⎥⎦ =

⎡⎣ 0 −v0 v0(
1 + d

δ

)
ω0
r0

0 0
d2F (r0)

dr2 0 0

⎤⎦⎡⎣ r̃

ψ̃

θ̃

⎤⎦ (6)

where the matrix has constant coefficients, v0 = F (S(r0)), ω0 = F (S(r0))
r0

and
r̃(t) = r(t) − r0, ψ̃(t) = ψ(t)− ψ0(t) and θ̃(t) = θ(t) − θ0(t) are the incremental

variables. The eigenvalues λi =
{

0,∓
√

v0

(
δ
d

d2F (r0)
dr2 − (1 + d

δ )ω0
r0

)}
of this ma-

trix establish the behaviour of trajectories close to the equilibrium one. When
the factor inside the square root is negative, the linearised solution oscillates
around the circular trajectory. Moreover, if the quotient of ω0 and the eigen-
value is an irrational number, the resulting trajectory will be dense in D. This
means that for any point in D there is always a trajectory passing arbitrarily
close to it, so the vehicle will cover that part of the workspace.
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Algorithm 1. Fixed Point of Poincaré Map P (x)
Require: P (x), x0

Ensure: xm = P (xm)

repeat
j ← 1

x0 ← xm

S = {x0}
repeat

xj ← P (xj−1)

S ← S ∪ {xj}
j ← j + 1

until points in S form a closed trajectory

xm ← average(S)

until error > ε
return xm

In the general case of non symmetric stimulus, finding an analytic solution to
the differential equation is a hard problem. However, some numerical methods
exist to find periodic solutions of nonlinear differential equations [11]. Unfortu-
nately, either they need knowledge about the period of the solution or they only
work for attracting limit cycles. This is not the case of the system at hand, since
the oscillation has constant amplitude around the circle (eigenvalues are pure
imaginary), and therefore the equilibrium is not an attractor. We therefore used
an approximated way of computing the periodic solutions.

The trajectories being the superposition of two periodic trajectories means
that close to the equilibrium, the trajectory is diffeomorphic to a 2D torus in
the state space (x, θ), and the periodic solution is contained inside the torus.
For such a trajectory, the Poincaré map (the intersection of the 2D torus and a
plane on the state space) is diffeomorphic to a circle. Moreover, the closer the
initial condition is to the equilibrium, the more the intersection will look like a
circle. Taking advantage of this, we implemented Algorithm 1, which averages
several points of the Poincaré map. This algorithm works even for unstable
periodic solutions provided that the initial point is close to the real solution and
the divergent component of the map is small enough. The real map will not
be exactly a circle since there will be a divergent component and therefore the
trajectory will look more like the sampling of a logarithmic increasing spiral.
However, when averaging the mean point will get close to the periodic solution,
a fixed point in the corresponding Poincaré map.

2.1 Simulations for Point Like Stimulus

To test the results of the previous section we simulated the model on a stimulus
such that the function F (S(x)) was:

F (S(x)) = g0 − axT Σx = g0 − axT

[
1 0
0 α

]
x (7)



298 I. Rañó

where g0 and a are positive constants and α is a parameter of the dynamical
system. For this function, the domain D is defined by the equation g0 > axT Σx,
and ∂D = {x|g0 = axT Σx}. When α = 1 the stimulus function has circular
symmetry and therefore a periodic solution exists for r0 =

√
g0

a(1+δ/d) . For α �=
1 the periodic solution was computed numerically using algorithm 1. In the
simulations we used g0 = 2.5, a = 0.1 and δ/d = 0.85.

As an initial guess for the position of the periodic solution the closest known
periodic solution is used. The algorithm was iterated for different (increasing
and decreasing) values of α starting from α close to 1 with initial condition
(3.04, 0, π/2), and the plane to compute the Poincaré map was y = 0. On each
iteration the value of the parameter α was slightly changed and the previous
solution of the fixed point of the Poincaré map was used as initial guess on the
algorithm. The Poincaré map was computed using the time halving algorithm
presented in [11].
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Fig. 2. Periodic trajectories and initial conditions for different α values

Figure 2(b) shows the resulting x coordinate for the periodic solution. This
coordinate is the fixed point of the corresponding Poincaré map, the other co-
ordinates were θ = π/2 and y = 0. Figure 2(a) shows the simulation of periodic
trajectories for different values of the parameter α. The trajectories were com-
puted by integration of the system of differential equations with initial conditions
(x0, 0, π/2) using a fixed step Runge-Kutta4 algorithm. As the value of α moves
away from 1 the trajectories differ from the circle. We saw that for circular sym-
metric stimulus the trajectories close to the circle oscillate around it, however
nothing can be said for a parabolic shaped stimulus. To obtain information about
the trajectories close to the periodic solutions we computed the characteristic
multipliers of the solutions. If we integrate the Jacobi field obtained from the
derivative of the vector flow along a periodic trajectory the characteristic multi-
pliers are the eigenvalues of the Jacobian matrix. The eigenvalues of this matrix
are related to the stability of the corresponding Poincaré map and, therefore,
also to the stability of the periodic solution [1]. In our case all the trajectories
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had two complex conjugate eigenvalues and one real. Figure 3(a) shows the ab-
solute value of the three characteristic multipliers as a function of the parameter
α, the complex ones actually generate the same plot. In the case of circular sym-
metric stimulus all the eigenvalues fall into the unit circle of the complex plane,
this matches the theoretical result of oscillating trajectories around the circular
solution. For α �= 1 the absolute value of at least one of the eigenvectors has
value larger than one, making the Poincaré map and the corresponding differ-
ential equation unstable. In fact, this is the reason why we had to implement
Algorithm 1. However, since at least one of the eigenvalues has absolute value
smaller than one, the fixed point of the Poincaré map is actually a saddle point.
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Fig. 3. Characteristic multipliers and Lyapunov exponents of the periodic solution for

different values of α

Figure 3(b) shows the Lyapunov exponents for the periodic trajectories as
a function of the parameter α. If the sum of all the exponents is positive but
some of them are negative, the corresponding dynamical system will be chaotic.
The relation between the Lyapunov exponents and the characteristic multipli-
ers is given by the expression λ = 1

T ln ν, where λ is the Lyapunov exponent
corresponding to the characteristic multiplier ν, and T is the period of the so-
lution trajectory (see [1]). The period can be easily obtained while computing
the characteristic multipliers, since it is the simulation time needed to get the
Poincaré map. The dotted line represents the sum of all Lyapunov exponents.
Since its sum is close to zero we can deduce that the behaviour of the vehicle is
not chaotic for the given functions and parameters.

3 Wandering on a Flat Stimulus

So far we saw some results for point like stimulus sources. If the stimulus has no
isolated or single maximum the behaviour of the vehicle is different and other
analysis techniques need to be used. A special case is a constant stimulus, for
which ∇F (S(x)) = 0 in some subset of D. Clearly, since the rotational speed
of the vehicle is proportional to this gradient it will not turn, but it will still
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move forward since F (S(x)) > 0. However, some of the previous results are
still valid; the vehicle will move in a bounded area provided F (S(x)) = 0 for
x ∈ ∂D. In fact, the area does not need to be simply connected, since the
contour of the obstacles can belong to ∂D, and therefore ∂D will be a set of
closed curves inside a bigger one. Since F (S(x)) ∈ C2 and vanishes at ∂D, if
there is a region where ∇F (S(x)) = 0, there must also be a region close to
the boundary where ∇F (S(x)) �= 0. Therefore, there will be a region where
the vehicle will potentially turn. One way of building a stimulus on a bounded
area with obstacles is to generate a function of the distance to the obstacles
with continuous derivative. Such function should take a zero value close to the
obstacles and the boundary, and a constant value far from them.

To approximate a flat stimulus keeping the function in C2 we will compute
the hyperbolic tangent of the previously chosen function F (S(x)). Obviously
this function has also a maximum at the same point as before, however when
the vehicle is far enough from the contour, the gradient is so small that it can
be considered zero and the trajectory can be approximated by a straight line.
Having a close look at the trajectories, we could see they are not straight lines
since the derivative of tanh(F (S(x))) does not vanishes. In sum, the trajectory
will almost follow a straight line and will only blend close to ∂D. This behaviour
looks like the one of balls on a billiard table with elastic collisions. In fact, the
trajectories described by billiard balls are not C2 functions, and they follow a
geometric reflection law on the border of the table.

It is well known that billiard balls on a circular table can follow periodic
trajectories after several bounces when the angle between the tangent to the
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table and the trajectory (φ) is a rational multiple of π, otherwise the trajectory
is dense [16]. We simulated Braitenberg vehicle 2b on a circular stimulus with an
almost flat region in the centre and found that it also follows a periodic trajectory
when the proper initial conditions are selected. Figure 4(a) shows the trajectory
described by the vehicle starting with initial conditions (1, 0, π/2.715), which
is clearly periodic. Another result for unit radius circular billiard table is that
the trajectories are tangent to a circle with radius rint = cosφ [16]. Figure 4(b)
shows that, even the trajectory of the Braitenberg vehicle 2b is not the same
as the billiard ball, it is tangent to some circle. Given the initial condition of
the vehicle (x, θ) = (1, 0, π/4) and the size of the circle r = 2 we can compute
the angle of a bouncing billiard ball φ = 65◦ and the radius of the inner circle
r cosφ = 0.85, which roughly matches the simulation results for the Braitenberg
vehicle. In fact, the actual radius of the internal circle of the figure is r = 0.705
slightly smaller. Neither the apparently straight trajectories far from the circle
boundary are straight lines nor the bounces are real bounces, though there is
a clear experimental match between the expected results from the ball and the
simulation of the Braitenberg vehicle pointing to a new way of looking at them
and analysing their behaviour.

Other results from billiard theory also apply to Braitenberg vehicle 2b, like
the ones related to trajectories on a elliptic billiard table. However, these results
apply only to a certain limit. Figure 4(c) shows the trajectory of a simulated
vehicle on an elliptic stimulus with quite different lengths on the principal axis.
Theoretically the resulting trajectory should be tangent to an hyperbola or an
ellipse, but it is clearly not true in this case. It seems that we moved away from
the parametric region where the billiard ball approximation is valid. Figure 4(d)
shows the simulation of a Braitenberg vehicle inside an elliptic region with an
elliptic obstacle inside. The trajectory is complex to analyse but the simulation
points that it is dense on the free space making the control mechanism look
suitable for coverage tasks.

4 Conclusions and Further Work

This paper shows that there is empirical evidence to apply the mathematical
results of billiard balls to Braitenberg vehicle 2b. For simple shapes of the en-
vironment the control technique of the vehicle can be used to generate dense
trajectories, the ones suited on covering tasks. Furthermore, this technique is
clearly much simpler than using algorithms for sequential planning of the trajec-
tories. Obviously these results need a formal support and the conditions under
which the billiard theory can be applied need to be identified.
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Abstract. The problem of generating motions of a six-legged robot with

the help of a ball rolling on a horizontal support plane is investigated. The

robot motion is synthesized in order to climb on a ball from a support

plane, accelerate or decelerate the ball in the directions of the longitudi-

nal or lateral axes of the body. Robot provides its dynamic stability on

the ball. The goal of robot’s efforts is to remove the ball to a given place

on the support plane. Robots behavior is accomplished with the help of

dry friction forces only. The motion of the body and legs is executed by

imposing servo constraints in the form of adaptive step cycles of legs and

the required geometrical and dynamical properties of the body motion.

The results of 3D computer simulation of the controlled robot dynamics

are presented.

Keywords: legged robot, adaptive control, stabilization.

Introduction

This paper develops the results of [1,2,3]. The ability of a walking robot to move
on a real terrain can be formed by gradual training of a robot to overcome both
isolated obstacles and their typical combinations. Some examples of overcoming
terrain with sufficiently small unevennesses were presented in [4]. Obstacles of
big height were considered in [5,6,7]. Robots using vacuum suckers, electrostatic
or other kinds of adhesion are developed [8], since they allow the robot to move
along vertical walls. Together with this, walking robots are able to move on
structures of considerable height simply using the Coulomb friction forces, as
this is frequently done by animals.

In certain extremal situations, the ability of a walking robot to overcome
obstacles may considerably depend on the ability of the robot to provide effi-
ciently the dynamic stability [1]. It is interesting to investigate the possibility of
providing dynamic stability on support objects being in the state of indifferent
equilibrium, such as a cylinder or a ball, free lying on a solid horizontal surface. It
is also interesting to learn how to use the dynamic properties of support objects
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of this type in order to transport them together with the robot to the required
place. Because the ball has only one support point on the plane it seems to be a
more arduous object than a cylinder. A walking robot, getting onto a surface of
the ball, heightens the center of mass of the entire mechanical system and turns
it into unstable one.

In this paper we present a solution to the problem of the robot climbing
onto a massive ball, which can roll freely on a horizontal plane, of providing an
acceleration and deceleration of the ball by special motions of the robot on the
ball, a passage of the robot from the ball to a shelf. A set of typical methods
that allow the robot to execute maneuvers under a given friction coefficient
restriction are proposed. Typical motion elements are given using the adaptive
trajectories of feet movements and the trajectories of motion of characteristic
points of the body. The efficiency of the proposed methods is confirmed by means
of three-dimensional computer simulation [9] of the complete dynamics of the
robot having 24 degrees of freedom, together with the ball of six degrees of
freedom. The results of computer simulations of the operation of the described
algorithms for motion design are presented.

1 The Problem Statement

The six-legged robot construction is shown on Fig. 1. The details of robot’s kine-
matics can be found in [1]. Here we note only that legs are numbered from rear
edge of robot’s parallelepiped-shaped rigid body to its front edge so that the rear
legs have the numbers 1 and 2, the middle legs have the numbers 3 and 4, the front
legs have the numbers 5 and 6. All right legs have odd numbers. The robot can con-
tact with a support surface and with any other objects only by feet. Robot’s legs
should not have mutual intersections during all stages of the motion.

Dimensions of the robot meet the following condition:

a : b : c : l1 : l2 : R = 1 : 0.5 : 0.1 : 0.5 : 0.33 : 0.8,

where R — radius of the ball, a — side of the body (length), b — front or rear
edge (width), c — thickness of the body. Six identical insectomorphic legs are
symmetrically attached to the sides of the body. Points in which the legs are
attached (legs attachment points) are located uniformly along the sides. Each
leg consists of two links: hip, length l1 and shank, length l2 (Fig. 1). The body
and the links of legs have some volume and mass by gravity.

We assume that robot is equipped with the electromechanical drives in joints
and has full access to the following information: the geometry of obstacles, an
own position relatively to the obstacles, joint angles and velocities. The pro-
grammed values of the joint angles are generated by the algorithm of control.
The algorithm is not strictly fixed, the information about the actual robot con-
figuration during the motion essentially used. For realization of programmed
values of joint angles the servo-control method is used [10]. Required motion is
generated as a servo-constraint, which robot will be aimed to realize by setting
the control voltage on the drives [1].
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O

η

ξ

ζ

Fig. 1. The robot and the ball

The solving problem is as follows. Initially robot and ball dispose on horizon-
tal support plane Oξη. Axis Oζ is directed up to vertical. Point O is the initial
contact point of the ball and the support plane. Reference frame Oξηζ is immov-
able. Robot have to approach to the ball, climb onto the top of it and make the
ball to move in the prescribed direction. At final position of this motion there
is a shelf. Robot have to approach the ball to the vertical wall of the shelf and
get onto the horizontal top of the shelf from the ball. The problem is not very
simple, because the robot don’t know forces in contact point of the ball and
support plane as well as forces in contacts of feet with the ball.

2 Climbing onto the Ball

We suppose that initial position of the robot is symmetrical relative to a vertical
plane getting through the center of the ball and there is no slippage in contact
points. The motions of the ball and the robot’s body are designed as plane-
parallel with that vertical plane. Let ω0 is an initial angular velocity of the
ball and ϕ̇ is a constant angular velocity of the robot’s body relative to the ball
center. We need that the ball should stop when robot will get onto the top of the
ball. In accordance with the angular momentum theorem relative to a support
point of the ball values ω0 and ϕ̇ are related by the equation

ϕ̇2PR− ϕ̇ω0R + Pg = 0, P = ln
1 + p

1 + p sinϕ0
, p =

mRr

Jb + (M + m)R2
, (1)

where M — mass of the ball, Jb — axis inertia moment of the ball in a point of
the ball contact with the plane, m — mass of the robot, r — distance between
the center of the ball and the robot’s center of mass. Under the condition

ω2
0 ≥

4P 2g

R
−→ v0 ≥ 2P

√
gR, (2)

where v0 — the initial velocity of the ball center, the equation (1) with re-
gard to ϕ̇ has two positive roots. We choose minimal root according to design
requirements:

ϕ̇ =
ω0R−

√
ω2

0R
2 − 4P 2Rg

2PR
. (3)
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It is evident that robot can’t climb the big enough ball if the ball is immovable
at start of climbing. So robot has to push the ball in the same direction that
it approach to the ball and to give the ball big enough initial velocity. At the
start of a push the body of the robot should be orientated along the surface
of the ball. Let us suppose that front edge of the body should be higher then
rear edge. Then, for reasons of reaching the support plane by feet, it is clear
that the rear legs have to engage a push. After separation of all the feet from
the support plane front and middle legs must be securely entwine the ball so
that the robot could move the body along the ball without slipping feet on the
surface of the ball. Due to transfers of feet require finite time, we conclude that
by the beginning of push front and middle legs must already be on the ball, and
the push should be carried out only by the rear legs. To avoid rotation of the
ball around a vertical axis the gallop gait will be used for climbing, with posing
the body and support points symmetrically about the vertical plane.

Let feet of some number of legs be on the ball and other part of feet are on
the support plane. If the ball can only roll without slippage and robot moves
preserving distances between its support points, then the ball can’t move. This
property allow the robot to prepare initial position before pushing the ball. That
position is shown at Fig. 2, a. After push the ball begins to roll and feet of rear
legs transfer to ball (Fig. 2, b). The robot climbs the ball slowing it. Robot
choose support points on the ball to avoid mutual intersection of legs. When
robot comes to the top of the ball the velocity of the ball becomes almost zero
(Fig. 2, c).
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Fig. 2. Climbing onto the ball

3 Stabilization, Speed Up and Slow Down the Ball

Once the robot got to the ball, it may be tasked to achieve, while staying on the
ball, some place on support plane. If this place can be reached, forcing the center
of the ball to move precisely along the longitudinal axis of robot’s body, that to
this end, we can apply the algorithm presented in [3]. However, the target point
can be located anywhere on the plane, and can be separated by any obstacle
from the place where the ball and the robot are.
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In this situation, the robot can remaining on the top of the ball, for example,
turn itself on the ball in the direction of target point or in the direction of the
desired bypass obstacles. However, if the robot will do it, then the ball by theorem
of change the angular momentum for the system acquire a vertical component of
the angular velocity, which would interfere movement in the desired direction. A
corresponding problem of sighting appears. The decision of it will be hampered
by the lack of reliable information about the properties of interaction between
the ball and the support plane.

Another method is free from these shortcomings and able to provide achive-
ment of the desired location on the plane. This method can be constructed on
the basis of implementation of the robot motion with the ball on the grid without
body rotation around a vertical axis. It uses the opportunity the robot motion
in the lateral direction relative to the longitudinal axis of the body. The triple
gait when the legs are moved across the robot’s body turns to be most effective
in this case.

Firstly let us consider the longitudinal motion. Assume that at the beginning
of motion the robot and ball are in rest, and the robot stands on the ball so
that its center of mass is projected at the ball support point. The robot body is
oriented along the unit vector e ⊥ g, specifying the direction of the forthcoming
motion of the ball center B. The robot has to accelerate the ball to a required
velocity and then to move together with the ball in the direction of the vector e.
The regular stage of the ball acceleration in the time interval [t0, tf ] is performed
according to the formula δr(1)

k = kv[vd − ve(t0)]μ(τ)e, where kv is a coefficient
introduced for smoothing the acceleration process, vd is the magnitude of the
required velocity, ve = v ·e is the projection of the ball velocity on the direction
e, τ = t− t0, and the function μ(τ) is determined by the formula

μ(τ) =
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where
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T

4
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2
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d

2
, ū =

32
(T − 2d)2

and d = 0 for this case.
The acceleration stages can be performed both on each gait period and in

several periods. For a sufficiently large number of acceleration stages, the ball
velocity approaches the value vd. As an illustration, Fig. 3,a presents the ball
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Fig. 3. Acceleration of the ball

acceleration process for the case vd = 0.12m/s. The dependence of the velocity of
the ball center on time is shown. The acceleration stages (pushes) are executed at
each gait step. The irregularities of velocity variation are caused by collisions of
feet with the ball surface. It is clear that the velocity approximates “in average”
the required value. Fig. 3,b gives the dependence of the velocity of the ball center
on time for the same value vd = 0.12m/s, under the condition that accelerating
pushes are executed once for each four steps. It can be seen that the velocity
approaches “in average” a value that is lower than the required one. This can
completely be explained by the fact that for the time of executing four steps by
the robot, the ball velocity decreases because of natural dissipation.

To realize the rectilinear ball motion, the robot walks on the ball by the
“triples” gait. To avoid a transversal motion of the ball, the center of mass of
the robot has to be projected on the straight line passing through the support
point of the ball in the longitudinal direction e. To avoid the deviation of robot’s
center of mass from pointed line the algorithm was proposed in [3] for calculating
corresponding displacement of robot’s body

δr(2)
k = χ

g× e
g

,

where χ is coefficient depending on legs position.
Because of errors of execution and other errors, the motion of the ball support

point may deviate from the straight-line one. Therefore a stabilizing control with
a feedback returning the ball support point to the prescribed straight line is
necessary both by the coordinates and by the velocity of the ball center. This
feedback is provided by the term

δr(3)
k = −

(
μ(τ)[k1rb(tn0)− k2rb(t(n−1)0)− (k1 − k2)r0] · g× e

g

)
g× e

g
, (5)

where k1 > k2 are the feedback coefficients, r0 is the position of the ball center
before speeding up, rb(tn0), rb(t(n−1)0) are the positions of the ball center at the
beginning of the current and at the beginning of the preceding gait period. The
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filter in the square brackets takes into account the transversal deviations both in
the coordinate and in the velocity from zero values. Finally the program motion
law of the body during the ball longitudinal motion is expressed by the formula

δrk = δr(1)
k + δr(2)

k + δr(3)
k .

The formed body motion is realized by joint control torques of the supporting
legs [5]. The support points are chosen in the coordinate system Be′1e

′
2e

′
3, turned

relative to the motion direction by the angle α = Tvb/(2R), where T is the gait
half period. This period is also the period of controlling the body motion. The
matter is that the support points, being immovable on the ball, move as the
ball rotates. The angle α, chosen in the specified way, provides the symmetry
of positions of the support points at the time instant of putting the legs on
the surface, and the position of the corresponding support points at the time
instants of lifting the same legs with respect to the vertical line passing through
the ball center.

The lateral motion is organized by analogous to longitudinal motion. Only
difference is that the function μ(τ) in (4) is calculated at d = T/4, with reduced
value of coefficient kv and k1 = k2 in (5). This is done because during the lateral
motion there is the dangerous for support points to appear under the robot’s
body.

4 Robot Passage between the Ball and the Shelf

Assume that at the initial position the six-legged robot situated at the top
area of a shelf with a vertical edge, and a ball of a radius R is located on the
horizontal bottom ground and is leaned against the shelf wall. The shelf height
is ≈ 1.8R. The robot has to move to the ball into the position from which it
can start the acceleration of the ball in the direction perpendicular to the shelf
edge. The main difficulty of the problem consists in the fact that in the course
of the passage, the ball may roll out from the shelf (releasing constraint) or it
may start rolling along the shelf under an insufficient friction force between the
ball and the vertical wall of the shelf. If the robot press the ball actively to the
shelf, then the friction force, arising at the point of a contact of the ball with
the vertical wall of the shelf and bounded by the friction cone, counteracts the
roll of the ball along the vertical wall of the shelf. This circumstance can be used
by the robot in order to get safely to the ball top. The pressing of the ball to
the shelf is regulated by the fact that the projection of the center of mass of the
robot on the horizontal plane during the passage from the shelf to the ball is
moved in the required way towards the shelf from the point at which the ball
touches the bottom ground. To provide that in the passage of the robot from the
shelf to the ball the pressure of legs on the ball is, if possible, symmetric with
respect to the vertical plane passing through the ball center and containing the
direction of the future ball motion, the “gallop” gait is used. The same reasons
are used to organize motion from ball to the shelf by reverse doings.
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Fig. 4. Transfer from the ball to the shelf

Fig. 4 presents plots of the dependences of the longitudinal coordinates of
feet of legs and the center of mass of the robot on time during the passage of
the robot from the ball to the shelf. The maneuver is executed by the “gallop”
gait, the dependences for the legs only with odd numbers are shown. We can
notice that in the course of the passage, the center of mass of the robot is always
projected within the supporting polygon and is situated between the shelf edge
and the ball center. As a result of this, the robot in the passage to the shelf
presses the ball to the shelf and thus provides comfort conditions for executing
the maneuver. Additionally, the dependence of the vertical coordinate of the
body center is presented. It shows that at a certain time instant the body raises
itself in order to avoid mutual crossing legs. The maneuver of passing from the
ball to the shelf can be executed successfully both in the case when the ball
stops at a small distance to the shelf and in the case when the ball has a small
velocity in approaching the shelf. In a considerable collision of the ball and the
shelf, the ball gains the reverse velocity, and the robot goes on the ball in the
reverse direction and can execute a new attempt in order to approach the shelf.

5 Computer Simulation

Computer simulation was performed similarly to that in [1,3]. The control was
implemented in the form of a DLL-library, appended to the software complex
“Universal mechanism” [9]. In combination, the software complex “Universal
mechanism” and the DLL-library generate a virtual robot environment. The
support surface in this environment is represented by a horizontal plane with
shelves located on them. Particular objects, such as a ball and a robot, interact
with the support surface and with each other according to the model of the
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Coulomb friction based on viscous–elastic interaction of bodies at the contact
points. The interaction of the ball with the support surface is determined by
the complex UM [9] and takes into account the viscous–elastic component of the
model of the Coulomb friction. The moment of rolling friction was taken into
account.

It is supposed that the robot has electromechanical drives of joint angles. The
required motion is realized as in reality only by supplying a controlling electric
voltage to the electromechanical drives.

Information about the motion of the robot and other elements of the virtual
environment arise as a result of computer integration of the differential equa-
tions of 3D robot dynamics together with the surrounding objects involved in
the system of 30 degrees of freedom. Simulation results are displayed on the
monitor in the form of motion of images of the investigated material objects.
Fig. 5 shows fragments of the solution of the problem of robot getting from the
ball to the shelf. In motion the ball is subject to rolling friction and gains the
velocity asymptotically, and the robot moves on the ball stably. When the ve-
locity becomes sufficiently large, the robot by reverse maneuvers decelerates the
ball practically to stopping in front of the required shelf. The final stop of the
ball occurs because of the rolling friction inherent in the ball motion. As com-
puter experiments have shown, any, even very small motion of the robot on the
ball affects proportionally the position and motion of the ball. The stabilization
system operates continually even in the apparent rest state of the ball. In fact,
stable motion of the robot and ball takes place in a small neighborhood of both
a rest position and the required motion.

Conclusion

A solution of new problems on constructing a dynamically stable motion of an
insectomorphic robot on a ball, staying in a state of indifferent equilibrium on
a horizontal support plane, was obtained. Standard methods for robot climbing
the ball from support plane and stabilizing the position of the robot in the upper
unstable position on the ball were developed, as well as methods for damping the
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ball velocity and providing a required velocity of the ball in the case when the
robot is completely situated on the ball and does not touch the support plane.

A stable motions of the robot in order to pass from a shelf to a ball leaned
against the shelf and from the ball to the shelf were generated. The proposed
algorithms for stabilizing and organization of the task-oriented motion of the
robot on a movable ball were worked out by means of computer simulation
in a program environment, realizing the interaction of a 3D complete dynamic
robot model and objects surrounding it with account of Coulomb friction forces
and models of electromechanical drives of robot joints. It was shown that the
proposed program motion, providing active stabilization of the motion of the
entire system, can be implemented for the friction coefficient no more than 1.
The control that provides stabilization of robot motion is adaptive and is con-
structed in the form of a feedback.
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Abstract. Neurobiological studies showed the important role of Cen-

teral Pattern Generators for spinal cord in the control and sensory feed-

back of animals’ locomotion. In this paper, this role is taken into account

in modeling bipedal locomotion of a robot. Indeed, as a rhythm gener-

ator, a non-classical model of a neuron that can generate oscillatory as

well as diverse motor patterns is presented. This allows different motion

patterns on the joints to be generated easily. Complex tasks, like walk-

ing, running, and obstacle avoidance require more than just oscillatory

movements. Our model provides the ability to switch between intrinsic

behaviors, to enable the robot to react against environmental changes

quickly. To achieve complex tasks while handling external perturbations,

a new space for joints’ patterns is introduced. Patterns are generated by

our learning mechanism based on success and failure with the concept

of vigilance. This allows the robot to be prudent at the beginning and

adventurous at the end of the learning process, inducing a more efficient

exploration for new patterns. Motion patterns of the joint are classified

into classes according to a metric, which reflects the kinetic energy of

the limb. Due to the classification metric, high-level control for action

learning is introduced. For instance, an adaptive behavior of the rhythm

generator neurons in the hip and the knee joints against external per-

turbation are shown to demonstrate the effectiveness of the proposed

learning approach.

1 Introduction

Biological studies of animals suggest that animals’ locomotion is mainly gener-
ated at the spinal cord, by a combination of a central pattern generator (CPG)
and reflexes receiving adjustment signals from a cerebrum, cerebellum and the
brain [1], [2], [3]. These studies were taken into account in robot’s locomotion
gait in order to implement such mechanism, especially on legged robots [4], [5],
[6], [7], [8]. Biologically inspired walking mechanism for legged robot does not
require a perfect knowledge of the robot’s dynamics. Different models of neural
oscillators are widely used to generate rhythmic motion [9], [10], [11], [12], [13].

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 313–324, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Such oscillations generated by two mutually inhibiting neurons are described
in a set of differential equations (e.g. Matsuoka [9]). Rowat and Selverston [14]
proposed a new model of rhythmic neuron that can generate different types of
patterns such as oscillatory ones. The different behaviors in the activity of these
neurons can be used in robot’s locomotion to achieve different tasks as well as
walking. Complex task, like walking, hopping, running, and obstacle avoidance,
require correct synchronization and switching between patterns [15]. In action
learning approach, where learning always occurs in the space of parameters, there
is a limitation to learn complex tasks, due to the dimension of this space which
can drastically increases. This issue can solved by looking for a new representa-
tion of patterns. Instead of learning in the space of parameters, learning can be
occur inside a new space called patterns’ space. ( e.g. in case of one dimensional
patterns space, patterns will be represented only on one axis). Our work aims to
produce a biological inspired neural controller for biped walking, based on CPG
with a rhythmic neuron proposed by Rowat and Selverston [14]. According to
the environment changes, the adaptation of the neurons behavior will be shown.
Therefore, a new space for patterns allowing intrinsic behaviors of a joint motion
will be proposed.

This paper is organized as following. Section 2 presents the principles of the
neural controller based on the model of rhythmic neurons, which is able to gen-
erate CPG-like patterns. The three layers of the CPG used in bipedal control
will be presented. A coupling circuitry for walking will be proposed. Next, the
walk learning phase based on previous experience with a threshold of vigilance
to allow extensive patterns search within a large space of parameters will be de-
tailed in section 3. In the fourth section, a new representation of successful and
failure walking patterns is proposed. This approach allows a high level control in
space of patterns instead of space of parameters. The effectiveness of our learn-
ing scheme, which allows switching between bipedal patterns to achieve different
locomotive tasks will be demonstrated. Moreover, an example on the adaptation
behavior of the rhythm generator neurons in the hip and the knee joints against
external perturbation will be shown. The last section gives a conclusion and
details of further developments.

2 Neural Control of Locomotion

Physiological studies suggest that rhythmic movements in animal’s locomotion
system are produced by a neural network called CPG [16]. It can generate a
locomotive rhythmic behaviors with neither sensory nor central inputs [17]. Sen-
sory inputs shape the output of this locomotion system, and allow the animal
to adapt its locomotion patterns to external or internal changes. Genetic studies
on newborn rat and mice suggest that rhythmic limb movements during loco-
motion are generated by neuronal networks located within the spinal cord [18].
Matsuoka and McMillen neural oscillators are widely used as mathematical mod-
els for non-linear oscillators [9], [10]. These half-centre oscillators consist of two
neurons that individually have no rhythmic behavior, but which produce rhyth-
mic outputs when they are reciprocally coupled. This paper present another
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model of non-linear rhythm generator. This model is based on the fact that one
neuron can generate oscillatory as well as different motor patterns [14].

2.1 Cell Model

The cell model introduced by Rowat and Selverston to modulate the gastric
mill CPG in the lobster is interesting due to its ability to generate different
patterns by controlling only two parameters [14]. Furthermore, such patterns
can be generated with only one neuron without need for another coupled neuron
as used in classical models [9], [10]. In the adopted model, the membrane currents
of the neuron are separated into two classes, fast and slow, according to their
time responses. The sum of all fast currents is modeled by a single fast one,
and a single slow current is used to model the sum of all slow ones. This model
cell has two differential equations, one for membrane potential V , derived from
current’s conservation, and one for lumped slow current q, derived from current’s
activation, see eq.(1).

τm.
dV

dt
= −(fast(V, σf ) + q − iinj) τs.

dq

dt
= −q + q∞(V ) (1)

While the fast current is supposed to activate immediately, the membrane time
constant τm is assumed to be smaller than the slow current’s time constant
for activation τs. We have taken the ratio of τs to τm to be about 20 as in
[14], τm = 0.05, and τs = 1 for all rhythmic neurons. The injected current is
iinj . An idealized current-voltage curve for the lumped fast current is given by:
fast(V, σf ) = V −Af .tanh((σf/Af )V ). The fast current can represent the sum
of a leak current and an inward Ca++. The dimensionless shape parameter for
current-voltage curve is given by: σf = gCa

gL
. Where gL is a leak conductance and

gCa is the calcium conductance. q∞(V ) is the steady state value of the lumped
slow current, which is given by: q∞(V ) = σs(V − Es). q∞(V ) is linear in V
with a reversal potential Es. σs is the potassium conductance gK normalized
to gL. σs is given by: σs = gK

gL
. q and iinj have the dimension of an electrical

potential. A true current is obtained by multiplying the model current by a
leak conductance gL. V , Es, iinj , and q are given in millivolts while τs and
τf are expressed in milliseconds. With different values of the cell parameters,
different intrinsic behaviors can be achieved : quiescence (Q), almost an oscillator
(A), endogenous oscillator (O), depolarization (D), hyperpolarization (H), and
plateau (P), as shown in Fig.1. In bio-inspired locomotion, a pair of neurons
with mutual inhibition can be used to generate rhythmic motion in extension
and flexion. A bio-inspired model for locomotion is proposed in the next section.

Fig. 1. The six intrinsic behaviors of the cell’s model, Rowat and Selverston [14]
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2.2 Locomotion Model

Studies of rhythmic movement in the animal show that local circuits in the spinal
cord are able to control the timing and coordination of complex motion patterns
[19]. The locomotion and rhythmic movements in mammals are organized by
oscillatory spinal cord circuits called CPGs. Experimental studies show that the
rhythmic patterns in cat limbs can be generated in the absence of descend-
ing control from higher centers and sensory feedback [3]. Each joint appears to
have its own CPG, which can be coupled to the CPG of another joint in order
to achieve complex movements such as walking, running, swimming, flying, etc.
These CPGs controlling such behaviors in animals locomotion can be responsible
of rhythmic movements in human locomotion [20]. Several schemes for the spinal
CPG have been proposed to generate rhythmic movements: ”half-center CPG”
proposed by Brown [21], ”half-center CPG” with more complex patterns of mo-
torneuron activity introduced by Perret et al. [22] and ”half-center CPG” with
sensory input proposed by Orlovsky et al. [1]. One drawbacks of these models
is the direct excitatory connection between the rhythm generator interneurons
and motorneurons. Any change in the interneurons layer will affect simultane-
ously the motorneurons layer. A more complicated architecture is required to
face the adaptation with the environment changes. Two and three levels CPGs
with rhythm generation and pattern formation circuitry have been proposed by
[2] and [23]. This model separates cycle timing and motoneurons activation. In
order to achieve a rhythmic movement such as walking, the CPG model was im-
plemented on a simulated biped robot using MATLAB software. Fig.2(a) shows
the wiring diagram for one biped robot’s joint. It can be separated into three
layers: Rhythm Generation neurons (RG), Pattern Formation neurons (PF) and
MotorNeurons (MN). Sensory feedback shapes the activity of these neurons.
This paper focuses on the effect of descending control on the rhythm generators
neurons in order to control the behavior of these neurons when external pertur-
bation occurs during walking. In the analytical study, after observing the phase
diagram of a joint and changing σs and σf in the rhythm generators neurons,
different motion behaviors were observed on the joint. Fig.2(b) shows the distri-
bution of motion patterns in space of σs and σf . Varying σs and σf in RG of
a joint will change its motion pattern. The four detected basic motion patterns
can lead the robot to achieve some complex tasks like walking, running, and
jumping depending on synaptic circuits between joint CPGs.

2.3 Control Architecture for a Biped Robot

Previously, the basic motion patterns obtained for one joint was shown. To
achieve a complex movement like walking, synchronization between joints is
needed. The complex patterns like walking and running are always composed of
synchronized basic patterns. The synchronization between patterns is ensured
by coupling the CPGs for the joints. Fig.3 shows the proposed coupling circuits
between the rhythm generator neurons for the hip, the knee, and the ankle joints
of a simulated biped robot. Each joint is driven by a simulated servo motor. With
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Fig. 2. Model of one joint controller and its motion patterns. (a)The model’s scheme,

CPG with three levels: Rhythm Generator, Pattern Formation, and MotorNeuron level.

(b)The different behaviours observed on the joint for the same injected current. (x):

Plateau , (*): Quiescence; (+): Almost an oscillator, and (o): Oscillatory behavior.

such simple coupling, the robot can carry out walking task from basic oscilla-
tory patterns. With different coupling circuits, another task can be achieved. In
some complex circuits, the robot can walk with different gaits. A desired task
can be accomplished by defining basic patterns and special coupling circuit. The
principle of our proposed circuit for walking ( see fig.3) is described by the ac-
tivity between the CPGs which is regulated by excitatory synaptic connections.
For inter-limb circuitry, rhythm generator neuron extensor in the left hip (RG-
E-hipL) excites rhythm generator neuron flexor in the right hip (RG-F-hipR).
Rhythm generator neuron flexor in the left hip (RG-F-hipL) excites rhythm
generator neuron extensor in the right hip (RG-E-hipR). The same synaptic
excitation is proposed from the right hip to the left hip. For one leg, rhythm
generator extensor neuron in the hip (RG-E-hip) excites rhythm generator ex-
tensor neuron in the knee (RG-E-knee) and rhythm generator extensor neuron
in the ankle (RG-E-ankle) of the same leg. Rhythm generator flexor neuron in
the hip joint (RG-F-hip) excites rhythm generator flexor neuron in the knee
one (RG-F-knee) and rhythm generator flexor neuron in the ankle joint (RG-
F-ankle) of the same leg. As described before, the locomotion is the interaction
between CPG, sensory feedback, and descending control. Sensory information
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Fig. 3. Planar Biped model and proposed coupling circuitry between rhythm generator
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is used to shape the motion and manage some perturbations and balance con-
trol [24]. Thanks to the interaction with sensory feedback, the robot can walk
without a perfect knowledge of its dynamics. A static model of sensory neuron
proposed by Ekberg [25] is described in eq.(2). ρi is the activity of sensory neu-
ron, α is a positive constant that denotes the dynamics of the neuron, θ is the
amplitude and φ is the input on the neuron. φ can be an angular position, or a
contact force [26].

ρi = (1 + eα(θ−φ))−1 (2)

The extension and flexion sensory neurons in each joint inhibit the corresponding
motorneuron for this joint. This circuitry is referred as articular reflex. Equilib-
rium control is achieved by the difference between the center of pressure and
the projection of the center of mass. In our model, the parameter of equilibrium
used as input of two neurons: falling forward and falling backward neurons. The
activity of both neurons is injected in pattern formation layer at the ankle CPG.
If the robot may fall forward, the corresponding neuron becomes active to excite
the pattern formation neuron extensor for the ankle of stance leg. The flexor
pattern formation neuron will be excited if the falling backward neuron becomes
active. Once the control architecture was proposed and the model of rhythmic
neurons is determined, it is time to show how the simulated biped is learning
to walk on a flat terrain. As the desired task is the walking and the coupling
circuit is already defined, the biped will learn basic patterns, in space of σs and
σf , that lead to successful walking.

3 Success and Failure Learning

The objectives of the learning mechanism is to detect in the space of σs and
σf the basic patterns which lead to successful walk. Our previous work in
experience-based learning mechanism with the vigilance concept has been used
here to detect successful and failure walking patterns, see [27] for more details.
Walking trial occurs inside a time window of ten seconds. Successful walking
is defined when the simulated biped did not fall during the time window and
achieved two steps at least.

This mechanism is composed of two phases: evaluation and decision, see Fig.4.
In the evaluation phase, two independent neural networks based on well-known
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Fig. 4. Learning mechanism with evaluation and decision phases
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Self Organizing Maps, proposed by Kohonen [28], are used to represent the
knowledge in success and in failure. Success map learns in case of success trials,
and failure map learns in case of failure ones. During learning, the two maps
will be self-organized in the space of parameters that will be therefore divided
into three zones: a zone of success represented by success map, a zone of fail-
ure represented by failure map, and a zone of conflict that corresponds to the
interference between the two maps. The evaluation of any vector −→v from space
E belonging to success or failure is defined by the distance between −→v and each
map. The distance of a vector with a map is the distance between this vector
and the closest neuron in the state space (the winner neuron). For each −→v , two
distances therefore exist: one to success map called ds, and another to failure
map called df . In the decision phase, the comparison between the distance with
success map ds and the one with failure map df leads to an expected result in
the case where the vector −→v is applied on the controller (trial). According to
expected result, if it may lead to failure, then an Early Warning Signal (EWS)
becomes active to avoid the trial, and the decision will be “nogo”. When EWS
is inactive, the decision called “go”is taken. The decision mechanism is affected
by the threshold of vigilance svig , which represents the tolerance to risk. The
vigilance is related to human learning approaches and decision making [29].

In order to increase the reflectivity of the vigilance threshold model proposed
in our previous work [27], a modulation of the above mentioned threshold svig is
introduced. This lead to get different values of it for each trial. Hence, this model
increases the learning mechanism efficiency by extending the learning process to
sectors of space of parameters. As an important issue, the risk behavior will
change from prudence at the beginning of learning to adventure at the end. An
example of vigilance threshold modulation is given as following (see Fig.5(c)):

y1 ≤ svig ≤ y2

{
y1 = a1 − b1 ∗ log((x + c1)2)
y2 = a2 − b2 ∗ log((x + c2)2)

(3)

The coefficients values are (a1 = 0.9, a2 = 1.47, b1 = b2 = 0.15, c1 = c2 = 20)
and were chosen after several attempts. y1 and y2 chosen curves ensure smooth
change between the prudence and adventure above mentioned behaviors. Walk-
ing patterns are presented by success map and falling patterns are presented by
failure one. With such learning mechanism, learning failure map is as impor-
tant as learning success map, since falling patterns stored in failure map can be
used in an adaptation approach where walking patterns are limited (ex: in case
of external perturbation). Fig.5 shows success and failure maps after learning
200 trials based on the new model of the vigilance threshold. The state space is
normalized between 0 and 1 and each map has 25 neurons. Weights of neuron
(w1,w2) denote the parameters of the rhythmic neuron (w1 = σs, w2 = σf ).
Therefore, there are 25 different configurations in each map that match 25 suc-
cessful walking gaits stored in success map, and 25 unsuccessful walking patterns
stored in failure map. Because of the topological properties of the Self Organiz-
ing Maps, three neurons in failure map are situated in the success zone and
show oscillatory behaviors ((0.39, 0.57),(0.46, 0.33),(0.17, 0.23)), see Fig.5(a). As
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Fig. 5. Success and failure maps after learning walk on flat terrain. (a)Failure map

after learning unsuccessful walking patterns. Three neurons was eliminated from the

map, because they did not represent any input vector. (b)Success map after learning

walking patterns. (c)New vigilance Model related to learning iterations, y1 ≤ svig ≤ y2.

The risk behavior will change from prudence at the beginning of learning to adventure

at the end.

these neurons did not represent any failure pattern, they are eliminated from
the failure map.

4 Adaptive Behavior for Perturbation

As shown in the previous section, the walking task was achieved in the success
map zone for the proposed coupling circuits. Because of the synaptic connection
between rhythmic generator neurons for all joints, patterns cannot be indepen-
dent. Then, the same pattern in all joints exist whenever the coupling circuitry is
active. To have different patterns on different joints at a time, the synaptic con-
nection between the CPGs must be inhibited. By having independent patterns
in the hip, the knee and the ankle joints, the biped can achieve some complex
behaviors. In this section, how the robot reacts to an external perturbation force
is detailed.

As switching between success map neurons during walking will change the
walking pattern and thus walking gait, it can also be interesting to switch be-
tween these neurons against external perturbation. The limitation of this algo-
rithm will appear for a large perturbation force. This can be solved by switching
toward failure patterns stored in failure map neurons. Inhibit the synaptic con-
nection between CPGs is necessary to get different patterns in different joints.

The space of parameters in such case will be augmented, with a pair (σf , σs)
for each joint. It increases from 2 dimensions in case of existing of coupling
circuitry to 12 dimensions in case of independent patterns. To reduce dimen-
sionality, we propose to represent all the patterns of a joint in one axis only.
This will reduce the dimension by two and facilitates classification and visual-
ization of high-dimensional data. To do so, a metric E which reflects the kinetic
energy of one limb is introduced (eq. 4). Based on this metric, an energy based
classification of the patterns can be carried out.

E =
∫ tf

t0

θ̇2 dt (4)
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Fig. 6. The energy based metric patterns for the space of σs and σf (a), and for

success and failure neurons represented on the horizontal axis (b). Neurons of success

map represent oscillatory patterns with different frequency. Each neuron represent a

pattern, but neurons are separated into four classes of patterns according to the energy

based metric.

Fig.6(a) shows the logarithmic scale of the energy based metric for all the motion
patterns of Fig.2. Fig.6(b) shows the logarithmic scale of the energy based metric
of all neurons of failure and success maps given in Fig.5. First 25 neurons belong
to failure map, and last 25 neurons belong to success map. The different behav-
iors are separated according to the energy based metric of motion patterns. Two
neurons with Plateau have the lower values for the energy based metric, then
16 neurons with Quiescent behaviors, then four neurons with Almost an oscilla-
tor, then all the neurons of success map according to the Oscillation frequency.
Patterns can be classified on a new axis according to the logarithmic scale of the
energy based metric. As shown in Fig.6(b) patterns can be positioned on this
axis in the following order: Plateau, Quiescent, Almost an oscillator, and Oscil-
latory patterns from low to high oscillation frequency. All neurons in success and
failure maps can be placed on the new axis according to their rhythm. Therefore,
two dimensional space (σs, σf ) can be represented in only one dimension axis.
One axis is obviously needed for each joint. In the first step of the study, only
synapses between CPGs of the hip and the knee joints are inhibited. While the
connection between CPGs of the ankle and the hip joints are kept. Fig.7 shows
two dimensional space of patterns for the hip and the knee joints. Walking zone
in Fig.7(b) corresponds to oscillatory patterns in the hip and the knee joints. In
case of external perturbation force, pattern manipulation is necessary to avoid
falling. The figure shows the group of patterns in the hip and the knee joints by
which the robot can react against the perturbation. An example for walking and
reaction phases is shown in Fig.8. First, it presents the normal walking on a flat
terrain without any perturbation. Next, it illustrates the fall because of external
perturbation force of 45N applied on the back of the robot (the simulated robot
mass is about 22 kg and the walking speed is almost 0.2m/s). Fig.8(c) shows
how the biped robot react correctly against the external force by adapting the
behavior of the rhythm generators neurons.
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Fig. 7. The space of patterns is for hip and knee joints, with an example of switch-

ing against perturbation. (a)Patterns switch from walking by oscillatory patterns to

quiescent pattern for knee and plateau for hip. (b)Neurons switch from walking zone

to other neurons that represent quiescent pattern for knee and plateau for hip. Each

neuron represents one pattern.

(a) (b) (c)

Fig. 8. Effects of adaptation mechanism on the biped to avoid falling. (a)Walking

without perturbation.(b)Falling due to the perturbation. (c)Successful walking with

adapation to the perturbation.

5 Conclusion

In this paper a neurobiological inspired controller for biped walking is presented.
We showed how the behavior in rhythm generator neurons brings adaptation to
face external perturbations. The switching between patterns was simplified by
using a simple method to classify success and failure. Moreover, a technique for
dimensionality reduction depending on the energy based metric patterns leads
greater benefits, since the classification can be carried out over one axis only in
relation to the motion patterns. Hence, establishing a space of patterns for the
hip, and the knee joints. This space allows high-level control for goal directed
action, thus, learning to achieve more complicated reactions. It also permits other
rhythmic movement, where learning patterns replaces learning parameters. This
was done by our experience based learning mechanism with this new model for
vigilance threshold; we are able to explore in more efficient manner the space
of parameters for new motion patterns. This mechanism was implemented on a
simulated planar biped and allowed the robot to learn to walk and to react to
perturbation without supervision. Our future work shall address goal directed
action learning and adaptation to further changes in the environment, as well
as changes in the physical parameters of the biped. This important issue will be
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addressed in order to apply the proposed adaptation mechanism to a humanoid
prototype under development.
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27. Nassour, J., Hénaff, P., Ben Ouezdou, F., Cheng, G.: Experience-based learning

mechanism for neural controller adaptation: Application to walking biped robots.

In: The IEEE/RSJ International Conference on Intelligent Robots and Systems,

St. Louis, MO, USA, pp. 2616–2621 (2009)

28. Kohonen, T.: Self-Organizing Maps, 3rd Extended edn. Springer Series in Infor-

mation Sciences, 501 pages. Springer, Heidelberg (1995/1997/2001), ISBN 3-540-

67921-9, ISSN 0720-678X

29. Ahn, H., Picard, R.: Affective-Cognitive Learning and Decision Making: A Moti-

vational Reward Framework For Affective Agent. In: The 1st International Confer-

ence on Affective Computing and Intelligent Interaction, Beijing, China, pp. 22–24

(2005)



Predicting Affordances from Gist

Pedro Santana1, Cristina Santos2, David Chaı́nho3, Luı́s Correia1, and José Barata3
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Abstract. This paper presents an incremental learning mechanism to create as-
sociations between the affordances provided by the environment and its gist. The
proposed model aims at helping the agent on the prioritisation of its perceptual
resources, and consequently on visual attention. The focus on affordances, rather
than on objects, enables a self-supervised learning mechanism without assuming
the existence of symbolic object representations, thus facilitating its integration
on a developmental framework. The focus on affordances also contributes to our
understanding on the role of sensorimotor coordination on the organisation of
adaptive behaviour. Promising results are obtained with a physical experiment on
a natural environment, where a camera was handled as if it was being carried
by an actual robot performing obstacle avoidance, trail following and wandering
behaviours.

1 Introduction

Environmental context is known to modulate several aspects of the animal’s behaviour,
such as its locomotion [1]. The importance of context to the animal’s survival is so
strong that, in the case of humans, there are situations where it is not even possible
to consciously suppress its effects altogether [2]. Robustness and parsimony in visual
search is also known to be strongly correlated with contextual cues [3], in line with ac-
tive vision research [4]. Computational models in this case focus learning the statistics
describing objects and typical scenes co-occurrence [5]. The acquisition of this knowl-
edge, according to these models, is thus based on the existence of a mechanism capable
of determining whether a given object is present in the scene, which is ultimately used
to supervise the learning process. However, a global isomorphic representation of the
object [6], is unlikely to exist in an embodied agent whose autonomous development
occurs bottom-up, in interaction with the environment. Conversely, representations are
distributed and purpose-oriented [7], thus making a signal to supervise the learning
process hard to define.

Under the embodied cognition framework [8], perception can only be understood in
terms of behaviour, and thus body, nervous system and environment must be seen in an
holistic way [9,10,11]. As a consequence, sensorimotor coordination plays a key role
on adaptive behaviour [12,8,13], and in particular to shape sensory information so as
to facilitate perception [14]. In fact, representations may well be defined themselves
in terms of sensorimotor dynamical states [15,16,17,18]. This further complicates the
definition of a well localised and steady-state signal to supervise the learning process.

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 325–334, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Focused on embodied agents, and not on general purpose vision systems, this paper
solves the learning supervision problem by using context to predict affordances [19,20],
rather than objects. A by-product of not assuming explicit object representations is the
ability to operate even when the behaviours composing the control structure are yet not
fully matured.

Nevertheless, the model starts by assuming that the agent is already capable of ex-
ploiting the environment’s affordances. That is, in the presence of a given object, i.e.
the aggregate of a given set of perceptual features, the agent knows which behaviour
from its repertoire is better applied to it. An example is the follow behaviour, which can
be effectively applied in the presence of a trail. Hence, in the case of a trail, the affor-
dance is to be followable. This object-centred knowledge can be evolved [21] or learnt
[22,23] by having the agent exploring its behavioural repertoire in encountered objects.
The model is thus operating on a more advanced developmental stage, exploiting the
knowledge obtained so far.

The model’s next assumption is that the learnt affordances are used to trigger the cor-
responding behaviours according to a layered behavioural hierarchy [24]. The winning
behaviour at each moment is then associated to the current visual context and stored in
the agent’s short-term associative memory. Latter on, this memory can be consulted to
predict which behaviours are the most appropriate given the visual context at the recall-
ing moment, and by consequence, which affordances are more likely to be present in the
environment. Given the likelihood of a given affordance to occur, the agent should be
capable of parsimoniously, and in a context-dependent way, determining how much rel-
evant is to search for a given object, and consequently, how much perceptual resources
must be allocated to it.

In this paper visual context is captured through the gist of the scene. Being a global
descriptor, gist is highly fast and robust to local environment variations [3]. This is par-
ticularly interesting as it enables the agent to exploit contextual cues robustly and par-
simoniously. In addition to reduce sensitivity to varying agent’s posture changes, where
the scene is observed from different perspectives, the gist provides highly generalisable
contextual cues, and so enabling their reuse in new environments.

The use of gist in the robotics domain has been mostly limited to learning of places
[25] and scene categories [26] for localisation and mapping purposes. In these works,
learning is done off-line and supervised by an external signal (e.g. a symbolic label of
the scene). Conversely, our model operates fully online and learning is self-supervised,
i.e. the teaching signal is provided directly from the behavioural repertoire of the robot.

The paper is organised as follows. Section 2 presents the proposed model and de-
scribes each of the model building blocks. In Section 3, the results are shown and dis-
cussed, depicting the system’s prediction and generalisation capabilities. The article
ends by discussing the obtained results and future issues.

2 Model Overview

Fig. 1 illustrates the main building blocks composing the proposed model. As men-
tioned, the model assumes a bottom layer where a behaviour-based architecture [24] is
responsible for the selection of the affordance to be exploited at each moment, i.e. the
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Fig. 1. Model’s Building Blocks. Ovals correspond to object percepts, whose labels are simple
descriptions and not symbolic representations. The coordinator basically selects which affordance
is exploited at each moment, i.e. whose corresponding behaviour is activated. Gray shadows
represent the system’s built-in affordances, i.e. the link between a given object and an agent’s
behaviour.

behaviour having access to the agent’s actuators. The selection among the q possible
behaviours is done by a coordinator node, which arbitrates according to a set of fixed
priorities. The output of the coordinator node is a binary q-dimensional behaviour se-
lection vector, bl[n], whose non-zero element corresponds to the selected behaviour at
frame n. This behaviour is selected for actual control of the agent.

On the top of this behavioural architecture, an associative memory grows incremen-
tally so as to learn the mapping between the behaviour selection vector, bl[n], and the
current visual context, given by the scene’s gist, g[n]. The associative memory can be
queried at any time for the most likely behavioural selection vector, bv[n], given the
gist of the current scene, g[n]. Given the global nature of the gist, this prediction is
quite often affected by environmental information located in the agent’s far field-of-
view. This makes the prediction highly useful to modulate the agent’s behaviour. One
possible exploitation of the associative memory is that, given the current visual con-
text, a behaviour which it is known to be likely to become active could be predisposed.
Another possibility, is the allocation of perceptual resources to the detection of this
behaviour’s associated affordance. With particular utility for the behavioural modula-
tion aspect, a confidence level on the prediction, β[n], is also provided. This enables
to access whether predictions are likely to be accurate, and should consequently be
considered for the action selection modulation.

For the purpose of the current study, a set of two affordances are considered, namely
to be avoidable and to be followable. An example of an object category affording to be
avoidable is tree and of an object category affording to be followable is trail. A found
trail is thus assumed to be followed by the agent. Avoidable objects are more relevant
for the agent’s survival and so their presence right in front of the agent subsume the
other affordance. In the absence of any of these in the environment, the agents starts
wandering. When wandering, the presence of any avoidable object, be it on the front of
the agent or not, will activate the avoidance behaviour.
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2.1 Gist Calculation

In this study, the environmental context is defined in terms of the scene’s visual gist. Al-
though more complex and accurate methods exist [5,25,26], in this study the gist of the
scene is represented by a simple and fast to compute histogram over the whole agent’s
visual input. Being a global descriptor, the gist is not sensitive to local variations on
the environment. This in turn results in good generalisation capabilities in categorising
the scene, which as experimental results will show, help the agent when facing new
environments.

Concretely, the gist descriptor, g[n], is a three dimensional histogram obtained from
the whole image in the HSV colour space. To reduce sensitivity to illumination effects,
the saturation (S) and value (V) channels are represented by only 4 bins, whereas the
hue (H) is represented by 16 bins. This descriptor is consequently a vector of 256 nu-
merals whose combined values are representative of a given type of environment, such
as forested. Note that no label is associated to the descriptor. As it will be shown, the
learning process just associates this non-symbolic descriptor to behaviour selections
taken by the agent.

2.2 Incremental Learning

Once the gist is computed, it can be associated to the selected behaviour being engaged
by the agent. This association can then be exploited to know which behaviour should
be acted given the current gist, or in other words, which affordance that is more likely
to be found in the environment should be attended first.

Most gist-related research focuses on off-line learning [5,25,26], which is not ade-
quate for a truly autonomous agent. In this study, the learning procedure follows the lazy
learning paradigm, where the training examples are stored until they are necessary, i.e.
when recalling is taking place. The biggest advantage of lazy learning is the possibility
of locally approximating the learnt function according to the stored training examples.
In the limit, a single example is necessary to generate a classification. This enables one-
shot learning and consequently fast adaptation. In turn, the biggest disadvantage of lazy
learning is the large memory requirements to store all training examples. However, as
sensory flow in an embodied agent is highly correlated in time, a large redundancy is
observed.

We exploit the existing redundancy on the sensory flow by creating segments of
sequential frames, whose first element’s gist is similar to the gist of the remaining ones.
That is, a segment is created by accumulating frames until the gist descriptor of the
current frame is too dissimilar from the one of the first segment’s frame, or until an
upper bound of η frames is reached. Two gist vectors are assumed to be dissimilar if the
Chi-Square distance between them is above δ. To reduce sensitivity to noise, a newly
created segment is rejected from further processing if represented by less than ζ frames.

The average gist, s(m) =
∑n

j=a(m)(g[j]/(n − a(m))), of the newly created seg-
ment m, is associated to the histogram of behavioural selections occurred during the
segment’s composing frames, h(m) =

∑n
j=a(m) b

l[j], where a(m) is the index of the
segment’s first frame and n the index of the current and consequently segment’s last
frame. The tuple 〈s(m),h(m)〉 is introduced to the associative memory M as follows.
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If the average gist of the new segment, s(m), is significantly similar to the most sim-
ilar segment already present in the associative memory, X 2 (s(m), s(o)) < ρ with o =
argminb∈M (X 2 (s(m), s(b))), then both are blended, where X 2 (·) is the Chi-Square
distance. Otherwise m is simply appended to the memory. Merging occurs by averag-

ing both gist descriptors,
(

nm

nm+no
s(m) + no

nm+no
s(o)
)

, weighted by their number of

supporting frames, nm and no. The behaviour selection histograms are also blended via
a simple summation, (h(m) + h(o)). The resulting merged segment is then compared
to the second most similar segment to m, p = arg minb∈M\{o}(X 2 (s(m), s(b))), and
if the merging conditions are met (see above), both segments are merged. This two-
step merging procedure is an attempt to avoid the associative memory from growing
unbounded, without incurring in excessive processing.

2.3 Gist Classification

Every time a new image frame is obtained, the associative memory can be queried for
the most likely behaviours given the gist descriptor, g[n], of the current scene. This
is done according to an adaptation to the weighted k nearest-neighbour method, where
k = 4 has shown to provide the best results for the tested data-set, i.e. trade-off between
accuracy and generalisation capabilities.

In more detail, given the query g[n], the associative memory is searched for the clos-
est k segments, which are said to compose the ordered set K = {m0, . . . mk}. The
order is given by the Chi-Square distance to the query, at the gist descriptor level, i.e.
X 2 (mi,g[n]) > X 2 (mj ,g[n]), ∀i > j. The return to the query, i.e. the classification,
is a normalised behaviour selection histogram resulting from the weighted sum of the
behaviour selection histograms of the segments in K , bv[n] =

∑k
l=0 h(ml)w(ml).

The weight of a segment ml ∈ K is as large as the Chi-Square distance to the query

gist descriptor is small, and as high as it is its order in K , w(ml) = 2−X 2 (s(ml),g[n])
2l .

The magnitude of the elements composing bv[n] represent the likelihood of each be-
haviour to occur, given the current gist, and consequently the possibility of finding their
associated affordances.

2.4 Gist Classification Confidence Level

Aside the estimate behaviour selection histogram bv[n], the associative memory also
returns a confidence level, β[n], on the classification. β[n] varies according to: 1) the
confidence the system has on the visual context, given by ξ; 2) the discrepancy between
the predicted and current behavioural context, d(bv[n],bl[n]), which controls the value
of γ; and 3) the rate of variation of ξ, i.e. ξ̇, in case it decreases. To account for these

aspects, β is modelled as, β̇ = (ξ − β) · α1 +
(
H(−ξ̇)ξ̇β

)
· α2 − (γβ) · α3, where

α1 + α2 + α3 = 1, and H(·) is the Heaviside step function. The use of dynamical
systems to calculate β assures robustness in the final system.

The higher the number of frames supporting bv[n], f(bv[n]), the more confident is
the system on its prediction. This confidence, ξ, is given by ξ = G (f(bv)[n]), where
G(x) = e−5e−λx

is the Gompertz function such that ξ ∈ [0, 1]. This function makes ξ
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converge faster towards near 1 in face of reliable information from the associative mem-
ory, but more slowly in reaching the final value of 1, which would mean that confidence
in the predicted behaviour selection vector is maximum.

The more discrepancies exist between the predicted and current behavioural con-
texts, the less confident the system is on the former, and β should approach zero. This
discrepancy, d(bv[n],bl[n]), is defined in terms of the Euclidean distance between both
vectors bv[n] and bl[n]. The following dynamical system takes into account these dis-
crepancies, γ̇ = (1− γ) · d(bv[n],bl[n]) · κ1 − κ2γ.

Discrepancies, d(bv,bl), are accumulated in γ at a rate of k1 · (1 − γ). γ tends to
zero in case there are no discrepancies, meaning one should increase the confidence in
the visual context and β should approach γ, that is 1. Similarly, γ tends towards one
in case discrepancies are maximum, meaning one should reduce the confidence in the
prediction, and β should approach 0.

3 Experimental Results

To validate the proposed model, an experiment was prepared, where the system was
parametrised as follows, ζ = 20, δ = 0.2, λ = 0.03, α1 = 0.6, α2 = 0.3, α3 = 0.1,
k1 = 0.8, k2 = 0.2, ρ = 0.4 and η = 50. The goal of the experiment is to demonstrate
the ability of the associative memory to learn a generalisable gist-affordance mapping.

For the experiment, a video composed of 9000 frames was obtained by a person
walking through a predefined course in a natural park (see Fig. 2) with a hand-held
camera at the shoulder’s height. The camera felt a considerable level of oscillations,
typical in off-road robots, which result in sudden viewpoint changes and induced blur.
The camera was moved as similar as possible as it would be if mounted on a mobile
robot acting according to the behavioural hierarchy presented in Section 2. That is,
when the person selected to follow a trail, the camera was pointed towards its vanish-
ing point. Any obstacle faced by the person was circumnavigated, thus emulating the
avoidance behaviour. In the absence of a trail and nearby obstacles, the person engaged
on a wandering behaviour. The video was then hand-labelled with respect to which be-
haviour was being emulated by the person at each frame. That is, the signal that would
be output by the behavioural architecture, bl[n], was manually defined according to the
emulated behaviour. The system was then evaluated as if the video was being obtained
on-line and bl[n] was being generated by the behavioural hierarchy.

The one-shot learning capability of the system can be appreciated at location 1 (see
Fig. 2), i.e. soon after the onset of the first trail following. At this time, the associative
memory was already able to recognise the scene as containing elements to be followable
(see in Fig. 4). Another sign of this property is the fast stabilisation of the associative
memory, roughly at half of the run, on an amount of 24 segments. This small quantity of
segments shows that the model generates bounded/parsimonious representations of the
environment. This is a demonstration of the model avoiding to over-fit the environment,
which is in turn the cause for its good generalisation ability.

Fig. 3 illustrates a set of key frames of the run, where the system’s prediction and
generalisation capabilities are evident. An example of generalisation is the one depicted
in Fig. 3(a), where the associative memory confirms the behavioural hierarchy in what
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Fig. 2. Experimental environment. The line corresponds to the motion path, whose direction is
cued by the arrows. Letters are key locations, whose associated frames are exhibited in Fig. 3.

(a) bv[3160] =

(0.16, 0.45, 0.39)
(b) bv[3964] =

(0.94, 0.00, 0.06)
(c) bv[4098] =

(0.31, 0.00, 0.69)
(d) bv[4616] =

(0.37, 0.27, 0.36)

(e) bv[5019] =

(0.03, 0.68, 0.29)
(f) bv[5472] =

(0.78, 0.00, 0.22)
(g) bv[5562] =

(0.47, 0.08, 0.46)

(h) bv[5632] =

(0.08, 0.56, 0.35)

(i) bv[5782] =

(0.08, 0.57, 0.35)
(j) bv[6027] =

(0.07, 0.62, 0.31)
(k) bv[7620] =

(0.76, 0.00, 0.24)
(l) bv[8732] =

(0.05, 0.62, 0.33)

Fig. 3. Key situations along the run (see Fig. 2 for their localisation). The first, second and third
elements of the classification vector bv[n] correspond to the likelihood of occurrence of wan-
der, follow and avoid behaviours, respectively. The bold element corresponds to the behaviour
selected by the behavioural hierarchy, i.e. the non-zero element of bl[n], which also operates as
the teaching signal.
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Fig. 4. Plots of experimental results. The black bars on the bl plot correspond to selection made
by the behavioural hierarchy at each frame. The bars on the plot underneath, i.e. max(bv), refer
to the behaviour whose activity is predicted as the strongest one. The three plots bellow are the
predicted activity of each behaviour. Labels 1-4 and a-l indicate key locations.

regards the presence of the to be followable affordance, and further generalises it by
also predicting the occurrence of the to be avoidable affordance. This generalisation is
boosted by the similarity of the environment in question with the previously experienced
one at location 3 (see Fig. 2), where the dense presence of trees took the behavioural
hierarchy to select the to be avoidable as the affordance to be exploited (see Fig. 4).

The frame sequence from Fig. 3(f) to Fig. 3(i) illustrates a situation where the agent
switches from wander behaviour to trail following. Interestingly, prior to the behavioural
hierarchy selecting the to be followable affordance, the associative memory was already
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predicting it (see Fig. 3(h)), as well as nearby trees (see Fig. 3(g)). We speculate that
the system uses the presence of trees and shadows to predict the occurrence of trails.

The plot in Fig. 4 shows that when the prediction is stable and it matches the current
behaviour selection vector, such as at location 2 (see Fig. 2), β is high. Conversely,
when the prediction changes often in a short time and consequently mismatches the
current behaviour selection vector, as at location 4, β decreases considerably. As a
consequence, β shows to be a good indicator of how much certain are the predictions
generated by the associative memory.

4 Conclusions and Future Work

An incremental learning mechanism used to create associations between the affordances
provided by the environment and its gist was presented. With the proposed model, em-
bodied agents are endowed with a mechanism to prioritise their perceptual resources
on those aspects of the environment more likely to occur. The focus on affordances,
rather than on objects, enables a self-supervised learning mechanism without assum-
ing the existence of symbolic object representations. This is essential to enable context
modulation on a developmental setup.

This paper is thus an additional account on the centrality of sensorimotor coordina-
tion, which is what affordances are about, in the understanding of adaptive behaviour.
Although context-based visual attention might seem to be a perceptual problem, this
paper supports the idea that higher levels of autonomy are more easily obtained if it
is seen instead as a sensorimotor problem. This also shows that, for embodied agents,
explicit isomorphic representations are less required than previously expected.

Further experiments are required to better understand the impacts of the model. First,
the model should be tested on a real robot. Second, the actual benefits of modulating
visual attention with the output of the proposed model must be thoroughly assessed.
Third, the model should be tested on a developmental framework, where affordances
are being discovered, exploited and refined, at the same time context is being taken into
account. Environmental context is not limited to visual information. Future work will
cover other sensory modalities, and temporal information inclusion.
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Abstract. The hypothesis of multiple memory systems involved in dif-
ferent learning of navigation strategies has gained strong arguments
through biological experiments. However, it remains difficult for exper-
imentalists to understand how these systems interact. We propose a
new computational model of selection between parallel systems involving
cue-guided and place-based navigation strategies that allows analyses of
selection switches between both control systems, while providing infor-
mation that is not directly accessible in experiments with animals. Con-
trary to existing models of navigation, its module of selection is adaptive
and uses a criterion which allows the comparison of strategies having dif-
ferent learning processes. Moreover, the spatial representation used by
the place-based strategy is based on a recent hippocampus model. We il-
lustrate the ability of this navigation model to analyze animal behavior
in experiments in which the availability of sensory cues, together with
the amount of training, influence the competitive or cooperative nature
of their interactions.

1 Introduction

Animal experiments demonstrate that parallel memory systems, assumed to
support the learning of cue-guided and place-based navigation strategies, favour
separate sets of sensory cues [1]. According to several studies, the first system,
mediated by dorsolateral striatum (DLS), mostly uses proximal cues and the
second system, mediated by hippocampus (Hc) and prefrontal cortex (PFC),
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encodes configurations of distal cues [2]. The spatial representation built from
these distal cues is often termed “cognitive map” [3]. Both systems are supposed
to interact competitively or cooperatively, depending on the circumstances. Com-
petition between the systems happens if the inactivation of one enhances the
learning of the other, and cooperation if the learning of one compensates the
lack of the other (e.g., [4]). Such interactions are influenced by both external and
internal factors [5]. Although behavioral and neurophysiological studies provide
valuable information about interactions between strategies and their potential
biological substrates, the mechanisms underlying these interactions are not clear
[6]. This is mainly due to the difficulty of knowing exactly which strategy is
chosen at specific moments of the experiments.

We present here a computational model of navigation that provides direct in-
formation on rats’ behavior in a Morris maze paradigm in which interactions
between cue-guided and place-based strategies were shown to be influenced by
the type of landmarks and the amount of training [7]. It supplies possible ex-
planations of strategy selection mechanisms that can produce competition or
cooperation and makes it possible to estimate the influence of sensory cues on
strategy selection. The model is based on the assumptions (i) that both strate-
gies are mediated by separate navigation “experts” that learn in parallel (as
proposed by previous computational models [8,9,10]); (ii) that the selection
mechanism continuously updates its estimation of the efficiency of both strategies
(as in [8,9,10]); (iii) that the learning of both systems are of different nature:
cue-guided strategies rely on a procedural “stimulus-response” learning imple-
mented as a TD algorithm, while place-based strategies rely on a graph-search
algorithm – not dependent on the reinforcement learning framework [10] – that
is more flexible and faster to relocate a goal. Point (iii) constitutes the novelty of
the model, which led to a major issue: finding the relevant “common currency”
allowing to compare the efficiency of strategies having different learning pro-
cesses. Another novelty is the integration of a recent hippocampus model [11]
that computes the spatial representation used by the place-based strategy.

Section 2 describes the model of strategy selection; Section 3 the experimental
protocol and the simulation procedure; Section 4 reports the results of computer
simulations reproducing the animal data; Section 5 discusses the results in rela-
tion to other experimental and computational works and outlooks future work.

2 The Model of Strategy Selection

In our model “Taxon” and “Planning” experts represent DLS and Hc-PFC depen-
dent memory systems, respectively. During navigation, they propose a direction
for the next movement according to either visual input (Sensory Cells for the
Taxon expert) or the estimated location (Planning graph, built from Place Cells,
for the Planning expert). Sensory Cells are learned from the vision of the intra-
maze landmark, Place Cells from the vision of the extra-maze landmarks. In
addition, a third expert, Exploration, proposes a direction of movement ran-
domly chosen between 0 and 2π (Fig. 1a). The movement actually performed by
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(a) (b)

Fig. 1. (a) Model overview (see text for details). SC: Sensory Cells, PC: Place Cells,
PG: Planning Graph, T: Taxon expert, P: Planning expert, E: Exploration Expert.
Φ∗ is the final direction of movement. The Gating network learns to choose the right
expert, according to their performance. (b) Example place fields of Place Cells (top)
and Graph nodes (bottom), the brighter the more the cell or node are active.

the animat is determined by a gating network which selects one of the experts
to take control over behavior on the basis of previous performance (Fig. 1a). At
each timestep, all the experts learn from the previously executed action, irre-
spective of which expert was responsible for it (Taxon, Planning or Exploration).

Taxon expert. For the purpose of the protocol reproduced below, we design
here the Taxon expert as a “guidance” strategy – approaching a hidden target
marked by a landmark located on a certain distance from it [7] – but other forms
of Taxon (e.g., beacon approach) can be encoded. The visual input is encoded
in a population of NSC=100 Sensory Cells (SC) in which the activity of cell i
signals presence or absence of the landmark in the direction φi from the animat.
The motor response to the visual stimulus is encoded by NAC = 36 Action
Cells (AC), so that one action codes for a direction every 2π/36. The learning
is done by a Q-learning algorithm adaptation [12], so that the action space is
continuous: in the update rule, instead of reinforcing the only action that is
chosen, a Gaussian activity profile tuned around the selected action allows the
closer actions to update their weights in the same direction. This activity profile
is possible since all actions are direction movements, and therefore comparable.
The activity in the whole AC population is interpreted as a population code for
the direction φT of the next movement of the animat, proposed by the Taxon
expert. Details of the computations are given in [9].
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Planning expert. The Planning expert, inspired by the model of [13], first
learns a topological representation of the environment in a reward-independent
manner (map building phase) and then uses this representation to remember the
goal location and to plan an optimal path towards it (goal planning phase). The
map building phase is run during pretraining sessions. The map takes as input
the activity of a population of Place Cells. This population is provided by the
hippocampus model of [11] consisting of two different neural networks, simulat-
ing the enthorinal cortex (EC) and the dentate gyrus (DG). EC modelling is
based on the recently discovered grid cells, which are receptive to specific spatial
frequency and orientation, and therefore are good candidates for implementing
path integration and other navigation strategies like, e.g., praxis. The grid cells
are appended to a vector of 100 gray units representing the sight of the extra-
maze landmarks. EC cells are then fed to the DG, which produces Place Cells
by means of a Hebbian learning. Then a sparse representation is computed with
a filter function that only keeps a few cells active (Fig. 1b, top) and sets the oth-
ers to zero. Detailed computations can be found in [11]. The final activation is
then normalized and processed by the Planning expert to build the nodes of the
planning graph (PG) (Fig. 1b, bottom). For that, a pool of 100 nodes is con-
nected to the DG at random synaptic weights, and the sparse learning used in
the DG is replicated during the map building phase.

First the firing rate of a PG node j is computed as follows:

rP
j = fj(

∑
i

W
(DG,PG)
ij DGi , sPG), (1)

where Wij is the synaptic weight linking the DG place cell i to the PG node j
and fj(x, sPG) is the same non-linear function as in the DG, returning a sparse
encoding of x, with a sparseness level of sPG.

The synaptic weights are learned following a Hebbian rule, similar to the one
used for learning the DG output:

ΔW
(DG,PG)
i,j = α(DG,PG)rP

j (DGi −W
(DG,PG)
i,j ) (2)

A link between nodes Ni and Nj stores the allocentric direction of movement
required to move from one node to the other. The goal planning phase begins
when the goal position is found, the closest node being set to the delivered re-
ward value. Then, given the PG, the optimal path to the goal is determined
by the bio-inspired activation-diffusion mechanism [14] based on Dijkstra’s algo-
rithm for finding the shortest path between two nodes in a graph [15]. At each
timestep, the Planning expert proposes the corresponding direction. If the goal
position is not known, a random direction is proposed.

Strategy selection. Each expert computes at the same time its own proposi-
tion of movement. The time spent by the Planning expert to compute the path
is not taken into account as a potential cost in our selection mechanism. The
gating network selects at each timestep which of the Taxon, Planning or Explo-
ration experts (T, P and E) will control the future movement, on the basis of
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(a) (b) (c) (d)

Fig. 2. (a) Simulated environment with one intra- and eight extra-maze landmarks.
Simulated results of (b) Control vs Taxon groups. (c) Control vs Trial groups. (d)
Planning group only, in the same protocol as the Control group.

candidate directions Φk of movement. It consists of three units k ∈ {T ; P ; E},
each corresponding to an expert. The activity gk of expert k is its “gating value”.
They are computed as the weighted sum of both SC and PG inputs by synaptic
weights zk:

gk(t) =
NSC∑
j=1

zk
j (t)rSC

j (t) +
NSC+NP∑
j=NSC+1

zk
j (t)rP

j (t), (3)

where zk
j is the connection weight between the unit k of the gating network

and input unit j of the experts. A winner-take-all scheme then chooses the next
movement direction φk′

:

φk′
(t); k′ = argmaxi(g

i(t)) (4)

The gating values connection weights are adjusted using the same Q-learning
algorithm as the Taxon expert, except that the update is modulated by the
angular difference between the proposed orientation and the one actually chosen,
so that the closer an orientation is from the chosen one, the stronger is its update.

We then evaluate different versions of the model – some corresponding to the
simulation of lesioned animals – in the experimental paradigm described below.

3 Experimental Paradigm and Simulation Procedure

In the experiment of [7], two groups of rats – intact (Control) and Hc-lesioned
– learned to find the location of a hidden platform in a Morris water maze
surrounded by several room landmarks. The platform was cued by a visible
landmark located in the pool at a certain distance northward to the platform. In
a first experiment, for both Control and Hc groups, the platform and landmark
were moved to one of eight predefined locations at the start of eleven sessions,
where they stayed for four trials. In a second experiment, intact rats were tested
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(a) Trial (b)Control (c) Trial (d)Control

Fig. 3. Trial selection rates of experts averaged over four trials (one session) for (a)
Trial and (b) Control groups. Evolutions of synaptic weights in the gating network
across sessions for (c) Trial and (d) Control groups show the relative influence of all
sensory cues on the selection.

in the same apparatus, but the platform and landmark were moved from trial
to trial rather than from session to session (Trial group). The same sensory cues
were available for both tasks. Then the only difference was the possibility or the
incapacity of training one or the other strategy system within each session.

Considering their results (Fig. 3 and 5 in their paper), the authors hypothe-
sized (i) that, contrary to Hc group which could only learn and use a cue-guided
strategy, Control and Trial groups would be able to acquire both strategies,
thanks to the presence of cues inside and outside the pool; (ii) that all groups
would be able to achieve the tasks (i.e., with one or both strategies available);
(iii) that moving the platform from trial to trial would have the same effect on
intact rats as a hippocampal lesion: rats of Trial group would indeed exclusively
rely on a cue-guided strategy, as they would not be able to sufficiently train to
refresh their cognitive map between two successive platform displacements. Our
model will test each of these hypotheses by analyzing the interactions between
these control systems.

The simulated water maze, rat, reward location and landmark are represented
by circles of 200 cm, 15 cm, 10 cm, and 20 cm in diameter, respectively. The
reward location is always 20 cm south from the landmark. Eight extra-maze
landmarks are placed at different distance of the walls (30 cm to 50 cm), sim-
ulated by Gaussian visual stimuli of different widths (Fig. 2a). Three groups
are simulated, corresponding to those tested in the actual experiment: the Con-
trol and Trial groups of intact rats are simulated with Taxon, Planning and
Exploration experts; the Hc-lesioned group, henceforth called Taxon group, is
simulated with Taxon and Exploration experts only. The same training protocol
as in [7] is applied. We add a fourth group (Planning group, which could corre-
spond to DLS-lesioned animals), not present in the original experiment, which
is simulated with Planning and Exploration experts only, tested with the same
protocol as the Control group. For each group, 100 sets of experiments were
performed.

The performance of the Control, Trial and Taxon groups is statistically as-
sessed by comparison of their mean escape latencies (number of timesteps to reach
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the goal), within and across sessions, in the 1st and 4th trials of a session, using
signed-rank Wilcoxon test for matched-paired samples. Between-group compari-
son is performed using a Mann-Whitney test for non matched-paired samples. Two
measures quantize the animat’s behavior: goal occupancy rate (number of times
the animat visits a rewarded zone divided by the total trajectory length); trial se-
lection rate of an expert (averaged number of times the expert is selected over the
total length of the trajectory). The influence of sensory inputs on the selection of
the strategies is assessed by comparing synaptic weights from the SC and from the
PG nodes to the units of the gating network, which correspond to the relevance
the strategies.

4 Results

Test of performance of separate experts. Separately trained on a simple
task in which the animat had to escape to a visible and fixed platform, both
experts differ in their learning processes. The Taxon expert learns slower than
the Planning expert (mean of escape latencies from the 1st to 4th trials for
Taxon= 235.04; for Planning = 160.82) but has a better performance when
the training becomes intensive (mean of escape latencies from the 40th to 44th

trials for Taxon= 21.08; for Planning = 83.18). These differences are due to the
sparsity of the Planning Graph nodes, which allows this expert to quickly locate
the new goal location (as encoded by existing nodes), but no further learning is
done.

All groups are able to learn the tasks. As Fig. 2b and c attest, the model
reproduces the main characteristics of the original experimental results. Indeed
all groups achieve the tasks, as all escape latencies decrease across sessions
(p<0.001). In accordance with [7], the cue-guided strategy is mainly respon-
sible of this improvement: in Control and Trial groups, the Taxon selection rate
dominates the others and increases throughout the sessions (Fig. 3a,b). In all
gating networks, the evolution of weights between sensory cues and experts also
reflects the growing influence of SC on Taxon expert (Fig. 3c,d).

No interaction between experts in Trial group. The similar performance
of Taxon and Trial groups (p = 0.08; learning across, but not within sessions)
suggests that the Taxon expert mainly controls the behavior of Trial animats
(Fig. 2b, c). This is confirmed by Fig. 3a, showing the rapid and huge increase of
the selection rate of this expert during the experiment, while the others remain
very low. This is also illustrated by typical trajectories, showing that the Taxon
expert mainly leads the animat near the platform (Fig. 4a, b). The results of the
Taxon group indicate that its learning process is not flexible enough to quickly
improve within session. Thus this explains why Trial group behaves similarly: the
possibility of training or not during four trials does not change the performance.

The occupancy rates near the current platform (Fig 5a, 1st and 4th trials) are
significantly lower in the Trial than in the Taxon groups. This may suggest a
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(a) (b) (c)

Fig. 4. (a-b) Typical trajectories of Trial animats, corresponding to beginning (a) and
end (b) of session; (c) Navigational map of Planning expert in the Trial group (i.e.,
learned directions of movement for each spatial node) at the end of the same session.
The zoom depicts that, during a new trial, the planning experts keeps the memory of
the previous platform location.

negative influence of the Planning expert on Trial animats. Yet the evolution
of weights in the gating network, with increasing links from SC to the Taxon
expert only (Fig. 3c), minimizes the importance of this result: it clearly indicates
that the Planning expert does not play any role in this task. Nevertheless, this
expert continuously builds a navigational map in which it stores the successive
platform locations (Fig. 4c), then the animat could use it if required by a new
situation.

Training within session produces both competition and cooperation.
As Fig. 2b shows, the possibility to train within session modifies significantly the
behavior of Control animats, both at the beginning and at the end of sessions.
Similarly to Control animals in the original experiment, they perform worse
at the beginning and better at the end of one session than Trial and Taxon
groups. The role of Taxon in Trial group proves that these differences should
come from the Planning expert. Fig. 3b confirms that Control animats select
it more often than Trial ones (especially at the beginning of the experiment).
The fast learning of this expert – also favored by the parallel learning of the
efficient Taxon expert (see the performance of Planning alone, Fig. 2d) – indeed
allows the Control group to quickly memorize the position of the platform in
the cognitive map. During each session, both experts cooperate and enhance the
overall performance: the escape latencies are lower (Fig. 2b) and the occupancy
rates near the current location higher (Fig. 5a, 4th trials) than Trial group.

The gating network reflects this synergistic interaction by increasing the
weighting of SC to both Taxon and Planning experts (Fig. 3d). The nature
of their cooperation could be deduced from the navigational maps of both ex-
perts at the end of a session showing that the Taxon expert drives the ani-
mat southward the landmark (Fig. 6a) whereas the Planning expert leads it to
the platform location (Fig. 6b). A typical trajectory illustrates this hypothesis
(Fig. 6c).



Analyzing Interactions between Cue-Guided and Place-Based Navigation 343

50

40

30

20

10

%

50

40

30

20

10

**

**
**

**

**

%

(a) (b)

Fig. 5. Occupancy rates near the (a) current and (b) previous platform locations

(a) (b) (c) (d)

Fig. 6. Control group. Example of navigational maps of Taxon (a) and Planning (b)
experts (learned directions of movement for each sample location or each spatial node)
at the end of sessions. All possible platform locations are positioned, the current one is
in grey. Taxon map is pointing the current landmark; Zooms in Planning map depict
that the map is pointing the current platform position, but not the previous one.
(c) Typical trajectory at the end of sessions (4th trial). (d) Typical trajectory at the
beginning of sessions (1st trial) showing the planning expert leading the animat towards
the wrong location.

At the beginning of a new session, as the gating network grants more confi-
dence to the Planning, this expert has a stronger tendency to be selected. As a
consequence, both Planning and Taxon experts compete, driving the animat re-
spectively towards the previously memorized (thus wrong) platform location or
the current one (Fig. 6d). Fig. 5b shows the significant differences of occupancy
rates near the previous platform location between Control, Trial and Taxon
groups during the 1st trials, explaining the worse performance of the Control
group. The selection rates of Planning and Taxon experts in Fig. 3b however
show that this competition progressively decreases across sessions. Indeed the
Taxon expert takes more and more control over Planning (negative correlation
between Taxon and Planning selection rates: r = −0.91). Exploration is used
until both experts have switched (i.e., until Taxon becomes sufficiently relevant,
Fig 3b).
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5 Discussion and Conclusion

The model of selection between Taxon and Planning navigation strategies pre-
sented here is based on the theory of parallel control systems in the rat brain.
The place-based strategy uses a graph-search algorithm using the propagation
of the reward signal to find the shortest path to the goal. The graph is learned
on-line in pretraining sessions using the activities of learned place cells, and posi-
tions the location of the hidden goal. The cue-guided strategy uses a TD learning
rule to approach the hidden goal marked by a landmark. The strategy selection
is performed by a gating network that learns to predict, also using a TD-learning
rule, the most successful strategy given current sensory input. Previous compu-
tational models of navigation rely on similar learning modes (e.g., dependent on
the RL framework) for different navigation strategies [8,9,10], and the strategy
selection mechanism is usually non-adaptive [16,17]. In contrast, our model al-
lows for adaptive selection among different learning modes (including topological
representations), exploiting a general and simple “common currency”.

The model was evaluated in two simulated water maze tasks, in which the
same sensory cues (intra-maze and extra-maze landmarks) were available. In
one task, the cued hidden platform moves at each trial; in the other, the goal
stays at the same place during a four trials session before moving to another
location (Trial and Session tasks in [7]). Then what differs is the possibility,
or not, to learn each position of the platform. Due to a separation between
cooperative interactions (during action learning) and competitive interactions
(during action selection), the model was able to assess the relative contribution
of different strategies to the observed behavior. In accordance with the results
of the original experiment, the selection mechanisms of the model – which did
not change over the experiment – could explain why both place-based and cue-
guided strategies did not interact in the trial condition, and why they cooperated
or competed when they (particularly the place-based strategy) could learn the
same platform position during several trials. A substantial contribution of the
model concerned the analysis of the influence of different types of sensory cues on
strategy selection. From the evolution of synaptic weights between sensory inputs
and gating units in our simulations, it made it possible to assess that intra-maze
landmark information was predominant for strategy selection in both tasks and
moreover that it contributed to the selection of the Planning when this expert
was allowed to be trained (see evolution of SC→Planning, Fig. 3d). Indeed, we
remind that the gating network updates its selection on the basis of both sensory
inputs .

We showed the ability of our model to efficiently select navigation strategies in
two experiments in which the effects of environmental cues and training on nav-
igation system interactions were rather simple. In particular conditions, these
interactions may be more complex. For example, under the hypothesis that all
spatial cues compete for predicting reward, numerous experiments supporting
associative theory emphasize blocking (i.e., when a well learned cue predicting
reward prevents learning of a novel cue predicting the same reward) or overshad-
owing effects (i.e., when one cue predicting the reward detracts the learning of
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another present cue able to predict the same reward) in navigation [18]. Some
of these effects are challenged by experiments supporting the cognitive mapping
theory (e.g., [3]). Our model is a potential tool for investigating such contradic-
tions.

Besides, the effect of practice on the selection of navigation strategies is far
less investigated than the influence of sensory cues. This was particularly done in
the experiments of [19], which stressed the complexity of this factor in studying
the influence of intensity of training experience during one session on the later
use of a specific strategy. In contrast to previous conclusions (e.g., [20]), short
or long training, but also various periods of pre-exposure to the task, critically
determine when and how a particular strategy emerges from interactions between
both memory systems. In the future, our model could be applied to analyze such
influences.

However we have to notice that the validation of the model was made in ex-
periments using Morris water mazes, in which every orientation is left opened
and not constrained by corridors. A recent paper raises the hypothesis that, in
this kind of device, expression of strategy switching may be different from T-
or Star-mazes [21]. Then we need to verify if the selection mechanism of our
model supports such eventuality. More importantly, the same paper questions
the role of DLS, with the assumption that it is not especially involved in ego-
centric/response strategy, but in the selection itself, in case of several available
strategies. This requires analyzing, in similar protocols as theirs, which bias the
specific role attributed to our expert Taxon is susceptible to entail, and in which
extent it should be questioned.

Interaction among several spatial memory systems may improve the perfor-
mance of animals either by speeding learning through cooperation of different
strategies, or competitive processes that prevents sub-optimal strategies to be
applied. Better understanding of these interactions by computational modelling
may also provide a good basis for the design of robots able to cope with a wider
range of behavioral tasks.

Acknowledgment. This research was granted by the EC Integrated Project
ICEA (Integrating Cognition, Emotion and Autonomy, IST 027819).

References

1. White, N., McDonald, R.: Multiple parallel memory systems in the brain of the
rat. Neurobiol. Learn Mem. 77, 125–184 (2002)

2. Doeller, C.F., King, J.A., Burgess, N.: Parallel striatal and hippocampal systems for
landmarks and boundaries in spatial memory. Proc. Natl. Acad. Sci. USA 105(15),
5915–5920 (2008)

3. O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Oxford University
Press, Oxford (1978)

4. Hartley, T., Burgess, N.: Complementary memory systems: competition, coopera-
tion and compensation. Trends Neurosci. 28(4), 169–170 (2005)



346 L. Dollé et al.

5. Carrillo-Mora, P., Magda, G., Abel, S.: Spatial memory: Theoretical basis and
comparative review on experimental methods in rodents. Behav. Brain Res. 203(2),
151–164 (2009)

6. Rich, E., Shapiro, M.: Rat Prefrontal Cortical Neurons Selectively Code Strategy
Switches. J. Neurosci. 29(22), 7208–7219 (2009)

7. Pearce, J., Roberts, A., Good, M.: Hippocampal lesions disrupt navigation based
on cognitive maps but not heading vectors. Nature 396(6706), 75–77 (1998)

8. Dolle, L., Khamassi, M., Girard, B., Guillot, A., Chavarriaga, R.: Analyzing in-
teractions between navigation strategies using a computational model of action
selection. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial
Cognition VI. LNCS (LNAI), vol. 5248, pp. 71–86. Springer, Heidelberg (2008)

9. Chavarriaga, R., Strosslin, T., Sheynikhovich, D., Gerstner, W.: A computational
model of parallel navigation systems in rodents. Neuroinformatics 3(3), 223–242
(2005)

10. Uchibe, E., Doya, K.: Reinforcement learning with multiple heterogeneous mod-
ules: A framework for developmental robot learning. In: The 4th International
Conference on Development and Learning, pp. 87–92 (2005)

11. Ujfalussy, B., Eros, P., Somogyvari, Z., Kiss, T.: Episodes in space: A modelling
study of hippocampal place representation. In: Asada, M., Hallam, J.C.T., Meyer,
J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 123–136. Springer,
Heidelberg (2008)

12. Stroesslin, T., Sheynikhovich, D., Chavarriaga, R., Gerstner, W.: Robust self-
localisation and navigation based on hippocampal place cells. Neural. Net. 18(9),
1125–1140 (2005)

13. Martinet, L.E., Passot, J.B., Fouque, B., Meyer, J.A., Arleo, A.: Map-based spatial
navigation: A cortical column model for action planning. In: Freksa, C., Newcombe,
N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248,
pp. 39–55. Springer, Heidelberg (2008)

14. Burnod, Y.: Organizational levels of the cerebral cortex: an integrated model. Acta
Biotheor. 39(3-4), 351–361 (1991)

15. Dijkstra, E.: A note on two problems in connection with graphs. Numer. Math. 1,
269–271, 269-270 (1959)

16. Girard, B., Filliat, D., Meyer, J., Berthoz, A., Guillot, A.: Integration of naviga-
tion and action selection functionalities in a computational model of cortico-basal-
thalamo-cortical loops. Adapt. Behav. 13(2), 115–130 (2005)

17. Guazzelli, A., Corbacho, F., Bota, M., Arbib, M.: Affordances, motivation, and the
world graph theory. Adapt. Behav. 6(3), 435–471 (1998)

18. Leising, K., Blaisdell, A.: Associative basis of landmark learning and integration
in vertebrates. Comp. Cogn. Behav. Rev. 4, 80–102 (2009)

19. Martel, G., Blanchard, J., Mons, N., Gastambide, F., Micheau, J., Guillou, J.: Dy-
namic interplays between memory systems depend on practice: The hippocampus
is not always the first to provide solution. Neuroscience 150(4), 743–753 (2007)

20. Chang, Q., Gold, P.E.: Switching memory systems during learning: changes in
patterns of brain acetylcholine release in the hippocampus and striatum in rats. J.
Neurosci. 23(7), 3001 (2003)

21. Botreau, F., Gisquet-Verrier, P.: Re-thinking the role of the dorsal striatum in
egocentric/response strategy. Front. Behav. Neurosci. 4, 1–12 (2010)



A Cortical Column Model for Multiscale Spatial
Planning

Louis-Emmanuel Martinet1,2 and Angelo Arleo1

1 CNRS - UPMC Univ Paris 6, UMR 7102, F-75005, Paris, France
2 CNRS - UPMC Univ Paris 6, UMR 7222, F-75005, Paris, France

louis-emmanuel.martinet@upmc.fr

Abstract. An important issue in spatial memory is the learning of abstract rep-
resentations suitable for navigation planning. To address this problem, we have
already developed a planning system inspired by the columnar organization of
the mammalian cortex [1]. This model provides a neuromimetic architecture ca-
pable of learning topological spatial representations and planning goal-directed
actions. The work presented here deals with the ability to encode multiscale rep-
resentations of the environment, in order to solve large maze tasks. This is shown
by validating the model on a multiscale version of the Tolman & Honzik’s detour
task [2]. Simulation results demonstrate that the performances of the planning
system are invariant with respect to the scale of the maze. A series of statistical
analyses is provided to characterise the neural activities subserving spatial plan-
ning. It is shown that the structural properties of the environment are encoded by
the discharges of the location-selective neurones of the model. Complementing
this purely spatial coding, the activity of another class of neurones in the model
integrates both spatial and reward-dependent information suitable for navigation
planning.

1 Introduction

According to experimental evidence, spatial navigation planning is likely to rely on
a distributed neural network spanning limbic and cortical brain structures. This net-
work includes the hippocampus, which mediates spatial representations, and neocorti-
cal structures, such as the prefrontal cortex, which participate to the elaboration of ab-
stract contextual descriptions (e.g., accounting for motivation-dependent memories and
action cost/risk constraints). We have built a columnar cortical model [1] to provide
a neuromimetic architecture suitable for spatial navigation planning, and based on the
interaction between the hippocampus and the prefrontal cortex. The planning process
is based on an activation-diffusion mechanism, propagating reward-related information
from the goal position through the entire topological network [1]. This propagation en-
ables the system to plan action sequences (i.e., trajectories) from the current position
towards the goal. The activation-diffusion mechanism produces an exponential decrease
of the intensity of the goal signal that propagates along the topological graph [1]. To
prevent the system from planning failures in the presence of large scale environments
(where locations exist in which the propagating signal is likely to reach the noise level
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and decision making becomes random) the current model also learns topological repre-
sentations whose resolution is adapted to the complexity of the environment (to account
for structural regularities as corridors).

A review of theoretical discussions on hierarchical cognitive maps can be found in
[3]. McNamara et al. [4] have suggested that human can solve difficult spatial problems
by building a hierarchical cognitive map including multiple representations of the same
environment at different spatial scales. Moreover, animals may be able to chunk avail-
able information and build hierarchical representations to facilitate learning [5,6,7,8,9].
Recently, multiscale spatial representations have been identified at the neural level. For
example in the entorhinal cortex, Hafting et al. [10] have shown that grid cells have
spatial fields forming a grid of variable resolution. Kjelstrup et al. [11] have provided
neural recordings of place cell activities in a large maze, supporting the same multiscale
coding property in the hippocampus. In our model, we suggest that this kind of multi-
scale representations should also be found in the neocortical areas such as the prefrontal
cortex, commonly associated with high-level cognitive processes.

2 Methods

2.1 Topological Map Learning and Action Planning with a Column Model

Existing cortical column models (from earlier, e.g. [12,13], to most recent, e.g. [14])
focus on either the cytoarchitecture of the column or the functional aspect of colum-
nar computation. Our model lies between these two extremes, i.e. it attempts to relate
the columnar organization to the behavioral responses based on a bioinspired (highly
simplified) neural network model. The basic components of our column model and its
learning principles have been previously presented [1]. To summarise, an unsupervised
learning scheme is employed to make each column encode a specific spatial location
s ∈ S. Within a column, a set of minicolumns are selective for all the state-action pairs
(s, a1···N ) ∈ S × A experienced by the animat at location s. During navigation plan-
ning, all the minicolumns of a column compete with each other to locally infer the most
appropriate goal-directed action.

Compared to our previous model [1], the columnar structure has been refined in order
to provide a better understanding of the dynamics of the planning system and to improve
its biological plausibility. In the model presented here (Fig. 1A), a column consists of
three computational units S, P and V and a set of minicolumns, each of which consists of
two units Q and D. S neurones are meant to encode a compact state-space representation
from the location-selective activities of hippocampal place cells [15]. The simulated
place cells provide the system with a continuous distributed and redundant allocentric
state-space representation S [16,17,18]. Q and V neurones are responsible for encoding
respectively the quality (i.e. the efficiency) of an action given a state and the value
of a state regarding its distance to the goal. D neurones integrate spatial and reward-
related information to code for the best local decision in their discharges. P neurones
are used to propagate the path signal encoding the plan from a given position to the
goal. The discharge of these units simulates the mean firing activity of a population of
cortical neurones either in supragranular layers II-III (for S, P, V and Q neurones), or in
infragranular layers V-VI (for D neurones).
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Fig. 1. (A-B) The cortical model and the implementation of the activation-diffusion process.
Columns consist of three supragranular layer units (S, P, V) and a set of minicolumns contain-
ing a supragranular (Q) and an infragranular (D) layer unit. Black neurones are firing whereas
gray ones are silent. (A) back-propagation of the motivational signal through the network of Q
and V neurones. (B) forward-propagation of the goal-directed action signal through the P and D
neurones. (C) Top-down and bottom-up connections between a L1 column (bottom) and a L2

column (top). Φ is a modulatory signal indicating variation in the high level context. (D) Topo-
logical connections are also learnt in the L2 network (on this picture, connections detailed in (C)
are summarized by a bidirectional arrow).

The planning process mediated by the columnar network (see example in Fig. 1A-B)
is inspired by Burnod’s activation-diffusion mechanism [19]. During trajectory plan-
ning, the unit V of the column corresponding to the goal location is activated via a
motivational signal. Then, this reward-related activity is back-propagated through the
network via the V and Q units (Fig. 1A). Q neurones convey this goal-related infor-
mation to D units, where it is integrated with the spatial information coming from S
and P units. When the back-propagated goal signal reaches the column selective for the
current position s, the D unit becomes active and triggers the forward propagation of a
goal-directed signal through projections wl (Fig. 1B).

Notice that each wu synapse attenuates the back-propagated goal signal. Thus, the
smaller the number of synaptic relays, the stronger the goal signal received by the Q
neurones of the column corresponding to the current location s. Since the receptive
fields of the model columns are distributed uniformly over the environment by the un-
supervised learning scheme [1], the intensity of the goal signal at a location s is roughly
proportional to the distance of the target. Thus, goal-related metrical information is en-
coded implicitly by the network, which is is fundamental in order to select the shortest
pathway to the target.
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2.2 Dealing with Large Scale Environments

Let us denote population L1 the previous cortical column population receiving spatial
inputs from the hippocampus. A second population L2 of columns is learnt by the cur-
rent model to encode a large scale map adapted to the size of the environment. The
learning algorithm is based on a measure that can define the boundaries between the
high scale states. Here, we use a very simple mechanism suited for mazes with corri-
dors, but the overall principle remains the same. A signal Φ is introduced to encode
a change in the egocentric locomotion: Φ = 1 when the animat is going straight and
Φ = 0 when it turns. This signal conveys relevant information to extract subpart of cor-
ridors in a maze. L2 columns and minicolumns are the same generic computational units
as in L1 network but they are receiving afferents from L1 columns modulated by the
gating signal Φ (Fig. 1C). This “boundary” signal introduces a locomotion-dependent
bias in the spatial selectivity of S neurones, such that the morphological properties of
the environment (e.g., alleys in a maze) can be encoded by the L2 topological map
explicitly. An unsupervised growing network scheme is being employed to recruit L2

columns similarly to the L1 population. Additional top-down connections are created
from L2 to L1 so that the former population can exert a top-down modulation on the
P and V neurones of the L1 population (Fig. 1C), enabling the planning process at the
level of L1 to cope with the decreasing back-propagating signal. This is achieved simply
by enhancing the transfer function of P and V units in L1 with a positive factor.

Because the size of high scale states will not be homogeneous as opposed to the state
representation in L1, a more flexible topological learning must be employed to account
for the distance between any state and the goal. To solve this issue, two sets of bottom-
up weights are used to convey the goal-distance information estimated at the level of
the L1 network by the activity of its Q and P units (Fig. 1D). This input is used to learn
the lateral weights wl and wu in the population L2, so that the activity of a V unit in
L2 is correctly correlated with the distance of the high scale state to the goal thanks
to the information encoded in L1. In other words, planning computations propagated
at the level of the L1 network are available in the L2 network which uses them to es-
timate correct goal-distance information. Thus there is a bi-directional (bottom-up and
top-down) flow of information between the two populations of columns of the model,
making it possible to encode the environment at multiple scales and to solve large maze
planning tasks.

3 Results

3.1 Spatial Behaviour in a Detour Task

In order to validate our multiscale navigation planning system, we chose the classical
experimental task proposed by Tolman & Honzik [2], as in our previous work [1]. The
main objective of this behavioural protocol was to demonstrate that rodents undergoing
a navigation test were able to show some “insights”, e.g. to predict the outcome of alter-
native trajectories leading to a goal location in the presence of blocked pathways. The
original Tolman & Honzik’s maze and protocol are shown in Fig. 2A. Here we extended
its principle by using multiple size of the same maze to test the ability of the model to
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Fig. 2. (A) Tolman & Honzik’s maze (adapted from [2]). The gate near the second intersection
prevented rats from going from right to left. (B-C) Behavioural results for the Tolman & Honzik’s
maze represented as the mean number (averaged over 40 animats) of transits through P2 and P3
during Day 2-14 (B) or Day 15 (C). Several sizes of the maze are used: normal and large (four
time bigger). In the normal and large conditions, no multiscale learning was used, unlike in the
large* condition.

produce multi-scale topological maps and to solve detour tasks in increasingly larger
mazes. Two versions of the Tolman & Honzik’s maze were thus used: the classical one
and a large one which was four times bigger than the original. For their experiments,
Tolman & Honzik used 10 rats with no previous training. In our simulations, we ex-
amined a set of 40 simulated animats for each experimental condition. In the classical
and the large conditions, the top-down influence of the L2 population was discarded to
show how the size of the maze progressively impaired the performance of animats in
the absence of a compensatory neural adaptation. We also ran a set of 40 experiments
in the large maze allowing the top-down influence of the high-scale cognitive map over
the planning process (large* condition). Here we focus on the multiscale aspect of the
task, because we have already shown in [1] that the cortical column could reproduce
the original results in Tolman & Honzik’s normal maze. We assessed the statistical sig-
nificance of the results by means of an ANOVA analysis (the significant threshold was
set at 10−2, i.e. p < 0.01 was considered significant).

Day 1. During the first 12 training trials, the animats learnt the topology of the maze
and planned their navigation trajectory in the absence of both block A and B. Similar
to Tolman & Honzik’s findings, our results in all conditions (normal, large and large*)
show that the model learnt to select the shortest goal-directed pathway P1 significantly
more frequently than the alternative trajectories P2, P3 (ANOVA, p < 0.0001 for all
mazes). However, for the large condition (but not for large*), the size of this maze began
to induce few mistakes, as indicated by a lower median value of Path 1 selection.

Days 2-14. During this training phase (consisting of 156 trials), a block was intro-
duced at location A, which forced the animats to update their topological maps dy-
namically, and to plan a detour to the goal. P1 was ignored in this analysis (similarly
to Tolman & Honzik’s analysis) because blocked. The results reported by Tolman &
Honzik provided strong evidence for a preference for the shortest detour path P2. Con-
sistently, in our simulations (Fig. 2B) we observed a significantly larger number of
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transits through P2 compared to P3 for normal and large* cases (ANOVA, p < 0.0001),
but this was hardly significant for the large condition with a mean number of selected
P3 very closed to P2 (ANOVA, p < 0.0082). This low performance was very closed to
the behavior of an animat turning randomly toward Path 2 or Path 3.

Day 15. Seven probe trials were performed during the 15th day of the simulated
protocol, by removing the block A and adding a new block at location B. This manip-
ulation aimed at testing the “insight” working hypothesis: after a first run through the
shortest path P1 and after having encountered the unexpected block B, will animats try
P2 (wrong behaviour) or will they go directly through P3 (correct behaviour)? Accord-
ing to Tolman & Honzik’s results, rats behaved as predicted by the insight hypothesis,
i.e. they tended to select the longer but effective P3. Our probe test simulation results
are shown in Fig. 2C. Similar to rats, the animats exhibited a significant preference for
P3 compared to P2 (ANOVA, p < 0.0001) for normal and large* cases. However this
probe test was a failure for the large condition, where the number of P3 choices was not
significantly different from the number of P2 choices (ANOVA, p = 0.6750).

Taken together, these results clearly show an impaired performance proportional to
the size of the maze, which can be overcome thanks to an adaptive multiscale repre-
sentation fitting the structure of the maze and providing a top-down modulation of the
activation-diffusion mechanism.

3.2 Analyses of Neural Activities

For all the simulations, we used pools of 600 units for each type of neurones (S, P, D,
V, Q and HP). A series of analyses, partially based on the same theoretical tools as in
[1], was done to characterise the neural activities subserving the behavioural responses
of the system. The set of stimuli S consisted of the places visited by the animat. For
the analyses, the continuous two-dimensional input space was discretized, with each
location s ∈ S defined as a 5 x 5 cm square region of the environment.

First, spatial neural activities from three populations were recorded during the large
Tolman & Honzik’s task: HP cells and S units from L1 population as well as from L2

population. In our previous work, we have shown that the cortical column model (i.e.,
the L1 population) was able to build a more compact spatial representation storing the
main part of the spatial information [1]. Here we focus on the spatial properties of the L2

population compared to L1 and HP neurones. Fig. 3 conveys a clear information on the
population distinction between S units of L1 and L2: (i) fewer units of L2 are necessary
to represent the same environment (Fig. 3A, ANOVA, p < 0.0001), (ii) according to
their spatial density measure [1,20], their receptive fields are less redundant (Fig. 3B,
ANOVA, p < 0.0001), and (iii) the distribution of L2 population responses is sparser
than for L1 (Fig. 3C, ANOVA, p < 0.0001) as shown by its kurtosis value [1,20], i.e.
fewer neurones of population L2 were, on average, responding to a given stimulus s
simultaneously. These results suggest that the L2 cortical column network was able to
provide an even sparser state-space population coding than L1 population. Note that the
density is strictly greater than 0 for L2, thus every place of the maze are represented by
the neural network.

In a second series of analyses, we focused on the activity of single cells, and we
recorded the receptive fields of the three types of units. Fig. 3E displays some samples
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of place fields for the three populations. What is mostly remarkable here is the firing
properties of L2 state neurones: after learning, the activity of these units capture some
structural properties of the environment (i.e., corridors organization). A quantitative
analysis was performed: the mean size of place fields (computed as the number of con-
tiguous pixels with the firing rate above the grand mean rate plus the standard deviation
[21]) was indeed significantly bigger than for L2 units (Fig. 3F, ANOVA, p < 0.0001).
Coherently their responses were the least sparse ones across the time (Fig. 3G, ANOVA,
p < 0.0001) according to their low lifetime kurtosis [1,20]. Here the results tend to dif-
fer from our previous study [1]: the mean size of place cell receptive fields was indeed
significantly lower than for L1 cortical units (ANOVA, p < 0.0001), and coherently
their responses were the sparsest ones across the time (ANOVA, p < 0.0001). The dif-
ference with our previous results (no significant difference) can be simply explain by the
change of synaptic input function for the cortical neurones, which tends to broader the
range of responses for L1 S units. In fact, these new results receive support from exper-
imental data by [21]: these authors measured the field size of place cells and prefrontal
neurones in rats solving a navigational task, showing that the former were significantly
smaller than the latter.

We also used an information theoretic analysis [22]: the mutual information MI(S; R)
between neural responses R and spatial locations S allowed us to quantify the spatial
information content of a neural code, i.e. how much could be learnt about the animat’s
position s by observing the neural responses r. It was evaluated for single units as well
as for a whole population of neurones (in that case, r was a vector of firing rates), and
the ratio between these two values was used to assess the level of sparseness of spa-
tial information. The results of our information theoretic analysis are consistent with
the properties described in the previous paragraph). Indeed, L2 state units responding
to a broader range of spatial stimuli, their single neurone mutual information is much
higher (Fig. 3H, ANOVA, p < 0.0001). The spatial mutual information computed for
the whole population of place cells, L1 and L2 state units (Fig. 3D) demonstrates a
larger information content for the HP population (ANOVA, p < 0.0001), which may
look in contradiction with the single cell mutual information. However they quantify
quite different properties. As mentioned, the latter is related to the range of stimuli that
make a cell fire, as well as the variability of this discharge. The population spatial infor-
mation indicates that, for the binning procedure applied in this analysis, the place cell
population is far more precise to encode a position (because of its high redundancy).
In comparison, state neurones in L2 population encode a very coarse spatial informa-
tion. This is coherent with our initial goal of building a more compact representation
accounting only for the main properties of the environment (here the corridors). Finally,
when computing the information sparseness (i.e. the ratio between population informa-
tion and the sum of single cell information), it appears that the information content was
more redundant for place cells (Fig. 3I, ANOVA p < 0.0001), meaning that many of
them encoded the same information. Although loosing a part of the population spatial
information, the cortical population achieved a better coding scheme, maximizing the
coding role of each units, particularly for the L2 population.

Our second objective here is to show how information relevant for planning are en-
coded in the neural network. It is first necessary to demonstrate that the V population of
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Fig. 4. (A) Activities of 12 V units (left: spatial activity, right: histogram of firing rates. (B)
Activities of 12 S units. (C) Activities of 3 pairs of (Q,D) units belonging to the same minicolumn
for two phase of the protocol where a block is introduced in the maze. (D) Effect of the top-down
modulation exert by population L2 V units over the propagating activity at the level of L1 V unit
population.

the cortical model encodes a measure of distance to the goal. As such, we need to show
that responses of V units belonging to columns selective for places situated at different
distances of the goal are not ambiguous and are anti-correlated with the distance. The
first point is demonstrated in Fig. 4, in comparison with S units. Finding the selectivity
of the latter is easy in the spatial domain (see previous paragraph), however that is not
the case for V units. Instead, it is necessary to observe their firing frequency prefer-
ences to see that their responses are not overlapping (Fig. 4A), unlike S units (Fig. 4B).
This is confirmed by a redundancy and a population kurtosis analysis showing the much
sparser responses of V units in the frequency domain compared to the spatial domain
(ANOVA, p < 0.0001), with an opposite effect for S units (ANOVA, p < 0.0001). The
second property of goal distance anti-correlation is shown on the Fig. 4D, with or with-
out the effect of the high-scale cortical population. This study observed the effect of the
top-down modulation exert by population L2 V units over the propagating activity at the
level of L1. Indeed, we remind that one motivation for this extension of the model was
the possibility to deal with large environments. We have shown behaviourally that the
model was able to adapt to them. Fig. 4D is a direct evidence of the neural effect of this



356 L.-E. Martinet and A. Arleo

top-down modulation. Without any modulation, the strength of V units discharge fall
exponentially with the distance of the column from the goal position. At a given point,
this fast decreasing propagating activity will reach the neural noise level. From that
point, only random decisions will be made because there will not be any correlation
left between the firing activity and the real distance to the goal (e.g., the low perfor-
mance on Day 15 for the large condition). When a top-down modulation is present, the
decreasing effect becomes piecewise linear, each subpart corresponding to a high scale
zone encoded by a L2 column.

Reward-related V units and location-selective S units convey their information into
the D neurones which integrate them into activities reflecting the selection of action
(Fig. 4C). We remind that each minicolumn of the model is supposed to encode a spe-
cific state-action pair (s, a). As such, Q units encode the distance to the goal if a is
selected at s, and D units integrate spatial information indicating the current position
with this reward information. It can be seen on Fig. 4C at t = 6s of the Day 2 Trial
1 that the animat has updated its connectivity in the cortical network to represent the
presence of the block A. Thus, the previous best choice Path 1, represented by the best
pair (Q1, D1) at t ≈ 4s is not correct anymore at t ≈ 7s: Path 2 is now the best al-
ternative as shown by the best pair (Q2, D2). The same mechanism occurs on Day 15
Trial 1, with Path 3 represented by (Q3, D3) becoming the best choice. Taken together,
all these analyses demonstrate that the network encodes enough behavioural informa-
tion, including distance-to-goal and best alternative information, to solve a planning
navigation task.

3.3 Conclusion

We presented a multiscale extension of our previous cortical column model for spatial
navigation. It enables the encoding of cognitive maps whose resolution fits the structure
of the environment (e.g., corridors). As a consequence, the model is provided with a
better adaptability in large mazes (e.g., in the presence of a maze four times larger than
the original Tolman & Honzik’s one), thanks to a top-down modulation regulating the
activation-diffusion process. It should be noted that encoding multiscale maps is not
the only solution to solve behavioral tasks in large mazes. However this approach is
useful to address the issue of learning multiscale spatial representations, as found in
the brain (e.g., [10,11]). Moreover, the model unravels the possible links between the
single unit level and the behavioural level relevant to the learning of the task (e.g., to the
selection of the shortest path to the reward). Our neural response analysis suggests how
the interplay between the simulated hippocampus and prefrontal cortex can yield to the
encoding of manifold information pertinent to the spatial planning function, including
for example distance-to-goal correlates.

The model is currently being validated by comparing simulated neural response pat-
terns against those obtained by in vivo electrophysiological recordings from the hip-
pocampus and the prefrontal cortex of freely moving rats [23]. This comparative study
aims at providing new insights on the interaction between the hippocampus and the
prefrontal cortex. In addition, an ongoing work in coordination with experimental-
ists [23] attempts to study the learning processes related to spatial memory, such as
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declarative memory consolidation occurring during sleep. This will possibly lead to
testable predictions about the formation of memory traces relevant to spatial behaviour.
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Abstract. In this paper we present a model of reinforcement learning
(RL) which can be used to solve goal-oriented navigation tasks. Our

model supposes that transitions between places are learned in the hip-

pocampus (CA pyramidal cells) and associated with information coming

from path-integration. The RL neural network acts as a bias on these

transitions to perform action selection. RL originates in the basal ganglia

and matches observations of reward-based activity in dopaminergic neu-

rons. Experiments were conducted in a simulated environment. We show

that our model using transitions and inspired by Q-learning performs

more efficiently than traditional actor-critic models of the basal ganglia

based on temporal difference (TD) learning and using static states.

Keywords: hippocampus, basal ganglia, navigation, reinforcement learn-

ing, Q-learning.

1 Introduction

In previous papers, we proposed a model in which ”place cells” [1] are not pri-
mary located in the hippocampus proper but in the entorhinal cortex. The ac-
tivity recorded in the CA pyramidal cells would not primarily originate from
”place cells” but from ”transition cells” coding for the transient states from one
place to the next [2,3]. The reason for this proposal arose from two experimen-
tal findings. First, experimental recording of our EC artificial visual place cells
displayed large place fields allowing to reach a goal without the need to store a
lot of places in the environment [4]. The merging of “What” and “Where” infor-
mation about surrounding landmarks was sufficient to build a robust place code
that could be simply recognized in order to build place cells. Hence the need for
a dense mapping of the environment was not justified in simple sensori-motor
navigation tasks. Second, we faced the impossibility to connect directly a cogni-
tive map made of place cells and coding for multiple goals and motivations with
a motor control system [2]. As a matter of fact, an homonculus was necessary to
read the gradient activity on the cognitive map in order to deduce that moving
in a particular direction would induce a better satisfaction than taking another
direction. It was then always necessary to simulate at each time step these back
and forth movements between the current place and the next possible places.

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 359–369, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The building of a cognitive map linking transition cells suppressed this prob-
lem since one transition is always associated with a single movement. Action
selection would take place in the nucleus accumbens (ACC) where planning ac-
tivity coming from the cognitive map, linked to the prefrontal and/or parietal
cortices, could be used as a bias to select from the current static state the most
interesting transition. In our model, we used the dentate gyrus and its granular
cells as a way to store past activities using a spectral timing model [5]. Area CA3
of the hippocampus received information about current and past states from the
entorhinal cortex and dentate gyrus respectively. An associative memory allowed
the learning of existing transitions between places. According to our model, CA3
pyramidal cells should predict the next possible transitions. Recording such cells
should induce a strong spatial activity correlated with the animal place (the rea-
son why they are called place cells) but somehow anticipating the animal next
place. New neurobiological results are in agreement with such a prediction [6]
but it is not sufficient to convince all the neurobiologists to move from a place
cell model to a transition cell model. The cognitive map uses latent learning and
constitutes an efficient system for dealing with dynamically changing environ-
ments with multiple goals. Yet there is no proof that the rat builds a cognitive
map. Most of the hippocampal models used for navigation are based on place-
action associations through RL and succeed to display interesting navigation
performances [7,8,9,10].

In this paper, we show how the learning of transitions in the hippocampus,
required by the cognitive map for complex planning tasks, can also form the
perfect basis for a RL model based on Q-learning, as transitions are analogous
to state/action couples. RL can easily be added to allow both backward planning
with latent learning using the cognitive map and motivations, and forward plan-
ning using reinforcement hints to select the current action. Moreover the model
can account for anatomical and physiological data in both the hippocampus and
basal ganglia. This work is part of a project aiming at modeling the interaction
between the hippocampus, the prefrontal cortex and the basal ganglia. We will
show how our model can be more efficient than actor-critic models based on TD
learning in tasks with several goals and motivations. Finally we will demonstrate
the performances of the model in goal-oriented tasks in a simulated environment.

2 Model

In RL the environment is usually described as a Markov Decision Process (MDP).
The agent can be in a certain number of states in which it can choose between
a certain set of actions to perform. Experiments have been made in simulation
where the agent switched between finite states based on its location in a grid
world [11] or relative to prominent landmarks [9,10]. Place cells, with their place
fields defining particular locations of the environment, can be used to character-
ize the state of the agent in RL [7,8].

The Temporal Difference (TD) learning algorithm [12] aims at maximizing
the sum of expected rewards. While in TD learning an estimation of that sum is
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learned as a function of states, Q-learning [13] creates an estimate as a function
Q(s, a) of state and action. After performing action a1 to move from state s to
state s′, the Q value is adjusted with the following equation:

Q(s, a1)← Q(s, a1) + α(r + γ max
a

Q(s′, a)−Q(s, a1)) (1)

where r is the reward obtained when in s′, α is the learning rate and γ is a
discount factor. The pair (s, a1) can also be represented as a transition s→ s′

The discovery of the response of dopaminergic neurons in the substantia nigra
pars compacta (SNc) and the ventral tegmental area (VTA) with their modu-
lation of the basal ganglia neuronal activity, suggested the strong involvement
of these structures in RL [14]. These neurons exhibit short bursts of firing just
after the occurrence of an unexpected reward and go through a short period of
depression when an expected reward is not received. The similarity of this be-
havior with the computation of the error on the prediction of expected rewards
in TD learning has lead many researchers to build models of RL associated with
the basal ganglia [15,16]. In the models the computation of the TD error made in
the SNc matches the neurophysiological observations of dopaminergic neurons.

How the neural differentiator used to compute the difference between subse-
quent predictions for the TD error signal works is subject of debate. A hypoth-
esis is that it originates from the direct and indirect connections between the
striatum and the substantia nigra pars compacta (SNc)[15]. Direct inhibitory
connections and indirect excitatory connections through the subthalamic side-
loop would provide the desired signal. This model supposes different timings of
spike propagation in the direct and indirect pathway. It is limited because of its
reliance on the internal dynamics of synapses and neurons to account for the ac-
ceptable delay between subsequent predictions. Moreover the use of the temporal
characteristics of the direct/indirect pathway as the neural substrate for the TD
error computation seems to be inconsistent with the known neuroanatomy [17].

In addition, several RL models use delayed synaptic learning with an eligibility
mechanism [18,8,7,9]. This mechanism assumes that a memory trace of past
activity is present at the synaptic level. The current reward expectation is used
to modify the synaptic weights selected by the eligibility trace corresponding
to the last actions. The biological plausibility of the eligibility trace remains
unclear. Houk and colleagues [15] gave an hypothesis as to how this learning can
happen in real synapses. Their model involves the spiny neurons in the striosomal
compartments of the striatum. The properties of a protein (CaM PK II) and a
cascade of intracellular signaling mechanisms are used to account for the delay
of the synaptic strengthening. However, once again, the timing of the reward is
highly dependent on the properties of the internal dynamics of the neuron. It
cannot account for a large variability in the delay between the action and the
occurrence of the reward signal.

The need for both temporal mechanisms arises from the unavailability of the
corrected reward prediction (r + γ maxa Q(s′, a) in eq. 1) when the action is
performed. This value is available in the following moments when the agent is
in the new state s′ and has received an optional reward r. However the previous
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state is no more active and cannot be directly associated with the corrected
estimation of its reward expectation value.

Taking inspiration from the actor-critic model, a neural implementation of
the TD learning algorithm [18], we designed a neural network model of the Q-
learning algorithm (Fig. 1). The model addresses the issues discussed in the pre-
vious paragraphs by the use of a 2-step learning mechanism, suppressing the need
for both an eligibility trace and specific temporal dynamics in direct/indirect
pathways between the striatum and the SNc.

Step 1 : A working memory in the striatum stores information about the last
transition performed. When the representation of the new state is stabilized
and reward predictions about available transitions arise, their maximum value
is learned and associated with the value in the working memory. If a primary
reward signal is received, it will also be learned. For any transition s → s′ we
learn to predict what the value of tj = r + γ maxa Q(s′, a) will be. The learning
is made by a simple conditioning using the Widrow-Hoff Delta rule:

wji ← wji + α(tj − x
Qp

j ).xWTA
i (2)

where α is the learning rate. x
Qp

j and xWTA
i are the activities of post- and

pre-synaptic neurons respectively. All activities are rate-coded.
Step 2 : Q values are learned in synaptic weights with transition cells as pre-

synaptic neurons. Connections from the hippocampus (area CA1) to the striatum
allow the propagation of transition activity to the RL system. When the agent
starts to explore a new place, it begins to predict all the available transitions
along with their Q values. The TD error signal, computed from the difference of
current and predicted reward expectations, acts as a dopaminergic modulation
of synaptic learning for transition Q-values. The learning equation used is :

wji ← wji + α.δ.xCA1
i (3)
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where δ is the TD error signal and xCA1
i the activity of the currently performed

transition. Transition activity is as follows: if a transition is being performed
(i.e. the agent switches from place A to B) then the only active transition is AB
(xAB = 1), otherwise if the agent explores place A (i.e. the place cell coding for
A has the strongest activity) then all predicted transitions are active (xAB =
1, xAC = 1, etc.).

This system allows the simultaneous availability of the Q(s, a1) value learned
in step 2 and the r + γ maxa Q(s′, a) value learned in step 1. Hence the com-
putation of the TD error signal does not require input pathways with different
temporal properties. Only simple inhibitory and excitatory pathways are used.
The trade-off for the absence of time-dependent local synaptic rules is a conver-
gence speed for the neural network divided by 2.

The Q values for each predicted transition are used to bias the original activity
of the transition cells. A WTA competition results in the optimal transition to be
selected. The output of the competition is not a direct motor action but rather
a motor transition, as opposed to hippocampal transitions which are perceptual.
The transition then activates its corresponding learned action, which could range
from complex behaviors to simple motor commands. Even though we chose to
only take the optimal transition into account to select an action, secondary
transitions are still predicted and provide their reward expectancies and actions
as possible alternatives. In a model where actions are chosen from static states
rather than transitions, a single state can correctly give a choice of actions along
with their order of preference only if all the actions are coded in orthogonal
patterns. If actions are coded as overlapping patterns, the connectivity of each
transition with the action neurons allows the coding of well separate actions
for each transition. Moreover in our case the learning of associations between
actions and transitions is latent. It can happen at any time when navigating in
the environment, even during an exploratory phase without any reward. Here
the actions are represented by a direction to take and coded in a neural field
[19]. Path integration information from the last place, computed from odometric
input, is used to associate a direction with every transition performed. In the
model, the only actions considered in each state are based on what was learned
to be possible, not a set of pre-programmed actions (e.g Go east, Go west, etc.)
as it is often used in actor-critic models [7,8]. The architecture also distinguishes
itself by merging the learning of state and action reward prediction into a single
learning of state+action values.

The synaptic learning of predictions is modulated by particular events trig-
gering transitory neuro-modulatory signals. The learning of Q-values through
conditioning (3) happens when a transition is performed (i.e when the most ac-
tive place cell changes). The learning of future predictions and rewards (2) is
modulated by the delivery of the reward. A fixed time interval between place
entry and reward delivery is fixed at the beginning of the experiments to allow
extinction. The fixed delay is needed to provide the timing of expected rewards
and produce negative reinforcement values in case an expected reward is not
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delivered. Future work will involve the use of a time spectrum architecture to
learn reward timings and allow the delivery of rewards at any time.

3 Improvements over Actor-Critic Models

In a simple experiment where the environment contains only one reward loca-
tion, place and transition-based systems work in similar ways. In computational
terms, in addition to the N place cells coding for states, the transition archi-
tecture requires the use of between 4N and 6N neurons in average to learn the
transitions [3].

However the transition architecture shows its strength in complex tasks with
multiple goals and motivations. The motivations could range from basic drives
(e.g. hunger, thirst) to the need to satisfy various goals and sub-goals. Let us
consider a case where several types of resources (food, water etc.) are present
in the environment. The corresponding K drives indicate the need for a par-
ticular resource. In TD learning, as a direct state-action association is created,
the original model cannot learn to associate different actions to a particular
state depending on the motivational context. A direct connexion from motiva-
tions to actions would indeed guide the behavior of the agent towards making
always the same action when motivated, independently of the place it is in. An
intermediate layer of K ∗ N neurons would need to be created to learn the as-
sociation of state/drive couples with actions [7]. Actions learned in a state for
one motivation would need to be learned again for other motivations event if
they lead to the same direction (Fig. 2). If the action is coded as a direction
vector, the learning of the movement between two place fields can take some
time to converge to the vector between the two centroids (e.g. by averaging the
directions taken each time to move from one place field to the other). On the
other hand the Q-learning network would only need to associate the drives with

A A
Food FoodWater Water

?

B B
Thirst

Hunger
AB

Hunger Thirst
TD Q-learning

Fig. 2. Scenario with a food and water source intermittently located at place B. When

the food source is found, the TD solution associates the A+hunger state with the

action Go east. Further discovery of the water source eventually leads to the renewed

slow learning of the action Go east, this time associated with the state A+thirst. With

the transition solution, the agent learns the AB transition with the corresponding

action Go east, independently of resource discovery. Further discovery of the food and

water sources leads to the fast association of hunger and thirst with the existing AB

transition. Moreover dead-end recognition could lead to a lower prediction value for

the transition leading south, hence promoting the other transitions by default.
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Fig. 3. Comparison of neural implementations of TD and Q-learning for a multiple

drives scenario. When the number of places and drives increases, the transition based

solution becomes less and less expensive as compared to the TD solution.

existing transitions. The action associated with a transition is learned whenever
the transition is made, independently from the motivational context. Transition
prediction activity would however have to be initiated by the co-activation of
place recognition in the hippocampus and learned drive associations. Figure 3
shows a comparison of the two architectures. The Q-learning system is the one
shown in fig. 1 with a few modifications to allow multiple drives. Rewards are
associated with a drive to detect different types of goals, the resulting signal
is given as input to the 2-step learning RL system. In place of the modulation
described in section 2, the dopaminergic neuromodulatory signal is used to mod-
ulate the learning of the Q values in synapses originating from the drive neurons.
The bias used to select the next action is thus combined from current transition
and drive activities.

In our model, the number of neurons needed to encode transitions, states
and actions is independent from the number of motivations. Due to the 2-step
learning, a lot more neurons are needed for simple tasks with few motivations
than in simple actor-critic networks. However these neurons can work with any
number of motivations. The transitions model can use a direct bias of every
new motivation on transition activity whereas actor-critic models would have to
add extra place/drive neurons. In complex tasks with many goals and sub-goals
this could lead to significant improvements in information compression, meaning
more ecologically viable architectures. The trade-off is the need of wide-spread
connectivity between places, drives, transitions and actions.

4 Experiments

The neural network has been tested in a simulated environment using the
Promethe NN simulator [20]. The simulated environment is an open square envi-
ronment with 20 perfectly identifiable landmarks equally spaced along the walls
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to simulate visual input. One food source is placed in the upper left corner. The
speed of the agent is constant throughout the experiment except when avoiding
walls. The passing of time in the simulation is discretized into a series of time
steps. However the functioning of the architecture is not dependent on the fine-
ness of this discretization. The simulation works with any time step (e.g. 50ms,
100ms, 500ms etc.), however too large time steps would lead to the agent “tele-
porting” itself and missing sensory input on the way, leading to a less reactive
system and decreased performances. The results were obtained using 100ms time
steps.

First the agent performs an exploratory session in order to map its environ-
ment. During this phase of the experiment, navigation is guided by a random
exploration strategy. The direction of the agent is periodically changed, based
on a Gaussian probability function centered on the current direction. Simulated
ultrasound obstacle detection allows the agent to avoid hitting the walls. Place
cells are learned based on a minimum activity threshold. As the agent moves from
place to place, transitions between place cells are learned and associated with a
direction. During this random exploratory phase, the agent is able to discover
the food source and build its representation of optimal paths using transitions
and RL (Fig. 4).

During the secondphase of the experiment, the exploratory/exploitationphases
are modulated by an internal motivational signal. When motivated, the agent will
use the learned transition bias and corresponding actions to reach the food source.
The delivery of the food reward then inhibits the motivation signal and an ex-
ploratory phase begins. The motivation is triggered again when the agent reaches
an area comprising the eastern and southern extremities of the environment. A

Fig. 4. a) Graph of all learned transitions in the simulated environment. Darker colors

mean higher Q values for the corresponding transitions. b) Trajectories taken by the

agent during goal-directed navigation. The goal location is represented by a disk in the

upper left corner of the environment. All starting points for goal-oriented navigation

trials are located in the gray area.
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Table 1. Mean escape latency and standard deviation in seconds for transition Q-

learning and random exploration. The values are computed from a set of 50 trials for

each strategy. The parameters of the simulation are : learning rate α = 0.5, discount

factor γ = 0.8, reward value r = 1.

Mean Standard deviation

Transition Q-learning 36.7 14.5

Random exploration 115.1 90.1

good level of performance in this task requires the ability to quickly reach the goal
location from any starting position in this area.

Figure 4 shows example trajectories of motivated navigation using RL. As
the agent follows the path given by a single winning transition, the trajectories
roughly follow the edges of the transition graph and are thus not straight lines
to the goal. Smoother trajectories could be obtained using a soft competition
when selecting transitions and their associated actions. Mean escape latencies
and standard deviations are given in table 4 for both the transition Q-learning
and a random exploration strategy. They express the time needed by the agent
to reach the goal when motivated, with starting points randomly spread in the
motivation trigger area. The transition Q-learning architecture performs 3 times
better than random exploration with obstacle avoidance. A soft competition for
transition and action selection could be used to further increase the performances
of the algorithm.

5 Discussion

In addition to being consistent with neurobiological observations [6], the transi-
tion learning architecture could serve as a basis for several navigation strategies.
The prediction of available transitions at any given time provides the system
with a repertoire of possible actions. The transition-action association is learned
autonomously and is dissociated from navigation strategies such as path plan-
ning or RL. As opposed to usual actor-critic models of TD learning where the
motor action is the output of the RL network, a Q-learning based model can
work with transitions as its sole representation of the environment and be more
efficient in complex scenarios.

By using transitions as a common representation, one can easily integrate
several navigation strategies in the same architecture. We previously used a
cognitive map to solve navigation tasks. This strategy also provided a bias to
the competition between predicted transitions. The competition leading to the
selection of the next action can accept several such biases, given by different
strategies working in parallel. The parallel use of the cognitive map planning
and RL will bring to light the advantages/disadvantages of one system over the
other and show the way for an integrated architecture with the 2 cooperating sys-
tems. More transition-based strategies, such as timed sequences of actions, could
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eventually be added. In this case transitions would have to be able to learn both
spatial and temporal properties. Future work will involve the implementation
of a system capable of modulating these concurrent strategies. The modulation
could be based on a performance criterion, thus selecting the best strategy for
a particular task. Internal signals could also be monitored by a meta-controller
capable of detecting whether a strategy is dysfunctional or not.

We have recently built an architecture which used transitions with both spa-
tial and temporal components to build a cognitive map and solve planning tasks
involving navigation and the precise timing of particular actions. The integration
of timed transitions into the present RL model would help reproduce the pre-
cise time-dependent prediction capabilities of dopaminergic neurons in the basal
ganglia. This is necessary to be able to select an appropriate behavior depending
on the timing of a reward. One particular case in which we are interested is the
autonomous learning of a precisely timed waiting period requiring movement
inhibition from the animat.
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Abstract. To survive in an unknown environment an animal has to

learn how to reach specific goal states. The animal is firstly guided by

its reactive behavior motivated by its internal needs. After exploring the

environment, contextual information can be used to optimally fulfill these

internal needs. However, how a reactive and a contextual control system

complement each other is still a fundamental question. Here, we address

this problem from the perspective of the Distributed Adaptive Control

architecture (DAC). We extend DAC’s reactive layer with an allostatic

control system and integrate it with its contextual control layer. Through

robot foraging tasks we test the properties of the allostatic and contextual

control systems and their interaction. We assess how they scale with task

complexity. In particular, we show that the behavior generated by the

contextual control layer is of particular importance when the system is

facing conflict situations.

Keywords: Self-Regulation; Allostatic Control System; Contextual

Control System; Cognitive Architecture; Robot Behavior; Bio-Inspired

Robotics.

1 Introduction

One of the main challenges an animal faces when exploring a novel environment
is how to learn about it and exploit it. Firstly, reactive behaviors drive animal
exploration motivated by the animal’s internal needs. Reactive behaviors also
allows the exploration and acquisition of the state space. Once the states of the
environment are learned and appropriate behaviors shaped, the animal is able to
use this information to reach goal states, e.g. food. However, how these low and
high level systems complement each other when the task difficulty increases is
not clear yet. Here, we exploit this question in the basis of a combined robotics
and computational neuroscience approach.

We investigate a robot model of self-regulatory processes based on the be-
havior of rodents. Rodents are optimal real-world foragers that can smoothly
regulate complex sets of behaviors [1] based on their internal motivation, main-
taining a dynamic stability with the environment while learning about it. Our

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 370–379, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://specs.upf.edu


The Complementary Roles of Allostatic and Contextual Control Systems 371

model tackles exactly these two issues: self-regulation and learning about the
environment. Self-regulation is provided by a reactive layer that is based on the
concept of allostasis [2]. This reactive layer drives the robot behavior while infor-
mation about the environment is acquired and retained in a long-term memory.
This memory is part of the contextual control (CC) system which will be capable
of driving the robot’s behavior based on the robot previous experience.

The allostatic control system (AC) of our model allows the robot to not only
explore the environment but also to acquire its salient states. The robot lo-
cally senses different reward gradients present in the environment and can reach
its desired values in the gradient by performing instantaneous reactive motor
actions. The CC system picks up information about the environment. Both sys-
tems need each other and are fundamental for solving navigation tasks. The CC
system will be able to solve tasks when the cues, e.g. gradients, that guide the
behavior of the reactive layer is incomplete or contains conflicts. In addition, it
can optimize the content of the long-term memory system thanks to the states
that are classified and the behaviors triggered by the AC system.

Many models deal with the problem of realizing an artificial rodent [3,4].
Generally, it is usually tackled in a bottom up approach solving the navigation
problem using a cognitive map. Our approach differs from these models in that
our first building block integrates many regulatory subsystems and on top of it
we add a cognitive system able to learn about the environment.

The AC and CC systems integration will be made in the context of the
biomimetic Distributed Adaptive Control architecture (DAC) [5,6,7]. In this pa-
per we make two new contributions. Firstly, we will augment the DAC reactive
layer in order to support self-regulation on the basis of the physiological princi-
ple of allostasis. The AC orchestrates different homeostatic subsystems achieving
stability at a meta-level (see Section 2.1). However, during this study, we will
use only one homeostatic subsystem at a time thus bypassing the question of
how multiple homeostatic subsystems affect optimal performance. The second
contribution of this study is that we extend the contextual layer to be able to
exploit the different internal states of the agent in its memory structures. The
long-term memory stores sequences that belong to different goal states, i. e. de-
sired values in the gradient. In the recall phase, information is retrieved based on
the internal motivation of the robot, e.g. hunger (see Section 2.2). We integrate
these two control systems and investigate the main implications of their inte-
gration (see Section 2.3). Our results show a successful integration which gives
rise to realistic foraging in a variety of benchmark tasks using a simulated robot
(see Section 4). In addition, it also indicates how low level predefined behavior
control systems of the brain can be integrated with more advanced neuronal
systems.

2 Methods

To understand how AC and CC systems complement each other we work with
the DAC architecture. DAC distinguishes three coupled layers that interact
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between each other: reactive, adaptive and contextual. The reactive layer con-
tains a pre-wired repertoire of reflexes, which creates a behavior that allows an
interaction with the environment. Originally, this reactive layer implements col-
lision avoidance and light appetitive mechanisms. We will extend this layer to
provide it with an AC system. The adaptive layer processes and classifies the
sensory input. This classification together with the actions executed by the robot
are sequentially stored in the contextual layer which is equipped with a short and
a long-term memory. These representations are used to plan ongoing behavior,
and have been shown to be compatible with formal Bayesian models of decision
making [5]. In the original DAC, the contextual layer stores positive or negative
sequences that lead to goal states defined by reward or punishment respectively.
We extend the contextual layer to equip it with labeled information where the
content of the memory can lead to different kinds of rewards or punishments.

We will test our model in different foraging tasks where gradients are projected
into the environment and visual cues are placed on the floor. The gradients are
gaussian functions sensed by the robot. The AC system will steer the motors
of the robot depending on the desired and actual value of the gradient. Se-
quences of sensory-motor contingencies are learned by the CC system from the
robot’s interaction with the environment. We will show that AC system alone
is not always sufficient to reach goal states when the gradient has a conflict
information.

Fig. 1. Contextual and allostatic integration in the framework of DAC. Abbrevia-

tions mean: p, perception; a, action; v, value. Blue and green colors at the end of the

sequences mean different reward associated with them. Action selection is done by

priority: contextual layer actions have more priority than reactive layer actions.
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2.1 The Allostatic Control System

In our self-regulation model approach, different simpler homeostatic subsystems
coexist. Each homeostatic subsystem is associated to one reward gradient and has
access to an actual (Va) and desired (Vd) value in that gradient. The actual value
is determined by the actual position of the robot in the gradient and the desired
value represents the goal state in the gradient. The homeostatic subsystem acts
in a closed loop trying to bring close the actual to the desired value and thus
achieving stability (see Figure 1). An integrator mechanism orchestrates the
different homeostatic subsystems. All the subsystems compete to control the
robot. In this study, only one homeostatic subsystem is activated at a time.

Imagine, as an example, an animal placing itself in an optimal distance to a
heating source in order to achieve a desired temperature [8]. The gradient would
correspond to the temperature map which would have its highest peak around
the source. The agent is able to sample the temperature gradient locally. The
homeostatic subsystem could bring the agent closer to or further away from the
heating source depending on the difference between the desired and actual value.

2.2 Short and Long Term Memory

The contextual layer of DAC contains a short-term memory (STM) and a long-
term memory (LTM). Sequences of sensory-motor contingencies are learned from
the robot’s interaction with the environment. Perception-action associations are
stored in STM. When a goal state is reached, the sequences of associations are
copied into the LTM labeled with the reached goal state (see Figure 1). When
the robot is exposed to a perception, it is clasified by the adaptive layer and
compared with the perceptions stored in LTM. The stored perceptions that
match this comparision, and belong to a sequence with a goal state coincident
with its current internal motivation, are selected and an action is executed. For
further explanation about the memory structure in DAC see [6].

2.3 Allostatic and Contextual Integration

We integrate AC and CC systems using the framework of DAC (see Figure 1).
The reactive layer of DAC is provided with an AC system. This AC system
steers the motor of the robot driven by the gradient in the environment and
the internal motivation of the robot. This results in egocentric actions executed.
These egocentric actions are converted into allocentric ones by the CC system.
To do the conversion, we added a path integration computation that calculates
the vector between visual perceptions using the head orientation of the robot.
In this way, the information in memory contains visual cues and the vector
connecting two visual cues or visual cue to a goal state.

3 Foraging Tasks

We test the integrated model in foraging tasks using 3D environment with a
mobile agent. The simulated agent is implemented in C++ and wSim [9] using
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the Open Graphics Library approximating a Khepera robot1 widely used for
behavioral modeling. The validity of the simulated robot with respect to a real
one has been demonstrated in several studies [9]. The robot has a radius of 5.5 cm
and it is equipped with three blocks of eight light sensors and eight proximity
sensors. The sensors integrate an exponential decay function with respect to
the distance to the light sources or to the obstacles respectively. The robot is
also equipped with a color camera pointing to the floor (with an angle of 45o).
Therefore, the 3rd dimension of the environment is limited to the walls. The
action group from the architecture is connected to the motor group of the robot.
Each cell of the motor group maps a direction of movement. A winner-take-all
(WTA) takes place at the motor map level and selects the neuron with highest
activity. The default movement of the robot is to go forward.

Our aim is to test the model in tasks with increasing difficulty to understand
how AC and CC systems scale with task complexity, i. e. tasks where gradients
and visual cues have coherent information and tasks where this information is
contradictory. This will allow a better understanding on when AC system would
be enough to fulfill the robot’s internal motivation and when CC system would
be necessary to optimally fulfill this internal motivation.

We run experiments in three different environments. Every environment con-
tains visual cues and rewards. The visual cues are patches on the floor whereas
the rewards are gradients. The internal motivation of the robot is set to the
highest value in a way that the desired value is reached at the center of the
gradient. The first foraging task is an open field environment with one kind of
gradient, a light. We vary the weight of the gradient from 0 to 1 in steps of 0.1
(see Figure 2a). When the robot reaches the reward, i. e. its desired value in
the gradient, the gradient is turned off to avoid that the robot stays next to the
reward during the whole experiment. It is activated again when the robot is far
away from it. For high weights of gradient it covers almost the whole foraging
space, therefore we expect a similar performance in both AC and CC systems,
since gradient and patches have coherent information. Secondly, we set an envi-
ronment also with one kind of gradient, a light, with obstacles that do not allow
a direct path between the initial position of the robot and the reward (see Figure
2b). This environment is remotely based on the Tolman maze [10] as in [11]. We
expect to have a significantly better performance with the CC system, due to
its capability of learning sequences of perception-action to reach goal states. In
this case, every trial finishes when the robot reaches the reward and starts again
from same spatial position and a random orientation selected from a two dimen-
sional normal distribution N(0, 1). As a final step, we set a third environment
with three different gradients (see Figures 2c and 2d). The robot searches for one
reward or other depending on its internal motivation which is randomly selected
at the beginning of every trial. We expect a significantly better performance in
the case of the CC system due to the presence of obstacles as in the previous
task. To see the influence in performance in the CC system due to the number of
visual cues we run experiments with four and eight patches in the environment.

1 K-Team, Lausanne, Switzerland.
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gradient 1

limit to turn the gradient on

gradient 0.1

(a) (b)

(c) (d)

Fig. 2. Foraging tasks environments. (a) Open field task. Yellow lines indicate the

lowest and the highest value of the gradient. Red line indicates the limit the robot has

to cross so the gradient is activated again after reaching the reward. (b) Maze with

one reward. Yellow line indicates the area covered by the gradient of the reward. (c)

and (d) Maze with three different rewards. Yellow, red and blue lines indicate the area

covered by each of the reward gradients.

In the three tasks, we keep constant the size of the memory, with 40 sequences
of a maximum of 120 perception-action associations.

To simulate real conditions, we added 5% of noise to the motors of the robot.
For every condition, we run 10 experiments with 20000 cycles each of them.

4 Results

4.1 Open Field Task

To compare performance between AC and CC systems we record data only when
the AC system is activated. Later on, we activate the CC system and when the
memory is full we record data again. We look at the ratio between the number
of targets reached and the distance explored by the robot (see Figure 3). We
observe that when the gradient is not present, i.e. the weight of the gradient is
0, the CC system performance is significantly higher than the AC system per-
formance (Wilcoxon rank sum test p < 0.001). However, as the weight of the
gradient increases the AC system performs better than the CC system. This
is expectable since the gradient gradually occupies the whole environment and
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Fig. 3. Ratio targets/distance for the allostatic and contextual control systems for

different gradient values

the AC system can optimally calculate next action to perform. Thus, the CC
system improves performance for a low value of the gradient but for values higher
than 0.3 the AC system performance is significantly better than the CC system
performance (Wilcoxon rank sum test p < 0.01). Therefore, when there is not
conflict in the gradient information the CC system is not fundamental and the
AC system can properly perform the task.

4.2 Maze One Gradient Task

Firstly, ee test the AC system performance. We observe that the gradient of
the reward drives the robot to a wrong path in some occasions (see Figure 4a).
When the CC system is also activated, we observe that the robot is not driven
to the wrong path (see Figure 4b). This difference in the paths selected in both
cases is translated to a significant increase in the number of cycles needed by the
robot to reach the reward with the AC system in comparison to the CC system
(mean in the AC system is 222 cycles Vs. 141 in the CC system).

(a) (b)

Fig. 4. Trajectory plots. (a) Trajectories of the robot with allostatic behavior. (b)

Trajectories of the robot for contextual behavior.
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4.3 Maze Three Gradients Task

We start testing the integration model with 4 patches in the environment. As
in previous tasks, we first record data with the AC system alone and then we
activate the CC system. We calculated the optimal distance the robot should
cover to reach each of the rewards (see Figure 2c and 2d). In Figure 5a, we plot
the ratio between the real distance covered by the robot and the optimal one
for each of the rewards with the AC and CC systems. We observe that the CC
system performance is significantly better for the three rewards (Wilcoxon rank
sum test p < 0.001). The results also show that the performance decreases as
the distance to the reward increases. This is to be expected since the probability
to leave the optimal path increases. However, we observe that the slope of the
performance for the three rewards is lower in the CC system than in the AC
system suggesting that the performance will decrease faster in the AC system
as the distance to rewards increases.

To test the influence of the number of patches in the CC system performance
we increase the number of the patches in the environment, from 4 patches to
8. We observe in Figure 5a that the performance at the AC system level keeps
constant since the patches are not used by it. However, we observe an increase
in performance in the CC system. Due to the increase in the number of patches
the CC system has a more accurate knowledge of the environment, i. e. greater
number of internal representations leading to a greater number of actions that
the memory might trigger.

To better understand how the CC system picks up information about visual
cues, we look at the content of the memory. In Figure 5b we plot the number of
times each visual cue appears in memory for the different rewards. We observe
that the last two patches are used only for reaching the third reward whereas
the rest of patches are part of the sequences corresponding to the three different

(a) (b)

Fig. 5. (a) Ratio real distance/optimal distance for allostatic and contextual control

systems for each of the three rewards present in the environment: RW 1, reward 1; RW

2, reward 2, RW 3, reward 3. (b) Number of times that each patch is stored in memory

for each of the three rewards.
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(a) (b)

Fig. 6. Trajectory plots. (a) Trajectories of the robot with allostatic behavior. (b)

Trajectories of the robot for contextual behavior.

rewards. As an example, in Figure 6 we see the trajectories followed by the robot
with the AC and CC systems when the internal motivation of the robot is to
reach the reward 3. The AC behavior guides the robot to a wrong path in some
occasions. The CC system trajectories are more accurate than the AC system
ones.

5 Conclusions

We investigated how allostatic and contextual control systems complement each
other. In order to do that, we extended the DAC architecture. On the one hand,
we equipped its reactive layer with an allostatic control capability. On the other
hand, we extended the memory content allowing the storage and retrieval of
information related to different goal states. Furthermore, we integrated both
systems converting the egocentric actions from the allostatic control system in
allocentric ones for the contextual control system. We tested the model in a va-
riety of foraging tasks. We show that allostatic control system is able to succeed
fulfilling the robot’s needs when the information from the reward does not con-
tain conflicts. When obstacles in the environment do not allow a direct path to
the reward a contextual control system is needed. Our results show that in these
cases the contextual control system is able to pick up salient information from
the environment and use it to fulfill the robot’s needs.

The model integration proposed here can be reminiscent of taxon Vs. route
navigation strategies [12]. On the one hand, the allostatic control system is capa-
ble of solving taxon task, i. e. tasks where the goal is visible. On the other hand,
as the complexity of the task increases, i.e. the goal is not visible, the contextual
control system is capable of solving it through route navigation, i. e. chaining
taxon strategies. A number of robotics and artificial intelligence algorithms have
been proposed to solve the taxon chaining problem [13,14]. Our approach differs
from them in that our first building block is self-regulation and on top of it
we add a contextual control system able to learn about the environment. Dif-
ferent internal states leading to different goal states can be handled achieving
self-regulation.

Further experiments would need to be done in order to better understand
how allostatic and contextual systems interact. For instance, the possibility of
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multiple homeostatic subsystems activated at the same time might influence the
information learned by the contextual control system. The implications of this
influence in the memory content should be tested.

To integrate allostatic and contextual systems in a model allow us to better
understand how they complement each other and how they scale with task com-
plexity. Moreover, we propose that these implications might be extended to the
biological brain and its multi-level architecture.
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Abstract. Biologically inspired models for navigation use mechanisms

like path integration or sensori-motor learning. This paper describes the

use of a proprioceptive working memory to give path integration the

potential to store several goals. Then we coupled the path integration

working memory to place cell sensori-motor learning to test the potential

autonomy this gives to the robot. This navigation architecture intends

to combine the benefits of both strategies in order to overcome their

drawbacks. The robot uses a low level motivational system based on a

simulated physiology. Experimental evaluation is done with a robot in a

real environment performing a multi goal navigation task.

1 Introduction

Researchs in the field of navigation robotics have used biologicaly inspired mech-
anisms like path integration based on odometric information [1,2,3] (return
vector computing) or sensori-motor learning based on place cell recognition
[4,5,6,7,8]. These navigation strategies are very good solutions to homing prob-
lems. Thus, the robot must look for different resources to fullfill its various needs.
Path integration doesn’t need learning, but, by itself, it is not able to store sev-
eral goals. And errors, coming from measure imprecision, cumulate to the point
where it is too inaccurate to allow the robot to find its goal. Sensori-motor
learning is robust but needs learning (generaly man supervised). However, study
about insects navigation [9,10] have shown their ability to manage several hom-
ing vectors allowing them to go back to a secondary goal when their first one is
not available (indicating a memory).

In this paper, we describe a proprioceptive working memory giving path inte-
gration abilities the potential to allow robots to display the same kind of behav-
iors. The robot control architecture use a low level motivational, or drive system
that reacts to the simulated physiological state and computes the different drives
levels (hunger and thirst). To satisfy its drives the robot has to gather the cor-
responding simulated resource (food and water). From the principles presented
in [1], we have designed a proprioceptive navigation strategy using this work-
ing memory to store several goals on several path integration neural fields. The
robot uses hebbian learning to associate each goal to the corresponding drive.
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Furthermore we then coupled place cell sensori-motor learning to the path inte-
gration working memory and the drive system. Place-drive-action associations
are used to autonomously build a visual attraction bassin around each goal and
allowing to bypass the limitations of path integration when the robot is lost or
has been kidnapped.

Section 2 describres the proprioceptive navigation architecture we used. The
visual place cell architecture is described in section 3. Section 4 shows experi-
mental results with the robot. And section 5 contains the conclusions. Figure 1
shows the robot and its environment.

Fig. 1. The robot in its environment (equiped with a color detector placed under it).

Colored squares on the ground are simulated resources.

2 Proprioceptive Navigation

Path integration is the ability to use proprioceptive information about the move-
ments being done in order to determine the direct movement to any given in-
teresting point of the robot trajectory in the environment. Principles of path
integration using dynamical neural fields are described in [1]. Figure 2 is an il-
lustrated example of this computation. This strategy is said to be autonomous
because the robot can learn and use it without any supervision. Using Dynam-
ical neural field to represent information in the path integration process allows
to use directly the output (the return vector) as the control signal for the robot
rotational speed. In order to use path integration to build navigation abilities
able to succeed to classical multigoal survival tasks (as presented in introduc-
tion), the robot has to be able to come back to several interesting places of its
environment (vital resources locations). Thus, instead of only one integration
field, the robot must dispose of several integration fields. But because the num-
ber of path integration field has to be limited (defining a more realistic kind of
working memory), the robot cannot simply recruit another integration field each
times it detects a resource. The number of parallel integration fields (nbgoals) is
a representation of the system working memory span i.e. the number of elements
that can be maintained in working memory). Activity of each neuron of these
parallel fields at time t is Pij(t) :
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Fig. 2. Path integration : speed is coded as the activity of one neuron and orientation

as the most active neuron of a neural field. At every time step, the integrator takes

as input the activity of the orientation neural fiels (convoluted by a cosine shape)

multiplied by the activity of the speed neuron. This input represents the orientation

and distance traveled since the last time step. Summing this input with its own activity,

the integration neural field computes the return vector.

Pij(t) =
t∑

trj

(S(t) . cos(
dw(t)− i

n
)) . (1 − rj(t))

n is the size of the neural fields, i ∈[1 : n], j is the number of path integration
fields (j ∈[1 : nbgoals]), trj is t at the last field j reset, S(t) is the activity of the
speed coding neuron at time t, dw(t) is the active direction neuron position in
the field at time t and rj(t) is the reset signal for the field j at time t (1 during
reset, 0 otherwise). A cosine function has been used, but can be replaced by any
bell curve activity i.e. (a gaussian).

When the robot finds a new resource, it must be able to recruit a new integra-
tion field. And when it is motivated by its simulated physiological needs, the robot
must be able to select among the different integration fields the best to lead it to
the desired resource. We will describe how this can be done using a modified ver-
sion of the simulated neural networks used for simple path integration.

New goal / known goal discrimination
To exploit optimally this multiple field path integration architecture, it is im-
portant that the robot discriminates new resource locations from known ones.
Every time a resource is detected, one of the integration fields must be reset (all
neurons in the field have a null activity) : a new integration field when it is a
new resource (recruitment) and the corresponding integration field when it is
a known resource (recognition). To discriminate new from known goals, we use
the distance coding property of the integration fields. The neural field maximum
activity is proportional to the goal distance. A group of neurons coding for goals
proximity (size = nbgoals) receives activation from a constant input and each of
the neurons is inhibitied by its corresponding positive activity in the integration
field. As the robot gets closer to a known goal, activity of the corresponding
goals proximity neuron gets higher. If we use neurons with a non-linear transfert
function (here a simple thresold just below 1), a goal proximity neuron will only
be active when a known resource is near. This activity could be seen as a goal
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prediction or expectation. Activity of each goal prediction neuron at time t is
Goal Predictionj(t) :

Goal Predictionj(t) =

⎧⎪⎨
⎪⎩

1 if (1 − wj′j .

i=n∑
i=1

|(Pij(t))|) > T

0 otherwise

j∈[1 : nbgoals], j′∈[1 : nbgoals], wj′j is the weight of the path integration fieldj′ -
goal proximityj (small negative value), 1 is the constant input, n is the size of
the neural integration fields and T is a definite threshold of the form (1 - ε).

Figure 3 shows how this goal prediction is used to discriminate new from
known goals. Resource detection both activates the new goal and the known
goal neurons but goal prediction neurons inhibit the new goal neuron and the
new goal neuron inhibits the know goal neuron. Thus when a resource is detected,
if no goal prediction is made, this resource is considered as a new goal (a known
goal otherwise).

Fig. 3. New goal/known goal discrimination. As the robot gets closer to a known goal,

the corresponding goal proximity neuron activity gets closer to 1. As shown here, above

a definite threshold (T = 1 - ε), a goal prediction is made and resource detection will

then be considered as detection of a known goal rather than of a new goal.

Integration field recruitment and goal recognition
When a new goal is detected, a new integration field must be recruited. This is
done by resetting one of the integration fields. Figure 4 (upper part) shows how
fields to be recruited are selected.The main idea is to take an unused field or at
least the field associated to the least used goal. The ”most used goals” group of
neurons (size = nbgoals) receives one to one connections from the recruitment
reset group of neurons (same size) and has recurrent one to one connections
with a weight slightly under 1. Each time a new integration field is recruited,
the corresponding ”most used goals” neuron receives activation and the reccurent
connections act as a decay function. Thus, the neuron of the ”most used goal”
group corresponding to a newly recruited field will be more active than the one
of an old goal. The ”less used goal” group of neurons is a winner takes all groupe
of neurons that receives a constant activation input (one to all connections) and
is inhibited by the ”most used goals” group of neurons (one to one connections).
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Its single active neuron thus corresponds to the integration field to inhibit when
a new goal is detected. The recruitment reset group simply makes the product of
the ”less used goal” activities (one to one connections) and the new goal detection
neuron activity (one to all connections). Only one neuron of the recruitment reset
group can be active at a given time, and only when a new goal is detected. Each
of its neurons inhibits an entire field of the multiple path integration fields group.
When a known goal is detected, the corresponding integration field should have
no activity. However, because the resources are represented by square surfaces
the robot might detect a known resource from a position different from the reset
point and a little activity might still be found on the corresponding integration
field. Furthermore, a residual activity on the field might be caused by integrations
errors due to discretisation or even by the sliding of the robot wheels on the floor.
To avoid the cumulative effect of these errors, when a known goal is recognized,
the corresponding integration field is also reset inducing a recalibration effect
similar to [6]. Figure 4 (lower part) shows how fields to be reset because of goal
recognition are selected. The nearest goal group is a winner takes all group of
neurons that receives one to one connections from the goals proximity group.
The only active neuron corresponds to the closest goal. The recognition reset
group simply makes the product of the nearest goal group activities (one to
one connections) and of the known goal detection neuron activity (one to all
connections). Only one neuron of the recognition reset group can be active at a
given time and only when a known goal is detected. Each of its neurons inhibits
an entire field of the multiple path integration fields group. The recognition
reset group projects one to one activation connections to the most used goals
group. A goal is thus considered as used when it is recruited as well as when it
is recognized.

Fig. 4. Integration field recruitment and goal recognition. As shown in this example,

when a new goal is detected, the integration field corresponding to the less used goal is

reset (recruitment). When a know goal is recognized, the integration field corresponding

to the nearest known goal is reset (recognition).
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Goals competition and integration field selection
Once several integrations field have been recruited, it is important to be able to
select the right one to reach the desired resource. The architecture can only work
if it is able to learn the association between the goals (and their corresponding
integration fields) and the drive they satisfy. Furthermore, one resource can be
present in several different locations of the environment. It is then necessary to
select one of these locations (e.g. according to their distances). Figure 5 shows
the neural network used to achieve this. The goal-drive association group receives
one to one connections from the recruit reset group and the recognition reset
group and one to all plastic connections from the active drive group. The one to
all plastic connexions from the active drive group will then adapt their wieghts
(conditional connexions) according to the recruit and recognition reset activity
(unconditional connexions). Following its hebbian learning rule, weights of the
plastic connections will adapt so that when a drive is active, the goal-drive
association group will have activity on the neurons corresponding the goals that
satisfy this drive. Every time a goal is detected, the corresponding goal-drive
association is reinforced. Activity of each goal-drive neuron at time t is GDi(t) :

GDi(t) =
j∑
1

Dj(t) . wji(t)

Weights adaptation :

Δwji(t) = λ(t) . (recruitRi(t) + recogRi(t)) . Dj(t)

Fig. 5. Goals competition and integration field selection. The goal drive association

group learns which goal satisfies which drive and the nearest motivated goal group

select the nearest motivated goal. The corresponding integration field (and thus the

corresponding action) is selected via a neuronal matricial product.
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i is the working memory span size (nbgoals), j is the number of drive, Dj(t) is
the active drive neuron j activity at time t, wji(t) is the weight of the Dj -
GDi connexion at time t, λ(t) is the learning rate at time t, recruitRi(t) and
recogRi(t) are the recruitment reset and recognition reset signals for goal i at
time t (reset of a neural field when a new goal and a know goal are detected).
Neuromodulation of this hebbian learning group of neurons (λ) is high when
a goal is detected allowing fast learning of the goal-drive association. It is low
otherwise, letting slowly forget the drive associations of goals that could satisfy
the active drive but are not detected).

To take into account selection by the drive as well as selection by goal distance,
the nearest motivated goal group of neurons receives one to one activations con-
nections from the goal-drive association as well as from the goal distance group
and sums its inputs. Using the winner takes all rule, its single active neuron
corresponds to the closest goal which satisfy the active drive. Selection of the
corresponding integration field is done by a matrix product between the multiple
integration fields group and the nearest motivated group. This matrix product
is done in two steps. First, a group of neurons the same size as the multiple inte-
gration fields group makes the product between the activity it receives from the
multiple integration fields group (one to one connections) and from the nearest
motivated goal group (one to a field connections i.e. horizontal projections). The
field corresponding to the selected goal is the only one to sustain activity (the
other fields have an activity which is product by 0). Finally, this almost empty
neurons matrix is projected through vertical connections (vertical projection) to
a group with a single field of neurons which can then be used just like in the
simple path integration model to compute the direction of the return vector.

Path integration benefits and drawbacks
Because the robot only needs to detect a resource once to be able to store and
compute dynamically its return vector, the actions that lead to the goal don’t
need to be learned. When it is not motivated, the robot explores randomly its
environment. If a drive is high enough, it will then be able to reach the resources
locations it has discovered. However, path integration has a major drawback. It
is not precise over long periodes of time. Cumulative errors come from the direc-
tion discretization and from the slidings of the robot wheels on the floor. Studies
of path integration on different animals [11] have shown that these cumulative
errors are structural limitations.

3 Visual Navigation

The visual system is able to learn to characterize (and thus recognize) different
”places” of the environment. Inspired by visual navigation models issued from
neurobiology [12], the visual system, a simulated neural network, learns place
cells. Each place cell codes information about a constellation of local views (vi-
sual cues) and their azimuths from a specific place in that environment [4,13].
Activities of the different place cells depend on the recognition levels of these
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Fig. 6. Sensorimotor visual navigation : a visual place cell is constructed from recog-

nition of a specific landmarks-azimuths pattern and an action is associated with this

place cell. The action to learn is usually given through supervised learning.

visual cues and of their locations. A place cell will then be more and more active
as the robot gets closer to its learning location. The area where a given place cell
is the more active is called its place field. When the maximum recognition level
of place cells is below a given threshold T , another place is learned. The higher
is T , the more place cells are learned in a given environment. An associative
learning group of neurons allows sensorimotor learning (the place-drive-action
group on figure 6). Place-drive neurons are associated with the return vector of
the corresponding goals to autonomously build a visual attraction bassin around
each goal. Figure 6 shows how this navigation strategy works and how it allows
different responses according to the active drive. The main advantage of this
navigation strategy over path integration is that it is not sensitive to cumulative
errors. Learning precision can be maintained over long periodes of time. How-
ever, this strategy is long to learn autonomously. [6,7] have used TD lambda
and Q learning to learn by trial and errors to reach the goal. But this learning
process is long (at least compared to the immediat usability of path integration).

4 Robotic Experiments

The main goal of this proprio-visual navigation architecture is to take advan-
tage of both strategies in order to be immediately functional (path integration
benefit) and robust over time (sensorimotor learning benefit). Furthermore, the
coupling between these two strategies allows to quickly learn and stabilize the
sensorimotor associations. The task is a multiple resource problem : the robot
needs two different resources (water and food) and each resource is present in
two different places of the environment (see figure 1). In the first experiment,
we only used the proprioceptive strategy to learn the task. Figure 7 shows the
robot trajectories after learning is made (the resource are discovered by random
navigation).

In the second experiment, both strategies were coupled in order for the visual
strategy to use information coming from the proprioceptive strategy. During
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Fig. 7. Proprioceptive navigation trajectories : when motivated, the robot heads for

the closest corresponding resource

Fig. 8. Visual navigation trajectories : after 10 minutes of proprioceptive navigation,

visual navigation has learned enough to produce a converging behavior. When moti-

vated, the robot heads for the corresponding resource.

latent place-action learning, the visual strategy associates place cell recognition
to the return vector computed by the proprioceptive strategy. Figure 8 shows
the robot trajectories using the visual strategy coupled to path integration (10
minutes of proprioceptive navigation).

5 Conclusion and Perspective

Complementary aspects of a motor working memory based on neural field asso-
ciated to visual place recognition give a quick access to autonomous abilities for
navigation. Proprioceptive navigation using a working memory doesn’t need to
be learned. The actions that lead to the goal are the result of a computation and
not of a learning process. But it is not robust and unless the robot constantly
navigate beetween short distance goals, it will inevitably become less and less
precise until it is not usable anymore. Visual strategy has the strong advan-
tage of being robust over time allowing the recalibration of the path integration
fields. The coupling of these two strategies allows to boostrap learning using the
proprioceptive strategy and then to use the proprioceptive strategy output (an
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action) as input for the visual strategy sensori-motor learning. This coupling
allows a rapid learning of the stable sensorimotor associations.

However, further developments of this navigation architecture should be fo-
cused on the need to design a mechanism to select which strategy has to be used.
This selection mechanism could rely on very different but nonetheless equally
important parameters. The strategy to use could be selected according to its
propension to satisfy the underlying drive (or motivation). In other words, a frus-
tration mechanism based on prediction of the drive satisfaction could be very
efficient to regulate autonomously the strategy to use and thus the robot be-
havior. Furthermore, each strategy being based on distinct information sources,
strategy selection could rely on perceptive context.
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Abstract. Prefrontal cortex (PFC) has been implicated in the ability

to switch behavioral strategies in response to changes in reward contin-

gencies. A recent experimental study has shown that separate subpop-

ulations of neurons in the prefrontal cortex were activated when rats

switched between allocentric place strategies and egocentric response

strategies in the plus maze. In this paper we propose a simple neural-

network model of strategy switching, in which the learning of the two

strategies as well as learning to select between those strategies is gov-

erned by the same temporal-difference (TD) learning algorithm. We show

that the model reproduces the experimental data on both behavioral and

neural levels. On the basis of our results we derive testable prediction

concerning a spatial dynamics of the phasic dopamine signal in the PFC,

which is thought to encode reward-prediction error in the TD-learning

theory.

1 Introduction

The ability to switch between different navigational strategies for reaching the
goal is crucial for adaptive spatial behavior. Large body of animal studies sug-
gest a large variety of navigational strategies, which depend on sensory input
of different modalities [1]. Existing lines of experimental research focus on (i)
how the different strategies are implemented in the brain and what memory sys-
tems support them [2,3,4,5]; and (ii) what is the mechanism of selection between
different strategies and corresponding memory systems during ongoing behav-
ior [6,7,8]. In particular, a series of animal studies in the plus maze (Fig. 1A)
provided an insight into the role of hippocampus (HPC), dorsolateral striatum
(DLS) and prefrontal cortex (PFC) in learning the tasks in which changing re-
ward contingency forced the animals to use either a place strategy or a response
strategy. In the plus maze, the place strategies can be defined as approaching a
particular place associated with reward, e.g. the end of the East arm in the case
of strategy ’go East’ (Fig. 1C). The response strategies can be defined as mak-
ing a particular egocentric turn at the center, e.g. ’turn left’ strategy (Fig. 1D).

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 390–401, 2010.
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E. Place ’west’

C. Place ’east’
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N
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B. Response ’right’

D. Response ’left’

A.

Fig. 1. Experimental setup in the plus-maze task [8]. A. Plus maze. B-E. Learning

tasks testing response strategies (B,D) and place strategies (C,E). In (B,C) and (D,E)

lower paths are consistent, while upper paths are inconsistent.

Note that if animals start their trial in the North position, both strategies lead
to the same location. In contrast, the two strategies lead to different locations
if the starting position is South, permitting the dissociation between the two
strategies.

Experimental studies in the plus maze have shown that rats with inactivated
HPC were strongly biased towards response strategies, while they were biased to-
wards place strategies when DLS was inactivated [4,5]. In other experimental en-
vironments a double dissociation between HPC and DLS has been demonstrated
in place-learning and response-learning tasks, respectively [2,3]. Moreover, recent
electrophysiological recordings of PFC neurons while rats were navigating in the
plus maze have demonstrated that different neuronal populations were active
depending on which strategy is currently in use [8]. When rats had learned that
the correct strategy was a place-based one, a subpopulation of neurons were
highly active. When the reward contingency changed so that the response-based
behavior was the only valid strategy, another subpopulation became active, while
neurons in the first subpopulation became silent. In addition to being a suitable
experimental setup for studying strategy learning and switching, the plus maze
is also attractive from the modeling point of view. This is because the analysis
of strategy switching and its neural correlates can be performed at a well defined
location (the cross point) where behavior is crucial for successful performance
(in contrast to, e.g., water maze where no such location can be identified).

The experimental data reviewed above suggest a two-level hierarchical organi-
zation of spatial behavior in the plus maze. On the first level, different neuronal
networks (located in e.g. HPC or DLS) learn corresponding navigational strate-
gies taking a particular sensory modality as an input. On the second level, a
neural network (located in the PFC) learns to choose which strategy is more
successful and gives the control of the behavior to that strategy [9]. In a simple
way, a behavioral strategy can be considered as a rule that determines which of
the available motor actions should be performed when a particular sensory in-
put is observed. Similarly, the strategy switching can be described as the choice
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of one of the available strategies, given the sensory input. From a theoretical
point of view, these two learning tasks are identical, assuming that available
motor actions (first level) or available strategies (second level) are encoded by
the activities of neural populations.

Here we were interested to see how far we can go in explaining the behavioral
and neural data by suggesting the learning algorithm is identical on both levels.
The learning algorithm we use is a standard temporal-difference (TD) learning
rule called Q-learning [10]. At the core of TD-learning algorithms is the mini-
mization of a so-called reward-prediction error which is proposed to be coded by
the phasic activity of dopaminergic (DA) neurons in the ventral tegmental area
(VTA) [11]. We have analyzed the learning dynamics of the reward-prediction
error in our model and compared the error propagation on the two levels. Our re-
sults suggest that a two-level organization of behavioral control with TD-learning
on each level is compatible with principal experimental results [4,8]. In addition,
our model generated testable predictions concerning differences in DA signaling
between HPC and PFC.

2 Model

Our neural network model of navigation consists of three interconnected subnet-
works responsible for response strategy, place strategy and strategy selection,
respectively (Fig. 2). The response-strategy subnetwork learns egocentric move-
ments such as, e.g., turning left, while the place-strategy subnetwork learns to
enter a particular arm. The strategy-selection network learns to choose which
strategy will take control of behavior on each time step. In our model, the three
subnetworks functionally correspond to different neural structures in the rat
brain that are implicated in spatial learning. Namely, the response subnetwork
corresponds to the DLS, the place network corresponds to the HPC, while the
selection network corresponds to the PFC.

Each of the three subnetworks has the same simple architecture of a single-
layer perceptron in which learning occurs according to a TD learning rule. The
input layer encodes sensory input to the network, while the output layer rep-
resents actions that this network generates. The subnetworks are hierarchically
organized in two levels: the two subnetworks of the lower level learn the place
and response strategies, while a single subnetwork of the upper level (strategy
selection network) learns to select which of the two subnetworks of the lower
level will take control over behavior. The selection is assumed to occur by in-
hibiting the motor output of the non-winner strategy. Below we describe the
inputs, outputs, and learning in the different subnetworks.

2.1 Place Learning

Place strategy was implemented as follows. Input to the network was represented
by the activities of Npc place cells with Gaussian spatial receptive fields, centers
of which were distributed uniformly over the environment. More precisely, the
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Fig. 2. The architecture of the model. SC – sensory cells, PC – place cells, RAC –

response-action cells, PAC – place-action cells. Open (filled) circles denote inactive

(active) cells; the large open arrows denote all to all feed-forward projections between

corresponding neural structures; the large filled arrows denote motor output of the

model; small filled arrows denote preferred direction of the action cells in these struc-

tures; ball-arrows denote inhibition.

activity of place cell j was calculated as rP
j = exp(−d2

j/2σ2), where σ is the
width of animal in the maze and the center of the j-th receptive field. Place cells
projected to place-action cells aP

i with weights wP
ij . Four place-action cells coded

for movements in allocentric directions East, West, North and South. Activities
of the place-action cells were calculated according to Eq. 1, and the weights were
updated using Eq. 2 on each time step. An allocentric movement, proposed to
be performed on the next time step by the place strategy, was chosen on the
basis of response-action cell activities according to Eq. 4 on each time step.

2.2 Response Learning

In the response strategy network, input cells were Nsc sensory cells that coded
for the presence of walls around the simulated rat. All sensory cells were divided
into four subpopulations coding for the space in front of the rat, left from the
rat, right from the rat and behind the rat, respectively. Presence or absence of
a wall at a specified egocentric direction from the rat (and hence the ability to
move in this direction) was encoded by setting activities rsc

j of the corresponding
sensory cells to 0 or 1, respectively. Sensory cells projected to response-action
cells aR

i with weights wR
ij . Four response-action cells coded for movements in

egocentric directions Forward, Leftward, Rightward and Backward. Activities of
the response-action cells were calculated according to Eq. 1, and weights were
updated using Eq. 2 on each time step. An egocentric movement, proposed to be
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performed on the next time step by the place strategy, was chosen on the basis
of response-action cell activities according to Eq. 4 on each time step.

2.3 Strategy-Selection Learning

In the strategy selection network, input was represented by the combined ac-
tivities of Npc + Nsc input cells from place and response strategy networks. An
intuition for this particular choice of input is the following: given all available
information at the current state, the selection network decides which strategy
should be chosen to take control over behavior. Input cells projected to strategy-
selective (action) cells aS

i with weights wS
ij . Two strategy-selective cells coded

for place and response strategies, respectively. Activities of the strategy-selective
cells were calculated according to Eq. 1, and the weights were updated using Eq. 2
on each time step. One of the strategies (the winner strategy) was selected on
the basis of activities of the strategy-selective cells according to Eq. 4 on each
time step. The next movement actually performed by the simulated rat was the
one proposed by the winner strategy.

2.4 Experimental Setup and Simulation Procedure

All simulations were performed in a simulated plus-maze environment (Fig. 1A)
with length L between the ends of the opposite arms (in arbitrary units, see all
parameter values in Table 1). All results were averaged over 100 simulated rats.
The noise in the model comes from (i) pseudo-random choice in starting position
and (ii) stochastic action choice, see Section 2.5 below.

At the start of a trial, each simulated rat was put in one of the starting
positions (either N or S in Fig. 1A) and allowed to reach one of the goal arms
(either E or W in Fig. 1A). Starting positions were chosen in a pseudo random
order, while the goal position on each trial was chosen depending on the reward
contingency (see Fig. 1B). For example, if the task was ‘response right’ and the
starting position was S, then the goal position was set to be E. If a simulated
rat started from position S (N), the entrance to northern (southern) arm from
the center was blocked.

The simulated rats were tested in either strategy switches or strategy reversals.
During strategy switches, different simulated rats were first trained in either
place or response task (see Fig. 1B). After 200 trials of training the task was
changed to the task of the other type (if it was a response task in the first phase,
it changed to a place task for the second phase, and vice versa). During strategy
reversals, the first phase of training was the same as during strategy switches;
however, in the second phase the task was of the same type but with a different
reward contingency (if it was, e.g., a ‘response left’ task in the first phase, it
changed to ‘response right’ for the second phase).

Upon reaching the goal arm, the rat was given reward Rt = R (see Eq. 3
below and Table 1) and a new trial started. All other actions resulted in Rt = 0.
An attempt to backtrack, or reaching the arm opposite to the goal arm resulted
in starting a new trial (backtracks were not counted as trials).
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2.5 Learning Equations

Basic learning equations implemented a standard Q-learning algorithm [10] in
which states and actions were encoded in the firing rates of activities of artificial
neurons [12,13]. More precisely, a state st at time t was represented by the
activities of input units rstate

i (t), which projected via connections with weights
wij to action units with activities raction

i :

raction
i (t) =

∑
j

wijr
state
j (t) (1)

Each action unit i represented an action ai available in the state st. Activity of an
action cell (Eq. 1) was interpreted as the Q-value Q(st, at) of performing action
at at state st. In the present notation, symbol ai denotes i-th action available
at the current state, while at denotes the action actually chosen at time t from
the available actions, thus ∀t ∃i : at = ai.

During learning, weights wij were adjusted on each time step according to a
TD-learning rule:

Δwij(t) = ηδ(t)eij(t) (2)

where η is the learning rate,

δ(t) = Rt + γQ∗(st, at)−Q(st−1, at−1) (3)

is the reward prediction error and eij(t) is the eligibility trace that represents the
memory of past actions. The eligibility trace of a synapse [10] was increased each
time the synapse had participated in generating a movement, i.e. eij(t + 1) =
eij(t) + rstate

j if action ai was performed at time t. All eligibility traces decayed
with time according to eij(t + 1) = γλeij(t), where 0 < γ, λ < 1. In Eq. 3,
Q∗(st, at) = maxi Q(st, ai) is the Q-value of the optimal action at state st.

Outcomes of different actions at different states need to be explored in order to
learn action values. Exploration was ensured by choosing actions stochastically
in each state using softmax algorithm, i.e. the probability of choosing action ai

at time t was calculated according to

p(at = ai) = exp(βai)/
∑

i

exp(βai) (4)

Table 1. Model parameters

Maze length L 7.0

Size of input populations Npc, Nac 13

Q-learning parameters γ, λ 0.9

Reward for reaching the goal R 10.0

Learning rate η 0.05

Softmax parameter β (selection network/strategy networks) 1.0 / 4.0

Place field width σ 0.4
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with β as a constant parameter. We also tested ε-greedy criterion for action
selection, in which an optimal action is chosen with probability 1-ε and a random
action is chosen otherwise. Results were similar to those reported here (we used
ε = 0.1).

3 Results

3.1 Learning Switches and Reversals

Learning performance was estimated by calculating a mean number of failures
across training trials, for strategy switches and for reversals (Fig. 3). An outcome
of a trial was defined as a failure if the simulated rat reached the arm opposite
to the goal arm at the end of the trial, and a success when the rewarded arm was
reached. Criterion of 80% of correct trials in the last 40 trials [8] was reached
within less than 100 trials for switches and reversals (red solid lines in Fig. 3),
similarly to rats. For the purposes of subsequent analysis, we defined a ‘before’
phase as the period between the trial in which the criterion was reached for
the first time and the trial where task contingencies changed; an ‘after’ phase
corresponded to the period after the trial when the criterion was reached after
the contingency change and until the end of training (see Fig. 3A).

3.2 Activity of Modeled Prefrontal Neurons during Behavior

Next, we analyzed the activity of strategy-selective neurons during behavior. The
focus was on the activity at the choice point of the simulated maze, since only at
this position a difference in the activities is crucial for successful performance.
During switches from a response to a place strategy, the response-strategy neu-
ron was significantly more active than the place-strategy neuron during ‘before’
phase, while the activity pattern reversed during the ‘after’ phase (Fig. 4A).
In the model, this is a consequence of the fact that for a reward contingency
corresponding to response strategy, place strategy is able to correctly predict
reward only in approximately half of the trials. Conversely, when the contin-
gency corresponds to the place strategy, reward predictability of the response
strategy is only about half of that of the place strategy. The activity of the
strategy selective neurons in our model resembled the persistently changing cells
recorded by Rich & Shapiro (2009) [8] (≈24% of all cells recorded from PFC
during strategy switches). Persistently changing cells were defined as cells that
fired at significantly different rates during the ‘before’ and ‘after’ phases.

The advantage of the experimental setup used by Rich & Shapiro (2009) is that
the selectivity of neural activity to a particular strategy can be dissociated from
the selectivity to other behavioral variables. To clarify this idea, consider all trials
started in e.g., North position (see Fig. 1). When switching from, e.g., response
strategy ‘turn left’ to place strategy ‘go east’, the ‘north-to-east’ path remains to
be a valid (or consistent) path, in spite of being controlled by another strategy.
In contrast, the ‘south-to-west’ path which was a valid path before the switch,
becomes invalid (or inconsistent) after the switch. Therefore, in order to show
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Fig. 3. Model performance during strategy switches (A,B) and reversals (C,D). Black

lines show the mean number of failures as a function of trials. Red solid and dotted

lines show mean trial number ± SD at which the criterion was reached (see text).

that putative strategy-selective neurons respond specifically to strategy switches,
but not to other behavioral and motor variables, one has to demonstrate that
these neurons change their activity while the rat runs along the consistent path
before and after the switch. This is true for strategy-selective cells in our model.
In spite of the fact that on the consistent paths the simulated rats made the same
turns before and after the switch, these turns were controlled by the response
strategy before the switch and by the place strategy after the switch. The change
in strategy is reflected by the corresponding change in the firing rate of strategy-
selective cells in our model (Fig. 4B).

Conversely, putative strategy-selective neurons should fire with similar rates
when strategy remains the same but behavior changes (e.g. when starting from
the opposite arms of the maze). This is so in our model, as demonstrated by
similar rates of response-strategy cell before the switch, when starting from dif-
ferent starting positions (Fig. 4C). The same is true for the place-strategy cell
after the switch (Fig. 4D).

Finally, putative strategy-selective neurons should be sensitive to changes in
strategy, but not to changes in reward contingency when the strategy remains the
same (as in reversals, [8]). Thus, if paths and contingency change, but strategy
remains the same, as in reversals, strategy-selective neurons should fire with
similar rates after the change in contingency. This is indeed so in our model,
since the response-strategy cell fired with similar rates during the ‘before’ and
‘after’ phases in response reversal (Fig. 4E); similarly, the place-strategy cell fired
with similar rates before and after spatial reversal (Fig. 4F). This is in contrast
to the case when contingency, paths and strategy change, where neurons change
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Fig. 4. Activity of the response-strategy (blue) and place-strategy (red) cells during

switches (A-D) and reversals (E,F). A. Cell activity during reversal from response

(‘left’) to place (‘east’) task. B. The same data as in A, but only successful trials from

position N are shown (i.e., only for consistent paths). C,D. Activity of the response-

strategy neuron during the ‘before’ phase (C) and of the place strategy neuron during

the ‘after’ phase (D). The neural activities are grouped according to starting positions.

E,F. Cell activity during response (E) and place (F) reversal.

significantly their rates as shown in Fig. 4A (the figure is similar in the case of
switch from place to response strategy, not shown).

3.3 Prediction about DA Activity in the PFC during Strategy
Switches

The results above suggest that different strategies are indeed encoded in the
activities of the strategy-selective cells in our model, in a manner resembling
the strategy encoding by the rat PFC neurons [8]. It is interesting to see what
predictions can be derived from this simple model. The principal feature of the
TD learning algorithm that is used in our model to learn strategies and strat-
egy selection is the reliance on the reward-prediction error δ (Eq. 3). It has
been hypothesized that activities of dopaminergic neurons in the VTA encode
the reward-prediction error [11]. This hypothesis is supported by experimental
data from conditioning experiments showing that DA activity is increased im-
mediately after reward delivery in the beginning of learning, while after learning



Minimal Model of Strategy Switching in the Plus-Maze Navigation Task 399

BA.

Fig. 5. A. Evolution of the distance between peak δ location and the goal across trials

for place-strategy network (red) and strategy-selection network (black). The distance

is measured by fractions of total distance L of the maze: 0 corresponds to reward site,

while 1 corresponds to start position. The starting positions were either N or S in

pseudo-random order, the goal warm was fixed (E). B. Evolution of Q-values of the

response strategy (blue) and place strategy (red) across trials. For this simulation, we

decreased the learning rate to η = 0.001 in order to minimize the influence of noise.

The starting position (south) and goal location (north) were constant for all trials.

the increase in DA activity occurs upon the presentation of a reward predicting
stimulus, i.e. before the reward is received [14]. If this hypothesis is true, then
reward propagation dynamics in our model may suggest how DA activity should
change during goal learning in our plus-maze navigation task

In order to describe the reward propagation dynamics, we measured the evo-
lution across trials of the mean distance between the location where δ was max-
imal and the goal location for the place-strategy network and strategy selection
network during a stable performance session (i.e., 400 trials with pseudo-random
starting positions and a fixed goal arm). Similarly to what has been observed in
the conditioning experiments [14], the peak of δ propagated from the reward site
to locations closer to the starting position (Fig. 5A). In terms of DA signaling, this
corresponds to the shift of a peak in DA activity away from the reward site with
training. Moreover, in our simulation the peak of δ shifted further from the goal in
the place strategy network than in the strategy selection network (as shown by the
difference between the red and black lines in Fig. 5A). Thus, the general testable
prediction derived from our model is that propagation of the peak DA signal in
the prefrontal cortex will be limited by the choice point of the maze.

4 Discussion

We presented a simple model of strategy switching in the plus maze in which place
and response strategies, as well as selection between those strategies, were learned
using a standard Q-learning TD algorithm. The architecture of the model can be
directly mapped to the architecture of neuronal networks implicated in naviga-
tion. In spite of its simplicity, the model has been able to learn successfully spa-
tial reversals, response reversals and strategy switches in the simulated plus maze
task. The learning time was comparable to the learning time of real rats in behav-
ioral experiments [8]. Moreover, activities of strategy-selective cells in the selec-
tion model were similar to those of strategy-selective biological neurons recorded
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from the PFC of behaving rats. In addition, a testable prediction concerning DA
signaling in the PFC has been derived from our modeling results.

There are several limitations of the presented model in relation to available
experimental data concerning the role of prefrontal cortex in behavior. First,
it is known that strategy switches and reversals in the plus maze are mediated
by different subareas of the prefrontal cortex, medial PFC (mPFC) and orbito-
frontal (OFC) cortex, respectively [6,7]. Moreover, there is experimental evidence
suggesting hierarchical organization of these two subareas [15]. In our model,
both switches and reversals are learned within a single network which can be
considered as a combined model of mPFC/OFC. We will address the differential
roles of mPFC and OFC in future versions of the model. Second, it has been
shown that when rats were trained to perform multiple strategy switches, lesions
to mPFC did not impair switching performance after the third switch. These data
suggest that by the third switch rats acquired a mPFC-independent strategy
(possibly depending on reactive or habitual mechanisms) which allowed them
to immediately switch strategy when reward was not obtained in the predicted
location. Our model can not explain these data, since from the point of view
of the selection network all switches are identical. Finally, our model is only
partially consistent with the data suggesting that place strategy is preferred early
in training, while this preference shifts towards response strategy with prolonged
training [4]. In Fig. 5B, we plot the evolution of the Q-values for the response
and place strategies (which are equal to the activities of strategy-selective cells
in the selection network) across trials. The Q-value for the response strategy at
the asymptote of training is higher than that for the place strategy, consistent
with the preference for the response strategy after overtraining. However, this
result is the consequence of the particular model of the sensory input that we
chosen for the response-strategy network and hence is not general enough to
provide a valid explanation for the experimental data. A more detailed model of
sensory input (see, e.g. [13]) may be required to make a stronger claim.

The architecture of the model presented here is similar to a model proposed
previously [16,17]. However, the learning algorithm is substantially simplified
and is identical in the strategy learning networks and in strategy selection net-
work, greatly simplifying the analysis of the model. In addition, we provide a
comparison between strategy selective neurons in our model with new data from
experimentally recorded mPFC neurons. Finally, we note that the number of
input cells in the model can be increased without decreasing the model’s per-
formance. We used a small number of cells to speed up simulations, but any
number of input cells can be used.
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Abstract. In this paper we study distributed online learning of locomo-

tion gaits for modular robots. The learning is based on a stochastic ap-

proximation method, SPSA, which optimizes the parameters of coupled

oscillators used to generate periodic actuation patterns. The strategy is

implemented in a distributed fashion, based on a globally shared reward

signal, but otherwise utilizing local communication only. In a physics-based

simulation of modular Roombots robots we experiment with online learn-

ing of gaits and study the effects of: module failures, different robot mor-

phologies, and rough terrains. The experiments demonstrate fast online

learning, typically 5-30 min. for convergence to high performing gaits (≈
30 cm/sec), despite high numbers of open parameters (45-54). We con-

clude that the proposed approach is efficient, effective and a promising

candidate for online learning on many other robotic platforms.

1 Introduction

Modular robots are made up from a number of interconnected robotic modules.
Each module can communicate with neighbor modules, sense its local environ-
ment, and control its own actuators. By combining the modules in different con-
figurations robots with different capabilities can be constructed. Since a robot’s
mobility is highly dependent on the details of its morphology, the flexibility of
modular robot’s morphology makes them an interesting platform for studying lo-
comotion. However, control and adaptation of locomotion must be implemented
in the context of the modular robot’s distributed morphology. Further, since
modular robots are polymorphic we desire a strategy which is not designed for
a specific morphology. The strategy should rather optimize a variable number
of control parameters, for a class of morphologies, while the robot is moving in
its environment. In this paper we take a distributed control approach to tackle
the problem: All modules have individual, identical, and autonomous controllers.
Any module optimizes its own set of control parameters based on a global reward
signal. The robot’s locomotion pattern then emerges from the collective adap-
tations and behaviors of its modules. We hypothesize that such a distributed
strategy may be more robust and flexible since it may be independent to the spe-
cific robot’s morphology and can adapt online to module failures or morphology
changes. Ultimately, we anticipate that by studying such distributed strategies

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 402–412, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Distributed Online Learning 403

we may gain insights into how adaptive sensory-motor coordination can emerge
and self-organize from billions of individual cells in biological organisms.

In this paper we study a distributed learning strategy for online optimiza-
tion of locomotion gaits. We experiment with two quadruped robots constructed
from Roombots modules. Each Roombots module has three actuators which we
control using periodic actuation patterns generated by three local oscillators.
Neighbor-to-neighbor communication between modules is used to synchronize
the module’s oscillators. These local connections make the oscillators form a
central pattern generator (CPG) network covering the whole robot thereby en-
abling global synchronization. To enable life-long learning based on noisy fitness
measurements we apply the model-less Simultaneous Perturbation Stochastic
Approximation (SPSA) method. Each module optimizes its own local CPG pa-
rameter set based on a globally shared reward signal. Therefore, both the control
and the learning are distributed without any centralized control necessary.

The rest of this paper is organized as follows: In Section 2 we summarize
related work. In Section 3 we describe the methods which comprise the online
learning strategy. The experimental platform and setup is described in Section
4. A number of experiments with simulated Roombots robots are presented in
Section 5. The experiments demonstrate that the proposed strategy finds fitter
gaits than random search optimization, works for different morphologies, can
adapt to module failures, but converges to suboptimal gaits in rough terrains.
We conclude in Section 6 that the proposed approach is efficient, effective and
a good candidate for online learning of locomotion on many robotic platforms.

2 Related Work

Here, we review related work on evolutionary adaptation and online learning of
modular robots for the task of locomotion. Karl Sims pioneered the field in the
early 90’s by co-evolving the morphology and control of simulated modular robots
[10]. Later work succeeded in transferring similar co-evolved robots from simula-
tion to hardware [6,8]. An example of adaptation by evolution in modular robots
was conducted by Kamimura et al., who evolved the coupling parameters of cen-
tral pattern generators for straight line locomotion of modular M-TRAN robots
[5]. By incorporating sensory entrainment in the optimization the authors were
able to bridge the reality gap. Although appealing, one challenge with evolution-
ary approaches is that once transferred the robot is typically no longer able to
adapt to major changes in the morphology or environment. To overcome this lim-
itation optimization of locomotion gaits can be performed online. This was studied
by Marbach and Ijspeert on the YaMoR modular robotic system [9]. Their strat-
egy was based on Powell’s method, which performed a localized search in the space
of selected parameters of coupled oscillators. Parameters were manually extracted
from the modular robot by exploiting symmetries. Follow-up work by Spröwitz
et al. demonstrated online optimization of 6 parameters on a physical robot in
roughly 25-40 minutes [14]. We also try to realize simple, robust, fast, model-
free, life-long learning on a modular robot. The main difference is that we seek to
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automate the controller design further in the sense that no parameters have to be
extracted from symmetric properties of the robot. Further, our approach utilizes
a form of distributed optimization. A similar approach was taken by Maes and
Brooks who performed distributed learning of locomotion on a 6-legged robot [7].
The learning was distributed to the legs themselves. Our strategy is not dependent
on the robot’s specific morphology. Similarly, Bongard et al. demonstrated learn-
ing of locomotion and adaptation to changes in the configuration of a modular
robot [1]. They took a self-modeling approach, where the robot developed a model
of its own configuration by performing basic motor actions. In a physical simulator
a model of the robot configuration was evolved to match the sampled sensor data
(from accelerometers). By co-evolving the model with a locomotion gait, the robot
could then learn to move with different morphologies. Our work presented here is
similar in purpose but different in approach: The strategy is simple, model-less
and computationally cheap to allow implementation on small embedded devices,
such as modular robots. In previous work we studied distributed, morphology in-
dependent, online learning for ATRON and M-TRAN robots [2,3]. This work was
based on the same principles but the methods applied were different: instead of
SPSA optimization we applied a simple reinforcement learning strategy and in-
stead of coupled oscillators we applied discrete actions and gait-tables.

3 Methods

This section describes the methods for generating periodic actuation patterns
for gait implementation and for online optimization of gait parameters. The
methods are selected and combined into an online learning strategy with the
following design goals in mind:

Morphology Independence: Since a modular robot can take on many different
morphologies, the strategy should not be designed for any particular morphology
but rather function on a class of different morphologies.

Life-long Learning: The morphology of a modular robot can change over time,
either due to module failures, adding or removing of modules, or due to voluntary
morphosis, therefore, the strategy must be able to continuously adapt while
performing its function.

Noise Tolerance: The gaits must eventually be optimized directly on the phys-
ical robot. The interactions between the robot and its environment will be com-
plex and in practice impossible to predict, therefore, the optimization strategy
must be tolerant to noisy fitness measurements.

Simple Implementation: Modular robots are embedded devices with limited
communication and computation abilities, thus, the strategy must require a min-
imal amount of resources and ideally be simple to implement on the distributed
morphology that modular robots are.

3.1 Central Pattern Generators

Biological CPGs are special neural circuits found in vertebrates, able to produce
a rhythmic signal without any external sensory input, where they for example
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control muscles during locomotion. We apply a CPG model for gait control
because of their ability to generate periodic actuation patterns, ability to self-
synchronize in a distributed system, open parameters which are appropriate for
optimization, and finally since CPGs are biologically plausible. A review of CPGs
and their use in robot control can be found in [4]. The specific CPG model we
utilize is a Hopf oscillator in Cartesian space with diffusive coupling [15]. The
advantages of this model include its simplicity, stable limit-cycle behavior, and
explicit parameters for setting phase, amplitude and frequency. For an oscillator
i the coupled differential equations are:

ẋi = γ(μ− r2
i )xi − ω̄yi (1)

ẏi = γ(μ− r2
i )yi + ω̄xi (2)

Where ri =
√

x2
i + y2

i and the state variables are x and y. γ is a parameter that
affects the speed of convergence towards the oscillators amplitude μ2. ω̄ is the
oscillator’s frequency which is a function of a frequency parameter, ω, and is also
affected by the sum of couplings to other oscillators. A coupling from oscillator
i to oscillator j has a weight parameter, wij , and a desired phase difference φij .
Then the oscillator may be coupled to other oscillators using:

ω̄ = ω +
N∑

j=1

wij

ri
[(xiyj − xjyi) cosφij − (xixj + yiyj) sin φij ] (3)

We use one oscillator to control the position of an actuator by using xi as the
control set-point for the actuator.

3.2 CPG Network Architecture

To enable a scalable, distributed, and morphology independent control strat-
egy we design the network of CPG couplings so that it is equivalent on each
module (homogeneous control). Each Roombots module is programmed with
four oscillators: three which are used as set-points for its actuators (Cm1, Cm2

and Cm3) and one which acts as a clock (Cc). The architecture is illustrated in
Fig. 1. The robot is equipped with a distributed global clock, implemented as
a network of in-phase clock oscillators, one per module. Each clock oscillator is
coupled with the clock oscillators on its neighbor modules using local communi-
cation channels. This architecture is scalable since oscillators are only coupled
neighbor-to-neighbor, so the computation/communication load is independent
on the number of modules in the robot. Further, the architecture is distributed
since the module controls itself based on its local state and local interactions.
Finally, the architecture is morphology independent since when adding a new
module to the robot new couplings can automatically be established using local
communication. Therefore, the individual modules are not aware of the global
module configuration.
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Neighbors

Cc

Cm1

M1

Cm2

M2

Cm3

M3

x1 p1 x2 p2 x3 p3

Fig. 1. The CPG network architecture of coupled oscillators within each Roombots.

Three oscillators provide the set-points for the three servos (M1 -M3). A forth oscillator

acts as a clock which is coupled in phase with clock oscillators on neighbor modules.

The servo position, pi, can be used as feedback in the oscillators although we do not

use it here.

3.3 Learning Algorithm

For online optimization of CPG parameters we select the Simultaneous Pertur-
bation Stochastic Approximation (SPSA) method by Spall [12]. This algorithm
requires no explicit gradient and therefore no model of the robot. It is designed
to build an approximation of the gradient from direct (generally noisy) measure-
ments of the objective function. Further, SPSA only requires two measurements
of the objective function per iteration (i.e. two robot trials with different con-
trollers) independent on the number of adjustable parameters. Also, these mea-
surements are made based on small perturbations of the same parameter set.
Hence the robot’s behavior only alters slightly while it is learning, unlike opti-
mization based on population-based methods such as evolutionary algorithms.
Finally, SPSA is simple to implement in a distributed fashion since each mod-
ule may independently optimize its own parameters without knowledge of the
other modules parameters or the need for any other coordination than simple
synchronization of when the parameters are updated.

The SPSA method optimizes the parameter set θ̂ defined by the experimenter.
In an iteration, k, it estimates the gradient, g(θ̂), based on two noisy measure-
ments of the objective function y(θ̂):

ĝk(θ̂k) =
y(θ̂k + ckΔk)− y(θ̂k − ckΔk)

2ck

⎡⎢⎢⎢⎣
Δ−1

k1

Δ−1
k2
...

Δ−1
kp

⎤⎥⎥⎥⎦ (4)

Where ck is a learning parameter and Δk is an vector of randomized ±1. SPSA
then updates θ̂ based on ĝk(θ̂k).
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(a) (b) Quadruped Type 1 (c) Quadruped Type 2

Fig. 2. (a) An illustration of the Roombots’ three degrees of freedom. (b) A robot

comprised of five Roombots modules. (c) A robot comprised of six Roombots modules.

Δθ̂k = −ak · ĝk(θ̂k) (5)

θ̂k+1 = θ̂k + sign(Δθ̂k) ·min(|Δθ̂k|, ε) (6)

ak is a learning parameter, we also added a max step-size, ε, to reduce the risk
of instability.

4 Experimental Setup

The Roombots is a self-reconfigurable modular robot which is being developed
at EPFL [13]. A Roombots module consists of two spherical parts, made up
by four hemispheres in total, see Fig. 2(a). The hemispheres can actively be
rotated relative to each other, thereby giving a Roombots module two “outer”
and one “inner” actuated degree of freedom. The outer and inner hemispheres
contain up to three active connectors respectively, which enable a module to
connect to other modules. In this paper we experiment with the two different
quadrupedal Roombots robots shown in Fig. 2. The Roombots modules are
simulated in the commercial Webots robot simulator by Cyberbotics Ltd [16]
which relies on Open Dynamic Engine (ODE) for simulation of collisions and
rigid body dynamics [11]. The details of the Roombots model used are based on
the current prototype of the Roombots as well as expected characteristics of the
final design. The characteristics are kept fairly conservative but since module
details will vary slightly compared to the final Roombots design, we cannot
expect a perfect transfer to the physical modules once ready. The most important
module parameters are: mass = 0.975 kg, actuation torque = 5 Nm, and a
maximum rotational velocity = 2.62 rad/sec. Other environmental parameters
include coefficients of friction and restitution, which are 1.0 and 0.5 respectively.

In the following experiments each module runs identical learning controllers
and optimizes their behavior based on a single shared reward signal. For simplic-
ity the reward is velocity computed as the distance traveled by the robot’s center
of mass in the xy-plane in a fixed length time duration: y(θ̂) =

√
Δx2 + Δy2/T .

Each T seconds a single reward signal is sent to all the modules which corre-
sponds to a measurement of either y(θ̂k + ckΔk) or y(θ̂k − ckΔk). After both
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Table 1. Fixed parameters

(a) Coupled Oscillators

Symbol Description Value

ω Frequency 0.8 Hz

γ Amp. Contraction 1.0

θcc Phase Difference 0.0

θmc Phase Difference 2π - θcm

wcc, wcm Coupling strength 5.0

wmc Coupling strength 1.5

(b) SPSA-based Learning

Symbol Description Value

ck Gain parameter 0.025 or 0.05

ak Gain parameter 0.00015

ε Max Stepsize 5% of range

T Time Step 4 sec.

Table 2. Open parameters in the coupled oscillators

Symbol Description Init. Val. Range

μ2 Amplitude 0.35π [0; 0.7π]

θcm Phase Difference 0.0 [−π; π]

xoffset Offset 0.0 [-0.2π; 0.2π]

measurements are performed the new θ̂k+1 is computed. Fixed parameters for
the SPSA-based learning and the CPG architecture are set as indicated in Table
1. The only parameter which is not the same for the two robots is the learning
parameter ck. For Type 1 ck = 0.025 is appropriate, while it causes divergence in
the learning for Type 2. Instead we set ck = 0.05 for Type 2 at the cost of more
gait variance during learning. The open parameters which must be optimized by
the learning algorithm are shown in Table 2. For SPSA-based learning the open
parameters, θ̂, are scaled between 0 and 1 and initialized to 0.5 (midpoint of the
valid range). We found that random initialization often produces initial gaits
too far from near optimal gaits, which causes the learning system to sometimes
get caught in local optima. We plan to experiment with using random search
optimization to find a good initial parameter set.

5 Experiments

In this section we present experiments with the proposed SPSA based strategy
on simulated Roombots robots.

5.1 Morphology Independent Learning

To study the effects of different morphologies we performed experiments with
SPSA-based learning and random search optimization on the Type 1 and Type
2 Quadruped robots. The average result of 10 trials with Type 1 is shown in Fig.
3(a). We observe that both the SPSA-based strategy and random search converge
after approximately 10 minutes of trial and error behavior by the robot. This fast
convergence gives strength to the claim that the learning could realistically be
utilized for life-long adaptation on the physical robot. Further, we observe that
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(a) Flat Terrain (Robot Type 1)
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(b) Flat Terrain (Robot Type 2)
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(c) Module Failure (Robot Type 1)
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(d) Different Terrains (Robot Type 1)

Fig. 3. The graphs show the average velocity of the robots as it improves over time. (a)

and (b) SPSA-based learning compared to random search optimization. “Max” graphs

indicate the average of the highest velocity measured so far in the trial. (c) Adaptation

after back module failure. (d) Adaptation in three different terrains. All graphs are the

average of 10 independent trials, bars indicate standard deviation.

the online average velocity (30.7 cm/sec), measured from iteration 400 to 500,
using the SPSA-based strategy is significantly higher than the maximum gait
velocities (20.4 cm/sec) found by random search optimization (P = 4.88∗10−7).
This result indicates that the parameter space is too large for random search
to find the same solutions within the time given, further it also indicates the
existence of gradients in the objective function that the SPSA-based strategy
can exploit. For comparison we performed the equivalent experiment, using the
same controller with the Type 2 robot. The results are shown in Fig. 3(b).
Compared to learning with Type 1 robot we observe that for Type 2 the SPSA-
based strategy converges slower (approx. 30 minutes) but still manages to finds
high performing gaits. Also here we find that the SPSA-based strategy converges
to significantly better gaits (27.6 cm/sec) than those found with random search
(20.5 cm/sec) (P=1.64 ∗ 10−6).

By inspecting the solutions found by SPSA for the two robots we observe that
all found gaits are similar to a trot, where the legs move together in diagonal
pairs. Although the solutions found with random search optimization showed
greater variability all the gaits were still some variation of a fundamental trot.
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These observations indicate that a trot gait is a strong attractor point in the
objective function for these particular combinations of robots, environment, and
parameterized CPG controller.

In summary the SPSA-based control strategy allows us to perform online
learning with two different robot morphologies without changing any part of the
strategy. Except that we found it necessary to change the learning parameter, ck.
In future work we will try to remove this limitation by using adaptive learning
rates to increase the strategy’s morphology independence.

5.2 Adaptation after Morphosis and in Rugged Terrain

To study the effects of involuntary morphosis, i.e. morphological change, we per-
formed experiments with module failures using the Type 1 robot. Initially the
five modules comprising the robot are fully functional. After 500 iterations (2000
seconds), a module fails by locking its three actuators in their initial position de-
fined by the starting pose of the robot (the CPG couplings stays intact). We then
observe if the robot is able to adapt to this change in morphology by letting the
robot learn for additional 500 iterations without resetting the learning parame-
ters or any other part of the control system. For comparison we also performed
the equivalent experiments with the learning disabled after module failure. In
this case the robot does no longer adapt but keeps performing the same gait as
just before the module failure. We performed two experiments: (1) In the first ex-
periment a leg module fails. The module failure event is followed by a minor drop
in velocity (from 31.4 cm/sec to 27.6 cm/sec), with no clear later improvement.
The results of the equivalent experiment with no adaptation after module fail-
ure yields an average velocity of 27.1 cm/sec after module failure. Consistently
we find that there is no significant difference in the average velocity between
adaptation/no-adaptation after module failure (P = 0.33). So adaptation after
morphosis seems not important in the case of a failing leg module for this robot
structure. (2) In the second experiment the back module fails. In this case the
event is followed by a major drop in average velocity, which seems to gradually
improve after the event, see Fig. 3(c). The average velocity in the time interval
3000 sec to 4000 sec is 20.9 cm/sec with adaptation and 13.2 cm/sec without
adaptation. Statistical analysis confirms that there is a significant difference be-
tween adaptation/no-adaptation in this case (P = 0.00063). So unlike the case
of a failed leg module, in the case of failed back module life-long adaptation is
important.

To study the effects of environment parameters on the learning we perform
experiments with SPSA-based learning using a Type 1 robot in simulated rugged
terrains. In the xy-plane the height of the terrain is defined by: height(x, y) =
a ·cos (b · y)·sin (b · x). We set the parameters to: b = 2.5 meters and a to 0, 0.075
and 0.15 meters to create a terrain which vary from completely flat to a hilly
terrain with relatively steep slopes and deep valleys. Fig. 3(d) shows the result of
learning in these three different terrains. By visually inspecting the found gaits
we observe that in all cases the learning finds gaits which are able to move in
the given terrain. As for flat terrain, in rough terrain the found gaits were also
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trot-like, however, the stride length was generally shorter. In addition, we found
two effects on learning in increasingly rough terrain: (1) The first effect is a
decrease in the final average velocity: 32.8 cm/sec (σ = 2.59), 23.2 cm/sec (σ =
3.67), 15.1 cm/sec (σ = 2.31) for a = 0.0, a = 0.075 and a = 0.150 respectively
(measured by reevaluating the final gaits without adaptation). This effect is not
surprising since we expect the robot to move slower in rougher terrain. (2) The
second effect is a decrease in the ability to learn near optimal gaits. We observe
this by reevaluating the gaits found in flat terrain (a = 0.0) in the two non-flat
terrains (a = 0.150 and a = 0.075). Because the gaits are optimized in a different
environment we would expect to see a decrease in performance compared to those
optimized for the environment. However, instead we observe a drastic relative
increase in performance: 30.6 cm/sec (σ = 2.51) and 24.7 cm/sec (σ = 4.36)
for a = 0.075 and a = 0.150 respectively. This result indicates that the SPSA-
based learning do not find near optimal gaits in the two terrains. The reason for
the second effect is likely due to increased noise in the objective measurement
(beyond the limits of SPSA’s noise tolerance). We have observed a drastic drop in
the average signal to noise ratio for the found gaits from SNR = y(θ̂)/σ = 23.1,
SNR = 10.5 to SNR = 4.00 for the three terrains respectively.

6 Conclusion

This paper reported on experiments using a distributed strategy based on the
SPSA method for online optimization of a CPG network controlling the locomo-
tion of modular robots. This online learning and control strategy was designed
to be independent to the particular robot morphology, simple to implement in
a distributed system, and to enable life-long adaptation based on a noisy re-
ward signal. The strategy was evaluated in simulations of different quadrupedal
Roombots robots. First, we found that the proposed strategy was appropriate
for life-long learning since it could maintain a high performance during learning.
Seconds, we found that the strategy could reliably optimize gaits with a con-
siderably higher velocity than those found by random search. A near optimal
gait (≈ 30 cm/sec) was typically found in 5-30 minutes. Third, we also found
that the strategy enabled the robot to readapt its gait after involuntary mor-
phosis (failed back module). Finally, we found that rough terrains decrease the
strategy’s effectiveness considerably since it drastically increased the amount of
noise in the measured objective function. In conclusion the proposed strategy
is efficient and effective on the Roombots robots and is a promising candidate
for life-long online learning on many other robotic platforms. However, further
work is required to integrate the strategy with appropriate sensor feedback to
modulate or change between gaits while learning. In addition, we plan to study
the strategy’s ability to online co-optimize gait and morphological parameters
for a broader class of robot morphologies.
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Acknowledgments

This work was performed as part of the “Locomorph” project funded by the
EU’s Seventh Framework Programme (Future Emerging Technologies, Embodied
Intelligence) and as part of the “Assemble and Animate” project funded by the
Danish Council for Independent Research (Technology and Production Sciences).

References

1. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-

modeling. Science 314(5802), 1118–1121 (2006)

2. Christensen, D.J., Bordignon, M., Schultz, U.P., Shaikh, D., Stoy, K.: Morphology

independent learning in modular robots. In: Proceedings of International Sympo-

sium on Distributed Autonomous Robotic Systems 8 (DARS 2008), pp. 379–391

(2008)

3. Christensen, D.J., Schultz, U.P., Stoy, K.: A distributed strategy for gait adaptation

in modular robots. In: Proceedings of the IEEE Int. Conference on Robotics and

Automation, ICRA (2010)

4. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and

robots: a review. Neural Networks 21(4), 642–653 (2008)

5. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.:

Automatic locomotion design and experiments for a modular robotic system.

IEEE/ASME Transactions on Mechatronics 10(3), 314–325 (2005)

6. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms.

Nature 406, 974–978 (2000)

7. Maes, P., Brooks, R.A.: Learning to coordinate behaviors. In: National Conference

on Artificial Intelligence, pp. 796–802 (1990)

8. Marbach, D., Ijspeert, A.J.: Co-evolution of configuration and control for homoge-

nous modular robots. In: Proc. 8th Int. Conf. on Intelligent Autonomous Systems,

Amsterdam, Holland, pp. 712–719 (2004)

9. Marbach, D., Ijspeert, A.J.: Online Optimization of Modular Robot Locomotion.

In: Proceedings of the IEEE Int. Conference on Mechatronics and Automation

(ICMA 2005), pp. 248–253 (2005)

10. Sims, K.: Evolving 3d morphology and behavior by competition. In: Brooks, R.,

Maes, P. (eds.) Proc. Artificial Life IV, pp. 28–39. MIT Press, Cambridge (1994)

11. Smith, R.: Open dynamics engine (2005), http://www.ode.org

12. Spall, J.C.: Multivariate stochastic approximation using a simultaneous pertur-

bation gradient approximation. IEEE Transactions on Automatic Control 37(3),

332–341 (1992)

13. Sproewitz, A., Billard, A., Dillenbourg, P., Ijspeert, A.J.: Roombots-mechanical

design of self-reconfiguring modular robots for adaptive furniture. In: International

Conference on Robotics and Automation (ICRA 2009), Kobe, Japan (May 2009)

14. Sproewitz, A., Moeckel, R., Maye, J., Ijspeert, A.J.: Learning to move in modu-

lar robots using central pattern generators and online optimization. Int. J. Rob.

Res. 27(3-4), 423–443 (2008)

15. van den Kieboom, J.: Biped locomotion and stability a practical approach. Master’s

thesis, University of Groningen, The Netherlands (2009)

16. Webots. Commercial Mobile Robot Simulation Software,

http://www.cyberbotics.com

http://www.ode.org
http://www.cyberbotics.com


Learning New Motion Primitives in the Mirror
Neuron System: A Self-organising

Computational Model

Serge Thill and Tom Ziemke

Cognition & Interaction Lab

Informatics Research Centre
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Abstract. Computational models of the mirror (neuron) system are at-

tractive in robotics as they may inspire novel approaches to implement

e.g. action understanding. Here, we present a simple self-organising map

which forms the first part of larger ongoing work in building such a

model. We show that minor modifications to the standard implementa-

tion of such a map allows it to continuously learn new motor concepts.

We find that this learning is facilitated by an initial motor babbling

phase, which is in line with an embodied view of cognition. Interestingly,

we also find that the map is capable of reproducing neurophysiological

data on goal-encoding mirror neurons. Overall, our model thus fulfils

the crucial requirement of being able to learn new information through-

out its lifetime. Further, although conceptually simple, its behaviour has

interesting parallels to both cognitive and neuroscientific evidence.

1 Introduction

Learning by imitation is one way in which an agent can acquire new skills.
In order to imitate, one must recognise and understand the actions of others,
which is both a trivial insight and a hard problem. One possible approach is to
segment observed complex actions (e.g. drinking from a glass) into constituent
parts (e.g. reach for glass, grasp glass, bring to mouth, etc.). These constituents
are commonly referred to as motion primitives and there are several approaches
within the field of robotics aimed at identifying such primitives. Traditional
unsupervised algorithms to this effect typically analyse statistical properties
of an observed trajectory to segment this into motion primitives. This can be
done, for example, based on joint velocities (e.g. Pomplun and Matarić, 2000;
Lieberman and Breazeal, 2004, see also Kulić and Nakamura (2008) for a discus-
sion) or based on a measure of variance in the data (e.g. Koenig and Matarić,
2006). More recently, Kulić and Nakamura (2008) proposed a Hidden Markov
Model strategy to discover primitives in observed motion.

Once a basic repertoire of such primitives has been discovered, they can be
used in imitation learning. Yamashita and Tani (2008), for instance, present a

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 413–423, 2010.
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humanoid robotic platform capable of learning movements based on a neural
network controller. This network exploits multiple activation timescales within
its nodes to segment the motions demonstrated to the robot into a number of
motion primitives (here, segments which are executed repeatedly during one
overall motion) and it can be shown that the motion primitives and the overall
action are represented on different timescales in the network. Learning novel
compositions of motion primitives can then be achieved by modifying only the
slowly activating nodes of the network. The main downside of this approach is
that it requires explicit supervised offline learning. Clearly, it would be preferable
for robotic agents to be able to self-organise, through so-called motor babbling
(e.g. Meltzoff and Moore, 1997; Der and Martins, 2006), their own repertoire
or “vocabulary” of motion primitives autonomously, grounded in on their own
embodiment and interaction with the world.

To improve existing robotic approaches, it might be helpful to take inspiration
from biology. Within this context, mirror neurons (Rizzolatti et al., 1996) are of
particular interest. These neurons have been discovered in Macaque monkeys,
but are also widely believed to exist in humans (in the latter case, however,
most of the evidence comes from brain imaging techniques rather than single
unit recordings - which is why many authors prefer to refer to the mirror system
rather than individual mirror neurons). The characteristic property of mirror
neurons is that they fire both when an agent executes an action himself and when
it observes the same action being executed by another agent. Mirror neurons
are widely considered to underlie action understanding and thus imitation in
humans, but it is important to note that this is a hypothesis and not a proven
fact (Hickok, 2008). Still, the idea of the mirror (neuron) system is an attractive
source of inspiration for designing robotic and computational models that are
capable of imitation (for a recent review, see Oztop et al., 2006).

A recent computational model of the mirror neuron system, called the Chain
model (Chersi et al., 2006) is particularly interesting in this context as it is (1)
based on neurophysiological data (Fogassi et al., 2005) and (2) explicitly repre-
senting motion primitives. In the model, these primitives are chained together
to form the overall action. The model has found some use in the field of robotics
(e.g. Erlhagen et al., 2007), but the primitives are typically hard-coded.

The longer-term aim of our work is to produce, for use in humanoid robots,
a revised version of the Chain model which is capable of learning and integrat-
ing new motion primitives online, and to do so at any point in time. In this
paper, we present the first significant step towards this model by creating a self-
organising map which is capable of such online learning. The use of a SOM to
model a mirror system is not new; a similar approach has been taken by, for
instance Wermter et al. (2003). In that work, however, several maps were used
and organised hierarchically while we use a single map whose node organisation
more closely reflects that hypothesised by the Chain model. Although this is a
very simple approach, we find that it reproduces many of the neurophysiological
results, which may even suggest new insights into the functional organisation of
the mirror neuron system. The rest of this paper is organised as follows: Section 2
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presents the methodology used, in particular the self-organising map formalism
and the input data organisation. Section 3 presents the simulation results, with
a particular focus on the role of motor babbling and context coding. Section 4
presents a brief discussion of the work presented here and future extensions.

2 Methods

2.1 Online SOM

We use a traditional self-organising map (SOM, Kohonen, 1997) with a rectan-
gular grid and no wrapping in the neighbourhood function (i.e. the SOM is not
mapped onto a torus). However, we make no distinction between training and
test data and run the SOM continuously. At every timestep, it is exposed to a dif-
ferent input and the winning node recorded. The evolution of the neighbourhood
size nt and the learning rate αt over time follows a standard approach:

nt = nmin + �(s− nmin) τt� (1)

αt = αmin + (1− αmin) τt (2)

with s being the side length of the map, τ0 = 1 and τt = max (τt−1 − 1/tinf , 0),
where tinf defines the duration of the infancy phase of the network. In this case,
the infancy phase is characterised by shrinking neighbourhood sizes and learning
rates. At any later point in time, both values are kept constant at their minima
(here set to nmin = 1 and αmin = 0.2).

2.2 Input Data

Since the present paper is primarily concerned with the organisation of primitives
in the mirror neuron system, we are required to simulate input data which is
general enough to test the concepts. We therefore require the following minimal

Fig. 1. 3D analogue of input space. Large spheres indicate clusters of datapoints

representing all possible motions by whole body parts. Smaller spheres indicate clusters

related to specific motion primitives which are a subset of all possible motions of one

body part. Example data points for body parts or primitives are randomly sampled

from their respective clusters.
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properties: (1) the data is sampled from a high-dimensional space (20 dimensions
in the present implementation but this is not a limit) in which (2) the overall
motions from different body parts are represented by distinct clusters and (3)
different primitives related to the same body part are represented by distinct
clusters within the body part’s motion cluster. These subclusters can thus be
seen as representing primitives encode meaningful motions. Figure 1 gives a 3
dimensional analogue of the input space. The input data thus presents a certain
level of abstraction compared to raw motion data and can represent for instance,
some processing based on the spatial coordinates of the end effector as in, for
example, the MNS2 model (Bonaiuto et al., 2007). It further removes differences
between sensory origins of the data (e.g. proprioception v.s vision). However,
this is acceptable at this state since we are only concerned with the organisation
within the mirror neuron system here and the data received by this system is
thought to be pre-processed, as seen for instance in the MNS2 model.

For the purposes of this paper, we limit ourselves to two distinct body parts
(which could represent, for instance, arms and legs) and five motion primitives,
which takes inspiration from the human analogue (see for instance the motion
primitives in Chersi et al., 2006). It should be noted, however, that this does not
represent a limitation of the system.

3 Results

In the following section, we describe the behaviour and properties of the SOM
throughout the simulation and show that it develops characteristics that are
analogue to that of a Mirror Neuron System. For illustrative purposes, we discuss
a specific example here but the findings are general and reproducible in repeated
runs, even though a SOM has, by nature, random elements that may affect the
overall results.

3.1 Motor Babbling

During the infancy phase (which lasts 5000 iterations) of the SOM, no specific
primitives are trained. Rather, the SOM is merely exposed to data-points sam-
pled randomly from the two clusters representing all possible motions from the
two body parts. The resulting map represents the body parts in roughly equal
amounts but, not surprisingly, no motion primitives (Fig. 2A). Of particular
interest is the fact that each body part is represented by a single, continuous
cluster (rather than, for instance, one of the parts being split into several small
and disconnected clusters). Since the neighbourhood size will be small after the
initial infancy phase, the implication is that activity related to one body part is
not likely to significantly affect nodes encoding the other body part (the excep-
tion being nodes that lie at the border). Thus, in order to investigate how the
map organises motion primitives, it is an acceptable simplification for the sake
of clarity to merely investigate this in detail for one of the body parts.
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Fig. 2. The SOM modelling the mirror neuron system captured at different
points in time. Grey regions indicate neurons encoding general motion of a body

part with different greytones representing different body parts. Coloured neurons ad-

ditionally represent a specific motion primitive involving that body part, with different

colours representing different primitives. Figures show the SOM after (A) infancy:

Nodes have learned to represent the body parts but no specific motion primitives yet;

(B) exposure to three primitives: Some nodes have specialised to encode those prim-

itives; (C) two additional primitives were presented: More nodes specialise to encode

those primitives; (D) a period in which the first three primitives were no longer ob-

served. The network has nonetheless not “forgotten“ these primitives; (E) exposure

to primitives now shown in different contexts. The additional information had little

impact on the overall topology of the network, although some additional nodes now

encode specific primitives.

3.2 Learning Motion Primitives

After the infancy phase, the network is exposed to data-points sampled ran-
domly from clusters representing three primitives belonging to one body part.
Additionally, the network continues to be exposed to smaller amounts of bab-
bling from the second body part. The state of the map after 5000 data point
presentations is presented in Fig. 2B. We first note that there is no radical
change in the representation of the two body parts in the map. Second, a sub-
set of nodes within the area representing the first body part have now further
specialised into specifically representing the three observed motion primitives.
Averaging over 100 runs, we find that the mean area of the map occupied by
every primitive is 4.76± 0.90% of the total area.

Next, we include data-points randomly sampled from the input clusters of two
additional primitives in the set of points presented to the SOM. The resulting
changes in the map after an additional 5000 presentations are shown in Fig. 2C.
Again, nodes within the region representing the first body part have specialised
to encode the newly observed primitives. Averaging over 100 runs, we find that
the mean area representing them is 4.00± 1.38% of the total map, which is only
marginally less than for the original primitives. This difference can largely be
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explained through the fact that the second set of primitives is presented less often
to the map as the first set (since the set from which data-points are sampled is
now larger). In the meantime, the average area of each of the original primitives
has slightly increased to 5.42± 1.16%, since the map continues to be exposed to
them. This is expected as the learning rate is always non-zero and the map will
thus show some plasticity over time.

Finally, we briefly test the memory of the SOM by removing data-points for
the initial three of the five learned primitives from the set of points presented
to the map. Figure Fig. 2D illustrates the effects after a further 5000 iterations.
It can be seen that none of the primitives were “forgotten”, although the mean
area representing these maps (again calculated over 100 runs) shrinks slightly
to 4.73 ± 1.83%. This is due to some of these primitives sharing a “border”
with those that were still actively presented to the map. The area of the active
primitives increased slightly (to 7.42± 1.72%) and some of this increase reduced
the area of the primitives that were no longer observed. Again, this is an expected
plasticity of the map and due to the non-zero learning rates.

Overall, these results thus demonstrate that the SOM is capable of learning
new primitives throughout its lifetime without a major effect on already learnt
primitives. However, the mirror neuron system is also known for encoding the
goal of the overall action that a primitive is part of. In the next section, we
investigate the self-organisation of our map in an analogous situation.

3.3 Goal-Specific Neurons in the SOM

One of the most interesting findings about mirror neurons is that some of them
appear to be specifically encoding the goal of an action (Fogassi et al., 2005).
In other words, a “grasping” neuron might fire if the intention of the overall
action is eating but not if it is moving an object. Here, we investigate how
our SOM performs when actions are presented in the context of different goals.
To do so, we attach an additional 3-dimensional vector), chosen from a set of
two randomly generated ones, to the existing input (see Fig. 3). The SOM is
then run as before, with an infancy phase followed by the presentation of ran-
domly chosen data points from the clusters representing all 5 primitives for 5000

Primitive

Primitive Goal

1 2

Fig. 3. Input vectors with context. Schematic of input vectors without (top) and

with (bottom) goal information. The first component representing motion primitives is

sampled from the hyperspheres as detailed in Methods. Second component, when used,

is chosen from a set of two randomly generated vectors. When not used, it is set to

constant values throughout all simulations.
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Fig. 4. Neurons reacting to primitives shown in specific goal contexts. Every

panel shows SOM response to data from one primitive, with the top (bottom) row

obtained from a map that was context unaware (aware). Grey nodes represent all nodes

in the SOM that encode the presented primitive. Coloured nodes only respond to a

primitive if it is shown in one context (indicated by the colour). They are specialised.

White nodes respond to a primitive in both contexts. They are general. In a context-

unaware map, all responding nodes were general. If primitives are shown in different

goal contexts, some (but not all) nodes develop a specialised preference for only one of

them.

iterations. The additional context vector is chosen randomly for every input. We
are first interested in the effect of this additional information on the overall or-
ganisation of the SOM and find little change (Fig. 2E). On average over 100 runs,
maps that are exposed to five primitives with no contextual information end up
allocating 3.92± 1.20% of their overall area to each of the primitives. With con-
textual information, this changes insignificantly to 3.91± 1.22%. The additional
information does thus not require more nodes to encode each primitive.

We then test how, if at all, the contextual information is encoded within the
SOM. For this, we generate 100 data-points from every motion primitive. This
input is given to the map with each of the possible context vectors attached in
turn and the responding nodes are determined. We call specialised nodes those
that only respond if a given primitive is shown in a specific context. If the same
node responds to a primitive independently of the context vector, we call it a
general node. Prior to exposure to primitives in different contexts, all responding
nodes are general (top row in Fig. 4). This is important insofar as it shows that
nodes are not accidentally responsive to context.

However, if the SOM has in fact been exposed to primitives in the context
of different goals, we find that the neurons encoding this primitive have further
specialised and some of them only fire if the primitive is observed in a certain
context (bottom row Fig. 4). Interestingly, some neurons remain general (white
nodes). We repeat the above simulation 100 times and find that on average, about
one quarter (24.44±6.05%) of the nodes that responded to the given stimuli are
specialised, whereas the remaining ones are general. The SOM thus reproduces
experimental findings in Macaque monkeys, in which both highly goal-specific
and merely primitive-specific mirror neurons were found (Fogassi et al., 2005).
This is remarkable since the mere addition of contextual information was suffi-
cient to produce this behaviour and may suggest that the organisation observed
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in macaque monkeys may be incidental rather than a purposeful encoding of
context.

3.4 The Utility of Motor Babbling during Infancy of the Map

Finally, we investigate the effects of the infancy period of the map during which
it is exposed to random data-points sampled only from the clusters representing
body parts. Although one can see this as an analogue to motor babbling, it is
clearly not a requirement for a SOM to be able to learn the motion primitives.
It is therefore interesting to evaluate the effect of this design choice on the
performance of the map.

To this effect, we run a map for a total of 10000 iterations. During the initial
5000, three primitives from the first body part and random data from the second
body part are presented to the map. For the remaining 5000 runs, we add two
more primitives from the first body part. We compare two cases. In the first,
there is no infancy period at all, meaning that the learning rate and neighbour-
hood size immediately start at their smallest constant values. The second case
has a “normal” infancy period during which the parameters initially shrink as
previously. The first scenario thus investigates a map that has neither infancy
nor motor babbling while the second scenario deals with a map that merely loses
the motor babbling. The final possible scenario - no infancy but an initial phase
of motor babbling - is not investigated in detail as it does not differ from the
previous setup once the babbling phase is over.

For all maps, we calculate the mean area that nodes encoding (1) the body
parts and (2) specific primitives over 100 runs. We compare these results to
the previously used setup (in which the 10000 runs are preceded by an infancy
phase of motor babbling). The results are summarised in Tab. 1. Maps that have
neither infancy nor babbling have the smallest areas encoding primitives and in
general terms, the largest amount of the available map space is left unused even

Table 1. Mean area (in % of map size) occupied by nodes representing (1) body parts

and (2) primitives presented either from the start or beginning at 5000 iterations for

different maps. The table illustrates the benefits of the initial motor babbling during

infancy of the map: (1) low variation between runs and (2) facilitation of the learning

of new primitives.

Body parts Motion primitives

Iterations Map Type First Second Initial Subsequent

5000 No Infancy 9.67 ± 1.74 4.79 ± 1.04 2.79 ± 0.64 -

Normal 64.87 ± 24.05 33.18 ± 24.00 19.32 ± 14.47 -

With babbling 50.21 ± 3.07 48.53 ± 2.99 4.76 ± 0.90 -

10000 No Infancy 14.73 ± 2.79 6.28 ± 1.49 2.89 ± 0.83 2.13 ± 0.51
Normal 65.01 ± 24.03 33.35 ± 23.92 18.09 ± 13.59 2.65 ± 1.09

With babbling 50.65 ± 3.15 48.17 ± 3.06 5.42 ± 1.16 4.00 ± 1.38
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after 10000 iterations. Maps with an infancy phase dedicate almost 60% of the
overall area to the first three primitives, but primitives learned at a later point
in time are represented by a much lower area. Large standard deviations further
indicate that results can vary substantially between runs.

In comparison, our previous setup using maps with babbling during an infancy
phase produces results with very small standard deviations, thus ensuring that
the results are robust and not likely to differ strongly between runs. In addition,
primitives learned at a later time are represented by areas that are only slightly
smaller than those representing primitives learned initially (4.00±1.38 vs 5.42±
1.16% respectively). It is perhaps more accurate to compare the area of the later
primitives with the area occupied by the initially learned primitives after 5000
runs and in this case, the difference is even smaller. In contrast, maps lacking
motor babbling encode the initial primitives with an area approximately 7 times
larger than that of the primitives learned at a later stage. Maps lacking both
infancy and motor babbling end up encoding primitives with areas only half
as large as maps with motor babbling and infancy. The initial motor babbling
phase thus facilitates the learning of new primitives compared to maps lacking
this phase.

4 Discussion

4.1 Online Learning of Motion Primitives

We have presented a simple self-organising map that is capable of learning new
knowledge at any point in time. When presented with input intended to rep-
resent motion primitives, it has been able to adapt and learn novel primitives
as they were perceived. Interestingly, when motion primitives were presented in
different contexts, some nodes of the map implicitly began to be sensitive to
this context, only responding to a certain primitive if it was presented within a
specific context. This replicates neurophysiolgocial findings in the mirror neuron
system (Fogassi et al., 2005) and may imply that the goal-specificity of some
mirror neurons could merely be incidental.

We made a design choice that the map should initially only be exposed to
data akin to motor babble (e.g. Meltzoff and Moore, 1997; Der and Martins,
2006). We subsequently investigated the consequences of this choice and found
that it both facilitated the learning of new motion primitives in later stages
and reduced the variability between results in repeated simulations. This is in
line with the view that “embodied sensorimotor coordination is vital for the
self-structuring of the sensor space necessary for categorization and higher level
cognition” (Der and Martins, 2006).

4.2 Further Work

During the simulations of the map, we observed some expected plasticity de-
pending on the primitives currently being presented to the map. This plasticity



422 S. Thill and T. Ziemke

is due to the fact that the map never completely stops learning. However, fur-
ther research is needed to investigate the effects thereof in more detail and thus
to determine the best values for the neighbourhood size and in particular the
learning rate of the map.

Finally, the work presented here only addresses the formation of motion prim-
itives but not their connection into chains, as required by the original Chain
model (Chersi et al., 2006). The next step in our work will be to extend the map
with an associative memory between winning nodes to form this connectivity.
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Abstract. Taking inspiration from neural principles of decision-making

is of particular interest to help improve adaptivity of artificial systems.

Research at the crossroads of neuroscience and artificial intelligence in the

last decade has helped understanding how the brain organizes reinforce-

ment learning (RL) processes (the adaptation of decisions based on feed-

back from the environment). The current challenge is now to understand

how the brain flexibly regulates parameters of RL such as the exploration

rate based on the task structure, which is called meta-learning ([1]: Doya,

2002). Here, we propose a computational mechanism of exploration reg-

ulation based on real neurophysiological and behavioral data recorded in

monkey prefrontal cortex during a visuo-motor task involving a clear dis-

tinction between exploratory and exploitative actions. We first fit trial-

by-trial choices made by the monkeys with an analytical reinforcement

learning model. We find that the model which has the highest likelihood

of predicting monkeys’ choices reveals different exploration rates at differ-

ent task phases. In addition, the optimized model has a very high learning

rate, and a reset of action values associated to a cue used in the task to

signal condition changes. Beyond classical RL mechanisms, these results

suggest that the monkey brain extracted task regularities to tune learning

parameters in a task-appropriate way. We finally use these principles to

develop a neural network model extending a previous cortico-striatal loop

model. In our prefrontal cortex component, prediction error signals are ex-

tracted to produce feedback categorization signals. The latter are used to

boost exploration after errors, and to attenuate it during exploitation, en-

suring a lock on the currently rewarded choice. This model performs the

task like monkeys, and provides a set of experimental predictions to be

tested by future neurophysiological recordings.

1 Introduction

Exploring the environment while searching for resources requires both the abil-
ity to generate novel behaviors and to organize them for an optimal efficiency.
Besides, these behaviors should be regulated and interrupted when the goals of
� Corresponding author.
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exploration have been reached: a transition towards a behavioral state called
exploitation should then be implemented. Previous results on neural bases of
these functions in the frontal cortex showed crucial mechanisms that could par-
ticipate both to reinforcement learning processes [2] and to the auto-regulation
of exploration-exploitation behaviors [3]. Several computational and theoretical
models have been proposed to describe the collaborative functions of the anterior
cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC) - both
belonging to the prefrontal cortex - in adaptive cognition [4, 5, 6]. Most models
are based on the hypothesized role for ACC in performance monitoring based
on feedbacks and of DLPFC in decision-making. In exploration, challenging, or
conflicting situations the output from ACC would trigger increased control by
the DLPFC. Besides, several electrophysiological data in non human primates
suggest that modulation of this control within the ACC-DLPFC system are sub-
served by mechanisms that could be modelled with the reinforcement learning
(RL) framework [2, 7, 8]. However, it is not clear how these mechanisms inte-
grate within these neural structures, and interact with subcortical structures to
produce coherent decision-making under explore-exploit trade-off.

Here we propose a new computational model to formalize these frontal cor-
tical mechanisms. Our model integrates mechanisms based on the reinforce-
ment learning framework and mechanisms of feedback categorization - relevant
for task-monitoring - in order to produce a decision-making system consistent
with behavioral and electrophysiological data reported in monkeys. We first em-
ploy the reinforcement learning framework to reproduce monkeys exploration-
exploitation behaviors in a visuo-motor task. In a second step, we extract the
main principles of this analysis to implement a neural-network model of fronto-
striatal loops in learning through reinforcement to adaptively switch between
exploration and exploitation. This model enabled to reproduce monkeys behav-
ior and to draw experimental predictions on the single-unit activity that should
occur in ACC and DLPFC during the same task.

2 Problem-Solving Task (PST)

We first use behavioral data recorded in 2 monkeys during 278 sessions (7656
problems ≡ 44219 trials) of a visuo-motor problem-solving task that alternates
exploration and exploitation periods (see Fig.1A). In this task, monkeys have to
find which of four possible targets on a screen is associated with reward. The
task is organized as a sequence of problems. For each problem, one of the tar-
gets is the correct choice. Each problem is organized in two succesive groups of
trials; starting with search trials where the animal explores the set of targets
until finding the rewarded one; Once the correct target is found, a repetition
period is imposed so that the animal repeats the correct response at least three
times. Finally, a cue is presented on the screen and indicates the end of the
current problem and the beginning of a new one. Data used here were recorded
during electrophysiological experiments, after animals had experienced a pre-
training stage. Thus, monkeys are particularly overtrained and optimal on this
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Target rewarded at last trial

Fig. 1. Monkeys had to find by trial and error which target, presented in a set of four,

was rewarded. A) Monkeys performed a set of trials where they chose different targets

until the solution was discovered (search period). Each block of trials (or problem)

contained a search period and a repetition period during which the correct response

was repeated at least three times. A Problem-Changing Cue (PCC) is presented on the

screen to indicate the beginning of a new problem. B) Action value reset in the model

at the beginning of each new problem.

task. Monkey choice, trial correctness and problem number are extracted and
constitute the training data for the reinforcement learning model.

3 Behavior Analysis with the Reinforcement Learning
Framework

3.1 Theoretical Model Description

We use the reinforcement learning framework as a model of the way monkeys
learn to choose appropriate targets by trial-and-error [9]. The main assumption in
such framework is that monkeys try to maximize the amount of reward they will
get during the task. This framework assumes that animals keep estimated action
values (called Q-values) for each target (i.e. Q(UL), Q(LL), Q(UR) and Q(LR)).
It also assumes that monkeys decide which action to perform depending on these
values, and update these values based on feedbacks (i.e. the presence/absence of
reward) at the end of each trial. We used a Boltzmann softmax rule for action
selection. The probability of choosing an action a (either UL, LL, UR or LR) is
given by

P (a) =
exp(βQ(a))∑
b exp(βQ(b))

(1)

where β is an exploration rate (β ≥ 0). In short, when β is low (close to 0),
the contrast between action values is decreased, thus increasing the probability
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to select a non optimal action (exploration). When β is high, the contrast is
high and decision-making becomes more greedy. We differently use βS and βR

parameters on search and repetition trials so as to allow different shapes of the
Boltzmann function on these two periods. In other words, βS and βR were used
as two distinct free parameters to see if they would converge on different values,
hence indicating meta-learning through the use of two different exploration rates
by the animal.

At the end of each trial, the action value is updated by comparing the pres-
ence/absence of reward r with the value expected from the performed action
according to the following equation

Q(s, a)← Q(s, a) + α(r −Q(a)) (2)

where α is the learning rate of the model (0 ≤ α ≤ 1). Similarly to previous
work [2], we generalize reinforcement learning to also update each non chosen
action b according to the following equation

Q(b)← (1− κ) ·Q(b) (3)

where κ is a forgetting rate (0 ≤ κ ≤ 1).
Finally, we add an action-value reset at the beginning of each new problem,

when a PCC cue appears on the screen. This is based on the observation that
monkeys almost never select the previously rewarded target, and have individ-
ual spatial biases in their exploration pattern: they often start exploration by
choosing the same preferred target (see Fig.1B).

3.2 Simulation of the RL Model on Monkey Behavioral Data

The reinforcement learning model is simulated on monkey data, that is, at each
trial, the model chooses a target, we store this choice, then we look at the choice
made by the animal, and the model learns as if it had made the same choice. At
the next trial, the model makes a new choice, and so on. At the end, we compare
the sequence of choices made by the model with the monkey’s choices. With this
method, the model learns based on the same experience as the monkey. Thus the
choice made at trial t becomes comparable to the animal’s choice at the same
trial because it follows the same trial history {1...t − 1}. For each behavioral
session, we optimize the model by finding the set of parameters that provides
the highest likelihood of fitting monkeys choices. This optimization leads to
an average likelihood of 0.6537 per session corresponding to 77% of the trials
where the model predicted the choice the monkeys actually made. Fig.2 shows
simulation results on a sample of 100 trials for 1 monkey.

Interestingly, we find that the distribution of each session’s βS used to set the
exploration rate during search periods is significantly lower than the distribution
of βR used for repetition periods (ANOVA test, p < 0.001). The mean βS equals
5.0 while the mean βR equals 6.8. This reveals a higher exploration rate in mon-
keys’ choices during search periods. In addition, we found an average learning
rate around 0.9 for the two monkeys and a smaller forgetting rate (mean: 0.45).
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Fig. 2. Simulation of the reinforcement learning model on 100 trials. Each color is

associated with a different target (UL, LL, UR, LR). The top line denotes the problem

sequence experienced by both the monkey and the model. Black triangles indicate cued

problem changes. The second line shows the monkey’s choice at each trial. Curves show

the temporal evolution of action values in the model. Non selected target have their

value decrease according to a forgetting process. These curves also show the action

value reset at the beginning of each problem, the decrease of incorrect selected targets

value, and the increase of the correct targets value once selected by the animal. The

bottom of the figure shows choices made by the model based on these values.

This suggests that reinforcement learning mechanisms in the monkey brain are
regulated by parameters that were learned from the task structure. In contrast,
raw reinforcement learning algorithms such as Q-learning usually employs a sin-
gle fixed β value, and need to make errors before abandoning the optimal action
and starting a new exploration phase. In the next section, we extract these prin-
ciples to propose a neural-network model integrating such reinforcement learning
and task monitoring mechanisms.

4 Neural Network Model

4.1 Reinforcement Learning Processes

We propose a neural network model in order to propose a computational hy-
pothesis concerning the modular organization of these processes within cortical
networks. Our model extends previous models of cortico-striatal loops which are
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known to be crucial neural substrates for reward-based learning and decision-
making [10, 11]. The principle novelty here is to have the integration of rein-
forcement learning and task monitoring within the ACC-DLPFC system that
produces explore-exploit behaviors. In our neural network, dopaminergic (DA)
neurons from the Ventral Tegmental Area (VTA) compute a reward prediction
error following equation 2, consistently with DAs supposed role in reinforcement
learning [12]. DA signals are used to update action values encoded within the
ACC, consistently with previous work [7]. These action values are then sent to
DLPFC which makes decision of the target to choose and biases action selec-
tion in the striatum. Similarly to classical basal ganglia models but not detailed
here, appropriate action in the striatum is selected by desinhibiting the thala-
mus through the substantia nigra pars reticulata [13, 14]. Finally, the thalamus
projects to the motor cortex which drives behavioral output, and which sends
efferent copies to the ACC in order to update only relevant action through re-
inforcement learning (fig.3).
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Fig. 3. Neural network model. Visual input (targets presented on the screen) is pro-

cessed by the parietal cortex and sent to the ACC-DLPFC system (colored in grey)

which performs reinforcement learning (RL) to rapidly adapt choices by trial-and-error

during the search period. A specific visual signal is used to indicate reward delivery,

representing juice obtained by monkeys. According to RL principles, this visual signal

is translated by VTA into a reinforcement signal which changes action values within the

ACC. In parallel, this reinforcement signal is used to regulate the level of exploration

with MV.

With such organization, the system is yet purely dedicated to reinforcement
learning. In order to add task monitoring mechanisms, we take inspiration from
additional results measured in the PST task. In [8], reaction times were observed
to decrease gradually after errors during the search period, to raise sharply after
the first correct trial, and to remain high during repetition (fig.4A-B). The exact
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opposite pattern was observed at the level of the average activity measured in
DLPFC neurons ([15]; fig.4C). These patterns suggest an integration of feedbacks
used to update a control or attentional level, and a state change of the system
from exploration to exploitation. This resembles the vigilance level employed in
[16]’s theoretical model to modulate the level of activation of a global workspace
in charge of solving the task. In the next paragraph, we provide a computational
hypothesis on the way the ACC could evaluate such kind of vigilance level to
modulate the level of control and exploration in DLPFC.

4.2 Integrating Task Monitoring Signals within the Neural Network

In order to regulate exploration based on feedbacks obtained from the environ-
ment, we add to our ACC component a second population of neurons dedicated
to feedback categorization as described in the monkey ACC in the same task [8].
In our model, these neurons receive the same dopaminergic reward prediction
error signals as ACC action value neurons. The difference resides in the influ-
ence of such DA signals on feedback categorization neurons. The latter either
are inhibited by DA signals and thus produce responses to errors (ERR) or are
excited by DA signals and thus produce responses to correct trials (COR). The
high learning rate used in the model to fit behavioral data in section 3 results in
a strong response of COR neurons to the first reward and in a smaller response
to subsequent ones. This produces neurons responding to the first correct trials
(COR1) as observed by [8]. Fig.5 shows a simulation of these neurons response
patterns. COR and ERR signals are then used to update a modulatory variable
(MV ) according to the following equation:

MV ←MV + α+ · δ+ + α− · δ− (4)

Where δ+ and δ− represent the response of correct and error neurons respectively,
while α+ and α− are synaptic weights set to − 5

2 and 1
4 for the considered task.

MV is constrained between 0 and 1. This equation makes MV be:

Fig. 4. (A-B) Reaction times during the PST task show a progressive decrease along

the search period, and a sharp change during repetition. Adapted from [8]. C) Average

activity in the dorsolateral prefrontal cortex show a similar (inversed) pattern. Adapted

from [15].
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– sharply decreased after a correct trial (COR) ;
– increased after an error (ERR);
– increased after presentation of the problem changing cue (PCC). Although

we did not yet study how the model works during pretraining phases of this
task (i.e. habituation phases preceding electrophysiological recordings), we
observed that before the animal learns what the PCC means, the presen-
tation of this cue is very often followed by an error - because the animal
persists in repeating the same choice while the problem has changed. Thus
we consider here that the PCC has been associated to an error during the
pretraining phase and consequently produces an increase of MV each time
it occurs during the task.

Importantly, MV is used to modulate the exploration rate and the gain in the
DLPFC. The first function is assured in the following manner:

βt =
ω1

(1 + exp(ω2 ∗ (1−MVt) + ω3))
(5)

Where ω1, ω2 and ω3 are parameters respectively equal to 10, -6 and 1. Such
function is a sigmoid which inverses the tendency of MV (see fig.5) and trans-
forms a value between 0 and 1 (for MV ) into a value between 0 and 10 (for β)
according to table 1.

Table 1. MV effect on β following equation (5) with a = 10, b = -6, c = 4.4

MV 0.00 0.25 0.50 0.75 1.00

β 9.9 9.7 8.8 6.2 2.7

Fig. 5. Neural network model simulation during 2 consecutive problems. Black triangle

indicate cued problem changes
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The second function is assured by weighting DLPFCs activity by multiplying
it by MV (which is always inferior or equal to 1). As a consequence, a low
MV produces a high β (almost no exploration) and a low DLPFC activity so
as to focus and lock the DLPFC on performing the action with the highest
value; whereas a high MV produces a low β (higher stochasticity in decision-
making, thus more exploration) and a high activity in DLPFC so as to enable
the performance of non optimal actions.

The model can perform the task like monkeys, alternating between search and
repetition phases. Fig.5 shows the activation of different neurons in the model
during a sample simulation.

5 Discussion and Conclusion

We implemented a reinforcement learning model that can monitor exploration-
exploitation trade-off in a monkey visuo-motor task. The model helped us for-
mally describe monkey behavior in a task involving clear distinction between
search and repetition trials. In addition, the model is based on existing anatom-
ical and physiological properties of the monkey brain. Properties of MV modu-
lation in our model are consistent with data in human and in animal showing a
higher involvement of ACC-DLPFC when the task is demanding or when it in-
volves conflict resolution [17]. Moreover, our results are consistent with previous
electrophysiological work suggesting a role of the ACC-DLPFC system in perfor-
mance monitoring [5], and in reinforcement learning [2, 7]. Our model enables to
draw a list of experimental predictions that have to be tested by simultaneously
recording Anterior Cingulate Cortex (ACC) and dorsolateral Prefrontal Cortex
(DLPFC) neurons in this task:

1. There should exist MV neurons in ACC. Such MV neurons would have a
particular profile of activity: progressive increase of activity during the search
period, drop of activity after the first correct response, activity remaining
low during the repetition period (as shown on fig.5).

2. MV modulation should effect only on DLPFC action value neurons and not
on ACC action value neurons. In the model, we made the choice to keep
original action values (that is, not altered by the MV modulation) in the
ACC so as to have part of the system properly perform the reinforcement
learning algorithm without perturbation, so as to ensure convergence.

3. There should be a higher global spatial selectivity - which reflects the degree
to which neurons discriminate choices of spatial targets on the touch screen
[15] - in DLPFC than in ACC due to the decision-making process based on
the softmax function (which increases contrasts between action values when
β is high).

4. There should be an increase of spatial selectivity in DLPFC but not in
ACC during the repetition period. Such increase of spatial selectivity in
DLPFC neurons in the model is due to the modulatory effect of MV on the
β parameter used in the softmax function.
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Performance of the neural-network model enables a robotics arm to reproduce
monkey behavior in front of a touch screen. Such a pluridisciplinary approach
provides tools both for a better understanding of neural mechanisms of decision
making and for the design of artificial systems that can autonomously extract
regularities from the environment and interpret various types of feedbacks (re-
wards, feedbacks from humans, etc...) based on these regularities to appropriately
adapt their own behaviors.

Future work will consist in modelling how RL parameters are progressively set
during familiarization with the environment. Such goal can be achieved by using
the model to predict day-by-day behavior observed during monkey pretraining.
This will help us understand the dynamics of meta-learning which enable animals
in this task to autonomously learn that a high learning rate is relevant and that
clear transition between exploration and exploitation are required - based on the
extracted structure of task.

Acknowledgments. This work was supported by the French National Research
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Abstract. The cerebellum plays a major role in motor control. It is thought
to mediate the acquisition of forward and inverse internal models of the body-
environment interaction [1]. In this study, the main processing components of
the cerebellar microcomplex are modelled as a network of spiking neural pop-
ulations. The model cerebellar circuit is shown to be suitable for learning both
forward and inverse models. A new coupling scheme is put forth to optimise on-
line adaptation and support offline learning. The proposed model is validated on
two procedural tasks and the simulation results are consistent with data from hu-
man experiments on adaptive motor control and sleep-dependent consolidation
[2, 3]. This work corroborates the hypothesis that both forward and inverse inter-
nal models can be learnt and stored by the same cerebellar circuit, and that their
coupling favours online and offline learning of procedural memories.

1 Introduction

It is largely admitted that the cerebellum plays a major role in motor control (e.g. co-
ordinating movements and making them accurate) by acquiring internal models of the
body and the world [1, 4]. In motor control theory, internal models are divided into
two groups identified as forward and inverse. The forward model predicts the sensory
outcome of an action: it estimates the causal relationship between inputs to the system
and its outputs. The inverse model works in the opposite direction, providing a motor
command that causes a desired change in state [5]. Both forward and inverse models
depend on the dynamics of the motor system and must adapt to new situations and
modifications of the motor apparatus [6].

Although Darlot et al. (1996) [7] suggested that a forward model could be first
formed in the cerebellar cortex and then converted to an inverse model, most of the
existing studies on bioinspired control architectures have compared the advantages of
one type of internal model against the other, debating on which of them is most likely to
be implemented in the cerebellum [8, 9]. Very few works have investigated the benefits
of coupling internal models [10, 11], and none has underlied the fact that internal model
coupling would endow the system with offline learning capabilities. This is quite sur-
prising, given that sleep is known to contribute to offline consolidation and enhancement
of motor adaptation capabilities in humans [12], and that the cerebellum is undoubtedly
implied in these adaptation processes [13].
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© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Coupling scheme for online and offline motor learning. (a) Online adaptation. The arm
controller receives the desired state and maps it onto a motor command (τ ). The desired state
is also sent to the inverse model that acts as a feed-forward corrector and calculates the motor
correction (τc). The resulting command (τf ) is then sent to the arm actuators. By comparing the
desired state against the sensed real state, the inverse model learns to reduce the error between
desired and real arm positions. While the motor command τf is being sent to the arm, an efference
copy of the order is also conveyed to the forward model that learns to predict the consequent
future position of the arm. The predicted state is then sent to the arm controller that can recalculate
a new trajectory if the expected position in the trajectory differs from the predicted one. Finally,
the real state is used to adapt the forward model to mimic the motor apparatus of the arm. (b)
Offline adaptation. During offline processing, sensory feedbacks (i.e. the real state signals driving
forward and inverse model learning) are not available. Yet, if the forward model is at least partially
learnt, the predicted state signals can be used to continue to train the inverse model.

This paper proposes a novel scheme to couple internal cerebellar models. The model
is primarily validated on a closed-loop architecture to control the dynamics of a robotic
arm. The overall coupling model is depicted in Fig. 1a, whereas the offline functioning
of the learning scheme is presented in Fig. 1b, under the assumption that the sequence of
actions performed during online training can be replayed offline. This hypothesis relies
on earlier animal investigations that have explored the possibility that patterns of brain
activity which are elicited during initial task training are replayed during subsequent
sleep [14]. The model is prominently assessed on the rotation adaptation task used by
Huber et al. (2004) [3] to study motor learning (both online and offline) in humans. Our
numerical simulations investigate the benefits of using both internal models to improve
online learning capabilities, and they evaluate to what extent the proposed coupling
scheme can explain the experimental findings on offline learning occurring during sleep
[3]. Second, the model is also validated on a significantly different motor adaptation
task, proposed by Walker and Stickfold 2004, in which subjects have to type simple
numerical sequences on a computer keyboard [2]. Again, both the online and offline
learning capabilities of the model are compared to experimental data.

2 Methods

2.1 Cerebellar Microcomplex Model

The cerebellar microcomplex circuit is modelled as a network of populations of spiking
neurons (Fig. 2) and simulated using an event-driven simulation scheme [15]. Mossy



Coupling of Internal Models in the Cerebellum 437

Fig. 2. The cerebellar microcomplex model

fibres (MFs) are implemented as axons of a population of 1600 leaky integrate-and-fire
neurones separated in two regions: Forward and Inverse Model, FM and IM, respec-
tively. Their driving currents are determined by using radial basis functions spanning
the input space uniformly. The MFs of the forward model carry sensory information (θ)
and an efference copy of the motor command τf . The MFs of the inverse model convey
desired joint position θdes and velocity θ̇des [16]. Each MF region activates a corre-
sponding population of 200 neurones in the deep cerebellar nuclei (DCN). Also, each
MF region projects onto a cluster of 10.000 granule cells (GCs), producing a sparse
representation of the input space. Each GC subpopulation activates in turn a population
of 200 Purkinje cells (PCs), which send inhibitory projections onto DCN neurones. The
firing of DCN provides the outputs of the model, i.e. the forward model estimate the
future state of each joints (position θestim and velocity θ̇estim) and the inverse model
correction to be sent to the system (following an agonist-antagonist muscle representa-
tion, one population called agonist coding for the positive correction torque τ+

corr and
one population called antagonist coding for the negative correction torque τ−

corr).
The firing rate of DCN units is mainly determined by the inhibitory action of PCs,

which in turn are principally driven by the parallel fibre (PF) activity, axons of the
GCs. Therefore, modifying the strength of the synapses between PFs and PCs results in
changes of the input-output relation characterising the cerebellar system. Bidirectional
long-term plasticity (i.e. potentiation, LTP, and depression, LTD) is modelled at the
level of PF-PC synapses (see fig. 2, plastic synapses).

The LTP is implemented as a non-associative weight increase triggered by each GC
spike, simulating the homosynaptic potentiation rule described by Lev-Ram [17]. As
shown in equation 1, the weight of a GCi -PCj connection is increased by α every
time GC i discharges (δGCi = 1):

wGCi−PCj (t) = wGCi−PCj + αδGCi(t) (1)

On the other hand, LTD is implemented as an associative weight decrease triggered
by a spike from the inferior olive. This is the heterosynaptic rule described in 1982 by
Ito [18]. This learning rule is presented in the equation 2 and uses a temporal kernel K
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Fig. 3. Overview of the biomimetic control architecture used to learn the rotation adaption task.
(a) Functional diagram of the controller. A desired trajectory to the highlighted target is computed
by the trajectory generator and transformed in the joint-related reference frame via the inverse
kinematics model. These desired arm states are used at each time step to compute a crude torque
command. The desired state is also sent to the inverse model of the cerebellum, whose output
is a corrective command to control arm movements. The cerebellar forward model receives an
efference copy of the motor command, and predicts the future state (position and speed) and
sends it to the trajectory generator. In the coupling scheme, both internal models drive the system.
Trajectory error is sensed at the level of the limb and sent back to the system, which is used to
compute the training signal at the olivary system level and conveyed by the climbing fibres to
both internal models. (b) Experimental task and calculation of error. S: Starting point; E: Ending;
Green dashed line: Ideal movement towards the target; Red line: actual movement.

which correlates each spike from the inferior olive with the past activity of connected
GCs (see [19] for more information).

wGCi−PCj (tIO) = wGCi−PCj − β

� tIO

−∞
K(t− tIO)δGCi(t)dt (2)

In my simulations, α and β parameters are set to 0.1 and 0.025, respectively.
The teaching signal is conveyed by a population of 400 inferior olive (IO) neurones,

simulated to produce the climbing fibre projections targeting PCs. In the inverse model,
the teaching signal relies on the estimated motor errors ε− and ε+, which are extracted
from the discrepancy between the desired state of each joints and their real state (po-
sition θreal and velocity θ̇real). The latter variables are also used to drive the learning
of the forward model. Normally, the real state of the joints is calculated in the central
nervous system using congruent information from proprioceptive and visual sources.
However, in our simulation, the positions and velocities of each joint are known vari-
ables, and corrective signals are directly derived algorithmically.

All the neuronal units of the microcomplex (i.e. GCs, PCs and DCNs) are modelled
as conductance based, leaky integrate-and-fire units [20]. The irregular discharge of the
IO is simulated by means of a Poisson spike-train generation model.
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2.2 Global Architecture of the System

The global architecture of the generation of arm movement is illustrated in figure 3. We
use the architecture described recently by Carrillo et al. in [19] to control a 2 joints simu-
lated arm in real time. First, a minimum jerk model computes the desired smooth move-
ment of the arm end-point toward the target positioned in (X, Y ). The desired trajectory
is expressed in Cartesian coordinates for the defined time of movement Δt. This desired
movement is then transformed into arm-related coordinates: θdes(t) = (θs,des, θe,des)
are the desired angular position of the shoulder and elbow. Since we use an arm with
only two degrees of freedom, there are no redundancy or inversion problems. As there
is a small chance that cerebellum could play a major role in dealing with these incon-
veniences, the model should still be valid for more complex arm devices.

These coordinates are the input of a crude inverse dynamic controller, which extracts
a set of torque commands τ = (τs, τe), then sent to the articulations with a time delay
δ1 = 50ms. All mathematical solutions of minimum jerk, inverse kinematics and dy-
namics model have been taken from [19]. An error is added to the minimum jerk model,
through an added rotation of α degrees at each time step.

Two adaptive internal models encoded by our simulated cerebellum were included
to the system, an inverse and a forward model. In the inverse model scheme, the desired
angular position for both joints are sent to the cerebellum. The model then calculates
a corrective torque signal τc = (τs,c, τe,c) that compensates the rotation error during
the realisation of the movement. The torque command applied to each articulation i is
the sum of the torque τi computed by a basic inverse dynamics model according to the
desired kinematic trajectory, and of the cerebellar correction (τi,c ): τf = τ + τc. These
two commands are then sent to the limbs with a delay δ1 = 50 ms. The error in the
execution of movement is computed at the level of the arm, and sent back to the system
with a delay δ2 = 50 ms. This error is mainly used to determine the learning signal
conveyed by the inferior olive in order to produce anticipative motor corrections.

In the forward model scheme, the simulated cerebellum receives information about
the current state of each articulation (the angular position of the elbow and the shoul-
der θ(t) = (θs, θe)) and an efference copy of the torque command τf = τs,f + τe,f .
The model then predicts the future position and velocity of the articulations (θ(t) =
(θs,est, θe,est) and θ̇(t) = (θ̇s,est, θ̇e,est)). The coordinates are transformed into Carte-
sian coordinates and sent to the trajectory generator (Xp, Yp). This prediction is com-
pared to the expected position of the arm. If there is a discrepancy between the two
positions, the entire movement from the current estimated place is recomputed by the
minimum jerk model. Because this process is supposed to require important neuronal
resources, we limited its use at once every 100ms.

We fixed the duration of the motor execution to 0.7s for each movement, followed
by a pause period of 0.3s during which joints are reset to their central position, and the
activity of the models is allowed to fall back to normal. Because of this short execu-
tion time and taking into consideration the delay of the sensory feedback , we assume
that high level motor correction (recalculation of the entire trajectory) could not be
performed in the absence of a prediction of the sensory feedback signal.
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2.3 Main Procedural Adaptation Task

The first simulated task is inspired from the rotation adaptation task realized by Huber
et al. (2004) [3]. In this task human subjects have to move a handheld cursor on a two-
dimensional tablet from a central starting point to one of eight targets displayed on a
computer screen together with the cursor position. An opaque shield prevent subjects
from seeing their arm. Targets are randomly highlighted at regular 1-s intervals. Unbe-
known to the subjects, the cursor position is rotated anticlockwise relative to the hand
position by a fixed angle (from 15 to 60°, depending on the trial, see details below).

We simulate the rotation adaptation experiment in order to study the possible role
of internal model coupling for online learning and offline consolidation. The global
architecture of the simulated arm controller is detailed in Fig. 3a. The ideal trajectory
of the arm is computed according to the minimum jerk model ([21]). In order to learn
the rotation adaptation task (i.e. to compensate for the unknown anticlockwise bias),
two internal models encoded by the modelled cerebellar microcomplex of Fig. 2 form
the core of the adaptive closed-loop controller.

The simulated experimental setup consists of a central position S and eight targets
evenly distributed on a circle centred at position S (Fig. 3b). A trial is defined as the
succession of 90 movements. Each movement starts from S and consists in realising a
movement of the arm to one of the eight targets, which is randomly changed every sec-
ond (1s corresponds to the duration of one target-directed movement in our simulation).

Similar to Huber et al. (2004) [3], the experimental protocol involves four incremen-
tal steps, for each of which the angular deviation (bias) is increased by 15°, within the
range [15°, 60°] (see Fig. 4). Every step is composed of three trials. Three groups (FM,
IM, CMoff ) of ten individuals each are trained on the rotation adaptation task. The FM
group uses a pure forward model to solve the task. The IM group employs a pure inverse
model to adapt the response to the unknown angular bias. The CMoff group uses the
coupling scheme.

Following the four training steps, the extent of rotation adaptation of the CMoff

group is tested using an imposed bias of 60° (Trial 13 in Retest 1). Then, simulated
agents are enabled to undergo an offline consolidation process consisting of a series of
48 trials. Subsequently, subjects are retested on a simple trial (Trial 14, retest 2). To
assess the benefit of an offline consolidation process against a pure online learning, per-
formances of the CMoff group are compared to a group of control subjects (CMCTRL)
which do not perform offline consolidation.

Fig. 4. The protocol of the rotation adaptation task and the offline learning task
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Performances are measured by quantifying the directional error (see Fig. 3b), which
corresponds to the angle between the line from the initial hand position (S) to the central
position of the target (T) (dotted green line) and the line to the position of the hand at
the peak outward velocity (solid line).

3 Results

3.1 Rotation Adaptation Task: Online Learning

Figs. 5a,b show the learning performances of the three groups FM, IM, and CMoff

during the online training sessions (i.e. step 1-4, trial 1-12) of the rotation adaptation
task. Fig. 5a displays three examples of arm trajectories towards three different targets.
It shows qualitatively that, at the end of the trial 6, subjects using the coupling scheme
(CMoff , green solid line) tend to perform better than both subjects using the inverse
model only (IM, red dashed line) and subjects using the forward model only (FM, blue
dotted line).

Fig. 5b quantifies these results for the entire set of training trials by averaging over all
subjects. The mean normalised directional error is plotted as a function of training trials.
The three groups of subjects learn to solve the rotation adaptation task and cope with the
increasing unknown angular bias (from 15° to 60°) over training steps. Forward model
subjects (FM, blue dotted curves) adapt quite rapidly but they reach a plateau after the
2nd trial and do not further reduce the error over training. The passage to a new step (i.e.
trials 4,7 and 10) does not have a significant impact on the FM performances and leads
to a small increase of the directional error (+8% between trial 3 and 4; +6% between trial
6 and 7; and +2% between trial 9 and 10), which reflects the fast learning capabilities
of FM subjects. However, subsequent training trials do not significantly decrease the
error, which stabilises around 0.45-0.5 until the end of the training process (trial 12).

On the other hand, inverse model subjects (IM, red dashed curves) are slightly slower
to adapt than FMs, but they succeed in minimising the directional error within each
training session, going beyond the performances of purely FM subjects. Adaptation of
IM subjects is rather characteristic and stereotyped during steps 2, 3, and 4 (i.e. for
angular deviation ranging from 30° to 60°). Every time the angular bias is increased
(i.e. trials 4,7 and 10), the performances of the inverse model are impaired and direc-
tional error increases (between 0.43 and 0.47). This result reflects the slow adaptation
capability of the inverse model when facing new contexts. Then, during the 2nd and 3rd

trials of each step, the inverse model adapts properly and the directional error decreases
significantly (converging to accuracy values ranging from 0.25 to 0.3).

Finally, the subjects using the coupled internal models (CMoff , green solid curves)
perform better than both IM and FM subjects along the entire training period, showing
both fast adaptability and error reduction over time. The mean error rises slightly when
the angular bias changes (i.e. trials 4,7 and 10) but then it decreases significantly and
converges to values ranging from 0.15 to 0.2. Fig. 5b also displays the learning per-
formances of human subjects (yellow data points) as reported by Huber et al. (2004)
[3]. It is shown that the simulated CMoff subjects (green data) have online learning
performances comparable to those of real subjects over the entire training process.
These results suggest that the proposed coupling scheme, which favours the cooperation
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Fig. 5. Rotation adaptation task. Simulation results for both online and offline learning and
comparison with experimental human data. (a) Example of three target-directed trajectories at
the end of trial 6. The system has to adapt its dynamics to compensate for an angular bias of 30°.
The blue dotted (resp. red dashed) lines indicate the sample solutions found by purely forward
(resp. inverse) model simulated subjects, respectively. The green solid lines denote the trajectories
obtained with the coupling scheme model. (b) Results of online learning. The coupling model
(green solid curves) provides both rapid adaptation and appropriate convergence levels. Also, it
reproduces the experimental data obtained with human subjects undertaking the same rotation
adaptation task (yellow data, taken from Huber et al. (2004) [3]. (c) Offline learning results.
The mean error is significantly reduced in the group of simulated subjects that undergo offline
consolidation. The experimental results obtained with real subjects (offline corresponds to sleep-
dependent consolidation) are shown in yellow (taken from Huber et al. (2004) [3]). ***Significant
values, p<0.001.

between internal predictor and corrector models, offers a plausible solution to optimise
procedural motor learning.

3.2 Rotation Adaptation Task: Offline Learning and Consolidation

As aforementioned, another potential advantage of the coupling scheme is that it sup-
ports offline learning assuming that the sequence of actions executed during online
training can be replayed offline [14]. In order to assess whether an offline consolidation
process can further increase the system performances reached at the end of the online
adaptation protocol, 2 groups of 10 simulated subjects are considered. Both groups con-
sist of subjects adopting the coupling scheme (CM). However, one group (CMoff ) is
allowed to undergo offline learning, whereas the other (CMCTRL) is not.

The Fig. 4 shows the protocol. Both groups (CMoff and CMCTRL) undertake the 12
training trials. A first probe test (trial 13) is executed to evaluate the extent of the online
rotation adaptation in both groups. Then, subjects from group CMoff undergo a simu-
lated offline learning process consisting of a set of 48 trials (4320 trajectories randomly
replayed) during which no sensory feedback is provided to the system. Therefore, the
learning signal can only be computed based on the prediction provided by the forward
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Fig. 6. Sequential finger tapping task. (a) Experimental protocol. (b,c) Simulation and experi-
mental results (from Walker and and Stickfold 2004, [2]).

model, and the inverse model can adapt its dynamics only when this teaching informa-
tion is available. Finally, both groups CMoff and CMCTRL undertake a second probe
test (trial 14) and their performances are compared.

Fig. 5c shows the results of this comparison both from our simulations and from
experimental data obtained on human subjects [3]. A repeated measure analysis of vari-
ance and post-hoc tests show that the two groups have similar performances during the
first probe test (i.e. when tested immediately after online training, trial 13). On the other
hand, the second probe test (trial 14) shows that the mean directional error of CMoff

subjects is significantly reduced compared to control subjects. Compared to the first
probe test (trial 13), a performance enhancement of 12.7± 2.1 % is reached by CMoff

subjects. By contrast, control subjects exhibit a lower performance improvement of 5.2
± 1 %. The increase of performance of simulated CMoff subjects is consistent to that
observed experimentally on human subjects after a night of sleep (yellow data, +11 ±
3 % [3]). Since all parameters were controlled in our simulation, the improvement we
report could only be explained by the offline consolidation process, and not by other
factors such as circadian cycle. However, simulated control subjects appear to have bet-
ter performances during the probe test (trial 14) compared to human subjects tested
again after 8 hours of wakefulness, who do not show any significant improvement.

3.3 Cross-Task Validation: Results on a ‘Sequential Finger Tapping Task’

In order to further validate the coupling scheme model, a second (totally different)
procedural task was simulated: the sequential finger tapping task proposed by Walker
and Stickfold (2004) [2].



444 J.-B. Passot, N. Luque, and A. Arleo

This task requires subjects to press four numeric keys on a standard computer key-
board with the fingers of their non-dominant hand. A five elements sequence, 4-1-3-2-4,
must be repetead as quickly and accurately as possible for a period of 30 s. Each 30 s
trial is then scored according to the number of complete sequences achieved. The entire
training consists of 12 trials (with 30 s rest periods between trials). The score from the
first training trial is taken as a baseline, while the score from the final trial is taken as
the post-training performance. 30 simulated subjects are allocated into 2 groups (A and
B). Group A undergoes online adaptation only, whereas group B undergoes both online
and offline learning.

The protocol and results are presented in Figs. 6a, and b,c, respectively. Subjects from
groups A and B show similar performance improvement across the 12 training trials, with
a non significant difference of 4.8% observed at the end of training (Figs. 6b). Overall
performances improved by about 64% across the 12 training trials, with 40% occurring
across the first three trials, and the remaining 24% occurring at a slower but relatively
constant rate across the final ten trials. Figs. 6c illustrates the effect of offline learning
and consolidation. It is shown that subjects from group B, after offline training, exhibit
a significant improvement compared to control group A (probe test 1). They display no
further significant improvement with additional online training (probe test 2).

Figs. 6b,c also show the correspondance between simulation results and experimen-
tal data obtained on human subjects [2].

4 Discussion

This work addresses the issue of coupling internal models (i.e. forward and inverse) in
the cerebellum in order to enhance both online and offline learning capabilities. The
proposed connectionist architecture takes inspiration from the cerebellar microcomplex
circuit and it employs spiking neural populations to process information. Long-term
synaptic plasticity (both LTP and LTD) is implemented to achieve adaptive motor con-
trol. It is shown that the system can acquire representations of closed-loop sensorimotor
interactions, suitable to adapt the behavioural response to changing sensory contexts.

The coupling model reproduces the experimental findings on human procedural
learning during the rotation adaptation task proposed by Huber et al. (2004) [3]. The
sleep-dependent consolidation observed experimentally is mimicked here by an offline
learning phase during which a replay of the contextual information elicited during on-
line training occurs. This hypothesis is corroborated by several experimental studies:
for example, it has been shown that patterns of activity recorded during online practice
of a motor skill task reappear during episodes of REM sleep, while such activity is not
seen in control subjects [14].

The same architecture is also validated on a second procedural task (i.e. the se-
quential finger tapping task proposed by Walker and and Stickfold 2004 [2]), which
strengthens the idea that the proposed coupling scheme may offer a plausible model to
(i) combine the advantages from fast online adaptation properties of forward models
and accurate but slower convergence of inverse models, and (ii) achieve offline consol-
idation of procedural memories to enhance motor control capabilities.
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In both cases, the model cerebellar microcomplex is used to adapt the dynamics of a
fairly simple controller (e.g. two degrees of freedom arm). The model would probably
need more neuronal resources to deal with more complex motor control tasks. One
possible solution may be to use a modular approach as previously proposed by Wolpert
and Kawato (1998) [10]. The coupling model would then be taken as a functional unit,
and various behaviours could be generated by combining the output of several units.
Because one unit could be used in different contexts, a large repertoire of behaviours
could be generated, even with a limited number of modules.

Other questions related to the offline consolidation process can be further investi-
gated using our model. As we observed, a sufficiently long offine consolidation leads to
an improvement of overall performances. This observation raises a fundamental ques-
tion concerning how the potential improvement varies as a function of the duration
of the offline process. Finally, in our simulations to solve the rotation adaptation task,
for instance, random sequences of entire trajectories were replayed when performing
offline consolidation. It remains to be elucidated how the benefits of offline learning
would vary if contextual information were only partially replayed. This question is cur-
rently under investigation using the presented coupling model.

To conclude, we voluntary omitted the role of the parietal lobe in this study, although
this region is known to be implicated in target reaching tasks, and more generally in
motor prediction processes (for a good review see [22]). The differential roles in pre-
diction of the cerebellum and the parietal lobe are still under debate, and it is highly
possible that these two structures work as a functional loop for predicting the sensory
consequences of movement and making adequate corrections. It has been previously
suggested that one of the distinctions may be that, contrary to the predictions made
by the cerebellum, those of the parietal cortex would be made available to awareness
[22]. However, to the best of our knowledge, this is still highly speculative, and has
not been validated yet. A complementary view stresses the fact that the parietal cortex
could be more involved in the comparison between sensory and motor information by
maintaining the anticipated sensory consequence of the movement, this prediction be-
ing made by forward models located inside the cerebellum [23]. If this hypothesis were
to prove true, then it would give insights on (1) how the teaching signal sent to drive
learning of internal inverse models could be computed, and (2) why a strong correlation
between the increase of slow wave activity in parietal cortex areas during sleep and the
performance improvement after sleep are reported in procedural tasks [3]. An extended
version of the coupling scheme could therefore integrate a simplified model of the pari-
etal lobe, which could help to dissociate the role of both structures during online and
offline motor adaptation.
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Abstract. In this study, we propose a novel extension of the MOSAIC

architecture to control real humanoid robots. The MOSAIC architecture

was originally proposed by neuroscientists to clarify the human ability

of adaptive control. The modular architecture of the MOSAIC model

can be useful for solving nonlinear and nonstationary control problems.

Both humans and humanoid robots have nonlinear body dynamics and

many degrees of freedom. In addition, they can carry objects, and this

makes the dynamics nonstationary. Therefore, the MOSAIC architec-

ture can be considered a promising candidate as a motor-control model

of humans and a control framework for humanoid robots. However, the

application of the MOSAIC model has been limited to simple simulated

dynamics. Since each module of the MOSAIC has a forward model, we

can adopt this model to construct a state estimator. By using the state

estimators, the extended MOSAIC model can deal with large observa-

tion noise and partially observable systems. Thanks to these advantages,

the proposed control framework can be applied to real systems such as

humanoid robots.

1 Introduction

Previous studies have suggested that the human central nervous system acquires
and switches internal models of outside environments to adaptively perform mo-
tor control of the body in various environments [7,6]. The modular selection
and identification for control (MOSAIC) architecture was originally proposed to
explain the motor-control strategy of the human brain [12,4]. Humans and hu-
manoid robots both have nonlinear body dynamics and many degrees of freedom.
Moreover, they interact with objects in real environments, and this makes the
dynamics nonstationary. Therefore, the MOSAIC architecture can be considered
a promising candidate as a motor-control model of humans and a control frame-
work for humanoid robots. However, the application of the MOSAIC model has
been limited to simple simulated dynamics. This limitation partially comes from
the following reasons: 1) the MOSAIC model does not explicitly consider the
existence of noise input to sensory systems, and 2) the MOSAIC model assumes
full observation and cannot deal with partially observable systems. In this study,
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we propose a novel extension of the MOSAIC architecture to cope with observa-
tion noise and partially observable systems. Since each module of the MOSAIC
has a forward model, we can adopt this forward model to construct a state esti-
mator. Moreover, using state estimators can provide a reasonable model of the
sensorimotor function of the central nervous system as previously suggested [11].
In addition, a state estimation strategy using switching linear models is consid-
ered a useful approach to estimating hidden variables of complicated nonlinear
dynamics [3]. The extended MOSAIC with state estimators (eMOSAIC) can
deal with large observation noise and partially observable systems. Thanks to
these advantages, the proposed control framework can be applied to real systems
such as humanoid robots.

In Section 2, we introduce our proposed eMOSAIC model. In this study, as
proposed in an earlier work [2], we adopt an optimal control approach as the
control method in the MOSAIC model.

We evaluate the control performance of the eMOSAIC model in environments
with large observation noise and partially observable setups. We consider two
tasks to show 1) the nonlinear control performance by a squatting task either
using a two-link robot model or the humanoid robot, and 2) the nonstationary
control performance by a carrying-object task using the humanoid robot with
a weight. We show that the two-link robot model and the humanoid robot can
maintain their balance using the eMOSAIC model when: 1) the two-link robot
model or the humaniod robot squats periodically, and 2) the additional weight
is suddenly placed on the humanoid robot model. Furthermore, we show that
the eMOSAIC model significantly outperforms the original MOSAIC model on
these tasks.

In Section 3, we consider the squatting task by using the two-link robot model
in the simulated environment. In Section 4, we apply the eMOSAIC model to
control our humanoid robot CB-i (Figure 1(a)) in order to show that the pro-
posed model can be used in a real environment. We consider the squatting task
and the carrying-object task. We show that a humanoid robot can maintain its
balance while it is doing these tasks using the eMOSAIC model.

2 eMOSAIC Model

2.1 Target Problem

We consider an optimal control problem for nonlinear and nonstational dynam-
icas, where the dynamics is represented as:

x(t + 1) = f(x(t),u(t), t) + n(t), (1)
y(t) = h(x(t), t) + v(t), (2)

where x ∈ �N , u ∈ �D and y ∈ �L are state, action and observation vec-
tor, respectively, and n(t) ∼ N (0, Σx) and v(t) ∼ N (0, Σy). N (0, Σ) denotes
a Gaussian distribution with zero mean and covariance Σ. In the optimal con-
trol framework, the learning system is trying to find the optimal controller to
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minimize the objective function: J = E [
∑∞

s=1 r(x(s),u(s))], where r(x(t),u(t))
is the cost function. To find the optimal controller to minimize the objective
function, we estimate the value function:

V (x(t)) = E

[ ∞∑
s=t

r(x(s),u(s))

]
. (3)

2.2 The eMOSAIC Model

The eMOSAIC model has the modular architecture. Each module is composed
of a state estimator, a responsibility predictor, a value function estimator, and a
controller. We approximate nonlinear and nonstational dynamics, and nonlinear
cost function by switching linear models and quadratic models:

x(t + 1) = Aix(t) + Biu(t) + ci + n(t), (4)
y(t) = Hix(t) + v(t), (5)

ri(x(t),u(t)) = −1
2
x(t)TQix(t) − 1

2
u(t)TRiu(t), (6)

where Ai ∈ �N×N , Bi ∈ �N×D, and ci ∈ �N are parameters of ith linear
dynamics, Hi ∈ �L×N is observation matrix. Qi ∈ �N×N and Ri ∈ �D×D are
parameters of ith quadratic cost function. Therefore, each state estimator and
each controller can be represented by a linear model, and the value function
estimator can be represented by a quadratic model, respectively.

Figure 1(b) shows the schematic diagram of the eMOSAIC model. The re-
sponsibility predictor derives the responsibility of each module based on a state-
prediction accuracy of the state estimator. Final output from the learning system
is then derived as weighted sum of each module’s output by the responsibility
signal. Below, we explain the details of the state estimator, the responsibility
predictor, the value function estimator, and the controller.

State estimator. The state estimator estimates states of the dynamics from
the observation. We consider the state estimator that has the linear form:

x̂i(t + 1|t) = Aix̂i(t) + Biu(t) + ci, (7)
x̂i(t + 1) = x̂i(t + 1|t) + Ki(y(t) −Hix̂i(t + 1|t)) (8)

where x̂i is the estimated state and Ki is the parameter for the state estimator.
We derive the parameter Ki by solving the linear optimal estimation problem
[8,9].

Responsibility predictor. The module selection is performed by probability
distribution λi which we called “responsibility signal.” The responsibility signal
λi is given by following Bayes’ rule:

λi(t) =
P (i)p(x(t) | y(1 : t),u(1 : t− 1), i)∑

i′∈M P (i′)p(x(t) | y(1 : t),u(1 : t− 1), i′)
. (9)
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Fig. 1. (a) Humanoid robot CB-i, (b) extended MOSAIC with state estimators (eMO-

SAIC)

Here, M is the set of module indices, p(x(t) | y(1 : t),u(1 : t − 1), i) is the
likelihood based on the accuracy of each state estimator, and P (i) is the prior
probability of module selection. The likelihood of state estimator p(x(t) | y(1 :
t),u(1 : t−1), i) is given according to the estimation error. By assuming that the
estimation error is Gaussian with variance σ2, likelihood p(x(t) | y(1 : t),u(1 :
t− 1), i) is given by

p(x(t) |y(1 : t),u(1 : t−1), i)∝p(y(t) | x(t),y(1 : t−1),u(1 : t−1), i)
p(x(t) | y(1 : t− 1),u(1 : t− 1), i),

(10)

p(y(t) | x(t),y(1 : t−1),u(1 : t−1), i)=
1√

(2π)L|Σy|
exp
[
−1

2
ei(t)TΣ−1

y ei(t)
]

,

(11)

ei(t) = y(t)−Hix̂i(t), (12)

p(x(t) | y(1 : t−1),u(1 : t−1), i)=
1√

(2π)N |Σx|
exp
[
−1

2
di(t)TΣ−1

x di(t)
]

,

(13)

di(t)=xi(t)−{Aix̂i(t−1)+Biu(t− 1) + ci} ,
(14)

x̂i(t) = E [P (x(t) | y(1 : t− 1),u(1 : t− 1), i)] is the predicted state which is
calculated by the state estimator of ith module based on the observation vector
y(1 : t − 1) and action output u(1 : t − 1), and ei(t) = y(t) − Hix̂i(t) is the
so-called error of innovation.

If the hidden state exists, it is likely that the responsibility signal is under-
specified based on instantaneous prediction error only. Therefore, we introduce
the prior probability P (i) based on “temporal continuity” can be given by
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P (i) ∝ 1√
2πσ2

exp
[
− 1

2σ2
Ei(t− 1)

]
. (15)

Ei represents a smoothed square error of innovation ei(t) at time t,

Ei(t) =
t∑

s=0

ρ(t−s)Δt‖ei(t)‖2Δt (16)

where 0 < ρ < 1 is a parameter that controls the strength of the temporal
continuity and Δt is a time step of the observation. Eq.(16) can be expanded to
follow a recursive form: Ei(t) = ‖ei(t)‖2Δt + ρΔtEi(t− 1).

Finally, the responsibility predictor weights the estimated state of each mod-
ule,

x̄(t) =
∑
i∈M

λi(t)x̄i(t), (17)

where x̄i(t) is the estimated state of ith module at time t.

Value Function Estimator. We derive the controller by locally solving the
linear-quadratic optimal control problem. Since we approximate the cost function
by the quadratic functions as Eq. (6), we can locally estimate the value function
by using a quadratic function:

Vi(x̂(t)) = v0
i −

1
2
(x̂(t)− xv

i )TPi(x̂(t)− xv
i ), (18)

where the matrix Pi was given by solving the Riccati equation:

0 = PiAi + AT
i Pi − PiBiR

−1
i BT

i Pi + Qi. (19)

The center xv
i and the bias v0

i of ith value function were given by

xv
i = −(Qi + PiAi)−1Pici, (20)

1
τ

v0
i = r0 − 1

2
xv

i
TQxv

i . (21)

Controller. Thus, from the linear optimal control theory [9], the controller can
be derived as:

ui(t) = −RiB
T
i Pi(x̂(t)− xv

i ). (22)

The responsibility predictor weights the action of each module,

u(t) =
∑
i∈M

λi(t)ui(t). (23)

Then, the controller outputs the weighted action u(t) to the environment.
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Fig. 2. (a) Two-link robot model. The mass and length of each link were 5kg and

0.5m, respectively, and the friction coefficient of each joint was 0.1. (b) Relationship

between the phase of the periodic pattern generator φ and the posture of the two-link

robot model.

3 Simulation

As an example of a nonlinear control problem, we consider a squatting task by
using a two-link robot model (see Figure 2(a)). A basic squatting behavior is
provided by a periodic pattern generator. Figure 2(b) shows the relationship
between the phase of the periodic pattern generator φ and the posture of the
two-link robot model. The frequency of the squatting movement was 0.5Hz.

Since a robot flexes and extends a leg periodically, a complex control law is
required to prevent the falling of the robot. We apply eMOSAIC to control the
two-link robot model to maintain its balance during the squatting movement.
Note that the two-link robot model cannot maintain balance only using the
output of the periodic pattern generator.

The angle of lower link and the tip of higher link are represented by θ1 and
θ2 (see Figure 2(a)). The input state vector is x = [θ1 θ2 θ̇1 θ̇2]T. The output
of eMOSAIC is a relative desired trajectory of the bottom joint (u = θdes

1 ).
The sum of the relative desired trajectory (θdes

1 ) and the output of the periodic
pattern generator are used to derive torque at each joint based on a PD servo
model. The cost is given in the quadratic form (see Eq.(6)) The parameters of
quadratic cost were Qi = diag(0, 100, 0, 1) and Ri = 0.5. In this task, we use
eMOSAIC with three modules (i = 1, 2, 3). One trial lasted 6 sec. Simulation
and observation time-step Δt was 0.002 sec.

In this simulated environment, we focus on showing two advantages of eMO-
SAIC model: 1) eMOSAIC can be applied to a partially observable system, and
2) eMOSAIC can be applied to an environment with large observation noise.

First, we apply eMOSAIC both to the fully observable system and the par-

tially observable system (only joint angles can be observed, i.e., Hi =
[
1 0 0 0
0 1 0 0

]
in Eq.(5)). The two-link robot model did not fall over even in the case of partial
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Fig. 3. Results of the squatting task. (a) Average cost with different observation

noise. The means and standard deviations over 100 simulation runs are plotted. The

responsibility signal of the (b) previous method (ii) and (c) proposed method (iii). The

topmost panels indicate the phase of the periodic pattern generator, and the other

panels indicate the responsibility signals of the three modules. (b) and (c) show the

the results obtained when the responsibility signal is computed without and with the

state estimators, respectively.

observation (see Video 1 1). Furthermore, the mean costs acquired in the fully
observable system and the partially observable system were −0.13 and −0.15,
respectively. By using eMOSAIC, the performance of the controller in the par-
tially observable system was close to the performance of the controller in the
fully observable system.

Second, we evaluated the robustness of eMOSAIC for large observation noises.
For this comparison, we considered three methods: (i) original MOSAIC, (ii) orig-
inal MOSAIC with estimated state x̂ for feedback controller only (thus state es-
timation is not used for the responsibility signal’s weighting), and (iii) proposed
method. We tested the control performance of these three methods for observa-
tion noise (Σy = σ2

obsI with σ2
obs = 0 ∼ 0.42). Figure 3(a) shows the relationship

between the size of the observation noise and the average cost in the squatting
task. The mean and standard deviation of the cost over 100 simulation runs are
plotted.

Figures 3(b) and (c) show the responsibility signals estimated without and
with the state estimator, respectively (ii, iii). The variances of the observation
noises were Σy = 0.22I. The topmost panel shows the phase of the periodic
pattern generator (φ), and the other panels show the responsibility signals of
each module (i = 1, 2, 3). The responsibility signal estimated without the state
estimator shows frequent chattering, which causes low control performance. In
contrast, by using eMOSAIC, the responsibility signal shows smooth transition
without chattering. Each module (i = 1, 2, 3) was activated at approximately

1 The videos are uploaded on the web site:

http://www.cns.atr.jp/˜xsugi/supplement/SAB2010/



454 N. Sugimoto et al.

���

���

���

Fig. 4. (a) Pitch joint angles of the humanoid robot CB-i. (b) Two-link robot with a

foot model of the CB-i. The two joints of the two-link model represent the torso and

ankle joint of the CB-i. The gyro sensor is attached to hip of the CB-i. (c) A lifting

task. The mass of payload is 2.9kg. Left: Without payload. Right: With payload.

φ = 0(2π), 1
2π(3

2π), and π. By using eMOSAIC, an appropriate module could
be selected around appropriate phase despite the large observation noise.

4 Real Robot Experiment

In a real environment, we are often confronted with two difficulties, namely, non-
linearity and nonstationarity. In the real robot experiment using the humanoid
robot CB-i (see Figure 1(a)), we consider the squatting task to evaluate the
nonlinear control performance and the lifting task to evaluate the nonstationary
control performance.

4.1 Squatting Task

We tried to maintain the balance of the CB-i in the squatting task. Figure 4(a)
shows the pitch-joint coordination of CB-i. A periodic pattern generator outputs
the desired trajectories to the hip, knee, and ankle joints. Each desired trajec-
tory is given as follows: θd

hip = D 1−cos φ(t)
2 + θres

hip, θd
knee = 2D 1−cosφ(t)

2 + θres
knee

and θd
ankle = D 1−cos φ(t)

2 +θres
ankle. Here, D = 15

180π is the amplitude of a squatting
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Fig. 5. Results of real-robot experiments. (a) Results of 0.5Hz squatting task. The

top panel shows the phase of the periodic pattern generator (φ). The second panel

shows the pitch angle of the gyro sensor. The solid line represents the result of the

proposed method (Video 2), and the dashed line represents the result obtained by

using only the 1st module (Video 3). The other panels show the responsibility signals

of the proposed method. The results of 1.5Hz squatting task is uploaded as Video 4.

(b) Results of lifting task. The top panel shows the pitch angle of the gyro sensor in

the multiple-module and single module cases (Video 5, Video 6). The other panels

show the responsibility signals of the proposed method.

movement. θres
hip = 5

180π, θres
knee = 10

180π, and θres
ankle = 5

180π represent the rest
posture of the robot. φ is the phase of the periodic pattern generator.

We approximated the dynamics of CB-i by a two-link robot with a foot
model [5,1,10] (see Figure 4(b)). The input state was six-dimensional: x =[
θtorso θankle θgyro θ̇torso θ̇ankle θ̇gyro

]T
. The output of eMOSAIC is a relative de-

sired torso and hip joint angles: u =
[
θadd
torso θadd

hip

]T
. These relative desired joint

angles are added to the desired joint angles generated by the periodic pattern
generator. To follow the desired joint angles, the torque output at each joint is
derived by a PD servo controller.

Here, the purpose of a linear optimal controller in each module is to keep
the pitch angle of gyro sensor horizontal θgyro = 0 (see Figure 4(b)). The
cost function is defined as Eq.(6). The parameters of quadratic cost were Q =
diag(0, 0, 1, 0, 0, 1) and R = diag(0.01, 0.01), respectively.
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Figure 5(a) shows the results of 0.5Hz squatting task. The top panel shows
the phase of the periodic pattern generator (φ). The second panel shows the
trajectory of the pitch angle of the gyro sensor (θgyro). The solid line repre-
sents the result of eMOSAIC (Video 2). The pitch angle of the gyro sensor
(θgyro) is maintained approximately in the range ± 2

180πrad for which the robot
does not fall over. The dashed line represents the result obtained by using only
the 1st module (Video 3). At approximately t = 10.8 sec, the robot in which
only the single module was used fell backward; by using the multiple-module
method, we successfully balanced the robot because the 2nd and 3rd modules
were subsequently selected. The other panels show the responsibility signal of
three modules. We have uploaded the video of the fastest squatting (1.5Hz) as
Video 4.

4.2 Lifting Task

Here, we tried to maintain the balance of the CB-i in the lifting task (see Figure
4(c)). Again, we approximated the dynamics of our humanoid robot by using the
above-mentioned two-link robot with a foot model (Figure 4(b)). We used two
modules (i = 1, 2) in eMOSAIC. The state estimator of the 1st and 2nd estimate
the state of the CB-i without the payload and with payload, respectively.

We used the same cost function as in the squatting task. Figure 5(b) shows the
results of the lifting task. The top panel shows the pitch angle of the gyro sensor.
We applied a payload to the tray at time t = 10 sec. The solid and dashed lines
represent the proposed method (Video 5) and the single module method (Video
6), respectively. The robot with single module fell forward at approximately
t = 13 sec; however, by the proposed method, the pitch angle of the gyro sensor
θgyro was successfully maintained at less than 2

180π rad. The bottom panel shows
the responsibility signals. First, the proposed method selected the 1st module,
which controls the environmental dynamics without a payload. After applying
the payload, the 2nd module, which controls the environmental dynamics when
a payload is used, was automatically selected.

5 Discussion

We extended the MOSAIC architecture by using state estimators to cope with
partially observable environment and large observation noise. We compared the
proposed method with the previous method by performing simulations using a
simple model. The results of the simulations indicated that our extension to the
MOSAIC architecture improved its robustness and adaptiveness of control de-
spite the partial observation and large observation noise. Then, we implemented
our proposed method to the humanoid robot CB-i. We tried to stabilize CB-i in
a squatting task and a lifting task. In these tasks, the CB-i could not be balanced
by using the single module, but our proposed method was successfully used to
stabilize the real humanoid robot.
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In the future, we will consider a hierarchical module selection approach in
which the higher layer has a longer time constant than the lower layer. Such a
hierarchical architecture may be more adaptive and achieve better robust control
than the present extended MOSAIC architecture.
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Abstract. In order to adapt the behavior of robots to varying environments, 
conditioning models provide interesting ideas. A prediction system is an impor-
tant part of such models. The problem is to update it according to the sequence 
of stimuli perceived by the robot. Bayesian networks can be used to implement 
the prediction system. However, update rules are very complex and we need an 
incremental and fast learning process. We propose the use of noisy or nodes 
with appropriate learning rules. Numerous features of conditioning have been 
tested and promising results have been obtained. 

Keywords: Pavlovian conditioning, operant conditioning, noisy or, Bayesian 
network. 

1   Introduction 

A predator learns through experience that a specific smell predicts the presence of a 
prey and a prey learns that the sudden flight of a group of birds predicts the presence 
of a predator. Such behaviors obey to the rules of classical conditioning, also called 
Pavlov conditioning [13]. Fundamentally, in classical conditioning, animals learn the 
correlation between specific events. These mechanisms are at the root of any complex 
interaction between animals and their environments. They are fully appropriate to the 
real world. For that reason, they are interesting sources of inspiration for the defini-
tion of the basic learning mechanisms of robots. The context of this type of learning is 
very specific. Learning is life long, every experience is taken into account, memory is 
never reset and environments are varying without warning. This is typically the do-
main of developmental robotics (see the survey from Lungarella [12]). In this paper, 
we focus on the prediction system of classical conditioning models with possible 
extensions to operant conditioning. It is based on the dynamic construction of Noisy 
Or structures. In part 2, we recall some important properties of classical conditioning 
and suggest important issues. In part 3, we present our prediction model based on the 
construction of Noisy Or nodes with appropriate update rules. Some results are then 
presented and discussed in part 4.  
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2   Classical Conditioning 

2.1   Observed Behaviors 

In the basic experience of classical conditioning, there is an unconditioned stimulus 
(US), a conditioned stimulus (CS), and a response R [13]. If the conditioning is suc-
cessful, the specific response R should be observed whatever the presence or absence 
of the US. An important parameter is the time interval between the presentation of the 
CS and the presentation of the US (ISI=Inter Stimuli Interval). The conditioning is 
strong and fast for very small ISI and it becomes more and more difficult as the value 
of the ISI increases. Other interesting behaviors have been observed when subtle 
variations are introduced in conditioning experiments. Latent inhibition occurs when 
the CS is presented alone several times before the standard conditioning protocol. A 
"blocking" of a CS2-US association occurs when a CS1-US conditioning has already 
been performed and CS1 is always presented before CS2. Secondary conditioning 
occurs when a first CS (CS1) is used for classical conditioning and a second CS (CS2) 
is introduced before CS1. CS2 predicts CS1 and finally becomes a predictor for the 
US. The response is therefore observed when CS2 alone is presented. 

2.2   Conditioning Models 

Since the synthesis of experimental results presented by Pavlov, there has been sub-
stantial work and different models have been proposed. Most of them are based on the 
original model proposed by Rescorla and Wagner [4], [15]. Equation (1) gives the 
modification of the associative strength of a given stimulus X after a new trial. The 
increase is proportional to the salience of X (parameter α) and the efficiency of condi-
tioning (parameter β). λ is the maximum strength and VTotal is the sum of all associa-
tive strength of the present stimuli. 

)(1 n
TotalX

n
X

n
X VVV −+=+ λβα  (1)

The associative strength of a given stimulus can be interpreted as the degree of pre-
diction of the US. From a conceptual viewpoint, another important model has been 
proposed by Klopf with further considerations by Grossberg [4], [11]. For the first 
time, stimuli were associated to neurons and the associative strength was represented 
by synaptic weights. Conditioning was clearly seen as the ability to build a prediction 
system. Other authors followed the same principles [1], [2], [17]. Sutton and Barto 
established the basic principles of reinforcement learning [22]. They also proposed a 
temporal difference model of classical conditioning (TD model, 1987 and 1990 [20], 
[21]). Furthermore, Schmajuk proposed to take into account the novelty of the stimu-
lus to explain latent inhibition [18]. Animals pay indeed more attention to new stimuli 
than to well known ones.  

A comparison of several methods can be found in the paper from Balkenius [1]. 
All models fail in one or more simple experiments of blocking or second order condi-
tioning with different timings and durations of CS and US (see figure 1). Moreover, 
both Schmajuk and TD models make the conditioning with a CS arriving after the US  
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Fig. 1. Overriding and serial blocking experiment with the TD model. Left, we reproduced an 
experiment reported by the authors. In a first phase, during 70 trials, the first stimulus (CS1) is 
immediately followed by the US. The prediction value (W1) increases as expected. In a second 
phase, during 70 trials, the same CS1-US configuration is used but another stimulus (CS2) is 
added. When CS2 starts after CS1 but ends at the same time, it is called overriding blocking. 
W2 does not increase much. Right, the same experiment is performed, but in the second phase 
CS2 starts after the end of CS1 and finishes just before the start of the US. Theoretically, it is a 
serial blocking experiment (Kehoe 1981, [10]). However, this time, no blocking is observed. 
Surprisingly, prediction values W1 and W2 increase with a high slope. Variations of the TD 
model in which the representation and timing are differently taken into account may neverthe-
less provide the correct result [3] [8]. 

possible. There is still a controversial debate in the literature to explain some experi-
mental results supporting backward conditioning [9], [19]. In this paper, we propose 
to focus on the prediction system of a conditioning model. If the CS occurs after the 
US, it cannot be a predictor of the US. In our paradigm, a backward conditioning is 
therefore not a desired property.   

3   Bayesian Networks 

3.1   Noisy or Nodes 

The main feature of a conditioning model is a prediction system dedicated to the pre-
diction of a reward or a punishment. Bayesian networks are well known tools to im-
plement prediction systems [6], [7]. The problem is that the network is almost empty 
at the beginning of the agent's life. We therefore have to perform an automatic  
learning of the structure and the parameters of the network. In general, in terms of 
computational time, the determination of the structure is known to be a NP-complete 
problem [5]. However, the context of that learning differs in many aspects from usual 
learning contexts for Bayesian networks. First of all, learning is life long and there is 
no end for a specific learning phase. We therefore have to implement an incremental 
learning process. Second, the number of examples is quite short. Thus the conver-
gence of the method should be fast. In comparable situations, Pearl proposed the 
"noisy or" [14]. We propose to implement his method, which can be summarized as 
follows. First of all, we define P(Y|X) as the conditional probability of observing 
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event Y during a limited period of time following the observation of event X. If 
X1..Xn are predictor events of Y, and if we assume that the causal links between every 
Xi and Y are independent and if there is no hidden variable, it is sufficient to have an 
estimate of all P(Y|Xi) to compute P(Y|X1..Xn). Formally, if a list of predictor events 
{X1..Xn} are observed, the conditional probability is given by equation (2). 

∏ −−=
i

in XYPXXYP ))(1(1)..( 1  (2)

3.2   Reinforcement 

An important problem is to take into account varying environments. For instance, in a 
conditioning trial, an agent has to learn the prediction of the reward after a given 
stimulus. Later on, in an extinction trial, the agent has to learn that its prediction is not 
valid any more. In the literature, it is often desired to obtain a network structure inde-
pendent from the sequence of examples (see for instance the inference method from 
Cooper [6]). In our case, since we consider varying environments, the learning tech-
nique should be fully dependent on the exact sequence of examples. In fact, each new 
experience should be taken into account and should have an impact on the Bayesian 
network. In other words, we can not estimate a given conditional probability by a 
simple statistical computation based on the number of positive observations divided 
by the total number of observations. We should rather forget most of old observations 
and take into more consideration more recent ones. This is typically the case of all 
reinforcement equations proposed in previous models. The idea is to update the condi-
tional probability by means of small increments or decrements of the previous value. 
If the probability that Y is caused by X has to be increased (X and Y have just been 
observed), we propose to update P(Y|X) with equation (3).  

∏
Δ<−<
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where: ti is the time of event Xi , t is the current time, Δtmax is a maximum delay to 
accept the causality between two events, k1 is a constant and αx,t and βy,t are attention 
parameters at time t.  

The right term of the equation is justified. It is indeed proportional to the global er-
ror and it enables the blocking effect by reducing the increment if other predictor 
stimuli are simultaneously present. If the X-Y sequence is observed for the first time, 
(conditional probability equal to 0), a link is created between X and Y and P(Y|X) is 
stored. Let us consider the situation in which all conditions are fulfilled and a new 
link has been added in the network or simply reinforced if it already existed. Depend-
ing on time discretization, one step further the same configuration might be present. 
Do we have to update the prediction once again? In classical conditioning, it is well 
known that the efficiency is greater if the delay between the CS and the US is small. 
That interesting property can be taken into account. The configuration is the same as 
long as their trace in short term memory overlap (t-tx < Δtmax and t-ty<Δtmax). In other 
words, the shorter the delay the longer the traces overlap and the greater number of 
times equation (3) applies. 
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3.3   Decrease of the Conditional Probability 

What happens if the expected reward event never occurs? When t-tx>Δtmax the next 
event is not predicted any more. The conditional probability must be decreased. We 
propose a similar equation (see equation (5)). 

))()()(
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21 ∏
Δ<−

=
+ −=
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iyXtt XYPkXYPXYP αα  
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The proposed equation is justified as follows. The idea is to decrease the conditional 
probability such that high values are strongly penalized and if the experience is re-
peated it slowly converges to 0. However, if another stimulus X2 has been detected 
and if P(Y|X2) is small, the decrement should be much smaller because X2 is probably 
an inhibitor of event Y, so there is no reason to penalize P(Y|X). Though the proposed 
equation intuitively provides interesting results, it is not clearly linked to the global 
error. Other formulas have been tried, but they did not respect the convergence to-
wards 0.  

3.4   Attention and Novelty 

In Schmajuk's model, the novelty of a stimulus plays an important role [18]. It is 
taken into account to explain latent inhibition and related phenomena. We propose a 
similar approach. In our model, we introduced a parameter called α. That parameter 
typically depends on the attention strength, which is high when the intensity of the 
stimulus is high, when it is new or when the animal or the agent is motivated. We 
propose a simple equation (5) to take into consideration those different aspects. 

tXtXttX NIM ,,, =α  (5)

M is the motivation, I is the intensity of the stimulus (consider for example the inten-
sity of a noise) and N is the novelty score. While parameter I only depends on percep-
tual parameters at time t, the computation of N requires the memorization of past 
events. If a stimulus is new, its novelty is set to 1. Then equation (6) gives the evolu-
tion of the novelty associated to a stimulus X after a new observation. 

)( min,3,1, NNkNN tXtXtX −−=+  (6)

with Nmin minimum novelty value and k3 constant. 

4   Assessment 

4.1   Acquisition and Extinction 

Our model has been implemented in a simple simulator for an accurate assessment of 
multiple conditioning properties. In the following experiments, the same parameters 
have been used: Δtmax = 5 seconds; time discretization: 0.2 second; Mt=It=1.0; k1 = 
0.005; k2=0.1; k3=0.1; Nmin=0.5. All values have been empirically chosen. However, 
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choosing other values is possible and lead to similar results. We tested k1 in 
[0.001;0.01], k2 in [0.01;0.5], k3 in [0.01;0.9] and Nmin in [0.3;0.8]. Changes are 
rather minor and mainly impact the number of trials for acquisition or extinction of 
conditioning. Acquisition and extinction of classical conditioning have been tested. 
Results are presented in Figure 2. The acquisition and extinction curves are very simi-
lar to those obtained with other models. There is no surprise here since our equations 
are also inspired from Rescorla and Wagner's work. What is important is that the 
curves are exactly the same whatever the durations of the CS and the US. The timing 
nevertheless plays a role in the acquisition phase. In agreement with the literature, 
acquisition is faster when the interstimulus interval is short. Another important result 
is that the conditional probability P(US|CS) remains equal to zero if the US precedes 
the CS. Backward conditioning is not possible with our model.   

 

Fig. 2. Left: Acquisition followed by extinction. In a first phase, during 100 trials, a CS is 
presented at time t=1.0 and the US is presented at time t=2.0. Then, in a second phase, during 
100 new trials, the CS is presented alone. Right: Different acquisition curves are obtained 
according to the interstimulus interval (ISI). ISI=-1s means that the US precedes the CS. 

4.2   Blocking, Second Order Conditioning and Latent Inhibition 

The blocking phenomenon has been tested. The results are presented in Figure 3. The 
curves are similar to those obtained with the TD model for overriding blocking (left 
part of Figure 1). However, in a serial blocking experiment, while the TD model 
would fail (right part of Figure 1), using our model the same results were obtained.  

Concerning second order conditioning the results are presented in Figure 4. As it 
can be observed, while the US is never presented after CS1, it is nevertheless pre-
dicted thanks to the link between CS1 and CS2. It is important to note that since there 
is no direct link between CS1 and the US, P(US|CS1) is inferred using the conditional 
probabilities associated to the existing links (see equation (7)). 

)12(*)2()1( CSCSPCSUSPCSUSP =
 

(7)

In the first trials of the second phase, P(US|CS1) quickly increases. Its highest value is 
close to 0.5, which means that the US is expected but remains uncertain. Then it logi-
cally decreases towards 0. Such results are in agreement with the literature on second 
order conditioning. 

A latent inhibition scenario has been implemented. The results are presented in 
Figure 5. The probability still converges towards 1 but the slope is weaker due to the 
decrease of the novelty (equations (5) and (6)). 



464 J.M. Salotti 

 

 

Fig. 3. Blocking experiment. In a first phase, during 100 trials, CS1 is presented at time t=1.0 
and the US is presented at time t=3.0. Then, in a second phase, during 100 new trials, CS1 is 
presented at time t=1.0, CS2 at t=2.0 and the US at t=3.0. Since probability updates do not 
depend on the duration of the stimuli, the same results are obtained for overriding and serial 
blocking experiments. 

 

Fig. 4. Second order conditioning experiment. In a first phase, during 100 trials, CS2 is pre-
sented at time t=2.0 and the US is presented at time t=3.0. Then, in a second phase, during 100 
new trials, CS1 is presented at time t=1.0 followed by CS2 at time t=2.0. The US is absent.  

 

Fig. 5. Latent inhibition experiment. During 100 trials, a CS is presented at time t=1.0 and the 
US is absent. Then, during 100 new trials, the CS is presented at time t=1.0 followed by the US 
at time t=2.0. The theoretical curve that would be obtained in the case of a new CS is in dashed 
line. 
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4.3   Overexpectation 

A specific compound conditioning experiment has been conducted to illustrate a ma-
jor difference between our model and most others. The results are presented in Figure 
6. If two CS are alternatively used for a strong acquisition of conditioning, all models 
predict a high associative strength. However, if later on the same stimuli are simulta-
neously used, all models based on Rescorla and Wagner's equation predict a decrease 
of the associative strength (see equation (1)). Such a decrease may be justified if the 
reward amount remains the same in all trials and if we consider that more rewards 
were expected during the compound trial. This experiment is called "overexpectation" 
and a decrease of the response is indeed observed with animals.  

 

 

Fig. 6. Overexpectation experiment with models Klopf, TD and ours. In a first phase, CS1 is 
presented before the US. In a second phase, CS2 is presented before the US. And in the final 
phase, CS1 and CS2 are presented at the same time before the US.  

However, we should make the difference between the prediction of the reward 
amount and the prediction of the reward event. In 2006, Rescorla recalled that the 
response decrease produced by overexpectation does not diminish the ability of stim-
uli to transfer control to instrumental responses with which they share a reinforcer 
[16]. This property can be explained by a decrease of the predicted reward amount 
while at the same time maintaining the conditional probability of the reward event 
very high. Since we focus in this paper on the prediction of events, the conditional 
probability associated to single stimuli should not be decreased. The result provided 
by our model is therefore correct and consistent with the results of the other models. 
Let us examine the difference between equations. In equation (1), the decrease is due 
to the last term, which is the negative sum of all associative strengths. If the sum 
exceeds λ, the associative strength decreases. In our equation, there is a product in-
stead of a sum. If we develop the product in more simple terms, we obtain equation 
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(8). The same sum is therefore present but it is augmented by a sum of products. As 
long as that last sum is weak, the product is equal in first approximation to the sum of 
equation (1). But if it is not and this is the case in the current experiment since 
P(US|CS1) and P(US|CS2) are high, our model predicts no change in the prediction of 
the reward: Both probabilities remain close to 1. 

ε−+−=−∏ ∑∑
≠

j
i ji

i
i

ii PPPP 1)1(  (8)

5   Conclusion 

A prediction system has been presented and can be used for classical conditioning. 
The key idea is to use Noisy Or nodes and appropriate rules to govern the creations 
and updates of the links. Our model differs from others in several aspects. First the 
conditioning is based on the onset (or offset) of the stimuli and not on their presence. 
Second, it is a prediction system that uses conditional probabilities with values be-
tween 0 and 1. It determines the probability of observing the reward event, while most 
other models provide a prediction of the reward amount. Interesting results have been 
obtained. We are currently still working on the model and the perspectives are nu-
merous. There are issues that neither our model nor existing ones can currently solve, 
for example in the situation where stimuli are strongly dependent on each other. In the 
case of inhibitory conditioning the probability of observing the reward is weak if the 
inhibitor is present even if an excitatory stimulus is observed. A Noisy Or is clearly 
inappropriate in this case because it is based on the assumption that the presence of a 
single excitatory stimulus is sufficient to predict the reward. However, we are cur-
rently investigating a new structure with two concurrent Noisy Or nodes. The first one 
would be excitatory and the second inhibitory. We hope to be able to present interest-
ing results in a near future. Another important perspective is to establish a clear link 
with operant conditioning. Since actions can also be decomposed into events, our 
model can easily be extended to the prediction of their consequences. 
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Abstract. The engineering of humanoid or similar robot systems re-

quires frameworks and architectures that support the integration of a

variety of sensorimotor modalities. Within our computational framework

for visually guided reaching we ask how coupled sensorimotor mappings

of different modalities can be learned autonomously from scratch. Based

on a learning process that allows continuous adaptation of a single sen-

sorimotor mapping, we introduce three strategies (parallel, sequential,

and synchronous) for the learning of coupled mappings. These strategies

are systematically tested in a simplified simulation. The experiments in-

dicate that stages of development can emerge from synchronous adapta-

tion of sensorimotor mappings of different characteristics. Thus, observed

stages in development are not necessarily the result of explicitly defined

and triggered learning tasks.

1 Introduction

The computational architecture which provides the context of this study enables
an anthropomorphic robotic system or a humanoid to perform visually guided
reaching. In particular it integrates active vision and reaching and is the result
of a series of experiments on sensorimotor learning of eye-saccades [1], visual
search [2] and hand-eye coordination [3]. Here we don’t introduce this architec-
ture in detail; the general concept is sufficient for the motivation of this work.
The architecture operates in three different computational domains, which are
the retinotopic reference frame, the gaze and the reach space (see Fig. 1 Left).
The three different domains are linked together by two mappings: the sensori-
motor mapping for eye-saccades and the mapping between gaze and reach space.
The last core element of our architecture is the visual memory. It stores motor
configurations of the active vision system which enables the system to perform
a systematic visual scan of the environment. Furthermore, its content represents
potential reach targets since the entries in the gaze space can directly be mapped
into the reach space.

In summary, the two mappings provide the transformation of visual data into
reach coordinates. Obviously, this is only possible via the gaze space and not

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 468–477, 2010.
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Fig. 1. Left: Schema of visually guided reaching for anthropomorphic robot systems.

Right: Three strategies of sensorimotor learning, see text for details.

directly. Thus, the gaze space is the central element of this framework. More
about the background and motivation of this framework can be found in [2,3].

The current implementation of this architecture validates our approach and
provides an evaluation of the technical requirements and limitations. Our final
goal, however, is an autonomously learning process of visually guided reaching
without human intervention. Consequently, we need to ask: How shall these two
mappings be learned from scratch? From the engineering point of view one can
think of three principal strategies (Fig. 1 Right) which will be explained in the
following.

1.1 Learning Strategies for Coupled Sensorimotor Mappings

Assume two mappings M1 and M2 which must be combined in order to solve the
final task and both can only be learned through robot-environment interaction,
as in our example of visually guided reaching. One way to learn them is separately
or, as we call it, in parallel. After the learning of these mappings is completed,
the system links them together providing new competences. Parallel learning
assumes that both mappings serve independent sensorimotor systems. For a
robotic system this is not always the case. In our example of visually guided
reaching the learning of hand-eye coordination only makes sense if eye-saccades
towards objects are performed robustly and in a reproducible manner. Hence,
only after the mapping for eye-saccades is complete then the learning of the
second mapping shall start. The second strategy, called sequential, represents
this case. After M1 is learned it will be chained or coupled with M2 and the
adaptation of M2 starts. Thus the coupled mappings are learned in a specific
sequence and most importantly, at any time only one mapping is subject of
adaptation.

Parallel and sequential strategy need to implement additional mechanisms
that detect when learning is completed in order to stop adaptation and link the
mappings or to trigger the start of the next mapping learning. A way to avoid
such explicit mechanisms is to chain the mappings right from the beginning and
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run the adaptation processes synchronously or simultaneously. This strategy is
called synchronous sensorimotor learning.

In the synchronous case, obviously, as long M1 hasn’t completed learning, M2

adapts to the “faulty signals” of M1. However, M1 will show progress and this
will gradually be reflected in M2 too. Synchronous adaptation heavily relies on
fast and continuously running adaptation processes which also have to provide
re-learning. They have to be continuous because there is no start or ending
of a mapping learning process anymore. As long as the robot is active all the
mappings undergo an adaptation process. Furthermore, sensorimotor patterns in
a learning robot system change significantly and other sensorimotor mappings of
the system must be able to adjust accordingly. In other words, for synchronous
sensorimotor learning the mappings must be able to forget.

1.2 Specific Aim of This Study

In this work we introduce a learning process that provides fast and continu-
ous adaptation of sensorimotor mappings. The main objective of this paper is
the analysis of essential properties of synchronous and sequential sensorimotor
learning, as they are the most relevant strategies for robotics. Although this
is done in a non-robot context we will see that the results will provide impor-
tant insights for our framework towards autonomous developmental learning of
visually guided reaching for humanoid robots.

2 Methods

2.1 Computational Substrate for Continuously Adapting
Sensorimotor Mappings

The sensorimotor mappings in the following experiments are implemented as a
case-based strategy. Assuming two spaces X ⊆ Rn and Y ⊆ Rm of arbitrary
dimension, where

x = (x1, x2, . . . , xn) ∈ X, y = (y1, y2, . . . , ym) ∈ Y.

A mappingM stores the pairs (x, y) representing concrete examples that indicate
how one point in one space X is related to space Y . Here, a pair is referred to
as a link. The direct coding of these links allows bi-directionality, i.e. x refers to
y and vice versa.

In addition, a metric is required for both spaces. This provides the generali-
sation of the mapping between X and Y because it is represented by concrete
examples (links) which are unlikely to occur again during a robot-environment
interaction in the real world. Thus, a definition of distance (i.e. a metric) be-
tween the points in space is required to allow a search for the ’closest neighbor’
stored in the mapping (where ’closest neighbor’ leads to the best estimation of
the corresponding point the mapping can provide). For each space in a mapping
a different metric can be applied. In this setup the Euclidean distance is used.
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This and similar implementations have been applied to a variety of sensorimo-
tor learning tasks for real robot systems, such as eye-saccades [1] and hand-eye
coordination [3]. In a robot scenario learning sensorimotor mappings means the
generation of links through robot-environment interaction. The quality of the
mappings is obviously determined by the stored links, namely their number and
distribution [3]. In addition to an insertion method of links, a mapping also has
to provide mechanisms for the deletion of links in order to allow continuous
adaptation to changing environmental conditions. In the following we explain
the mechanisms which provide continuous adaptation in more detail.

Assume a mapping M learning the relation between the two spaces X and
Y . We further need to introduce two parameters, T > 0.0 (tolerance) and Q > 0
(minimum age). Each link in a mapping has an “age” value. Whenever the
mapping M is applied, or speaking precisely, whenever an estimation is made,
which is formally written as:

ye =M(x),

then the age value of each link in the mapping is increased. A new link added
has age value zero. Links having age values larger than Q can be deleted from
the mapping.

Regarding the adaptation process, the robot-environment interaction gener-
ates sensor values x. This value is applied to the mapping producing an estima-
tion for an appropriate actor signal ye. Now, this signal or the corresponding
action outcome is evaluated according to a given value system. For simplicity,
assume a supervised system which has access to the correct motor/target signal
y. Hence, an error value can be derived d = |y−ye|, which we call the estimation
error. If d > T , i.e. estimation error is larger than the given tolerance T of M,
then (x, y) is added to M as a new link. If the estimation was good enough,
z ≤ T , then no link is added, but the age value of the link which has provided
the good estimation is set to zero. This ensures that for the time being this link
remains in the mapping. The update of the age value for well performing links is
important because the final step in this update process is the test for old links. If
the age value of oldest link inM is larger than Q then this link will be removed
from the mapping. Notice, only one link is deleted, even if there are more links
of age values larger than Q.

Without going into detail, it shall be mentioned that T determines the gen-
eralisation capabilities of the mapping. The larger T the more the mapping
generalises. The smaller the more it is likely to overfit. Q has an impact on the
number of links in a mapping. The larger its value, the longer an individual link
remains in the mapping. Thus, a higher number of links in a mapping can be
expected if it has a larger Q-value. See [3] for more details.

2.2 A Simple Simulation for the Learning of Coupled Sensorimotor
Mappings

In this study of sensorimotor learning we couple only two mappings, each links
only 1-dimensional spaces, no robot system is involved. Our learning simulation
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Fig. 2. Plot of the functions f(x),g(x) and g(f(x)) as defined and used in this work

is a simple function approximation task. The two functions f(x) and g(x) we
use are defined as follows:

f(x) = x4, g(x) = (x− 1)4, x ∈ [0, 1].

Thus both operating in the closed interval [0, 1] only.
From the plots in Figure 2 one can see that f(x) and g(x) are symmetric

with respect to the axis x = 0.5, and therefore inherently contain the same
complexity. In other words, using the same approximation technique similar
levels of accuracy can be expected.

In the learning simulation two mappingsMf andMg are trained to approxi-
mate function f(x) and g(x), respectively. The overall target function that is to
approximate is a combination of both, namely:

g(f(x)) = (x4 − 1)4, x ∈ [0, 1].

This function is plotted in Fig. 2 too.
In the learning process we have two mappingsMf andMg that individually

adapt as described above. The only crucial issue is the way the mappings are
coupled. This coupling determines the learning strategy, parallel, sequential or
synchronous. In the following we describe the synchronous learning, see Box 1.

At the start of the simulation both mappings are initialised (for each T = 0.01,
Q = 200) which also includes the insertion of 200, or Q-many, randomly selected
links into each mapping. Finally the two functions f(x) and g(x) are defined ana-
lytically. In the next step a concrete example (x, y, z) of the combination g(f(x))
is derived by selecting a random x-value, uniform distributed in the interval [0, 1],
and deriving y and z analytically. Noise is added to these signals in order to sim-
ulate the uncertainty of measurement present in every real sensorimotor system.
The noise is Gaussian, where mean value is zero and standard deviation is T . It
is worth mentioning that T is the tolerance value of both mappings. Choosing a
tolerance value not smaller than the expected uncertainty makes an adaptation
of the mapping to noise less likely. Step 3 begins by applying mappingMf to the
noisy signal xo which leads to the estimation ye. This result is tested versus the
actual value y. Based on the resulting discrepancy or the error value df , map-
pingMf will be updated accordingly (step 4). In the case of a poor estimation
(step 4.3) a new y-value, yo, is generated. This value yo is assumed to be the
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Box 1. Synchronous learning of g(f(x)), where Mf is applied first and approximates

f(x) while Mg approximates g(x):

1 Initialise mapping Mf and Mg

1.1 set value of T = 0.01 and Q = 200 for both mappings ;

1.2 add Q random links to both mappings, Mf and Mg

1.3 define functions analytically as f(x) = x4 and g(x) = (x − 1)4 ;

2 Simulate robot-environment interaction
2.1 create random example x = U(0, 1) ; -- uniform distributed in [0, 1]
2.2 derive y = f(x) and z = g(f(x)) ;

2.3 xo = x + N(0, T ) ; -- Gauss Dist.

3 Derive estimation error df of the first mapping Mf

3.1 ye = Mf (xo) ; yo = ye

3.2 df = |y − ye| ;
4 Update first mapping Mf

4.1 if (df ≤ T )

4.2 then: set age to 0 for link which provided the good estimation;

4.3 else: create a new yo where |y − yo| ≤ df ;

add new link (xo, yo) to Mf;

4.4 remove oldest link in Mf if age value is larger than Q;

5 Derive estimation error dg of the combined mapping Mg(Mf (x))

5.1 ze = Mg(yo) ;

5.2 dg = |z − ze| ;
6 Update second mapping Mg

6.1 if (dg ≤ T )

6.2 then: set age to 0 for link which provided the good estimation;

zo = ze ;

6.3 else: create zo where |z − zo| ≤ dg ;

add new link (yo, zo) to Mg;

6.4 remove oldest link in Mg if age value is larger than Q;

7.0 go back to 2;

results of a targeted robot-environment interaction or exploration which leads to
a better motor response. Notice, it is a better response but not necessarily the
optimal or the best, which would be y. This condition can be formally written
as: 0.0 ≤ |yo − y| ≤ |ye − y|. Consequently, if xo leads to a bad estimation then
the new link (xo, yo) is added to Mf , which is likely to improve the estimation
performance of the mapping. In the case of a good estimation (step 4.2) the age
value of the link in the mapping which has delivered the good result is set to
zero. Furthermore, yo is set to ye, the original estimation of Mf (xo). The test
of the second mapping Mg is based on the estimation resulting from the first
mapping, namely yo. The corresponding estimation error dg is handled in the
same way as described for the first mapping in this chain. However, after the
update of the second mappingMg is completed the whole process is repeated at
step 2 starting with the generation of a new example. In summary, the process
of continuous adaptation is established by the iteration of this loop, which we
call an update or learning cycle.
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This was the description of the synchronous leaning process for g(f(x)). How-
ever, this process can easily altered in oder to simulate sequential learning. As-
suming that the first mapping was already learned, then the adaptation of the
second mapping only needs to deactivate (or remove) step 4.

3 Experiments and Results

Simulations for all three strategies were conducted: parallel, sequential and syn-
chronous. Thus, we have three different learning setups. For each setup we run
10 individual simulations. In each learning cycle and for each mapping involved
as well as for the target function the average estimation error and its standard
deviation was calculated. The validation set contained 500 randomly chosen x-
values (uniform distributed). In addition the number of links was recorded too.
The plots in Fig. 3 show the evolution of these values values over the learning
cycles. For reasons of clarity only the plots of target function and the average
number of links have error bars indicating the corresponding standard deviation.

The parallel learning (Fig. 3 A and B) provides the base lines in terms of
accuracy and the needed number of learning cycles. One can see, on average the
adaptation of both mappings is completed after ≈ 1200 cycles. At this point the
average error values (individual function and target function) doesn’t improve
any more. Also the the number of links (Fig. 3 B) doesn’t change distinctively
anymore. This doesn’t mean that no links are removed and added anymore. The
adaptation process is still ongoing, since links get “older” and must be replaced
with new links. But the total number reaches a kind of equilibrium.

The sequential learning (Fig. 3 C and D) was conducted over 4000 learning
cycles. Since two mappings were learned in sequence and each mapping should
have 2000 learning cycles as it was for the parallel learning. The switch of the
learning process from the first mapping to the second is clearly indicated by
the average number of links. After 2000 cycle the number of links of the first
mapping remains constant, while it starts to increase for the second. After the
switch to the second mapping, the average error value of the target function drops
faster than it does for the second mapping. Hence, the progress of adaptation
is much faster for the target function g(f(x)) than it is for the second mapping
approximating g(x).

On the other hand, as long as the switch to the second mapping isn’t done
(before cycle 2000), the improvements of the first mapping are not reflected in
the target function at all. In other words, no matter how well the first mapping
adapts the average error of target function remains at the high level of the
beginning.

The adaptation of the second mapping is faster compared with the parallel
case. At step 3000 (1000 steps after the switch) the learning is completed for the
second mapping in both cases. Hence, assuming that the switch could already
have been done at learning cycle 1200, when the first mapping is completed, then
a total number of 2200 learning cycles can be estimated for sequential learning.

The data of synchronous adaptation (Fig. 3 E and F) show that the whole
learning process is completed after ≈ 1300 learning cycles. As one would expect,
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Fig. 3. Plots of the learning simulations, see text for details

with respect to the average estimation errors the progress of the second mapping
is slower than for the first mapping. But surprisingly, the evolution of the esti-
mation errors of the target function follows directly the progress of the second
mapping.

Summarising all experiments by the final average estimations errors is done
in Fig. 4. Sequential and synchronous learning always generate optimal error
levels, since they are similar to the error levels achieved for the single function
approximation in the parallel case. However, there is an noticeable higher error
of the second mapping for sequential learning. Regarding the number of links we
see in all runs the average number is quite similar.

4 Discussion

Sequential and synchronous learning outperform parallel learning. This can only
be caused by the second mapping, since the adaptation process of the first map-
ping is identical to the parallel learning. But the sequential learning, on the
other hand, shows that the second mapping generates much higher errors when
tested against the individual function which it is supposed to approximate. This
indicates that the second mapping is actually learning the errors of the first map-
ping in order to compensate them. Therefore, we have optimal error levels for
the target function but lower estimation performance when testing the second
mapping individually.

It is worth mentioning what make sequential adaptation different to parallel.
In parallel adaptation both mappings are trained by random examples derived
from a uniform distribution. In sequential learning the two mapping are coupled.
Hence, the second mapping is trained by the signals generated by the first map-
ping. Since our mapping approximate non-linear functions the output values of
the first mapping have a distribution very distinct from the uniform distribution.
In other words, in sequential learning the second mapping is performed with a
specific selection of training data. This specific set of data might be not best
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Fig. 4. Final average estimation errors for the complete set of experiments

suited for the general approximation of function g(x). The individual test of the
mappings was based on uniform distributed test values.

The effect of such compensatory adaptation is highly visible for sequential
learning, but not in synchronous adaptation. The reason might be that at the
beginning the faulty signals of the first mapping provide a “better” distribution
of training examples for the second mapping. Consequently, the effect of com-
pensatory adaptation might occur only latter since the adaptation process never
stops as long the systems runs. Additional experiments need to provide more
evidence for this hypothesis.

At this point we can summaries the experiments as follows. Synchronous learn-
ing is faster compares with sequential learning (1200 vs. 2200 learning cycles), it is
even almost as fast as parallel learning (1200 learning cycles). With respect to the
approximation of the target function, sequential and synchronous learning achieve
distinctive lower error levels than parallel learning. Therefore, synchronous learn-
ing should be the preferred strategy for learning coupled mappings.

5 Conclusion

Synchronous learning outperforms parallel strategies with respect to average
estimation errors. Compared to the amount of training data synchronous learn-
ing again has an advantage over sequential learning. For the implementation of
autonomous development within our specific framework of visually guided reach-
ing it follows that synchronous learning is efficient and should be the preferred
strategy. Moreover, chained sensorimotor mappings can be learned without addi-
tional effort, namely additional mechanisms that explicitly measure the progress
of learning in order to trigger the adaptation of the next sensorimotor mappings.
All sensorimotor mappings involved in visually guided reaching can adapt at the
same time and right from the beginning. Future research will demonstrate this
on real robots.

A question might occur when considering research activities trying to model
and to implement staged competence learning for humanoid robots which are
inspired by child development [4]. In human infant development very distinct
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stages of competences can be identified. Where are these stages for synchronous
sensorimotor learning?

One might see staged development in infants as evidence that sequential learn-
ing strategies are in place and explicit trigger mechanisms therefore essential
part of computational models for developmental learning. Nevertheless, we ar-
gue that stages of development could also emerge from synchronous adaptation
processes if the sensorimotor mappings have different characteristics. In other
words, observable stages of development could emerge because some sensorimo-
tor mappings need longer to fully develop than others. In addition, factors, like
physical condition and maturation, are obviously important constraints which
need to be considered during the first months and years in child development
[5]. In summary, we argue, that our experiment provide evidence that the appli-
cation of synchronous learning can simplify the engineering of learning processes
in advanced robot systems. However, it also seems worth taking synchronous
learning into consideration for models of child development in general.
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Abstract. We present a neural network approach to learn inverse kine-

matics of the humanoid robot ASIMO, where we focus on bi-manual

tool use. The learning copes with both the highly redundant inverse

kinematics of ASIMO and the additional arbitrary constraint imposed

by the tool that couples both hands. We show that this complex kine-

matics can be learned from few ground-truth examples using an efficient

recurrent reservoir framework, which has been introduced previously for

kinematics learning and movement generation. We analyze and quantify

the network’s generalization for a given tool by means of reproducing

the constraint in untrained target motions.

1 Introduction

The ability to use tools is one of the cornerstones of behavioral intelligence. Tool
use is fundamental to human life: Humans use tools to extend their reach, to
amplify their physical strength, and to perform many other tasks. However, to
overcome limitations induced by the anatomy, tools are used by many organisms
to increase their abilities. On the other hand, tools also play a very important
role in classical industrial robotics. In this context, tools are used to tailor stan-
dard robot arms for specific tasks. The respective kinematics are typically hard
coded by a human programmer or incorporated in the kinematic function by a
simple offset. With the advent of autonomous and highly redundant humanoid
robots such as ASIMO, machines begin to display an unprecedented dexterity
and start to feature very flexible motor capabilities with a high precision. Be-
cause of their humanoid anatomy such robots are expected to handle tools in
a way similar to humans in a large variety of tasks. A predefined parametriza-
tion of arbitrary constraints introduced by a tool is not feasible in this scenario.
Learning of the skill will be more efficient than a situation dependent reprogram-
ming. Many practical manipulation tasks, like those we consider in this paper,
can be treated as imposing a certain pose constraint on the motion of the robot’s
hands. Examples are bi-manual use of a stick or moving a large box, where both
hands become coupled with respect to both orientation and position.

In this paper, we focus on the example of bi-manual tools used by the hu-
manoid robot ASIMO [1], although the methodology is by no means restricted
to this particular robot. Tools are described by a function, which maps the po-
sition and orientation of a given tool to the end effector configuration of the

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 478–488, 2010.
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robot. The geometry of a given tool, which defines the constraint, is therefore
only implicitly available through the training examples and is never explicitly
used. We will show that the learned solution will reproduce this constraint when
generalizing to new targets. Note that the robot needs to coordinate its full body
in order to use tools, because the arms are also coupled through the torso and
its respective hip motion.

For learning, we employ a recurrent neural framework that is a variation of
reservoir computing and has previously been used for learning inverse kinemat-
ics [2] and movement generation [3]. It uses efficient learning rules [4] that are
biologically plausible and follow the general idea of reservoir computing: Inputs
are fed into a dynamic reservoir of hidden neurons, by which they are transformed
into a high dimensional space, the state of the reservoir network. This method is
a very data efficient scheme, which can cope with the typical constraints in devel-
opmental learning. Data efficiency means to learn without excessive sampling of
all possible tool configurations in space. The learner can generalize within convex
hull of the demonstrated examples and can extrapolate to unseen samples [5].

Other machine learning techniques have been very successfully applied to
specific inverse kinematics problems [6]. In order to increase flexibility in such
systems, several approaches have been used. Under the notion of extendable
or adaptive body schemata, several studies investigate how motor and control
knowledge can be re-learned for the case of tool use [7,8,9]. The incorporation of
arbitrary constraints has been investigated for the control of specific actions, for
instance by Howard et al. [10]. However, learning the incorporation of arbitrary
constraints into voluntary control is not well investigated. Therefore, our method
expands the state of the art towards flexible tool use. In the remainder of the
paper we describe the learning setting in Sect. 2, the neural network approach
in Sect. 3, the evaluation and experiments in Sect. 4, and conclude in Sect. 5.

2 Tools as Kinematic Constraints for ASIMO

Given a robot, the forward kinematics function F : IRm → IRn is uniquely
defined. It converts a set of joint angles into the corresponding end effector con-
figuration. On ASIMO, the end effector configuration contains two subsets: the
left and the right hand. The hand center points pL,R are described in cartesian
coordinates x, y and z with respect to the world coordinate system. The orien-
tations of the hands are expressed as spatial orientations of the grasp axis dL,R.
The grasp axis are the z-axis in hand centered coordinates (see Figure 1). Thus
the task vector is a twelve-dimensional input variable

e = eL,R = (eL, eR) = ((pL, dL), (pR, dR)) ∈ IR12, L = left, R = right . (1)

In the following, task constraints given by tools will define and couple positions
for both hands and the directions of both grasp axis.

The ASIMO full body motion controller [11], which will be used to generate
the ground truth examples, operates on 15 degrees of freedom (m = 15). Each
arm is moved by controlling three rotational degrees of freedom in the shoulder,
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Fig. 1. Left: The grasp axis is identical with the z-axis in hand coordinates. Right:

The translation is defined by s1,2,3. CL and CR are the transformations to the end

effectors. The Rotation from the world coordinates (WC) to the tool coordinates (T)

is described by the angles θ1,2,3.

one in the elbow and one in the wrist. Additionally, four degrees of freedom
are located in the hip: its height over ground and the rotation around all three
spatial axes. The last degree of freedom is the heads pan orientation that is
without effect on the task, but also controlled and learned.

An inverse kinematics function F−1 of a robot is defined by the forward
kinematics in the following equation: F (F−1(e)) = e . It maps a configuration
of the end effector e ∈ IRn to the joint angels q ∈ IRm for the robot. There
is no unique inverse kinematics function in the case of redundancy. ASIMO’s
kinematics is interesting for learning, because both arms are coupled by the
upper body motion. The full body motion couples both arms by means of an
augmented Jacobian [11] such that there is no separate kinematics for the arms.
Targets that are out of reach for the hands can be approached, for instance, by
leaning forward or backward.

2.1 Tool Kinematics as Constraints

We now describe the tool kinematics in order to be able to generate training
examples. Once the training examples are known, the explicit tool geometry
and kinematics are not further used directly, but all information is implicitly
contained in the examples of tool positions and joint angles. We focus on bi-
manual tool use. A tool is defined by a constraint, which couples both hands
together. The constraint is described by a tool’s position and orientation in
Euler angles

u(t) = (s1, s2, s3, θ1, θ2, θ3) ∈ IR6 . (2)

Given this input vector u(t) the desired bi-manual end effector configuration
C(u(t)) = (CL(u(t)), CR(u(t))) = e(t) ∈ IR12 is uniquely defined. CL : IR6 → IR6

transforms the input vector to the world coordinates of the left hand. CR :
IR6 → IR6 does the same for the right hand. For the control of the robot, a
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function T : IR6 → IR15, which couples the tool C and the inverse kinematics
F−1 : IR12 → IR15 is required

T (u(t)) = F−1(C(u(t))) = F−1(e(t)) = q(t) . (3)

Figure 2 shows some examples of ASIMO holding a 46 cm long stick. Given the
position and orientation of the tool as input variable u(t), the recurrent neural
network (after learning as described below) computes joint angles q̂(t) to grasp
the stick. In Fig. 2(a) and 2(b) both grasp axis are pointing towards each other,
which is characteristic for a stick, while in 2(c) the grasp axis are vertical like
for grasping a wheel with the stick as diameter.

(a) The stick axis is par-

allel with the y-axis in

world coordinates.

(b) Stick rotated around

the x-axis.

(c) ASIMO performs an

end effector configura-

tion where both grasp

axis are in parallel.

Fig. 2. ASIMO controlled by a recurrent neural network

3 The Neural Network Learning Approach

The task is to learn the combined function consisting of the specified tool con-
straint and inverse kinematics with a recurrent neural network, such that T is
approximated from a small number of examples. A new function T̂ : IR9 → IR15

is defined by the neural network. The actual network outputs are denoted with

q̂(t) = T̂ (u(t)) . (4)

The goal is to minimize the error between (3) and (4) on the training set. For
learning we use a recurrent neural network, which receives a time sequence of
subsequent tool configurations u(t) as input. The network is trained to compute
joint angles q̂(t) such that the tool can be grasped F (q̂(t)) ≈ C(u(t)). Figure 3
shows the network setup. The respective network consists of 6 input-, 15 output-
and 300 hidden reservoir- neurons. The output nodes receive input from both:
input and reservoir neurons. The reservoir receives the input values and, in a
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Table 1. Network parameters

Connection Sparseness Init. range

Input-Reservoir 0.2 0.1

Input-Output 1.0 0.1

Reservoir-Reservoir 0.02 0.02

Reservoir-Output 0.2 0.1

Output-Reservoir 0.2 0.1

Table 2. Learning parameters

BPDC-Learning IP-Learning

Rate-Start 0.15 Rate-Start 0.01

Rate-End 0.015 Rate-End 0.001

ε 0.002 μ 0.2

recurrent loop, the output values. The connectivity parameters are listed in
Tab. 1. Formally, we consider the recurrent reservoir dynamics

x(k + 1) = Wnety(k) + Winu(k) where y(k) = fa,b(x(k)) .

k is the discrete time step and xi , i = 1...N are the neural activations. y = fa,b(x)
is the vector of neuron activities obtained by applying parameterized Fermi
functions 1

1+exp(−ai·x−bi)
component-wise to the vector x.

We assume that the neurons are enumerated such that the first O = 15 neuron
activations xi, i = 1...O serve as output values. In our setting we can thus write

x(k) = (q̂(k)T , xO+1(k), ..., xN (k)) .

Our setup involves two learning rules that work in parallel. Connections to the
output nodes are adapted with the supervised Backpropagation-Decorrelation
rule (BPDC), which has been introduced in [4]. It can cope with feedback from
output to the internal neurons [12] (Figure 3). Since only the output layer is
adapted in a supervised manner, the approach is biologically rather plausible
[13] compared to learning methods that require a deep backpropagation of er-
rors. Such output layer adaption is also believed to occur in the cerebellum,
which is heavily involved in human motor learning [14]. The initialization and

Fig. 3. The reservoir network. The network is trained towards a constraint inverse

kinematics solution by BPDC adaption of output weights and an Intrinsic Plasticity

(IP) rule within the reservoir. The estimated joint angles are applied on ASIMO.
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handling of the other connections follow the reservoir computing paradigm and
are therefore randomly chosen from a uniform distribution and stay fixed, see
Tab. 1 and 2. An unsupervised Intrinsic Plasticity (IP) rule is applied inside
the reservoir that accounts for an efficient neural coding as it can be found in
different visual cortical areas [15]. The IP rule was first introduced by Triesch
[16], inspired by soma-intrisic adaptions that are found in biological neurons
[17], and was first used for reservoir optimization in [18]. Details can be found
in these references.

4 Experiments and Results

In order to acquire ground truth training data, we use an analytic velocity-
based feedback controller. This whole body motion (WBM) controller [11] uses
all upper body degrees of freedom of ASIMO to perform a target motion of both
hands. It selects one particular out of the infinite number of solutions based
on additional criteria. It is important to note here that the goal of learning
is not to replicate the velocity mapping. Rather, we learn a pure feedforward
control, that solves the inverse kinematics directly. This is not the case for the
velocity-based feedback controller. Since the demonstration and execution of
targets to the controller is also temporal, in practice a target e is never exactly
reached and this way to generate training examples actually introduces some
noise.

Given a certain tool C the inverse kinematics function F−1 and a trajectory of
the tool u(t), trajectories of samples q(t) = T (u(t)) are created by executing the
WBM controller and recording the respective joint angles. The analytic forward
kinematics F is then used to additionally compute the corresponding end effector
configurations e(t) = F (q(t)), which are later used to calculate different error
measurements.

The training is organized in epochs and cycles. A cycle is one full temporal
presentation of the training motion u(t). In each epoch we first re-initialize the
network-state randomly and present one cycle to the network without training to
wash-out the randomly chosen initial state of the reservoir. Subsequently we show
the complete pattern five times with enabled learning: after the presentation
of each new target position u(t), the output connections are adapted towards
the target output q(t) using the BPDC rule. An IP rule is used for reservoir
optimization. A final cycle is used to estimate the error of the output joint
angles q̂(t), while learning is disabled. We use three error measures:

– The mean relative euclidean distance between the desired and actual joint
angles:

Ejts = 1
T

T∑
t=1

√√√√ 15∑
i=1

(
q̂i(t)− qi(t)

ubi − lbi

)2

.

ubi is the upper bound and lbi is the lower bound of the i-th joint.
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– The mean distance between desired and actual hand positions (in meters)
as interpretable and realistic error measure:

Epos = 1
2T

T∑
t=1

||p̂L(t)− pL(t)||+ ||p̂R(t)− pR(t)||

– The mean distance between desired and actual hand orientations (in radi-
ants):

Edir = 1
2T

T∑
t=1

|�(d̂L(t), dL(t))| + |�(d̂R(t), dR(t))| .

where �(a, b) = arccos
(

a·b
|a|·|b|

)
is the enclosed angle between a and b.

All series were learned over 1000 epochs with continuously decreasing learning
rates of BPDC and IP. The rates follow an exponential function from a given
start to a given end.

Evaluation and Generalization

Previous studies have shown that excellent generalization with the proposed
network scheme [2,3,12] is possible, however for much simpler tasks not involving
additional grasp constraints. The following Tabs. 3, 4 and 5 demonstrate that
this holds true also for the more complex scenario considered in this paper. The
errors are shown for nine different training sets. The training sets demonstrate
learning to manipulate a 46 cm long stick, which is moved in a circle in front
of ASIMO without changing the sticks orientation. For instance “XZ50” means
that the stick center was moved in the X-Z-Plane in world coordinates in a circle
with a radius of 50mm, divided equally in steps of one degree:

u(t) = (s1 − 0.05m · cos(t), s2, s3 + 0.05m · sin(t), 0, 0, 0) with s1 = 0.45m,
s2 = 0m, s3 = 0.75m and t = k · 2π

360 and k = 0..360 .

Figure 4(a) shows the visualization of the example time series.
The rows of the tables show the reservoir network errors on the nine train-

ing sets. The tables demonstrate that generalization to similar training sets is
possible.

All series in Fig. 5 are produced by a movement of the stick in the x-z-plane,
without changing the sticks orientation, such that the end points of the stick
draw circles (Figure 4(a)). The lines in Figs. 5 and 6 are the outcome of the
controller. In this case the end effector positions p̂L,R(t) are plotted in Fig. 5(a)
and the grasp axis coordinates d̂L,R(t) in Fig. 5(b). The points represent the
network output q̂, trained with the inner time series, which was transformed
by the analytic forward kinematics F into the end effector configuration F (q̂)
for visualization. The figure points out the networks’ remarkable generalization
ability.
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Table 3. Relative joint errors Ejts

te./tr. XY25 XY50 XY75

XY25 0.027 0.066 0.122

XY50 0.029 0.037 0.083

XY75 0.128 0.157 0.218

te./tr. XZ25 XZ50 XZ75

XZ25 0.048 0.096 0.149

XZ50 0.040 0.034 0.088

XZ75 0.063 0.040 0.037

te./tr. YZ25 YZ50 YZ75

YZ25 0.156 0.311 0.473

YZ50 0.029 0.044 0.089

YZ75 0.076 0.137 0.207

Table 4. Position errors Epos

te./tr. XY25 XY50 XY75

XY25 0.005 0.014 0.028

XY50 0.010 0.011 0.023

XY75 0.020 0.018 0.025

te./tr. XZ25 XZ50 XZ75

XZ25 0.008 0.017 0.028

XZ50 0.005 0.007 0.016

XZ75 0.013 0.009 0.008

te./tr. YZ25 YZ50 YZ75

YZ25 0.017 0.034 0.052

YZ50 0.006 0.009 0.015

YZ75 0.011 0.015 0.021

Table 5. Orientation errors Edir

te./tr. XY25 XY50 XY75

XY25 0.030 0.064 0.106

XY50 0.027 0.016 0.042

XY75 0.038 0.050 0.070

te./tr. XZ25 XZ50 XZ75

XZ25 0.012 0.024 0.039

XZ50 0.008 0.015 0.029

XZ75 0.029 0.022 0.023

te./tr. YZ25 YZ50 YZ75

YZ25 0.016 0.034 0.0560

YZ50 0.018 0.019 0.0357

YZ75 0.043 0.053 0.0844

(a) The time series XZ50 forms an

circle with 5.0 cm radius at the end-

points of the stick.

(b) The time series RYZ100 forms

an eight at the endpoints of the

stick.

Fig. 4. A stick grasped by ASIMO in two different configurations

Figure 6 shows the movement of a stick by changing its orientation such that
the end effector positions draw eights (Figure 4(b)). The grasp axis is shown in
Fig. 6(b). The network was trained by the outer time series and interpolates the
other time series with high accuracy.
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Fig. 5. Stick, which was moved in the x-z-plane without change of the orientation. Left:

the position of the hands. Right: components of the grasp axis. The recurrent neural

network was trained with the training set producing the inner circle.
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Fig. 6. Stick, which orientation was changed, such that eights at the ends of the stick

were created. Left: the position of the hands. Right: components of the grasp axis. The

recurrent neural network was trained with the training set producing the outer eight.

5 Discussion and Outlook

We present a neural learning task defined by a tool for the humanoid robot
ASIMO. Necessary for learning control are data efficient learning mechanisms.
The presented experiments show that our methodology allows such learning.
The network can learn to coordinate the robot’s upper body and the coupled
kinematic chain defined by a tool. Our learning technique is able to deal with
temporally correlated data and online learning, which are fundamental prereq-
uisites to enable an incremental acquisition and also an ongoing refinement of
motor skills. It is fast enough to be used in real time on the real robot system.

The networks allow remarkable generalization from very few, expert-generated
examples, which makes the approach appealing for motor learning. One smooth
sample motion, consisting out of 360 closely connected samples, is sufficient to



Learning Inverse Kinematics for Pose-Constraint Bi-manual Movements 487

learn the whole body kinematics for a given tool. Future work will address a
more systematic analysis of the generalization ability. The main focus will lie
on the constraint, which couples the robots end effectors, defined by a tool. To
analyze the generalization ability across constraints in more detail a measure
which is able to quantify the network’s capability to satisfy the constraint is
needed.
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Abstract. Reinforcement learning is one of the main adaptive mechanisms that
is both well documented in animal behaviour and giving rise to computational
studies in animats and robots. In this paper, we present TeXDYNA, an algorithm
designed to solve large reinforcement learning problems with unknown structure
by integrating hierarchical abstraction techniques of Hierarchical Reinforcement
Learning and factorization techniques of Factored Reinforcement Learning. We
validate our approach on the LIGHT BOX problem.

1 Introduction

One central issue in animat research consists in facing the complexity of the real world
with adaptive methods. Among such adaptive methods, reinforcement learning (RL) is
one of the most studied. However, due to the ”curse of dimensionality” inherent to the
Markov Decision Process (MDP) framework, standard RL algorithms cannot address
large scale real world problems mostly because they must enumerate all states [1]. In
order to apply RL to robotics problems, two main lines of research can be followed.
One consists in making profit of the structure of the sensory system of the robot using
Factored MDPs (FMDPs), using a representation where a state is implicitly described
by an assignment of values to some set of state variables. Then, one can exploit the
dependencies between variables to get a compact representation [2]. The second line of
research consists in making profit of the structure of the decision problem itself, using
Semi-MDPs (SMDPs), an extension of MDPs where the number of time steps between
one decision and the next is a random variable. The SMDP framework is the basis for
Hierarchical Reinforcement Learning (HRL) algorithms as it decomposes the original
task into subtasks that are easier to solve individually [3].

The methods to solve FMDPs and SMDPs usually assume that the structure of the
problem is given, though that structure is rarely available in practice. As to hierarchical
representations, HEXQ [4] and VISA [5] are two algorithms designed to solve this prob-
lem. Besides, for FMDPs, [6] have proposed SDYNA to solve Factored Reinforcement
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Learning (FRL) problems. Here, we propose TeXDYNA, an algorithm that combines the
benefits of HRL and FRL, building an HRL-augmented version of SDYNA.

The paper is organized as follows. First, in Section 2, we give the minimal back-
ground necessary to understand what follows. In Section 3, we present TeXDYNA, in-
troducing the method for discovering options from the internal structure of the problem
and showing how to introduce options into FRL algorithms. In Section 4, we present an
experimental study of our system based on the LIGHT BOX problem. In Section 5, we
discuss the contributions and limitations of our work as well as related work.

2 A Quick Index to the Background

An FMDP is described by a set of state variables S = {X1, . . . , Xn}, where each Xi

takes its value in a finite domain Dom(Xi). Structured Dynamic Programming (SDP)
algorithms such as SVI [7] make profit of this structure to compute a policy compactly.
Structured-DYNA (SDYNA) [6] is a general framework that adapts indirect RL of the
DYNA family [8] to the FMDP framework. SPITI is a particular instance of SDYNA based
on a decision trees induction process to learn the structure of the problem and on SVI to
obtain an efficient policy. While the FMDP representation technique reduces the size of
the representation of state-action space of large problems by decomposing states into a
set of random variables, the HMDP representation decomposes the overall state-action
space into a set of smaller state-action spaces each of which can be factored. SMDPs
are an extension to MDPs where the number of time steps between two decisions is a
random variable. Among several other frameworks (see [3] for an overview), the options
framework [9] is designed to solve SMDPs by building a hierarchy of options. An option
is a tuple 〈I, π, β〉, where I ⊆ S is an initiation set, that is a subset of states in which it
is possible to execute o, π : S×O→ [0, 1] is a policy executed in o, and β : S → [0, 1]
is a termination condition function, that is the probability of terminating the option
in each state. Options are a generalization of primitive actions including temporally
extended courses of actions. As a result, the algorithms deal only with options and do
not have to distinguish options from primitive actions. Previous algorithms combining
FMDP representation and HMDP structure learning are HEXQ [4] and VISA [10]. The
work most closely related to ours, Incremental-VISA [11,12] is discussed in Section 5.

3 TeXDYNA

TeXDYNA hierarchically decomposes an FMDP by automatically splitting it into a set
of options. Meanwhile, the local policy of each option is incrementally improved by a
SDYNA-like approach. The central contribution of this work comes from the fact that
the discovery of options and the construction of the model of the FMDP, as well as
policy computation, are simultaneous. To achieve simultaneous SMDP structure learn-
ing, FMDP structure learning as well as local and global policy computation, TeXDYNA

is built on top of SPITI. There are two main advantages to our approach. First, we
make profit of the learning method used in SDYNA to learn only a local model for
each option. As a result, the models are smaller and, therefore, easier to learn. Sec-
ond, introducing options in the planning stage results in the possibility to plan over
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smaller partitions of the state-action space. In order to decompose hierarchically the
overall FMDP into sub-FMDPs represented by options, TeXDYNA builds a global tran-
sition function that represents the structure of the problem and uses this function to
build a hierarchy of options. For each option, TeXDYNA computes a local transition
function and a local policy. Therefore, TeXDYNA can be decomposed into two simul-
taneous processes: (1) Learning options: learning the transition function of the overall
FMDP (updating the FMDP model with (s,a,s′,r)) and adding or updating options (Al-
gorithm 1); (2) Planning with options: using a modified version of the SPITI algorithm
for model learning, planning and acting with options, i.e. updating hierarchical policy
π = 〈πo0 , πo1 , ...πon , 〉(Algorithm 2).

3.1 Defining Options

The purpose of our approach is to decompose the overall FMDP into smaller subtasks or
mutually independent stand-alone policies. Our representation takes advantage of the
FMDP structure using temporal abstraction techniques. We use a specific options repre-
sentation inspired from the goal-oriented exit options of VISA [10] and HEXQ [4], where
options are defined by their exit states that can be seen as subgoals of the task. Our op-
tions are noted o: o = 〈I, π, e〉 where I ⊆ S is an initiation set, π is a policy executed
in o and e is the related exit. We do not use the usual termination function β since it is
defined by the exit and computed at each time step during the option execution.

An exit corresponds to changes of values of state variables linked to the reward
function, as in HEXQ. However, unlike HEXQ, where exits are state-action pairs, we
define exits as a tuple 〈v, a, vch, c〉, where v is the variable whose value is changed by
this exit, a is the exit action that makes the value of v change at the next state, vch is a
variable change, i.e. a pair of values 〈x, x′〉 where x is the value before a is executed
and x′ the value after a is executed. In the stochastic case, the variable change is a
probability distribution over vch and the highest probability is kept in the exit definition.
Finally, c = {x1, ..., xn} is the context, that is the set of constraints (i.e. assignment of
values to a subset of state variables) that makes this exit available. In this representation,
the primitive actions have an empty context. Thus, there is at most one exit per action
and per variable change. Thus, each option corresponds to a unique exit.

The initiation set Io of option o defines the state space where this option can be
executed. On the one hand, it determines if the resources necessary for the successful
execution of the option are available, and, on the other hand, it specifies the state space
from where the exit of the option is reachable. In practice, it is the union of its own exit
context and all the exit contexts of its sub-options. If a sub-option is a primitive action,
its exit variable is added to Io with all possible values. Otherwise, the exit variable
of the sub-option is added with its value change. By convention, a sub-option with
an empty initiation set is admissible everywhere. This is particularly true for primitive
actions. Therefore, all the values of the corresponding exit variables of these options are
accepted. Thus, Io contains all the states from which the exit of the option is reachable.
This property of direct reachability is ensured by the fact that the exit context copies
the constraints of the corresponding branch in the transition tree. In other words, the
nodes of the branch represent the variables of the context. When those variables can be
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changed by a sub-option, the exit of the parent option becomes reachable from all the
states where its sub-options are accessible.

The hierarchical structure of the options set is determined by the variables interde-
pendencies expressed in the structure of the transition function. However, for the sake
of sound planning, a rank is assigned to each option as the highest rank of its sub-
options plus one. As a result, the planning algorithm chooses an option to execute at
each abstraction level in the hierarchy by going down from the most abstract options
to primitive actions. Transition model learning and options discovery are simultaneous.
Thus the options discovered first represent the transitions learned first and consequently
have less constraints as they represent the most accessible subgoals. If the problem
has a hierarchical structure, this gives a bottom-up direction to the options discovery.
First the options with the lowest abstraction level are discovered, then their execution
gives access to more constrained options. Defined this way, each option represents a
sub-FMDPMo = 〈So, Oo, Ψ, To, Ro〉 containing a reduced partition of the initial state-
action space, where So is a set of context variables, Oo is a set of sub-options, Ψ is a set
of admissible state-option pairs defined by the initiation set, To is the local transition
function and Ro is the local reward function. In this respect, when an option is created,
we initialize its local FMDP tree structure composed of the transition trees for its con-
text variables, as well as a local planning algorithm. Thus, when learning the internal
FMDP structure of the option, the states injected in the learning algorithm are reduced
to contain only variables xi such that ∀i, xi ∈ Xo.

3.2 Learning: Adding and Updating Options

To discover options, the overall task transition function is learned in a decision tree
form. The FMDP model provides the structure used for the options discovery process,
as this structure represents the dependencies between variables and constraints under
which those variables change their values.

Algorithm 1 describes the procedure for adding or updating options. An option is
introduced each time there is an action that can change one variable value. The sub-
options are the options available in the sub-FMDP represented by the corresponding
parent option. Sub-options are added in the following way: for each variable in the
context of the parent option, if the set of options E contains an option that modifies the
value of this variable, this option is added to the set of sub-options. Note that, when
computing the context of an exit, the exit variables are excluded from the context to
avoid cross-dependencies between options. This procedure supposes that there is one
option per variable change and that each option changes at most one variable value.
For instance, if some options change more than one variable, then one variable can
be changed by more than one option. As a consequence, these options would be sub-
options of one another, creating loops in the hierarchy. Nevertheless, this constraint
can be relaxed by reorganizing the hierarchy once the options have been added. The
procedure is the following: if a cross-dependency is detected between two options, the
hierarchical link between them is removed and both options are attributed the lowest
rank of the two. This way, more than one option may have the same exit variable.

The options are defined over the model of the problem while this model is learned.
Thus some are incomplete or erroneous, especially in the first stages of the learning
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Algorithm 1. Add and update options
init : options set E = ∅
input: FMDP F = [∀xi ∈ X : Tree(P (x′|x))]

1 forall transition tree Tree(P (x′|x)) ∈ F do1

2 forall leaf l of the Tree(P (x′|x)) do2

3 if branch contains an action a & a modifies the value of the variable x in leaf l3

then
4 if if E does not contain a definition of option o with the exit corresponding to4

variable x and action a then
5 introduce new option o defined by exit e : 〈v, a, vch, c〉 with :5

6 • variable v ← x6

7 • action a ← current action a7

8 • variable change vch ← 〈value in the branch, value in the leaf〉8

9 • context c ← variables of the branch that leads to the leaf l9

10 else if E contains a partial definition of o then10

11 update o with new information11

process. To ensure the relevance of discovered options, they are updated every time
the model of transitions changes. The algorithm checks if the set of options E already
contains an option defined by the same action and variable, but with a different context
definition. If so, it updates it (line 10 in Algorithm 1) using the following procedure:

1. Update the exit context c of the option;
2. Update the transitions trees (add missing ones and discard irrelevant ones);
3. Update the sub-options list (add missing ones and discard irrelevant ones);
4. Re-compute the rank k of the option;
5. Re-compute the Initiation set Io.

As to incrementality, [6] proposes to re-initialize the value function each time the re-
ward function changes, mainly because the structure of the value function results from
the reward function. In the incremental options learning case, the value function tree is
reset each time the reward function changes in order to take into account every modi-
fication that changes the structure of the policy. There are exactly as many options as
possible variable value changes. Thus there is no need to remove incorrect options given
that as soon as their context is correct, they become accurate. Meanwhile, however, in-
accurate options can influence planning and exploration by building an erroneous policy
(see the next section).

3.3 Planning: FRL over Options

The planning stage builds a hierarchical policy over options by incrementally improving
and modifying it simultaneously with the learning process. The planning algorithm,
built upon the ideas coming from HRL algorithms and FRL methods based on SPITI, is
given in Algorithm 2.
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Algorithm 2. SPITI with options
input : FMDP F , hierarchy of options E
for each time step t

1 if no option is running then
option o ←ChooseOption(s, Tree(π), E )

2 if terminal condition of o is satisfied then
2.1 execute exit action a; observe next state s′ and immediate reward r

2.2.a update local FMDP Fo with (s,a,s′,r)
2.2.b update parent FMDP Fparent(o) with (s,o,s′,r)
2.3.a update local policy πo with Fo

2.3.b update parent policy πparent(o) with Fparent(o)

3 else
sub-option i ←ChooseOption(s, Tree(πo), E )
if sub-option i is primitive action then

3.1 execute i; observe s′ and r
3.2 update local FMDP Fo with (s,i,s′,r)
3.3 update local policy πo with Fo

3.4 return: i

4 else
call SPITI over sub-option i : i →SPITI (Fi, E )

To operate with options and take into account the hierarchical structure of the pol-
icy, we use a modified instance of SPITI for model learning, planning and acting with
options. The algorithm executes options recursively by going down the hierarchy of op-
tions up to primitive actions that can be executed by the agent in its environment, then
performs the updates by going up in the hierarchy. This upward update guarantees that
the model of transitions includes the changes that occur during the incremental learning
process. Thus, local planning is performed for each option with respect to the current
structure of its local model of the transition and reward functions. The inner loop of
SPITI is decomposed into three stages:

– Acting: choose an action using ε-greedy exploration;
– Learning: update the model of the transition and reward functions of the FMDP

from 〈X, a, X ′, R〉 observations using ITI;
– Planning: update Tree(V ) and Tree(π) using one sweep of SVI.

Then, in the learning stage, the ITI algorithm is modified to work with options by
replacing primitive actions by options in trees and allowing to remove or add new tran-
sition trees while learning. Moreover, ITI uses reduced states representations containing
only variables present in the context of the option, so that the local model is updated
with observations 〈So, a, So

′, R〉 where So is a set of local context variables.
Finally, in the planning stage, the adaptation of SDP algorithms like SVI to the options

framework is straightforward. Since the action space is restricted by the number of sub-
options available on a given hierarchical level, the algorithm has an additional argument
that specifies the list of options to iterate through.
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The primitive actions available in the environment are all initialized as options with
empty exit context and initiation set. TeXDYNA builds the hierarchical policy π =
〈πo0 , πo1 , ...πon , 〉 where a higher level policy is based on a set of lower level poli-
cies. Each option follows the policy of its FMDP, its sub-options follow their respective
policies and so on. Moreover, to propagate the external rewards to the local policies of
options, when a high level option is discovered, an additional reward, named “internal
reward” ro (by contrast with the external reward received from the environment) is as-
signed to its exit action. We set ro = Ro

2 , where Ro is the internal reward of the parent
option. For the options on the top level of the hierarchy, Ro is the maximal immediate
external reward that the agent can get. This heuristics is inspired by the “salient event”
heuristics introduced in [13].

As mentioned above, in the first iterations, the hierarchy of options and often options
themselves are inaccurate or irrelevant. This is why the procedure to choose options
(Algorithm 3) must take inaccuracies into account and use a strategy that favors explo-
ration in the first steps and chooses the options at the right level of the hierarchy.

Algorithm 3. Choose Option
input: current state s, policy Tree(π), hierarchy of options E , level k

1 Get option o from to the current policy, o = maxo[leaf(Tree(π)|s)]
2 if o is null then

choose option o from E accessible in the current state s with current rank k

3 while o is null do
choose option o from E accessible in the current state s with rank k − 1

(if k = 0 choose random primitive action)
return o

The root node of the option hierarchy represents the overall FMDP. The first option
o is chosen according to the root policy while its initiation set contains the current
state s. The sub-options are selected according to the internal policy πo of the option
o augmented with an ε-greedy exploration policy. If the policy is incomplete and does
not contain any information about options available in a current state, then an option
is chosen randomly from the options set E on the current rank level with respect to its
initiation set. If no option is available with a given rank, the algorithm chooses from
options with lower rank and so forth. Thus, in the first stages of learning, only the
options with rank 0 are available, that is primitive actions chosen randomly and in the
end the preference always goes to the options with the higher level of abstraction. This
provides a high level of exploration at the beginning and then for unexplored parts of
the state space, therefore this speeds up the overall learning process.

In order to avoid an option from being stuck within an erroneous policy that fails
to achieve its exit, we introduce the notion of selection penalty that forbids one option
for a given number of time steps. In practical terms, when an option reaches its exit
state but fails to change the corresponding variable value, that means that its structure
is inaccurate. In this case we forbid this option selection for (max time steps per episode)

10
time steps in order to let the model of transitions of its parent option be improved.
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4 Experimental Study

Here, we have chosen to evaluate TeXDYNA on the LIGHT BOX domain [11], presented
in Fig. 1. It consists of a set of twenty “lights”, each of which is a binary variable
corresponding to ON and OFF, named “0”, “1”, “2”, etc. Each light has a corresponding
action that toggles the light ON or OFF. Thus there are twenty actions, 220 ≈ 1 million
states, thus approximately 20 million state-action pairs. The 9 white lights are simple
toggle lights that can be turned ON or OFF by executing the 9 corresponding actions.
The green lights are toggled similarly, but only if certain configurations of white lights
are ON, with each green light having a different set of dependencies. Similarly, the
blue lights depend on certain configurations of green lights being ON, and the red light
depends on configurations of the blue lights. The goal is to turn the red light on, in
which case the agent receives a reward of 20.

The results presented below are averaged over 20 runs of 150 episodes where each
episode is limited to 300 steps. The curves are smoothed by computing the moving av-
erage weighted over ten neighboring values. The algorithms use the following parame-
ters: N = 300 in DYNA-Q and ε = 0.1 in ε-greedy. The ITI algorithm uses χ2 = 30 in
stochastic problems and χ2 = 0 in deterministic ones. The algorithms are coded in C#
and run on Intel Core2Duo 1.80GHz processor with 2Go RAM.

An example of hierarchy of options obtained on the LIGHT BOX problem is given
in Fig. 2. The complete state representation in the LIGHT BOX problem is given by 20
variables corresponding to 20 lights, but the states used to update the internal structure
of the FMDP corresponding to the option toggle16 contains only 2 variables “10” and
“11”. As a consequence, the sub-FMDP has 2 variables × 2 sub-options instead of 20
variables× 20 actions.

Fig. 3 shows the performance in number of time steps required to complete one
episode of the LIGHT BOX problem within three experimental contexts: random policy,
TeXDYNA and DYNA-Q applied to both the deterministic version of the LIGHT BOX

Light Depends on

9 0 3 6
10 1 4 7
11 2 5 8
12 6 7 8
13 3 4 5
14 0 1 2
15 9 10
16 10 11
17 12 13
18 13 14
19 16 17

(a) (b)

Fig. 1. (a) The LIGHT BOX problem: number and color of “lights” with their dependencies. (b)
Internal dependencies of the LIGHT BOX problem.
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Fig. 2. Example of options discovered in the LIGHT BOX problem

Fig. 3. (a) Convergence over episodes on the LIGHT BOX problem. (b) Policy size on the LIGHT

BOX problem.

problem and a stochastic version where the agent performs random actions with a 10%
probability. We could not obtain the convergence curve for SPITI because SPITI attempts
to build the complete value tree representing all possible combinations that is 1 million
leaves. This assertion is explained by the results presented in Table 1 that recaps the
average time in seconds per step and the size of the functions in the stochastic LIGHT

BOX problem. TeXDYNA requires less time to perform one step since it works on a
smaller representation. While SPITI is struggling to check if the red light is dependent on
the white light, the policy built by TeXDYNA goes straight to the goal state by achieving
subgoals one by one at each level.

The algorithm finds the same structure in the stochastic case as in the deterministic
one. One can notice that it takes more time to the algorithm to learn a stochastic tran-
sition function, but in the end it discovers the same hierarchy of options and the same
policy and value functions. Similarly, stochastic DYNA-Q needs more episodes than
its deterministic counterpart to converge. Furthermore, as shown in Table 1, TeXDYNA

builds much smaller representations than its competitors in the stochastic case.
In order to explain the lesser performance of SPITI compared to TeXDYNA, we record

the policy function size for SPITI and TeXDYNA, and the number of state-action pairs
in DYNA, at the end of each episode. Fig. 3(b) shows the evolution of the corresponding
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Table 1. Performance on the stochastic LIGHT BOX problem (Policy and value function size in
total number of nodes in decision trees)

TeXDYNA SPITI DYNA-Q

Transition function size 780 ± 14 790 ± 25 –
Value function size 240 ± 20 > 15000 > 10000
Policy function size 180 ± 8 > 15000 > 10000
Time/step(sec) 0.04 > 100 > 2

functions size over episodes. TeXDYNA quickly reaches a plateau on its optimal policy
size, while the policy discovered by DYNA continues to grow up until representing all
possible states. Therefore, DYNA results given in Fig. 3(a) are biased by the fact that
even if it discovered a kind of sub-optimal policy in a reasonable time, the algorithm
is unable to perform the complete policy computation. As to SPITI, the system fails
to achieve convergence because of a too strong memory requirement. Indeed, as soon
as one tree size exceeds 15000 nodes, the system runs out of memory. Further code
optimization might reduce this limitation, but the main point is that exponential task
structure simplification allows TeXDYNA to scales much better. Indeed, local models
combined with state reduction to the set of context variables ignoring anything else
provides a significant state-action space reduction within the structure of each option.

5 Discussion

TeXDYNA ideas are first inspired by Sutton’s DYNA architecture [8], enriched and
adapted to FMDPs by [6]. Second, as to the exit oriented options representation, some
ideas come from the HEXQ [4] and VISA [10,5] frameworks, where the exit defini-
tion proposed in HEXQ is extended to include variable change and context in order to
address more complex structures. TeXDYNA builds a hierarchy of options online and di-
rectly from the transition trees taking advantage of their structure, whereas VISA builds
a variable influence graph from the given DBNs and then builds transition graphs and
reachability trees to determine the initiation sets of the options. Furthermore, it only
discovers options linked to the variables directly connected to reward, while TeXDYNA

backpropagates the reward among subgoals.
Finally, Incremental-VISA [11,12] is adapting VISA to the case where the model of

the problem is not known in advance. Like TeXDYNA, it attempts to simultaneously
learn the hierarchical (options discovery) and factored (DBN learning) structure of the
MDP. The approach learns incrementally and autonomously both the causal structure of
the environment and useful skills that exploit this structure. It uses DBN structure learn-
ing techniques to learn the environment structure and SDP algorithms like SVI to build
hierarchical policies online. The authors propose an active learning scheme to improve
the efficiency with which this structure is acquired that bootstraps on existing struc-
tural and procedural knowledge. As new structure is discovered, more complex skills
are learned, which in turn allow the agent to discover more structure, and so on. The
major differences between TeXDYNA and Incremental-VISA is, for the moment, that
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the latter is limited to the deterministic case, whereas TeXDYNA is adapted to stochastic
problems. The second difference lies in the way of introducing options into planning:
Incremental-VISA waits the option to be “mature enough” before introducing it in the
hierarchy by using a measure of entropy on the transition functions whereas TeXDYNA

inserts options directly in the hierarchy in order to accelerate its completion. In the same
way as VISA, Incremental-VISA uses the DBNs to discover dependencies between state
variables. Therefore, it needs to build intermediate graphs and trees to catch the inter-
nal hierarchical structure, while TeXDYNA operates on decision trees and discovers the
structural links directly. Unfortunately, we were not able to compare the performance
mainly because of the absence of a common metrics. Indeed, the experimental results
published in [12,11] are based on the number of value changes and the time to compute
the policy without giving the corresponding metrics criteria.

At this point in time, the algorithm presents some limitations. Firstly, instead of
using “internal reward” to propagate the external reward to local policies so that all op-
tions have fixed interest, the options discovery algorithm could be combined with task-
specific knowledge to identify useful, salient or challenging subroutines. Secondly, we
consider that there is at most one option per variable value change. This assumption
simplifies computations within the algorithms, but can be relaxed. More importantly,
as to the problem representation, our option-specific state abstraction is strongly goal-
oriented, that is reaching a unique exit context. This can result in the creation of exces-
sive number of options in problems where an action can change more than one variable
at the same time. Finally, the hierarchy of options is strictly ordered, that means that we
cannot address problems where the FMDP structure includes synchronic arcs or post-
action variable dependencies, because it would introduce cross-dependencies between
options and cycles in the hierarchy of options.

6 Conclusion

We have presented TeXDYNA, a powerful framework that combines factored and hier-
archical reinforcement learning. This framework is built on three main ideas:

– The use of the transition function structure represented as decision trees to discover
options results in efficient learning and planning capabilities that are integrated into
the (factored) model-based RL framework.

– The localization of the models results in an exponential reduction of the state-action
space of each option. Instead of taking transition trees from the global structure,
the models of transitions are learned locally for each option. This accelerates the
solution process.

– The immediate use of the just discovered options in the planning process speeds up
the learning of its internal structure and of its parent option structure.

We have evaluated on the LIGHT BOX problem the capability of TeXDYNA to efficiently
generate hierarchical policies and shown that it performs better than its non factored
and non hierarchical ancestors. The main issue for future work consists in replacing
the basic ε-greedy exploration strategy by a more sophisticated policy, either along the
“optimism in the face of uncertainty” line [14] or based on adding internal motivations
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such as an artificial curiosity process [15,13] into the framework. Then the application
of TeXDYNA to a robotics problem will be the matter of a more experimental work.
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Abstract. Learning robot-environment interaction with echo state networks
(ESNs) is presented in this paper. ESNs are asked to bootstrap a robot’s control
policy from human teacher’s demonstrations on the robot learner, and to gener-
alize beyond the demonstration dataset. Benefits and problems involved in some
navigation tasks are discussed, supported by real-world experiments with a small
mobile robot.

Keywords: robot-environment interaction, echo-state network, learning from
demonstration.

1 Introduction

Any cognitive activity arises from interaction between bodies, brains and environments
[1]. This means that a behaviour of a robot operating in and interacting with an envi-
ronment cannot be analysed in isolation, since it is a result of properties of the robot
itself (embodiment), the environment (situatedness), and the control program (task) the
robot is executing. Thus, analysing the triangle (robot-task-environment) as one dynam-
ical system could provide better understanding of phenomena governing the robots be-
haviours over time. Recurrent neural networks (RNNs) are powerful tools to learn such
complex dynamical systems, for two main reasons. First, they are universal approxima-
tors of dynamical systems [2]. Second, they can exhibit continuous dynamics; a suitable
property to model robot-environment interaction. The second reason is motivated by the
fact that dynamics of nervous systems and the physical world are continuous in nature
[3]. Under this perspective, many efforts have been done to analyze robot-environment
interaction using RNNs. Beer and colleagues carried out rigorous analysis on under-
standing of a humanoid robot-environment interaction using continuous-time recurrent
neural network [4]. Pasemann et. al. have shown that attractors formed in a recurrent
neural network (RNN) can be used to characterise robot-environment interaction [5,6].
Their investigation shows that a RNN controller has four relevant attractors, which can
be directly mapped to some environmental states like free space, obstacles, or deadlock
situation. Tani et. al. explored higher cognitive abilities of robots through a multiple
timescales RNN to generate reusable behaviors [7].

In this work, we assume that the robot learns by demonstration. A teacher demon-
strates a task using the body of the robot learner, then a RNN learns from the robot-
environment interaction to derive a control policy for the demonstrated behavior. This
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procedure is particularly important when considering real robots. Due to the fact that
demonstration dataset are exactly those that the robot would observe/execute, the learn-
ing system will be less sensitive to noisy sensors. Also in term of system integration this
approach provides fast and efficient way of obtaining the control code, i.e. a nonlinear
dynamical model that maps environmental situations to actions. Our learning system is
an Echo State Network (ESN), which has two principal properties: (1) a large RNN is
used as a ”reservoir” of excitable complex dynamics; this network will be not trained;
(2) only the weights of output connections are to be adjusted [8]. Many dynamical sys-
tems, which were difficult to learn with the existing methods, have been easily learnt
by ESN [9,10]. Recently, we used ESNs to develop a dynamic controller for mobile
robots [11]. The advantage is that no knowledge about the robot model is required;
a useful property in practical situations, where the exact knowledge about the phys-
ical parameters of the robot is almost unattainable. We also explored the notion that
a well trained ESN needs to change only its internal state to change its behavior pol-
icy [12,13]. The ESN, in this work, is asked to bootstrap a robot’s control policy from
teacher’s demonstration, and to generalize beyond the demonstration dataset. Naturally,
we expect adequate performances only for system conditions that are close to those
seen during training, such that valid solutions could be acquired for similar states that
may not have been seen during demonstration.

The rest of this paper is organized as follows. Section 2 explains the learning design,
and section 3 presents some implementation results. A discussion and conclusion are
drawn in section 4.

2 Learning Design

The world (robot-task-environment) consists of states S and actions A, with the map-
ping between states from which actions being defined by a probabilistic transition func-
tion T (ś|s, a) : S ×A× S → [0, 1]. We define the demonstration set D as k paires
of observation and actions D = {(si, ai)}, si ∈ S, ai ∈ A, i = 1, . . . , k. The ESN is
then provided with the set D, and asked to aquire the task dependent control policy
π : S → A to select desired actions based on current states.

2.1 Echo State Networks

An ESN (Fig. 1) is formed by a so-called ”Dynamic Reservoir”(DR), which contains a
large number of sparsely interconnected neurons with non-trainable weights. The acti-
vation of internal neurons is updated according to

X(n + 1) = f(W inU(n + 1) + WX(n) + W backY (n + 1)) (1)

and the outputs are calculated as

Y (n + 1) = fout(W out(U(n + 1), X(n + 1), Y (n))) (2)
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An essential condition for successful using of ESN is the “echo state” property. It is a
condition prior to training, where the actual network state is required to be an “echo”
of its history. This means that the state of each internal neuron xi can be mapped by
input/output (u/d) histories through a function ei, i.e. xi(n) = ei(d(n − 1), d(n −
2), . . . , u(n), u(n− 1), . . .) [9]. If this condition is met, only weights connections from
internal neurons to the output (W out) are to be trained. This could be done by any
suitable training method (least squares method, etc.) in a one-shot fashion [8].

Fig. 1. Basic architecture of ESN. Dotted arrows indicate connections that are possible but not
required.

2.2 Deriving Policy with ESNs

During demonstration, a teacher operates the robot while recording its sensor/actuator
data. Once the demonstration set D = {(si, ai)} have been gathered, the ESN performs
a batch learning to derive the control policy f ≈ π : S → A (Fig. 2).

(a) training ESN by human demonstration (b) derivation of control policy after training

Fig. 2. Learning design
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3 Implementation

We implemented the learning design on a small mobile robot, called e-puck [14], equiped
with 8 infrared (IR) proximity sensors and two stepper motors. We drove the robot man-
ually several times for the task to be learned. The linear velocity of the robot (v) was
kept constant while the angular velocity (w) was controlled by a human operator using a
keyboard (Fig. 3). During the movement we collected sensor readings and angular veloc-
ities for training. Training was performed using ESNs with 8 inputs (8 IRs), N internal
neurons, and one output that represents the desired angular velocity transformed to two
wheel speeds. No back-connection from the output to the DR, and no synaptic weight
connections from the input directly to the output. The input and the internal synaptic con-
nections weights were randomly initialized from a uniform distribution over [−1, +1].
The internal weight matrix W has a sparse connectivity of 20% and scaled such that
its maximum eingenvalue |λmax| = α (also called spectral radius). After training, the
ESN provides the desired angular velocity based on the actual sensor-readings (Fig. 4).
We performed several experimental tests; three of them are reported here: door-passing,
wall-following, and route-learning. We will show the effect of the internal neurons num-
ber N and the spectral radius α on the ESN performance.

(a) (b)

Fig. 3. Implementation. (a) demonstration made on the robot learner. (b) after training, the ESN
controls the robot.

Fig. 4. Robot control with ESN
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3.1 Door-Passing

Here, the robot learns how to move through a door. Demonstration data were prepared
by driving the robot several times in a door-passing scenario, while collecting sensor
readings and correspondent angular velocities (Fig. 5). After training, we put the robot
in a scenario 1 where the robot should pass through two openings (Fig. 6. a). The spec-
tral radius α = 0.8, and the number of neurons in the reservoir N recieves the values
{6, 8, 12}. During this test we were surprised to see that even with 6 internal neurons
the ESN could generalize successfully and bring the robot through the two doors. In
a more complicated environment (scenario 2), we expect that the robot moves through
the openings D2 and D4 (Fig. 6. b). The number of neurons in the reservoir is kept
to 12, and α is varied from 0.4 to 0.8 in a step of 0.2. We can see that the ESN with
α = 0.8 performed the best, regarding the smoothness of the robot path obtained with
this spectral radius.

30cm

1
5
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m

W
l

W
r

3
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m

ca. 10cm

E-Pucks

Door

Fig. 5. Collection of training data for door-passing: The teacher moves the robot from different
start positions in the environment in order to demonstrate the most possible situations. Demon-
strations were in a form of 10 movements producing 750 data pairs sampled with a period of 0.1
second.

(a) scenario 1 (α = 0.8) (b) scenario 2 (N = 12)

Fig. 6. Door-passing
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3.2 Wall-Following

In this task two main situations need to be learned: (1) move parallel to a wall, and (2)
turn in a concave corner. We have first collected training data by driving the robot sev-
eral times in these two situations as illustrated in Fig. 7. Due to the smooth movement
of the robot during previous experiment we kept the spectral radius to α = 0.8, and we
tested the ESN performance with different number of internal neurons N = {6, 8, 12}
(Fig. 8). To show the degree of similarity between the actual and the demonstrated robot
behaviors we did a test in a form of occurence of the robot distance to the wall in train-
ing and test data (Fig. 9). The distance was measured using one infrared sensor (IR3)
on the robot. By merely looking at these results, we can subjectively say that ESNs
could reproduce successfully the demonstrated behavior, since the IR3 delivered values
lie often between [0, 1000]. Fig. 10 shows a recovery testing situation, in which we put
an object (A) at the corner and we made a small opening (B) (2 cm) in the wall. Moving
near (A) or (B) means that the ESN has to deal with a convex corner at (A) (not seen
before), and maintain its stability in presence of sensory inputs totally beyond the in-
tervall of traning data at (B). An ESN with small dimension (6 and 8 internal neurons)
showed a good performance to recover those perturbations, whereas using large dimen-
sion (more than 12 internal neurons) the control loop lost stability at many times. We
can see that with 12 neurons the system began to lose its stability, when reaching (B).

3
0

c
mE-Puck

d

d

ca. 10cm

d = ca. 2cm

30cm

Fig. 7. Demonstration data for the task wall-following. IR sensors and wheel speeds were
collected by moving the robot several times to show how to follow a wall and how to deal with
a concave corner. 10 movements were collected in a form of 693 pairs sampled with a period of
0.1 second.

3.3 Route-Learning

Here, we demonstrate the ability of an ESN to learn a more challenging task; learning
a route. The robot was led many times along a desired route to collect rich information
about the environment. Fig. 11. (a) shows 20 rounds collected to train the ESN con-
troller, where the two red dashed lines represent the boarders of route to be learned.
After training process is completed, the acquired perceptions are associated with motor
actions, enabling the robot to follow the route autonomously. Fig.11. (b) shows that the
trained robot follows the desired trajectory well, with few deviations. This result shows
also how the ESN is reliable and copes with noise and new environmental perceptions.
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(a) reproduced data from
ESN (N = 6)

(b) reproduced data from
ESN (N = 8)

(c) reproduced data from
ESN (N = 12)

Fig. 8. Wall-following: The results show that the trained ESNs could accomplish this task suc-
cessfully, but the robot behavior is found to be almost identical for the different neurons N .

(a) demonstration data (b) reproduced data from ESN (N = 6)

(c) reproduced data from ESN (N = 8) (d) reproduced data from ESN (N = 12)

Fig. 9. Occurences of the robot distance to the wall from demonstrated and reproduced data
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Fig. 10. Wall-following with recovery testing: We put an object (A) at the corner, which means
that the robot has to deal also with a convex corner, and we made a small opening (B) (2 cm) in
the wall, such that sensory data in those situations are totally beyond the intervall of traning data.
ESNs with 6 and 8 neurons could recover those perturbationslearner, whereas with 12 neurons
the control loop began to lose stability.
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(a) (b)

Fig. 11. Route learning with ESN. (a) human teacher led the robot between obstacles (1,2,3) to
collect training data in a form of 2390 samples. (b) ESN with 20 internal neurons and α = 0.7
controls the robot to reconstruct the desired route.

For example when the robot deviate from the trained route, due to its kinematic con-
straints, the ESN could generalize, and generate appropriate control signals in order to
bring the robot again on its desired path.

4 Discussion and Conclusion

In this paper we have implemented the ESN as a learning system to derive a control pol-
icy from robot-environment interaction. A similar work has been done in [15], where
the task consists in finding and then getting closer to a possibly moving target. The ESN
has shown great performance to solve that task; a result that pushed us to test the ESN
in more complicated tasks. Furthermore, we wanted, in this paper, to see the effect of
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the internal neurons number N and the spectral radius α on the ESN performance in
performing the tasks of door-passing, wall-following, and route-learning. Once these
behaviors have been demonstrated using the body of the robot learner, three ESNs per-
formed batch learning on demonstration datasets to derive a control policy for those
tasks. The results have shown that an ESN even with 6 internal neurons could repro-
duce and generalize successfully the door-passing task. Experiments have also shown
that an ESN with α = 0.8 performed the best, regarding the smoothness of the robot
path obtained with this spectral radius. In the wall-following task the robot has learned
how to maintain a distance parallel to the wall, and how to deal with a concave corner.
The robot reproduced successfully the demonstrated behavior, and also showed a great
robustness against new situations, i.e. in presence of convex corner, and an openning in
the wall. The task of route-learning was the more challenging to be learned, since each
IR-sensor plays an important role in the learning process. The result shows that the
trained robot follows the desired trajectory well, with few deviations. These deviations
means that the ESN recieves completely new environmental perception; a hard gener-
alization test. In those new states the ESN could generalize and generate appropriate
control signals in order to bring the robot again on its desired route.

We note that the learning system has also shown poor performances in many sit-
uations. We identified three main causes of that. The first cause is due to the dataset
sparsity; undemonstrated areas in the state space. Using a keyboard, the human trainer
was not able to demonstrate behaviors in all areas of the state space. This has raised
the question of how the robot should act when it encounters a state without a demon-
stration. When novel states (very different from previously demonstrated states) are
encountered by the robot, the ESN could not generalize optimally. In those situations, it
was necessary to acquire additional demonstrations, and re-make training. The second
cause was the quality of the dataset. The poor quality of the employed sensors as well
as the kinematic precision of the utilized robot has generated dataset ambiguity in some
situations. For example, during multiple execution of a desired task, different actions
has been mapped to almost identical states. The third cause was the learning system
itself. During preparation of the ESN, it was not easy to find its optimum parameters.
Using a “relatively” large dimension (more than 20 internal neurons) the network lost
stability at many times. This is possibly due to the high dimensionality of the system,
or to the relatively small amount of training data. We have made a similar observation
in another experiment, when we trained an ESN as an adaptive velocity controller for
an omnidrive mobile robot [13].

There are many research questions to be addressed in the future. We summarize three
main points:

– What is the behavioral capacity of ESNs? In this work, we trained separate ESNs
for each task. We did not discuss the question whether a single ESN could learn
and reproduce all demonstrated behaviors. In a previous work [12] we have shown
that an ESN needs to change only its internal state to change its behavior policy.
Does learning with fixed-weights perform well in these tasks?

– How to improve generalization? When a completely novel state is encountered by
the robot, the ESN is unable to produce an adequate action. In this case, the ESN
should be able to recognize the lack of knowldge and solicit help from the teacher.
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– How to deal with symetrie in a route learning? In a route learning it is possible to
encounter similar situations which need different actions. The short term memory
in ESNs might provide a solution.
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Abstract. We introduce a new theoretical framework, based on Shan-

non’s communication theory and on Ashby’s law of requisite variety,

suitable for artificial agents using predictive learning. The framework

quantifies the performance constraints of a predictive adaptive controller

as a function of its learning stage. In addition, we formulate a practical

measure, based on information flow, that can be applied to adaptive con-

trollers which use hebbian learning, input correlation learning (ICO/ISO)

and temporal difference learning. The framework is also useful in quanti-

fying the social division of tasks in a social group of honest, cooperative

food foraging, communicating agents.

Simulations are in accordance with Luhmann, who suggested that

adaptive agents self-organise by reducing the amount of sensory infor-

mation or, equivalently, reducing the complexity of the perceived envi-

ronment from the agents perspective.

1 Introduction

Information measures are usually defined for input/output systems where they
determine the quality of the transmission. Behaving agents, however, act as
closed loop systems in which there is no clearly defined difference between input
and output. What matters most for the organism is to compensate for distur-
bances introduced by the environment in the perception action loop. If there is
no disturbance, the organism cannot differentiate between themselves and the
environment. Consequently, the concept of information in these systems needs
to be revised [5].

A method for defining closed loop information has been proposed by Ashby
- the so called requisite variety [1]. The measure is based on the premise that
closed loop systems aim to maintain a desired state. The goal of a feedback
loop is then to minimise the deviation from the desired state i.e. the number
of bits required to successfully compensate a disturbance acting on the forward

� Webpage: http://isg.elec.gla.ac.uk.

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 511–522, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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loop. In this way, the method quantifies the variety, or bits, originating from
the disturbance. For example, if the disturbance has a variety of 10 bits and
survival requires a desired state of 2 bits, then the reaction to that disturbance
must provide a variety of 8 bits. Ashby then proved that error controlled closed
loop systems (like PID controllers [21] ) cannot achieve perfect regulation. More
recently, Touchette et al. [24] in Theorem 10 proved that the entropy reduction
achieved by a closed loop system is bounded by the entropy reduction achieved by
the open loop control plus the mutual information gathered by the estimation
of the state. However the advent of predictive controllers, such as Q-learning
[22], that predict future states requires an extension of the information theory
for predictive learning.

In this paper we present an extension to the law of requisite variety, called
the predictive requisite variety, that quantifies the theoretical limits of control
(as well as providing a performance index) for predictive adaptive controllers.
We argue that a predictive adaptive controller acts as a reactive system before
learning and as an open loop forward system after learning. A reactive system
comprises an error controlled closed loop and is non optimal because it only
reacts after a deviation from its desired state has happens. The environment
contains usually predictive signals which can help the agent to react before the
error is presented [16]. Thus, bio inspired controllers can be provided with a
predictive signal (like vision) and a reflexive signal (like touch). Learning then
has the task of avoiding the trigger of the reflexive reaction - thus creating
an open loop forward controller which discards the information of the reflexive
signal.

Learning is then quantified by the increase in the information flow of the
predictive loop and by a corresponding decrease in the information flow of the
closed loop. Information flow, or transfer entropy, is not a new idea (see for
example [3,23]) but it has never been applied to predictive agents in order to
assess their learning performance. The analysis of a predictive agent with a
single behaviour, say for example obstacle avoidance, can be done calculating
the information flow of the sensory-motor loop.

Analysis becomes more complicated when an agent is provided with a set of
competitive behaviours in a social scenario where agents use predictive learning-
see, for example, ISO[4] or ICO[17,4] - and are therefore learning from each other.
The task of the social system in this analysis is cooperative food foraging in
which every agent has 3 adaptive behaviours which are: avoidance for obstacles,
attraction to food disks and attraction to others with food. Agents communicate
honestly, always signalling to others when they find food. When the social system
is adapting, it self-organises into 2 sub-systems each described by a dominant
behaviour: seekers have a dominant attraction for food disks, parasites have a
dominant attraction to others with food. The information flow explains how
the social system divides itself into sub-systems by looking at the information
processing of every agent. Luhmann [13] proposed that differentiation of social
systems is caused by a decrease in information processing of each subsystem and
this is consistent with our information flow measurements.
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The paper is divided in sections covering the following topics: regulation and
entropy (as defined originally by Ashby), a new information measure for pre-
dictive learning, a simulation model with social adaptive agents, results, and a
discussion.

2 Ashby’s Law of Requisite Variety

First, we review Ashby Law of Requisite Variety for the forward (see Fig.1(B))
and closed loop controller (see Fig.1(A)). Fig.1 uses the same notation introduced
by Ashby:

– D= finite state machine whose states are the disturbances from the environ-
ment

– E= finite state machine whose states are the essential variables partitioned
in E = η∪η, where η is a partition of desired states or goals of the organism
and its complementary partition η represents the non-desired states.

– R= finite state machine whose states are the available regulations/actions
that the organism can perform

– T= finite state machine whose states are the set of possible states of the
environment

In this work we consider deterministic finite state machines but the analysis can
also be extended to Markov processes [6]. It is very important for our analysis
to understand that only the forward controller can achieve perfect regulation
whereas the closed loop controller cannot because the reflex always comes too
late. Gatsby [1] stated that a good controller R blocks the flow of variety1 from
disturbances D to essential variables E: if R is a regulator, the insertion of
R between D and E decreases the variety that is transmitted from D to E.
An organism can be described by a body R with goals to be achieved η and
an environment T which forms a closed loop between actions and sensors. As
an analogy, the organism is a perfect regulator if is able to keep the essential
variables E within a desired sub-set η in spite of the disturbances D -thus having
a null entropy for E, H(E) = 0.

If no regulator R is provided (see Fig.1(C)), the disturbance D tends to drive
E0 outside a set of desired states η by means of the environment T , .Thus, in
the worse case, the disturbance completely controls the status of the organism:

H(D) = H(E0) (1)

The regulator R can be connected in a feed-forward configuration as in Fig.1(B)
or in a closed loop configuration as in Fig.1(A). The performance of the forward
regulator is measured by the maximum entropy reduction ΔHmax

forward which
is the difference between the entropy of the essential variable H(E0) before
regulation and after regulation H(E).

ΔHmax
forward = H(E0)−minH(E) (2)

1 Ashby defines variety precisely as the number of different states a variable can take

and is equivalent to the Shannon’s entropy H measured in bits.
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Fig. 1. (A) The organism with a closed loop controller. (B) The same organism with

an forward controller. (C) The organism before regulation. (D) An adaptive controller

is a mix of forward and closed loop control. Every block is a finite state machine whose

inputs are indicated by incoming arrows and outputs are indicated by outgoing arrows.

The maximum entropy reduction in the forward condition ΔHmax
forward can be

calculated by using the Law of Requisite Variety:

H(E) ≥ H(D) + H(R|D)−H(R) (3)

where H(R|D) is the regulator noise2. Thus:

ΔHmax
forward = H(R)−H(R|D) (4)

because combining Eq.2 and Eq.3 gives:

ΔHmax
forward = H(E0)−H(D)−H(R|D) + H(R) (5)

Considering the initial condition in Eq.1 we obtain Eq.4:

ΔHmax
forward = H(D)−H(D)−H(R|D) + H(R) = H(R)−H(R|D) (6)

The quantity ΔHmax
forward in Eq.4 tells us that better performance can be achieved

by either increasing the regulation entropy H(R) or by decreasing the controller
noise H(R|D).

We will now show that a closed loop controller cannot achieve perfect regu-
lation (H(E) = 0) as it requires a deviation from the desired state η to work
H(E) > 0. Thus, the disturbance transmits all its entropy to the essential vari-
able H(D) = H(E) and no entropy reduction can be achieved:

ΔHmax
close = 0 (7)

If for H(E) = 0 then R blocks the information flow in the channel D → E and
thus no information is transmitted to R for the regulation task: the regulator
R is asserting a perfect control on E without knowing the status. In the next
section we extend the law of requisite variety for adaptive controllers.
2 If the controller is not noisy H(R|D) = 0.
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3 Law of Adaptive Requisite Variety

An adaptive controller (see Fig.1(D)) is a mix of a forward [8] and closed loop
controllers [21] because R has now 2 inputs: D and E. We can think of D as a
predictor of the deviation of E, because D transfers its entropy to E by means
of the environment T .

In order to explain the new law, we introduce the mutual information I(E, R)
for the closed loop channel E → R with the corresponding channel capacity
CE,R:

I(E, R) = H(E) + H(R)−H(E, R) (8)
CE,R = max

p(E)
I(E, R) (9)

the mutual information I(D, R) for the forward channel D → R with the corre-
sponding channel capacity CD,R:

I(D, R) = H(D) + H(R)−H(D, R) (10)
CD,R = max

p(D)
I(D, R) (11)

The channel capacity of the regulator channel D → T is then CR,T .
The adaptive controller (denoted ada) begins as a closed loop controller with

ΔHmax
ada (before) = Hmax

close (see Eq.7) as it mainly uses the E → R reflex channel
and blocks the D → R predictor channel whose mutual information is very low.
In summary:

0 < I(E, R) ≤ CE,R (12)
I(D, R) � 0 (13)

ΔHmax
ada (before) = 0 (14)

The adaptive controller achieves perfect regulation (see Eq.4) when

ΔHmax
ada (after) = Hmax

forward (15)

because it blocks the E → R reflex channel and opens the D → R predictor
channel. To summarise:

0 < I(D, R) ≤ CD,R (16)
I(E, R) � 0 (17)

ΔHmax
ada (after) = H(R)−H(R|D) (18)

If we assume realistically that the regulator has a common channel capacity
CE,R = CD,R = CR,T , the constraint for learning becomes:

I(E, R) + I(D, R) ≤ CR,T (19)

thus an adaptive controller can achieve optimal regulation ΔHmax
ada (after) when

is able to compensate the mutual information of the closed loop I(E, R) with
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the mutual information of the forward controller I(D, R). An imperfect regulator
will likely work in the sub-optimal regime I(D, R) < I(E, R). So to quantify the
performance of an adaptive predictive controller we have to compute the mutual
informations I(D, R) and I(E, R). This is however not always possible because
it is hard to identify the reflex channel and the predictor channel. Therefore in
the next section we use an approximation of these 2 quantities using the concept
of information flow.

4 Information Flow for Adaptive Predictive Controllers

Looking at Fig.1(D), we can estimate I(E, R) by computing the information flow
of the reflex-output channel Zn → U0 and I(D, R) by computing the information
flow of the predictive-output channel Zn → U1. We denoted them as:

MIn
U0 = I(Zn, U0)↔ I(E, R) (20)

MIn
U1 = I(Zn, U1)↔ I(D, R) (21)

where U0 is the reflex input, U1 is the predictor input and Zn the extended
output:

Zn = [z(k)z(k + 1) . . . z(k + n− 1)] (22)

which contains n outputs of the agent and U the random variable describing the
temporal signal u(k + n) which is the input of the agent resulting from previous
actions(for more details see [11,14]). Fig.2(A) shows an organism composed of 3
ICO [17] controllers and the corresponding information flow measures for every
controller. Each ICO controller takes 2 continuous inputs U0, U1 and one con-
tinuous output Zn. ICO correlates the predictive signal u1

3 with the derivative
of the reflexive signal u0 according to the formula:

dω1

dt
= μ · u1 · du0

dt
(23)

where ω1 is the gain of the predictive signal u1 and μ is the learning speed (see
Fig.2(C)). Since the ICO controller works in continuous mode, the input and
output signals must be discretized in order to compute the information flow and
channel capacity (see Simulation Details). The two measures MIn

U0, MIn
U1 are

used to compute the channel capacities CE,R and CD,R:

ζn(Zn → U0) = max
p(Zn)

MIn
U0 ↔ CE,R (24)

ζn(Zn → U1) = max
p(Zn)

MIn
U1 ↔ CD,R (25)

In the simulations in the next section, we will estimate the mentioned quantities
for individual agents of a social group.

3 u1 and u0 indicates temporal signals u1(t) and u0(t).
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5 Methods

The previous measures are applied to a social system where all agents learn
continuously from each other and from the environment. This scenario is very
interesting because the social system is able to self-organise by forming 2 sub-
systems with task division. The social system described in [15] is composed of
N identical agents and M food disks randomly placed in a square world for
every simulation. Food disks contain a certain amount of food that is depleted
when an agent finds it. The task is cooperative food foraging. The simulated
agent is shown in Fig.2(B) and has also been used by [12]: it is a Braitenberg [7]
vehicle with 2 lateral wheels and 2 antennas. By default the agent drives straight
forward, with speed v = 1 units per time step. It has 2 sensor-pairs, near contact
antennas and far contact antennas. Every agent has a MISO (multiple inputs
single output) controller and a variable of 1 bit for the food status. The agent has
competitive 3 tasks: avoid obstacles (empty food disks and other agents without
food), find food from the disks, find foods from other agents with food. The MISO
is composed of 3 parallel ICO controllers (see Fig.2(A)) which are provided with a
reflex input error u0, a predictive signal error u1, a learnt weight ω1 and an output
z. The outputs of the 3 ICO controllers are summed to z = zAv + zFo + zAf

4

which gives the steering angle: z = 0 the robot goes straight forward at speed v,
z > 0 the robot rotates clockwise, z < 0 the robot rotates anti-clockwise. Every

(A) (B) (C)

u0,Fo

u0,Af

u0,Av

u1,Fo

u1,Av

u1,Af

Environment

Z

z

z

z

Av

Fo

Af

avoidance

attraction food

attraction others

MI
Av,U1

n

MI
Fo,U1

n

MI
Av,U0

n

MI
Fo,U0

n

MI
Af,U1

n

MI
Af,U0

n

Fig. 2. (A) MISO controller composed of 3 stacked ICO controllers for avoidance, food

attraction and attraction to others. The output of every controller is summed to z. For

every controller/behaviour the pair of mutual information is computed between the

output and the input MIn
U0, MIn

U1. (B) Agent with short antennas (reflexive inputs,

x0) and long antennas (predictive inputs, x1). The agent is learning to avoid obstacles.

The motor reaction will reduce the intensity of the painful reflex x0 as well as delay

its occurrence. (C) Schematic diagram of the input correlation learning rule and the

signal structure [17]. The u0 and u1 are, respectively, the difference between the filtered

values of the left and right antennas of the agent. During learning the u0 peak will be

shifted in time and reduced in amplitude as the agent learn successfully by increasing

the predictor gain ω1.

4 Av stands for obstacle avoidance, Fo for food attraction and Af for attraction to

others with food.
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simulation is run for 0 ≤ k ≤ 6 · 105 time steps and is divided in 3 stages. At
every stage, each agent produces 6 input time series and 1 output time series
z(k) which means that we can calculate the information flow for every pair of
reflex-output and predictor-output: MIn

U0, MIn
U1. For a single simulation:

1. for 0 ≤ k1 ≤ 2 ·105 all agents are reactive (μ = 0). For each agent i = 1, ..., N
we have 3 pairs of information flow:
(a) avoidance: MIn

Av,U1, MIn
Av,U0

(b) food attraction: MIn
Fo,U1, MIn

Fo,U0

(c) others attraction: MIn
Af,U1, MIn

Af,U0

2. for 2 · 105 < k ≤ 4 · 105: every agent is learning μ = 1.0 and the weight for
every ICO controller ω1,Av,ω1,Fo, ω1,Af is increasing.

3. for 4 · 105 < k3 ≤ 6 · 105: every agent stop learning μ = 0.0 and is using the
last weight set at k = 4 · 105. For each agent we compute again the 3 pairs
of the MIn.

The channel capacities for every agent are computed by providing each isolated
output z = zAv,z = zFo,z = zAf with a source of independent randomness
during a simulation of 2 · 105 time steps for every case. Then we apply the
Blahut-Arimoto algorithm [20,18] with a bound error of ε = 10−11 and 5000
maximum iterations to estimate the channel capacity for every agent in the
reflex-output loop ζn(Zn

k → U0). There is no difference between ζn(Zn
k → U0)

of every agent so we define ζn
all. To compute the capacity for the predictor-output

loop ζn(Zn
k → U1) we use the same approach but preset the weights of every

agent to an arbitrary high value to simulate perfect learning:

ω1,Av = 10.0, ω1,Fo = 10.0, ω1,Af = 10.0 (26)

and we obtain the same results

ζn(Zn
k → U1) = ζn(Zn

k → U0) = 2.0 (27)

for n ≥ 2 as anticipated in Eq.24,25.

6 Results

The results of this sections are based on a simulation with N = 10 agents
and M = 5 food disks. All agents start with the same weights for every ICO
controller ω1,Av = 0.1,ω1,Fo = 0.1, ω1,Af = 0.1. In stage 3 there are 5 agents with
ω1,Af < ω1,Fo and 5 agents with ω1,Af > ω1,Fo. The first group is identified by
a strong attractive behaviour for the food disks (seekers), whereas the second
group is identified by a strong attractive behaviour for others agent with food
(parasites).

We estimate the MI4 in stage 1 and stage 3 for every agent by using the
corrected standard deviation formula [19]. Before learning (Fig.3 (A),(D)) the
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Fig. 3. (A) Information flow before learning for attraction to others MI4
Af,U1 (grey

bars), MI4
Af,U0 (black bars) expressed in bits. (B) Information flow after learning for

attraction to others in bits. (C) Weight difference for every agent: ΔWAf = ω1,Af −0.1,
ΔWF o = ω1,F o − 0.1 (D) Information flow before learning for attraction for food

MI4
F o,U1 (grey bars), MI4

F o,U0 (black bars) in bits. (E) Information flow after learning

for attraction for food in bits. Error bars are centered on the average for 100 simulations.

The error width is equal to the maximum-minimum interval of the computed measures

over 100 simulations.
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Fig. 4. (A) Efficiency for every agent of the reflex-output and predictive-output loop in

terms of capacity before learning (stage 1): MI4
Av,U0/ζ4

all% (dark bars), MI4
Av,U1/ζ4

all%

(grey bars). (B) Efficiency after learning (stage 3).

reflex-output loop predominates over the predictor-output loop for both the food
attraction behaviour and the others attraction behaviour:

MI4
Af,U1 < MI4

Af,U0 � 0.0025 (28)

MI4
Fo,U1 < MI4

Fo,U0 � 0.001. (29)

After learning (stage 3). The configuration is reverted and the predictor-output
loop dominates the reflex-output loop for both behaviours as in Fig.3(B),(E):

MI4
Af,U0 !MI4

Af,U1 (30)

MI4
Fo,U0 !MI4

Fo,U1 (31)

This result matches our expectations in terms of the increase of I(D, R) and de-
crease of I(E, R). If we compare the MI4

Af,U1 in Fig.3(B) to MI4
Fo,U1 in Fig.3(E)

we can see that the agents with indices 1,2,3,4,5 (parasites) have a larger weight
ΔWAf � 2.0 (see Fig.3(C)) for the attraction to others and, therefore, a larger
information flow MI4

Af,U1 > MI4
Fo,U1, whereas agents with indices 6,7,8,9,10

(seekers) have a larger weight change ΔWFo � 2.0 for the food attraction and
so a bigger MI4

Fo,U1 > MI4
Af,U1.

Thus, the information measure is directly correlated with the weight change
and can be used to quantify the learning performance of a single agent before and
after learning. However, it can also be used to quantify the dominant behaviour
and, consequently, the self-organising properties of social systems.

In Fig.4 we measure the efficiency of the reflex-output and predictive-output
loop MI4

Av,U1, MI4
Av,U0 for the avoidance behaviour in relation to the capac-

ity for the agents ζ4
all = 2.0. Fig.4(A) shows that before learning MI4

Av,U0 is
using 0.25% of the full channel capacity and Fig.4(B) shows that after learn-
ing MI4

Av,U1 is using about 0.45% of the channel capacity. The MI of order
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n = 1, 2, 3 does not provide enough discrimination for the previous analysis
because the output history of the agent is too short to be correlated with the
inputs. The capacity ζn

all takes its maximum of 2 bits when n ≥ 2.

7 Discussion

In summary, we have introduced an extension to Ashby’s requisite variety theory
called the law of adaptive requisite variety, computed the information flow to
measure the learning performance for agents with competitive behaviours and
found the relation between the efficiency of the information flow MI and the
weight change of the adaptive controller Δω1. We also linked our information
approach to the Luhmann theory that sub-systems are formed to reduce the
perceived complexity of the environment. In our simulations, after the learning
experience 5 agents have a dominant attraction behaviour for food disks (seekers)
and 5 have a dominant attraction behaviour for others (parasites). The seekers
mainly use the predictive information of the food disks while the parasites mainly
use the predictive information of the others who posses food. Thus, we conclude
that predictive learning in a social context leads to the formation of subsystems.
This can be demonstrated with the help of our approach. While Polani [11,9]
and Lungarella [16,10] used the empowerment measure as a general cost function
to optimise the agent’s behaviour or evolution, we use it as the upper bound
of the MI to measure the efficiency of the sensory-motor loop use. Ay in his
work [2] uses an adaptive controller which maximises the excess entropy (the
mutual information between past and present) at the input side to achieve a
working regime exploratory and sensitive to the environment. We can calculate
the MI for this case by considering the reflex as the present input and the
predictor as the past history. Our approach is not restricted to MISO controllers.
Kulvicius et al. [12] measures the temporal input development, the output and
path entropy of the adaptive agents to study the optimality of the antenna ratio
for an avoidance task, thus completing the tools required to evaluate a single
task controller. Current work is focusing on using a model checking approach to
verify the properties of the system in terms of information flow.

8 Simulation Details

The world is a toroidal square of 300x300 units (Um), the agent has a diameter
of 10 Um, the reflex antennas have a range of 40 Um, the predictor antennas
have a range of 60 Um, every food disk has a diameter of 20 Um, the agent
consumes food after 30 time steps. Every food disk starts with 100 food units
and, if depleted, is reset after 5 time steps. To compute the entropy, the input
space is discretized into 4 equally spaced bins and normalised in the range [-
1,1] both for the predictor U1 and the reflex U0 signal, the output signal Z is
discretized in 8 directions.
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Abstract. Population of simulated agents controlled by dynamical neu-

ral networks are trained by artificial evolution to access linguistic instruc-

tions and to execute them by indicating, touching or moving specific

target objects. During training the agent experiences only a subset of

all object/action pairs. During post-evaluation, some of the successful

agents proved to be able to access and execute also linguistic instruc-

tions not experienced during training. This is owe to the development of

a semantic space, grounded on the sensory motor capability of the agent

and organised in a systematised way in order to facilitate linguistic com-

positionality and behavioural generalisation.

Keywords: Grounding, CTRNNs, Artificial Evolution.

1 Introduction

During the last few years, several researchers have been building robotic and
simulated systems in which communication and linguistic skills are grounded in
perception and action [1,2,3,4]. One reason that explains the interest in these
works is constituted by the fact that they represent a suitable methodology to
investigate with precise operational models important aspects of cognition and
action [5,6,7,8]. This work is motivated by an intention to contribute to deepen
our understanding of the relation between action and language in order to verify
the nature of their strict interdependence. Indeed, as we will see, the results of
this type of research can help us to answer important questions such as: how
agents linguistic abilities are dependent on, and grounded in, other behaviours
and skills; how action-language interaction supports the bootstrapping of the
agents cognitive system, e.g. through the transfer of properties of action knowl-
edge to that of linguistic representations (and vice versa).

In this paper, we describe a model in which a simulated agent interacts with
coloured objects located in its peripersonal space by exhibiting three behaviours
(indicating, touching, and pushing) during a series of trials. In each trial, the
� This research work was supported by the ITALK project (EU, ICT, Cognitive Sys-

tems and Robotics Integrating Project, grant n◦ 214668).
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agent receives as input a linguistic instruction (constituted by two units, one that
defines an object and another that defines an action) and is rewarded for the
ability to exhibit the corresponding behaviour (i.e., executing the action on the
target object). During training, an agent experiences only a subset of all possible
object/action instructions. The goal of this work is to design neural mechanisms
that allow the agent to access and execute both the experienced and the non
experienced linguistic instructions, through the development of a compositional
semantics that underpins linguistic and behavioural skills required by the task.
This study has been strongly inspired by the work illustrated in [9] in which the
authors trained a wheeled robot to interact with three coloured objects (located
on the left, frontal, and right side of the agent) through three actions (indicat-
ing, hitting, and pushing). Also the idea of studying semantic combinatoriality
through the co-development of linguistic and behavioural skills has been strongly
inspired by the above seminal work in which the authors demonstrated how the
linguistic and behavioural skills developed by the agents can be bounded to-
gether in order to allow the agent to react to a new linguistic instructions not
experienced during training. Yet, we look at the problem with different method-
ological tools to provide further alternatives to those issues that we perceive as
current limitations of the work described in [9]. In particular, in [9], the agent
is controlled by two separated modules (one dedicated to perception and action,
the other to linguistic comprehension) trained through a learning by demonstra-
tion process in which the sequence of sensory-motor states experienced while
the experimenter drives the agent actuators during a demonstration session are
used as teaching input for a supervised learning algorithm. Moreover, in [9] the
sensory-motor module is trained to execute all the possible behaviours, even
those associated to the linguistic instructions used to test the agent’s generalisa-
tion capabilities. Contrary to [9], we propose to study the emergence of situated
semantics in single non modularised artificial neural networks trained through
a trial and error process (based on an evolutionary algorithm) in which the
agents are rewarded on the basis of their ability to execute the linguistic instruc-
tions being free to determine how to execute such instructions. In our model,
behavioural and linguistic competences co-evolve in a single neural structure
in which the semantics is fully grounded on the sensory-motor capabilities of
the agents and fully integrated with the neural mechanisms that underpin the
agent’s behavioural repertoire. Moreover, the agents are evolved to execute only
the behaviours corresponding to the linguistics instructions experienced during
training. Therefore, the capability of the agents to generalise concerns both the
capability to access not experienced linguistic instructions as well as the capa-
bility to generate not experienced behaviours.

At the end of the training process successful agents display an ability to trans-
late the linguistic instructions experienced during training into the corresponding
situated behaviours. By analysing how successful agents react to specific combi-
nation of object/action instructions not experienced during training, we observed
that some of the agents display an ability to spontaneously produce the appropri-
ate behaviours, despite these behaviours have never been produced or rewarded
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MOVE ActM
o

Object Action

I4 I5 I6 I7 I8 I9

Blue 0 0 1 1 0 0

Green 0 1 0 1 0 0

Red 1 0 0 1 0 0

TOUCH ActT
o

Object Action

I4 I5 I6 I7 I8 I9

Blue 0 0 1 0 1 0

Green 0 1 0 0 1 0

Red 1 0 0 0 1 0

INDICATE ActI
o

Object Action

I4 I5 I6 I7 I8 I9

Blue 0 0 1 0 0 1

Green 0 1 0 0 0 1

Red 1 0 0 0 0 1

(a)

(b) (c)

Fig. 1. (a) The agent structure and its world. The vision system of the agent is drawn

only with respect to the arm initialised on the right initialisation area. (b) The structure

of neural network. Continuous line arrows indicate the efferent connections for the first

neuron of each layer. Underneath the input layer, it is shown the correspondences

between sensors/linguistic instructions, the notation used in equation 1a to refer to

them, and the sensory neurons. (c) The linguistic instructions. In grey the instructions

not experienced during training. INDICATE is considered only in Exp. A.

before during training. Post-evaluation analyses on the behaviour of successful
agents suggest that their capability to access unlearnt instructions and to gener-
ate the corresponding unlearnt behaviour partially results from the emergence of
temporal (rather than topological as in [9]) structures of the semantic space. Fi-
nally, we observed that the development of systematised knowledge underpinned
by a compositional semantic system is facilitated by evolutionary circumstances
in which the agents are explicitly required to display elementary behavioural skills
that can be recruited for the generation of more complex behaviours.

2 Methods

The task and the agent
Each agent lives in a two-dimensional world and is comprised of an arm with two
segments referred to as S1 (100 cm) and S2 (50 cm), and two degrees of freedom
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(DOF). Each DOF is comprised of a rotational joint which acts as the fulcrum
and an actuator. One actuator causes S1 to rotate clockwise or anticlockwise
around point O, with the movement restricted within the right (−30◦) and the
left (210◦) bound. The other actuator causes S2 to rotate within the range [−90◦,
90◦] with respect to S1. Friction and momentum are not considered (see Fig. 1a).
In the environment there are three rounded objects of different colours (i.e., a
blue, a green, and a red object). The objects are placed at 150 cm from point
O with their centre placed anywhere on the cord delimiting their corresponding
Init. sector (see Fig. 1a). The objects do not move unless pushed by the arm.
The agent is equipped with a linear camera with a receptive field of 30◦, divided
in three sectors, each of which has three binary sensors (CB

i for blue, CG
i for

green, and CR
i for red, with i ∈ [1, 2, 3] sectors). Each sensor returns 1 if the

blue/green/red object falls with the corresponding sector. The camera and S1

move together. The experimental set up is built in a way that at each time
step there can be only one object in the camera view. If no coloured object is
detected, the readings of the sensors are set to 0. The agent is also equipped
with right and left bound binary sensors which activate (i.e., their reading is set
to 1) whenever S1 reaches the right or the left bound, respectively. Finally, three
binary touch sensors (i.e., T r, T f , T l) are placed on the right, front, and left side
of S2. Collisions between the agent and an object are handled by a simple model
in which whenever S2 pushes the object the relative contact points remain fixed.

In a first series of simulations (referred to as Exp. A), agents are trained
to execute the following three actions: TOUCH (ActTo ), MOVE (ActMo ), and
INDICATE (ActIo), where o is the object on which the action is executed, and
can be either the blue, the green or the red object (see Fig. 1c). TOUCH requires
an agent to remain in contact with the target object with the right side of S2

(that is, by activating the touch sensor T r) for an uninterrupted interval of 100
time steps. During this interval, S1 does not have to rotate. MOVE requires
an agent to rotate S1 more than 35◦ while S2 is touching the object with its
right side. The rotation of S1 while S2 is touching the object determines the
movement of the object. INDICATE requires an agent to rotate S1 until the
angular distance between S1 and the object is less than 30◦. INDICATE is
correctly executed only if S1 remains at less than 30◦ from the target object for
more than 100 time steps. During the execution of INDICATE, an agent must not
collide with any object. During the execution of TOUCH and MOVE, an agent
must not collide with the non target objects (i.e., the objects not mentioned in
the current linguistic instruction). In a second series of simulations (referred to
as Exp. B), agents are trained to execute only the action TOUCH (ActTo ), and
MOVE (ActMo ).

The agent controller and the evolutionary algorithm
The agent controller is composed of a continuous time recurrent neural network
(CTRNN) of 20 sensor neurons, 3 inter-neurons and 4 motor neurons [10]. At
each time step sensor neurons are activated using an input vector Ii with i ∈
[1, .., 20] corresponding to the sensors readings (see Fig. 1b).
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The inter-neuron network is fully connected. Additionally, each inter-neuron
receives one incoming synapse from each sensory neuron. Each motor neuron
receives one incoming synapse from each inter-neuron. There are no direct con-
nections between sensory and motor neurons. The states of the motor neurons
are used to control the movement of S1 and S2 as explained later. The states of
the neurons are updated using the following equations:

Δy

ΔT
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
− yi + gIi

) 1
ΔT

; for i ∈ {1, .., 20}; (1a)(
− yi +

23∑
j=1

ωjiσ(yj + βj)
) 1

τi
; for i ∈ {21, 22, 23}; (1b)

(
− yi +

23∑
j=21

ωjiσ(yj + βj)
) 1

ΔT
; for i ∈ {24, .., 27}; (1c)

with σ(x) = (1+e−x)−1. In these equations, using terms derived from an analogy
with real neurons, yi represents the cell potential, τi the decay constant, g is a
gain factor, Ii the intensity of the perturbation on sensory neuron i, ωji the
strength of the synaptic connection from neuron j to neuron i, βj the bias term,
σ(yj + βj) the firing rate (hereafter, fi). All sensory neurons share the same
bias (βI), and the same holds for all motor neurons (βO). τi and βi with i ∈
{21, 22, 23}, βI , βO, all the network connection weights ωij , and g are genetically
specified networks’ parameters. At each time step the angular movement of S1 is
2.9H(f24− 0.5)sgn(0.5− f25) degrees and of S2 is 2.9H(f26− 0.5)sgn(0.5− f27)
degrees, where H is the Heaviside step function and sgn is the sign function.

A generational genetic algorithm is employed to set the parameters of the
networks [11]. The population contains 100 genotypes. Generations following the
first one are produced by a combination of selection with elitism, recombination
and mutation. For each new generation, the five highest scoring individuals from
the previous generation are retained unchanged. The remainder of the new popu-
lation is generated by fitness-proportional selection from the 70 best individuals
of the old population. Each genotype is a vector comprising 90 real values. Each
gene is chosen uniformly random from the range [0, 1]. Cell potentials are set to
0 when the network is initialised or reset, and circuits are integrated using the
forward Euler method with an integration time step ΔT = 0.05.

The fitness function
During evolution, each genotype is translated into an arm controller and eval-
uated more than once for different object-action pairs and different starting
positions. In Exp. A (i.e., with INDICATE), agents are evaluated 14 times ini-
tialised in the left and 14 times in the right initialisation area, for a total of 28
trials. For each initialisation area, an agent experiences 2 times all the linguistic
instructions with the exception of ActMblue and ActTgreen. These two instructions
are never experienced during the training phase. In Exp. B (i.e., without INDI-
CATE), agents are evaluated 8 times initialised in the left and 8 times in the
right initialisation area, for a total of 16 trials. 4 out of 6 linguistic instructions



528 E. Tuci et al.

are experienced during the evolution process, while 2 are not (as before, the
instructions which are not experienced are ActMblue and ActTgreen). In both Exp.
A and Exp. B, at the beginning of each trial, the agent is randomly initialised in
one of the two initialisation area, and the state of the neural controller is reset.
A trial lasts 12 simulated seconds (T = 250 time steps). A trial is terminated
earlier in case the arm collides with a non target object.

In each trial k, an agent is rewarded by an evaluation function which seeks
to assess its ability to execute the desired action on the target object. The final
fitness FF attributed to an agent is the sum of two fitness components F 1

k and
F 2

k . F 1
k rewards the agent for reducing the angular distance between S1 and the

target object. F 2
k rewards the agent for performing the required action on the

target object. F 1
k and F 2

k are computed as follows:

F 1
k = max

(
0,

di − df

di
· P 1

k ,�df <4.6◦

)
(2)

where di and df are respectively the initial (i.e., at t = 0) and final (i.e., at
the end of the trail k) angular distances between S1 and the target object and
�df <4.6◦ is 1 if df < 4.6◦, 0 otherwise. P 1

k is the penalty factor, which is set to 0.6
if the agent collides with a non target object, to 1.0 otherwise. The angle between
S1 and the target object o can be measured clockwise (αclock

o ) or anticlockwise
(αanti

o ). In equation 2, di and df are the minimum between the clockwise and
anticlockwise distance, that is d = min

(
αclock

T , αanti
T

)
.

F 2
k =

⎧⎪⎪⎨⎪⎪⎩
steps-on-target

max-steps-on-target
· P 2

k for TOUCH or INDICATE (3a)

Δθ

max-angular-offset
· P 2

k for MOVE (3b)

where max-steps-on-target = 100, P 2
k = 0 if F 1

k < 1 otherwise P 2
k = 1, and

max-angular-offset = 34.4◦. For the action INDICATE, steps-on-target refers
to the number of time steps during which F 1

k = 1, and S2 does not touch the
target object. For the action TOUCH, steps-on-target refers to the number of
time steps during which F 1

k = 1, S2 touches the target object by activating the
touch sensor T r, and S1 does not change its angular position. Δθ is the angular
displacement of the orientation of S1 recorded while F 1

k = 1, and S2 is touching
the target object by activating the touch sensor T r. A trial is terminated earlier
if steps-on-target = max-steps-on-target during the execution of INDICATE or
TOUCH and when Δθ = max-angular-offset during the execution of MOVE.

3 Results

For both Exp. A and Exp. B, we run for 10000 generations ten evolutionary sim-
ulations, each using a different random initialisation. Recall that our objective
is to generate agents that are capable of successfully performing all the possible
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Table 1. Result of post-evaluation test performed on the best agents of each generation

for each run and for Exp. A and Exp. B. The table shows the number of successful

agents on linguistic instructions experienced during evolution, and the percentage of

successful agents on linguistic instructions not experienced during evolution indicated

by the corresponding row (see text for details).

run n. 1 n. 2 n. 3 n. 4 n. 5 n. 6 n. 7 n. 8 n. 9 n. 10

Exp. A

Num. Suc. Agents 8634 0 7182 0 5491 3466 8812 8312 4627 8632

(%)

ActM
blue 30.87 0.00 17.96 0.00 0.00 57.73 29.43 27.96 12.19 3.56

ActT
green 17.88 0.00 0.56 0.00 2.77 1.13 16.00 21.19 3.41 1.00

ActM
blue and ActT

green 9.07 0.00 0.61 0.00 0.00 1.59 6.97 15.56 0.35 0.00

Exp. B

Num. Suc. Agents 6044 6011 8689 8893 0 8385 9060 7620 9151 8304

(%)

ActM
blue 20.43 14.59 11.67 19.98 0.00 0.01 1.10 16.18 3.05 7.70

ActT
green 0.00 0.32 1.63 2.11 0.00 10.10 1.62 0.59 1.22 0.87

ActM
blue and ActT

green 0.00 0.00 0.44 0.16 0.00 0.00 0.00 0.21 0.00 0.00

behaviours corresponding to the execution of all the possible linguistic instruc-
tions by undertaking a training focused only on a subset of them. We run two
different series of simulations (i.e., Exp. A and Exp. B) to see whether the train-
ing on a more elementary action (i.e., INDICATE) bears upon the development
of functionally compositional neural structures.

The best agents of each generation in both experimental conditions have been
post-evaluated by running sets of 80 trials for each linguistic instruction. Agents
of Exp. B are not tested on linguistic instructions that require action INDI-
CATE. In half of the trials the agents are randomly initialised in the right and
half of the trials in the left initialisation area (see Fig 1a). We considered suc-
cessful at the post-evaluation tests the agents that managed to obtain a success
rate higher that 80% in performing the behaviours corresponding to the ex-
ecution of the linguistic instructions experienced during evolution. Successful
agents have been further classified in i) non compositional agents, referring to
those successful agents that proved to be less than 80% successful at perform-
ing the behaviour corresponding to the execution of both the not experienced
instructions, ActMblue and ActTgreen; ii) partially compositional agents referring to
those successful agents that proved to be more than 80% successful at perform-
ing the behaviour corresponding to the execution of only one of the two non
experienced instructions, ActMblue or ActTgreen; iii) fully compositional agents re-
ferring to those successful agents that proved to be more than 80% successful at
performing the behaviour corresponding to the execution of both the not expe-
rienced instructions, ActMblue and ActTgreen. Results of post-evaluation tests are
shown in Table 1.

All the runs, with the exception of run n. 2 and n. 4 in Exp. A, and run n. 5 in
Exp. B, generated plenty of successful agents. For what concerns
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Fig. 2. Percentage of fully compositional, partially compositional and non compositional
agents in the two experimental conditions grouped by the number of failure

compositionality, the results can be summarised in few relevant points. First,
fully compositional agents are a very small percentage of the successful agents,
in Exp A, and they are almost absent in Exp. B. Moreover, in those run that
generated them, fully compositional agents keep on appearing and disappearing
during evolution, while successful agents once generated they are almost never
lost (data not shown). These data suggest that compositionality is not automat-
ically associated with, and is not a prerequisite for developing the capability of
successfully performing the evolutionary task. Second, in both Exp. A and Exp.
B,partially compositional agents are slightly more frequent than fully compo-
sitional agents. Moreover, partially compositional agents capable of performing
ActMblue are more frequent than partially compositional agents capable of per-
forming ActTgreen. Third, although successful agents are slightly less likely to be
generated in Exp. A than Exp. B, fully compositional or partially compositional
agents are definitely more frequent in Exp. A than in Exp B. This suggests that
the training on the more elementary action INDICATE seems to facilitate the
development of behavioural and linguistic compositionality.

Having ascertained that some of the successful agents are also partially or fully
compositional, we try to understand more about the mechanisms underpinning
compositionality. Looking at the behaviour of all types of compositional agents,
we noticed that they first move S1 keeping S2 bent in order to point to the target
object (as required for the INDICATE instruction). After that, if TOUCH or
MOVE is required, they rotate S2 and eventually S1 again depending on the
current linguistic instruction. If INDICATE is required, they keep S1 pointing
to the object, and S2 fully bent as at start. A very parsimonious hypothesis
on how compositional agents generate these behavioural patterns is based on
the capability to “parse” the linguistic instruction and to “pay attention” to its
parts in a sequential order. According to our temporal sequencing hypothesis,
compositionality may result from the fact that at the beginning of a trial, when
the agents have to approach the target object, only the part of the instruction
referring to the object bears on its behaviour. When an agent is ready to execute
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the action on the target object, then only the part of the instruction referring to
the action bears on the agent behaviour. In other words, compositionality may
be underpinned by a systematised knowledge of the task obtained by paying
attention to different parts of the linguistic instruction at different times of a
trial. Linguistic instructions, including those not experienced during training,
would be “decomposed” in already experienced elementary units which trigger
known (i.e., already experienced) elementary behaviours in a specific temporal
sequence (i.e., first the movement on the target object, then the execution of the
desired action).

To test the temporal sequencing hypothesis, we run a further series of post-
evaluation tests on successful agents of both Exp. A and Exp. B. In these tests,
the linguistic command referring to the action is changed during the agents’
life time as soon as the agents have completed the movement toward the target
object (i.e., when df < 0.08, see Sec. 2). According to the temporal sequencing
hypothesis, compositional agents should pay attention to the part of the linguis-
tic instruction referring to the action only after having reached the target object.
Therefore, they should correctly execute the second-given action, while ignoring
the first-given one. The performance of non compositional agents should result
severely disrupted by this type of unexpected manipulation of the linguistic in-
struction. The agents undergo sets of 80 trials for each possible transition from
a first-given action to a second-given action different from the first one, and for
each object. In half of the trials the agents are randomly initialised in the right
and half of the trials in the left initialisation area. There are 18 possible transi-
tions in Exp. A and 6 in Exp. B. The performance of an agent on each specific
transition is considered a failure if the agent fails to execute the second-given
action in more than 64 out of 80 trials. The results shown in Fig. 2 indicate that
only some of the fully compositional agents are able to perform all transitions
without any failure. These agents appear to have acquired a systematised knowl-
edge of the task in accordance with what suggested by the temporal sequencing
hypothesis. The higher the number of failure, the less structured the knowledge
of the task with a higher number of linguistic instructions learnt by rote and
represented as “atomic” operations in a semantics space progressively less com-
positional. Note that it is possible to be a compositional agent and having few
linguistic instructions learnt by rote. This is probably the case of fully compo-
sitional agents that make several failure on specific transitions (remember that
we do not enforce by any means compositionality). Note also that Exp. A and
Exp. B generate similar results. This may imply that fully compositional agents
exploit the same mechanisms to achieve compositionality in spite of the fact that
in Exp. B the evolutionary conditions seem not to facilitate their evolution.

4 Conclusions

The results of this study shows that dynamical neural networks designed by ar-
tificial evolution can provide the required mechanism to develop a compositional
semantic neural structures which allow autonomous agents to access linguistic
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instructions not experienced during training and to execute the corresponding
behaviours also non experienced during training. Although we haven’t carried
out yet any analysis on the neural mechanisms, we run some behavioural tests
which showed that evolved compositional semantic systems seem to be under-
pinned by temporal structures. That is, fully compositional agents possess the
required mechanisms to “parse” different part of the instruction and to execute
different sub-behaviours at different time of their life span. Evolutionary con-
ditions in which the agents are explicitly required to execute more elementary
behaviour than those on which their compositional skills are evaluated seem to
facilitate the emergence of fully compositional agents. Leaving the agents free
to determine how to achieve the goals associated to each linguistic instruction
allowed the agents to organise their behavioural skills in ways that facilitate the
development of compositionality thus enabling the possibility to display a gen-
eralisation ability at the level of behaviours (i.e., the ability to spontaneously
produce new behaviours that have not been displayed or rewarded before). In
future research we plan to investigate the characteristics that favour the emer-
gence of compositional solutions (that ensure behavioural generalisation) and/or
that reduce the chance to converge on non-compositional solutions and the pos-
sibility to scale the model with respect to the number and the complexity of the
linguistic/behavioural repertoire.
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Abstract. Biological brains can adapt and learn from past experience.
In neuroevolution, i.e. evolving artificial neural networks (ANNs), one
way that agents controlled by ANNs can evolve the ability to adapt is
by encoding local learning rules. However, a significant problem with
most such approaches is that local learning rules for every connection
in the network must be discovered separately. This paper aims to show
that learning rules can be effectively indirectly encoded by extending
the Hypercube-based NeuroEvolution of Augmenting Topologies (Hy-
perNEAT) method. Adaptive HyperNEAT is introduced to allow not
only patterns of weights across the connectivity of an ANN to be gener-
ated by a function of its geometry, but also patterns of arbitrary learning
rules. Several such adaptive models with different levels of generality are
explored and compared. The long-term promise of the new approach is
to evolve large-scale adaptive ANNs, which is a major goal for neuroevo-
lution.

Keywords: Adaptation, Learning, HyperNEAT, Neuroevolution.

1 Introduction

Research in neuroevolution, i.e. evolving artificial neural networks (ANNs)
through evolutionary algorithms, often focuses on static ANNs (i.e. weights do
not change during the network’s lifetime). However, in many control and decision-
making problems, the environment may change too quickly to allow phylogenetic
adaptation; thus the controller needs to adapt online to maintain performance. For
example, a robot may need to remember a location that changes over time.

One way that agents controlled by ANNs can evolve the ability to adapt over
their lifetime is by encoding local learning rules in the genome that determine
how their synaptic connection strengths should change in response to changing
activation levels in the neurons they connect [1, 2, 3]. This approach resembles
the way organisms in nature, which possess plastic nervous systems, cope with
changing and unpredictable environments.

Although demonstrations of this approach have suggested the promise of
evolving adaptive ANNs, a significant problem is that local learning rules for
every connection in the network must be discovered separately. That is, although
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interest has grown in recent years in indirectly encoding the weights of ANNs so
that they can be discovered as patterns [4, 5, 6, 7, 8, 9], the power of indirect en-
coding is rarely applied to encoding learning rules. Yet the distribution of rules
across a network likely conforms to discoverable regularities just as weights.

Additionally, as noted by Yao [10], the right learning rule depends on the ANN
architecture, which makes it difficult to design an optimal such rule a priori. Yao
further points out that designing learning rules by hand, which is common in
this area [1, 10], requires making assumptions that might not hold in practice.

This paper aims to show that learning rules can be effectively indirectly en-
coded by extending the Hypercube-based NeuroEvolution of Augmenting Topolo-
gies (HyperNEAT) method [11, 6, 12], which currently indirectly encodes large
geometric patterns of fixed weights for high-dimensional problems [13, 11, 6, 12].
The new method introduced here, called adaptive HyperNEAT, allows not only
patterns of weights across the connectivity of an ANN to be generated by a func-
tion of its geometry, but also patterns of learning rules. The idea that learning
rules can be distributed in a geometric pattern is new to neuroevolution but
reflects the intuition that synaptic plasticity in biological brains is not encoded
in DNA separately for every synapse in the brain. Thus the main idea in this
paper is a step towards more biologically plausible adaptive systems.

An important contribution of this work is to show that there is a tradeoff
between the generality of an indirect encoding of plasticity and its computational
cost. Yet, as experiments in a variant of the T-Maze learning domain [14,3] will
show, in special cases, e.g. when the reward signature is nonlinear and the ANN
topology is restricted, a most general encoding may be necessary. Thus, rather
than offering a single approach to all problems, this paper reveals the existence of
a continuum of adaptive encodings that trade off generality with computational
expense. From this perspective the practitioner can make the most informed
choice on the ingredients that may be necessary for a particular domain.

Building on the ability of HyperNEAT to evolve large-scale connectivity pat-
terns, the long-term promise of the new approach is to evolve large-scale adaptive
ANNs, which is a major goal for neuroevolution.

2 Background

The HyperNEAT method that enables learning from geometry in this paper is
an extension of the original NeuroEvolution of Augmenting Topologies (NEAT)
algorithm that evolves ANNs through a direct encoding [15, 16]. NEAT starts
with a population of small, simple neural networks and then complexifies them
over generations by adding new nodes and connections through mutation. By
evolving networks in this way, the topology of the network does not need to be
known a priori. The important feature of NEAT for the purpose of this paper is
that it evolves both the topology and weights of a network.

However, in direct encodings like NEAT, each part of the representation maps
to a single piece of structure in the solution [17]. The significant disadvantage
of this approach is that even when different parts of the solution are similar,
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Fig. 1. How an ANN is Encoded by a CPPN. A collection of ANN nodes,
called the substrate, is assigned coordinates that range from −1 to 1 in all dimensions.
(1) Every potential connection in the substrate is queried to determine its presence
and weight; the dark directed lines in the substrate depicted in the figure represent a
sample of connections that are queried. (2) Internally, the CPPN (which is evolved) is
a graph that determines which activation functions are connected. As in an ANN, the
connections are weighted such that the output of a function is multiplied by the weight
of its outgoing connection. For each query, the CPPN takes as input the positions of
the two endpoints and (3) outputs the weight of the connection between them. Thus,
CPPNs can produce regular patterns of connections in space.

they must be encoded and therefore discovered separately. Thus HyperNEAT
employs an indirect encoding instead, which means that the description of the
solution is compressed such that information can be reused, allowing the final
solution to contain more components than the description itself [4, 5, 6, 7, 8, 9].

In HyperNEAT, NEAT is altered to evolve an indirect encoding called compo-
sitional pattern producing networks (CPPNs [8]) instead of ANNs [13, 11, 6, 12].
The main idea in HyperNEAT is that the CPPN, which is itself a network com-
posed of a variety of activation functions, acts as a pattern generator that outputs
a pattern of connection weights situated within the geometry of the ANN. The
activation functions within the CPPN, such as sine and Gaussian, allow it to
express regularities across the geometry of the ANN [11,6, 12].

Formally, CPPNs are functions of geometry (i.e. locations in space) that out-
put connectivity patterns whose nodes are situated in n dimensions, where n is
the number of dimensions in a Cartesian space. Consider a CPPN that takes
four inputs labeled x1, y1, x2, and y2; this point in four-dimensional space also
denotes the connection between the two-dimensional points (x1, y1) and (x2, y2),
and the output of the CPPN for that input thereby represents the weight of that
connection (Fig. 1). By querying every possible connection among a pre-chosen
set of points in this manner, a CPPN can produce an ANN, wherein each queried
point is a neuron position. Because the connections are produced by a function of
their endpoints, the final structure is produced with knowledge of its geometry. In
effect, the CPPN is painting a pattern on the inside of a four-dimensional hyper-
cube that is interpreted as the isomorphic connectivity pattern, which explains
the origin of the name hypercube-based NEAT (HyperNEAT). Connectivity pat-
terns produced by a CPPN in this way are called substrates so that they can be
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verbally distinguished from the CPPN itself, which has its own internal topology.
As a rule of thumb, nodes are placed on the substrate to reflect the geometry of
the task [13, 11, 12]. That way, the connectivity of the substrate is a function of
the task structure and while the task may be complex, the domain geometry is
often intuitive.

For example, the sensors of an autonomous robot can be placed from left to
right on the substrate in the same order that they exist on the robot. Outputs for
moving left or right can also be placed in the same order, allowing HyperNEAT
to understand from the outset the correlation of sensors to effectors. In this
way, knowledge about the problem geometry can be injected into the search
and HyperNEAT can exploit the regularities (e.g. adjacency, or symmetry) of a
problem that are invisible to traditional encodings.

For a complete overview of HyperNEAT, see Gauci and Stanley [6] and Stanley
et al. [12]. The next section extends this approach to evolve adaptive ANNs.

3 APPROACH: Adaptive HyperNEAT

The main idea in adaptive HyperNEAT is that CPPNs can not only encode con-
nectivity patterns but also patterns of plasticity rules. As in the brain, different
regions of the ANN should be more or less plastic and employ different learning
rules, which HyperNEAT allows because it sees the ANN geometry. In general,
a learning rule changes the weight of a connection based on presynaptic activity
oi, postsynaptic activity oj , and the current connection weight wij :

Δwij = Φ(oi, oj , wij) . (1)

In this paper three different adaptive HyperNEAT models are compared that
are able to encode different levels of learning rule generality. The goal of this
comparison is to elucidate the advantages and disadvantages of different levels
of generality to modeling dynamic learning processes. All three models allow
learning rules to be distributed as patterns across the connectivity of an ANN.

The most general iterated model (Fig. 2a) augments the four-dimensional
CPPN that normally encodes connectivity patterns with three additional inputs:
presynaptic activity oi, postsynaptic activity oj , and the current connection
weight wij . That way, the synaptic plasticity of a connection between two two-
dimensional points (x1, y1) and (x2, y2) can be described by

Δwij = CPPN(x1, y1, x2, y2, oi, oj , wij) . (2)

The update of the synaptic weights can thereby be iteratively performed by the
same CPPN that normally encodes network connectivity, which allows evolving
increasingly complex learning rules. In effect, the CPPN encodes an entire dy-
namical system, including how changes depend on both location and activity.
The CPPN is requeried on every tick of the clock to update the ANN weights.
The initial weight configuration is determined by querying the CPPN as in the
original HyperNEAT approach (Sec. 2) with the presynaptic activity, postsy-
naptic activity, and weight inputs all set to zero.
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Fig. 2. Adaptive HyperNEAT. CPPNs for the iterated (a) and ABC models (b)
are shown. The CPPN in (a) is continually requeried during the lifetime of the agent
to determine the weight change given the location of the connection, activation of the
presynaptic and postsynaptic neuron, and the current weight as input. In contrast, the
CPPN in (b) is only activated once to determine the three parameters A–C and the
learning rate η, which control synaptic plasticity during the lifetime of the agent, in
addition to the initial weight w.

The less general Hebbian ABC model augments the CPPN instead with
four additional outputs (Fig. 2b): learning rate η, correlation term A, presy-
naptic term B, and postsynaptic term C. When the CPPN is initially queried,
these parameters are permanently stored, which allows the synaptic weight to
be modified during the lifetime of the agent by the following plasticity rule:

Δwij = η · [Aoioj + Boi + Coj ] . (3)

Traditional approaches to evolving adaptive ANNs with direct encodings also
evolve the coefficients of Equation (3) but because of the limitations of direct
encodings often only employ one such evolved rule throughout all ANN connec-
tions [18, 3]. The difference here is that A, B, C, and η are indirectly encoded
by HyperNEAT in a geometric pattern across the connectivity of the whole
network. Therefore each connection could potentially employ a different rule if
necessary. However, unlike the more general iterated model, this CPPN only
produces variants of the ABC Hebbian rule. Thus the space of possible rules is
more restricted.

Finally, the simplest model is plain Hebbian. The CPPN has only one ad-
ditional output that encodes the learning rate η:

Δwij = η · oioj . (4)

This variant tests for the minimal sufficient dynamics to solve the T-Maze do-
main given in this paper, which is explained in the next section.

4 T-Maze Domain

T-Mazes are often studied in the context of operant conditioning of animals;
they are also studied to assess the ability of plastic ANNs [14, 3]. The discrete
T-Maze in this paper (Fig. 3a) consists of two arms that either contain a high
or low reward. The agent begins at the bottom of the maze and its goal is to
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Fig. 3. T-Maze and Substrate Configuration. (a) In this depiction, high reward is
located on the left and low reward is on the right side, but these positions can change
over a set of trials. The challenge for the agent is to remember the location of the high
reward from one trial to the next. (b) The autonomous agent A is equipped with three
distance sensors and a reward color sensor that is set to zero during navigation.

navigate to the reward position. This procedure is repeated many times during
the agent’s lifetime. One such attempted trip to a reward location is called a
trial. A deployment consists of a set of trials. When the position of the reward
sometimes changes, the agent should alter its strategy accordingly to explore the
other arm of the maze in the next trial and remember the new position in the
future (requiring adaptation). The goal of the agent is to maximize the amount
of reward collected over all deployments.

5 Experiments

To generate a controller for the T-Maze domain, the evolved CPPNs query the
substrate shown in Fig. 3b. The locations of inputs and outputs are designed
to geometrically correlate (e.g. seeing something on the left correlates to turn-
ing left). Thus the CPPN can exploit the geometry of the agent. The agent is
equipped with three rangefinder sensors that detect walls to the left, front, and
right of the robot. The Color input (explained shortly) is set to the color of the
collected reward at the maze end, which determines the amount of reward given
to the agent. The three output neurons are Left, Forward, and Right. At each
simulated time step, the agent continues to move straight at a constant pace if
the Forward output has the highest activation level. Otherwise the agent turns
90 degrees in the direction of the highest activated neuron (Left or Right).

An agent crashes if it does not (1) maintain a forward direction in corridors or
(2) turn either right or left when it encounters the junction. If the agent crashes
then the current trial is terminated.

In this paper, two T-Maze scenarios are studied to elucidate the advantages
and disadvantages of encoding different levels of plasticity rule generality. Sce-
nario 1 resembles the traditional T-Maze domain described in the previous
section. Each agent is evaluated on four deployments with 100 trials each. The
starting position of the high reward alternates between deployments and switches
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0.1(Blue) 0.3 (Green) 0.8 (Yellow) 1.0 (Red) High RewardLow Reward

Fig. 4. Nonlinear Reward Color Encoding. The agent receives a high reward for
green or red and a low reward for blue or yellow. The ANN color encoding together
with the given ANN topology requires the agent to include a nonlinear learning rule.

positions after 50 trials on average. Color input values of 1.0 and 0.1 encode the
high (red) and low (blue) reward, respectively.

In scenario 2, the agent is exposed to a total of four different colored re-
wards. The first deployment resembles scenario 1 with reward signatures of 0.1
and 1.0. However, in the second deployment, color input values of 0.3 and 0.8
are introduced to encode new high yellow and low green rewards, respectively
(Fig. 4). Adding these intermediate reward colors yields a reward signature that
is not linearly separable. Because the ANN controlling the agent does not have
any hidden neurons, the learning rule must itself be nonlinear. Scenario 2 there-
fore makes a good domain for this study because it requires evolving a specific
learning rule that depends on the ANN topology.

The fitness function, which is the same for all compared approaches and iden-
tical to Soltoggio et al. [3], is calculated as follows: Collecting a high reward has
a value of 1.0 and a low reward is worth 0.2. A penalty of 0.4 is subtracted if
the agent does not maintain forward motion in corridors or does not turn left or
right at a junction. The total fitness of an individual is determined by summing
the fitness values for each of the 100 trials over all deployments.

Note that although Risi et al. [19] showed that novelty search [20], which aban-
dons objective-based fitness and instead simply searches only for novel behavior,
significantly outperforms fitness-based search in the traditional T-Maze domain,
a standard fitness function is employed in this paper to keep the experiment
focused on the issue of adaptation.

5.1 Experimental Parameters

All experiments were run with a modified version of the public domain Sharp-
NEAT package [21] called HyperSharpNEAT. Runs consisted of 500 generations
with a population size of 500 and 10% elitism. Sexual offspring (50%) did not
undergo mutation. Asexual offspring (50%) had 0.94 probability of link weight
mutation, 0.03 chance of link addition, and 0.02 chance of node addition. The
available CPPN activation functions were sigmoid, Gaussian, absolute value,
and sine, all with equal probability of being added. A connection is not ever
expressed if the magnitude of its initial weight is below a minimal threshold of
0.4. Parameter settings are based on standard SharpNEAT defaults and prior re-
ported settings for NEAT [15,16]. For all adaptive HyperNEAT models synaptic
strength is bound within the range [−1.0, 1.0].
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6 Results

The standard T-Maze (scenario 1) is solved when the agent reaches a fitness
of 395. A minimum amount of exploration (i.e. collecting the low reward) is
required at the beginning of each deployment and when the reward positions
switch. The T-Maze with nonlinear reward signature (scenario 2), consisting of
two deployments with different reward signatures, is solved with a fitness of 195.
All reported results are averaged over 20 runs.

Figure 5a shows the average training performance over generations for the
standard T-Maze (scenario 1). It took the ABC model 141 generations (σ=141)
on average to find a solution. The iterated model took 89 generations (σ=61) on
average. While the fitness for the iterated model initially increases more slowly
than for ABC, it finds a solution slightly (though not significantly) faster on
average. The plain Hebbian model cannot solve the task. Although both the
more general iterated model and the ABC model can solve the task, the iterated
model is computationally more expensive because the CPPN must be continually
requeried for every ANN connection.

The average training performance over generations for scenario 2 is shown
in Fig. 5b. The plain Hebbian rule is not tested in this variant because it is
not able to solve the standard T-Maze. Whereas the iterated model solves the
domain in 19 out of 20 runs, in 367 generations (σ=101) on average, ABC is not
able to solve the task with the given ANN topology, which suggest the need for
a nonlinear learning rule in this scenario (or potentially an ANN with hidden
nodes). The more general iterated model is able to evolve such a rule.

Figure 6a shows CPPN-encoded learning rules of an ANN solution discovered
by the iterated model. The function embodied by the CPPN (Fig. 6b) encodes
a geometric pattern of nonlinear learning rules. Interestingly, the evolved rules
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Fig. 5. Training Performance. The change in performance over evaluations for both
scenarios is shown in this figure. All results are averaged over 20 runs. The horizontal
line (top) indicates at what fitness the domain is solved. The iterated and ABC model
are both able to solve the standard T-Maze domain (a) in about the same number of
generations whereas the plain Hebbian approach does not show the necessary dynamics.
The T-Maze domain with a nonlinear reward signature (b) requires a nonlinear learning
rule, which only the iterated model discovers.
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Fig. 6. Discovered Learning Rules of an ANN Solution Created by the It-
erated Model and the Underlying CPPN. The nonlinear learning rules shown in
(a) are encoded by the evolved CPPN shown in (b). A geometric pattern of learning
rules can been seen that varies with the target node’s x location. The amount of synap-
tic change is a function of the pre- and postsynaptic activity and the corresponding
positions of the pre- and postsynaptic neurons in the substrate (weight input w on the
CPPN is set to zero in this depiction).

resemble postsynaptic-based learning rules that have been shown essential in the
T-Maze domain [18].

7 Discussion and Future Work

The indirect HyperNEAT encoding is able to generate ANNs with millions of
connections based on underlying geometric motifs [12]. This paper introduced
an extension called adaptive HyperNEAT that generates not only patterns of
weights across the connectivity of an ANN, but also patterns of learning rules
(Fig. 6). The long-term promise of the new approach is therefore to evolve large-
scale adaptive ANNs, which is a major goal for neuroevolution that may bring
it closer to evolving brain-like structures.

While the ABC model together with an adequate ANN topology should be
sufficient for most domains, the nonlinear variant of the T-Maze learning domain
reveals that sometimes a more general encoding may be necessary. Although the
ANN topology could potentially have been extended to allow a less general
model to solve the nonlinear T-Maze domain, this experiment confirms the risk
of making a priori assumptions about the type of necessary learning rules [10].

However, the generality of the indirect encoding of plasticity trades off with its
computational cost. The most general iterated model is computationally expen-
sive because the CPPN must be continually requeried for every ANN connection.
The computational complexity for every time step is O(n)+nO(m), where O(n)
and O(m) are the costs of simulating an ANN with n connections and an under-
lying CPPN with m connections, respectively. Thus the most general model in
its current form might be too computationally expensive for practical purposes
that require large CPPNs and ANNs. However, it gives us a reference point from
which to derive more specialized models such as the ABC model.

In the current iterated model the synaptic weights are updated at every time
step. Characterizing how often a weight update is necessary is an important
future research direction that may allow cutting down the computational cost of
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even the most general model. Additionally, synaptic plasticity could be controlled
by neuromodulation [19, 3, 2], which means that some neurons can enhance or
dampen the neural plasticity of their target nodes. Such modulation could allow
precise timing of CPPN weight queries. Finally, another potentially promising
approach is combining the iterated and ABC models.

8 Conclusion

A new method called adaptive HyperNEAT was presented, which allows not only
patterns of weights across the connectivity of an ANN to be indirectly encoded
as a function of its geometry, but also patterns of arbitrary learning rules. Im-
portantly, this paper shows that there is a tradeoff between the generality of an
indirect encoding of plasticity and its computational cost. Yet, as a variation of
the T-Maze domain demonstrates, the most general encoding may be necessary
in some cases. The main conclusion is that the indirect HyperNEAT encoding
may enable evolving large-scale adaptive ANNs.
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Abstract. Designing controllers for modular robots is difficult due to the dis-
tributed and dynamic nature of the robots. In this paper fractal gene regulatory 
networks are evolved to control modular robots in a distributed way. Experi-
ments with different morphologies of modular robot are performed and the re-
sults show good performance compared to previous results achieved using 
learning methods. Furthermore, some experiments are performed to investigate 
evolvability of the achieved solutions in the case of module failure and it is 
shown that the system is capable of come up with new effective solutions. 

Keywords: Fractal Gene Regulatory Networks, Modular Robots, Robot Con-
trol, Evolutionary Computation. 

1   Introduction 

The purpose of this paper is to investigate the capability of Fractal Gene Regulatory 
Networks (FGRNs) to control modular robots. FGRN [1] is a special type of compu-
tational Gene Regulatory Networks (GRNs) which utilizes fractal proteins to interact 
with a genotype. Modular robots are robots built from a number of mechanically 
coupled modules which can connect in different ways and each module is controlled 
by its own local controller. They have the potential to be versatile and robust, but due 
to their distributed, dynamic nature they are difficult to control. 

Complex successful living phenotypes can be found everywhere in nature. Many of 
them consist of several cells each performing its own function related to position and 
role in the phenotype. Nature employs a complicated process of indirect mapping to 
develop a complete multi-cellular phenotype from a genotypic code. Instead of direct 
phenotype-genotype mapping normally used in conventional Evolutionary Computa-
tion (EC), the lifelong process of natural development is controlled by an ongoing 
interaction between genotype and intermediate substrates called proteins which are 
encoded by the genotype. This interaction is considered a network of genes which is 
called Gene Regulatory Network.   
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AN FGRN cell contains a genotype –called genome- that encodes fractal proteins, 
and a compound substrate -called cytoplasm- that maintains the proteins inside the 
cell. Developmental process of a cell is controlled by interaction between cytoplasm 
and genome. The process can be affected by information provided by the environment 
which is also represented by fractal proteins. During the lifetime of the FGRN cell, 
complex output patterns can be produced and used for different purposes such as 
controlling robots [2, 3, 4]. 

FGRN systems can be implemented distributedly. In a distributed system, all cells 
use the same genotype, but they run in parallel to each other. By providing proper 
environmental information for each cell, different cells in a system might follow dif-
ferent developmental trends and make appropriate output patterns. This distributed 
nature of the system potentially makes it suitable for controlling modular robots since 
each FGRN cell can be used to control one module of the robot. But the question is if 
this works in practice and what properties the resulting system has. 

Modular robots are resource-constrained. They usually have little processing power 
and low inter-module communication abilities. In addition, based on the dynamic 
nature of a modular robot, failures might happen in modules, they can break, or the 
user may take apart the robot or detach some modules for different reasons while the 
robot is still supposed to work. In designing controllers for modular robots, it is desir-
able to have an acceptable level of robustness encountering these properties along 
with the characteristics of scalability, usability in different morphologies, and biologi-
cal plausibility. 

Distributed control of ATRON modular robots [5] which are supposed to perform a 
locomotion task is investigated here. Three different morphological configurations of 
the robot are used as experimental case studies. Previous works [6] have shown good 
performances for learning methods in these cases. The results achieved here, demon-
strates evolvability of FGRN systems as distributed controllers of the robots which is 
the first step towards implementing FGRN systems to cope with more complex chal-
lenges in modular robots. 

In an additional experiment, one of the three robots is selected and the behavior of 
the evolutionary system after a module failure is investigated. The results demonstrate 
that the FGRN system is evolvable to find new solutions for the new situations. 

2   Related Works 

In the field of computation systems different approaches have been used to create 
evolutionary systems with a developmental process for genotype to phenotype map-
ping. In some works, models of GRNs are evolved for making mathematical output 
functions such as sinusoid, exponential and sigmoid [7]. Some researchers have de-
signed GRN systems for developing neural networks for controlling robots [8, 9, 10] 
or specifying the morphology of 3D organisms [11]. Also, GRN models have been 
used to develop the morphology of robots as well as their neural network controllers 
[12]. Other models of GRNs have been proposed in [13, 14, 15, 16]. 

In a model of GRN called FGRN, Bentley [1] introduces fractal proteins as an  
intermediate substrate that resembles the role of proteins in the cell. The recursive and 
self-similar nature of fractal proteins make the fractal genetic space evolvable,  
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complex, and redundant [2, 3, 17]. FGRNs are evolved to produce desired patterns 
[18], controlling conventional robot and motion planning [2, 4]. On the other hand, in 
the field of robotics, different approaches have been investigated by researchers to 
control modular robots. Co-evolving morphology and control of simulated modular 
robots [19, 20], learning strategies [6, 21] and applying central pattern generators to 
control modular robots [22, 23] are some of the reported researches in the field. 

3   Gene Regulatory Networks 

3.1   Biological Inspiration 

Development of phenotypes can be thought of as a product of interaction between 
genes and proteins in their environment. Almost everything inside a cell is carried out 
by proteins. Proteins drive development and functioning of a cell and are used for 
communication between cell and its environment that might include other cells. 

A cell contains a genome and a cytoplasm which are surrounded by a membrane 
(Fig. 1). The membrane separates the interior of a cell from the outside environment. 
Receptor proteins are embedded in the membrane and control the movement of envi-
ronmental proteins into the cell. The cytoplasm contains a compound of proteins in-
side the cell. The genome consists of a set of genes. Every gene contains a sequence 
that encodes a protein (coding region) and a sequence that determines the conditions 
for activation or suppression of that gene (promoter region) (Fig. 1). 

 

Fig. 1. An example cell (left) and a gene (right) 

An active gene expresses and produces its appropriate protein as encoded in its 
coding region. For a gene to be activated, a proper amount of appropriate protein 
compounds in cytoplasm must match the promoter region of the gene. 

The cytoplasm content is altered by proteins produced by genes inside the cell or 
the environmental proteins which have entered the cell passing through receptors.  

During the development of a cell, the protein content of the cytoplasm might match 
against the promoter of some genes and get them to suppress or express proteins.  

Every produced protein will merge to the cytoplasm and would alter its content. 
The new content, in turn, affects the expression of genes in the next step. It might 
cause new proteins to be produced or the amount of the current proteins in the cyto-
plasm to be changed. In this way, every gene which makes protein inside a cell might 
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influence the expression of other genes (including itself) directly or indirectly. In the 
same way, the proteins which enter the cell from the environment can influence ex-
pression of genes and participate in development of the cell. On the other hand, the 
functional behavior of a cell is determined by special proteins in the cell. These pro-
teins may change the shape, structure, or other properties of the cell, or might be used 
as signals to the outside environment. Production of these proteins is determined by 
the corresponding genes and the protein content of the cytoplasm. Therefore, varia-
tions in cytoplasm content might lead to variations in the behavior of the cell to the 
outside world.  

The ongoing interaction between proteins and genes continues for whole lifetime 
of a cell and is considered a network of genes which regulate the expression of each 
other and is called a Gene Regulatory Network (GRN). 

3.2   Implementation 

In a series of works reported by Bentley [1, 2, 3, 18] a protein model called fractal 
protein is developed as the protein substance of gene regulatory networks in an evolu-
tionary system. 

Each fractal protein is a square window on the Mandelbrot fractal set with a pre-
specified resolution (Fig. 2). Fractal proteins are represented by a square matrix of 
integer values but can be encoded by only three values (x, y, z). (x, y) determine the 
center of the window on the fractal set. z specifies the length of the sides and can be 
inversely considered as the amount of magnification in the fractal image. Iterating 
Mandelbrot formula along with the three values specifies every entry in the matrix of 
a fractal protein and determines the image. Fig. 2 shows an example fractal protein. 

In addition to a square matrix of integer values, a single integer value relates to 
each fractal protein as its concentration level. The concentration level represents the 
current amount of the protein. The value increases when more of the protein is pro-
duced and decreases slowly over time to resemble normal degradation that happens in 
real cells. 

 

Fig. 2. An example fractal protein and the three values which specify it 

Fractal proteins can merge together and make protein compounds. A fractal protein 
compound is represented by a square matrix of integer values in the same way as 
fractal proteins. In order to merge a protein into a protein compound, for every entry 
in the corresponding matrices, the winner is the paler pixel in the fractal image. See 
Fig. 3 for an example.  
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The cytoplasm of an FGRN cell is a compound of all the proteins inside the cell. 
Every protein that is produced in the cell or enters the cell from outside will be 
merged into the content of the cytoplasm. 

 

Fig. 3. Two proteins (left and middle) are merged (right) 

 

Fig. 4. The cytoplasm protein compound (left) matches against the promoter of a gene (middle) 
and the absolute difference is calculated from the result (right) 

 

Fig. 5. Environmental protein (left) passes through the receptor protein (middle) and some 
portion of it (right) is allowed to enter the cytoplasm 

A genome in an FGRN cell consists of a set of genes. Genes consist of a sequence 
of values representing promoter region, coding region, threshold parameters, and type 
of the gene.  

The coding region contains the three real values which encode a fractal protein. In 
the same way as the coding region, the promoter region consists of three real values 
that encode a square matrix of fractal values as well. This matrix works as a window 
that will be put on the cytoplasm protein compound matrix and is used to calculate the 
matching degree between the promoter of the gene and cytoplasm content (See Fig. 4 
for an example). The matching degree along with the total concentration of matched 
proteins on promoter region, determine the degree of activation (or suppression) of 
the gene and might specify its protein production rate. Threshold parameters are used 
to calculate the matching degree and protein production rate of each gene. 

To assimilate different types of genes in a cell, each gene contains an integer value 
representing its type. Every gene belongs to one of the following types: 

• Regulatory gene, which comprises both promoter and coding region. Its encoded 
protein will be produced and merged into cytoplasm and participate in regulation 
of expression (or repression) of genes. 

 



 Fractal GRNs for Robust Locomotion Control of Modular Robots 549 

• Environmental gene, determines the proteins which might be present in the envi-
ronment of the cell.  

• Cell receptor gene, contains a coding region and produces a receptor protein. Re-
ceptor proteins merge together and act as a mask to permit variable portions of en-
vironmental proteins to the cytoplasm (See Fig. 5).  

• Behavioral gene, which comprises a promoter region and a coding region. The 
values in the coding region can directly participate to determine the outputs of the 
cell. 

Lifetime of an FGRN cell consists of a number of developmental cycles which can be 
summarized as the following steps: 

• Produce receptor and environmental proteins. 
• Pass the environmental proteins through receptors and merge them into the cyto-

plasm content. 
• For every behavioral and regulatory gene, 

− If the content of cytoplasm matches the promoter, 
• If the gene is behavioral: utilize the coding region to specify the cell’s outputs 
• If the gene is regulatory: express the coding region and merge the produced 

protein into the cytoplasm 
• Update concentration level of proteins in the cytoplasm. 

For more detailed descriptions of FGRN systems and the corresponding formulas see 
[1, 2, 4]. 

4   Evolving FGRNs to Control Modular Robots 

Every module of a robot is considered a cell in a multi-cellular creature. Each module 
contains an FGRN cell which includes its genome and cytoplasm. All the FGRN cells 
run in parallel and independent of each other and make their own sequence of output 
commands for the modules containing them. 

All the cells are genetically identical which means they contain an identical copy of 
a genome. Environmental information about the number of connections and the initial 
orientation of the module which contains the cell is provided for each cell in the form 
of environmental proteins. Therefore, two cells which are contained in two modules 
with different environmental situations initially contain different proteins in their 
cytoplasm. Different cytoplasm content might activate different genes of the genome 
of each cell and leads to different internal interactions and developmental trends. 
Consequently, while the cells are genetically identical, different phenotypic character-
istics might be formed and different output commands might be generated by the cells 
during their lifelong development.  

In this work proper genomes are evolved such that when they are copied in all the 
cells of one modular robot, each cell can generate a right sequence of commands for 
its module using the appropriate environmental information and make the robot per-
form its locomotion task. 
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Fig. 6. From left to right: An ATRON module, Two-wheeler, Quadrupedal, and Crawler robots 

4.1   Experimental Setup 

Robot Simulator. Simulation experiments are performed in an open-source simulator 
named Unified Simulator for Self-Reconfigurable Robots (USSR) [24]. The simulator 
provides physics-based simulations of different modular robots including the ATRON 
robot. The ATRON robot is a homogenous, lattice-based self-reconfigurable modular 
robot. An ATRON module weighs 0.850kg and has a diameter of 110mm. A module 
consists of two hemispheres which can rotate infinite relative to each other with a 
speed of 360 degrees in six seconds. Each hemisphere contains two passive (bars) and 
two active connectors (hooks), see Fig. 6. 

Table 1. Genetic parameters 

#population size #generations crossover rate mutation rate 
20 50 40 % 1 % 
    
# regulatory genes #receptor genes #environmental genes # behavioral genes 
4 5 9 / 10 (for crawler) 1 

 

Genetic and developmental configurations. A population of 20 FGRN genomes is 
evolved for 50 generations using a variant of steady-state genetic algorithm with life-
span limits [1]. Each genome is initialized with randomly generated regulatory, recep-
tor, environmental, and behavioral genes. The initial number of each type of gene and 
the genetic parameters are shown in Table 1. Evolution is allowed to regulate the 
number of each type of genes (See [1, 4] for more details). 

To evaluate a genome, identical versions of a genome are copied to all the mod-
ules’ FGRN cells. Each cell receives some environmental proteins describing the 
number of connections and the initial orientation of the module in which it is situated. 
Also an additional environmental protein common between all the cells is initially 
provided. 

In order to make an action for each module in every step, modules independently 
run their own FGRN cell for one developmental cycle and receive an output from the 
cell. The cell output is calculated on the basis of activation of behavioral genes inside 
the cell. The output is mapped to one of the following three commands that will be 
performed by the module in that step: 
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• rotateRight – rotates clockwise 90 degrees 
• rotateLeft – rotates counterclockwise 90 degrees 
• stop – rotate zero degrees 

After a specified time span (50 sec.), fitness is evaluated as the distance between the 
initial position and the end position of center of mass of the robot. 

The run-time procedure of a robot can be summarized as follows:  

• Create genome 
• For every Module of the robot: 

− Make an empty FGRN cell and put a copy of the genome into it.  
− During the run-time of the robot: 

• Receive information about the module’s environment and activate the rele-
vant environmental proteins. 

• Develop the cell for one cycle according to the developmental steps in sec-
tion 3.2 and receive cell output. 

• Translate cell output to the module command and 
• Execute the command. 

Case studies. We have evolved multi-cellular FGRN controllers for three robots with 
different morphologies and the same genetic configurations. Fig. 6 shows the three 
morphologies which are used. In order to keep things as simple as possible we didn’t 
use any communication between modules. As it might be expected, for the two-
wheeler robot, evolution leads to controllers which rotate the two opposite modules in 
the opposite directions to move the robot like a car. For the quadrupedal robot, a 
swimming-like behavior evolved. For the crawler robot, different crawling gaits 
evolved. In order to evaluate the robots, the velocity of the locomotion is calculated 
for each robot. The best and population-average velocities are shown in Fig. 7. The 
figure shows the results averaged over 10 independent runs. The results are compared 
with the results achieved by a learning strategy reported in [6]. Table 2 shows the 
higher velocities achieved by the FGRN controllers and the learning controllers. The 
learning strategy is reinforcement learning accelerated by a heuristic which detects 
and repeats potentially underestimated actions to accelerate the estimation accuracy 
and presumably accelerates the learning.  

In another experiment, the evolvability of the FGRN system is investigated after a 
module failure. The crawler robot is selected for this experiment. We considered the 
solutions found in the last experiment. Different gaits were recognizable between the 
solutions evolved in the 10 runs. Based on the position of the modules which had 
more effect in the locomotion, the solutions can be categorized in two main groups- 
solutions which mainly use the shoulder modules and solutions which mainly use the 
arm modules (See Fig. 6). The second group which has the velocity of higher than 
average-velocity is selected. In order to resemble a situation of failure, one of the 
modules of high importance (one of the arms) is disabled while the robot uses the 
previously evolved FGRN controller. Since the controller is not suitable for this new 
situation, the fitness falls considerably. Afterwards, the controllers are allowed to  
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evolve for 30 generations and the velocities of the new solutions are evaluated. As it 
is shown in Fig. 7, the velocity of robots falls after failure, and then rises when evolu-
tion continues. The performance of the new evolved controllers is investigated for 
robots both with the broken module and intact module (after repairing the broken 
module). Table 3 shows the velocities in different situations and represents a good 
performance for the new evolved controllers in both cases of intact and broken mod-
ules. Furthermore, the experiment repeated with the broken module to evolve control-
lers from scratch (See Fig. 7). The velocities are averaged over 10 runs of evolution 
(Table 3).  

 

 

Fig. 7. Velocities for the three robots and velocities of the crawler with a broken module 

Table 2. Comparison of the best velocities achieved by FGRN and [6] learning algorithm 

Robot Configuration Learning [6] FGRN (Population average) 
 Mean Mean  Standard deviation 
Quadrupedal 0.0208 0.0260 0.0011 
Crawler 0.0210 0.0248 0.0038 
Two-wheeler 0.0383 0.0586 0.0007 
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Table 3. Averaged velocities of the Crawler robot 

Velocity  
(all runs) 

Before failure 
(selected runs) 

After failure  
(selected runs) 

0.0248 0.0262 0.0145 
   
After more evolution 
(selected runs) – 
robot with failed module 

After more evolution 
(selected runs) – 
module repaired 

Velocity for broken 
robots evolved from 
scratch (all runs)  

0. 0245 0.0235 0.0244 

5   Conclusion 

In this paper, we explored application of FGRN systems to control of modular robots. 
FGRN systems are inspired by natural cells and due to their internal interactions are able 
to generate complex output patterns which might be used as control commands.  Im-
plementing the FGRNs in multi-cellular way provides us a distributed controller for 
ATRON modular robots. The local controllers for all modules are encoded identically 
and run independently. In order to keep the system as simple as possible, there is no 
communication between modules in the current implementation. Communication be-
tween modules and different sensory information might be included in the future works.  

We carried out experiments with different morphologies of the ATRON in a loco-
motion task and reached good performances. Results are compared to the previously 
reported results of robots employing a reinforcement learning strategy. Furthermore, 
we investigated the capability of the FGRN system to evolve more in case of a failure 
and the achieved controllers are evaluated for both intact and broken robots. The 
results show that the FGRN system is still evolvable to find new solutions for new 
situations of the robot. 
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Abstract. This paper presents results from two sets of experiments

which investigate how strategies used by embodied dynamical agents

in a simple braking task are affected by the perceptual information that

the agents receive. Agents are evolved in a simple 2D environment con-

taining one stationary object. The task of the agents is to stop as close as

possible to the object without hitting it. The results of these experiments

demonstrate that most of the evolved agents use an impulsive braking

strategy, in which deceleration is not controlled continuously. Potential

causes of this impulsive braking strategy and possible future directions

are discussed.

Keywords: Evolutionary robotics, visually-guided braking, image size,

image expansion rate, tau, tau-dot.

1 Introduction

There is a growing interest in applying the evolutionary approach to model exper-
imental paradigms from psychology. For example, inspired by the psychological
experiments such as double-TV-monitor experiments and perceptual crossing,
Iizuka and Di Paolo [1] investigated how embodied agents establish live inter-
actions and discriminate this type of interaction from the identical recorded
motions. Rohde and Di Paolo [2] implemented an evolutionary robotics simula-
tion to guide the analysis of empirical data on adaptation to sensory delays. In
another work, Wood and Di Paolo [3] applied evolutionary robotics techniques to
model the famous “A-not-B” error paradigm. Considering the sensory and mo-
tor capabilities of evolved model agents, ecological psychology in general, and
control of locomotion in particular, provides an excellent research area in which
evolutionary robotics techniques can be used.

Visual control of locomotion, which requires coordination between perception
and action, is essential for any mobile agent, whether it is a human, animal or
a robot, to move around, explore and interact with the world. One approach
to the control of locomotion is based on internal representations such as world
models and plans [4]. An alternative approach, which is developed by Gibson
[5,6,7] is based on the idea that adaptive behavior is controlled by the perceptual
information that is available to the observer. When an observer moves in an
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PoO
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1 D(t)
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V

Fig. 1. A schematic view of an observer approaching an object of size A. PoO denotes

the point of observation, D is the distance from the object, V is the observer’s velocity,

and b is the image size at time t. The retina of the observer (i.e. the projection surface)

is approximated as being 1 unit distance away from the PoO.

environment, a pattern of motion is produced at the eye of the observer called
the optic flow [5,7]. Optic flow provides information about the 3D layout of the
environment, objects in the environment, and observer’s self-motion through the
environment, and can be used to control locomotion.

In this paper, we explore how perceptual information received by an agent
affects the behavior of the agent in the context of a simple braking task based
on the experimental paradigm used in Yilmaz and Warren [8]. During a direct
approach to an object, the image of the object on the observer’s retina expands
(see, Fig. 1). Gibson [6] argued that the rate of optical expansion could be used
to control braking. There are a number of ways in which optical expansion rate
could be used. The first one is to keep expansion rate at a constant positive
value, the magnitude of which depends on the point when braking is initiated
[8]. Another strategy is based on the tau (τ) variable. Lee [9] demonstrated that
the optical variable tau, which is the ratio of object’s image size (b) to the image
expansion rate (ḃ), specifies the time-to-contact (TTC) with the object as long
as the current velocity is held constant:

τ =
b

ḃ
=

D

V
= TTC . (1)

Lee [9] also showed that the time derivative of τ (τ̇ , or tau-dot) could be used
to control deceleration during braking. If τ̇ < −0.5, the current deceleration is
too low and if it is maintained, it will result in a crash. If τ̇ > −0.5, the current
deceleration is too high and one will stop away from the object. If τ̇ = −0.5,
then the current deceleration will bring the observer to a stop right at the object.
One can control braking by adjusting deceleration so as to keep τ̇ around −0.5,
which is known as the “constant τ̇” strategy. A third hypothesis claims that
braking could be controlled by computing the required deceleration from spatial
variables such as distance to the object, the velocity of the observer, object size
together with the optical variables [8]. Yilmaz and Warren [8] list two other
strategies, in which deceleration is not continuously controlled but the brake
is used in an impulsive fashion. The first strategy is the “slam on the brake”
strategy in which an observer approaches the object with a constant velocity
and then applies maximum deceleration. The second strategy is to apply a large
deceleration at the beginning of the approach and then slowly drift to the object,
using one or more deceleration spikes later to stop. Yilmaz and Warren call this
strategy the “bang-bang” strategy.
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The work presented in this paper explores how braking strategies of the
evolved model agents are influenced by the perceptual information that is avail-
able to the agents. The simulations are based on the experiment carried out by
Yilmaz and Warren [8], in which participants viewed computer displays simulat-
ing an approach to a stationary road sign. The task of the participants was to
stop as close as possible to the road sign. The deceleration was regulated via a
spring-loaded mouse. The only difference between our simulations and original
experiment is that in our simulations the initial TTCs are longer. The reason to
keep the TTC values longer is to investigate when braking is initiated.

2 Methods

In a series of experiments, model agents that are placed in a simple 2D envi-
ronment with one stationary line object are evolved (see, Fig. 2(a)). The length
of the object was 60. The agent has a circular body with a diameter of 30, and
four sensors. The first sensor receives an input proportional to the image size
(b) of the object, which is calculated using the geometry illustrated in Fig. 1.
The second sensor receives an input proportional to the image expansion rate
(ḃ). In the experiments reported here, we simulated translation through a rigid
environment with no rotations, such as eye and head rotations. In this case, ḃ
can be calculated using Formula 1. The third and the fourth sensors detect the
optical variable τ and τ̇ , respectively. The task of the agent is to stop as close as
possible to the object without hitting it. The agent can only move forward, i.e.,
its heading is fixed and it can only decelerate. So, it is a second-order, Newtonian
system. The braking force is controlled by the motor neuron.

The behavior of each agent is controlled by a continuous-time recurrent neural
network (CTRNN) with the following state equation:

Tiṡi = −si +
N∑

j=1

wjiσ(gj(sj + θj)) + Ii i = 1, ..., N . (2)

where N is the number of the CTRNN nodes, s is the state of each neuron, Ti is
the time constant, wji is the strength of the connection from the jth neuron to
the ith neuron, g is a gain, θ is a bias term, σ(x) = 1/(1 + e−x) is the standard
logistic activation function and I is the external input. The output of a neuron
is Oi = σ(si + θi). All neurons, except for the sensory neurons, had a gain of
1.0. The agent’s four sensors are fully connected to four fully interconnected
interneurons which are in turn fully connected to one motor neuron controlling
the vertical motion of the agent (see, Fig. 2(b)). The agent’s deceleration is
calculated using the following formula:

− V̇ = k ×Om . (3)

where Om is the output of the motor neuron and k is a scaling constant which is
set to be 3.0 in all of the experiments that will be reported in the next section.

The connection weights (wji ∈ [−16, 16]), biases (θ ∈ [−16, 16]), time con-
stants (T ∈ [1, 10]) and the gains (g ∈ [1, 5]) were evolved using a real-valued hill
climbing algorithm with fitness-proportionate selection. New generations were
created by applying random Gaussian mutations to the selected parents. The
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Fig. 2. (a) Basic experimental set-up (b) The CTRNN architecture

mutation variance was 0.45. The fitness scaling multiple was 1.03. Simulations
were integrated using the Euler method with an integration step size of 0.1.

An agent’s performance is determined based on its behavior in a number of
evaluation trials. The object’s position in the environment is fixed across all
trials. The horizontal position of the agent is also the same across trials but
the vertical distance between the agent and the object varied. The agent has 7
different initial distances from the object (120, 135, 150, 165, 180, 205 and 210)
and 6 initial velocities (10.0, 11.0, 12.0, 13.0, 14.0 and 15.0). As a result, initial
TTC with the object varies between 8.0 and 21.0. Each possible combination of
the agent’s initial distances and velocities was presented as a trial, resulting in
7 × 6 = 42 evaluation trials. At the beginning of each trial, the agent’s neural
states are initialized to zero. Then, the agent is placed in one of the 7 locations
and its velocity is initialized to one of the 6 velocities. A trial ends when the
velocity of the agent is 0.0 or when the agent touches the object, i.e., when the
vertical distance between the center of the agent and the object is less than or
equal to the radius of the agent. The overall fitness of the agent was determined
by averaging the fitness of the agent over 42 evaluation trials.

Two different fitness functions were used in two different sets of experiments.
The first fitness function was based on the velocity of the agent and the vertical
Euclidean distance between the agent and the object at the end of a trial. It
minimizes the agent’s velocity and the distance between the agent and the object.
Then, the performance measure to be maximized was:

NumTrials∑
i=1

(1 − di/dMaxi)(1− vi/vMaxi)

NumTrials
. (4)

where NumTrials is the total number of trials, di is the vertical distance between
the agent and the object at the end of ith trial, dMaxi is the initial vertical
distance of the agent from the object, vi is the agent’s velocity at the end of the
ith trial and vMaxi is the agent’s initial velocity. The second fitness function
also minimizes the trial duration in addition to the velocity and the distance. In
this case, the performance measure to be maximized was:
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NumTrials∑
i=1

((1 − ti/tmax) + (1 − di/dMaxi)(1− vi/vMaxi)/2)

NumTrials
. (5)

where ti is the duration of the ith trial and tmax is the maximum trial duration.
Since it always takes some time for agents to end a trial, it is not possible to
evolve agents with perfect fitness values using this second fitness measure.

3 Results

We conducted two sets of experiments. The aim of the first set of experiments
is to investigate the effect of the perceptual information on the evolved braking
strategies. The second set of experiments investigates the effect of the fitness
measure on the evolved braking strategies. In the first set of experiments, we
manipulated the perceptual information available to the agents. The fitness val-
ues of the agents were calculated using the fitness measure given in Formula 4.
There were four groups of agents, each receiving a different type of information.
The first group only received image size as the information. The input to the re-
maining three sensors was set to be zero. Similarly, the second, third and fourth
groups received only the image expansion rate, tau and tau-dot as the informa-
tion, respectively. From now on, agents in different groups will be referred by
the information they receive such as image size agent or tau agent.

Preliminary results indicated that if the trial duration was not limited, most
of the evolved agents exhibited the “bang-bang” strategy regardless of the vi-
sual information they were receiving. In other words, the agents decreased their
velocities to near zero values right at the beginning of the trials and then slowly
drifted to the object, giving rise to very long trial durations. In order to prevent
agents from using the “bang-bang” strategy, the maximum trial duration was set
to be 500 time steps in all of the experiments. For each group, 10 evolutionary
runs were performed with different random seeds. For all evolutionary runs, the
population size was 150 and the maximum generation number was set to 5000.
Agents that can successfully solve the task were evolved in all four groups.

For the image size group, 9 out of 10 evolutionary runs produced agents that
had a fitness value over 90% on the 42 evaluation trials. The best evolved image
size agent across 10 runs attained a fitness value of 99.34%. It is important
to note that the fitness measure does not explicitly punish the agents for non-
zero velocities. This means that it is possible for the agents to have very small
but non-zero velocities at the end of the trials. The velocity profile of the best
evolved image size agent across 42 evaluation trials is given in Fig. 3(a). As
can be seen from the figure, at the beginning of each trial the agent applies
maximum deceleration and then moves with a constant velocity, the magnitude of
which depends only on the agent’s initial velocity. After that, it initiates its final
braking. Although there are slight variations with the decreasing fitness values,
these velocity profiles were essentially the same across agents. The velocity of
the best agent is zero at the end of each evaluation trial and it stops very close
to the target. The average final distance between the agent and the object across
42 evaluation trials was 0.94. The performance of the agent was also tested on
4641 generalization trials in which the agent’s initial distance from the object
was varied between 120 and 210, with an increment of 1 and the agent’s initial
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Fig. 3. (a) Velocity profiles of the best evolved image size agent across 42 evaluation

trials. (b) Change in the image size as a function of distance across 42 evaluation trials.

velocity was changed from 10.0 to 15.0, with an increment of 0.1. The average
performance of the best evolved image size agent was 98.76%. In 819 of the
generalization trials, the agent touched the object with an average velocity of
0.42. All of these trials correspond to the trials in which the agent’s initial
velocity varied between 11.1 and 11.9. The average final distance of the agent
from the object across generalization trials was 0.87.

Fig. 3(b) shows how the image size changes as the distance between the agent
and the object changes across 42 evaluation trials. As can be seen from the
figure, the shape of the curve is the same regardless of the initial conditions.
Even though the agent did not explicitly receive image expansion rate or tau
as the information, we also examined how these variables changed as the agent
approaches to the object. The examination revealed that the image expansion
rate was never held constant and the agent initiated its final braking when tau
reached a certain value, the magnitude of which changes with the agent’s initial
velocity only. As the agent’s initial velocity increased from 10.0 to 15.0, the tau
value at which the braking was initiated decreased from 9.1 to 4.3.

For the image expansion rate group, all of the 10 evolutionary runs produced
agents that had a fitness value over 96% on the 42 evaluation trials. The fitness
value of the best evolved image expansion rate agent was 97.16%. The agent’s
velocity was always zero at the end of the evaluation trials but it stopped farther
from the object compared to the image size agent. The average final distance was
4.09. The velocity profiles of the best image expansion rate agent are given in
Fig. 4(a). The agent uses “slam on the brake” strategy and adjusts its braking in
an impulsive fashion. Similar to the image size agent, the image expansion rate
agent, too, applies maximum deceleration right at the beginning of the trials and
then continues to move with a constant velocity. However, unlike the image size
agent, it also applies maximum deceleration at the end of the trials. The image
expansion rate was never held constant and the final braking was initiated when
tau reaches a certain value, which varied between 6.6 and 3.2. The behavior of
the rest of the agents was also very similar. The average performance of the
best image expansion rate agent on the generalization trials was 97.01%. At the
end of each generalization trial, the agent’s velocity was zero. The average final
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Fig. 4. Velocity profiles of the best evolved image expansion rate agent (a) and tau

agent (b) across 42 evaluation trials

distance between the agent and the object was 4.31, which is greater than the
average final distance for the image size agent.

For the tau group, the best evolved agent in each evolutionary run had a
fitness value of at least 97.7%. The best evolved agent across 10 runs achieved a
fitness value of 99.33%. This agent touched the object in 5 of the evaluation trials
with an average velocity of 0.11. The average final distance between the agent
and the object across all evaluation trials was 0.20. Similar to the image size
agent, the tau agent also stopped very close to the object and risked touching
it in some of the trials. However, its velocity profiles, which are illustrated in
Fig. 4(b), are different. The agent seems to use a mixture of the “bang-bang”
and the “slam on the brake” strategies. The tau agent also applies maximum
deceleration at the beginning of the trials. But this time, the magnitude of the
reduced velocity is not only dependent on the agent’s initial velocity but also
on the agent’s initial distance. It varies between approximately 5.0 and 10.0.
Then, the tau agent continues to decrease its velocity. After initiating its final
braking, it slowly drifts to the object. The final braking was initiated when tau
reached a certain value, which varied between 7.5 and 5.6. The agent’s average
performance on the generalization trials was 99.82%. The agent touched the
object in 482 of the generalization trials with an average velocity of 0.05. The
agent’s average distance from the object at the end of generalization trials was
0.22. The examination of the velocity profiles of the rest of the agents revealed
two more behaviors. The first behavior is similar to the behavior of the image
expansion rate agent. The second behavior is more like the “slam on the brake”
strategy, in which the agent moves with its initial velocity for a period of time
and then rapidly increases its deceleration to the maximum value.

Finally, for the tau-dot group, in 9 of the evolutionary runs, the best evolved
agent achieved a fitness value 90% or higher. The best evolved tau-dot agent
across 10 evolutionary runs had a fitness value of 97.06%. The agent touched the
object in 4 of the evaluation trials with an average velocity of 0.12. The average
final distance between the agent and the object was 4.2 but the variation between
the final distances among trials was greater. Fig. 5(a) shows the velocity profiles
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Fig. 5. (a) Velocity profile of the best evolved tau-dot agent across 42 evaluation trial.

(b) Velocity profile of the best tau-agent that is evolved when the trial duration is

explicitly included in the fitness measure.

of the best evolved tau-dot agent, which were very similar across agents. At the
beginning of each trial, the agent decelerates at a decreasing rate. Regardless
of the initial velocity or the distance, the agent applies the same deceleration.
Then, the agent increases the deceleration to a maximum value, which varies
with the agent’s initial velocity and the distance. In three of the evaluation
trials, this initial braking brings the agent to a stop very close to the object. In
the remaining trials, the agent uses a kind of “bang-bang” strategy. It moves with
a constant velocity, then initiates the final braking and then slowly approaches
to the object. The tau value at which the final braking was initiated now varies
with the agent’s initial distance and the velocity but the agent never let the
tau values go below 7.3. The agent’s average performance on the generalization
trials was 97.65%. It touched the object in 476 of the generalization trials with
an average velocity of 0.09. Its final distance from the object varied between 0.01
and 18.16, with a mean of 3.36.

One common feature of the evolved agents is that all of them applied max-
imum deceleration at the beginning of each trial regardless of the information
that they received. It is possible that at the beginning of an evolutionary search,
it is easier for agents to increase their fitness by decreasing their velocity. As a
result, rather than being governed by the visual information, the initial braking
behavior might be due to the fitness measure. In order to test this prediction, we
ran a second series of experiments using the fitness measure given in Formula 5.
However, since this fitness measure puts an explicit time pressure on agents, it
might encourage agents to adopt “slam on the brake” strategy. 10 evolutionary
runs were performed with different random seeds, each having a population size
of 150 and the maximum generation number of 5000. The agents received tau as
the information. In all of the runs agents whose fitness values are at least 90%
were evolved. Maximum trial duration was set to be 1000 time steps. The best
evolved agent had a fitness value of 92.07% across evaluation trials and 92.09%
across generalization trials. At the end of each evaluation trial, the agent’s ve-
locity was zero and the agent touched the object in 9 of the generalization trials
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with an average velocity of 0.46. The average final distance between the agent
and the object was 2.30 across all generalization trials. The velocity profile of
this agent can be seen in Fig. 5(b). As predicted, putting an explicit time pres-
sure on the agents eliminated the maximum deceleration at the beginning of the
trials. However, it also encouraged the agent to adopt the “slam on the brake”
strategy. The tau values that the agent initiated the braking varied between 5.6
and 7.5. This behavior was the same across agents.

4 Discussion

In this paper, we presented results from a series of experiments in which success-
ful simulated agents are evolved to solve a simple braking task. In the first set of
experiments, there were four different groups of agents, each receiving different
perceptual information: image size, image expansion rate, tau and tau-dot. In
each group, the agents that can successfully solve the task were evolved. All of
the best evolved agents used an impulsive braking strategy in which the decelera-
tion was not controlled continuously. One common feature of the velocity profiles
of all of the best agents was the maximum deceleration that was applied at the
beginning of each trial. This is probably due to the fitness measure since it makes
it easier for the agents to increase their fitness by reducing their velocity. This
behavior is eliminated in the second set of experiments, when the trial duration
is explicitly included in the fitness measure. However, putting a time pressure
on agents encourage them to use a pure “slam on the brake” strategy, in which
they approached the object by keeping their initial velocities constant and then
applied maximum deceleration at the end of the trials. Yilmaz and Warren [8]
indicate that the “slam on the brake” strategy cannot be an efficient strategy to
control braking in actual driving because of its inertial consequences. However,
in our simulations the agents do not suffer from the side effects of applying a
large amount of deceleration in a short time period. One way to prevent agents
from adopting this strategy could be punishing the agents for high jerk. It is
also possible that the use of a sigmoid activation function for the motor neuron
caused the agents to apply either full braking or no braking at all, therefore,
preventing them from continuously adjusting their velocity. One possible solu-
tion could be evolving the gain of the motor neuron which was set to be 1.0 in
the experiments reported in this paper.

Another common feature of the image size, tau and tau-dot agents is that
they all stopped very close to the object and sometimes risked touching the
object with a velocity close to zero. The image expansion rate agent was safer. Its
velocity was always zero at the end of the trials. However, it stopped farther away
from the object compared to the other agents. The fitness measures that we used
in the experiments give equal weights to the distance and velocity components.
Stopping very close to the object and touching it with a low velocity result
in similar fitness values. As a result, rather than being an indication of the
inefficiency of the perceptual information, the non-zero velocities at the end
of the trials might simply be an artifact of the fitness measures. They might
be prevented by increasing the weight of the velocity component in the fitness
measure or by punishing the agent for non-zero velocities.

Our main goal for evolving these model agents is to use them as a tool for
studying human control of locomotion. Yilmaz and Warren [8] provided evidence
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in favor of the constant tau-dot strategy. For now, none of the evolved agents
seem to apply the constant tau-dot strategy or the constant image expansion rate
strategy. Currently, we are investigating under what conditions those strategies
evolve. We are also investigating the braking strategies used by humans in ongo-
ing experiments involving human subjects. Another point is that although the
velocity profiles of the agents change with the changing perceptual information,
the perceptual information does not significantly alter the strategies adopted by
the agents. However, it is possible that the effect of the changing perceptual
information might be suppressed by issues related to the fitness measures that
are mentioned above. Once those issues are solved we might be able to see the
effect of changing perceptual information. Then, the next step is to allow agents
to receive various combinations of visual information and to investigate under
what conditions one type of information is preferred as opposed to others.
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Abstract. Self-organizing without a central controller in order to achieve col-
laboration towards an objective is one the main challenges in the design and op-
eration of multi-robot systems. It is of great interest in the field to explore dif-
ferent approaches in order to achieve this end. Here we consider a distributed 
open-ended evolutionary approach called Asynchronous Situated Co-evolution 
(ASiCO) and introduce a series of biologically inspired concepts in order to ad-
dress the solution of complex multi-robot problems with several objectives and 
which require the coordination of robots within distinct groups carrying out het-
erogeneous tasks. Different elements are explored in this paper, including how 
to efficiently implement a co-evolutionary approach that can operate in real 
time using only local information perceived by the real robots as they act on the 
environment and how these experiments can be tweaked in order to produce the 
desired behaviors from the teams and individual robots.  

Keywords: Coevolution, Adaptation, Multi-robot Systems, Coordination. 

1   Introduction 

Coordination in general and within robot teams, in particular, may be formulated in 
terms of cooperation or collaboration. However, there seems to be a lack of consensus 
in the literature on the precise definition of these terms, probably resulting from the 
fact that there are different possible points of view for the division of labor in social 
learning. To make things clear, here we adhere to the definition provided by [1] in 
which cooperative work "... is accomplished by the division of labor among partici-
pants, as an activity where each person is responsible for a portion of the problem 
solving...", whereas collaboration involves the "... mutual engagement of participants 
in a coordinated effort to solve the problem together."  As a consequence, and follow-
ing [2], both cooperation and collaboration imply the distribution of the task among 
the individuals of the society, but they differ in how it is divided. In the case of coop-
eration, the task is divided into independent subtasks whereas in the case of collabora-
tion the subtasks are interdependent and it is in the cognitive processes where the 
division lies. Thus, when cooperating, coordination is needed only when constructing 
the final result from the partial results provided by the different individuals who have 
usually learnt their task according to their particular utility functions, whereas col-
laboration is "... a coordinated, synchronous activity that is the result of a continued 
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attempt to construct and maintain a shared conception of a problem" [1] and the only 
valid utility is that of the society as a whole.  

Based on the previous definitions, the problem addressed here is that of collabora-
tion, that is, obtaining teams of individuals whose interaction leads to some emergent 
behavior of the society. In fact, this paper describes the application of a real time co-
evolutionary strategy to the production of collaborative behaviors within sets of real 
robots in real environments. The approach is based on Watson et al’s [3] Embodied 
Evolution (EE) and extends the concept to provide a means for groups of robots to 
self-organize and perform tasks efficiently. In the original implementation of EE, the 
authors sought to establish a completely distributed evolutionary algorithm embodied 
in physical robots. Their approach was based on the hypothesis that a large number of 
robots could be used for the evaluation stage of an evolutionary process devoted to 
obtaining a controller for a particular task. Their objective was different to the one 
sought here as they just wanted to obtain a single controller, but their efforts did lead 
to a set of interesting ideas and design requirements that had to be taken into account 
in order to use evolution within real robots operating in real environments. For in-
stance, the evolutionary process had to be decentralized and thus the evaluations re-
quired for the determination of the fitness of an individual should take place directly 
within the individual, the physical robot itself, in an embodied and localized manner.  

This way of addressing the problem differs radically from other strategies found in 
the Evolutionary Robotics (ER) literature [4][5] where centralized evolutionary algo-
rithms perform the process of obtaining robot controllers using information from all 
the robots in a simulation (or even in some cases in real robots), and usually off-line. 
Much effort has been devoted to the study of the generation of coordinated behaviors 
for groups of robots in the last few years [6][7]. Different authors such as [8] with the 
swarm project or [9] who present a universal architecture for the decentralized control 
of groups of robots have addressed the general problem. Others have concentrated on 
implementation issues [10][11]. However, much of the work found on this topic is 
particular to a task (i.e. foraging or flocking) or environment. The authors often con-
sider homogeneous sets of robots and/or controllers and quite often only contemplate 
the problem of cooperation. In general, they do not provide a general framework for 
obtaining collaborative behaviors. Recently some work such as [12] is being carried 
out to characterize some of the problems in this realm. The authors study the produc-
tion of different collective solutions in order to determine the most appropriate for 
each case. However, again, collaboration, in which what needs to be determined is not 
really the task decomposition and its distribution, but, rather, the interactions among 
the individuals in order to jointly fulfill the objectives are not usually contemplated as 
the problem is extremely coupled and the controllers for all the individuals must be 
jointly obtained. 

This paper presents the application of Asynchronous Situated Co-evolution 
(ASiCo) as a valid embodied, distributed and adaptive strategy for groups of real 
robots to collaborate in an efficient manner. ASiCo is inspired by some Artificial Life 
based distributed evolutionary approaches but includes some ideas from the multi-
agent systems literature to provide a way to implement the objectives of the collective 
system through the creation of energy and interaction based utility distribution 
schemes.  
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The rest of the paper is structured as follows. First a brief description of the algo-
rithm will be provided introducing some of the basic operators that allow it to be 
operational and efficient in real robot within real environment situations. This is the 
case of embryonic based reproduction, required for the adaptation of the algorithm to 
real time operation on real distributed multirobot systems. Section 3 presents some 
results from the application of ASICO with the objective of having a set of e-puck 
robots self-organize and collaborate in order to perform a collective cleaning task 
under different circumstances, some that will lead to homogeneous (in terms of con-
trollers) robot teams and others that will generate heterogeneous teams. Finally, some 
conclusions are presented. 

2   Overview of Asynchronous Situated Co-evolution 

The ASiCo algorithm is based on a decentralized and asynchronous open-ended evo-
lutionary approach. It is different from other evolutionary algorithms, such as genetic 
algorithms in which centralized selection and evaluation of the individuals based on 
an objective function at regular processing intervals is performed. In ASiCo, evolu-
tion is situated, meaning that all of the interactions in the population are local and 
depend on the spatial and temporal coincidence of the individuals. Consequently, 
reproduction, the creation of new individuals or their elimination is driven by events 
that may occur in the environment in a decentralized way. 

This type of evolution has usually been employed for analysis purposes in the 
realm of Artificial Life, this is, to study how a system evolves in an open-ended man-
ner, and not really with an engineering objective in mind. Therefore, no clear proce-
dure exists to relate the global objective to be achieved with the local objectives of the 
agents that participate. To this end, the studies of utility functions and their distribu-
tion among individuals provide some clues in order to structure the energy dynamics 
of the environment to guide evolution towards the desired objectives sought. Specifi-
cally, we have considered the principled evaluation function selection procedure for 
evolving coordinated multirobot systems developed by Agogino and Tumer [13]. 
With this procedure, ASiCo open-ended evolution becomes an evolutionary optimiza-
tion algorithm that provides a distributed solution through the collaboration of the 
whole population. For a deeper study about the validity of asynchronous situated 
coevolution as an alternative to classical evolution, see [14]. 

ASiCo is an interaction driven algorithm. Everything occurs in an environment and 
the environment can be simulated or real. Here as we are considering real robots op-
erating in real environments there is no need for simulation. The basic operation of 
the algorithm has been schematically represented in Fig. 1 (left) together with its 
pseudocode (right). It works as follows:    

Each robot starts with a random neural controller that covers as inputs its percep-
tions (either direct data from sensors or some type of processed perceptual informa-
tion in the form of virtual sensor data) and provides as outputs the commands for its 
actuators. This is the main action controller. The robot also holds a copy of the geno-
type corresponding to its controller and a few other lines of code that regulate its 
reproductive interaction with the rest of the robots as well as its energy level. These 
are sort of instinctive or preset behaviors and, even though they could easily be  
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Fig. 1. Schematic representation of ASiCo structure (left) and pseudocode (right) 

included in the evolutionary process, for the sake of clarity here we are only going to 
consider the evolution of the action controller.  

The survival of the controller is regulated by an energy level associated by the ex-
periment designer with some interaction with the environment. For instance, in a 
cleaning scenario it can be the accumulated dirt level of the positions the robot cleans. 
In a social interaction scenario it may be the time the robot is capable of keeping 
another robot or human interested and interacting with it. This energy level increases 
through these interactions and decreases due to the expenditure of energy by the robot 
to do things. 

The reproduction behavior regulates when and how the robots exchange genetic in-
formation. The basic idea is that some interaction event between robots (proximity, 
collision, a signal…) triggers a behavior whereby the robots evaluate their mating 
“desire”. This desire is regulated by the energy levels of the two participants and, 
sometimes, by their affinity, that is, their distance in genotypic space.  

It is important to avoid the instabilities caused by constant changes in the robot 
controllers due to possibly frequent reproduction during operation, which is a problem 
that arises in other strategies that have been proposed such as PGTA [3] due to a lack 
of evaluation time in the environment. It is also important to take into account that 
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this mechanism needs to be adapted to the objectives sought, and in this paper we are 
interested in groups of real robots with a fixed number of individuals. Consequently, 
as we cannot make robots “appear” in the environment and do not want real robots to 
“die”  (actually, this case is considered in terms of robot failures), the reproduction 
mechanism has to contemplate the fact that the maximum number of robots is fixed 
and still provide a way for the population to evolve in a distributed manner. The ap-
proach followed here, is to synchronize death with birth. In fact, as the robots are 
preset, we can only work with their controllers and thus, a death-birth process within 
a robot is just a change of its controller. To allow for evolutionary pressure within this 
process, we have designed a reproduction mechanism for fixed size populations called 
Embryo Based Reproduction (EBR) [14]. 

The idea behind EBR is that each agent, carries, in addition to its own parameters, 
another set of parameters corresponding to its embryo and an associated pre-utility 
value for the embryo that estimates the utility of the agent generated from it. Thus, 
when a new agent is created, its embryo is generated as a mutation of the parent geno-
type with half of its energy. During the life of an agent, the embryo is modified when-
ever the agent meets another one and evaluates it positively; meaning that the average 
of the utility of the two parents is higher than the pre-utility of the current embryo and 
the affinity criteria is met. Finally, when the parent dies because it ran out of energy 
or time or for whatever other reason, the embryo substitutes the parent, that is, the 
control of the robotic unit is assumed by the embryo and a new embryo is generated 
within the robot. This way, we ensure that the size of the population remains constant 
and that the process takes place in an asynchronous and decentralized manner. 

Summarizing, all of the robots are constantly acting in parallel following the 
strategies given by their action controllers. During operation they gain or lose energy 
according to some functions related to its interaction with the environment and its 
activity. When some specific interaction condition arises, usually related with spatial 
and temporal coincidence, a reproduction behavior is triggered and if the right condi-
tions are present the robots exchange genetic material for their embryos. Finally, 
when a robot controller “dies”, the embryo takes over and the process continues. It is 
through the regulation of the energy input/output and the reproduction conditions that 
a designer is able to lead this process towards the desired global objective for the 
robot population.  

3   Experiments and Results 

For the purpose of illustrating the use of this approach, this section presents a set of 
experiments carried out using a population of e-puck robots in a real environment. 
The idea of the experiments was to demonstrate the appropriateness of ASiCo as an 
algorithm that can operate in real time on real robots with very low computational 
capabilities and obtain self organized collaborative behaviors that would lead to 
achieving a predefined task. In this case, the task will be to mow a given grassy area 
or gather the leaves present there. However, depending on the scenario, the task will 
require different robot capabilities. In addition to demonstrating how the algorithm 
works, it is also an objective of this experimental section to show that the robot team 
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using ASiCo is capable of adapting to changing situations in the environment and that 
it is robust to the loss of members of the team. 

There is an experimental area, which is basically a white board on which the robots 
move. In order to simplify the task of changing or controlling environments, we have 
decided to project the environment onto this white board. This is achieved through an 
overhead projector connected to the environmental control computer. There is also an 
overhead camera in order to provide feedback to the environment controller. The 
purpose of this setup is to be able to control the response of the environment to the 
actions of the different robots and thus be able to generate different scenarios in a 
simple way. For instance, the environment may consist in a grassy lawn and we can 
assume that the robots are mowing it. In this case, the environment control system just 
changes the color of an area from green to brownish whenever a robot goes over it 
and as time passes without any robot going over a particular area, the area becomes 
greener (more grass). It is important to note that this environment control system was 
generated just to make experimenting a lot simpler (it takes a long time for grass to 
grow back on a real lawn), but it does not affect the operation of the robots at all, as 
the only information they make use of is that which they can sense by themselves in 
the environment. The environment has no clue of which robot is which or what they 
are doing; it just reacts through a set of fixed rules to the actions of the robots, like 
any real environment. 

Every robot has its local ASiCo algorithm implemented within it. That is, it carries 
its genotype, which has been converted into an RBF artificial network phenotype (but 
any other type of network could have been used) connected to its sensors and actua-
tors and which acts as the controller, as well as the genotype of its embryo and a cou-
ple of memory elements, one for storing its current energy level and one for storing its 
relative position n instants ago (n is part of the genotype and it is the module and 
angle of the vector relating the two positions that are estimated using the odometry of 
the robots). It also contains the definition of how the energy level is changed. Here 
this is a simple algorithm whereby the robot, through its camera, perceives the color 
of the environment in front of it and depending on this color, adds an amount of en-
ergy (in terms of grass, the more grass it mows the larger the value it adds). As the 
robot moves, the energy level is depleted at a constant rate. Each robot implements its 
reproduction algorithm. Basically, when it detects another robot close by, it commu-
nicates with it to determine its energy level and genotype and compares it to its own. 
If the selection criteria, as described above, are met it takes a copy of its genotype and 
performs crossover and mutation with its own embryo. Finally, when the energy level 
of a robot goes to zero, it replaces its controller with the one that results from the 
embryo at that time and creates a new embryo as indicated in the previous section. 

In terms of sensing, each robot can sense, through its camera, the color on the 
ground right in front of it, and the presence of other robots or obstacles around it us-
ing its infrared sensors. It is important to note here that the color on the ground will 
only be used by the robot to update its energy level and not as an input in the control-
ler, because we are interested in obtaining collaborative or social behaviors, that is, 
we are interested in the society of robots obtaining a set of societal interaction rules 
which, through their instantiation, lead to an emergent behavior of the whole society 
that achieves the objective assigned to them. By knowing what is on the ground, an 
implicit division of the task could be achieved by following the paths of greatest  
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Fig. 2. Evolution of the global grass level (left) and a snapshot of the environment while the e-
pucks are performing the task (right). Green intensity indicates grass level. 

profit (more grass). With the current setup, the societal interaction rules are not re-
lated to those of the task. Consequently, the robot must infer the grass level from the 
number of robots that are placed in a given area.   

The first experiment simply consists in the collaborative mowing of a grass area by 
a set of e-pucks. Here the grass grows fast and thus keeping the area mowed is a con-
stant task. The global utility is the sum of the grass level in all the cells, and must be 
minimized. The individual utility is the sum of grass levels in the cells the robot has 
cleaned. This utility has been defined following the principles described in [13]. We 
must point out that the collective objective is a continuous mowing, that is, the robots 
must attend to the occupation of the environment in order to synchronize their behav-
ior. As a consequence, this task cannot be solved through a cooperative approach 
requiring collaboration as defined in the introduction. 

Fig. 2 left shows the evolution of the global grass level in an environment that is 
being patrolled by a set of 8 robots as described above. Initially it increases while the 
robots self-organize to perform the task. After a few interactions it decreases reaching 
around 0,1 of the maximum possible (around 5E+5), which is close to the minimum 
possible, in 1000 steps. Obviously, as there are very few robots, there are small oscil-
lations in the performance of the behavior. In order to provide a visual indication of 
experimental setup, the right image of Fig. 2 shows a snapshot of the experiment. In 
this image intensity level represents the grass level. The fact that the whole area is 
mowed efficiently, as shown in Fig. 2 left, is a consequence of the emergence of a 
collaboration strategy forced by the global utility requirements. Another interesting 
result that can be extracted from the genotypes of the robots is that they tend towards 
a homogeneous genotype in this task. This seems reasonable given the fact that the 
environment is relatively homogeneous in terms of requirements for the agents.  

To make things a little more complex, we now construct a second experiment with 
an environment where, in order to achieve the global objective, two different tasks 
need to be carried out. For instance, we can think that part of the area has to be 
mowed and part requires gathering leaves. To simulate this situation an environment 
was designed with two separate areas and we assume that all the robots can perform 
both tasks and the environment indicates one or the other through different colors. 
The neural controllers are modified including a new sensorial input that perceives  
the ground color transition, that is, if the robot crosses from one part to the other or  
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Fig. 3. Evolution of the grass/leaves levels as well as the populations in each main species for 
the second experiment 

viceversa. Again, the ground color is perceived only to update the robot’s energy level 
and it is not an input to the controller. 

This experiment is really a concatenation of experiments, as the procedure has been 
to generate an environment with the two areas, each occupying 20% of the environ-
ment and when the populations had stabilized, the mowing area was increased to a 
40% of the environment. After this situation was stabilized, 33% of the robots were 
turned off. The experiment involved 30 robots starting with random genotypes. 

Fig. 3 displays the evolution curves. This figure reflects what the levels of grass 
and leaves are in the environment as well as their sum (the global level). It also shows 
the population size for each of the resulting genotypes as well as their averages. The 
behavior shown is very interesting and really supports the claim of ASiCo being able 
to provide an asynchronous localized approach for robot teams to self-organize in real 
time and adapt to changes in the environment and resources. Following the evolution 
of the graph, at the beginning the genotypes of all the robots are random and the phe-
notypes do not really do anything useful, they are basically moving randomly or not at 
all. As time passes there are some fluctuations in the population towards robots that 
are capable of solving either task, and consequently, there is a sharp decrease in the 
level in one zone or the other, but a high global level. As the robots interact, their 
grass mowing and leave collecting strategies as a team improve (much in the same 
way as in the first experiment), and the population clearly segregates into mostly two 
genotypes, one for one of the tasks and another for the other. After about 2000 time 
steps, around 15 robots are devoted to each task (the areas have the same size) and 
after about 3000, the grass and leave levels become very low. There are still slight 
changes in the population distribution due to the fact that it is a dynamic system that 
is always trying alternatives, but the task is performed correctly. The level obtained is 
an average of 2500 grass-leave units, which is quite low considering the initial level 
of 200000 and that the grass is continuously growing. Fig. 4 (left) displays a snapshot 
of the situation of the environment in terms of genotypes and area coverage in time 
step 1500. This figure shows two clearly differentiated species (different colors of the  
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Fig. 4. Final multirobot system obtained for two different cases. The left image corresponds to 
the result obtained when the areas have the same size and the central one when the size of the 
area to be mowed is increased. The colors of the robots on the computer view represent geno-
type and the color intensity in each area the level of grass/leaves. The right figure shows a view 
of the experimental setup with 8 e-puck robots. 

robots) with a few individuals hopping between them. The main difference in the 
genotypes is a consequence of the new input that detects the ground color transition, 
which requires that one species attends to a transition and the other to the contrary. 

In order to test the adaptability of ASiCo to changing environmental situations, in 
step 2500 the size of the grassy area is doubled and now it produces more grass per 
unit time (75% of the total grass/leave production per instant of time). As shown in 
Fig. 3, when the change in size of the area occurs, there is a sharp but short lived 
increase in the grass level, that is, the robots assigned to the now increased area are 
not enough to mow the area as well as before. However, in a very short time, the 
robot team is reorganized, with around 22 robots for this area and around 7 in the 
leaves area and the grass levels drop to close to the previous ones. The leaves level 
increases a little due to the fact that less robots are assigned to this area, and the 
global grass/leaves level ends at 5000. Fig. 4 right shows a snapshot of this situation. 

Finally, after time step 5000, 33% of the robots are disabled, and thus, we are now 
working with only 20 robots. Again, initially we see a slight increase in the unmowed 
grass or uncollected leaves, but the population self-organizes to adapt to the new 
situation and 14 robots are assigned to mowing and 5 to leave collection. Obviously, 
the performance of the teams in this situation degrades, as there are less robots to 
perform the tasks, however, this decrease is not catastrophic and the levels are still 
acceptable at around 12000. This is especially so in the leaves area, which is a lot 
smaller and, thus, much easier to patrol.   

4  Conclusions 

This paper describes the application of Asynchronous Situated Co-evolution (ASiCo) 
as a general procedure for allowing real robot teams to self-organize and produce 
adaptive collaborative behaviors in an embodied fashion. To this end an embryonic 
like delayed reproduction mechanism (EBR) was proposed which leads to a very 
simple and low computational cost implementation for the individual robots and re-
sults in a quite effective and adaptable mechanism for the whole population. The 
robot controllers can evolve asynchronously in real time through the spatial and tem-
poral coincidence of the robots generating heterogeneous populations of controllers 
depending on the task the whole group needs to perform as well as the number of 
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individuals present. These controller populations arise quite fast allowing the robot 
team to jointly achieve their objective adapting promptly to the new situations and 
objectives when the objective or environment changes and it degrades gracefully 
when some of the robots breakdown. The approach was implemented in an e-puck 
based robot team and the results obtained were quite successful. 
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Abstract. In this study we show how simulated robots evolved to dis-

play a navigation skills can spontaneously develop an internal model and

rely on it to complete their task when sensory stimulation is temporarily

unavailable. The analysis of some of the best evolved agents indicates

that their internal model operates by anticipating functional properties

of the next sensory state rather than the exact state that sensors would

have assumed. The characteristics of the states that are anticipated and

of the sensory-motor rules that determine how the agents react to the

experienced states, however, ensure that the agents produce very similar

behaviour during normal and blind phases in which sensory stimulation is

available or is self-generated by the agent itself, respectively. The charac-

teristics of the agents’ internal models also ensure an effective transition

during the phases in which agents’ internal dynamics is decoupled and

re-coupled with the sensory-motor flow.

1 Introduction

The idea that cognitive agents act on the basis of internal models of their tasks
rather than purely on the basis of the stimuli they receive from the external
environment can be considered fundamental in cognitive science [1],[2],[3]. The
structure and functioning of internal models is however much more debated.

Traditional theories in cognitive science describe internal models as symbolic
mental structures that support higher level cognition and whose representa-
tional content is conceptual and is not tied to any sensorimotor modality. The
de-emphasization of symbolic representations in cognitive science, and particu-
larly cognitive robotics, has resulted in decreased attention to internal models
in favor of a non-representational view [4]. Recently, however, the idea of inter-
nal modeling is gaining consensus anew, as numerous researchers in cognitive
psychology, neuroscience, and robotics are increasingly reusing ideas originating
from the domain of motor control [5,6] into more cognitive domains, therefore
reintegrating the idea of internal modeling and representation in an “embodied”,
“motor” view of cognition [7,8,9,10,11,12,13].

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 575–586, 2010.
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Internal models come in (at least) two varieties: inverse models and forward
models. The former compute the necessary motor commands to achieve a certain
goal given a starting condition, and the latter predict the sensory consequences
of those motor commands.

Fig. 1 highlights the differences between (a) a stimulus-response system, and
(b) one endowed with (multiple pairs of) internal, forward and inverse models,
which is inspired by the architecture for motor control described in [14]. In
the latter, the internal models (inverse and forward) realize an inner loop, which
parallels actual sensorimotor interaction and mimics its input-output properties.
Such loops can function on-line with action (b), or off-line (c), that is, detached
from the current sensorimotor context. When this last condition holds, sensory
inputs are substituted by predicted inputs, and motor outputs are inhibited. This
last mode of functioning permits chaining multiple predictions (in principle, for
an arbitrarily long number of steps) so to realize long-term lookahead predictions,
or “mental simulations” [10,11].

Fig. 1. Comparison between purely stimulus-response systems (b) and those endowed

with anticipatory capabilities, which run an “internal loop” on-line with action (b), or

off-line (c)

In other words, since internal models support the anticipation of action conse-
quences, they can be used as “inner worlds” to try out actions, such as walking or
reaching, internally rather than in the external environment. This novel view of
internal modeling, which incorporates control-theoretic ideas and an embodied
view of cognition, is clearly synthesized in the emulation theory of representation
proposed by [9, p. 1]:

in addition to simply engaging with the body and environment, the brain
constructs neural circuits that act as models of the body and environ-
ment. During overt sensorimotor engagement, these models are driven
by efference copies in parallel with the body and environment, in order
to provide expectations of the sensory feedback, and to enhance and pro-
cess sensory information. These models can also be run off-line in order
to produce imagery, estimate outcomes of different actions, and evaluate
and develop motor plans.

In this paper we investigate whether internal modeling could spontaneously arise
in living organisms for the sake of effective motor control. More specifically, in
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this paper we investigate whether artificial embodied agents, that are trained for
the ability to exhibit a given behavioral skill, develop and use an internal model
that allows them to anticipate forthcoming stimuli to overcome the problems
caused by the fact that sensory stimulation is temporarily missing.

From a computational point of view, artificial organisms faced with a navi-
gation problem in the presence of sensory stimuli will most likely develop a re-
active, stimuli-based behavioral strategy (which can involve dynamical aspects,
see later). The rationale behind our task design is that, when the environmental
conditions change so that stimuli become temporarily unavailable, the artificial
organisms have two options: either developing brand new behavioral strategies
for dealing with the absence of stimuli, or learning to self-generate stimuli, so to
reuse their already established behavioral strategy. Our study then aims to verify
if this second option actually happens during neural evolution (and with which
frequency) and if the ability to self-generate stimuli could create the adaptive
conditions for the development of an internal model in an embodied and situ-
ated agent even in absence of any explicit reward for prediction. Note indeed
that the simple self-generation of stimuli is not a guarantee that an internal
model has been developed. Indeed, we are interested in differentiating the case
of (self-) triggering of stored motor routines from the case of self-sustaining be-
havior through an on-line prediction of action effects—only the latter being, in
our definition, an instance of internal modeling.

The fact that biological organisms can overcome the problem caused by the
temporal lack of sensory information has been demonstrated, for example, in
the experiment carried out in [15]. In this work a group of blindfolded human
subjects were asked to perform a series of task (e.g. walking to a given marked
location, avoiding obstacles, and throwing objects toward different location of
the room) after having been asked to observe the room in which they were lo-
cated and to direct their attention toward specific objects and markers. The fact
that the subjects were able to accomplish these tasks rather well and almost as
accurately with respect to a control situation in which they were not blindfolded
clearly indicates that they are able to compensate the lack of visual information
through some form of internal process, for example through an internal model
that allows them to generate the required information by internally anticipating
the consequence of their actions.

In a series of studies, Ziemke and collaborators have attempted to verify whether
an artificial agent trained for the ability to accomplish a given task in normal and
blind conditions could manage to overcome the problems caused by the lack of
sensory information [16,17]. In the first work, the authors evolved a population of
simulated wheeled robots for the ability to move along a square corridor in normal
and blind conditions. The robots’ sensors included only a linear camera able to de-
tect four visual landmarks located at the four corresponding edges of the corridor
itself. The analysis of the results obtained in this study demonstrates that, in some
cases, the evolved agents display an ability to keep navigating within the environ-
ment also during blind phases. The analysis of one of the best individual indicates
that the behaviour produced by the agents during blind phases always converges
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on a sequence of actions that is very similar to those that are produced during nor-
mal phase (in a control conditions in which collision with walls are disabled). Dur-
ing the initial phase in which sensory stimulation is no longer available, however,
the behaviour produced by the robot might differ significantly from the behaviour
that is exhibited in normal conditions in the same circumstances and might thus
lead to collisions between the robot and the walls. In other words, the best evolved
individuals often fail to appropriately handle the transition between normal and
blind phases. Moreover, contrary to the expectations of the authors, the evolved
agents did not rely on an internal model or an ability to internally generate the
simulated experience of the stimuli that are temporarily missing. The lack of sen-
sory information in fact was not compensated by an ability to internally generate
states that are identical or similar to those that would have been experienced in
normal conditions but rather through the development of two different strategies
that are executed depending on whether sensory information is available. Indeed,
during normal phases the robot accomplished the task by moving forward while
turning slightly toward right when the robot visually detecting a landmark and by
turning right otherwise. The former elementary behaviour allows the robot to lose
visual contact with the landmark toward the end of each corridor and then trigger
the latter behaviour (as soon as the landmark is no longer in sight). The latter el-
ementary behaviour allows the robot to negotiate the corner and then trigger the
former behaviour (as soon as the robot visually detects the next landmark). Dur-
ing blind phases, instead, the robot solved the problem by executing the same two
elementary behaviours described above for a certain time duration (approximately
30 and 5 time steps, respectively) by keeping track of the time spent executing the
current behaviour in their internal neurons and by switching behaviour as soon as
the appropriate time duration was reached. This study is particularly interesting
since it indicates that stimulus prediction and internal modeling strategies do not
spontaneously evolve by just forcing the system to act blindfold.

Therefore, another goal of paper is to identify the conditions (i.e. the charac-
teristics of the task/environment and the agent control system) that represent a
pre-requisite for the emergence of such an internal model. So far the idea of in-
ternal modeling has been mainly explored in a control-theoretic perspective, and
numerous a-priori assumptions have been made such as the fixed time span of
prediction, the specific arrangement of mechanisms (for instance, a comparison
mechanism that “matches” real and predicted feedback so to calculate predic-
tion error), and the fact that sensory predictions should be extremely close to
“real” sensory input. On the contrary, our study employs a much simpler neural
architecture where minimal design constraints were introduced, with the aim
to analyze the specific solutions found by the evolutionary algorithm to answer
basic questions such as what exactly is predicted in the internal forward models,
what is the time scale of prediction, how accurate the predictions should be to
be advantageous for an agent, to what extent the internal model can compensate
the lack of sensory stimulation, etc. (see [18,19,20,21,22,23] for related studies
using various computational modeling techniques).
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Finally, from a technological perspective, our study aims to develop a method-
ology that can be used to synthesize artificial embodied agents (robots) able to
operate effectively in uncertain conditions.

2 Methods and Scenario

To achieve the objectives described in the previous section, we set up an ex-
perimental scenario in which an embodied and situated agent should develop
an ability to display a simple behaviour and keep producing it also when the
sensory information is temporarily missing.

The agent consists of a simulated eye provided with a single photoreceptor
located in front of a 500x500 pixel image generated by the combination of a blue
and red gradient ranging continuosly from 0 to 255 along each axis (see fig. 2,
left). Each time step, the photoreceptor detects the intensity of the blue and red
in the pixel corresponding to the current position of the eye. The agent is also
provided with two motors that allow it to move left-right and/or top-down, with
respect to its current position, up to a maximum of ± 5 pixels along each axis.

Fig. 2. Left: The environment consists of a screen displaying an image composed by the

combination of a blue and red gradient distributed along the left-right and bottom-up

axis. Center: The image has been divided into 36 sectors. Right: The architecture of

agents’ neural controller.

The task of the agent is to navigate on the image by turning around the center
of the image at a distance of at least 130 pixels. For the purpose of measuring
the agent’s ability to exhibit such behaviour, the image has been ideally divided
into 36 sectors located around its center (see fig. 2, center).

The agent’s controller consists of an artificial neural network (see fig. 2, right)
with two sensory neurons, eight internal neurons, two motor neurons, and two
additional internal neurons (Rr and Br) that are used to replace the state of
the sensory neurons when visual information is missing. The internal neurons
receive connections from the sensory neurons and from themselves. The motor
neurons receive connection from the internal neurons. The two sensory neurons
(B and R) encode the intensity of blue and red colour currently perceived by
the photoreceptor of the eye. The two motor neurons (M1, M2) determine the
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amplitude of the eye movement along the left-right and top-down dimension
within a range of [-5,5] pixels.

Internal neurons are leaky integrators (i.e. neurons that hold a certain amount
of the previous activation)[24]. The internal and motor neurons are updated on
the basis of a standard logistic function.

The architecture of the neural network is fixed. The connection weights and
biases and the time constant of the internal neurons are encoded in free parame-
ters and evolved [25]. The initial population consists of 100 randomly generated
genotypes which encode the free parameters of 100 corresponding individuals.
Each parameter is coded with 8 bits and is normalized in the interval [-5.0,
+5.0] for the biases and the synaptic weights, and in the interval [0.0, 1.0] for
the time constants. Each subsequent population is obtained by selecting the best
20 individuals of the previous population. Each selected individual is allowed to
produce 5 offspring that are generated by duplicating the genotype of the repro-
ducing individuals and by applying mutations (with 2% probability of flipping
a bit).

Each individual is tested for 20 trials. At the beginning of each trial the eye is
placed randomly in one of ten possible positions around the center of the image.
The agent is then allowed to interact with the environment up to 4000 time
steps. For each time step, the state of the agent’s sensory neurons is updated
on the basis of the current position of the eye, the state of the internal and
motor neurons is updated, and the agent’s eye is moved on the basis of the
current state of the motor neurons. The agent experiences a succession of phases
in which sensory information is available (normal phases), and phases in which
it is missing (blind phases), according to the following rules. During the first
half of each trial (i.e. during the first 2000 time steps) the agent always has
access to the sensory stimulation coming from the environment (normal phase).
During the second half of the trial, instead, the agent experiences a phase in
which the sensory information is available (normal phase) followed by a phase
in which sensory information is unavailable (blind phase), and vice versa. The
length of both phases varies linearly during the 20 trials so to expose the robot to
a progressively larger amount of sensory deprivation. On average, the percentage
of sensory deprivation during the second half of the trial is 16%. During all the
normal phases, the state of the two sensory neurons is set on the basis of the
colour of the current portion of the image perceived by the agent, otherwise is
replaced using Rr and Br outputs.

The performance (fitness) of the individual has been evaluated by computing
the number of subsequent sectors of the image visited by the eye (see fig. 2, left).
In particular, for each new visited sector(i.e. when current sector is different from
the previous) the fitness F of the individuals is updated by adding dF :

dF =

{
1− |Dt−130|

100
36 if 30 ≤ Dt ≤ 230

0 otherwise
(1)

where Dt represents the distance between the point of the image observed by the
agent at time t from the center of the image and 36 corresponds to the number of
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sectors. Trials are terminated before the limit of 4000 time steps when the agent
move in the wrong direction so to visit a sector already visited recently. The total
performance of an individual is obtained by averaging the performance obtained
during the 20 trials. The evolutionary process is continued for 1600 generations
and replicated 40 times with randomly generated initial conditions.

3 Results

By analysing the behaviour of evolved individuals we observed that in 17 out of
40 replications of the experiment, the best individual succeeded in circling around
the center of the image both in normal and blind phases. These individuals
manage to compensate the lack of sensory information by self-sustaining their
internal dynamics in two substantially different ways.

Agents belonging to the first “family” (13 out of 17) solve the problem by
developing two qualitatively different strategies for normal and blind phases, and
trigger the first or the second strategies during the two corresponding phases.
Interestingly, although almost all these agents anticipate incoming stimuli during
the normal phases with their neurons Rr and Br, their dynamics are different
during the blind phases (like in [17], see below).

Agents belonging to the second “family” (4 out of 17), instead, keep react-
ing to the experienced sensory states in similar ways during normal and blind
phases and compensate the lack of sensory information with the self-generation
of equivalent information and by anticipating how the state of the sensors would
vary as a result of the execution of the planned action. That is, the agents use
a predictive strategy based on internal modeling.

Now we will discuss in more detail the nature of the solution evolved by
the second family of succesful individuals. By observing the behaviour displayed
by the best individual belonging to the second (internal modelling) family during
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a test in which the agent experiences a blind phase lasting 1000 time step after
the first half of the trial (fig. 3, left), we can see how, during the blind phase, the
agent keeps producing the same quasi-circular trajectory while slowly drifting
toward the top-right part of the image (this process continues until sensors R and
B are recovered). Moreover, by observing the trajectory produced by the agent
during the successive normal phase (fig. 3, right), we can see how the agent
manage to quickly recover from the drift as soon as the sensory stimulation
become available again. These results demonstrate that the agent succeed in
mastering also blind phases in which sensory information is temporarily missing.
Moreover, the obtained results suggests that the lack of sensory information can
be tolerated only for a limited amount of time since small differences between the
behaviour produced in normal and blind conditions tend to cumulate over time
during blind phases. Finally, this analysis shows that the agent is able to handle
the transitions between normal and blind phases and vice versa by continuing
to produce the desired behaviour.

The fact that the state of sensory neurons (R and B) at time t+1 and the
state of the additional internal neurons (Rr and Br) at time t differ significantly
during blind phases (fig. 4, top) indicates that the agent does not operate by
predicting the exact state that the former neurons would assume at time t+1 in a
normal condition. However, the cross-correlation analysis of the state of the two
sets of neurons indicates that the variations of the output neuron at time t are
in phase with the variations of sensory neurons at time t+1, during blind phases
(fig. 4, bottom). In other words, it anticipates a property of how sensory states
vary over time. It is worth noting that this is sufficient for behaving adaptively.
Indeed, that despite the differences in the input signal profiles, the output signal
profiles are very close in the two phases. The comparison of the dynamic of
variation of the output neurons (Rr and Br) during a normal and a blind phase
(fig. 4, center) indicates that the state of the neurons vary over time in a rather
similar way independently from the fact that the sensory neurons are fed with
actual data collected from the environment or with self-generated data, despite
the two data differ significantly.

4 Discussion

Our study shows that a simulated robot trained with a genetic algorithm in a
navigation task can develop an internal model of the robot/environmental inter-
action, and rely on it to fulfill the same task adaptively even when the robot
is temporarily “blindfolded”. The robot’s internal model has several key char-
acteristics: (1) It is autonomously developed depending on the demands of the
agent-environment interactions rather than externally designed (the robot is not
rewarded for anticipating the next sensory states or the way in which sensory
states will vary). (2) It is primarily driven by its own dynamic properties, and
can be triggered by both external and internal, self-generated inputs. That is,
it is self-sustained, in the sense that the agent can endogenously (re)generate it
by using self-produced rather than external stimuli, and “detachable” from the
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sensorimotor loop. (3) It is of an anticipatory nature, since it correlates with
future stimuli more than its past or present stimuli, and can be self-sustained
while “real” sensory stimuli are missing.

5 Conclusions

Theoretical studies suggest that internal models could have originated in living
organisms for the sake of adaptive behavior, not for cognition, and were therefore
exapted for advanced cognitive and social operations [9,12]. Unfortunately, little
effort has been devoted to the verification of this hypothesis–something that is
admittedly very complicated to do empirically, but is more feasible by using the
methodology of evolutionary robotics, which we adopted in this study.

The central hypothesis that motivated our design methodology is that a (tem-
porary) deprivation of external stimuli can make it favorable, from an evolution-
ary perspective, the development of a robot’s internal model even in the absence
of any explicit reward for prediction. Indeed, once the robot has learned a reli-
able behavioral strategy and an associated dynamical representation of its task,
it could be favorable to maintain the same strategy, and at the same time learn to
self-maintain the same dynamics via self-generated inputs, rather than evolving
two separate strategies to deal with the presence or absence of external stimuli.

Our study is part of a more general initiative in cognitive science that aims
to draw a naturalized, embodied view of cognition by tracing it back to sensori-
motor learning and motor control, some of which maintaining a representational
perspective [9,12], and some others not [26].

Most studies mentioning internal modeling tend to frame the problem in
control-theoretic terms; for example, [9] describes internal modeling loops in
terms of Kalman filters. On the contrary, in our experiment we make fewer
a-priori assumptions, for example about prediction and its time-scale, or the
similarity between external and self-generated stimuli. By analyzing the best ar-
chitectures selected by neural evolution, we observe that certain characteristics
of the evolved internal models are actually close to abstract control-theoretic
models; for example, one-step predictions emerge under appropriate environ-
mental conditions. At the same time, the evolved internal models have certain
characteristics that can hardly be studied from an a-priori perspective; for exam-
ple, as illustrated in fig. 4, self-generated stimuli are different in amplitude and
more regular than external stimuli. Overall, our experiments can be considered a
further step in the clarification of this novel and multifaceted view of embodied
cognition.

Acknowledgements

The research leading to these results has received funding from the Europeans
Community 7th Framework Programme under grant agreements ITALK (ICT-
214668) and HUMANOBS (ICT-231453).



Emergence of an Internal Model in Evolving Robots 585

References

1. Craik, K.: The Nature of Explanation. Cambridge University Press, Cambridge

(1943)

2. Tolman, E.C.: Cognitive maps in rats and men. Psychological Review 55, 189–208

(1948)

3. Johnson-Laird, P.: Mental Models: Towards a Cognitive Science of Language, In-

ference, and Consciousness. Cambridge University Press/Harvard University Press,

Cambridge (1983)

4. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47(47),

139–159 (1991)

5. Kawato, M.: Internal models for motor control and trajectory planning. Current

Opinion in Neurobiology 9, 718–727 (1999)

6. Wolpert, D.M., Gharamani, Z., Jordan, M.: An internal model for sensorimotor

integration. Science 269, 1179–1182 (1995)

7. Clark, A., Grush, R.: Towards a cognitive robotics. Adaptive Behavior 7(1), 5–16

(1999)

8. Frith, C.: Making up the Mind. In: How the Brain Creates our Mental World.

Blackwell, Malden (2007)

9. Grush, R.: The emulation theory of representation: motor control, imagery, and

perception. Behavioral and Brain Sciences 27(3), 377–396 (2004)

10. Jeannerod, M.: Neural simulation of action: A unifying mechanism for motor cog-

nition. NeuroImage 14, S103–S109 (2001)

11. Jeannerod, M.: Motor Cognition. Oxford University Press, Oxford (2006)

12. Pezzulo, G., Castelfranchi, C.: The symbol detachment problem. Cognitive Pro-

cessing 8(2), 115–131 (2007)

13. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework

for motor control and social interaction. Philos. Trans. R. Soc. Lond. B. Biol.

Sci. 358(1431), 593–602 (2003)

14. Wolpert, D., Miall, C., Kawato, M.: Internal models in the cerebellum. Trends

Cogn. Sci. 2, 338–347 (1998)

15. Lee, D.N., Thompson, J.A.: Vision in action: the control of locomotion. In: Ingle,

D.J., Goodale, M.A., Manfield, R.J.W. (eds.) Analysis of Visual Behavior, pp.

411–433. MIT, Cambridge (1982)

16. Ziemke, T., Jirenhed, D.A., Hesslow, G.: Blind adaptive behavior based on inter-

nal simulation of perception. Technical Report HS-IDA-TR-02-001, Department

of Computer Science (School of Humanities & Informatics), University of Skovde,

Sweden (2002)

17. Ziemke, T., Jirenhed, D.A., Hesslow, G.: Internal simulation of perception: a min-

imal neuro-robotic model. Neurocomputing 68, 85–104 (2005)

18. Alnajjar, F., Hafiz, A.R., Zin, I.B.M., Murase, K.: Vision-motor abstraction toward

robot cognition. In: Leung, C., Chan, J. (eds.) ICONIP 2009, Part II. LNCS,

vol. 5864, pp. 65–74. Springer, Heidelberg (2009)

19. Johnsson, M., Balkenius, C., Hesslow, G.: Neural network architecture for cross-

modal activation and perceptual sequences. Papers from the AAAI Fall Symposium

(Biologically Inspired Cognitive Architectures), Arlington, Virginia, USA, pp. 85–

86 (2009)

20. Linker, F., Niklasson, L.: Extraction and inversion of abstract sensory flow repre-

sentations. In: Proceedings of the Sixth international Conference on Simulation of

Adaptive Behavior, From Animals to Animates, vol. 6, pp. 199–208. MIT Press,

Cambridge (2000)



586 O. Gigliotta, G. Pezzulo, and S. Nolfi

21. Manoonpong, P., Wrgtter, F.: Efference copies in neural control of dynamic biped

walking. Robotics and Autonomous Systems 57, 1140–1153 (2009)

22. Pezzulo, G.: A study of off-line uses of anticipation. In: Asada, M., Tani, J., Hallam,

J., Meyer, J.A. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 372–382. Springer,

Heidelberg (2008)

23. Svensson, H., Morse, A., Ziemke, T.: Representation as internal simulation: A

minimalistic robotic model. In: COGSCI (2009)

24. Gigliotta, O., Nolfi, S.: On the coupling between agent internal and agent/ environ-

mental dynamics: Development of spatial representations in evolving autonomous

robots. Adaptive Behavior 16(2-3), 148–165 (2008)

25. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2000)

26. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends

in Cognitive Sciences 6, 242–247 (2002)



Emergent Distribution of Computational Workload in
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Abstract. The coupling between an agent’s body and its nervous system ensures
that optimal behaviour generation can be undertaken in a specific niche. Depend-
ing on this coupling, nervous system or body plan architecture can partake in
more or less of the behaviour. We will refer to this as the automatic distribu-
tion of computational workload. It is automatic since the coupling is evolved and
not pre-specified. In order to investigate this further, we attempt to identify how,
in models of undulatory fish, the coupling between body plan morphology and
nervous system architecture should emerge in several constrained experimental
setups. It is found that neural circuitry emerges minimalistically in all cases and
that when certain body segmentation features are not coevolved, the agents ex-
hibit higher levels of neural activity. On account of this, it is suggested that an
unconstrained body plan morphology permits greater flexibility in the agent’s
ability to generate behaviour, whilst, if the body plan is constrained, flexibility is
reduced with the result that the nervous system has to compensate.

1 Introduction

Animal behaviour is largely shaped by the coupling existing between nervous system
and body plan morphology. If the coupling is optimal, the animal’s body can interact ap-
propriately with its environment and the animal survives; evolution becomes favourable.
The process towards optimal coupling might go as follows. A progressive change in the
environment causes a progressive change in the animal’s body morphology and given
the coupled nervous system, results in a commensurately progressive alteration of the
nervous system architecture. Specifically, the coupling becomes driven by a need to
optimise the distribution of computational workload existing between the body plan
morphology and the nervous system architecture. In this paper, we hypothesise that in
artificial fish-like agents situated in silico, neural circuitry will become more important
when flexibility in the body plan morphology is constrained. We base this on the idea of
morphological computation [13,3], that, due to the passive dynamics of the body plan
morphology, the neural circuitry has to play more or less of a role in the computational
process. This is highly applicable to aquatic agents given how the size and shape of the
fish body are known to have a significant impact on behaviour generation [11,6]. We are
in good stead to model fish-like agents given the abundance of research before us. We
are inspired by Ekeberg [4,5] and Ijspeert [7,8] both of whom modelled undulatory fish
such as lamprey, with results comparable to biophysical data with the latter also incor-
porating evolutionary processes; also, the work of Karl Sims [16] which was seminal in
the study of embodied cognition.

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 587–596, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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This paper outlines a framework that can be used to explore the processes by which
body and nervous system become coupled during a coevolutionary process. With a
novel neural control system that is geometrically constrained, behaviour of the agent
(that of swimming) is ultimately determined by how the nervous system architecture
and body morphology become coupled together. The remainder of this paper is set
out as follows. Section 2 introduces the model of an undulatory fish-like agent used
throughout. The experimental setup is outlined in Section 3. Results are presented in
Section 4. Discussion and conclusions are then provided in Section 5.

2 Simulation System

The agent is modeled on a three dimensional spring mesh, see Fig. 1 and has a geomet-
rically constrained nervous system consisting of the following types of neuron.

Motor neuron. Within a given body segment, each of 4 motor neurons actuates two of
the face’s outer springs, see Figs. 1 and 2. The level of force applied during this com-
pression process is proportional to the motor neuron’s membrane potential and for rea-
sons of stability, normalised to within the range [0, 120]. With sufficiently coordinated
motor dynamics, the agent is endowed with the ability to locomote. Architecturally,
a motor is centrally fixed to one of the four outer cuboid faces making up the body
segment (i.e. it lies ‘flat’ on a given face).

Sensory neuron. Four sensory neurons serve as additional ‘input’ neurons. They are
fixed to the top-middle of each of the head segment’s four cuboidal faces. Computa-
tionally, the input current for a given sensory neuron is proportional to the angle of
the target from the sensor, along the plane that runs perpendicular to the edge of the
segment face that the sensor belongs to.

Interneuron. Additional neuron units residing within each body segment. The Eu-
clidean locations of these interneurons are evolved through a process of simulated evo-
lution and this is the crucial way in which we evolve the architecture of the nervous
system. A given neuron can never move beyond a segment’s architectural bounds.

2.1 Agent Body Plan Morphology

Inherent segmentation. The animat agent is inherently segmented, see Fig. 1. This
is both for implementational convenience and for the fact that in all but the simplest
organisms, segmentation is argued to be generic in metazoan organisation [12]. In the
model, the number of segments and the length of each are optimized during a process
of simulated evolution (thus the genotype is variably lengthed). The length of a body
segment is a fraction of the total length of the agent, but this is then tuned by an evolved
‘length factor’ parameter, Fi. Note that this factor then also affects the neural distribu-
tion by modifying the y coordinate value of each segmental interneuron by proceeding
with ny ← ny · Fi.
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Body symmetry. An abstraction of body symmetry is also incorporated into the model.
Each body segment has 4 motor neurons, residing on the ventral, dorsal, left and right
sides of the agent. Since they are fixed in place, they are considered part of the body
morphology. The ability for a given motor neuron to take part in movement generation
is established by an evolvable boolean parameter. If both left and right motors evolve
to take part in movement generation, then the motor symmetry is considered bilaterally
symmetric. Note that the emergence of symmetry is not considered in this paper. Please
see [10,9] for an investigation.

T

N

Body segments

Springs

Fig. 1. Agent geometry showing construction out of of body segments. A ‘compass system’ is
used for deriving the directional components of opposing water forces; example vector compo-
nents are highlighted with red arrows. ‘T’ represents the tangent component and ‘N’ represents
the normal component. A contracting segment face together with constituent springs has been
further highlighted.

Fig. 2. Motor force system: the effect of a motor M in the centre of one of the segment faces
contracting spring P1⇐⇒P2 by applying equal but opposite forces F1 and F2 to point masses
P1 and P2 and contracting spring P3⇐⇒P4 by applying equal but opposite forces F3 and F4 to
point masses P3 and P4.

2.2 Agent Nervous System

An analogue model. We use a continuous time recurrent neural network (CTRNN)
to model the agent’s nervous system. In comparison to a spiking neural network, a
CTRNN is able to approximate the smooth dynamics required for adequate swimming
behaviour. For a given neuron, the membrane potential uj is modelled as follows, [2]:
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duj

dt
=

1
τj

(
−uj +

C∑
i=1

wjiai + Ij

)
(1)

where τj is a time constant, wji is a vector of presynaptic connection weights and Ij

is an external input current. The value ai is a presynaptic neuron’s membrane activity
computed as tanh(ui − βi) where βj is a bias value. If a neuron is inhibitory then all
of its outgoing connection weights are made to be negative.

Neuron positioning and synaptic efficacy. In our model, the distance between a pair
of neurons (i and j) determines the connection strength of the connection between them,
if such a connection exists. The formula wij = ξ/dij is used to derive this value where
dij is the Euclidean distance between neurons i and j and ξ has been empirically set to
20.0 to ensure that a suitable range of weights can be generated. The maximum bounds
of dij are given by the geometrical properties of the body segment. Given the preceding
formula, neurons have a higher connection weight if they are closer together. This is in
consideration of synaptic delay which is not explicitly accounted for in the model but
is known to have an effect on synaptic efficacy.

Neuron positioning and connectivity. A second aspect of our nervous system model
is that interconnectivity also comes about as a function of neuronal Euclidean distance,
using the following sigmoidal distribution,

σ(λ, s, dij) =
2

2 + exp((λ/s) ∗ dij)
(2)

where λ is an evolved parameter, s is a scaling parameter, which is set to the total
length of the agent, and dij is the euclidean distance between neurons i and j. If the
function generates a value >0.5 then a connection is established; also, the higher a
given λ parameter, the closer a pair of neurons have to be to become connected. A set
of four λ values is employed each of which caters for one type of connection: λII , λIE ,
λSE , λAA where I=interneuron, E=effector neuron, S=sensory neuron; AA indicates
connections between interneurons in adjacent segments.

2.3 Simulation Environment

Virtual water. The environment model implements the effect of water drag. External
‘water force’ pushes against each face of an animat segment, the magnitude of which
depends on the opposing force of the face pushing back. It is sufficient to use the face’s
velocity as an approximate measure of this ‘pushing-back’ force. The face velocity is
taken to be the average over all four constituent point mass velocities (one at each
corner of the face). The approach is simple, reliable and efficient in its implementation
and has been pursued by others (e.g. [15]). Implementation wise, the face’s velocity
vector is initially split into two velocity components, the tangent component and the
normal component (t = t̂ ·v;n = n̂ ·v). These are represented by ‘T’ and ‘N’ in Fig. 1.
The actual water force, w, to be applied to each of the four point masses making up the
face is then simply calculated as w = fcdA where f is a force vector derived from the
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normal and tangent velocity components, c is a viscosity coefficient, d is drag, and A is
the area of the segment face. The γ parameters are set to 1.0 and 0.9 for the normal and
tangent components respectively; c and d are further set to 1.

2.4 Evolutionary Process

An evolutionary algorithm that harnesses both the power of adaptive mutation and lo-
cal selection is used to evolve all or part the genotype illustrated in Fig. 3. Note that
many of the gene groupings (e.g. the number of segment length factor genes) depend
on the number of body segments, i.e. the genotype is variably lengthed; to account for
this, when a segment is added / lost, affected gene groupings are added (with random
initialisation) / removed. A local selection process of the type described in [14] is em-
ployed, since, (a) preliminary investigation showed it to have far better convergence;
(b) within the field of Neuroevolution, a similar strategy has on prior occasion been
employed to great success, see for example [17]; (c) the fact that local selection results
in gradual phenotypic change is a practical advantage since it allows for evolutionary
process to be more easily tracked. Discrete recombination and adaptive mutation which

relies on strategy parameters τ0 = 1.0/
√

2.0 ∗ D and τ1 = 1.0/
√

2.0 ∗ √D [1] are
further applied to the selected chromosome pool with preset probabilities 0.2 and 0.02
respectively.

Segment length /
count

Interneuron position / threshold / bias /  
inhibitory / connectivity

Motor threshold /
bias

MSC SL SC NP NT NB NI NC MT MB

Symmetry

4 1 10n 10n 10n 10n 4 44n

BODY MORPHO NERVOUS SYSTEM

Fig. 3. The model genotype used within the simulation system. Each abbreviation refers to the
type of gene and each number refers to the number of a type of gene. The variable ’n’ refers to a
variable number of body segments e.g. if there are 5 body segments, then there are 50 interneuron
positional genes and 5 segment length factor genes. The ‘NC’ genes equate to the λ parameters
in Eq. 2.

3 Experimental Setup

Four sets of 50 differently randomly initialised experiments were conducted; each placed
a different level of constraint on the evolutionary process, as described:

1. evo-ALL. The full genotype as described above was evolved.
2. evo-NOBCBL. All parameters except for the number of body segments and the

lengths of each segment, were evolved.
3. evo-NOBC. All parameters except for the number of body segments were evolved.
4. evo-NOBL. All parameters except for the lengths of each segment were evolved.
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The aim of the first experiment was to essentially discover how ‘everything’ should
become optimally tuned during the evolutionary process. That of the second was to find
out how the agent should evolve at the other extreme i.e. when only its nervous system
parameters (and body symmetry) are coevolved. The aim of the latter two experiments
was to characterise how changes in segmentation properties (which we may equate
to body morphology), affect fitness. In all experiments, the agent’s task was to swim
towards a fixed environmental target placed 20 units away from the head of the agent.
Thus fitness was given by the distance of the agent’s head from this target as measured
at the end of the behavioural sequence; specifically, 20.0 − d(animat, target).

4 Results

A visualisation of the behaviour of the best evo-ALL agent is provided in Fig. 4a and
plots of fitness are given in Fig. 4b. Statistical p-values are given in Table 1.
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Fig. 4. (a) Animat behavioural sequences for the best animat from evo-ALL showing undulatory
type locomotion in which a wave of propulsion passes down the length of the agent’s body.
Snapshots taken every 25 behavioural iterations. (b) Medians over best individuals for each of
the 4 sets of experiments (median readings are taken to prevent outlier artifacts).

Table 1. Statistical p-values generated from comparisons in best agent fitness (ranksum test) at
the end of evolution

Comparison evo-ALL evo-NOBC evo-NOBL evo-NOBCBL

evo-ALL - 0.0689 0.0393 0.4862
evo-NOBC - - 0.0003 0.025
evo-NOBL - - - 0.1394

Effect on neural architecture. In Fig. 5, the neural architectures for the best individ-
uals to have emerged are visualised. There are several observations to be made. Firstly,
there are no connections between the sub-network architectures (one sub-network per
body segment). This indicates a preference for fully decentralised, computationally in-
dependent sub-networks. Secondly, in all cases, few connections were established from
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the sensory neurons. In instances where connections did emerge, it seems doubtful that
the sensory neurons were actually employed, since a simple test in which the target ob-
ject was removed from the environment subsequent to the evolutionary process found
that agents could still successfully locomote. Thus, most agents (if not all) evolved with-
out a true sensory system. We can also observe differences in wire length, see Fig. 5,
with evo-ALL agents evolving to have fewer connections than agents from the other
simulations. It would seem that generally, connectivity has a tendency to emerge min-
imally in all cases and more so in evo-ALL. Statistical differences in this property are
given in Table 2.
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Fig. 5. (a-d) Best of the best neural architectures. In all architectures, there was a general tendency
for to become decentralised with no interconnections between them. The two lower plots show
wire lengths during and after (boxplot) evolution.

Table 2. Statistical p-values generated from comparisons in best agent wire length (ranksum test)
at the end of evolution

Comparison evo-ALL evo-NOBC evo-NOBL evo-NOBCBL

evo-ALL - 0.0072 0.1725 0.0018
evo-NOBC - - 0.1840 0.8590
evo-NOBL - - - 0.2190
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Effect on neural dynamics. Statistics of oscillation count (average number of times
neuron activation moves from a negative to a positive state, and vice-versa) and motor
contraction count (‘motor activity’, number of motor (spring) compressions), derived
from the behaviours of all agents, are plotted in Figs. 6a and 6b. With regards to Fig. 6a,
we can observe that neural activity is statistically greater in simulations evo-NOBL and
evo-NOBCBL than in evo-NOBC and evo-ALL. Also, with regards to Figs. 6c and 6d,
we can observe that actually, neural activity is minimal in all types of agent, given the
limited number of neural circuits exhibiting at least some neural activity, but less promi-
nently so in the evo-NOBL and evo-NOBCBL agents (note, for the sake of brevity, plots
for evo-NOBC and evo-NOBCBL have been omitted). This signifies that for agents in
which the lengths of the segments are not evolved, movement kinematics become con-
strained to the extent that neural activity has to compensate. Statistical differences in
this property are given in Table 3.
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Fig. 6. Box plots at the end of evolution for (a) neural and (b) motor activity; (c&d) Neural
activities of the very best individuals from simulations evo-ALL and evo-NOBL highlighting
two extremes of neural activity. Horizontal bars are segmental neural activity.

Table 3. Statistical p-values generated from comparisons in best agent neuronal oscillation counts
(ranksum test) at the end of evolution

Comparison evo-ALL evo-NOBC evo-NOBL evo-NOBCBL

evo-ALL - 0.3919 0 0
evo-NOBC - - 0 0
evo-NOBL - - - 0.0259
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5 Discussion and Conclusions

The results presented in this paper demonstrate how neural organisation is constrained
by body plan morphology. Successful animal or agent behaviour will only emerge if
these two components interact appropriately so that the computational workload can be
properly distributed. An emergence of this coupled process is complex due to the non-
linear interactions between these components; but, depending on the constraints that we
enforce, the emergence of optimal swimming behaviour is easier or harder.

At the beginning of the evolutionary process, all agent types are subject to environ-
mental selection pressure. Then, as the evolutionary process progresses, these pressures
change depending on the pre-existing constraints that we have enforced. In terms of
those agents not endowed with segment length coevolution (which were demonstrated
to be of significantly worse fitness than all other agent types), environmental pressure
can only ever have a marginal impact on the body plan morphology; in other words, a
body shape optimised for swimming is prevented from the outset and can never evolve.
In order to make up for this, evolution strives to compensate by more rigorously adapt-
ing the architecture and computational properties of the nervous system.

The results signify several things:

– a tuning of the body plan morphology alone can have a very significant impact on
fitness, and this is before we even consider the computational effort made by the
nervous system.

– much of the computational workload can be offloaded to the body plan morphology,
the distribution of which is mediated by the levels of permitted evolvability.

– neural circuits will evolve in order to compensate for a lack of body plan flexibility;
this was demonstrated in terms of significantly greater levels of neural dynamic
exhibited in such agents (see Fig. 6).

– neural circuitry had a tendency to emerge minimalistically and more so in the evo-
ALL agents. This would suggest that when segmentation characteristics are co-
evolved, less neural circuitry is required since behaviour generation can then be
offloaded to an optimised body plan morphology.

The above points demonstrate that when the agent is evolved to reach reasonable lev-
els of swimming behaviour, the distribution of computational workload is non-linearly
affected given the complex coupling between body plan morphology and nervous sys-
tem architecture. This was further demonstrated to have been automatic given a non
pre-determined but evolutionary process.

In conclusion, the integrated coupling existing between body plan morphology and
nervous system in an artificial agent lends to a dynamic distribution of computational
workload between these two components. Tuning this coupling allows for better dis-
tribution; different aspects of the whole agent (nervous system and body plan) are en-
dowed with the capacity to partake in the generation of behaviour. The agent survives;
evolution becomes favourable.

Acknowledgements

This work was partially supported by grants from the Honda Research Institute Europe
GmbH.



596 B. Jones et al.

References

1. Bäck, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter optimiza-
tion. Evolutionary Computation 1(1), 1–23 (1993)

2. Blynel, J., Floreano, D.: Levels of dynamics and adaptive behavior in evolutionary neural
controllers. In: From Animals to Animats: The Seventh International Conference on Simula-
tion of Adaptive Behavior, pp. 272–281. MIT Press, Cambridge (2002)

3. Bongard, J.C.: Incremental Approaches to the Combined Evolution of a Robot’s Body and
Brain. PhD thesis, Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich,
Zürich (2003)

4. Ekeberg, Ö.: An integrated neuronal and mechanical model of fish swimming. In: Compu-
tation in Neurons and Neural Systems, Washington, DC, pp. 217–222. Kluwer, Dordrecht
(1994)

5. Ekeberg, Ö., Grillner, S.: Simulations of neuromuscular control in lamprey swimming. Philo-
sophical Transactions of the Royal Society of London. Series B, Biological Sciences 354,
895–902 (1999)

6. Gillis, G.B.: Undulatory locomotion in elongate aquatic vertebrates: Angulliform swimming
since Sir James Gray. American Zoology 36, 656–665 (1996)

7. Ijspeert, A.J., Kodjabachian, J.: Evolution and development of a central pattern generator for
the swimming of a lamprey. Artificial Life 5(3), 247–269 (1999)

8. Ijspeert, A.J., Arbib, M.: Visual tracking in simulated salamander locomotion. In: Sixth Inter-
national Conference of the Society for Adaptive Behavior, pp. 88–97. MIT Press, Cambridge
(2000)

9. Jones, B.: The Evolutionary Emergence of Neural Organisation in Computational Models of
Primitive Organisms. PhD thesis, School of Computer Science, University of Birmingham,
Birmingham, UK (2010)

10. Jones, B., Jin, Y., Sendhoff, B., Yao, X.: Evolving functional symmetry in a three dimen-
sional model of an elongated organism. In: Artificial Life XI: Proceedings of the Eleventh
International Conference on the Simulation and Synthesis of Living Systems, pp. 305–312.
MIT Press, Cambridge (2008)

11. Müller, U.K., Smit, J., Stamhuis, E.J., Videler, J.J.: How the body contributes to the wake in
undulatory fish swimming: flow fields of a swimming eel (Anguilla Anguilla). The Journal
of Experimental Biology 204(16), 2751–2762 (2001)

12. Newman, S.A.: Is segmentation generic? BioEssays 15(4), 277–283 (1993)
13. Pfeifer, R., Iida, F.: Morphological computation: Connecting brain, body, and environment.

In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS, vol. 3853, pp.
2–3. Springer, Heidelberg (2006)

14. Sarma, J., De Jong, K.: An analysis of the effects of neighborhood size and shape on local
selection algorithms. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.)
PPSN IV 1996. LNCS, vol. 1141, pp. 236–244. Springer, Heidelberg (1996)

15. Sfakiotakis, M., Tsakiris, D.P.: Simuun: A simulation environment for undulatory locomo-
tion. International Journal of Modelling and Simulation 26(4), 350–358 (2006)

16. Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Com-
puter Graphics and Interactive Techniques, pp. 15–22. ACM, New York (1994)

17. Soltoggio, A., Bullinaria, J.A., Mattiussi, C., Dürr, P., Floreano, D.: Evolutionary Advantages
of Neuromodulated Plasticity in Dynamic, Reward-based Scenario. In: Artificial Life XI:
Proceedings of the Eleventh International Conference on the Simulation and Synthesis of
Living Systems. MIT Press, Cambridge (2008)



Multi-objective Evolutionary Algorithms to
Investigate Neurocomputational Issues:

The Case Study of Basal Ganglia Models�

Jean Liénard, Agnès Guillot, and Benôıt Girard

Institut des Systèmes Intelligents et de Robotique
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Abstract. The basal ganglia (BG) are a set of subcortical nuclei in-

volved in action selection processes. We explore here the automatic pa-

rameterization of two models of the basal ganglia (the GPR and the

CBG) using multi-objective evolutionary algorithms. We define two ob-

jective functions characterizing the supposed winner-takes-all function-

ality of the BG and obtain a set of solutions lying on the Pareto front

for each model. We show that the CBG architecture leads to solutions

dominating the GPR ones, this highlights the usefulness of the CBG

additional connections with regards to the GPR. We then identify the

most satisfying solutions on the fronts in terms of both functionality and

plausibility. We finally define critical and indifferent parameters by ana-

lyzing their variations and values on the fronts, helping us to understand

the dynamics governing the selection process in the BG models.

1 Introduction

In order to explore the characteristics and the critical parameter choices of two
different models of the basal ganglia –a brain region involved in action selection–
we use an empirical analysis method based on multi-objective evolutionary al-
gorithms [1].

The Basal Ganglia (BG) is commonly defined as a set of subcortical intercon-
nected nuclei, comprising the Striatum (Str), the Sub-Thalamic Nucleus (STN),
both the external and internal Globus Pallidus (GPe and GPi) and both the
Substantia Nigra par reticulata and pars compacta (SNr and SNc) [2]. The Str
comprises mostly medium spiny neurons (MSN) and, more marginally, different
types of interneurons, among which the fast-spiking interneurons (FSI) received
special attention [3]. MSN are commonly subdivided on the basis of the presence
of D1 or D2 dopamine receptors, distinguishing a striato-pallidal and a striato-
nigral pathway [4]. The BG form a loop with the ventro-lateral thalamus (VL),
the thalamic reticular nucleus (TRN) and parts of the frontal cortex (FC).
� This research was funded by the ANR, project EvoNeuro ANR-09-EMER-005-01.
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The presented work is based on the hypothesis stipulating that the func-
tional role of the BG is of generic action selection [2,5]. The BG are organized
in multiple parallel segregated loops [6]. Within each of these loops, multiple
striato-nigral channels interact, leading to a selection through disinhibition of the
GPi/SNr, which is tonically active at rest [7]. This base level is strong enough to
inhibit any action. The functionality of the BG would be to operate a ”winner-
takes-all” (WTA) algorithm, where the channel with the maximum input has the
minimum output activity in the GPi/SNr (at least inferior to the base level),
while the other ones have a maximal activity in the GPi/SNr (superior or equal
to the base level). Based on a WTA hypothesis, many computational models have
been proposed (see [8] for a recent review). These models are commonly set with
hand-tuned parameters, with the goal of respecting biological constraints (for
example, the STN has to be active at rest) while achieving a selection function,
which is not necessarily expressed in precise quantitative terms.

Evolutionary Algorithms (EA) are designed to tackle optimization problems
in a stochastic way. Inspired by the nature’s evolutionary principle, the most
striking difference to classical search is that EA evolve a population of solutions
instead of a single one. Multi-Objective Evolutionary Algorithms (MOEA) are
a subclass of EA conceived to optimize multiple conflicting objectives [9]. Ana-
lyzing a set of optimal and a priori equally acceptable solutions can lead to a
better understanding of the dynamics governing the problem. Furthermore, one
can eventually pick one particular solution, on the basis of expert knowledge.

There is no established method to parameterize a BG model. In a previous
attempt at using EA to set the parameters, Wang et al. [10] used a simple
genetic algorithm and evolved the “GPR” model described in [11]. The main
difference with our approach lies in their characterization of a WTA. They used
a binary measure to reflect whether the inputs were classified correctly (i.e.
whether the channel that should be selected is under an arbitrary threshold). We
use here multiple scores to describe the comparative levels of disinhibition of all
the channels; the goal here is to understand the parameterization compromises
that are made when simultaneously trying to inhibit the loosing channels as
much as possible, as well as disinhibiting the winning one.

2 Materials and Methods

Building upon the recent “CBG” model [12] and the classical “GPR” model [11],
we take their structures as a basis for two different evolutions. The connectivity
of these models includes the knowledge on the macro biology of the BG [13].
Among others differences, the CBG permits the D1 → GPe connection, includes
the modeling of FSI and grants a more global role of inhibition to the GPe [12].
Both of them incorporate the modeling of the thalamic loop, and both of them
contain 6 concurrent striato-nigral channels. In the GPR, each nucleus contains
6 classical leaky integrator neurons, whereas in the CBG each nucleus contains
6 locally Projected Dynamical System neurons, a leaky integrator variant with
dynamics described in [12]. The evolution of the CBG and of the GPR can modify
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Fig. 1. The CBG (left) and GPR (right) architectures. Three channels in competition

are represented. The outgoing connections of the shaded channel are the only one

shown. White endings are excitatory, black are inhibitory. The inputs are the Saliences

(S) in the cortex, and the outputs are the activity of the GPi/SNr neurons. See text

for the meaning of the other abbreviations.

both the connections weights between nuclei (noted ”nucleus → nucleus”) and
the tonic levels (noted ”Tnucleus”), but leaves the structure of the circuits as
shown in Figure 1. This accounts for a total of 25 parameters for the CBG, and
20 parameters for the GPR; see the results in Tables 1, 2 and 3 for the evolved
parameters list.

We introduced some constraints on the parameters, in order to be sure that
some levels of biological plausibility are respected but also to reduce the ex-
ploration space to make the convergence of the evolution more likely. Neu-
rons from the GPe and GPi exhibit comparable baseline [14], hence they have
the same tonic levels : TGPe = TGPi. Neurons of the Striatum with D1 and
D2 receptors are thought to have comparable afferents from the Cortex [15],
so S → D1 = S → D2 and FC → D1 = FC → D2. Afferents to both
the GPe and GPi from the STN appear to be the same [16], consequently
STN → GPe = STN → GPi. To be acceptable, a solution had to have a
GPi output at rest larger than 0.09, as the GPi is known to be tonically active
[2] and as this output is 0.10 for the CBG and 0.17 for the GPR. Finally, we
chose to limit connection weights in the range [0.05; 1]. Indeed, a null connection
weight would mean no connection at all, changing the connectivity of the circuit.
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2.1 Evolving the Circuit

Our choice for simulating the evolution is the widely used NSGA-II algorithm
[17]. The mutation rate was fixed at μ = 0.1, a rather high value that serves
to widely explore the space of parameters. We set the distribution index for
mutation and cross-over operators in favor of mutation, with ηm = 15 and ηc =
10. We scheduled 10 runs comprising 1500 generations each, with a population
size of 200. The computational framework used was SFERES [18]. Designed to
work in a parallel fashion, it permits fast simulation on multi-cores machines; it
is also fairly easy to set up and use.

The selection functionality of the BG has to be formally defined so as to allow
the computation of some fitness criteria. To evaluate the quality of the circuits,
they were submitted to N = 500 different inputs, each input being a vector of
six random decimals drawn uniformly in [0, 1]. They were simulated during one
second with each of these inputs, before the outputs are considered for fitness
evaluation.

Two objectives have been defined for the evolution. First, the channel corre-
sponding to the largest input (the selected channel) has to be disinhibited to the
maximum. This translates straightforwardly as :

First objective : minimise f1 =

∑
N

GPiselected channel

N
(1)

But this is not sufficient to obtain a WTA algorithm, as this could lead to the
disinhibition of all channels. Therefore, we define the second objective as the
mean of the five other channels :

Second objective : maximise f2 =

∑
N

⎛⎝ ∑
channel �= selected channel

GPichannel

5

⎞⎠
N

(2)

3 Results

Each run resulted after 1500 generations in a set of non-dominated solutions,
called a Pareto front [9]. We define the global Pareto-optimal front as the set of
non-dominated solutions from all the runs (Figure 2). Every front contributes to
it for both models, hence we assume they all have converged to the same optimal
front for both experiments.

As the best solutions are within the global Pareto-optimal fronts, we will con-
fine further development to them. Each of these solutions represents the best
trade-off from a certain point of view; a priori there is no reason to chose one
particular solution at this level of analysis. The Pareto-optimal front comprises
510 solutions for the CBG and 551 solutions for the GPR. Interestingly, solutions
from the CBG front dominate those from the GPR front (Figure 2), the addi-
tional degrees of freedom of the CBG can thus be exploited to globally improve
the performance on our task.
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Fig. 2. The fitnesses for the global Pareto-front of the evolution of CBG and GPR

Overview of the parameters. For the CBG, 8 parameters are maximised
or minimised for all the solutions (Table 1); for the GPR, only two parameters
are in this case (Table 2). The dispersion of a parameter for close solutions on
the front indicates how much this parameter contributes to the fitnesses (high
dispersion reflect minor importance). The standard deviation (SD) does not
suffice to express this, as it is a global indicator reflecting the dispersion of the
values across the whole front. Hence we use the standard deviation of the first
difference of the parameter values accross the front.

For both models, no parameter is at the boundaries in the thalamic loop,
and the SD is high as it ranges from 0.23 to 0.29 (Table 3). The first difference
SD is high too, ranging from 0.33 to 0.42. This shows high dispersion for close
solutions. Hence the contribution of each of these parameters to the fitness scores
appears as secondary, as the evolution process did not set them to precise values.

WTA functionality analysis. We designed the two objectives so that their
combination favors the WTA functionality. Of course, maximizing only one of

Table 1. Mean ± SD and first difference SD for the CBG parameters (except the

thalamic loop)

Minimised

FC → FSI 0.05 ± 0.01 0.01
GPe → D2 0.06 ± 0.05 0.04
GPe → GPi 0.07 ± 0.03 0.01
−TD1/D2 0.06 ± 0.02 0.03

Maximised

S → D1/D2 1 ± 0.01 0.01
D1 → GPi 1 ± 0.01 0.02
D2 → GPe 0.99 ± 0.04 0.05
TGPe/GPi 0.98 ± 0.03 0.04

Between the limits

S → FSI 0.74 ± 0.14 0.17
GPe → STN 0.15 ± 0.04 0.03
GPe → D1 0.47 ± 0.11 0.05
GPe → FSI 0.34 ± 0.07 0.09
STN → GPe/GPi 0.45 ± 0.35 0.14
D1 → GPe 0.76 ± 0.22 0.12
FSI → D1/D2 0.48 ± 0.22 0.09
FC → D1/D2 0.43 ± 0.25 0.11
FC → STN 0.24 ± 0.17 0.16
TSTN 0.91 ± 0.13 0.17
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Table 2. Mean ± SD and first difference SD for the GPR parameters (except the

thalamic loop)

Minimised

GPe → GPi 0.07 ± 0.04 0.04

Maximised

D1 → GPi 1.00 ± 0.00 0.01

Between the limits

S → D1/D2 0.86 ± 0.14 0.11
FC → D1/D2 0.91 ± 0.11 0.10
STN → GPe/GPi 0.62 ± 0.42 0.15
GPe → STN 0.48 ± 0.37 0.13
D2 → GPe 0.22 ± 0.19 0.15
FC → STN 0.24 ± 0.17 0.21
S → STN 0.48 ± 0.34 0.25
−TD1/D2 0.91 ± 0.20 0.05
TSTN 0.29 ± 0.29 0.20
TGPe/GPi 0.76 ± 0.29 0.06

Table 3. Mean ± SD and first difference SD for the thalamic loop parameters

CBG parameters

BG → V L 0.32 ± 0.24 0.33
FC → V L 0.54 ± 0.28 0.38
FC → TRN 0.52 ± 0.29 0.4
V L → FC 0.47 ± 0.26 0.35
V L → TRN 0.62 ± 0.27 0.38
TRN → V L 0.63 ± 0.29 0.42
TV L 0.44 ± 0.24 0.34

GPR parameters

BG → V L 0.53 ± 0.27 0.37
BG → TRN 0.53 ± 0.24 0.34
FC → V L 0.57 ± 0.27 0.38
FC → TRN 0.44 ± 0.24 0.33
V L → FC 0.62 ± 0.26 0.34
V L → TRN 0.53 ± 0.25 0.34
TRN → V L 0.56 ± 0.27 0.39
TRN → V Lself 0.52 ± 0.23 0.33

these objectives is useless for that: a circuit systematically disinhibiting all the
channels would have a score (f1 = 1, f2 = 0), while a circuit maximally inhibiting
all the channels would have a score (f1 = 0, f2 = 1). As shown in Figure 2, the
evolution found no solution that can maximise both of these objectives.

In order to more deeply characterize the solutions, we studied their relation-
ship with the base level, defined as the output of the GPi/SNr with null inputs.
Electrophysiological studies show that the GPi is tonically active in the absence
of inputs, meaning that the base level should be high [2]. Furthermore, when
there are inputs to the BG, the majority of GPi neurons have an increased ac-
tivity compared to the resting state [2,14]. Hence, as mentioned in introduction,
a biologically plausible selection should have a base level higher than the se-
lected channel’s output (expressed by objective 1) and lower than the mean of
unselected channels output (expressed by objective 2). Figure 3 (top) represents
the objectives functions altogether with the base level for each solution of the
fronts. The values of the base levels seem to be structured with regard to fitness
values, plateaus of specific values appear, especially a very constrained one for
the CBG individuals in the 250-450 interval. With regards to the aforementioned
biological plausibility criterion, the best solutions for the CBG are those ranging
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Fig. 3. Left graphics concern the CBG, right graphics concern the GPR. The horizontal

abscissae of each graphic enumerate the solutions along the front, in ascending order for

their first objective. Top : blue and green lines are the values of f1 and f2 respectively

(equations 1 and 2); red dots represent the base level. Bottom : points represent the

percentage of cases where two channels are equally disinhibited, leading to an abusive

selection of both of them.

approximately from 1 to 100 and from 250 to 450. For the GPR, they are the
ones from 1 to 150 and those larger than 325.

We can further refine the set of acceptable solutions by imposing an exclu-
sive selection. Indeed, we did not explicitely forbid the designation of multiple
winners; some of the solutions obtained often disinhibit more than one chan-
nel, instead of the one with the most important input only. The percentage of
such multiple selections is represented in Figure 3 (bottom). Interestingly, the
best selection is found for the solutions operating a biologically plausible WTA
(solutions 250 to 450 for the CBG and 325 to 450 for the GPR), comforting us
in the adequacy between the supposed function operated by the BG, the mod-
eling of the BG (as described by the CBG or GPR) and electrophysiological
data.
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4 Discussion

In this work, we show that two existing models of BG [12,11] can be optimized
through MOEA, with the goal of recreating a ”winner-takes-all” behavior. The
analysis of the variations of the parameters of the best solutions highlighted
some regularities and helped identify critical and indifferent parameters. The
study of the biological plausibility of the solutions helped identifying the most
interesting parts of the Pareto front. Generality of the reasoning is exemplified
by the application on two different models.

Parameterization exploration. On the basis of this case study, it seems
that the MOEA permit to gain insight into the properties of models of a given
neural structure. By generating multiple solutions fulfilling antagonist objectives,
MOEA can be used as a mean for exploration. We divided the modeling of a
WTA into two separate sub-problems (expressed by equations 1 and 2) to explore
a wide variety of different WTA implementations. It was then possible to pick
particular solutions on the basis of ”expert knowledge” not expressed in the
constraints, as we did by delineating a biologically plausible selection behavior.

Model comparison. Comparison between two architectures is also possible.
The CBG Pareto front dominates the GPR one (Figure 2). Furthermore, the
percentage of cases with two winning channels instead of one (bottom of Figure
3) is smaller for the CBG. Hence, the additional degrees of freedom permitted
by the CBG (Figure 1) are useful for our purposes, as they lead to a better
adequacy to a WTA function.

Parameter contribution. The MOEA help identifying the contribution of
a given parameter to a particular behavior. Maximised parameters along the
front give informations on the most important parameters needed to achieve a
presupposed function. For the CBG, these parameters are S → D1/D2, D1 →
GPi, D2 → GPe and TGPe/GPi (Table 1). This outlines some of the principal
connections of the Direct / Indirect pathway hypothesis [19], comforting in some
sense the fundamental pertinence of these two loops in order to achieve selection.
Interestingly, the less complete GPR structure does not permit to see this, as
the D2 → GPe connection is limited (Table 2).

Minimised parameters are in opposition with the desired behavior. In both
models, the GPe → GPi connection is minimised. On the one hand, this is
contradictory with anatomical data pointing out that one third of the projecting
GPe neurons target the GPi/SNr [20], implying that the connection from GPe to
GPi is not non-existent. On the other hand, electrophysiological data lead to the
hypothesis that they might be weak [21]. Our contribution to this precise point
is that, in all the variations of WTA obtained with both the CBG and GPR
structures, this connection grieves the supposed functionality. To explain this
result, we can conceive three non-contradictory hypothesis : (1) both the CBG
and GPR lack in the modeling of a (perhaps unknown) fundamental connection
or property enabling the GPe → GPi to contribute to a WTA algorithm; (2) the



Evolutionary Algorithms to Model the Basal Ganglia 605

BG is performing another function which gives meaning to this connection; (3)
in accordance with electrophysiological data, this connection is effectively weak.

Some parameters are fixed by evolutionary pressure to rather constant values
that are not at the bounds. This is for example the case of the GPe → STN
and GPe → FSI connections of the CBG, exhibiting low standard deviations
(Table 1). This could indicate the best ratio of relative strengths for these con-
nections. However, the models used here are at a pretty high level of abstraction;
consequently, biological interpretation for these relative values is not as straight-
forward as for minimised or maximised values, and should be made with caution.

The study of the parameter variances for solutions exhibiting comparable fit-
nesses permits to isolate parameters that are not needed for the desired behavior.
The thalamic loop of the CBG and GPR models has a high first difference SD
(Table 3), hence the modeling of these is not pertinent with regards to the de-
fined objectives. This is coherent with the intuition of the modelers [22] who
used it to modulate the time taken for the selection. Defining a third objective
for the time of convergence could help to explore the thalamic loop role.

Future work will first involve examining in details what in the BG model
structures or in the constraints underlies the appearance of a base level plateau
for the best WTA solutions obtained, and its possible relevance for the functional
neurobiology of the BG. We will also dig deeper into the biological plausibility
of BG models. By adding connections and neuronal properties neglected in BG
models and by polishing our set of constraints, we will evolve a more complete
model with the goal of imitating data from electrophysiological experiments.

Acknowledgment
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Abstract. We study self-organized cooperation in a heterogeneous

robotic swarm consisting of two sub-swarms. The robots of each sub-swarm

play distinct roles based on their different characteristics. We investigate

how the swarm as a whole can solve complex tasks through a self-organized

process based on local interactions between the sub-swarms. We focus on

an indoor navigation task, in which we use a swarm of wheeled robots,

called foot-bots, and a swarm of flying robots that can attach to the ceiling,

called eye-bots. Foot-bots have to move back and forth between a source

and a target location. Eye-bots are deployed in stationary positions against

the ceiling, with the goal of guiding foot-bots. We study how the com-

bined system can find efficient paths through a cluttered environment in

a distributed way. The key component of our approach is a process of mu-

tual adaptation, in which foot-bots execute instructions given by eye-bots,

and eye-bots observe the behavior of foot-bots to adapt the instructions

they give. The system is based on pheromone mediated navigation of ant

colonies, as eye-bots function as stigmergic markers for foot-bots. Through

simulation, we show that the system finds feasible paths in cluttered envi-

ronments, converges onto the shortest of two paths, and spreads over dif-

ferent paths in case of congestion.

1 Introduction

We study self-organized cooperation in a heterogeneous robotic swarm consisting
of two sub-swarms. The robots of each sub-swarm play distinct roles based on
their different characteristics. We investigate how the swarm as a whole can solve
complex tasks through a process based on local interactions between sub-swarms.
We focus on an indoor navigation task. Our solution is based on stigmergic
foraging in ant colonies [1]: we let one sub-swarm serve as active stigmergic
markers for the other, so that the system as a whole learns efficient paths.

We consider the following problem setup. A swarm of wheeled robots, called
foot-bots, is deployed in an indoor environment to solve a navigation task: they
need to go back and forth between a source and a target location (e.g., to trans-
port objects). They are assisted by a swarm of flying robots that can attach to the
ceiling, called eye-bots. These are deployed beforehand to cover the area between
source and target and take fixed positions at the ceiling. From these positions,

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 607–617, 2010.
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they give directional instructions to the foot-bots, to guide them towards the
source or the target. The use of a heterogeneous swarm provides flexibility. The
flying eye-bots can quickly explore and cover an unknown indoor environment.
Their ability to attach to the ceiling allows them to interact with the foot-bots,
guide and observe them, without physically interfering with their movements.

We investigate how the combined system of foot-bots and eye-bots can find
navigable and efficient paths in a cluttered environment. We focus on a fully
distributed solution, which relies only on local communication between eye-bots
and nearby foot-bots (using infrared and visual communication), without any
interaction among eye-bots or foot-bots. We do not study how eye-bots are
deployed. Given the limited communication requirements of our approach, we do
not need the eye-bots to be in communication range or in a specific arrangement:
we can use any algorithm that provides sufficient coverage of an area (e.g., [2]).

We propose a distributed learning algorithm, in which eye-bots start from a
random decision policy to give instructions to foot-bots, and observe foot-bot
behavior in order to adapt the instructions they give and learn a good policy. This
way, eye-bots use foot-bots as sampling agents to learn about the environment.
From a different point of view, the eye-bots form a set of discrete locations
in the environment storing and updating a distributed navigation policy that
is based on observed foot-bot behavior and in turn influences future foot-bot
movements. In this sense, they form stigmergic markers for foot-bot navigation.
The heterogeneous system of eye-bots and foot-bots is able to cooperatively find
feasible paths for foot-bots through the environment. Moreover, it is capable of
finding shortest paths and of spreading over multiple paths in case of congestion.

2 Robot Characteristics and Problem Setup

The foot-bot and eye-bot are under development in the Swarmanoid project
(http://www.swarmanoid.org). The foot-bot (Fig. 1(a)) moves on the ground.
It has two cameras, one omnidirectional and one pointing up. Foot-bots can
communicate with each other and with eye-bots via visual signals (in this paper,
we use only communication between foot-bots and eye-bots), using the 256 color
LED ring that is placed around their body and the LED beacon they have
on top. Moreover, they can exchange wireless messages locally (up to 3 m) at
low bandwidth using an infrared range and bearing (IrRB) system.The eye-bot
(Fig. 1(b)) is a flying robot, which can attach to the ceiling using a magnet (the
design assumes ferromagnetic ceilings). It has a pan-and-tilt camera which it
can point in any direction below. Like the foot-bot, it can communicate using a
multi-color LED ring placed around its body, or using the IrRB system. Details
for both robots can be found on the Swarmanoid website.

The eye-bots and foot-bots are placed in an indoor arena like the one shown
in Fig. 1(c). The task of foot-bots is to find paths to go back and forth be-
tween a source (top right in the figure) and a target location (bottom left in
the figure) (e.g., to transport objects). Eye-bots are attached to the ceiling in
a formation that covers the area between source and target (we show a grid,

http://www.swarmanoid.org
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(a)

(b) (c)

eye−bot visual range
target eye−bot

eye−bots

obstacles

foot−bots

Fig. 1. (a) Foot-bot (CAD draw), (b) eye-bot (prototype), and (c) example scenario

but any formation that lets eye-bots approximately cover the area with their
visual range could be used). They support the foot-bots in their task, by giving
directional instructions to foot-bots that are within their visual range (the disk
under selected eye-bots in the figure). The task is made difficult by the presence
of obstacles that block the way for foot-bots. We study how the heterogeneous
swarm of foot-bots and eye-bots can solve this task in a distributed way.

3 Related Work

We know of no other work that studies stigmergic cooperation between sub-
swarms. However, given the ant colony inspiration, our work is related to re-
search on pheromone based stigmergic foraging in swarm robotics [3,4,5,6]. A
difficult issue in such systems is how to implement pheromone. Some authors
use practically infeasible solutions, such as light encoding of pheromone using
an overhead projector [3,5] or a map in a shared memory [6], assuming that
the issue of pheromone implementation will be solved somehow in the future.
Other authors experiment with chemical traces, e.g. using alcohol [4]. We use
stigmergic communication points to store pheromone, which can be considered
a practical alternative. A similar approach was followed in [7], where pheromone
is stored in RFID tags embedded in the environment. Compared to that work,
our approach has the advantage that communication points are mobile robots,
so that the system also works in environments that have not been fitted with
embedded tags. Moreover, that work was not concerned with adaptive path find-
ing. One other work that employs robots to store pheromone is [8]. Also they
do not study adaptive path learning. Moreover, they do not use distinct robot
swarms to store pheromone and to solve a task. We believe our approach gives
more flexibility. Finally, we point out that our work is to our knowledge the first
that considers automatic traffic spreading in addition to shortest path finding.
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In terms of problem setup, our work is related to research on the use of em-
bedded sensor networks for robot navigation [9,10,11]. In such systems, sensor
nodes spread in the environment are used to guide a mobile robot to a target.
The sensor nodes play a role similar to that of our eye-bots. An important dif-
ference is the central role of network communication in those systems. Sensor
nodes calculate the shortest path through the network formed among them, and
use this to guide the robot. This requires all nodes to be connected in a net-
work. Moreover, it assumes a one-to-one relation between communication links
and navigable path segments: all communication links are expected to indicate
navigable paths, and all navigable paths should be covered by communication
links. Since our approach relies on local communication and foot-bot observation,
rather than on network communication, none of these restrictions are present.

4 Cooperative Stigmergic Navigation

4.1 General Description

The main idea behind our approach is that eye-bots maintain stochastic policies,
which they use to choose navigation instructions to broadcast to foot-bots, and
that they update these policies based on visual observations of foot-bot behavior.

We limit the possible navigation instructions to 12 discrete directions, so one
direction every π/6 radians. Each eye-bot maintains two different policies: policy
Pt for the target and policy Ps for the source. Each policy consists of an array
of 12 positive real valued numbers, expressing the preference for the discrete
navigation directions. Periodically, at discrete time steps, the eye-bot selects
two directions from the policies, θt for the target and θs for the source. These
directions are broadcast locally to guide nearby foot-bots.

Foot-bots move towards the directions they receive from eye-bots. As they
move, they use light signals to make their behavior visible for eye-bots. A foot-
bot simultaneously switches on its LED beacon on top and one LED in front,
to show eye-bots its movement direction. The color of the front LED is used to
indicate whether the foot-bot’s goal is the source or the target, whereas the color
of the LED beacon shows whether it is doing obstacle avoidance.

Eye-bots use their camera to observe the behavior of foot-bots in their field of
view, and based on this information they update Pt and Ps. They consider three
aspects of foot-bot behavior: the foot-bot’s current goal (whether it is going to
the target or the source), the direction θf it is coming from (relative to the
eye-bot’s orientation), and whether it is performing obstacle avoidance.

Using this algorithm, eye-bots use foot-bots as sampling agents to explore the
effect of different actions in the environment and learn efficient policies. From
a different point of view, foot-bots use eye-bots as stigmergic communication
points which store previous foot-bot experiences and influence future foot-bot
movements. Seen in this way, eye-bots fulfill a similar role as pheromone in
stigmergic foraging by ant colonies. Therefore, they could be seen as a practical
way to physically implement pheromone in swarm robotic systems.
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4.2 Updating and Using Eye-Bot Stochastic Policies

When an eye-bot observes a foot-bot that is going towards the target, it assumes
that the foot-bot is coming from the source, so it increases the policy Ps for the
direction θf that the foot-bot is coming from, and decreases the policy Pt for
that same direction (equivalent updates are made for foot-bots going towards
the source). The idea is that θf is a local sample of a feasible direction towards
the source. The frequency with which a direction is observed is also expected
to be related to its quality, as this effect has been observed in experiments with
ant colonies [12]. When the eye-bot observes a foot-bot performing obstacle
avoidance, it decreases both policies Ps and Pt for the direction in which it sees
the foot-bot, assuming that direction is blocked by obstacles.

To update a policy P in a given direction θ, the eye-bot first associates θ with
the closest of its 12 discrete policy directions, and derives the corresponding
index i. Then, policy increases are performed using an additive constant ca,
while policy decreases are performed using a multiplicative constant cm ∈ ]0, 1[,
as shown in (1). The multiplicative rule allows the system to learn fast about
the presence of obstacles. All policy entries are initialized to P [i] = 1/12.

P [i] =

{
P [i] + ca in case of a policy increase

P [i] · cm in case of a policy decrease
(1)

Eye-bots draw directions from the policies using a stochastic rule balancing
exploitation and exploration: with a constant probability q, the direction with
highest preference is chosen. Otherwise, a direction is chosen randomly, from a
distribution proportional to the relative preferences of directions in the policy.

4.3 Directional Instructions from Eye-Bots to Foot-Bots

Eye-bots give instructions to foot-bots using a combination of visual signals
with LEDs and wireless communication with the IrRB system. Periodically, they
sample the directions θs and θt from their policies, and broadcast them over the
IrRB system so foot-bots can locally receive them. To show foot-bots a reference
direction θ0, they switch on a red LED in front and a blue LED in the back.
This communication scheme is scalable for the number of foot-bots and eye-bots,
since wireless communication is limited to one periodic, local broadcast by each
eye-bot. All other communication is via light signals.

IrRB communication from eye-bots to foot-bots is focused in a cone, so a
foot-bot needs to move under an eye-bot to receive its messages. The foot-bot
uses its upward camera to read θ0, and extracts direction θs or θt (depending on
whether its goal is the source or the target) from the received wireless message. It
interprets θs or θt relative to θ0, to derive a new travel direction θn. It turns into
direction θn, and then moves forward for a distance d (enough to get out of view
of the eye-bot it received the message from), or until it arrives under a different
eye-bot. If after d no eye-bot is reached, the foot-bot moves towards the closest
eye-bot in its camera view. If no eye-bot is seen, it starts a random movement:
repeatedly make a random turn and move forward for a random distance.
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4.4 Foot-Bot Navigation Behavior

Foot-bot movements are guided by the instructions of eye-bots, as outlined in
Sect. 4.3. However, Foot-bots have a preference not to return where they come
from, so exploration is directed away from where they come from. This preference
is implemented as follows. When a foot-bot receives from an eye-bot e a travel
direction θn that is forward (i.e., between −π/2 and π/2) with respect to the
travel direction received from the previous eye-bot, the foot-bot follows θn and
does not consider other directions received in subsequent time steps from e.
If, however, the received travel direction θn is backward, the foot-bot follows θn

but simultaneously keeps listening for other instructions from e. If e has a strong
preference for the backward direction θn, it will send θn to the foot-bot again in
the next time steps, so that the foot-bot keeps going in that direction. However,
if in one of the subsequent time steps e sends a forward direction θ′n, the foot-
bot will use that without listening to other directions, and will not turn back.
Besides this, foot-bots have an obstacle avoidance behavior, which makes them
turn away reactively from obstacles detected using infrared proximity sensors.

Foot-bots use LED signals to show eye-bots their status and behavior. Besides
changing the colors, as described in Sect. 4.1, they also switch off the front
LED in certain occasions. This way, eye-bots can see where they are (through
the LED beacon, which is not switched off), but not the direction they are
coming from, θf . As a consequence, eye-bots cannot update their policy for
θf . Foot-bots do this whenever their movement direction is not representative
for the general direction they are following from source to target: when they
are performing obstacle avoidance, when they are following an instruction that
sends them backward, or when they are not following an eye-bot instruction (e.g.,
performing random movement). The goal is to reduce noise in eye-bot policies.

5 Finding Paths in a Cluttered Environment

We experimentally investigate whether our system can find paths in a cluttered
environment. All tests in this section and in the rest of this paper are done with
the ARGoS simulator, which was developed in the Swarmanoid project (see
http://www.swarmanoid.org/swarmanoid_simulation.php). All experiments
last 3000 s. We carry out 100 independent runs for each test. Some preliminary
results for the behavior presented in this paper appeared in [13] (with slightly
different settings for the behavior and the experimental setup). In all tests, we
use the following parameter settings, which were defined empirically: ca = 0.5,
cm = 0.99, q = 0.5, and d = 2 m.

We study the scenario of Fig. 1(c) and consider the effect of varying the
number of foot-bots. We measure the time from the start of the experiment
until the first foot-bot reaches the target, t1, the average time needed by foot-
bots to travel between source and target, ta, and the average time needed by
foot-bots in case we pre-program eye-bots to show the shortest path, ts. The
results are shown in Fig. 2. Error bars show one standard deviation.

http://www.swarmanoid.org/swarmanoid_simulation.php
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Fig. 2. Travel times for foot-bots in the scenario of Fig. 1(c)

At first, eye-bot policies are uniform, and foot-bots perform random explo-
ration. Once the first foot-bot has reached the target, it can for its way back
profit from updated policies. A comparison between ta and t1 shows that foot-
bots need much less time on average to travel between source and target than
during the first run. This shows that the system can learn a path from experi-
ence and guide foot-bots between source and target in a cluttered environment.
Moreover, ta is close to ts, showing that the system finds efficient paths. For
increasing numbers of foot-bots, t1 decreases. This is because multiple foot-bots
searching in parallel explore the environment more efficiently. The increase in
ta and ts for higher numbers of foot-bots is due to congestion. We come back
to this in Sect. 7. Finally, we point out that the theoretically best travel time
for a foot-bot going between source and destination at maximum speed while
passing under eye-bots is 73 s, which is very close to ts for 1 robot (76 s). This
time is dependent on the placement of eye-bots, which defines the possible paths
followed by foot-bots. If eye-bots were placed above the shortest path around ob-
stacles, this time could be reduced to 53 s, which indicates that optimal eye-bot
placement can be an interesting direction for future research.

6 Shortest Path Finding

In our navigation system, eye-bots play the role of active stigmergic markers for
foot-bots. We designed the system after pheromone-based stigmergic foraging in
ant colonies. By laying and following pheromone trails, ant colonies are able to
converge onto the shortest of multiple paths [12]. This is because the shortest
path can be completed faster and more frequently by ants, and therefore receives
more pheromone, which in turn attracts more ants. Given the similarities be-
tween the basic mechanisms in our system and in ant colonies, we investigate to
which extent our swarm exhibits similar shortest path finding abilities.

We used the scenarios of Fig. 3. The source and target locations are connected
by two corridors. We vary the ratio r = ll/lr, where ll is the length of the left
corridor and lr of the right corridor: we use r = 1, r = 1.5 and r = 2 (lr = 20 m
in all scenarios). This setup is derived from the one used with ants in [12]. We
use 15 foot-bots, which we deploy one by one with an interval of 30 s.
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Fig. 3. Double corridor experiments: (a) r = 1, (b) r = 1.5 and (c) r = 2

We gather statistics in the last 1000 s of each experiment, when all foot-bots
have been deployed and the system has had time to explore the area. We count
over all remaining time steps how many foot-bots use the right corridor, cr, and
how many the left corridor, cl. We calculate the ratio ρ = cr/(cr + cl), which is
near 1 or near 0 if the foot-bots have converged onto respectively the right or
the left corridor, and near 0.5 if they use both corridors in similar proportions.
In Fig. 3, we show a histogram summarizing the values of ρ measured in 100 test
runs (on the x-axis the values of ρ discretized into 5 intervals, on the y-axis the
fraction of the 100 runs that falls into each interval).

In the case of equal corridors (lr = ll), the foot-bots converge on moving over
one of them, which can be either the left or the right. In some cases, both corri-
dors are used equally. This behavior is the same as for ants [12]. When corridors
are of different length, foot-bots converge more often onto the shortest corri-
dor, and this effect gets stronger as the difference between corridors increases,
showing that our system can find shortest paths.

The shortest path behavior of the system is influenced by the number of foot-
bots. When only one foot-bot is used, the system converges onto both corridors
equally likely. Increasing the number of foot-bots, the system selects the short-
est corridor with increasing preference. Finally, when the number of foot-bots
increases further, congestion starts to play a role. This is investigated in Sect. 7.

7 Robot Congestion and Self-organized Spreading

In Sect. 5, we showed how the time ta needed by foot-bots to go between source
and target increases for increasing numbers of foot-bots, due to congestion (espe-
cially directly under the eye-bots, where foot-bots need to go to get directions).
A way to handle congestion is to spread robot traffic over multiple paths. Here
we investigate how spreading can be obtained in a distributed self-organized way.



Cooperative Stigmergic Navigation in a Heterogeneous Robotic Swarm 615

0.0 0.2 0.4 0.6 0.8 1.0

1

0.0 0.2 0.4 0.6 0.8 1.0

2

0.0 0.2 0.4 0.6 0.8 1.0

3

0.0 0.2 0.4 0.6 0.8 1.0

4

0.0 0.2 0.4 0.6 0.8 1.0

5

0.0 0.2 0.4 0.6 0.8 1.0

6

0.0 0.2 0.4 0.6 0.8 1.0

7

0.0 0.2 0.4 0.6 0.8 1.0

8

0.0 0.2 0.4 0.6 0.8 1.0

9

0.0 0.2 0.4 0.6 0.8 1.0

10

0.0 0.2 0.4 0.6 0.8 1.0

11

0.0 0.2 0.4 0.6 0.8 1.0

12

0.0 0.2 0.4 0.6 0.8 1.0

13

0.0 0.2 0.4 0.6 0.8 1.0

14

0.0 0.2 0.4 0.6 0.8 1.0

15

0.0 0.2 0.4 0.6 0.8 1.0

16

0.0 0.2 0.4 0.6 0.8 1.0

17

0.0 0.2 0.4 0.6 0.8 1.0

18

0.0 0.2 0.4 0.6 0.8 1.0

19

0.0 0.2 0.4 0.6 0.8 1.0

20

0.0 0.2 0.4 0.6 0.8 1.0

21

0.0 0.2 0.4 0.6 0.8 1.0

22

0.0 0.2 0.4 0.6 0.8 1.0

23

0.0 0.2 0.4 0.6 0.8 1.0

24

0.0 0.2 0.4 0.6 0.8 1.0

25

0.0 0.2 0.4 0.6 0.8 1.0

26

0.0 0.2 0.4 0.6 0.8 1.0

27

0.0 0.2 0.4 0.6 0.8 1.0

28

0.0 0.2 0.4 0.6 0.8 1.0

29

0.0 0.2 0.4 0.6 0.8 1.0

30

Fig. 4. Frequency histogram of the ratio ρ in the scenario of Fig. 3(a) for the number

of foot-bots ranging from 1 to 30. The y-axis scale of all plots ranges from 0 to 1.

Interestingly, ants are capable of traffic spreading. When two paths of equal
length are available, they converge onto one when ant traffic is low, and spread
over both when traffic is high [14]. This behavior is based on direct interactions
between ants: in crowded conditions, ants physically push each other onto differ-
ent paths. Since robots, like ants, are embodied agents, physical interactions play
an important role in their behavior. These interactions increase in case of con-
gestion. A mechanism of traffic spreading similar to that of ants could therefore
also be used for robots.

Experiments show that our behavior, without modifications, is capable of
traffic spreading. We use the scenario with equal corridors of Fig. 3(a), with
increased numbers of foot-bots. In Fig. 4, we show the distribution of the ratio
ρ for tests with 1 up to 30 foot-bots. For low numbers of foot-bots, all tests have
a ratio ρ of either 0 or 1, indicating that they focus on one of the corridors.
As the number of foot-bots grows, the number of tests with intermediate values
for ρ increases, indicating that the system increasingly spreads traffic over both
corridors. For high numbers of foot-bots, traffic is always spread. The sequence
of histograms in Fig. 4 shows how the system displays qualitatively different
behavior for increasing numbers of robots: the distribution of ρ evolves from
bimodal over uniform to unimodal.
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Fig. 5. The average foot-bot travel time (in seconds) vs. the ratio ρ in the scenario of

Fig. 3(a) for 10, 20, and 30 foot-bots

Visual investigation revealed that traffic spreading is indeed caused by inter-
actions between foot-bots. The driving factor is the fact that foot-bots execute
obstacle avoidance when they bump into each other. As described in Sect. 4, eye-
bots observe where foot-bots do obstacle avoidance, and reduce their policies in
those directions. This directs foot-bots away from congested areas, so that traffic
spreading emerges from the self-organized path finding behavior.

In Fig. 5, we investigate the relation between the ratio ρ and the travel time
ta. We show graphs for 10, 20 and 30 foot-bots. For each of these, we plot
ta against ρ for all 100 test runs. As discussed before, ta grows for increasing
numbers of foot-bots. However, when traffic is spread over two corridors, ta is
lower than when traffic is focused on one corridor, confirming the usefulness of
traffic spreading. This difference grows for higher numbers of foot-bots, and the
system increasingly chooses intermediate values of ρ.

Traffic spreading also takes place in scenarios with unequal corridors. In the
scenario of Fig. 3(b), we observed that for high numbers of foot-bots (more than
15), traffic eventually spreads over both corridors. The system may even send
more traffic over the longest corridor, as this can accommodate more foot-bots
under less congestion. Reducing congestion this way, the system could reduce
foot-bot travel time. However, given the limited information exchange (observed
foot-bots form only an implicit feedback about path qualities for eye-bots), the
system is not able to choose the point of operation that minimizes foot-bot
travel time. In future work, we will improve this by including explicit travel time
feedback from foot-bots to eye-bots.

8 Conclusions

We have described a cooperative behavior for heterogeneous swarm robotics
to solve a navigation task in a distributed way. It is inspired by pheromone
based stigmergic foraging in ant colonies: we let the robots of one sub-swarm
function as active stigmergic markers for the other sub-swarm. We showed that
our approach can find paths in a cluttered environment, find shortest paths, and
spread robot traffic in case of congestion. The system also shows a practically
feasible approach to implement pheromone in swarm robotics.
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We will develop this system in two directions. First, we want to let eye-bots
move and adapt their position based on foot-bot feedback. This lets them search
the best locations to give instructions, and reduces the need for full eye-bot
coverage of the area. Second, we want to let foot-bots give explicit feed-back
about the quality of the paths they follow, to make policy learning more precise.
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Abstract. Two main theories of female mate choice, that females either pick the
best from the n closest males (best-of-n) or the closest with some minimum qual-
ity (min-threshold), make different behavioral predictions in some cases, yet both
are supported by biological data. We present a computational agent-based model
that is well-suited for investigating the differences between the two strategies
for the biological model organism Hyla versicolor (“gray treefrog”). We show,
based on results from systematic simulation studies, that min-threshold overall is
the dominant strategy, even though best-of-n has some areas in parameter space
where it dominates min-threshold.

Keywords: female choice, mating strategies, agent-based modeling.

1 Introduction

Most studies of mate choice assume that females “choose” a single mate from a group
of eligible males based on some criteria. Female treefrogs, for example, show phono-
taxis toward calls of males with higher pulse numbers [4,10]. Females are thus assumed
to make an active choice [11], show a directional bias (more pulses are better [19]), and
differentiate between individual males up to a maximum of 5 [9]. While there are sev-
eral proposed rules for female sampling and decision making [14], the most prevalent
theories suggest that females choose either the “best” of the closest n = 1, . . . ,5 – best-
of-n theory [13] – or the first male they encounter whose quality is above a minimum
threshold for acceptance – min-threshold theory [14].

Yet, as Jennions and Petrie [14] point out “it has proved difficult to distinguish which
tactics are used by females in the field”. In fact, there is empirical evidence for both
theories, even though they predict different choices in some cases. In this paper, we
attempt to contribute to resolving the apparent contradiction in the empirical data using
a social agent-based simulation model of female choice in treefrogs.1

We start by introducing our agent-based model, which consists of frog and environ-
mental models based as much as possible on biological data. Then we present a thor-
ough analysis of the results and show how both best-of-n and min-threshold strategies
dominate each other in different regions of parameter space for different performance

1 This work was supported in part by NSF grant #0725187 to the first and third authors.

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 618–627, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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measures with min-threshold dominating in vast parts of parameter space. The subse-
quent discussion briefly reflects on some biological implications of our findings and
proposes an empirically testable hypothesis to resolve the apparent contradiction in the
biological data. The conclusion briefly summarizes our findings and proposes some
model extensions for future work.

2 The Model

The aim of our agent-based model is to investigate the social interactions of male and
female agents in a spatially explicit environment, using amphibians as the biological
model organisms. It was specifically designed to generate and evaluate hypotheses
about the dynamics of mating with focus on trade-offs among different female mating
strategies in both artificial and natural conditions. The model includes only essential
variables for the mating scenario: variables for female choice strategies, male-female
sex ratio, and male call quality as well as parameters for the distributions of males and
females. For simplicity, male amphibian social interactions with other males were not
investigated at this stage.

We model male and female frogs using “male agents” and “female agents” in a con-
tinuous two-dimensional environment called the “swamp”, with dimensions Ex and Ey.2

While the goal for all agents is to mate, only females can choose their mate.

Environment. Each male agent i is placed in the swamp at location 〈ix, iy〉 in a territory
of radius rτ according to the male distribution mδ. Male agents always have to be inside
the swamp and cannot be placed in another male’s territory. I.e., the position 〈ix, iy〉 of
male agent i must satisfy the following restrictions for all positions 〈 jx, jy〉 of males
j �= i: [d(i, j) > 2 · τ]∧ [ix + rτ < Ex]∧ [iy + rτ < Ey]∧ [ix− rτ > 0]∧ [iy− rτ > 0] where
d(i, j) =

√
(ix− jx)2 +(iy− jy)2 is the Euclidean distance between agents i and j (note

that male agents do not move). Different from males, female agents are always placed
in locations on the border of the swamp according to the female distribution fδ. Mating
between a female agent i and a male agent j always occurs when they are within mating
distance dmate, i.e., when d(i, j) ≤ dmate.

Agents. Both male and female agents have states that fully describe their make-up at
any given time (Tab. 1 top). The state of a male agent i consists of its location in the
swamp 〈ix, iy〉, its size isize, as well as it pulse number ipn. The state of a female agent i
consists of its location in the swamp 〈ix, iy〉, its size isize, its velocity iv, its orientation α
and and its mating strategy iπ(n).

2.1 Model Parameters

We divide the model parameters into two sets: fixed and free. Fixed parameters (Tab. 1
middle) were set to known constant values from the literature and kept the same for all
simulation experiments. In contrast, free parameters (Tab. 1 bottom) are parameters for

2 To avoid confusion between biological and simulated entities, we will refer to simulated frogs
as “agents”. We will use the gender attributes “male” and “female” alone if it is clear from the
context whether we refer to simulated or real (male or female) frogs.
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Table 1. State variables of male and female agents (top), fixed model parameters kept at constant
values for all simulations based on the literature (middle), and free model parameters and their
variation (bottom)

Symbol Parameter Meaning Initial Value Update/Rationale

Male agents (state var)
size size given by msize constant
〈x,y〉 position based on mδ constant
pn pulse number based on µpn and σpn constant
Female agents (state var)
v velocity given by fv constant
size size given by fsize constant
α heading∈[0,360] degrees based on fδ calculated
〈x,y〉 position based on fδ calculated
π(n) mating strategy with given by fπ together with constant

strategy parameter n strategy parameter values

Environment (fixed)
Ex swamp width 10m see [17,6]
Ey swamp height 25m see [17,6]
dmate mating distance 4cm model-specific
rτ (male) territory radius 50cm model-specific
nmale the number of males 25 model-specific
Individual (fixed)
msize male size 4.72 cm see [7]
fsize female size 5.38 cm see [18]
fv female velocity 1.86 cm/s see [3]

Environment (free)
n f emale the number of females 1..20 model-specific
fδ female distribution random at swamp edge model-specific
mδ male distribution Gaussian model-specific
Individual (free)
µpn mean male pulse number 6..24 in increments of 2 model-specific
π(n) mating rule bestofn minthresh see [3,4,10]
Strategy (free)
θ minimum threshold 6..24 in increments of 2 model-specific
ν number of sampled males 1..5 model-specific

which there is either no biological data available or no consensus on what the right value
is supposed to be. They can be divided into strategy parameters, individual and envi-
ronmental parameters. Strategy parameters concern only the strategy used by female
agents in their selection of mates. Individual parameters concern the behavior of indi-
vidual agents, and environmental parameters concern the make-up of the swamp, i.e.,
the number of agents, their locations, and their interactions (e.g., mating). Together, the
free parameters form a multidimensional parameter space whose dimensions depend
on the variations and particular samplings of each free parameter. We will first describe
the variations of the free parameters and then provide details of the experimental setup.
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Environmental parameters. The swamp is Ex = 10 by Ey = 25 meters which allows
all female agents to sample every male agent. The male agents’ territory radius rτ was
fixed at 50 cm. Males were placed in the swamp according to a Gaussian distribution
with means µx = Ex/2 and µy = Ey/2 and standard deviations σx = Ex/4 and σy = Ey/4,
respectively, resulting in a greater density of males in the center of the swamp. Since
the number of males nmales was kept constant for all experiments at 25, the number of
females was varied from 1 to 20 yielding different male-female sex ratios (from 0.04
to 0.82) at the beginning of each run (which, of course, changes throughout the run as
females and males mate).

Individual parameters. The pulse number for individual males was assigned based
on sampling a Gaussian distribution with mean µpn and standard deviation σpn, where
µpn ∈ {6,8,10,12,14,16,18,20,22,24} and σpn = 2. The two biologically plausible
strategies π (kept constant throughout each simulation run) are best-of-closest-n (best-
of-n) and closest-above-minimum-threshold (min-threshold) [3,4,10]. Let c(i,X) = { j ∈
X |¬∃k ∈ X [d(k, i) < d( j, i)]}, which is the set of the closest agents from set X to the
given agent i (usually this will only contain one agent, but there could be multiple agents
that are equidistant to i). Let M denote the set of all male agents in the swamp.

– Bestofn. Let cn(i,X) denote the set of the n closest agents from set X with respect to
the location of agent i.3 Then the selected male agent is argmax

j∈cn(i,M)
( jpn) for the female

i, i.e., the male with highest pulse number in the set of the closest n males.
– Minthresh. The selected male agent is argmax

j∈c(i,{l∈M|lpn≥iθ})
( jpn), where iθ is the mini-

mum threshold of female agent i, i.e., the male with the highest pulse number above
the minimum threshold among the closest males.

Note that we are only considering homogeneous populations of females, so that every
female in a given simulation run has the same mating strategy.

Strategy parameters. For bestofn, we vary its parameter ν ∈ {1,2,3,4,5} and for min-
threshold, we vary its parameter θ ∈ {6,8,10,12,14,16,18,20,22,24} (the upper limit
of ν = 5 was chosen based on prior model results [13] and empirical data [14]).

2.2 Model Algorithm and Implementation

The model was implemented in the Java programming language within the Repast Sim-
phony agent-based simulation environment and run as a discrete-time simulation where
each update cycle corresponds to one second in real-time (the pseudo-code of the main
simulation loop is given below).

The males’ positions and pulse numbers and females’ positions and strategies are
initialized based on a random seed (in initializeMales and initializeFemales).4 In the

3 cn(i,X) can be defined inductively as follows: c0(i,X) = /0 and cn+1(i,X) = cn(i,X)∪ { j ∈
X−Cn(i,X)|¬∃l �= j(l ∈ (X−Cn(i,X))∧d(l, i) < d( j, i)}.

4 Females are incrementally placed, hence the location of the fourth female, for example, will
be the same in all simulations with four or more females with the same random seed. This is
to allow analyses of females across different male-female ratios.
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Algorithm 1. Pseudo code of the model simulation algorithm.
Simulation(seed,maleList, f emaleList)

initializeMales(seed,maleList)
initializeFemales(seed, f emaleList)
terminate← false
step← 0
while ¬terminate do

step← step+1
for all f ∈ f emaleList,m ∈ maleList do

if withinMatingDistance( f ,m) then
report mated and remove( f , f emaleList)
report mated and remove(m,maleList)

end if
end for
for all f ∈ f emaleList do

updateState( f )
end for
terminate← checkTerminationConditions()

end while

main loop, female agents sample male agents at every time step, select a candidate male
according to their strategy π (and strategy parameters n) and then approach the selected
male at their velocity [3]. This sequence models the female frogs’ behavior of sampling
the males, selecting a potential mate, and leaping towards him [11]. The female’s head-
ing angle α is updated according to the direction to the chosen male and the female’s
new position 〈x,y〉 is updated based on the female’s velocity v and heading α. At every
step, for every male and female agent, their mating distance is compared to the mating
range (withinMatingDistance): if a female is within dmate of a male, both are reported
as mated and removed from their respective lists (report mated and remove), other-
wise the female state is updated (updateState) (there is no need to update the male
state because males neither move nor change their pulse number). Because there are
always fewer females than males in all of our simulations [22], the termination con-
dition for the simulation depends on the females’ mating strategy: the simulation ends
when either all females have mated (as will always be the case in besto f n) or when no
more males above the female min-threshold θ are left (checkTerminationConditions),
in which case none of the remaining females will ever mate.

3 Results

We ran 100 simulations with different random initial conditions (based on different
random seeds) for each point in the multidimensional parameter space given by the
free model parameters for a total of almost 1 million simulations. An analysis of vari-
ance (ANOVA) of the results with number of females (nf), male pulse number (pn),
strategy (strat) and strategy parameter (sp) as independent variables, and male qual-
ity as dependent variable, shows highly significant main effects for all four variables,
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Table 2. The results of the full ANOVA model for average mated male pulse number as dependent
variable (see text for details). The bold-face values are highly significant p-values.

Variable Df F value Pr(>F) Variable Df F value Pr(>F)
nf 1 406.17 <.001 nf×sp 1 289.73 <.001
pn 1 1098300 <.001 pn×sp×strat 1 1028.2 <.001
sp 1 168090 <.001 nf×sp×strat 1 248.73 <.001
strat 1 8384.5 <.001 — — —
nf×strat 1 265.25 <.001 nf×pn 1 1.12 .29
pn×strat 1 3765.2 <.001 nf×pn×strat 1 0.002 .96
sp×strat 1 10972 <.001 nf×pn×sp 1 0.72 .39
pn×sp 1 45679 <.001 nf×pn×sp×strat 1 0.01 .92

highly significant two-way interactions (except for nf×pn, which was not significant as
expected), and two highly significant three-way interactions (pn×strat×sp, as well as
nf×strat×sp); the four-way interaction was not significant (see Tab. 2).

Overall, the average quality of mated males using best-of-n is sensitive to the male-
female sex ratio (Fig. 1 top), different from min-threshold where females do not mate
below their threshold (leading to no matings in setups where the min-threshold exceeds
the male pulse number). Both strategies show (almost) linear increase in mated male
quality as a function of average male pulse number (Fig. 1 middle), with best-of-n
having a steeper slope than min-threshold.

To be able to compare the two strategies directly, we introduce the notion of “dom-
inance” where a strategy S with parameter value set P is said to dominate a strategy T
with parameter value set Q if there exists a parameter value p for strategy S such that for
all parameter values q for strategy T it is the case that Sp (i.e., S with parameter value
p) leads to significantly higher performance (at a given α level) than Tq (i.e., T with any
of its parameter values q); symbolically, ∃p ∈ P∀q ∈ Q Perf(Sp) >αPerf(Tq), where
Perf(Sp) is the performance of S with parameter value p (in the mating task) and >α
denotes a statistically significant ordering at the α level (e.g., p-values < α = 0.05 in
a paired t-test). This notion of dominance is of particular interest from an evolutionary
perspective because a dominant strategy is one that will likely evolve in competition
with other strategies (because there is no parameter value for the non-dominant strategy
that will lead to even equal performance). Comparing the dominance of min-threshold
and best-of-n, we can see (Fig. 1 bottom left) that for average mated male quality min-
threshold dominates best-of-n for most male pulse number and male-female ratios, only
leaving the small area for the highest average male pulse number and low to medium
male-female ratios for best-of-n to dominate.5 Moreover, min-threshold is also superior
in terms of time-to-mating (Fig. 1 bottom right), with no place for best-of-n to dominate.
Note, however, that both parameter spaces have areas where neither strategy dominates.

5 Note that the small region of domination for best-of-n seems to be in conflict within the top
plots of Fig. 1 as min-threshold seems to lead to overall better average mated male quality than
best-of-n for all sex ratios. However, the numbers for min-threshold are as high because in the
averages across the 100 random conditions we excluded those runs where min-threshold did
not lead to any mating. Yet, in the dominance plots those simulations are taken into account in
the statistical comparison.
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Fig. 1. Interactions for best-of-n (top) and min-threshold (middle) for average quality of mated
males. The missing line segments in min-threshold (middle right) for some x-values indicate that
there were scenarios without matings because min-threshold exceeds the male pulse numbers.
The bottom shows dominance plots for best-of-n (red) and min-threshold (blue) for average male
quality (bottom left) and average time-to-mating (bottom right).
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4 Discussion

The above results suggest that the min-threshold strategy is very attractive from an
evolutionary perspective. Females should be able to adjust their level of choosiness,
given the lack of predictability in available mates and other aspects of natural environ-
ments [1]. The min-threshold strategy allows animals to change the threshold without
changing the strategy itself, while requiring little complexity in terms of the cognitive
architecture. In fact, empirical evidence in female frogs suggests that thresholds are
not set via an active cognitive process (e.g., not via comparison of memories of calls
heard in the past), but by hormonal changes [15]). This may explain why female frogs
sometimes do not find mates – hormone levels may vary independently of the quality
of the male population. On the other hand, the memory and neural integration require-
ments of best-of-n (e.g., in the case of n = 5) would be substantial, requiring females to
remember the quality and location of males heard in the past [13].

The min-threshold strategy should also be adopted when the costs of comparing mul-
tiple mates is high [24]. Our simulation included no costs to sampling. Therefore, our
study shows that the min-threshold strategy can be superior even in an environment
without sampling costs. Another critical aspect is the time an animal spends searching
for a mate. Not only are energy resources used during the search, but the individual may
be at greater risk (e.g., from predation) and/or physiological processes might limit fer-
tile times [14]. A unique feature of our spatially-explicit model is that time-to-mating
is an outcome of the simulation (rather than a cost predicted a priori).

So why is it then that there is empirical evidence for best-of-n when min-threshold
is superior in all the above respects? We believe the answer might lie in the fact that
female treefrogs are usually only present at the breeding site on the night they mate and
lay eggs. Decisions made on a single night will thus have significant impact on male
fitness. And if a female’s threshold is set too high so that none of the males in the swamp
can meet it, she will not be able to mate. This is the point where switching strategies
might help, i.e., if a female even after lowering her threshold over time can still not
find an eligible male, then switching to best-of-n (for n > 1) will at least guarantee that
she will find a partner close to the (remaining) male population’s average pulse number
(Fig. 1 top left). Mating with one of the remaining “average males” might in the end
still be better than not mating at all, for females can only mate over a very limited time
period, or they lay their eggs unfertilized. If females did switch strategies for the above
reason, then it would not be surprising that some past empirical studies have found
female choices to be consistent with the best-of-n strategy.

5 Related Work

Female choice has been extensively studied in a variety of scenarios, ranging from
simulated mating strategy in animals such as fruit flies [16] to humans [21,12,5]. In
the context of frogs, for example, Baugh and Ryan [2] investigated the propensity of a
female to follow one mate selection strategy versus another. Tárano [23] researched the
spacial orientation of male treefrogs during mating time. Our research leverages such
empirical work to build models of our agents and the factors that play a critical role in
the mating scenario.
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There have also been attempts using neural network simulations to understand gen-
eral mechanisms dictating mating preferences based on evolved sensory bias. Fuller
[8], for example, shows modest connections between sensory bias and mate selection.
Similarly, our work explores the range of sensory bias level (min-threshold) of female
treefrogs when selecting a mate based on male call features. However, our study is
less focused on how such biases develop and more focused on the ramification of such
biases on overall utility of the resulting mate selection strategy.

While these studies focus on different aspects and properties of the mate choice at
different levels of detail for different reasons, our study is the first that investigates
female choice in the context of treefrogs in great detail over a large parameter space
in order to contribute to the resolution of an open biological question, namely which
strategy – min-threshold or best-of-n– female treefrogs might use to select their mates.

6 Conclusion and Future Work

The spatially-explicit frog mating simulation provides a unique and powerful method
for testing predictions about mate choice behavior. The comprehensive investigation
of two female choice strategies, min-threshold and best-of-n, across a large parameter
space demonstrated that min-threshold is a superior strategy with respect to average
mated male quality and time-to-mating. The main downside of min-threshold seems
to be the lack of mating in cases where male call rates are lower than the female’s
threshold. We speculated that frogs might at some point switch strategies in order to
be able to mate at all, which would explain the apparent inconsistency found in the
empirical data. With the current results in hand, it is now possible to design empirical
experiments with real frogs and arrays of speakers mimicking male callers in order to
test specific predictions of behavior in a complex environment.

In the future, we plan to extend the agent-based model in several ways. For one, we
only investigated one male distribution here, but it might be interesting to see if the
above results will still be valid for other possible male (and also female) distributions.
Moreover, we will also extend the model to include a male aggression model together
with strategies for handling aggressive encounters (e.g., based on our previous general
aggression model [20]). Finally, it would also be interesting to investigate evolutionary
scenarios with multiple generations of frogs and possibly additional female strategies
in order to compare the outcomes to the results of this study.
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Abstract. In this work, we are interested in understanding how emo-

tional interactions with a social partner can bootstrap increasingly com-

plex behaviors such as social referencing. Our idea is that social refer-

encing as well as facial expression recognition can emerge from a simple

sensori-motor system involving emotional stimuli. Without knowing that

the other is an agent, the robot is able to learn some complex tasks if

the human partner has some “empathy” or at least “resonate” with the

robot head (low level emotional resonance). Hence we advocate the idea

that social referencing can be bootstrapped from a simple sensori-motor

system not dedicated to social interactions.

1 Introduction

How can a robot or a human learn more and more complex tasks? This question
is becoming central in robotics and psychology. In this work, we are interesting
in understanding how emotional interactions with a social partner can boot-
strap increasingly complex behaviors. This study is important both for robotics
application and understanding development. In particular, we propose that so-
cial referencing, gathering information through emotional interaction, fulfills this
goal. Social referencing, a developmental process incorporating the ability to rec-
ognize, understand, respond to and alter behavior in response to the emotional
expressions of a social partner, allows an infant to seek information from another
individual and use that information to guide his behavior toward an object or
event [14].

Gathering information through emotional interaction seems to be a fast and
efficient way to trigger learning. This is especially evident in early stages of hu-
man cognitive development, but also evident in other primates [19]. Social ref-
erencing ability might provide the infant, or a robot, with valuable information
concerning the environment and the outcome of its behavior, and is particularly
useful since there is no need for verbal interactions. In social referencing, a good
(or bad) object or event is identified or signaled with an emotional message, not
with a verbal label. The emotional values can be provided by a variety of modal-
ities of emotional expressions, such as facial expressions, voice, gestures, etc. We
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choose to use facial expressions since they are an excellent way to communi-
cate important information in ambiguous situations but also because they can
be learned autonoumously very quickly [4]. Our idea is that social referencing
as well as facial expression recognition can emerge from a simple sensori-motor
system. All the work is based on the idea of the perception ambiguity: the in-
ability at first to differentiate our own body from the body of others if they
are correlated with our own actions. This perception ambiguity associated to a
homeostatic system is sufficient to trigger first facial expression recognition and
next to learn to associate an emotional value to an arbitrary object. Without
knowing that the other is an agent, the robot is able to learn some complex
tasks. Hence we advocate the idea that social referencing can be bootstrapped
from a simple sensori-motor system not dedicated to social interactions.

2 Overview

Our social referencing experiment (fig. 1,2) has the following set-up: a robotic
head having one camera is able to recognize facial expressions and another cam-
era is turned toward a workspace where a Katana arm is able to reach an object.
As a consequence, the robot (head plus arm) can interact with the environment
(human partner) and can manipulate objects. In the developed architecture, the
robot learns to handle positive objects and to avoid negative objects as a direct
consequence of emotional interactions with the social partner. The robotic head
learns to recognize emotional facial expressions (sadness, joy, anger, suprise and
neutral face) autonomously [4]. The internal emotional state of the robot trig-
gers one specific expression and the human mimicks the robot face to face. The
robot can learn to associate its internal emotional state with the human’s facial
expression. The robot associates what it is doing with what it is seeing. After
few minutes of real time learning (typically less than 3 minutes), the robot is

Fig. 1. Experimental set-up for social referencing. The robot relies upon the use of its

expressive head which is also able to recognize facial expressions. the robotic arm will

reach the positive objects and avert the negative objects after emotional interactions

with a human partner.
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Fig. 2. Social referencing model. Social referencing emerging from the sensori-motor

interactions between facial expression recognition, objects emotional value and visuo-

motor learning. A simple sensori-motor architecture is able to learn and recognize the

facial expressions, and then to discriminate between facial/non facial stimuli. Using a

simple chain of conditioning, the robot learns the emotional value of an object as a

result of the interactions with the human (face discrimination). The robot focuses on

an object using a visual attention processus (Gabor filters, color). After a visuo-motor

learning, the robot arm reaches or avoids some objects in the workspace thanks to the

self generated reinforcement signal A(emotional value coming from the facial expression

recognition). A is built as the result of the facial expression recognition (with A1 neuron

corresponding to happy facial expression, the A2 neuron corresponding to angry facial

expression)

able to recognize the human facial expressions as well as to mimick them. In
parallel, the eye-arm system can learn throw visuo-motor asociation to reach
several positions in the workspace [1]. A reinforcing signal is used to reach or
avoid a position in the workspace [9]. The signal can be an emotional signal
(e.g joy facial expression is a positive signal and an angry facial expression is a
negative signal).

The tested scenario is the following: The robot is in a neutral emotional state,
a human displays a joy facial expression in the presence of an object, conse-
quently the robot moves to a joy state and associates a positive value to the
object. On the contrary if the human displays an anger facial expression, the
value associated to this object is negative. The robot arm can handle or avoid
the objects according to their associated emotional value. In other words, the
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emotional value associated to the object is the reinforcing signal that the arm
uses so as to move.

In the following paper, we will see a developmental approach of the social
referencing namely: the development of facial expressions recognition, the asso-
ciation of emotional value to an object and finally an aspect of motor control
according to emotional stimuli.

3 Online Learning of Facial Expression Recognition

At this stage of the development, the robot must be able to recognize and un-
derstand the caregiver facial expressions. We summarize here an architecture
that we developped for online learning of facial expression recognition. A simple
sensory-motor architecture is able to express several emotions and to recognize
online the facial expression of a caregiver if this latter naturally tends to imitate
the system or to resonate with it. In particular, we showed that autonomous
learning of face/non face discrimination is more complex than the facial expres-
sion recognition [4].

Using the cognitive system algebra [11], we showed that a simple sensory-
motor architecture based on a classical conditioning paradigm [20,2] can learn
to recognize facial expressions online. Furthermore, the dynamics of the human-
robot interaction bring important but non explicit signals, such as the interaction
rhythm that helps the system to perform the face/non face discrimination. The
interaction rhythm is used to allow first a robust learning of the facial expression
without face tracking and next to perform the learning of the face/non face dis-
crimination. Psychologists underline the importance of the synchrony during the
interaction between the mother and the baby [7]. If a rhythmic interaction be-
tween baby and mother involves positive feelings and smiles (positive reward), a
social interaction interuption involves negative feelings (negative reward). In our
case (following [1]), the rhythm is used as a reward signal. It provides an inter-
esting reinforcement signal to learn to recognize an interacting partner(face/non
face).
We adopt the following experimental protocol: the facial expressions of the

robotic head have been calibrated by FACS experts [8]. In the first phase of
interaction, the robot produces a random facial expression during 2s (among the
following: sadness, happiness, anger, surprise), then returns to a neutral face dur-
ing 2s to avoid human misinterpretations of the robot facial expression (same
procedure as in psychological experiments). The human subject is explicitely
asked to mimic the robot head (even without any instruction, psychologist have
shown that the human subject resonates with the facial expressions of the robot
head [17]). This first phase lasts between 2 and 3 minutes depending on the
subject ”patience”. Then, in the second phase, the random emotional states
generator is stopped. After the N.N (Neural Network) has learned, the robot
mimics the human partner facial expressions. This architecture (see fig. 3) al-
lows the robot to recognize the subjects visual features and to learn if these
features are correlated with the robot own facial expressions. Moreover, another
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a) b)

Fig. 3. a)The global architecture is able to recognize and imitate a facial expression and

to perform a face/non face discrimination. A visual processing allows to extract sequen-

tially the local views. The internal state prediction learns the associations between

the local views and the internal state. b)Temporal activity of the neurons associated

to the triggering of the different facial expressions when the robot imitates the human

(after learning).

sub network learns to predict the interaction rhythm allowing the robot to detect
if an interacting agent (a human) faces the robot head. In this case, the facial
expression recognition is a bootstrap to discriminate face from non face images.
At the end of this development stage, the robot head is able to recognize and
understand the emotional facial expressions. They can now be seen as a way to
communicate.

4 Associating an Emotional Value to an Object

After the human partner has imitated during 2 to 3 minutes the robot head,
the robot is able to recognize and display the human facial expressions. As soon
as this learning is performed, the human can interact with the robotic head to
associate an emotional value to an object (positive or negative). The emotional
expression is a way to communicate, that will help the robot to interact with
objects according to the human will.

The N.N processes (see fig. 2) in the same way signals from the robot’s in-
ternal state and infomation correlated with this internal state. An internal state
can trigger a robot facial expression and a human facial expression can trigger
also the robot facial expression. In case of conflict, the weights from the inter-
nal state to control the facial expression are higher than those coming from the
facial expression recognition. That allows to prefer the display of the internal
state rather than facial expression recognition (this is an apriori to avoid the
use of much more complex structures that could be useful to allow a volontary
control of the facial expression). In the absence of the internal state, the rec-
ognized facial expression induces an internal state which is associated with the
object (a simple conditionning chain: fig. 2). Classical conditioning is used to
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Fig. 4. Visual attention. The system focuses on some relevant features of the image.

A saliency map is performed in order to focus an interesting area in the image. Visual

primitives are calculated independently (gabor filters, color detector), a fusion of these

primitives is performed in order to find the area that the robot must analyze.

perform the association between the emotional value that the human transmits
and some areas of the image. The attentional process used in this model is very
simple (see [12,6] for more information), the robot focuses on colored patches
and textures (fig. 4). When focusing on an object, the robot extracts some focus
points and associates the recognition of the local view surrounding each focus
point with the emotional value of the robot. The focus points are the result of
a DOG (Difference of gaussian) filter convolved with the gradient of the input
image. This process allows the system to focus more on corners or end of lines in
the image. Its main advantages over the SIFT [15] method are its computational
speed and the few number of needed focus points. One after another, the most
active focus points are used to compute local views (a log polar1 transform cen-
tered on the focus point and its radius is 20 pixels). Each local view is learned
by a V Fj (Visual Features) neuron:

V Fj = netj.Hθ(netj) θ = max(γ, net + σnet) (1)

netj = 1− 1
N

N∑
i=1

|Wij − Ii| (2)

V Fj is the activity of neuron j in the group V F . Hθ(x) is the Heaviside func-
tion2. γ = 0.95 is the vigilance (if the prototype recognition is below γ then a
new neuron is recruited). net is the average of the output, σnet is the standard
deviation, I is the input image (N size of I) and W are the weights between

1 The local polar transform increases the robustness of the extracted local views to

small rotations and scale variations.
2 Heaviside function:

Hθ(x) =

{
1 if x > θ
0 otherwise
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I and V F . The learning rule for the local view categorization allows both one
shot learning and long term averaging. The modifications of the weights W are
computed as follow:

ΔWij = δj
k(aj(t)Ii + ε(Ii −Wij)(1− V Fj)) (3)

with k = ArgMax(V Fj), aj(t) = 1 only when a new neuron is recruited other-
wise aj(t) = 0, δj

k is the Kronecker symbol3 and ε = 0.001 is a positive constant
inferior to 1. When a new neuron is recruited, the weights are modified to match
the input (term aj(t)Ii). The other part of the learning rule ε(Ii−Wij)(1−V Fj)
is used to average the already learned prototypes. The more the input will be
close to the weights, the less the weights are modified. Conversely the less the
inputs will be close to the weights, the more they are averaged. If ε is chosen too
small then it will have a small impact. Conversely, if ε is too big, the previously
learned prototypes can be forgotten. With this learning rule, the neurons in the
V F group learn to average the prototypes of objects.

The object state prediction (OSP ) group associates the activity of V F with
the recognized facial expression (FE) by the robot (simple conditioning mecha-
nism using the Least Mean Square rule [22]):

OSPj =
∑

i

wij .V Fi Δwij = ε1.V Fi.(FEj −OSPj) (4)

OSP corresponds to the object emotional value for one focus point and wij is
the synaptic weights between V F and OSP . OEV (object emotinal value) cor-
responds to a short term memory. OEV is used to recursively sum and filter on
a short period (N < 1), the emotional value OSP associated with each explored
local view. OEV corresponds to the emotional value to object (accumulation of
all focus points), the OEVi highest activity triggers the ith (0 < i ≤ 5) emotional
value (WTA mechanism). After learning, the associations between V F the view
recognition and OSP the emotional state are strong enough to bypass the low
level reflex activity coming from the FE. Each focus points has an emotional
value (OSP ) and OEV is the accumulation of all focus points which corresponds
to the object emotional value:

OEVi = OSPi + N.OEVi (5)

At this stage of development, the robot is able to use the emotional facial ex-
pression of the human partner in order to assign an emotional value to an object.
As a result of the interaction with the partner, the robot recognizes and under-
stands the human’s expression in the aim of disambiguating some situations (a
new object in the workspace).

3 Kronecker function:

δj
k
(x) =

{
x if j = k
0 otherwise
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5 Visuo-motor Learning and Yuragi Controler

At this stage of the development, the robot must be able to modulate his behavior
as the result of the emotional interaction. After visuo-motor learning (learning
between the extremity of the arm and the proprioception), several positions in
the workspace are reached by the robot arm [1]. One visual position corresponds
to one or several motor configurations (e.g attractors). These attractors pull the
arm in an attraction basin (the position target). This control is performed with
a dynamical system to smooth the trajectory [9]. This dynamical system also
uses a reinforcing signal in the aim of attaching a lot of or little importance
to some attractors, for instance a reward can be given if the arm follows the
right direction, otherwise a punition. The reinforcing signal can be emotional
(joy facial expression as a positive signal and angry facial expression as negative
signal). Following[9] attractor selection model can be represented by Langevin
equation as:

τxẋ = f(x) ∗A + ε (6)

where x and f(x) are the state (arm proprioception)and the dynamics of the
attractor selection model, τx = 0.1 is time constant and ε represents noise. A is
the reinforcing signal which indicates the fitness of the state x to the environment
and controls the behavior of the attractor selection model. That is to say, f(x)∗A
becomes dominant when the activity is large, and the state transition approaches
deterministic behavior (converge towards the goal). On the other hand, the noise
ε becomes dominant when the activity is small and the state transition becomes
more probabilistic.

f(x) =
na∑
i=1

Ni
(Xi − x)
||Xi − x|| (7)

Ni =
gi(x)∑na

j=1 gj(x)
(8)

gi(x) = exp{−β||Xi − x||2} (9)

With na the number of selected attractors, Xi (i=1, ... , na) a vector reprensent-
ing the center of the i-th attractor and the function Ni a normalized Gaussian.
The behavior of this system is such that the arm approaches to the nearest
attractor.

Figure 5 shows the important steps of the social referencing model. Figure 5a
shows the object’s emotional value associated with the facial expressions of the
human partner. Before T1, the partner displays a happy facial expression in
presence of the object,the human associates a positive emotional value to this
object (A1 is activated). We can see (fig. 5b,5c) more the distance between the
gripper and the object decreases more the speed of the arm’s motors decreases
in order to tend to 0 when the object is reached. After T1, the human partner
displays an angry facial expression (transmits a negative value), the object value
is modified (negative emotional value, A2 is activated). We can see that the
emotional value is now negative although, due to noise, the positive emotional
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Fig. 5. These curves show: a) the emotional value transmits to the object thanks to the

interaction with the human’s partner (before T1 human transmits a positive value after

T1 the human transmits a negative value) b)the speeds of each arm’s motor (6 degrees

of freedom) c) the distance to the object d) the robotic arm trajectories from different

starting points: the arm is able to reach the object associated with the happy facial

expression and avoid the object when it is associated with the angry facial expression.

value is high. This shows the learning robustness to the noise. Now, the arm
avoids the object as if the object appears to be “dangerous” to the robot.

At this development stage, the robot can reach an object if the self generated
reinforcing signal A is positive (the emotional value is positive) and avoid an
object if A is negative (the emotional value is negative). The human emotional
expression is able to communicate an emotional value to an object (for instance a
dangereous object or a interested object) and moreover can modulate the robot
behavior.

6 Conclusion

This work suggests the robot/partner system is an autopoietic social system
[16] in which the emotional signal and empathy are important elements of the
network to maintain the interaction and to allow the learning of more and more
complex skills for instance the social referencing. The emotional facial expres-
sion is an excellent way to communicate in some ambiguous situations. The
relationship between the robot and the partner is improved because an emo-
tional communication can exist. It allows the robot to learn and manipulate
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an object. This work also emphasizes that the recognition of the other is built
through interaction.

Social cognition, including social referencing, may have a stronger emotional
foundation and less of a need for complex cognition, than previously thought
(e.g. [3]). New neuropsychological studies of the mirror system in emotions[13],
the neural basis of intersubjectivity (e.g. [10]) and the current study highlight
the important role played by emotion in the developmental emergence of social
referencing.

To our knowledge, this is the first system that autonomously learns a cou-
pling between emotion (facial expression recognition) and sensory-motor skills.
We developped a real self-supervised developmental sequence contrary to oth-
ers autors [5,21]. Here, we don’t solve the question of joint attention which is
an social referencing skill. Joint attention may also be reached using a learning
protocol similar to Nagai[18] (developmental model for the joint attention). We
think this approach can provide new interesting insights about how humans can
develop social referencing capabilities from sensorimotors dynamics. In contrast
to current developmental theory that social referencing is a complex cognitive
process of triadic relations, the current work suggests 1) the primacy of emotion
in learning, 2) the simple classical conditionning mechanisms by which anoth-
ers emotional signal assumes identity with internal emotional states, and 3) a
simple system of pairing internal emotional state with object-directed behavior.
To improve the functioning of the system, there may be a need to modulate the
internal emotional state as a function of intensity of emotional expressions, and
to modulate the behavior to the object in accordance, e.g an intense angry ex-
pression might involve withdrawing, an intense happy expression might involve
picking up more quickly. On going work suggest it might be possible.
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gestuels entre la mère et son bébé de 10 semaines. Devenir 13, 55–82 (2001)

8. Ekman, P., Friesen, W.V.: Facial action coding system: A technique for the mea-

surement of facial movement. Consulting Psychologists Press, Palo Alto (1978)

9. Fukuyori, I., Nakamura, Y., Matsumoto, Y., Ishiguro, H.: Flexible control mech-

anism for multi-dof robotic arm based on biological fluctuation. In: Asada, M.,

Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040,

pp. 22–31. Springer, Heidelberg (2008)

10. Gallese, V.: The roots of empathy: The shared manifold hypothesis and neural

basis of intersubjectivity. Psychopathology 36, 171–180 (2003)

11. Gaussier, P., Prepin, K., Nadel, J.: Toward a cognitive system algebra: Application

to facial expression learning and imitation. In: Iida, F., Pfeiter, R., Steels, L.,

Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), pp. 243–258.

Springer, Heidelberg (2004)

12. Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews

Neuroscience 2(3), 194–203 (2001)

13. Keyser, C., Bastiaansen, J., Thioux, M.: Evidence for mirror systems in emotions.

Phil. Trans. R. Soc. B 364, 2391–2404 (2009)

14. Klinnert, M.D., Campos, J.J., Sorce, J.F., Emde, R.N., Svejda, M.: The develop-

ment of the social referencing in infancy. Emotion in Early Development 2, 57–86

(1983)

15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision 2, 91–110 (2004)

16. Mataruna, H.R., Varela, F.J.: Autopoiesis and Cognition: the realization of the

living. Reidel, Dordrecht (1980)

17. Nadel, J., Simon, M., Canet, P., Soussignan, R., Blanchard, P., Canamero, L.,

Gaussier, P.: Human responses to an expressive robot. In: Epirob 2006 (2006)

18. Nagai, Y., Hosoda, K., Morita, A., Asada, M.: A constructive model for the devel-

opment of joint attention. Connect. Sci. 15(4), 211–229 (2003)

19. Russell, C.L., Bard, K.A., Adamson, L.B.: Social referencing by young chimpanzees

(pan troglodytes). Journal of Comparative Psychology 111(2), 185–193 (1997)

20. Schmajuk, N.A.: A neural network approach to hippocampal function in classical

conditioning. Behavioral Neuroscience 105(1), 82–110 (1991)

21. Thomaz, A.L., Berlin, M., Breazeal, C.: An embodied computational model of

social referencing. In: IEEE International Workshop on Human Robot Interaction,

RO-MAN (2005)

22. Widrow, B., Hoff, M.E.: Adaptive switching circuits. In: IRE WESCON, New York,

pp. 96–104 (1960); Convention Record



A Model of Symmetry Breaking in Collective
Decision-Making

Heiko Hamann1, Bernd Meyer2, Thomas Schmickl1, and Karl Crailsheim1

1 Artificial Life Lab of the Dep. of Zoology, Karl-Franzens University Graz, Austria

{heiko.hamann,thomas.schmickl,karl.crailsheim}@uni-graz.at
2 FIT Centre for Research in Intelligent Systems, Monash University, Melbourne

bernd.meyer@acm.org

Abstract. Symmetry breaking is commonly found in self-organized col-

lective decision making. It serves an important functional role, specifi-

cally in biological and bio-inspired systems. The analysis of symmetry

breaking is thus an important key to understanding self-organized deci-

sion making. However, in many systems of practical importance avail-

able analytic methods cannot be applied due to the complexity of the

scenario and consequentially the model. This applies specifically to self-

organization in bio-inspired engineering. We propose a new modeling

approach which allows us to formally analyze important properties of

such processes. The core idea of our approach is to infer a compact model

based on stochastic processes for a one-dimensional symmetry parameter.

This enables us to analyze the fundamental properties of even complex

collective decision making processes via Fokker–Planck theory. We are

able to quantitatively address the effectiveness of symmetry breaking,

the stability, the time taken to reach a consensus, and other parameters.

This is demonstrated with two examples from swarm robotics.

1 Introduction

Self-organization is one of the fundamental mechanism used in nature to achieve
flexible and adaptive behavior in unpredictable environments [1]. Particularly col-
lective decision making in social groups is often driven by self-organizing pro-
cesses. Some of the most prominent examples of this are found in social insects, for
example the choice of nest sites [2] and food sources [3,4] by ant colonies and the
aggregation behavior of bees [5]. Countless other examples of self-organized col-
lective decision making exist in both biological and human social systems, such as
in quorum sensing in bacteria colonies [6] and in trend setting and following in eco-
nomic markets [7]. Despite this variability the fundamental principles that govern
self-organized collective behavior appear to be universal across the range [8].

Understanding the fundamental properties of self-organized collective decision
making is thus of central importance in a broad spectrum of disciplines, ranging
from biology and social science to bio-inspired engineering.

An important property commonly found in self-organized collective decision
making is symmetry breaking. This refers to the fact that a system choosing be-
tween a number of options may make a majority (or even an unanimous) decision

S. Doncieux et al. (Eds.): SAB 2010, LNAI 6226, pp. 639–648, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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for one of these options even if all of them have the same utility. From a biologi-
cal perspective, symmetry breaking serves an important function. This is immedi-
ately obvious when we think about decisions that must be unanimous, such as the
choice of a new nest site [9]. In other cases symmetry breaking still serves an im-
portant function even though its benefit may be less obvious. Consider food source
exploitation by an ant colony. When faced with a choice between two equally good
food sources, many species will converge on only one of them instead of exploiting
both simultaneously [1]. There are several benefits of concentrating the colony’s
foragers on a single source. Arguably the most important one is that it is signifi-
cantly easier to defend a single source against potential competition and aggres-
sors. Further benefit may, for example, arise from the fact that collaborative trans-
port of large prey items can be an efficient form of food retrieval [10] compared
with the transport of small items by individual foragers. Similar considerations
transfer immediately to technical applications of self-organized collective decision
making, for example in swarm robotics.

Because of its central functional role, the analysis of symmetry breaking is one
of the keys to a better understanding of collective decision making. This is widely
accepted and a substantial body of work on the topics exists, much of which
is based on bifurcation analysis. Recruitment in ant colonies is a well-known
example where this approach has yielded a significant amount of insight [1].

Symmetry breaking in self-organized collective decision-making usually arises
from the interplay of positive and negative feedback loops. For example, in mass
recruiting ant colonies pheromone communication is the main mechanism for
guiding foragers to food sources. Roughly speaking, pheromones attract potential
foragers to a food source, and successful foragers deposit pheromones on paths
to good food sources. This positive feedback is counterbalanced by negative
feedbacks, namely the evaporation of pheromone and overcrowding. The balance
between these two influences leads to a stable yet flexible decision system [3,4].

Arguably the most common approach to the analysis of such coupled feedback
systems is via differential equation systems. In sufficiently simple cases, bifurca-
tion analysis can then be used to establish properties of the symmetry breaking
process. However, as the complexity of the scenario and the individual behavior
increases, an analysis of the full differential equation model soon becomes ex-
tremely involved (see e.g. [11]) and often is simply impossible. Moreover, finding
such a model can be difficult in the first place, specifically in cases where the
behavior of individuals is relatively complex.

Thus, alternative ways to model the symmetry breaking properties in such sys-
tems are required. In this paper we propose such a method. The core idea of our
approach is to dispense with complex mechanistic models which capture feedback
loops or even individual behavior explicitly. We replace these with significantly
simpler phenomenological models that focus exclusively on the description of sym-
metry breaking. The advantage of doing this is that we obtain a compact mathe-
matical model which is amenable to a formal analysis. In this way we can analyt-
ically obtain information about the fundamental properties of the process, such
as the stability of decisions. We will illustrate this approach and such an analysis
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with two examples from swarm robotics. The first one is the aggregation behavior
of a swarm whose control algorithms are modeled on honeybee behavior [12,13,14],
the second one is an emergent density classification task [15].

2 Overall Approach

To introduce our approach we consider the simplest possible scenario of a binary
choice between two options A, B with equal utility. We will say that a system
with N individuals (agents) exhibits symmetry breaking, if a significant majority
of it decides for either A or B regardless of their equal utilities. We define a
symmetry parameter (w.l.o.g. with respect to option A) as s(t) = L(t)/N , where
L(t) is the number of agents that have chosen option A at time t. A majority
decision is any outcome in which the process has converged to a state where at
least L ≥ δN individuals have chosen option A with 0.5! δ ≤ 1.0. In terms of
s this simply means s ≥ δ. s(t) essentially captures all information required to
analyze the symmetry breaking properties of the process.

If s(t) converges we can in principle obtain the steady state probability density
function (PDF) for s(t). This steady state PDF ρ∗(s) tells us how likely it is
that a certain proportion of agents decides for option A. In a binary symmetry
breaking scenario, ρ∗(s) will be bimodal and (possibly) symmetric (see Fig. 3 for
the steady state PDFs of our two example scenarios). Given ρ∗(s) we can thus
calculate the expected proportion P of experiments in which a majority decision
with at least δ majority occurs as∫ δ

0

ρ∗(s)ds +
∫ 1

1−δ

ρ∗(s)ds = P. (1)

Provided s(t) converges we can in principle always obtain ρ∗(s) at least approx-
imately by statistical evaluation of a large number of sample simulations. The
same is true of other properties of s(t), for example the time to convergence.
This is indeed the standard approach to the analysis of such systems if no ana-
lytic description is available: A symmetry parameter is defined, the full system
is simulated, and the statistics of the symmetry parameter is measured from the
results of these (typically high-dimensional) simulations. This approach has two
drawbacks: Firstly, it can be computationally extremely costly as obtaining nu-
merical values for individual properties requires the simulation of a large number
of sample developments. Secondly, this form of statistics only gives us numeric
results for individual properties and does not allow us to perform a more general
analysis of these properties.

An explicit representation of s(t) would obviously enable us to perform signif-
icantly more powerful analysis provided it is simple enough to stay mathemati-
cally tractable. This idea is at the very center of our approach.

We simply and somewhat boldly postulate that the development of s(t) can be
described by a 1-d Langevin equation, a particular form of stochastic differential
equation:

ds

dt
= α(s, t) + β(s, t)ξ(t), (2)
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where α describes the deterministic development (so-called drift), ξ a Gaussian
noise |ξ(t)| = 1, with mean 〈ξ(t)〉 = 0, and uncorrelated in time 〈ξ(t)ξ(t′)〉 =
δ(t − t′), and β captures the fluctuation of the noise amplitude. Having a def-
inition of s(t) in this form unlocks a whole repertoire of formal tools for the
analysis of stochastic differential equations that allow us to calculate most of
the properties that we are interested in [16].

Two questions arise immediately: (1) Does this description indeed exist for
a given system, i.e. is it possible at all to correctly reduce the behavior of the
(potentially high-dimensional) system to a one-dimensional system? (2) Even if
it is possible, how can we infer α and β?

The first question cannot generally be answered, and some systems will not
admit such a description. However, our case studies give some indication that
it should be possible to approximate the behaviour of many interesting system
quite well. Our methodology approaches the question optimistically by assuming
the existence of such a description: We first attempt to infer α and β. This can
be done via a heuristic argument (as evidenced by the case studies) or with
standard numerical fitting techniques. Once candidates for α and β are obtained
the crucial step is their verification. This is performed by obtaining a large
number of sample developments for s(t) in two complementary ways: One set
of samples is generated by simulating the full original (mechanistic) model and
measuring s(t) at each simulation step, another set of samples is obtained by
numeric forward integration of s(t) according to Eq. 2 for given α and β. If
the two sample sets are not in statistical agreement we have to dismiss the
candidate functions α, β. However, if the sets agree statistically, we are justified
in our choice of α and β and the simplified model Eq. 2 captures the relevant
aspects of the process statistically correctly. In this case we may discard the full
model and simply proceed with an analysis of the simplified model.

3 Investigated Scenarios

We will now illustrate this approach with two example scenarios from swarm
robotics. Both are instances of homogeneous multi-agent systems (MAS), where
the agents move in a two dimensional rectangular arena surrounded by walls.

Our first scenario is collision-based adaptive aggregation. The task of the
robot swarm is to aggregate at the brightest spot in the arena. This is essen-
tially a physically embodied simulation of the behavior of young honeybees,
that typically aggregate at areas of a certain temperature. The system and its
distributed control algorithm, termed BEECLUST, have been described in full
detail in [13,17], and we only give a brief summary here.

The robots are equipped with sensors for distance measurements as well as
a sensor that allows them to measure a special inhomogeneous property of the
arena (e.g., light). In addition, they are able to identify other robots as such. Each
robot moves in a straight line (with initial random heading) until it perceives
an obstacle Ω within sensor range. If Ω is a wall it turns away and moves
straight again. If Ω is another robot, it counts the number of other robots K
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in the vicinity. If K ≥ σ the robot measures the local luminance. The higher
the luminance the longer the agent stays stopped. After the waiting period has
elapsed, the agent turns away from the other agent and moves straight again.

The collective aggregation at the brightest spot is a consequence of positive
feedback. Waiting times are longer at bright spots and the agent density is
increased through clustering in these regions. Negative feedback is induced by
the saturation of the limited space with high brightness.

Initially, the agents have random headings, are in the state ‘moving’, and
are random uniformly distributed in the whole arena (i.e., on average we have
initially the same number of robots in the left and in the right half of the arena).
The luminance distribution in the test arena is bimodal with maxima of the same
value and shape in the left and right half of the arena (for details, see [12,14]).
As a measure of symmetry we use sb(t) = L(t)/N (‘b’ for BEECLUST) where
L(t) is the number of robots in the left half of the arena, and N the swarm size.

Our second scenario is an emergent density classification task. Robots in the
swarm exist in two states ‘red’ and ‘green’. The task of the robot swarm is to
estimate whether there are initially more green or more red swarm members,
i.e. to converge on a majority decision. This problem is derived from a well
known example of emergent computation in cellular automata [18]. N robots
are randomly distributed in the arena and randomly initialized to be red or
green in a given proportion. The robots move and perform collision avoidance,
i.e. if another robot comes too close they turn away to increase the distance.
At each encounter the robots remember the color of each other. After five robot
encounters, each robot changes its color to the one it encountered most often. We
are interested in the question whether (a majority of) the swarm stably converges
on one color and whether this is the original majority color (for details, see [15]).

As a measure of symmetry we use sd(t) = R(t)/N (‘d’ for ‘density classifica-
tion’) where R(t) is the number of red robots and N the total swarm size.

Both scenarios include a stochastic component. The density classification sce-
nario includes a stochastic component as we explicitly account for errors in
the color recognition. We assume that a robot recognizes the color of the en-
countered robot correctly only with a given probability γ = 0.8. While noise is
explicitly incorporated in the case of the density classification scenario, it implic-
itly enters the BEECLUST scenario. This is because the basic movement and
collision-avoidance mechanism is a billiard-like system that introduces pseudo-
randomness through deterministic chaos.

4 Dynamics of the Symmetry Parameter

As reported in [12], most macroscopic characteristics of the collective decision
processes of these systems can approximately be captured by two features of the
symmetry parameter s. First, the mean of the absolute changes

Δsabs(s, t) =
1
K

∑
i

|si(t)− si(t− 1)|, (3)
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averaged over K samples si(t) obtained from many independent simulation runs.
Second, the mean of the relative changes

Δsrel(s, t) =
1
K

∑
i

si(t)− si(t− 1), (4)

which is an approximation of the derivative. In Fig. 1, we show the results of
the measurements for both scenarios. Note that Δsrel at s = 0.5 averages to
Δsrel(s = 0.5, t) ≈ 0 as expected (Fig. 1(b), 1(d)), while the converged absolute
changes keep a maximum at s = 0.5 (Fig. 1(a), 1(c)). Fig. 1 shows that Δsabs

and Δsrel are indeed time-variant. Δsabs basically keeps its shape and is simply
scaled down with time, whereas Δsrel even changes its shape. It only converges
after some time to a function that can cause multiple stable (or meta-stable)
decisions (as it exhibits multiple zero-crossings corresponding to fixpoints).

For numeric calculations we will subsequently simply use the (time-invariant)
values for Δsabs and Δsrel which are reached with an error exponentially decreas-
ing in time as shown in Fig. 1. While this is clearly a rather drastic simplification,
our choice will be justified by the verification step of our basic methodology.

 0

 0.004

 0.008

 0.012

 0  0.25  0.5  0.75  1

Δsabs
b

sb

(a) BEECLUST scenario, abs. change

of Δs for times 10; 20; 40; 80; 160; 320;

640; 1,280 (bold line).

-0.003

 0

 0.003

 0  0.25  0.5  0.75  1

Δsrel
b

sb

(b) BEECLUST scenario, rel. change

of Δs for times 10; 20; 40; 80; 160; 320;

640; 1,280 (bold line).

 0.001

 0.0015

 0.002

 0.05  0.25  0.5  0.75  0.95

Δsabs
d

sd

(c) Density classification scenario,

abs. change for 100; 200; 400; 800;

1,600; 3,200; 6,400 (bold line).

-0.001

 0

 0.001

 0.05  0.25  0.5  0.75  0.95

Δsrel
d

sd

(d) Density classification scenario, rel.

change for 100; 200; 400; 800; 1,600;

3,200; 6,400 (bold line).

Fig. 1. Measured dynamics of the symmetry parameter; 2 × 105 samples per scenario
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Fig. 2. Density classification scenario; PDF measured in the simulation (ρ̂s, based on

2 × 105 samples) and obtained by solving Eq. 6 (using the converged measurements)

and superimposed samples of trajectories of s from the simulation and by sampling

Eq. 2

Based on Δsrel and Δsabs we suggest the following heuristics to infer candi-
dates for α and β. Consider the development of s in the time-discrete simulation.
We suggest to approximate this as

st+1 = st + Δsrel(st) + (Δsabs(st)− |Δsrel(st)|)ξt, (5)

for Δsrel and Δsabs as defined above, and for a Gaussian white noise ξn. The
assumption of Gaussian white noise is of course only an approximation which
could be improved by measuring the distributions of the Δs for each time step.

To justify Eq. 5, we consider the three points s ∈ {0, 0.5, 1} in Fig. 1. At
s = 0 and s = 1 we have |Δsrel| = Δsabs because changes are only possible in
one direction at the borders. Hence, the influence of the noise term should be
zero there. At s = 0.5 we have, as expected, Δsrel = 0. Hence, the only influence
is due to Δsabs, which is fulfilled by Eq. 5.

We make the transition to a continuous time version by using Eq. 2 with drift
α(s) = Δsrel(s) and diffusion coefficient β(s) = Δsabs(s) − |Δsrel(s)|. For this
continuous model we can now use the Fokker–Planck equation

∂ρs

∂t
=

∂

∂s
(α(s, t)ρs) +

1
2

∂2

∂s2
(β2(s, t)ρs) (6)

to obtain the time development of the probability density function for s, and
specifically its steady-state PDF. As outlined earlier for our methodology, we
must verify whether this candidate model is valid by comparing two versions of
the PDF for s(t) obtained in different ways: once by simulating the full system
and once by solving the Fokker–Planck equation for the 1-d system.

Fig. 2 shows the densities obtained via simulation and Fokker–Planck equa-
tion, respectively, together with a typical sample trajectory. These plots were
obtained by solving Eq. 6 numerically for the initial value problem of an ini-
tial peak at s = 0.5 for t = 0 and with the corresponding full simulation. It
shows that there is good qualitative correspondence between the two systems
and thus that the simplified model with the chosen α, β on this level adequately
describes the evolution of the symmetry parameter for these systems. We are thus
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justified in dispensing with the full model and conducting an analysis of symme-
try breaking properties based only on the simplified model, which is amenable
to a formal analysis.

5 Deriving Properties of the Collective Decision System

The simplified model can now be used to analyze the symmetry breaking prop-
erties of the system. To begin, consider the effectivity of symmetry breaking. It
can be quantified via the steady state of the Fokker–Planck equation. Assuming
reflecting boundaries at s = 0 and s = 1, the steady state ρ∗(s) is given by

ψ(s) = exp
(∫ s

0

2
α(y)
β2(y)

dy

)
, ρ∗(s) = C

ψ(s)
β(s)

, (7)

with a normalization constant C [16,4]. In Fig. 3(a), the results obtained from
Eq. 7 are shown for both scenarios using the functions α and β as defined above
in Eq. 2 and with the data shown in Fig. 1 (with noise). In addition, the positions
of δ as defined by Eq. 1 are given and the associated areas are marked in gray. For
both scenarios ρ∗(s) is clearly bimodal and exhibits very low densities around
s ≈ 0.5, hence the symmetry breaking is effective.

As a further example of a possible analysis we quantifying the stability of de-
cisions. An appropriate measure for this is the probability of revising a majority
decision. This is similar to the concept of ‘splitting probabilities’ [16]. The split-
ting probability πw(x) gives the probability that the system initialized at s = x
will reach the state s = w before the state s = u, i.e. it will make a majority
decision for w. The corresponding probability πu(x) is defined symmetrically.
The splitting probability can be calculated as

πw(x) =
∫ x

u

ρ∗(s)−1ds

(∫ w

u

ρ∗(s)−1ds

)−1

, (8)

if we take u and w to correspond to the positions of the two peaks in the PDF
(i.e. the decision states), we can immediately read off various important properties

s
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(a) steady states.
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(b) split probabilities.

Fig. 3. Analytically and numerically obtained measures of symmetry breaking
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from a plot of πw(x) particularly how likely it is that the system reaches a given
decision from a given start state and thus also how likely it is that a decision, once
made, will be reversed giving a measure of the stability of the decision process.

The numerically obtained results for πw(x) are shown in Fig. 3(b). Based on
this, the stability of the density classification scenario has to be classified as higher
than that of the BEECLUST scenario, because its slope around the center point
(π = 0.5) is steeper and it reaches saturation (π = 0 or π = 1) more quickly.

In the same way a host of other properties can be analyzed using the Fokker–
Planck equation. In some cases, such as for the convergence time, a full analytic
treatment may be difficult, particularly for time-variant functions α and β. How-
ever, a numeric estimate can still be obtained as shown in Fig. 2(b).

6 Conclusion

We have proposed a generalized approach to analyzing symmetry breaking in
collective decision making. It is based on a simple stochastic process model
that describes the development of a one-dimensional symmetry parameter. The
model and its parameters are inferred by measurements from (real or virtual)
experiments. The models obtained are simple enough to be amenable to powerful
analytic techniques using Fokker-Planck equations. This allows us to calculate
important properties, such as the effectiveness of the decision process, likelihood
of decisions to be reached and to be revised, time to reach a consensus etc.
without having to rely on further simulations. We suspect that our heuristics for
inferring the model parameters (drift and diffusion coefficients) based on Δsrel

also applies to other self-organized collective decision making processes. This
assumption receives some support from their successful use in the analysis of the
two substantially different example scenarios. It is crucial where this heuristics
cannot be used, the core of our approach remains applicable as it allows us to use
a range of other methods to identify and verify candidates for α and β. We thus
expect our approach to be in principle useful for a wide range of self-organized
collective decision making scenarios.
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Abstract. Neuromodulators can have a strong effect on how organisms cooper-
ate and compete for resources. To better understand the effect of neuromodula-
tion on cooperative behavior, a computational model of the dopaminergic and 
serotonergic systems was constructed and tested in games of conflict and coop-
eration. This neural model was based on the assumptions that dopaminergic  
activity increases as expected reward increases, and serotonergic activity in-
creases as the expected cost of an action increases. The neural model guided the 
behavior of an agent that played a series of Hawk-Dove games against an oppo-
nent. The agent adapted its behavior appropriately to changes in environmental 
conditions and to changes in its opponent’s strategy. The neural agent tended to 
engage in Hawk-like behavior in low-risk situations and Dove-like behavior in 
high-risk situations. When the simulated dopaminergic activity was greater than 
the serotonergic activity, the agent tended to escalate a fight. These results sug-
gest how the neuromodulatory systems shape decision-making and adaptive be-
havior in competitive and cooperative situations. 

Keywords: Dopamine; Serotonin; Cooperation; Game Theory; Computational 
Neuroscience; Decision-Making. 

1   Introduction 

Neuromodulators, such as dopamine (DA) and serotonin (5-HT), are known to be 
important in predicting rewards, costs, and punishments. Dopamine activity (DA), 
which originates in the ventral tegmental area (VTA) and the substantia nigra (SN), 
appears to be linked to expected reward [1], and incentive salience or “wanting” [2]. 
Serotonin (5-HT), which originates in the Raphe nucleus, appears to be related to 
cognitive control of stress, social interactions, and risk taking behavior [3], [4]. The 
structures that are innervated by 5-HT and their connecting circuits modulate the 
behavioral response to threats and risks, that is, behaviors that are typically thought 
to reflect the anxiety state of the organism [3]. Whereas DA is related to the ex-
pected reward of a given decision, 5-HT could be related to the expected cost of a 
decision. 
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Game theory has been useful for understanding risk-taking and cooperation [5]. Of 
particular interest are studies in which neuromodulators were depleted or altered, 
while subjects play games. In one study, subjects, who were 5-HT depleted through 
dietary changes, cooperated less in a Prisoner’s Dilemma game [6]. In an Ultimatum 
game study, 5-HT depleted subjects tended to reject monetary offers more than con-
trol subjects when they deemed the offers to be unfair [4]. Moreover, a recent study 
has shown that individuals with lower levels of dopamine in the prefrontal cortex 
tended to take less risks in a gambling task [7].  

To better understand the roles of dopamine and serotonin during decision-making 
in games of conflict, we developed a computational model of neuromodulation and 
action-selection, based on the assumption that DA levels are related to the expected 
reward of an action, and 5-HT levels are related to the expected cost of an action.  An 
agent, whose behavior was guided by the neural model, played the Hawk-Dove game, 
where players must choose between confrontational and cooperative tactics [5], [8]. 
The model makes predictions of how neuromodulatory activity can shape behavior 
under different environmental and competitive situations. 

2   Methods 

Game Playing. A game consisted of two agents (Neural and Opponent) taking a 
single action in response to a territory of interest (TOI). At the start of each game, the 
agents were randomly placed in a square grid (not occupying the same area) and were 
modeled to approach the neutral TOI at the same speed. The agent that arrived at the 
neutral TOI first had the opportunity to take either of the two possible actions: Esca-
late (i.e., an aggressive, confrontational tactic) or Display (i.e., a nonviolent, coopera-
tive tactic). The agent that arrived second responded with one of the two aforemen-
tioned actions. After each game, payoff was calculated and plastic connections were 
updated. The payoff matrix for this game is given in Table 1. If both agents Escalate, 
they received a penalty that was either a serious injury (large penalty) or just a scratch 
(small penalty). The probability of serious injury was set to 0.25 or 0.75 at the start of 
the game. If both agents Display, they share the TOI resource. If one agent escalated 
and the other displayed, the agent that escalated gets the entire resource. A series 
consisted of 100 games with a given parameter set. At the start of each series, the 
neural network was initialized and the Neural agent was considered “naïve”, that is, 
the weights of the network were set to their initial values (see next section). For each 
parameter set, the two agents played 100 Hawk-Dove series with a different random 
number seed. 

Table 1. Payoff matrix for Hawk-Dove game between players A and B. V is the value of the 
resource and is set to 0.60. D is the damage incurred when both players escalate. D is set to 
1.60 for serious injury and 0.62 for a scratch. The probability of a serious injury is 0.25 or 0.75.  

 B. Escalate B. Display 
A. Escalate A: (V–D)/2, B: (V–D)/2 A: V, B: 0 
A. Display A: 0, B: V A: V/2, B: V/2 
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Fig. 1. The diagram shows the architecture of the neural model (two Neuromodulatory: Raphe 
and VTA; three TOI-State: Open, Escalate, and Display; and two Action: Escalate and Display). 
The solid arrows extending from the TOI-State neurons represent all-to-all connections. The 
thick arrows represent plastic pathways.  The dotted arrows and shaded ovals represent neuro-
modulatory pathways. Within the Action neurons, the line with the arrow at the end represent 
excitation, and the line with the dot at the end represent inhibition. 

Neural Agent. A neural network controlled the behavior of the Neural agent. The 
neural network had three areas: TOI-State, Action, and Neuromodulatory (Fig. 1). The 
TOI-State included three neurons that corresponded to the possible states of the TOI 
the Neural agent may observe: 1) Open. The Neural agent reached the TOI first. 2) 
Escalate. The Opponent agent reached the TOI first and escalated a conflict. 3) Dis-
play. The Opponent agent reached the TOI first but did not start a conflict. The equa-
tion for the activity of each of these neurons (ni) was set based on the current state of 
the TOI: 

n
i

=
0.75 + rnd (0.0,  0.25); i = TOIState

rnd (0.0,  0.25);                              Otherwise

⎧ 
⎨ 
⎩ 

 (1)

where rnd(0.0,0.25) was a random number uniformly distributed between 0.0 and 
0.25. The Action area included two neurons: 1) Escalate. The Neural agent escalated 
a conflict. 2) Display. The Neural agent did not start a conflict or retreated if the  
Opponent agent escalated. The neural activity was based on input from TOI-State 
neurons and neuromodulation. Lastly, the Neuromodulatory area included two  
neurons: 1) Raphe. A simulated raphe nucleus, which is the source of serotonergic  
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neuromodulation. 2) VTA. A simulated ventral tegmental area, which is the source of 
dopaminergic neuromodulation. The synaptic connectivity of the network is shown in 
Fig. 1 and in Table 2, and was all-to-all. Some of these connections were subject to 
synaptic plasticity and phasic neuromodulation, where the activity of Neuromodula-
tory neurons affected the synaptic efficacy. 

Table 2. Synaptic connections between neural areas 

From To Initial Weight Plastic Phasic Neuromodulation 

TOI-State Action 0.1 Y Y 
TOI-State Neuromodulatory 0.1 Y N 

Action-Escalate Action-Display 0.1 N N 
Action-Escalate Action-Display -0.1 N Y 
Action-Display Action-Escalate 0.1 N N 
Action-Display Action-Escalate -0.1 N Y 

 
The neural activity was simulated by a mean firing rate neuron model, where the 

firing rate of each neuron ranged continuously from 0 (quiescent) to 1 (maximal fir-
ing). The equation for the mean firing rate neuron model was: 

si t( )= ρ i si t − 1( )+ 1− ρi( ) 1

1+ exp −5I i t( )( )
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟  (2)

where t was the current time step, si was the activation level of neuron i, ρi was a 
constant set to 0.1 and denoted the persistence of the neuron, and Ii was the synaptic 
input. The synaptic input of the neuron was based on pre-synaptic neural activity, the 
connection strength of the synapse, and the amount of neuromodulator activity: 

Ii t( )= rnd −0.5,0.0( )+∑
j

nm t − 1( )wij t − 1( )s j t − 1( ) (3)

where wij was the synaptic weight from neuron j to neuron i, and nm was the level of 
neuromodulator at synapse ij. Phasic neuromodulation had a strong effect on action 
selection and learning. During phasic neuromodulation, synaptic projections from 
sensory systems and inhibitory neurons are amplified relative to recurrent or associa-
tional connections [9]. In our model, the TOI-State to Action neurons represented 
sensory connections and the excitatory Action-to-Action neurons represented the asso-
ciational connections. To simulate the effect of phasic neuromodulation, inhibitory 
and sensory connections were amplified by setting nm (equation 3) to ten times the 
combined average activity of the simulated Raphe, and VTA neurons. Otherwise, nm 
was set to 1 for recurrent or association connections. The last column of Table 2 lists 
connections amplified by phasic neuromodulation. In simulation studies [10] and 
robotic experiments [11], this mechanism was shown to be effective in making the 
network exploitive when neuromodulation levels were high and exploratory when 
neuromodulation levels were low. 

Action selection depended on the summed activity of the Action neurons after the 
neural agent reached the TOI. When the Neural agent reached the TOI, neural activi-
ties of the Action and Neuromodulator neurons were calculated for ten time-steps 
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(equations 1-3). The Action neuron with the largest total activity during those ten 
time-steps dictated the action taken (e.g. if the total Display activity was greater then 
Escalate, the agent displayed). 

After both the Neural and Opponent agents chose a tactic, a learning rule, which 
depended on the current activity of the pre-synaptic neuron, the post-synaptic neuron, 
the overall activity of the neuromodulatory systems and the payoff from the game, 
was applied to the equation for the plastic connections (see Table 2): 

Δwij = α * nm t − 1( )s j t − 1( ) si t − 1( )( )* R  (4)

where sj was the pre-synaptic neuron activity level, si was the post-synaptic neuron 
activity level, α was a learning rate set to 0.1, nm was the average activity of all neu-
romodulatory neurons, and R was the level of reinforcement based on payoff and cost 
(equation 5). The pre-synaptic neuron (sj) in equation 4 was the most active TOI-State 
neuron. The post-synaptic neuron (si) could either be the most active Action neuron, 
the Raphe neuron, or the VTA neuron. Weights were normalized by the square root of 
sum of squared weights. The level of reinforcement (R, equation 4) was:  

R =

(Reward - VTA) − (Cost − Raphe);      TOI - State  →   Action connection

Reward - VTA;                                TOI - State  →   VTA  connection

Cost − Raphe ;                                TOI - State  →   Raphe connection

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (5)

where the Reward was the Neural agent’s payoff from Table 1 divided by the maxi-
mum possible reward. It was assumed that 5-HT plasticity was based on the predicted 
cost of an action and DA plasticity was based on the predicted reward of an action. If 
there was an error in this prediction, weights changed according to equations 4 and 5. 
If the Raphe or VTA accurately predicted the respective cost or payoff of an action, 
learning ceased. The Neural agent’s cost was 1 if seriously injured, the ratio of 
scratch to serious injury (i.e., 0.3875, Table 1) if scratched, or zero otherwise. The 
Neural agent’s reward was set to 1 if it won the resource, 0.5 if it split the resource, 
and zero otherwise. 

 
Opponent Agent. The Opponent followed one of three strategies. In one strategy, 
referred to as the Statistical model, the agent had a probability of escalation inde-
pendent of the Neural agent’s tactics, which was set at the beginning of the game to 
0.25 or 0.75. In the second strategy, referred to as Tit-For-Tat (TT), the computer 
model always repeated the Neural agent’s previous move. The only exception to this 
rule was if the Opponent agent reached the TOI first in the opening game, in which 
the Opponent opened with a Display. TT is a simple, yet effective strategy in game 
theory, which has shown to be successful in game playing tournaments [8]. In the 
third strategy, referred to as Win-Stay, Lose-Shift (WSLS), the Opponent agent would 
win and stay with the same action in the following situations: the Opponent agent’s 
Escalate is met with the Neural agent’s Display or the Opponent agent’s Display is 
matched by a Neural agent’s Display, otherwise the Opponent agent resorted to a lose 
and shift action [12]. As with the TT strategy, the WSLS opponent would open with a 
Display action if it arrived at the TOI first on the first game. 
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3   Results   

Adopted Strategies. During the course of a series, the Neural agent learned to adopt 
different strategies depending on the chance of serious injury and its Opponent’s 
strategy. To ensure that these strategies did not occur by chance, 100 randomly behav-
ing agents played against all three Opponents. The random agents had lesions (i.e. 
activity set to zero) of both the simulated VTA and Raphe, which resulted in no learn-
ing occurring (equation 4). The 95% confidence interval was used as the cutoff for 
gauging non-random behavior in the random agents. This cutoff corresponded to the 
probability of selecting a particular action in response to a given TOI-State greater 
than 65% or less than 35% of the time. 

The Neural agent adapted its behavior depending on its opponent’s strategy and 
environmental conditions (Fig. 2). In response to a given TOI-State, the agent could 
respond randomly (i.e. within the 95% confidence), or significantly tend toward esca-
lation or displaying. There are a total of 27 possible outcomes the Neural agent can 
take with respect to the three different states of the TOI. Only a few of these outcomes 
emerged in the simulations, and these outcomes are represented in Fig. 2 as a triplet 
pairing (i.e., EEE, DDE, UDE, etc.). The first value in the triplet pairing corresponds 
to the expected action when the TOI-State was Open. The second represents the an-
ticipated action when the TOI-State was Escalate. The third value denotes the ex-
pected outcome when the TOI-State was Display. These triplets are associated with a 
color spectrum, where aggressive outcomes (‘E’ in the triplet) are denoted red, pas-
sive outcomes (‘D’ in the triplet) are denoted in blue, and values that do not fall 
within either outcome (‘U’ in the triplet) are denoted in yellow.  

Against all three opponents, the Neural agent adopted Hawk-like behavior in “safe” 
environments, where the probability of serious injury was 0.25 (top row, Fig. 2), and 
Dove-Like behavior in “harsh” environments, where the probability of serious injury 
was 0.75 (bottom row, Fig. 2). Figure 2 shows an increase in the adoption of ‘DDE’ 
strategy (Neural agent displayed when the TOI-State was Open and Escalate, and 
escalated when the TOI-State was Display) as the probability of serious injury or an 
opponent escalating increased. This demonstrates that in situations where the Neural 
agent was in a competitive, antagonistic environment, the Neural agent tended to 
behave in a Dove-like way (displaying a large proportion of the games in a series). 
Conversely, Figure 2 also shows an increase in aggressive strategies (i.e., EEE, Neu-
ral agent escalated when the TOI-State was Open, Escalate and Display) as the prob-
ability of serious injury or an opponent escalating decreased. This illustrates that in 
circumstances where the Neural agent was in a cooperative, forgiving environment, it 
tended to adopt more Hawk-like behavior (escalating in a larger proportion of the 
games in a series). 

Simulated lesion experiments were carried out to test the effect of neuromodulation 
on behavior. An intact neuromodulatory system was necessary for appropriate behav-
ior (see Table 3). When the serotonin was removed from the system, by simulated 
lesions to the Raphe, the Neural agent’s behavior became more Hawk-like, even when 
the chance of serious injury was high (Harsh column in Table 3). When the simulated 
VTA was lesioned, effectively removing dopaminergic input to the system, the Neural 
agent’s behavior became more Dove-like (fewer escalations) in all environments. 
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Fig. 2. The pie charts show the proportion of probable actions taken by the Neural agent in 100 
series of games. There are three TOI-State areas (Open, Escalate, and Display), and three out-
comes the Neural agent can commit to: Escalate (E), Display (D) or Undecided (U). Undecided 
represents random choice between ‘E’ and ‘D’. The labels represent the Neural agent’s re-
sponse to the three TOI-State areas. Strategies that are Dove-like are displayed in blue, Hawk-
like are displayed in red, and arbitrary strategies displayed in yellow. 

Table 3.  Percentage of Escalation for the Neural agent 

 Control   Raphe Lesion VTA Lesion 
 Safe Harsh Safe Harsh Safe Harsh 

Statistical 97.65% 10.00% 99.06% 92.86% 34.79% 7.14% 
TT 34.15% 13.64% 81.82% 81.82% 24.74% 12.50% 

WSLS 93.22% 9.09% 96.88% 96.88% 20.93% 8.22% 

 
The Neural agent adapted its behavior to its Opponent’s strategy. Against the TT 

opponent, the Neural agent oscillated between escalating and displaying in successive 
games. In essence, the Neural agent learned to adopt a TT strategy against this oppo-
nent, which yielded approximately equal reward to both agents. The oscillating neu-
romodulatory activity corresponded to the alternating actions taken by both agents 
(Fig. 3A). Against the WSLS opponent, the Neural agent created opportunities for 
high payoffs. The high-expected cost and reward were reflected in the serotonergic 
and dopaminergic activity when both agents escalated (see Fig. 3B: bottom plot, 
games 79, 82, or 86). In these examples, the Neural agent escalated first and its Op-
ponent escalated second (Fig. 3B: top plot, games 79, 82, or 86). The Neural agent 
learned that this tactic caused the Opponent agent to ‘lose-shift’ towards Display in 
the following game, which could be taken advantage of by escalating (Fig. 3B: top 
plot, games 80, 83, or 87). This tactic resulted in a maximal reward to the Neural  
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Fig. 3. Actions taken by the Neural and Opponent agents during the last 25 games of a single 
series, and the corresponding neuromodulatory activity for the Neural agent. The stair plots 
located on the top half of A and B, are the actions taken by both the Neural (green) and Oppo-
nent (black) agents. The line plots located in the bottom of A and B represent the neuromodula-
tory activity for the Neural agent during the same 25 games of the same series. The red line 
represents the Raphe activity, and the blue line represents the VTA activity. A. Control agent 
versus the TT opponent. B. Control agent versus WSLS opponent. 

agent but caused the Opponent agent to ‘lose-shift’ back to Escalate in the following 
game (see Figure 3B: top plot, games 81, 84, or 88).  

The neural response of the simulated neuromodulators appears to govern the Neu-
ral agent’s actions (Fig. 3). When the VTA activity dropped below the Raphe activity, 
the neural agent displayed. That is, Raphe activity may be acting as a threshold for the 
expected cost of upcoming actions, whereas the VTA activity rises and falls based on 
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the expected reward. When the expected reward is lower than the expected cost, the 
Neural agent tended to display. For example, when a Neural agent behaved Dove-like, 
its serotonin activity was high relative to the dopamine activity due to the low ex-
pected reward from displaying (see Fig. 3A: games 78-80). In addition, the oscillatory 
actions taken by the Neural agent (see top Fig. 3A: games 84-99), are exactly 
matched by the oscillatory VTA neuromodulatory activity (see Fig. 3A: games 84-99) 
rising above and falling below the Raphe neuromodulatory activity. The low fluctua-
tion in Raphe values from one game to the next in Fig. 3A result from the precision of 
predicted cost when playing a highly predictable opponent using the TT strategy. 
Predicted cost was not as regular for the Neural agent when playing against the WSLS 
opponent, which is why the Raphe neuromodulatory activity fluctuated more in Fig. 
3B (bottom plot). Although the Raphe activity fluctuated more when playing against 
the WSLS opponent, the actions taken by the Neural agent were consistent with the 
neuromodulatory activity. Thus, the results from the simulated neuromodulatory ac-
tivity of Fig. 3 suggest that the Raphe neural activity acts as a threshold for aggressive 
(escalate) or non-aggressive (display) actions taken by the Neural agent. 

4   Discussion 

In the present paper, we showed that an agent, whose behavior was guided by a com-
putational model of the neuromodulatory system, learned to adjust its strategy appro-
priately depending on environmental conditions and its opponent’s strategy in the 
Hawk-Dove game. The model makes several predictions on how the activity of neu-
romodulatory systems can lead to appropriate action selection in competitive and 
cooperative environments. 

In constructing the model, it was assumed that DA activity increased as expected 
reward increased, and that 5-HT activity increased as the expected cost of an action 
increased. DA appears to be important for reward anticipation [1], and the “wanting” 
of things, that is, the motivation process in acquiring an object [2]. Thus, having DA 
activity related to payoff in a game appears to be a reasonable assumption. 5-HT ac-
tivity appears to modulate behavioral response to risks, stress, threats [3], [13]and 
social anxiety in primates [14], all of which have a cost associated with them. More-
over, reduced 5-HT transmission is associated with a release of aversive or punishing 
responses [15]. These assumptions are similar to a model proposed by Daw Kakade 
and Dayan in which dopamine and serotonin levels track predicted rewards and pun-
ishments [16]. However, our model differs in that punishments and rewards are not 
necessarily mutually inhibitory. Our model takes into consideration that an action 
could have independent costs and rewards associated with it (i.e., an action may have 
a high predicted reward, and a high predicted cost). 

Given these assumptions, the Neural agent adjusted its strategy depending on envi-
ronmental conditions and on its Opponent’s strategy (Fig. 2). For example, in situa-
tions where it was more likely to sustain a serious injury, the Neural agent’s behavior 
became more Dove-like. Because the Neural agent learned that there was an increased 
cost and decreased reward to be expected by escalating a confrontation in these 
harsher conditions, it adapted its strategy to increase in Display actions (Fig. 2). No 
matter which Opponent the Neural agent faced, it learned to alter its strategy to take 
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advantage of a no cost escalation in response to its Opponent’s displaying first. This 
can be seen in Fig. 2 for all tactics that end in ‘E’ (e.g., DDE or EDE). 

The adaptive behavior demonstrated by the Neural agent required an intact neuro-
modulatory system in which the agent could evaluate the expected cost and the ex-
pected reward of a given action. Lowering the simulated serotonin levels resulted in 
Hawk-like tactics that were similar to uncooperative behavior seen in human studies 
where serotonin levels were lowered [4], [6]. Lowering dopamine levels resulted in 
the Neural agent avoiding risks that lead to a higher payoff. These results are in 
agreement with a study in which a blockade of dopamine resulted in rats not making 
an extra effort of climbing over a barricade to get a high reward [17], and a study in 
which individuals with a polymorphism that lowers levels of dopamine in the prefron-
tal cortex tended to take less risks in a gambling task [7]. 

The model makes the following predictions: 1) The interaction between the DA 
and 5-HT neuromodulatory systems allows for appropriate decision making in games 
of conflict. In our model, when the VTA activity, which tracked expected reward, 
exceeded the Raphe activity, which tracked the expected cost, the agent would tend to 
escalate a fight (see Fig. 3). 2) Impairment to either the dopaminergic or serotonergic 
system will lead to perseverant, uncooperative behavior. In our model, impairment of 
the dopaminergic system resulted in risk-averse behavior (Dove-like) caused by an 
inability to assess reward, and impairment of the serotonergic system resulted in risk-
taking behavior (Hawk-like) due to an inability to assess cost (see Table 3). 3) Al-
though dopamine and serotonin activity appears to be related to different expectations 
(e.g., predictive reward, anticipated cost), the action of these neuromodulators on 
downstream targets is similar in that it governs decision-making. That is, phasic neu-
romodulation shifts an agent’s behavior from random and exploratory to decisive and 
exploitive through differentially modulating synaptic pathways. 

The model constructed for the present experiments is based on the notion that all 
neuromodulators have the same effect on downstream targets, but that specific neu-
romodulator levels are driven by environmental stimuli [10]. Large, phasic increases 
in neuromodulator activity cause an organism’s behavior to be more exploitive or 
decisive, whereas lower levels of neuromodulatory activity result in the organism 
being more exploratory or indecisive. This is in agreement with the idea of choliner-
gic modulation of attention [18] and noradrenergic modulation of decision-making 
[19], but extends it to other neuromodulators such as dopamine and serotonin. Our 
model differs somewhat from the behavioral and neuroscience literature that suggests 
the role of dopamine is to calculate the reward prediction error, and that serotonin 
controls the timescale of the evaluation of delayed rewards in reinforcement learning 
[20], [21]. Instead it may be more in agreement with the proposal that neuromodula-
tors, such as dopamine and serotonin are involved with the discovery of new actions 
to outcome mappings [22].  

We designed our model to investigate how neuromodulation shapes behavior dur-
ing competitive and cooperative situations. Our model has similarities to other com-
putational models of neuromodulatory processes during decision-making [16], [20]; 
however, it tests a specific hypothesis of phasic neuromodulation, and applies it to 
game theory. Other computational models such as Evolutionary Algorithms and Rein-
forcement Learning have been effective in developing optimal strategies in games of 
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conflict [23], [24]. It may be of interest in the future to pit our neurobiologically in-
spired model against reinforcement learning and evolutionary algorithms.  
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