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Preface

The series of MFCS symposia, organized in rotation by Poland, Slovakia, and
the Czech Republic since 1972, has a long and well-established tradition. The
symposia encourage high-quality research in all branches of theoretical computer
science. Their broad scope provides an opportunity to bring together researchers
who do not usually meet at specialized conferences.

The 35th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2010) was organized in parallel with the 19th EACSL
Annual Conference on Computer Science Logic (CSL 2010). The federated
MFCS and CSL 2010 conference had shared plenary sessions and social events
for all participants, but the scientific program and the proceedings were prepared
independently for both events.

Out of 149 regular submissions to MFCS 2010, the Program Committee se-
lected 56 papers for presentation at the conference and publication in this vol-
ume. Each paper was reviewed by at least three Program Committee members
with the help of outside experts, and the actual selection was based on a subse-
quent electronic discussion.

In addition to the contributed papers, the scientific program of MFCS 2010
included five MFCS and CSL plenary talks delivered by David Basin (ETH
Zürich), Herbert Edelsbrunner (IST Austria and Duke University), Erich Grädel
(RWTH Aachen), Bojan Mohar (University of Ljubljana and Simon Fraser Uni-
versity), and Joseph Sifakis (CNRS), and three invited MFCS lectures by Andris
Ambainis (University of Latvia), Juraj Hromkovič (ETH Zürich), and Daniel
Lokshtanov (Universitetet i Bergen). We are grateful to the invited speakers
for accepting our invitation and sharing their knowledge and skills with all
MFCS 2010 participants.

The federated MFCS and CSL 2010 symposium was accompanied by the fol-
lowing satellite workshops on more specialized topics:

– Program Extraction and Constructive Proofs / Classical Logic and Compu-
tation: Joint Workshop in Honor of Helmut Schwichtenberg, organized by
Steffen van Bakel, Stefano Berardi, Ulrich Berger, Hannes Diener, Monika
Seisenberger, and Peter Schuster

– Randomized and Quantum Computation, organized by Rūsiņš Freivalds
– Workshop on Fixed Points in Computer Science (FICS), organized by Zoltán

Ésik and Luigi Santocanale
– Young Researchers Forum, organized by Jan Strejček
– Theory and Algorithmic Aspects of Graph Crossing Number, organized by

Drago Bokal, Petr Hliněný, and Gelasio Salazar
– YuriFest: Symposium on Logic in Computer Science Celebrating Yuri Gure-

vich’s 70th Birthday, organized by Nachum Dershowitz
– International Workshop on Reachability Problems, organized by Igor

Potapov and Antońın Kučera
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– Games and Probabilistic Models in Formal Verification, organized by Tomáš
Brázdil and Krishnendu Chatterjee

– Mathematical Foundations of Fuzzy Logics, organized by Agata Ciabattoni
– International Workshop on Categorical Logic, organized by Jǐŕı Rosický
– Logic, Combinatorics and Computation, organized by Bruno Courcelle, Petr

Hliněný, and Johann A. Makowsky
– Parametrized Complexity of Computational Reasoning, organized by Stefan

Szeider

As the editors of these proceedings, we would like to thank everyone who con-
tributed to the success of the symposium. First of all, we thank the authors of
all submitted papers for considering MFCS 2010 as an appropriate platform for
presenting their work. Since the number of submissions was high, many good
papers could not be accepted. We also thank the Program Committee members
for their demanding and responsible work, the reviewers for careful reading of all
the submissions, the EasyChair system for smooth conference submission man-
agement, and the staff at Springer for the professional support in producing this
volume.

We also gratefully acknowledge financial support from the European Research
Consortium in Informatics and Mathematics (ERCIM), as well as the support
from the Czech national research center Institute for Theoretical Computer Sci-
ence (ITI).

June 2010 Petr Hliněný
Antońın Kučera
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Dagmar Janoušková
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Julia Böttcher
Arnaud Carayol
Felice Cardone
Pascal Caron
Olivier Carton
Xi Chen
Siu-Wing Cheng
Miroslav Chlebik
Jacek Chrzaszcz
Josef Cibulka
David Cohen
Thomas Colcombet
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2008 Toruń (Poland)
2009 Nový Smokovec
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Abstract. In this talk, we describe two recent developments in quantum
algorithms.

The first new development is a quantum algorithm for evaluating a
Boolean formula consisting of AND and OR gates of size N in time
O(

√
N). This provides quantum speedups for any problem that can be

expressed via Boolean formulas. This result can be also extended to
span problems, a generalization of Boolean formulas. This provides an
optimal quantum algorithm for any Boolean function in the black-box
query model.

The second new development is a quantum algorithm for solving sys-
tems of linear equations. In contrast with traditional algorithms that run
in time O(N2.37...) where N is the size of the system, the quantum al-
gorithm runs in time O(logc N). It outputs a quantum state describing
the solution of the system.

1 History of Quantum Algorithms

1.1 First Quantum Algorithms

Quantum computing (and, more broadly, quantum information science) is a
new area at the boundary of computer science and physics. It studies how to
apply quantum mechanics to solve problems in computer science and information
processing. The area of quantum computing was shaped by the discoveries of two
major quantum algorithms in mid-1990s.

The first of the these two discoveries was Shor’s polynomial time quantum
algorithm for factoring and discrete logarithms. Factoring and discrete loga-
rithm are very hard number theoretic problems. The difficulty of these problems
has been used to design cryptosystems (such as RSA and Diffie-Helman key ex-
change) for secure data transmission over an insecure network (such as Internet).
The security of data transmission is based on the assumption that it is hard to
factor (or find discrete logarithm of) large numbers. Until recently, this assump-
tion was not in doubt. Mathematicians had tried to devise an efficient way of
factoring large numbers for centuries, with no success.

In 1994, Shor [56] discovered a fast algorithm for factoring large numbers - on a
quantum mechanical computer. This shook up the foundations of cryptography.
� Supported by FP7 Marie Curie Grant PIRG02-GA-2007-224886 and ESF project
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If a quantum mechanical computer is built, today’s methods for secure data
transmission over the Internet will become insecure.

Another, equally strikingly discovery was made in 1996, by Lov Grover [34].
He invented a quantum algorithm for speeding up exhaustive search problems.
Grover’s algorithm solves a generic exhaustive search problem with N possible
solutions in time O(

√
N). This provides a quadratic speedup for a range of search

problems, from problems that are in P classically to NP-complete problems.
Since then, each of the two algorithms has been analyzed in great detail.

Shor’s algorithm has been generalized to solve a class of algebraic problems that
can be abstracted to Abelian hidden subgroup problem [39]. Besides factoring
and discrete logarithm, the instances of Abelian HSP include cryptanalysis of
hidden linear equations [18], solving Pell’s equation, principal ideal problem [35]
and others.

Grover’s algorithm has been generalized to the framework of amplitude am-
plification [21] and extended to solve problems like approximate counting [23,47]
and collision-finding [22].

1.2 Quantum Walks and Adiabatic Algorithms

Later, two new methods for designing quantum algorithms emerged: quantum
walks [4,41,9,54,60] and adiabatic algorithms [31].

Quantum walks are quantum generalizations of classical random walks. They
have been used to obtain quantum speedups for a number of problems. The
typical setting is as follows. Assume that we have a classical Markov chain,
on a state-space in which some states are special (marked). The Markov chain
starts in a uniformly random state and stops if it reaches a marked state. If the
classical Markov chain reaches a marked state in expected time T , then there is a
quantum algorithm which can find it in time O(

√
T ), assuming some conditions

on the Markov chain [58,44,42].
This approach gives quantum speedups for a number of problems: element

distinctness [5], search on a grid [13,59], finding triangles in graphs [45], testing
matrix multiplication [19] and others.

Another application of quantum walks is to the ”glued trees” problem [26].
In this problem, we have a graph G with two particular vertices u, v, designed
as the entrance and the exit. The problem is to find the vertex v, if we start at
the vertex u. There is a special exponential size graph called ”glued trees” on
which any classical algorithm needs exponential time to find v but a quantum
algorithm can find v in polynomial time [26].

Adiabatic computation is a physics-based paradigm for quantum algorithms.
In this paradigm, we design two quantum systems:

– Hsol whose lowest-energy state |ψsol〉 encodes a solution to a computational
problem (for example, a satisfying assignment for SAT).

– Hstart whose lowest-energy state |ψstart〉 is such that we can easily prepare
|ψstart〉.
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We then prepare |ψstart〉 and slowly transform the forces acting on the quantum
system fromHstart toHsol. Adiabatic theorem of quantum mechanics guarantees
that, if the transformation is slow enough, |ψstart〉 is transformed into a state
close to |ψsol〉 [31].

The key question here is: what is ”slowly enough”? Do we need a polynomial
time or an exponential time to transform Hstart to Hsol (thus solving SAT by a
quantum algorithm)? This is a subject of an ongoing debate [31,29,2].

Adiabatic computation has been used by D-Wave Systems [30] which claims
to have built a 128-bit adiabatic quantum computer. However, the claims of
D-Wave have been questioned by many prominent scientists (see e.g. [1]).

1.3 Most Recent Algorithms

Two most recent discoveries in this field are the quantum algorithms for for-
mula evaluation [32] and solving systems of linear equations [36]. Both of those
algorithms use the methods from the previous algorithms but do it in a novel,
unexpected way. Formula evaluation uses quantum walks but in a form that is
quite different from the previous approach (which we described above). Quantum
algorithm for formula evaluation uses eigenvalue estimation [46] which is the key
technical subroutine of Shor’s factoring algorithm [56] and the related quantum
algorithms. But, again, eigenvalue estimation is used in a very unexpected way.

These two algorithms are the main focus of this survey. We describe them in
detail in sections 2 and 3.

2 Formula Evaluation

2.1 Overview

We consider evaluating a Boolean formula of variables x1, . . . , xN consisting of
ANDs and ORs, with each variable occuring exactly once in the formula. Such a
formula can be described by a tree, with variables xi at the leaves and AND/OR
gates at the internal nodes. This problem has many applications because Boolean
formulas can be used to describe a number of different situations. The most
obvious one is determining if the input data x1, . . . , xN satisfy certain constraints
that can be expressed by AND/OR gates.

For a less obvious application, we can view formula evaluation as a black-box
model for a 2-player game (such as chess) if both players play their optimal
strategies. In this case, the game can be represented by a game tree consisting of
possible positions. The leaves of a tree correspond to the possible end positions
of the game. Each of them contains a variable xi, with xi = 1 if the 1st player
wins and xi = 0 otherwise. If an internal node v corresponds to a position in
which the 1st player makes the next move, then v contains a value that is OR
of the values of v’s children. (The 1st player wins if he has a move that leads
to a position from which he can win.) If v is a node for which the 2nd player
makes the next move, then v contains a value that is AND of the values of v’s



4 A. Ambainis

children. (In this case, the 1st player wins if he wins for any possible move of the
2nd player.)

The question is: assuming we have no further information about the game
beyond the position tree, how many of the variables xi do we have to examine
to determine whether the 1st player has a winning strategy?

Classically, the most widely studied case is the full binary tree of depth d,
with N = 2d leaves. It can be evaluated by looking at Θ(N .754...) leaves and this
is optimal [54,53,57]. A natural question was whether one could achieve a better
result, using quantum algorithms. This question was a well known open problem
in the quantum computing community since mid-1990s. Until 2007, the only
known result was that Ω(

√
N) quantum steps are necessary, for any AND-OR

tree [3,14].

2.2 The Model

By standard rules from Boolean logic (de Morgan’s laws), we can replace both
AND and OR gates by NAND gates. A NAND gate NAND(y1, . . . , yk) outputs
1 if AND(y1, . . . , yk) = 0 (i.e., yi = 0 for at least one i ∈ {1, . . . , k}) and 0
otherwise. Then, we have a tree with x1, . . . , xN at the leaves and NAND gates
at the internal vertices. The advantage of this transformation is that we now
have to deal with just one type of logic gates (instead of two - AND and OR).

We work in the quantum query model. In the discrete-time version of this
model [6,20], the input bits x1, . . . , xN can be accessed by queries O to a black
box.

To define O, we represent basis states as |i, z〉 where i ∈ {0, 1, . . . , N}. The
query transformation Ox (where x = (x1, . . . , xN )) maps |0, z〉 to |0, z〉 and |i, z〉
to (−1)xi|i, z〉 for i ∈ {1, ..., N} (i.e., we change phase depending on xi, unless
i = 0 in which case we do nothing).

Our algorithm can involve queries Ox and arbitrary non-query transforma-
tions that do not depend on x1, . . . , xN . The task is to solve a computational
problem (e.g., to compute a value of a NAND formula) with as few queries as
possible.

2.3 Results

In 2007, in a breakthrough result, Farhi et al. [32] showed that the full binary
AND-OR tree can be evaluated in O(

√
N) quantum time in continuous-time

counterpart of the query model.
Several improvements followed soon. Ambainis et al. [27,8,12] translated the

algorithm of [32] to the conventional discrete time quantum query model and ex-
tended it to evaluating arbitrary Boolean formulas with O(N1/2+o(1)) quantum
queries.

Soon after, Reichardt and Špalek [52] discovered a far-reaching generalization
of this result. Namely, the quantum algorithm was generalized to evaluating
span programs. A span program is an algebraic model of computation, originally
invented for proving lower bounds on circuit size [40].
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In a span program, we have a target vector v in some linear space. We also
have other vectors v1, . . . , vm, each of which is associated with some condition
xi = 0 or xi = 1. The span program evaluates to 1 on an input x1, . . . , xn if
v is equal to a linear combination of vectors vi1 , . . . , vik

which are associated
with conditions that are true for the given input x1, . . . , xn. Otherwise, the span
program evaluates to 0.

Here is an example of a span program. We have a two dimensional linear
space, with the following vectors:

v =
(

1
0

)
, v1 =

(
1
a

)
, v2 =

(
1
b

)
, v3 =

(
1
c

)
where a, b, c are any three distinct non-zero numbers. Vectors v1, v2, v3 are asso-
ciated with conditions x1 = 1, x2 = 1, x3 = 1, respectively.

Given any two of v1, v2, v3, we can express any vector in two dimensions
(including v) as their linear combination. Thus, this span program computes the
majority function MAJ(x1, x2, x3) which is 1 whenever at least 2 of variables
x1, x2, x3 are equal to 1.

Logic formulae can be embedded into span programs. That is, if we have two
span programs computing functions f1(x1, . . . , xN ) and f2(x1, . . . , xN ), we can
combine them into span programs for f1 AND f2 and f1 OR f2 in a fairly simple
way.

Reichardt and Špalek [52] invented a complexity measure, witness size for
span programs. This measure generalizes formula size: a logic formula of size
S can be transformed into a span program with witness size S. [52] gave a
quantum algorithm for evaluating a span program of witness size S with O(

√
S)

queries. This is a very interesting result because it allows to evaluate formulas
with gates other than AND and OR by designing span programs for those gates
and them composing them into one big span program. The next step was even
more interesting.

The next step was even more surprising. Reichardt [48,49,51] discovered that
the span program approach is optimal, for any Boolean function f(x1, . . . , xN ).
That is [51], if Q(f) is the minimum number of quantum queries for evaluating
f (by any quantum algorithm), then there is a span program with witness size
O(Q2(f)). Thus, a span-program based algorithm can evaluate f with O(Q(f))
queries, within a constant factor of the best possible number of queries.

This fact linked two lines of research: quantum formula evaluation algorithms
and ”quantum adversary” lower bounds. ”Quantum adversary” (invented in [3])
is a method for proving lower bounds on the number of queries to evaluate
f(x1, . . . , xN ) by a quantum algorithm. Several progressively stronger versions
of ”quantum adversary” have been invented [7,15,43,38], with the strongest being
the ”negative adversary” method of [38].

Finding the best lower bound for quantum algorithms provable via ”nega-
tive adversary” method is a semidefinite program (SDP). Reichardt [48,49,51]
considered the dual of this SDP and showed that the dual SDP gives the span
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program with the smallest witness size. Thus, the span programs are optimal
(in terms of query complexity) for any Boolean function f(x1, . . . , xN ). (Finding
the optimal span program, however, requires solving a semidefinite program of
size 2N .)

As a by-product, this gave a better algorithm for formula evaluation, improv-
ing the complexity from O(N1/2+o(1)) in [12] to O(

√
N logN) in [50].

2.4 Algorithmic Ideas

We now give a very informal sketch the simplest version of formula evaluation
algorithm. We augment the formula tree with a finite ”tail” of length L as
shown in Figure 1. We then consider a quantum walk on this tree. At the leaves
of the tree, the transformations that are performed depend on whether the leaf
holds xi = 0 or xi = 1. (This is achieved by querying the respective xi and
then performing one of two transformations, depending on the outcome of the
query.)

The starting state is an appropriately chosen quantum state |ψstart〉=
∑

i αi|i〉
consisting of the states |i〉 in the tail. If the quantum walk is set up prop-
erly, an amazing thing happens! Whenever the formula evaluates to 0, the state
|ψstart〉 remains almost unchanged. Whenever the formula evaluates to 1, after
O(N1/2+o(1)) steps, the state is almost completely different from |ψstart〉. This
means that we can distinguish between the two cases by running the walk for
O(N1/2+o(1)) steps and measuring whether the state is still |ψstart〉. Surprisingly,
the behaviour of the walk only depends on the value of the formula and not on
which particular variables x1, . . . , xN are 1.

The algorithm for evaluating span programs is essentially the same, except
that the quantum walk is performed on a weighted graph that corresponds to
the span program.

For more information on this topic, we refer the reader to the survey [10] and
the original papers.

 3  2

0

 1  L L-1
...

 4
Fig. 1. A formula tree augmented with a finite ”tail”
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3 Linear Equations

3.1 Overview

Solving large systems of linear equations is a very common problem in scientific
computing, with many applications. We consider solving a system of N linear
equations with N unknowns: Ax = b where

A =

⎛⎜⎜⎝
a11 a12 . . . a1N

a21 a22 . . . a2N

. . . . . . . . . . . .
aN1 aN2 . . . aNN

⎞⎟⎟⎠ , x =

⎛⎜⎜⎝
x1
x2
. . .
xN

⎞⎟⎟⎠ , b =

⎛⎜⎜⎝
b1
b2
. . .
bN

⎞⎟⎟⎠ .

A and b are given to us. The task is to find x.
The best classical algorithm for solving a general system Ax = b runs in time

O(N2.37...). The reason for that was that even outputting the solution requires
time Ω(N) because the solution contains values for N variables. Thus, it seemed
that there was no hope for achieving more than a polynomial speedup by a
quantum algorithm.

Recently, Harrow, Hassidim and Lloyd [36] discovered a surprising quantum
algorithm that allows to solve systems of linear equations in time O(logcN) - in
an unconventional sense. Namely, the algorithm of [36] generates the quantum
state

|ψ〉 =
N∑

i=1

xi|i〉

with the coefficients xi being equal to the values of variables in the solution
x = (x1, x2, . . . , xN ) of the system Ax = b.

What can we do with this quantum state? We cannot extract all the values xi

from it. If we measured this state, we would obtain one value i, with probabilities
of different i proportional to |xi|2.

We can, however, estimate some quantities that depend on all of xi. For ex-
ample, if all variables in the solution had values 1 or -1, having the quantum
state |ψ〉 would enable us to estimate the fraction of variables xi = −1. More-
over, similar tasks appear to be hard classically. As shown by [36], a classical
O(logcN)-time algorithm for computing any quantity of this type implies a poly-
nomial time classical algorithm for simulating any quantum computation. Thus
(unless P=BQP), this quantum algorithm provides a genuine speedup over the
classical algorithms.

3.2 More Details

In more detail, the running times of both classical and quantum algorithms for
solving systems of linear equations actually depend on several parameters. One
parameter is N , the number of equations (and variables). Another parameter is
κ, the condition number of the system. κ is defined as μmax

μmin
where μmin and μmax

are the smallest and the largest singular values of the matrix A [37, Chapter 5.8].
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Intuitively, the condition number describes the closeness of the matrix A to a
singular matrix. For a singular matrix, μmin = 0 and κ = ∞. Larger condition
number means that the matrix A is closer to a singular matrix. In this case,
small changes to input data A and b (or small numerical inaccuracies) can cause
large changes to solution x. To compensate, if we have a matrix A with large κ,
we have to perform the computation with a higher accuracy. This increases the
running time of all algorithms for solving systems of linear equations but the
exact increase varies greatly from algorithm to algorithm.

The main classical algorithms for solving systems of linear equations are:

1. LU-decomposition [33, Chapter 3] which runs in time O(N2.376... logc(κ))
[24]. Here, w = 2.376... is the constant from the running time O(Nw) of the
best matrix multiplication algorithm [28].

2. Conjugate gradient [33, Chapter 10], which runs in time O(m
√
κ) [55] where

m is the number of non-zero entries in the matrix. If we know that each row
of A contains at most s non-zero entries, this is at most O(Ns

√
κ).

The running time of the quantum algorithm [36] is O(κ2T logcN) where T is the
time necessary to implement the transformation eiA on a quantum computer. T
varies greatly, depending on A. For sparse A with at most s nonzero values in
each row and each column, T = O(s2 logN) [16]. Thus, in this case the running
time of the quantum algorithm is O(κ2s4 logcN). This achieves an exponential
speedup for the case when N is large and κ is relatively small (e.g., κ = O(1) or
κ = O(logN)).

The key bottleneck is the dependence on κ which is actually worse than in
the classical algorithms. We have been able to improve it to O(κ1+o(1) logcN)
[11]. Unfortunately, further improvement is very unlikely. [36] have shown that
an O(κ1−ε logcN) time quantum algorithm would imply BQP=PSPACE.

For non-sparse A, one could use the algorithms of [25,17] to simulate eiA. The
dependence on N is better than O(N2.376...) in the classical LU decomposition
but the speedup is only polynomial.
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Abstract. Using ideas from persistent homology, the robustness of a level set
of a real-valued function is defined in terms of the magnitude of the perturba-
tion necessary to kill the classes. Prior work has shown that the homology and
robustness information can be read off the extended persistence diagram of the
function. This paper extends these results to a non-uniform error model in which
perturbations vary in their magnitude across the domain.
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1 Introduction

Numerical errors are an inescapable by-product of scientific and other computations,
and thus they have inspired the creation of entire fields of mathematical inquiry, in-
cluding numerical analysis and statistics. There are many sources, such as randomness,
limited resolution, and limited computational resources. There are also many coping
strategies, such as improving accuracy, or finding credible substitutes for the elusive
ideal. The contributions of this paper belong to the analytic approach that gives esti-
mates on how far the result is from the ideal. More specifically, we study real-valued
functions, which model many real world applications, including medical images and
satellite pictures. To extract information from a function, we consider level and sub-
level sets and their topology expressed in terms of homology groups. The question thus
arises to what extent the homology of a level or sublevel set is sensitive to perturba-
tions of the function. In this paper, we study the effect of perturbations which mimic
the common situation in which measurements vary in their accuracy, and we call these
non-uniform perturbations. We assume that this variation is tied to the location, and
that we have complete information on how the accuracy varies across the domain. We
capture this information in a (non-uniform) error model, which will be formally defined
in Section 3.

On a technical level, we extend the algebraic and measure theoretic concept of per-
sistent homology to non-uniform error models. Specifically, we define the non-uniform
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persistence diagram of a function under an error model, and we relate it to the conven-
tional persistence diagram (defined for uniform error) and to non-uniform persistence
diagrams of other functions under the same error model. Using results from prior work,
we then extend these results to well diagrams, which characterize the robustness of level
sets. The main technical concept is a transformation of functions that turns non-uniform
into uniform error and thus extends much of the machinery of persistent and robust ho-
mology to non-uniform error. Under the additional assumption of the linearity of the
error model, this includes one of the cornerstones of the theory of persistent homology,
namely the stability of the diagram.

Outline. Section 2 reviews the background from persistent homology. Section 3 intro-
duces error models and discusses their effect on the persistence diagrams of functions.
Section 4 introduces dual error models and uses them to transform non-uniform to uni-
form error. Section 5 demonstrates that linear error models give rise to a richer theory
than the more general error models. Finally, Section 6 concludes the paper.

2 Background

In this section, we review the background on homology and on persistence; see Munkres
[13] and Hatcher [12] for standard texts in algebraic topology, and Edelsbrunner, Harer
[10] for a recent book in computational topology. While the material in this section
may seem dry and technical, we remind the reader of the connection to the fundamental
problems of feature extraction, matching, and classification for images, shapes, and
more general data. Indeed, persistent homology has been applied to a host of different
shape and data analysis questions, including for natural images [3], trademark images
[4], brain structure [5], sensor networks [8], and gene expression [9].

Persistence. The persistence of homology classes along a filtration of a topological
space can be defined in a quite general context. For the purposes of this paper, we need
only a particular type of filtration, one defined by the sublevel sets of a real-valued func-
tion on a compact topological space. Given such a space X and a function f : X → R,
we call a set Xr(f) = f−1(−∞, r] a sublevel set, and we consider the nested sequence
of these sets. Whenever r ≤ s, the inclusion Xr(f) ↪→ Xs(f) induces maps on the
homology groups H(Xr(f)) → H(Xs(f)). Here we use modulo 2 homology, that is,
the coefficient group is Z/2Z. In addition, we simplify the notation by taking the direct
sum of the homology groups over all dimensions. A real value r is called a homological
regular value of f if there exists an ε > 0 such that the inclusion Xr−δ(f) ↪→ Xr+δ(f)
induces an isomorphism between homology groups for all δ < ε. Otherwise we call r a
homological critical value. We say that f is tame if the homology groups of each sub-
level set have finite rank and if there are only finitely many homological critical values.
Assuming that f is tame, with ordered homological critical values r1 < r2 < . . . < rn,
we select n+1 homological regular values si such that s0 < r1 < s1 < . . . < rn < sn,
and set Xi = Xsi(f). Note that X0 = ∅ and Xn = X, by compactness. The inclusions
Xi ↪→ Xj induce maps fi,j : H(Xi) → H(Xj) for 0 ≤ i ≤ j ≤ n and give a filtration
of the homology groups:

0 = H(X0) → H(X1) → . . . → H(Xn) = H(X). (1)
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Given a class α ∈ H(Xi), we say that α is born at Xi if α �∈ im fi−1,i. A class α born
at Xi is said to die entering Xj if fi,j(α) ∈ im fi−1,j but fi,j−1(α) �∈ im fi−1,j−1. We
remark that if a class α is born at Xi, then every class in the coset [α] = α+im fi−1,i is
born at the same time. Of course, whenever such an α dies entering Xj , the entire coset
[α] also dies with it.

Extended persistence. The filtration in (1) begins with the zero group but ends with a
potentially nonzero group. Hence, it is possible to have classes that are born but never
die. We call these essential classes, as they represent the actual homology of the space
X. To measure the persistence of the essential classes, we follow [7] and extend (1)
using relative homology groups. More precisely, we consider for each i the superlevel
set Xi = f−1[sn−i,∞). By compactness, we have X0 = ∅ and Xn = X and therefore
H(X,X0) = H(X) and H(X,Xn) = 0. For 0 ≤ i ≤ j ≤ n, the inclusions Xi ↪→ Xj

induce maps on relative homology. We then consider the extended filtration:

0 = H(X0) → H(X1) → . . . → H(Xn) = H(X)
= H(X,X0) → H(X,X1) . . . → H(X,Xn) = 0, (2)

and extend the notions of birth and death in the obvious way. Now all classes will
eventually die, as this filtration begins and ends with the zero group. The information
contained within the extended filtration (2) can be compactly represented by persis-
tence diagrams Dgmp(f), one for each dimension p in homology. These diagrams are
multisets of points drawn in three copies of the extended plane, shrunk to finite size and
arranged side by side, as shown in Figure 1. For technical reasons, we always consider
the diagram to contain infinitely many copies of each point on the baseline, where the
birth and death coordinates coincide. By Dgm(f), we mean the points of all diagrams
in all dimensions, overlaid as one multiset of points.

Contained within each Dgmp(f) are three subdiagrams, corresponding to three dif-
ferent combinations of birth and death location. The ordinary subdiagram, Ordp(f),

Dea
th

Death Birth

Birt
h

Rel

Ext

Ord

L R

a

∞ −∞−∞

∞ ∞

−∞

Fig. 1. The persistence diagram of a function consists of three subdiagrams, Ord, Ext, and Rel,
arranged in a triangle as shown. The points in the two shaded rectangles, L and R, represent the
homology of the level set defined by a.
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contains the point (ri, rj) for each coset of classes that are born at Xi and die entering
Xj . Here, birth and death both happen during the first half of (2). The extended subdi-
agram, Extp(f), contains (ri, rj) for each coset of classes that is born at Xi and dies
entering (X,Xn−j+1). Finally, the relative subdiagram, Relp(f), contains (ri, rj) for
each coset of classes that is born at (X,Xn−i+1) and dies entering (X,Xn−j+1). We
arrange the three subdiagrams side by side, while reversing the birth axis of the ex-
tended subdiagram and both axes of the relative subdiagram. We do so to simplify the
interpretation of the diagram, as will be explained later.

Stability. An essential property of the persistence diagrams is their stability under small
changes of the function. To make this precise, we need to define a distance between
functions and a distance between diagrams. Given two functions f, h : X → R, and a
real number r ≥ 0, we call h an r-perturbation of f if |f(x) − h(x)| ≤ r, for every
x ∈ X. This relation is symmetric and can be used to define a metric on the space of
real-valued functions on X, setting ‖f − h‖∞ equal to the minimum r such that f and
h are r-perturbations of each other. This is of course the standard L∞-distance between
functions. Given any two persistence diagrams, D and D′, we define the bottleneck
distance between them as the largest distance between matched points (in maximum
norm) under the best possible matching between the diagrams. More formally,

W∞(D,D′) = inf
γ

sup
u
‖u− γ(u)‖∞, (3)

where u ranges over all points of the diagram D, and γ ranges over all bijections from
D to D′. We then have:

1 (Stability Theorem [6]). Given continuous and tame functions f, h : X → R on a
compact topological space, we have W∞(Dgmp(f),Dgmp(h)) ≤ ‖f − h‖∞ for each
homological dimension p.

This result seems natural as we can construct a homotopy between f and h in which the
values change continuously, each by at most ‖f − h‖∞. However, consider that criti-
cal points may appear and disappear and global rearrangements may cause the pairing
between critical values change during the homotopy.

Robustness. The persistence diagram of a real-valued function f carries a wealth of
information. For example, it allows us to measure the robustness of the homology of
level sets to perturbations of f . We now make this precise.

Fixing some value a ∈ R and a real number r ≥ 0, we consider the preimage of
the interval: X[a−r,a+r](f) = f−1[a − r, a + r]. For every r-perturbation h of f , the
level set h−1(a) will be a subset of this preimage, and hence there is an induced map
on homology jh : H(h−1(a)) → H(X[a−r,a+r](f)). Following [11], we say that a class
α ∈ H(X[a−r,a+r](f)) is supported by h if it belongs to the image of jh; in other
words, if the set h−1(a) carries a chain representative of α. The well group of f and
r ≥ 0 is then defined to consist of those classes that are supported by all r-perturbations
of f . It is a subgroup of H(X[a−r,a+r](f)). The sequence of well groups no longer
forms a filtration but a more general zigzag module, introduced recently in [2]. These
modules can still be characterized, albeit less directly, by their persistence diagrams. In
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the case of well groups, all births happen at the beginning, so the diagram simplifies to
a multiset of points that mark deaths on the real line. We refer to this multiset as the well
diagram of the function and the value defining the level set. It expresses what we call
the robustness of the homology classes, that is, their resilience to perturbations of the
function. In [1], the authors demonstrate a simple relationship between the persistence
diagrams of f and the well diagrams of f and a, for every a ∈ R. To describe this
relationship, we first define for each homological dimension p two multisets of points:

Lp[a] = {(x, y) ∈ Ordp(f) | x < a, y > a} 
 {(x, y) ∈ Extp(f) | x < a, y > a},
Rp[a] = {(x, y) ∈ Extp(f) | x > a, y < a} 
 {(x, y) ∈ Relp(f) | x > a, y < a},

where x refers of course to the birth coordinate and y to the death coordinate of the
point; see Figure 1. Then the p-dimensional homology of f−1(a) is characterized by
points (x, y) in Lp[a] ∪ Rp+1[a]. If the point belongs to Lp[a], then its robustness is
equal to min{a−x, y−a}, while if the points belongs toRp+1[a], then its robustness is
min{x− a, a− y}. To get the well diagram of f and a, we then just plot the robustness
value for every point in Lp[a] ∪Rp+1[a] on the real line.

3 Non-uniform Error

In this section, we extend the concepts of persistence and robustness from a uniform to a
non-uniform notion of error. We begin by introducing the error model as a 1-parameter
family of functions.

Error model. It is convenient to substitute the extended real line, R̄ = R ∪ {−∞,∞},
for R as the range of our functions, and therefore also of the error model.

2 (Definition). An error model on a compact topological space X is a continuous
mapping E : X× R̄ → R̄ that satisfies the following two properties:

monotonicity: E(x, r) < E(x, s) for all x ∈ X and all r < s;
normalization: E(x, 0) = 0, E(x,∞) = ∞, E(x,−∞) = −∞, for all x ∈ X.

The error model is uniform if E(x, r) = r for all (x, r) ∈ X× R̄, and it is non-uniform
otherwise.

Fixing either a point x or a radius r, we get restricted functions ex : R̄ → R̄ and
er : X → R̄ defined by ex(r) = er(x) = E(x, r). Note that the two conditions
above guarantee that ex is invertible, a property we make use of later. Intuitively, one
might imagine r to be a global noise parameter which leads, via the error model E, to
a variable amount ex(r) of noise across X. The continuity of E models our assumption
that errors are not independent and indeed are closely related for nearby points. In
Section 5, we will add the further assumption that E is linear, meaning E(x, r) =
r ·E(x, 1) for all (x, r) ∈ X× R̄. For the moment we make no such requirement of our
model.
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Non-uniform filtrations and persistence. Given a function f : X → R̄ and any two
values r ≤ s, the standard notion of an interlevel set is the preimage of the interval:
X[r,s](f) = f−1[r, s]. In applications in which X is 3-dimensional, this construct is
often referred to as an interval volume. Extending it to our framework, we define the
non-uniform interlevel set as the set of points with image between the bounds specified
by the error model:

X[r,s](f,E) = {x ∈ X | E(x, r) ≤ f(x) ≤ E(x, s)}.

As illustrated in Figure 2, we can construct the non-uniform interlevel set by inter-
secting the graph of f with the strip of points between the graphs of er and es, and
projecting the intersection to X. In the special case in which r = −∞, we write
Xs(f,E) = X[−∞,s](f,E) and call it a non-uniform sublevel set. Similarly, if s = ∞,
we write Xr(f,E) = X[r,∞](f,E) and call it a non-uniform superlevel set.

X

R̄
graph f

graph er

graph es

Fig. 2. The graph of a function f , the shaded strip bounded from below and above by the graphs
of restrictions of the error model, and the non-uniform interlevel set obtained by projecting the
intersection. For r ≤ 0 ≤ s, the non-uniform interlevel set contains the zeroset of f .

Whenever r ≤ s, the monotonicity requirement guarantees the inclusion of Xr(f,E)
in Xs(f,E), and the inclusion of Xs(f,E) in Xr(f,E). Hence, just as in Section 2, the
non-uniform sublevel and superlevel sets give an extended filtration of X. As a result,
we have in each homological dimension p a non-uniform persistence diagram, denoted
by Ngmp(f,E). As before, we write Ngm(f,E) for the overlay of the diagrams in all
dimensions. In Section 5, we will see that, under the assumption of a linear error model,
these non-uniform diagrams are stable.

Non-uniform perturbations and robustness. Now suppose that we have a function f :
X → R̄ as well as an error modelE : X× R̄ → R̄. As promised, we create a theoretical
language to quantify the robustness of the homology of a level set f−1(0) under non-
uniform perturbation. Given another function h : X → R̄ and a value r ≥ 0, we say
that h is a non-uniform r-perturbation of f , with respect to E, if

E(x,−r) ≤ f(x)− h(x) ≤ E(x, r), (4)
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for all x ∈ X. For example, every function of the form f − es, with s ∈ [−r, r], is a
non-uniform r-perturbation of f . If E is linear, or indeed if each ex is odd, meaning
ex(−r) = −ex(r) for every r, then f will also be a non-uniform r-perturbation of h,
but this need not be true in the general case. It is useful to understand the connection
between non-uniform perturbations and interlevel sets.

3 (Non-uniform Perturbation Lemma). A function h : X → R̄ is a non-uniform
r-perturbation of f : X → R̄, under the error modelE : X× R̄ → R̄, only if h−1(0) ⊆
X[−r,r](f,E).

Proof. Starting with the definition of a non-uniform r-perturbation, we get

E(x,−r) ≤ f(x) ≤ E(x, r),

for all points x with h(x) = 0. The two inequalities define the non-uniform interlevel
set defined by −r ≤ r, which implies the claimed containment.

We note that X[−r,r](f,E) is the smallest interlevel set that contains the zeroset of
every non-uniform r-perturbation. In other words, it is the union of all these zerosets.
Compare this with the fact that X[−r,r](f,E) is also the union of the zerosets of the
functions f − es, for all s ∈ [−r, r]. Adopting the terminology from Section 2, we can
now define the non-uniform well group of f , E, and a value r ≥ 0 to consist of those
classes in H(X[−r,r](f,E)) that are supported by all non-uniform r-perturbations of
f . Correspondingly, we get the non-uniform well diagram that characterizes the non-
uniform robustness of the homology of f−1(a) under the error model E.

4 Transformation to Uniform Error

In this section, we show that the non-uniform persistence and well diagrams of a func-
tion f and an error model E are really just the uniform diagrams of another function.
To do so, we create a dual error model,E∗, which enables us to transform non-uniform
interlevel sets and perturbations into uniform interlevel sets and perturbations.

Dual error model. Given an error model E : X × R̄ → R̄, we recall that the function
ex : R̄ → R̄ defined by ex(r) = E(x, r) is invertible for every x ∈ X. We thus have
the following definition.

4 (Definition). The dual error model of E is the unique mapping E∗ : X × R̄ → R̄

that satisfies E∗(x,E(x, r)) = r for every (x, r) in X× R̄.

Considering the restrictions of E and E∗ obtained by fixing a point x, we note that
e∗x = e−1

x . The name of E∗ is justified by the following result. For technical reasons, it
needs the additional assumption that X be first-countable [14]. This assumption is rather
mild; for example, it is satisfied whenever X can be embedded in finite-dimensional
Euclidean space.

5 (Duality Lemma). Given an error model E : X × R̄ → R̄ on a compact and first-
countable topological space X, then (i) E∗ is an error model, (ii) (E∗)∗ = E, (iii) E∗

is linear iff E is linear.
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Proof. Claims (ii) and (iii) are obvious. For Claim (i), we note that monotonicity and
normalization for E immediately imply the same properties for E∗. So we must only
prove that E∗ is a continuous function from X × R̄ to R̄. To do this, we make use of
the following lemma from point-set topology: Assuming a first-countable space W and
a compact space Y, a mappingH : W → Y is continuous iff the graph of H is a closed
subset of W× Y; see eg. [14]. In our context, we have W = X× R̄ and Y = R̄.

By assumption,E is continuous, and thus the graph ofE is a closed subset of X×R̄×
R̄. On the other hand, the graphs ofE andE∗ are homeomorphic. To see this, recall that
graphE = {(x, r, a) ∈ X× R̄× R̄ | E(x, r) = a}. Switching the last two arguments
gives a homeomorphismψ : X× R̄× R̄ → X× R̄× R̄ defined by ψ(x, r, a) = (x, a, r).
Then (x, r, a) ∈ graphE iff (x, a, r) ∈ graphE∗. In other words, the restriction of
ψ to the graph of E provides a homeomorphism between graphE and graphE∗. In
particular, the graph of E∗ is closed. Applying the lemma once again, we conclude that
E∗ is continuous.

Transforming functions. The dual error model E∗ of E allows us to associate to each
function f a transformation Γf that turns non-uniform interlevel sets into uniform ones,
as we now explain. Given such f , we create a new function Γf(f) defined by the rule
Γf (f)(x) = E∗(x, f(x)) for each x ∈ X. This definition is illustrated in Figure 3.
To construct Γf (f) geometrically, we use the subset of the graph of E that projects
to the graph of f in X × R̄. The projection of the same subset to X times the other
copy of R̄ gives the graph of Γf (f). As mentioned earlier, this transformation forms a
correspondence between non-uniform and uniform interlevel sets.

R̄

R̄

X

Fig. 3. The surface is the graph of the error model, E. We also see the graph of f in the vertical
plane, the graph of Γf (f) in the horizontal plane, and the curve in the surface that projects to
both. We note that f and Γf (f) have the same zeroset.
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6 (Interlevel Set Transformation Lemma). For every r ≤ s, the non-uniform in-
terlevel set of f and E is the uniform interlevel set of Γf(f); that is, X[r,s](f,E) =
X[r,s](Γf (f)).

Proof. Assume first that x ∈ X[r,s](f,E). Applying the strictly increasing function e∗x
to the chain of inequalities ex(r) ≤ f(x) ≤ ex(s) gives

r ≤ e∗x(f(x)) = E∗(x, f(x)) = Γf (f)(x) ≤ s,

and so x ∈ X[r,s](Γf (f)). Reversing the argument proves the claim.

In particular, the non-uniform sublevel and superlevel sets of f and E are the uniform
sublevel and superlevel sets of Γf (f). This implies that the extended filtrations defined
by f andE and by Γf(f) are the same. Hence, they define the same sequence of homol-
ogy groups and maps between them, and therefore also the same persistence diagrams.

7 (Persistence Diagram Lemma). The transformation Γf turns non-uniform persis-
tence diagrams into uniform ones; that is, Ngm(f,E) = Dgm(Γf (f)).

Transforming perturbations. We now generalize the above construction, applying Γf

to any other function h : X → R by setting

Γf (h)(x) = Γf (f)(x)− E∗(x, f(x)− h(x)),

for each x ∈ X. Of course, we could perform a similar operation using Γh, but Γf(h)
and Γh(h) are not necessarily the same. In Section 5, we will see that a linear error
model guarantees the equality of Γf (h) and Γh(h). Even without this assumption, we
have the following:

8 (Perturbation Transformation Lemma). The transformation Γf turns non-uniform
r-perturbations into uniform ones; that is, h is a non-uniform r-perturbation of f iff
Γf (h) is a uniform r-perturbation of Γf (f).

Proof. Assume that h is a non-uniform r-perturbation of f . By definition, we have
ex(−r) ≤ f(x)−h(x) ≤ ex(r) for every x ∈ X. When we apply the strictly increasing
function e∗x to this chain of inequalities, we get

−r ≤ e∗x(f(x) − h(x)) = E∗(x, f(x) − h(x)) = Γf (f)(x) − Γf(h)(x) ≤ r,

which implies that Γf (h) is a uniform r-perturbation of Γf(f). Reversing the steps
proves the claim.

The two Transformation Lemmas together imply that the non-uniform well diagram of
f and E is identical to the uniform well diagram of Γf . In other words, the robustness
of each level set to non-uniform perturbation can be read directly off Ngm(f,E) =
Dgm(Γf (f)) in the manner discussed in Section 2.
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5 Linear Error

In this section, we demonstrate that the imposition of linearity on our error model E
leads to a richer theory of persistence. More specifically, we assume thatE is linear and
use this fact to define a metric on the space of all functions. Then we show that, under
this metric, non-uniform persistence diagrams are stable.

Metric. Recall that an error model E is linear if E(x, r) = r · E(x, 1), for all x ∈ X

and all r ∈ R̄. Put another way,E is linear if all of the functions ex are linear. Whenever
we have such a model and two functions f and h, we may rewrite the inequalities in (4)
as |f(x) − h(x)| ≤ E(x, r). In other words, f is a non-uniform r-perturbation of h iff
h is a non-uniform r-perturbation of f . This leads us to define the following notion of
non-uniform distance between h and f :

dE(f, h) = min{r | |f(x)− h(x)| ≤ E(x, r), for all x ∈ X}.

9 (Metric Lemma). Assuming a linear error model E, dE is a metric on the vector
space of all R̄-valued functions on X.

Proof. Since E(x, 0) = 0, we have f = h iff dE(f, h) = 0. Furthermore, dE(f, h) =
dE(h, f), as discussed above. It remains to prove the triangle inequality: dE(f, h) ≤
dE(f, g) + dE(g, h). Put R = dE(f, g) and S = dE(g, h) and fix a point x ∈ X. Then
using the triangle inequality for the standard metric in R̄, we find

|f(x)− h(x)| ≤ |f(x)− g(x)|+ |g(x)− h(x)|
≤ E(x,R) + E(x, S)
≤ E(x,R + S).

This implies dE(f, h) ≤ R+ S and the claim follows.

We note that the Metric Lemma still holds under a weaker assumption onE. Namely, we
need only assume that for each x ∈ X, ex(−r) = −ex(r) and ex(r)+ex(s) ≤ ex(r+s),
for all r, s ≥ 0. In words, each ex is odd and also convex on the non-negative half of
the extended real line.

Stability. We now compare the non-uniform persistence diagrams of two functions f
and h on X, and prove that their bottleneck distance is bounded from above by the non-
uniform distance between the two functions. First we need to show that for a linear error
model, the transformations defined by different functions are the same.

10 (Linear Transformation Lemma). Let f, h : X → R̄ be two functions. Assuming
a linear error model E, we have Γf (h) = Γh(h).

Proof. Fix a point x ∈ X. Starting with the definition, we get

Γf (h)(x) = Γf(f)(x) − E∗(x, f(x) − h(x))
= E∗(x, f(x)) − E∗(x, f(x) − h(x))
= E∗(x, h(x)),
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where we use linearity to get from the second to the third line. But the third line is equal
to Γh(h)(x), and the claim follows.

The Linear Transformation Lemma justifies the notation Γ (h) to refer to the common
function Γf (h) for any other function f . As an immediate consequence of the Perturba-
tion Transformation Lemma, we then find dE(f, h) = ‖Γ (f)− Γ (h)‖∞. Finally, we
get the stability of the non-uniform persistence diagrams.

11 (Non-uniform Stability Theorem). For any two f, h : X → R̄, and a linear error
model E, we have: W∞(Ngm(f,E),Ngm(h,E)) ≤ dE(f, h).

Proof. First we transform f and h into Γ (f) and Γ (h), recalling from the Persistence
Diagram Lemma that Ngm(f,E) = Dgm(Γ (f)) and Ngm(h,E) = Dgm(Γ (h)).
Applying the Stability Theorem to the two uniform persistence diagrams, we find

W∞(Dgm(Γ (f)),Dgm(Γ (h))) ≤ ‖Γ (f)− Γ (h)‖∞ = dE(f, h),

and the result follows.

6 Discussion

The main contribution of this paper is the extension of the machinery of persistent
homology to non-uniform error models. This extension is not complete and many ques-
tions remain yet unanswered.

On the technical level, it would be interesting to gain a more detailed understanding
on how the difference between Dgm(f) and Ngm(f,E) relates to the error model, E.
Similarly, can we extend the Non-uniform Stability Theorem from linear to non-linear
error models? A more challenging question is the extension of robustness under non-
uniform error to a full-blown probability theory of the homology of level sets.
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Abstract. What is information? Frequently spoken about in many con-
texts, yet nobody has ever been able to define it with mathematical rigor.
The best we are left with so far is the concept of entropy by Shannon, and
the concept of information content of binary strings by Chaitin and Kol-
mogorov. While these are doubtlessly great research instruments, they
are hardly helpful in measuring the amount of information contained in
particular objects. In a pursuit to overcome these limitations, we propose
the notion of information content of algorithmic problems. We discuss
our approaches and their possible usefulness in understanding the ba-
sic concepts of informatics, namely the concept of algorithms and the
concept of computational complexity.

1 Introduction

Looking at the terms “informatics” or “information processing” as reasonable
alternatives to “computer science” for naming our scientific discipline, we identify
two basic notions describing the fundamental stones of informatics. The first
one is the notion of “algorithm”, which is related to “automatic processing”,
and the second one is “information”. The relationships of computer scientists
to these two notions are different. The notion of an algorithm as a method
for solving a problem was fixed in formal mathematical definitions [11], and
it seems that we understand the concept of algorithms very well. The formal
concept of algorithms belongs to informatics; the development of this concept is
a fundamental contribution of informatics to science.

The formal definition of an algorithm can be viewed as an axiom of the for-
mal language of mathematics; we even relate the birth of computer science to
the development of this fundamental concept. The situation with the notion of
“information” is completely different. This notion is not a property of informat-
ics or a contribution of informatics to other scientific disciplines, as it is used in
physics, biology, technical sciences, and many other disciplines. The crucial point
is that we work intuitively with this term and yet we do not really know what
“information” is. We are even very far from giving a precise mathematical defini-
tion of “information”. We have the concept of entropy due to Shannon [10] and
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the concept of Kolmogorov complexity due to Kolmogorov [9] and Chaitin [4].
Both concepts are great research instruments, but at the very end they cannot be
used to estimate the information content of particular objects (binary strings).

On the other hand, computer scientists frequently speak about automatic
information processing. What does it mean to solve an instance of a computing
problem? To compute a solution of a problem instance is nothing else than
extracting a desired information about the problem instance that is somehow
hidden in the problem instance description. Remember, we cannot speak about
the computational complexity of a problem without fixing the representation of
the problem instances. The aim of information processing in the usual sense is
to express some part of information contained in the input in a prescribed way
– from this point of view, computing is a transformation of one representation
of information to another one. Complexity theory indicates that the cost of
these transformations may be arbitrarily high, depending on the problem. The
concept of NP-completeness shows that many problems can be “equally” hard
from the computational point of view, because one can efficiently transform the
representation of the instances of one problem into the representation of the
instances of another problem.

All this suggests that in order to advance in understanding the nature of
computing, we should intensify our efforts to figure out what information really
is. What about introducing a concept of “information content of algorithmic
problems” in order to classify the problems in this way, and then trying to
learn something essential about the computational hardness of the corresponding
problems?

Another reason to focus more on studying the meaning of information is
the 40-years old unsuccessful effort to prove nontrivial lower bounds on the
computational complexity of concrete algorithmic problems. On the one hand,
we believe that NP-hard problems require exponential time to be solved, and on
the other hand we are unable to prove a superlinear lower bound on the time
complexity of at least one of them. Our lower bound methods are often strongly
related to “information transfer” between different parts of hardware (memory)
or between different parts of computations. It seems that arguments of this kind
are not strong enough to reach our goals. Understanding more about the concept
of information and its role in computation could be the way out.

In this paper, we introduce the notion of “information content of algorithmic
problems” with the hope that the study of this information measure could be
helpful in understanding the fundamentals of computing (information process-
ing).

2 Information Content of Online Problems

Our first attempt starts with defining the information content of a problem as
a measure that does not depend on the computational hardness of the problem.
Because of that, we do not start with thinking about classical offline problems.
In an online setting, the algorithm receives instances of the problem piece by
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piece. After getting a part of the input, the algorithm is required to make a
corresponding decision with respect to the problem instance solution and is not
allowed to revise decisions later after seeing a new part of the input. This means
that the algorithm must generate a part of the solution with zero information
about the missing parts of the problem instance. Thinking in terms of optimiza-
tion problems, one defines the competitive ratio crA(I) of an online algorithm A
on a problem instance I as the ratio between the cost of the solution computed
by A and the cost of the optimal solution that can be computed based on the
complete information about the instance. An algorithm A, whose competitive
ratio crA(I) is at most r for any problem instance I, is called r-competitive.

Our first idea is to define the information content infP of an online problem
P as the minimum number of advice bits sufficient and necessary to guarantee
that it is possible to compute an optimal solution to any problem instance (to
get the competitive ratio 1). The advice bits are nothing else but “information”
about the not yet known part of the input. For sure, the Kolmogorov complexity
of the instance is an upper bound on the number infP (I) of advice bits needed to
solve the instance optimally in an online manner, however, this is only an upper
bound on the information content of this problem instance. Often one does not
need the full information about the instance to distinguish it from other ones.
Moreover, one does not necessarily need to distinguish each instance from all
other ones; it is enough to take the right decision, which can be common for
many problem instances. And this is exactly what we are searching for, because
this is what we intuitively relate to the desired notion of “information content
of a problem”.

One can define the information content of an online problem in the common
worst-case manner, parameterized by the size of the problem instances. Hence,
infP (n) would be the maximum of infP (I) over all instances I of size n. However,
to get an exact definition of infP (n), one still has to fix the way in which the
advice bits are communicated. The first paper [5] investigating the number of
advice bits necessary for solving online problems optimally proposed that the
online algorithm may pose a sequence of questions and it always gets the right
answer as a non-empty sequence of bits. The sum of the lengths of all answers is
the advice complexity. This kind of measurement is rough, because one can code
also a lot of information in the lengths of the individual answers and in this way
the whole communication can be viewed as a string over three symbols. In fact,
the authors of [5] proved that this measurement is rough up to a multiplicative
constant factor.

One possible solution to fix the problems of the model introduced in [5] has
been proposed in [6]. Here, the algorithm receives an advice of fixed constant
length k with each request. The length k is used as a measure of the advice
complexity of the problem; for an input consisting of n requests, exactly kn bits
of advice are used. This model enforces a smooth flow of the advice information,
since the same amount of advice is made available to the algorithm in every
request. It is not possible, however, to employ this model to analyze online
algorithms that use less than n bits of advice. This is a significant drawback,
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because many well-known online problems are very easy to solve optimally with
one bit of advice available in every request.

Another approach to define the communication of the advice bits, introduced
in [2], is to relax the requirement of a smooth advice information flow and to
follow a way analogous to the definition of randomized Turing machines. In the
case of randomization, the Turing machine is augmented with a separate tape
containing random bits. It is then possible to measure the amount of randomness
used as the number of bits accessed on the random tape. Similarly, we can provide
an advice tape to the online algorithm. The algorithm can access this tape in
an arbitrary way and the advice complexity is measured as the total number
of advice bits accessed over the whole computation. In this way, it is perfectly
possible to analyze problems that use less than 1 advice bit per request on
average. The advice complexity can be sublinear as well.

In the sequel, we provide a more formal definition of the information content
of an online problem which coincides with the advice complexity as defined in [2].
At first, we define the advice complexity of an online algorithm:

Definition 1. An online algorithm A with advice computes the output sequence
Aφ(I) = (y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is the
content of the advice tape, i. e., an infinite binary sequence, and I = (x1, . . . , xn)
is an input instance of the considered online problem. Algorithm A is c-competitive
with advice complexity s(n) if, for every n and for each input sequence I of length
n, there exists some φ such that the competitive ratio of algorithm A on I is at most
c, i. e., crA(I) ≤ c, and no positions of φ except the first s(n) bits are accessed
during the computation of Aφ(I).

Now we are ready to formally define the information content infP (n) of an online
problem P . More precisely, we define upper and lower bounds on the information
content infP (n). The definition of the upper bound is straightforward:

Definition 2. A function f(n) is an upper bound on infP (n) if and only if
there exists a 1-competitive online algorithm A with advice complexity s(n) such
that s(n) ≤ f(n) for all n.

It is, however, more tricky to find a suitable definition of the lower bound on the
information content. As a first attempt, we can make a simple modification to
the definition of the upper bound:

Definition 3. A function g(n) is a lower bound on infP (n) if and only if, for
every 1-competitive online algorithm A with advice complexity s(n), it holds that
s(n) ≥ g(n) for all n.

Unfortunately, this definition has a serious drawback: It is possible to store
a constant, but arbitrarily high, amount of information in the online algorithm
itself. In certain cases, such information can be used to solve some input instances
very efficiently. In such cases, no nontrivial lower bound on infP (n) can be given
in the sense of Definition 3.

As an example of such a situation, consider the following (rather artificial)
online problem:
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Definition 4 (Guess the Input Length Problem). An input instance of the
Guess the Input Length problem (GIL) consists of n requests. Each of the first
n − 1 requests is the symbol 0 and the last request is the symbol 1. The online
algorithm must guess the number of requests after the first request is received,
i. e., it must output n as an answer to the first request. No answer is required
for any other request.

For any n, we can construct an algorithm that, given advice containing a single
bit 0, outputs n. If the first bit of advice is 1, the algorithm reads the complete
number from the advice tape and outputs it. In such a way, Θ(log n′) advice
bits are used for all numbers n′ �= n, but a single bit of advice is sufficient for
an input of length n. Hence, the only feasible lower bound on infGIL(n) in the
sense of Definition 3 is g(n) = 1.

One possible approach to avoid this problem is to allow the lower bound to
be valid only from some minimal n0 that depends on the online algorithm:

Definition 5. A function g(n) is a lower bound on infP (n) if and only if, for
every 1-competitive online algorithm A with advice complexity s(n), there exists
some n0 such that s(n) ≥ g(n) holds for all n ≥ n0.

Easily, the Kolmogorov complexity K(n) of the number n is an upper bound
on infGIL(n). Intuitively, K(n) should be a lower bound on infGIL(n) as well.
Indeed, the online algorithm must output the number n without any a-priori in-
formation, the whole information about n must be contained in the used advice.
To define the exact value of K(n), we have to fix some “programming language”
with respect to which we measure the Kolmogorov complexity. However, once
this programming language is fixed, it might still be possible to create a more so-
phisticated online algorithm for GIL that saves some constant amount of advice
for infinitely many inputs. Furthermore, we are not able to provide any bounds
on such a constant. Hence, we cannot use the function K(n)−c as a lower bound
of infGIL(n), regardless of the choice of the constant c. We may, however, relax
Definition 5 in the following way:

Definition 6. A function g(n) is a lower bound on infP (n) if and only if, for
every 1-competitive online algorithm A with advice complexity s(n), there exists
some constant Δ such that s(n) +Δ ≥ g(n) holds for all n.

It is not difficult to see that K(n) is a lower bound on infGIL(n) in the sense of
Definition 6. A drawback of such a definition is that a lower bound can be in
fact larger than an upper bound. The difference between the two, however, can
be at most constant, hence it is not an issue if an asymptotic analysis is done.

Alternatively, we could use another way to relax Definition 5:

Definition 7. A function g(n) is a lower bound on infP (n) if and only if, for
every 1-competitive online algorithm A with advice complexity s(n), s(n) ≥ g(n)
holds for infinitely many n.

Such a definition of a lower bound is very weak – a lower bound can be arbitrarily
larger than an upper bound on infinitely many values. Nevertheless, it is not
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possible that a lower bound is asymptotically larger than an upper bound. On a
positive side, Definition 7 allows us to easily claim a lower bound of log2(n) on
infGIL(n) due to the existence of incompressible strings.

Another approach to avoid the problems of Definition 3 is to actually modify
the definition of advice complexity (Definition 1) to require that s(n) bits of
advice are sufficient to solve all input instances of length at most n. After such
modification, we can easily claim log2(n) to be a lower bound on infGIL(n) in
the sense of Definition 3.

We have presented several possible ways how to define a lower bound on the
information content of an online problem. Nevertheless, there is usually little
difference between them for the relevant online problems. In the rest of this
paper, we stick to the strongest Definition 3, despite to its deficiencies, since all
presented results hold with respect to this definition as well. As a shorthand, we
write

infP (n) ≤ f(n)

if f(n) is an upper bound on infP (n) and

infP (n) ≥ g(n)

if g(n) is a lower bound on infP (n).
In the sequel, we show that the information content of online problems can be

very different even for well-known natural problems. As an example of a problem
with a very low information content, consider the SkiRental problem (for a
definition, see, e. g., [3]). For any input instance, the optimal solution of the
SkiRental problem has very simple structure: Either it consists of buying the
skis at the very beginning, or it consists of renting the skis all the time. Hence, a
single bit of advice is sufficient (and necessary) to solve the SkiRental problem
optimally for input instances of arbitrary lengths. Thus, we have a tight bound
on the information content of the SkiRental problem: infSkiRental(n) = 1.

Next, we show that the well-known Paging problem is an example of an
online problem that has linear information content, i. e., any optimal algorithm
for this problem requires Θ(n) advice bits, where n is the number of requests.

Definition 8 (Paging Problem). The input is a sequence of integers repre-
senting requests to logical pages I = (x1, . . . , xn), xi > 0. An online algorithm
A maintains a buffer (content of the physical memory) B = {b1, . . . , bK} of K
integers, where K is a fixed constant known to A. Before processing the first re-
quest, the buffer gets initialized as B = {1, . . . ,K}. Upon receiving a request xi,
if xi ∈ B, then yi = 0. If xi �∈ B, then a page fault occurs, and the algorithm
has to find some victim bj, i. e., B := B \ {bj} ∪ {xi}, and yi = bj. The cost of
the solution A = A(I) is the number of page faults, i. e., C(A) = |{yi : yi > 0}|.

In fact, the paging problem is not a single problem, but rather a collection of
problems parameterized by the buffer size K. For simplicity, however, we omit
this parameter from the notation of the problem, and assume that K is a fixed
constant known to the online algorithm. It is not difficult to prove a linear upper
bound on the information content of Paging [2, 1]:
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Theorem 1
infPaging(n) ≤ n+K

Proof. It is sufficient to show that there is an optimal online algorithm (i. e., a
1-competitive algorithm) solving Paging with advice complexity n+K.

Consider an input sequence I and an optimal offline algorithm Opt processing
it. In each step of Opt, call a page currently in the buffer active if it will be
requested again before Opt replaces it by some other page. We design A such that,
in each step i, the set of Opt’s active pages will be in B, and A will maintain with
each page an active flag identifying this subset. If A gets an input xi that causes
a page fault, some passive (i. e., non-active) page is replaced by xi. Moreover,
A reads with each input also one bit from the advice tape telling whether xi

is active for Opt. Since the set of active pages is the same for Opt and A, it is
immediate that A generates the same sequence of page faults.

Algorithm A consumes one bit of advice with every request. Moreover, it needs
to receive the information about which pages that are stored in the buffer at the
beginning of the computation are active. Hence, A reads n+K bits of advice in
total. 


Next, we provide a lower bound on infPaging(n) that shows that the above-
described upper bound is tight if the buffer size K is large [2, 1], that is, any
optimal algorithm for Paging must consume almost one bit of advice for every
request:

Theorem 2. There exists a fixed constant C that does not depend on K such
that

infPaging(n) ≥ n

(
1− log(K − 1) + C

4(K − 1)

)
−O(1)

holds. The constant of O(1) depends on K.

Proof. The main idea of the proof is, for any input length n, to construct a set
of input instances that are sufficiently different, i. e., that any two instances from
this set provably need a different advice if they are to be solved in an optimal
way.

We now formally describe how to construct such a set of inputs I. Let ν :=
�n/(2K − 2)� and Z :=

(2K−2
K−1

)
. The set I consists of Zν inputs organized in

a complete Z-ary tree of height ν, where each edge is labeled with a sequence
of 2K − 2 requests. Each leaf of the tree represents one input from I which is
obtained by concatenating the request sequences on all edges of the path from
the root to this leaf. Let Nh denote the sequence of K − 1 requests (hK +
1, hK + 2, . . . , hK +K − 1). Let us denote the root of the tree to be on level 1,
the sons of the root to be on level 2, etc. Each edge e leading from a vertex v
of level h is labeled with the sequence Nh followed by the sequence S(e). The
sequences S(e) are defined recursively as follows. For each vertex v, consider a
set of K elements m(v); the intuition is that m(v) is the content of the memory
of some optimal algorithm processing the given input. Let us define m(root) =
{1, . . . ,K}. Inductively, consider a vertex v of level h with m(v) already defined.
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The sequences S(e) of the outgoing edges contain (K − 1)-element subsets of
the set m(v) ∪ Nh such that they do not contain the element hK + K − 1
(the ordering within the sequence is not important; to avoid ambiguity, let us
assume the sequences S(e) are increasing). For any edge e = (v, v′), let us set
m(v′) := S(e) ∪ {hK + K − 1}. Since, by using this procedure, we keep the
invariant that m(v) ∩Nh = ∅, there are exactly Z =

(2K−2
K−1

)
possible subsets, a

unique one for every son of v.
In this way, we obtain a set of instances of length ν(2K − 2). Each of these

instances can be extended to the length n by repeating the last request n −
ν(2K − 2) = nmod(2K − 2) times.

The intuition behind this construction is as follows. Every vertex of the tree
represents some prefix of some input in I. When an optimal algorithm has
processed a prefix of an input instance that corresponds to a vertex v, the content
of its buffer is m(v). At that moment, a sequence Nh of requests arrives, where h
is the level of v. All of the requested pages in Nh are new. Thus, they are not in
the buffer and the algorithm must make a page fault for each of them. However,
the algorithm can choose which pages in the buffer will be overwritten. In this
way, after processing Nh, the algorithm can obtain any content of the buffer that
is a subset of m(v) ∪Nh that contains K elements and one of these elements is
hk +K − 1 (the last request of Nh).

After processing Nh, the set of control requests S(e) follows. If the algorithm
made a correct choice while processing Nh, all elements of S(e) are in the buffer
after processingNh, hence no page faults are generated while processing S(e). On
the other hand, if a wrong choice was made, at least one page fault is necessary.
Easily, once a wrong choice is made, the algorithm cannot be optimal.

Assume that two inputs from I are given the same advice. Let v be the vertex
representing the longest common prefix of these inputs, and h be the level of
v. The online algorithm makes the same choice while processing Nh. Therefore,
this choice is wrong in at least one of the inputs, and the online algorithm fails
to achieve optimality.

Hence, the advice complexity of A has to be at least log(|I|) = log(Zν) =
ν log(Z) bits:

s(n) ≥ ν log(Z) =
⌊

n

2K − 2

⌋
log

(
2K − 2
K − 1

)
≥

(
n

2K − 2
− 1

)
log

(
2K − 2
K − 1

)
=

n

2K − 2
log

(
2K − 2
K − 1

)
−O(1).

(1)

Using the Stirling formula, we have(
2t
t

)
=

(2t)!
(t!)2

≥
√

2π2t
( 2t

e

)2t(√
2πt

(
t
e

)t (1 +O
( 1

t

)))2 ≥ 22t · D√
t

(2)
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for some constant D not depending on K. Substituting t := K − 1 into (2) and
(1), we complete the proof:

s(n) ≥ n

(
1

2K − 2
log

(
22(K−1) D√

K − 1

))
−O(1)

= n ·
2(K − 1) + log(D) − 1

2 log(K − 1)
2K − 2

−O(1)

= n

(
1− −2 log(D) + log(K − 1)

4K − 4

)
−O(1). 


The information content of some other online problems has been analyzed in
[2, 1]. In particular, the problem of Disjoint Path Allocation (DisPathAlloc

for short) and the problem of Job Shop Scheduling for Two Jobs (JSSchedule

for short) have been considered. For definitions and more information about
these problems, see, e. g., [3] and [7,8], respectively.

The DisPathAlloc problem is an another example of an online problem with
high information content: Any optimal algorithm for DisPathAlloc needs at
least n/2−1 bits of advice to solve input instances with n requests. On the other
hand, there is a very simple optimal algorithm that consumes one bit of advice
for every request. Hence, we can write n ≥ infDisPathAlloc(n) ≥ n/2− 1.

The JSSchedule problem, on the other hand, has a lower information con-
tent. If there are n jobs to be scheduled, 2�

√
n� advice bits are sufficient to find

the optimal solution. This bound is asymptotically tight, i. e., Ω(
√
n) of advice

bits are necessary.
The following table summarizes the known results about the information con-

tent of the discussed online problems:

Table 1. Upper and lower bounds on the information content of online problems

P Upper bound on infP (n) Lower bound on infP (n)

Paging n + K n
(
1 − log(K−1)+C

4(K−1)

)
−O(1)

DisPathAlloc n n
2
− 1

JSSchedule 2�√n� Ω(
√

n)

3 Relative Information Content of Online Problems

So far, we have focused on the full information content of online problems, defined
as the size of advice about future requests that is needed to solve the problem
optimally. The requirement of an optimal solution is, however, very strict. In the
context of online problems, suboptimal solutions are often analyzed and their
quality is measured by their competitive ratio. Hence, it makes sense to consider
a trade-off between the competitive ratio of an online algorithm and the size
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of the advice needed to achieve this ratio. This leads us to the definition of
information content of an online problem P relative to the competitive ratio r,
denoted as inf(r)

P (n). Again, we define upper and lower bounds on inf(r)
P (n):

Definition 9. A function f(n) is an upper bound on inf(r)
P (n) if and only if

there exists an r-competitive online algorithm A with advice complexity s(n) such
that s(n) ≤ f(n) for all n.

Definition 10. A function g(n) is a lower bound on inf(r)
P (n) if and only if, for

every r-competitive online algorithm A with advice complexity s(n), it holds that
s(n) ≥ g(n) for all n.

The discussion about alternative definitions of the information content is valid
for the definition of relative information content as well. Thus, it is possible to
create variants of Definition 10 in an analogous way to Definitions 5, 6, and 7.

Several results about the relative information content of online problems are
known as well [2, 1]. For the paging problem, it is known that linear advice
is necessary to achieve competitive ratios close to 1. More precisely, for any
1 ≤ r ≤ 1.25 and any fixed K, inf(r)

Paging
≥ Ω(n). The constant hidden in the

asymptotic notation, however, depends on r and K. The precise bound can be
formulated as follows [1, Theorem 2]:

Theorem 3. Let r be any constant such that 1 ≤ r ≤ 1.25. It holds that

inf(r)
Paging

≥ n

2K − 2

[
1 + log(3− 2r)− (2r − 2) log

(
1

2r − 2
− 1

)]
−O(1).

The constant of O(1) depends on K and the parameter r.

The idea behind the proof of Theorem 3 is to consider the set of instances defined
in the proof of Theorem 2 and adapt the analysis for the case of algorithms with
a fixed competitive ratio. The lower bound of Theorem 3 can be complemented
by the following upper bound [1, Theorem 1] which states that, for any r, it is
possible to achieve an r-competitive algorithm for Paging with linear advice.
Moreover, the linearity constant tends to 0 with growing r:

Theorem 4. For each constant r ≥ 1, it holds that

inf(r)
Paging

≤ n log
(
r + 1
r

r
r+1

)
+ 3 logn+O(1).

Theorems 3 and 4 suggest that large advice is necessary for Paging if a con-
stant competitive ratio is required. Now we focus on the opposite end of the
competitive ratio spectrum, where the competitive ratio is not a fixed constant.

It is a well-known fact that any deterministic algorithm for paging cannot
be better than K-competitive [3]. It is, however, an interesting fact that even
extremely small advice can significantly improve this ratio. For example, just two
bits of advice for the whole input instance are sufficient to obtain an algorithm
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with competitive ratio K/2 + 7.5, regardless of the number of input requests. In
general, b bits of advice are sufficient to obtain a competitive ratio of 2(K+1)

2b +
3b+ 1 [1, Theorem 5]:

Theorem 5. Let b be any fixed integer and let

r :=
2(K + 1)

2b
+ 3b+ 1.

Then
inf(r)

Paging
≤ b.

The main idea behind this result is to construct 2b deterministic paging algo-
rithms that are sufficiently different and that the total number of page faults
they make together has a reasonable upper bound. It turns out that the idea of
marking algorithms (as described in [3]) can be used to achieve this goal. After-
wards, we can argue that, for any input instance, at least one of these algorithms
works well. The advice provided is then just an identification of the best possible
algorithm from the constructed set.

On the other hand, it is possible to prove a lower bound corresponding to
Theorem 5 [1, Theorem 6]. In fact, this lower bound shows that the upper bound
of Theorem 5 is almost tight for small b:

Theorem 6. Let b be any fixed integer and let r := K/2b. Then

inf(r)
Paging

≥ b.

The idea behind this lower bound is not very involved. It is sufficient to consider
a set of all possible input instances of length n that use only numbers 1 to K+1
in their requests. It is not difficult to see that the optimal algorithm makes at
most n/K page faults for any such instance. On the other hand, if the advice is
short, there are many different inputs with the same advice, what can be used
to infer that the algorithm makes sufficiently many page faults on at least one
of them.

For the DisPathAlloc problem, we have the following lower bound on the
relative information content [1, Theorem 8]:

Theorem 7
inf(r)

DisPathAlloc
≥ n+ 2

2r
− 2

Furthermore, it is not difficult to provide an upper bound on inf(r)
DisPathAlloc

that
is only a factor of logn away from the lower bound of Theorem 7 for large r,
and that is asymptotically tight for constant r [1, Theorem 9]:

Theorem 8

inf(r)
DisPathAlloc

≤min

{(n
r

+ 3
)

logn+O(1), n log
r

(r − 1)
r−1

r

+ 3 logn+O(1)

}
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For the JSSchedule problem, it is straightforward to adapt the randomized
algorithm of [7] to achieve an algorithm with small (logarithmic) advice and a
competitive ratio close to 1:

Theorem 9. There is an online algorithm for JSSchedule with advice com-
plexity s(n) ≤ 1 + log(n) that achieves competitive ratio O(1 + 1/

√
n). Hence,

inf(r)
JSSchedule

≤ 1 + log(n),

for any r > 1.

4 Relating Information Content to Computational
Complexity

As already mentioned, the first fundamental contribution of informatics to sci-
ence was the development of the formal concept of an algorithm. The second
most important concept discussed in informatics is the concept of computa-
tional complexity. The above proposed definitions of the information content of
online problems are not related to this concept. This is the same case as for the
Kolmogorov complexity that is also not related to the complexity of generating
strings from their representations. But for relating the Kolmogorov complexity
to the computational complexity of string generation, the concept of resource-
bounded Kolmogorov complexity has been developed. It is possible to apply a
similar idea in order to combine the information content of online problems with
the efficiency of online algorithms.

For any function f : N → N, we define the f -resource-bounded information
content of an online problem P relative to the competitive ratio r, denoted as
inf(f,r)

P (n):

Definition 11. Consider the function f : N → N. The function h(n) is an upper
bound on inf(f,r)

P (n) if and only if there exists an r-competitive online algorithm
A with advice complexity s(n) such that s(n) ≤ h(n) for all n, and the running
time of A is at most f(n) for any input of length n.

Definition 12. Consider the function f : N → N. The function g(n) is a lower
bound on inf(f,r)

P (n) if and only if, for every r-competitive online algorithm A
with advice complexity s(n) such that the running time of A is at most f(n) for
any input of length n, it holds that s(n) ≥ g(n) for all n.

In our examples of online problems such as Paging, DisPathAlloc, or
JSSchedule, the computational complexity does not matter, because all upper
bounds on the number of advice bits can be achieved by efficient online algo-
rithms with advice. But this is not necessarily true for any online problem. If one
considers the special online problem GIL (estimating the length of the input),
the Kolmogorov complexity of the lengths does not need to be an upper bound
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on the number of advice bits. An interesting research idea would be to study this
phenomenon for “natural” optimization problems. If an NP-hard optimization
problem has to be solved in polynomial time in an online manner, then it is not
necessarily sufficient to get a compressed version of the whole input.
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advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

4. Chaitin, G.J.: On the length of programs for computing finite binary sequences.
Journal of the ACM 13(4), 547–569 (1966)
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Abstract. The treewidth and cliquewidth of a graph are central no-
tions in graph theory and graph algorithms. Many NP-hard problems
become tractable when the treewidth or cliquewidth of the input graph
is bounded by a constant. In this talk I will briefly survey the known al-
gorithmic results for graphs of bounded treewidth and cliquewidth, and
give an overview of a line of work that explores the limits of tractability
of problems on graphs of bounded treewidth or cliquewidth. Specifically,
we will consider the following questions:
– Which problems are solvable in polynomial time on graphs of bounded

treewidth, but require that the degree of the polynomial grows with
the treewidth?

– Which problems are harder on bounded cliquewidth graphs than on
bounded treewidth graphs?

– Can the known algorithms for problems on graphs of bounded
treewidth and cliquewidth be improved?
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Abstract. The crossing number of a graph is the minimum number of
crossings that occur in a drawing of the graph in the plane. This notion
is natural and easy to understand, yet we do not know much about it
apart from some basic properties. History, successes and pitfalls, some
recent developments, and future directions will be presented.

Introduction

The crossing number cr(G) of a graph G is the minimum number of crossings
that occur in a drawing of the graph in the plane. This notion is natural and easy
to understand. At least it seems so, when one encounters it for the first time.
However, despite many attempts, even some of the most basic questions remain
unanswered. What is the crossing number of the complete graph Kn? What
about K13? Are there any non-trivial graph families whose crossing number is
easy to determine?

The study of crossing numbers brought some beautiful results. The Crossing
Lemma turned out to be one of the fundamental mathematical tools with diverse
applications in discrete geometry, graph theory, number theory and elsewhere.
Yet, we still do not fully understand what the crossing number is. There are
different ways how to define it, and there is very little understanding how all
these definitions differ from each other, if at all.

Ups and downs in the theory of crossing number minimization include its prac-
tical applications. F. T. Leighton developed basic theory in relation to applications
in VLSI design [1,11,12]. When making layout for large electrical networks, it is
desirable to eliminate crossings of wires, and when we design a printed circuit, its
obvious model is a planar drawing. Today it is clear that crossing number min-
imization is hard even for very simple graphs. One positive result may be FPT
solution using theory of graph minors (Grohe [7]; Kawarabayashi and Reed [8]).
However, this is still miles away from being usable in practical computations. It is
� Supported in part by the ARRS, Research Program P1-0297, by an NSERC Discov-

ery Grant, and by the Canada Research Chair Program.
�� On leave from IMFM & FMF, Department of Mathematics, University of Ljubljana,

1000 Ljubljana, Slovenia.
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only very recently that we got deeper understanding about graphs whose crossing
number is one or two.

There is vast literature about this subject. We refer to [13,18,19] and to [20] for
more details about diverse applications of this important notion. Some specific
directions presented in the talk are outlined in the sequel.

Crossing Number Definitions

A drawing of a graph G is a representation of G in the Euclidean plane R2 (or in
some other surface) where vertices are represented as distinct points and edges
by simple polygonal arcs joining points that correspond to their endvertices. It
is required that the interior of every arc representing an edge contains no points
representing the vertices of G. If interiors of two arcs intersect, we speak about
a crossing of the drawing.

The crossing number cr(G) of a graph G is the minimum number of crossings
taken over all drawings of G. When each edge e of G has a weight we ∈ N, the
weighted crossing number wcr(D) of a drawing D is the sum

∑
we · wf taken

over all crossings in D (where e, f are the edges involved in the crossing). The
weighted crossing number wcr(G) of G is the minimum wcr(D) taken over all
drawings G. Of course, if all edge-weights are equal to 1, then wcr(G) = cr(G).

One can also consider the pair crossing number pair-cr(G), where we only
consider the number of pairs of edges that cross each other (and count possi-
ble multiple crossings only once), the odd crossing number odd-cr(G), where
we only count those pairs of edges that cross an odd number of times, or the
independent odd crossing number iodd-cr(G), where we only count the pairs
of nonadjacent edges that cross an odd number of times. If we insist that the
edges in drawings are represented by straight line segments, we obtain the no-
tion of the rectilinear crossing number lin-cr(G). It is obvious that the following
inequalities hold:

iodd-cr(G) ≤ odd-cr(G) ≤ pair-cr(G) ≤ cr(G) ≤ lin-cr(G).

It is known that the odd crossing number can be strictly smaller than the usual
crossing number [16] and that the latter can be strictly smaller than the recti-
linear crossing number [2].

Structural graph theory based on the Robertson and Seymour theory of graph
minors gives powerful results in relation to topological realizations of graphs.
However, it does not work well with crossing numbers. To overcome this defi-
ciency, Bokal et al. [3] introduced a related notion of the minor crossing number ,
mcr(G), which is defined as the minimum of cr(H) taken over all graphsH that
contain G as a minor. The study of the minor crossing numbers may be closely
related to structure of some surface embeddings.

Near-planar Graphs

A nonplanar graph G is near-planar if it contains an edge e such that G− e is
planar. Such an edge e is called a planarizing edge. It is easy to see that near-
planar graphs can have arbitrarily large crossing number. However, it seems that
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computing the crossing number of near-planar graphs should be much easier
than in unrestricted cases. A less known, but particularly interesting result was
obtained by Riskin [17], who proved that the crossing number of a 3-connected
cubic near-planar graph G can be computed easily as the length of a shortest
path in the geometric dual graph of the planar subgraph G − x − y, where
xy ∈ E(G) is the edge whose removal yields a planar graph. Riskin asked if a
similar correspondence holds in more general situations, but this was disproved
by Mohar [14] (see also [9]). Another relevant paper about crossing numbers of
near-planar graphs was published by Hliněný and Salazar [10].

Several generalizations of Riskin’s result are indeed possible. Cabello and Mo-
har [4,14] provided efficiently computable upper and lower bounds on the crossing
number of near-planar graphs in a form of min-max relations. These relations
can be extended to the non-3-connected case and even to the case of weighted
edges.

On the other hand, Cabello and Mohar [5] recently proved that computing the
crossing number of near-planar graphs is NP-hard. This discovery is a surprise
and brings more questions than answers.

The Crossing Function

Despite the fact that our understanding of crossing numbers is limited, we sug-
gest the study of the crossing number function. This function is universal for
the crossing number since it contains the complete information about crossing
number of all graphs. It has been introduced recently and can be defined as
follows.

Let n be a positive integer, and let
([n]

2

)
denote the set of all unordered pairs

{i, j}, where i, j ∈ [n] = {1, . . . , n} and i �= j. A weight function is a function w :([n]
2

)
→ R. It can be viewed as a weighting of the edges of the (labeled) complete

graph Kn of order n (negative weights allowed). Let Kw
n denote that weighted

complete graph, and let wcr(w) = wcr(Kw
n ). The mapping wcr : R([n]

2 ) → R

defined by this rule is called the crossing function (of order n).

Theorem 1. The crossing function of order n is a contiuous, piecewise quadratic
function with

(
n
2

)
real parameters, with finitely many domains of smoothness in

R([n]
2 ), and is symmetric with respect to the natural action of the symmetric group

Sn on
([n]

2

)
.

Every (labeled) graph G of order n can be viewed as a weight function wG, whose
values are 1 for those pairs that correspond to the edges of G, and 0 otherwise.
Clearly, wcr(wG) = cr(G). This shows that the crossing function contains the
complete information about crossing numbers of all graphs.

As this is a relatively new concept, not much is known about the crossing
function. The author and Stephen [15] studied the behaviour of the crossing
function on small random graphs. As expected, the study of the crossing function
seems to be hard, but we expect that it may become a tool used for better
understanding of crossing numbers over all.
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Abstract. We define a new hypergraph decomposition method called
Balanced Decomposition and associate Balanced Width to hypergraphs
and queries. We compare this new method to other well known decom-
position methods, and analyze the complexity of finding balanced de-
compositions of bounded width and the complexity of answering queries
of bounded width. To this purpose we define a new complexity class,
allowing recursive divide and conquer type algorithms, as a resource-
bounded class in the nondeterministic auxiliary stack automaton com-
putation model, and show that finding decompositions of bounded bal-
anced width is feasible in this new class, whereas answering queries of
bounded balanced width is complete for it.

1 Introduction

The aim of the study of hypergraph decompositions is to find tractable subclasses
of the Boolean Conjunctive Query (BCQ) evaluation problem in databases and
the Constraint Satisfaction Problem in AI. Both these problems are equivalent
and well known to be NP-complete [6,19] with the cyclicity of the hypergraphs
causing the state explosion. A hypergraph decomposition transforms a hyper-
graph into an acyclic structure (a labelled tree), reducing the complexity of
the associated problem. The tractability results of these problems rely on the
acyclicity of the tree on the one hand and on certain properties of its labels on the
other. Probably the most prominent decomposition method is the tree decompo-
sition of [22], originally developed for graphs, but also applicable to hypergraphs.
[10,7,16,17] provide an overview of more recent decomposition methods including
(generalized) hypertree decompositions, spread cut decompositions and fractional
hypertree decompositions. An important notion in most decompositions is their
width, which often ensures tractability if it is independent of the hypergraph
under consideration. Thus the two main complexity-theoretic problems usually
considered are the following:

– Decomposition problem: What is the complexity of recognizing hyper-
graphs admitting a decomposition of fixed width?
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– BCQ evaluation problem: What is the complexity of evaluating BCQs
for the class of queries with a decomposition of fixed width?

A particularly nice property for queries with bounded tree and (generalized)
hypertree width, thus also including acyclic queries, is that the BCQ evalua-
tion problem is not only tractable, but also complete for the complexity class
LOGCFL [12]. This complexity class lies very low within the NC-AC hierarchy
(and hence within P) between NC1 and AC1 and hence is highly paralleliz-
able. In [11] Gottlob et al. present a parallel algorithm for the BCQ evalua-
tion problem1 which is optimal under its complexity restrictions, and whose
running time does not depend on the shape of the hypertree. The problem of
recognizing hypergraphs of bounded hypertree width is also in LOGCFL [12],2

however, most efficient sequential algorithms, see e.g. [15], compute the decom-
position node by node in a top-down manner, following the shape of the re-
sulting tree, which for most hypergraphs is often deep (linear in the size of the
hypergraph) and narrow (branching factor of 1 for most nodes). This has neg-
ative effects on the parallelization of such hypertree computation algorithms,
which is easiest when the computation tree is balanced, indicating a division
of the problem into smaller independent subproblems which can be conquered
recursively.

While looking for better, more “balanced”, algorithms, we decided to analyze
hypertrees which are balanced a priori, but are not necessarily valid (gener-
alized) hypertree decompositions. These balanced decompositions constitute an
entirely new hypergraph decomposition method in its own right, and hence de-
serve further analysis. In particular they possess beneficial properties for paral-
lelization, they capture wider classes of hypergraphs than other known decom-
position methods, and provide more insight into the structure of NP-complete
problems.

In section 3 we provide the formal definition of balanced decompositions and
compare them to generalized hypertree decompositions. In section 4 we charac-
terize balanced decompositions game-theoretically by defining the Robber and
Sergeants Game for hypergraphs. To better understand the complexity of the
decomposition and the BCQ evaluation problems, we define a new complexity
class DC1 in section 5 by limiting resources of Nondeterministic auxiliary Stack
Automata [18], and identify its lower bounds as LOGCFL and GC(log2 n,NL)
in the Guess-and-Check model and its upper bound as NTiSp(nO(1), logn), the
space-bounded subclass of NP. In section 6 and section 7 we show that recog-
nizing hypergraphs of bounded balanced width (BW) is feasible in DC1, while
the BCQ evaluation problem for the class of queries of bounded balanced
width is complete for DC1. We conclude the paper in section 8.

Omitted proofs can be found in the full version of this paper [1].

1 Actually, the algorithm was developed for acyclic BCQs, but can easily be adapted
to generalized hypertree decompositions.

2 Unfortunately recognizing hypergraphs of generalized hypertree width at least 3 is
NP-complete [14].
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2 Preliminaries

All sets in this paper are finite.
We assume the reader to be familiar with the standard formalizations of rooted

and ordered trees. We use T to denote a tree, its node set and its “child function”,
we write Tp for a subtree rooted at a node p, O(T ) for the “root” of T , and �T

for the “ancestor relation”, with O(T ) �T p for all other p ∈ T .
A hypergraph is a tuple H = (V (H), E(H)) where V (H) is a set called the

vertices of H and E(H) ⊆ P(V (H) \ {∅} is a set called the edges or hyperedges
of H . Given a hypergraph H and R,S ⊆ E(H), we say Q ⊆ R \ S is an [S]-
component of R iff either Q = {e} with e ⊆

⋃
S, or for any two edges in Q there

exists a sequence (an [S]-path) of edges in Q between them, such that every two
consecutive edges share some vertex not covered by

⋃
S.

Given a hypergraph H , a hypertree for H is a triple (T, χ, λ), where T is a
rooted tree, and χ and λ are labeling functions which associate to each vertex
p ∈ T two sets χ(p) ⊆ V (H) and λ(p) ⊆ E(H).
Given p ∈ T we define χ(Tp) =

⋃
{χ(q)|q ∈ Tp} and λ(Tp) =

⋃
{λ(q)|q ∈ Tp}.

The width of a hypertree is maxp∈T |λ(p)|.
A hypertree decomposition is a hypertree satisfying the following conditions:

1. For all e ∈ E(H), there exists p ∈ T , such that e ⊆ χ(p),
2. for all v ∈ V (H), the set {p ∈ T |v ∈ χ(p)} induces a connected subtree of T ,
3. for each p ∈ T , χ(p) ⊆

⋃
λ(p),

4. for each p ∈ T , (
⋃
λ(p)) ∩ χ(Tp) ⊆ χ(p).

A generalized hypertree decomposition is a hypertree only satisfying the first
three of these conditions. The width of a (generalized) hypertree decomposition
is the width of its hypertree. The (generalized) hypertree width (GHW / HW)
of a hypergraph H is the minimal width over all its (generalized) hypertree
decompositions [12].

The monotone Robber and Marshals Game and its equivalence with hypertree
decompositions is studied in [13] and [3].

A Database is a relational structure over a schema (signature). A Boolean
Conjunctive Query (BCQ) is also a relational structure (over the same schema)
containing no constants. We call every tuple occurring in some relation also an
atom, and the objects of the base set occurring in the query or an atom its
variables. We write atoms(q) for the set of atoms of a query q and var(a) for the
set of variables occurring in an object a (e.g. an atom or a query). We say that
a database D satisfies a BCQ q (D |= q) iff there exists a homomorphism from
q to D.3

The underlying hypergraph of a BCQ q is a the hypergraphH(q), with V (H(q))
= var(q) and E(H(q)) = {var(a)|a ∈ atoms(q)}. A decomposition of a BCQ is
simply a decomposition of its underlying hypergraph.

3 An alternative definition of databases and BCQs can be found e.g. in [2].
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3 Balanced Decompositions

Definition 1. Let H be a hypergraph. A hypercut decomposition of H is a
hypertree (T, χ, λ) for H which satisfies the following conditions:

1. For each e ∈ E(H) there exists p ∈ T such that e ∈ λ(p),
2. for each Y ∈ V (H), the set {p ∈ T |Y ∈ χ(p)} contains its �T -meet,
3. for each vertex p ∈ T , χ(p) =

⋃
λ(p).

A hypercut decomposition is a shallow decomposition if additionally depth(T ) ≤
log |E(H)| holds. A hypercut decomposition is a balanced decomposition if ad-
ditionally |λ(Tq)| ≤ |λ(Tp)|/2 holds for all p ∈ T, q ∈ T (p). The width of a
shallow decomposition or a balanced decomposition is the width of its hypertree.
The shallow width, resp. balanced width, of H is the minimum width over all its
shallow, resp. balanced, decompositions. We write SW(H) for the shallow width
and BW(H) for the balanced width of H.

Notice that a hypercut decomposition is uniquely defined by T and λ alone,
while the χ-labels are only required for the second condition. We do not define
a hypercut width, since then every hypergraph would trivially have width one.

Example 1. The balanced and shallow widths of the following hypergraph are
two and we also show a balanced decomposition, which is also shallow (in the
decomposition we only present the λ-labels):

A B C D E

F G H I J

K L M N O
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e f g h i

j k l m

n o p q r

s t u v
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���
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For any such “grid graph” of width k and length m, it is easy to construct
a balanced decomposition of width k. The generalized hypertree width of such
hypergraphs, however, is always k+1, and any decomposition tree will have depth
at least m (linear in the size of the hypergraph), and will generally contain a
long “chain” with no branching.

Proposition 1. Let H be a hypergraph. The following holds:

SW (H) ≤ BW (H) ≤ GHW (H) ≤ SW (H) log |E(H)| .

A shallow tree will have “good” branching at some point, however this branching
does not have to occur at every internal node, as in a (perfectly) balanced tree.
Hence also the distinction between balanced and shallow decompositions, which
also capture slightly different classes of hypergraphs. For instance, every graph
consisting of a single cycle has shallow width one, whereas its balanced width
is always two. However, for all complexity-theoretic purposes, the distinction
between balanced and shallow decompositions is not relevant, since our results
apply to both of them.
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4 Robber and Sergeants

As with many other decomposition methods for hypergraphs it helps to visualize
a decomposition in terms of a two player game between a Robber and some Law
Enforcement Entity, [24,13,16]. We shall define the Robber & k Sergeants game
on a hypergraph H (R&Sk(H)). It resembles the Robber and Marshals game
[13], but has two important differences: The robber is positioned on edges rather
than vertices (an escape space hence becomes a set of edges rather than a set of
vertices). Also, the sergeants only have to cover any edge once and it remains
covered for the rest of the game (the robber can never go to that edge again).
Hence the game is by definition monotone (the escape space can never increase).

Let H be a hypergraph, let k be a positive integer, and let A ⊆ E(H) such
that A is connected, be the initial escape space. The Robber and k Sergeants
Game from A (R&Sk(A)) is played by two players - R (the robber) and S (the
sergeants). Player S announces moves by choosing a set S of up to k edges
of A. If S covers the whole of A, player S wins. Otherwise, player R chooses
an [S]-connected component of A, say B. They then proceed to play the game
R&Sk(B). If the game is shallow, then player R wins R&Sk(A) if he can sustain
play for more than log |A| moves. If the game is balanced, then player R wins if
from any escape space A and a sergeants’ move S he can select an [S]-component
B of A such that |B| > |A|/2. The game R&Sk(H) is the game R&Sk(E(H))
(on the full hypergraph). Player S has a winning strategy, if for any possible
move of player R, he can still win the game. This leads to the formal definition
of a winning strategy:

Definition 2. Let k be a positive integer, let H be a connected hypergraph. A
winning strategy for R&Sk(H) is a tuple (T, ρ, λ), where T is a rooted tree and
ρ, λ : T → P(A) are labelling functions (escape space and sergeants’ moves,
respectively) such that the following conditions hold:

1. Initial Condition: ρ(O(T )) = E(H).
2. Boundedness: For all t ∈ T , 1 ≤ |λ(t)| ≤ k.
3. Completeness: For all s ∈ T , ρ(s) = μ(s) ∪

⋃
t∈T (s) ρ(t).

4. Separation: For all s ∈ T, t �= u ∈ T (s), ρ(t) ∩ ρ(u) = ∅.
5. Connectedness: For all s ∈ T, t ∈ T (s), e ∈ ρ(s), f ∈ ρ(t), e is [λ(s)]-

connected to f in ρ(s) iff e ∈ ρ(t).
A winning strategy in the shallow R&Skgame additionally satisfies depth(T ) ≤
log |E(H)|. A winning strategy in the balanced R&Skgame additionally satisfies
|ρ(t)| ≤ |ρ(s)|/2, for all s ∈ T, t ∈ T (s).

The separation and connectedness conditions say that escape space labels of the
children of a node s are distinct [λ(s)]-components of ρ(s). The completeness
condition says that we include all such components, and also that for each node
s we have λ(s) ⊆ ρ(s).

Lemma 1. Let H be a hypergraph. There exists a k-width shallow/balanced de-
composition of H iff there exists a winning strategy in the shallow/balanced R&Sk

game on H.
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5 The DC Hierarchy

An auxiliary pushdown automaton (AuxPDA) is a generalization of both the
Turing Machine (TM) and the Pusdown Automaton (PDA) — it possesses both
a tape and a pushdown. Adding a pushdown makes these machines more pow-
erful than Turing Machines, since they admit recursive algorithms, which push
“temporary variables” before a recursive call and pop them after the call re-
turns. For instance, a nondeterministic TM using simultaneously logarithmic
space and polynomial time (in NTiSp(nO(1), logn), see e.g. [20]) can solve prob-
lems precisely in NL. A nondeterministic AuxPDA (NauxPDA) with the same
time and space bound on the worktape can precisely solve problems in LOGCFL,
which contains the latter complexity class. We do not usually limit the space
on the pushdown (the maximal pushdown height), however, Ruzzo showed that
problems in LOGCFL only require O(log2 n) space on the pushdown. We write
NTiSpPh(T (n), S(n), H(n)) for the class of problems solvable by a NauxPDA
which is simultaneously bounded by time O(T (n)), worktape space O(S(n)) and
maximal pushdown height O(H(n)).

A stack acts like a pushdown for writing (pushing and popping), but like a
tape for reading (any cell can be read). Thus, Stack Automata (SA), introduced
by Ginsburg et al. [8], are more powerful than PDAs. Analogously to extending
TMs with a pushdown, Ibarra proposed to do the same with SAs [18], yielding
the model of the auxiliary stack automaton (AuxSA). AuxSAs allow recursive
algorithms, just like AuxPDAs, but these algorithms additionally have access
to all previously computed temporary variables (the accumulated temporary
variables) and are thus more powerful. We write NTiSpPh(T (n), S(n), H(n))
for the class of problems solvable by a nondeterministic SA (NauxSA) which is
simultaneously bounded by time O(T (n)), worktape space O(S(n)) and maximal
stack height O(H(n)).

Since a pushdown can be simulated by a stack, and a stack can in turn be
simulated by a worktape we have the following relationship of complexity classes:

NTiSpPh(T (n), S(n), H(n))
⊆NTiSpSh(T (n), S(n), H(n))
⊆NTiSp(T (n),max(S(n), H(n))) .

Definition 3. For integers k ≥ 0, let DCk = NTiSpSh(nO(1), logn, logk+1 n).

This new hierarchy of complexity classes lies between NL=DC0 and NP. The
name suggests on the one hand the way an algorithm in such a particular class
might work (Divide and Conquer through recursion), and on the other hand the
maximal depth of recursive calls (O(logk n) for DCk, each time storing O(log n)
cells on the stack). A single function call then is an NL algorithm which addition-
ally can access previously computed temporary variables. In this paper we will
only consider the class DC1, allowing a logarithmic number of recursive calls.
In particular, logn recursive calls exactly allow at each call to divide an input
of length n into at least two parts each at most half as big until the parts have
constant size. We have LOGCFL ⊆ DC1 ⊆ NTiSp(nO(1), log2 n).
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We can use SAs to simulate the Guess-and-Check model of [5], by nonde-
terministically guessing an “advice string” and placing it on the stack. In par-
ticular, we have GC(logk+1 n,NL) ⊆ DCk, where the former class is the class
of languages for which an advice string of length O(logk+1 n) can be guessed
such that the original input plus the advice string can be decided in NL. Note
that GC(log2 n,NL) is not known or believed to be contained in P, which
strongly indicates that neither is DC1.

We get the following inclusion diagram of complexity classes:

NP DSpace(log2 n)

P NTiSp(nO(1), log2 n)

�����������

NC2 DC1

LOGCFL


GC(log2 n,NL)

NL = DC0



6 Membership in DC1

Winning strategies in the R&Skgame give us an easy way to find balanced de-
compositions. Consider the algorithm k-robber-sergeants:

Algorithm 1. k-robber-sergeants

1 : input Hypergraph H
2 : fixed parameter k: Integer
3 : check-win(firstEdge(H), |V (H)|)
4 : accept

5 : procedure check-win(Edge r, Integer size)
6 : guess Edge[1 . . .k] sergs
7 : for each Edge f ∈ E(H) do
8 : if connected(r,f) then
9 : Integer n := count-connected-edges(f , sergs)

10 : if n > size/2 then reject
11 : else if n > 0 then check-win(f, sergs)

Here the function count-connected-edges(e, sergs) counts the number of edges
[S]-connected to e, where S is the set of all sergeant hyperedges already on the
stack plus sergs. This can obviously be done in NL, and even in L by using the
undirected st-connectivity algorithm of [21].

Theorem 1. Let k be a positive integer, and H a hypergraph. The algorithm
k-robber-sergeants accepts iff a balanced decomposition of H of width at most k
exists. Moreover this algorithm is in DC1.
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k-robber-sergeants repeats a lot of work, however, this affects neither its cor-
rectness nor its complexity bounds. A deterministic algorithm would of course
trade space for time, avoiding any redundancy. It is an easy exercise to adapt
k-robber-sergeants to check for shallow decompositions instead.

As for the bounded BW BCQ evaluation problem, consider the algorithm
k-hd-bcq:

Algorithm 2. k-hd-bcq

1 : fixed parameter k: Integer
2 : input Database d
3 : input Query q with a k-width hypercut decomposition
4 : satisfiable(root(q))
5 : accept

6 : procedure satisfiable(Node u)
7 : for each Atom a ∈ λ(u) do // at most k repetitions
8 : guess Tuple t ∈ table(d, name(a))
9 : for each (Atom, Tuple) (b, s) on stack do

10 : if not compatible((a, t), (b, s)) then reject
11 : push (a, t)
12 : for each Node v ∈ children(u) do satisfiable(v)
13 : pop all (a, t) pairs which were pushed during current function call

We assume that the tree of the hypercut decomposition is an ordered tree,
and that we can access its root using the function root, and that given a node u,
we can iterate through children(u) using a single pointer. Given an atom a the
function name(a) returns the “schema” s of that atom, and we can use table(d,
s) to access the appropriate table in d. When we call satisfiable recursively, we
assume that the current temporary variables (in this case only u and v) are
placed on the stack, and popped after the recursive call returns. We push and
pop the atom a and tuple t explicitly at every iteration within one call, because
we need them on the stack before satisfiable is called recursively. The function
compatible((a, t), (b, u)) checks whether tuples t and u are compatible under the
schemas of a and b, respectively, i.e. whether all shared variables of a and b have
the same values in t and u.

Theorem 2. Fix a positive integer k. Given a database D, a boolean conjunctive
query Q with associated hypergraph H and a hypercut decomposition (T, χ, λ) of
H of width at most k, the algorithm k-hd-bcq accepts iff D � Q. Moreover, the
algorithm operates in NTiSpSh(nO(1), logn, d logn), where n is the size of the
whole input and d = depth(T ).

Corollary 1. For queries of fixed (bounded) shallow or balanced width the BCQ
evaluation problem is in DC1.
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7 DC1-Completeness

To show hardness for DC1 of the BCQ evaluation problem for queries of fixed
balanced width we will need some preliminary results about NauxSAs. For any
AuxSA, AuxPDA, PDA or SA we define the push-pop tree to be an ordered tree
representing the sequence of the non-read stack operations of the machine. The
root of the tree represents an empty pushdown/stack, any one node represents
some distinct state of the pushdown/stack, and a new child is added to that
node whenever the machine pushes while the pushdown/stack is in that state.
For example, if the sequence is Push, Pop, Push, Push, Pop, Push, Pop, Push,
Pop, Pop, then the push-pop tree looks like this:

∗
∗

��
∗

��

∗
��
∗ ∗

��

Definition 4. We call a NauxSA M regular if it has the following properties:

1. The push-pop tree of M is a full binary tree.
2. After every push the entire contents of the stack is read.
3. Whenever M doesn’t push, it acts deterministically (the only nondetermin-

istic steps are the pushes).

Lemma 2. Let M be a NauxSA with stack size O(log2 n), tape size O(log n)
running in polynomial time and deciding the language L. Then there exists a
regular NauxSA M ′ with same stack and tape sizes running in polynomial time
deciding L. Moreover, there exists a log-space reduction from M to M ′.

Theorem 3. Let M be a regular NauxSA running in polynomial time, logarith-
mic space and with a push-pop tree of height k = O(log n) and x a string. Then
there exists a database B and a Boolean Conjunctive Query Q with a Balanced
Decomposition of width 8 such that B � Q iff M accepts x. Moreover there exists
a log-space reduction from (M,x) to (B,Q).

Proof. The database B has the tables I(C), A(C), D(C1, C2) and for each i,
1 ≤ i ≤ k, the tables Ui(C1, S, C2), Ri(C1, S, C2) and Oi(C1, C2).4 The table I
contains the initial configuration ofM as the only tuple. The table A contains all
accepting configurations of M . A tuple (c, d) is in D iff M starting in configura-
tion c (deterministically) reaches configuration d without performing any stack
operations, and the next operation of M would be a stack operation. A tuple
(c, d) is in Oi iff M starting in configuration c would next perform a pop and
end up in configuration d. A tuple (c, s, d) is in Ui iff M starting in configuration
c would next push s into the ith cell and end up in configuration d. Similarly a

4 For a schema, T (A,B, C) here indicates that we have a table called T which has
three attributes (with “types” A, B and C), such that every tuple in that table has
exactly three elements.
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tuple (c, s, d) is in Ri iff M starting in configuration c would next read s from
the ith cell and end up in configuration d. All these tables can be computed in
log-space.

Now we build the query Q which corresponds to the run of M , contracting
multiple consecutive deterministic steps into one atom: Let T be a full binary
tree of depth k. For a node N let pj(N), l(N) and r(N) denote the j-th ancestor,
left child and right child of N , respectively. For each N ∈ T \ O(T ), define the
query QR

N in the following way: if depthT (N) = 1, then QR
N = R1(X2

N , SN , X
3
N),

otherwise

QR
N =Rd(N)(X2

N , SN , Y
d(N)
N ) ∧D(Y d(N)

N , Z
d(N)
N )

∧Rd(N)−1(Z
d(N)
N , Sp(N), Y

d(N)−1
N ) ∧D(Y d(N)−1

N , Z
d(N)−1
N )

∧Rd(N)−2(Z
d(N)−1
N , Sp2(N), Y

d(N)−2
N )

. . .

∧D(Y 2
N , Z

2
N) ∧R1(Z2

N , Spd(N)−1(N), X
3
N ) .

QR
N now encodes the actions of the machine which read and process the contents

of the stack, after it reached the node N in the push-pop tree. The variables SN

represent the strings already pushed to the stack, and the variables Y i
N represent

the intermediate configurations between successive reads. Note how this query
will be “attached” into the “simulation” of the machine through its first and
last variables (corresponding to the starting and finishing configurations of the
“stack processing”).

For each N ∈ T , define a query QN in the following way:
If N is the root, then

QN =D(X1
N , X

2
N ) ∧ U1(X2

N , Sl(N), X
1
l(N)) ∧D(X7

l(N), X
3
N )∧

U1(X3
N , Sr(N), X

1
r(N)) ∧D(X7

r(N), X
4
N) ,

if N is a leaf, then

QN = D(X1
N , X

2
N) ∧QR

N ∧D(X3
N , X

4
N) ∧Od(N)(X4

N , X
7
N) ,

otherwise

QN =D(X1
N , X

2
N ) ∧QR

N∧
D(X3

N , X
4
N ) ∧ Ud(N)+1(X4

N , Sl(N), X
1
l(N))∧

D(X7
l(N), X

5
N ) ∧ Ud(N)+1(X5

N , Sr(N), X
1
r(N))∧

D(X7
r(N), X

6
N) ∧Od(N)(X6

N , X
7
N) .

QN now encodes all the actions of the machine after it reached the node N in
the push-pop tree. The variables X i

N represent the configurations of M while it
has SN pushed in the d(N)th stack cell. First it reads and processes the stack
(unless N is the root and the stack is empty), then it pushes to the stack and
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“passes control” to the first child, then it pushes to the stack again and passes
control to the second child (unless N is a leaf and it does not have children),
and finally pops the stack and passes control to its parent (unless N is the
root). This passing of control is achieved through sharing of variables, which
correspond to the according configurations of the machine at any such point in
the computation.

Between all steps accessing the stack we also introduce a deterministic step.
In case the machine does not need any deterministic steps, this can be encoded
in the table D by having a tuple with two equal elements.

Finally define

Q = I(X1
O(T )) ∧ (

∧
N∈T

QN ) ∧A(X4
O(T )) .

Here we glue all partial queries together, and we also require the first configu-
ration to be the initial configuration of M , and the last configuration to be an
accepting configuration. A valid instantiation of the variables in Q corresponds
to a successful run of M . Hence B � Q iff M accepts x.

The hypergraph corresponding to Q has a hyperedge for every atom in the
query, since they are all different. In particular, every subquery QR

N will corre-
spond to 2depthT (N)−1 hyperedges. Additionally we have 5 hyperedges for the
root, 3 hyperedges for each leaf, 7 hyperedges for every internal node, and 2 more
hyperedges for the overall query. Altogether we get 4(k + 1)2k − 1 hyperedges.
We can build a balanced decomposition in the following way: For every QR

N it
is easy to build an incomplete binary tree such that each node is labelled with
exactly one atom (D or R) and that the tree is a balanced decomposition of QR

N

of width 1, since QR
N is acyclic (ignoring the variables SN which will be present

in the final tree already). Call each of these trees RN . Now let T ′ be a tree which
is like T , and label every N ∈ T with QN without QR

N . Now “merge” each RN

with the corresponding node N of T ′ by adding the label of the root of RN to
the label of N and attaching the rest of the subtree to N . Also, add two more
nodes as children of the root, one labelled with the I-atom and the other with
the A-atom, to produce the final (T ′, λ). There will be at most 8 atoms in every
label.

It is obvious that (T ′, λ) is balanced, since every node has two or four children
and is built absolutely symmetrically. 


Corollary 2. The BCQ evaluation problem for queries of bounded balanced
width is complete for DC1.

8 Determinization, Parallelization and Future Work

A standard technique to make a nondeterministic algorithm deterministic is
a brute-force search of the computation tree, trying out all nondeterministic
choices. In many cases this increases the time requirement, however not always
the space requirement. For the class DC1 this is also the case, in particular
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since it is a subclass of DSpace(log2 n). The deterministic algorithm works its
way along the push-pop tree, backtracking its steps whenever some “nondeter-
ministic” choice leads to rejection. Notice, that once a node in the push-pop
tree has several descendants, we can split the work to different processors, since
the results for the subtasks do not depend on each other. The only downside
is the amount of work that needs to be done at every such node, since there
are O(nO(1) log n) possibilities for the contents of the stack (at the deepest level).
Hence the algorithm, even with parallelization, remains superpolynomial. It is
however still quasipolynomial.

Future Work includes a better analysis of relations between resource-bounded
(N)AuxSAs and other models of computation, in order to relate the complexity
classes in the DC hierarchy to other known complexity classes, in particular those
presented in [23], [9] and [4]. Another direction of work is to establish whether
the problem of recognizing hypergraphs of bounded BW is complete for DC1

or whether it belongs to a lower complexity class. Finally, an important aspect
of future work is the implementation and testing of the parallelization methods
described above in practice.

References

1. http://benner.dbai.tuwien.ac.at/staff/gottlob/DAGG-MFCS10.pdf
2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley,

Reading (November 1994)
3. Adler, I.: Marshals, monotone marshals, and hypertree-width. Journal of Graph

Theory 47(4), 275–296 (2004)
4. Beigel, R., Fu, B.: Molecular computing, bounded nondeterminism, and efficient

recursion. In: Proceedings of the 24th International Colloquium on Automata,
Languages, and Programming, vol. 25, pp. 816–826 (1998)

5. Cai, L., Chen, J.: On the amount of nondeterminism and the power of verifying.
SIAM Journal on Computing 26, 311–320 (1997)

6. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: STOC 1977: Proceedings of the ninth annual ACM sym-
posium on Theory of computing, pp. 77–90. ACM, New York (1977)

7. Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability
for constraint satisfaction and spread cut decomposition. In: IJCAI 2005: Proceed-
ings of the 19th international joint conference on Artificial intelligence, pp. 72–77.
Morgan Kaufmann Publishers Inc., San Francisco (2005)

8. Ginsburg, S., Greibach, S.A., Harrison, M.A.: Stack automata and compiling. J.
ACM 14(1), 172–201 (1967)

9. Goldsmith, J., Levy, M.A., Mundhenk, M.: Limited nondeterminism (1996)
10. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural csp decomposition

methods. Artificial Intelligence 124(2), 243–282 (2000)
11. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries.

J. ACM 48(3), 431–498 (2001)
12. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable

queries. Journal of Computer and System Sciences 64(3), 579–627 (2002)
13. Gottlob, G., Leone, N., Scarcello, F.: Robbers, marshals, and guards: Game theo-

retic and logical characterizations of hypertree width. J. Comput. Syst. Sci. 66(4),
775–808 (2003)

http://benner.dbai.tuwien.ac.at/staff/gottlob/DAGG-MFCS10.pdf


54 D. Akatov and G. Gottlob

14. Gottlob, G., Miklos, Z., Schwentick, T.: Generalized hypertree decompositions: Np-
hardness and tractable variants. In: PODS 2007: Proceedings of the twenty-sixth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pp. 13–22. ACM Press, New York (2007)

15. Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decomposi-
tion. J. Exp. Algorithmics 13 (2009)

16. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: SODA
2006: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pp. 289–298. ACM, New York (2006)

17. Hlineny, P., Oum, S.-i., Seese, D., Gottlob, G.: Width parameters beyond tree-
width and their applications. The Computer Journal 51(3), 326–362 (2007)

18. Ibarra, O.H.: Characterizations of some tape and time complexity classes of turing
machines in terms of multihead and auxiliary stack automata. Journal of Computer
and System Sciences 5(2), 88–117 (1971)

19. Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8(1),
99–118 (1977)

20. Monien, B., Sudborough, I.H.: Bandwidth constrained np-complete problems. The-
oretical Computer Science 41, 141–167 (1985)

21. Reingold, O.: Undirected st-connectivity in log-space. In: STOC 2005: Proceedings
of the thirty-seventh annual ACM symposium on Theory of computing, pp. 376–
385. ACM, New York (2005)

22. Robertson, N., Seymour, P.: Graph minors. ii. algorithmic aspects of tree-width.
Journal of Algorithms 7(3), 309–322 (1986)

23. Ruzzo, W.L.: Tree-size bounded alternation. Journal of Computer and System
Sciences 21(2), 218–235 (1980)

24. Seymour, P., Thomas, R.: Graph searching and a min-max theorem for tree-width.
Journal of Combinatorial Theory, Series B 58(1), 22–33 (1993)



Slowly Synchronizing Automata and Digraphs�

Dmitry Ananichev, Vladimir Gusev, and Mikhail Volkov

Department of Mathematics and Mechanics,
Ural State University, 620083 Ekaterinburg, Russia

Dmitry.Ananichev@usu.ru, vl.gusev@gmail.com, Mikhail.Volkov@usu.ru

Abstract. We present several infinite series of synchronizing automata
for which the minimum length of reset words is close to the square of
the number of states. These automata are closely related to primitive
digraphs with large exponent.

1 Background and Overview

A complete deterministic finite automaton (DFA) is a triple A = 〈Q,Σ, δ〉,
where Q and Σ are finite sets called the state set and the input alphabet re-
spectively, and δ : Q×Σ → Q is a totally defined function called the transition
function. Let Σ∗ stand for the collection of all finite words over the alphabet Σ,
including the empty word. The function δ extends to a function Q × Σ∗ → Q
(still denoted by δ) in the following natural way: for every q ∈ Q and w ∈ Σ∗,
we set δ(q, w) = q if w is empty and δ(q, w) = δ(δ(q, v), a) if w = va for some
v ∈ Σ∗ and a ∈ Σ. Thus, via δ, every word w ∈ Σ∗ acts on the set Q.

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if the action of some word
w ∈ Σ∗ resets A , that is, leaves the automaton in one particular state no
matter at which state in Q it is applied: δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any
such word w is said to be a reset word for the DFA. The minimum length of
reset words for A is called the reset length of A .

Synchronizing automata serve as transparent and natural models of error-
resistant systems in many applications (coding theory, robotics, testing of re-
active systems) and also reveal interesting connections with symbolic dynamics
and other parts of mathematics. For a brief introduction to the theory of syn-
chronizing automata we refer the reader to the recent surveys [15,22]. Here we
focus on the so-called Černý conjecture that constitutes a major open problem
in this area.

In 1964 Černý [5] constructed for each n > 1 a synchronizing automaton Cn

with n states whose reset length is (n− 1)2. Soon after that he conjectured that
these automata represent the worst possible case, that is, every synchronizing
automaton with n states can be reset by a word of length (n− 1)2. This simply
looking conjecture resists researchers’ efforts for more than 40 years. Even though
the conjecture has been confirmed for various restricted classes of synchronizing
� Supported by the Russian Foundation for Basic Research, grants 09-01-12142 and
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automata (cf., e.g., [9,6,11,19,20,2,23]), no upper bound of magnitude O(n2) for
the reset length of n-state synchronizing automata is known in general. The best
upper bound achieved so far is n3−n

6 , see [13].
One of the difficulties that one encounters when approaching the Černý con-

jecture is that there are only very few extreme automata, that is, n-state syn-
chronizing automata with reset length (n − 1)2. In fact, the Černý series Cn is
the only known infinite series of extreme automata. Besides that, only a few
isolated examples of such automata have been found, see [22] for a complete
list. Moreover, even slowly synchronizing automata, that is, automata with re-
set length close to the Černý bound are very rare. This empirical observation is
supported also by probabilistic arguments. For instance, the probability that a
composition of 2n random self-maps of a set of size n is a constant map tends
to 1 as n goes to infinity [10]. In terms of automata, this result means that the
reset length of a random automaton with n states and at least 2n input letters
does not exceed 2n. For further results of the same flavor see [16]. Thus, there
is no hope to find new examples of slowly synchronizing automata by a lucky
chance or via a random sampling experiment.

We therefore have designed and performed a set of exhaustive search experi-
ments. Our experiments are briefly described in Section 5 while the main body
of the paper is devoted to a theoretical analysis of their outcome. We concen-
trate on two principal issues. In Section 3 we discuss a similarity between the
distribution of reset lengths of synchronizing automata and the distribution of
exponents of primitive digraphs. Section 4 presents a few series of slowly synchro-
nizing automata. Most of these series have been expanded from new examples
discovered in the course of our experiments. In our opinion, the proof technique
is also of interest; in fact, we provide a transparent and uniform approach to all
sufficiently large slowly synchronizing automata with 2 input letters, both new
and already known ones.

2 Preliminaries

We start with recalling two elementary and well-known number-theoretic results.

Lemma 1 ([14, Theorem 1.0.1]). If k1, . . . , km are positive integers whose great-
est common divisor is equal to 1, then there exists an integer N such that every
integer larger than N is expressible as a non-negative integer combination of
k1, . . . , km.

The question of how the least N with the property stated in Lemma 1 depends
on the integers k1, . . . , km is known as the diophantine Frobenius problem and
in general is highly non-trivial, see [14]. There is, however, a simple special case
which we will need in Section 4.

Lemma 2 ([14, Theorem 2.1.1]). If k1, k2 are relatively prime positive integers,
then k1k2−k1−k2 is the largest integer that is not expressible as a non-negative
integer combination of k1 and k2.
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A directed graph (digraph) is a pair D = 〈V,E〉 where V is a finite set and E ⊆
V ×V . We refer to elements of V and E as vertices and edges. Observe that our
definition allows loops but excludes multiple edges. If v, v′ ∈ V and e = (v, v′) ∈
E, the edge e is said to be outgoing for v. We assume the reader’s acquaintance
with basic notions of the theory of directed graphs such as (directed) path, cycle,
isomorphism etc.

Given a DFA A = 〈Q,Σ, δ〉, its underlying digraph D(A ) has Q as the vertex
set and (q, q′) ∈ Q × Q is an edge of D(A ) if and only if q′ = δ(q, a) for some
a ∈ Σ. It is easy to see that a digraph D is isomorphic to the underlying digraph
of some DFA if and only if each vertex of D has at least one outgoing edge.
In the sequel, we always consider only digraphs satisfying this property. Every
DFA A such that D ∼= D(A ) is called a coloring of D. Thus, every coloring of
D is defined by assigning non-empty sets of labels (colors) from some alphabet
Σ to edges of D such that the label sets assigned to the outgoing edges of each
vertex form a partition of Σ. Fig. 1 shows a digraph and two of its colorings by
Σ = {a, b}.

1 2

34

a b

b

b

a

a

a, b

1 2

34

a a

a

b

b

b

a, b

1 2

34

Fig. 1. A digraph and two of its colorings

The matrix of a digraph D = 〈V,E〉 is just the incidence matrix of the edge
relation, that is, a V × V -matrix whose entry in the row v and the column v′ is
1 if (v, v′) ∈ E and 0 otherwise. For instance, the matrix of the digraph in Fig. 1

(with respect to the chosen numbering of its vertices) is
(

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 0

)
. Conversely,

given an n×n-matrix P = (pij) with non-negative real entries, we assign to it a
digraph D(P ) on the set {1, 2, . . . , n} as follows: (i, j) is an edge of D(P ) if and
only if pij > 0. This “two-way” correspondence allows us to formulate in terms
of digraphs several important for the sequel notions and results which originated
in the classical Perron–Frobenius theory of non-negative matrices.

Recall that a digraph D = 〈V,E〉 is said to be strongly connected if for every
pair (v, v′) ∈ V × V , there exists a path from v to v′. By the tth power of D we
mean the digraph Dt with the same vertex set V , such that (v, v′) ∈ V × V is
an edge of Dt if and only if there is a path in D from v to v′ of length precisely
t. If M is the matrix of D, then the digraph Dt can be equivalently defined as
D(M t), where M t is the usual tth power of M .
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A strongly connected digraph D is called primitive if the greatest common
divisor of the lengths of all cycles in D is equal to 1. (In the literature such
graphs are sometimes called aperiodic.) Lemma 1 readily implies that if D is a
primitive digraph, then in some power Dt of D every pair of vertices constitutes
an edge, i.e., Dt is a complete digraph with loops. (This is equivalent to saying
that every entry of the matrix M t, where M is the matrix of D, is positive.) The
least t with this property is called the exponent of the digraph D and is denoted
by γ(D). We need some results on exponents of digraphs summarized as follows.

Theorem 1. (a) (Wielandt’s theorem, see [24,7], [8, Theorem 1]) If a primitive
graph D has n vertices, then γ(D) ≤ (n− 1)2 + 1.

(b) [8, Theorem 6 and Corollary 4] Up to isomorphism, there is exactly one
primitive digraph D on n > 2 vertices with γ(D) = (n− 1)2 +1, and exactly one
with γ(D) = (n− 1)2. The matrices of the digraphs are⎛⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .
0 0 0 . . . 0 1
1 1 0 . . . 0 0

⎞⎟⎟⎟⎟⎠ and

⎛⎜⎜⎜⎜⎝
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .
1 0 0 . . . 0 1
1 1 0 . . . 0 0

⎞⎟⎟⎟⎟⎠ respectively. (1)

(c) [8, Theorem 7] If n > 4 is even, then there is no primitive digraph D on n
vertices such that n2− 4n+6 < γ(D) < (n− 1)2, and, up to isomorphism, there
are either 3 or 4 primitive digraphs D on n vertices with γ(D) = n2 − 4n + 6,
according as n is or is not a multiple of 3.

(d) [8, Theorem 8] If n > 3 is odd, then there is no primitive digraph D on
n vertices such that n2 − 3n + 4 < γ(D) < (n − 1)2, and, up to isomorphism,
there is exactly one primitive digraph D on n vertices with γ(D) = n2 − 3n+ 4,
exactly one with γ(D) = n2 − 3n+ 3, and exactly two with γ(D) = n2 − 3n+ 2.
The matrices of these digraphs are:⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1
1 0 1 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .
0 0 0 . . . 1 0
0 1 0 . . . 0 1
1 0 1 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .
1 0 0 . . . 1 0
0 1 0 . . . 0 1
1 0 1 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠,
⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . .
1 0 0 . . . 1 0
0 0 0 . . . 0 1
1 0 1 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎠. (2)

(e) [8, Theorem 8] If n > 3 is odd, then there is no primitive digraph D on n
vertices such that n2−4n+6 < γ(D) < n2−3n+2, and, up to isomorphism, there
are either 3 or 4 primitive digraphs D on n vertices with γ(D) = n2 − 4n + 6,
according as n is or is not a multiple of 3.

3 Exponents of Digraphs vs. Lengths of Reset Words

As mentioned in Section 1, this paper has grown from certain observations made
when we analyzed experimental results. One such observation has been a sim-
ilarity between the “upper parts” of two sequences: the sequence of possible
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reset lengths of 2-letter synchronizing automata with n states and the sequence
of possible exponents of primitive digraphs with n vertices. As it is clear from
Theorem 1, the upper part of the latter sequence has certain gaps whose sizes
and positions depend on the parity of n; our experiments have revealed a similar
pattern of gaps in the upper part of the former sequence. Table 1 illustrates this
observation for n = 9.

Table 1. Exponents of primitive digraphs with 9 vertices vs lengths of shortest reset
words for 2-letter synchronizing automata with 9 states

N 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
Number of non-isomorphic primitive
digraphs with exponent N

1 1 0 0 0 0 0 1 1 2 0 0 0 0 4

Number of non-isomorphic 2-letter
synchronizing automata with reset
length N

0 1 0 0 0 0 0 1 2 3 0 0 0 4 4

The data in the second row of Table 1 are calculated from Theorem 1, while
the data in the third row come from our experiments.

Concerning gaps in the upper part of the sequence of possible reset lengths of
2-letter synchronizing automata with a given number of states, we notice that
the first gap was registered in earlier experiments. (Namely, according to [17,18],
for n = 7, 8, 9, 10 there exists no 2-letter synchronizing automata with n states
with reset lengths between n2 − 2n and n2 − 3n + 5.) However, to the best of
our knowledge, the second gap as seen in Table 1 has not been reported in the
literature up to now.

We strongly believe that the observed similarity is more than a coincidence.
Clearly, there are deep connections between primitive digraphs and synchroniz-
ing automata. Indeed, it is well known (see [1]) that if the underlying digraph
of a synchronizing automaton is strongly connected that the digraph must be
primitive; on the other hand, as follows from Trahtman’s proof [21] of the so-
called Road Coloring conjecture by Adler, Goodwyn, and Weiss [1], every prim-
itive digraph admits a synchronizing coloring. This, however, does not suffice to
explain similarities such as in Table 1 because many of slowly synchronizing au-
tomata “responsible” for non-zero entries in the third row cannot be obtained as
colorings of primitive digraphs with large exponents corresponding to non-zero
entries in the second row. In the next section we demonstrate some new connec-
tions between primitive digraphs with large exponents and slowly synchronizing
automata with two input letters. In this way, we derive all known series of such
automata and construct many new ones.

4 Some Series of Slowly Synchronizing Automata

Due to space limitations, we present here only a part of our results on slowly
synchronizing automata. Namely, we restrict ourselves to series derived from
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three of the primitive digraphs whose matrices are listed in Theorem 1. These
series, in particular, ensure that the “island” of reset lengths between n2−3n+2
and n2 − 3n+ 4 exists for each n.

We start with the digraph Wn corresponding to the first matrix in (1). The
digraph (more precisely, its matrix) first appeared in Wielandt’s seminal pa-
per [24]. It has n vertices 1, 2, . . . , n, say, and the following n+1 edges: (i, i+ 1)
for i = 1, . . . , n− 1, (n, 1), and (n, 2).

It is easy to see that, up to isomorphism and renaming of letters, there exists
a unique coloring of the digraph Wn by two letters. Let Wn denote this coloring.
Fig. 2 shows the digraph Wn and the DFA Wn.

1

n 2

n−1 3. . .

1

n 2

n−1 3

b

a, b

a, b

a, b

a

. . .

Fig. 2. The digraph Wn and its unique coloring Wn

Theorem 2. The automaton Wn is synchronizing and its reset length is n2 −
3n+ 3.

Proof. It is routine to verify that the word (abn−2)n−2a, whose length is (n −
1)(n− 2) + 1 = n2 − 3n+ 3, is a reset word for Wn.

Now let w be a reset word for Wn and assume that the length of w (denoted
|w|) is minimal. Let j ∈ Q = {1, 2, . . . , n} be the state to which the action of w
brings Wn. Then from every state in Q there is a path to j labelled w. It is clear
that for each j �= 2 all paths ending at j share the last edge. Therefore, if j �= 2,
removing the last letter from the word w produces a word that still would be a
reset word for Wn. We conclude that j = 2 because |w| is minimal.

If u ∈ {a, b}∗, the word uw also is a reset word and it also brings the automaton
to the state 2. Hence, for every � ≥ |w|, there is a path of length � in Wn from
any given vertex i to 2. In particular, setting i = 2, we conclude that for every
� ≥ |w| there is a cycle of length � in Wn. The digraph Wn has only two simple
cycles: one of length n and one of length n− 1. Each cycle of Wn must consist
of these two cycles traversed several times whence each number � ≥ |w| must
be expressible as a non-negative integer combination of n and n − 1. Here we
invoke Lemma 2 which implies that |w| > n(n− 1)− n− (n− 1) = n2 − 3n+ 1.
Suppose that |w| = n2−3n+2. Then there should be a path of this length from
the vertex 1 to the vertex 2. The only outgoing edge of 1 is (1, 2), and thus, in
the path it must be followed by a cycle of length n2 − 3n+ 1. No cycle of such
length may exist by Lemma 2. Hence |w| ≥ n2 − 3n+ 3.



Slowly Synchronizing Automata and Digraphs 61

The series Wn was discovered by the first author in 2008 (unpublished). His
rather involved proof of Theorem 2 used a technique developed in [4].

As mentioned in Section 3, Trahtman’s recent result [21] implies that every
primitive digraph admits a synchronizing coloring. This gives rise to the following
natural question: given a primitive digraph on n vertices, what is the minimum
length of reset words for its synchronizing colorings? Observe that in general
underlying digraphs of slowly synchronizing automata may admit colorings with
rather short reset words. Fig. 1 illustrates this phenomenon: the first coloring
of the 4-vertex digraph in Fig. 1 is the Černý automaton C4 with shortest reset
word of length 9 while the second coloring can be reset of the word a3 of length 3.
Wielandt’s digraphs Wn, however, can be colored in an essentially unique way,
whence Theorem 2 gives the lower bound n2 − 3n+ 3 for the value in question.
We strongly believe that this lower bound is in fact tight, in other words, we
suggest a conjecture that is in a sense parallel to the Černý one.

Conjecture 1. Every primitive digraph on n vertices admits a synchronizing col-
oring that can be reset by a word of length n2 − 3n+ 3.

We observe that while there is a clear analogy between Conjecture 1 and the
Černý conjecture, the validity of none of them immediately implies the validity
of the other.

Now we discuss a less straightforward way to get a slowly synchronizing series
from Wielandt’s digraphs Wn. Namely, we aim to show that the Černý automata
Cn are closely related to these digraphs. First, recall the definition of Cn. We
may assume that the state set of Cn is Q = {1, 2, . . . , n} and the letters a and b
act on Q as follows:

δ(i, a) =

{
i if i < n,

1 if i = n;
δ(i, b) =

{
i+ 1 if i < n,

1 if i = n.

The automaton Cn is shown in Fig. 3 on the left.
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n 2

n−1 3

a, b

b

b
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a
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a
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. . .
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n−1 3

b

b, c

b, c

b, c

c

. . .

Fig. 3. The automaton Cn and the automaton induced by the actions of b and c = ab

Now we present a new simple proof for the following classic result.

Theorem 3 ([5, Lemma 1]). The automaton Cn is synchronizing and its reset
length is (n− 1)2.
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Proof. It is easy to see that the word (abn−1)n−2a of length n(n−2)+1 = (n−1)2

is a reset word for Cn.
Now let w be a reset word of minimum length for Cn. Since the letter b acts on

Q as a cyclic permutation, the word w cannot end with b. (Otherwise removing
the last letter gives a shorter reset word.) Thus, we can write w as w = w′a for
some w′ ∈ {a, b}∗ such that the image of Q under the action of w′ is precisely
the set {1, n}.

Since the letter a fixes each state in its image {1, 2, . . . , n−1}, every occurrence
of a in w except the last one is followed by an occurrence of b. (Otherwise a2

occurs in w as a factor and reducing this factor to just a results in a shorter reset
word.) Therefore, if we let c = ab, then the word w′ can be rewritten into a word
v over the alphabet {b, c}. The actions of b and c induce a new automaton on the
state set Q; this induced automaton (shown in Fig. 3 on the right) is obviously
isomorphic to the automaton Wn. Since w′ and v act on Q in the same way, the
word vc is a reset word for the induced automaton. By Theorem 2 the length of
vc (as a word over {b, c}) is at least n2− 3n+ 3. Since the action of b on any set
S of states cannot change the cardinality of S and the action of c can decrease
the cardinality by 1 at most, the word vc must contain at least n−1 occurrences
of c. Hence the length of v over {b, c} is at least n2 − 3n + 2 and v contain at
least n − 2 occurrences of c. Since each occurrence of c in v corresponds to an
occurrence of the factor ab in w′, we conclude that the length of w′ over {a, b} is
at least n2−3n+2+n−2 = n2−2n. Thus, |w| = |w′a| ≥ n2−2n+1 = (n−1)2.

We have found two more series of slowly synchronizing automata related to
Wielandt’s digraphs Wn: a series with reset length n2 − 3n+ 2 and another one
with reset length n2− 4n+ 6. These two series will be presented in an extended
version of the paper.

Now we discuss a few series related to the digraph Dn defined by the second
matrix in (1). The digraph is obtained from Wn by adding the edge (n − 1, 1).
Fig. 4 shows the digraph Dn and its colorings D ′

n and D ′′
n .

Theorem 4. The automata D ′
n and D ′′

n are synchronizing with reset lengths
n2 − 3n+ 4 and n2 − 3n+ 2 respectively.

The proof of Theorem 4 is similar to that of Theorem 2. It will be presented in
an extended version of this paper. The series D ′

n is of interest because for n > 6

1

n 2

n−1 3. . .

1

n 2

n−1 3

b

a, b

a, b

a

b

a

. . .

1

n 2

n−1 3

a

a, b

a, b

a

b

b

. . .

Fig. 4. The digraph Dn and its colorings D ′
n and D ′′

n
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it yields the maximum known value of reset length beyond the Černý series Cn

and also the maximum known value of reset length for synchronizing automata
without loops. The series D ′′

n also enjoys an extremal property: it provides the
maximum known value of reset length for synchronizing automata in which no
letter acts as a permutation.

One more series of slowly synchronizing automata related to the digraphs Dn

has reset length n2 − 4n+ 6. It will be presented in an extended version of this
paper.

Except the Černý series Cn, the only infinite series of 2-letter slowly synchro-
nizing automata published so far was the series Bn (n > 3 is odd) constructed
in [4]. The automaton Bn has Q = {1, 2, . . . , n} as its state set, and its input
letters a and b act on Q as follows:

δ(i, a) =

⎧⎪⎨⎪⎩
i if i < n− 1,
1 if i = n− 1,
2 if i = n;

δ(i, b) =

{
i+ 1 if i < n,

1 if i = n.

The automaton Bn is shown in Fig. 5 on the left.

1

2

3n−2

n−1

n

b

bb

b

b

a a

a

a

aa

. . .

1

2

3n−2

n−1

n

b, c

b, cb, c

b

b

c
c

. . .

Fig. 5. The automaton Bn and the automaton induced by the actions of b and c = ab

Theorem 5 ([4, Theorem 1.1]). If n > 3 is odd, then the automaton Bn is
synchronizing and its reset length is n2 − 3n+ 2.

The proof of Theorem 5 in [4] is quite involved. Now we can easily prove this
result using an argument similar to that in our proof of Theorem 3. The key
observation is that the automaton induced by the actions of b and c = ab on
the set Q as shown in Fig. 5 on the right is nothing but a coloring of one of the
digraphs with exponent n2−3n+2, namely, of the digraph defined by the second
matrix in (2). The details of the proof will appear in an extended version of this
paper.

5 Experiments

Here we briefly describe the settings of our experiments. Recall that a DFA
A = 〈Q,Σ, δ〉 is said to be initially-connected if there exists a state q0 ∈ Q from
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which every state q ∈ Q is reachable, that is, q = δ(q0, w) for some w ∈ Σ∗. In
general a synchronizing automaton need not be initially-connected. However, it
is well known that when studying the Černý conjecture, we may restrict ourselves
to DFA whose underlying digraphs are strongly connected because the validity of
the conjecture can be easily reduced to this case (see [12] for example). Clearly,
DFA with strongly connected underlying digraphs are initially-connected.

We used a convenient string representation of initially-connected DFA (ICDFA)
developed in [3] to generate all such DFA with up to 9 states and 2 input letters.
Each ICDFA was tested for synchronizability and then for each synchronizing au-
tomaton its reset length was calculated. For these tasks, we implemented standard
algorithms (see [15,22]) in C.

The main difficulty that had to be overcome is that the number of ICDFA
dramatically grows with the number of states. (For 9 states, there are about 700
billions ICDFA with 2 input letters.) The problem, however, can be efficiently
parallelized. For this, a dedicated processor was programmed to generate ICDFA
in portions (slices in terminology of [3]) that were fed to other processors for
synchronization tests etc. The management program was written in C with MPI.
Calculations organized this way took less than a day of running a small size
computer grid based on a number of AMD Opteron 2.6 GHz processors.

All slowly synchronizing automata that we found were double-checked by
running on them the package TESTAS developed by Trahtman [17].

Our experiments have also produced some interesting statistical results that
will be discussed elsewhere.
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Abstract. We consider Boolean exact threshold functions defined by
linear equations, and in general degree d polynomials. We give upper
and lower bounds on the maximum magnitude (absolute value) of the
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hyperplane in Rn and the Boolean cube {0, 1}n, or in the general case
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of k leave a substantial gap, a challenge for future work.
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A (linear) exact threshold function is a Boolean function that decides whether a
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that decides whether w1x1 + · · · + wnxn = t, where w1, . . . , wn are real valued
weights, and t is a real valued threshold. A threshold function on n Boolean inputs
x1, . . . , xn is then a Boolean function that decides whether w1x1+· · ·+wnxn ≥ t.

Threshold functions have been studied extensively in many areas of computer
science (cf. [12,15,14]). Less attention has been given to exact threshold func-
tions, but they have been considered in Boolean circuit complexity [4,6,7,8,9] and
in structural complexity theory [1,10]. We believe that studying exact threshold
functions in itself is natural and interesting. However, an important reason for
this is that such a study may bring additional insight to the study of thresh-
old functions. For the results of [4,6,7,8] proved for exact threshold functions, it
is not currently known whether they also hold for threshold functions. A long
standing open question for threshold functions is to prove good lower bounds
for depth two circuits. Recent work [9] shows that circuit classes defined using
exact threshold functions seamlessly interleave in the usual hierarchy of thresh-
old circuit classes. In particular the class of depth two exact threshold circuits
is shown to be a subclass of depth two threshold circuits. For this class no good
lower bounds are known as well.

One can readily extend the notions of exact threshold functions as well as
threshold functions to higher degree. A polynomial exact threshold function of
degree d is a Boolean function that decides whether a real valued polynomial of
degree d vanishes when evaluated on the Boolean input. Polynomial threshold
functions are defined as an analogous generalization of threshold functions.

In this work we are interested in exact threshold functions from the funda-
mental perspective of representations of Boolean functions. More precisely, we
are interested in the magnitude (absolute value) of integer weights needed to
represent any possible exact threshold function. It is not hard to see that with-
out loss of generality one may assume that the real valued weights and threshold
defining an exact threshold function are in fact integers (as is also the case with
threshold functions), thereby making the question we study well-defined.

The analogous question of the magnitude of weights required for threshold
functions has a long history of research. An upper bound on the magnitude
of integer weights required to represent any threshold function was obtained by
Muroga, Toda and Takasu [13] (cf. [14]). They showed that weights of magnitude
≤ (n+ 1)(n+1)/2/2n are sufficient. Also, several examples of explicit functions
that require weights of magnitude 2Ω(n) are known [14,15]. The existence of
such functions may also be established by a counting argument, since there are
at least 2n(n−1)/2 threshold functions on n variables [19,18].

An almost optimal lower bound was obtained by H̊astad [11]. Let n be a
power of 2. Then H̊astad constructed a threshold function requiring an integer
weight of magnitude at least (1/n)e−4nβ

nn/2/2n, where β = log(3/2). Thus in
the case when n is a power of 2 the upper bound and this lower bound differ
only by a subexponential factor. Generalizing this work, for any constant d, [17]
constructed a polynomial threshold function of degree d that requires an integer
weight of magnitude nΩ(nd).
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Alon and Vũ [2], building on the techniques of H̊astad, gave a new con-
struction of ill-conditioned matrices. For a non-singular n × n matrix A, let
B = A−1 = (bij) and define χ(A) = maxi,j |bij |. Define further χ1(n) as the
maximum of χ(A) over all non-singular n× n (0, 1) matrices A. Define χ2(n) to
be the analogous quantity where (−1, 1) matrices are considered instead.

With these definitions, Alon and Vũ provide for every n an explicit n × n
(0, 1) matrix A1 and an explicit n × n (−1, 1) matrix A2 such that χ(Ai) ≥
nn/2/2n(2−o(1)) for i = 1, 2. When n is a power of 2 these lower bounds may
be improved to nn/2/2n(1−o(1)). Upper bounds for χi(n) are derived from the
Hadamard inequality.

Theorem 1 (Alon and Vũ). n
n
2 /2n(2−o(1)) ≤ χi(n) for i = 1, 2.

χ1(n) ≤ n
n
2 /2n−1, and χ2(n) ≤ (n− 1)

n−1
2 /2n−1.

Alon and Vũ are able to apply their construction of ill-conditioned matrices to
answer questions about flat simplices, weights of threshold functions, coin weigh-
ing, and indecomposable hypergraphs. In particular, they construct a threshold
function on n variables that requires a weight of magnitude ≥ nn/2/2n(2−o(1)).

Let maxwT (n) denote the minimalW such that every possible possible thresh-
old function on n variables can be realized using integer weights of magnitude
≤W . We summarize the above discussion in the following theorem:

Theorem 2 (Muroga et al.; H̊astad; Alon and Vũ).
n

n
2 /2n(2−o(1)) ≤ maxwT (n) ≤ (n+ 1)

n+1
2 /2n.

We are now in position to state our first theorem. We define maxwE(n) for exact
threshold functions as the analogous quantity of maxwT (n). For this quantity
we obtain the following upper and lower bounds:

Theorem 3. n
n
2 /2n(2−o(1)) ≤ maxwE(n) ≤ n

n
2 +1.

As is evident from Theorems 1, 2 and 3, the quantities χi(n), maxwT (n) and
maxwE(n) are very close, in fact they are equal up to an exponential factor.
Furthermore, when n is a power of 2, the bounds for χi(n) and maxwT (n) differ
only by a subexponential factor. We do not know if the same holds for maxwE(n).

While some of our methods are related to the methods employed in the study
of threshold functions, we do not see an explicit relationship between the quan-
tities maxwT (n) and maxwE(n). The proofs of Theorem 2 and Theorem 3 in
fact show that χ2(n) ≤ maxwT (n) and χ1(n − 1) ≤ maxwE(n), but we do not
know whether it is possible to turn a threshold function that requires certain
magnitude into an exact threshold function requiring a similar magnitude or
conversely.

A property that seems to be unique to (linear) exact threshold functions is
that we can speak of the dimension of such functions. For a given exact threshold
function f defined by a linear equation w1x1 + · · ·+wnxn = t, consider the real
affine space V generated by the points of the Boolean cube that satisfy the
equation. We can then define the dimension of f to be the dimension of V .
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Let maxwE(n, k) denote the minimal W such that every exact threshold func-
tion of dimension k of n Boolean variables can be realized using integer weights
of magnitude ≤W . Our second result gives the following for this quantity:

Theorem 4. For all n and all 1 ≤ k ≤ n, (�n
k �k−1)/2k ≤ maxwE(n, k) ≤ n2k

.

For polynomial exact threshold functions, let maxwE
d (n) denote the magnitude of

weights required to represent every possible exact degree d polynomial threshold
function on n variables. Our final result is the following generalized bounds:

Theorem 5. n
1
2 nd

/22nd+o(nd)+d ≤ maxwE
d (2dn) ≤ n

dnd

2 +d.

This result is analogous to results for threshold functions, see [17]. For the lower
bounds in this theorem we prove a specific generalization of Theorem 1.

The remainder of the paper is organized as follows. In Section 2 we state
precisely the definitions we use and present some simple observations. In Section
3.1 we provide an example of a function of an exact threshold function that
requires exponential magnitude of weights by an elementary argument. We prove
Theorem 3 in Section 3.2. The proof of Theorem 4 is given in Sections 3.3 and
3.4 respectively. Theorem 5 is proved in Section 3.5. We conclude with open
problems in Section 4. Due to page limitations several proofs as well as additional
explanations are omitted. These will appear in the full version of this paper.

2 Preliminaries

We consider here a Boolean function f to be a function f : {0, 1}n → {0, 1}.
We say that a Boolean function f on n variables is an exact threshold function
if there exist real numbers w1, . . . , wn (the weights) and a real number t (the
threshold value), such that f(x) = 1 if and only if

∑n
i=1 wixi = t, for all x ∈

{0, 1}n. We may say that the list of weight w1, . . . , wn and the threshold t as
well as the expression w1x1 + · · · + wnxn = t are a realization of the function
f . Similarly, a Boolean function f on n variables is a threshold function if there
exist real numbers w1, . . . , wn and a real number t, such that f(x) = 1 if and
only if

∑n
i=1 wixi ≥ t for any x ∈ {0, 1}n.

One may observe that without loss of generality it can be assumed that the
real valued weights as well as the real valued threshold are in fact integers. Often
when considering threshold functions one considers the Boolean cube {−1, 1}n

instead of {0, 1}n as we do in this work. This is of no consequence to the possible
weights of exact threshold and threshold functions, as may easily be observed.
Furthermore, since, in this work we are only interested in the weights of exact
threshold functions, we may without loss of generality restrict our attention to
exact threshold functions f for which f(0, . . . , 0) = 1.

Identifying a Boolean function f with the subset f−1(1), an exact threshold
function corresponds to the intersection of a hyperplane in Rn with the Boolean
n-cube {0, 1}n, and in the higher degree case an intersection with a degree d
hypersurface. In the linear case, from the remark above, for studying weights



70 L. Babai et al.

of exact threshold functions we may restrict our attention to affine spaces that
are in fact subspaces of Rn and are spanned by vectors of the Boolean cube
{0, 1}n. Because of this fact we will mainly phrase our theorems in vector space
terminology.

3 Weights of an Exact Threshold Function

3.1 Example

An interesting example of an exact threshold function is the (sequence) equal-
ity function. Define the equality function EQ on 2n variables x1, . . . , xn and
y1, . . . , yn by EQ(x, y) = 1 if and only if xi = yi for all i.

It turns out that the set of weights that realize this exact threshold function
corresponds precisely to solutions to the well known problem of finding n positive
integers a1 < · · · < an such that all sums of the form

∑
i∈I ai are distinct. Using

this insight it is easy to see that weights of exponential magnitude are needed
to realize the EQ function.

3.2 Upper and Lower Bounds for the Linear Case

Before proving the upper bound, we state without proof the following three
lemmas:

Lemma 1 (Faddeev and Sominskii [5]). Let A be a n × n matrix with all
entries 0 or 1. Then |det(A)| ≤ (n+ 1)

n+1
2 /2n.

Lemma 2. Let v1, . . . , vn−1 ∈ {0, 1}n be linearly independent. Then there exist
integers w1, . . . , wn such that the equation w1x1 + · · · + wnxn = 0, defines the
linear subspace span({v1, . . . , vn−1}), and satisfy |wi| ≤ n

n
2 /2n−1.

Lemma 3. Let V be a vector space and let k = n−dim(span(V ∩{0, 1}n)). Then
there exist vector spaces V1, . . . , Vk such that dim(span(Vi ∩{0, 1}n)) = n−1 for
all i and V ∩ {0, 1}n =

(⋂k
i=1 Vi

)
∩ {0, 1}n.

Theorem 6. Let V be a vector space in Rn. Then there exist integers w1, . . . , wn

such that for all x ∈ {0, 1}n we have x ∈ V if and only if w1x1 + · · ·+wnxn = 0
and furthermore satisfy |wi| ≤ n

n
2 +1 for all i.

Thus every exact threshold function f on n variables can be realized using
integer weights of absolute value at most n

n
2 +1 as well.

Proof. Let k = n−dim(span(V ∩{0, 1}n)). Then by Lemma 3 there exist vector
spaces V1, . . . , Vk of dimension n− 1 spanned by vectors from {0, 1}n such that
V ∩ {0, 1}n =

(⋂k
i=1 Vi

)
∩ {0, 1}n. For each Vi, by Lemma 2 there exist integers

wij such that for all x ∈ {0, 1}n we have x ∈ Vi if and only if the equation
wi1x1 + · · · + winxn = 0 is satisfied, and furthermore |wij | ≤ n

n
2 /2n−1. We

conclude the proof by the probabilistic method.
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For i = 1, . . . , k, pick ci ∈ {−2n−1, . . . , 2n−1} uniformly at random, and
consider the combined equation

∑k
i=1

∑n
j=1 ciwijxj = 0. Clearly, every x ∈

V ∩{0, 1}n must satisfy this equation, since every such x satisfies the individiual
equations for all i.

Now consider x ∈ {0, 1} \ V . There must be some i such that x �∈ Vi, and
for this i the chosen x does not satisfy the corresponding equation. This implies
that the chosen x satisfies the combined equation with probability < 2−n. Since
|{0, 1}n\V | ≤ 2n, the probability that some x ∈ {0, 1}n\V satisfies the combined
equation is < 1, and thus there is a fixed choice ĉ for c with this property. Hence,
wj =

∑k
i=1 ĉiwij satisfies the requirements, since each |ĉiwij | ≤ n

n
2 . 


Ziegler [20], using the results of Theorem 1, gave a lower bound on the maximal
coefficient of an inequality defining a facet of a full-dimensional (0, 1) polytope
in Rn. Since the polytope is of full dimension, the hyperplane given by the facet
is uniquely determined by points from {0, 1}n and hence corresponds to a unique
exact threshold function, and the lower bound applies to our setting also. We
state the lower bound below, and additionally point out that the construction
provides a lower bound on the magnitude of all the coefficients.

Theorem 7. For any n, there exists an exact threshold function f on n vari-
ables such that any realization of f requires an integer weight of magnitude
n

n
2 /2n(2−o(1)).

Observation 1. Alon and Vũ show when n− 1 is a power of 2, that the inverse
of the (n− 1)× (n− 1) matrix A they construct actually has a column (in fact
many columns) where all entries are of magnitude n

n
2 /2Θ(n). This means that

in the construction above, when n − 1 is a power of 2, one can obtain that all
the first n− 1 coefficients are of this magnitude.

In other words, for every n, not only is it such that one may be required to
use Ω(n logn) bits to store the largest weight, but to store all the weights one
may be required to use Ω(n2 log n) bits.

3.3 Small Dimension Upper Bound

Theorem 8. Let V be a vector space in Rn and let k = dim(span(V ∩{0, 1}n)).
Then there exist integers w1, . . . , wn such that for all x ∈ {0, 1}n we have x ∈ V
if and only if w1x1 + · · ·+ wnxn = 0 and furthermore satisfy |wi| ≤ n2k

for all
i. Thus every exact threshold function f on n variables of dimension at most k
can be realized using integer weights of absolute value at most n2k

as well.

Proof. Let v1, . . . , vk ∈ {0, 1}n be a basis of span(V ∩ {0, 1}n). For α ∈ {0, 1}k

define the set Sα = {i ∈ {1, . . . , n} | ∀j ∈ {1, . . . , k} : (vj)i = αj}. Number the
nonempty such sets S1, . . . , SK for K ≤ 2k. For i ∈ {1, . . . ,K}, let ni = |Si|, and
assume Si = {ai1, . . . , aini}. Further, define χi ∈ {0, 1}n to be the characteristic
vector of the set Si.

Now, consider the vector space W in RK defined by y ∈ W if and only if∑K
i=1 yiχi ∈ V . Note that, if

∑K
i=1 yiχi ∈ {0, 1}n, we must have y ∈ {0, 1}K
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by construction. By Theorem 6 we have integer weights ŵ1, . . . , ŵK such that
for all y ∈ {0, 1}K we have y ∈ W if and only if ŵ1y1 + · · · + ŵKyK = 0 and
furthermore satisfy |ŵi| ≤ K

K
2 +1. Thus, we also have for all y ∈ {0, 1}K it holds

that
∑K

i=1 yiχi ∈ V if and only if ŵ1y1 + · · ·+ ŵKyK = 0.
We now define integer weights w1, . . . , wn as follows. Let N =

∏K
l=1 nl. If

ni = 1 we simply define wai1 = Nŵi. Otherwise we give the first element of each
set Si weight as wai1 = −(ni−1)

∏i−1
l=1 nl +Nŵi, and the remaining elements are

given weights as waij =
∏i−1

l=1 nl, for j = 2, . . . , ni. By construction we obtain
the property that if w1x1 + · · ·+wnxn = 0 for x ∈ {0, 1}n we must have that for
all i we have that all coordinates xaij have the same value, 0 or 1. Thus x must
be of the form

∑K
i=1 yiχi ∈ W for y ∈ {0, 1}K. The converse trivially holds.

Now, finally note that for all i we have |wi| ≤ K
K
2 +1 ∏K

j=1 nj ≤ K
K
2 +1

(
n
K

)K =
nK

KK/2−1 ≤ nK ≤ n2k

. 


3.4 Small Dimension Lower Bound

Suppose k ≤ n/2, let d = �n
k �, and define a k dimensional vector space V by

V = span{
d︷ ︸︸ ︷

1 . . .1

n−d︷ ︸︸ ︷
0 . . . 0 ,

d︷ ︸︸ ︷
0 . . . 0

d︷ ︸︸ ︷
1 . . . 1

n−2d︷ ︸︸ ︷
0 . . . 0 , . . . ,

(k−1)d︷ ︸︸ ︷
0 . . . 0

d︷ ︸︸ ︷
1 . . . 1

n−kd︷ ︸︸ ︷
0 . . . 0}.

Theorem 9. Suppose w1, . . . , wn are integers satisfying x ∈ V if and only if∑n
i=1 wixi = 0 for all x ∈ {0, 1}n. Then we must have maxi |wi| ≥ dk−1

2k ∼ nk

2kk+1 .
Thus there exist an exact threshold function on n variables of dimension k that
requires an integer weight of absolute value at least (dk − 1)/2k as well.

Proof. First we relabel the weights, w1, . . . , wkd by w1,1, . . . , w1,d; w2,1, . . . , w2,d;
. . . ;wk,1, . . . , wk,d, where wi,j = w(i−1)d+j (i ∈ [k], j ∈ [d]). For each i ∈ [k]
define the (multi)-set Si by Si = {wi,1, wi,2, . . . , wi,d}. For a (multi-)set S ⊂ Z
define sum(S) =

∑
y∈S y. By assumption and by the definition of V we have

sum(Si) = 0, for all i. We claim that if maxi |wi| < dk−1
2k , then there exist

subsets S̃i ⊆ Si for each i ∈ [k], such that
∑k

i=1 sum(S̃i) = 0, and at least one S̃i

satisfies S̃i �= ∅, S̃i �= Si. In other words there would exist x ∈ {0, 1}n satisfying∑n
i=1 wixi = 0 and x /∈ V , leading to a contradiction. Hence we can conclude

that maxi |wi| ≥ dk−1
2k . We next prove this claim, thereby completing the proof

of the theorem.
Let M = maxi |wi|. By assumption we have M < dk−1

2k . Since sum(Si) = 0,
i.e. wi,1 + wi,2 + · · · + wi,d = 0, we can arrange {wi,1, . . . , wi,d} in an order
{w̃i,1, . . . , w̃i,d} such that: (1) w̃i,1 ≥ 0; (2) for each 2 ≤ j ≤ d, if

∑j−1
l=1 w̃i,l ≥ 0,

then w̃i,j ≤ 0, otherwise w̃i,j > 0. It is easy to see that for any i ∈ [k], j ∈ [d]
we have, −M ≤ w̃i,1 + w̃i,2 + · · ·+ w̃i,j ≤M.

Now, for each k-tuple (l1, . . . , lk) ∈ [d]k, consider the double summation∑k
i=1

∑li
j=1 w̃i,j . By the previous equation we have −kM ≤

∑k
i=1

∑li
j=1 w̃i,j ≤

kM . But in total there are dk different k-tuples (l1, . . . , lk), and
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2kM + 1 < 2k · dk−1
2k + 1 = dk. Therefore there exist two k-tuples (l1, . . . , lk) �=

(l′1, . . . , l
′
k), such that

∑k
i=1

∑li
j=1 w̃i,j =

∑k
i=1

∑l′i
j=1 w̃i,j .

For each i ∈ [k], we define a set S̃i. If li ≥ l′i, let S̃i = {w̃i,l′i+1, . . . , w̃i,li}.
Otherwise, let S̃i = Si \ {w̃i,li+1, . . . , w̃i,l′i}. Combining the previous equation
with the fact that sum(Si) = 0, we obtain

∑k
i=1 sum(S̃i) = 0.

It is clear that S̃i �= Si for all i, and since (l1, . . . , lk) �= (l′1, . . . , l′k), there must
exist i such that S̃i �= ∅. 


3.5 Higher Degree Bounds

The upper bound for polynomial exact threshold functions follows easily from
the upper bound for the linear case. We omit the proof.

As to the lower bound we proceed similarly to the case of degree 1. We start
by a specific generalization of Alon and Vũ’s lower bound on χ(A) [2]. This could
be done by translating the analysis of [17] to matrix terminology analogous of
Alon and Vũ’s translated analysis of H̊astad’s result [11]. But instead we shall
prefer to present a technically simpler proof using matrix terminology based on
the results of [2]. We note, however, that although this proof differs from the
proof in [17], the underlying ideas are the same.

In what follows we use parameters n and d, where d denotes the degree of the
polynomial and nd is the number of input variables. We denote input variables
by xij for i = 1, . . . , d, j = 1, . . . , n and suppose they range over {0, 1}. Let
x1 = (x1,1, . . . , x1,n), . . . , xd = (xd,1, . . . , xd,n). Let x = (x1, . . . , xd). We denote
by Md the set of monomials {x1,j1x2,j2 · · ·xd,jd

|j1, . . . , jd ∈ {1, . . . , n}} (that is,
we take exactly one variable from each xi). For the matrix A we denote by Aij

its submatrix obtained by deleting the ith row and the jth column.
To state our generalization we first need the following definition:

Definition 1. A matrix A ∈ {0, 1}m×m is called d-generable if we can label
each column of A with a unique monomial from Md and label each row of A by
an assignment to the variables (an input) in such a way that each entry aij is
exactly the value of the monomial corresponding to the column j when evaluated
on the input corresponding to the row i.

With this we can provide our generalization of Alon and Vũ’s lower bound.

Theorem 10. For any d and any n there exist an (explicit) matrix A(d) ∈
{0, 1}nd×nd

such that A(d) is d-generable, |detA(d)
1,nd/ detA(d)| ≥ n

1
2 nd

/22nd+o(nd)

and A(d) has the form
[
eT
1
B

]
, where eT

1 is a row (1, 0, . . . , 0) of length nd and B

is a (nd− 1)×nd matrix. (Furthermore, we note that the function hidden in the
o-notation above depends on n but does not depend on d.)

Proof (sketch). The proof goes by induction on d. In the base case, d = 1, the
matrix A(1) can be easily obtained from the matrix constructed in [2]. For the
inductive step we need the following notation:
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For a matrix A = {aij}n
i,j=1, let A denote the matrix obtained by reflecting

A in the vertical median, i.e., A = {ai,n+1−j}n
i,j=1. Now we define A(d) by

A(d) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A(d−1) 0 0 · · ·

eT
n

A
(d−1)

0 · · ·

0
eT
1

A(d−1) . . .

...
. . . . . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This matrix has n×n blocks. In the diagonal blocks we have matrices A(d−1),

A
(d−1)

, A(d−1), . . .. In the blocks right below the diagonal only the first row is
nonzero and these rows are eT

n , e
T
1 , e

T
n , . . .. All other blocks consists exclusively

of zeros.
It is now just a matter of checking that A(d) satisfies all required properties.

To verify the claimed inequality, we repeatedly apply Lemma 2.3.1 from [2]. We
omit the details. 


Now we prove the main result of this section.

Theorem 11. maxwE
d (2dn) ≥ n

1
2 nd

/22nd+o(nd)+d.

Proof. We will now have variables xij , yij ∈ {0, 1} for i = 1, . . . , d and j =
1, . . . , n (that is, we have twice the number of variables as above), and consider
integer polynomials p(x, y) of degree d. In fact it will be more convenient for us
to consider polynomials q(x−y, x+y) instead (recall that x and y are vectors of
variables). It is easy to check that we can always convert a polynomial p(x, y) into
an equivalent polynomial q(x−y, x+y) and vice versa. Moreover, if q(x−y, x+y)
has a large coefficient then the corresponding polynomial p(x, y) will also have
a large coefficient.

Observation 2. Suppose all coefficients of a degree-d integer polynomial p(x, y)
are of absolute value at most s. Let q(u, v) = p((v + u)/2, (v − u)/2). Then
p(x, y) = q(x− y, x+ y), and 2dq(u, v) have integer coefficients of absolute value
at most 2ds. �

We will now construct a polynomial exact threshold function with the desired
properties. We start with the matrix A(d) given by Theorem 10. First of all we
switch the labeling of the matrix: in each monomial in the labeling of A(d) we
substitute each variable xij by the expression xij − yij . Thus now our columns
correspond to monomials in variables x− y. Let us denote this new set of mono-
mials corresponding to columns of A(d) by M ′

d. To complete the labeling we must
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change the row labels correspondingly. This is possible since we can find values
of xij and yij in such a way that the old value of xij is equal to the new value
of xij − yij .

Now, let us consider the matrix B =
[
A(d) e1

]
. That is, we add one column

to the matrix A(d). Let z ∈ {0, 1} be a new variable and let the new column
correspond to the monomial θ = (x11 − y11)(x21 − y21) . . . (xd1 − yd1)z. We next
need to extend the assignments labeling the rows to include values of z. For the
first row we let z = 1 and for the others rows we let z = 0. Now it is easy to
see that each entry of B is equal to the value of monomial corresponding to the
column on the assignment corresponding to the row.

Next, let us consider an exact polynomial threshold gate over the set of mono-
mials M ′

d∪{θ} where the coefficient vector w is a nonzero integer solution of the
system Bw = 0. Note that the dimension of the solution space of this system
is 1 since A(d) is nonsingular and thus w is uniquely determined up to a multi-
plicative factor. We denote this polynomial by p(x− y, z) and the corresponding
exact threshold function by f(x, y, z).

Now we will prove that any integer representation w′ of the same exact thresh-
old function over the set of all monomials over the variables x − y, x + y and
over the monomial θ must have a large coordinate. First, note that such repre-
sentation should satisfy the system[

B B′](u
v

)
= 0, (1)

where the columns B′ corresponds to monomials in variables x − y and x + y

which are not in M ′
d and

(
u
v

)
is w′ where u corresponds to the B-part and v

corresponds to the B′-part. Entries of the matrix B′ are as usual equal to the
value of the monomial corresponding to the column on the input corresponding
to the row. So, B′ is {0,±1}-matrix.

Proposition 1. Bu = 0.

We omit the proof of this proposition which uses a symmetry argument.
Now if we detach the last column of the matrix and move it to the right-hand

side we will get system with the square matrix:

A(d)

⎛⎜⎜⎜⎝
u1
u2
...
und

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
und+1

0
...
0

⎞⎟⎟⎟⎠ .

Note that und+1 should be nonzero since otherwise all ui are zero (recall that A(d)

is nonsingular). Now by Cramer’s rule we have that |und | =
∣∣∣∣u

nd+1 detA
(d)
1,nd

detA(d)

∣∣∣∣ ≥∣∣∣∣detA
(d)
1,nd

detA(d)

∣∣∣∣. Now we get rid of z. Define the function g(x, y) = f(x, y, 0). It is
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obviously a polynomial exact threshold function. Moreover any degree-d inte-
ger polynomial representing g(x, y) can be transformed into a degree-d integer
polynomial representing f(x, y, z). Indeed, let the polynomial for g be given by
the vector of coefficients u. Add to it an integer coefficient for the monomial θ
in such a way that resulting vector u′ satisfy the first row of the system (1).
Note also that it automatically satisfies all other rows of this system (since they
refer to inputs with z = 0). Thus u′ is a solution of the system (1) and hence

|und | ≥
∣∣∣∣detA

(d)
1,nd

det A(d)

∣∣∣∣ ≥ n
1
2 nd

22nd+o(nd) .

Now we have proved the lower bound on the coefficient of an integer polyno-
mial of degree at most d in variables x − y and x + y which represents g(x, y).
And by Lemma 2 we have desired lower bound for polynomials in variables x
and y (here a factor 2d appears in the denominator). 


Remark 1. Note that the place where we needed a new variable z is Proposi-
tion 1. If we should try instead to write a system without the variable z and
with nontrivial right-hand side we would not be able to perform the symmetry
argument.

Remark 2. We can reprove the lower bound on maxwT
d (n) (which is a general-

ization of maxwT (n) to degree-d threshold functions) from [17] similarly gener-
alizing proof of the lower bound on maxwT (n) from [2]. We omit the details.

4 Conclusion

We have obtained upper and lower bounds for the magnitude of integer weights
required to represent exact threshold functions, for linear exact threshold func-
tions as well as polynomial exact threshold functions in general. For the linear
case, we also gave bounds for the interesting special case of small dimension
functions. In the small dimension case there seems to be ample room for further
improvement of the bounds. In the other cases our bounds are very close, espe-
cially for the linear case, leaving little room for improvement. However our proof
raises an interesting question: Is it possible that exact threshold functions on n
variables of dimension less than n − 1 can require larger weights than those of
dimension n−1, or is the worse upper bound an artifact of our proof. For obtain-
ing the lower bounds for polynomial exact threshold functions we constructed
ill-conditioned matrices with special properties – these may have additional ap-
plications.

Another question arises from comparing results known for threshold functions
and for exact threshold functions. Beigel [3] give a techinique for showing that
a simple linear threshold function require exponential weights even for repre-
sentations of degree n1/2−ε. This technique was generalized in [16] to the case
of higher degree polynomial threshold functions. Beigel’s approach and its ex-
tensions do not seem to be applicable to exact threshold functions. Obtaining
analogous results for exact threshold functions is therefore an open problem.
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Abstract. We introduce Transformation Games (TGs), a form of coalitional game
in which players are endowed with sets of initial resources, and have capabilities
allowing them to derive certain output resources, given certain input resources.
The aim of a TG is to generate a particular target resource; players achieve this
by forming a coalition capable of performing a sequence of transformations from
its combined set of initial resources to the target resource. After presenting the
TG model, and discussing its interpretation, we consider possible restrictions on
the transformation chain, resulting in different coalitional games. After presenting
the basic model, we consider the computational complexity of several problems
in TGs, such as testing whether a coalition wins, checking if a player is a dummy
or a veto player, computing the core of the game, computing power indices, and
checking the effects of possible restrictions on the coalition. Finally, we consider
extensions to the model in which transformations have associated costs.

1 Introduction

We consider a new model of cooperative activity among self-interested players. In a
Transformation Game (TG), players must cooperate to generate a certain target re-
source. In order to generate the resource, each player is endowed with a certain set
of initial resources, and in addition, each player is assumed to be capable of transfor-
mations, allowing it to generate a certain resource, given the availability of a certain
input set of resources required for the transformation. Coalitions may thus form trans-
formation chains to generate various resources. A coalition of players is successful if
it manages to form a transformation chain that eventually generates the target resource.
Forming such chains is typically complicated, as there are usually constraints on the
structure of the chain. One example is time restrictions, in the form of deadlines. Even
when there is no deadline, short chains are typically preferred, since we might expect
that the more transformations a chain has, the higher the probability of some transfor-
mation failing.

We model restrictions on these chains, and consider game theoretic notions and the
complexity of computing them under these different restrictions. We consider three
types of domains: unrestricted domains, where there is no restriction on the chain;
makespan domains, where each transformation requires a certain amount of time and
the coalition must generate the target resource before a certain deadline; and limited
transformation domains, where the coalition must generate the target resource without
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performing more than a certain number of transformations. We also consider two types
of transformations: simple transformations, where a transformation simply allows build-
ing an output resource from one input resource, and complex transformations, where a
transformation may require a set of input resources to generate a certain output resource.

TG can be viewed as a strategic, game-theoretic formulation of proof systems. In
a formal proof system, the goal is to derive some logical statement from some logi-
cal premises by applying logical inference rules. When modelled as a TG, premises
and proof rules are distributed across a collection of agents, and proof becomes a co-
operative process, with different agents contributing their domain expertise (premises)
and capabilities (proof rules). Game theoretic solution concepts such as the Banzhaf
index provide a measure of the relevant significance of agents (and hence premises and
proof rules) in the proof process. Viewed in this way, TGs provide a formal foundation
for cooperative theorem proving systems such as those described in [8,10], as well as
cooperative problem solving systems in general [12]. (We also believe that TGs can
provide a first step towards providing a cooperative game-theoretic treatment of supply
chains, although we do not explore this issue further within the present paper.)

2 Preliminaries

We briefly discuss basic game theoretic concepts that are later applied in the context
of TGs (see, e.g., [13] for a detailed introduction). A transferable utility coalitional
game is composed of a set I of n players and a characteristic function mapping any
subset (coalition) of the players to a real value v : 2I → R, indicating the total utility
these players can obtain together. The coalition I of all the players is called the grand
coalition. Often such games are increasing, i.e., for all coalitions C′ ⊆ C we have
v(C′) ≤ v(C). In simple games, v only gets values of 0 or 1 (i.e., v : 2I → {0, 1}), and
in this case we say C ⊆ I wins if v(C) = 1 and loses otherwise. We say player i is a
critical in a winning coalition C if the removal of i from that coalition would make it a
losing coalition: v(C) = 1 and v(C \ {i}) = 0.

The characteristic function defines the value a coalition can obtain, but does not
indicate how to distribute these gains to the players within the coalition. An imputation
(p1, . . . , pn) is a division of the gains of the grand coalition among all players, where
pi ∈ R, such that

∑n
i=1 pi = v(I). We call pi the payoff of player ai, and denote the

payoff of a coalition C as p(C) =
∑

i∈{i|ai∈C} pi.
Game theory offers solution concepts, defining imputations that are likely to occur.

A minimal requirement of an imputation is individual-rationality (IR): for every player
ai ∈ C, we have pi ≥ v({ai}). Extending IR to coalitions, we say a coalition B blocks
the imputation (p1, . . . , pn) if p(B) < v(B). If a blocked imputation is chosen, the grand
coalition is unstable, since the blocking coalition can do better by working without the
other players. The prominent solution concept focusing on stability is the core. The core
of a game is the set of all imputations (p1, . . . , pn) that are not blocked by any coalition,
so for any coalition C we have p(C) ≥ v(C).

In general, the core can contain multiple imputations, and can also be empty. Another
solution, which defines a unique imputation, is the Shapley value.The Shapley value of
a player depends on his marginal contribution over all possible coalition permutations.
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We denote by π a permutation (ordering) of the players, so π : {1, . . . , n}→ {1, . . . , n}
and π is reversible, and by Π the set of all possible such permutations. Denote by Sπ(i)
the predecessors of i in π, so Sπ(i) = {j | π(j) < π(i)}. The Shapley value is given by
the imputation sh(v) = (sh1(v), . . . , shn(v)) where shi(v) = 1

n!

∑
π∈Π [v(Sπ(i)∪{i})−

v(Sπ(i))].
An important application of the Shapley value is that of power indices, which try to

measure a player’s ability to change the outcome of a game, and are used for example
to measure political power. Another game theoretic concept that is also used to measure
power is the Banzhaf power index, which depends on the number of coalitions in which
a player is critical, out of all the possible coalitions. The Banzhaf power index is given
by β(v) = (β1(v), . . . , βn(v)) where βi(v) = 1

2n−1

∑
S⊆I|ai∈S[v(S)− v(S \ {i})].

3 Transformation Games

Transformation games (TGs) involve a set of players, I = {a1, . . . , an}, a set of re-
sources R = {r1, . . . , rk}, and a certain goal resource rg ∈ R. In these domains, each
player ai is endowed with a set of resources Ri ⊆ R. Players have capabilities that allow
them to generate a target resource when they have certain input resources. We model
these abilities via transformations. A transformation is a pair 〈B, r〉 where B is a sub-
set B ⊆ R, indicating the resources required for the transformation, and r ∈ R is the
resource generated by the transformation. The set of all such possible transformations
(over R) is D. The capabilities of each player ai are given by a set Di ⊆ D. We say a
transformation d = 〈B, r〉 is simple if |B| = 1 (i.e., it generates a target resource given
a single input resource), and complex if |B| > 1. Some caveats are worth highlighting:

First, our model of TGs has no notion of resource quantity. For example, the TG
framework cannot explicitly express constraints such as 4 nails and 5 pieces of wood
are required to build a table. Second, we do not model resource consumption: thus when
a player generates a resource from base resources, the player ends up with both the base
resources and the generated resource. This may at first sight seem a strange modeling
choice, but it is very natural in many settings. For example, consider that derivations as
corresponding to logical proofs. In classical logic proofs, when we derive a lemma φ
from premises Δ, we do not “consume” Δ: both φ and premises Δ that were used to
derive it can be used as often as required in the subsequent proof.

Formally, then, a TG Γ is a structure Γ = 〈I,R,R1, . . . ,Rn,D1, . . . ,Dn, rg〉 where:
I is a set of players; R is a set of resources; for each ai ∈ I, Ri is the set of resources
with which that player ai is initially endowed; for each ai ∈ I, Di ⊆ D is the set of
transformations that player ai can carry out; and rg ∈ R is a resource representing the
goal of the game. We sometimes consider transformations that require a certain amount
of time. In such settings, let ai be a player with capability d ∈ Di. We denote the time
player ai needs in order to perform the transformation as ti(d) ∈ N.

Given a TG, we can define the set of resources a coalition C ⊆ I can derive. We say
a coalition C is endowed with a resource r, and denote this as has(C, r), if there exists
a player ai ∈ C such that r ∈ Ri. We denote the set of resources a coalition is endowed
with as RC = {r ∈ R | has(C, r)}. We now define an infix relation ⇒ ⊆ 2I × R, with
the intended interpretation that C ⇒ r means that coalition C can produce resource r.
We inductively define the relation ⇒ as follows. We have C ⇒ r iff either:
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– has(C, r) (i.e., the coalition C is directly endowed with resource r); or else
– for some {rb1 , rb2 , . . . , rbm} ⊆ R we have C ⇒ rb1 ,C ⇒ rb2 , . . . ,C ⇒ rbm and for

some player ai ∈ C we have 〈{rb1 , rb2 , . . . , rbm}, r〉 ∈ Di.

Definition 1. Unrestricted-TG: An unrestricted TG (UTG) with the goal resource rg is
the game where a coalition C wins if it can derive rg and loses otherwise: v(C) = 1 if
C ⇒ rg and v(c) = 0 otherwise.

We now take into account the total number of transformations used to generate re-
sources, and the time required to generate a resource. We denote the fact that a coalition
C can generate a resource r, using at most k transformations, by C ⇒k r. Consider a
sequence of resource subsets S = 〈R1,R2, . . . Rk〉, such that each Ri contains one ad-
ditional resource over the previous Ri−1 (so Ri = Ri−1 ∪ {r′i}). We say C allows the
sequence S if for any index i, C can generate r′i (the additional item for the next resource
subset in the sequence) given base resources in Ri−1 (so C is capable of a transforma-
tion d = 〈A, r′i〉, where A ⊆ Ri−1). A sequence S = 〈R1,R2, . . . Rk〉 (with k subsets)
that C allows is called a k− 1-transformation sequence for resource r by coalition C if
r ∈ Rk and the first subset in the sequence is the subset of resources the coalition C is
endowed with, R1 = RC (since C requires k−1 transformations to obtain r this way). If
there exists such a sequence, we denote this by C ⇒k r. We denote the minimal number
of transformations that C needs to derive r as d(C, r) = min{b | C ⇒b r}, and if C
cannot derive r we denote d(C, r) = ∞.

Definition 2. DTG: A transformation restricted TG (DTG) with the goal resource rg

and with the transformation bound k is the game where a coalition C wins if it can
derive rg using at most k transformations and loses otherwise: v(C) = 1 if both C ⇒ rg

and d(C, rg) ≤ k, and otherwise v(c) = 0.

Similarly, we consider the makespan domain, where each transformation requires a
certain amount of time. The main difference between the makespan domain and the
DTG domain is that transformations may be done simultaneously.1 We denote the fact
that a coalition C can generate a resource r in time of at most t by C ⇒t r. We define the
notion recursively. If a coalition is endowed with a resource, it can generate this resource
instantaneously (with time limit of 0), i.e., if has(C, r) then C ⇒0 r. Now consider a
coalition C such that C ⇒t1 rb1 ,C ⇒t2 rb2 , . . . ,C ⇒tm rbm , and player ai ∈ C who
is capable of the transformation d = 〈{rb1 , rb2 , . . . , rbm}, r〉 (so d ∈ Di), requiring a
transformation time t, so ti(d) = t. Given a coalition C, we denote the time in which
a coalition can perform a transformation as tC(d) = minai∈C ti(d), the minimal time
in which the transformation can be performed, across all players in the coalition. We
denote the time in which the coalition can obtain all of the base resources rb1 , . . . , rbm

as s = max ti. The final transformation (which generates r) requires a time of t, so
C ⇒s+t r. Again, different ways of obtaining the target resource result in different time
bounds, and we consider the optimal way of obtaining the target resource (the minimal
time a coalition C requires to derive r). If C ⇒ r we denote the minimal transformation

1 For example, if it takes 5 hours to convert oil to gasoline and 4 hours to convert oil to plastic, if
we have oil we can obtain both gasoline and plastic in 5 hours, using parallel transformations.



82 Y. Bachrach et al.

time that C needs to derive r as t(C, r) = min{b | C ⇒b r}, and if C cannot derive r
we denote t(C, r) = ∞. Similarly to DTGs, we define makespan (time limited) TGs:

Definition 3. TTG: A time limited TG (TTG) with goal resource rg and time limit t is
the game where a coalition C wins if it can derive rg with time of at most t and loses
otherwise: v(C) = 1 if both C ⇒ rg and t(C, rg) ≤ t, and otherwise v(c) = 0.

3.1 Transformation Games and Logical Proofs

Structurally, TGs are similar to logical proof systems (see, e.g., [11, p. 48]). In a proof
system in formal logic, we have a set of formulae of some logic, known as the premises,
and a collection of inference rules, the role of which is to allow us to derive new for-
mulae from existing formulae. Formally, if L is the set of formulae of the logic, then an
inference rule ρ can be understood as a relation ρ ⊆ 2L × L. Given a set of premises
Δ ⊆ L and a set of inference rules ρ1 . . . , ρk, a proof is a finite sequence of formulae
φ1, . . . , φl, such that for all i, 1 ≤ i ≤ l, either φi ∈ Δ (i.e., φi is a premise) or if
there exists some subset Δ′ ⊆ {φ1, . . . , φi−1} and some ρj ∈ {ρ1, . . . , ρk} such that
(Δ′, φi) ∈ ρj (i.e., φi can be derived from the formulae preceding φi by some inference
rule). Typical notation is that Δ �ρ1,...,ρk φ means that φ can be derived from premises
Δ using rules ρ1, . . . , ρk. Such proofs can be modeled in our framework as follows.
Resources R are logical formulae L, and the initial allocation of resources R1, . . . ,Rn

equates to the premises; capabilities D1, . . . ,Dn equate to inference rules. Notice that
the assumption that resources are not “consumed” during the transformation process
is very natural when considered in this setting: in classical logic proofs, premises and
lemmas can be reused as often as required. Clearly the relationship between TGs and
proofs is very natural: such formal proof systems can be directly modeled within our
framework. There are two main differences, however, as follows.

First, in proof systems inference rules are usually given a succinct specification, as
a “pattern” to be matched against premises. The classical proof rule modus ponens, for
example, is usually specified as the following pattern: φ; φ→ψ

ψ , which says that if we
have derived φ, and we have derived that φ → ψ, then we can derive ψ. Here, φ and ψ
are variables, which can be instantiated with any formula. The second is that we take
a strategic view: a proof modeled within our system is obtained through a cooperative
process. TGs can be understood as a formulation both of cooperative theorem prov-
ing systems [8,10], as well as cooperative problem solving systems in general [12]. In
such systems, agents have different areas of expertise (= resources) as well as different
capabilities (= transformations). Game theoretic concepts such as the Banzhaf index
provide a measure of how important different premises and inference rules are with
respect to being able to prove a theorem.

4 Problems and Algorithms

Given a TG Γ = 〈I,R,R1, . . . ,Rn,D1, . . . ,Dn, rg〉, the following are natural problems
regarding the game. COALITION-VALUE (CV): given a coalition C ⊆ I, compute
vΓ (C) (i.e., test whether a coalition is successful or not). VETO (VET): given a player
ai, check if it is a veto player, so for any winning coalition C, we have ai ∈ C. DUMMY:
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given a player ai, check if it is a dummy player, so for any coalition C, we have vΓ (C ∪
{ai}) = vΓ (C). CORE: compute the set of payoff vectors that are in the core, and
return a representation of all payoff vectors in it. SHAPLEY: compute ai’s Shapley
value shi(vΓ ). BANZHAF: compute ai’s Banzhaf index βi(vΓ ).

We now summarize the results of the present paper, and prove them in the remainder
of the paper. We provide polynomial algorithms for testing whether a coalition wins or
loses (CV) for UTGs, DTGs, and TTGs with simple transformations, and for UTGs and
TTGs with complex transformations, but show that the problem is NP-hard for DTGs
with complex transformations. We provide polynomial algorithms for testing for veto
players and computing the core in all domains where CV is computable in polynomial
time, but show the problem is co-NP-hard in DTGs with complex transformations. We
show that testing for dummy players and computing the Shapley value are co-NP-hard
in all the TG domains defined, and provide a stronger result for the Banzhaf power
index, showing that it is #P-hard in all these domains.2 The following table summarizes
our results regarding TGs with simple transformations.

Table 1. Complexity of TG problems. If the results differ for simple and complex transformations,
the results for complex transformations are given in parentheses. Key: P = polynomial algorithm;
co-NPC = co-NP-complete; co-NPH = co-NP-hard.

UTG DTG TTG

CV P P (NPH) P
VETO P P (co-NPH) P

DUMMY co-NPC co-NPC (co-NPH) co-NPC
CORE P P (co-NPH) P

SHAPLEY co-NPH co-NPH co-NPH
BANZHAF #P-Hard #P-Hard #P-Hard

Theorem 1. CV is in P, for all the following types of TGs with simple transformations:
UTG, DTG, TTG. CV is in P for UTGs and TTGs with complex transformations.

Proof. First consider UTG. Denote the set S of resources with which C is endowed, S =
{r | has(C, r)}. Denote the set of transformations of the players in C as DC = ∪ai∈CDi.
We say that a set of resources S matches a transformation d = 〈B, r〉 ∈ D if B ⊆ S. If
S matches d then using the resources in S the coalition C can also produce r through
transformation d. Consider a basic step of iterating through all transformations in D.
When we find a transformation d = 〈B, r〉 that S matches, we add r to S. A test to see
whether a transformation d matches S can be done in time at most |R|2 (where R is the
set of all resources), so the basic step takes at most |DC| · |R|2 time. If after performing
a basic step no transformation in DC matches S, S holds all the resources that C can
generate, and we stop performing basic steps. If S has changed during a basic step, at

2 The complexity class #P expresses the hardness of problems that “count solutions”. Informally
NP deals with whether a solution to a combinatorial problem exists, while #P deals with cal-
culating the number of solutions. Counting solutions generalizes the checking their existence,
so we usually regard #P-hardness as a more negative result than NP-hardness.
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least one resource is added to it. Thus, we perform at most |R| basic steps to compute the
set of all resources C can generate, so S can be computed in polynomial time. We can
then check whether S contains rg. We note that the suggested algorithm works for simple
as well as complex transformations. Now consider TTGs with simple transformations.
We build a directed graph representing the transformations as follows. For each resource
r the graph has a vertex vr, and for each transformation d = 〈rx, ry〉 the graph has an
edge ed from vrx to vry . Given a coalition C we consider GC, the subgraph induced by C.
GC = 〈V,EC〉 contains only the edges of the transformations available to C, so EC =
{
〈
vrx , vry

〉
| 〈rx, ry〉 ∈ DC}. The graph GC is weighted, and the weight of each edge

e = 〈rx, ry〉 is w(e) = minai∈C ti(〈rx, ry〉), the minimal time to derive ry from rx across
all players in the coalition. Denote the weight of the minimal path from ra to rg in GC as
wC(ra, rg). The coalition C is endowed with all the resources in RC and can generate all
of them instantly. The minimal time in which C can generate rg is minra∈RC wC(ra, rg).
For each resource ra ∈ RC, we can compute wC(ra, rg) in polynomial time, so we can
compute in polynomial time the minimal time in which C can generate rg, and test
whether this time exceeds the required deadline.For simple transformations, we can
simulate a DTG domain as a TTG domain, by having each transformation require 1
time unit (and setting the threshold to be the threshold number of transformations3).

Finally, we show how to adapt the algorithm used for UTGs (with either simple
or complex transformations) to be used for TTGs with complex transformations. For
the TTG CV algorithm for a coalition C, for each resource r we maintain m(r), a
bound from above on the minimal time required to produce r. All the m(r) of re-
sources endowed by some player in the coalition C are initialized to 0, and the rest
are initialized to ∞. Our basic step remains iterating through all the transformations
in D. When we find a transformation d = 〈B, r〉 which S matches, where the transfor-
mation requires t(d), we compute the time in which the transformation can be com-
pleted, c(d) = maxb∈Bm(b) + tC(d) (if S does not match a transformation d, we denote
c(d) = ∞). During each basic step, we compute the possible completion times for all
the matching transformations, and apply the smallest one, argmind∈Dc(d). To apply a
transformation d = 〈B, r〉, we simply add r to S, and update m(r) to be c(d). During
each basic step we only apply one transformation (although we scan all the possible
transformations). A simple induction shows that after each basic step, for any resource
r such that m(r) �= ∞ the value m(r) is indeed the minimal time required to generate
r. Again, the algorithm ends if no transformations were applied during a basic step. As
before, a basic step requires time of |DC| · |R|2 time, and we perform at most |R| basic
steps, so the algorithm requires polynomial time. We can then check whether S contains
rg, and whether m(rg) is smaller than the required time threshold.

Corollary 1. VETO is in P, for all the following types of TGs with simple transforma-
tions: UTG, DTG, TTG, and for UTGs and TTGs with complex transformations.

Proof. A veto player ai is present in all winning coalitions: TGs are trivially seen to be
increasing, so simply check whether v(I−ai) = 0.

3 With complex transformations, this is no longer possible, since if a transformation requires
several base resources, the shortest time to produce each of them may be different.
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Now consider the problem of computing the core in TGs with simple transformations.
In simple (0,1-valued) games, a well-known folk theorem tells us that the core of a
game is non-empty iff the game has a veto player. Thus, in simple games, the core can
be represented as a list of the veto players in the game. This gives the following:

Corollary 2. CORE is in P, for all the following types of TGs with simple transforma-
tions: UTG, DTG, TTG, and for UTGs and TTGs with complex transformations.

Theorem 2. DUMMY is co-NP-complete, for all the following types of TGs with simple
transformations: UTGs, DTGs, TTGs, and for UTGs and TTGs with complex transfor-
mations. For DTGs with complex transformations, DUMMY is co-NP-hard.

Proof. Due to Theorem 1, we can verify in polynomial time whether ai is beneficial to C
by testing if v(C∪{ai})−v(C) > 0. Thus DUMMY is in co-NP for UTGs, DTGs, TTGs
with simple transformations, and for UTGs and TTGs with complex transformations.
We reduce SAT to testing if a player in a UTG with simple transformations is not a
dummy (TG-NON-DUMMY). Showing DUMMY is co-NP-hard in UTGs is enough to
show it is co-NP-hard for DTGs and TTGs, since it is possible to set the threshold (of
the maximal allowed transformations or allowed time) so high that the TG is effectively
unrestricted. Hardness results also apply to complex transformations as well, since the
restricted case of simple transformations is hard. Let the SAT instance be φ = c1 ∧ c2∧
· · · ∧ cm over propositions x1, . . . , xn, where ci = li1 ∨ · · · ∨ lik , where each such lj is
a positive or negative literal, either xk or ¬xk for some proposition xk. The TG-NON-
DUMMY query is regarding the player ay. For each literal (either xi or¬xi) we construct
a player (axi and a¬xi). These players are called the literal players. The generated TG
game has a resource ry, and only ay is endowed with that resource. The game also has
the resource rz, with which all the literal players are endowed. For each proposition xi

we also have a resource rxi . For each clause cj in the formula φ we have a resource rcj .
The goal resource is the resource rg. For each positive literal xi we have transformation
dxi = 〈rz, rxi〉. For each negative literal we have transformation d¬xi = 〈rxi , rg〉. For each
clause cj we have transformation dcj =

〈
rcj , rcj+1

〉
, where for the last clause cm we have

a transformation dcm = 〈rcm , rg〉. Player ay is only capable of d0 = 〈ry, rc1〉. Player axi

is capable of dxi , and player a¬xi is capable of d¬xi . If xi occurs in its positive form in cj

(i.e., cj = xi ∨ li2 ∨ · · · ) then axi is capable of dcj . If xi occurs in its negative form in cj

(i.e., cj = ¬xi ∨ li2 ∨ · · · ) then a¬xi is capable of the dcj .
We identify an assignment with a coalition, and identify a coalition with an as-

signment candidate (which possibly contains both a positive and a negative assign-
ment to a variable, or which possibly does not assign anything to a variable). Let A
be an assignment to the variables in φ. We denote the coalition that A represents as
CA = {axi | A(xi) = T} ∪ {a¬xi | A(xi) = F}. There are only two resources with which
players are endowed: ry and rz. It is possible to generate rg either through a transforma-
tion chain starting with rz, going through rxi (for some variable xi) and ending with rg,
or through a transformation chain starting with ry, going through rc1 , through rc2 , and
so on, until rcm , and finally deriving rg from rcm (no other chains generate rg).

Given a valid assignment A, CA does not allow converting rz to rg, since to do so CA

needs to be able to generate rxi from rz (for some variable xi) and needs to be able to
generate rg from rxi . However, the only player who can generate rxi from rz is axi , and
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the only player who can generate rg from rxi is a¬xi , and CA can never contain both axi

and a¬xi (for any xi) by definition of CA. Suppose A is a satisfying assignment for φ.
Let cj be some clause in φ. A satisfies φ, so it satisfies cj through at least one variable
xi. If xi occurs positively in φ, A(xi) = T so axi ∈ CA, and if xi occurs negatively in
φ, A(xi) = F so a¬xi ∈ CA, so we have a player a ∈ C capable of dcj . Thus, CA can
convert rc1 to rc2 , can convert rc2 to rc3 , and so on. Thus, given rc1 , CA can generate rg.
Player ay is endowed with ry, and can generate rc1 from ry, so CA∪{ay} wins. However,
ay /∈ CA, and CA cannot generate rc1 . Since A is a valid assignment, CA cannot generate
rg through a chain starting with rz, so CA is a losing coalition. Thus, ay is not a dummy,
as v(CA ∪ {ay}) − v(CA) = 1. On the other hand, suppose ay is not a dummy, and
is beneficial to coalition C, so C is losing but C ∪ {ay} is winning. Since C loses and
cannot contain both axi and a¬xi (for any xi), as this would allow it to generate rxi from rz

and to generate rg from rxi (and C would win without ay). Consider the assignment A: if
C contains axi we set A(xi) = T, and if C contains a¬xi we set A(xi) = F (if C contains
neither axi nor a¬xi we can set A(xi) = T). Since C ∪ {ay} wins, but cannot generate
rg through a chain starting with rz, it must generate rg through the chain starting with
ry and going through the rcj ’s. Thus, for any clause cj, C contains a player capable of
transformation dcj =

〈
rcj , rcj+1

〉
. That player can only be axi or a¬xi for some proposition

xi. If that player is axi ∈ C then cj has the literal xj (in positive form) and A(xi) = T,
so A satisfies cj, and if it is a¬xi ∈ C then cj has the literal ¬xj (negative form) and
A(xi) = F, so again A satisfies cj. Thus A satisfies all the clauses in φ.

Theorem 3. For DTGs with complex transformations, CV is NP-hard even for TGs
with a single player, and VETO is co-NP-hard.

Proof. We reduce VERTEX COVER to DTG CV. We are given a graph G = 〈V,E〉
with V = {v1, . . . , vn}, E = {e1, . . . , em} such that ei is from vi,a to vi,b and a target
cover size of k. We construct the following DTG. We have a resource rt and goal re-
source rg, a resource rei for each edge ei, and a resource rvi for each vertex. We have a
transformation from rt to each vertex resource rvi . If ei is from vi,a to vi,b we have two
transformations: from rvi,a to rei , and from rvi,b to rei . We have a complex transformation
from {re1 , . . . , rem} to rg. A single player has rt and all the above transformations. The
target maximal number of transformations for the DTG is k + m + 1. Now, G = 〈V,E〉
has a vertex cover of size k iff the player wins in the game so defined.

Corollary 3. Testing whether the Shapley value or Banzhaf index of a player in TGs
exceeds a certain threshold is co-NP-hard for all the following types of TGs: UTG,
DTG, TTG, with simple or complex transformations.

Proof. Theorem 2 shows DUMMY is co-NP-hard in these domains. However, the
Shapley value or Banzhaf index of a player can only be 0 if the player is a dummy
player. Thus, computing these indices in these domains (or the decision problem of
testing whether they are greater than some value) is co-NP-hard.

Definition 4. #SET-COVER (#SC): We are given a collection C = {S1, . . . , Sn} of sub-
sets. We denote ∪Si∈CSi = S. A set cover is a subset C′ ⊆ C such that ∪Si∈C′ = S. We
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are asked to compute the number of covers of S. #SC is a #P-hard problem. Counting
the number of vertex covers, #VERTEX-COVER, is a restricted form of #SC.4

Theorem 4. Computing the Banzhaf index in UTGs, DTGs, and TTGs (with simple or
complex transformations) is #P-hard.

Proof. We reduce a #SC instance to checking the Banzhaf index in a UTG. Consider
the #SC instance with C = {S1, . . . , Sn}, so that ∪Si∈CSi = S. Denote the items in S
as S = {t1, t2, . . . , tk}. Denote the items in Si as Si = {t(Si,1), t(Si,2), . . . , t(Si,ki)}. For
each subset Si of the #SC instance, the reduced UTG has a player aSi . For each item
ti ∈ S the UTG instance has a resource rti . The reduced instance also has a player
apow, the resources r0, rpow and the goal resource rg. For each item ti ∈ S there is
a transformation di =

〈
{rti−1}, rti

〉
. Another transformation is dpow = 〈{rtn}, rg〉, of

which only apow is capable. All players have resource r0. Each player is capable of
the transformation in her subset—for the subset Si = {ti1 , ti2 , . . . , tik}, the player ai is
capable of di1 , di2 , . . . , dik . The query regarding the power index is for player apow. Note
that a coalition C = {ai1 , ai2 , . . . , aik} wins iff it contains both apow and players who
are capable of all d1, d2, . . . , dn. However, to be capable of di the coalition must contain
some aj such that ti ∈ Sj. Consider a winning coalition C = {apow}∪{ai1, ai2 , . . . , aik},
and denote SC = {Si1 , Si2 , . . . , Sik}. A coalition C wins iff apow ∈ C and SC is a set
cover of S. The Banzhaf index in the reduced game is q

2n−1 , where n is the number of
players and q is the number of winning coalitions that contain apow that lose when apow

is removed from the coalition. No coalition can win without apow, so q is the number
of all winning coalitions, which is the number of set covers of the #SC instance. Thus
we reduced #SC to BANZHAF in a UTG with simple transformations (a restricted case
of complex transformations). We can do the same with DTGs and TTGs with a high
enough threshold. Thus, BANZHAF is #P-hard in all considered TG domains.

5 TGs with Costs

In many domains, transformations have costs. Suppose we wish to derive a resource rg

from base resources R, and can do this either using a powerful but expensive computer
or using a slower but cheaper one. Such tradeoffs are ubiquitous in real-world problem-
solving. We model TGs with costs as follows. Every transformation t has cost c(t) ∈
R+. Given a coalition C and a resource r, we denote by h(C, r) the minimum cost
needed to obtain r from RC, which is the sum of transformation costs in the minimal
sequence of transformations from RC to r. If r cannot be obtained from RC, we set
h(C, r) = ∞. The goal resource rg has the value v(rg) ∈ R+.

Definition 5. CTG: A TG with costs (CTG) with the goal resource rg and the cost func-
tion c : D → R+ is the game where the value of a coalition C is the value of the
goal resource rg minus the minimum cost needed to obtain rg from RC—if this latter
difference is positive, and 0 otherwise. Thus, v(C) = max(0, v(rg)− h(C, rg)).

4 [5,3] consider a related domain (Coalitional Skill Games and Connectivity Games), and also
use #SC to show that computing the Banzhaf index in that domain is #P-complete.
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Algorithm 1 computes coalition values in a CTG. We define for every resource r ∈ R a
vertex in a hypergraph, vr. We identify with every transformation t = 〈{r1, . . . , rl}, r〉
an hyperedge et = 〈{vr1 , . . . , vrl}, vr〉. We denote: R – resources, C – coalition, rg

– target resource, DC – C’s transformations. Subprocedure Total-Cost computes the
transformations in the path from RC to r, summing their costs to get the total path cost.

Algorithm 1. Compute Coalitional Value
Procedure Compute-Coalitional-Value (R, C, rg, DC):

1. For all r ∈ RC do λ(vr) ← 0
2. For all r ∈ R \ RC do λ(vr) ← ∞
3. For all r ∈ R do S(vr) ← ∅
4. T ← DC (T initially contains all the transformations coalition C has)
5. while T 
= ∅:

(a) t = 〈{r1, . . . , rl}, r〉 ← arg mint∈T Total − Cost(t).first)
(b) tc ← Total − Cost(t).first, S ← Total − Cost(t).second
(c) if tc == ∞ then (remaining transformations unreachable from RC)

i. return max(0, v(rg) − λ(vrg)
(d) if tc < λ(vr) then λ(vr) ← tc, S(vr) ← S
(e) t ← T \ {t}

6. return max(0, v(rg) − λ(vrg ))

Procedure Total-Cost (t = 〈{r1, . . . , rl}, r〉
1. if

∑l
i=1 λ(vri) == ∞ then return pair(∞, ∅)

2. S ← ∪l
i=1S(vri) ∪ {t}

3. tc ← ∑
ti∈S c(ti)

4. return pair(tc, S)

Theorem 5. Algorithm 1 calculates the coalitional value of a coalition C in a CTG.
The proof is omitted for lack of space.

Proposition 1. The DUMMY problem is co-NP-Complete for CTG. SH is co-NP-Hard,
and BZ is #P-Hard for CTG.

Proof. DUMMY ∈ co-NP for CTG, since given a coalition C and a player ai, due to
Theorem 5, it is easy to test whether v(C) < v(C ∪ {ai}) (i.e., that ai is not a dummy
player). UTG is a private case of CTG (set for all the transformations t, c(t) = 0, and
set v(rg) = 1). And so all the hardness results for UTG hold for CTG as well.

6 Related Work and Conclusions

This work is somewhat reminiscent of previous work on multi-agent supply chains.
Although some attention was given to auctions or procurement in such domains, (for
example for forming supply chains [1] or procurement tasks [6]), previous work gave
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little attention to coalitional aspects. One exception is [14], which studies stability in
supply chains, but focuses on pair coalitions and situations without side payments.

Previous research considered bounded resources through threshold games, in which
a coalition wins if the sum of their combined resources or maximal flow exceed a stated
threshold [7,9,4]. In one sense such games are simpler than TGs, as they consider a
single resource; in another sense they are richer, as different quantities of resource are
considered. Coalitional Resource Games (CRGs) [15] are also related to our work. In
CRGs, players seek to achieve individual goals, and cooperate in order to pool scarce
resources in order to achieve mutually satisfying sets of goals. The main differences are
that in CRGs, players have individual goals to achieve, which require different quanti-
ties of resources; in addition, CRGs do not consider anything like transformation chains
to achieve goals. It would be interesting to combine the models presented in this paper
with those of [15]. TGs can also be considered as descended from Coalitional Skill
Games [3] or related to connectivity and flow games [5,4]; the main difference is that
this previous work does not consider transformation chains.

Finally, despite our hardness results, power indices can be tractably approximated [2]
and used to determine the criticality of facts and rules in collaborative inference.
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Abstract. Many safety-critical embedded systems are subject to certi-
fication requirements; some systems may be required to meet multiple
sets of certification requirements, from different certification authorities.
Certification requirements in such “mixed-criticality” systems give rise to
interesting scheduling problems, that cannot be satisfactorily addressed
using techniques from conventional scheduling theory. In this paper, we
study a formal model for representing such mixed-criticality workloads.
We demonstrate first the intractability of determining whether a sys-
tem specified in this model can be scheduled to meet all its certifica-
tion requirements, even for systems subject to two sets of certification
requirements. Then we quantify, via the metric of processor speedup fac-
tor, the effectiveness of two techniques, reservation-based scheduling and
priority-based scheduling, that are widely used in scheduling such mixed-
criticality systems, showing that the latter of the two is superior to the
former. We also show that the speedup factors are tight for these two
techniques.

1 Introduction

Due to cost and increased chip computational power, there is an increasing
trend in embedded systems towards implementing multiple functionalities upon
a single shared computing platform. It is typically the case that not all these
functionalities are equally critical for the overall successful performance of the
system. The analysis of such mixed criticality systems has been identified as one
of the core foundational focal areas in the emerging discipline of Cyber Phys-
ical Systems. Coming up with procedures that will allow for the cost-effective
certification of such mixed-criticality systems has been recognized as a unique,
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particularly challenging, collection of problems [3]. Recognizing these challenges,
several US government R&D organizations including the Air Force Research
Laboratory, the National Science Foundation, the National Security Agency, the
National Aeronautics and Space Administration, etc., have led initiatives such
as the Mixed Criticality Architecture Requirements (MCAR) program aimed at
streamlining the certification process for safety-critical embedded systems; these
initiatives have brought together participants from industry, academia, and stan-
dards bodies to seek out more advanced, efficient, and cost-effective certification
processes. Within this setting, new interesting scheduling problems arise that
will be the focus of this paper.

We illustrate this by an example from the domain of unmanned aerial vehicles
(UAV’s), used for defense reconnaissance and surveillance. The functionalities
on board such UAV’s are classified into two levels of criticality:

– Level 1: the mission-critical functionalities, concerning reconnaissance and
surveillance objectives, like capturing images from the ground, transmitting
these images to the base station, etc.

– Level 2: the flight-critical functionalities: to be performed by the aircraft to
ensure its safe operation.

For permission to operate such UAV’s over civilian airspace (e.g., for border
surveillance), it is mandatory that its flight-critical functionalities be certified
by civilian Certification Authorities (CA’s), which tend to be very conservative
concerning the safety requirements. These CA’s are not interested in the mission-
critical functionalities, which must be validated by the clients and the vendor-
manufacturer. The latter are also interested in the level 2 functionalities, but
typically to standards that are less rigorous than the ones used by the civilian
CA’s. As such, we may consider the level 2 functionalities as a subset of the
level 1 functionalities.

The difference in certification requirements is expressed by different Worst-
Case Execution Times (WCET) for the execution of any real-time code depend-
ing on the considered critical level. In fact, each CA has its own rules, tools,
etc., for determining the value of the WCET. With reference to the previous
example, the WCET of the same piece of code of a flight critical functionality
has two values: one lower value that express the WCET if we are considering all
mission critical functions and one higher value if we restrict to all flight-critical
functions. On the other side, a level 1 functionality has only one WCET.

We refer to [5] for further explications and motivations for modeling this
certification requirement process. We restrict here to giving an example.

Example 1. Consider a system comprised of two jobs: J1 is flight-critical while J2
is only mission-critical. Both jobs arrive at time-instant 0, and have their dead-
lines at time-instant 10. J1 is characterized by two WCETs: at level 1 its WCET
is P1(1) and at level 2 its WCET is P1(2) (where P1(1) ≤ P1(2)); J2 is charac-
terized by only one WCET P2(1).
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Suppose that P1(1) = 3, P1(2) = 5 and P2(1) = 6. Consider the schedule that
first executes J1 and then J2.

– The CA responsible for safety-critical certification would determine that J1
completes latest by time-instant 5 and meets its deadline; note that if the
execution time of J1 is 5 then in the worst case it is not possible to com-
plete J2 by its deadline; however, this CA is not interested in J2; hence the
system passes certification.

– The CA responsible for mission-critical certification determines that J1 com-
pletes latest by time-instant 3, and J2 by time-instant 9. Thus they both
complete by their deadlines, and the system passes certification.

Note that by scheduling first J2 and then J1 we do not meet the requirements
of the flight critical functionalities. In fact in this case the execution of J1 could
start at time 6 and therefore the job does not complete by its deadline if we
assume its WCET of 5.

We thus see that the system is certified as being correct by both the flight-
critical and the mission-critical CA’s, despite the fact that the sum of the
WCET’s at their own criticality level (6 and 5) exceeds the length of the schedul-
ing window over which they are to execute.

On the other side, suppose the deadline of J2 would change to 8, then neither
scheduling J1 before J2 nor scheduling J2 before J1 can be certified. In this case,
scheduling J1 before J2 can result in a completion time of J2 at time 9 greater
than J2’s deadline. 


In Section 2, we present the model for representing mixed-criticality real-time
systems, which has been proposed in [4,5]. This mixed-criticality (MC) schedul-
ing model extends the conventional model of a real-time job by allowing for the
specification of different WCET’s for a job at different criticality levels.

In previous papers [4, 5], the problem to decide schedulability of a given MC
system was conjectured to be NP-hard, but a proof was never given. We do so
here in Section 3. However, the exact complexity of the problem remains open,
since it is not clear if the problem is actually in NP. We prove that it is, if the
number of criticality levels is a constant. Otherwise, we can only show that it is
in PSPACE.

In the same section we present an algorithm that decides MC-schedulability
efficiently for a special case.

In Section 4 we study the two techniques that are most widely used in design-
ing mixed-criticality systems for certifiability; we quantify the sub-optimality of
both techniques via the metric of processor speedup factor (cf. resource augmen-
tation in performance analysis of approximation algorithms, as initiated in [7]).
The results here extend the results in [5], who considered the techniques for dual-
criticality systems, i.e., in which there are only two different criticality levels. Our
results improve the results in [4], where also the techniques for L criticality levels
are studied. Moreover, we prove here that our results are tight.
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2 Model and Definitions

We consider a mixed-criticality (MC) system with L criticality levels, for some L.
A job in an MC system is characterized by a 4-tuple of parameters: Jj =
(rj , dj , χj , Pj), where

– rj ∈ Q+ is the release time;
– dj ∈ Q+ is the deadline, dj ≥ rj ;
– χj ∈ N+ is the criticality of the job;
– Pj ∈ QL

+ is a vector, the �-th coordinate of which specifies the worst-case
execution time (WCET) estimate of job Jj at criticality level �. In a job-
specification we usually represent it by (Pj(1), . . . , Pj(L)).

It is natural to assume Pj(�) to be monotonically nondecreasing for increasing �.
This we will do throughout, and mention if the assumption can be dropped
where possible. At any moment, we call a job available if its release time has
passed and the job has not yet completed execution.

An instance I of the MC-schedulability problem consists of a set of n jobs. In
this paper we assume that there is only one machine (processor) to execute the
jobs. We allow jobs to be preempted by the machine.

To define MC-schedulability we define the notion of a scenario. Each job Jj

requires an amount of execution time pj within its time window [rj , dj ]. The
value of pj is not known from the specification of Jj , but is only discovered by
actually executing the job until it signals that it has completed execution. This
characterizes the uncertainty of the problem. We call a collection of realized
values (p1, p2, . . . , pn) a scenario of instance I.

We define the criticality level, or shortly criticality, of a scenario (p1, p2, . . . , pn)
of I as the smallest integer � such that pj ≤ Pj(�) for all j = 1, . . . , n. (If there
is no such �, we define that scenario to be erroneous.)

Definition 1. A schedule for a scenario (p1, . . . , pn) of criticality � is feasible
if every job Jj with χj ≥ � receives execution time pj during its time win-
dow [rj , dj ].

A clairvoyant scheduling policy knows the scenario of I, i.e., (p1, . . . , pn), prior
to determining a schedule for I.

Definition 2. An instance I is clairvoyantly-schedulable if for each scenario
of I there exists a feasible schedule.

By contrast, an on-line scheduling policy discovers the value of pj only by ex-
ecuting Jj until it signals completion. In particular, the criticality level of the
scenario becomes known only by executing jobs. At each time instant, scheduling
decisions can be based only on the partial information revealed thus far.

Definition 3. An on-line scheduling policy is correct for instance I if for any
non-erroneous scenario of instance I the policy generates a feasible schedule.

Definition 4. An instance I is MC-schedulable if it admits a correct on-line
scheduling policy.
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The MC-schedulability problem is to determine whether a given instance I
is MC-schedulable or not. A little thought should make it clear that for deciding
MC-schedulability one only needs to consider scenarios in which for each i, pi =
Pi(�) for some �. The following is obvious.

Proposition 1. If an instance I is MC-schedulable on a given processor, then I
is clairvoyantly-schedulable on the same processor.

Example 2. Consider an instance of a dual-criticality system: a system with L =
2. Consider an instance I comprised of 4 jobs. Job J2 has criticality level 1 (which
is the lower criticality level), and the other 3 jobs have the higher criticality
level 2.

J1 = (0, 3, 2, (1, 2))
J2 = (0, 3, 1, (2, 2))
J3 = (0, 5, 2, (1, 1))
J4 = (3, 5, 2, (1, 2))

For this example instance, any scenario in which p1, p2, p3, and p4 are no larger
than 1, 2, 1, and 1, respectively, has criticality 1; while any scenario not of criti-
cality 1 in which p1, p2, p3, and p4 are no larger than 2, 2, 1, and 2, respectively,
has criticality 2. All remaining scenarios are, by definition, erroneous. It is easy
to verify that this instance is clairvoyantly-schedulable.

Policy S0, described below, is an example of an on-line scheduling policy for
instance I:

S0: Execute J1 over [0,1]. If J1 has remaining execution (i.e., p1 is revealed to be
greater than 1), then continue with scheduling policy S1 below; else, continue
with executing scheduling policy S2 below.

S1: Execute J1 over (1,2], J3 over (2,3], and J4 over (3,5].
S2: Execute J2 over (1,3], J3 over (3,4], and J4 over (4,5].

Scheduling policy S0 is however not correct for I, as can be seen by considering
the schedule that is generated on the scenario (1, 2, 1, 2). This particular scenario
has criticality 2, since p4 = 2 > P4(1) = 1. Hence, a correct schedule would
need to complete jobs J1, J3 and J4 by their deadlines. However, the schedule
generated by S0 has executed J4 for only one unit before its deadline. In fact, it
turns out that instance I is not MC-schedulable.

3 Complexity of MC-Schedulability

In this section we investigate the complexity of the MC-schedulability prob-
lem. We show that it is NP-hard in the strong sense. However, a little thought
should make it clear that it is not trivial to decide if the problem belongs to
NP or not. We prove that it actually belongs to NP if the number of criticality
levels is bounded by a fixed constant. For the general case, in which the number
of criticality levels is part of the input, we show that it belongs to the class
PSPACE, leaving membership to NP as an open question.
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A preliminary observation is that determining clairvoyant-schedulability has
the same complexity as the ordinary scheduling problem with only 1 criticality
level: verify for each criticality level � = 1, . . . , L if the jobs of that critical-
ity level or higher can be scheduled to complete before their deadlines if each
such job j has execution time Pj(�). In particular this means that clairvoyant-
schedulability of any instance on a fully preemptive processor platform can be
verified in polynomial time. This also holds if Pj(�) is not monotonic in �.

We show that it is strongly NP-hard to determine whether a given clairvoyantly-
schedulable system is also MC-schedulable upon a fully preemptive single-
processor platform.

Theorem 1. MC-schedulability is NP-hard in the strong sense, even when
all release times are identical and there are only two criticality levels.

Proof. The proof is by reduction from the strongly NP-complete problem 3-

partition [6]. In an instance I3P of 3-partition, we are given a set S of 3m
positive integers s0, s1, . . . , s3m−1 and a positive integer B such that B/4 <

si < B/2 for each i and
∑3m−1

i=0 si = mB. The problem is to decide whether S
can be partitioned into m disjoint sets S0, S1, . . . , Sm−1 such that, for 0 ≤ k <
m,

∑
si∈Sk

si = B.
We give here just the polynomial transformation and defer the rest of the

proof to a full version of the paper. From a given instance I3P we construct an
MC-schedu-lability instance IMC consisting of 4m jobs with release time 0,
which in the 4-tuple notation are:

– 3P-jobs: For each i, 0 ≤ i < 3m, job Ji = (0, 2mB, 2, (si, 2si));
– Blocking jobs: For each k, 0 ≤ k < m, job J3m+k = (0, 2(k+ 1)B, 1, (B,B)).




The question remains if MC-schedulability actually belongs to the complex-
ity class NP. In case the number of criticality levels L is a constant, we answer
this question affirmatively. The proof is based on a polynomial-time checkable
characterization of an online scheduling policy.

Theorem 2. MC-schedulability for L criticality levels is in NP for any
fixed L, and in PSPACE when L is part of the input.

Equal deadlines. Theorem 1 above shows that the problem is in general NP-
hard even if release times are identical. On the other hand, we show here that
the special case in which all jobs have equal deadlines (dj = D, j = 1, . . . , n)
can be solved in polynomial time. We first derive a necessary condition for such
an instance I to be MC-schedulable. Consider the criticality level � scenario of I
in which each job Jj needs exactly pj = Pj(�) execution time.

Necessary condition: If I is MC-schedulable then for each �, a scheduling policy
exists that allocates to each job Jj with χj ≥ � at least Pj(�) execution time
within time window [rj , D], i.e., the makespan of the scenario is at most D.
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This condition is easily checked: Let I� = {Jj ∈ I | χj ≥ �} and |I�| = n�.
Let (after renumbering) J1, J2, . . . , Jn�

denote the jobs in I� in order of non-
decreasing release times: r1 ≤ r2 ≤ . . . ≤ rn�

. Clearly, the makespan of I� is
given by

C�
max := max

j=1,...,n�

rj +
n�∑
i=j

Pj(�). (1)

The necessary condition is then verified by checking if

max
�=1,...,L

C�
max ≤ D. (2)

Consider the criticality-monotonic (CM) on-line scheduling policy, which sched-
ules at each time instant an available job of highest criticality.

Theorem 3. CM is correct for all for MC-schedulable instances in which all
jobs have the same deadline.

Proof. We prove this by showing that the necessary condition is also sufficient.
Consider any scenario of I that has criticality level �. In a CM-schedule, the
scheduling of jobs of criticality � or higher is not effected by the presence of
lower-criticality jobs, since their execution is postponed as soon as jobs in I�
become available. Hence, a CM-schedule can be thought of as a schedule that
minimizes the makespan of the jobs in I�. By the necessary condition, this does
not exceed the common deadline D. 


Notice that this theorem also holds when Pj(�) is not monotonic in �. Some other
well-solved sub-problems will be presented in the full version of the paper.

4 MC-Schedulability Testing Using Resource
Augmentation

Since MC-schedulability is intractable even for dual-criticality instances, we
concentrate here on sufficient MC-schedulability conditions that can be verified
in polynomial time. We study two such scheduling policies that yield such suffi-
cient conditions and compare their strength under augmenting the speed of the
machine or server. Taking the required speed to give a necessary condition for
MC-schedulability as a measure of performance quality, the second policy we
present outperforms the former one.

We make here the assumption that for each job Jj , Pj(�) = Pj(χj) for
all � ≥ χj . That is, no job executes longer than the WCET at its own specified
criticality. This is without loss of generality for any correct scheduling policy:
any such policy will immediately interrupt (and no longer schedule) a job Jj

if its execution time pj exceeds Pj(χj), since this makes the scenario of higher
criticality level than χj , and therefore the completion of Jj becomes irrelevant
for the scenario.
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As stated in Section 1, one straightforward approach is to map each MC
job Jj into a “traditional” (i.e., non-MC) job with the same arrival time rj and
deadline dj and processing time pj = Pj(χj) = max� Pj(�) (by monotonicity),
and determine whether the resulting collection of traditional jobs is schedulable
using some preemptive single machine scheduling algorithm such as the Earliest
Deadline First (EDF) rule. This test can clearly be done in polynomial time. We
will refer to mixed-criticality instances that are MC-schedulable by this test as
worst-case reservations schedulable (WCR-schedulable) instances. The speed-up
factor in the following theorem has been proved in [4]. We complement it by
proving tightness.

Theorem 4. If an instance is WCR-schedulable on a processor, then it is MC-
schedulable on the same processor. Conversely, if an instance I with L criticality
levels is MC-schedulable on a given processor, then I is WCR-schedulable on a
processor that is L times as fast, and this factor is tight.

We now present another schedulability condition that can also be tested in poly-
nomial time, but offers a performance guarantee (as measured by the processor
speedup factor) that is superior to the performance guarantee offered by the
WCR-approach.

In this algorithm we determine off-line, before knowing the actual execution
times, a total ordering of the jobs in a priority list and for each scenario execute
at each moment in time the available job with the highest priority.

The priority list is constructed recursively using the approach commonly re-
ferred to in the real-time scheduling literature as the “Audsley approach” [1,2];
it is also related to a technique introduced by Lawler [8]. First determine the
lowest priority job: Job Ji has lowest priority if there is at least Pi(χi) time
between its release time and its deadline available when every other job Jj is
executed before Ji for Pj(χi) time units (the WCET of job Jj according to the
criticality level of job i). The procedure is repeatedly applied to the set of jobs
excluding the lowest priority job, until all jobs are ordered, or at some iteration
a lowest priority job does not exist. If job Ji has higher priority than job Jj we
write Ji � Jj .

Because the priority of a job is based only on its own criticality level, the
instance I is called Own Criticality Based Priority (OCBP)-schedulable if we
find a complete ordering of the jobs.

If at some recursion in the algorithm no lowest priority job exists, we say the
instance is not OCBP-schedulable. We can simply argue that this does not mean
that the instance is not MC-schedulable: Suppose that scheduling according to
the fixed priority list J1, J2, J3 with χ2 = 1 and χ1 = χ3 = 2, proves the instance
to be schedulable. It may not be OCBP-schedulable since this does not take into
account that J2 does not need to be executed at all if J1 receives execution
time p1 > P1(1).

Clearly, if a priority list exists, it can be determined in polynomial time.
It turns out that the OCBP-test is more powerful than the WCR-test accord-

ing to the speedup criterion.
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Theorem 5. If an instance is OCBP-schedulable on a given processor, then it
is MC-schedulable on the same processor. Conversely, if instance I with L criti-
cality levels is MC-schedulable on a given processor, then I is OCBP-schedulable
on a processor that is sL times as fast, with sL equal to the root of the equa-
tion xL = (1 + x)L−1, and this factor is tight. It holds sL = Θ(L/ lnL).

Proof. We prove here the critical part of the claim: that a speedup of sL is
sufficient. The proof that OCBP-schedulability implies MC-schedulability has
been given in [4].

Notice that s1 = 1, and that (as one can verify using elementary calcu-
lus) sL′ ≥ sL if L′ > L. Let I be an instance with at most L criticality levels
that is MC-schedulable on a speed-1 processor, but not OCBP-schedulable on a
speed-s processor for some s ≥ sL, and amongst such instances let it be minimal
with respect to L and the number of jobs. Suppose I has n jobs. Minimality of I
implies that there is no time-instant t such t /∈ ∪n

j=1[rj , dj ], otherwise either the
jobs with deadline before t or the jobs with release time after t would comprise
a smaller instance with the same property.

Claim. Any job in I with the latest deadline must be of criticality L.

Proof. Suppose that a job Ji with χi = h < L has latest deadline. Create from I
an instance Ih with level h by “truncating” all jobs with criticality level greater
than h to their worst-case level-h scenarios:

Jj = (rj , dj , χj , (Pj(1), . . . , Pj(L))) ∈ I →
J ′

j = (rj , dj ,min(χj , h), (Pj(1), . . . , Pj(h))) ∈ Ih.

Clearly, Ih being a restricted instance of I, is MC-schedulable as well, and, by
minimality of I, Ih is OCBP-schedulable on a speed-sh processor.

That Ji has latest deadline in I but cannot be assigned lowest priority on a
speed-s processor implies that the scenario with pj = Pj(h) cannot be feasibly
scheduled on a speed-s processor; thus Ih is not clairvoyantly schedulable on
a speed-s processor. But Ih not being clairvoyantly schedulable implies Ih not
being OCBP-schedulable, and because s ≥ sL ≥ sh, this contradicts the OCBP-
schedulability of Ih on a speed-sh processor. 


For each � ∈ {1, . . . , L}, let d(�) denote the latest deadline of any criticality-�
job in I: d(�) = maxJj |χj=� dj . A work-conserving schedule on a processor is a
schedule that never leaves the processor idle if there is a job available. Consider
any such a work-conserving schedule on a unit-speed processor of all jobs in I
of the scenario in which pj = Pj(�) for all j. We define Λ� as the set of time
intervals on which the processor is idle before d(�), and λ� as the total length of
this set of intervals.

Claim. For each � and each Jj ∈ I with χj ≤ � we have [rj , dj ] ∩ Λ� = ∅.

Proof. Observe that since s ≥ sL ≥ 1, all idle intervals of Λ� are also idle intervals
in any work-conserving schedule of I on a speed-s processor. Hence, any job Jj
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with χj ≤ � with [rj , dj ]∩Λ� �= ∅ would meet its deadline in such a schedule if it
were assigned lowest priority. Since I is assumed to be non-OCBP schedulable
on a speed-s processor, this implies that (I \ {Ji}) is non-OCBP schedulable on
a speed-s processor, contradicting the minimality of I. 


As a corollary, ΛL = ∅ and λL = 0.
For each h = 1, . . . , L and � = 1, . . . , L, let

ch(�) =
∑

Jj|χj=h

Pj(�)

Notice that by assumption

∀ � ∀h ≤ � : ch(�) = ch(h). (3)

Since instance I is clairvoyantly schedulable on a unit-speed processor, clearly
we must have

∀ � : c�(�) ≤ d(�)− λ�. (4)

But also, due to clairvoyant schedulability, the criticality-� scenario, in which
each job Jj with criticality ≥ � receives exactly Pj(�) units of execution, com-
pletes by the latest deadline d(L):

∀� :
L∑

i=�

ci(�) ≤ d(L)− λ�. (5)

Instance I is not OCBP-schedulable on a speed-s processor, which translated in
terms of the introduced notation is:

∀� :
L∑

i=1

ci(�) > s(d(�)− λ�). (6)

Hence, for each �,

s(d(�)− λ�) <
�−1∑
i=1

ci(�) +
L∑

i=�

ci(�)

=
�−1∑
i=1

ci(i) +
L∑

i=�

ci(�) (by (3))

≤
�−1∑
i=1

(d(i)− λi) + (d(L)− λ�) (by (4) and (5))

≤
�−1∑
i=1

(d(i)− λi) + d(L).



100 S.K. Baruah et al.

Therefore, for all � = 1, . . . , L,

s <
d(L) +

∑�−1
i=1 (d(i)− λi)

d(�)− λ�

Using notation δ� = d(�)− λ� (hence δL = d(L) since λL = 0) this yields

s < min
�=1,...,L

δL +
∑�−1

i=1 δi
δ�

(7)

The minimum is maximized if all L terms are equal. Let x be this maximum
value. Then for all � = 1, . . . , L,

x =
δL + δ1 + δ2 + · · ·+ δ�−1

δ�
=
xδ�−1 + δ�−1

δ�
=

(
1 + x

δ�

)
δ�−1.

Hence,

δ� =
(1 + x

x

)
δ�−1 ∀� = 1, . . . , L which implies δL =

(1 + x

x

)L−1
δ1 .

Since, in particular, x = δL

δ1
, we have

x =
(1 + x

x

)L−1
,

which concludes the proof. 


We note that for L = 2 in the above theorem, s2 = (1 +
√

5)/2, the golden
ratio; thus the result is a true generalization of earlier results in [5]. In gen-
eral, sL = Θ(L/ lnL); hence, this priority-based scheduling approach asymptot-
ically improves on the reservations-based approach by a factor of Θ(lnL) from
the perspective of processor speedup factors.

Notice that the proof of the speedup bound for OCBP-schedulability in Theo-
rem 5 only uses the clairvoyant-schedulability of the instance, which is a weaker
condition than MC-schedulability (recall Proposition 1). The following claim
shows that it is not possible to get an improved test if the proof of its speedup
bound is based on clairvoyant-schedulability alone.

Proposition 2. There are dual-criticality instances that are clairvoyantly
schedulable on a given processor, but that are not MC-schedulable on a processor
that is less than (1 +

√
5)/2 times as fast.

Proof. Consider the following instance

– J1 = (0, 1, 1, (1, 1));
– J2 = (0, σ, 2, (σ − 1, σ)).
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This system is clairvoyantly-schedulable. To analyze its MC-schedulability, con-
sider the possible policies on a higher speed-s processor. The first one starts
with J2 and runs it till P2(1) = (σ − 1)/s, and if it signals completion, sched-
ule J1 which then finishes latest by (σ − 1)/s+ 1/s = σ/s. This is feasible only
if σ/s ≤ 1, that is, s ≥ σ. The other policy is simply to first schedule J1 and
then J2, which may require a total execution time 1/s + σ/s, which is feasi-
ble only if (1 + σ)/s ≤ σ, that is, s ≥ (σ + 1)/σ. Hence, if the processor has
speed s < min{σ, (σ+1)/σ}, neither of the possible scheduling policies is correct.
Taking σ = (σ + 1)/σ, that is, σ = (1 +

√
5)/2, implies s ≥ σ. 


Nevertheless, it remains the question if a test other than OCBP can test MC-
schedulability within a smaller speedup bound. We do not give a full answer
to this question. However, we can rule out fixed-priority policies, that is, poli-
cies which execute the jobs in some ordering fixed before execution time. This
ordering is not adapted during execution, except that we do not execute jobs
of criticality level i < h after a scenario was revealed to be a level-h scenario.
Such a policy admits a simple representation as a sequence of jobs. The following
result shows that OCBP is best possible among fixed-priority policies.

Theorem 6. There exist MC-instances with L criticality levels that are MC-
schedulable, but that are not Π-schedulable for any fixed priority policy Π on a
processor that is sL times as fast, with sL being the root of the equation xL =
(1 + x)L−1.
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Abstract. In the context of modelling cryptographic tools like blind signatures
and homomorphic encryption, the Dolev-Yao model is typically extended with
an operator over which encryption is distributive. We consider one such theory
which lacks any obvious locality property and show that its derivability problem
is hard: in fact, it is dexptime-complete. The result holds also when blind pairing
is associative. The lower bound contrasts with ptime decidability for restricted
theories of blind signatures, and the upper bound with non-elementary decidabil-
ity for abelian group operators with distributive encryption.

1 Introduction

Dolev-Yao style term models [DY83] for cryptographic protocols (the so-called “sym-
bolic models”) use a term algebra containing operations like pairing, encryption, sig-
natures, hash functions, and nonces to build terms that are sent as messages in the
protocol. The adversary against a protocol is modeled as a powerful network, which is
only restricted in the way in which messages may be derived from the ones sent by the
“honest” principals. Since these models are used for algorithmic analysis, the following
term derivability problem is of basic interest: given a finite set of terms X and a term t,
is there a way for the adversary to derive t from X?

In this paper, we study a security problem for a set of cryptographic primitives in
an extension of the Dolev-Yao model which includes a blind pairing that commutes
over encryption. That is, we can “push” an encryption by key k inside [t, t′] and get
[{t}k, {t′}k]. We can also form a blind pair [t, t′] from t and t′, and extract t′ or t from
[t, t′], provided we have the other part of the blind pair. We show that the existence
of a passive attack (that is, by an attacker who cannot forge messages) is decidable in
exponential time.

Though the blind pairing constructor finds natural use in the Dolev-Yao modelling
of electronic voting protocols [FOO92], more restricted uses of blind pairing may well
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suffice in many applications. What then can be interesting about such a result, in a
framework with a fixed set of primitives, a weak attacker model and offering an algo-
rithm with such high complexity? Perhaps the fact that the algorithm is presented as
an automaton construction; but then it should be noted that the original Dolev-Yao pa-
per used an automaton construction (indeed, a deterministic one) to solve the secrecy
problem for a class of protocols called ping-pong protocols.

Indeed the result is of a technical nature and relates to the theoretician’s toolkit in
the study of Dolev-Yao models. The standard strategy to prove the derivability problem
decidable is to prove a so-called locality property [RT03, CS03], that if t is derivable
from X, then there is a special kind of derivation (a normal derivation) π such that
every term occurring in π comes from S (X∪{t}), where S is a function mapping a finite
set of terms to another finite set of terms. Typically S is the subterm function st, but
in many cases it is a minor variant. The locality property is used to provide a decision
procedure for the derivability problem (which is typically a ptime algorithm).

As we will show later, our system does not have an obvious locality property, and
so we cannot follow the standard route to decidability. In fact, we can construct a set
of terms X and a term t such that the set of terms occurring in any derivation of t from
X is exponential in the size of X ∪ {t}. This suggests that it would be difficult to define
a function S of the kind mentioned above such that any term occurring in a normal
derivation of t from X comes from S (X ∪ {t}).

The first technical contribution of this paper is to show one way of working around
this difficulty. We prove a weak locality property: we define a function S which maps
every finite set of terms X to an infinite set of terms S (X). We then prove that all terms
occurring in a normal derivation of t from X are from S (X∪{t}), and that the set of terms in
S (X∪{t}) that are derivable from X is regular. This facilitates an automaton construction
and yields a decision procedure for checking whether t is derivable from X.

The second technical contribution is to settle the complexity of the derivability prob-
lem by proving a dexptime-hardness result by reduction from the backwards reachability
problem for alternating pushdown systems. While many lower bound results for the ac-
tive intruder deduction problem exist in the literature, under various settings, this is one
of the few lower bound results for the passive intruder deduction problem.

The third technical contribution of the paper is the use (in our decision procedure) of
the alternating automaton saturation technique in itself (similar to the one in [BEM97]).
In fact, the lower bound reduction shows the close connections to alternating pushdown
systems, and so it is no surprise that automaton saturation, one of the standard tools for
analysis of pushdown systems, is used for our upper bound proofs. This should also be
viewed in the context of the use of tree automata for protocol verification, specifically
the idea of representing (an over-approximation of) the set of deducible terms using
tree automata. This has been explored in a number of papers [Mon99, Gou00, GK99].
Applications of two-way alternating tree automata to security protocol verification has
been touched upon in [CDG+07]. The saturation technique that we use offers yet another
tool that may be of use in other contexts.

Where does the high complexity of this problem originate from? It arises from the
fact that blind pairing is distributive over encryption. This can be seen in the light of
results on closely related constructors.



104 A. Baskar, R. Ramanujam, and S.P. Suresh

In [DKR09, BC06, CRZ05], a different way of modelling blind signatures is con-
sidered. Two operators, blind and unblind are used, with the following rules:

unblind(blind(m, r), r) = m
unblind(sign(blind(m, r), k), r) = sign(m, k)

The restriction (as compared to distributive encryption) here is that the r in the above
equations is an atomic term, typically a random number, and whenever a blind pair
is signed, the signature gets pushed only to the first component and not the second.
Because of this, the system enjoys a locality property, and the basic derivability problem
is decidable in ptime.

In earlier work in [BRS07], we proposed essentially the same system described in
this paper, but we imposed a restriction that the second component of blind pairs are
always of the form n or {n}k where n is an atomic term (or nonce). And the only rule
that involves pushing an encryption inside a blind pair is the derivation of [{t}k, n] from
[t, {n}inv(k)] and k. This restricted system also satisfies a locality property.

At the other end of the spectrum, a much more powerful system is considered in
[LLT07]. They study an abelian group operator + such that {t1+ · · ·+ tn}k = {t1}k+ · · ·+
{tn}k, i.e. encryption is homomorphic over+. They employ a very involved argument and
prove the derivability problem in the general case to be decidable with a non-elementary
upper bound. They also give a dexptime algorithm in the case when the operator is xor,
and a ptime algorithm in the so-called binary case. The blind pair operator we consider
has very different characteristics than xor, and the arguments in [LLT07] do not apply
here.

2 Extension of the Dolev-Yao Model with Blind Pairs

Assume a set of basic terms N , which includes the set of keys K . Let inv(k) be a
function on K such that inv(inv(k)) = k. The set of terms T is defined to be:

T ::= m | (t1, t2) | [t1, t2] | {t}k
where m ∈ N , k ∈ K , and t, t1, and t2 range over T .

The set of subterms of t, st(t), is the smallest X ⊆ T such that 1) t ∈ X, 2) if
(t, t′) ∈ X or [t, t′] ∈ X, then {t, t′} ⊆ X, and 3) if {t}k ∈ X then {t, k} ⊆ X. st(X)
is defined to be

⋃
t∈X st(t). A keyword is an element of K ∗. Given a term t and a

keyword x = k1 · · · kn, {t}x = {· · · {t}k1 · · · }kn . If x = ε, {t}x is t itself.
For simplicity, we assume henceforth that all terms are normal. These are terms

which do not contain a subterm of the form {[t1, t2]}k. For a term t, we get its normal
form t↓ by “pushing encryptions over blind pairs, all the way inside.” Formally, it is
defined as follows: m↓= m for m ∈ N ; (t1, t2)↓= (t1↓, t2↓); [t1, t2]↓= [t1↓, t2↓]; and

{t}k↓=
⎧
⎪⎪⎨
⎪⎪⎩

[{t1}k↓, {t2}k↓] if t = [t1, t2]

{t↓}k otherwise

Definition 1. A derivation or a proof π of t from assumptions X is a tree whose nodes
are labelled by terms, whose root is labelled t, whose leaves are instances of the Ax
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rule and labelled by terms from X, and whose internal nodes are instances of one of the
analz-rules or synth-rules in Figure 1. We use X 
 t to also denote that there is a proof
of t from X. For a set of terms X, clos(X) = {t | X 
 t} is the closure of X.

analz-rules
{t}k↓ inv(k)

decrypt
t

(t0, t1)
spliti

ti

[t0, t1]↓ ti↓
blindspliti

t1−i

synth-rules Ax (t ∈ X)
t

t k
encrypt

{t}k↓

t1 t2
pair

(t1 , t2)

t1 t2
blindpair

[t1, t2]

Fig. 1. Proof system for normal terms (with assumptions from X ⊆ T ). In the decrypt rule, {t}k↓
is the major premise and k is the minor premise. In the blindspliti rule, [t0, t1]↓ is the major
premise and ti is the minor premise.

It is significant that the main premise of the decrypt rule is {t}k↓. This allows us to derive
[t, t′] from [{t}k, {t′}k] and inv(k), for instance.

Definition 2. The derivability problem (also called the passive intruder deduction
problem) is the following: given a finite set X ⊆ T and t ∈ T , determine whether
X 
 t.

As we mentioned in the introduction, the standard strategy to prove this problem decid-
able is to define a notion of normal proofs, show that every proof can be transformed to
a normal proof, and prove a so-called locality property, that every term occurring in a
normal proof of X 
 t comes from S (X∪{t}), where S : 2T → 2T is a function mapping
a finite set of terms to another finite set of terms. Typically S is the subterm function st,
but in many cases it is a minor variant. This typically yields a ptime algorithm for the
derivability problem.

But there is no obvious locality property for the proof system considered here. For
instance, to derive the term {a}k from [a, b], {b}k and k, we necessarily need to go via
the term [{a}k, {b}k], which is not a subterm of either the premises or the conclusion. In
fact, the structure of terms occurring in a proof of X 
 t can get very complex.

For example, one can code up some kind of a counter – a set X of O(n) terms and
another term t, each of size O(1), with X 
 t, but such that every proof of t from X has
at least 2n terms occurring in it. The reader can refer to [BRS10] for details.

3 Normal Proofs

Even though our proof system lacks an obvious locality property, we can prove a weak
locality property, which will help us derive a decision procedure for the derivability
problem. This section is devoted to a proof of the weak locality property (or weak
subterm property).

We first define the notion of a normal proof. These are proofs got by applying the
transformations of Figure 2 repeatedly. Any subproof that matches a pattern on the left
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column is meant to be replaced by the proof on the right column in the same row. The
idea behind normalization is to perform applications of the encrypt and decrypt rules as
early as possible in the proof.

··· π
′

t′

··· π
′′

t′′

r
t

··· δ
k

encrypt
{t}k↓

··· π
′

t′

··· δ
k

encrypt
{t′}k↓

··· π
′′

t′′

··· δ
k

encrypt
{t′′ }k↓

r
{t}k↓

··· π
′

{t′}k↓

··· π
′′

{t′′ }k↓
r

{t}k↓

··· δ
inv(k)

decrypt
t

··· π
′

{t′}k↓

··· δ
inv(k)

decrypt
t′

··· π
′′

{t′′}k↓

··· δ
inv(k)

decrypt
t′′

r
t

Fig. 2. The normalization rules. Rule r is meant to be either blindpair (in which case t = [t′, t′′]),
or blindsplit0 (in which case t′ = [t′′, t]), or blindsplit1 (in which case t′ = [t, t′′]).

Definition 3. A proof π of t from assumptions X is a minimal proof if t occurs only in
the root of the proof.

A proof π is a normal proof if the following two conditions hold:

1. every subproof of π is minimal, and
2. the transformations in Figure 2 cannot be applied to π.

Lemma 1. Whenever X 
 t, there is a normal proof of t from X.

We now state the weak locality property for normal proofs. The standard locality prop-
erty can be viewed as giving a bound on the “width” and encryption depth of terms
occurring in a proof of X 
 t. We prove a weaker property, where only the width of
terms is bounded. So the set of terms occurring in any normal proof of X 
 t is got
by encrypting terms (perhaps repeatedly) from a “core” set, using keys derivable from
X. The core, it turns out, is st(X ∪ {t}). For every p ∈ st(X ∪ {t}), define Lp to be
{x ∈ (st(X ∪ {t}) ∩K )∗ | X 
 {p}x}. We shall show in the next section that Lp is regular
for each p.

We introduce a bit of notation first that will help us conveniently state the weak
locality lemma. We say that a proof π of X 
 t is purely synthetic if:

– it ends in an application of the Ax or blindpair or pair rules, or
– it ends in an application of the encrypt rule and t↓ is not a blind pair.

Lemma 2 (Weak locality property). Let π be a normal proof of t from X, and let δ be
a subproof of π with root labelled r. Then the following hold:
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1. For every u occurring in δ, there is a term p ∈ st(X∪ {t}) and a keyword x such that
u = {p}x. Moreover, if δ is not a purely synthetic proof then p ∈ st(X).

2. If the last rule of δ is decrypt or split with major premise r1, then r1 ∈ st(X).

The main difficulty is in coming up with the right statement. The proof itself is a stan-
dard induction on derivations, with an exhaustive case analysis, and is presented in full
detail in [BRS10].

4 The Automaton Construction

We recall here some definitions relating to alternating pushdown systems and alternat-
ing automata (with ε-moves). The former will be needed for the lower bound argument
in the next section, and the latter for the decision procedure to be presented here.

An alternating pushdown system (APDS) is a triple P = (P, Γ, ↪→), where P is a
finite set of control locations, Γ is a finite stack alphabet, and ↪→⊆ P × Γ∗ × 2(P×Γ∗) is
a finite set of transition rules. We write transitions as (a, x) ↪→ {(b1, x1), . . . , (bn, xn)}. A
configuration is a pair (a, x) where a ∈ P and x ∈ Γ∗. Given a set of configurations C, a
configuration (a, x), and i ≥ 0, we say that (a, x)⇒P,i C iff:

– (a, x) ∈ C and i = 0, or
– there is a transition (a, y) ↪→ {(b1, y1), . . . , (bn, yn)} of P , z ∈ Γ∗, and i1, . . . , i1 ≥ 0

such that i = i1 + · · ·+ in + 1 and x = yz and for all j ∈ {1, . . . , n}, (b j, y jz)⇒P,i j C.

We say that (a, x)⇒P C iff (a, x)⇒P,i C for some i ≥ 0.
An alternating automaton is an APDS P = (Q, Σ, ↪→) such that ↪→⊆ Q × (Σ ∪

{ε}) × 2(Q×{ε}). For q ∈ Q, a ∈ Σ ∪ {ε}, and C ⊆ Q, we use q
a
↪→ C to denote the

fact that (q, a,C × {ε}) ∈↪→. For ease of notation, we will also write q
a
↪→ q′ to mean

q
a
↪→ {q′}. Given C ⊆ Q, and x ∈ Σ∗, we use the notation q

x⇒P,i C to mean that

(q, x) ⇒P,i C × {ε}. For C = {q1, . . . , qm} and C′ ⊆ Q, we use the notation C
x⇒P,i C′

to mean that for all j ≤ m, there exists i j such that q j
x⇒P,i j C′, and i = i1 + · · · + im.

We also say q
x⇒P C and C

x⇒P C′ to mean that there is some i such that q
x⇒P,i C

and C
x⇒P,i C′, respectively.

We typically drop the superscript P if it is clear from the context which APDS is
referred to.

Fix a finite set of terms X0 and a term t0. We let Y0 denote st(X0 ∪ {t0}) and K0 =

Y0 ∩K . In this section, we address the question of whether there exists a normal proof
of t0 from X0. Lemma 2 provides a key to the solution – every term occurring in such
a proof is of the form {p}x for p ∈ Y0 and x ∈ K∗0 . Therefore it is easy to see that the
different Lp (for p ∈ Y0) satisfy the following equations (among others):

kx ∈ Lp iff x ∈ L{p}k
if x ∈ Lp and x ∈ Lp′ then x ∈ L[p,p′]
if x ∈ Lp and x ∈ L[p,p′] then x ∈ Lp′

if x ∈ Lp′ and x ∈ L[p,p′] then x ∈ Lp

if x ∈ Lp and ε ∈ Lk then xk ∈ Lp

if ε ∈ L{p}k and ε ∈ Linv(k) then ε ∈ Lp
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This immediately suggests the construction of an alternating automaton A such that
for every t ∈ Y0 and keyword x, x ∈ Lt if and only if there is a run of A on the word
x from the state t to a designated “final state” f . Then checking whether X 
 t0 (or in
other words, ε ∈ Lt0) is simply a matter of checking if there is a run of A on ε from
the state t0 to the state f .

The states of the automaton are terms from Y0 and the transitions are a direct tran-

scription of the above equations. For instance there is an edge t
k
↪→ {t}k, and there is

an edge t
ε
↪→ {[t, t′], t′}. In the construction, we wish every x ∈ Lt to be witnessed by

a run t
x⇒ { f } ( f is a designated final state). This forces us to apply a saturation con-

struction. For instance, suppose that kx ∈ Lt and this fact is witnessed by a run t
kx⇒ { f }

(at some stage of the automaton construction). It is also the case that x ∈ L{t}k , and

this ought to be witnessed by a run {t}k x⇒ { f }. To achieve this, we introduce a new

transition {t}k ε
↪→ C whenever t

k⇒ C. In fact, it does not suffice to stop after revising
the automaton once. The procedure has to be repeated till no more new transitions can
be added.

Thus we define a sequence of alternating automata A0,A1, . . . ,Ai, . . ., each of which
adds transitions to the previous one, as given by the definition in Figure 3.

For each i ≥ 0, Ai is given by (Q, Σ, ↪→i) where Q = Y0 ∪ { f } ( f � Y0) and Σ = K0. We
define ↪→i by induction.

– ↪→0 is the smallest subset of Q × (Σ ∪ {ε}) × 2Q that satisfies the following:

1. if t ∈ Y0, k ∈ K0 such that {t}k↓∈ Y0, then t
k
↪→0 {{t}k↓}.

2. if t, t′, t′′ ∈ Y0 such that t is the conclusion of an instance of the blindpair or
blindspliti rules with premises t′ and t′′, then t

ε
↪→0 {t′, t′′}.

– ↪→i+1 is the smallest subset of Q × (Σ ∪ {ε}) × 2Q such that:
1. if q

a⇒i C, then q
a
↪→i+1 C.

2. if {t}k↓∈ Y0 and t
k⇒i C, then {t}k↓ ε↪→i+1 C.

3. if k ∈ K0 and k
ε⇒i { f }, then f

k
↪→i+1 { f }.

4. if Γ ⊆ Y0, t ∈ Y0, and if there is an instance r of one of the rules of Figure 1 (nullary,
unary or binary) whose set of premises is (exactly) Γ and conclusion is t—note that
Ax is a nullary rule, and hence this clause covers all t ∈ X0—the following holds:

if u
ε⇒i { f } for every u ∈ Γ, then t

ε
↪→i+1 { f }.

Fig. 3. The sequence of automata for analyzing X0 
 t0, with Y0 = st(X0 ∪ {t0}) and K0 = Y0 ∩K .
We use ↪→i for ↪→Ai and⇒i for⇒Ai .

We would like to emphasize that saturating an alternating automaton fits in very
naturally with our problem. For example, X 
 m where X = {[{t}k,m], t, k}. To detect
this, we need to test if m

ε
↪→i { f } for some i. This test turns out to be true for i = 4,
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as witnessed by the following sequence of edges and paths. Other constructions like
two-way automata do not seem immediately applicable to this situation.

m
ε
↪→0 {[{t}k,m], {t}k}.

t
ε
↪→1 { f }, k

ε
↪→1 { f }, [{t}k,m]

ε
↪→1 { f }.

f
k
↪→2 { f }, t

k⇒2 { f }.
{t}k ε
↪→3 { f } (this is a crucial use of saturation), m

ε⇒3 { f }.
m
ε
↪→4 { f }.

The following lemma essentially shows that the saturation procedure terminates in
exponential time.

Lemma 3. 1. For all i ≥ 0 and all a ∈ Σ ∪ {ε}, the relation
a⇒i is constructible from

↪→i in time 2O(d), where d = |Q|.
2. For all i ≥ 0 and all a ∈ Σ, the relation

a
↪→i+1 is constructible from⇒i in time 2O(d).

3. There exists d′ ≤ d2 · 2d such that for all i ≥ d′, q ∈ Q, a ∈ Σ ∪ {ε}, and C ⊆ Q,

q
a
↪→i C if and only if q

a
↪→d′ C.

We now present theorems that assert the correctness of the above construction. It is
sound, i.e. none of the automata accept an x starting from r where {r}x is not derivable
from X0; and that it is complete, i.e. whenever {r}x is derived from X0, one of the Ai’s
has an accepting run over x starting from r. To simplify the statement and proof in the
rest of this section, we first introduce the following notations:

– for X ⊆ T and keyword x, we use X 
 x to mean that X 
 k for every k occurring
in x.

– for C ⊆ Y0 and keyword y, {C}y = {{t}y↓| t ∈ C}.
– for q ∈ Q,C ⊆ Q, q

x⇒i,d C iff q
x⇒Ai ,d C.

– for C,C′ ⊆ Q, C
x⇒i,d C′ iff C

x⇒Ai ,d C′.

Theorem 1 (Soundness). For any i, any t ∈ Y0, and any keyword x, if t
x⇒i { f }, then

X0 
 {t}x↓.
Soundness is an immediate consequence of the following lemma, taking C = { f } and
y = ε.

Lemma 4. Suppose i, d ≥ 0, t ∈ Y0, x, y ∈ K∗0 , and C ⊆ Q (with D = C ∩ Y0). Suppose

the following also hold: 1) t
x⇒i,d C, and 2) C ⊆ Y0 or X0 
 y. Then X0 ∪ {D}y 
 {t}xy.

As one may expect, the proof is by induction on the size of the run labelled x from t
to C, but the difficulty with the proof is that in a run over x from t to C, each branch
may hit f after reading a different prefix of x. Hence the inductive statement is subtle
and this is why the statement of the Lemma is complex. In fact, formulating Lemma 4
precisely turned out to be the trickiest part of the upper bound proof. A detailed proof
is presented in the technical report [BRS10].

Theorem 2 (Completeness). For any t ∈ Y0 and any keyword x, if X0 
 {t}x ↓, then

there exists i ≥ 0 such that t
x⇒i { f }.
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The proof is by induction on derivations, and is reasonably straightforward.

Theorem 3. Given X0 ⊆ T and t0 ∈ T , it is decidable in dexptime whether X0 
 t0.

Proof. Let X0 and t0 be given, and let Y0 = st(X0 ∪ {t0}).
By Lemma 3, there is d′ such that for all q ∈ Q, a ∈ Σ ∪ {ε}, and C ⊆ Q, and any

i ≥ 0,

if q
a
↪→i C then q

a
↪→d′ C.

Further ↪→d′ is computable in time 2O(d), where d = |Y0|.
By the soundness theorem (Theorem 1), for all i, any t ∈ Y0 and any keyword x, if

t
x⇒i { f }, then X0 
 {t}x ↓. In particular, this holds for i = d′. On the other hand, by

the completeness theorem (Theorem 2), whenever X0 
 {t}x↓ for t ∈ Y0 and keyword x,

there is an i such that t
x⇒i { f }, and hence t

x⇒d′ { f }. Thus to check whether X0 
 t0, it

suffices to check if t0
ε⇒d′ { f }. But by construction, if t0

ε⇒d′ { f }, then t0
ε
↪→d′+1 { f }, but

this means that t0
ε
↪→d′ { f }.

Thus one only needs to check—in constant time—whether t0
ε
↪→d′ { f }. Thus the

derivability problem is solvable in dexptime. ��

5 A dexptime Lower Bound for the Derivability Problem

We recall the following fact about alternating pushdown systems.

Fact 4. The backwards-reachability problem for alternating pushdown systems,
which asks, given an APDS P and two configurations (s, xs) and ( f , x f ), whether
(s, xs)⇒P ( f , x f ), is dexptime-complete [SSE06].

We reduce this problem to the problem of checking whether X 
 t in our proof
system, given X ⊆ T and t ∈ T .

Assume that we are given an APDS P = (P, Γ, ↪→), and two configurations (s, xs)
and ( f , x f ). Let us assume that the rules in ↪→ are numbered 1 to 	.

We will take M = P∪{cm | 1 ≤ m ≤ 	} to be a set of atomic terms, and K = Γ∪{d, e}
to be a set of non-symmetric keys (such that none of them is the inverse of another, and
such that d, e � Γ).

We translate each rule to a term as follows. Suppose the mth rule is:

(a, x) ↪→ {(b1, x1), . . . , (bn, xn)}.

This gets translated to the following term rm:

rm = [[· · · [[r′m, {b1}x1 ], {b2}x2 ], · · · , {bn−1}xn−1 ], {bn}xn ], where
r′m = [[· · · [[{cm}d, {a}x], {b1}x1 ], · · · , {bn−1}xn−1 ], {bn}xn ].

We take X to be the set {rm | 1 ≤ m ≤ 	} ∪ {{ f }x f e} ∪ {{cm}d | 1 ≤ m ≤ 	} ∪ Γ ∪ {e}.
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The reduction is almost a straight transcription of the APDS rules. But we need
to take some care because given a blind pair [t, t′], we can split it using either t or t′.
Further, we have to avoid an accidental split of rm using a part of rn, for distinct m, n ≤ 	.
This explains the need for the “tags” cm (m ≤ 	).

We claim that (s, xs)⇒P ( f , x f ) iff X 
 {s}xse. A detailed proof for both directions is
presented in [BRS10]. Here we just present a high-level sketch of the proof. We prove
the harder direction, that if there is a normal proof of X 
 {a}xe then (a, x)⇒P ( f , x f ).
The overall strategy is to prove that whenever a term of the form {a}xe is proved, there
has to be a rule of P of which (a, y) is the left side, x = yz, and there is a shorter proof
of {b}yiz, for every (bi, yi) on the right side of that rule. This requires to do a careful
analysis of the proof of X 
 {a}xe. Here it is crucial to consider normal proofs, since
the weak locality property (Lemma 2) imposes some structure on the terms occurring
in such proofs. For instance, throughout the following we will use the fact that the pair
rule will never be used in normal derivations that we encounter in the following proof.

We now introduce the following bit of notation, for conveniently presenting the ar-
gument. For any term t whose normal form is [t1, . . . , tn], we define comps(t) to be the
set {t1, . . . , tn}. If t ∈ st(X) such that {cm}d ∈ st(t), then residues(t) is defined by the
following:

– residues(rm) = ∅
– if t � rm, then residues(t) = residues([t, t′]) ∪ {t′}, where t′ is the unique term such

that [t, t′] ∈ st(rm).

Lemma 5. For any configuration (a, x), if there is a normal proof of X 
 {a}xe, then

(a, x)⇒P ( f , x f )

The lemma follows easily, by induction on the size of normal proofs, from the next
assertion.

Lemma 6. If there is a normal proof π of X 
 {a}xe, then either (a, x) = ( f , x f ) or there
is a rule of P , (a, y) ↪→ {(b1, y1), . . . , (bn, yn)}, and z ∈ Γ∗ such that x = yz, and for
each j ≤ n, a subproof π j of π with conclusion X 
 {b j}y jze.

Proof. The observation that drives the proof of this lemma is the following.
For any normal proof π of X 
 {a}xe and any subproof δ of π with conclusion {p}we,

and any m ≤ 	:
1. if the last rule of δ is an application of blindpair, and if {cm}d ∈ st(p), then X 
 {r}we

is the conclusion of some subproof of δ, for every {r}we ∈ comps({p}we).
2. if the last rule of δ is an application of blindsplit, and if {cm}d ∈ st(p), then X 
 {r}we

is the conclusion of some subproof of δ, for every r ∈ residues(p).

Let π be a normal proof of X 
 {a}xe and suppose that (a, x) � ( f , x f ). Then it is clear
that for all prefixes y of xe, {a}y � X. Thus π does not end in an application of encrypt
(an easy consequence of the structure of X). It obviously cannot end in an application
of blindpair. So it is clear that the last rule is an application of blindsplit, with major
premise t and minor premise t′. Now t is a blind pair, and hence there is a unique
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p ∈ st(X) and z ∈ Γ∗ such that t = {p}ze (again a consequence of the structure of X).
It can be seen that {cm}d ∈ st(p) for some m ≤ 	. If t is obtained as the result of an
application of encrypt, then it can be seen that p = rm and thus p has no residues, and
hence it is vacuously true that {r}ze occurs in δ for all r ∈ residues(p). Otherwise, t is
the result of a blind split, and hence, by the observation at the start of the proof, {r}ze

occurs in δ for all r ∈ residues(p).
Now if p ∈ st(r′m), then among the residues of p will be found {b j}y j for every (b j, y j)

on the right hand side of the rule numbered m. So by what has been proved above, there
is a subproof π j of π whose conclusion is X 
 {b j}y jze, and we are done.

Suppose p � st(r′m). Then, it can be seen that t′ = {p′}ze for some p′ ∈ st(X) such that
r′m ∈ st(p′). Now clearly p′ � X (since it is a proper subterm of rm, missing a component
of the form {a}w as it does) and hence t′ is not the result of an application of encrypt
(again an easy consequence of the structure of X). It cannot also be the result of an
application of blindsplit, since then one of the premises has to be {a}xe, contradicting
minimality. Thus t′ is the result of an application of blindpair, but the observation at
the beginning of this proof tells us that X 
 {r}ze for all {r}ze ∈ comps({p′}ze). But notice
that r′m ∈ st(p′), and hence we can conclude that among comps(p′) will be found {b j}y j

for every (b j, y j) on the right hand side of the rule numbered m. So by the observation at
the start of the proof, we can conclude that for each j, there is a subproof π j of π whose
conclusion is X 
 {b j}y jze, and we are done. ��
And the following theorem is the end result.

Theorem 4. The passive intruder deduction problem is dexptime-hard.

6 Discussion

We can think of a number of extensions of our system by considering more algebraic
properties of the blind pair operator, like associativity, commutativity, unitariness, etc.
It then becomes more convenient to treat an extension of the Dolev-Yao model with
a polyadic + operator, over which encryption distributes. In this framework, a very
powerful system is studied in [LLT07], where + is treated as an abelian group operator.

The decidability results in [LLT07] are driven by a set of normalization rules whose
effect is drastically different from ours. Our rules ensure that the “width” of terms oc-
curring in a normal proof of X 
 t is bounded by X ∪ {t}. But their normalization
rules ensure that the encryption depth of terms occurring in a normal proof of X 
 t is
bounded by X∪{t}. On the other hand, the width of terms, represented by coefficients in
the +-terms, can grow unboundedly. The rest of their decidability proof is an involved
argument using algebraic methods.

The techniques of our paper do not seem to extend to the system with an abelian
group operator, nor for slightly weaker systems where+ is associative and commutative,
or when + is a (not necessarily commutative) group operator and the term syntax allows
terms of the form −t. But the techniques for our upper bound proofs extends to the case
when + is just an associative operator (not necessarily commutative, or has inverses).
Another extension that is usually considered is encryption with constructed keys rather
than atomic keys. The upper bound results go through for this system as well, with
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much of the hard work lying in extending the weak locality theorem. A sketch of the
proofs is presented in the technical report [BRS10], and will be developed further in a
companion paper.
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Abstract. The POSSIBLE WINNER problem asks whether some distinguished
candidate may become the winner of an election when the given incomplete votes
(partial orders) are extended into complete ones (linear orders) in a favorable
way. Under the k-approval protocol, for every voter, the best k candidates of his
or her preference order get one point. A candidate with maximum total number
of points wins. The POSSIBLE WINNER problem for k-approval is NP-complete
even if there are only two votes (and k is part of the input). In addition, it is NP-
complete for every fixed k ∈ {2, . . . , m − 2} with m denoting the number of
candidates if the number of votes is unbounded. We investigate the parameterized
complexity with respect to the combined parameter k and “number of incomplete
votes” t, and with respect to the combined parameter k′ := m − k and t. For
both cases, we use kernelization to show fixed-parameter tractability. However,
we show that whereas there is a polynomial-size problem kernel with respect
to (t, k′), it is very unlikely that there is a polynomial-size kernel for (t, k). We
provide additional fixed-parameter algorithms for some special cases.

1 Introduction

Voting situations arise in political elections, multi-agent systems, human resource de-
partments, etc. This includes scenarios in which one is interested in finding a small
group of winners (or losers), such as awarding a small number of grants, picking out a
limited number of students for a graduate school, or voting for a committee with few
members. Such situations are naturally reflected by a variant of approval voting, the
k-approval voting system, where every voter gives one point to each of the k alterna-
tives/candidates which he or she likes best and the candidates having the most points in
total win. On the one side, k-approval extends plurality where a voter gives one point to
one candidate, that is k = 1, and, on the other side, it extends veto where a voter gives
one point to all but one candidate, that is, k′ = 1 for k′ := m− k and m candidates.

At a certain point in the decision making process one might face the situation that
the voters have made up their minds “partially”. For example, for the decision about
the Nobel prize for peace in 2009, a committee member might have already known that
he (or she) prefers Obama and Bono to Berlusconi, but might have not decided on the
order of Obama and Bono yet. This immediately leads to the question whether, given a
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set of “partial preferences”, a certain candidate may still win. The formalization of this
question leads to the POSSIBLE WINNER problem.

The POSSIBLE WINNER problem has been introduced by Konczak and Lang [15]
and since then its computational complexity has been studied for several voting sys-
tems [2,3,5,17,18]. Even for the comparatively simple k-approval voting, it turned out
that POSSIBLE WINNER is NP-complete except for the special cases of plurality and
veto [3], that is, for any k greater than one and smaller than the number of candidates
minus one. A multivariate complexity study showed that it is NP-complete if there are
only two voters when k is part of the input but fixed-parameter tractable with respect
to the “number of candidates” [5]. In contrast, for the approval voting variant where
each voter can assign a point to up to k candidates, it can easily be seen that POSSIBLE

WINNER can be solved in polynomial-time. A prominent special case of POSSIBLE

WINNER is the MANIPULATION problem, where the input consists of a set of linear
orders and a set of completely unspecified votes. For k-approval, it is easy to see that
MANIPULATION is solvable in polynomial time for unweighted votes but for weighted
votes it is NP-complete for all fixed k �= 1 [14].

The above described hardness results motivate a multivariate analysis with respect to
the combined parameter “number of voters” and “number of candidates to which a voter
gives one/zero points” for k-approval. Can we efficiently solve POSSIBLE WINNER in
the case that these parameters are both small? Directly related questions are whether
we can ignore or delete candidates which are not relevant for the decision process and
how to identify such candidates. In this context, parameterized algorithmics [10,16]
provides the concept of kernelization by means of polynomial-time data reduction rules
that “preprocess” an instance such that the size of the “reduced” instance only depends
on the parameters [6,13].

In this work, we use kernelization to show the fixed-parameter tractability of POS-
SIBLE WINNER for k-approval in two “symmetric” scenarios. First, we consider the
combined parameter “number of incomplete votes” t and “number of candidates to
which every voter gives zero points” k′ := m− k for m candidates (directly extending
the veto voting system with k′ = 1). Making use of a simple observation we show that
POSSIBLE WINNER admits a polynomial-size problem kernel with respect to (t, k′)
and provide two algorithms: one with exponential running time factor 2O(k′) in case of
constant t and one with exponential running time factor 2O(t) in case of constant k′.
Second, we consider the combined parameter t and k, where k denotes the “number of
candidates to which a voter gives a point”. We observe that here one cannot argue sym-
metrically to the first scenario. Using other arguments, we give a superexponential-size
problem kernel showing the fixed-parameter tractability of POSSIBLE WINNER with
respect to (t, k). For the special case of 2-approval, we give an improved polynomial-
size kernel with O(t2) candidates. Using a methodology due to Bodlaender et al. [7],
our main technical result shows that POSSIBLE WINNER is very unlikely to admit a
polynomial-size problem kernel with respect to (t, k).

Preliminaries. A linear vote is a transitive, antisymmetric, and total relation on a set C
of candidates and partial vote a transitive and antisymmetric relation on a set C of
candidates. We use > to denote the relation between candidates in a linear vote and �
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to denote the relation between candidates in a partial vote. We often specify a sub-
set D ⊆ C of candidates instead of single candidates in a partial vote; for a candi-
date e ∈ C \ D and D = {d1, . . . , ds}, the meaning of “e � D” is “{e � d1, e �
d2, . . . , e � ds}”. A linear vote vl extends a partial vote vp if vp ⊆ vl, that is, for
every i, j ≤ m, from ci � cj in vp it follows that ci > · · · > cj in vl. An extension E
of a set of partial votes V p = {vp

1 , . . . , v
p
n} is a mapping from V p to a set of linear

votes V l := {vl
1, . . . , v

l
n} such that vl

i extends vp
i for every i. Given a set of partial

votes V p on C, a candidate c ∈ C is a possible winner if there exists a winning exten-
sion E, that is, c wins in E with respect to a considered voting system. For any voting
system R, the underlying decision problem is defined as follows.

POSSIBLE WINNER

Given: A set of candidates C, a set of partial votes V on C, and a distinguished candi-
date c ∈ C.
Question: Is there an extension E of V such that c wins with respect to R in E?

We focus on the voting system k-approval where, given a set V of linear votes on a
set C of candidates, the first k candidates within a vote get one point and the remaining
candidates get zero points. For every candidate c′ ∈ C, one sums up the points over
all votes from V to obtain its score s(c′) and the candidates with maximum score win.
We call the first k positions of a vote one-positions and the remaining positions zero-
positions. All results are given for the unique winner case, that is, looking for a single
candidate with maximum score, but can be adapted easily to hold for the “co-winner”
case where several candidates may get the maximum score and all of them win.

A parameterized problemL is a subset ofΣ∗×Σ∗ for some finite alphabetΣ [10,16].
An instance of a parameterized problem consists of (x, p) where p is called the pa-
rameter. We mainly consider “combined” parameters which are tuples of positive in-
tegers. A parameterized problem is fixed-parameter tractable if it can be solved in
time f(|p|)·poly(|x|) for a computable function f . A kernelization algorithm consists of
a set of (data) reduction rules working as follows [6,13,16]. Given an instance (x, p) ∈
Σ∗ ×Σ∗, they output in time polynomial in |x| + |p| an instance (x′, p′) ∈ Σ∗ × Σ∗

such that the following two conditions hold. First, (x, p) is a yes-instance if and only if
(x′, p′) is a yes-instance (termed soundness). Second, |x′| + |p′| ≤ g(|p|) where g is a
computable function. If g is a polynomial function, then we say that the parameterized
problem admits a polynomial kernel.

Some of the reduction rules given in this work will not directly decrease the instance
size by removing candidates or votes but instead only decrease the number of possible
extensions of a vote, for example, by “fixing” candidates. To fix a candidate at a certain
position means to specify its relation to all other candidates. Clearly, a candidate may
not be fixed at every position in a specific partial vote. To take this into account, an
important concept is the notation of shifting a candidate. More precisely, we say a can-
didate c′ can shift a candidate c′′ to the left (right) in a partial vote v if c′′ � c′ (c′ � c′′)
in v, that is, setting c′ to a one-position (zero-position) implies setting c′′ to a one-
position (zero-position) as well. For every candidate c′ ∈ C and a partial vote v ∈ V ,
let L(v, c′) := {c′′ ∈ C | c′′ � c′ in v} and R(v, c′) := {c′′ ∈ C | c′ � c′′ in v}.
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Then, fixing a candidate c′ ∈ C as good as possible means to add L(v, c′) � c′ �
C \ (L(v, c′)∪{c′}) to v. Analogously, fixing a candidate as bad as possible is realized
by adding C \ (R(v, c′) ∪ {c′}) � c′ � R(v, c′) to v. If a candidate c′ ∈ C is fixed in
all partial votes, this implies that also its score s(c′) is fixed.

The votes of an input instance of POSSIBLE WINNER can be partitioned into a (pos-
sibly empty) set of linear votes, called V l, and a set of proper (non-linear) partial votes,
called V p. We state all our results for the parameter t := |V p|. All positive results
also hold for the parameter number of total votes n := |V l| + |V p|. Due to the space
restrictions, several (parts of) proofs are deferred to a full version of this work.

2 Fixed Number of Zero-Positions

For (m−k′)-approval with k′ < m, k′ denotes the number of zero-positions. We give a
polynomial kernel with respect to (t, k′) for POSSIBLE WINNER where t is the number
of partial votes. In addition, we provide two parameterized algorithms for special cases.

2.1 Problem Kernel

Consider a POSSIBLE WINNER instance with candidate set C, vote set V = V l ∪
V p, and distinguished candidate c ∈ C for (m − k′)-approval. We start with a simple
reduction rule that is a crucial first step for all kernelization results in this work.

Rule 1. For every vote vi ∈ V p, if |L(vi, c)| < m− k′, fix c as good as possible in vi.

The soundness and polynomial-time running time of Rule 1 is easy to verify. The condi-
tion |L(vi, c)| < m− k′ is crucial since otherwise c might shift a candidate c′ to a one-
position whereas c is assigned to a zero position and this could cause c′ to beat c. After
applying Rule 1, the score of c is fixed at the maximum possible value since it makes
one point in all votes in which this is possible. Now, for every candidate c′ ∈ C \ {c},
by counting the points that c′ makes within the linear votes V l, compute the number of
zero positions that c′ must assume within the partial votes V p such that it is beaten by c.
Let this number be z(c′) and Z+ := {c′ ∈ C \ {c} | z(c′) > 0}. Since there are only
tk′ zero positions in V p, one can observe the following.

Observation 1 In a yes-instance,
∑

c′∈C\{c} z(c
′) ≤ tk′ and |Z+| ≤ tk′.

Observation 1 provides a simple upper bound for the number of candidates in Z+.
By formulating a data reduction rule that bounds the number of remaining candidates
and replacing the linear votes V l by a bounded number of “equivalent votes” we can
show the following theorem. The basic idea is that since a remaining candidate from
C \ (Z+ ∪ {c}) can be set arbitrarily in every vote without beating c, it is possible to
replace the set of all remaining candidates by tk′2 “representative candidates”.

Theorem 1. For (m− k′)-approval, POSSIBLE WINNER with t partial votes admits a
polynomial kernel with at most tk′2 + tk′ + 1 candidates.
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Initialization:
For every D′ ∈ D \ {(d1, . . . , dp)}, set T (0, D′) = 0.
Set T (0, (d1, . . . , dp)) = 1.

Update:
For 0 ≤ i ≤ t − 1,
for every D′ = (d′

1, . . . , d
′
p) ∈ D,

T (i + 1, D′) = 1 if there are two candidates zg, zh that can take the zero-positions in vi+1

and T (i, D′′) = 1 with D′′ := {d′′
1 , . . . , d′′

p} and
d′′

j = d′
j for j ∈ {1, . . . , q} \ {g, h}, d′′

g ≤ d′
g + 1, and d′′

h ≤ d′
h + 1.

Output:
“yes” if T (t, (0, . . . , 0)) = 1, “no” otherwise

Fig. 1. Dynamic programming algorithm for (m − 2)-approval

2.2 Parameterized Algorithms

We give algorithms running in 2O(p) · poly(n,m) time with p denoting either k′ or
t where the other parameter is of constant value. Note that the kernelization from the
previous subsection does not imply such running times.

Constant number of partial votes. For two partial votes, there can be at most 2k′ can-
didates that must take a zero-position in a yes-instance (see Observation 1). Branching
into the two possibilities of taking the zero-position in the first or in the second vote
for every such candidate, results in a search tree of size 22k′

= 4k′
. For every “leaf” of

the search tree it is easy to check if there is a corresponding extension. Using similar
arguments, one arrives at the following.

Proposition 1 For a constant number t of partial votes, POSSIBLE WINNER for (m−
k′)-approval can be solved in 2t2k′ · poly(n,m) time.

Constant number of zero-positions. For constant k′ the existence of an algorithm with
running time 2O(t) ·poly(n,m) seems to be less obvious than for the case of constant t.
We start by giving a dynamic programming algorithm for (m−2)-approval. Employing
an idea used in [4, Lemma 2], we show that it runs in 4t · poly(n,m) time and space.

As in the previous subsection, fix c according to Rule 1 such that it makes the maxi-
mum possible score and let Z+ := {z1, . . . , zp} denote the set of candidates that take at
least one zero-position in a winning extension. Let d1, . . . , dp denote the corresponding
number of zero-positions that must be assumed and let D := {(d′1, . . . , d′p) | 0 ≤ d′j ≤
dj for 0 ≤ j ≤ p}. Then, the dynamic programming table T is defined by T (i,D′)
for 1 ≤ i ≤ t and D′ = (d′1, . . . , d

′
p) ∈ D. Herein, T (i,D′) = 1 if the partial votes

from {v1, . . . , vi} can be extended such that candidate zj takes at least dj − d′j zero-
positions for 1 ≤ j ≤ p; otherwise T (i,D′) = 0. Intuitively, d′j stands for the number
of zero-positions which zj must still take in the remaining votes {vi+1, . . . , vt}. Clearly,
if T (t, (0, . . . , 0)) = 1 for an instance, then it is a yes-instance. The dynamic program-
ming algorithm is given in Figure 1. By further extending it to work for any constant k′

we can show the following.
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Theorem 2. For (m − 2)-approval with t partial votes, POSSIBLE WINNER can be
solved in 4t ·poly(n,m) time andO(t · 4t) space. For (m− k′)-approval with t partial
votes, POSSIBLE WINNER can be solved in 2O(t) · poly(n,m) time for constant k′.

3 Fixed Number of One-Positions

We study POSSIBLE WINNER for k-approval with respect to the combined parame-
ter k and number t of partial votes. The problem can be considered as “filling” tk one-
positions such that no candidate beats c. In the previous section, we exploited that the
number of candidates that must take a zero-position is already bounded by the com-
bined parameter t and “number of zero-positions” in a yes-instance (Observation 1).
Here, we cannot argue analogously: Our combined parameter (t, k) only bounds the
number of one-positions but there can be an unbounded number of candidates that may
take a one-position in different winning extensions of the partial votes. Hence, we argue
that if there are too many candidates that can take a one-position, then there must be
several choices that lead to a valid extension. We show that it is sufficient to keep a set
of “representative candidates” that can take the required one-positions if and only if this
is possible for the whole set of candidates. This results in a problem kernel of super-
exponential size showing fixed-parameter tractability with respect to (t, k). We comple-
ment this result by showing that it is very unlikely that there is a kernel of polynomial
size. In addition, we give a polynomial kernel with O(t2) candidates for 2-approval.

3.1 Problem Kernels

We first describe a kernelization approach for POSSIBLE WINNER for k-approval in
general and then show how to obtain a better bound on the kernel size for 2-approval.

Problem kernel for k-approval. In order to describe more complicated reduction rules,
we assume that a considered instance is exhaustively reduced with respect to some
simple rules. To this end, we fix the distinguished candidate c as good as possible by
Rule 1 (using thatm− k′ = k). Afterwards, we apply a simple reduction rule to get rid
of “irrelevant” candidates and check whether an instance is a trivial no-instance:

Rule 2. First, for every candidate c′ ∈ C \ {c}, if making one point in the partial votes
causes c′ not to be beaten by c, then fix c′ as bad as possible in every vote. Second,
compute the set D of candidates that can be deleted: For every candidate c′ ∈ C \ {c}
with |L(v, c′)| > k for all v ∈ V p, if the score s(c′) is at least s(c), then output “no
solution”, otherwise add c′ to D. Delete D and replace V l by an equivalent set.

The soundness of Rule 2 is easy to see: Every candidate fixed by the first part cannot be
assigned to a one-position in any winning extension. For the second part, every winning
extension of an unreduced instance can easily be transformed into a winning extension
for the reduced one by deleting the candidates specified by Rule 2 and vice versa. A set
of equivalent linear votes can be found according to [3, Lemma 1]1.

1 Herein, it might be necessary to add one new candidate. However, this will not affect the
following analysis and will be discussed in more detail in the full version of this work.
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test..................terst.. a
b d

h

e

g

f

20 1

v : a � b � d � x,
e � f,
g � f � y � c,
a � h

Fig. 2. Example for 3-approval: Partial vote v (left-hand side) and corresponding digraph with
levels 0, 1, and 2. Arcs following by transitivity are omitted. Note that x, y, and c do not appear
in the digraph since they are irrelevant for v.

In the following, we assume that Rule 2 has been applied, that is, all remaining
candidates can make at least one point in an extension without beating c. To state further
reduction rules, a partial vote v is represented as a digraph with vertex set {c′ | c′ ∈
C \ {c} and |L(v, c′)| < k}. All other candidates are considered as “irrelevant” for this
vote since they cannot take a one-position. The vertices are organized into k levels. For
0 ≤ j ≤ k − 1, let Lj(v) := {c′ | c′ ∈ C \ {c} and |L(v, c′)| = j} containing all
candidates that shift exactly j candidates to a one-position if they are assigned to the
best possible position. There is a directed arc from c′ to c′′ if and only if c′′ ∈ L(v, c′).
Figure 2 displays an example for the representation of a partial vote for 3-approval.

In general, the number of candidates per level is unbounded. However, for some
cases it is easy to see that one can “delete” all but some representative candidates. The
following reduction rule provides such an example using the fact that in any vote a
candidate from the first level can be set to an arbitrary one-position without shifting any
other candidate.

Rule 3. For v ∈ V p with |L0(v)| ≥ tk, consider any subsetL′ ⊆ L0(v) with |L′| = tk.
Add L′ � C \ L′ to v.

To see the soundness of Rule 3 consider a winning extension E for a non-reduced
instance and a vote v ∈ V p with |L0(v)| ≥ tk. Since there are tk one-positions in the
partial votes, there must be at least k candidates from L′ not having assumed a one-
position within the other t−1 votes. Setting these k candidates to the one-positions in v
leads to a winning extension of the reduced instance. The other direction is obvious.

If Rule 3 applies to all partial votes, then in a reduced instance at most t2k candidates
are not fixed at zero-positions in V p and the remaining candidates can be deleted by
Rule 2. Hence, we consider the situation that there is a partial vote v with |L0(v)| < tk.
Then, we cannot ignore the candidates from the other levels but replace them by a
bounded number of representatives. We first discuss how to find a set of representatives
for 2-approval and then extend the underlying idea to work for general k.

For 2-approval, for a vote v with |L0(v)| < 2t, it remains to bound the size of L1(v).
This is achieved by the following reduction rule: Fix all but 2t in-neighbors of ev-
ery candidate from L0(v) at zero-positions. To see the soundness, we show, given a
winning extension E for the non-reduced instance, how to obtain a winning exten-
sion E′ for v after the reduction (the other direction is obvious). Clearly, in E(v) the
first position must be assigned to a candidate c′ from L0(v) and c′ can also be assigned
to the first position in E′(v). If there is another candidate from L0(v) that takes the
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second position in E(v), one can do the same in E′(v). Otherwise, distinguish two
cases. First, c′ has less than 2t in-neighbors, then the reduction rule has not fixed any
candidate that shifts c′ to the first position and thus v can be extended in the same way
as in E. Second, c′ has at least 2t in-neighbors. Since there are only 2t one-positions
and 2t non-fixed in-neighbors, the second position of v can be assigned to a candidate
that does not take a one-position in any other vote of E.

Altogether, for 2-approval, one ends up with up to 4t2 non-fixed candidates per vote
and hence with O(t3) non-reduced candidates in total. For general k, extend this ap-
proach iteratively by bounding the number of candidates for every level:

Rule 4. Consider a partial vote v ∈ V p with |L0(v)| < tk. Start with i = 1 and repeat
until i = k.
- For every candidate c′ ∈ Li(v), if there are more than tk candidates in Li(v) which
have the same neighborhood as c′ in L0(v) ∪ L1(v) ∪ · · · ∪ Li−1(v), fix all but tk of
them as bad as possible.
- Set i := i+ 1.

Using Rule 4 one can show the following.

Theorem 3. For k-approval, POSSIBLE WINNER admits a problem kernel with size
bounded by a computable function in k and the number of partial votes t.

Improved problem kernel for 2-approval. As discussed above, the kernelization as
stated for k-approval in general leads to a polynomial kernel with O(t3) candidates for
2-approval. To give a kernel with O(t2) candidates, we use some properties of bipartite
graphs. For a bipartite graph (G ∪ H,E) with vertex set G ∪ H and edge set E ⊆
{{g, h} | g ∈ G and h ∈ H}, a matching denotes a subset M ⊆ E such that for
all e, e′ ∈ M , e ∩ e′ = ∅. A vertex contained in e for an e ∈ M is called matching
vertex and, for {g, h} ∈ M , g and h are matching neighbors. A maximum matching is
a matching with maximum cardinality. The open neighborhood of a vertex g ∈ G is
denoted by N(g) := {h | {g, h} ∈ E} and, for G′ ⊆ G, N(G′) :=

⋃
g∈G′ N(g).

Lemma 1. For a bipartite graph (G ∪ H,E) with maximum matching M , there is a
partition of G into G1 � G2, such that the following holds. First, all neighbors of G1
are part ofM . Second, every vertex from G2 has a matching neighbor outsideN(G1).

Now, we employ Lemma 1 to design a reduction rule. Note that similar arguments are
used in several works, see [8,16]. In the following, we assume that Rule 1 and Rule 2
have been applied. We define a bipartite graph (G ∪ H,E) as follows. For a partial
profile with partial votes V p and candidate set C, let V ′ := {v′ ∈ V p | |L0(v′)| <
2t}. For every v′i ∈ V ′, for 1 ≤ j ≤ |L0(v′i)|, add a vertex gj

i to G. Intuitively,
for every candidate that can take a first position in v′i there is a corresponding vertex
in G. If a candidate can take the first position in several votes, then there are several
vertices corresponding to this candidate. The vertex setH contains one vertex for every
candidate from (

⋃
v′∈V ′ L1(v′)) \ (

⋃
v′∈V ′ L0(v′)). There is an edge between gj

i ∈ G
and h ∈ H if setting the candidate corresponding to h to the second position in v′i shifts
the candidate corresponding to gj

i to the first position. Now, we can state the following.
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Rule 5. Compute a maximum matching M in (G ∪H,E). Fix every candidate corre-
sponding to a non-matched vertex in H as bad as possible in every vote from V ′.

Lemma 2. Rule 5 is sound and can be carried out in O(|E| · |G∪H |+ |V | · |C|) time.

Proof. A winning extension for an instance reduced with respect to Rule 5 is also a
winning extension for an unreduced instance. Now, we show the other direction. Given
a winning extension E for an unreduced instance, we construct a winning extension Er

for a reduced instance. Since Rule 5 does not fix any candidate which can take the first
position in at least one vote, the first positions in Er can be assumed by the same candi-
dates as in E. It remains to fix the second positions without beating c. For every vote vi,
let ge

i denote the candidate that takes the first position in vi in E. For the correspond-
ing vertex ge

i one can distinguish two cases: First, ge
i ∈ G1. In this case, none of the

neighbors of ge
i have been fixed and, thus, the candidate which takes the second position

in vi in E can also take the second position Er. Second, ge
i ∈ G2. In this case, set the

candidate corresponding to the matching neighbor from ge
i to the second position. Now,

it is not to hard to see that c wins in Er: The only candidates that possibly make more
points in Er than in E are the candidates corresponding to the matching neighbors of
vertices from G2. Due to the matching property, every such candidate makes at most
one point in V ′. By definition,G only contains vertices that can make at least one point
and for all votes from V p \ V ′ one can easily find a winning extension which does not
assign the “matching-candidates” to one-positions (see Rule 2). It follows that c also
wins in the extensionEr. The claimed running time follows since a maximum bipartite
matching can be found in O(|E| · |G ∪H |) time. 


Bounding the size of candidates in level 0 by Rule 3 and the (remaining) candidates in
level 1 by Rule 5 one arrives at the following.

Theorem 4. For 2-approval with t partial votes, POSSIBLE WINNER admits a polyno-
mial kernel with less than 4t2 candidates.

3.2 Kernel Lower Bound

We use a method introduced by Bodlaender et al. [7] and Fortnow and Santhanam [12]
to show that, for k-approval, POSSIBLE WINNER cannot have a polynomial kernel with
respect to (t, k). They provide a general scheme to show the non-existence of polyno-
mial kernels under some reasonable assumptions from classical complexity theory.

Definition 1. [7] A composition algorithm for a parameterized problem L ⊆ Σ∗ ×�
is an algorithm that receives as input a sequence ((x1, p), . . . , (xq , p)) with (xi, p) ∈
Σ∗ × � for each 1 ≤ i ≤ q, uses time polynomial in

∑q
i=1 |xi| + p, and outputs

(y, p′) ∈ Σ∗ ×� with (a) (y, p′) ∈ L ⇔ (xi, p) ∈ L for some 1 ≤ i ≤ q and (b) p′

is polynomial in p. A parameterized problem is compositional if there is a composition
algorithm for it.

Theorem 5. [7,12] Let L be a compositional parameterized problem whose unparam-
eterized version is NP-complete. Then, unless coNP ⊆ NP / poly, there is no polyno-
mial kernel for L.
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Dom et al. [9] provide a framework to build composition algorithms by using “identi-
fiers”. One of the necessary conditions is the existence of an algorithm running in 2pγ ·
poly time for the considered parameter p and a fixed constant γ. Considering the com-
bined parameter “number of ones” k and “number of partial votes” t for POSSIBLE

WINNER under k-approval, there is no known algorithm running in 2(tk)γ · poly(|X |)
time. Hence, we apply the following overall strategy (which might be also useful for
other problems).

Overall strategy. We employ a proof by contradiction. Assume that there is a polynomial
kernel with respect to (t, k). Then, since for POSSIBLE WINNER there is an obvious
brute-force algorithm running in mtk · poly(n,m) time for m candidates and n votes,
there must be an algorithm A with running time poly(t, k)tk · poly(n,m) < 2(tk)γ ·
poly(n,m) for an appropriate constant γ. In the next paragraph, we use the existence of
algorithmA to design a composition algorithm for the combined parameter (t, k). Since
it is easy to verify that the unparameterized version2 of POSSIBLE WINNER is NP-
complete, it follows from Theorem 5 that there is no polynomial kernel with respect
to (t, k), a contradiction unless coNP ⊆ NP / poly. Altogether, it remains to give a
composition algorithm.

Composition algorithm. Consider a sequence ((x1, (t, k)), . . . , (xq, (t, k))) of q POS-
SIBLE WINNER instances for k-approval. To simplify the construction, we make two
assumptions. First, we assume that there is no “obvious no-instance”, that is, an instance
in which a candidate c′ beats c even if c′ makes zero points in all of the partial votes.
This does not constitute any restriction since such instances can be found and removed
in time polynomial in

∑q
i=1 |xi|. Second, we assume that for xj , 1 ≤ j ≤ q, within the

partial votes the distinguished candidate makes zero points in every extension. Since it
follows from known constructions [3,5] that the unparameterized version of the prob-
lem remains NP-complete for this case, this assumption leads to a non-existence result
for this special case and thus also for the general case.

Now, we give the composition algorithm. If q > 2(tk)γ

for γ as given by algorithmA,
the composition algorithm appliesA to every instance. This can be done within the run-
ning time bound required by Definition 1 and, in the following, we can assume that
the number of instance is at most 2(tk)γ

. This can be used to assign an “identifier” of
sufficiently small size to every instance. Basically, the identifiers, which will be real-
ized by specific sets of candidates, rely on the binary representation of the numbers
from {1, . . . , q}. The size of an identifier will be linear in s := �log q� which is poly-
nomial in the combined parameter (t, k) since q ≤ 2(tk)γ

.
Compose the sequence of instances to one big instance (X, (3s+ 4, 2t)) with X =

(C, V l ∪ V p, c) as follows. For 1 ≤ i ≤ q, let xi be (Ci, V
l
i ∪ V

p
i , ci). Then,

C :=
⊎

1≤i≤q

(Ci \ {ci}) � {c} �D � Z �A �B

with D := {d0
0, . . . , d

0
s} ∪ {d1

0, . . . , d
1
s}, Z :=

⋃
1≤j≤t Zj with Zj := {z0

h,j | 0 ≤ h ≤
s} ∪ {z1

h,j | 0 ≤ h ≤ s}, A := {a1, . . . , aq}, and a set B with |B| := 2s+ 3 − k. The
candidates from D and Z will be used as identifiers for the different instances: Every

2 See [7] for a formal definition.
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V p
1 : Zw,1 > Dw > Zw,t > aw > C \ (Zw,1 ∪ Dw ∪ Zw,t)

Zw,j > Dw > Zw,j−1 > aw > C \ (Zw,j ∪ Dw ∪ Zw,j−1) for 2 ≤ j ≤ t
V p

2 : B > Dw > wj > C \ (B ∪ Dw ∪ (Cw \ {cw})) for 1 ≤ j ≤ t

Fig. 3. Extension for X in which c wins. For a winning extension E(xw) = w′
1, . . . , w

′
t of xw,

let wj denotes the linear order given by w′
j restricted to the candidates from Cw \ {c}.

instance xi is uniquely identified by the binary code of the integer i = b0 ·20 + b1 ·21 +
· · · + bs · 2s with bh ∈ {0, 1}. Then, a subset Di ⊂ D identifies xi when d1

h ∈ Di if
and only if bh = 1 and d0

h ∈ Di if and only if bh = 0. Let Di := D \Di. Similarly, for
every 1 ≤ j ≤ t, the set Zi,j denotes the candidates from Zj that identify i, that is,

Zi,j := {z0
h,j | h ∈ {0, . . . , s} and bh = 0} ∪ {z1

h,j | h ∈ {0, . . . , s} and bh = 1}.

Let Zi,j := Zj \ Zi,j denote the remaining candidates from Zj .
The set of partial votes V p consists of two subsets V p

1 and V p
2 , both containing t

partial votes. The basic idea is that a winning extension of V p
1 “selects” an (arbitrary)

instance xi and there is a winning extension for xi if and only if V p
2 can be extended

such that c wins. The set V p
1 contains the vote

{Zi,1 ∪Di ∪ Zi,t � ai | 1 ≤ i ≤ q}, D ∪ Z ∪A � C \ (D ∪ Z ∪A),

meaning that the vote contains the condition Zi,1 ∪Di ∪Zi,t � ai for every i. Further-
more, for every j ∈ {2, . . . , t}, the set V p

1 contains the vote

{Zi,j ∪Di ∪ Zi,j−1 � ai | 1 ≤ i ≤ q}, D ∪ Z ∪A � C \ (D ∪ Z ∪A).

The set V p
2 consists of the partial votes v1, . . . , vt. Every vote vj ∈ V p

2 “composes” the
votes vj

i for 1 ≤ i ≤ q where vj
i denotes the jth vote from instance xi after deleting ci.

Then, for 1 ≤ j ≤ t, the vote vj is

B � (C\B), {vj
i | 1 ≤ i ≤ q}, {Di � Ci\{ci} | 1 ≤ i ≤ q}, C\(A∪Z∪{c}) � A∪Z∪{c}.

Using [3, Lemma 1], one can construct a set Vl of linear votes polynomial in |C|
and |V p| such that in every winning extension, within V p,
(a) for i ∈ {1, . . . , q}, the number of points a candidate c′ ∈ Ci \ {ci} makes is at
most the maximum number of points which c′ makes in a winning extension within the
partial votes from xi,
(b) every candidate from A ∪D ∪B makes at most t points, and
(c) every candidate from Z makes at most one point.

Fig. 3 sketches a winning extension of the composed instance X making use of a win-
ning extension of an instance xw. We omit to show that the constructed instanced X is
a yes-instance for (3s+4)-approval if and only if there is an i ∈ {1, . . . , q} such that xi

is a yes-instance for k-approval.

Theorem 6. For k-approval, POSSIBLE WINNER with t partial votes does not admit a
polynomial problem kernel with respect to (t, k) unless NP ⊆ coNP / poly.
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4 Outlook

Can similar results as in this paper be obtained for “more general” problems such as
SWAP BRIBERY [11] or the counting version of POSSIBLE WINNER[1]? This com-
prises the development of reduction rules preserving all winning extensions. Another
interesting scenario might be as follows. Given a number s of winners in the input, for
example, the size of a committee, one is interested in the s candidates such that each
of them has more points than the remaining candidates. For this scenario, the nega-
tive results for POSSIBLE WINNER for k-approval as given in this work and related
work [3,5] can be adapted by adding s − 1 fixed candidates that always win, but as to
the algorithmic results, it is open whether they extend to this scenario.
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Abstract. We give an O(nd+n log n) algorithm computing the number
of minimum (s, t)-cuts in weighted planar graphs, where n is the number
of vertices and d is the length of the shortest s-t path in the corresponding
unweighted graph. Previously, Ball and Provan gave a polynomial-time
algorithm for unweighted graphs with both s and t lying on the outer
face. Our results hold for all locations of s and t and weighted graphs,
and have direct applications in image segmentation and other computer
vision problems.

1 Introduction

Graph cuts play an important role in a number of computer vision algorithms.
For example, in image segmentation, see e. g. [4,5,9], an image is represented
by a graph with pixels as the vertices and an edge connects two pixels if they
are neighboring and considered similar; the edge weights capture the similarity
measure between the pixels. Naturally, the underlying graph tends to be planar,
typically grid-like. One of the problems of image segmentation is to separate
an object from the background. Many segmentation algorithms rely on finding
a minimum cut between two positions, one from the object and one from the
background (often provided as input from the user). The weight of the minimum
cut corresponds to the least energy contour between the positions, viewing the
edge weights as the strength of the connection between the respective pixels.
Notice that the two chosen locations are very unlikely to be physically close to
each other, hence our assumptions on planarity and arbitrary positions of the
locations are well aligned with the image segmentation applications.

Counting problems are closely related to random sampling from the same
universe [14]. In image segmentation the current algorithms might suffer from
finding an “atypical” cut that does not represent the contour well. Ideally the
user would get the opportunity to choose the best contour out of all possible
minimum-cut-based segmentations. However, this might be infeasible because
the number of minimum cuts between two chosen positions might be exponential.
Having the ability to sample from several minimum cuts provides the user with
the option to choose the best of these segmentations while keeping the running
time reasonably small.
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Minimum cuts are also related to network reliability problems where the ver-
tices are individual computers in a network, edges are connections between com-
puters, and the edge weight captures the probability of connection failure. The
number of minimum cuts between two end-points is useful in estimating the prob-
ability of disconnecting the network, see e. g., [1]. Ball and Provan [1] showed
that, in case of unweighted (multi)graphs, the problem of counting all minimum
(s, t)-cuts is polynomially reducible to the problem of counting all antichains
in a poset. (An (s, t)-cut can be visualized as a set of edges that, if removed,
disconnect the vertices s and t, see Section 2 for the formal definition.) Both
problems are known to be #P-complete, as shown by the same authors in [18].
Nevertheless, they were able to devise a polynomial-time algorithm for count-
ing all minimum (s, t)-cuts in planar graphs, under the assumption that both
vertices s and t lie on the outer face. Different variants of the network reliabil-
ity problem and its connection to minimum cuts were studied in a number of
previous works, for example [2,19,17,15,6].

Our main contribution is an efficient polynomial-time algorithm for computing
the number of minimum (s, t)-cuts in all weighted planar graphs and for all
pairs of s and t (i. e., we do not impose assumptions on the locations of s and
t). Recall that this is exactly the scenario of many vision applications. (For
directed graphs we work under the natural and commonly assumed condition
that all vertices are reachable from s and lead to t, see, e. g., [7]. Otherwise, the
typical definition of cuts leads to pathological cases, as discussed in Section 4.)
We extend the result of Ball and Provan to the case of weighted graphs, showing
that this case also polynomially reduces to the problem of counting (unweighted)
antichains in a poset. Our main result, summarized in Theorem 1 below, uses
the reduction to devise a polynomial-time algorithm for counting minimum (s, t)-
cuts for weighted planar graphs, for all possible pairs of s and t.

Theorem 1. Let G = (V,E,w) be any (directed) planar graph with edge weights
w : E → R+. Let s, t ∈ V , s �= t and assume that all vertices are reachable from
s and lead to t. Then, there is an O(nd + n logn) algorithm for counting all
minimum (s, t)-cuts in G, where n = |V | and d is the smallest number of edges
forming a path from s to t in G.

When both s and t lie on the outer face, it is possible to connect them by an edge,
splitting the outer face into two faces. The idea of [1] relies on the fact that the
antichain problem can then be solved by counting the number of paths between
the two new faces in the dual (directed) planar graph. However, planarity does
not allow to add the (s, t) edge for arbitrary locations of s and t. We overcome
this problem by showing that we can utilize one of the paths from s to t. Our
proof of correctness is significantly more elaborate than the outer face case, yet
the underlying algorithm is still relatively simple, as summarized in Algorithm 1.

For completeness, we review results studying the problem of finding one of
the minimum (s, t)-cuts in a given weighted planar graph. Building on the
work of Itai and Shiloach [12], Reif [20] developed an O(n log2 n) divide-and-
conquer algorithm for undirected graphs. Janiga and Koubek [13] designed an
O(n log2 n log logn) algorithm for directed planar graphs. The result of
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Algorithm 1. Counting minimum-(s, t)-cuts in a weighted planar graph G
1: Compute a maximum s-t flow such that the directed flow edges do not form a cycle.
2: Construct Ĝ by contracting every strongly connected component of the residual

graph, let ŝ and t̂ be the vertices of Ĝ corresponding to s and t, respectively.
3: Let p be a t̂-ŝ path in Ĝ. Duplicate all edges of p, the new edges are on the left of

p when traveling from t̂ to ŝ.
4: Follow the new edges from t̂ to ŝ. If the current edge shares the same face on the

left as the previous edge, merge the edges into one edge by bypassing the middle
vertex. This process results in an t̂-ŝ path p′.

5: Let G′ be the graph G with the path p′. Construct a (directed) unweighted dual
planar graph G′

d of G′, omit edges that cross the edges of p′.
6: For every pair of vertices a, b in G′

d that correspond to faces that share an edge
in p′, compute the number of all a-b paths in G′

d, using an algorithm for directed
acyclic graphs.

7: Return the sum of all numbers computed in step 6.

Borradaile and Klein [3] yields an O(n log n) algorithm for all planar graphs.
The dual graph plays a central role in all these works.

This paper is organized as follows. We present preliminaries, graph terminol-
ogy, and notation, in Section 2. We state the reduction result in Section 3 and
we prove the main result, Theorem 1, in Section 4. Section 5 contains the proofs
of the results from Section 3.

2 Preliminaries

We denote by R, R+, and R+
0 the sets of all real numbers, positive real numbers,

and nonnegative real numbers, respectively.
We work with directed graphs throughout the paper. The usual conversion of

undirected graphs into directed graphs (for every undirected edge include two
directed edges) provides corresponding algorithms for undirected graphs.

Let G = (V,E,w) be a directed graph with positive edge weights w : E → R+.
Let s, t ∈ V, s �= t be two vertices. An (s, t)-cut of G is a set of vertices S ⊆ V
that contains s but not t. The value of the cut S is the sum of the edge weights
of the edges going out of the set S, i. e.,

∑
(u,v):u∈S,v 
∈S w(u, v). A minimum

(s, t)-cut has the smallest possible value of all (s, t)-cuts.
Our objective is to count the number of all possible minimum (s, t)-cuts of an

input graph G.
Minimum cuts are related to network flows. A flow network is a directed

graph G = (V,E, c) where c : E → R+ defines non-negative edge capacities. Let
s, t ∈ V, s �= t be two vertices called source and sink, respectively. A flow from s
to t is a function f : E → R+

0 satisfying the following properties:

– capacity constraint: f(e) ≤ c(e) for every e ∈ E, and
– flow conservation:

∑
u:(u,v)∈E f(u, v) =

∑
w:(v,w)∈E f(v, w) for every v ∈

V − {s, t}.
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The value of the flow f is the sum of the values of flow edges out of s minus
the sum of the flow edges into s, i. e.,

∑
w:(s,w)∈E f(s, w) −

∑
w:(w,s)∈E f(w, s).

A flow is said to be maximum if it has the largest possible value among all flows
from s to t (we also refer to such flows as s-t-flows).

The residual graph of the flow f , denoted Gf = (V,Ef , wf ), is a weighted
directed graph where Ef contains the following two types of edges:

– for every e ∈ E with f(e) < c(e), the set Ef contains a forward edge e with
weight wf (e) = c(u, v)− f(u, v), and

– for every e = (u, v) ∈ E with f(e) > 0, the set Ef contains a backward edge
e′ = (v, u) with weight wf (e′) = f(e).

An augmenting path in a residual graph Gf is any path from s to t.
The following is a well-known Maximum-flow Minimum-cut Theorem by Ford

and Fulkerson [8].

Theorem 2. Let G = (V,E, c) be a directed graph with positive edge weights and
let s, t ∈ V . Then, the value of the minimum (s, t)-cut in G equals the maximum
s-t-flow value in the flow network G.

For more information about network flows, see, e. g., [16]. Most of our terminol-
ogy and notation follows this reference.

3 Reduction to Forward-Cuts

We give a polynomial reduction from the problem of counting minimum (s, t)-
cuts in a positively weighted graph to the problem of counting antichains in a
poset. A poset can be represented by a directed acyclic graph and an antichain
is a set of pairwise unrelated vertices (i. e., no vertex has a predecessor in the
set).

Instead of proving our results for antichains, we define a closely related notion
that we call forward-cuts. A forward-cut contains the antichain elements and all
their predecessors. Moreover, a forward-(s, t)-cut contains the vertex s but not
t. The formal definition is summarized below.

Definition 1. Let G = (V,E) be a directed acyclic (multi)graph, and let s ∈ V
be a vertex in G of indegree 0 and t ∈ V be a vertex in G of outdegree 0. Let
S be a subset of the vertices V such that s ∈ S and t �∈ S. We say that S is a
forward-(s, t)-cut of G if there is no edge (u, v) ∈ E such that v ∈ S and u �∈ S.

The reduction result is stated in the following theorem.

Theorem 3. Let G = (V,E, c) be a (directed) flow network with edge capacities
c : E → R+. Let s ∈ V be the source and t ∈ V be the sink. There exists a
directed acyclic graph G̃ = (Ṽ , Ẽ) and vertices s̃, t̃ ∈ Ṽ such that the number
of minimum (s, t)-cuts in G is equal to the number of forward-(t̃, s̃)-cuts in G̃.
Moreover, |Ṽ | ≤ |V |, |Ẽ| ≤ 2|E|, and it is possible to construct G̃ in time
O(|V |3 + |E|2). Also, if G is planar, then G̃ is planar as well and it can be
constructed in time O(|V | log |V |).
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The proof of the theorem is included in Section 5. In the next section we will deal
with graphs where every vertex is reachable from s and leads to t. The following
corollary will be used in the proof of Theorem 1.

Corollary 1. Suppose that there exists a path from s to every vertex of G and
a path from every vertex of G to t. Then, t̃ is the only vertex of indegree 0 and
s̃ is the only vertex of outdegree 0 in G̃.

4 Minimum Cuts in Planar Graphs

The following theorem states that we can count the number of minimum (s, t)-
cuts in weighted planar graphs in polynomial-time. We impose a natural condi-
tion on the input graphs: we can get to every vertex from s and we can get to t
from every vertex. Without this condition, vertices that do not influence connec-
tivity of s and t may artificially increase the number of minimum (s, t)-cuts. For
example for a graph on vertices {s, t, a, b, c} with arcs {(s, a), (a, t), (a, b), (a, b)}
we have (s, t)-cuts {s}, {s, a}, {s, a, b}, {s, a, c}, and {s, a, b, c}. However, the
“true” (s, t)-cuts are only {s} and {s, a}.

Theorem 1. Let G = (V,E,w) be any (directed) planar graph with edge weights
w : E → R+. Let s, t ∈ V, s �= t, be two of its vertices and assume that all
vertices are reachable from s and t is reachable from every vertex. Then, there is
an O(nd + n logn) algorithm for counting all minimum (s, t)-cuts in G, where
n = |V | and d is the smallest number of edges forming a path from s to t in G.

Before we prove the theorem, it will be useful to observe that a simple dynamic
programming idea can be used to count the number of all paths between two
end-points in a given directed acyclic graph.

Proposition 1. Let D be a directed acyclic graph and let a, b ∈ V (D) be two
of its vertices. The number of paths from a to b can be counted in linear time.
Moreover, if D is a weighted graph where a path from a to b gets the weight of
the product of its edge weights, we can compute the sum of the weights of all
paths from a to b in linear time.

Now we are ready to prove the main theorem of this section.

Proof (of Theorem 1). Let G̃, s̃, and t̃ be the graph, the source, and the sink
from Theorem 3 applied to graph G. The theorem states that we need to count
the number of forward-(t̃, s̃)-cuts in G̃. Suppose G̃ is already embedded in the
plane (this can be done in linear time, see, e. g., [11]).

Let p = (t̃ = v0, v1, . . . , vk = s̃) be a (directed) path from t̃ to s̃ in G̃. To
simplify our language, let us redraw G̃ so that the path p goes horizontally from
left to right. We duplicate every edge of the path, drawing the duplicate edges
just above the original edges, thus the i-th duplicate edge ei (drawn between
vertices vi−1 and vi) lies inside a face fi. (Notice that we are allowing multi-
edges.) We replace every consecutive block of the duplicate edges that lie inside
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the same face by a single edge. Formally, if ei, ei+1, . . . , ej lie inside the same face
fi = fi+1 = · · · = fj (and if either edge ei−1 or edge ej+1 exist, neither lies in
the face fi), then the edges get replaced by a single edge from vi−1 to vj that lies
inside fi. After this process we obtain a new path p′ = (t̃ = v′0, v

′
1, . . . , v

′
k′ = s̃)

where no two consecutive edges lie inside the same original face. We will refer
to this new graph by G′. Notice that G′ is a planar directed acyclic graph with
t̃ and s̃ being the only vertices of in- and out-degree 0, respectively.

Thus, every original face bordered by an edge in p on the south got split into
two or more faces in G′. More precisely, there the face got split into one or more
“south” faces and exactly one “north” face. The “south” faces are in bijection
with the e′i edges and we refer to the “south” face corresponding to edge e′i by
f south

i . There could be several e′i edges bordering the same “north” face. We refer
to the “north” face above the edge e′i by fnorth

i .
Next we construct a dual graph G′

d and its planar embedding as follows. The
faces of G′ become the vertices of G′

d and the edges will connect neighboring
faces (with one exception, see below). For two neighboring faces f ′1 and f ′2 that
share an edge e′ = (u′1, u

′
2), there is an edge from f ′1 to f ′2 in G′

d, drawn starting
in f ′1, cutting across e′, and ending in f ′2, if both of the following conditions are
satisfied:

– edge e′ is not on the path p′,
– if G′ is redrawn so that e′ is vertical with u′1 being the bottom end-point,

then f ′1 is on the left of e′ and f ′2 is on the right.

Notice that G′
d is a planar directed graph that allows multiple edges in case

when two faces of G′ neighbor in more than one edge.
We claim that G′

d is also acyclic. Suppose that G′
d contains a cycle going

through faces x1, x2, . . . , xz (for convenience let xz+1 = x1). The edges in G′
d

defining this cycle form a face in G′
d, let us call it X . By definition of edges in G′

d,
for every pair of faces xi, xi+1 (in G′) there is an edge in G′ shared by both faces
that leads from inside of X to outside of X , and there are no other edges in G′

crossing through the border of X . Let yi be the end-point of the edge shared by
xi, xi+1 that lies inside X . Since G′ is acyclic, following the predecessors of the
yi’s, we must get to a vertex of indegree 0. Thus, t̃, the only vertex of indegree
0, lies inside X . Following the successors of the yi’s, we must get to s̃; therefore,
s̃ lies outside of X . Then, the path p′ needs to cut through the border of X and
must go through one of the yi’s. But, by definition of G′

d, we did not include
dual edges crossing through the edges of the path p′, a contradiction.

Next we claim that every path in G′
d that starts at one of the “south” faces

f south
i and ends at the corresponding “north” face fnorth

i uniquely corresponds
to a forward-(t̃, s̃)-cut in G̃, and, vice versa, every forward-(t̃, s̃)-cut has a corre-
sponding path from a “south” to the corresponding “north” face in G′

d.
Let q be a path from f south

i to fnorth
i in G′

d. Let us connect the end-points
of q, forming a cycle q′. Notice that the edge connecting the end-points cuts
through the path p′. The cycle q′ splits the plane into two regions. Let T be the
set of vertices of G̃ that lie in the same region as t̃. The path q cuts through
at least one edge of G̃, the edge bordering the face f south

i on the south. The
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set T includes the left end-point of this edge and the complement of T includes
the right end-point. Since s̃ is the only vertex with outdegree 0 and there is a
vertex outside T , s̃ must lie outside of T as well. Thus, T is an (t̃, s̃)-cut. By the
definition of edges in G′

d, all edges cutting through q start in T and end outside
T . By planarity, no other edges connect T with its complement, therefore, T is
a forward-(t̃, s̃)-cut. Thus, every “south-north” path defines a forward-(t̃, s̃)-cut.

Vice versa, let T be a forward-(t̃, s̃)-cut. Let (u, v) be such that u ∈ T and
v �∈ T . We claim that on a face f adjacent to (u, v) there must be exactly one
other edge (u′, v′) such that u′ ∈ T and v′ �∈ T .

First we show that there must be an edge (u′, v′) such that u′ ∈ T and v′ �∈
T . Let us follow the vertices on the face f , starting with v, going to u, etc. The
existence of (u′, v′) follows by parity: we start in v �∈ T , then visit u ∈ T , then there
might be other vertices in T , but eventually we come back to v, a vertex outside
of T . Thus, there must be a pair of consecutive vertices u′ ∈ T and v′ �∈ T . Since
T is a forward-cut, the edge between u′ and v′ must go from u′ to v′.

Next we show that (u, v) and (u′, v′) are the only two edges on the face f
crossing the boundary of T . By contradiction, suppose there is another edge
(u′′, v′′) leading out of T . Notice that the vertices u, u′, u′′ are not necessarily
distinct but at least two of them are different (since every vertex has only two
adjacent edges bordering the face and u, u′, u′′ are adjacent to three distinct
edges (u, v), (u′, v′), and (u′′, v′′)). Similarly, vertices v, v′, v′′ are not all the
same vertex. Suppose we follow the edges on the face f in the cyclic order given
by following its boundary (either clockwise or counterclockwise). By parity, we
encounter an (u, v)-edge forward, followed by a (u, v) edge backward, followed
by a (u, v) edge forward (followed, by parity, by a (u, v) edge backward, but we
do not need this edge for our argument). Without loss of generality, assume the
edges are encountered in order

−−−→
(u, v),

←−−−−
(v′, u′), and

−−−−−→
(u′′, v′′). We know that t̃ leads

to every vertex, in particular also u and u′. Consider the region defined by a t̃−u
path, a t̃−u′ path, and the u, v, . . . , v′, u′ part of the face f ’s boundary. We also
know that every vertex, including v and v′′ leads to s̃. Notice that s̃ does not
lie strictly inside f since f is a face. Also notice that s̃ cannot lie on the paths
defining the region since s̃ has outdegree 0. The last possibility to consider is if s̃
lies inside (but not on the paths) or outside (but not on the paths) of the region
defined by the paths. Then, either v or v′′ cannot get to s̃ since exactly one of
v and v′′ is inside the region. We obtained a contradiction with the existence of
the third edge (u′′, v′′).

Therefore, we know that every face containing an edge cutting through T
contains exactly two edges leading out of T . Such faces are neighboring by exactly
the edges leading out of T , therefore, in the dual graph G′

d with edges between
the “north” and “south” faces included, there is a cycle leading through all of
the faces cutting through T . Since t̃ and s̃ are separated by the cycle, the path
p′ must cut through the cycle. Therefore, there is a “north” and “south” face
pair on the cycle and the cycle can be represented by a “south” to “north” path
in G′

d.



Counting Minimum (s, t)-Cuts in Planar Graphs in Polynomial Time 133

Therefore, we need to count the number of all paths starting at a “south”
face and ending at the corresponding “north” face in G′

d. This can be done,
by Proposition 1 with a = f south

i and b = fnorth
i , in linear time. (Notice that

G′
d could be a multi-graph. We can replace multiple edges by a single edge

with edge weight equal to the duplicity of the original edges. The weighted
path count corresponds to the path count in G′

d.) We need to count the paths
for every “south” face f south

i (this happens as many times as is the length of
p′, i. e., at most n times) and sum the returned values. The overall running
time is O(|p′|(|E| + |V |)) = O(dn) since for planar graphs |E| = O(|V |). This
running time includes the construction of the paths p, p′, and the dual graph
G′

d. Accounting for the running time from Theorem 3, we get an overall running
time of O(dn+ n logn). �

5 Proof of Theorem 3

We mentioned the connection between minimum cuts and maximum flows. We
utilize the connection in our proofs where we work with network flows that are
acyclic, as defined below.

Definition 2. Let G = (V,E, c) be a (directed) flow network with edge capacities
c : E → R+. Let s ∈ V be the source and t ∈ V be the sink. We say that an
s-t flow f : E → R+

0 is acyclic if the (directed) graph Ff = (V,Df ), where
Df consists of edges in E that carry positive f -values (formally, Df = {e ∈
E | f(e) > 0}), is acyclic. We call the graph Ff the flow graph of the flow f .

Notice that the flow graph consists of the backward edges in the corresponding
residual graph, reversed. The next claim, stated without proof, observes that
there exists an acyclic maximum flow in every flow network.

Proposition 2. There exists an acyclic maximum s-t flow in any flow network
G = (V,E, c). The acyclic flow can be found in time O(T (G) + |E|2), where
T (G) is the fastest maximum flow algorithm for G. For example, the push-
relabel algorithm [10] yields T (G) = O(|V |3). The term O(|E|2) comes from
sequential elimination of cycles in the flow. For planar graphs Borradaile and
Klein’s [3] maximum flow algorithm returns an acyclic maximum s-t flow in time
O(|V | log |V |).

In subsequent proofs we rely on the fact that every maximum flow can be ob-
tained from a sequence of augmenting paths that do not use backward edges, as
spelled out by the following lemma, stated without proof.

Lemma 1. Let f : E → R+
0 be an acyclic s-t flow in a flow network G =

(V,E, c) with source s and sink t. Then, f can be decomposed into augmenting
paths p1, . . . , pd, where d ≤ |E|.

Next we state that if a vertex lies in a minimum cut set, then the cut set must
contain all of the vertex’s predecessors.
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Fig. 1. Proof of Lemma 2: The left figure shows a graph Ff and an (s, t)-cut S such
that there are vertices u ∈ S and v 
∈ S, and there is a path from v to u. The right figure
shows the graph Ff decomposed into paths p1, p2, p3, p4 and the cut-edges (xi, yi) and
(x′, y′) (these edges are highlighted).

Lemma 2. Let f : E → R+
0 be an acyclic maximum s-t flow in a flow network

G = (V,E, c) with source s and sink t. Let S be a minimum (s, t)-cut in G.
Then, if a vertex u is in S then every vertex v that precedes u in the flow graph
Ff must be in S as well.

Proof. By contradiction, assume that there are two vertices u, v such that u ∈ S,
v �∈ S and there exists a path from v to u in Ff , see Figure 1. It follows that
there is an edge (v′, u′) in Ff such that u′ ∈ S and v′ �∈ S. By Lemma 1, the
flow f can be decomposed into d augmenting paths p1, . . . , pd where the path pi

carries flow of value φi > 0. At least one of the paths contains the edge (v′, u′),
let pj be such a path. For every i ∈ {1, . . . , d} there exists an edge (xi, yi) on the
path pi such that xi ∈ S, yi �∈ S. Moreover, for the path pj there exists another
edge (x′, y′) besides (xj , yj) such that x′ ∈ S and y′ �∈ S.

The cut value is defined as the sum of the capacities of the edges (x, y) where
x ∈ S and y �∈ S. Therefore,

value(S) =
∑

(x,y)∈E,x∈S,y 
∈S

c(x, y) ≥
∑

(x,y)∈E:∃i:x=xi,y=yi or x=x′,y=y′
c(x, y)

≥
d∑

i=1

φi + φj = value(f) + φj .

Since φj > 0, the value of the cut S is strictly greater than the value of the flow
f . Therefore, by the Max-flow-min-cut Theorem (Theorem 2), S cannot be a
minimum (s, t)-cut of G. �

Next we claim that no minimum cut cuts through strongly connected compo-
nents of a residual graph corresponding to a maximum flow.

Lemma 3. Let f : E → R+
0 be an acyclic maximum s-t flow in a flow network

G = (V,E, c) with source s and sink t. Let Gf be the corresponding residual
graph. If S is a minimum (s, t)-cut in G, then for each strongly connected com-
ponent C in Gf , either C ⊂ S or C ∩ S = ∅.
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Fig. 2. Proof of Lemma 3: The figure shows a residual graph Gf and an (s, t)-cut S
cutting through a strongly connected component C. Backward edges are depicted by
straight arrows while the forward edges are dashed. The edge (x′, y′) is highlighted.
For clarity we do not include residual capacities.

Proof. By contradiction, suppose that there exists a strongly connected com-
ponent C and a minimum (s, t)-cut S such that there exist vertices u, v ∈ C
such that u ∈ S and v �∈ S, see Figure 2. Since u, v belong to the same strongly
connected component, there exists a path from u to v in Gf , as well as a path
from v to u in Gf . By the definition of a residual graph, Gf contains two types
of edges: forward and backward edges where the backward edges are simply the
edges of f reversed. We will show that there must exist a forward edge (x′, y′)
in Gf such that x′ ∈ S and y′ �∈ S. This will imply that S cannot be a minimum
(s, t)-cut.

Consider a path from u to v in Gf . Since u ∈ S and v �∈ S, there must exist
an edge (x′, y′) on this path such that x′ ∈ S and y′ �∈ S. If the edge (x′, y′) is
a backward edge then its reverse (y′, x′) is a flow edge and, by Lemma 2, if S
is a minimum (s, t)-cut such that x′ ∈ S, then y′ must also be in S. Therefore,
(x′, y′) is a forward edge.

Now let us look at the value of the cut S. By the same argument as in the
proof of Lemma 2, we get

value(S) =
∑

(x,y)∈E,x∈S,y 
∈S

c(x, y) ≥
∑

(x,y)∈E:∃i:x=xi,y=yi or x=x′,y=y′
c(x, y)

≥
d∑

i=1

φi + φ′ = value(f) + φ′,

where φ′ > 0 is the residual capacity of the (forward) edge (x′, y′) in Gf . Notice
that the edge (x′, y′) is distinct from every (xi, yi) since it is a forward edge.
Therefore, the value of the cut S is strictly bigger than the value of the maximum
flow f , a contradiction with the assumption that S is a minimum cut. �
Therefore, we define a contraction graph that contracts every strongly connected
component. We obtain the following corollary of the last lemma.

Definition 3. Let G=(V,E) be a directed graph. We define the SCC-contraction
graph of G, denoted Ĝ, to be the graph obtained from G by contracting each
strongly connected component into a single vertex.
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Corollary 2. Let Ĝf be the SCC-contraction graph of the residual graph corre-
sponding to an acyclic maximum s-t flow f in a flow network G = (V,E, c). Sup-
pose ŝ ∈ V (Ĝf ) is the vertex obtained by contracting the strongly connected compo-
nent containing s and t̂ ∈ V (Ĝf ) is the vertex obtained by contracting the strongly
connected component containing t. Moreover, we define a function α from the set
of (t̂, ŝ)-cuts of Ĝf to the set of (s, t)-cuts of G: for a (t̂, ŝ)-cut T̂ in Ĝf , let α(T̂ )
contain all vertices v that belong to a strongly connected component v̂ �∈ T̂ . Then,

(i) the function α is injective, and
(ii) for every minimum (s, t)-cut S in G there exists a (t̂, ŝ)-cut T̂ in Ĝf such

that α(T̂ ) = S.

Proof. To prove (i), let us first look at the (s, t)-cuts S for which there exists a
(t̂, ŝ)-cut T̂ such that S = α(T̂ ). By the definition of α it follows that any such
S must satisfy the property that for every strongly connected component C of
Gf , either C ⊂ S or C ∩ S = ∅.

Suppose that we have an S satisfying this property. Then we can uniquely
construct T̂ such that S = α(T̂ ): for every strongly connected component C of
Gf , if C∩S = ∅ then the vertex corresponding to C in Ĝf is in T̂ (and otherwise
this vertex is not in T̂ ). Since we can reconstruct T̂ uniquely, α is injective.

To show part (ii), by Lemma 3, every minimum (s, t)-cut S satisfies the prop-
erty that for every strongly connected component C, either C ⊂ S, or C∩S = ∅.
Therefore, there exists T̂ (containing all strongly connected components not in
S) such that S = α(T̂ ). �

The next two lemmas show that there is a bijection between minimum (s, t)-
cuts in G and forward (t̂, ŝ)-cuts in the SCC-contraction graph. The bijection is
given by the function α defined in the above corollary. The proofs of the lemmas,
omitted due to space constraints, are similar to the proofs of Lemmas 2 and 3.

Lemma 4. Under the assumptions of Corollary 2, suppose S is a minimum
(s, t)-cut in G. Then α−1(S) is a forward (t̂, ŝ)-cut in Ĝf .

Lemma 5. Under the assumptions of Corollary 2, let T̂ be any forward-(t̂, ŝ)-
cut in Ĝf . Then the (s, t)-cut S = α(T̂ ) is a minimum (s, t)-cut in G.

The proof of Theorem 3, the main reduction theorem, follows from Proposition
2 and Lemmas 4 and 5.

Acknowledgments. We would like to thank the anonymous referees for many
useful and insightful comments.
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Abstract. Given an n-node, undirected and 2-edge-connected graph
G = (V, E) with positive real weights on its m edges, given a set of
k source nodes S ⊆ V , and given a spanning tree T of G, the routing
cost of T w.r.t. S is the sum of the distances in T from every source
s ∈ S to all the other nodes of G. If an edge e of T undergoes a transient
failure and connectivity needs to be promptly reestablished, then to re-
duce set-up and rerouting costs it makes sense to temporarily replace e
by means of a swap edge, i.e., an edge in G reconnecting the two sub-
trees of T induced by the removal of e. Then, a best swap edge for e is
a swap edge which minimizes the routing cost of the tree obtained after
the swapping. As a natural extension, the all-best swap edges problem
is that of finding a best swap edge for every edge of T . Such a problem
has been recently solved in O(mn) time and linear space for arbitrary k,
and in O(n2 + m log n) time and O(n2) space for the special case k = 2.
In this paper, we are interested to the prominent cases k = O(1) and
k = n, which model realistic communication paradigms. For these cases,
we present a linear space and Õ(m) time algorithm, and thus we im-
prove both the above running times (but for quite dense graphs in the
case k = 2, for which however it is noticeable we make use of only linear
space). Moreover, we provide an accurate analysis showing that when
k = n, the obtained swap tree is effective in terms of routing cost.

1 Introduction

Let V be a set of n sites that must be interconnected, let E be a set ofm potential
links between the sites, and let w(e) be some positive real weight associated with
link e. Let G = (V,E) be the corresponding weighted, undirected graph, and
assume that G is 2-edge-connected (i.e., to disconnect G we have to remove
at least 2 edges). Let H = (V,E′ ⊆ E) be a connected spanning subgraph of
G, allowing all the nodes to communicate reciprocally. We call H an all-to-all
communication network, or simply a network, in G. A network is generally built
with the aim of minimizing some cost, which is computed using some criteria
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defined over H according to its edge weights. Thus, to maintain costs as low
as possible, a network often results in a spanning tree of the underlying graph.
There is however another crucial aspect that must be taken into consideration
when designing a network: its reliability, or its ability to survive to possible
component failures. Cost and reliability are clearly two conflicting parameters,
and the main drawback of a spanning tree is that it will not even survive to a
single edge malfunctioning. Then, in this undesired case, it arises the problem
of promptly recovering the network connectivity after a failure.

If we restrict ourselves to temporary failures, a commonly adopted strategy
to pull down the transition costs to the new solution is that of reconnecting the
two subtrees generated by the failure throughout an ad-hoc swap edge, selected
among those available in the underlying graph. Quite naturally, such an edge
must be chosen according to the objective function addressed by the original
tree, and it is called a best swap edge w.r.t. such a function, while the resulting
tree is named the swap tree. Since the likelihood of having overlapping edge
failures is quite small, it makes sense to deal with the failure of each and every
single edge in the network, since we can expect that sooner or later each of them
will fail. This is called an all-best swap edges (ABSE) problem.

Previous work. From an algorithmic point of view, the ABSE problem has
been studied for the most popular tree structures, namely the minimum spanning
tree (MST), the single-source shortest paths tree (SPT), the minimum diameter
spanning tree (MDST), and the minimum-stretch tree spanner (MSTS).

For the MST, the ABSE problem is solvable in O(m logα(m,n)) by means of
a sensitivity analysis of the MST[13]. Concerning the SPT, a best swap edge is
a swap edge minimizing the total distance from the source to the disconnected
nodes (this is also known as the routing cost from the source). The correspond-
ing ABSE problem has been studied in [11], where an O(n2) time and space
algorithm is given.1 This result has been improved for dense graphs in [3], where
an O(m log2 n) time and O(m) space algorithm is given, and extended to dis-
tributed systems in [4]. Regarding the MDST, a best swap edge is a swap edge
minimizing the diameter of the swap tree, and the corresponding ABSE was
studied in [10], where an O(n

√
m) time and O(m) space algorithm is given. This

was later improved for sparse graphs to O(m logn) time in [5], and then extended
to distributed systems in [6]. Finally, concerning the MSTS, whose computation
in known to be NP-hard, in [2] the authors present two efficient algorithms, for
weighted and unweighted graphs, respectively.

Our results. The ABSE problem for the SPT has been recently generalized
in [15], where the authors focused on the following problem: Given any input
spanning tree, and given a set S ⊆ V of k source nodes, find the ABSE w.r.t.
the routing cost from the source nodes, i.e., the total distances between all the
nodes and the sources. In [15] the authors provide an O(m log n + n2) time
and O(n2) space algorithm for the case k = 2, and an O(mn) time and linear

1 In the same paper, the authors define also several other swap criteria.
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space algorithm for the general case of more than two sources. In this paper,
we focus our attention on two significant cases concerning the size of k, namely
k = O(1) and k = n. The former models the practical situation in which only
a constant number of sources is considered in the tree-based network, like in
a classic client-server communication paradigm. On the other hand, the latter
models the practical situation in which all the nodes are regarded as sources,
and then an all-to-all communication protocol takes place on the tree, like in
peer-to-peering. For these cases, we design an O

(
mk 2O(α(2m)�k/2�) log2 n

)
and

O(m2O(α(2m)) log2 n) time algorithm, respectively, both using O(m) space, where
α(2m) := α(2m, 2m) is from now on the inverse of the Ackermann function
originally defined in [1]. Thus, for k = n and constant k > 2 we significantly
improve the general result given in [15],2 while for the special but yet important
case in which k = 2, we improve the corresponding result given in [15] for all
but quite dense graphs, more precisely for m = o

(
n2/(2α(n2) log2 n)

)
.

Afterwards, in an effort of establishing the effectiveness of the swapping, we
concentrate on the case k = n, and we analyze the quality of the swap tree by
measuring the approximation ratio between its routing cost and that of a min-
imum (all-to-all) routing-cost spanning tree (MRCST) of G − e = (V,E \ {e})
(whose computation is known to be NP-hard [9], though). In such a comparison
process, we show that such ratio essentially depends on how much distances in
the tree between the nodes and a tree centroid are stretched w.r.t. the corre-
sponding distances in the underlying graph. More precisely, we first show an
example in which starting from a tree that has a routing cost arbitrarily close
to that of a MRCST, but with stretching unbounded, the approximation ratio is
unbounded. On the positive side, we instead show that if the original tree T has
a constant stretching, then the approximation ratio remains within a constant
factor ρ. Notably, this is the case for the most representative elements in the set
of feasible routing trees, and more precisely: (1) if T is a MRCST of G, then
ρ = 110; (2) if T has a routing cost at most (1 + ε) of the minimum, as obtained
by means of the PTAS for the problem provided in [16], then ρ = 110 + 39ε (no-
tice that this result requires a non-trivial modification of the solution returned
by the PTAS); (3) finally, if T is an SPT rooted in the median of G, which is
known to provide a 2-approximation for the MRCST problem [14], then ρ = 18.

Due to space limitations, some proofs are omitted, for which we refer the
reader to the full version of the paper.

2 Preliminaries

Let G = (V,E) be an edge-weighted undirected graph with weight function
w : E → R+. As usual, we denote by n and m the number of nodes and edges of
G, respectively. Let S ⊆ V be a set of k source nodes and let H be a spanning
subgraph of G. For any two given nodes a, b in G, we denote by dH(a, b) the

2 Notice that, to be more precise, our improvement holds for k 2O(α(2m)�k/2�) =
o(n/ log2 n), which includes k = O(1).
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distance (i.e., the length of a shortest path) in H between a and b. Hence,
the routing cost of H from S is defined as RS(H) =

∑
s∈S

∑
v∈V dH(s, v). We

write R(H) instead of RV (H). Then, the minimum routing-cost spanning tree
(MRCST) problem asks for computing a spanning tree of G such that its routing
cost is minimum.

Let T be a spanning tree of a graph G. For an edge e of T , let CT (e) be the
set of all non-tree edges crossing the cut in G − e defined by the removal of e
from T . In the following, we will assume that G is 2-edge-connected, and so for
any e ∈ E, CT (e) is not empty. Moreover, for any f ∈ CT (e), let Te/f denote the
spanning tree obtained by replacing e with f , and let φ(f) be a function which
expresses some quality measure of Te/f . Then, we say that f is a best swap edge
for e w.r.t. ϕ if f minimizes φ(f) over CT (e). In the following, the tree obtained
by swapping e with its best swap edge w.r.t. the routing cost from S will be
called the swap tree for e.

In this paper, we are interested in the following problem: Given a weighted
graph G = (V,E), a set of S ⊆ V of k source vertices, and a spanning tree T of
G, we want to compute a best swap edge for every edge e of T w.r.t. the routing
cost from S. In the next section, we devise an efficient algorithm for solving it
for constant k and for k = n, which is based on a geometric approach originally
devised in [3] for the ABSE problem for the SPT.

3 The Algorithm

High-level description of the algorithm. We start by recalling the definition
of lower envelope of a set of functions:

Definition 1. Let F be a set of functions, where F � φh : z ∈ Dh ⊆ R → R.
The function

LF : z ∈ DF =
⋃

φh∈F
Dh �→ min {φh(z) : φh ∈ F ∧ z ∈ Dh} ∈ R

is named the lower envelope of F .

Let e1, . . . , en−1 be an arbitrary order of the tree edges. For each non-tree edge
f , let φf : Df ⊆ {1, . . . , n − 1} → R be the swap function associated with f ,
which for 1 ≤ i < n, is defined as follows:

φf (i) =
{
R(Tei/f ) if f is a swap edge for ei;
∞ otherwise.

Then solving our problem reduces to finding the lower envelope of F = {φf :
f is a non-tree edge}. In [8] it was presented an efficient comparison-based algo-
rithm to compute the lower envelope of a set of continuous real functions whose
domains are real intervals. Such algorithm relies on the concept of intersection
between functions, which can be extended to our case by defining the notion of
inversion between pairs of swap functions.
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First of all, for the sake of simplicity, we restrict the domain of each swap
function φf to [af , bf ] ⊆ {1, . . . , n− 1}, where eaf

and ebf
are the leftmost and

rightmost edge (w.r.t. the fixed ordering) for which f is a swap edge, respectively.
Then, given two swap functions φf , φg, assume that [a, b] = Df ∩Dg �= ∅, and
let i ∈ (a, b]. W.l.o.g., let φg(i) < φf (i); then, i is an inversion point of φf , φg iff
there exists a j ∈ Df , j < i, such that φf (j) < φg(j) or j /∈ Dg, and for every
j < k < i, φf (k) ≤ φg(k).

The algorithm provided in [8] is based on the efficient answering to a set of
three queries that, for our problem, can be rephrased as follows:

– Q1(f): Given a non-tree edge f , return the boundary of Df ;
– Q2(f, g, ei): Given a pair of non-tree edges f, g and a tree edge ei such that
i ∈ Df ∩Dg, compare φf (i) and φg(i);

– Q3(f, g, ei): Given a pair of non-tree edges f, g and a tree edge ei such that
i ∈ Df ∩Dg, return (if any) the next inversion point j of φf , φg with j > i.

The time and space complexity of the algorithm given in [8] depends on the
complexity of a Davenport-Schinzel sequence (which in turn is related with the
maximum number of inversion points between functions when compared pair-
wise), as well as on the time needed for answering the queries. In the following
section, we exactly address these issues as far as our problem is concerned.

Useful properties. For a given subgraph H of G and a given set U ⊆ V of
vertices, let us define the broadcast cost of H from a given node r ∈ V w.r.t. U
as BH(r, U) =

∑
v∈U dH(r, v). We will write BH(r) instead of BH(r, U) when

V (H) = U . Let e = (x, y) be an edge of T , and let Tx, Ty be the trees in T − e
containing x and y, respectively. Let X = S ∩ V (Tx) be the source vertices in
Tx, and let Y = S ∩ V (Ty) be the source vertices in Ty. We have that:

RS(T ) = RX(Tx) +RY (Ty)
+ |Ty|BTx(x,X) + |X ||Ty|w(e) + |X |BTy(y) (1)
+ |Tx|BTy (y, Y ) + |Y ||Tx|w(e) + |Y |BTx(x).

Let f = (x1, y1), g = (x2, y2) be two swap edges for e with x1, x2 ∈ V (Tx). Let
Λ(f, g) denote the set of tree edges for which both f and g are swap edges, and
let x̄, ȳ be the two end vertices of Λ(f, g), with x̄ ∈ V (Tx). For i = 1, 2, it holds
that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

BT (xi) = BTx(xi) + |Ty|dT (xi, y) +BTy(y)
BT (yi) = BTy(yi) + |Tx|dT (yi, x) +BTx(x)
BT (xi, S) = BTx(xi, X) + |Y |dT (xi, y) +BTy(y, Y )
BT (yi, S) = BTy(yi, Y ) + |X |dT (yi, x) +BTx(x,X)

(2)

Using (1) and (2) we have that:
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Fig. 1. A tree T and two non-tree edges f = (x1, y1) and g = (x2, y2)

ΔS
f,g(e) := RS(Te/f )−RS(Te/g) =

(
|X ||Ty|+ |Tx||Y |

)
(w(f)− w(g))

+ |X |
(
BTy(y1)−BTy (y2)

)
+ |Tx|

(
BTy (y1, Y )−BTy(y2, Y )

)
+ |Y |

(
BTx(x1)− BTx(x2)

)
+ |Ty|

(
BTx(x1, X)−BTx(x2, X)

)
=

(
|X ||Ty|+ |Tx||Y |

)
(w(f) − w(g))

+ |X |
(
BT (y1)−BT (y2)

)
+ |Tx|

(
BT (y1, S)−BT (y2, S)

)
+ |Y |

(
BT (x1)−BT (x2)

)
+ |Ty|

(
BT (x1, S)−BT (x2, S)

)
(3)

+ 2|X ||Tx|
(
dG(x2, y)− dG(x1, y)

)
+ 2|Y ||Ty|

(
dG(y2, x)− dG(y1, x)

)
=

(
(k − |Y |)|Ty|+ (n− |Ty|)|Y |

)
(w(f)− w(g))

+ (k − |Y |)
(
BT (y1)−BT (y2)

)
+ |Y |

(
BT (x1)−BT (x2)

)
+ (n− |Ty|)

(
BT (y1, S)−BT (y2, S)

)
+ |Ty|

(
BT (x1, S)−BT (x2, S)

)
+ 2(k − |Y |)(n− |Ty|)

(
dG(ȳ, y2)− dG(ȳ, y1)

)
+ |Y ||Ty|

(
dG(x̄, x2)− dG(x̄, x1)

)
,

as dT (x, y2)−dT (x, y1) = dT (ȳ, y2)−dT (ȳ, y1), dT (y, x2)−dT (y, x1) = dT (x̄, x2)−
dT (x̄, x1), |Tx|+ |Ty| = n, and |X |+ |Y | = k (see Figure 1). Notice that the only
two terms that depend on e are |Ty| and |Y |. From this, we have the following:

Lemma 1. Let us consider the edges of Λ(f, g) in order from ȳ to x̄. Then, the
sign of ΔS

f,g(e) changes at most k + 1 times.

Proof. The claim follows by observing that: (i) both |Ty| and |Y | do not decrease
as e moves from ȳ towards x̄; (ii) ΔS

f,g(e) is a linear function in |Ty| if |Y | is fixed,
and (iii) |Y | is an integer value in the interval [0, k]. 


Corollary 1. Let us consider the edges of Λ(f, g) in order from ȳ to x̄. Then,
the sign of ΔV

f,g(e) changes at most twice.

Proof. The claim follows from point (i) of the previous lemma, by observing that
|Ty| = |Y |, and from the fact that ΔV

f,g(e) is quadratic in |Ty|. 


Implementation and analysis of the algorithm. First, we root T at an
arbitrary node r, and we number the tree edges according to an arbitrary post-
order visit of T , say e1, . . . , en−1. Now, we define a new set F of non-tree edges on
which we will compute the lower envelope of the corresponding swap functions.
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As we will prove later, this modification allows us to keep the number of inversion
points low thus leading to a time-efficient algorithm.

We define F as follows. Let F = E \ E(T ) be a copy of the non-tree edges.
For each f = (y1, y2) ∈ F , let nca(y1, y2) denote the nearest common ancestor
of y1, y2 in T . If nca(y1, y2) �= y1, y2, we replace f with two auxiliary edges
f1 = (nca(y1, y2), y1), f2 = (nca(y1, y2), y2), and we impose R(Te/fi

) = R(Te/f )
for every e in the path in T between yi and nca(y1, y2), i = 1, 2. Moreover, for
each edge f ∈ F , we keep track of the corresponding original edge in E \ E(T ),
which will be denoted by χ(f). Observe that for every f, g ∈ F , Λ(f, g) is a
subpath of Λ(χ(f), χ(g)). We now provide a bound for the number of inversion
points between two swap functions.

Lemma 2. Let f, g be two edges in F . Then, the number of inversion points
between φf and φg is at most k + 2.

Proof. Let f = (x1, y1), g = (x2, y2), where xi is closer to r than yi, i = 1, 2,
and let Df = [af , bf ], Dg = [ag, bg]. W.l.o.g., let us assume that af ≤ ag. Recall
that an inversion point must belong to the left-open intersection of the domains
D̃ = Df ∩ Dg. We divide D̃ into two disjoint intervals as follows. Let eh be
the tree edge just above nca(y1, y2), if any. Then, D̃ = D1 ∪ D2, where D1 =
(ag,min{bf , bg, h}); if eh does not exist we set D1 = D̃ and consequently D2 = ∅.

Observe that, for every ek ∈ D1, we have φf (k) = ∞. As a consequence,
φg(k) ≤ φf (k), for every k ∈ D1. Moreover, φg(ag) �= ∞, and φf (ag) = ∞.
Therefore, there is no inversion point in D1.

Now, we bound the number of inversion points in D2. First of all, observe that
for every k ∈ D2 we have that φf (k) = ∞ if and only if φg(k) = ∞. Moreover,
for every ek ∈ Λ(f, g), we have that k ∈ D2, and φf (k), φg(k) �= ∞ if and only
if ek ∈ Λ(f, g). Since eh ∈ Λ(f, g), h might be an inversion point (this happens
when φf (k) < φg(k) and ag �= h). Furthermore, from Lemma 1 and because of
the post-order arrangement of the tree edges, we have at most k + 1 additional
inversion points, and the claim follows. 


Using Corollary 1 instead of Lemma 1 in the proof of the previous lemma we
can prove the following

Corollary 2. Let S = V and let f, g be two edges in F . Then, the number of
inversion points between φf and φg is at most 3. 


In Figure 2, we show an example where the bound given in Corollary 2 is tight.
To complete the description of the algorithm, it remains to show how to answer
to the queries Q1, Q2, and Q3. Query Q1 can be answered in constant time as
follows. Let f = (x, y) ∈ F with x closer to r than y, and let ea, eb be the
first and last edge in the path in T from y to x, respectively. Then Df = [a, b].
Therefore, for every f ∈ F , we can precompute ea and eb in O(m) time and
space by means of a depth-first traversal of T .

Query Q2 can be answered in constant time after a linear time and space pre-
processing. Let f = (u1, y1), g = (u2, y2) be two non-tree edges in F with ui
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Fig. 2. In this picture, it is shown an example of the mapping between non-tree edges
and swap functions for the case S = V . On the right side, a tree T rooted at r and two
non-tree edges f and g are shown. Tree edges are numbered according to a post-order
traversal of T . All edges have cost 1. On the left side, a drawing of the two functions
φf , φg is shown. Df = [3, 11], while Dg = [4, 10]. Notice that D1 = (4, 5) = ∅, while
D2 = [5, 10]. Observe that 5, 7, and 10 are the three inversion points.

closer to r than yi, i = 1, 2, and let Df = [af , bf ], Dg = [ag, bg]. W.l.o.g., let us
assume that af ≤ ab. Let ek = (x, y) be a tree edge with x closer to r than y,
such that k ∈ Df ∩Dg. First, we have to check whether ek belongs to the paths
in T between ui and yi, i = 1, 2. This can be done in O(1) time by checking
whether y = nca(yi, y) and ui = nca(ui, x) [7]. Therefore, it remains to show
how to compare φf (k) and φg(k) when ek ∈ Λ(f, g). In this case, the compar-
ison of the two swap functions for point k reduces to evaluating the function
Δχ(f),χ(g)(ek). This can be done in constant time because all the terms of Equa-
tion (3) are available in O(1) time after a linear time and space preprocessing.
Indeed, if χ(f) = (x1, y1), χg = (x2, y2), then ȳ = nca(y1, y2), while x̄ is the far-
thest vertex from r among nca(x1, x2),nca(x1, y1), and nca(x2, y2). Moreover,
for every v1, v2 ∈ V , dT (v1, v2) = dT (r, v1) + dT (r, v2)− 2dT (r,nca(v1, v2)). Fi-
nally, for every tree edge e′ = (x′, y′) and for every U ⊆ V , we have BT (x′, U) =
BT (y′, U) + (|Uy′ | − |Ux′ |)w(e′).

Finally, we show how to answer Q3 in O(k logn) time after a linear time and
space preprocessing. Similar arguments are enough to show that we can answer
Q3 in O(log n) time for the case S = V . Let f = (x1, y1), g = (x2, y2) be two non-
tree edges in F , with xi closer to r than yi, i = 1, 2, and let Df = [af , bf ], Dg =
[ag, bg]. W.l.o.g., let us assume that af ≤ ag. Let ek = (x, y) be a tree edge with
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x closer to r than y such that k ∈ Df ∩ Dg. As we have shown in the proof
of Lemma 2, there are two kinds of potential inversion points that have to be
checked. The first one is associated with the edge just above nca(y1, y2). The
second kind of potential inversion points are related to the k+1 zeros z0, . . . , zk,
where zi is the zero of ΔS

χ(f),χ(g) when |Y | = i, seen as a linear function on
the variable |Ty| with domain R.3 More precisely, finding these k + 1 potential
inversion points reduces to finding the first edge ehi = (x̄i, ȳi) (with x̄i closer to
r than ȳi) in the path from nca(y1, y2) to r such that |Tȳi| > zi and |Y | = i, for
every i = 0, . . . , k. As shown in [3], after a linear time and space preprocessing,
we can accomplish the above task for each i in O(log n) time. We have that

Theorem 1. Given a 2-edge-connected, undirected and positively real weighted
graph G = (V,E) with n vertices and m edges, given a set of k sources S ⊆ V ,
and given a spanning tree T of G, a best swap edge for every edge of T w.r.t. the
routing cost from S can be computed in O

(
mk 2O(α(2m)�k/2�) log2 n

)
time and

O(m) space.4

Proof. By construction, we have at most 2m functions, which from Lemma 2
have at most k+2 inversion points when compared pairwise. The time complexity
of the lower envelope algorithm in [8] for h functions with k + 2 intersection
points when compared pairwise is O (TimeQ · h · λk+3(h) · log h), where TimeQ is
the time needed to answer to the three queries, and λk+3(h) is the complexity
of a Davenport-Schinzel sequence of order k + 3. Since λk+3(h) = 2O(α(h)�k/2�)

[12], and since in our case we have shown that TimeQ = O(k logn) after a linear
time and space preprocessing, it follows that the running time of our algorithm
is O

(
mk 2O(α(2m)�k/2�) log2 n

)
.

To prove that the space complexity of our algorithm is linear, it is enough to
show that the space complexity of the lower envelope algorithm in [8] applied
to our set of functions is linear. The space complexity of the lower envelope
algorithm in [8] for a set of h functions is O(h + SpaceL), where SpaceL is the
space needed to represent the lower envelope. The lower envelope of a set of
h functions φ1, . . . , φh with domains [a1, a2], . . . , [a2h, a2h+1] is represented as
a list L of elements having pairwise disjoint intervals on the real line as keys.
Each element takes O(1) space. Moreover, for every key [a, a′] in L, we have that
[a, a′] ⊆

⋃h
i=1[a2i, a2i+1] as well as a, a′ ∈ X , where X is the set containing all

the ai’s and all the intersection/inversion points between every pair of functions
φj and φ�. Therefore, SpaceL = O(|X |). Since in our case X ⊆ {1, . . . , n − 1},
then the space complexity of the lower envelope algorithm in [8] when applied
to our set of O(m) functions is O(n+m) = O(m). This completes the proof. 

Using Corollary 2 instead of Lemma 2 in the proof of the previous theorem, we
can prove the following
3 For the case S = V , the second kind of potential inversion points are related to the

two zeros of the function ΔV
χ(f),χ(g) seen as a quadratic function on the variable |TY |

with domain R.
4 Observe that for k constant, the time complexity is Õ(m).
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Corollary 3. Given a 2-edge-connected, undirected and positively real weighted
graph G = (V,E) with n vertices and m edges, and given a spanning tree T of
G, a best swap edge for every edge of T w.r.t. the routing cost from V can be
computed in O(m2O(α(2m)) log2 n) time and O(m) space. 


4 On the Quality of the Swap Tree When S = V

In this section we perform a comparison between the routing cost of the swap
tree and that of a minimum (all-to-all) routing-cost spanning tree (MRCST) of
G− e, namely a spanning tree minimizing the routing cost in G− e w.r.t. V .

Recall that for any subgraph H of G, the median of H is a node w.r.t. which
the broadcast cost of H is minimized. Moreover, for any spanning tree T of G,
we say that a node c ∈ V is a centroid of T if every subtree of T induced by
the removal of c has at most n/2 nodes.5 In the rest of this section we use the
following notation. The failing edge will be denoted by e, while we will use f to
denote the best swap edge for e w.r.t. to the routing cost. The MRCST of G and
G− e will be denoted by T ∗

G and T ∗
G−e, respectively.

Definition 2. Let T be a spanning tree of G, and let γ ≥ 1, δ ≥ 0 be reals. Let
r ∈ V , and consider T as rooted at r. Then, we say that T is (γ, δ)-stretched
from r if for any node v and for any descendent t of v, it holds that dT (v, t) ≤
γ dG(v, t) + δ.

Using the results in [14] and [11] we can prove the following

Theorem 2. For a given ρ ≥ 1, let T be a ρ-approximation of T ∗
G, i.e., R(T ) ≤

ρR(T ∗
G), and let c be a centroid of T . If T is (γ, δ)-stretched from c, then we

have that R(Te/f ) ≤
(
2ρ+ 4ργ2 + 6γ2 + 6γ + 4n2δ

R(G)

)
R(T ∗

G−e). 


In Figure 3 we discuss a situation where, even if the original spanning tree has
a routing cost arbitrarily close to the optimum one, it exhibits a bad swapping
behavior, due to the fact that the tree is too (γ, δ)-stretched from its centroid(s).
Now we present an algorithm that, taken a spanning tree T of G and a value
ξ ≥ 0, returns a spanning tree T ′ of G such that: (i) R(T ′) ≤ R(T ); and (ii) T ′

is (3, 2ξ/n)-stretched from its centroid(s). For any u, v ∈ V , and any e belonging
to the (unique) path in T between u and v, we define the concept of (u, v, e)-
move. Such a move consists of modifying T in order to obtain a new tree, say
T ′, by swapping e with f̂ , where f̂ = (u, v) is the edge of the metric closure of
G having weight w(f̂) = dG(u, v). Notice that such an edge may not exist in G.
Moreover, we say that an (u, v, e)-move is ξ-improving for T if R(T )−R(T ′) ≥ ξ.
The pseudo-code of the algorithm is given below, where we use the conversion
algorithm given in [16] that, given a spanning tree of the metric closure of G,
converts it into a spanning tree of G without increasing its routing cost.

Notice that, if T is within a factor ρ from the optimum, by choosing ξ =
R(G)/nβ for some β > 0, we have that Steps 1–5 are executed at most 2ρnβ

times, since in [14] it is shown that R(G) ≤ R(T ) ≤ 2ρR(G).
5 Recall that a tree has at most 2 centroids.
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Fig. 3. A situation exhibiting a bad swapping behavior for tree T (whose edges are
solid). The number of nodes is n = 2h + 2. There are k + 1 edges of weight 1, while all
the other edges have a tiny weight ε > 0. The two centroids of T are c and c′. We have
that R(T ∗

G) ≥ k(2h + 1), while R(T ) ≤ k(2h + 1) + 4h + n3ε. If edge e = (c, c′) fails,
then the swap tree for e is Te/f=(v,v′). Therefore, R(T ∗

G−e) ≤ k(2h + 1) + n3ε, while
R(Te/f ) ≥ (k − 1)(2h + 1) + h(h + 2) + (h− 1)(h + 3). Then, if k = ω(1) and k = o(n),
we have that R(T )/R(T ∗

G) goes to 1, while R(Te/f )/R(T ∗
G−e) = Ω(n/k).

Algorithm 1
Input: A spanning tree T of G, and a parameter ξ ≥ 0
1: while (∃ an ξ-improving (u, v, e)-move for T ) do
2: Let T ′ be the tree obtained by applying the (u, v, e)-move to T
3: Let T be the spanning tree of G obtained by the conversion algorithm in [16]
4: end while
5: return T .

Lemma 3. For any ξ ≥ 0, let T be the spanning tree returned by Algorithm 1.
Then, T is (3, 2ξ/n)-stretched from its centroid(s). 


We can finally give the following theorems

Theorem 3. LetT coincide with T ∗
G. Then, we have thatR(Te/f ) ≤ 110R(T ∗

G−e).

Proof. Clearly, Lemma 3 implies that T ∗
G is (3, 0)-stretched from its centroid.

Thus, from Theorem 2, since ρ = 1, the claim follows. 


Theorem 4. Given ε > 0, let T be a (1 + ε)-approximated solution of T ∗
G as

returned by the PTAS in [17] modified according to Algorithm 1. Then, we have
that R(Te/f ) ≤ (110 + 39ε)R(T ∗

G−e).

Proof. It suffices to choose ξ = R(G)
8nlog(1/ε)+1 . The claim follows from Lemma 3 and

Theorem 2. 


When T is an SPT of G, a refined analysis of Theorem 2 gives the following

Theorem 5. Let T be an SPT rooted at a median of G. Then, R(Te/f ) ≤
18R(T ∗

G−e). 
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Abstract. In this paper we study two variants of the problem of adding
edges to a graph so as to reduce the resulting diameter. More precisely,
given a graph G = (V, E), and two positive integers D and B, the
Minimum-Cardinality Bounded-Diameter Edge Addition (MCBD) prob-
lem is to find a minimum cardinality set F of edges to be added to G in
such a way that the diameter of G+F is less than or equal to D, while the
Bounded-Cardinality Minimum-Diameter Edge Addition (BCMD) prob-
lem is to find a set F of B edges to be added to G in such a way that
the diameter of G+F is minimized. Both problems are well known to be
NP-hard, as well as approximable within O(log n log D) and 4 (up to an
additive term of 2), respectively. In this paper, we improve these long-
standing approximation ratios to O(log n) and to 2 (up to an additive
term of 2), respectively. As a consequence, we close, in an asymptotic
sense, the gap on the approximability of the MCBD problem, which was
known to be not approximable within c log n, for some constant c > 0,
unless P = NP. Remarkably, as we further show in the paper, our approx-
imation ratio remains asymptotically tight even if we allow for a solution
whose diameter is optimal up to a multiplicative factor approaching 5

3
.

On the other hand, on the positive side, we show that at most twice of
the minimal number of additional edges suffices to get at most twice of
the required diameter.

1 Introduction

In this paper, we study two basic network design problems. In the first one,
we are given a communication network and a distance requirement D. The
goal is to find a minimum cardinality set of links to be added such that every
pair of nodes in the network is connected by a path of at most D edges. More
formally
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Minimum-Cardinality Bounded-Diameter Edge Addition (MCBD)

Instance: an undirected graph G and a positive integer value D > 0.
Goal: find a minimum cardinality set F of edges to be added to G such that the

diameter of G+ F is less than or equal to D.

Similarly, one can define the specular problem in which we are given a commu-
nication network and a budget B on the number of addable links, and the goal
is to add such links so that the resulting network has minimum (in terms of
number of links) diameter. More formally

Bounded-Cardinality Minimum-Diameter Edge Addition (BCMD)

Instance: an undirected graph G and a positive integer value B > 0.
Goal: find a set F of B edges to be added to G such that the diameter of G+F

is minimized.

These two problems arise in practical applications like telecommunication net-
works and airplane flights scheduling [6,10], but they also received a lot of at-
tention in the graph theory community (see [1,7,9,12,18,20]).

In the rest of the paper we will denote by n the number of vertices of G.
Notice that the two defined problems are the optimization version of the same
underlying decision problem. Therefore, for the sake of unifying the exposition,
we will denote by B the cardinality of an optimal solution for MCDB, and by
D the value of an optimal solution for BCMD.

Having this in mind, and following standard terminology on bicriteria opti-
mization problems, for β, δ ≥ 1, a (β, δ)-approximation algorithm for BCMD
will denote an algorithm which can select a set F of additional edges whose
size is at most β times the budget B, and returns a graph G + F of diameter
of at most δD (where D is the value of an optimal solution for BCMD with
budget B). Symmetrically, a (δ, β)-approximation algorithm for MCBD will de-
note an algorithm that returns a graph G + F whose diameter is at most δ
times the required value D, by using at most βB edges (where B is the size
of an optimal solution for MCBD with required diameter D). Observe that a
(β, δ)-approximation algorithm for BCMD is a (δ, β)-approximation algorithm
for MCBD, and viceversa.

Related work. For every D ≥ 2, MCBD is not approximable within c logn for
some constant c > 0, unless P = NP [16,8], while it is clearly in P for D = 1. As
a consequence, BCMD is not approximable within a factor strictly better than
(1 + 1/D) for every D ≥ 2, unless P = NP. This implies the non-existence of a
(c logn, δ)-approximation algorithm for BCMD for δ < 1 + 1/D, unless P = NP.

On the positive side, BCMD admits a constant (4 + 2
D )-approximation algo-

rithm [16]; the same algorithm guarantees a (2 + 2
D )-approximation for forests.

Concerning positive results for MCBD, in [8] the authors provide an O(log n
logD)-approximation algorithm. In the same paper, the authors provide both
approximability and non-approximability results for a more general version of
MCBD in which edges are associated with a cost and a length function, and B
and D are redefined accordingly. Furthermore, MCBD has been studied also for



152 D. Bilò, L. Gualà, and G. Proietti

forests. Here, a 2-approximation algorithm is known for even values of D [5],
while an 8-approximation algorithm has been given in [13] for odd values of
D. This latter result has been improved in [4], where a (2 + ε)-approximation
algorithm up to an additive constant of O(ε−5) has been given. Establishing
whether BCMD and MDBC restricted to trees/forests are in P is still an open
problem. Finally, concerning bicriteria approximation algorithms, in [8,14] the
authors provide a polynomial time

(
O(log n), 2 + 2

D

)
-approximation algorithm

for BCMD.

Our results. In this paper, we provide a different analysis of the algorithm
given in [16], in order to show that it actually computes a

(
2 + 2

D

)
-approximate

solution for BCMD. Moreover, when the input instance is a forest, we achieve
optimality up to small constant additive terms. More precisely, we get an approx-
imation guarantee of (1+ 2

D ) for even values of D, and of (1+ 4
D ) for odd values

of D. Concerning approximability of MCBD, we improve the result given in [8],
by providing an O(log n)-approximation algorithm. Thus, we close in an asymp-
totic sense the approximability of the MCBD problem. Notably, our algorithm
extends to directed graphs as well as to the case when we place the distance
requirements Du,v for each pair u, v of vertices. We regard our result as a signi-
ficative contribution for the comprehension of the problem since, as we further
show in the paper, our approximation ratio cannot be improved asymptotically,
unless P = NP, even if we allow for a solution whose diameter is optimal up to
a multiplicative factor of 5

3 −
4
D . Notice that this also implies a better inapprox-

imability threshold for BCMD for any D ≥ 8. On the other hand, on the positive
side, we also show that if a doubling of the optimal diameter is tolerated, then
the MCBD problem admits a

(
2− 1

B )-approximation algorithm. Table 1 summa-
rizes the state of the art and our improvements for the two problems (results are
given in form of bicriteria ratios for BCMD, and our contributions are marked
with a †).

2 Approximation Algorithms for BCMD

We begin this section by describing the
(
4 + 2

D

)
-approximation algorithm for

BCMD given in [16] and show that it actually computes a
(
2+ 2

D

)
-approximate

solution. We need to introduce some notation first.
For a graph G, we denote by V (G) and E(G) the set of vertices and the

set of edges of G, respectively. We denote by Ḡ the complement of G, i.e., the
graph on V (G) that contains the edge (u, v) iff (u, v) �∈ E(G). For every F ⊆
{(u, v) | u, v ∈ V (G)}, we denote by G + F the graph on V (G) with edge set
E(G) ∪ F . We use G+ e instead of G+ {e}. By α(G) we denote the cardinality
of a maximum independent set of G.1 For each pair of vertices u, v ∈ V (G), we
denote by dG(u, v) the distance between u and v in G, i.e., the length (in terms of
1 A set {v1, . . . , v�} of vertices of G is an independent set of G iff (vi, vj) 
∈ E(G) for

every i, j = 1, . . . , 
. An independent set {v1, . . . , v�} of G is maximum if for every
independent set {v′

1, . . . , v
′
�′} of G we have that 
 ≥ 
′.
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Table 1. Table of known and improved results for (β, δ)-approximation algorithms for
BCMD. The non-approximability results hold unless P = NP.

Problem Approximability Non-approximability

in P for D = 1 (folklore)(
1, 4 + 2

D

)
[16](

O(log n), 2 + 2
D

)
[8,14]

(
c log n, δ < 1 + 1

D

)
,∀D ≥ 2 [16,8]

General instances
(
O(log n log D), 1

)
[8](

2 − 1
B

, 2
) † (

c log n, δ < 5
3
− 4

D

)
,∀D ≥ 8 †(

1, 2 + 2
D

) †(
O(log n), 1

) †
(2, 1) for D = 2h [5]

(2 + ε, 1) for D = 2h + 1 [4]
Forests (1, 2 + 2

D
) ?(

1, 1 + 2
D

)
for D = 2h †(

1, 1 + 4
D

)
for D = 2h + 1 †

number of edges) of a shortest path between u and v. The diameter of G will be
denoted by diam(G) := maxu,v∈V (G) dG(u, v). Let λ ≥ 1 be an integer value. We
denote byGλ the graph on V (G) that contains an edge (u, v) iff dG(u, v) ≤ λ. For
a given positive integer k > 0, and a subset V ′ ⊆ V (G), we say that 〈V1, . . . , Vk〉
is a k-clustering of V ′ if (i) ∀i, Vi ⊆ V (G), and (ii) V ′ ⊆

⋃k
i=1 Vi. Moreover,

we define radius(Vi) := minu∈V (G) maxv∈Vi dG(u, v) to be the radius of Vi. We
say that ci ∈ V (G) is a center of cluster Vi if maxv∈Vi dG(ci, v) = radius(Vi).
The k-center Problem is the problem that takes an edge weighted graph G and
an integer k ≥ 1 as inputs and asks for a k clustering 〈V1, . . . , Vk〉 of V (G)
that minimizes maxi=1,...,k radius(Vi). This problem cannot be approximated
within a factor better than 2, unless P = NP [17]. Moreover, 2-approximation
algorithms are given in [11].

The algorithm in [16] makes use of any 2-approximation algorithm A to find
a B+1 clustering 〈V0, . . . , VB〉 of V (G) for the (B+ 1)-center problem on input
G. Then, it computes a center ci for every cluster Vi and outputs the set F =
{(c0, ci) | i = 1, . . . , B}. We prove that this algorithm computes a

(
2 + 2

D

)
-

approximate solution when A is the 2-approximation algorithm of Gonzalez [11].
The subsequent lemmas are the key of our proof.

Lemma 1 (Gonzalez 1985 [11]). Let λ ≥ 1 be an integer value. If α(Gλ) ≤
k, then Gonzalez’algorithm finds a k-clustering 〈V1, . . . , Vk〉 of V (G) such that
radius(Vi) ≤ λ, ∀i = 1 . . . , k. 


Lemma 2. α(GD) ≤ B + 1.

Proof. Let v1, . . . , v� be an independent set in GD. Let F ∗ be an optimal solution
for the problem and let G1 = G + F ∗. Clearly, α(GD

1 ) = 1. Observe that to
prove the claim, it is enough to show that for every edge e ∈ E(Ḡ), α(GD

e ) ≥
� − 1, where Ge = G + e. For the sake of contradiction, assume there exists
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an edge e = (u, v) ∈ E(Ḡ) such that α(GD
e ) < � − 1, where Ge = G + e.

This implies that (i) there exist four distinct indexes i, i′, j, j′ ≤ � such that
(vi, vj), (vi′ , vj′ ) ∈ E(GD

e ) or (ii) there exist three distinct indexes i, i′, i′′ ≤ �
such that (vi, vi′), (vi′ , vi′′ ), (vi′′ , vi) ∈ E(GD

e ).
We deal with case (i) first. Since dG(vi, vj), dG(vi′ , vj′) > D and since

dG+e(vi, vj), dG+e(vi′ , vj′ ) ≤ D, then, both the shortest path from vi and vj

in Ge and the shortest path from vi′ and vj′ in Ge pass through edge e. There-
fore, w.l.o.g., we have that⎧⎪⎪⎨⎪⎪⎩

dG(vi, u) + 1 + dG(vj , v) ≤ D
dG(vi′ , u) + 1 + dG(vj′ , v) ≤ D
D < dG(vi, u) + dG(vi′ , u)
D < dG(vj , v) + dG(vj′ , v).

If we sum up all the inequalities we get 2 < 0, a contradiction.
Now, we deal with case (ii). Since dG(vi, vi′), dG(vi′ , vi′′), dG(vi′′ , vi) > D

and since dG+e(vi, vi′), dG+e(vi′ , vi′′), dG+e(vi′′ , vi) ≤ D, then, for the pigeon
principle, two of the three vertices vi, vi′ , vi′′ are closer to one endvertex of
e than to the other one. W.l.o.g., assume that dG(vi′ , v) ≤ dG(vi′ , u), and
dG(vi′′ , v) ≤ dG(vi′′ , u). As a consequence,

dG(vi′ , vi′′) ≤ dG(vi′ , v) + dG(vi′′ , v)
< min{dG(vi′ , v) + 1 + dG(vi′′ , u), dG(vi′ , u) + 1 + dG(vi′′ , v)}
= dG+e(vi′ , vi′′) ≤ D,

and thus (vi′ , vi′′) ∈ E(GD), a contradiction. 


Theorem 1. There exists a
(
2 + 2

D

)
-approximation algorithm for BCMD.

Proof. From Lemma 2 we have that α(GD) ≤ B+1. As a consequence, Lemma 1
implies that Gonzalez’algorithm computes a 〈V0, . . . , VB〉 clustering of V (G) such
that radius(Vi) ≤ D, ∀i = 0, . . . , B. Let ci be a center of cluster Vi and let
F = {(c0, ci) | i = 1, . . . , B} be the solution returned by the algorithm. Clearly,
|F | = B. Moreover, every vertex v ∈ V (G) is at distance at most D + 1 from c0
in G+ F . Therefore, diam(G+ F ) ≤ 2D + 2. The claim follows. 


Theorem 2. For the BCMD restricted to forests, there exists a
(
1+ 2

D

)
-approxi-

mation algorithm for even values of D and a
(
1 + 4

D

)
-approximation algorithm

for odd values of D.

Proof. Let G be a forest and let H1, . . . , H� be a minimum partition of GD in
cliques.2 As forests are perfect graphs3 and because GD is still a perfect graph
2 A partition of G in cliques is a collection {H1, . . . , H�} of vertex-disjoint subgraphs

of G such that
⋃�

i=1 V (Hi) = V (G) and each Hi is a clique. A partition {H1, . . . , H�}
of a graph G in cliques is minimum iff for every other partition {H ′

1, . . . , H
′
�′} of G

in cliques we have that 
 ≤ 
′.
3 A graph G is perfect iff the minimum number of cliques necessary to cover G equals

the size of the largest independent set of G [2].
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(see [2]), we have that α(GD) = �. Thus, from Lemma 2, � ≤ B + 1. Each
Hi can be viewed as a subtree Ti of G of diameter less than or equal to D.
As a tree of diameter D has radius less than or equal to �D/2�, it follows that
〈V (T1), . . . , V (T�)〉 is an � clustering of V (G) such that radius(V (Ti)) ≤ �D/2�,
for every i = 1, . . . , �. From Lemma 2, we have that α(GD) = � ≤ B + 1. As a
consequence, an optimal solution for the (B + 1)-center problem is a clustering
〈V0, . . . , VB〉 such that radius(Vi) ≤ �D/2�, for every i = 0, . . . , B. Let ci be a
center of Vi. Let F = {(c0, ci) | i = 1, . . . , B}. Clearly, |F | = B. Moreover, every
vertex v ∈ V (G) is at distance at most �D/2�+ 1 from c0 in G+ F . Therefore,
diam(G+F ) ≤ 2�D/2�+ 2. As the k-center problem on forests can be solved in
linear time [3,15], the claim follows. 


3 An O(log n)-Approximation Algorithm for MCBD

In this section we describe an O(log n)-approximation algorithm for MCBD.
W.l.o.g., we can restrict ourselves to the class of connected graphs. Indeed, if
� + 1 denotes the number of connected components, then we can first add �
edges to G to let it become connected and then run our algorithm. Since the
problem is clearly in P for the case B < �, we are still guaranteed to compute
an O(log n)-approximate solution.

In the rest of the section, for any graphH on V (G), let I(H) := {{u, v} | u, v ∈
V (H), dH(u, v) > D}. The algorithm uses a greedy approach and consists of two
phases. In the first phase, the algorithm fixes a vertex s ∈ V (G) and computes
a set F1 of edges such that ∀{u, v} ∈ I(G), dG1(s, u) + dG1(s, v) ≤ D + 1,
where G1 = G + F1. Observe that this immediately implies that diam(G1) ≤
D+ 1. In the second phase, the algorithm computes a set F2 of edges such that
diam(G1 + F2) ≤ D. More precisely, for every {u, v} ∈ I(G1), there exists an
edge in F2 whose addition to G1 let the distance between u and v decrease by
at least 1. We will prove that |F1|, |F2| = O(B logn).

For the rest of the section, let s ∈ V (G) be fixed. We now describe the first
phase of the algorithm. Let H be a graph on V (G) and let

Γ (H) :=
{
{u, v} | {u, v} ∈ I(H), dH(s, u) + dH(s, v) > D + 1

}
.

For each u, v ∈ V (H) we define

μH(u, v) := dH(s, u) + dH(s, v)− (D + 1),

and
cost(H) :=

∑
{u,v}∈Γ (H)

μH(u, v).

Let Fs = {(s, v) | v ∈ V (G)}. For a given edge e, define gain(e,H) := cost(H)−
cost(H + e) to be the gain of edge e w.r.t. H . The algorithm first sets F1 := ∅
and H0 := G and then proceeds in steps. During step i ≥ 1, the algorithm selects
an edge e = (s, v) ∈ Fs that maximizes gain(e,Hi−1), adds e to F1, and sets
Hi := Hi−1 + e. The first phase of the algorithm ends at the end of step i if
cost(Hi) = 0. We prove the following
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Lemma 3. At the end of the first phase, |F1| = O(B logn). Moreover, for every
{u, v} ∈ Γ (G), we have that dG+F1(s, u) + dG+F1(s, v) ≤ D + 1.

Proof. The first phase of the algorithm ends when cost(Hi) = 0, i.e., when
μHi(u, v) ≤ 0, for every {u, v} ∈ Γ (G). As Hi = G + F1, we have that
μG+F1(u, v) ≤ 0 implies dG+F1(s, u) + dG+F1(s, v) ≤ D + 1.

Let F ∗ be an optimal solution for MCBD on inputs G and D and let U =
{v1, . . . , v�} be the set of endvertices of the edges in F ∗. Clearly, � ≤ 2B.Let
F̂ = {e∗j | e∗j = (s, vj), j = 1 . . . , �} and observe that dG+F̂ (s, u) + dG+F̂ (s, v) ≤
D + 1, for every {u, v} ∈ Γ (G). Moreover, F̂ ⊆ Fs. We have that

Proposition 1. For every i,
∑�

j=1 gain(e
∗
j , Hi) ≥ cost(Hi).

Proof. Let 〈V1, . . . , V�〉 be an �-clustering of V defined as follows. The cluster Vj

contains vertex vj and all the vertices v ∈ V (G) \
⋃j−1

i=1 Vi such that dG(v, vj) ≤
dG(v, vk), ∀k = j + 1, . . . , �. Let {u, v} ∈ Γ (Hi) and let e �∈ E(Hi). We define

gainu,v(e,Hi) :=

{
μHi(u, v)− μHi+e(u, v) if {u, v} ∈ Γ (Hi + e);
μHi(u, v) otherwise.

Let τ : V (G) → {1, . . . , �} be such that τ(x) = i if x ∈ Vi. By construc-
tion of the clusters and because edges in F̂ are all adjacent to s, we have that
dHi+e∗

τ(u)
(s, u) = dHi+F̂ (s, u) and dHi+e∗

τ(v)
(s, v) = dHi+F̂ (s, v). This implies

that τ(u) �= τ(v), otherwise, if τ(u) = τ(v) = τ ′, then D + 1 ≥ dHi+F̂ (s, u) +
dHi+F̂ (s, v) = dHi+e∗

τ′ (s, u) + dHi+e∗
τ′ (s, v) ≥ 2 + dHi(vτ ′ , u) + dHi(vτ ′ , v) ≥ 2 +

dHi(u, v), and thus dHi(u, v) ≤ D ⇒ {u, v} �∈ Γ (Hi). Clearly, if {u, v} �∈ Γ (Hi +
e∗τ(u)) or {u, v} �∈ Γ (Hi + e∗τ(v)), then gainu,v(e

∗
τ(u), Hi) + gainu,v(e∗τ(v), Hi) ≥

μHi(u, v). But also in the other case we have that

gainu,v(e∗τ(u), Hi) + gainu,v(e
∗
τ(v), Hi) = 2

(
dHi (s, u) + dHi(s, v)

)
− dHi+e∗

τ(u)
(s, u)− dHi+e∗

τ(u)
(s, v)

− dHi+e∗
τ(v)

(s, u)− dHi+e∗
τ(v)

(s, v)

≥ dHi(s, u) + dHi(s, v)
− dHi+F̂ (s, u)− dHi+F̂ (s, v)
≥ μHi(u, v).

Therefore,
�∑

j=1

gain(e∗j , Hi) =
�∑

j=1

∑
{u,v}∈Γ (Hi)

gainu,v(e
∗
j , Hi)

≥
∑

{u,v}∈Γ (Hi)

(
gainu,v(e

∗
τ(u), Hi) + gainu,v(e∗τ(v), Hi)

)
≥

∑
{u,v}∈Γ (Hi)

μHi(u, v) = cost(Hi),

where the first inequality follows from the fact that τ(u) �= τ(v). 
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As a consequence of the above proposition, for every i ≥ 1, there exists an edge
e ∈ Fs such that gain(e,Hi−1) ≥ max

{
1, cost(Hi−1)

�

}
≥ max

{
1, cost(Hi−1)

2B

}
.

This implies that cost(Hi) ≤ cost(H0)
(
1 − 1

2B

)i−1 = cost(G)
(
1 − 1

2B

)i−1 for
every i. Moreover, at the beginning of the last step of the algorithm, say η + 1,
we have that cost(Hη) ≥ 1. Therefore, 1 ≤ cost(Hη) ≤ cost(G)

(
1 − 1

2B

)η−1.
Taking the natural logarithm and simplifying, we finally get

η ≤ 2B ln cost(G) = O(B logn),

where the last equality comes from the fact that cost(G) = O(n3) as G is
connected and because |Γ (G)| = O(n2). 


We now describe the second phase of the algorithm. Let G1 = G + F1, where
F1 is the set of edges computed by the algorithm in the first phase. We make a
reduction to the Set Cover Problem. The Set Cover Problem takes as input a set
of objects Z and a set S of subsets of Z and asks for the minimum-cardinality
subset S′ ⊆ S that covers Z, i.e.,

⋃
S∈S′ S = Z. The Set Cover Problem is well-

known to be approximable within O(log |Z|). We build an instance of the Set
Cover Problem as follows. The objects in Z are the unordered pairs in I(G1).
There is a set Se for every edge e in Ḡ which is defined as follows

Se :=
{
{u, v} | {u, v} ∈ Z, dG1+e(u, v) ≤ D

}
.

Let X be a solution computed by the O(log |Z|)-approximation algorithm for
Set Cover Problem and let F2 = {e | Se ∈ X}. We can prove the following

Lemma 4. At the end of the second phase, we have that |F2| = O(B logn).
Moreover, diam(G1 + F2) ≤ D.

Proof. Let S′ be any solution for the covering problem defined above. Let F =
{e | Se ∈ S′} and let {u, v} ∈ I(G1). By construction, object {u, v} ∈ Z
and there exists Se ∈ S′ such that dG1+e(u, v) ≤ D. As e ∈ F , we have that
dG1+F (u, v) ≤ dG+e(u, v) ≤ D. Therefore, diam(G1 +F ) ≤ D. This also implies
that diam(G1 + F2) ≤ D.

Let F ∗ be an optimal solution for MCBD on inputs G and D and let U be
the set of endvertices of the edges in F ∗. We claim that

S∗ =
{
S(s,u) | u ∈ U

}
∪
{
Se | e ∈ F ∗}

is a feasible solution for the set cover instance. Observe that this is enough to
prove the claim, as |S∗| ≤ 3B and |Z| = |I(G1)| ≤ n2. Let {u, v} ∈ I(G1)
and let P be a shortest path from u to v in G + F ∗ . As dG1(u, v) > D whilst
dG1+F∗(u, v) ≤ dG+F∗(u, v) ≤ D, then P contains some edge of F ∗. We traverse
P from u to v. Let u′ be the first vertex of P which is also a vertex of U , and
let v′ be the last vertex of P which is also a vertex of U .

If P contains exactly one edge of F ∗, i.e., (u′, v′) ∈ F ∗, then object {u, v} is
in set S(u′,v′) by construction. Moreover, S(u′,v′) ∈ S∗. If P contains two or more
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edges of F ∗, then dG1(u, u′)+dG1(v′, v) ≤ D−2. Moreover, as Lemma 3 implies
that dG1(s, u) + dG1(s, v) = D + 1, then dG1(u, u′) + dG1(v′, v) ≤ dG1(s, u) +
dG1(s, v)− 3. Therefore, dG1(u, u′) ≤ dG1(s, u)− 2 or dG1(v′, v) ≤ dG1(s, v)− 2.
W.l.o.g., let us assume that dG1(u, u′) ≤ dG1(s, u)− 2. Thus, dG1+(s,u′)(u, v) ≤
dG1+(s,u′)(s, u) + dG1+(s,u′)(s, v) ≤ dG1(u, u′) + 1 + dG1(s, v) ≤ dG1(s, u) +
dG1(s, v) − 1 = D. As a consequence, the object {u, v} is in the set S(s,u′).
Moreover, S(s,u′) ∈ S∗. Therefore, S∗ is a feasible solution for the set cover in-
stance. This completes the proof. 


As a direct consequence of Lemma 3 and Lemma 4 we have that

Theorem 3. There exists an O(log n)-approximation algorithm for MCBD. 


Remark 1. We already pointed out that our algorithm extends to directed graphs.
It also extends to the case when we place the distance requirements Dui,vi for �
pairs {u1, v2}, . . . , {u�, v�} of vertices of G (in particular the resulting graph need
not be connected). The approximation ratio becomes O(log �+ logDmax), where
Dmax = maxi=1,...,�Dui,vi .

4 On the Existence of Bicriteria Approximation
Algorithms

In this section we first prove the existence of a (2− 1
B , 2)-approximation algorithm

for BCMD and then we show that for every D ≥ 6 there is no polynomial time
algorithm with an approximation guarantee of (c logn, δ), for some constant
c > 0, and for every δ < 5

3 −
4
D , unless P = NP.

We slightly modify the algorithm described in Section 2 to show the existence
of a

(
2− 1

B , 2
)
-approximation algorithm. The correctness proof follows from the

subsequent two key lemmas.

Lemma 5 (Gonzalez 1985 [11]). Let V ′ ⊆ V (G). Let 〈U1, . . . , Uk〉 be a k-
clustering of V ′ and let R = maxi=1,...,k radius(Ui). Gonzalez’algorithm finds a
k-clustering 〈V1, . . . , Vk〉 of V ′ such that radius(Vi) ≤ 2R, ∀i = 1 . . . , k. 


Lemma 6. There exists a 2B-clustering 〈U1, . . . , U2B〉 of V (G) such that
radius(U1) ≤ D and radius(Ui) ≤ D−1

2 , for every i = 2, . . . , 2B.

Proof. Let F ∗ be an optimal solution for BCMD on input G and B, and let
V ′ = {v1, . . . , v�} be the set of endvertices of the edges in F ∗. Clearly, � ≤ 2B.
Let 〈U1, . . . , U�〉 be an �-clustering of V (G) defined as follows. The cluster Ui

contains vertex vi and all the vertices v ∈ V (G) \
⋃i−1

k=1 Uk such that dG(v, vi) ≤
dG(v, vj), ∀j = i + 1, . . . , �. Clearly, radius(Ui) ≤ maxv∈Ui dG(v, vi). As a con-
sequence, we have to prove the claim for the case in which there exists a v ∈ Ui

such that dG(v, vi) > D−1
2 . W.l.o.g., let us assume there exists v∗ ∈ U1 such that

dG(v∗, v1) > D−1
2 .

Let v, v′ be two vertices ofUi. Every pathP from v to v′ inG+F ∗ passing through
some edge ofF ∗ has a length greater than or equal to dG(v, vi)+1+dG(v′, vi), while
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a shortest path in G from v to v′ has a length of at most dG(v, vi) + dG(v′, vi). As
a consequence, dG(v, v′) = dG+F∗(v, v′) ≤ D.

We modify the � clusters by moving vertices from U2, . . . , U� to U1 as follows.
As long as there exists a vertex v ∈ Ui, i = 2, . . . , �, such that dG(v, vi) >
D−1

2 , we remove v from Ui and we add v to U1. Any path in G + F ∗ from
v∗ to v passing through any edge in F ∗ has a cost greater than or equal to
dG(v∗, v1) + 1 + dG(v, vi) > D. Therefore, dG(v∗, v) = dG+F∗(v∗, v) ≤ D.

As a consequence, radius(U1) ≤ maxv∈U1 dG(v∗, v) ≤ D. Moreover, for every
i = 2, . . . , �, radius(Ui) ≤ maxv∈Ui dG(vi, v) ≤ D−1

2 by construction. The claim
follows. 


Let 〈U1, . . . , U2B〉 be a 2B-clustering of V (G) such that radius(U1) ≤ D and
radius(Ui) ≤ D−1

2 , for every i = 2, . . . , 2B. From Lemma 6, such a 2B-clustering
of V (G) always exists. Let v1 be a center of U1, and let D′ = radius(U1).
Our algorithm first guesses v1 and D′. Then, it computes a cluster V1 = {v ∈
V (G) | dG(v1, v) ≤ D′} and uses Gonzalez’algorithm to find a (2B−1)-clustering
〈V2, . . . , V2B〉 of V (G) \ V1. As U1 ⊆ V1, then 〈U2, . . . , U2B〉 is a (2B − 1)-
clustering of V (G) \ V1. Therefore, Lemma 5 implies that radius(Vi) ≤ D − 1,
for every i = 2, . . . , 2B. Let vi be a center of cluster Vi. The algorithm outputs
F = {(v1, vi) | i = 2, . . . , 2B}. Observe that every vertex v is at distance of at
most D from v1 in G+ F . Therefore, diam(G+ F ) ≤ 2D. As |F | ≤ 2B − 1, we
have proved the following

Theorem 4. There exists a
(
2− 1

B , 2
)
-approximation algorithm for BCMD. 


Now we prove the non-existence of a (c logn, f(D))-approximation algorithms,
unless P = NP, where f(D) goes to 5

3 for non-constant values of D.

Theorem 5. For every D ≥ 6, there exists no (c logn, δ)-approximation algo-
rithm for BCMD, for some constant c > 0 and for every δ < 5

3 −
4
D , unless

P = NP.

Proof. The reduction is from the Minimum Dominating Set Problem (MDS for
short), i.e., the problem of finding a minimum-cardinality set of vertices U of
a given graph G′ on n̂ vertices such that every vertex of G′ is in U or it is a
neighbor of some vertex in U . The MDS is not approximable within c′ log n̂, for
some constant c′ > 0, unless P = NP [19].

Let G′ be a graph with n̂ vertices and let k∗ be the size of a minimum dominat-
ing set in G′. We transform the instance of MDS to an instance of BCMD with
n vertices and claim that the existence of a (c logn, δ)-approximation algorithm
for BCMD, with δ < 5

3 −
4
D , implies the existence of a (c′ log n̂)-approximation

algorithm for MDS, for some c′ ≤ ηc, where η > 0 is a constant. This would
immediately lead to a contradiction by choosing c small enough.

In the rest of the proof we will prove a slightly stronger non-approximability
result for all the even values of D = 2(ρ+ �ρ/2�+ 1), where ρ ≥ 1 is an integer
value and sketch the proof for all the other values of D ≥ 6. More precisely,
for every even value D = 2(ρ+ �ρ/2�+ 1), we will show the non existence of a
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(c logn, δ)-approximation algorithm for BCMD, for some constant c > 0 and for
every δ < 5

3 −
7

3D , unless P = NP.
Let ρ ≥ 1 be a fixed integer value. We build the input graph G in the following

way. G contains 2 copies G1, G2 of G′ plus a singleton vertex s such that s �∈
V (G′). For every u ∈ V (G′), denote by ui the copy of u in Gi. Replace each edge
(u, v) ∈ E(Gi) with a path Pu,v from u to v of length ρ by adding ρ − 1 new
vertices and ρ new edges. For every vertex u ∈ V (G′), and for every i = 1, 2,
append a path P i

u to ui of length �ρ/2� by adding �ρ/2� new vertices and �ρ/2�
new edges. For every i = 1, 2, denote by νi

u the endvertex of P i
u different from

ui (if �ρ/2� = 0 then νi
u = ui). Set B = 2k∗. Observe that n ≤ ρn̂2.

Let U∗ be a minimum cardinality dominating set in G′. By augmenting G
with the B = 2k∗ edges from s to both the copies of each vertex in U∗, we
obtain that D ≤ 2(ρ+ �ρ/2�+ 1). Indeed, every vertex in Pu,v is at distance of
at most �ρ/2� from either u or v. Furthermore, every vertex in P i

u is at distance
of at most �ρ/2� from ui. Finally, every copy of u is at distance of at most ρ from
a copy of some vertex in U∗, as U∗ is a dominating set in G′. As a consequence,
every vertex is at distance at most ρ+ �ρ/2�+ 1 from s.

Now, let F be the set of edges computed by any
(
c logn, δ

)
-approximation

algorithm for BCMD, with δ < 5
3 −

7
3D . Let X be the set of the endvertices of

the edges in F . We have that |X | ≤ 2cB logn. Let Y be equal to X . We modify
Y as follows. As long as there is an x ∈ Y which is an internal vertex of Pu,v,
then we remove x from Y and we add u and v to Y . Next, as long as there is
an x ∈ Y which is a vertex of V (P i

u) \ {ui}, then we remove x from Y and we
add ui to Y . Clearly, |Y | ≤ 2|X | ≤ 4cB logn. Let U be the set of vertices in
G defined as follows: U contains a vertex u of G′ iff u1 ∈ Y or u2 ∈ Y . We
have that |U | ≤ |Y | ≤ 4cB log n ≤ 8ck∗ log(ρn̂2) ≤ 24ck∗ log n̂. To complete the
proof, it is enough to show that U is a dominating set in G. Let u be any vertex
in V (G′) and consider the two vertices ν1

u and ν2
u; their distance in G is +∞,

while their distance in G+ F is upper bounded by

γD <
5
3
D − 7

3
≤ 10

3
(ρ+ �ρ/2�+ 1)− 7

3
≤ 4ρ+ 2�ρ/2�+ 1.

As a consequence, γD ≤ 4ρ + 2�ρ/2�. As there is no edge between V (G1) and
V (G2) in G, then there exists a vertex x ∈ X such that dG(x, ν1

u) < 2ρ+ �ρ/2�
or dG(x, ν2

u) < 2ρ + �ρ/2�. Therefore, by construction, there exists a vertex v
in Y such that dG(v, ν1

u) < 2ρ+ �ρ/2� or dG(v, ν2
u) < 2ρ+ �ρ/2�. Since each of

the vertices in Y is a copy of some vertex of G′ and because dG(ui, vi) ≥ 2ρ for
every u, v ∈ V (G′), (u, v) �∈ E(G′), it follows that U is a dominating set in G′.

To extend the proof for everyD ≥ 7 we can do the following. For the remaining
even values of D ≥ 4 it is enough to increase the length of every P i

u by one while
for odd values of D ≥ 7, we build the reduction for the case D−1 and we append
to s two paths both of length �D/2� thus forcing the bound on the diameter to
be an odd value. However, in both cases, we can prove the non existence of any
(c logn, γ)-approximation algorithm for some c > 0 and for every γ < 5

3−
4
D . 
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Abstract. We study the complexity of constraint satisfaction problems
for templates Γ that are first-order definable in (Z; succ), the integers
with the successor relation. Assuming a widely believed conjecture from
finite domain constraint satisfaction (we require the tractability conjec-
ture by Bulatov, Jeavons and Krokhin in the special case of transitive
finite templates), we provide a full classification for the case that Γ is
locally finite (i.e., the Gaifman graph of Γ has finite degree). We show
that one of the following is true: The structure Γ is homomorphically
equivalent to a structure with a certain majority polymorphism (which
we call modular median) and CSP(Γ ) can be solved in polynomial time,
or Γ is homomorphically equivalent to a finite transitive structure, or
CSP(Γ ) is NP-complete.

1 Introduction

Constraint satisfaction problems appear naturally in many areas of theoretical
computer science, for example in artificial intelligence, optimization, computer
algebra, computational biology, computational linguistics, and type systems for
programming languages. Such problems are typically NP-hard, but sometimes
they are polynomial-time tractable. The question as to which CSPs are in P and
which are hard has stimulated a lot of research in the past 10 years. For pointers
to the literature, there is a recent collection of survey articles [10].

The constraint satisfaction problem CSP for a fixed (not necessarily finite)
structure Γ with a finite relational signature τ is the problem to decide whether
a given primitive positive sentence is true in Γ . A formula is primitive positive
if it is of the form ∃x1, . . . , xn. ψ1 ∧ · · · ∧ψm where ψi is an atomic formula over
Γ , i.e., a formula of the form R(y1, . . . , yj) for a relation symbol R for a relation
from Γ . The structure Γ is also called the template of the CSP.

The class of problems that can be formulated as a CSP for a fixed structure
Γ is very large. It can be shown that for every computational problem there
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is a structure Γ such that the CSP for Γ is equivalent to this problem under
polynomial-time Turing reductions [4]. This makes it very unlikely that we can
give good descriptions of all those Γ where the CSP for Γ is in P. In contrast, the
class of CSPs for a finite structure Γ is quite restricted, and indeed it has been
conjectured that the CSP for Γ is either in P or NP-complete in this case [12].
So it appears to be natural to study the CSP for classes of infinite structures Γ
that share good properties with finite structures.

In graph theory and combinatorics, there are two major concepts of finiteness
for infinite structures. The first is ω-categoricity: a countable structure is ω-
categorical if and only if its automorphism group has for all n only finitely many
orbits in its natural action on n-tuples [9,19,16]. This property has been exploited
to transfer techniques that were known to analyze the computational complexity
of CSPs with finite domains to infinite domains [7,6]; see also the introduction
of [2].

The second concept of finiteness is the property of an infinite graph or struc-
ture to be locally finite (see Section 8 in [11]). A graph is called locally finite if
every vertex is contained in a finite number of edges; a relational structure is
called locally finite if its Gaifman graph (definition given in Section 2) is locally
finite. Many conjectures that are open for general infinite graphs become true for
locally finite graphs, and many results that are difficult become easy for locally
finite graphs.

In this paper, we initiate the study of CSPs with locally finite templates by
studying locally finite templates that have a first-order definition in (Z; succ),
where succ = {(x, y) | x = y + 1} is the successor relation on the integers. As
an example, consider the directed graph with vertex set Z which has an edge
between x and y if the difference between x and y is either 1 or 3. This graph can
be viewed as the structure (Z;R{1,3}) where R{1,3} = {(x, y) | x − y ∈ {1, 3}},
which has a first-order definition over (Z; succ) since R{1,3}(x, y) iff

succ(x, y) ∨ ∃u, v. succ(x, u) ∧ succ(u, v) ∧ succ(v, y).

Structures with a first-order definition in (Z; succ) are particularlywell-behaved
fromamodel-theoreticperspective:all such structures are stronglyminimal [19,16],
and therefore uncountably categorical. Uncountablemodels of their first-order the-
ory will be saturated; for implications of those properties for the study of the CSP,
see [5]. In some sense, (Z; succ) constitutes one of the simplest infinite structures
that is not ω-categorical.

The corresponding class of CSPs has the flavor of assignment problems where
we have to assign integers to variables such that various given constraints on
differences and distances (and Boolean combinations thereof) between variables
are satisfied. We therefore call the class of CSPs whose template is locally finite
and definable over (Z; succ) distance CSPs. For instance, the CSP for the struc-
ture (Z;R{1,3}) is the computational problem to label the vertices of a given
directed graph G such that if (x, y) is an arc in G, then the difference between
the label for x and the label for y is one or three.

Assuming a widely accepted conjecture about finite domain CSPs, we com-
pletely classify the computational complexity of distance CSPs, and show that
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these problems are either NP-complete or in P. The conjecture we assume is the
following special case of that of Feder and Vardi [12]: that the CSP for templates
with a transitive automorphism group is either in P or NP-complete (see Sec-
tion 7 for details). If Γ has a finite core then the statement is implied by this
conjecture about finite domain CSPs. Otherwise, if Γ has an infinite core, we
prove that either Γ is homomorphically equivalent to a structure Δ1 over which
we can define primitive positively a structure Δ2 with a finite core Δ3 of size
larger than 2 where the inequality relation �= is primitive positive definable, and
the CSP for Γ is NP-hard, or Γ has a certain majority polymorphism, which
we call modular median, and the CSP for Γ can be solved by local consistency
techniques. Polynomial-time tractability results based on local consistency were
previously only known for finite or ω-categorical templates; we use the assump-
tion that templates for distance CSPs are locally finite to extend the technique
to non-ω-categorical templates.

On the way to our classification result we derive several facts about struc-
tures first-order definable in (Z; succ), and automorphisms and endomorphisms
of these structures, which might be of independent interest in model theory,
universal algebra, and combinatorics. For example, we show that every injective
endomorphism of a connected locally finite structure Γ with a first-order defini-
tion in (Z; succ) is either of the form x �→ −x+ c or of the form x �→ x + c for
some c ∈ Z.

Owing to reasons of space, many proofs are omitted – please see [3].

2 Preliminaries

A finite relational signature τ is a finite set of relation symbols Ri, each of which
has an associated arity ki. A (relational) structure Γ consists of a set D (the
domain) together with a relation RΓ

i ⊆ Dki for each relation symbol Ri from τ .
We consider only finite signature structures in this paper.

For x, y ∈ Z, let d(x, y) be the distance between x and y, that is, |x− y|. The
relation {(x, y) | y = x+1} is denoted by succ, and the relation {(x, y) | d(x, y) =
1} is denoted by sym-succ. A k-ary relation R is said to be first-order (fo)
definable in the τ -structure Γ if there is an fo-τ -formula φ(x1, . . . , xk) such that
R = {(x1, . . . , xk) : Γ |= φ(x1, . . . , xk)}. A structure Δ is said to be fo-definable
in Γ if each of its relations is fo-definable in Γ . For example, (Z; sym-succ) is
fo-definable in (Z; succ) (though the converse is false).

The structure induced by a subset S of the domain of Γ is denoted by Γ [S].
We say that a structure is connected if it cannot be written as the disjoint union
of two other structures. The Gaifman graph of a relational structure Γ with
domain D is the following undirected graph: the vertex set is D, and there is
an edge between distinct elements x, y ∈ D when there is a tuple in one of the
relations of Γ that has both x and y as entries. A structure Γ is readily seen
to be connected if and only if its Gaifman graph is connected. The degree of a
structure Γ is defined to be the degree of the Gaifman graph of Γ . The degree of
a relation R ⊆ Zk is defined to be the degree of the structure (Z;R). Throughout
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the paper, Γ will be a finite-degree relational structure with an fo definition in
(Z; succ). By (Γ,R) we denote the expansion of Γ with the new relation R.

An fo-formula Θ is primitive positive (pp) if it is of the form ∃x1, . . . , xi.θ(x1,
. . . , xi, xi+1, . . . , xj) where θ is a conjunction of atoms. Note that we consider
the boolean false ⊥ to be a pp-formula, and we always allow equalities in pp-
formulas. A pp-sentence is a pp-formula with no free variables. For convenience
we will consider pp-formulas always to be in prenex normal form.

For a structure Γ over a finite signature, CSP(Γ ) is the computational problem
to decide whether a given pp-sentence is true in Γ . It is not hard to see that,
for any Γ and Δ with the same domain, such that each of the relations of Δ
are pp-definable in Γ , that we have CSP(Δ) ≤P CSP(Γ ) (see [18]), where ≤P
indicates polynomial-time many-to-one reduction (in fact, logspace reductions
may be used, though this is harder to see and requires the result of [20]).

Let Γ and Δ be τ -structures. A homomorphism from Γ to Δ is a function
from the domain of Γ to the domain of Δ such that, for each k-ary relation
symbol R in τ and each k-tuple (a1, . . . , ak) from Γ , if (a1, . . . , ak) ∈ RΓ , then
(f(a1), . . . , f(ak)) ∈ RΔ. In this case we say that the map f preserves the
relation R. Injective homomorphisms that also preserve the complement of each
relation are called embeddings. Surjective embeddings are called isomorphisms;
homomorphisms and isomorphisms from Γ to itself are called endomorphisms
and automorphisms, respectively. The set of automorphisms of a structure Γ
forms a group under composition. A (k-ary) polymorphism of a structure Γ over
domain D is a function f : Dk → D such that, for all m-ary relations R of Γ , if
(ai

1, . . . , a
i
m) ∈ RΓ , for all i ≤ k, then (f(a1

1, . . . , a
k
1), . . . , f(a1

m, . . . , a
k
m)) ∈ RΓ .

A unary function g (over domain D) is in the local closure of a set of unary
functions F (over domainD) if, for every finite D′ ⊆ D there is a function f ′ ∈ F
such that g and f ′ agree on all elements in D′. We say the F generates f if we
may produce f from the members of F by repeated applications of composition
and local closure.

If there exist homomorphisms f : Γ → Δ and g : Δ → Γ then Γ and Δ are
said to be homomorphically equivalent. It is a basic observation that CSP(Γ ) =
CSP(Δ) if Γ and Δ are homomorphically equivalent. A structure is a core if
all of its endomorphisms are embeddings [1] – a core Δ of a structure Γ is an
induced substructure that is itself a core and is homomorphically equivalent to
Γ . It is well-known that, if a structure has a finite core, then that core is unique
up to isomorphism (the same is not true for infinite cores).

We have defined the CSP to be over relational structures, but in the case of
(Z; succ), one could equally consider the succ as the unary function s, instead of a
binary relation. With functional signature, (Z; s) admits quantifier elimination;
that is, for every fo-formula φ(x) there is a quantifier-free (qf) φ′(x) such that
(Z; s) |= ∀x.φ(x) ↔ φ′(x) (this is easy to prove, and can be found explicitly
in [13]). Thus we may have terms in φ′ of the form y = sj(x), where sj is
the successor function composed on itself j times. Let Γ be a finite signature
structure, fo-definable in (Z; succ), i.e. qf-definable in its functional variant (Z; s).
Let m be the largest number such that y = sm(x) appears as a term in the qf
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definition of a relation of Γ . Consider now CSP(Γ ), the problem to evaluate
Φ := ∃x1, . . . , xk.φ(x1, . . . , xk), where φ is a conjunction of atoms, on Γ . Let
S := {1, . . . , k ·(m+1)}. It is not hard to see that (Z; succ) |= Φ iff (Z; succ)[S] |=
Φ. It follows that CSP(Γ ) will always be in NP.

3 Endomorphisms

The main result of this section is the following theorem.

Theorem 1. Let Γ be a relational structure with a first-order definition in
(Z; succ) which has finite degree and which is connected. Then:

– The automorphism group of Γ equals either the automorphism group of
(Z; succ), or the automorphism group of (Z; sym-succ).

– Either Γ has a finite range endomorphism, or it has an endomorphism which
maps Γ onto a subset of Z isomorphic to a structure fo-definable in (Z; succ)
all of whose endomorphisms are automorphisms.

The proof of this theorem is omitted, but makes use of the following series of
lemmata. We assume henceforth that Γ is a relational structure with a first-order
definition in (Z; succ) which has finite degree and which is connected.

Before beginning the proof, we remark that although it is tempting to be-
lieve that the automorphism group of Γ equals the automorphism group of
(Z; sym-succ) iff Γ is fo-definable in (Z; sym-succ), this is not true: Let

R := {(x, y, u, v) ∈ Z4 : (y = succ(x)∧v = succ(u))∨(u = succ(v)∧x = succ(y))},

and set Γ := (Z;R). Clearly, Γ satisfies the hypotheses of Theorem 1. The
function which sends every x ∈ Z to −x is an automorphism of Γ , so the auto-
morphism group of Γ equals that of (Z; sym-succ), by Theorem 1. However, R
is not fo-definable in (Z; sym-succ).

Denote by E the edge-relation of the Gaifman graph of Γ . It is clear that every
endomorphism of Γ preserves E. We claim that there are 0 < d1 < · · · < dn such
that E(x, y) holds iff d(x, y) ∈ {d1, . . . , dn}. To see this, observe that if x, y ∈ Z

are connected by E and u, v ∈ Z are so that d(x, y) = d(u, v), then also u, v
are connected by E: This is because there is an automorphism of (Z; succ) (and
hence of Γ ) which sends {x, y} to {u, v} and because this automorphism also
preserves E. Hence, the relation E is determined by distances. Moreover, there
are only finitely many distances since Γ is assumed to have finite degree. Since
Γ is connected, the greatest common divisor of d1, . . . , dn is 1. We will refer to
the distances defining the Gaifman graph of Γ as d1, . . . , dn. We also write D
for the largest distance dn.

Lemma 1. Suppose that Γ is connected and of finite degree. Then there exists a
constant c = c(Γ ) such that for all endomorphims e of Γ we have d(e(x), e(y)) ≤
d(x, y) + c for all x, y ∈ Z.
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Observe that a constant c(Γ ) does not only exist, but can actually be calculated
given the distances d1, . . . , dn. In the following, we will keep the symbol c reserved
for the minimal constant guaranteed by the preceding lemma.

Lemma 2. Let e be an endomorphism of Γ . If for all k > c+ 1 there exist x, y
with d(x, y) = k and d(e(x), e(y)) < k, then e generates a finite range operation
whose range has size at most 2c+ 1.

Proof. Let A ⊆ Z be finite. We claim that e generates a function which maps
A into a set of diameter at most 2c+ 1. The lemma then follows by a standard
local closure argument involving König’s tree lemma.

Enumerate the pairs (x, y) ∈ A2 with x < y by (x1, y1), . . . , (xr, yr). Now the
hypothesis implies that there exists t1 generated by e such that d(t1(x1), t1(y1)) ≤
c + 1. Similarly, there exists t2 generated by e such that d(t2t1(x2), t2t1(y2)) ≤
c + 1. Continuing like this we arrive at a function tr generated by e such that
d(trtr−1 · · · t1(xr), trtr−1 · · · t1(yr)) ≤ c + 1. Now consider t := tr ◦ · · · ◦ t1. Set
fj := tr ◦ · · · ◦ tj+1 and gj := tj ◦ · · · ◦ t1, for all 1 ≤ j ≤ r; so t = fj ◦ gj . Then,
since by construction d(gj(xj), gj(yj)) ≤ c + 1, we have that d(t(xj), t(yj)) =
d(fj(gj(xj)), fj(gj(yj)) ≤ d(gj(xj), gj(yj))+ c ≤ 2c+ 1 for all 1 ≤ j ≤ r, and our
claim follows.

Lemma 3. If the hypothesis of the preceding lemma does not hold, i.e. if there
exists k > c + 1 such that d(e(x), e(y)) ≥ k for all x, y with d(x, y) = k, then
either e(s +D) = e(s) +D for all s ∈ Z or e(s +D) = e(s) −D for all s ∈ Z.
In particular, e does not generate a finite range operation.

The following lemma summarizes the preceding two lemmas.

Lemma 4. The following are equivalent for an endomorphism e of Γ :

(i) There exists k > c + 1 such that d(e(x), e(y)) ≥ k for all x, y ∈ Z with
d(x, y) = k.

(ii) e does not generate a finite range operation.
(iii) e satisfies either e(v +D) = e(v) +D or e(v +D) = e(v)−D.

Proof. Lemma 3 shows that (i) implies (ii) and (iii). It follows from from Lemma 2
that (ii) implies (i). Finally, it is clear that (iii) implies (ii).

We know now that there are two types of endomorphisms of Γ : Those which are
periodic with period D, and those which generate a finite range operation. We
will now provide examples showing that both types really appear.

Example 1. Let R := {(x, y) : d(x, y) = 1 ∨ d(x, y) = 3}, and set Γ := (Z;R).
Set e(3k) := 3k, e(3k + 1) := 3k + 1, and e(3k + 2) := 3k, for all k ∈ Z. Then e
is an endomorphism of Γ . It does not generate any finite range operations since
it satisfies e(v + 3) = e(v) + 3 for all v ∈ Z.

Observe that in the previous example, we checked that e is of the non-finite-
range type by virtue of the easily verifiable Item (iii) of Lemma 4 and without
calculating c(Γ ), which is more complicated.



168 M. Bodirsky et al.

Example 2. For the same structure Γ , let e be the function which maps every
x ∈ Z to its value modulo 4. Then e is an endomorphism which has finite range.

Example 3. Set R := {(x, y) : d(x, y) ∈ {1, 3, 6}} and S := {(x, y) : d(x, y) = 3}.
Then Γ := (Z;R,S) has the endomorphism from Example 1. However, it does
not have any finite range endomorphism. To see this, consider the set Z3 :=
{3m : m ∈ Z}. If e were a finite range endomorphism, it would have to map this
set onto a finite set. Assume wlog that e(0) = 0 and e(3) > 0. Then e(3) = 3
as e preserves S. We claim e(s) = s for all s ∈ Z3. Suppose to the contrary
that s is the minimal positive counterexample (the negative case is similar). We
have e(s − 3) = s − 3 and hence, as e preserves S, e(s) ∈ {s − 6, s}. If we had
e(s) = s− 6, then e(s− 6) = s− 6 and (s− 6, s) ∈ R yields a contradiction.

Example 4. Let Γ = (Z; sym-succ), and let e be the function that maps every
x to its absolute value. Then e does not have finite range, but does generate a
function with finite range (of size 2).

The proof of Lemma 3 generalizes canonically to a more general situation, whose
proof is as that of Lemma 3, with D replaced by q.

Lemma 5. Let e be an endomorphism of Γ satisfying the various statements
of Lemma 4. Let q be so that d(x, y) = q implies that d(e(x), e(y)) ≤ q. Then e
satisfies either e(v + q) = e(v) + q for all v ∈ Z, or e(v + q) = e(v) − q for all
v ∈ Z.

Given an endomorphism e of Γ , we call all positive natural numbers q with the
property that e(v+ q) = e(v)+ q for all v ∈ Z or e(v+ q) = e(v)− q for all v ∈ Z

stable for e. Observe that if e satisfies the various statements of Lemma 4, then
D is stable for e. Note also that if p, q are stable for e, then they must have the
same “direction”: We cannot have e(v + p) = e(v) + p and e(v + q) = e(v) − q
for all v ∈ Z.

Lemma 6. Let e satisfy the various statements of Lemma 4, and let q be the
minimal stable number for e. Then the stable numbers for e are precisely the
multiples of q. In particular, q divides D.

Lemma 7. Let e be an endomorphism of Γ satisfying the hypotheses of Lemma 4.
Let q be its minimal stable number. Then e can be composed with automorphisms
of (Z; succ) to obtain an endomorphism t with the following properties:

• t satisfies either t(v + q) = t(v) + q or t(v + q) = t(v)− q
• t(0) = 0
• t[Z] = {q · s : s ∈ Z}.

Lemma 8. Let e be an endomorphism of Γ which is not an automorphism of
(Z; sym-succ). Then e is not injective.

Proof. If e generates a finite range operation then the lemma follows immedi-
ately, so assume this is not the case. Then e has a minimal stable number q.
Since e is not an automorphism of (Z; sym-succ), we have q > 1. But then the
statement follows from the preceding lemma, since the function t is not injective.
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Lemma 9. Let e be an endomorphism of Γ which is not an automorphism of
(Z; sym-succ) and which does not generate a finite range operation. Then e is
not surjective.

Proof. This is a direct consequence of Lemma 7, since being surjective is pre-
served under composition.

4 Definability of Successor

In this section we show how to reduce the complexity classification for distance
constraint satisfaction problems with template Γ to the case where either Γ has
a finite core, or the relation succ is pp-definable in Γ . We make essential use
of the results of the previous section; but note that in this section we do not
assume that Γ is connected.

Theorem 2. Every finite degree relational structure Γ with a first-order defini-
tion in (Z; succ) is either homomorphically equivalent to a finite structure, or to a
connected finite-degree structure Δ with a first order definition in (Z; succ) which
satisfies one of two possibilities: CSP(Δ) (and, hence, CSP(Γ )) is NP-hard, or
succ is definable in Δ.

The proof of Theorem 2 involves the succeeding lemmata and is omitted. The
following lemma demonstrates how the not necessarily connected case can be
reduced to the connected case.

Lemma 10. Every finite degree relational structure Γ with a first-order def-
inition in (Z; succ) is homomorphically equivalent to a connected finite-degree
structure Δ with a first order definition in (Z; succ).

Lemma 11. Let (a1, . . . , ak), (b1, . . . , bk) ∈ Zk. Then there is an automorphism
α of (Z; succ) with α(ai) = bi for all i ≤ k if and only if ai − aj = bi − bj for all
1 ≤ i, j ≤ k.

Lemma 12. Suppose that Γ is connected. Then there is an n0 such that Γ [{1, . . .
, n}] is connected for all n ≥ n0.

Lemma 13. Suppose that Γ is connected and of finite degree. Then there are
n0 and c such that for all n ≥ n0 and any homomorphism f from Γ [{1, . . . , n}]
to Γ we have that d(f(x), f(y)) ≤ c+ d(x, y) for all x, y ∈ {1, . . . , n}.

Proof. Let n0 be the number from Lemma 12. Then for all n ≥ n0, the structure
Γ [{1, . . . , n}] is connected. Now, proceed as in Lemma 1.

Proposition 1. Let Γ be a connected finite-degree structure with a first-order
definition in (Z; succ). Assume that every endomorphism of Γ is an automor-
phism of (Z; sym-succ). Then for all a1, a2 ∈ Z there is a finite S ⊆ Z that
contains {a1, a2} such that for all homomorphisms f from Γ [S] to Γ we have
d(f(a1), f(a2)) = d(a1, a2).
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Corollary 1. Suppose that Γ is a connected finite-degree structure with a first-
order definition in (Z; succ), and suppose that all endomorphisms of Γ are au-
tomorphisms of Γ . Then either the relation sym-succk = {(x, y) | d(x, y) = k} is
pp-definable in Γ for every k ≥ 1, or the relation succk = {(x, y) | x− y = k} is
pp-definable in Γ for every k ≥ 1.

Proposition 2. Suppose that for all k the relation sym-succk = {(x, y) ∈ Z2 |
d(x, y) = k} is pp-definable in Γ . Then CSP(Γ ) is NP-hard.

Proof. Observe that the primitive positive formula ∃y.d(x, y) = 1 ∧ d(y, z) = 5
defines the relation R = {(x, z) | d(x, z) ∈ {4, 6}}. The structure (Z;R) decom-
poses into two copies of the structure (Z;S) where S = {(x, y) | d(x, y) ∈ {2, 3}}.
This structure has the endomorphism x �→ x mod 5, and the image induced
by this endomorphism is a cycle of length 5, which has a hard CSP (this
is well-known; for a much stronger result on undirected graphs, see Hell and
Nešetřil [14]).

5 The Power of Consistency

All tractable distance constraint satisfaction problems for templates without a
finite core can be solved by an algorithmic technique known as local consistency.
We prove these tractability results in this section.

A majority operation on a set X is a mapping f : X3 → X satisfying

f(x, x, y) = f(x, y, x) = f(y, x, x) = x .

An n-ary relation R on a set X is 2-decomposable if R contains all n-tuples
(t1, . . . , tn) such that for every 2-element subset I of {1, . . . , n} there is a tuple
s ∈ R such that ti = si for all i ∈ I.

We need the following concept to prove the algorithmic results in this paper.
Let Δ be a structure with a (not necessarily finite) relational signature τ , and
let φ be a conjunction of atomic τ -formulas with variables V . For k > 0, we say
that φ is k-consistent (with respect to Δ) if for every assignment α of k − 1
variables x1, . . . , xk−1 ∈ V to elements from Δ and for every variable xk ∈ V
the assignment α can be extended to xk such that all conjuncts of φ that involve
no other variables than x1, . . . , xk are satisfied over Δ by the extension of α. We
say that φ is strongly k-consistent if φ is j-consistent for all j with 2 ≤ j ≤ k.
We say that φ is globally consistent if φ is k-consistent for all k > 0.

The following has been shown in [17] (with an explicit comment in Section
4.4 that the result also holds on infinite domains).

Theorem 3 (Special case of Theorem 3.5 of [17]). Let Γ be a structure
with a majority polymorphism. Then every relation R of Γ is 2-decomposable.
Moreover, every strongly 3-consistent conjunction of atomic formulas is also
globally consistent with respect to Γ .
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In the proof of the following theorem, and in the next section, it will be con-
venient to represent binary relations R ⊆ Z2 with a first-order definition in
(Z; succ) by sets of integers as follows: the set S represents the binary relation
RS := {(x, x + k) | k ∈ S}. Conversely, when R is a binary relation with a
first-order definition in (Z; succ), let S(R) be the set such that RS(R) = R. It
is easy to see that every binary relation of finite degree and with a first-order
definition in (Z; succ) is of the form RS for some finite S.

Theorem 4. Let Γ be a finite degree structure with a first-order definition in
(Z; succ). If Γ has a majority polymorphism, then CSP(Γ ) is in P.

Definition 1. The d-modular median is the ternary operation md : Z3 → Z

defined as follows:

– If x, y, z are congruent modulo d, then md(x, y, z) equals the median of x, y, z.
– If precisely two arguments from x, y, z are congruent modulo d thenmd(x, y, z)

equals the first of those arguments in the ordered sequence (x, y, z).
– Otherwise, md(x, y, z) = x.

Clearly, d-modular median operations are majority operations.

Corollary 2. Let Γ be a finite-degree structure with a first-order definition in
(Z; succ) and a finite relational signature, and suppose that Γ has a modular
median polymorphism. Then CSP(Γ ) is in P.

6 Classification

In this section we finish the complexity classification for those Γ that do not
have a finite core. The main result of Section 4 shows that, unless Γ has a
finite core, for the complexity classification of CSP(Γ ) we can assume that the
structure Γ contains the relation succ. In the following we therefore assume that
the structure Γ contains the relation succ; moreover, we freely use expressions
of the form x − y = d, for fixed d, in primitive positive definitions since such
expressions have themselves pp-definitions from succ and therefore from Γ . Our
main result will be the following, whose proof is omitted.

Theorem 5. Let Γ be a first-order expansion of (Z; succ). Then Γ is preserved
by a modular median and CSP(Γ ) is in P, or CSP(Γ ) is NP-hard.

A d-progression is a subset of Z of the form {k, k + d, . . . , k + ld}, for some
k, l ∈ Z. We shall denote {k, k + d, . . . , k + ld} by [k, k + ld]d.

Proposition 3. Let R ⊆ Z2 be a finite-degree binary relation with a first-order
definition in (Z; succ). Then the following are equivalent.

1. R is preserved by the d-modular median md;
2. R = RS for a d-progression S.
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Proposition 4. Let a, b be two odd numbers such that a < b. Then CSP(Z; succ,
R{0,a,b,a+b}) is NP-hard.

Proposition 5. Let a, b, c ∈ Z with b �= c. Then CSP(Z; succ, R{a,b}, R{a,c}) is
NP-hard.

Lemma 14. Let S be a finite set of integers with |S| > 1 and let d be the greatest
common divisor of all a−a′ with a, a′ ∈ S. For any d-progression T , the relation
RT is pp-definable in (Z; succ, RS).

Proposition 6. Let Γ be a structure with only binary relations of finite degree
with a first-order definition in (Z; succ). Then either Γ is preserved by a modular
median, or CSP(Z; succ) is NP-hard.

Corollary 3. Γ has a finite core, or CSP(Γ ) is in P or NP-complete.

Proof. Suppose that Γ does not have a finite core. Let Δ be the substructure
of Γ as described in Theorem 2. Clearly, CSP(Γ ) and CSP(Δ) are the same
problem. Unless CSP(Γ ) is NP-hard, the relation succ is pp-definable in Δ. By
the fundamental theorem of pp definability, the CSP of the expansion of Δ by
the successor relation has the same complexity as CSP(Δ). Now the claim follows
from Theorem 5.

7 Concluding Remarks

Structures with a first-order definition in (Z; succ) have a transitive automor-
phism group, i.e., for every x, y ∈ Z there is an automorphism of Γ that maps x
to y. We call such structures Γ transitive as well. It is well-known and easy to
prove (see e.g. [15]) that a finite core of a transitive structure is again transitive.

The complexity of the CSP for finite transitive templates has not yet been
classified. The following is known.

Theorem 6 (of [8]). Let Γ be a finite core. If there is a primitive positive
interpretation of the structure Δ := ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}) in Γ ,
then CSP(Γ ) is NP-complete.

The following conjecture is widely believed in the area.

Conjecture 1 (of [8]). Let Γ be a finite core. If there is no primitive positive
interpretation of the structure Δ := ({0, 1}; {(0, 0, 1), (0, 1, 0), (1, 0, 0)}) in Γ ,
then CSP(Γ ) is in P.

We believe that this conjecture might be easier to show for transitive finite cores
only. Note that by transitivity, the polymorphism algebra of Γ has no proper
subalgebras. Since Γ is a core, all polymorphisms are surjective. It follows from
known results [8] that, unless CSP(Γ ) admits a primitive positive interpreta-
tion of Δ, all minimal factors of the polymorphism algebra contain an affine
operation.
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Abstract. We combine two techniques recently introduced to obtain
faster dynamic programming algorithms for optimization problems on
graph decompositions. The unification of generalized fast subset convo-
lution and fast matrix multiplication yields significant improvements to
the running time of previous algorithms for several optimization prob-
lems. As an example, we give an O∗(3

ω
2 k) time algorithm for Minimum

Dominating Set on graphs of branchwidth k, improving on the previous
O∗(4k) algorithm. Here ω is the exponent in the running time of the
best matrix multiplication algorithm (currently ω < 2.376). For graphs
of cliquewidth k, we improve from O∗(8k) to O∗(4k). We also obtain
an algorithm for counting the number of perfect matchings of a graph,
given a branch decomposition of width k, that runs in time O∗(2

ω
2 k).

Generalizing these approaches, we obtain faster algorithms for all so-
called [ρ, σ]-domination problems on branch decompositions if ρ and σ
are finite or cofinite. The algorithms presented in this paper either attain
or are very close to natural lower bounds for these problems.

1 Introduction

Graph decompositions have over the last few years shown their worth in attack-
ing NP-hard graph optimization problems. Most of this success is due to tree
decompositions, which form the basis of results in many areas, from approxi-
mation algorithms to exact algorithms and have become part of any algorith-
mic toolbox. This success has motivated researchers to define and study other
types of graph decompositions that are ‘better’ than tree decompositions. In
this paper, we investigate algorithms for optimization problems on two such de-
compositions, namely branch decompositions and clique decompositions. By for
the first time combining two recent techniques used in designing algorithms on
graph decompositions, generalized fast subset convolution and fast matrix mul-
tiplication, in conjunction with the use of asymmetric vertex states, we obtain
significant improvements on previous results.
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Algorithmic Techniques. Fast subset convolutions were introduced by
Björklund et al. [1] to improve the running time of algorithms for optimization
problems admitting a convolution-like recursive definition. These ideas were re-
cently applied and generalized to show that a whole range of problems has faster
algorithms on tree decompositions [16]. In particular, Van Rooij et al. [16] showed
that Minimum Dominating Set has an O(n tw2(G) 3tw(G)) time algorithm. Us-
ing a generalized form of fast subset convolutions, they were able to obtain the
fastest algorithms for a large class of so-called [ρ, σ]-domination problems.

Matrix multiplication has been used for a much longer time as a basic tool for
solving combinatorial problems. The best possible exponent in the running time
of an algorithm performing multiplication of two n × n matrices is denoted by
ω, i.e. the running time is O(nω). Currently we know that ω < 2.376, due to an
algorithm by Coppersmith and Winograd [4], but it is frequently hypothesized
that ω = 2. Dorn [8] recently showed that matrix multiplication can also be used
as a tool in solving many optimization problems on branch decompositions.

One of the main results of this paper is that fast subset convolutions and fast
matrix multiplication can be combined to obtain faster algorithms on branch
decompositions for many optimization problems.

Graph Decompositions. The notion of a branch decomposition was proposed
by Robertson and Seymour as part of their graph minors project [12]. All of the
recent results aimed at obtaining faster exact or fixed-parameter algorithms for
Minimum Dominating Set on planar graphs and graphs excluding a fixed minor
rely on branch decompositions [9,10,8]. The branchwidth and the treewidth of
a graph are very closely related; the branchwidth of a graph is always less than
its treewidth, but never by more than a factor 2/3.

The notion of cliquewidth was first studied by Courcelle et al. [5]. Whereas
the treewidth of the n-vertex clique is equal to n− 1, its cliquewidth is equal to
2. Moreover, the cliquewidth of a graph is always bounded by a function of its
treewidth [6]. This makes cliquewidth an interesting graph parameter to consider
on graphs where the tree- or branchwidth is too high for efficient algorithms.

Our Results. In this paper, we improve on the currently best algorithms for
Minimum Dominating Set on branch and clique decompositions. Dorn [8] showed
that Minimum Dominating Set has an O(m 4k) time algorithm on branch de-
compositions of width k. By combining fast subset convolution and fast matrix
multiplication, we improve on this algorithm and obtain an O(mk2 3

ω
2 k) time

algorithm. A further innovation is the use of asymmetric vertex states. When
combining two tables in this kind of dynamic programming algorithms, the set
of vertex states used by these tables is always the same. We however use different
states to obtain further speed-ups.

This result extends to counting the number of dominating sets of each size.
Another counting problem where we can apply this technique is counting the
number of perfect matchings of a graph. This problem generalizes the problem of
computing the permanent of a matrix and is a well-known #P-hard problem [15].



176 H.L. Bodlaender et al.

We give an algorithm for this problem on branch decompositions, running in time
O(mk22

ω
2 ki×(n)), where i×(n) is the time to multiply two n-bit numbers.

Using the ideas of these algorithms, we solve existence, minimization, maxi-
mization and counting variations of all [ρ, σ]-domination problems with finite or
cofinite σ and ρ in O∗(s

ω
2 k) time, where s is the number of vertex states used.

Examples of such problems are Strong Stable Set, Independent Dominating Set,
Perfect Code, Induced Bounded Degree Subgraph, and p-Dominating Set.

On clique decompositions, we report an even bigger improvement for Mini-
mum Dominating Set. We present an O∗(4cw(G)) time algorithm improving the
current best O∗(8cw(G)) time algorithm obtained in [3].

2 Preliminaries

A branch decomposition (T, l) of a graph G is a ternary tree T and a bijection l
between the edges of G and the leaves of T . Associated with every edge e ∈ E(T )
is the middle set Xe of e, defined as the set of vertices in V(G) which have incident
edges e1, e2 such that the leaves l(e1) and l(e2) are in different components of
T −e. The width of a branch decomposition is the size of the largest set Xe. The
branchwidth bw(G) is the minimum width of a branch decomposition of G.

Create a root of T as follows. Choose an edge e = (t, t′) ∈ E(T ), subdivide it,
and add a new vertex r to T adjacent to the vertex created in the subdivision.
The middle set of each edge of the subdivision is set to Xe and the middle set of
the edge incident to r is set to ∅. Root T at r. Given any edge (t, t′) = e ∈ E(T ),
we can now speak of Te, which is the subtree of T induced by t, t′, and their
descendants. The root of Te is t or t′, whichever is closer to r in T .

Consider an arbitrary internal vertex v ∈ V (T ) and let e, f, g be its incident
edges, such that e connects to the parent of v (and f, g to the two children of
v). We call f the left child of e and g the right child. Consider the middle sets
Xe, Xf , Xg. Note that any vertex in at least one of these sets is in at least two
of them. We can then partition Xe ∪Xf ∪Xg into four sets:

I = Xe ∩Xf ∩Xg L = (Xe ∩Xf)− I
R = (Xe ∩Xg)− I F = (Xf ∩Xg)− I

Observe that I, L, and R partition Xe, I, L, and F partition Xf , and I, R, and
F partition Xg. We can now prove the following lemma.

Lemma 1. |Xe ∪Xf ∪Xg| = |I|+ |L|+ |R|+ |F | ≤ 3
2 · bw(G).

The notion of cliquewidth is defined as follows. A k-expression combines any
number of the following four operations:

– create a new labelled graph with one vertex labelled i ∈ {1, . . . , k},
– relabel all vertices with label i to j (i �= j),
– connect all vertices with label i to all vertices labelled j (i �= j),
– take the disjoint union of two labelled graphs.
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The cliquewidth cw(G) of a graph G is the minimum k for which there is a k-
expression that evaluates to a graph isomorphic to G. This definition can also
be turned into a decomposition based on a rooted tree of degree at most three,
labeling leaves of the tree by vertices of G and internal vertices by one of the
above operations. We call this a clique decomposition. However, the definition of
k-expressions is more useful in this paper.

Given sets ρ, σ ⊆ N, a [ρ, σ]-dominating set is a subset D ⊆ V such that
|N(v) ∩ D| ∈ ρ for every v ∈ V \D and |N(v) ∩D| ∈ σ for every v ∈ D. The
[ρ, σ]-domination problems were introduced by Telle in [13,14] and form a large
class of graph covering problems.

Let i×(n) denote the time required to multiply two n-bit integers. Currently,
i×(n) = O(n(log n) 2log∗ n) [11]. Addition and subtraction take O(n) time each.

3 Dominating Set

This section gives a faster algorithm to compute a minimum dominating set of a
graph using a branch decomposition. We start by describing an algorithm that
is actually slower than the O∗(4k) time algorithm of Dorn [8], but which serves
to simplify the presentation of our algorithm. Then we show how to improve it.

The main ingredient of the algorithm are vertex states. For example, the fol-
lowing states can be useful in the dominating set problem:

1 the vertex is in the dominating set
01 the vertex is not in the dominating set and it is dominated
00 the vertex is not in the dominating set and it is not dominated
0? the vertex is not in the dominating set and it might be dominated

An assignment of states to the vertices of some middle set Xe is called a coloring
of this set. Depending on which vertex states we are allowed to use, a dominating
set can induce several colorings on a set of vertices Xe. Initially we will only use
vertex states 1, 00, and 01. We will later see other combinations in use.

Let (T, l) be a branch decomposition rooted at a vertex r as described before.
For each edge (t, t′) = e ∈ E(T ), we will compute a function Ae : {1, 01, 00}Xe ×
[0 . . .n] → N. Given a coloring c of the vertices in Xe and a number i ∈ [0 . . .n],
Ae(c, i) equals the number of dominating sets D of G[X(Te)] such that |D| = i
and such that D induces the coloring c on Xe. Here X(Te) =

⋃
f∈Te

Xf . Notice
that although we speak of a dominating set, it may be so that some vertices in
G[X(Te)] remain undominated. These vertices then have state 00 in c (or 0? if
we would have used a different set of states).

We can compute the functions Ae bottom-up over the tree T . We start at
edges e incident with leaves of T that are not the root. These leaves correspond
to an edge of G. Hence G[X(Te)] is a two-vertex graph. In this case, we simply
construct the function Ae by initializing all values to zero and then enumerating
all subsets D of these two vertices. For each of these sets D we add 1 to each
entry of Ae in which coloring c and size i corresponds to the set D.

For any edge e not incident with a leaf, let f and g be its left and right child.
Recall the definition of the sets I, L, R, F induced by Xe, Xf , and Xg. Given
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a coloring c, let c(I) denote the coloring of the vertices of I induced by c. We
define c(L), c(R), and c(F ) similarly. Given a coloring ce of Xe, a coloring cf of
Xf , and a coloring cg of Xg, we say that these colorings match if

– For any v ∈ I: either ce(v) = cf (v) = cg(v) ∈ {1, 00}, or ce(v) = 01 while
cf (v), cg(v) ∈ {00, 01} and not cf (v) = cg(v) = 00. (5 possibilities)

– For any v ∈ F : either cf (v) = cg(v) = 1, or cf (v), cg(v) ∈ {00, 01} while not
cf (v) = cg(v) = 00. (4 possibilities)

– For any v ∈ L: ce(v) = cf (v) ∈ {1, 01, 00}. (3 possibilities)
– For any v ∈ R: ce(v) = cg(v) ∈ {1, 01, 00}. (3 possibilities)

Let im = #1(ce(I)) + #1(cf (F )) for any matching ce, cf , cg, where #1(c) is
the number of vertices that are assigned state 1 by c. Then we can count all
dominating sets of G[X(Te)] per corresponding coloring ce on Xe using:

Ae(ce, ie) =
∑

ce,cf ,cg match

∑
ie=if +ig+im

Af (cf , if + im) ·Ag(cg, ig + im),

Proposition 1. Given a branch decomposition of width k of a graph G, one can
count the number of dominating sets of each size in O(mn2 6ki×(n)) time.

Proof. We compute the functions Ae as described above. Let er denote the edge
incident with the root of the branch decomposition. From the definition of Aer ,
Aer (∅, i) contains the number of dominating sets of size i in G.

For all leaf edges e of T , we can compute Ae in O(n) time. For all other
edges, we have to compute O(n 3k) values for Ae, each of which requires O(n)
terms of the above sum per set of matchings states. Since each vertex in I has 5
possible matching states, each vertex in F has 4 possible matching states, and
each vertex in L or R has 3 possible matching states, this leads to a running
time of O(n2 5|I|4|F |3|L|+|R|i×(n)) for computing Ae.

Under the constraint that |I| + |L| + |R|, |I| + |L| + |F |, |I| + |R| + |F | ≤ k,
the running time is maximal if |I| = 0, |L| = |R| = |F | = 1

2k. As T has O(m)
edges, this leads to O(mn24

1
2 k3ki×(n)) = O(mn2 6ki×(n)). 


3.1 Using State Changes to Improve the Algorithm

We start improving the above algorithm by using the state changes introduced
in [16], based on the covering product from [1]. The algorithm of Proposition 1
uses vertex states 1, 01, and 00. On tree decompositions, it has been shown that
it is more efficient to transform the problem to one using states 1, 00, and 0? [16].
We show that we can use similar transformations on branch decompositions.

There is a big difference however between dynamic programming on both
types of decompositions. On tree decompositions one can transform a tree de-
composition such that forget vertices (the vertices in set F ) can be dealt with
separately. This is not possible on branch decompositions, which makes the situ-
ation more complicated. On branch decompositions vertices in F must be dealt
with simultaneously while computing Ae, by merging the results from the two



Faster Algorithms on Branch and Clique Decompositions 179

functions Af and Ag from e’s children. We will overcome this problem by using
different sets of states simultaneously: the set of states used depends on whether
a vertex is in L, R, I or F . Moreover, we do this asymmetrically as different
states can be used on the vertices in Xe, Xf and Xg.

In Proposition 1, we used functions Ae : {1, 01, 00}Xe × [0 . . .n] → N counting
the number of solutions of a given type. We again consider constructing Ae

from Af and Ag as before. Given Af and Ag, we can compute in O(n 3k) time
a function A′

f : {1, 01, 00}L × {1, 0?, 00}I × {1, 01, 00}F × [0 . . .n] → N and a
function A′

g : {1, 01, 00}R × {1, 0?, 00}I × {1, 01, 0?}F × [0 . . .n] → N. The new
functions again count the number of solutions that satisfy the coloring c, but in
this case a single dominating set D can be counted in multiply colorings. Notice
the difference in the states used for A′

f and A′
g on F .

Transforming Af into A′
f can be done by first copying Af into A′

f without
changing the states in the domain and then coordinate-wise, for each vertex
v ∈ I, iteratively transforming the states using the following formula:

A′
f (cv=0? , i) = A′

f (cv=01 , i) +A′
f (cv=00 , i).

Here cv=x is the coloring c with the state of v set to x. This transformation
is invertible as we can also coordinate-wise apply the following similar formula:
A′

f (cv=01 , i) = A′
f (cv=0? , i) − A′

f (cv=00 , i). We are now ready to give the first
improvement of Proposition 1.

Proposition 2. Given a branch decomposition of width k of G, one can count
the number of dominating sets of each size in O(mn23

3
2 ki×(n)) time.

Proof. The algorithm works similar to the one in Proposition 1, only with a
different way of computing Ae from Af and Ag.

Given Af and Ag, we transform these to A′
f and A′

g as shown above. Here
A′

f uses the states {1, 0?, 00} on I and the states {1, 01, 00} on L and F and A′
g

uses the same states on I and the same states on R as ′Af on L. However, A′
g

uses different states on F , namely {1, 01, 0?}. Now two colorings match if:

– For any v ∈ I: ce(v) = cf (v) = cg(v) ∈ {1, 0?, 00}. (3 possibilities)
– For any v ∈ F : either cf (v) = cg(v) = 1, or cf (v) = 00 and cg(v) = 01, or
cf (v) = 01 and cg(v) = 0?. (3 possibilities)

– For any v ∈ L: ce(v) = cf (v) ∈ {1, 01, 00}. (3 possibilities)
– For any v ∈ R: ce(v) = cg(v) ∈ {1, 01, 00}. (3 possibilities)

Notice the difference on I compared to Proposition 1. A vertex is not dominated
(00) if and only if it is not so in both partial solutions we are combining, and the
same for the states 0? and 1, as these do not care about domination. On F we only
use combinations which allow the vertices to be ignored in the rest of the process:
vertices that are either in the dominating set, or are dominated. Moreover, by
using different states for A′

f and A′
g, every combination of partial solutions is

counted exactly once. To see this, consider each of the three combinations on
F used in Proposition 1. The combination with cf (v) = 00 and cg(v) = 01 is
counted using the same combination, while the other two combinations (cf (v) =
01 and cg(v) = 00 or cg(v) = 01) are counted when combining 01 with 0?.
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In this way, we can compute the function A′
e : {1, 01, 00}L × {1, 0?, 00}I ×

{1, 01, 00}R × [0 . . .n] → N using the following formula.

A′
e(ce, ie) =

∑
ce,cf ,cg match

∑
ie=if +ig+im

A′
f (cf , if + im) ·A′

g(cg, ig + im). (1)

Using the new states, O(n2 3|I|+|L|+|R|+|F |i×(n)) time is required to evaluate
the formula. After its evaluation, we reconstruct Ae from A′

e by transforming
it back to using states 1, 01 and 00 as described before. As each transforma-
tion requires O(n 3k) additions, the improved algorithm has a running time of
O(mn2 3|I|+|L|+|R|+|F |i×(n)) = O(mn2 3

3
2 ki×(n)) by Lemma 1. 


3.2 Using Fast Matrix Multiplication

We now apply fast matrix multiplication, as first proposed by Dorn [8]. This
yields the fastest algorithm for dominating set on branch decompositions.

For multiplying a (n × p) matrix A and (p × n) matrix B, we differentiate
between p ≤ n and p > n. Under the condition that ω = 2.376 (the best known
bound [4]), an O(n1.85p0.54) time algorithm is known if p ≤ n [4]. Otherwise, the
matrices can be multiplied in O( p

nn
ω) = O(pnω−1) time by matrix splitting: split

the matrices A and B into p
n many n × n matrices A1, . . .A p

n
and B1, . . .B p

n
,

multiply each of the p
n pairs Ai ×Bi, and sum up the results.

Theorem 1. Given a branch decomposition of width k of a graph G, one can
count the number of dominating sets of each size in O(mn2 3

ω
2 ki×(n)) time.

Proof. Given a coloring of I and numbers ie and if , we show how to evaluate
Equation 1 for all possible colorings on L, R, and F simultaneously using fast
matrix multiplication. Construct a 3|L| × 3|F | matrix Mf where each row corre-
sponds to a coloring of L and each column corresponds to a coloring of F . Let
the entries of Mf be the values of A′

f (cf , if + im) for all cf corresponding to the
colorings of L and F of the row and column, and corresponding to the fixed col-
oring on I and the number if . Construct a similar 3|F |× 3|R| matrix Mg for A′

g

such that its rows correspond to different colorings of F and its columns of Mg

correspond to different colorings of R. The entries of Mg are A′
g(cg, ie − if ). We

permute the rows of Mg such that column i of Mf and row i of Mg correspond
to matching colorings on F and thus the value of im matches as well.

Now we can compute Equation 1 by computing Me = Mf ·Mg. The rows of
Me correspond to colorings of L and the columns correspond to colorings of R.
An entry of Me in row i and column j contains the value of A′

e(ce, ie) as specified
by Equation 1, where ce is the coloring induced by the coloring corresponding to
row i and to column j and the coloring for I we fixed. Thus we can compute the
value of A′

e(ce, ie) by a series of n matrix multiplications. Hence we can compute
the function A′

e by n2 3|I| matrix multiplications.
The time required to compute A′

e in this way depends on |I|, |L|, |R|, |F |.
Under the constraint that |I| + |L| + |F |, |I| + |R| + |F |, |I| + |L| + |R| ≤ k
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and using the matrix multiplication algorithms described above this theorem,
the worst case arises when |I| = 0 and |L| = |R| = |F | = k

2 . In this case, we
compute each A′

e in O(n2(3
k
2 )ωi×(n)) time. This proves the theorem. 


Using that dominating set has finite integer index [2] and by only storing the
size of a minimum dominating set instead of counting, we prove the following.

Corollary 1. Given a width k branch decomposition of a graph G, the size of a
minimum dominating set of G can be found in O(mk2 3

ω
2 k).

4 Counting Perfect Matchings

We give a fast algorithm counting the number of perfect matchings of a graph.

Theorem 2. Given a branch decomposition of width k of a graph G, one can
compute the number of perfect matchings of G in O(mk2 2

ω
2 ki×(n)) time.

Proof. Given a branch decomposition (T, l) of a graph G, we again compute a
table Ae for each e ∈ E(T ). Each vertex in Xe uses states {0, 1}, where a vertex
is in state 1 if and only if it is matched to some vertex in X(Te) by an edge
in a leaf below e in T . Then for any coloring c of Xe, Ae(c) is the number of
perfect matchings of the graph H = (V,E), where V = X(Te) − 0(c) and E
equals the set of edges in leaves below e in T . Here 0(c) is the set of vertices that
are assigned state 0 by c. The number of perfect matchings then is Aer (∅).

To join the tables Af and Ag of two middle sets Xf and Xg to compute table
Ae for Xe, we compute a table Af (c, i) such that Af (c, i) = Af (c) if #1(c(I)) = i
and 0 otherwise. A table Ag(c, i) is computed similarly. Applying state changes
as in [16] and matrix multiplication in a similar way as before, we can compute
Ae in O(mk22

ω
2 ki×(n)) time. The parameter i is used to track matched vertices

in spite of the state changes and ensures that no vertex is matched twice. This
is similar to applying fast subset convolutions [1]. Details in the full paper. 


5 [ρ, σ]-Domination Problems

We have shown how to solve two fundamental graph problems in O∗(s
ω
2 k) time

on branch decompositions of width k, where s is the number of states used.
Below, we generalize our results and show that one can solve all [ρ, σ]-domination
problems with finite or cofinite ρ and σ in O∗(s

ω
2 k) time. This includes the

existence, minimization, maximization, and counting variants of the problems.
For [ρ, σ]-domination problems, we use states ρj and σj , where ρj and σj

represent that a vertex is respectively in or not in the [σ, ρ]-dominating set D
and has j neighbors in D. For finite ρ, σ, we use states {ρ0, . . . , ρp, σ0, . . . , σq}.
If ρ or σ is cofinite, we replace the last state by ρ≥p or σ≥q, respectively. To
simplify the exposition of the algorithm, we restrict our description to finite ρ
and σ. Note that the number of states used equals s = p+ q + 2.

We can essentially use the approach of [16] for the vertices in I. We thus do
not repeat the details here and treat it more or less as a black box below.
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There are two things we need to know however about this black box. First, the
approach ensures that colorings ce, cf , cg match on I if they are the same on I.
Therefore, if for any fixed coloring on I we can perform a join operation on L, R,
and F in O∗(α|L|β|R|γ|F |) time, then we can construct Ae in O∗(α|L|β|R|γ|F |s|I|)
time. Secondly, we need to know how this black box keeps track of the number
of neighbors in D of each vertex in the partial solutions that we are combining.
This works in the following way: if we combine two partial solutions with states
ρi and ρj on a vertex v ∈ I, then the resulting combination will have state ρi+j

on v. This is important because this can lead to errors in the following sense. If
v has a neighbor u ∈ D in both partial solutions, then this neighbor is counted
in both i and j, and combining these partial solutions to one with state ρi+j is
incorrect as u can now be counted twice.

Theorem 3. Let ρ, σ ⊆ N be finite or cofinite, and let s be the number of
states used in the given representation of the associated [ρ, σ]-domination prob-
lem. Then, given a branch decomposition of width k of a graph G, one can
compute the number of [ρ, σ]-dominating sets of G of each size in O∗(s

ω
2 k) time.

Proof. In this proof, we use the approach of [16] as a black box to combine
solutions on I. We use states ρj and σj for Ae, Af , and Ag such that the
subscripts j represent the number of neighbors in each [σ, ρ]-dominating set
D outside Xe, Xf and Xg, respectively. Because the black box uses the principle
that ρi and ρj are combined to ρi+j on I, we first perform some preprocessing.

We construct functions A′
f and A′

g identical to Af and Ag with states ρ′i and
σ′i such that the subscripts of the states used in A′

f and A′
g count the number

of neighbors in D with the following properties:

– States used in A′
f on vertices in L or I count neighbors in (X(Tf )−Xf )∪F .

– States used in A′
f on vertices in F count neighbors in (X(Tf )−Xf )∪L∪ I.

– States used in A′
g on vertices in R count neighbors in (X(Tg)−Xg) ∪ F .

– States used in A′
g on vertices in F count neighbors in (X(Tg)−Xg) ∪R.

If we then combine partial solutions with, for a vertex in I, a state ρ′i in A′
f and

a state ρ′j in A′
g, then the new state ρ′i+j in A′

e correctly counts the number of
neighbors on (X(Te)−Xe). Also, states for vertices in L and R in Ae count their
neighbors in F ∩D. And, if we combine solutions with for a vertex in F a state
ρ′i in A′

f and a state ρ′j in A′
g, then this vertex will have exactly i+ j neighbors

in D. Hence the resulting A′
e equals the function Ae we want to compute.

We construct A′
f from Af by setting A′

f (cf , i) to Af (c′f , i), where c′f is ob-
tained from cf as specified above, or to 0 if no such c′f exists. Finding c′f from cf
is straightforward. For example, if in a coloring cf a vertex v ∈ F has state ρj ,
then in c′f this vertex must have state ρj−d, where d is the number of neighbors
of v in L∪ I that have state σi for some i. We construct A′

g from Ag in the same
way, keeping in mind the difference in states used.

Using the combination on I as a black box, what remains is the combination
of A′

f and A′
g on L, R, and F . For a fixed coloring of I, we combine all possible

colorings on L, R, and F simultaneously using fast matrix multiplication. To
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do so, we permute the rows and columns of the matrices such that the part of
a coloring cf for A′

f on F is combined with a unique coloring cg for A′
g on F .

To this end, we transform the states on A′
g to different states. We thus obtain

asymmetric states, similar to the algorithm for dominating set.
For colorings cg for A′

g on F , we transform state set {ρ′0, . . . , ρ′p, σ′0, . . . , σ′q}
to the set {ρ′0̄, . . . , ρ

′
p̄, σ

′
0̄, . . . , σ

′
q̄}. Here ρ′

j̄
is used for a vertex that is not in D

and has i neighbors in D such that j + i ∈ ρ, and σ′
j̄

is used for a vertex that is
in D and has i neighbors in D such that j + i ∈ σ.

These transformations take O∗(s|F |+1) time by applying the following formu-
las coordinate-wise to a copy A∗

g of the function A′
g.

A∗
g(cv=ρ′̄

j
) =

∑
i+j∈ρ

A∗
g(cv=ρ′

i
) A∗

g(cv=σ′̄
j
) =

∑
i+j∈σ

A∗
g(cv=σ′

i
).

Notice that if we combine a state ρ′j from A′
f with a state ρ′

j̄
from A∗

g, then valid
combinations in which this vertex is not in the set D are counted. The same
goes with σ′j from A′

f with a state σ′
j̄

from A∗
g for vertices in D.

We can now, for a fixed coloring on I, construct two matrices as before.
Computing Ae this way requires O∗(s|I|) matrix multiplications of a s|L| × s|F |

matrix and a s|F | × s|R| matrix. This gives a running time of O∗(s
ω
2 k). 


6 Cliquewidth

On graphs of bounded cliquewidth, we show how to improve from O∗(8k) time
obtained previously [3] to O∗(4k) time for computing Minimum Dominating Set.

Theorem 4. Given a k-expression for a graph G, one can compute the number
of dominating sets of G of each size in O(n3 (k2 + i×(n)) 4k) time.

Proof. An operation in a k-expression applies a procedure on labelled graph H ′,
transforming it to a graph H . In the case of the union-operation, the operation
takes two labelled graphs H1 and H2 as an input and combines them to a graph
H . For a labelled graph H , we use Vi to denote the set of vertices in H with
label i. In contrast to the algorithm on branch decompositions, we do not assign
states to individual vertices, but assign them to the sets V1, . . . , Vk instead.

To each Vi, we assign two attributes, inclusion and domination. The first
determines whether at least one vertex of Vi is included in a partial solution. We
use states T , F , ? to indicate whether this is true, false, or optional respectively.
The second attribute determines whether all vertices of Vi are dominated in a
partial solution. We use states T , F , ? to indicate whether this is true, false, or
optional respectively. The states we use are a combination of both attributes.

For any graph constructed in the k-expression, we will compute a table A(c, κ)
which stores the number of partial solutions to the dominating set problem of
size κ that induce the coloring c.

Consider the first operation, creating a labelled graph H with one vertex with
label i. Assume w.l.o.g. that i = k and let c be the coloring of V1, . . . , Vi−1 such
that the first attribute is F and the second attribute is T for all labels. Then
A(c× (T, T ), 1) = A(c× (F, F ), 0) = 1. All other entries of A are 0.
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The second operation relabels vertices with label j to label i. If Vi = ∅ or
Vj = ∅, this is trivial. Otherwise (w.l.o.g. i = k and j = k − 1),

A(c× (r, r′)× (s, s′), κ) =
∑

t∨u=s

∑
t′∧u′=s′

A(c× (t, t′)× (u, u′), κ)

if ¬r∧ r′, and 0 otherwise, where c is any coloring of V1, . . . , Vj−1. Note that for
Vj , the first attribute is F and the second is T in any valid partial solution. If Vi

must have a vertex in the dominating set, then it is in Vi or Vj originally. If all
vertices in Vi must be dominated, all vertices in Vi and Vj must be dominated.

The third operation connects all vertices with label i to all with label j. If Vi

or Vj is ∅, this is trivial. Otherwise (w.l.o.g. i = k and j = k − 1),

A(c× (r, r′)× (s, s′), κ) =
∑

t′∨s=r′

∑
u′∨r=s′

A(c× (r, t′)× (s, u′), κ)

where c is any coloring of V1, . . . , Vj−1. If Vi and Vj are connected and Vi (resp.
Vj) contains a vertex in the dominating set, then Vj (resp. Vi) is dominated.

The fourth operation joins two labelled graphs H1 and H2 with tables A1 and
A2 to a labelled graph H with table A. To do this efficiently, we apply state
changes. We use states F and ? for the first attribute and states T and ? for the
second attribute. Changing A1 and A2 to tables A∗

1 and A∗
2 that use these states

can be done in a similar manner as before. Then A∗ can be computed using:
A∗(c, κ) =

∑κ
i=0A

∗
1(c, i) · A∗

2(c, κ − i). Using the inverse state change formulae,
we obtain A. Each of the O(n) union operations takes O(n2 4k i×(n)) time, each
of the O(nk2) other operations takes O(n2 4k) time. 


Although Minimum Dominating Set has finite integer index, it is not clear what
this implies for k-expressions. Using other arguments, we can still prove that
for computing the number of minimum dominating sets, the table only needs to
store sets of size at most 2k larger than the minimum set.

Theorem 5. Given a k-expression for a graph G, one can compute (the size
of) a minimum dominating set of G in O(nk2 4k) time.

7 Conclusions

We presented a novel combination of existing techniques to improve on algo-
rithms for graph optimization problems using graph decompositions. In partic-
ular, we gave an O∗(3

ω
2 ·bw(G)) and an O∗(4cw(G)) algorithm for Minimum Dom-

inating Set. These algorithms extend immediately to their counting variant. We
also showed an O∗(2

ω
2 ·bw(G)) algorithm for counting perfect matchings.

On planar graphs, an O∗(3
ω
2 ·bw(G)) algorithm was presented before [8], using

so-called sphere cut branch decompositions [7]. This paper shows that this special
branch decomposition is no longer necessary to obtain the fastest algorithm for
Minimum Dominating Set on planar graphs. In particular, we get anO∗(23.99·

√
n)

time algorithm for Planar Dominating Set and an O∗(211.98·
√

k) algorithm for
its parameterized version, using results of Fomin and Thilikos [9,10].
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The results of this paper attain, or are close to, what seem natural limits
to techniques commonly used for these problems, namely the amount of space
used by any dynamic programming algorithm for these problems on graph de-
compositions. This currently is O(3k) for Minimum Dominating Set on branch
decompositions and O(4k) on clique decompositions. Also, the number of states
used seems the best possible base of the exponent in the running time. Our re-
sult for Minimum Dominating Set on clique decompositions attains this bound.
On branch decompositions, we are very close (the base of the exponent is 3.688)
and under the hypothesis that ω = 2, we attain this bound. Can we get an
O∗(3bw(G)) time algorithm for Minimum Dominating Set in another way?
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Exponential Space Complexity for Symbolic
Maximum Flow Algorithms in 0-1 Networks

Beate Bollig

LS2 Informatik, TU Dortmund,
44221 Dortmund, Germany

Abstract. The maximum flow problem is a central problem in graph al-
gorithms and optimization and OBDDs are one of the most common dy-
namic data structures for Boolean functions. Since in some applications
graphs become larger and larger, a research branch has emerged which is
concerned with the theoretical design and analysis of symbolic algorithms
for classical graph problems on OBDD-represented graph instances. The
algorithm for the maximum flow problem in 0-1 networks by Hachtel and
Somenzi (1997) has been one of the first of these symbolic algorithms. Typ-
ically problems get harder when their input is represented symbolically,
nevertheless not many concrete non-trivial lower bounds are known. Here,
answering an open question posed by Sawitzki (2006) the first exponential
lower bound on the space complexity of OBDD-based algorithms for the
maximum flow problem in 0-1 networks is presented.

1 Introduction

Some modern applications require huge graphs so that explicit representations
by adjacency matrices or adjacency lists are not anymore applicable. Since time
and space do not suffice to consider individual vertices, one way out seems to
be to deal with sets of vertices and edges represented by their characteristic
functions. Since ordered binary decision diagrams, denoted OBDDs, introduced
by Bryant in 1986 [4], are well suited for the representation and manipulation
of Boolean functions, a research branch has emerged which is concerned with
the theoretical design and analysis of so-called symbolic algorithms for classical
graph problems on OBDD-represented graph instances (see, e.g., [9,10], [15,16],
and [21]). Problems on implicitly given graph instances have to be solved by
efficient functional operations offered by the OBDD data structure. At the be-
ginning the OBDD-based algorithms have been justified by analyzing the number
of executed OBDD operations (see, e.g., [9,10]). Since the running time for one
OBDD operation depends on the sizes of the OBDDs on which the operation
is performed, newer research tries to analyze the overall running time of sym-
bolic methods including the analysis of all OBDD sizes occurring during such
an algorithm (see, e.g., [21]).

Since the maximum flow problem is a central problem in graph algorithms
and optimization, the maximum flow problem in 0-1 networks has been one
of the first classical graph problems for which a symbolic algorithm has been

P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 186–197, 2010.
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presented [12]. It has not been the main purpose to beat explicit algorithms on
graphs which can be represented explicitly but to solve the problem for very large
structured graphs in reasonable time and space. Hachtel and Somenzi were able
to compute a maximum flow for a graph with more than 1027 vertices and 1036

edges in less than one CPU minute. Sawitzki [15] has used a well-known method
called iterative squaring to improve the maximum flow algorithm and has shown
that his approach only uses a polylogarithmic number of OBDD operations on
grid graphs. Recently, in [11] symbolic algorithms for maximum flow have been
presented which use a more general model than OBDDs, called algebraic decision
diagrams. The running time is not analyzed but the algorithms are compared
experimentally with classical explicit ones.

Representing graphs with regularities by means of data structures smaller
than adjacency matrices or adjacency lists seems to be a natural idea. But prob-
lems typically get harder when their input is represented implicitly. For circuit
representations this has been shown in [1,8,14]. These results do not directly
carry over to problems on OBDD-represented inputs since there are Boolean
functions like some output bits of integer multiplication whose OBDD complex-
ity is exponentially larger than its circuit size [2,5]. In [7] it has been shown
that the problem of deciding whether two vertices s and t are connected in a
directed graph G, the so-called graph accessibility problem GAP, is PSPACE-
complete on OBDD-represented graphs. Nevertheless, OBDD-based algorithms
are successful in many applications and despite the hardness results there are
not many non-trivial lower bounds known for the complexity of problems on
OBDD-represented graph instances. The challenge seems to be to prove small
upper bounds on the OBDD size of input graphs and simultaneously large lower
bounds on the size of OBDDs occuring during the computation. In [18] expo-
nential lower bounds on OBDD-based algorithms for the single-source shortest
paths problem, the maximum flow problem, and a restricted class of algorithms
for the reachability problem have been presented. Only recently, an exponential
lower bound on the space complexity of all OBDD-based algorithms for reach-
ability has been shown in [3]. Note, that we look at search problems not at
decision problems. The results are not very astonishing but the proofs present
worst-case examples which could be helpful to realize which cases are difficult
to process and why on the other hand OBDD-based algorithms are successful in
many applications. Here, one aim is to obtain worst-case examples which are as
simple as possible.

Our result can be summarized as follows.

Theorem 1. Symbolic OBDD-based algorithms for the maximum flow problem
in 0-1 networks need exponential space with respect to the size of the implicit
representation of the input graph.

Note that we use Sawitzki’s assumption that a separation of working space and
output size is not reasonable in the symbolic setting [18].

In [15] and [21] symbolic algorithms for maximum flow in 0-1 networks and
topological sorting have been presented which have polylogarithmic running time
with respect to the number of vertices of a given grid graph. These results rely
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on restrictions on the maximum number of nodes labeled by the same variable
(the width) of occuring OBDDs during the computation. Since one aim is to find
advantageous properties of real-world instances that cause an essentially better
behavior than in the worst-case, these results have motivated the investigation
of the parameterized complexity of graph problems when structured properties
of input and/or output OBDDs are considered as fixed parameters. (See [6] for a
comprehensive introduction into the field of parameterized complexity.) In [19]
it has been shown that basic graph problems are fixed parameter intractable
with respect to a fixed input OBDD width (unless P= PSPACE). The proof of
Theorem 1 also demonstrates that constant input OBDD width does not suffice
to guarantee polynomial space complexity for the maximum flow problem in 0-1
networks.

The organization of the paper is the following. In Section 2 we define some
notation and present some basics concerning OBDDs, symbolic graph represen-
tations, and the maximum flow problem. Section 3 contains the main result of
the paper. Answering an open question posed by Sawitzki in [17] and strength-
ening his result in [19], we prove that algorithms for the maximum flow problem
in 0-1 networks need exponential space on OBDD-represented graph instances.
Sawitzki’s worst-case example for the general maxflow problem in [18] relies on
the possibility to encode the difficulty of the problem into the edge weights. For
0-1 networks we have to use a different approach.

2 Preliminaries

In order to make the paper self-contained we briefly recall the main notions we
are dealing with in this paper.

2.1 Ordered Binary Decision Diagrams

When working with Boolean functions as in circuit verification, synthesis, and
model checking, ordered binary decision diagrams, denoted OBDDs, are one of
the most often used data structures supporting all fundamental operations on
Boolean functions efficiently.

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.

In the following a variable ordering π is sometimes identified with the corre-
sponding ordering xπ(1), . . . , xπ(n) of the variables, if the meaning is clear from
the context.

Definition 2. A π-OBDD on Xn is a directed acyclic graph G = (V,E) whose
sinks are labeled by Boolean constants and whose non-sink (or decision) nodes
are labeled by Boolean variables from Xn. Each decision node has two outgoing
edges one labeled by 0 and the other by 1. The edges between decision nodes have
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to respect the variable ordering π, i.e., if an edge leads from an xi-node to an
xj-node, then π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)). Each node v
represents a Boolean function fv ∈ Bn, i.e., fv : {0, 1}n → {0, 1}, defined in the
following way. In order to evaluate fv(b), b ∈ {0, 1}n, start at v. After reaching
an xi-node choose the outgoing edge with label bi until a sink is reached. The
label of this sink defines fv(b). The width of an OBDD is the maximum number
of nodes labeled by the same variable. The size of a π-OBDD G is equal to
the number of its nodes and the π-OBDD size of a function f , denoted by π-
OBDD(f), is the size of the minimal π-OBDD representing f . The π-OBDD of
minimal size for a given function is unique up to isomorphism. A π-OBDD for
a function f is called reduced, if it is the minimal π-OBDD for f .

Let f be a Boolean function on the variables x1, . . . , xn. The subfunction f|xi=c,
1 ≤ i ≤ n and c ∈ {0, 1}, is defined as f(x1, . . . , xi−1, c, xi+1, . . . , xn). The size
of the reduced π-OBDD representing f is described by the following structure
theorem [20].

Theorem 2. The number of xπ(i)-nodes of the minimal π-OBDD for f is the
number si of different subfunctions f|xπ(1)=a1,...,xπ(i−1)=ai−1 , a1, . . . , ai−1 ∈ {0, 1},
that essentially depend on xπ(i) (a function g essentially depends on a Boolean
variable z, if g|z=0 �= g|z=1).

Theorem 2 implies the following simple observation which is helpful in order to
prove lower bounds. Given an arbitrary variable ordering π the number of nodes
labeled by a variable x in the reduced π-OBDD representing a given function f
is not smaller than the number of x-nodes in a reduced π-OBDD representing
any subfunction of f .

It is well known that the size of an OBDD representing a function f , that is
defined on n Boolean variables and depends essentially on all of them, depends on
the chosen variable ordering and may vary between linear and exponential size.

Definition 3. The OBDD size or OBDD complexity of f is the minimum of
all π-OBDD(f).

2.2 Symbolic OBDD-Based Graph Representations

In the following for z = (zn−1, . . . , z0) ∈ {0, 1}n let |z| :=
∑n−1

i=0 zi2
i. Let G =

(V,E) be a graph with N vertices v0, . . . vN−1. The edge set E can be represented
by an OBDD for its characteristic function, where XE(x, y) = 1 ⇔ (|x|, |y| <
N) ∧ (v|x|, v|y|) ∈ E, x, y ∈ {0, 1}n and n = �logN�. Undirected edges are
represented by symmetric directed ones. In the rest of the paper we assume that
N is a power of 2 since it has no bearing on the essence of our results.

2.3 The Maximum Flow Problem

The maximum flow problem is a maximization problem on directed graphs G =
(V,E) with a source s ∈ V , a vertex with indegree 0, and a sink t ∈ V , a vertex
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with outdegree 0. Given some capacity constraint function c : E → N, the aim
is to compute a flow f : E → N such that f respects the capacity constraint,
i.e., 0 ≤ f(e) ≤ c(e) for all e ∈ E, f respects the flow constraint at all vertices
v ∈ V \ {s, t}, i.e., ∑

u|(u,v)∈E
f(u, v) =

∑
w|(v,w)∈E

f(v, w),

and f has among all admissible flows the largest value defined by

val(f) =
∑

v|(s,v)∈E
f(s, v).

Moreover, we assume that the graphG is antisymmetric, i.e., (y, x) /∈ E, if (x, y) ∈
E. In the symbolic setting the source is described by a function s(x) which only
takes the value 1, if x is the encoding of the source and the sink by the function
t(x). If the capacity constraint function c is equal to the constant function 1 we
look at the special case of the maximum flow problem in 0-1 networks. Because
all edges have capacity 1 there is a maximum flow fmax such that for all edges
e we know that fmax(e) ∈ {0, 1}. Therefore, we can identify fmax as the set of
edges carrying positive flow. In the symbolic setting we are looking for an OBDD
representation for the characteristic function of this edge set.

3 OBDD-Based Maximum Flow Algorithms in 0-1
Networks Need Exponential Space

In this section we prove Theorem 1 and show that OBDD-based algorithms for
the maximum flow problem in 0-1 networks need exponential space. The proof
structure is the following one. First, we define a pathological graph instance
Gn as input graph for the 0-1 maximum flow problem. We show that the size
of the corresponding OBDD representation for the characteristic function of
its edge set is polynomial with respect to the number of Boolean variables.
Afterwards we prove that there exists a maximum flow represented by its edge
set for which the corresponding characteristic function has exponential OBDD
complexity. Since in Gn a maximum flow is not unique, our proof does not rule
out the possibility that there exists another maximum flow whose OBDD size is
polynomial. Therefore, we refine the result by modifying the input graph such
that the maximum flow is unique. As a consequence we can conclude that every
OBDD-based algorithm which solves the maximum flow problem in 0-1 networks
needs exponential space with respect to its input size. Now, we make our ideas
more precise.

1) The definition of the input graph Gn:
The graph Gn consists of 2n

2
vertices vi1,...,in , ij ∈ {0, . . . , 2n − 1} and j ∈

{1, . . . , n}. The Boolean encoding of the indices i1, . . . , in corresponds to a n×n
Boolean matrix. The source s is equal to the vertex v1,...,1 and the sink t to
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v0,...,0, in other words the Boolean encoding of s corresponds to the constant 1-
matrix, the sink to the constant 0-matrix. There exists an edge from s to a vertex
vi1,...,in in E, iff the number of ones in the Boolean encoding of i1, . . . , in is odd
but not n2 (if n is odd). There exists an edge from a vertex vi1,...,in to the sink t
in E, iff the number of ones is even but not 0 (nor n2 if n is even). Furthermore,
there exists an edge from a vertex vi1,...,in to vj1,...,jn , iff there is an index ik,
k ∈ {1, . . . , n}, that is equal to 2n− 1 (which means that there exists a row only
consisting of 1-entries in the Boolean encoding of i1, . . . , in), the number of ones
in the Boolean encoding of the indices i1, . . . , in is odd (but not n2), the number
of ones in the Boolean encoding of j1, . . . , jn is even (but neither 0 nor n2) and
there exists a column in the Boolean encoding of the indices that consists only
of ones. Figure 1 shows the structure of the input graph Gn.

ts
...

...

...
...

...
...

Fig. 1. The input graph Gn

2) The polynomial upper bound on the OBDD size for the characteristic func-
tion of Gn’s edge set:

The characteristic function of the edge set XE depends on 2n2 Boolean variables.
Our aim is to prove that XE can be represented by OBDDs of size O(n2) and
constant width (maximal number of nodes labeled by the same variable) accord-
ing to the variable ordering x11, . . . , x1n, x21, . . . , xnn, y11, . . . , yn1, y12, . . . , ynn,
where xk1, . . . , xkn is the Boolean encoding of the index ik and xkn the least
significant bit.

Applying Theorem 2 it is sufficient to prove that for every i ∈ {1, . . . , 2n2}
there is only a constant number of different subfunctions obtained by replace-
ments of the first i variables with respect to the considered variable ordering.
W.l.o.g. we assume in the following that n is even. Loosely speaking, different
useful information lead to different subfunctions. Therefore, we have to consider
which information we have to know in order to decide whether the function value
is 1. The x-variables are tested in a rowwise manner, i.e., variables that belong to
the same row are tested one after another. It is checked whether all x-variables
are set to 1 or whether the number of ones altogether is even (but not 0) or
odd and in the latter case whether there exists a row that consists only of ones.
Figure 2 shows a part of the OBDD, where the x-variables of the first row have
already been tested.
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x11
0 1

0 01 1

00

0 0 0

1 1

1 1

1

⎡⎣X = 1

⎤⎦
...

...
...

...
...

...
...

...

x12 x12

x13 x13 x13

x1nx1nx1n

x21 x21 x21

x22 x22 x22 x22 x22

⎡⎣XR = 0
and
XE even

⎤⎦ ⎡⎣XR = 0
and
XE odd

⎤⎦ ⎡⎣XR = 1
and
XE even

⎤⎦⎡⎣XR = 0
and
XE even

⎤⎦

1

0

Fig. 2. A part of an OBDD that checks whether there exists a row that consists only
of 1-entries and the number of 1s altogether is odd or whether there are only 1-entries.
The Boolean variable XR is 1, iff there exists a row that consists only of 1-entries in
the input matrix. The Boolean variable X is 1, if all variables seen so far are set to 1.
The variable XE counts the number of 1-entries.

The OBDD width of this part is 7, since we only have to distinguish 7 different
useful information about the partial assignments to the x-variables:

- whether all variables are set to 1,
- whether there has been a row for which all variables are set to 1 and the

number of ones altogether is odd respectively even, and
- whether there has not yet been a row for which all variables are set to 1 but

the current row contains only 1-entries and the number of ones altogether is
odd respectively even,

- whether there has not yet been a row for which all variables are set to 1, the
current row contains at least one 0-entry, and the number of ones altogether
is odd respectively even.

In the second part of the OBDD the y-variables are tested in a columnwise
manner, i.e., variables that belong to the same column are tested one after
another. There are three y11-variables, one is only reached by the partial as-
signment where all x-variables are set to 1 (that corresponds to the Boolean
encoding of s), another one is reached by all assignments, where there exists an
index k ∈ {1, . . . , n} with xk1 = · · · = xkn = 1 and the number of 1-entries
altogether is odd, and a third one by all assignments for which the number of
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ones altogether is even. In the first case the function value is 1, iff the number
of ones altogether is odd. This can be checked by an OBDD of width 2. In the
second part it is tested whether there exists a column that consists only of ones
and whether the number of ones altogether is even. Since the y-variables are
tested in a columnwise manner this can be checked by an OBDD of width 6.
In the latter case it is only checked whether all y-variables are set to 0 (that
corresponds to the Boolean encoding of t). The three parts may share nodes,
therefore, we can summarize that the width of the lower part of the OBDD for
XE is at most 9.

3) The exponential lower bound on the OBDD size for the characteristic func-
tion of a maximum flow in Gn:

It remains to show that there exists a maximum flow in Gn defined by the
characteristic function of its edge set whose OBDD complexity is exponential.
A vertex in Gn has the property R, iff its Boolean encoding contains a row that
consists only of 1-entries and the number of ones altogether is odd. A vertex in
Gn has the property C, iff its Boolean encoding contains a column that consists
only of 1-entries and the number of ones altogether is even.

Each vertex except for the source s and the sink t has indegree or outdegree
1. A maximum flow contains only edges which are adjacent to vertices whose
in- and outdegree is at least 1. These are the vertices that have property R or
C. Each maximum flow consists of edges from the source s to the vertices with
property R and edges from vertices with property C to the sink t. Furthermore a
maximum flow contains in a certain sense a bijective mapping from the vertices
with property R to the vertices with property C.

In the rest of this section we consider the maximum flow in Gn that can be
identified by the following bijective mapping from the vertices with property R
to the vertices with property C: a vertex vi1,...,in with propertyR has an edge to a
vertex vj1,...,jn with property C, iff the Boolean matrix X that encodes i1, . . . , in
is almost equal to the Boolean matrix Y T , where Y is the Boolean encoding of
j1, . . . , jn. Almost equal means that, if i1 = 2n − 1 (the first row in the Boolean
matrix that encodes i1, . . . , in contains only 1-entries): xn1 �= y1n and xij = yji,
for i �= n or j �= 1. Otherwise (i1 �= 2n − 1): x11 �= y11 and xij = yji, for i �= 1
or j �= 1. Obviously, the considered edges exist in Gn and the mapping defined
above is bijective. Now, we have a complete definition of a maximum flow in
Gn. Let XM be the characteristic function of this edge set. Next, we prove that
the OBDD complexity of XM is exponential. In the rest of this section let π
be an arbitrary but fixed variable ordering. Applying Theorem 2 it is sufficient
to prove that there is an exponential number of different subfunctions obtained
by replacements by constants of the first variables with respect to π. Using the
variable ordering π we define a partition of the input variables in the following
way. The first part ZU contains the first variables according to π until for the
first time n/2 − 1 rows or columns have a tested x- or y-variable. The second
part ZL contains the remaining variables.

Case 1: There are n/2− 1 columns that have an x-variable in ZU .
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We set the y-variables to 0 (that corresponds to the Boolean encoding of t).
Now, we consider the following assignments to the x-variables in ZU . We set
the x-variables tested first in the first n/2 − 1 columns with respect to π to
all possible assignments. Variables that belong to the same column are set to
the same constant. Next, we prove that two different assignments b and b′ of
these 2n/2−1 partial assignments lead to different subfunctions. For this reason
we consider the following assignment br to the remaining x-variables in ZL. Let
� be a column for which the x-variables in b are set to 1 and in b′ to 0 (or vice
versa). W.l.o.g. we assume that the x·�-variables in b are set to 1 and in b′ to 0.
The last x-variable with respect to π which does not belong to the column � is
called a free x-variable. Let x·�′ be the free x-variable. In br the x·� -variables
are set to 1, the remaining x-variables except for the free variable x·�′ are set to
0. The free x-variable is set to 1, iff the number of x-variables set to 1 in b and
br together is odd. The column �′ does not contain only 1-entries because there
are more than one x·�′-variables in ZL and at least one of them is set to 0. There
exist x·�-variables in ZL because otherwise there are n rows that have a variable
in ZU . Using the same argument we know that the free x-variable belongs to
ZL. The function value of the considered subfunction obtained by b respectively
b′ for br is 1 respectively 0, therefore the induced subfunctions are different and
we are done.

Case 2: There are n/2− 1 rows that have a y-variable in ZU .
This case is similar to the first one. Here, we set the x-variables to 1 (that

corresponds to the Boolean encoding of s). Changing the roles of the rows and
columns and of the x- and y-variables we are done.

Case 3: There are n/2− 1 rows that have an x-variable in ZU .
There exist indices r, r′, c, c′ ∈ {1, . . . , n} for which all variables xr·, xr′·, y·r,

y·r′ , x·c, x·c′ , yc·, and yc′· are not in ZU but in ZL. The reason is that because of
our case inspection there are at most n/2− 2 columns that have an x-variable,
at most n/2− 2 columns that have a y-variable, and at most n/2− 2 rows that
have a y-variable in ZU . W.l.o.g. let r �= 1 and c �= 1. In the rest of the proof we
call xrc the free x-variable. Now, we consider the subfunction of XM where we
set x11 to 0 and y11 to 1. Using Theorem 2 it is sufficient to prove that there are
at least 2n/2−2 different subfunctions obtained by replacements of the variables
in ZU . We investigate all possible assignments to the x-variables tested first in
the first n/2 − 1 rows with respect to π without the first row. All x-variables
in ZU that belong to the same row are set to the same constant. Variables yji
in ZU for which the variable xij is also in ZU are set to the same constant as
xij . The same is done for yji-variables for which there exists a variable xi· in
ZU , yji is set to the same constant as the xi·-variables. The variables yji for
which there are no xi·-variables in ZU are set to 0. Altogether we obtain at least
2n/2−2 different partial assignments. Next, we show that two arbitrary of these
assignments b and b′ induce different subfunctions. Let � be a row for which
the x-variables in ZU are set differently in b and b′. W.l.o.g. the x�·-variables in
b are set to 1. Now, we consider the following assignment br to the remaining
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variables in ZL except for the free x-variable. The variables x�· are set to 1, all
other x-variables without the free x-variable are set to 0. The free x-variable is
set to 1, iff the number of x-variables set so far to 1 in b and br together is odd.
The yji-variables in ZL are equal to the xij -variables. The function value of the
considered subfunction obtained by b respectively b′ for br is 1 respectively 0
and we are done.

Case 4: There are n/2− 1 columns that have a y-variable in ZU .
This case is similar to the third one. Changing the roles of the rows and

columns and of the x- and y-variables we are done.
Altogether, we have shown that the OBDD size for the characteristic function

of the considered maximum flow in Gn is at least 2n/2−2.
In the following our aim is to strengthen the intuition why the considered

graph instance is difficult for symbolic OBDD-based algorithms for the maximum
flow problem. The crucial properties of our graph instance are the following
ones. Our input graph can be partitioned into three parts, one part consists of
directed edges from the source s, another one of directed edges into the sink
t, and the third one of a complete directed bipartite subgraph. The first two
parts can be represented by OBDDs of small size according to arbitrary variable
orderings, the third one can be represented in small size, if the variable ordering
is chosen carefully, but not, if we change the directed edges into undirected
ones. The third part is in some sense hidden in the whole graph, such that the
OBDD representation of the characteristic function of all three parts together
is small (see Figure 1). In a maximum flow each vertex in the subgraph of the
third part has incoming and outgoing edges and the corresponding OBDD size
becomes large. We conjecture that there exists a maximum flow in Gn whose
OBDD representation has polynomial size, iff there exists a perfect (undirected)
matching between the vertices with property R and the vertices with property
C whose OBDD representation has polynomial size.

An OBDD of polynomial size for the characteristic function of a maximum
flow XMF (x, y) in Gn with respect to a variable ordering π only exists, if the
following requirements are fulfilled:
1. the π-OBDD size for the subfunction XMF ′ (y), where the x-variables are set

to the encoding of s, is polynomial,
2. the π-OBDD size for the subfunction XMF ′′(x), where the y-variables are

set to the encoding of t, is polynomial,
3. the π-OBDD size for XBM (x, y) which is defined as XMF (x, y)∧Vs(x)∧Vt(y),

where Vs(x) respectively Vt(y) is the characteristic function for all vertices
in Gn without s respectively t, is polynomial.

Since it is well-known that the size of the output OBDD of a synthesis op-
eration on input OBDDs G1 and G2 according to the same variable ordering
is at most the product of the sizes of G1 and G2, and Vs(x) and Vt(y) can
be represented by OBDDs of constant width even with respect to an arbitrary
variable ordering, the ∧-synthesis of XMF (x, y), Vs(x), and Vt(y), has an OBDD-
representation of small size, if XMF (x, y) has one. XBM (x, y) represents a bijec-
tive mapping between the vertices with property R in Gn and the vertices with
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property C. The intuition is that there exists no variable ordering π fulfilling
all three properties mentioned above, because a variable ordering that leads to
OBDDs of small size for XMF ′ (y) has to test the y-variables more or less in a
rowwise manner and a variable ordering for XMF ′′ (x) has to test the x-variables
in a columnwise manner. A variable ordering for XBM (x, y) seems to be a good
one, if the x-variables are tested in a rowwise, the y-variables in a columnwise
manner, and the x- and y-variables in an interleaved variable ordering which
means an x-variable, a y-variable and so on.

Using our considerations above we are now able to define an input graph
G′
n whose OBDD representation size is polynomial and whose unique maximum

flow has exponential OBDD complexity. The third part of Gn is replaced by the
edges of the maximum flow considered above between the vertices with property
R and the vertices with property C. It is not difficult to prove that the OBDD
size for the characteristic function of G′

n is linear with respect to the variable
ordering x11, y11, x12, y21, . . . , x1n, yn1, x21, y12, . . . , x2n, yn2, . . . , xnn, ynn and we
are done. Summarizing, we have shown that the maximum flow problem in 0-1-
networks needs exponential space on OBDD-represented graphs by generating
instances with an exponential gap between the input and the output OBDD size.

Concluding Remarks

Symbolic algorithms on OBDD-represented graphs are implicitly parallel, since
vertices or edges can be treated simultaneously. Sawitzki [19] has shown that a
problem is in the complexity class NC, which contains the problems that can be
solved efficiently in parallel, if it can be solved with a polylogarithmic number of
OBDD-operations with respect to the number of the vertices in a given graph.
The general maximum flow problem is P-complete, therefore it cannot exist a
symbolic algorithm with a polylogarithmic number of OBDD operations, if P �=
NC. It is an open problem whether the restricted maximum flow problem in 0-1
networks is in NC but it is known to be in RNC [13]. Nevertheless, we have seen
that symbolic algorithms for this problem need exponential space with respect
to the size length of the implicit representation of the input graph.

Note that the value of a maximum flow can be computed in space poly(log |V |)
by a nondeterministic Turing Machine using the well-known Turing reduction
from the value variant to the decision variant of flow maximization. Already
Sawitzki [18] has mentioned that the decision problem can be solved efficiently
by nondeterministic Turing machines using XE as oracle. Each oracle request can
be implemented by an OBDD evaluation operation. Therefore, together with the
assumption that the size of the implicit representation is at least log |V | and the
fact that NPSPACE = PSPACE the problem can be solved in polynomial space
with respect to the size of the implicit representation of the input graph.
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Abstract. In this paper we discuss the computational power of Lips-
chitz dynamical systems which are robust to infinitesimal perturbations.

Whereas the study in [1] was done only for not-so-natural systems
from a classical mathematical point of view (discontinuous differential
equation systems, discontinuous piecewise affine maps, or perturbed Tur-
ing machines), we prove that the results presented there can be general-
ized to Lipschitz and computable dynamical systems.

In other words, we prove that the perturbed reachability problem
(i.e. the reachability problem for systems which are subjected to infinites-
imal perturbations) is co-recursively enumerable for this kind of systems.
Using this result we show that if robustness to infinitesimal perturbations
is also required, the reachability problem becomes decidable. This result
can be interpreted in the following manner: undecidability of verification
doesn’t hold for Lipschitz, computable and robust systems.

We also show that the perturbed reachability problem is co-r.e. com-
plete even for C∞-systems.

Keywords: Verification, Model-checking, Computable Analysis, Analog
Computations.

1 Introduction

The investigations on the relationships between dynamics and computations
attracted the attention of several research communities. One of them is highly
motivated by the question of computer aided verification, and in particular by
the question of computer aided verification of hybrid systems (see e.g. [2]).

One main motivation of this community is to get some “as automatic as possi-
ble” computer systems, that would take as input the description of a continuous
or discrete (or hybrid) system, and the description of some property, call it
“safety”, and that would tell whether the system satisfies it or not.

The point is, by undecidability of the halting problem of Turing machines,
there is no hope to get a fully decidable procedure if the provided formalism for
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describing hybrid systems allows the description of Turing machines, and if the
formalism for describing the property allows to talk about their halting.

Some classes of models, such as Timed Automata [3], have been shown to
provide subclasses of systems for which verification of the reachability property
is decidable.

However, unfortunately, very simple classes of linear hybrid automata [4] or
piecewise constant derivative systems [5] have been shown of being able to sim-
ulate arbitrary Turing machines. As a consequence, verification procedures are
semi-decision procedures and not decision procedures. A more general result can
be found in [6], where semidecidability is shown for non-linear systems in general,
and decidability is proved for systems satisfying some particular condition.

Since the proofs of undecidability or, more generally, of simulation of Turing
machines, often involve to encode the configuration of a Turing machine (or of
a two counter automata) into some real numbers, and since this require infinite
precision, in the hybrid system verification community a folklore conjecture ap-
peared saying that this undecidability is due to non-stability, non-robustness,
sensitivity to initial values of the systems, and that it never occurs in “real
systems” [1].

For example, Martin Fränzle writes in [7] “Hence, on simple information-
theoretic grounds, the undecidability results thus obtained can be said to be
artifacts of an overly idealized formalization. However, while this implies that
the particular proof pattern sketched above lacks physical interpretation, it does
not yield any insight as to whether the state reachability problem for hybrid
systems featuring noise is decidable or not. We conjecture that there is a variety
of realistic noise models for which the problem is indeed decidable”.

There were several attempts to formalize and prove (or to disprove) this con-
jecture: it has been proved that small perturbations of the trajectory still yields
undecidability [8]. Infinitesimal perturbations of the dynamics for a certain model
of hybrid systems has shown to rise to decidability [7]. This has been extended
to several models by [1]. In [9] it is shown that Turing machines exposed to small
stochastic noise can decide the Halting problem, since its computational power
when the error converges to 0 is ≈ Π0

2 .
Let us look at the result presented in [1]: they consider several classes of widely

used models of dynamical systems: Turing machines, piecewise affine maps, linear
hybrid automata, and piecewise constant derivative systems. For each of them
a notion of “perturbed” dynamics is introduced and the computational power
of the corresponding perturbed systems is studied. Perturbations are defined for
each model using a notion of metrics on the state space. For a given model, with
reachability relation R, the idea is to perturb the dynamic by a small ε, and
then take (as the perturbed dynamics of the system) the limit (intersection) Rω

of the perturbed reachability relations as this ε tends to 0. In that setting, a
system is said “robust” if its reachability relation does not change under small
perturbations of the dynamics, i.e. Rω is equal to R [1]. This has a close resem-
blance with the notion of “structural stability” for dynamical systems: a system
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A is structurally stable if, roughly, ε-perturbed systems converge to A as ε→ 0,
a concept widely studied in the dynamical system theory see e.g. [10], [11].

In [1], the authors show that for Turing machines, piecewise affine maps, lin-
ear hybrid automata, and piecewise constant derivative systems, the relation Rω

belongs to the class Π1
0 (it is co-recursively enumerable), and moreover, any Π1

0
relation can be reduced to a relation Rω of a perturbed system: any comple-
ment of a recursively enumerable set, can be semi-decided by an infinitesimally
perturbed system.

This means that, for any robust system, its reachability problem is decidable.
Indeed, as any system, its reachability problem is semi-decidable (recursively
enumerable), and since it is robust, the complement of its reachability prob-
lem must be recursively enumerable, from which it follows that the reachability
problem must be recursive for robust systems.

In other words, this gives a (partial) answer to the above mentioned conjec-
ture: verification is decidable for robust systems, if the notion of robustness is
the one considered here. If one prefers, undecidability of verification arises only
when non-robust systems are considered.

In this paper we extend the result of [1] for the case of Lipschitz and com-
putable (in the sense of recursive analysis [12]) systems defined on a compact
set, considered as a model of computation. We present both continuous-time and
discrete-time versions of our results.

Our aim is to reinforce in some sense the previous result: it follows that
verification is decidable for robust systems considered in classical mathematics
and computer science, that is to say for robust, Lipschitz, and computable dy-
namics. In other words, undecidability of verification is really a by-product of
non-robustness, even if the system does not rely on trivial (piecewise) dynamics
as in [1].

In a more provocative way, undecidability of verification for safety properties
over a compact domain is indeed an artifact of modelization for very general and
natural classes of systems.

2 Formal Setting: Continuous-Time Dynamical Systems

We begin with some definitions.

Definition 1. A function f : Rm → Rk is said Lipschitz over a set X if there
is some K > 0 such that for all x,y ∈ X one has

‖f(x)− f(y)‖ ≤ K ‖x− y‖ . (1)

In particular it is well known that C1 functions are Lipschitz over a compact set
X ⊆ Rm and that an initial-value problem{

x′ = f(t, x)
x(t0) = x0

where f is Lipschitz, have an unique solution (see e.g. [13]).
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Definition 2 (Dynamical systems). Let X ⊂ Rd, and consider some func-
tion f : X → X. Then we can define a (homogeneous inputless) discrete or
continuous-time dynamical system associated to (X, f) as follows:

– In the discrete-time case, a trajectory is a sequence of points {x0,x1, ...} ∈
XN, satisfying f(xi+1) = xi for all i ∈ N.

– In the continuous-time case, a trajectory is a solution of the differential
equation ẋ = f(x), x(0) = x0 ∈ X , i.e. a derivable function φ : R+

0 → X,
satisfying φ(0) = x0, and φ′(t) = f(φ(t)) for all t.

Note that dynamical systems are deterministic: there is only one trajectory start-
ing in a given initial point.

In this paper we consider dynamical systems as recognizers of languages: Σ
denotes the alphabet Σ = {0, 1} and Σ∗ denotes words over this alphabet.
Therefore we need to encode words over Σ as points in X . This is done using
the encoding ν : Σ∗ → [0, 1] defined by: if w = w1 . . . wn ∈ {0, 1}∗, where
w1, . . . , wn ∈ {0, 1}, then ν(w) =

∑n
i=1

(2wi+1)
4i .

This classical encoding is rather arbitrary. Similar encodings would still yield
the results proved in this paper.

We want to avoid not-so-interesting ways to get uncomputability:

– First, we restrict ourselves to dynamics over a compact domain. It is known
that smooth systems can robustly simulate Turing machines [14], [15] (con-
figurations are coded as integers), if the perturbations are ≤ ε, for some fixed
ε > 0. If we do some mapping from an unbounded domain to a bounded do-
main, these fixed ε-perturbations correspond to infinitesimal perturbations
in the compact space. Further allowing infinitesimal errors in an unbounded
space seems to originate a degree of modelization which is exceedingly arti-
ficial to be considered.
There is no loss in generality in assuming the compact domain to be [−1, 1]d.

– Second, we want to avoid undecidability due to the impossibility of distin-
guishing two reals in the recursive analysis setting: this is why we assume that
when some computation is accepted this can be stated by considering a value
that is clearly below some threshold (1/4), and that this quantity is clearly
above a bigger threshold (1/2) when the computation is not terminated.

This leads to the following definition:

Definition 3 (Considering a dynamical system as a language recog-
nizer). Let H be a discrete/continuous-time dynamical system over space X =
[−1, 1]d. Let Vaccept be the set of x ∈ X with ‖x‖ ≤ 1/4 and Vcompute be the set
of x ∈ X with ‖x‖ ≥ 1/2. We say that H computes a language L ⊂ Σ∗ (or that
L is the language of H), over alphabet Σ = {0, 1}, if the following holds: for all
w ∈ Σ∗, w ∈ L iff the trajectory of H starting from (ν(w), 0, · · · , 0, 1) reaches
Vaccept. For robustness reasons, we assume that for any w �∈ L, the corresponding
trajectory always stays in Vcompute.



202 O. Bournez, D.S. Graça, and E. Hainry

3 Formal Setting: Recursive Analysis

Recursive analysis or computable analysis, was introduced by Turing [16], Grze-
gorczyk [17], Lacombe [18]: see [12] for an up-to-date monograph presentation of
recursive analysis using a computability point of view, or [19] for a presentation
using a complexity theory point of view.

Following Ker-I Ko [19], let νQ : N → Q be the following representation1 of
dyadic rational numbers by integers: νQ(〈p, q, r〉) �→ p−q

2r , where 〈., ., .〉 : N3 → N

is an elementarily polynomial time computable bijection.
A sequence of integers (xi)i∈N ∈ NN converges quickly toward x (denoted by

(xi)i∈N � x) if the following holds for all i: |νQ(xi)− x| < 2−i.
A point x = (x1, . . . , xd) ∈ Rd is said computable if for all j, there is a

computable sequence (xi)i∈N ∈ NN (i.e. a computable function a : N → N such
that xi = a(i) for all i ∈ N) satisfying (xi)i∈N � xj .

A function f : X ⊂ Rd → R, where X is compact, is said computable if there
exists some d-oracle Turing machine M such that, for all x = (x1, . . . , xd) ∈ X ,
for all sequences (xji )i∈N � xj , M taking as oracles these d sequences computes
a sequence (x′i)i∈N with (x′i)i∈N � f(x). A function f : X ⊂ Rd → Rd, where X
is compact, is said computable if all its projections are.

4 Formal Setting: Robustness

We now introduce the settings of [1], based on an idea of [20].

Definition 4 (ε-perturbation). Consider a discrete/continuous-time dynam-
ical system H = (X, f). Given ε > 0, its ε-perturbation Hε is the discrete/con-
tinuous-time system Hε defined over the same space X, where:

1. (x0,x1, ...) is a trajectory of Hε (the trajectory may not be unique), in the
case where H is discrete-time, if ‖xi+1 − f(xi)‖ ≤ ε for all i ∈ N;

2. φ : R+
0 → X is a trajectory of Hε (the trajectory may not be unique), in the

case where H is continuous-time, if φ(0) ∈ X and ‖φ′(t)− f(φ(t))‖ ≤ ε for
all t ∈ R+

0 .

Note that the ε-perturbation Hε of a dynamical system H is not, in general,
a dynamical system since it is not deterministic (several trajectories may start
with a given initial point).

Similarly to what is done in Definition 3, we can define a language computed
by Hε, which we denote as Lε: w ∈ Lε iff there is some trajectory of Hε which
starts from (ν(w), 0, · · · , 0, 1) and reaches Vaccept.

The following result is immediate.

Lemma 1. For 0 < ε < ε′, Lε ⊂ Lε′ .

Following the idea given in [1], we consider Lω = ∩ε>0Lε.

Definition 5 (Robustness). A dynamical system H is said robust iff its lan-
guage L is equal to Lω.
1 Many other natural representations of rational numbers can be chosen: they still

yield the same class of computable functions – see [12,19].
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5 Main Results

The following results are extensions from those obtained in [1].

Theorem 1 (Lω is co-r.e. for Lipschitz and computable Systems I).
Assume that language L is computed by a discrete-time system H defined over
[−1, 1]d which transition function is Lipschitz and computable. Then Lω is co-
recursively enumerable.

Proof. Let n ∈ N\{0} and decompose X in d-dimensional hypercubes V1, ..., Vs
of size 1

n . We build a finite automaton An, which states are V1, ..., Vs, that
roughly recognizes L 1

n
. To complete the description of this automaton we need

to define two things: (i) the set of accepting states and (ii) the transition rule δn.
The set of accepting states consists of those hypercubes which overlap Vaccept,
i.e. hypercubes that have vertices within distance ≤ 1/4 of the origin. These
hypercubes can easily be identified.

Fig. 1. A figure depicting various elements used in the demonstration of Theorem 1

Now we have to present the transition rule of An. The following construction is
depicted in Fig. 1. Let Vj be some hypercube. Then pick its central point xj (this
is an easily computable rational) and compute a rational approximation f(xj)
of f(xj) with precision 1

n . Because f is Lipschitz, there will be some Lipschitz
constant K > 0 satisfying condition (1) for all x,y ∈ X . Then, if x ∈ Vj is
another point of the same hypercube, we have

‖f(x)− y‖ ≤ 1
n

⇒ (2)∥∥∥f(xj)− y
∥∥∥ ≤ ∥∥∥f(xj)− f(xj)

∥∥∥+ ‖f(xj)− f(x)‖ + ‖f(x)− y‖ ≤ K + 2
n

.
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By other words, if y is an ε-perturbed image of a point of Vj , then this point
will be within distance K+2

n of f(xj). We use this fact to proceed as follows.
After computing f(xj), determine all the hypercubes which are within distance
≤ (K+2)/n of this point (in Fig. 1 this corresponds to all hypercubes covered by
the ball of center f(xj) and radius (K+2)/n). This can be done algorithmically,
in finite time, since it is only necessary to check which are the hypercubes (which
are finitely many) that have vertices within distance ≤ (K + 2)/n of f(xj). Let
W1, ...,Wi be these hypercubes. Then we define the transition rule over the
hypercubes as follows: δ(Vj) = {W1, ...,Wi}. This defines the automaton An.

Now we say that a point x ∈ X is accepted by An if it lies in an accepted
hypercube. Let L∗

1
n

be the language accepted by An. From (2), the dynamics

of An includes those of the 1
n -perturbed system H 1

n
. Hence L 1

n
⊆ L∗

1
n

. On the
other side, it is not difficult to see that the dynamics of An are included in those
of HK+3

n
.2 Therefore

L 1
n
⊆ L∗

1
n
⊆ LK+3

n
⇒ ∩∞

n=1 L
∗
1
n

= ∩ε>0Lε = Lω.

Let us now show that Lω = ∩∞
n=1L

∗
1
n

is co-r.e., as required. Let w ∈ Σ∗. Then
build a Turing machine which performs the following steps:

i=0
Repeat

i++
Simulate Ai with input νX(w)

Until νX(w) is rejected
Reject w

This shows that the complement of Lω is r.e., as required.

We now introduce a (classical) tool to discretize a continuous-time system (see
e.g. [21]).

Definition 6 (Stroboscopic map). Consider the continuous-time systemH =
(X, f). Then its corresponding stroboscopic map g : X → X is given by g(x0) =
φ(1), where φ : R+

0 → R satisfies φ′(t) = f(φ(t)), φ(0) = x0.

In other words, g(x0) gives the point where the trajectory of H, starting on x0,
would reach after one time unit.

Lemma 2. Let H = (X, f) be a continuous-time system, and let Ĥ = (X, g)
be its discrete-time counterpart, where g is the stroboscopic map of H. Then, if
L, L̂ are the languages computed by H and Ĥ, respectively, under the same input
encoding, we have:

1. L = L̂;
2. Lω = L̂ω and Lε = L̂ε, for all ε > 0.
2 Here we suppose that ‖x‖ = ‖x‖∞ = max1≤i≤n |xi|. However, a similar result holds

for other norms since all norms are equivalent in a finite-dimensional space.
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Proof. Note that for all x0 ∈ X, if φ : R+
0 → R, φ(0) = x0 is a trajectory of

H and (x0,x1, ...) is a trajectory of Ĥ, we must have φ(k) = xk for all k ∈ N.
Therefore, because only the accepting trajectories reach Vaccept and then stay
there, we must have L = L̂. Similar arguments can be used to show the identity
Lε = L̂ε that, by its turn, implies Lω = L̂ω.

Theorem 2 (Lω is co-r.e. for Lipschitz and computable Systems II).
Assume that language L is computed by a continuous-time system H defined
over [−1, 1]d with a Lipschitz and computable transition function. Then Lω is
co-recursively enumerable.

Proof. Using the same assumptions of the previous lemma, to show that the
language L computed by the continuous-time system H = (X, f), where X =
[−1, 1]d, is co-r.e., it is enough to show that L̂ is a co-r.e. language. If we show
that g is Lipschitz and computable, then this can be done as indicated in the
proof of Theorem 1. It is well-known (see e.g. [13]) that if f satisfies equation
(1) over X , and if φ0, φ1 are solutions of the differential equation x′ = f(x) over
X , then

‖φ0(t)− φ1(t)‖ ≤ ‖φ0(0)− φ1(0)‖ eKt.

By other words, the stroboscopic map g is Lipschitz on X , with Lipschitz con-
stant eK . Moreover, g is computable by using an algorithmic version of Euler’s
method on the time interval [0, 1] for the differential equation ẋ = f(x).(cf. [19]).

The following lemma is a corollary from the results of [6], [22]: one can semi-
compute any trajectory of H. Therefore one can semi-decide if a trajectory
finishes in Vaccept, and thus semi-decide L.

Lemma 3. Let L be the language computed by a system H = (X, f), where
X = [−1, 1]d and f is Lipschitz and computable. Then L is r.e.

Since a system is robust iff L = Lω, the following corollary is immediate.

Corollary 1 (Robust =>Recursive for Lipschitz and Computable Sys-
tems). In the conditions of the lemma above, if H is robust, then L is recursive.

We now prove that Turing machines can be simulated robustly with C∞-systems.
Recall that C∞-systems are also Lipschitz. This is a generalization of a similar
result from [1], which holds for piecewise systems (which are not of class C1).

Theorem 3 (Perturbed reachability is complete in Π0
1). Let A be a re-

cursively enumerable language. Then there is a computable and C∞ dynamical
system H such that Lω = Ā.

Proof. For any Turing machine M , Theorems 4.4 and 4.5 from [23] give an
explicit way to build a continuous-time dynamical system (X, f) where X is
compact and fM is C∞ such that y′ = fM (y) simulates M . It is easy to ob-
serve that the function fM built there is computable. Changing coordinates,
and reasoning through homothety, we can assume without loss of generality X
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to be [−T, T ]3 and that the accepting configuration of M correspond to the
origin c = (0, 0, 0) ∈ [−T, T ]3, and that the initial starting point corresponding
to some input w is of the form c = (ν(w), 0, 1) as in Definition 3. This yields
a dynamical system such that a word w is accepted by Turing machine M iff
the trajectory starting from (ν(w), 0, 1) reaches the origin c. Let C be the cubic
neighborhood of c defined by [−0.1, 0.1]3, and C′ be the cubic neighborhood of
c defined by [−0.2, 0.2]3. The resulting system is also such that a non-accepted
word corresponds to a trajectory that stays forever outside of neighborhood C′.

We construct from this 3-dimensional smooth dynamical system fM a smooth
4-dimensional dynamical system gM whose perturbed version semi-recognizes the
complement of the language recognized by M .

Actually, robustness will only be shown for one component, the extra compo-
nent added to the original 3-dimensional system, which is the most critical for
the simulation, . The other 3 components can be made robust using the con-
struction presented in [14], [15] which, although originally done for unbounded
spaces, can be brought to the compact space [−T, T ]3 via a transformation using
a function like, e.g. arctan, and can still be used here. However, giving all the
details would span the contents of this paper outside allowable size, so we only
show robustness for the crucial component.

We will use the notation x,y for 3-dimensional vectors, and h for the fourth
dimension. This 4-dimensional system is mainly the original smooth dynamical
system embedded in the hyperplane h = 3 of R4, however with two changes.
First, the neighborhood C of the original dynamical system becomes rejecting
in the new system. Second, the zone h ≤ 1 becomes accepting in the new system.

The idea is that for any word w accepted by M , the original system fM
will eventually come to C, and hence the perturbed dynamical system gM will
eventually go up and reject. For any word w not accepted by M , the system gM
will slowly drift “down” until it reaches the accepting zone h ≤ 1.

In order to get a smooth dynamics, we start by the following technicalities.
This is an easy and classical mathematical exercise to prove that for any com-
putable reals a < b, function ha,b(x) = exp(−1/(x − a)2 − 1/(b − x)2) for
a < x < b and 0 for x ≥ b or x ≤ a is C∞ and computable. If we denote
by γ the constant γ =

∫ b
a
ha,b(x)dx, and by χa,b(x) the function 1/γ

∫ x
a
ha,b(x),

one gets a computable and C∞ function that values 0 for x ≤ a, and 1 for
x ≥ b, and a value in interval [0, 1] in between. Given a < b < c, the function
χa,b,c(x) = χa,b(x) − χb,c(x) values 0 for x ≤ a, 1 in b, and 0 for x ≥ c, with a
value in interval [0, 1] in between. In the same spirit, let χC : R3 → R be some
function that values 1 over neighborhood C, and 0 outside neighborhood C′.

Formally the new system gM is then defined on [−T, T ]3 × [−1, 5] ⊂ R4 as
follows: gM (x, h) = (y, h′) where

h′ = χ4,5(h) + χC(x)χ2,3,4(h)− χ0,1,2(h) + χ−1,−0.5,0(h)

and

y = fM (x)(1 − χC(x))χ2,3,4(h) + C(x)χ0,0.5,1(h),
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where ẋ = C(x) is a smooth and computable vector field with all the trajectories
going to the origin.

In other words,

– if h ≥ 4, anything that arrives in the layer h ≥ 4 goes “up” and is rejected.
– if 2 < h < 4:

• if x ∈ C, then it goes “up” and it is ultimately rejected.
• if x �∈ C, then it basically simulates the original system fM .

– if 1 < h < 2, then it goes “down” until it reaches h ≤ 1,
– if −1 ≤ h < 1, then it goes to the origin.

Consider the trajectory starting from (ν(w), 0, 1, 3): suppose that word w
is accepted by M : the corresponding trajectory of fM will eventually go to the
origin in some finite time t, and then the trajectory of gM will reach neighborhood
C, and hence will go up for ever. Taking ε small enough (depending on t) any
ε-perturbed trajectory of gM will be close at time t to this trajectory, and hence
also in C, and hence going for ever up afterwards.

Suppose that word w is not accepted by M : the corresponding trajectory of
fM will run for ever outside of C′. For any ε > 0, we can easily construct a
trajectory of gM that drifts down slowly in the fourth coordinate until reaching
h ≤ 1, and then going to the origin.

Through a change of coordinates, the obtained system fulfills all constraints
of Definition 3 and of the statement of the Theorem.

In other words, “perturbed reachability is complete in Π0
1” as this is termed

in [1].

6 Conclusion

In this paper we showed that, on compact sets, the perturbed reachability prob-
lem is co-r.e. for Lipschitz and computable systems. We also proved that for
Lipschitz and computable systems which are robust to infinitesimal perturba-
tions, the reachability problem is decidable. The results are both for the discrete
and continuous-time case. It would be interesting to know what happens at a
more refined level, i.e. if from a complexity point of view.

Acknowledgments. D. Graça was partially supported by Fundação para a
Ciência e a Tecnologia and EU FEDER POCTI/POCI via SQIG - Instituto de
Telecomunicações.
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Abstract. The study of factoring relations between subshifts or cellular
automata is central in symbolic dynamics. Besides, a notion of intrinsic
universality for cellular automata based on an operation of rescaling is
receiving more and more attention in the literature. In this paper, we
propose to study the factoring relation up to rescalings, and ask for the
existence of universal objects for that simulation relation.

In classical simulations of a system S by a system T , the simula-
tion takes place on a specific subset of configurations of T depending
on S (this is the case for intrinsic universality). Our setting, however,
asks for every configurations of T to have a meaningful interpretation
in S. Despite this strong requirement, we show that there exists a cel-
lular automaton able to simulate any other in a large class containing
arbitrarily complex ones. We also consider the case of subshifts and, us-
ing arguments from recursion theory, we give negative results about the
existence of universal objects in some classes.

1 Introduction and Definitions

Tilings and cellular automata are two paradigmatic models often considered
in the fields of complex systems and natural computing. They are comple-
mentary —one is static and non-deterministic and the other is dynamic and
deterministic— but they are both formally simple and both related to symbolic
spaces. Moreover, many links are now established between the two models (see
for instance [10,9]) so it is natural to consider them together.

Both are known to be Turing-powerful since their introduction in the mid-
20th century [23,17]. However, analyzing their ability to process information
only through translations into the Turing world is very restrictive. Such models of
natural computing deserve a natural and intrinsic notion of reduction to compare
their objects one to each other. Following this line of thought, several notions
of simulations were proposed recently which are intrinsic to each model, and
lead to corresponding intrinsic notions of universality [18,22,14,5]: a system is
universal if it is able to simulate any other from the same class.

Intrinsic universality for cellular automata is probably the most studied of
such notions [19,20,15,2,6]. The underlying relation of simulation uses uniform
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encodings working at the level of blocks of cells. More precisely, S simulates T if
S, when restricted to a suitable subset of ’correct’ configurations, is isomorphic
to T via such an encoding. Our approach is different and uses redundancy of
information instead of restriction to a subset of configurations. In our setting,
S simulates T if there is a uniform way of projecting the whole phase space of
S onto the phase space of T (a precise definition is given below). The question
addressed by this paper is the existence of universal objects with respect to that
simulation relation, we call them factor universal objects.

The first contribution of this paper is the formalism based on the well-known
mathematical notion of action: it allows to encompass both subshifts and cel-
lular automata, it gives a new look at the notion of cell grouping which is the
root of the simulation relation used in intrinsic universality, and it establishes
connections with the work of Hochman [8] where the use of sub-actions is crucial.
Our main result is that, although factor-universal objects do not generally exist
(theorem 1), it can still be constructed for some large class like the set of cellular
automata having a persistent state (theorem 2).

Basic definitions. Given a finite set Q and an integer d ≥ 1, the symbolic space
of dimension d over alphabet Q is the set QZd

. It can be seen as an infinite set
of cells arranged as a lattice Zd and each carrying a value from Q. An element
of QZd

is called a configuration. QZd

is naturally equipped with the compact
Cantor topology [12] which is the product topology of the discrete topology on
Q (it can also be defined via a metric).

Another key notion in the context of symbolic spaces is that of finite patterns
that may occur in infinite configurations. For our purpose, rectangular patterns
will be enough. Given z = (z1, · · · , zd) ∈ Zd with zi > 0 for all i, the hyperrect-
angle Rz is the set of vectors z′ = (z′1, · · · , z′d) ∈ Zd such that 0 ≤ z′i < zi for
all i. A Q-pattern of shape Rz is a coloring of Rz by Q, that is an element of
QRz . Given a configuration c ∈ QZd

, the pattern of shape Rzs extracted from c
at position zp ∈ Zd, denoted by Pzs

zp
(c), is simply: z ∈ Rzs �→ c(zp + z).

The objects we study (subshifts and cellular automata) share the property of
being uniform, i.e. invariant by translations. Formally, given z ∈ Zd the trans-
lation of vector z, denoted σz , is the function mapping a configuration c ∈ QZd

to the configuration σz(c) such that ∀z′ ∈ Zd, σz(c)(z′) = c(z′ + z).
A subshift is a subset of QZd

which is translation invariant and closed for the
Cantor topology. Equivalently, a subshift is a set ΣL of configurations avoiding
any occurrence of any finite pattern from a given language of patterns L:

ΣL =
{
c ∈ QZd

: ∀z, z′ ∈ Zd with zi > 0 for all i, Pz
z′ (c) �∈ L

}
.

A subshift of finite type is a subshift of the form ΣL where L is finite. There
are strong connections between subshifts of finite type in dimension 2 and sets
of tilings generated by a set of wang tiles. In particular, due to Berger’s theorem
[1], it is undecidable, given a finite L, to determine whether ΣL is empty or not.

A cellular automaton is a local and uniform map on a symbolic space. For-
mally, it is given as a 4-tuple by its dimension d, its alphabet Q, its neighborhood
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V ⊆ Zd (finite) and its local transition map f : QV → Q. To that formal object
we associate a global map F acting on QZd

as follows:

∀c ∈ Zd, ∀z ∈ Zd, F (c)(z) = f
(
z′ ∈ V �→ c(z + z′)

)
.

The fundamental theorem of Curtis-Lyndon-Hedlund [7] states that global maps
of cellular automata are exactly continuous maps on symbolic spaces which com-
mute with translations.

Actions and rescalings. Let (M,+) be a monoid (a set equipped with an
associative law and a neutral element). An M-action on a space X is a function
Ψ : M × X → X such that Ψ(0, x) = x (for all x ∈ X and 0 being the neutral
element of M) and

∀x ∈ X, ∀m,m′ ∈ M, Ψ(m+m′, x) = Ψ
(
m,Ψ(m′, x)

)
.

We will use the formalism of action to study both subshifts and cellular au-
tomata:

– if Σ ⊆ QZd

is a subshift, we canonically associate to it the Zd-action ΨΣ on
Σ defined by ΨΣ(z, x) = σz(x);

– if F is a cellular automaton on the space QZd

, we canonically associate to it
the N× Zd-action ΨF on QZd

defined by ΨF
(
(t, z), x

)
= σz ◦ F t(x).

If M′ is a sub-monoid of M, Ψ induces an M′-action by restriction to the
domain M′ ×X . M and M′ can be isomorphic or not and both cases might be
interesting. For instance, studying a cellular automaton F as a classical dynam-
ical system consists in forgetting the spacial component of ΨF and focusing on
the pure temporal action of F . This point of view was often adopted in the lit-
erature (e.g., topological dynamics of cellular automata [12]) but, interestingly
enough, recent work of Sablik [21] tends to re-incorporate the spacial component
of actions to better study the dynamics of cellular automata.

In this paper, we will only consider the case where M and M′ are isomorphic.
More precisely, in our context, M will be of the form Zd or N × Zd and we
will consider sub-monoids of the form M′ = t0N× z1Z× · · · × zdZ, with t0 > 0
and zi > 0 for all i. In this case, passing from the M-action to the M′-action
can be seen as a neutral change of point of view on the system that we call
rescaling in the sequel. The intuition is that we change the discrete units of
time and space, passing from 1 to t0 in time and 1 to zi in direction i. Given
a subshift or a cellular automaton, a scaled action is simply the restriction of
their canonical action to some sub-monoid of the form M′. It is worth noticing
that a scaled action associated to a subshift (resp. a cellular automaton) on
the alphabet Q is always isomorphic to the canonical action of a subshift (resp.
a cellular automaton) on an alphabet of the form Qk. More concretely, this

isomorphism comes from the natural one-to-one map from QZd

to
(
QRzs

)Zd

,
where zs = (z1, . . . , zd), which maps a configuration c to: z �→ Pzs

z×zs
(c), where

the operation × on Zd denotes coordinate-wise multiplication. Our notion of
rescaling for cellular automata is similar to the one in [18,22] which is the basic
ingredient to define intrinsic universality.
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Factors. One of the central notion in symbolic dynamics is that of factor.
Intuitively, a factor is a uniform continuous projection. This notion has also
been used with success in the study of expansive cellular automata [16] and more
generally as a classification tools for cellular automata [11,3]. As we study both
multi-dimensional subshifts and cellular automata, we give a unified definition
using the formalism of actions.

Definition 1. Let M and M′ be isomorphic monoids via i : M → M′. We say an
M′-action φ′ on X ′ is a factor of a M-action φ on X if there is a continuous onto
map π : X → X ′ such that: ∀x ∈ X, ∀m ∈ M, π

(
φ(m,x)

)
= φ′

(
i(m), π(x)

)
.

Two key points are that: (1) any orbit in (φ,X) projects onto some orbit of
(φ′, X ′) via π, and (2) any orbit of φ′ can be realized as such a projection.
In a word, the simulation of (φ′, X ′) by (φ,X) is everywhere meaningful and
complete.

2 Factor Universality

At this point, we could compare subshifts or cellular automata through the fac-
toring relation between their canonical actions, saying that system S factors
onto system T if the canonical action of S factors onto that of T . However, this
gives an excessive importance to the alphabet and forbid the existence of uni-
versal objects due to entropy considerations (factoring cannot increase entropy).
In [8], this limitation is bypassed via dimension changes: a d-dimensional system
is compared to k-dimensional systems (k < d) via its k-dimensional sub-actions.
Our point of view is different. We always work at constant dimension, but we use
another kind of sub-actions: scaled actions defined above. For a fixed dimension,
monoids of scaled actions are all isomorphic and we will consider only canonical
component-wise isomorphisms between them. We can now formulate the central
definition of the paper.

Definition 2. Let S and T be two d-dimensional subshifts (resp. CA). We say
that T is simulated by S, denoted T � S, if some scaled action of S factors onto
some scaled action of T .

As usual when working on symbolic spaces, continuity and uniformity implies
locality (Curtis-Lyndon-Hedlund theorem [7]). In our context of rescalings, the
locality is no longer expressed at the level of cells, but at the level of groups of
cells. More precisely, we say that a map φ : QZd

1 → QZd

2 is local if there exist:
r ∈ N (locality radius), two shapes Rz1 and Rz2 (source and destination scales),
and a local function f : Q

R(2r+1)z1
1 → Q

Rz2
2 such that

∀c ∈ QZd

1 , ∀z ∈ Zd, Pz2

z×z2
(φ(c)) = f

(
P(2r+1)z1

z×z1−rz2
(c)
)
.

To fix ideas, if d = z1 = z2 = 1 and Q1 = Q2, f is just the local map of a
cellular automaton of radius r and φ is its corresponding global map.
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Proposition 1. Fix a dimension d. Let Σ1 and Σ2 be two d-dimensional sub-
shifts and let F1 and F2 be two d-dimensional CA of alphabet Q1 and Q2 respec-
tively. Then we have:

– Σ2 � Σ1 if and only if there is a local map φ such that φ(Σ1) = Σ2;
– F2 � F1 if and only if there is an onto local map φ from QZd

1 to QZd

2 and
integers t1, t2 ∈ N such that φ ◦ F t1

1 = F t2
2 ◦ φ.

Besides the work of Hochman [8], notions of simulations similar to � have already
been considered for tilings [14] or for cellular automata [22,4] or more general
settings [13]. Each time, one of the main concern is the existence of universal
objects: this is precisely the central point of the present paper.

Definition 3. Let C be a class of subshifts (resp. cellular automata). A subshift
(resp. cellular automaton) U is C-universal if U ∈ C and X � U for any X ∈ C.

Whatever the fixed dimension, there is no universal subshift for cardinality rea-
sons: there are uncountably many subshifts but for a given subshift U there are
at most countably many different subshifts �-simulated by U (by proposition 1).
The following theorem uses recursion theoretic arguments to yield other nega-
tive results concerning universality (similar arguments where used in [18,8] in
different settings).

Theorem 1. Fix a dimension d ≥ 2. Then there is no universal subshift of finite
type of dimension d and there is no surjective-universal CA of dimension d.

3 A Large Class with a Universal Object

In this section, we restrict to dimension 1 to make a clear exposition of the main
result (theorem 2).

Definition 4. A CA A is said to be persistent if there is a state q0 ∈ QA such
that for any configuration c ∈ QA

Z if c(i) = q0 then A(c) (i) = q0.
We denote by P the set of all persistent CA.

Note that for any CA, you may add an extra persistent state and obtain a CA
in P containing the dynamics of the first one.

Theorem 2. There exists a P-universal cellular automaton.

In the following, we describe such a P-universal CA U with radius 1 and alphabet
QU .

We denote by P0 the set of CA of P with radius 1 and alphabet of size 2p

for some p ∈ N. One may easily describe for any CA B ∈ P a CA A ∈ P0
such that B � A. Using transitivity of �, it will be sufficient, in order to prove
P-universality of U , to exhibit for any CA A ∈ P0 an onto local map φA from
QU

Z to QA
Z and an integer τA such that UτA ◦ φA = φA ◦ A.

To do so, for each A, we introduce an integer lA and a dichotomy on words
of QU

lA .



214 L. Boyer and G. Theyssier

– on the one side we have what we call A-correct macrocells (or A-macrocells).
They encode information about a current state x ∈ QA, about the local rule
of A, and a machinery used to apply this rule to update the current state.
In almost any case, they will be interpreted through φA as x.

– on the other side we call all the other patterns A-incorrect, and they will be
interpreted as the persistent state of A.

The idea behind the local rule of U is to make every A-macrocell determine
if it is surrounded by other A-macrocells. If this is the case, then interaction
is possible, and the current state of the neighbor will be taken into account
to compute the new current state, following the rule of A. Otherwise, there is
no interaction, the A-macrocell evolves considering every A-incorrect neighbor-
hood as a persistent state neighbor. The difficulty is that although correctness
is related to the particular CA being simulated, every configuration must evolve
correctly for every possible CA.

The proof of universality uses the combination of two key properties: on one
hand, correct patterns remain correct and evolve according to the rule being
simulated, even if not surrounded by correct patterns (lemma 4); on the other
hand, incorrect patterns are interpreted as the persistent state and never become
correct (lemma 5).

To make the construction of U readable, we describe its state set as a superpo-
sition of several layers: the main layer M contains most of the information about
the simulation and the macrocells informations; signals layers are used to manage
the evolution of the main layer; and clock layers guarantee synchronizations.

Correct Macrocells Description. In the following we consider a simulated
CA A ∈ P0 with radius 1 and state set QA of size n = 2p. We use a canonical
binary enumeration of the state set, in which the first word (0log(n)) represents
a persistent state of A, denoted pA. Our A-correct macrocells will be words of
length lA (specified above) whose main layer follow the pattern

# Ci |Transition table| |State| |memory| #

– # are delimiters, they never appear or disappear during the computation
– Ci is the control state used to control the successive steps of computation.
– |Transition table| is the binary description of the transition table of A.
– |State| contains the binary value of the current state of the macrocell.
– |memory| is a binary area which will be used to keep the values of the neigh-

bors’ current states before computing the new current state of the macrocell.

|Transition table|, |State| and |memory| are encoded with disjoint binary
sub-alphabets. A cell whose state belongs to one of those sub-alphabets will
never change sub-alphabet. Moreover, the states of the transition table’s cells
are never modified.

The current state description is log(n)-bits-long. In the transition table, im-
ages are ordered canonically, so the length of the description is simply n3log(n).
The memory should be at least 2log(n)-bits-long in order to contain current
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state values of the two neighbors. But in order to simplify some proofs, we chose
lA such that it is at least half the total size of the macrocell, and such that the
function A→ lA is one-to-one.

Most of the computation will happen on those very constrained patterns. In
the next definition, we add an extra constraint on the control state to obtain
A-correct macrocells.

By stability of the sub-alphabets, such a correct A-macrocell remains correct,
but the state value may change. This is why we take some care when defining
the current state value associated to the macrocell.

Definition 5. A word u ∈ QU
lA of length lA is said to be a A-correct macro-

cells, denoted by u ∈ CA, if its main layer follows the structure defined above
(correct sub-alphabets for each cell, and correct transition table of A), and if its
control state is in C0.

For each such A-correct macrocell u, we define its associated state value
v(u) ∈ QA, which is the state described by its current state value after lA steps
of computation by U . And this state value v(u) only depends on u.

To ensure that the sate value only depends on u, the memory area is used as a
buffer to prevent modification of the current state value coming from the left,
before the computation has been initialized. Details will be given in the following.

By extension we may sometime call A-macrocells words following the general
pattern, even with non-C0 control state, in particular when they are images of
a A-correct macrocell.

The Local Rule. We describe the local behavior of U starting from a correct
A-macrocell. The local rule will first determine which neighbors it may interact
with (Check of the neighbor’s length and synchronization, and Transition table
and state encoding check), and then compute its new current state according
to the rule of A and eventually the value of those neighbors (New current state
computation).

In order to guarantee the synchronization between A-macrocells, we specify
the duration of each step, and even of some sub-steps. It is done by a clock,
which use specific layers of the states; their existence is proved by the following
lemma:

Lemma 1. For any k, h ∈ N \ {1}, there exist a CA, and two states qs, and qf
such that the leftmost cell of an area delimited by two # separated by l− 2 cells
turns to state qf at some time t > k · l2 + h · l iff this cell was in state qs exactly
k · l2 + h · l steps before. Moreover, this property is guaranteed independently of
what is outside the two #.

At the beginning of each step, the control state Ci will turn to Ci+1, initiate the
corresponding clock, and initiate some signals which will manage the evolution.
Those signals are distinct states propagating on upper layers of the configuration,
and interacting with the main layer and other signals. We say that a signal
belongs to a macrocell if it was generated in this macrocell’s area, between the
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two #. And, thanks to our evolution rule, a signal always knows if it is in its cell
or in the area to the right or left of its cell. It is also useful sometimes to make
signals carry one extra bit of information. It is simple to do it using distinct
states, since the number of bits is bounded.

Check of the neighbor’s length and synchronization. C0 → C1 (that is
to say that when the control cell’s state is C0 it becomes C1):

Recall that we are interested to the behavior in the case of an A-correct
macrocell. When C0 becomes C1, it initializes two control bits with value 0, in
the main layer of the control cell, and it launches signals. Since the construction
is classical, we simply illustrate the desired behaviors by figure 1. Those two
pictures illustrate the signal machinery in the case of respectively left and right
neighbors of same length and with state C0 appearing simultaneously (what we
call synchronized). Every transition whose image is one of the signal involved in
this checking appears on those pictures.

The first signals s1 and s4 erase all signals belonging to our macrocell. To-
gether with the length of the memory being bigger than the length between the
control state where signals are generated and the end of the current state area,
it constitutes the protection of the current state value from eratic signals coming
from outside the macrocell, and justifies that in definition 5 v(u) is a function
of u.

If the neighbors have same length and are synchronized, this whole step takes
4 times the length of the macrocell, lA. After 4 · lA steps, the control state C1
becomes C2, and if it did not receive a positive result from one side, it concludes
that the involved neighbor is incorrect. This is managed using a clock signal
(with h = 2 and k = 0 in lemma 1) initialized by C0 on a specific layer. When
qf is raised on this layer, C1 becomes C2. The important point is that we ensure
the following property.

Lemma 2. The control state of an A-correct macrocell becomes C2 exactly 4 · lA
steps after C0 appeared. At this step each control bit has turned to 1 iff the
corresponding neighboring macrocell has same length and synchronisation than
the considered macrocell.

The proof of this lemma is direct for the length but asks to enter into some more
(simple but fastidious) details for the synchronization part.

Transition table and state encoding check. C2 → C3 :
In this step, for each neighboring pattern with same length and synchroniza-

tion, the macrocell checks whether the transition table and the current state
are compatible with its own (same lengths, and same content for the transition
table) or not.

When C2 appears it launches the following test for each neighbor whose cor-
responding control bit was 1, and initializes two fresh bits to 0. First, a signal is
generated and puts a mark (that is to say a non-moving signal) on the first cell
of the transition table of its macrocell, and another mark on the first cell of the
transition table of the neighbor it checks. Then signals are exchanged between
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Fig. 1. Successful left (resp. right) neighbor test by the right (resp. left) macrocell (mix
of main and signal layers for easier reading)

those two marks that will each time carry the binary state of the cell pointed
by one mark to the next unchecked cell of the other macrocell; it compares this
cell’s binary state to the carried binary state, and push the mark by two cells. If
no difference is detected and if both marks reach the end of the transition tables
simultaneously, a correctness signal is sent to the control state.

After the transition table has been checked, the same mechanism is used to
check that the current state encoding areas have same length. At the end of those
tests, the results are sent to the control cell which again keeps the information
on two control bits. For each cell of the transition table or the current state,
checking takes 2 · lA steps. So checking a whole neighbor takes less than 2 · l2A.
Again, a clock is used to make this test last exactly 2 · l2A steps. Then the control
cell is turned to C4.

Lemma 3. The control state of our macrocell becomes C4 exactly 2 · l2A steps af-
ter C2 appeared. At this step each control bit has turned to 1 iff the corresponding
neighboring pattern has same length, synchronization, and if the lengths of the
transition tables and current states, and the content of the transition table are
equal. In this case we say that this pattern is compatible with our A-macrocell.

The proof of this lemma is straightforward. Keep in mind that some signals
erased all erratic signals that could interact with our cell at a previous step.
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New current state computation. C4 → C5 :
After all the tests have been done, the new current state has to be computed.

We need to explicit how we consider the neighboring pattern. In the following,
what we call detected state of one such pattern by our macrocell will be: either
the persistent state if the neighbor is non-compatible with our A-macrocell, or
its current state if this is a compatible A-macrocell.

At first, the detected states of the left and right neighbors are written to the
memory. It is written in the binary memory alphabet. Each detected state is
written on log(n) cells. If one neighbor is compatible, we copy its current state
value to the memory using marks and signals similarly to the previous step. If
it is not compatible, we write 0log(n), the length being the same as that of the
current state area. We add a clock to specify that copies last exactly 2 · l2A steps,
the neighbor being correct or not.

After 2 · l2A additional steps, the search for the image in the transition table
starts. It consists in reading the binary word formed by the three image states
(the current state of the cell followed by the two detected states copied in the
memory), and turning it into a unary position in the transition table. It is then
possible to place a mark at this position, and finally copy this pointed state to
the current state area. We make the reading of the position last 4 · l2A steps. And
copying the new state lasts 2 · l2A. After the whole computation step, which lasts
7 · l2A, the control state turns to C5.

Finally one step of simulation is completed after exactly τA = 9 · l2A + 4 · lA
steps. After this time the control state turns to C5.

To become C0 again, and launch a new step of computation, we add another
condition. We ask a clock launched exactly τA steps before to raise a flag. And
obviously this clock may only be launched by C0. It is realized using again signals
of the lemma 1 computing on one more layer.

The state set of the universal CA is given by QU = M × S × C ∪ {Cf} with

– the main layer : M = {C0, C5} ∪ {Ci}i∈{1,..,4}×{0, 1}2 ∪ {0i, 1i}i∈{tt,cs,m}
– the signals layers : S =×i∈I{si} × ×j∈J ({sj} × {0, 1})
– the clocks layers (see lemma 1), one for each duration needed. C = ({0, 1}×
{si}i∈Ic)

4

– Cf is a single persistent state ensuring that U ∈ P

Yet, the transition rule of U is partially specified, we call correct transitions
those defined up to now, in the case of correct macrocells. But the other transi-
tions may not be chosen arbitrarily. We specify the following behaviors:

– Cf is never modified by any transition
– the main layer is never modified by a non-correct transition: they act as the

identity on the main layer.
– concerning the signal layer, apart from the collisions corresponding to the

behavior described in the previous steps, all signals may cross each other
(each kind of signal is evolving on its own layer). However, except for tran-
sitions involved in the behavior described above, any signal that crosses a #
is destroyed.
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Interpretation. We now describe the continuous onto map φA : QU
Z → QA

Z

associated to A. This map is induced by a local map fA from patterns of shape
lA to individual states of A. More precisely, using notation from proposition 1,
we have r = 0, z1 = lA, z2 = 1, t2 = 1 and t1 = τA.

If pA is the persistent state of A, the local map ψA is defined as follows:

1. ∀u �∈ CA, fA(u) = pA
2. ∀u ∈ CA, fA(u) = v(u), with v(u) the value from definition 5

Proof of Theorem 2. The proof of the theorem relies on the two following
lemmas. They are consequences of the construction, the intermediate lemmas
and the clock lemma.

Lemma 4. ∀ c ∈ QU
Z, t0 ∈ N, if U t0(c)[0,lA−1] ∈ CA, then

v = U t0+τA(c)[0,lA−1] ∈ CA, and ψA(v) = δA(ψA(c[−lA,−1]), ψA(c[0,lA−1]),
ψA(c[lA,2·lA−1])).

Lemma 5. If ∃ t ≥ τA, c ∈ QU
Z such that u = U t(c)[0,lA−1] ∈ CA then v =

U t−τA(c)[0,lA−1] ∈ CA.

We can finally prove our main claim: ∀A ∈ P0, A � U . We use the characteriza-
tion of proposition 1. Let A ∈ P0 the associated length lA and function φA are
defined as explained before. First, φA is local (by definition) and onto, because
correct macrocells are enough to encode any state of A and thus concatenations
of correct macrocells allow to encode any configuration of A. Second, we have
φA◦UτA = A◦φA. To see this we discuss on the pattern of shapeRlA at position
0 and the rest follows by translation. If this pattern is not in CA its image after
τA steps remains out of CA (lemma 5). If conversely this central word belongs
to CA, lemma 4 gives the desired property.

4 Perspectives

A natural extension of our work could be to generalize the construction to cellular
automata having an equicontinuous point. The idea would be to use blocking
words as a replacement for the persistent state. But it seems much harder, if not
impossible.

Besides, the main open question left by this paper is the existence of universal
CA. We conjecture that they do not exist and more precisely that no CA can
simulate all products of shifts. A possible way to obtain this negative result would
be to study limit sets: by a compacity argument, one can show that a universal
CA must have a universal limit set. The main obstacle is that subshifts that are
limit sets of CA are not well characterized.

Finally, we also leave open the existence of universal SFT and universal sur-
jective CA in dimension 1.
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23. Wang, H.: Proving theorems by pattern recognition ii. Bell System Tech. Jour-
nal 40(2) (1961)



Toward a Deterministic Polynomial Time
Algorithm with Optimal Additive Query

Complexity

Nader H. Bshouty and Hanna Mazzawi

Technion - Israel Institute of Technology
{bshouty,hanna}@cs.technion.ac.il

Abstract. In this paper, we study two combinatorial search problems:
The coin weighing problem with a spring scale (also known as the vec-
tor reconstructing problem using additive queries) and the problem of
reconstructing weighted graphs using additive queries. Suppose we are
given n identical looking coins. Suppose that m out of the n coins are
counterfeit and the rest are authentic. Assume that we are allowed to
weigh subsets of coins with a spring scale. It is known that the optimal
number of weighing for identifying the counterfeit coins and their weights
is at least

Ω

(
m log n

log m

)
.

We give a deterministic polynomial time adaptive algorithm for identi-
fying the counterfeit coins and their weights using

O

(
m log n

log m
+ m log log m

)
weighings, assuming that the weight of the counterfeit coins are greater
than the weight of the authentic coin. This algorithm is optimal when
m ≤ nc/ log log n, where c is any constant. Also our weighing complexity
is within log log m times the optimal complexity for all m.

To obtain this result, our algorithm makes use of search matrices, the
divide and conquer approach and the guess and check approach.

When combining these methods with the technique introduced in [Op-
timally Reconstructing Weighted Graphs Using Queries. SODA, 2010],
we get a similar positive result for the problem of reconstructing a hidden
weighted graph using additive queries.

1 Introduction

In this paper, we study two well known combinatorial search problems: The coin
weighing problem with a spring scale (also called the problem of reconstruct-
ing vectors using additive queries) and the problem of reconstructing weighted
graphs using additive queries. These two problems have known some progress
lately [17,15,27,12,8,7,9,23]. We start with the coin weighing problem.
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1.1 Coin Weighing Problem

The coin weighing problem can be formally introduced as follows: Let v ∈ (R+
0 )n

be a hidden vector, where R+
0 denotes the set of non-negative real numbers.

Assume that v contains at most m non-zero entries and that we are allowed to
ask queries of the form

Qv(s) = sT v,

where s is a (0, 1)-vector. The goal is to exactly reconstruct the hidden vector
using minimal number of queries.

The coin weighing problem was first studied in the restricted case where the
hidden vector is a (0, 1)-vector and m = n. This case was studied in [10] by Can-
tor, in [29] by Soderberg and Shapiro, in [14] by Erdös and Rényi, in [18,19,20,21]
by Lindström and in [11] by Cantor and Mills. For this problem, Erdös and
Rényi proved a lower bound of 2n/ logn queries. See also [19,24,21,25,22]. Later,
Lindström [18] and independently Cantor and Mills [11] showed a non-adaptive
polynomial time algorithm for the problem with query complexity that matches
the lower bound1. Simplifications for Lindström’s algorithm were introduced
in [21,1,7].

For the case where the hidden vector is a (0, 1)-vector with no restriction
on m, the information theoretic lower bound for reconstructing a hidden vector
is

Ω

(
m log n

m

logm

)
.

In [15] Grebinski and Kucherov showed a non-constructive algorithm for the
problem that matches this lower bound for all m (that is, they proved the ex-
istence of an algorithm with query complexity that matches the information
theoretic lower bound without showing an explicit construction).

Several papers in the literature generalize the former results by showing al-
gorithms for reconstructing non-boolean vectors with bounded sum (L1 norm).
These papers study the problem of reconstructing a hidden vector with entries
that are non-negative integers such that the sum of the entries is bounded by k.
In [26] Pippenger gave a non-constructive algorithm in case k = n. This algo-
rithm asks O(n/ logn) queries. In [17] Grebinski extended this result by show-
ing an optimal non-constructive algorithm for n2 ≥ k ≥ n. In [28] Ruszinkó
and Vanroose gave the first polynomial time adaptive algorithm for the case of
k = n. This algorithm asks O((n log logn)/ logn) queries. The algorithm runs in
polynomial time, however, its query complexity is not optimal.

For many years, the only algorithms reaching the information theoretic lower
bound for all the above mentioned problems were non-constructive (except for
the case where the hidden vector is a (0, 1)-vector and m = n). It was only
until recently that Bshouty [7] gave the first optimal polynomial time adaptive
algorithm for reconstructing a hidden (0, 1)-vector. The algorithm Bshouty gave

1 Lindström’s algorithm works for the more general case of reconstructing a hidden
vector from [d]n. In this case, it uses O(n/ logd n) queries.
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works when reconstructing an integer hidden vector with bounded sum k. For
k ≤ n, this algorithm asks

O

(
k log n

k

log k

)
queries. Since in the (0, 1) case we have that the sum of entries k equals the
number of non-zero entries m, the algorithm matches the information theoretic
lower bound when reconstructing a (0, 1)-vector for all range of m. This is not
true for non-boolean vectors since the query complexity is not optimal when
k = ω(m).

Finally, for the general case (where the hidden vector is an n-vector with
at most m non-zeros entries that are unbounded positive real numbers), the
information theoretic lower bound is

Ω

(
m logn
logm

)
.

In [12] Choi and Han Kim showed an optimal non-constructive algorithm for
reconstructing a hidden vector with at most m non-zero entries, where each
non-zero entry holds a real number with magnitude bounded by n−a and nb for
any constants a and b. Later, in [9], Bshouty and Mazzawi, extended this result
by showing an optimal non-constructive algorithm for reconstructing any hidden
vector with at most m non-zero unbounded real entries.

Below is a table that summarize all known results.

Table 1. Known results for the coin weighing problem. Here Z
+
0 denotes the set of

non-negative integers.

Hidden Lower Upper Polynomial
Type vector Restriction bound bound time

{0, 1}n m = n Ω
(

n
log n

)
tight [18,11] tight [18,11]

Non – Ω
(

m log n
m

log m

)
tight [15] OPEN

Adaptive (Z+
0 )n – Ω

(
m log n
log m

)
tight [9] OPEN

(R+
0 )n ∀i : vi ∈ [n−a, nb] Ω

(
m log n
log m

)
tight [12] OPEN

– Ω
(

m log n
log m

)
tight [9] OPEN

{0, 1}n – Ω
(

m log n
m

log m

)
tight [15] tight [7]

Adaptive (Z+
0 )n ∑

i vi = O(m) Ω
(

m log n
m

log m

)
tight [17] tight [7]

– Ω
(

m log n
log m

)
tight [9] Ours

(R+
0 )n – Ω

(
m log n
log m

)
tight [9] Ours

For the problem of reconstructing a vector with real number entries, all algo-
rithms that match the information theoretic lower bound are non-constructive
and therefore proving an upper bound only. They prove that there exists a set of
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queries such that the answer to the queries uniquely identify the hidden vector;
However, it is unknown how to deterministically construct this set of queries
in polynomial time, and moreover, given the answer to such set of queries, it
is unknown how to reconstruct the hidden vector in polynomial time. The best
polynomial time algorithm for the problem is the trivial recursive search which
asks O(m log n

m ) queries.
In this paper, we show the following: Let v ∈ (R+

0 )n be a hidden vector that
contains at most m non-zero real entries. We give a polynomial time adaptive
algorithm for reconstructing v using

O

(
m logn
logm

+m log logm
)

additive queries.
Our algorithm is iterative. It uses the divide and conquer approach. The

algorithm holds disjoint sets of entries of the hidden vector v. Each such set holds
at least one non-zero entry. At the beginning of each iteration, the algorithm
knows the sum of the entries in each set. It divides each set into two equal size
set (up to ±1) and its goal is to find the sum of the entries for each new set.
The algorithm uses search matrices to obtain this goal. When using the search
matrices, the algorithm makes some assumptions on the input of the subproblem.
These assumptions are not always true, and therefore, before advancing to the
next iteration, the algorithm has an additional stage that checks its outcome
and corrects it if needed.

This is the first polynomial time algorithm that beats the trivial O(m log n
m)

recursive search. Our algorithm matches the information theoretic lower bound
when m ≤ nc/ log logn, where c is any constant. Also, our query complexity is
within log logm times the optimal complexity for all m.

1.2 Reconstructing Weighted Graphs Using Additive Queries

The weighted graph reconstructing problem is the following: Let G = (V,E,w)
be a weighted hidden graph, where E ⊆ V ×V and w ∈ (R+)E (here R+ denotes
the set of positive real numbers). Suppose that the set of vertices is known. The
goal is to exactly reconstruct the set of edges and their weights using additive
queries of the form

QG(S) =
∑

e∈(S×S)∩E
w(e)

where S ⊆ V . See applications in [12].
For the unweighted problem (in this case the answer to the query with the set

of vertices S simply returns the number of edges in the subgraph induced by S),
Grebinski and Kucherov, [15], showed an optimal non-constructive algorithm
for reconstructing a d-bounded degree graph. They also showed O(|V |2/ log |V |)
polynomial algorithm for reconstructing an arbitrary graph. Later, Grebinski [17]
extended the result by showing a non-constructive optimal algorithm for re-
constructing a d-degenerate graph. Finally, Choi and Han Kim [12], extended
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the later result by showing a non-constructive optimal algorithm for arbitrary
graphs.

A recent result by Mazzawi [23] gave the first polynomial time adaptive al-
gorithm that is optimal, that is, matches the information theoretic lower bound
for the query complexity.

As for the weighted case where the weights are real numbers, the information
theoretic lower bound for reconstructing a hidden weighted graph is

O

(
|E| log |V |

log |E|

)
.

Choi and Han Kim [12], showed a non-constructive optimal algorithm for recon-
structing hidden graphs with many edges (|E| must be at least logα |V | for a
sufficiently large α) and weights that are bounded by n−a and nb, where a and b
are any constants. Later, the condition on the number of edges was removed
in [8], and the condition on the weights was removed in [9].

As in the coin weighing problem, also in this problem, when dealing with the
case of real number weights, the only optimal algorithms are non-constructive.

When combining our new algorithms for reconstructing hidden vectors pre-
senting in this paper, with the technique introduced in [23], we obtain a new pos-
itive result for the problem of reconstructing a weighted (real numbers weights)
hidden graph using additive queries. We show the following: Let G = (V,E,w)
be any hidden graph, where the weights on the edges are arbitrary positive
real numbers. There is a polynomial time algorithm that reconstruct the hidden
graph in

O

(
|E| log |V |

log |E| + |E| log log |E|
)

queries. The query complexity matches the information theoretic lower bound
when |E| ≤ |V |c/ log log |V |, where c is any constant. This is the first algorithm
that beats the trivial O

(
|E| log |V |2

|E|

)
recursive search algorithm.

2 Preliminaries

2.1 Notation

Let R denote the set of real numbers. We denote by R+ the set of positive real
numbers and by R+

0 the set R+ ∪ {0}. Let r be a positive integer, we denote
by [r] the set {1, 2, . . . , r}. Let Si be a set of real numbers where i ∈ [t], we
denote by

∏t
i=1 Si the Cartesian product of the sets, that is, the set of t-vectors

{(w1, w2, . . . , wt) | ∀i : wi ∈ Si}.
For a t-vector w, we denote by wi the ith entry of w. We denote by |w| the

t-vector where |w|i = |wi| for all i ∈ [t]. For w ∈ {−1, 1}t we denote by ||w|| the
number of ones in w. For two vectors a, b ∈ {−1, 1}t, we write a ≤ b if for every
i ∈ [t] we have ai ≤ bi. We write a < b if a ≤ b and a �= b.
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2.2 Fourier Representation

In this subsection, we present the well known Fourier representation of functions.
Let x = (x1, x2, . . . , x�) be variables. Define the following basis

B =

{
χa(x)

Δ=
∏

i:ai=1

xi

∣∣∣∣∣ a ∈ {−1, 1}�
}
,

where χa : {−1, 1}� → {−1, 1}. It is known that every function f : {−1, 1}� → R

has a unique representation of the form

f(x) =
∑

a∈{−1,1}�

f̂(a)χa(x),

where for every a ∈ {−1, 1}�, f̂(a) is a real number and is called the Fourier
coefficient of χa in f .

3 Search Matrix

In this section we show,

Theorem 1. Let y ∈ (R+)t be any vector such that y1 ≥ y2 ≥ . . . ≥ yt. There
exists a polynomial time non-adaptive algorithm for reconstructing a hidden vec-
tor v ∈

∏t
i=1{0, yi} that uses O(t/log t) queries of the form: Q(w) = wT v where

w ∈ {0, 1}t.

Before proving this theorem, note that this problem is equivalent to finding in
polynomial time a (0,1)-matrix Mt of size O(t/ log t)× t such that, Mtv �= Mtu
for all u, v ∈

∏t
i=1{0, yi} where u �= v and given Mtv one can reconstruct v in

polynomial time. Such matrix Mt is called a search matrix.
We now show how to construct a search matrix for the problem. The matrix

we present was first introduced in [7]. Let a ∈ {−1, 1}�. Let j1, j2, . . . , j||a|| be
the indices of the entries in a that are equal to one. For k ∈ [||a||], define the
following function

ga,k(x) =

(
2

k∏
i=1

xji + 1
2

− 1

)
xjk+1xjk+2 · · ·xj||a|| .

Now, let fa,k(x) = (ga,k(x) + 1)/2. Define the following family of functions

F� = {fa,k|a ∈ {−1, 1}� and k ∈ [||a||]}.

Finally, define a partial order over F� in the following way: fa,k1 ≤ fb,k2 if and
only if a < b or (a = b and k1 ≥ k2).

The following are properties of F� and its functions [7].
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P1. fa,k ∈ {0, 1}{−1,1}�

. P2. |F�| =
∑

i i
(
�
i

)
= �2�−1.

P3. The Fourier coefficient of χa in fa,k is 2−k.
P4. For any a, b ∈ {−1, 1}�, such that a �= b and b �> a the Fourier coefficient

of χa in fb,k is equal to 0.

The following lemma can be derived immediately from P3 and P4.

Lemma 1. Let a ∈ {−1, 1}� be vector. Let I ⊆ [||a||] be any set. Let A =
{(a, i)|i ∈ I}. Let B = {(b1, i1), . . . , (b|B|, i|B|)} ⊆ {−1, 1}� × [�] such that for
all j we have ij ∈ [||bj ||]. If for all j we have bj �≥ a, then the Fourier coefficient
of χa in

f(x) =
∑

(v,u)∈A∪B
cu,vfv,u(x),

where cu,v are real numbers, is equal to
∑

(v,u)∈A
cv,u

2u .

We now use F� to construct our search matrix. Define the matrix Mt ∈
{0, 1}2�×� 2�−1

in the following way (we assume w.l.o.g. that t = �2�−1 for some
integer �. This is not always true. In such case, we take the minimal � such
that �2�−1 > t create the matrix and take the first t columns): First, we label
the rows of Mt with the elements of {−1, 1}�. Next, we label the columns with
element of F� in a descending order, that is, for every two indices i and j and
their corresponding functions fa,k and fb,s (respectively), we have that if i < j
then fb,s �≥ fa,k. Let Mt[x, fa,k] = fa,k(x) be the search matrix that algorithm
uses. That is, let z1 = 1�, z2 = 1�−1 · −1, . . . , z2� = −1�, where · denotes
concatenation, then

Mt =

⎛⎜⎜⎜⎝
fz1,1(z1) . . . fz1,�(z1) fz2,1(z1) . . . fz2,�−1(z1) . . . fz2�−1,1(z1)
fz1,1(z2) . . . fz1,�(z2) fz2,1(z2) . . . fz2,�−1(z2) . . . fz2�−1,1(z2)

...
...

...
...

...
fz1,1(z2�) . . . fz1,�(z2�) fz2,1(z2� ) . . . fz2,�−1(z2�) . . . fz2�−1,1(z2�)

⎞⎟⎟⎟⎠ .
We will now give an algorithm showing that given r = Mtv where v ∈

∏
i{0, yi}

one can exactly reconstruct v. Let σt : [�2�−1] → {(a, k)|a ∈ {−1, 1}� and k ∈
[||a||]} defined as follows: σt(j) = (a, k), where fa,k is the function corresponding
to the jth column of the search matrix Mt.

Algorithm (Proof of Theorem 1). The algorithm Reconstruct Vector,
presented in Figure 1, is iterative. We run it for start = 1, and r = Mtv.
The goal of the algorithm is to output a vector h = v. In each iteration the
algorithm determines one entry of the hidden vector v. At iteration i, the
entries 1, 2, . . . , i − 1 are known to the algorithm (stored in h1, h2, . . . , hi−1),
and the goal is to determine the ith entry. The vector r will be regarded as a
function r : {−1, 1}� → R. Therefore,

r(x) =
t∑

j=1

vjfσt(j)(x).
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The algorithm first calculates the function

f(x) = r(x) −
i−1∑
j=1

hjfσt(j)(x).

Let (a, k) be equal to σt(i). The algorithm calculates the Fourier coefficient of
χa in f in polynomial time. If f̂(a) < yi

2k then, vi equals 0. Otherwise, we have
that f̂(a) ≥ yi

2k and then, vi equals yi.
We now prove the correctness of the algorithm by induction.

Lemma 2. (Algorithm’s Correctness) Assuming correctness of the reconstruc-
tion of the first i− 1 indices, that is, given that h1 = v1, . . . , hi−1 = vi−1, then,
we have that hi = vi.

Proof. Since hj = vj for all j ∈ [i− 1], then we have

f(x) = r(x) −
i−1∑
j=1

hjfσt(j)(x) = r(x) −
i−1∑
j=1

vjfσt(j)(x) =
t∑

j=i

vjfσt(j)(x).

Let s be the index such that σt(s) = (a, ||a||). Since for every j > s and (b, k′) =
σt(j), we have that b �≥ a, by Lemma 1, the coefficient of χa in f is

f̂(a) =
vi
2k

+
vi+1

2k+1 + · · ·+ vs
2||a||

.

Now, note that if vi = yi then,

f̂(a) =
vi
2k

+
vi+1

2k+1 + · · ·+ vs
2||a||

≥ yi
2k

and therefore hi = yi. Otherwise, vi = 0, and then

f̂(a) =
vi
2k

+
vi+1

2k+1 + · · ·+ vs
2||a||

=
vi+1

2k+1 +
vi+2

2k+2 + · · ·+ vs
2||a||

≤ yi+1

2k+1 +
yi+2

2k+2 + · · ·+ ys
2||a||

≤ yi
2k+1 +

yi
2k+2 + · · ·+ yi

2||a||
<
yi
2k
,

and therefore, hi = 0.

Corollary 1. Let y ∈ (R+)t be any positive real numbers. Then, there exists
a polynomial time non-adaptive algorithm for reconstructing a hidden vector
v ∈
∏t

i=1{0, yi} that asks O
(

t
log t

)
queries.

Proof. Let P ∈ {0, 1}t×t be a permutation matrix that sorts the vector y.
Then, the matrix MtP is a search matrix for the problem. Given MtPv, we can
reconstruct Pv and therefore reconstruct v.
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Algorithm Reconstruct Vector(start, t, r, h, y)

1. For i = start to t do

2. f(x) ← r(x) −∑i−1
j=1 hjfσt(j)(x).

3. Let (a, k) ← σt(i).
4. if f̂(a) < yi

2k then
5. hi = 0.
6. Else
7. hi = yi.
8. End if.
9. End for.
10. Return h.

Fig. 1. Algorithm for reconstructing a vector in
∏

i{0, yi}. The algorithm starts recon-
structing from entry vstart, assuming that h1 = v1, . . . , hstart−1 = vstart−1.

4 The Main Algorithm

In this section we prove our main result.

Theorem 2. There is a polynomial time algorithm for reconstructing a hidden
vector v ∈ (R+

0 )n with at most m non-zero entries that uses

O

(
m logn
logm

+m log logm
)

queries.

Proof. The algorithm we present is iterative. It searches for non-zero entries
using the divide and conquer approach. At iteration τ , the algorithm holds at
most m disjoint sets S1, S2, . . . , Sq ⊆ [n] of indices. Each set Si contains at least
one index j for which vj �= 0. For a set S ⊆ [n] we denote by X(S) the sum

X(S) =
∑
j∈S

vj .

At the beginning of the iteration τ the algorithm knows X(Si) for all i ∈ [q]. As
before, we may assume that for every i ∈ [q− 1] we have that X(Si) ≥ X(Si+1).
The algorithm divides each set Si into two arbitrary equal size (up to ±1) sets
Si,1 and Si,2. Obviously, X(Si) = X(Si,1) +X(Si,2). Now, the algorithm’s goal
is to find X(Si,j) for all i ∈ [q] and j ∈ [2]. Instead of asking q queries to achieve
this, the algorithm uses the search matrix presented in the previous section in
order to reconstruct the hidden vector,

u = (X(S1,1), X(S1,2), X(S2,1), X(S2,2), . . . , X(Sq,1), X(Sq,2)),
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assuming that u ∈
∏2q

i=1{0, X(S�i/2�)}. The algorithm simulates queries for u
using the fact that

Qu(x) = Qv(y), where yk =

⎧⎨⎩
1 ∃i ∈ [q], ∃j ∈ [2] : k ∈ Si,j

and x2(i−1)+j = 1
0 otherwise.

Here x is any (0, 1) vector. Denote by h the output of Reconstruct Vector
for reconstructing u. The assumption that u ∈

∏2q
i=1{0, X(S�i/2�)} is not always

true. It may happen that for some index j ∈ [q] we have X(Sj,1) �= 0 and
X(Sj,2) �= 0, that is, X(Sj,1) and X(Sj,2) are not in {0, X(Sj)}. Such violation
can occur at most m times throughout the running of the algorithm. In case
where X(Sj,1) �= 0 and X(Sj,2) �= 0, we say that a split have occurred in the
set Sj .

The next lemmas show how to find a split. Their proof is similar to the proof
of Lemma 2 and will be in the full paper

Lemma 3. At iteration i of the running of Reconstruct Vector for recon-
structing u = (X(S1,1), X(S1,2), X(S2,1), X(S2,2), . . . , X(Sq,1), X(Sq,2)). If

h1 = u1, h2 = u2, . . . , hi−1 = ui−1,

and ui ∈ {0, X(S�i/2�)}, then, the algorithm reconstructs ui correctly. That is,
hi = ui.

Lemma 4. Let h be the output of Reconstruct Vector for reconstructing u =
(X(S1,1), X(S1,2), X(S2,1), X(S2,2), . . . , X(Sq,1), X(Sq,2)). Let Sj be the set with
the minimal index in which a split has occurred. Then, for every i ≤ 2(j− 1) we
have that hi = ui. Moreover, either h2j−1 = 0 or h2j = 0.

Using the lemmas above, we now show how to find the first split and how to
change h as if no split had occurred. Assume, for the sake of simplicity, that
2q = �2�−1 for some integer � (in the previous section we showed how to create
a search matrix for the case in which the number of columns is not of the
form �2�−1). For a ∈ {−1, 1}�, let Ba denote the set of all indices j such that
σ2q(j) = (a, k) for some k. Also let H0 denote the set of all indices j for which
hj = 0. Given a set S ⊆ [n] we denote by 1S the (0,1)-vector of size n where the
ith entry equals one if and only if i ∈ S. For an integer j, denote j = j− 1 if j is
even and j = j+1, otherwise. Let z1 = 1�, z2 = 1�−1 ·−1, . . . , z2� = −1� (these
are the vectors we used to label the rows of the search matrix, see Section 3).
The algorithm performs the following steps:

1. Set z ← z1, i← 1.
2. While (Qu(1H0∩Bz) = 0 and i �= 2� + 1) do i← i+ 1, z ← zi.
3. If i = 2� + 1, then halt.
4. Using a binary search, find the minimal index j ∈ H0 ∩Bz for which uj �= 0.
5. Ask a query to find uj (that is, Qu(1{j})).

Update hj = X(S�j/2�)− uj and hj = uj .
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6. Use the algorithm Reconstruct Vector with the new values
h1, . . . , hmax(j,j) and reconstruct h starting from entry max(j, j) + 1.

7. Update H0 using the new h and goto 2.

The idea of the algorithm is the following: For each Bz where z ∈ {z1, . . . , z2�−1},
the algorithm searches for errors caused by a split (note that Bz1 , Bz2 , . . . , Bz2�−1

are disjoint and that Bz1 ∪ Bz2 ∪ · · · ∪ Bz2�−1 = [2q]). Lemma 4 implies that if
Qu(1H0∩Bz ) = 0 then the algorithm has reconstructed the entries that corre-
spond to the indices Bz correctly (note that the order of searching for errors is
important, we must first search for errors in Bz1 then in Bz2 , etc.). On the other
hand, if Qu(1H0∩Bz) �= 0, then there is an index j ∈ Bz ∩H0 such that uj �= 0.
Let j ∈ Bz ∩H0 be the minimal index for which uj �= 0, Lemma 3 and Lemma 4
imply that a split have occurred in S�j/2�. Line 5 corrects the two entries in h
that were effected by this split. In line 6, Reconstruct Vector retraces its steps
and cancel errors in following entries that were possibly caused by the erroneous
values of hj and hj . Now, after reconstructing with the correct hj and hj (again
by Lemma 3 and Lemma 4) the next error is guaranteed to occur in the entries
that correspond to the next split.

After finding X(Si,j) for all i ∈ [q] and j ∈ [2]. The algorithm throws out all
sets Si,j such that X(Si,j) = 0 and advances to iteration τ + 1.

As for the complexity analysis, the algorithm runs logn iterations. At each
iteration τ , let βτ denote the number of splits in this iterations. Let qτ denote the
number of sets at the beginning of the iteration. At each iteration, the algorithm
uses search matrices. The complexity of this phase is O(2qτ/log 2qτ ). Next, the
algorithm corrects h. In line 2, the algorithm asks at most O(2qτ/log 2qτ ) + βτ
queries. Line 4 asks at most O(βτ log log 2qτ ) queries and line 5 asks βτ queries.
It is easy to see that the algorithm do not need to ask queries in line 6. Therefore,
using the fact that qτ ≤ m for every τ ∈ [logn], the total query complexity is

logn∑
τ=1

O

(
m

logm

)
+O(βτ log logm).

Since
∑logn

τ=1 βτ = m, we get the result.
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Abstract. We initiate a purely algebraic study of Ehrhard and Reg-
nier’s resource λ-calculus, by introducing three equational classes of
algebras: resource combinatory algebras, resource lambda-algebras and
resource lambda-abstraction algebras. We establish the relations between
them, laying down foundations for a model theory of resource λ-calculus.
We also show that the ideal completion of a resource combinatory (resp.
lambda-, lambda-abstraction) algebra induces a “classical” combinatory
(resp. lambda-, lambda-abstraction) algebra, and that any model of the
classical λ-calculus raising from a resource lambda-algebra determines a
λ-theory which equates all terms having the same Böhm tree.

1 Introduction

There have been several attempts to reformulate the λ-calculus as a purely al-
gebraic theory. The earliest and best known algebraic models are the combi-
natory algebras of Schönfinkel and Curry [5]. Combinatory algebras, as well as
their remarkable subclass of λ-algebras, have a purely equational characteriza-
tion but yield somewhat weak notions of models of the λ-calculus. In fact, the
combinatory interpretation of λ-calculus does not satisfy the ξ-rule: under the
interpretation, M = N does not necessarily imply λx.M = λx.N . Thus, the
class of λ-algebras is not sound for λ-theories, and one is forced to consider the
non-equational class of λ-models (see [1]). There are many advantages in using
algebraic languages rather than languages with binders, particularly in connec-
tion with equational reasoning. The former have well-understood model theory,
and the models are closed under standard constructions such as cartesian prod-
ucts, subalgebras, quotients and free algebras. The above-mentioned problem
with the ξ-rule seems to suggest that the λ-calculus is not quite equivalent to an
algebraic theory. The lattice of λ-theories is isomorphic to the congruence lattice
of the term algebra of the least λ-theory λβ. This remark is the starting point
for studying λ-calculus by universal algebraic methods, through the variety (i.e.
equational class of algebras) generated by the term algebra of λβ, which Salibra
[19] has shown to be axiomatized by the finite scheme of identities characterizing
λ-abstraction algebras. These algebras, introduced by Pigozzi and Salibra [17],
are intended as an alternative to combinatory algebras, which keeps the lambda
notation and hence all the functional intuitions. In [18] the connections between
the variety of λ-abstraction algebras and the other algebraic models of λ-calculus
are explained; it is also shown that the free extension of a λ-algebra can be turned
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into a λ-abstraction algebra, thus validating all rules of the λ-calculus, including
the ξ-rule. The algebraic approach to λ-calculus has been fruitful in studying the
structure of the lattice of λ-theories and in generalizing the Stone representation
theorem for Boolean algebras to combinatory and λ-abstraction algebras (see
[12, 13, 14]). The Stone theorem has been also applied to provide an algebraic
incompleteness theorem that encompasses incompleteness results for all known
semantics of λ-calculus.

In the ’90s Boudol [2] introduced the λ-calculus with multiplicities, an exten-
sion of λ-calculus where arguments may come in limited availability and mixed
together. After one decade Ehrhard and Regnier [7] introduced the differential
λ-calculus, a conservative (see [7, Prop. 19]) extension of the λ-calculus with
differential constructions, in which the linear application of a term M to an
argument roughly corresponds to applying the derivative of M in 0 (which is
a linear function) to that argument. The presence of linear application, and
linear substitution force the enrichment of the calculus with an operation of
sum with a neutral element. In [8, 9] Ehrhard and Regnier introduce a sim-
ple subsystem of the differential λ-calculus, that they call resource λ-calculus,
and establish a correspondence between differential nets, a variation of Girard’s
[10] linear logic proof-nets (without promotion rule), and resource λ-calculus.
Very recently, Tranquilli [20] enriched the resource λ-calculus with a promotion
operator (bearing strong similarities to Boudol’s λ-calculus with multiplicities),
establishing a correspondence with differential interaction nets extended with
promotion. Tranquilli’s resource calculus has been recently studied from the
syntactical point of view by Pagani and Tranquilli [16], for confluence results,
and by Pagani and Ronchi Della Rocca [15] for results about solvability. Regard-
ing the semantics of these calculi, the first studies were conducted by Boudol et
al. [3] for the λ-calculus with multiplicities. In a forthcoming paper Bucciarelli
et al. [4] define categorical models for the differential λ-calculus.

In this paper we initiate a purely algebraic study of Ehrhard and Regnier’s re-
source λ-calculus. We follow the lines of the universal-algebraic tradition in the
studyofλ-calculi, exploring anumberofvarietieswhich canbe consideredas classes
of algebraic models of resource λ-calculus. We axiomatize the variety of resource
combinatory algebras (RCAs) which are to the resource λ-calculus what combina-
tory algebras are to the classical λ-calculus, in the sense that they contain basic
combinators which allow to define an abstraction on polynomials and to obtain
a combinatory completeness result. Then establishing a parallel with the work of
Curry we isolate the subvariety of resource lambda-algebras (RLAs) and prove that
the free extension of an RLA validates the so-called ξ-rule for the abstraction; this is
done by a construction, analogue to that of Krivine [11] for lambda-algebras,which
shows that the free extensionof anRLA is,up to isomorphism,anobjectvery similar
to the graded algebraswhich appear in module theory. Along the line of the work of
Pigozzi and Salibra, we axiomatize the variety of resource λ-abstraction algebras.
We also establish the relations between these varieties, laying down foundations
for a model theory of resource λ-calculus. We then show that the ideal comple-
tion of a resource combinatory (resp. lambda-,λ-abstraction) algebra determines a
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“classical” combinatory (resp. lambda-,λ-abstraction)algebra,and thatanymodel
of the classicalλ-calculus raising fromaresource lambda-algebra inducesaλ-theory
which equates all terms having the same Böhm tree.

2 Preliminaries

We identify every natural number n ∈ N with the set n = {0, . . . , n− 1}. Sn

denotes the set of all permutations (i.e., bijections) of set n ∈ N.

Sequences : The overlined letters ā, b̄, c̄, . . . range over the set A∗ of all finite
sequences over A. The length of a sequence ā is denoted by |ā|. If ā is a se-
quence then ai (i ∈ N) denotes the i-th element of ā. For a sequence ā of
length n and a map σ : k → n (k, n ∈ N), the composition σā is the sequence
(aσ(0), . . . , aσ(k−1)). Given two sequences ā and b̄, their concatenation is denoted
by ā · b̄. Sequences of length one and elements of A are identified so that a · b̄ is
the concatenation of a ∈ A and b̄ ∈ A∗. If a ∈ A, then ak denotes the sequence
(a, . . . , a) of length k. If ī is a sequence of natural numbers of length k then Σī
denotes i0 + · · ·+ ik−1.

Sequences of sequences will be denoted by the double over-line. Thus, ¯̄a will
be a sequence of sequences, whose elements are the sequences ā0, . . . , ā|¯̄a|−1. We
denote by

∏
¯̄a the sequence ā0 · ā1 · . . . · ā|¯̄a|−1 that is the juxtaposition of the

sequences āi.

Partitions of a sequence: Let ā ∈ An and ī ∈ N∗ be sequences. A ī-partition of ā
is a sequence ¯̄b of sequences such that |¯̄b| = |̄i| = k+1, |b̄0| = i0, . . . , |b̄k−1| = ik−1

and there exists σ ∈ Sn such that σā =
∏ ¯̄b. We write Qā,̄i to denote the set of

all ī-partitions of ā and we agree that Qā,̄i �= ∅ if, and only if, Σī = |ā|. Moreover
by Qā,k we indicate the set

⋃
ī∈N∗,|̄i|=kQā,̄i. Let x̄, ȳ be sequences of the same

length and let ¯̄a ∈ Qx̄,n̄. We say that ¯̄b ∈ Qȳ,n̄ is the partition of ȳ induced by ¯̄a
iff
∏

¯̄a = σx̄ and
∏ ¯̄b = σȳ.

Kronecker’s delta: In order to give concise axiomatic presentations, we will use
the Kronecker function δn,m : A → A with values in a pointed set A (with dis-
tinguished element 0) given by δn,m(a) = a if n = m and δn,m(a) = 0 otherwise.
In particular for ā ∈ A∗ we will adopt the convention that the value of the
expression δ|ā|,m(a0) is 0 if |ā| = 0.

Free extensions: Let V be a variety and A ∈ V . The free extension A[X ] of A in
V by X is characterized by: (i) X ⊆ A[X ]; (ii) for any homomorphism f : A →
B ∈ V and any function g : X → B there exists a unique homomorphism f∗ :
A[X ] → B extending both f and g. It is known that A[X ] can be characterized
as a free algebra whose universe consists of equivalence classes of terms (on a
suitably enriched similarity type).

Direct sums of join-semilattices: Let (Ai)i∈I be a family of join-semilattices.
We say that B is the direct sum of the family (Ai)i∈I , notation B = ⊕i∈IAi, if
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B ≤
∏

i∈I Ai is the subalgebra of the sequences (ai ∈ Ai : i ∈ I) such that
{i : ai �= 0} is finite.

3 Bag-Applicative Algebras

Let R be a semiring with unit. We introduce an algebraic signature Γ constituted
by a binary operator “+”, a nullary operator “0”, a family of unary operators r
(r ∈ R), and a family of operators ·k (k ∈ N) of arity k + 1, called collectively
applications.

Theprefixnotation for application is indeedcumbersome for commonuse so that
each operation ·n(a, b0, . . . , bn−1) will be replaced by the lighter a[b0, . . . , bn−1], so
that, for example, ·0(a) = a[ ] and ·2(a, b, c) = a[b, c]. Another reason for this choice
is that,whenwewritea[b0, . . . , bn−1],we think to the elementaapplied to the“bag”
[b0, . . . , bn−1]. We will also adopt the usual convention that application associates
to the left. For a sequence b̄ of length n, we adopt the further notational simplifica-
tion to write ab̄ instead of a[b0, . . . , bn−1]. By ak we indicate the sequence (a, . . . , a)
of length k, thus bak = b[a, . . . , a] (a repeated k times), with the convention that
ba0 = b[ ]. Note that the above conventions lead to write just ab for a[b]: clearly in
case b is itself an application cd, we are obliged to write a[cd] in order to avoid any
ambiguity.
Definition 1. A Γ -algebra is called a bag-applicative algebra if it satisfies the
following axioms, which are universally quantified.

Commutative Monoid Axioms :
(x+ y) + z = x+ (y + z); x+ y = y + x; 0 + x = x
Module Axioms (r, s ∈ R) :
r(x + y) = rx+ ry; (r + s)x = rx+ sx; (rs)x = r(sx); 1x = x; 0x = 0
Multiset Axiom : x[y0, . . . , yk−1] = x[yσ(0), . . . , yσ(k−1)] (σ ∈ Sk)
Multilinearity Axioms :
x[0, y0, . . . , yk−1] = 0; 0[y0, . . . , yk−1] = 0
(ax+ by)[y0, . . . , yk−1] = a(x[y0, . . . , yk−1]) + b(y[y0, . . . , yk−1])
x[. . . , ay + bz, . . .] = a(x[. . . , y, . . .]) + b(x[. . . , z, . . .])

If a signature Δ extends Γ , we say that a Δ-algebra A is a bag-applicative
Δ-algebra if it is so the Γ -reduct of A.

4 The Linear Resource Lambda Calculus

We will now briefly introduce the linear fragment of resource λ-calculus (rλ-
calculus, for short). Let V be an infinite countable set of names which represent
the variables of λ-calculus. The set Λr of rλ-terms is described by the following
grammar: M,N,L ::= x | λx.M | M [N1, . . . , Nk] | rM | M + L | 0, with
x ∈ V and r constant for elements in a semiring. As usual, rλ-terms are to
be considered modulo α-conversion. The definition of the linear substitution of
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a “bag” [N1, . . . , Nk] for x in M , notation M〈[N1, . . . , Nk]/x〉, can be found
in [16]. Notice that the linear substitution is a “meta-operation” as the usual
substitution M{x := N} in classical λ-calculus. Finally we present the system
of equations governing the rλ-calculus:

Axioms of a bag-applicative algebra (instantied by rλ-terms)
βr-conversion: (λx.M)[N1, . . . , Nk] = M〈[N1, . . . , Nk]/x〉{x := 0}
Multilinearity for λ (r, s ∈ R): λx.0 = 0; λx.(rM + sN) = rλx.M + sλx.N

Fig. 1. Equational axioms for linear rλ-calculus over the semiring R

Warning: In the remaining part of this paper we take R to be the semiring
2 = ({0, 1},+, ·, 0, 1) of truth values with 0 < 1, where + and · are the usual
lattice operation. This means that the module axioms can be substituted by the
single identity x + x = x. In this way, the commutative monoid becomes a join
semilattice. Working with coefficients from an arbitrary semiring would increase
significantly the complexity of notations in statements and proofs, covering the
essence of the results presented in this paper.

Theorem 1. [7, 21] The rλ-calculus over the semiring 2 is consistent, because
it enjoys confluence and strong normalization.

5 The rλ-calculus from the Algebraic Point of View

The variable-binding properties of λ-abstraction prevent names in rλ-calculus
from operating as real algebraic variables. The same problem occurs in classic
λ-calculus and was solved by Pigozzi and Salibra [17] by introducing the variety
of λ-abstraction algebras. We adopt here their solution and transform the names
(i.e., elements of V ) into constants.

Definition 2. The signature Γλ is an extension of the signature Γ of bag-
applicative algebra by a family of nullary operators x ∈ V , one for each el-
ement of V , and a family of unary operators λx (x ∈ V ), called collectively
λ-abstractions.

The rλ-terms are just the Γλ-terms without occurrences of algebraic variables.
The absolutely free Γλ-algebra is the algebra Λr = (Λr,+, 0, ·k, λx, x)x∈V,k∈N,
where Λr is the set of rλ-terms and the operations are just the syntactical
operations of construction of the rλ-terms.

Definition 3. A rλ-theory is any congruence on Λr (with respect to all the
involved operations) including all the identities of Figure 1.

The least rλ-theory, denoted by λβr, is consistent by Theorem 1. If T is a rλ-
theory, we denote by Λr

T ≡ Λr/T the quotient of the absolutely free Γλ-algebra
Λr modulo the rλ-theory T . Λr

T is called the term algebra of T .
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We now abstract the notion of term algebra by introducing the variety of re-
source λ-abstraction algebras as a pure algebraic theory of rλ-calculus. The term
algebras of rλ-theories are the first example of resource λ-abstraction algebra.
Another example will be given in Section 9.

Definition 4. A resource λ-abstraction algebra (RLAA, for short) is a bag-
applicative Γλ-algebra satisfying the following identities (for all a ∈ A, ā, b̄, c̄, d̄ ∈
A∗, and x �= y ∈ V ):

(rβ1) (λx.x)ā = δ|ā|,1(a0)
(rβ2) (λx.y)ā = δ|ā|,0(y)
(rβ3) (λx.λx.a)b̄ = δ|b̄|,0(λx.a)
(rβ4) (λy.bi)[ ] = bi, for all i < |b̄| ⇒ (λx.λy.a)b̄ = λy.(λx.a)b̄
(rβ5) (λx.ab̄)c̄ = Σ ¯̄d∈Qc̄,k+1

(λx.a)d̄0[(λx.b0)d̄1, . . . , (λx.bk−1)d̄k] (|b̄| = k)

(rα) (λx.a)xk = a, (λy.a)[ ] = a ⇒ λx.a = λy.(λx.a)yk

(rγ) (λx.a)xn + a = a
(rλ) λx.0 = 0; λx.(a + b) = λx.a + λx.b

Some of the axioms above are not pure identities, though they can be turned
into such as it is done in the case of λ-abstraction algebras [17].

An element a is finite-dimensional if there exists a finite subset X ⊆ V such
that (λx.a)[ ] = a for all x ∈ V − X and, for all x ∈ X , there is exactly one
n �= 0 such that (λx.a)xn = a, and in such a case (λx.a)xk = 0 for all k �= n; this
last statement follows from (rβ5),(rβ3) and (rβ1). Finite-dimensional elements
are a generalization of the rλ-terms. In particular a ∈ A is zero-dimensional if
(λx.a)[ ] = a for all x ∈ V . We say that a name x ∈ V does not occur free in
a ∈ A if (λx.a)[ ] = a. The set of zero-dimensional elements, which generalizes
closed rλ-terms, will be denoted by ZdA. In general a RLAA may have elements
where all the names occur free; these elements are a generalization of infinite λ-
terms. A RLAA A is called locally finite if it is generated by its finite-dimensional
elements (through the join/sum operator). Every RLAA A contains a canonical
locally finite RLAA, which is the subalgebra of A generated by all its finite-
dimensional elements. This algebra will be denoted by LfA.

Proposition 1. (i) For any rλ-theory T the term algebra Λr
T is a locally finite

RLAA.
(ii) The minimal subalgebra of a RLAA A is isomorphic to Λr

T for some T .

6 Resource Combinatory Algebras

In this section we introduce a class of algebras which are to the rλ-calculus what
combinatory algebras are to the classical λ-calculus. The signature Γc of is an
extension of the signature Γ of bag-applicative algebras by a nullary operator
K and a family of nullary operators Sn̄ (n̄ ∈ N∗). Recall the definition of the set
Qz̄,n̄ from the preliminaries.
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Definition 5. A resource combinatory algebra (RCA, for short) is a bag-
applicative Γc-algebra satisfying the following identities:

(K) Kx̄ȳ = δ|ȳ|,0(δ|x̄|,1(x0))
(Sn̄) Sn̄x̄ȳz̄ = δ|x̄|,1(δk,|ȳ|(δ|ȳ|,|n̄|−1(δ|z̄|,Σn̄(

∑
¯̄c∈Qz̄,n̄

x0c̄0[y0c̄1, . . . , yk−1c̄k]))))
The variety of resource combinatory algebras is denoted by RCA. We secretly

think of K and Sn̄ as the following rλ-terms:

Kλ ≡ λxy.x; Sn̄,λ ≡ λxyz.xzn0 [yzn1, . . . , yznk ] (|n̄| − 1 = k) (1)

We define (resource) monomials with names in V and constant in A by the
following grammar: t ::= x | ca | K | Sn̄ | t0[t1, . . . tn] (n̄ ∈ N, a ∈ A). A
(resource) polynomial is a finite sum of monomials: t1 + · · · + tn. We denote
by P (A) the set of all polynomials with names in V and constant in A. For
a monomial t we define the degree degx(t) of x ∈ V in t as the number of
occurrences of the name x in t.

We define an abstraction operation on polynomials, with which the abstrac-
tion of rλ-calculus can be simulated. First of all we need to define the combinator
I ≡ S(1)K[ ]. It is immediate to see that Ix̄ = δ|x̄|,1(x0).

Definition 6. Let t, t1, . . . , tn be monomials. We define a new monomial λ∗x.t
as follows:

(i) λ∗x.t ≡ Kt if degx(t) = 0
(ii) λ∗x.x ≡ I
(iii) λ∗x.t0[t1, . . . , tk] ≡ Sn̄[λ∗x.t0][λ∗x.t1, . . . , λ∗x.tk] (n̄ =

(degx(t0), . . . , degx(tk))) if ∃i degx(ti) �= 0.

We extend the definition of abstraction to polynomials: λ∗x.Σn
i=1ti = Σn

i=1λ
∗x.ti.

Let t be a monomial with degx(t) = n, p̄ be a sequence of n polynomials and σ ∈
Sn be a permutation. Then the expression t{x̄ := σp̄} denotes the simultaneous
substitution of the i-th occurrence xi of x in t by the polynomial pσ(i) (i =
1, . . . , n). As usual we write A � t = u to express the fact the equation t = u
holds under any valuation in the algebra A.

Lemma 1. Let A be a RCA. For any monomial t, any sequence p̄ of polynomials,
and any name x we have: A � (λ∗x.t)p̄ = δdegx(t),|p̄|(Σσ∈Sdegx(t) t{x̄ := σp̄}).

Let A be a RLAA. The combinatory reduct of A is defined as the algebra CrA =
(A, ·k,KA

λ , S
A
n̄,λ), where the rλ-terms Kλ and Sn̄,λ are defined in (1) above. The

subalgebra of CrA constituted by the zero-dimensional elements of A will be
denoted by Zd A.

Proposition 2. Let A be a locally finite RLAA. Then, CrA is a RCA.

The proof of the above proposition is trivial because of the hypothesis of locally
finiteness. If we drop this hypothesis, then we cannot always apply α-conversion
because elements may exist where all variables occur free.
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The rλ-term tλ associated with a polynomial t can be easily defined by in-
duction: K,Sn̄ are respectively translated into Kλ and Sn̄,λ (see (1) above);
(ca)λ = ca; (t[s1, . . . , sn])λ = tλ[s1,λ, . . . , sn,λ]; (Σti)λ = Σti,λ.

The following lemma can be shown by induction over the complexity of the poly-
nomial p. If A is a RLAA, then pCr A denotes the interpretation of p into CrA.

Lemma 2. Let A be a RLAA and p be a polynomial. Then, pCr A = pAλ and
(λ∗x.p)Cr A = λxA.pAλ .

7 Resource λ-algebras

In this section we axiomatize the variety of resource λ-algebras (rλ-algebras
for short), and prove that the free extension of an rλ-algebra in the variety
of rλ-algebras can be turned into a RLAA, so that it validates all the rules of
rλ-calculus. For the subsequent developments, it turns out very important to
isolate a particular family of combinators: for n ∈ N, the n-homogenizer is the
combinator Hn ≡ S(0,n)[KI]. Using the equation schemata of RCAs we obtain
that Hnx̄ȳ = δ|x̄|,1(δ|ȳ|,n(x0ȳ)). The elements of the form Hna are the semantical
counterpart of monomials of the form λ∗x.t, with degx(t) = n. Via Hn it is in
fact possible to give a semantical notion of degree: a ∈ A is called homogeneous
of degree n iff Hna = a.

We now define rλ-algebras. We advice the reader that some identities defining
rλ-algebras are difficult to read, nonetheless they still resemble those for λ-
algebras.

Definition 7. A RCA A is a rλ-algebra if it satisfies the λ∗-closure of the
following identities:

(R0) Hn[Hmx] = δn,m(Hmx)
(R1) K = H1K; Kx = H0[Kx]
(R2) Sn̄ = H1Sn̄; Sn̄x = H|n̄|−1[Sn̄x]; Sn̄xȳ = HΣn̄[Sn̄xȳ]

(R3) Sm̄[Sn̄[KK]x̄]ȳ =
{
Hn1x0 if |x̄| = 1, |ȳ| = 0, n̄ = (0, n1), m̄ = (n1)
0 otherwise

(R4) Sn̄[Sm̄[Sp̄[KSl̄]x̄]ȳ]z̄ =
Σ¯̄s∈Qz̄,l̄

S(Σ(m0·ō0),...,Σ(mk·ōk))[Sm0·ō0x0s̄0][Sm1·ō1y0s̄1, . . . , Smk·ōk
yk−1s̄k],

if |x̄| = 1, p̄ = (0, p1), |ȳ| + 1 = |m̄| = k, n̄ = (Σm̄) · n̄′, |z̄| = |n̄′| = Σl̄,
m̄ = p1 · l̄, and, for each ¯̄s ∈ Qz̄,l̄, ¯̄o ∈ Qn̄′,l̄ is the partition of n̄′ induced
by ¯̄s; it is equal to 0, otherwise

(R5) K[xȳ] = S0k+1 [Kx][Ky0, . . . ,Kyk−1] (|ȳ| = k)
(R6) Hkx = S0·1k [Kx]Ik

The variety of rλ-algebras will be denoted by RLA. The next lemma shows the
aforementioned connection between homogenizers and the induced λ-abstraction
on polynomials.

Lemma 3. Let A be a RLA and t be a monomial. Then A � Hn[λ∗x.t] =
δn,degx(t)(λ∗x.t).
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The following theorem is the main result of the section; its proof, divided into five
lemmas, occupies the rest of this section and involves the explicit construction
of the free extension of a RLA by one name as a graded algebra (Lemmas 4-7)
and two key observations (Lemmas 8,9).

Theorem 2. The free extension A[V ] of a rλ-algebra A by the set V of names
in the variety RCA satisfies the following ξ-rule, for all polynomials p, q ∈ P (A):

(ξ) A[V ] � p = q ⇒ A[V ] � λ∗x.p = λ∗x.q.

We apply the above theorem to define λ-abstraction operators on A[V ]. For any
e ∈ A[V ], we define λx.e = λ∗x.p, for some polynomial p ∈ e. Rule ξ validates
the above definition of λx. Define the algebra A[V ]λ = (A[V ],+, 0, ·k, λx, x)x∈V ,
where (A[V ],+, 0, ·k, ) is the Γ -reduct of the free extension A[V ], λx is defined
as above and the name x ∈ V is viewed as a nullary operator; A[V ]λ is called
the RLAA freely generated by the rλ-algebra A.

Corollary 1. A[V ]λ is a locally finite RLAA such that KA[V ]λ
λ = KA and

S
A[V ]λ
n̄,λ = SA

n̄ .

Corollary 2. Let A be a RCA. Then, A is a rλ-algebra iff A can be embedded
into the combinatory reduct of some RLAA B.

This corollary is very useful to prove when a RCA is a RLA (see Section 9). The
construction of the free extension will turn out to be the construction of a graded
algebra as a direct sum of specific join semilattices. We now provide the proof
of Theorem 2. The proof is inspired by a construction by Krivine [11].

Lemma 4. Let A be a rλ-algebra and set Bn = {a ∈ A : Hna = a}. Then
(Bn,+, 0) is a join sub-semilattice of (A,+, 0) such that Bn ∩ Bm = {0} if
n �= m.

We now define an algebra B = (B,+, 0, •k,KK,KSn̄)k∈N,n̄∈N∗ , called the N-
graded algebra generated by A in the similarity type of RCA by setting:

1. (B,+, 0) = ⊕n∈N(Bn,+, 0) is the direct sum of the join semilattices
(Bn,+, 0).

2. each application “•k” is the extension by linearity of the following operation:
a0 •k [a1, . . . , ak] = Sp̄a0[a1, . . . , ak], with ai ∈ Bpi .

Lemma 5. The N-graded algebra B is a RCA which satisfies the following con-
ditions: (i) KK and KSn̄ are elements of B0; (ii) Bd0•k [Bd1 , . . . , Bdk−1 ] ⊆ BΣd̄,
for all d̄ ∈ Nk+1.

Lemma 6. The map ι, defined by ι(a) = Ka, is an embedding of A into B.

Proof. By (R5) ι(a0[a1, . . . , an]) = K[a0[a1, . . . , an]] =
S0n+1 [Ka0][Ka1, . . . ,Kan] = ι(a0) • [ι(a1), . . . , ι(an)]. The other properties are
trivial. �
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By Lemma 6 B is a RLA. We are now going to show the connection between the
N-graded algebra B and the free extension A[x] by one name x.

Lemma 7. The N-graded algebra B is the free extension of A by one name in
the variety RLA. Consequently, B ∼= A[x].

Proof. We prove that B ∼= A[x]. Let C be a RCA, c ∈ C and f : A → C
be a homomorphism. Define a family of functions fk : Bk → C (k ∈ N) as
follows: fk(a) = f(a) ·C ck for all a ∈ Bk. Let f∗ : B → C be the unique
extension by linearity of the family of functions fk, that is, f∗(0) = 0 and
f∗(Σm

i=1ai) = Σm
i=1fdi(ai) for ai ∈ Bdi .

We now prove that f∗ is a homomorphism. It is immediate to check that f∗ is
a monoid homomorphism, using multi-linearity of application. Since f∗ extends
f by linearity, it suffices to prove the following:

fΣē(a • b̄) = f(Sēab̄)cΣē = SC
ē f(a)[f(b0), . . . , f(bn−1)]cΣē , since f is hom,

= f(a)ce0 [f(b0)ce1 , . . . , f(bn−1)cen ], by(Sn̄) and idempotence of sum,
= fe0(a)[fe1(b0), . . . , fen(bn−1)].

We have: f0(KAKA) = f(KAKA)[ ] = KCKC[ ] = KC. A similar argument
shows that f∗(KASA

n̄ ) = SC
n̄ . This shows that f∗ is a homomorphism.

We have: f∗(ι(a)) = f0(Ka) = f(Ka)[ ] = KCf(a)[ ] = f(a); and f∗(I) =
f1(I) = f(I)c = ICc = c. This proves f∗ ◦ ι = f and f∗(I) = c.

Finally suppose h : B → C is another homomorphism satisfying h◦ ι = f and
h(I) = c. The uniqueness of f∗ is shown as follows:

h(a) = h(Hka), for some k ∈ N,
= h(S0·1k [Ka]Ik), by axiom (R6)
= h((Ka) • Ik) = h(Ka)(h(I))k = h(ι(a))ck = fk(a)ck = f∗(a). �

We denote by ι∗ the unique isomorphism from A[x] onto B extending the em-
bedding ι : A → B defined in Lemma 6, and such that ι∗(x) = I.

Lemma 8. For all a, b ∈ A we have A[x] � axn = bxk iff A � Hna = Hkb.

Proof. ι∗(axn) = ι(a) • In = S0·1n [Ka]In = Hna, by (R6). We conclude since ι∗

is an isomorphism. Of course, if n �= k, then Hna = Hkb = 0. �
Lemma 9. For all polynomials p, q with at most the name x we have that
A[x] � p = q implies A[x] � λ∗x.p = λ∗x.q.

Proof. First we prove the result for monomials t, u. Let n = degx(t) and
k = degx(u). By Lemma 1 A[x] � (λ∗x.t)xn = t = u = (λ∗x.u)xk. Now
by Lemma 8 and by Lemma 3 it follows that A � λ∗x.t = Hn[λ∗x.t] =
Hk[λ∗x.s] = λ∗x.s; therefore trivially A[x] � λ∗x.t = λ∗x.s. Now for polyno-
mials p, q such that A[x] � p = q, we have that ι∗−1(ι∗(λ∗x.p)) = Σi∈Iλ

∗x.ti
and ι∗−1(ι∗(λ∗x.q)) = Σi∈Iλ

∗x.ui, where I is finite and for each i ∈ I, ti and ui
are monomials and A[x] � ti = ui; this allows to conclude, using the previous
result. �
The extension of the above lemma to polynomials with an arbitrary number of
names is standard, because A[x, y] ∼= A[x][y] and A[x] is a RLA.
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8 From Resource to Classical Lambda Calculus

After having introduced a number of structures which algebrize the resource
λ-calculus, we show how, by some standard constructions, we can recover the
algebraic models of classical λ-calculus. This is done, as often happens in mathe-
matics, by the method of ideal completion. Let A be a bag-applicative Γ -algebra.
An ideal is a downward closed subset X of A closed under join. For a subset
X ⊆ A, ↓ X = {b : ∃a1, . . . , an ∈ X. b ≤

∑n
i=1 ai} (where a ≤ b ⇐⇒ a+ b = b)

is the ideal generated by X . We denote by Ide(A) the collection of all ideals of
A. Let A be a RCA. Define an algebra Ide(A) = (Ide(A), ∗,K, S) by setting
K =↓ {K}; S =↓ {Sn̄ : n̄ ∈ N∗}; X ∗ Y =↓ {ab̄ : a ∈ X, b̄ ∈ Y ∗}. If B
is a RLAA we define the structure Ide(B) = (Ide(B), ∗, λx, x)x∈V by setting
x =↓ {x}; λx.X =↓ {λx.a : a ∈ X} and the application ∗ as above.

Theorem 3. (i) If A is a RCA, then Ide(A) is a combinatory algebra.
(ii) Let A be a RLAA and LfA be the subalgebra of A generated by its locally

finite elements. Then Ide( LfA) is a λ-abstraction algebra.
(iii) If A is a RLA, then Ide(A) is a λ-algebra.

Note that the λ-abstraction algebra Ide( LfA) of point (ii) is not necessarily
locally finite: for example the element ↓ V when V is infinite breaks the property.

According to [6], we now define a translation of ordinary λ-terms into sets of
rλ-terms, which also extends to a translation of Böhm trees. Let Λ⊥ be the set
normal terms in the λ-calculus extended with a constant ⊥; as customary Λ⊥

is endowed with a partial order whose bottom element is ⊥ and where “less or
equal” means “possibly more defined”. Following [1], we identify the Böhm tree
BT (M) of a λ-term M with an ideal (downwards closed and directed subset) of
Λ⊥ quotiented by the equations ⊥N = ⊥ and λx.⊥ = ⊥. This way we can also
translate Böhm trees into subsets of Λr.

As a matter of terminology, a rλ-term t is: simple if none of its subterms
(including t) contains either “+” or “0”; normal if none of its subterms (including
t) is of the form (λx.t′)s̄; in canonical form if it is a sum of simple terms. By
an easy argument involving the multilinearity axioms of the rλ-calculus and
Theorem 1, we can argue that for every term t ∈ Λr, there exists a unique
normal term s in canonical form which is equal to t and we let NF(t) be the
(finite) set of all simple terms whose sum is the normal canonical form of t.

Definition 8. [6] Let M ∈ Λ be a λ-term, possibly containing ⊥. The set
T (M) ⊆ Λr is defined inductively by the clauses: T (x) = {x}, T (⊥) = ∅,
T (λx.N) = {λx.t : t ∈ T (N)}, and T (PQ) = {ts̄ : t ∈ T (P ), s̄ ∈ T (Q)∗}. Then
T (N) happens to be the support of the Taylor expansion (see [6]) of the λ-term
N . Now T (BT (M)) ⊆ Λr is defined as ∪{T (B) : B ∈ BT (M)}.

Recall now that λ-terms are ground terms in the similarity type of LAAs: hence
for a LAA B it makes sense to write MB to indicate the interpretation of M
in B. Similarly the notation tA can be used to denote the interpretation of a
resource λ-term t in a RLAA A.
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Lemma 10. Let A be a locally finite RLAA and let B = Ide(A) be the LAA
built over A. Then for all M ∈ Λ, MB = ↓ {uA : u ∈ NF(t), t ∈ T (M)}.
Theorem 4. [6] Let M be a λ-term and let u be a normal simple rλ-term. Then
u ∈ T (BT (M)) iff there exists s ∈ T (M) such that u ∈ NF(s).

Lemma 11. Let A be a locally finite RLAA. Then for all terms M,N ∈ Λ we
have BT (M) = BT (N) implies M Ide(A) = N Ide(A). In particular all λ-theories
induced by the ideal completions of RLAAs are sensible.

Proof. Suppose BT (M) = BT (N). Then obviously T (BT (M)) = T (BT (N)).
We conclude by applying Theorem 4 and Lemma 10 as follows: MB = ↓ {uA :
u ∈ NF(t), t ∈ T (M)} = ↓ {uA : u ∈ NF(t), t ∈ T (N)} = NB. �

9 An Example

Multisets : Mf(D) is the set of all finite multisets with elements in D, where
m ∈Mf(D) is a function from D into N such that m(a) = 0 for all a belonging
to a cofinite subset of D. The natural number �m = Σa∈Dm(a) is the cardinality
ofm. The unionm�p of two finite multisets is defined by (m�p)(a) = m(a)+p(a)
for all a ∈ D.

Let D be a set together with an injection →: Mf(D) × D → D. We
adopt the convention that the operator “→” associates to the right, i.e.,
p → (q → γ) is abbreviated by p → q → γ. We define an algebra D =
(P(D),∪, ∅, ·n,K, Sk̄)n∈N, k̄∈N∗ in the similarity type of RCA, where K = {[α] →
[ ] → α : α ∈ D}, Sk̄ = {[p0 → [β1, . . . , βn] → β0] → [p1 → β1, . . . , pn → βn] →
(�ni=0pi) → β0 : βi ∈ D, pi ∈ Mf(D), �pi = ki, |k̄| = n+ 1}, and application is
the extension by linearity of the following map on singleton sets (we write γ for
{γ}, etc.): γ[β1, . . . , βn] = α if γ = [β1, . . . , βn] → α; it is equal to ∅, otherwise.
It is an easy calculation to show that D is a RCA. To prove that D is indeed a
RLA, by Corollary 2 it is sufficient to embed D into the combinatory reduct of
a suitable RLAA E that we define here:

(i) Mf(D)(V ) = {ρ : V → Mf(D) : ρ(x) = [ ] for cofinitely many x ∈ V } is
the set of environments ;

(ii) ε, defined by x �→ [ ], is the empty environment, while, for an environment ρ
and a finite multiset m, we define a new environment ρ{x := m} as follows:
ρ{x := m}(x) = m and ρ{x := m}(y) = ρ(y) if y �= x.

We now construct the algebra E = (P(Mf(D)(V ) ×
D),∪, ∅, ·k, λxE, xE)x∈V,k∈N by defining application and abstraction as the
extension by linearity of the following family of functions defined over the
singletons (we write (ρ, α) for {(ρ, α)}): λxE(ρ, α) = (ρ{x := [ ]}, ρ(x) → α);
xE = {(ε{x := [α]}, α) : α ∈ D}; (ρ0, α0)[(ρ1, α1) . . . , (ρn, αn)] = (�ni=0ρi, α)
if α0 = [α1, . . . , αn] → α; it is equal to ∅, otherwise. Notice that
(λx.(ρ, α))xn = (ρ, α) if, and only if, �ρ(x) = n.

Theorem 5. The algebra E is a RLAA and the map h : P(D) → ZdE, defined by
h(X) = {(ε, α) : α ∈ X} is an embedding from D into CrE, making D an RLA.



Resource Combinatory Algebras 245

References

[1] Barendregt, H.P.: The λ -calculus: its syntax and semantics. North Holland, Am-
sterdam (1984)

[2] Boudol, G.: The lambda-calculus with multiplicities. In: Best, E. (ed.) CONCUR
1993. LNCS, vol. 715, pp. 1–6. Springer, Heidelberg (1993)

[3] Boudol, G., Curien, P.-L., Lavatelli, C.: A semantics for lambda calculi with re-
sources. Math. Structures Comput. Sci. 9(4), 437–482 (1999)

[4] Bucciarelli, A., Ehrhard, T., Manzonetto, G.: Categorical models for simply typed
resource calculi. In: MFPS 2010 (2010)

[5] Curry, H.B., Feys, R.: Combinatory logic, vol. I. North-Holland, Amsterdam
(1958)
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Abstract. We consider two-player zero-sum games on graphs. These games can
be classified on the basis of the information of the players and on the mode of
interaction between them. On the basis of information the classification is as fol-
lows: (a) partial-observation (both players have partial view of the game); (b)
one-sided complete-observation (one player has complete observation); and (c)
complete-observation (both players have complete view of the game). On the ba-
sis of mode of interaction we have the following classification: (a) concurrent
(players interact simultaneously); and (b) turn-based (players interact in turn).
The two sources of randomness in these games are randomness in transition func-
tion and randomness in strategies. In general, randomized strategies are more
powerful than deterministic strategies, and randomness in transitions gives more
general classes of games. We present a complete characterization for the classes
of games where randomness is not helpful in: (a) the transition function (proba-
bilistic transition can be simulated by deterministic transition); and (b) strategies
(pure strategies are as powerful as randomized strategies). As consequence of our
characterization we obtain new undecidability results for these games.

1 Introduction

Games on graphs. Games played on graphs provide the mathematical framework to
analyze several important problems in computer science as well as mathematics. In par-
ticular, when the vertices and edges of a graph represent the states and transitions of a
reactive system, then the synthesis problem (Church’s problem) asks for the construc-
tion of a winning strategy in a game played on a graph [4,16,15,13]. Game-theoretic
formulations have also proved useful for the verification [1], refinement [10], and com-
patibility checking [7] of reactive systems. Games played on graphs are dynamic games
that proceed for an infinite number of rounds. In each round, the players choose moves;
the moves, together with the current state, determine the successor state. An outcome
of the game, called a play, consists of the infinite sequence of states that are visited.

Strategies and objectives. A strategy for a player is a recipe that describes how the
player chooses a move to extend a play. Strategies can be classified as follows: pure
strategies, which always deterministically choose a move to extend the play, vs. ran-
domized strategies, which may choose at a state a probability distribution over the avail-
able moves. Objectives are generally Borel measurable functions [12]: the objective for
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P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 246–257, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Randomness for Free 247

a player is a Borel set B in the Cantor topology on Sω (where S is the set of states), and
the player satisfies the objective iff the outcome of the game is a member ofB. In verifi-
cation, objectives are usually ω-regular languages. The ω-regular languages generalize
the classical regular languages to infinite strings; they occur in the low levels of the
Borel hierarchy (they lie in Σ3 ∩Π3) and they form a robust and expressive language
for determining payoffs for commonly used specifications.

Classification of games. Games played on graphs can be classified according to the
knowledge of the players about the state of the game, and the way of choosing moves.
Accordingly, there are (a) partial-observation games, where each player only has a
partial or incomplete view about the state and the moves of the other player; (b) one-
sided complete-observation games, where one player has partial knowledge and the
other player has complete knowledge about the state and moves of the other player;
and (c) complete-observation games, where each player has complete knowledge of the
game. According to the way of choosing moves, the games on graphs can be classi-
fied into turn-based and concurrent games. In turn-based games, in any given round
only one player can choose among multiple moves; effectively, the set of states can be
partitioned into the states where it is player 1’s turn to play, and the states where it is
player 2’s turn. In concurrent games, both players may have multiple moves available
at each state, and the players choose their moves simultaneously and independently.

Sources of randomness. There are two sources of randomness in these games. First is
the randomness in the transition function: given a current state and moves of the players,
the transition function defines a probability distribution over the successor states. The
second source of randomness is the randomness in strategies (when the players play
randomized strategies). In this work we study when randomness can be obtained for
free; i.e., we study in which classes of games the probabilistic transition function can
be simulated by deterministic transition function, and the classes of games where pure
strategies are as powerful as randomized strategies.

Motivation. The motivation to study this problem is as follows: (a) if for a class of
games it can be shown that randomness is free for transitions, then all future works
related to analysis of computational complexity, strategy complexity, and algorithmic
solutions can focus on the simpler class with deterministic transitions (the randomness
in transition may be essential for modeling appropriate stochastic reactive systems, but
the analysis can focus on the deterministic subclass); (b) if for a class of games it can be
shown that randomness is free for strategies, then all future works related to correctness
results can focus on the simpler class of deterministic strategies, and the results would
follow for the more general class of randomized strategies; and (c) the characterization
of randomness for free will allow hardness results obtained for the more general class
of games (such as games with randomness in transitions) to be carried over to simpler
class of games (such as games with deterministic transitions).

Our contribution. Our contributions are as follows:
1. Randomness for free in transitions. We show that randomness in the transition func-

tion can be obtained for free for complete-observation concurrent games (and any
class that subsumes complete-observation concurrent games) and for one-sided
complete-observation turn-based games (and any class that subsumes this class).
The reduction is polynomial for complete-observation concurrent games, and
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exponential for one-sided complete-observation turn-based games. It is known that
for complete-observation turn-based games, a probabilistic transition function can-
not be simulated by deterministic transition function (see discussion at end of
Section 3 for details), and thus we present a complete characterization when ran-
domness can be obtained for free for the transition function.

2. Randomness for free in strategies. We show that randomness in strategies is free
for complete-observation turn-based games, and for one-player partial-observation
games (POMDPs). For all other classes of games randomized strategies are more
powerful than pure strategies. It follows from a result of Martin [12] that for
one-player complete-observation games with probabilistic transitions (MDPs) pure
strategies are as powerful as randomized strategies. We present a generalization of
this result to the case of one-player partial-observation games with probabilistic
transitions (POMDPs). Our proof is totally different from Martin’s proof and based
on a new derandomization technique of randomized strategies.

3. New undecidability results. As a consequence of our characterization of random-
ness for free, we obtain new undecidability results. In particular, using our results
and results of Baier et al. [2] we show for one-sided complete-observation deter-
ministic games, the problem of almost-sure winning for coBüchi objectives and
positive winning for Büchi objectives are undecidable. Thus we obtain the first
undecidability result for qualitative analysis (almost-sure and positive winning) of
one-sided complete-observation deterministic games with ω-regular objectives.

2 Definitions

In this section we present the definition of concurrent games of partial information and
their subclasses, and notions of strategies and objectives. Our model of game is the
same as in [9] and equivalent to the model of stochastic games with signals [14,3].
A probability distribution on a finite set A is a function κ : A → [0, 1] such that∑

a∈A κ(a) = 1. We denote by D(A) the set of probability distributions on A.

Games of partial observation. A concurrent game of partial observation (or simply a
game) is a tuple G = 〈S,A1, A2, δ,O1,O2〉 with the following components: (1) (State
space). S is a finite set of states; (2) (Actions). Ai (i = 1, 2) is a finite set of actions
for Player i; (3) (Probabilistic transition function). δ : S × A1 × A2 → D(S) is a
concurrent probabilistic transition function that given a current state s, actions a1 and a2
for both players gives the transition probability δ(s, a1, a2)(s′) to the next state s′; and
(4) (Observations). Oi ⊆ 2S (i = 1, 2) is a finite set of observations for Player i that
partition the state space S. These partitions uniquely define functions obsi : S → Oi

(i = 1, 2) that map each state to its observation such that s ∈ obsi(s) for all s ∈ S.

Special cases. We consider the following special cases of partial observation concurrent
games, obtained either by restrictions in the observations, the mode of selection of
moves, the type of transition function, or the number of players:

– (Observation restriction). The games with one-sided complete-observation are the
special case of games where O1 = {{s} | s ∈ S} (i.e., Player 1 has com-
plete observation) or O2 = {{s} | s ∈ S} (Player 2 has complete observa-
tion). The games of complete-observation are the special case of games where
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O1 = O2 = {{s} | s ∈ S}, i.e., every state is visible to each player and hence both
players have complete observation. If a player has complete observation we omit
the corresponding observation sets from the description of the game.

– (Mode of interaction restriction). A turn-based state is a state s such that either (i)
δ(s, a, b) = δ(s, a, b′) for all a ∈ A1 and all b, b′ ∈ A2 (i.e, the action of Player 1
determines the transition function and hence it can be interpreted as Player 1’s turn
to play), we refer to s as a Player-1 state, and we use the notation δ(s, a,−); or
(ii) δ(s, a, b) = δ(s, a′, b) for all a, a′ ∈ A1 and all b ∈ A2. We refer to s as a
Player-2 state, and we use the notation δ(s,−, b). A state s which is both a Player-1
state and a Player-2 state is called a probabilistic state (i.e., the transition function
is independent of the actions of the players). We write the δ(s,−,−) to denote the
transition function in s. The turn-based games are the special case of games where
all states are turn-based.

– (Transition function restriction). The deterministic games are the special case of
games where for all states s ∈ S and actions a ∈ A1 and b ∈ A2, there exists a state
s′ ∈ S such that δ(s, a, b)(s′) = 1. We refer to such states s as deterministic states.
For deterministic games, it is often convenient to assume that δ : S×A1×A2 → S.

– (Player restriction). The 11/2-player games, also called partially observable
Markov decision processes (or POMDP), are the special case of games where A1
or A2 is a singleton. Note that 11/2-player games are turn-based. Games without
player restriction are sometimes called 21/2-player games.

The 11/2-player games of complete-observation are Markov decision processes (or
MDP), and 11/2-player deterministic games can be viewed as graphs (and are often
called one-player games).

Classes of game graphs. We will use the following abbreviations: we will use Pa
for partial observation, Os for one-sided complete-observation, Co for complete-
observation, C for concurrent, and T for turn-based. For example, CoC will denote
complete-observation concurrent games, and OsT will denote one-sided complete-
observation turn-based games. For C ∈ {Pa,Os,Co} × {C,T}, we denote by GC the
set of all C games. Note that the following strict inclusion: partial observation (Pa) is
more general than one-sided complete-observation (Os) and Os is more general than
complete-observation (Co), and concurrent (C) is more general than turn-based (T). We
will denote by GD the set of all games with deterministic transition function.

Plays. In a game structure, in each turn, Player 1 chooses an action a ∈ A1, Player 2
chooses an action in b ∈ A2, and the successor of the current state s is chosen according
to the probabilistic transition function δ(s, a, b). A play in G is an infinite sequence of
states ρ = s0s1 . . . such that for all i ≥ 0, there exists ai ∈ A1 and bi ∈ A2 with
δ(si, ai, bi, si+1) > 0. The prefix up to sn of the play ρ is denoted by ρ(n), its length
is |ρ(n)| = n + 1 and its last element is Last(ρ(n)) = sn. The set of plays in G
is denoted Plays(G), and the set of corresponding finite prefixes is denoted Prefs(G).
The observation sequence of ρ for player i (i = 1, 2) is the unique infinite sequence
obsi(ρ) = o0o1 . . . ∈ Oω

i such that sj ∈ oj for all j ≥ 0.

Strategies. A pure strategy in G for Player 1 is a function σ : Prefs(G) → A1. A
randomized strategy in G for Player 1 is a function σ : Prefs(G) → D(A1). A (pure
or randomized) strategy σ for Player 1 is observation-based if for all prefixes ρ, ρ′ ∈
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s1

s2

s′2

s3

s′3 s4 (−,−)

(−, b1)

(−, b2)

(a1,−)

(a1,−)

(a2,−)

(a2,−)

(−,−)

(−,−)

o1 o2 o3 o4

Fig. 1. A game with one-sided complete observation

Prefs(G), if obs1(ρ) = obs1(ρ′), then σ(ρ) = σ(ρ′). We omit analogous definitions
of strategies for Player 2. We denote by ΣG, ΣO

G , ΣP
G , ΠG, ΠO

G and ΠP
G the set of

all Player-1 strategies, the set of all observation-based Player-1 strategies, the set of all
pure Player-1 strategies, the set of all Player-2 strategies inG, the set of all observation-
based Player-2 strategies, and the set of all pure Player-2 strategies, respectively. Note
that if Player 1 has complete observation, then ΣO

G = ΣG.

Objectives. An objective for Player 1 inG is a set φ ⊆ Sω of infinite sequences of states.
A play ρ ∈ Plays(G) satisfies the objective φ, denoted ρ |= φ, if ρ ∈ φ. Objectives are
generally Borel measurable: a Borel objective is a Borel set in the Cantor topology on
Sω [11]. We specifically consider ω-regular objectives specified as parity objectives
(a canonical form to express all ω-regular objectives [17]). For a play ρ = s0s1 . . .
we denote by Inf(ρ) the set of states that occur infinitely often in ρ, that is, Inf(ρ) =
{s | sj = s for infinitely many j’s}. For d ∈ N, let p : S → {0, 1, . . . , d} be a
priority function, which maps each state to a nonnegative integer priority. The parity
objective Parity(p) requires that the minimum priority that occurs infinitely often be
even. Formally, Parity(p) = {ρ | min{p(s) | s ∈ Inf(ρ)} is even}. The Büchi and
coBüchi objectives are the special cases of parity objectives with two priorities, p : S →
{0, 1} and p : S → {1, 2} respectively. We say that an objective φ is visible for Player i
if for all ρ, ρ′ ∈ Sω, if ρ |= φ and obsi(ρ) = obsi(ρ′), then ρ′ |= φ. For example if the
priority function maps observations to priorities (i.e., p : Oi → {0, 1, . . . , d}), then the
parity objective is visible for Player i.

Almost-sure winning, positive winning and value function. An event is a measurable set
of plays, and given strategies σ and π for the two players, the probabilities of events
are uniquely defined [18]. For a Borel objective φ, we denote by Prσ,πs (φ) the proba-
bility that φ is satisfied by the play obtained from the starting state s when the strate-
gies σ and π are used. Given a game structure G and a state s, an observation-based
strategy σ for Player 1 is almost-sure winning (almost winning in short) (resp. posi-
tive winning) for the objective φ from s if for all observation-based randomized strate-
gies π for Player 2, we have Prσ,πs (φ) = 1 (resp. Prσ,πs (φ) > 0). The value function
〈〈1〉〉Gval : S → R for Player 1 and objective φ assigns to every state the maximal prob-
ability with which Player 1 can guarantee the satisfaction of φ with an observation-
based strategy, against all observation-based strategies for Player 2. Formally we
have 〈〈1〉〉Gval (φ)(s) = supσ∈ΣO

G
infπ∈ΠO

G
Prσ,πs (φ). For ε ≥ 0, an observation-based
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Pa - partial observation

Os - one-sided complete observation

Co - complete observation

C - concurrent

T - turn-based

Th. 2
Th. 3

Fig. 2. The various classes of game graphs. The curves materialize the classes for which ran-
domness is for free in transition relation (Theorem 2 and Theorem 3). For 21/2-player games,
randomness is not free only in complete-observation turn-based games.

strategy is ε-optimal for φ from s if we have infπ∈ΠO
G

Prσ,πs (φ) ≥ 〈〈1〉〉Gval (φ)(s) − ε.
An optimal strategy is a 0-optimal strategy.

Example 1. Consider the game with one-sided complete observation (Player 2 has com-
plete information) shown in Fig. 1. Consider the Büchi objective defined by the state
s4 (i.e., state s4 has priority 0 and other states have priority 1). Because Player 1 has
partial observation (given by the partition Oi = {{s1}, {s2, s′2}, {s3, s′3}, {s4}}), she
cannot distinguish between s2 and s′2 and therefore has to play the same actions with
same probabilities in s2 and s′2 (while it would be easy to win by playing a2 in s2 and a1
in s′2, this is not possible). In fact, Player 1 cannot win using a pure observation-based
strategy. However, playing a1 and a2 uniformly at random in all states is almost-sure
winning. Every time the game visits observation o2, for any strategy of Player 2, the
game visits s3 and s′3 with probability 1

2 , and hence also reaches s4 with probability
1
2 . It follows that against all Player 2 strategies the play eventually reaches s4 with
probability 1, and then stays there.

3 Randomness for Free in Transition Function

In this section we present a precise characterization of the classes of games where the
randomness in transition function can be obtained for free: in other words, we present
the precise characterization of classes of games with probabilistic transition function
that can be reduced to the corresponding class with deterministic transition function.
We present our results as three reductions: (a) the first reduction allows us to separate
probability from the mode of interaction; (b) the second reduction shows how to simu-
late probability in transition function with CoC (complete-observation concurrent) de-
terministic transition; and (c) the final reduction shows how to simulate probability in
transition with OsT(one-sided complete-observation turn-based) deterministic transi-
tion. All our reductions are local: they consist of a gadget construction and replacement
locally at every state. Our reductions preserve values, existence of ε-optimal strategies
for ε ≥ 0, and also existence of almost-sure and positive winning strategies. A visual
overview is given in Fig. 2.
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3.1 Separation of Probability and Interaction

A concurrent probabilistic game of partial observation G satisfies the interaction sep-
aration condition if the following restrictions are satisfied: the state space S can
be partitioned into (SA, SP ) such that (1) δ : SA × A1 × A2 → SP , and (2)
δ : SP × A1 × A2 → D(SA) such that for all s ∈ SP and all s′ ∈ SA, and for
all a1, a2, a

′
1, a

′
2 we have δ(s, a1, a2)(s′) = δ(s, a′1, a

′
2)(s

′) = δ(s,−,−)(s′). In other
words, the choice of actions (or the interaction) of the players takes place at states in SA
and actions determine a unique successor state in SP , and the transition function at SP
is probabilistic and independent of the choice of the players. In this section, we reduce
a class of games to the corresponding class satisfying interaction separation.

Reduction to interaction separation. LetG= 〈S,A1, A2, δ,O1,O2〉 be a concurrent
game of partial observation with an objective φ. We obtain a concurrent game of partial
observationG=〈SA ∪ SP , A1, A2, δ,O1,O2〉whereSA=S,SP =S ×A1 ×A2, and:

– Observation. For i ∈ {1, 2}, if Oi = {{s} | s ∈ S}, then Oi = {{s′} | s′ ∈
SA ∪SP }; otherwiseOi contains the observation o∪{(s, a1, a2) | s ∈ o} for each
o ∈ Oi.

– Transition function. The transition function is as follows:
1. We have the following three cases: (a) if s is a Player 1 turn-based state, then

pick an action a∗2 and for all a2 let δ(s, a1, a2) = (s, a1, a
∗
2); (b) if s is a

Player 2 turn-based state, then pick an action a∗1 and for all a1 let δ(s, a1, a2) =
(s, a∗1, a2); and (c) otherwise, δ(s, a1, a2) = (s, a1, a2);

2. for all (s, a1, a2) ∈ SP we have δ((s, a1, a2),−,−)(s′) = δ(s, a1, a2)(s′).
– Objective mapping. Given the objective φ in G we obtain the objective φ =
{〈s0s′0s1s′1 . . .〉 | 〈s0s1 . . .〉 ∈ φ} in G.

It is easy to map observation-based strategies of the gameG to observation-based strate-
gies in G and vice-versa that preserves satisfaction of φ and φ in G andG, respectively.
Let us refer to the above reduction as Reduction: i.e., Reduction(G,φ) = (G,φ). Then
we have the following theorem.

Theorem 1. Let G be a concurrent game of partial observation with an objective φ,
and let (G,φ) = Reduction(G,φ). Then the following assertions hold:
1. The reduction Reduction is restriction preserving: if G is one-sided complete-

observation, then so is G; if G is complete-observation, then so is G; if G is turn-
based, then so is G.

2. For all s ∈ S, there is an observation-based almost-sure (resp. positive) winning
strategy for φ from s in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy for φ from s in G.

3. The reduction is objective preserving: if φ is a parity objective, then so in φ; if φ is
an objective in the k-the level of the Borel hierarchy, then so is φ.

4. For all s ∈ S we have 〈〈1〉〉Gval (φ)(s) = 〈〈1〉〉Gval (φ)(s). For all s ∈ S there is an
observation-based optimal strategy for φ from s in G iff there is an observation-
based optimal strategy for φ from s in G.

Since the reduction is restriction preserving, we have a reduction that separates the
interaction and probabilistic transition maintaining the restriction of observation and
mode of interaction.
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Uniform-n-ary concurrent probabilistic games. The class of uniform-n-ary proba-
bilistic games are the special class of probabilistic games such that every state s ∈ SP
has n successors and the transition probability to each successor is 1

n . It follows from
the results of [19] that every CoC probabilistic game with rational transition probabili-
ties can be reduced in polynomial time to an equivalent polynomial size uniform-binary
(i.e., n = 2) CoC probabilistic game for all parity objectives. The reduction is achieved
by adding dummy states to simulate the probability, and the reduction extends to all
objectives (in the reduced game we need to consider the objective whose projection in
the original game gives the original objective).

In the case of partial information, the reduction to uniform-binary probabilistic
games of [19] is not valid (see [5] for an example). We reduce a probabilistic game
G to a uniform-n-ary probabilistic game with n = 1/r where r is the greatest common
divisor of all probabilities in the original gameG (a rational r is a divisor of a rational p
if p = q · r for some integer q). Note that the number n = 1/r is an integer. We denote
by [n] the set {0, 1, . . . , n− 1}. For a probabilistic state s ∈ SP , we define the n-tuple
Succ(s) = 〈s′0, . . . , s′n−1〉 in which each state s′ ∈ S occurs n · δ(s,−,−)(s′) times.
Then, we can view the transition relation δ(s,−,−) as a function assigning the same
probability r = 1/n to each element of Succ(s) (and then adding up the probabilities
of identical elements). Note that the above reduction is worst-case exponential (because
so can be the least common multiple of all probability denominators). This is necessary
to have the property that all probabilistic states in the game have the same number of
successors. This property is crucial because it determines the number of actions avail-
able to Player 1 in the reductions presented in Section 3.2 and 3.3, and the number of
available actions should not differ in states that have the same observation.

3.2 Simulating Probability by Complete-Observation Concurrent Determinism

In this section, we show that probabilistic states can be simulated by CoC deterministic
gadgets (and hence also by OsC and PaC deterministic gadgets). By Theorem 1, we
focus on games that satisfy interaction separation. A probabilistic state with uniform
probability over the successors is simulated by a complete-observation concurrent de-
terministic state where the optimal strategy for both players is to play uniformly over
the set of available actions (more details are given in [5]). This gives us Theorem 2.

Theorem 2. Let a ∈ {Pa,Os,Co} and b ∈ {C,T}, and let C = ab and C′ = aC. Let
G be a game in GC with probabilistic transition function with rational probabilities and
an objective φ. A game G ∈ GC′ ∩ GD (in the class that subsumes GC with concurrent
interaction) with deterministic transition function can be constructed in (a) polynomial
time if a = Co, and (b) in exponential time if a = Pa or Os, with an objective φ such
that the state space of G is a subset of the state space of G and we have:
1. For all s ∈ S there is an observation-based almost-sure (resp. positive) winning

strategy from s for φ in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy for φ from s in G.

2. For all s ∈ S we have 〈〈1〉〉Gval (φ)(s) = 〈〈1〉〉Gval (φ)(s). For all s ∈ S there is an
observation-based optimal strategy for φ from s in G iff there is an observation-
based optimal strategy for φ from s in G.
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3.3 Simulating Probability by One-Sided Complete-Observation Turn-Based
Determinism

We show that probabilistic states can be simulated by OsT (one-sided complete-
observation turn-based) states, and by Theorem 1 we consider games that satisfy inter-
action separation. The reduction is as follows: each probabilistic state s is transformed
into a Player-2 state with n successor Player-1 states (where n is chosen such that the
probabilities in s are integer multiples of 1/n). Because all successors of s have the
same observation, Player 1 has no advantage in playing after Player 2, and because by
playing all actions uniformly at random each player can unilaterally decide to simulate
the probabilistic state, the value and properties of strategies of the game are preserved.
Due to lack of space, the proof of Theorem 3 is given in [5].

Theorem 3. Let a ∈ {Pa,Os,Co} and b ∈ {C,T}, and let a′ = a if a �= Co, and
a′ = Os otherwise. Let C = ab and C′ = a′b. Let G be a game in GC with probabilistic
transition function with rational transition probabilities and an objective φ. A game
G′ ∈ GC′ ∩ GD (in the class that subsumes one-sided complete-observation turn-based
games and the class GC) with deterministic transition function can be constructed in
exponential time with an objective φ′ such that the state space of G is a subset of the
state space of G′ and we have:
1. For all s ∈ S there is an observation-based almost-sure (resp. positive) winning

strategy from s for φ in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy for φ′ from s in G′.

2. For all s ∈ S we have 〈〈1〉〉Gval (φ)(s) = 〈〈1〉〉G′
val (φ

′)(s). For all s ∈ S there is an
observation-based optimal strategy for φ from s in G iff there is an observation-
based optimal strategy for φ′ from s in G′.

Role of probabilistic transition in CoT games and POMDPs. We have shown that for
CoC games and OsT games, randomness in transition can be obtained for free. We com-
plete the picture by showing that for CoT (complete-observation turn-based) games ran-
domness in transition cannot be obtained for free. It follows from the result of Martin [12]
that for all CoT deterministic games and all objectives, the values are either 1 or 0; how-
ever, MDPs with reachability objectives can have values in the interval [0, 1] (not value 0
and 1 only). Thus the result follows for CoT games. It also follows that “randomness in
transitions” can be replaced by “randomness in strategies” is not true: in CoT determin-
istic games even with randomized strategies the values are either 1 or 0 [12]; whereas
MDPs can have values in the interval [0, 1]. For POMDPs, we show in Theorem 5 that
pure strategies are sufficient, and it follows that for POMDPs with deterministic transi-
tion function the values are 0 or 1, and since MDPs with reachability objectives can have
values other than 0 and 1 it follows that randomness in transition cannot be obtained for
free for POMDPs. The probabilistic transition also plays an important role in the com-
plexity of solving games in case of CoT games: for example, CoT deterministic games
with reachability objectives can be solved in linear time, but for probabilistic transition
the problem is in NP∩ coNP and no polynomial time algorithm is known. In contrast, for
CoC games we present a polynomial time reduction from probabilistic transition to de-
terministic transition. Table 1 summarizes our results characterizing the classes of games
where randomness in transition can be obtained for free.
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Table 1. When randomness is for free in the transition function. In particular, probabilities can
be eliminated in all classes of 2-player games except complete-observation turn-based games.

21/2-player 11/2-player

complete one-sided partial MDP POMDP

turn-based not free free not not

concurrent free free free (NA) (NA)

4 Randomness for Free in Strategies

It is known from the results of [8] that in CoC games randomized strategies are more
powerful than pure strategies; for example, values achieved by pure strategies are lower
than values achieved by randomized strategies and randomized almost-sure winning
strategies may exist whereas no pure almost-sure winning strategy exists. Similar results
also hold in the case of OsT games (see [6] for an example). By contrast we show that
in one-player games, restricting the set of strategies to pure strategies does not decrease
the value nor affect the existence of almost-sure and positive winning strategies. We
first start with a lemma, then present a result that can be derived from Martin’s theorem
for Blackwell games [12], and finally present our results precisely in a theorem.

Lemma 1. LetG be a POMDP with initial state s∗ and an objective φ ⊆ Sω. Then for
every randomized observation-based strategy σ ∈ ΣO there exists a pure observation-
based strategy σP ∈ ΣP ∩ΣO such that Prσs∗(φ) ≤ PrσP

s∗ (φ).

The main argument in the proof of Lemma 1 relies on showing that the value Prσs (φ) of
any randomized observation-based strategyσ is equal to the average of the valuesPrσi

s (φ)
of (uncountably many) pure observation-based strategies σi. Therefore, one of the pure
strategies σi has to achieve at least the value of the randomized strategy σ. The theory of
integration and Fubini’s theorem make this argument precise (see [5] for details).

Theorem 4 ([12]). Let G be a CoT stochastic game with initial state s∗ and an ob-
jective φ ⊆ Sω. Then the following equalities hold: infπ∈ΠO supσ∈ΣO

Prσ,πs∗ (φ) =
supσ∈ΣO

infπ∈ΠO Prσ,πs∗ (φ) = supσ∈ΣO∩ΣP
infπ∈ΠO Prσ,πs∗ (φ).

We obtain the following result as a consequence of Lemma 1.

Theorem 5. Let G be a POMDP with initial state s∗ and an objective φ ⊆ Sω. Then
the following assertions hold:
1. supσ∈ΣO

Prσs∗(φ) = supσ∈ΣO∩ΣP
Prσs∗(φ).

2. If there is a randomized optimal (resp. almost-sure winning, positive winning) strat-
egy for φ from s∗, then there is a pure optimal (resp. almost-sure winning, positive
winning) strategy for φ from s∗.

Theorem 4 can be derived as a consequence of Martin’s proof of determinacy of Black-
well games [12]: the result states that for CoT stochastic games pure strategies can
achieve the same value as randomized strategies, and as a special case the result also
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Table 2. When deterministic (ε-optimal) strategies are as powerful as randomized strategies. The
case ε = 0 in complete-observation turn-based games is open.

21/2-player 11/2-player

complete one-sided partial MDP POMDP

turn-based ε > 0 not not ε ≥ 0 ε ≥ 0

concurrent not not not (NA) (NA)

holds for MDPs. Theorem 5 shows that the result can be generalized to POMDPs, and
a stronger result (item (2) of Theorem 5) can be proved for POMDPs (and MDPs as a
special case). It remains open whether result similar to item (2) of Theorem 5 can be
proved for CoT stochastic games. The results summarizing when randomness can be
obtained for free for strategies is shown in Table 2.

Undecidability result for POMDPs. The results of [2] shows that the emptiness prob-
lem for probabilistic coBüchi (resp. Büchi) automata under the almost-sure (resp. pos-
itive) semantics [2] is undecidable. As a consequence it follows that for POMDPs the
problem of deciding if there is a pure observation-based almost-sure (resp. positive)
winning strategy for coBüchi (resp. Büchi) objectives is undecidable, and as a conse-
quence of Theorem 5 we obtain the same undecidability result for randomized strate-
gies. This result closes an open question discussed in [9]. The undecidability result
holds even if the coBüchi (resp. Büchi) objectives are visible.

Corollary 1. Let G be a POMDP with initial state s∗ and let T ⊆ S be a subset of
states (or subset of observations). Whether there exists a pure or randomized almost-
sure winning strategy for Player 1 from s in G for the objective coBuchi(T ) is unde-
cidable; and whether there exists a pure or randomized positive winning strategy for
Player 1 from s in G for the objective Buchi(T ) is undecidable.

Undecidability result for one-sided complete-observation turn-based games. The
undecidability results of Corollary 1 also holds for OsT stochastic games (as they sub-
sume POMDPs as a special case). It follows from Theorem 3 that OsT stochastic games
can be reduced to OsT deterministic games. Thus we obtain the first undecidability re-
sult for OsT deterministic games (Corollary 2), solving the open question of [6].

Corollary 2. Let G be an OsT deterministic game with initial state s∗ and let T ⊆ S
be a subset of states (or subset of observations). Whether there exists a pure or random-
ized almost-sure winning strategy for Player 1 from s inG for the objective coBuchi(T )
is undecidable; and whether there exists a pure or randomized positive winning strategy
for Player 1 from s in G for the objective Buchi(T ) is undecidable.

5 Conclusion

In this work we have presented a precise characterization for classes of games where
randomization can be obtained for free in transitions and in strategies. As a conse-
quence of our characterization we obtain new undecidability results. The other impact
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of our characterization is as follows: for the class of games where randomization is
free in transition, future algorithmic and complexity analysis can focus on the simpler
class of deterministic games; and for the class of games where randomization is free in
strategies, future analysis of such games can focus on the simpler class of deterministic
strategies. Thus our results will be useful tools for simpler analysis techniques in the
study of games.
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Abstract. We study observation-based strategies for partially-observable
Markov decision processes (POMDPs) with parity objectives. An observation-
based strategy relies on partial information about the history of a play, namely,
on the past sequence of observations. We consider qualitative analysis prob-
lems: given a POMDP with a parity objective, decide whether there exists an
observation-based strategy to achieve the objective with probability 1 (almost-
sure winning), or with positive probability (positive winning). Our main results
are twofold. First, we present a complete picture of the computational complex-
ity of the qualitative analysis problem for POMDPs with parity objectives and
its subclasses: safety, reachability, Büchi, and coBüchi objectives. We establish
several upper and lower bounds that were not known in the literature. Second, we
give optimal bounds (matching upper and lower bounds) for the memory required
by pure and randomized observation-based strategies for each class of objectives.

1 Introduction

Markov decision processes. A Markov decision process (MDP) is a model for systems
that exhibit both probabilistic and nondeterministic behavior. MDPs have been used to
model and solve control problems for stochastic systems: there, nondeterminism rep-
resents the freedom of the controller to choose a control action, while the probabilistic
component of the behavior describes the system response to control actions. MDPs have
also been adopted as models for concurrent probabilistic systems, probabilistic systems
operating in open environments [21], and under-specified probabilistic systems [5].

System specifications. The specification describes the set of desired behaviors of the
system, and is typically an ω-regular set of paths. Parity objectives are a canonical
way to define such specifications in MDPs. They include reachability, safety, Büchi
and coBüchi objectives as special cases. Thus MDPs with parity objectives provide
the theoretical framework to study problems such as the verification and the control of
stochastic systems.

Perfect vs. partial observations. Most results about MDPs make the hypothesis of per-
fect observation. In this setting, the controller always knows, while interacting with the
system (or MDP), the exact state of the MDP. In practice, this hypothesis is often unreal-
istic. For example, in the control of multiple processes, each process has only access to
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the public variables of the other processes, but not to their private variables. In control of
hybrid systems [13], or automated planning [17], the controller usually has noisy infor-
mation about the state of the systems due to finite-precision sensors. In such applications,
MDPs with partial observation (POMDPs) provide a more appropriate model.

Qualitative and quantitative analysis. Given an MDP with parity objective, the qual-
itative analysis asks for the computation of the set of almost-sure winning states (resp.,
positive winning states) in which the controller can achieve the parity objective with
probability 1 (resp., positive probability); the more general quantitative analysis asks
for the computation at each state of the maximal probability with which the controller
can satisfy the parity objective. The analysis of POMDPs is considerably more compli-
cated than the analysis of MDPs. First, the decision problems for POMDPs usually lie
in higher complexity classes than their perfect-observation counterparts: for example,
the quantitative analysis of POMDPs with reachability and safety objectives is unde-
cidable [19], whereas for MDPs with perfect observation, this question can be solved in
polynomial time [11,10]. Second, in the context of POMDPs, witness winning strategies
for the controller need memory even for the simple objectives of safety and reachability.
This is again in contrast to the perfect-observation case, where memoryless strategies
suffice for all parity objectives. Since the quantitative analysis of POMDPs is undecid-
able (even for computing approximations of the maximal probabilities [17]), we study
the qualitative analysis of POMDPs with parity objective and its subclasses.

Contribution. For the qualitative analysis of POMDPs, the following results are known:
(a) the problems of deciding if a state is almost-sure winning for reachability and Büchi
objectives can be solved in EXPTIME [1]; (b) the problems for almost-sure winning
for coBüchi objectives and positive winning for Büchi objectives are undecidable [1,7];
and (c) the EXPTIME-completeness of almost-sure winning for safety objectives fol-
lows from the results on games with partial observation [8,4]. Our new contributions
are as follows:

1. First, we show that (a) positive winning for reachability objectives is NLOGSPACE-
complete; and (b) almost-sure winning for reachability and Büchi objectives, and
positive winning for safety and coBüchi objectives are EXPTIME-hard. We also
present a new proof that positive winning for safety and coBüchi objectives can
be solved in EXPTIME1. It follows that almost-sure winning for reachability and
Büchi, and positive winning for safety and coBüchi, are EXPTIME-complete. This
completes the picture for the complexity of the qualitative analysis for POMDPs
with parity objectives. Moreover our new proofs of EXPTIME upper-bound proofs
yield efficient and symbolic algorithms to solve positive winning for safety and
coBüchi objectives in POMDPs.

2. Second, we present a complete characterization of the amount of memory required
by pure (deterministic) and randomized strategies for the qualitative analysis of
POMDPs. For the first time, we present optimal memory bounds (matching upper
and lower bounds) for pure and randomized strategies: we show that (a) for posi-
tive winning of reachability objectives, randomized memoryless strategies suffice,

1 A different proof that positive safety can be solved in EXPTIME is given in [14] (see the
discussion after Theorem 2 for a comparison).
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while for pure strategies linear memory is necessary and sufficient; (b) for almost-
sure winning of safety, reachability, and Büchi objectives, and for positive winning
of safety and coBüchi objectives, exponential memory is necessary and sufficient
for both pure and randomized strategies.

Related work. Though MDPs have been widely studied under the hypothesis of per-
fect observations, there are a few works that consider POMDPs, e.g., [18,16] for sev-
eral finite-horizon quantitative objectives. The results of [1] shows the upper bounds for
almost-sure winning for reachability and Büchi objectives, and the work of [6] consid-
ers a subclass of POMDPs with Büchi objectives and presents a PSPACE upper bound
for the subclass. The undecidability of almost-sure winning for coBüchi and positive
winning for Büchi objectives is established by [1,7]. We present a solution to the re-
maining problems related to the qualitative analysis of POMDPs with parity objectives,
and complete the picture. Partial information has been studied in the context of two-
player games [20,8], a model that is incomparable to MDPs, though some techniques
(like the subset construction) can be adapted in the context of POMDPs. More general
models of stochastic games with partial information have been studied in [2,14], and lie
in higher complexity classes. For example, a result of [2] shows that the decision prob-
lem for positive winning of safety objectives is 2EXPTIME-complete in the general
model, while for POMDPs, we show that the same problem is EXPTIME-complete.

2 Definitions

A probability distribution on a finite set A is a function κ : A → [0, 1] such that∑
a∈A κ(a) = 1. The support of κ is the set Supp(κ) = {a ∈ A | κ(a) > 0}. We

denote by D(A) the set of probability distributions on A.

Games and MDPs. A two-player game structure or a Markov decision process (MDP)
(of partial observation) is a tuple G = 〈L,Σ, δ,O〉, where L is a finite set of states, Σ
is a finite set of actions,O ⊆ 2L is a set of observations that partition2 the state space L.
We denote by obs(�) the unique observation o ∈ O such that � ∈ o. In the case of games,
δ ⊆ L×Σ ×L is a set of labeled transitions; in the case of MDPs, δ : L×Σ → D(L)
is a probabilistic transition function. For games, we require that for all � ∈ L and all
σ ∈ Σ, there exists �′ ∈ L such that (�, σ, �′) ∈ δ. We refer to an MDP of partial
observation as a POMDP. We say that G is a game or MDP of perfect observation if
O = {{�} | � ∈ L}. For σ ∈ Σ and s ⊆ L, define PostGσ (s) = {�′ ∈ L | ∃� ∈ s :
(�, σ, �′) ∈ δ} when G is a game, and PostGσ (s) = {�′ ∈ L | ∃� ∈ s : δ(�, σ)(�′) > 0}
when G is an MDP.

Plays. Games are played in rounds in which Player 1 chooses an action in Σ, and
Player 2 resolves nondeterminism by choosing the successor state; in MDPs the suc-
cessor state is chosen according to the probabilistic transition function. A play in G is
an infinite sequence π = �0σ0�1 . . . σn−1�nσn . . . such that �i+1 ∈ PostGσi

({�i}) for all
i ≥ 0. The infinite sequence obs(π) = obs(�0)σ0obs(�1) . . . σn−1obs(�n)σn . . . is the
observation of π.

2 A slightly more general model with overlapping observations can be reduced in polynomial
time to partitioning observations [8].
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The set of infinite plays in G is denoted Plays(G), and the set of finite prefixes
�0σ0 . . . σn−1�n of plays is denoted Prefs(G). A state � ∈ L is reachable in G if there
exists a prefix ρ ∈ Prefs(G) such that Last(ρ) = � where Last(ρ) is the last state of ρ.

Strategies. A pure strategy in G for Player 1 is a function α : Prefs(G) → Σ. A
randomized strategy in G for Player 1 is a function α : Prefs(G) → D(Σ). A (pure
or randomized) strategy α for Player 1 is observation-based if for all prefixes ρ, ρ′ ∈
Prefs(G), if obs(ρ) = obs(ρ′), then α(ρ) = α(ρ′). In the sequel, we are interested
in the existence of observation-based strategies for Player 1. A pure strategy in G for
Player 2 is a function β : Prefs(G) × Σ → L such that for all ρ ∈ Prefs(G) and all
σ ∈ Σ, we have (Last(ρ), σ, β(ρ, σ)) ∈ δ. A randomized strategy in G for Player 2 is
a function β : Prefs(G) × Σ → D(L) such that for all ρ ∈ Prefs(G), all σ ∈ Σ, and
all � ∈ Supp(β(ρ, σ)), we have (Last(ρ), σ, �) ∈ δ. We denote byAG, AO

G, and BG the
set of all Player-1 strategies, the set of all observation-based Player-1 strategies, and the
set of all Player-2 strategies in G, respectively.

Memory requirement of strategies. An equivalent definition of strategies is as follows.
Let Mem be a set called memory. An observation-based strategy with memory can be
described by two functions, a memory-update function αu: Mem×O×Σ → Mem that
given the current memory, observation and the action updates the memory, and a next-
action function αn: Mem × O → D(Σ) that given the current memory and current
observation specifies the probability distribution3 of the next action, respectively. A
strategy is finite-memory if the memory Mem is finite and the size of a finite-memory
strategy α is the size |Mem| of its memory. A strategy is memoryless if |Mem| = 1. The
memoryless strategies do not depend on the history of a play, but only on the current
state. Memoryless strategies for player 1 can be viewed as functions α: O → D(Σ).
Objectives. An objective for G is a set φ of infinite sequences of states and actions,
that is, φ ⊆ (L × Σ)ω. We consider objectives that are Borel measurable, i.e., sets in
the Cantor topology on (L × Σ)ω [15]. We specifically consider reachability, safety,
Büchi, coBüchi, and parity objectives, all of them being Borel measurable. The parity
objectives are a canonical form to express all ω-regular objectives [22]. For a play π =
�0σ0�1 . . . , we denote by Inf(π) = {� ∈ L | � = �i for infinitely many i’s} the set of
states that appear infinitely often in π.

– Reachability and safety objectives. Given a set T ⊆ L of target states, the reach-
ability objective Reach(T ) = { �0σ0�1σ1 . . . ∈ Plays(G) | ∃k ≥ 0 : �k ∈ T }
requires that a target state in T be visited at least once. Dually, the safety objective
Safe(T ) = { �0σ0�1σ1 . . . ∈ Plays(G) | ∀k ≥ 0 : �k ∈ T } requires that only
states in T be visited; the objective Until(T1, T2) = {�0σ0�1σ1 . . . ∈ Plays(G) |
∃k ≥ 0 : �k ∈ T2 ∧ ∀j ≤ k : �j ∈ T1} requires that only states in T1 be visited
before a state in T2 is visited.

– Büchi and coBüchi objectives. The Büchi objective Büchi(T ) = {π | Inf(π)∩T �=
∅} requires that a state in T be visited infinitely often. Dually, the coBüchi objective
coBüchi(T ) = {π | Inf(π) ⊆ T } requires that only states in T be visited infinitely
often.

3 For a pure strategy, the next-action function specifies a single action rather than a probability
distribution.
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– Parity objectives. For d ∈ N, let p : L → { 0, 1, . . . , d } be a priority function that
maps each state to a nonnegative integer priority. The parity objective Parity(p) =
{ π | min{ p(�) | � ∈ Inf(π) } is even } requires that the smallest priority that
appears infinitely often be even.

Note that the objectives Büchi(T ) and coBüchi(T ) are special cases of parity objectives
defined by respective priority functions p1, p2 such that p1(�) = 0 and p2(�) = 2 if
� ∈ T , and p1(�) = p2(�) = 1 otherwise. An objective φ is visible if it depends only on
the observations; formally, φ is visible if, whenever π ∈ φ and obs(π) = obs(π′), then
π′ ∈ φ. In this work, all our upper bound results are for the general parity objectives
(not necessarily visible), and all the lower bound results for POMDPs are for the special
case of visible objectives.

Almost-sure and positive winning. An event is a measurable set of plays, and given
strategies α and β for the two players (resp., a strategy α for Player 1 in MDPs), the
probabilities of events are uniquely defined [23]. For a Borel objective φ, we denote by
Prα,β� (φ) (resp., Prα� (φ) for MDPs) the probability that φ is satisfied from the starting
state � given the strategies α and β (resp., given the strategy α). Given a game G and
a state �, a strategy α for Player 1 is almost-sure winning (resp., positive winning)
for the objective φ from � if for all randomized strategies β for Player 2, we have
Prα,β� (φ) = 1 (resp., Prα,β� (φ) > 0). Given an MDP G and a state �, a strategy α for
Player 1 is almost-sure winning (resp. positive winning) for the objective φ from � if we
have Prα� (φ) = 1 (resp., Prα� (φ) > 0). We also say that state � is almost-sure winning,
or positive winning for φ respectively. We are interested in the problems of deciding
the existence of an observation-based strategy for Player 1 that is almost-sure winning
(resp., positive winning) from a given state �.

3 Upper Bounds for the Qualitative Analysis of POMDPs

In this section, we present upper bounds for the qualitative analysis of POMDPs. We
first describe the known results. For qualitative analysis of MDPs, polynomial time
upper bounds are known for all parity objectives [11,10]. It follows from the results
of [8,1] that the decision problems for almost-sure winning for POMDPs with reach-
ability, safety, and Büchi objectives can be solved in EXPTIME. It also follows from
the results of [1] that the decision problem for almost-sure winning with coBüchi ob-
jectives and for positive winning with Büchi objectives is undecidable if the strategies
are restricted to be pure, and the results of [7] shows that the problem remains unde-
cidable even if randomized strategies are considered. In this section, we complete the
results on upper bounds for the qualitative analysis of POMDPs: we present complex-
ity upper bounds for the decision problems of positive winning with reachability, safety
and coBüchi objectives. The following result for reachability objectives is simple, and
follows from equivalence to the graph reachability problem.

Theorem 1. Given a POMDP G with a reachability objective and a starting state �,
the problem of deciding whether there is a positive winning strategy from � in G is
NLOGSPACE-complete.
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Positive winning for safety and coBüchi objectives. We now show that the decision
problem for positive winning with safety and coBüchi objectives for POMDPs can be
solved in EXPTIME. Our result for positive safety and coBüchi objectives is based on
the computation of almost-sure winning states for safety objectives, and on the follow-
ing lemma (proof in [9]).

Lemma 1. Let G = 〈L,Σ, δ,O〉 be a POMDP and let T ⊆ L be the set of target
states. If Player 1 has an observation-based strategy in G to satisfy Safe(T ) with posi-
tive probability from some state �, then there exists a state �′ such that (a) Player 1 has
an observation-based strategy in G to satisfy Until(T , {�′}) with positive probability
from �, and (b) Player 1 has an observation-based almost-sure winning strategy in G
for Safe(T ) from �′.

By Lemma 1, positive winning states can be computed as the set of states from which
Player 1 can force with positive probability to reach an almost-sure winning state while
visiting only safe states. Almost-sure winning states can be computed using the follow-
ing subset construction.

Given a POMDP G = 〈L,Σ, δ,O〉 and a set T ⊆ L of states, the knowledge-
based subset construction for G is the game of perfect observation GK = 〈L, Σ, δK〉,
where L = 2L\{∅}, and for all s1, s2 ∈ L (in particular s2 �= ∅) and σ ∈ Σ, we
have (s1, σ, s2) ∈ δK iff there exists an observation o ∈ O such that either s2 =
PostGσ (s1) ∩ o ∩ T , or s2 = (PostGσ (s1) ∩ o) \ T . We refer to states in GK as cells.
The following result is established using standard techniques (see e.g., Lemma 3.2 and
Lemma 3.3 in [8]).

Lemma 2. Let G = 〈L,Σ, δ,O〉 be a POMDP and T ⊆ L a set of target states. Let
GK be the knowledge-based subset construction for G and FT = {s ⊆ T } be the set
of safe cells. Player 1 has an almost-sure winning observation-based strategy in G for
Safe(T ) from � if and only if Player 1 has an almost-sure winning strategy in GK for
Safe(F ) from the cell {�}.

Theorem 2. Given a POMDP G with a safety objective and a starting state �, the
problem of deciding whether there exists a positive winning observation-based strategy
from � can be solved in EXPTIME.

Algorithms. The complexity bound of Theorem 2 has been established previously
in [14], using an extension of the knowledge-based subset construction which is not
necessary (where the state space is L × 2L). Our proof (of Theorem 2, details in [9])
is simpler and also yield efficient and symbolic algorithms that an be obtained from
the antichain algorithm of [8] for almost-sure winning of safety objectives, and simple
graph reachability for positive winning of reachability objectives.

The positive winning states for a coBüchi objective are computed as the set of
almost-sure winning states for safety that can be reached with positive probability (for
details see [9]).

Theorem 3. Given a POMDP G with a coBüchi objective and a starting state �, the
problem of deciding whether there exists a positive winning observation-based strategy
from � can be solved in EXPTIME.
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4 Lower Bounds for the Qualitative Analysis of POMDPs

In this section we present lower bounds for the qualitative analysis of POMDPs. We
first present the lower bounds for MDPs with perfect observation (proofs in [9]).

Theorem 4. Given an MDP G of perfect observation, the following assertions hold:
(a) the positive winning problem for reachability objectives is NLOGSPACE-complete,
and the positive winning problem for safety, Büchi, coBüchi and parity objectives is
PTIME-complete; and (b) the almost-sure winning problem for reachability, safety,
Büchi, coBüchi and parity objectives is PTIME-complete.

Lower bounds for POMDPs. We have already shown that positive winning with reach-
ability objectives in POMDPs is NLOGSPACE-complete. As in the case of MDPs with
perfect observation, for safety objectives and almost-sure winning, a POMDP can be
equivalently considered as a game of partial observation where Player 2 makes choices
of the successors from the support of the probability distribution of the transition func-
tion, and the almost-sure winning set is the same in the POMDP and the game. Since
the problem of almost-sure winning in games of partial observation with safety objec-
tive is EXPTIME-complete [4], the EXPTIME-completeness result follows. We now
show that almost-sure winning with reachability objectives and positive winning with
safety objectives is EXPTIME-complete. Before the result we first present a discussion
on polynomial-space alternating Turing machines (ATM).
Discussion. Let M be a polynomial-space ATM and let w be an input word. Then,
there is an exponential bound on the number of configurations of the machine. Hence
if M can accept the word w, then it can do so within some k|w| steps, where |w| is the
length of the word w, and k|w| is bounded by an exponential in |w|. We construct an
equivalent polynomial-space ATM M ′ that behaves as M but keeps track (in polyno-
mial space) of the number of steps executed by M , and given a word |w|, if the number
of steps reaches k|w| without accepting, then the word is rejected. The machine M ′

is equivalent to M and reaches the accepting or rejecting states in a number of steps
bounded by an exponential in the length of the input word. The problem of deciding,
given a polynomial-space ATM M and a word w, whether M accepts w is EXPTIME-
complete.

Reduction from Alternating PSPACE Turing machine. Let M be a polynomial-
space ATM such that for every input word w, the accepting or the rejecting state is
reached within exponential steps in |w|. A polynomial-time reduction RG of a
polynomial-space ATM M and an input word w to a game G = RG(M,w) of par-
tial observation is given in [8] such that (a) there is a special accepting state in G, and
(b)M accepts w iff there is an observation-based strategy for Player 1 in G to reach the
accepting state with probability 1. If the above reduction is applied toM , then the game
structure satisfies the following additional properties: there is a special rejecting state
that is absorbing, and for every observation-based strategy for Player 1, either (a) against
all Player 2 strategies the accepting state is reached with probability 1; or (b) there is a
pure Player 2 strategy that reaches the rejecting state with positive probability η > 0 in
2|L| steps and the accepting or the rejecting state is reached with probability 1 in 2|L|

steps. We now present the reduction to POMDPs:
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1. Almost-sure winning for reachability. Given a polynomial-space ATM M and w an
input word, letG = RG(M,w). We construct a POMDPG′ fromG as follows: we
only modify the transition function inG′ by uniformly choosing over the successor
choices. Formally, for a state � ∈ L and an action σ ∈ Σ the probabilistic transition
function δ′ in G′ is as follows: δ′(�, σ)(�′) = 0 if (�, σ, �′) �∈ δ; and δ′(�, σ)(�′) =
1/|{ �1 | (�, σ, �1) ∈ δ }| if (�, σ, �′) ∈ δ. Given an observation-based strategy
for Player 1 in G, we consider the same strategy in G′: (1) if the strategy reaches
the accepting state with probability 1 against all Player 2 strategies in G, then the
strategy ensures that in G′ the accepting state is reached with probability 1; and
(2) otherwise there is a pure Player 2 strategy β in G that ensures the rejecting
state is reached in 2|L| steps with probability η > 0, and with probability at least
(1/|L|)2|L|

the choices of the successors of strategy β is chosen inG′, and hence the

rejecting state is reached with probability at least (1/|L|)2|L| ·η > 0. It follows that
inG′ there is an observation-based strategy for almost-sure winning the reachability
objective with target of the accepting state iff there is such a strategy in G.

2. Positive winning for safety. The reduction is same as above. We obtain the POMDP
G′′ from the POMDP G′ above by making the following modification: from the
state accepting, the POMDP goes back to the initial state with probability 1. If
there is an observation-based strategy α for Player 1 in G′ to reach the accepting
state, then repeating the strategy α each time the accepting state is visited, it can
be ensured that the rejecting state is reached with probability 0. Otherwise, against
every observation-based strategy for Player 1, the probability to reach the rejecting
state in k·(2|L|+1) steps is at least 1−(1−η′)k , where η′ = η·(1/|L|)2|L|

> 0 (this
is because there is a probability to reach the rejecting state with probability at least
η′ in 2|L| steps, and unless the rejecting state is reached the starting state is again
reached within 2|L| + 1 steps). Hence the probability to reach the rejecting state
is 1. It follows that G′ is almost-sure winning for the reachability objective with
the target of the accepting state iff in G′′ there is an observation-based strategy for
Player 1 to ensure that the rejecting state is avoided with positive probability. This
completes the proof of correctness of the reduction.

A very brief (two line proof) sketch was presented as the proof of Theorem 1 of [12] to
show that positive winning in POMDPs with safety objectives is EXPTIME-hard. We
were unable to reconstruct the proof: the proof suggested to simulate a nondetermin-
istic Turing machine. The simulation of a polynomial-space nondeterministic Turing
machine only shows PSPACE-hardness, and the simulation of a nondeterministic EX-
PTIME Turing machine would have shown NEXPTIME-hardness, and an EXPTIME
upper bound is known for the problem. Our proof presents a different and detailed proof
of the result of Theorem 1 of [12]. Hence we have the following theorem, and the results
are summarized in Table 1.

Theorem 5. Given a POMDP G, the following assertions hold: (a) the positive win-
ning problem for reachability objectives is NLOGSPACE-complete, the positive winning
problem for safety and coBüchi objectives is EXPTIME-complete, and the positive win-
ning problem for Büchi and parity objectives is undecidable; and (b) the almost-sure
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Table 1. Computational complexity of POMDPs with different classes of parity objectives for
positive and almost-sure winning. Our contribution of upper and lower bounds are indicated as
“up” and “lo” respectively in parenthesis.

Positive Almost-sure
Reachability NLOGSPACE-complete (up+lo) EXPTIME-complete (lo)

Safety EXPTIME-complete (up+lo) EXPTIME-complete [4]
Büchi Undecidable [1] EXPTIME-complete (lo)

coBüchi EXPTIME-complete (up+lo) Undecidable [1]
Parity Undecidable [1] Undecidable [1]

winning problem for reachability, safety and Büchi objectives is EXPTIME-complete,
and the almost-sure winning problem for coBüchi and parity objectives is undecidable.

5 Optimal Memory Bounds for Strategies

In this section we present optimal bounds on the memory required by pure and random-
ized strategies for positive and almost-sure winning for reachability, safety, Büchi and
coBüchi objectives.

Bounds for safety objectives. First, we consider positive and almost-sure winning with
safety objectives in POMDPs. It follows from the correctness argument of Theorem 2
that pure strategies with exponential memory are sufficient for positive winning with
safety objectives in POMDPs, and the exponential upper bound on memory of pure
strategies for almost-sure winning with safety objectives in POMDPs follows from the
reduction to games. We now present a matching exponential lower bound for random-
ized strategies.

Lemma 3. There exists a family (Pn)n∈N of POMDPs of size O(p(n)) for a poly-
nomial p with a safety objective such that the following assertions hold: (a) Player 1
has a (pure) almost-sure (and therefore also positive) winning strategy in each of these
POMDPs; and (b) there exists a polynomial q such that every finite-memory random-
ized strategy for Player 1 that is positive (or almost-sure) winning in Pn has at least
2q(n) states.

Proof sketch. The set of actions of the POMDP Pn is Σn ∪ {#} where Σn =
{1, . . . , n}. The POMDP is composed of an initial state q0 and n sub-MDPs Ai with
state space Qi, each consisting of a loop over pi states qi1, . . . , q

i
pi

where pi is the i-th
prime number. From each state qij (1 ≤ j < pi), every action in Σn leads to the next
state qij+1 with probability 1

2 , and to the initial state q0 with probability 1
2 . The action #

is not allowed. From qipi
, the action i is not allowed while the other actions in Σn lead

back the first state qi1 and to the initial state q0 both with probability 1
2 . Moreover, the

action # leads back to the initial state (with probability 1). The disallowed actions lead
to a bad state. The states of the Ai’s are indistinguishable (they have the same observa-
tion), while the initial state q0 is visible. There are two observations, the state {q0} is
labelled by observation o1, and the other states in Q1∪· · ·∪Qn (that we call the loops)
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Fig. 2. The POMDP P ′
2

by observation o2. Fig. 1 shows the game P2: the witness family of POMDPs have sim-
ilarities with analogous constructions for games [3]. However the construction of [3]
shows lower bounds only for pure strategies and in games, whereas we present lower
bound for randomized strategies and for POMDPs (the proof and formal definition of
the POMDP family (Pn)n∈N can be found in [9]). Intuitively, exponential memory is
required to win in Pn (even positively) because the action # needs to be played after
p∗n =

∏n
i=1 pi steps in the loops, and cannot be played before. Therefore, a winning

strategy has to be able to count up to p∗n which requires exponential memory.

Bounds for reachability objectives. The bounds for positive winning with reachability
objectives are as follows: randomized memoryless strategies suffice, and for pure strate-
gies, memory linear in the number of states is both necessary and sufficient (details
in [9]). It follows from the results of [1] that for almost-sure winning with reachability
objectives in POMDPs pure strategies with exponential memory suffice, and we now
prove an exponential lower bound for randomized strategies.

Lemma 4. There exists a family (Pn)n∈N of POMDPs of size O(p(n)) for a polyno-
mial p with a reachability objective such that the following assertions hold: (a) Player 1
has an almost-sure winning strategy in each of these POMDPs; and (b) there exists a
polynomial q such that every finite-memory randomized strategy for Player 1 that is
almost-sure winning in Pn has at least 2q(n) states.

Proof sketch. Fix the action set asΣ = {#, tick}. The POMDP P ′
n is composed of an

initial state q0 and n sub-MDPs Hi, each consisting of a loop over pi states qi1, . . . , q
i
pi

where pi is the i-th prime number. From each state in the loops, the action tick can be
played and leads to the next state in the loop (with probability 1). The action # can be
played in the last state of each loop and leads to the Goal state. The objective is to reach
Goal with probability 1. Actions that are not allowed lead to a sink state from which
it is impossible to reach Goal. There is a unique observation that consists of the whole
state space. Intuitively, the argument for exponential memory is analogous to the case
of Lemma 3. Fig. 2 shows P ′

2 and see [9] for a proof of Lemma 4.
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Table 2. Optimal memory bounds for pure and randomized strategies

Pure Positive Randomized Positive Pure Almost Randomized Almost
Reachability Linear Memoryless Exponential Exponential

Safety Exponential Exponential Exponential Exponential
Büchi No Bound No Bound Exponential Exponential

coBüchi Exponential Exponential No Bound No Bound
Parity No Bound No Bound No Bound No Bound

Bounds for Büchi and coBüchi objectives. An exponential upper bound for memory
of pure strategies for almost-sure winning of Büchi objectives follows from the results
of [1], and the matching lower bound for randomized strategies follows from our result
for reachability objectives. Since positive winning is undecidable for Büchi objectives
there is no bound on memory for pure or randomized strategies for positive winning. An
exponential upper bound for memory of pure strategies for positive winning of coBüchi
objectives follows from the correctness proof of Theorem 3 that iteratively combines
the positive winning strategies for safety and reachability to obtain a positive winning
strategy for coBüchi objective. The matching lower bound for randomized strategies
follows from our result for safety objectives. Since almost-sure winning is undecidable
for coBüchi objectives there is no bound on memory for pure or randomized strategies
for positive winning. This gives us the following theorem (also summarized in Table 2),
which is in contrast to the results for MDPs with perfect observation where pure mem-
oryless strategies suffice for almost-sure and positive winning for all parity objectives.

Theorem 6. The optimal memory bounds for strategies in POMDPs are as follows.

1. Reachability objectives: for positive winning randomized memoryless strategies are
sufficient, and linear memory is necessary and sufficient for pure strategies; and for
almost-sure winning exponential memory is necessary and sufficient for both pure
and randomized strategies.

2. Safety objectives: for positive winning and almost-sure winning exponential mem-
ory is necessary and sufficient for both pure and randomized strategies.

3. Büchi objectives: for almost-sure winning exponential memory is necessary and
sufficient for both pure and randomized strategies; and there is no bound on mem-
ory for pure and randomized strategies for positive winning.

4. coBüchi objectives: for positive winning exponential memory is necessary and suf-
ficient for both pure and randomized strategies; and there is no bound on memory
for pure and randomized strategies for almost-sure winning.
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Abstract. This work focuses on the computational power of the Me-
diated Population Protocol model on complete communication graphs
and initially identical edges (SMPP). In particular, we investigate the
class MPS of all predicates that are stably computable by the SMPP
model. It is already known that MPS is in the symmetric subclass of
NSPACE(n2). Here we prove that this inclusion holds with equality,
thus, providing the following exact characterization for MPS: A predi-
cate is in MPS iff it is symmetric and is in NSPACE(n2).

1 Introduction - Population Protocols

Theoretical models for Wireless Sensor Networks (WSNs) have received great
attention recently, mainly because they constitute an abstract but yet formal and
precise method for understanding the limitations and capabilities of this widely
applicable new technology. The Population Protocol model [1] was designed to
represent a special category of WSNs which is mainly identified by two distinctive
characteristics: each sensor node is an extremely limited computational device
and all nodes move according to some mobility pattern over which they have
totally no control.

One reason for studying extremely limited computational devices is that in
many real WSNs’ application scenarios having limited resources is inevitable.
For example, power supply limitations may render strong computational devices
useless due to short lifetime. In other applications, mote’s size is an important
constraint that thoroughly determines the computational limitations. The other
reason is that the population protocol model constitutes the starting point of
a brand new area of research and in order to provide a clear understanding
and foundation of the laws and the inherent properties of the studied systems
it ought to be minimalistic. In terms of computational characterization each
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node is simply a finite-state machine additionally equipped with sensing and
communication capabilities and is usually called an agent. A population is the
collection of all agents that constitute the distributed computational system.

The prominent characteristic that diversifies population protocols from clas-
sical distributed systems is the total inability of the computational devices to
control or predict their underlying mobility pattern. Their movement is usually
the result of some unstable environment, like water flow or wind, or the natural
mobility of their carriers, and is known as passive mobility. The agents interact
in pairs and are absolutely incapable of knowing the next pair in the interaction
sequence. This inherent nondeterminism of the interaction pattern is modeled
by an adversary whose job is to select interactions. The adversary is a black-box
and the only restriction imposed is that it has to be fair so that it does not for-
ever partition the population into non-communicating clusters and guaranteeing
that interactions cannot follow some inconvenient periodicity.

As expected, due to the minimalistic nature of the population protocol model,
the class of computable predicates was proven [1,2] to be fairly small: it is the
class of semilinear predicates, or, equivalently, all predicates definable by first-
order logical formulas in Presburger arithmetic [10], which does not include mul-
tiplication of variables, exponentiations, and many other important and natural
operations on input variables. Moreover, Delporte-Gallet et al. [9] showed that
population protocols can tolerate only O(1) crash failures and not even a single
Byzantine agent.

2 Enhancing the Model

The next big step is naturally to strengthen the population protocol model with
extra realistic and implementable assumptions, in order to gain more compu-
tational power and/or speed-up the time to convergence and/or improve fault-
tolerance. Several promising attempts have appeared towards this direction. In
each case, the model enhancement is accompanied by a logical question: What
is exactly the class of predicates computable by the new model?

An interesting extension was the Community Protocol model of Guerraoui and
Ruppert [11] in which the agents have read-only industrial unique ids picked
from an infinite set of ids. Moreover, each agent can store up to a constant
number of other agents’ ids. In this model, agents are only allowed to compare
ids, that is, no other operation on ids is permitted. The community protocol
model was proven to be extremely strong: the corresponding class consists of
all symmetric predicates in NSPACE(n logn). It was additionally shown that
if faults cannot alter the unique ids and if some necessary preconditions are
satisfied, then community protocols can tolerate O(1) Byzantine agents.

The Passively mobile Machines (PM ) model [5] made the assumption that
each agent is a Turing Machine and defined PALOMA protocols as those pro-
tocols that use in every agent space that is bounded by a logarithm in the
population size. Interestingly, it turned out that the agents are able to assign
unique consecutive ids to themselves, get informed of the population size and,
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by exploiting these, organize themselves into a distributed Nondeterministic TM
(NTM ) that makes full use of the agents’ memories. The TM draws its nonde-
terminism by the nondeterminism inherent in the interaction pattern. The main
result of that work was an exact characterization for the class PLM , of all pred-
icates that are stably computable by PALOMA protocols: it is again precisely
the class of all symmetric predicates in NSPACE(n logn).

3 Our Results - Roadmap

This work focuses on the computational power of another extension of the popu-
lation protocol model that was proposed in [7] (see also [8] and [6]) and is called
the Mediated Population Protocol (MPP) model. The main additional feature
in comparison to the population protocol model is that each link (u, υ) can be
thought of as being itself an agent that only participates in the interaction (u, υ).
The agents u and υ can exploit this joint memory to store pairwise information
and to have it available during some future interaction. Another way to think of
this system is that agents store pairwise information into some global storage,
like, e.g., a base station, called the mediator, that provides a small fixed slot to
each pair of agents. Interacting agents communicate with the mediator to read
and update their collective information.

From [7] we know that the MPP model is strictly stronger than the popula-
tion protocol model since it can compute a non-semilinear predicate. Moreover,
we know that any predicate that is stably computable by the MPP model is
also in NSPACE(n2). In this work, we show that, for complete graphs, this in-
clusion holds with equality, thus, providing the following exact characterization
for the computational power of the MPP model in the fully symmetric case: A
predicate is stably computable by the MPP model iff it is symmetric and is in
NSPACE(n2). We show in this manner that the MPP model is surprisingly
strong.

In section 4, we give a formal definition of the MPP model and introduce a
special class of graphs (the correctly labeled line graphs) that comes up in our
proof later on. Section 5 holds the actual proof. In particular, Subsection 5.1
presents some basic ideas that help us establish a first inclusion. In Subsection
5.2, we show how to extend these ideas in order to prove our actual statement.

4 The Mediated Population Protocol Model

4.1 Formal Definition

A Mediated Population Protocol (MPP) is a 7-tuple (X,Y, Q, S, I, O, δ), where
X , Y , Q, and S are all finite sets and X is the input alphabet, Y is the output
alphabet, Q is the set of agent states, S is the set of edge states, I : X → Q is the
input function, O : Q→ Y is the output function, and δ : Q×Q×S → Q×Q×S
is the transition function. If δ(a, b, c) = (a′, b′, c′), we call (a, b, c) → (a′, b′, c′) a
transition, and we define δ1(a, b, c) = a′, δ2(a, b, c) = b′ and δ3(a, b, c) = c′.
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An MPP A runs on the nodes of a communication graph G = (V,E), which
is directed without self-loops and multiple edges. V is the population, consisting
of n ≡ |V | agents. E is the set of permissible interactions between the agents.

In the most general setting, each agent initially senses its environment, as a
response to a global start signal, and receives an input symbol from X . Then
all agents apply the input function to their input symbols and obtain their
initial state. Each edge is initially in one state from S as specified by some
edge initialization function ι : E → S, which is not part of the protocol but
generally models some preprocessing on the network that has taken place before
the protocol’s execution.

A network configuration, or simply a configuration, is a mapping C : V ∪E →
Q ∪ S specifying the state of each agent in the population and each edge in
the set of permissible interactions. Let C and C′ be configurations, and let
u, υ be distinct agents. We say that C goes to C′ via encounter e = (u, υ),
denoted C e→ C′, if C′(u) = δ1(C(u), C(υ), C(e)), C′(υ) = δ2(C(u), C(υ), C(e)),
C′(e) = δ3(C(u), C(υ), C(e)), and C′(z) = C(z) for all z ∈ (V −{u, υ})∪(E−e).
We say that C can go to C′ in one step, denoted C → C′, if C e→ C′ for some
encounter e ∈ E. We write C ∗→ C′ if there is a sequence of configurations
C = C0, C1, . . . , Ct = C′, such that Ci → Ci+1 for all i, 0 ≤ i < t, in which case
we say that C′ is reachable from C.

An execution is a finite or infinite sequence of configurations C0, C1, C2, . . .,
where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. We have both
finite and infinite kinds of executions since the adversary scheduler may stop after
a finite number of steps or continue selecting pairs forever. Moreover, a strong
global fairness condition is imposed on the adversary to ensure the protocol
makes progress. An infinite execution is fair if for every pair of configurations
C and C′ such that C → C′, if C occurs infinitely often in the execution then
so does C′. A computation is an infinite fair execution. An interaction between
two agents is called effective if at least one of the initiator’s, the responder’s,
and the edge’s states is modified (that is, if C, C′ are the configurations before
and after the interaction, respectively, then C′ �= C).

4.2 Stable Computation

Throughout this work we assume that the communication graph is complete and
that all edges are initially in a common state s0, that is, ι(e) = s0 for all e ∈ E.
Call this for sake of simplicity the SMPP model (‘S’ standing for “Symmetric”).
An SMPP may run on any such communication graph G = (V,E), where n ≥ 2,
and its input (also called an input assignment) is any x = σ1σ2 . . . σn ∈ X≥2 =
{x ∈ X∗ | |x| ≥ 2}. In particular, by assuming an ordering over V , the input to
agent i is the symbol σi, for all i ∈ {1, 2, . . . , n}. Let p : X≥2 → {0, 1} be any
predicate over X≥2. p is called symmetric if for every x ∈ X≥2 and any x′ which
is a permutation of x’s symbols, it holds that p(x) = p(x′) (in words, permuting
the input symbols does not affect the predicate’s outcome). Any language L ⊆
X≥2 corresponds to a unique predicate pL defined as pL(x) = 1 iff x ∈ L. Such a
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language is symmetric iff pL is symmetric. Due to this bijection we use the term
symmetric predicate for both predicates and languages.

Like population protocols, MPPs do not halt. Instead a protocol is required
to stabilize, in the sense that it reaches a point after which the output of every
agent will remain unchanged. A predicate p over X≥2 is said to be stably com-
putable by the SMPP model, if there exists an SMPP A such that for any input
assignment x ∈ X≥2, any computation of A on the complete communication
graph of |x| nodes beginning from the initial configuration corresponding to x
reaches a configuration after which all agents forever output p(x).

Let MPS (standing for “Mediated Predicates in the fully Symmetric case”)
be the class of all stably computable predicates by the SMPP model. Note that
all predicates in MPS have to be symmetric because the communication graph
is complete and all edges are initially in the same state. Let SSPACE(f(n))
and SNSPACE(f(n)) be SPACE(f(n))’s and NSPACE(f(n))’s restrictions
to symmetric predicates, respectively.

4.3 Correctly Labeled Line Graphs

Let G = (V,E) be a communication graph. A line (di)graph L = (K,A) is either
an isolated node (that is, |K| = 1 and A = ∅), which is the trivial line graph, or
a tree such that, if we ignore the directions of the links, two nodes have degree
one and all other nodes have degree two. A line subgraph of G is a line graph
L ⊆ G and is called spanning if K = V . Let d(u) denote the degree of u ∈ K
w.r.t. to A. Let Cl(t) denote the label component of the state of t ∈ V ∪E under
configuration C (in the beginning, we call it state for simplicity).

We say that a line subgraph of G is correctly labeled under configuration C,
if it is trivial and its state is l with no active edges incident to it or if it is
non-trivial and all the following conditions are satisfied:

1. Assume that u, υ ∈ K and d(u) = d(υ) = 1. These are the only nodes in
K with degree 1. Then one of u and υ is in state kt (non-leader or right
endpoint) and the other is either in state lt or in state lh (leader or left
endpoint). The unique eu ∈ A incident to u, where u is w.l.o.g. in state
kt, is an outgoing edge and the unique eυ ∈ A incident to υ is outgoing if
Cl(υ) = lt and incoming if Cl(υ) = lh.

2. For all w ∈ K − {u, υ} (internal nodes) it holds that Cl(w) = k.
3. For all a ∈ A it holds that Cl(a) ∈ {p, i} and for all e ∈ E − A such that e

is incident to a node in K it holds that Cl(e) = 0.
4. Let υ = u1, u2, . . . , ur = u be the path from the leader to the non-leader

endpoint (resulting by ignoring the directions of the arcs in A). Let PL =
{(ui, ui+1) | 1 ≤ i < r} be the corresponding directed path from υ to u.
Then for all a ∈ A ∩ PL it holds that Cl(a) = p (proper edges) and for all
a′ ∈ A− PL that Cl(a′) = i (inverse edges).

See Figure 1 for some examples of correctly labeled line subgraphs. The meaning
of each state will become clear in the proof of Theorem 1 in the following section.
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Fig. 1. Some correctly labeled line subgraphs. We assume that all edges not appearing
are in state 0 (inactive).

5 The Computational Power of the SMPP Model

In [7], it was shown that MPS is a proper superset of the set of semilinear
predicates. Here we are going to establish a much better inclusion. In particular,
in Section 5.1 we show that any predicate in SSPACE(n) is also in MPS. In
other words, the SMPP model is at least as strong as a linear space TM that
computes symmetric predicates. Then in Section 5.2 we extend the ideas used
in the proof of this result in order to establish that SSPACE(n2) is a subset
of MPS showing that MPS is a surprisingly wide class. Finally, we improve
to SNSPACE(n2), thus, arriving at an exact characterization for MPS (the
inverse inclusion already exists from [7]).

5.1 A First Inclusion: SSPACE(n) ⊆ MPS

Theorem 1. There is an SMPP A that constructs a correctly labeled spanning
line subgraph of any complete communication graph G.

Proof. We provide a high level description of the protocol A in order to avoid
its many low-level details. All agents are initially in state l, thought of as being
simple leaders. All edges are in state 0 and we think of them as being inactive,
that is, not part of the line subgraph to be constructed. An edge in state p is
interpreted as proper while an edge in state i is interpreted as inverse and both
are additionally interpreted as active, that is, part of the line subgraph to be
constructed. An agent in state k is a (simple) non-leader, an agent in state kt is
a non-leader that is additionally the tail of some line subgraph (tail non-leader),
an agent in state lt is a leader and a tail of some line subgraph (tail leader), and
an agent in state lh is a leader and a head of some line subgraph (head leader).
All these will be clarified in the sequel. A leader is a simple, tail, or head leader.

The agents become organized in correctly labeled line subgraphs by the fol-
lowing transitions: (l, l, 0) → (kt, lh, i), (lh, l, 0) → (k, lh, i), (l, lh, 0) → (lt, k, p),
(lt, l, 0) → (k, lh, i), and (l, lt, 0) → (lt, k, p).

We now describe how two such line graphs L1 and L2 are pieced together.
Denote by l(L) ∈ V and by kt(L) ∈ V the leader and tail non-leader endpoints
of a correctly labeled line graph L, respectively. When l(L1) = u interacts as
the initiator with l(L2) = υ, through an inactive edge, υ becomes a non-leader
with a special mark, e.g. k′, the edge becomes proper with a special mark, and u
becomes a leader in a special state l′ indicating that this state will travel towards
kt(L1) while making all proper edges that it meets inverse and all inverse edges
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proper. In order to know its direction, it marks each edge that it crosses. When
it, finally, arrives at the endpoint, it goes to another special state and walks
the same path in the inverse direction until it meets υ again. This walk can be
performed easily, without using the marks, because now all edges have correct
labels (states). To diverge from L1’s endpoint it simply follows the proper links
as the initiator (moving from their tail to their head) and the inverse links as
the responder (moving from their head to their tail) while erasing all marks left
from its previous walk. When it reaches υ it erases its mark, making its state
k, and goes to another special state indicating that it again must walk towards
kt(L1) for the last time, performing no other operation this time. To do that,
it follows the proper links as the responder (from their head to their tail) and
the inverse links as the initiator (from their tail to their head). When it, finally,
arrives at kt(L1) it becomes a normal tail leader and now it is easy to see that L1
and L2 have been merged correctly into a common correctly labeled line graph.
See Figure 2 for an example. The correctness of this process, called the merging
process, is captured by Lemma 1.

(a) Before merging. (b) After merging.

Fig. 2. Two line subgraphs just before the execution and after the completion of the
merging process

Lemma 1. When the leader endpoints of two distinct correctly labeled line sub-
graphs of G, L1 = (K1, A1) and L2 = (K2, A2), interact via e ∈ E, then, in a
finite number of steps, L1 and L2 are merged into a new correctly labeled line
graph L3 = (K1 ∪K2, A1 ∪A2 ∪ {e}).

Initially, G is partitioned into n correctly labeled trivial line graphs. It is easy
to see that correctly labeled line graphs never become smaller and, according to
Lemma 1, when their leaders interact they are merged into a new line graph.
Moreover, given that there are two correctly labeled line subgraphs in the cur-
rent configuration there is always the possibility (due to fairness) that these line
graphs may get merged and there is no other possible effective interaction be-
tween them. In simple words, two line graphs can only get merged and there is
always the possibility that merging actually takes place. It is easy to see that
this process has to end, due to fairness, in a finite number of steps having con-
structed a correctly labeled spanning line subgraph of G (for simplicity, we call
this process the spanning process). 


Theorem 2. Assume that the communication graph G = (V,E) is a correctly
labeled line graph of n agents, where each agent takes its input symbol in a second
state component (the first component is used for the labels of the spanning process
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and is called label component). Then there is an MPP A that when running
on such a graph simulates a deterministic TM M of O(n) (linear) space that
computes symmetric predicates.

Proof. It is already known from [1,3] that the theorem holds for population
protocols with no inverse edges. It is easy to see that the correct p and i labels
can be exploited by the simulation in order to identify the correct directions. 


It must be clear now, that if the agents could detect termination of the spanning
process then they would be able to simulate a deterministic TM of O(n) space
that computes symmetric predicates. But, unfortunately, they are unable to de-
tect termination, because if they could, then termination could also be detected
in any non-spanning line subgraph constructed in some intermediate step (it can
be proven by symmetry arguments together with the fact that the agents cannot
count up to the population size). Fortunately, we can overcome this by applying
the reinitialization technique of [11,5].

Theorem 3. SSPACE(n) is a subset of MPS.

Proof. Take any p ∈ SSPACE(n). By Theorem 2 we know that there is an
MPP A that stably computes p on a line graph of n nodes. We have to show
that there exists an SMPP B that stably computes p. We construct B to be
the composition of A and another protocol I that is responsible for executing
the spanning and reinitialization processes. Each agent’s state consists of three
components: a read-only input backup, one used by I, and one used by A. Thus,
A and I are, in some sense, executed in parallel in different components.

Protocol I does the following. It always executes the spanning process and
when the merging of two line graphs comes to an end it executes the following
reinitialization process. The new leader u that resulted from merging becomes
marked, e.g. l∗t . Recall that the new line graph has also correct labels. When u
meets its right neighbor, u sets its A component to its input symbol (by copying
it from the input backup), becomes unmarked, and passes the mark to its right
neighbor (correct edge labels guarantee that each agent distinguishes its right
and left neighbors). When the newly marked agent interacts with its own right
neighbor, it does the same, and so on, until the two rightmost agents interact,
in which case they are both reinitialized at the same time and the special mark
is lost. It is easy to see that this process guarantees that all agents in the line
graph become reinitialized and before completion non-reinitialized agents do not
have effective interactions with reinitialized ones (the special marked agent acts
always as the separator between reinitialized and non-reinitialized agents). Note
that if other reinitialization processes are pending from previous reinitialization
steps, then the new one may identify and erase them.

From Theorem 1 we know that the spanning process executed by I results in a
correctly labeled spanning line subgraph of G. The spanning process, as already
mentioned, terminates when the merging of the last two line subgraphs takes
place and merging also correctly terminates in a finite number of steps (Lemma
1). Moreover, from the above discussion we know that, when this happens, the
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reinitialization process will correctly reinitialize all agents of the spanning line
subgraph, thus, all agents in the population. But then, independently of its
computation so far, A will run from the beginning on a correctly labeled line
graph of n nodes (this line graph will not be modified again in the future), thus,
it will stably compute p. Finally, if we assume that B’s output is A’s output then
we conclude that the SMPP B also stably computes p, thus, p ∈MPS. 


5.2 An Exact Characterization: MPS = SNSPACE(n2)

We now extend the techniques employed so far to obtain an exact characteriza-
tion for MPS.

Theorem 4. Assume that the complete communication graph G = (V,E) con-
tains a correctly labeled spanning line subgraph, where each agent takes its input
symbol in a second state component. Then there is an MPP A that when running
on such a graph simulates a deterministic TM M of O(n2) space that computes
symmetric predicates.

Proof. For simplicity and w.l.o.g. we assume that A begins its execution from
the leader endpoint, that initially the simulation moves all n input symbols to
the leftmost outgoing inactive edges (n−2 leaving from the leader and two more
leaving from the second agent of the line graph), that the left endpoint is a tail
leader, and that the edge states now consist of two components, one used to
identify them as active/inactive and the other used by the simulation.

In contrast to Theorem 2 the simulation also makes use of the inactive edges.
The agent in control of the simulation is in a special state denoted with a star
‘∗’. Since the simulation starts from the left endpoint (tail leader), its state will
be l∗t . When the star-marked leader interacts with its unique right neighbor on
the line graph, the neighbor’s state is updated to a r-marked state (i.e. kr). The
kr agent then interacts with its own right neighbor which is unmarked and the
neighbor updates its state to a special dot state (i.e. k̇) whereas the other agent
(in state kr) is updated to k. Then the only effective interaction is between the
star-marked leader (l∗t ) and the dot non-leader (k̇) via the inactive edge joining
them. In this way, the inactive edge’s state component used for the simulation
becomes a part of the TM’s tape. In fact M’s tape consists only of the inactive
edges and is accessed in a systematic fashion which is described below.

If the simulation has to continue to the right, the interaction (l∗t , k̇) sends the
dot agent to state kr. If it has to proceed left, the dot agent goes to state kl.
An agent in state kr interacts with its right neighbor sending it to dot state
whereas a kl agent does the same for its left neighbor. In this way, the dot mark
is moving left and right between the agents by following the active edges in the
appropriate interaction role (initiator or responder) as described in Theorem 1
for the special states traversing through the line graph. The dot mark’s (state’s)
position in the line graph determines which outgoing inactive edge of l∗t will be
used. The sequence in which the dot mark is traversing the graph is the sequence
in which l∗t visits its outgoing inactive edges. Therefore if it has to visit the next
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inactive edge it moves the dot mark to the right (via a kr state) or to the left
(via a kl state) if it has to visit the previous one. It should be noted that the dot
marked agent plays the role of the TM’s head since it points the edge (which
would correspond to a tape’s cell in M) that is visited. As stated above only the
inactive edges hold the contents of the TM’s tape. The active ones are used for
allowing the special states (symbols) traverse the line graph.

Consider the case where the dot mark reaches the right non-leader endpoint
(kt) and the simulation after the interaction (l∗t , k̇t) demands to proceed right.
Since l∗t ’s outgoing edges have all been visited by the simulation, the execution
must continue on the next agent (right neighbor of leader endpoint lt) in the
line graph. This is achieved by having another special state traversing from right
to left (since we are in the right non-leader endpoint) until it finds l∗t . Then it
removes its star mark (state) and assigns it to its right neighbor which now takes
control of the simulation visiting its own inactive edges. A similar process takes
place when the simulation, controlled by any non-leader agent, reaches the left
leader endpoint and needs to proceed to the left cell.

When the control of the simulation reaches a non-leader agent (e.g. from the
left leader endpoint side) in order to visit its first edge it places the dot mark to
the left leader endpoint and then to the next (on the right) non-leader and so
forth. If the dot mark reaches the star-marked agent (in the previous example
from the left endpoint side) then it moves the dot to the closer (in the line graph)
agent that can “see” via an inactive edge towards the right non-leader endpoint.
In this way, each agent visits its outgoing edges in a specific sequence (from
leader to non-leader when the simulation moves right and the reverse when it
moves left) providing the O(n2) space needed for the simulation. 


Theorem 5. SSPACE(n2) is a subset of MPS.

Proof. The main idea is similar to that in the proof of Theorem 3 (based again
on the reinitialization technique). We assume that the edge states consist now
of two components, one used to identify them as active/inactive and the other
used by the simulation (protocol A from Theorem 4).

This time, the reinitialization process attempts to reinitialize not only all
agents of a line graph but also all of their outgoing edges. We begin by describing
the reinitialization process in detail. Whenever the merging process of two line
graphs comes to an end, resulting in a new line graph L, the leader endpoint of
L goes to a special blocked state, let it be lb, blocking L from getting merged
with another line graph while the reinitialization process is being executed. Keep
in mind that L will only get ready for merging just after the completion of the
reinitialization process. By interacting with its unique right neighbor in state k
via an active edge it propagates the blocked state towards that neighbor updating
its state to kb and reinitializing the agent. The block state propagates in the same
way towards the tail non-leader reinitializing and updating all intermediate non-
leaders to kb from left to right. Once it reaches this endpoint, a new special state
k0 is generated which traverses L in the inverse direction. Once k0 reaches the
leader endpoint, it disappears and the leader updates its state to l∗.
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Now reinitialization of the inactive edges begins. When the leader in l∗ inter-
acts with its unique right neighbor (via the active edge joining them) it updates
its neighbor’s state to a special bar state (e.g. k̄). When the agent with the bar
state interacts with its own right neighbor, which is unmarked, the neighbor
updates its state to a special dot state (e.g. k̇). Now the bars cannot propa-
gate and the only effective interaction is between the star leader and the dot
non-leader. This interaction reinitializes the state component of the edge used
for the simulation and makes the responder non-leader a bar non-leader. Then
the new bar non-leader turns its own right neighbor to a dot non-leader, the
second outgoing edge of the leader is reinitialized in this manner, and so on,
until the edge joining the star leader (left endpoint) with the dot tail non-leader
(right endpoint) is reinitialized. What happens then is that the bars are erased
one after the other from right to left and finally the star moves one step to the
right. So the first non-leader has now the star and it reinitializes its own inactive
outgoing edges from left to right in a similar manner. The process repeats the
same steps over and over, until the right endpoint of L reinitializes all of its
outgoing edges. When this happens, A will execute its simulation on the correct
reinitialized states. The above process is clearly executed correctly when L is
spanning (because all outgoing edges have their heads on the line graph). When
it isn’t, the correctness of the process is captured by the following lemma.

Lemma 2. Let L and L′ be two distinct line subgraphs of G. If L runs a reini-
tialization process then it always terminates in a finite number of steps.

Proof. If L′ is not running a reinitialization process then there can be no conflict
between L and L′. If L′ is also running its own reinitialization process, a conflict
occurs when a star agent of one graph interacts with a dot agent of the other,
but in both cases the reinitialization process is either not affected or cannot be
delayed, thus, it always terminates in a finite number of steps. 


We finally ensure that the simulation does not ever alter the agent labels used by
the spanning and reinitialization processes. In the proof of Theorem 4 we made
A put marks on the labels in order to get executed correctly. Now we simply
think of these marks as being placed in a separate subcomponent of A that is
ignored by the other processes. 


Theorem 6. SNSPACE(n2) is a subset of MPS.

Proof. We modify the deterministic TM of Theorem 5 by adding another com-
ponent in each agent’s state which stores a non-negative integer of value at most
equal to the greatest number of non-deterministic choices that the new NTM N
can face at any time. Note that this number is independent of the population
size. In every reinitialization each agent obtains this value from its neighbors ac-
cording to its position (which depends on the distance from the leader endpoint)
in the line graph. Nondeterministic choices are mapped to these values and when-
ever such a choice has to be made, the agent in control of the simulation uses
the value of the agent with whom it has the next arbitrary interaction. The in-
herent nondeterminism of the interaction pattern ensures that choices are made
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nondeterministically. If the accept state is reached all agents accept whereas if
the reject state is reached the TM’s computation is reinitialized. Fairness guar-
antees that all paths in the tree representing N ’s nondeterministic computation
will eventually (although maybe after a long time) be followed. 

We have now arrived at the following exact characterization for MPS.

Theorem 7. MPS = SNSPACE(n2).

Proof. Follows from Theorem 6 and Theorem 8 of [7]. 

See the corresponding technical report [4] for a formal constructive proof and
some graphical examples.
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Abstract. In online clustering problems, the classification of points into
sets (called clusters) is done in an online fashion. Points arrive one by one
at arbitrary locations, to be assigned to clusters at the time of arrival.
A point can be assigned to an existing cluster, or a new cluster can be
opened for it. We study a one dimensional variant on a line, where there
is no restriction on the length of a cluster, and the cost of a cluster is
the sum of a fixed set-up cost and its diameter. The goal is to minimize
the sum of costs of the clusters used by the algorithm.

We study several variants, all maintaining the essential property that
a point which was assigned to a given cluster must remain assigned to this
cluster, and clusters cannot be merged. In the strict variant, the diameter
and the exact location of the cluster must be fixed when it is initialized.
In the flexible variant, the algorithm can shift the cluster or expand it,
as long as it contains all points assigned to it. In an intermediate model,
the diameter is fixed in advance while the exact location can be modified.
We give tight bounds on the competitive ratio of any online algorithm
in each of these variants. In addition, for each one of the models, we
consider also the semi-online case, where points are presented sorted by
their location.

1 Introduction

In clustering problems, the goal is to partition a set of points into groups, typ-
ically called clusters, while optimizing a given objective function. These are
fundamental problems, having numerous applications, which in addition to mul-
tiple computer related uses, include applications in other fields such as medical
diagnosis.

We study online environments, where points are presented one by one to
the algorithm. Each point must be assigned to a cluster at the time of arrival,
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where a cluster is identified by its name. An assignment of a point to a cluster
becomes fixed at this time, and cannot be changed later. Existing clusters cannot
be merged or split. We consider a one-dimensional variant, where clusters are
intervals on the real line, and the cost of a cluster is composed of a fixed cost
of 1 plus the length of the cluster. The cost of the solution is defined as the
total cost of all clusters. This clustering problem has a number of applications.
One possible application is establishing the positions and types of sensors to be
located on the line to service request points, where the sensors are represented
by intervals and the diameter of an interval is the distance which can be covered
by the corresponding sensor.

We measure the performance of an online algorithm A by comparing it to
an optimal offline algorithm opt using the standard criterion of the competitive
ratio, which is defined as supσ

A(σ)
opt(σ) , an input σ is a sequence of request points,

opt(σ) is the cost of an optimal offline algorithm for σ and alg(σ) denotes the
cost of an algorithm alg for this input. The costs are based on the number of
clusters and their properties, and depend on the exact definition of the problem.
For randomized algorithms, A(σ) is replaced with E(A(σ)), and the competitive
ratio is supσ

E(A(σ))
opt(σ) . An algorithm with competitive ratio of at most R is called

R-competitive.
Online partitioning of points into clusters was studied by Charikar et al. [2].

They considered the online unit covering problem. In this problem, a set of n
points needs to be covered by balls of unit radius, and the goal is to minimize
the number of balls used. They gave an upper bound of O(2dd log d) and a lower
bound of Ω(log d/ log log log d) on the competitive ratio of deterministic online
algorithms in d dimensions. This problem is strictly online in the sense that
points arrive one by one, each point needs to be assigned to a ball upon arrival,
and if it is assigned to a new ball, the exact location of this ball is fixed at
this time. The tight bounds on the competitive ratio for d = 1 and d = 2 are
respectively 2 and 4.

Chan and Zarrabi-Zadeh [1] introduced the unit clustering problem. In this
problem the input and goals are very similar to unit covering. This is an online
problem as well, but it is more flexible in the sense that the online algorithm
is not required to fix the exact position of each ball in advance. The algorithm
needs to make sure that a set of points which is assigned to one ball (cluster)
can always be covered by that ball, thus the ball can be shifted if necessary.
The goal is still to minimize the total number of balls used. Therefore, the
algorithm may terminate having clusters that still have more than one option
for their location. In an offline scenario, unit covering and unit clustering are the
same problem, which is solvable in polynomial time for d = 1. However, in the
online model, an algorithm for the second problem has more flexibility due to
the option of shifting a cluster after a new point arrives, as long as this cluster
still covers all the points that are assigned to it. In [1], the authors showed that
standard approaches lead to algorithms of competitive ratio 2 (some of which are
valid for unit covering). Note that the lower bound of 2 for unit covering in one
dimension holds even for randomized algorithms. Two non-trivial randomized
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algorithms were presented in [1] (a 15
8 -competitive algorithm) and in [19] (a 11

6 -
competitive algorithm). Improved deterministic algorithms were later given in
[8] (an algorithm of competitive ratio 7

4 ) and in [6] (an algorithm of competitive
ratio 5

3 ). The best currently known lower bound is 8
5 [8].

In [1,19,8,6], the two-dimensional problem is considered in the L∞ norm rather
than the L2 norm. Thus “balls”, are actually squares or cubes. Most results
use the one-dimensional algorithms as building blocks. Note that this problem
attains a higher competitive ratio than the one-dimensional case (the best cur-
rently known lower bound is 13

6 [6]). Additional variants of the one-dimensional
problem were studied in [7].

Our problem is related to online facility location problems [16,10,9,11,12],
where the input is again a stream of points, however in such problems it is
sometimes allowed to merge clusters, or to re-assign points, and the cost takes
into account the sum of distances of points from the facility (rather than the
diameter of a cluster). We are not aware of any work on the online clustering
problem, with arbitrary sizes of cluster, where the diameter of a cluster counts
towards its cost.

Note that in this paper we consider only the (absolute) competitive ratio and
not the asymptotic competitive ratio. This is motivated by the fact that in all
the variants that we consider one can repeat the input sequence multiple times
in disjoint parts of the real line. These disjoint parts cannot be assigned to the
same sets of clusters, and therefore the cost of the solution is the sum of all costs
(of the different parts).

We next formally define the clustering problem, clustering to minimize

the sum of diameters with a fixed cost (CSDF) which we consider in
this paper. Given an input consisting of n requests which are points on the real
line, the goal is to partition the points into groups called clusters. The cost of
a cluster C is defined as 1 + maxi,j∈C |i − j|, that is, the sum of a fixed cost
which is scaled to 1, and the diameter of the cluster. The goal function is to
find a partition of the input into clusters so that the total cost of the clusters is
minimized.

The corresponding offline problem was studied on trees [13,14,18,17], where
it was shown that the problem is polynomially solvable in this case. The variant
of the offline problem where the number of clusters is fixed and the goal is to
minimize the sum of diameters or the sum of radii was studied before in [5,3],
and a more generalized cost function was studied in [15].

A related offline problem in two dimensions was studied in [4]. Clusters are
rectangles which have a fixed area, with their lower edges located on a common
base line. However, their aspect ratios can vary. The goal is to cover a given set
of points above the base line with a minimal number of clusters.

We consider online scenarios in which the points arrive one by one, and need to
be assigned to clusters. In this paper, when we refer to a semi-online algorithm we
mean an online algorithm for restricted sets of inputs in which the points arrive
one by one when they are sorted according to their coordinates from smallest
to largest (i.e., from left to right). We consider three different online scenarios
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which differ in the abilities of the online algorithm to modify the realization of
the clusters as intervals on the real line. We next describe the three models.
1. The strict model. In this model, when a new cluster is opened we need to
specify the coordinates of the interval which will be associated with this cluster,
and the algorithm is allowed to assign only points belonging to this interval to
the cluster. Here the cost of a cluster is defined as 1 plus the length of the interval
associated with it. For this model, we show tight bounds of 1 +

√
2 ≈ 2.41421

on the competitive ratio for the online problem, and tight bounds of 2 for the
semi-online version. Note that the model used by [2], is the strict model (for a
different goal function, and a different set of feasible solutions).
2. The intermediate model. In this model, when a new cluster is opened
we need to specify the length of the interval which will be associated with this
cluster, but its coordinates might be changed by the algorithm in the future. The
algorithm cannot assign a new point to an existing cluster, if this will increase its
diameter beyond the length which was specified for this cluster. For this model,
we extend the results of the previous model and show that the same bounds are
tight for it as well.
3. The flexible model. In this model, when a new cluster is opened we need
to specify its label, but its coordinates as well as its diameter might be changed
by the algorithm in the future. For this model the cost of a cluster may change
as new points are assigned to it. We show that using the flexible model, the best
competitive ratio drops to φ = 1+

√
5

2 ≈ 1.618. The semi-online version of this
model is solved optimally using a trivial algorithm which we will discuss as well.
The papers [1,19,8,6] study a model which can be both seen as the intermediate
model and the flexible model, since the length of a cluster is uniform and cannot
vary.

Note that an algorithm for the strict model can be used for the intermediate
model, and an algorithm for the intermediate model can be used for the flexible
model.
Paper outline. We next consider the flexible model in Section 2. We first
show that an optimal solution for this model can be obtained by a semi-online
algorithm if the points are sorted from left to right. We design a φ-competitive
online algorithm and show that no online algorithm of smaller competitive ratio
can exist. In Section 3, we consider the strict model, for which we show that
there is a semi-online algorithm whose competitive ratio is 2 and that this is
best possible, and we present a 1 +

√
2-competitive online algorithm and show

that this is best possible. In Section 4, we extend the results of Section 3 to the
intermediate model. Some proofs are omitted due to space constraints.

2 The Flexible Model

We first show that there is a semi-online algorithm which always returns an
optimal solution, i.e. it is 1-competitive. Our algorithm identifies the structure
of an optimal solution.
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Proposition 1. In the flexible model there is a semi-online algorithm which
always returns an optimal solution.

Proof. When a new point arrives, we check if its distance from the last opened
cluster is at least 1. If so, the algorithm opens a new cluster and assigns the
new point to the new cluster. Otherwise the point is assigned to the last opened
cluster. To show that this algorithm results in an optimal solution, consider a
fixed optimal solution opt which maximizes the number of clusters (among all
optimal solutions). We will show by induction on the number of points in a prefix
of the input that the solution returned by the online algorithm is equal to opt.
That is, we need to show that the algorithm opens a new cluster if and only if
opt opens a new cluster. First assume that the algorithm opens a new cluster
when point p arrives. Then the distance between p and the points which are
smaller than p is at least 1. If opt does not open a new cluster when p arrives,
then partitioning the cluster which contains p in opt to two parts; one consisting
of the points which are smaller than p and the other consists of the remaining
points, improves the quality of opt or increases the number of clusters in the
solution without increasing its cost. In both cases we reach a contradiction to
the definition of opt. It remains to consider the case where the algorithm did
not open a new cluster for the new point p. In this case, the distance between p
and the previous point q is less than 1. Assume by contradiction that opt opens
a new cluster for p, then if we union the cluster which contains p and the cluster
which contains q, we decrease the cost of the optimal solution opt. Clearly, this
contradicts the fact that opt is an optimal solution, and the claim follows. 


We next design a φ-competitive algorithm for the online case. The algorithm is
summarized as follows.

Algorithm. Extend closed clusters

1. Let p be the new point.
2. If the algorithm has a cluster whose current associated interval contains
p, then assign p to that cluster, and do not modify the associated interval
of the cluster.

3. Else, let q be the closest point to p which arrives prior to p (break ties
arbitrarily).
(a) If the distance between q and p is at most φ, then assigns p to the

cluster of q, and extend its associated interval so that it will end at
p.

(b) Otherwise, open a new cluster and assign p to the new cluster. In
this case the current interval associated with this new interval is
[p, p] (i.e., an interval consisting of a single point p).

Although the algorithm is fairly simple, its analysis is much more involved.

Theorem 1. Algorithm Extend closed clusters is φ-competitive.

Proof. Consider an input sequence and remove from this input all points which
caused no action of the algorithm, i.e., points that were already covered by an
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existing cluster of the algorithm at the time of arrival. A removed point cannot
be the closest point to a new point, so its removal has no effect on the actions
of the algorithm. Using the same tie breaking policy, the algorithm results in
the same output, while the optimal cost cannot increase. In what follows we
analyze the modified sequence. Thus, the process of construction of a cluster of
the algorithm is as follows. The first request point creates the cluster, which has
a length of 0 at this time. Each time that a point joins the cluster, there is a
request either on the left hand side or the right hand side of the cluster. The
distance of the request to the cluster is x ≤ φ, and the cluster is lengthened by
x in the direction of the request.

Assume (without loss of generality) that an optimal solution consists of a
disjoint set of intervals, and that every endpoint of an interval is a request point.
The solution returned by the algorithm satisfies these properties as well.

We next break the input sequence into subsequences. The competitive ratio
of the algorithm would be analyzed on each such subsequence separately. To
create such a subsequence we first construct the so-called intersection graph as
follows. This graph is a bipartite graph whose vertex set consists of the set of
clusters in the optimal solution (on one side) and the set of clusters resulting by
the algorithm (on the other side). There is an edge between two vertices of this
graph if the two associated interval intersect (i.e., they serve at least one common
request point). In this intersection graph we consider connected components.
Each such connected component corresponds to a subsequence in the following
way. The subsequence contains every input point assigned to a cluster whose
vertex (in the intersection graph) belongs to this connected component. Clearly,
each input point belongs to exactly two clusters (one in each of the two solutions),
and both these clusters belong to the same connected component. We also note
that if the algorithm is applied on such a subsequence, it can apply the same
tie breaking policy as before and thus it would result in the same set of clusters
as in the connected component of this subsequence in the entire input. Hence,
it suffices to prove the competitive ratio on a subsequence, and we assume that
the sequence induces a connected intersection graph.

We partition the cost of opt into the costs of its clusters. The cost of a
cluster of opt is defined as the sum of its opening cost (1 for each cluster) and
the diameter of the cluster. Since we would like to prove a competitive ratio of
φ, we need to show that the cost of the algorithm is at most φ times the number
of clusters of opt plus φ times their total diameter. We allocate this total cost
(which is the cost of opt times φ) to the algorithm and show that this allocation
covers the total cost of the algorithm.

Thus, we allocate a budget of φ for the opening cost of each cluster of opt,
and a budget of φ−1 for each unit of length of a cluster of opt. The total budget
will be used for paying the total opening cost of clusters of the algorithm (i.e.,
the number of such clusters) and for the length of intervals which are covered
by the algorithm and not by the optimal solution. This is sufficient because the
total cost of the algorithm is at most the sum of the total opening cost of the
clusters and the length of the intervals which are covered by the optimal solution
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or only by the solution returned by the algorithm. That is, the total common
length of both algorithms is deducted first, and the remaining cost of φ−1 times
the total length of the clusters of opt, plus φ times the number of clusters of
opt needs to cover only a part of the cost of the algorithm, namely, the number
of its clusters, and the total length of intervals where the algorithm has a cluster,
while opt does not.

A cluster of the algorithm C is called fragmented cluster if it is not contained
in any cluster of opt. Each fragmented cluster is composed of parts where a part
is a (non-empty) intersection of the fragmented cluster and an optimal cluster.
We say that a cluster of the algorithm which is not a fragmented cluster, is also
a part. For each part we identify the first point of the input which arrives in this
part. This first point of a part is called its center. A center is primary center if
it is the first point of the cluster of the algorithm (that is, the algorithm decided
to open a new cluster when this point arrived), and otherwise it is a secondary
center. We associate an opening cost of 1 for each primary center, and an opening
cost for a secondary center which is defined next. Obviously, there is no real cost
for the initialization of a secondary center, and the “opening cost” is simply the
cost of extending the length of the existing cluster. On the other hand, a new
cluster has only a cost of 1, since its initial length is zero. For each secondary
center Z, the algorithm has decided to extend an existing cluster to one of the
two directions. In this direction the gap between two consecutive intervals of
opt (i.e., the distance between the cluster of opt which contains Z and the
adjacent cluster of opt, which contains the point from which the cluster of the
online algorithm was extended) is denoted by o(Z), and this distance is at most
φ because it is no larger than the distance between Z and the point from which
the cluster was extended towards Z. The opening cost of Z is defined to be o(Z).
Note that the total opening cost of the primary and secondary centers is at least
the opening cost of clusters of the algorithm (i.e., the number of such clusters)
and the length of intervals which are covered by the algorithm and not by the
optimal solution. We say that a part is a primary part if its center is a primary
center, and otherwise the part is a secondary part.

Consider a cluster c of opt of length L and assign the total budget of it
according to the following rules:

– Assume that there is exactly one part of a cluster of the algorithm which is
contained in L. Allocate a budget of φ for its opening cost. This is sufficient
since if it is a primary part then its opening cost is 1, and otherwise it is at
most φ. In the following we neglect such clusters of opt and such centers.

– Otherwise, it assigns φ − 1 of its opening cost budget to a secondary cen-
ter. The secondary cluster is chosen in a way that each secondary center is
allocated φ− 1. Note that this is possible because the number of secondary
centers is always at most the number of clusters in opt (since every part
beside the first part of a cluster is created by a cut caused by a gap between
two clusters of opt). The remaining budget of 1, resulting from the opening
cost of c, is allocated to the opening cost of the first arriving primary center
contained in c (if exists), and otherwise, in which case c must consist of two
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parts, each of which is a secondary center, to the first arriving secondary
center.

– We allocate L
φ = L(φ − 1) to the opening cost of the centers which belong

to c.

Claim. If c does not contain a primary part, then the total allocated budget
suffices to cover the opening costs of the centers of c.

In the remaining case we assume that c contains k + 1 primary centers, where
k ≥ 0. If c contains secondary centers as well, there can be at most two such
centers, on each one of the ends of c, and we denote them by x and y. If only
one secondary center exists, we denote it by x. We denote the opening costs of
x and y by o(x) and o(y), respectively, where we use the convention that if a
secondary center does not exists then its opening cost is 0.

Claim. L ≥ k · φ+ o(x) + o(y).

The total remaining opening cost of c (after the deduction of the cost of φ − 1,
which was assigned to each secondary cluster) is o(x) + o(y) + k + 1− 2(φ− 1)
if both x and y exist, o(x) + k+ 1− (φ− 1) if x exists and y does not exist, and
otherwise it is k + 1. We need to show that we have enough budget to cover it.
In all cases the total budget is L(φ− 1) + 1.

Claim. In all three cases, (o(x) + o(y)) · (φ− 1) + k + 1 ≤ L(φ− 1) + 1.

Claim. In all three cases, the remaining opening cost of c is at most (o(x) +
o(y)) · (φ− 1) + k + 1.

By the above claims, in all three cases we showed that the total budget is suffi-
cient to pay for the total opening cost of centers in c, and hence the competitive
ratio of Algorithm Extend closed clusters is at most φ. 


We conclude this section by proving that our Algorithm Extend closed clus-

ters is the best possible online algorithm.

Theorem 2. There is no deterministic online algorithm for the flexible model
whose competitive ratio is strictly smaller than φ.

Proof. Let n be a large integer, and let ε = φ
2n . Our lower bound construction

is carried in two steps. In the first step, we introduce n points in positions i · φ
for i = 0, 1, . . . , n − 1. In the second step, we consider each pair of consecutive
points of the first step which were assigned different clusters (if there exists at
least one such pair of points). Assume that the algorithm assigns points i · φ
and (i+ 1) · φ, for some value of i, to different clusters. Then in the second step
we introduce additional 2n− 1 points between i · φ and (i+ 1) · φ. That is, for
j = 1, 2, . . . , 2n− 1 we introduce the point i · φ+ j · ε. We do this procedure for
every pair of consecutive points of the first step which the algorithm assigns to
distinct clusters. In the full version of the paper we show that this construction
proves the claim. 
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3 The Strict Model

We first consider the semi-online variant. In the strict model, an optimal algo-
rithm cannot be obtained even if the points arrive sorted from left to right.

Lemma 1. The competitive ratio of any semi-online algorithm for the strict
model is at least 2.

Proof. The first request point is p1 = 0. Let a1 be the length of the cluster which
is opened by the algorithm. Since all future points are in [0,+∞), then the first
cluster must be C1 = [0, a1], and the righteous point covered by any cluster is
a1. We show an iterative construction of the sequence. The sequence consists of
N requests for a large integer N . Every new request is defined so that a new
cluster is required for it. We use a very small constant δ > 0. We later specify
the conditions under which the sequence stops earlier, that is, the sequence may
stop after k points for any k ≤ N .

Assume that the request points 1, 2, . . . , i − 1, for i ≥ 0 were defined. Let qi
be the righteous point covered by any cluster. Then the new request is pi =
qi + δ. Let ai be the length of the new cluster. Since points arrive sorted from
left to right, without loss of generality, the new cluster is [pi, pi + ai], and the
righteous point covered by any cluster is pi + ai. It is not difficult to see that
pk =

∑k−1
i=1 (ai + δ).

Let optk and algk denote the costs of an optimal offline algorithm, and of
the online algorithm, respectively, after k requests have arrived. An algorithm
which has a cluster of length 0 for each point has a cost of k, so optk ≤ k.
The algorithm has a cost of k +

∑k
i=1 ai. If for some k < N ,

∑k
i=1 ai ≥ k, then

the sequence can be stopped, and algk ≥ 2optk. Otherwise, let Δ = pN =∑N−1
i=1 (ai + δ). Among all N request points, the righteous request point is pN ,

and the leftmost one is 0, so an algorithm which has a single cluster has a cost
of 1 +

∑N−1
i=1 (ai + δ), and therefore optN ≤ 1 +

∑N−1
i=1 (ai + δ) = 1 +Δ while

algN = N +
∑N

i=1 ai = N + aN +Δ− (N − 1)δ.
Recall that the sequence does not stop earlier, after pj was presented for

some 1 ≤ j ≤ N − 1, and in particular it did not stop after pN−1 was presented.
Therefore,

∑N−1
i=1 ai < N − 1, so Δ− (N − 1)δ < N − 1 or Δ < (1 + δ)(N − 1).

Therefore, optN ≤ 1 +Δ ≤ 1 + (1 + δ)(N − 1). Thus algN ≥ (Δ + 1) + (N −
1)(1−δ) ≥ optN +(N−1)(1−δ). Therefore, algN

optN
≥ 1+ (N−1)(1−δ)

1+(1+δ)(N−1) . Letting
δ be arbitrarily close to 0 and N arbitrarily large, this expression tends to 2. 


We consider the following simple semi-online algorithm. Upon arrival of a new re-
quest point p, if it is not already covered by a cluster, open the cluster [p, p+1].

Theorem 3. The competitive ratio of this semi-online algorithm is 2, which is
best possible.

We next consider the online variant. We can show a higher lower bound in this
case.
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Lemma 2. The competitive ratio of any online algorithm for the strict model
is at least 1 +

√
2 ≈ 2.414.

Proof. The first request point is p1 = 0. Let [x, y] be the cluster which is opened by
the algorithm, and let a1 = min{y,−x}. Without loss of generality, it is possible
to assume a1 = y. From this time on, the sequence of requests is increasing (if
a1 = −x, then a decreasing sequence should be used instead). From this time, the
construction is the same as in Lemma 1. The only difference is that the length of
the first cluster of the online algorithm is at least 2 · a1 rather than a1.

We use the same notation and consider only offline algorithms which use a

single cluster for all request points. Thus optk ≤ 1 + pk = 1 +
k−1∑
i=1

ai + (k− 1)δ,

while algk ≥ k + a1 +
k∑

i=1
ai. Assume that there exists an algorithm with a

competitive ratio of at most R = 1 +
√

2 − ε, for some small 0 < ε < 0.01, the
value of δ is chosen so that δ ≤ ε

4 .
We can prove by induction that ak ≤

√
2

2 . Thus optk ≤ 1 + (k − 1)
√

2
2 , while

algk ≥ optk + (k− 1)(1− δ). For a sufficiently large value of k, the ratio algk

optk

exceeds the value R, since this ratio tends to 1 +
√

2 as k grows to infinity and
δ tends to zero. 


We design a simple algorithm which turns out to be optimal. Upon arrival of a
new request point p, if it is not already covered by a cluster, let � denote the
closest point of any cluster located to the left of p (if no such cluster exists,
� = −∞), and let r denote the closest point of any cluster located to the right
of p (if no such cluster exists, r = ∞). Let α =

√
2

2 . Open the cluster [max{�, p−
α},min{p+ α, r}]. That is, the idea is to open a cluster of length

√
2, with the

new point in the middle. However, if this would creat an overlap, the cluster is
shorter so that it has a common endpoint with the cluster that it would otherwise
overlap.

We observe the following simple properties.

Proposition 2. No two clusters have an overlap, except for overlap at end-
points. The length of each cluster is at most 2α =

√
2.

Theorem 4. The competitive ratio of the algorithm is 1+
√

2, which is optimal.

Proof. Due to the lower bound proved in Lemma 2, we only need to prove that
the competitive ratio is at most 1+

√
2. Consider a request sequence, and remove

all request points which did not result in a new cluster. This does not change
the cost of the algorithm, and may only decrease the cost of an optimal offline
algorithm. Each cluster has exactly one request point. The distance between
two request points is larger than α. To see this, consider two consecutive request
points p and q, where p < q (consecutive in the sorted list of request points, but
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not necessarily in the input sequence). Assume without loss of generality that
p arrives before q. If the right endpoint of the cluster of p is p + α, then since
q needs a new cluster, then q > p + α and we are done. Otherwise, let r be
the right endpoint of the cluster of p in the algorithm. There is another cluster
[r, r′], which was opened for a request point x which arrived before p. We have
p < q < x, since p and q are consecutive. However, at the time of arrival of q,
the interval [p, x] is fully covered by clusters, which contradicts the need of a
new cluster for q.

Consider a fixed optimal offline solution opt, and let C be a cluster of length
λ used by this solution. We compute the cost of the algorithm for the service of
the points which opt covers by C. The largest distance between any two such
points is λ, and since the distance between two points is more than α, then the
number of request points is at most λ

α+1. Moreover, the clusters of the algorithm
cannot overlap, and the leftmost cluster and righteous cluster may extend by at
most α out of the interval of C. Thus the total cost of the algorithm is at most
λ+ 2α+ λ

α + 1, while the cost of opt is λ+ 1. The ratio between the two costs
is at most max{2α+ 1, 1 + 1

α} = 1 +
√

2. 


4 The Intermediate Model

In this section we show that the results of the previous section on the strict model
apply also for the intermediate model. First note that an online algorithm for
the strict model is also an online algorithm for the intermediate model. Hence,
using theorems 3 and 4, we conclude the following.

Proposition 3. There is an online 1 +
√

2-competitive algorithm for the inter-
mediate model. There is a semi-online 2-competitive algorithm for the interme-
diate model.

In the Appendix, we extend the lower bounds as well. While the extension of
the lower bound for semi-online algorithms is straightforward, our last result,
which extends the lower bound of 1 +

√
2 on the competitive ratio of any online

algorithm, is more difficult to establish. We basically show that already after a
small number of clusters, the algorithm is forced to introduce its new clusters
in fixed positions, even if it could postpone the decision regarding the exact
positions till later. To show this, we analyze several possible behaviors of the
algorithm with respect to the definition and usage of its early clusters.

Theorem 5. The competitive ratio of any online algorithm for the intermediate
model is at least 1 +

√
2. The competitive ratio of any semi-online algorithm for

the intermediate model is at least 2.
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Abstract. Two mobile agents, modeled as points starting at different lo-
cations of an unknown terrain, have to meet. The terrain is a polygon with
polygonal holes. We consider two versions of this rendezvous problem: ex-
act RV, when the points representing the agents have to coincide at some
time, and ε-RV, when these points have to get at distance less than ε in
the terrain. In any terrain, each agent chooses its trajectory, but the move-
ments of the agent on this trajectory are controlled by an adversary that
may, e.g., speed up or slow down the agent. Agents have bounded memory:
their computational power is that of finite state machines. Our aim is to
compare the feasibility of exact and of ε-RV when agents are anonymous
vs. when they are labeled. We show classes of polygonal terrains which
distinguish all the studied scenarios from the point of view of feasibility of
rendezvous. The features which influence the feasibility of rendezvous in-
clude symmetries present in the terrains, boundedness of their diameter,
and the number of vertices of polygons in the terrains.

1 Introduction

The problem. Two mobile agents modeled as points starting at different loca-
tions of an a priori unknown terrain have to meet. We consider two versions
of rendezvous: exact rendezvous, when the points representing the agents have
to coincide at some time, and ε-rendezvous, when we require that these points
get at distance less than ε in the terrain. In any terrain, each agent chooses its
trajectory, but the movements of the agent on this trajectory are controlled by
an adversary that may speed up or slow down the agent.
Agents and their memory. In this paper we consider the question of determining
if rendezvous is possible in all terrains when using agents equipped with bounded
memory, and if not, in which terrains can rendezvous be achieved. Our study is
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��� Partially supported by NSERC discovery grant and by the Research Chair in Dis-
tributed Computing at the Université du Québec en Outaouais.
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in some sense motivated by the results from [10] where it is shown that if the
agents have different labels and unbounded memory, then in spite of this pow-
erful adversary, rendezvous is possible almost always, provided that the terrain
is closed and path-connected. (More precisely, if the agents start at any interior
points with rational coordinates in such a terrain, then exact rendezvous is pos-
sible, and if they start at any interior points, then ε-rendezvous is possible, for
any ε > 0.) However, the size of the memory of the agents used to accomplish
rendezvous was large, possibly dependent on e.g. the size of the terrain.

First observe that, if the memory of the agents is bounded, then rendezvous
cannot be accomplished in many unbounded terrains, in particular in the empty
plane (this is in contrast to the feasibility of rendezvous with unbounded memory,
as mentioned above). Indeed, when starting at a point of the plane, the trajectory
of an agent with bounded memory occupies a stripe between two parallel lines in
the plane: the agent is either confined to a bounded region of the stripe or must
progress in one direction of this stripe executing the same moves cyclically. It is
easy to see that placing any two such agents in appropriate points in the plane
guarantees that their distance will always be larger than any a priori given con-
stant, and thus even ε-rendezvous is impossible. Hence we assume that the terrain
in which the agents operate is bounded. It is represented as a polygon, possibly
with a finite number of polygonal obstacles. We assume that the boundary of the
terrain is included in it. Thus, formally, a terrain is a set P0\(P1∪· · ·∪Pk), where
P0 is a closed polygon and P1, . . . ,Pk are disjoint open polygons, called holes, in-
cluded in P0. The boundary of the terrain may not have any self-intersections, and
the term polygon refers to simple polygons, throughout the paper.

In order to capture the assumption that the memory of the agent is bounded,
we model an agent as an abstract state machine A = (S, π, λ, s0), where S is
a finite set of states among which there is a specified state s0 called the initial
state, π : S × {0, 1}→ S is a function describing state transitions, and for any
s ∈ S, the value λ(s) defines some segment of the plane whose one extremity is
the current location of the agent. Initially the agent is at some point u0 of the
terrain in the initial state s0 ∈ S. The agent constructs consecutive segments of
its trajectory depending on its current state. Each segment is prescribed by the
value λ(s), when the agent is in state s. Upon completing the move in state s,
the agent gets a one-bit input: 0, if the move terminates in an interior point of
the terrain, and 1, if it terminates at the boundary of the terrain. This input bit
b causes the transition from state s to state s′ = π(s, b). Now the agent executes
the move prescribed by λ(s′). The agent continues moving in this way, possibly
infinitely. If it meets the other agent (exactly or within a distance ε, depending
on the task), it stops. Otherwise, it executes its moves forever.
Moves of the agents. It remains to describe precisely how the value λ(s) deter-
mines the current segment of the agent’s trajectory. Each agent has a compass.
Compasses of both agents need not be coherent, but they have the same chiral-
ity, i.e., the same notion of clockwise and counterclockwise. An agent currently
located at a point u in a state s chooses some angle α ∈ [0, 2π) and some distance
x ≥ 0. Let v be the point at distance x from u at the angle α from the north
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of the agent. If the segment (u, v] is included in the interior of the terrain, then
λ(s) = [u, v] and the agent moves to point v along the segment [u, v]. Otherwise,
let w be the boundary point of the terrain in [u, v] furthest from u such that the
entire segment [u,w] is still contained in the terrain. In this case λ(s) = [u,w]
and the agent moves to point w along the segment [u,w] and finishes its cur-
rent move at w, i.e. the agent finishes its current move when it can no longer
continue moving within the terrain towards the intended target along the seg-
ment. Note that if the segment is immediately directed outside the terrain, then
w = u, which means that the agent does not move at all, and has no capability
of detecting that such a situation has occurred.

The moves described above are called jumps. However, they turn out to be too
restrictive for agents at boundary points. Indeed, consider an agent in a vertex
of a triangle whose angle is so small that it misses all jump directions avail-
able to the agent (recall that the set of states is finite). Such an agent would
be immobilized at this vertex and hence two agents starting at such vertices of
an empty triangle with corresponding angles sufficiently small would be never
capable of moving, let alone meeting. Hence we need to add some other possible
moves. A natural choice is a slide move which enables an agent currently located
at a boundary point to slide to the end of the side σ of the polygon on which
it is located, in either direction. Thus we add two other possible values of the
function λ: λ(s) = ⊕ causes an agent at a boundary point to slide to the end
of the segment σ in the clockwise direction and λ(s) = & causes sliding to the
end of the segment σ in the counterclockwise direction. If the agent is currently
located at a vertex, it slides to the other end of the respective side. When an
agent is not at a boundary point, the effect of a slide is null (the agent remains
at the same point).
Asynchronous rendezvous. We consider the asynchronous version of the ren-
dezvous problem. The asynchrony of the agents’ movements is captured by the
assumption that the actual walk of each agent is decided by the adversary. More
formally, the trajectory in a terrain is a sequence (σ1, σ2, . . . ) of segments, where
σi = [ai, ai+1] is the segment corresponding to step i of the construction, pre-
scribed by the function λ as above. We now describe the walk f of an agent on
its trajectory. Let R = (σ1, σ2, . . . ) be the trajectory of an agent. Let (t1, t2, . . . ),
where t1 = 0, be an increasing sequence of reals, chosen by the adversary, that
represent points in time. Let fi : [ti, ti+1] → [ai, ai+1] be any continuous func-
tion, chosen by the adversary, such that fi(ti) = ai and fi(ti+1) = ai+1. For any
t ∈ [ti, ti+1], we set f(t) = fi(t). The interpretation of the walk f is as follows:
at time t the agent is at the point f(t) of its trajectory. This general definition
of the walk1 and the fact that it is constructed by the adversary capture the
asynchronous characteristics of the process. Throughout the paper, rendezvous

1 Notice that our definition of the walk allows the adversary not only to speed up or
slow down the agent but also to stop it or even move it back and forth, as long as
the walk of the agent in each segment of its route is continuous, does not leave it
and covers all of it. In fact our impossibility results hold even for an adversary that
can only speed up or slow down the agent, without moving it back.
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means deterministic asynchronous rendezvous: no random choices are involved
and the moves of an agent in a given terrain depend solely on the deterministic
automaton that formalizes it and on the adversary.

An exact rendezvous is guaranteed for trajectories R1 and R2 if, regardless
of the walks f1 and f2 chosen by the adversary, the agents using these trajecto-
ries meet at some time t, i.e., points f1(t) and f2(t) are equal. An ε-rendezvous
is guaranteed for trajectories R1 and R2 if, regardless of the walks f1 and f2
chosen by the adversary, the agents using these trajectories get at distance less
than ε in the terrain, i.e., for some t, the shortest path included in the terrain
between points f1(t) and f2(t) has length less than ε. We consider two versions
of the rendezvous problem: for labeled and for anonymous agents. The following
definition is crucial for our considerations. Let C be a class of terrains.
• An exact (resp. ε-) rendezvous of labeled agents is feasible for the class C, if
there exists an infinite sequence of agents A1,A2, . . . , such that for any terrain
T of class C and for any agents Ai and Aj , where i �= j, starting at any distinct
points of T , the trajectories of these agents guarantee an exact (resp. ε-) ren-
dezvous. In this case we say that the sequence of agents A1,A2, . . . accomplishes
exact (resp. ε-) rendezvous for the class C.
• An exact (resp. ε-) rendezvous of anonymous agents is feasible for the class
C, if there exists an agent A, such that for any terrain T of class C and for
two identical copies of A starting at any distinct points of T , the trajectories of
these agents guarantee an exact (resp. ε-) rendezvous. In this case we say that
the agent A accomplishes exact (resp. ε-) rendezvous for the class C.

Our results. Our aim is to compare feasibility of exact and of ε-RV when agents
are anonymous vs. when they are labeled. We first describe our results for exact
rendezvous. It turns out that for anonymous agents, rotational symmetries of
the terrain preclude the possibility of meeting. Hence, already for the class of
equilateral triangles, exact rendezvous is impossible. Moreover, we show that for
a known terrain, i.e., a one-element class, a pair of anonymous agents accom-
plishing exact rendezvous can be constructed, if and only if the terrain does not
have non-trivial rotational symmetries.

Labeled agents turn out to be much more powerful, however significant limi-
tations apply in this case as well. (This is in sharp contrast with results from [9]
where it is shown, in particular, that with unbounded memory, exact rendezvous
is feasible for the class of all polygonal terrains with arbitrary polygonal holes.)
First we prove that even labeled agents cannot solve the exact rendezvous prob-
lem for the class of regular polygons with arbitrarily many vertices. It turns
out that restricting the number of vertices of polygons helps. We show that, for
any fixed integer k, labeled agents can solve exact rendezvous in the class of
all polygons with at most k vertices, even with an arbitrary number of triangu-
lar holes. Surprisingly, the restriction to triangular holes is necessary. Indeed, we
prove that exact rendezvous is unfeasible even for all triangles with quadrangular
holes. If the terrain is known, rendezvous of labeled agents is always feasible.

Finally, we consider the problem of ε-rendezvous. Allowing approximate meet-
ing changes the situation drastically. For anonymous agents, ε-rendezvous is
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Fig. 1. Feasibility of exact and ε-rendezvous for anonymous and labeled agents

possible for the class of regular polygons of bounded diameter (in contrast to
exact rendezvous). However, in the larger class of regular polygons of unbounded
diameter, ε-rendezvous of anonymous agents turns out to be impossible. On the
other hand, for labeled agents, ε-rendezvous (in contrast to exact rendezvous) is
feasible even for the class of regular polygons with unbounded diameter.

A corollary of our results is depicted in Fig. 1. It shows that the four scenarios
induced by combining anonymous vs. labeled agents and exact vs. ε-rendezvous
have all different rendezvous power: for each comparable pair of these scenarios
(in the figure these are pairs joined by an oriented path of arrows) there is
a class of terrains distinguishing this pair from the point of view of rendezvous
feasibility, i.e., such that for this class rendezvous is possible in the easier scenario
but impossible in the harder one. The distinction occurs already for the class of
regular polygons without holes, and the features responsible for distinguishing
each pair are diameter boundedness and the number of vertices. We have seen
above that other characteristics that may influence feasibility of rendezvous are
the presence of symmetries and the shape of holes.

Related work. A thorough discussion of the literature on rendezvous can be
found in the book [2]. Most of the results on rendezvous can be divided into two
groups: those considering the geometric scenario (rendezvous in the line, see,
e.g., [5,14,20], or in the plane, see, e.g., [4]), and those discussing rendezvous
in graphs, e.g., [1,3]. Some of the authors, e.g., [1,5] consider the probabilistic
scenario where inputs and/or rendezvous strategies are random. A generalization
of the rendezvous problem is that of gathering [12,15,16], when more than two
agents have to meet in one location.

If graphs are unlabeled, deterministic rendezvous requires the breaking of sym-
metry, which can be accomplished either by allowing marking the nodes or by
labeling the agents. Deterministic rendezvous with anonymous agents working in
unlabeled graphs but equipped with tokens used to mark nodes was considered,
e.g., in [18]. Rendezvous in trees with anonymous agents having bounded mem-
ory was studied in [13]. In [11,17,21] deterministic rendezvous in graphs with la-
beled agents was considered. However, in all the above papers, the synchronous
setting was assumed. Asynchronous gathering under geometric scenarios has
been studied, e.g., in [7,12,19] in different models than ours: agents could not
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remember past events, but they were assumed to have at least partial visibility
of the scene. The first paper to consider deterministic asynchronous rendezvous
in graphs was [8]. The authors assumed that agents have different labels and
concentrated on the complexity of rendezvous in simple classes of graphs, such
as rings and infinite lines. Further improvements of their results for the infinite
line were proposed in [20]. In [10] the feasibility of asynchronous rendezvous for
labeled agents was considered both for graphs and in the geometric scenario. It
was proved that rendezvous is possible in any connected (even countably infinite)
graph and implications mentioned at the beginning of this section were drawn
for the feasibility of rendezvous in the geometric scenario. The memory of agents
in [10] was assumed to be unbounded. Gathering many robots in a graph, under
a different asynchronous model and assuming that the whole graph is seen by
each robot, has been studied in [15,16]. The problem of identifying terrains by
robots moving around a polygon has also been considered [6].

2 Exact Rendezvous of Anonymous Agents

The following theorem shows that for anonymous agents, rotational symmetries
of the terrain preclude exact rendezvous, but if the terrain is known in advance,
then in the absence of such symmetries exact rendezvous is possible. This vulner-
ability to symmetries will be later shown to disappear both for exact rendezvous
of labeled agents and for ε-rendezvous of anonymous agents: both these tasks
turn out to be possible for some terrains with non-trivial rotational symmetries.

Theorem 1. For any given terrain T , there exist anonymous agents which solve
the rendezvous problem in T , if and only if T does not have non-trivial rotational
symmetries.

Proof. (⇐) Assume that T has no non-trivial rotational symmetries. Before
defining the agent, we construct a map of the terrain T oriented with respect
to an arbitrarily chosen direction which we will call absolute North, and assign
unique labels to all the vertices of the external polygon and the holes of T . One
arbitrarily chosen vertex v of the external polygon is treated as distinguished.
We now describe an agent that performs a finite sequence of actions, split into
the following steps:
1. The agent reaches some (unknown) vertex of the terrain.
2. By performing a local exploration, the agent identifies the label u of this
vertex and obtains an approximation (with an error value bounded by a small
constant) of the angle between the north of its compass and the absolute North.
3. The agent moves from vertex u to vertex v and stops.

Such an agent is sufficient to solve the rendezvous problem, since eventually
both agents will meet at vertex v.

In order to reach an arbitrary vertex u in Step 1, the agent performs a jump
south from its starting location, of length exceeding the diameter of the terrain
(thus hitting a boundary point), and then makes a single clockwise slide.
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Next, let δ2 be a fixed positive real. There exists a terrain Tp and a positive
real δ1 < δ2 which satisfy the following conditions:
• The terrain Tp is contained within the terrain T .
• The boundary of Tp is contained within a δ2-neighborhood of the boundary of
T , and no point of the boundary of Tp is contained within a δ1-neighborhood of
the boundary of T .
• There exists a one-to-one mapping Φ between the vertices of T and the vertices
of Tp, such that the distance between any pair of corresponding vertices does
not exceed δ2.

Fix a terrain Tp as above. Since terrain T has no rotational symmetries, there
exists a unique (trivial) even isometry of the set of vertices of T . When δ2 is
sufficiently small w.r.t. to the length of the shortest side of the terrain, the
mapping Φ must preserve the order of vertices along the external boundaries of
the terrains. Moreover, since δ1 > 0, there must exist an angle α > 0 such that
a rotation of the terrain Tp by any angle not greater than α around any of its
vertices results in a terrain T ′

p which is still contained within terrain T , and the
maximum distance between corresponding vertices of Tp and T ′

p does not exceed
δ2. Consequently, the distance between corresponding vertices of T and T ′

p does
not exceed 2δ2.

The agent proceeds to identify its current vertex u by detecting the label
of the corresponding vertex up = Φ(u) in the terrain Tp. To do this, for each
assumed value of up, it performs a sequence of jumps forming a traversal of a
closed trajectory described on the map of the terrain by a sequence of segments,
starting and ending at Φ−1(up), and including all the segments of the boundary of
the terrain Tp (this is possible even for terrains with holes). The lengths of jumps
and their angles measured w.r.t. the absolute North are fixed, and the lengths of
jumps are sufficiently small. For each assumed value of up, the agent traverses
the trajectory for all possible relative angles ϕ in the range [0, 2π) between the
north of its compass and absolute North, starting from angle 0 with a step of α.
Each traversal of the trajectory, associated with the assumed pair (up, ϕ) may
have one of the two following outcomes. If the agent completes the traversal
of its trajectory without encountering a boundary point of T , then vertex up
has been uniquely identified. Otherwise, if some jump reaches the boundary,
the agent can reverse all of the previously made jumps, attempting to return to
vertex v. Notice that since the last jump of the sequence may be shortened by
hitting the boundary, the sequence of reverse jumps forms a trajectory in a small
neighborhood with respect to the original one. Assuming that all the jumps are
of sufficiently small length w.r.t. the lengths of the sides of the terrain, the agent
can terminate the sequence of reverse jumps at a point of a uniquely determined
side of the polygon incident to u, and then return to u by a slide.

By the properties of the mapping Φ and of terrains Tp and T ′
p , a pair (up, ϕ) for

which the agent completes the trajectory without hitting the boundary point will
eventually be successfully identified. The agent now proceeds to Step 3, following
a trajectory described by jumps along segments of the map: from u to up and
then within terrain Tp from up to vp. When performing this trajectory, the angle
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between absolute North and the agent’s north is assumed to be equal to ϕ. By
the properties of terrain T ′

p , the agent will reach some point v′p located within
a distance of 2δ2 from v, without touching the boundary. Finally, knowing the
angle of the polygon at vertex v, the agent can jump onto a uniquely determined
side of the external polygon, incident to v, reach v by a slide, and stop.

(⇒) If T has a non-trivial rotational symmetry by an angle 0 < γ < 2π, position
the two agents at two points of the boundary of the terrain such that one is the
image of the other under rotation of the terrain by γ, and let the relative angle
between the north directions of the agents be equal to γ. Moreover, the adversary
fixes the angles between the absolute North and the north directions of the agents
so that neither of the agents ever passes through the center of symmetry of the
terrain. The agents will then follow trajectories which are identical up to rotation
by γ around the center of symmetry of the terrain. Rendezvous can be avoided
by an adversary which schedules the motion of both agents at the same speed,
keeping them at all times at symmetric points of the terrain. 


Theorem 1 implies, in particular, that no anonymous agents can perform exact
rendezvous in an equilateral triangle.

3 Exact Rendezvous of Labeled Agents

Although labeled agents will be shown to be much more powerful than anony-
mous ones for solving exact rendezvous, some significant restrictions apply in
their case as well. We start with the following negative result.

Theorem 2. Exact rendezvous of labeled agents is not feasible for the class of
regular polygons without holes, even for polygons of bounded diameter.

To show our positive result for exact rendezvous we will use the following lemma.

Lemma 1. Let k be a fixed integer parameter. There exists a sequenceR1,R2, . . .
of labeled agents for the class of polygons with at most k sides, which have the fol-
lowing properties:
• If two distinct agents are initially located on the boundary of the polygon, then
they meet within a finite number of steps.
• Otherwise, if rendezvous is not reached, then both agents stop at their initial
locations after a finite number of steps.

The following positive result shows that what caused the infeasibility proved in
Theorem 2 was the unbounded number of vertices of the polygons, rather than
their symmetries.

Theorem 3. For any fixed integer k ≥ 3 exact rendezvous of labeled agents is
feasible for the class of all polygons with at most k vertices, with an arbitrary
number of triangular holes.
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Fig. 2. The transition diagram of the i-th agent for rendezvous in polygons with tri-
angular holes. JS(1) denotes a jump to the South by distance 1.

Proof. The proof proceeds by defining a sequence A1,A2, . . . of agents which
will move from an arbitrary initial position in the terrain to the boundary of the
external polygon, and then stabilize to a trajectory contained entirely within
this boundary. This property is achieved by iteratively applying the following
set of rules:

– As long as the agent is located in an interior point, it jumps by distance 1
to the south (with respect to its compass).

– Once the agent has reached a boundary point, it performs the following
sequence of moves: a counterclockwise slide, a jump (or sequence of jumps)
to the south until reaching a boundary point, a clockwise slide, and another
jump (or sequence of jumps) to the south until reaching a boundary point.

Observe that the latter rule allows the agent to leave the boundary of any tri-
angular hole; since there exists a natural partial order on holes w.r.t. the chosen
south direction (there exists a point of one hole south of a point of the other),
no hole will be visited again once its boundary has been left. Moreover, upon
reaching the external boundary of the terrain after a jump, the agent will per-
manently remain on it, with its trajectory stabilizing to a periodic traversal of
one of the sides of the polygon.

The proof is completed by combining the above defined set of rules with the
agent Ri from Lemma 1, which can be treated as a “subroutine” called in each
iteration of the agent’s cycle. Formally, agent Ai is presented in Fig. 2. Consider
the rendezvous problem with agents Ai1 and Ai2 . From some time moment t
on, both agents will be permanently located on the boundary of the external
polygon. Now, consider the next period of time, starting after t, during which
agent Ai1 executes rules from Ri1 . Throughout this period of time, agent Ai2

may either be performing a traversal of one side of the polygon, or executing
rules from Ri2 . By Lemma 1 and in view of the behavior of agents Ri, in both
of these cases rendezvous will occur. 


Our next result shows that, rather surprisingly, the restriction to triangular holes
in the previous theorem was necessary.

Theorem 4. Exact rendezvous of labeled agents is not feasible for the class of
triangular terrains with quadrangular holes.
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Proof. (Sketch) For any two fixed agents, we construct an example of a terrain
for which rendezvous is impossible; the terrain is chosen sufficiently small for all
moves of the agents to end on the boundary of some polygon. The prefix and
the cycle of state transitions performed by the agents are then independent of
the definition of the terrain. We can confine considerations to two agents whose
cycles of moves are not composed entirely of jumps. We show that for any such
agent placed in the plane, it is possible to define a set of quadrangular holes
and a starting point in such a way that the trajectory of the agent stabilizes to
a periodic traversal of a set of segments. Consequently, the region of the plane
visited by each of the agents is bounded, and rendezvous can always be avoided
by positioning the agents in two such disjoint bounded regions and enclosing
them in a sufficiently large bounding triangle. The construction of systems of
holes satisfying the above property is rather technical; we omit it from this
extended abstract. 


We finally show that, as opposed to the case of anonymous agents, if the terrain
is known in advance, then labeled agents accomplishing exact rendezvous in it
can always be constructed, regardless of the symmetries of the terrain.

Theorem 5. For any given terrain T , there exists a dedicated sequenceA1,A2, . . .
of labeled agents which accomplishes exact rendezvous in T .

4 ε-rendezvous

We start our analysis of feasibility of ε-rendezvous by establishing a positive
result which should be contrasted with Theorem 1. To prove it we need the
following lemma.

Lemma 2. Let δ be a fixed positive real and consider the class C of regular
polygons of diameter at least 2δ. There exists an agent which reaches, for any
polygon P of the class C, some vertex v of P, called the home base, and stops.
The choice of v may be affected by the orientation of the compass of the agent,
but not by its initial location.

Theorem 6. ε-rendezvous of anonymous agents is feasible in the class of regular
polygons with a known upper bound on the diameter.

Proof. We assume that thepolygon isof diameter at least ε, otherwise ε-rendezvous
occurs immediately. Consider anonymous agents that start by executing the sub-
routine of locating the home base, as given by Lemma 2 for δ = ε/2. Below we
describe the rest of the behavior of the agents.

Let D be a known upper bound on the diameter of the polygon, let v be the
home base of the agent, and let Q be the set of squares of side d = ε3/(256D2)
with vertices on the grid containing v, horizontally and vertically spaced at dis-
tance d (the terms horizontal and vertical refer to the east-west and north-south
directions, respectively). Denote byQi the subset ofQ consisting of squares whose
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boundary is contained in the interior of polygon P . Observe that since P is con-
vex, the set Qi induces a connected region. Moreover, the agent can identify the
relative coordinates of all vertices of Qi w.r.t. v. Indeed, the agent can perform
jumps of length d in the north-south and east-west directions, exploring succes-
sive segments of the lattice delimiting the squares in a depth-first-search manner.
If some jump reaches the boundary, the agent returns to its home base v by apply-
ing the procedure from Lemma 2 and continues the exploration of other vertices
of the terrain. Since the ratioD/d is bounded, the exploration is completed after a
bounded number of steps, andQi is fully identified. From now on, we will identify
the set Qi with the union of squares in Qi. Intuitively, Qi will serve as a raster
approximation (known to the agent) of the polygon P . Let A(·) denote the area
of a polygon; we note that the set P \Qi contains no points further than 2d from
the boundary of P , hence A(P \ Qi) < 8dD. Moreover, since the diameter of the
polygon is at least ε, we have the bound A(Qi) ≥ ε2/16.

The agent finally moves to the center of mass ofQi and stops. Consider the dis-
tance a between this point and the center of mass of P . By linearity of the center
of mass, we have a ≤ D A(P\Qi)

A(Qi)+A(P\Qi)
< D 8dD

ε2/16 ≤ ε/2. Thus, when both agents
stop at the centers of mass of their respective sets Qi, they will both be at a dis-
tance of at most ε/2 from the center of mass ofP , thus achieving ε-rendezvous. 


It turns out that boundedness was a crucial assumption in Theorem 6. Indeed,
we have the following negative result.

Theorem 7. ε-rendezvous of anonymous agents is not feasible in the class of
regular n-gons, for any fixed n ≥ 3.

Our last result shows that, from the point of view of ε-rendezvous feasibility, the
class of regular polygons distinguishes anonymous agents from labeled agents.

Theorem 8. ε-rendezvous of labeled agents is feasible in the class of all regular
polygons.

It is natural to ask in what terrains ε-rendezvous is impossible even for labeled
agents, i.e., in the easiest of our four scenarios. An example of such a class of
terrains are triangles with quadrangular holes, for which exact rendezvous of
labeled agents is impossible by Theorem 4. In fact, the proof of this theorem can
be slightly changed to hold for ε-rendezvous as well: it is enough to move the
two systems of holes (within which each of the agents is perpetually confined)
far enough to preclude the approaching of the agents at distance ε.

5 Conclusion

We have considered four rendezvous scenarios for agents with bounded memory
in polygonal terrains: scenarios with anonymous vs. labeled agents and with
exact rendezvous vs. ε-rendezvous. While in this paper we focused on differences
in rendezvous feasibility between the above scenarios, it would also be interesting
to give an exact geometric characterization of terrains permitting rendezvous
under each scenario.
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Abstract. The class NC1 of problems solvable by bounded fan-in cir-
cuit families of logarithmic depth is known to be contained in logarith-
mic space L, but not much about the converse is known. In this paper
we examine the structure of classes in between NC1 and L based on
counting functions or, equivalently, based on arithmetic circuits. The
classes PNC1 and C=NC1, defined by a test for positivity and a test for
zero, respectively, of arithmetic circuit families of logarithmic depth, sit
in this complexity interval. We study the landscape of Boolean hierar-
chies, constant-depth oracle hierarchies, and logarithmic-depth oracle hi-
erarchies over PNC1 and C=NC1. We provide complete problems, obtain
the upper bound L for all these hierarchies, and prove partial hierarchy
collapses—in particular, the constant-depth oracle hierarchy over PNC1

collapses to its first level PNC1, and the constant-depth oracle hierarchy
over C=NC1 collapses to its second level.

1 Introduction

The class NC1 occupies a special place in the study of complexity classes inside P,
owing to its robustness and multiple characterizations. It is defined as the class
of languages accepted by families of circuits of polynomial size and logarithmic
depth using bounded fan-in Boolean gates. By uniform NC1 we mean the subclass
where the circuit families have succinct descriptions: given a (unary) size param-
eter, the circuit for that size from the family can be “easily” computed. Various
notions of uniformity give rise to the same class of languages, also coinciding
with the class of languages accepted by logarithmic-time alternating machines
ALOGTIME. Other characterizations of NC1 include polynomial-sized formulas,
bounded-width branching programs, bounded-width circuits and programs over
finite monoids.
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P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 306–317, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Counting Classes and the Fine Structure between NC1 and L 307

It is known that all NC1 languages can be accepted in logarithmic space L, but
it is not known whether this containment is strict. All L-complete languages are
candidates for membership in L but not in NC1, and most of these candidates lie
in classes defined using the natural counting classes associated with NC1, namely,
#NC1 and GapNC1. The former counts “proving sub-circuits” in an NC1 circuit
(see Section 2 for formal definitions); the latter is its closure under subtraction. It
is not yet known whether these functions can be evaluated in NC1, although the
best upper bound is very very close (an O(log∗) factor in depth). It is known that
functions in #NC1 and GapNC1 can be evaluated in function logarithmic space
FL; thus languages definable by applying simple predicates to such functions are
also in L. The natural choices of predicates are a test for zero and a test for
positivity, giving rise to the language classes C=NC1 and PNC1 sitting between
NC1 and L. (There are also predicates testing for zero modulo a fixed prime;
the resulting language classes are already known to coincide with NC1.) A nice
survey of these classes can be found in [1].

It is not clear how much structure is there between NC1 and L if the classes are
distinct. We attempt to explore the structure between NC1 and L, based on hier-
archies of language classes built upon C=NC1 and PNC1. For a complexity class
C, there are three standard ways of defining the hierarchies above C: the Boolean
hierarchy BH(C), the constant-depth hierarchy using oracle gates AC0(C), and
the NC1-oracle-gate hierarchy NC1(C), with BH(C) ⊆ AC0(C) ⊆ NC1(C).

Our results: As a first step in our study, we describe the oracle hierarchies in
terms of arithmetic circuits augmented with test gates. These are the arithmetic-
Boolean circuits defined in [13]; with size and depth restrictions as in NC1, and
with test gates for “= 0?” or “> 0?”, we obtain the classes a-NC1

= and a-NC1
>.

We observe that if each path in the circuit has O(1) test gates, then a-NC1
=

and a-NC1
> coincide with AC0(C=NC1) and AC0(PNC1) respectively (Proposi-

tion 3.4). However, there is a subtlety in similarly characterizing NC1(C=NC1)
and NC1(PNC1). We introduce a syntactic restriction on the arithmetic-Boolean
circuits giving rise to a reasonable definition, and show that (1) the classes so
defined coincide with NC1(C=NC1) and NC1(PNC1) (Proposition 3.5), and (2) as
expected, are indeed contained in L (Theorem 3.9). On the other hand, without
this restriction, the best upper bound we can show for the arithmetic circuit
hierarchy is the complexity class TC1 (Theorem 3.10), which subsumes L and
even nondeterministic logspace NL, but is contained in NC2.

Next, we show that the constant-depth hierarchy over PNC1 (and hence also
the Boolean hierarchy) collapses to PNC1 (Theorem 4.1). We adapt the proof of
[11], where an analogous result for PL is shown. One difficulty in the adaptation
is showing the required normal form for GapNC1 circuits. We use the equivalent
characterization of GapNC1 as arithmetic bounded-width branching programs
GapBWBP, and establish the normal form here. Another difficulty is computing
an exponential sum; we use the notion of read-once certified circuits and read-
once exponential sums, introduced in [10], to carry the proof through.

Finally, we examine the hierarchiesoverC=NC1. Since C=NC1 is not even known
to be closed under complementation, we do not expect a collapse all the way down.
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Our first result is a characterization of the Boolean hierarchy over C=NC1 as the
class of languages described by checking feasibility of small systems of linear equa-
tions, where the coefficients themselves are GapNC1-computable functions of the
input word (Theorem 5.5). Our second result is that the constant-depth hierarchy
overC=NC1 collapses to a class slightlyweaker than the second level (Theorem 5.9).
Both these results appear as analogues of known results [2] for the corresponding
logarithmic-space class C=L, but require substantially different proofs.

Also, unlike in the case of PL and C=L, our results do not seem to go through
for the NC1-hierarchies over PNC1 and C=NC1.

2 Background

For any language L, χL denotes its characteristic function: χL(x) := 1 if x ∈ L,
χL(x) := 0 if x �∈ L.

Boolean circuits and language classes: We denote by L the class of languages
accepted by deterministic logarithmic-space Turing machines.

We consider Boolean circuits with internal gates labelled ∨, ∧, or ¬. By NC1

we denote the class of languages which can be accepted by a family {Cn}n≥0 of
Boolean circuits of polynomial size whose depth is bounded by O(log n), with
each gate having constant fan-in. The class AC0 denotes the set of languages
accepted by a Boolean circuit family {Cn}n≥0 of polynomial size and constant
depth, with unbounded fan-in. Without loss of generality, we can assume that
negation gates appear only at the leaves, and that the AC0 and NC1 circuits are
actually formulas: every gate has out-degree one. An NC0 circuit is a Boolean
circuit, or formula, of constant size, with each gate having constant fan-in. We
denote by AC0

k (respectively) NC0
k the polynomial size (respectively, constant

size) circuit families of depth at most k.
By TC0 and TC1 we denote the class of languages decided by circuit families of

polynomial size and constant (respectively, logarithmic) depth, where each gate
is either a negation gate or an unbounded fan-in majority gate: it outputs 1 if
and only if more than half of its inputs are 1. Integer addition and multiplication
are known to be in TC0.

A branching program (BP for short) is a layered acyclic graph G with edges
labelled by constants (0 or 1) or literals, and with two special vertices s and t.
It accepts an input x if there is an s � t path where each edge is labelled by
a true literal or the constant 1; we call such a path an accepting path on input
x. BWBP denotes the class of languages that can be accepted by families of
polynomial size bounded width branching programs {Gn}n≥0, where the graph
Gn considers n variables. It is known that BWBP equals NC1 ([4]). Restricted to
uniform circuits (with appropriate notions of uniformity, see for instance [12]),
it is known that NC1 = BWBP ⊆ L.

Proposition 2.1 (Known containments).
AC0 ⊆ TC0 ⊆ NC1 = BWBP ⊆ L ⊆ TC1 ⊆ DSPACE(log2 n) ∩ P.

Arithmetic circuit classes: For the purposes of this paper, an arithmetic circuit
is a circuit where the gates are labelled from the set {+,×,−1, 0, 1, x1, . . . , xn}.
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The gates + and × are the addition and multiplication operations over Z. Such
a circuit computes a function f : {0, 1}n → Z.

An a-NC1 circuit family {Cn}n≥0 is a family of bounded fan-in arithmetic
circuits where for each n, Cn is of size polynomial in n, depth logarithmic in n,
and computes a function fn : {0, 1}n → Z. The family computes the function
f : {0, 1}∗ → Z where f(x) := C|x|(x). GapNC1 is the class of functions computed
by a-NC1 circuit families. The analogous arithmetic class for constant-depth
unbounded fan-in circuits is denoted by a-AC0.

An arithmetic branching program is a BP B where edges are labelled by
literals or constants from the set {−1, 0, 1}. For an s � t path P , let wt(P (a))
denote the product of all the edge labels in P under the assignment a. Then the
function computed by B is defined as follows:

for all a ∈ {0, 1}n f(a) :=
∑

P is an s�t path in B

wt(P (a))

An a-BWBP family {Bn}n≥0 is a family of arithmetic branching programs of
polynomial size and bounded width. GapBWBP is the class of functions computed
by a-BWBP program families.

For a Boolean (no edge labelled −1) BP B and an input assignment a, let
#[s � t](a) denote the the number of s � t paths in B under the assignment a.
#BWBP is the class of functions : {0, 1}∗ → N computed by BWBP. The class
DiffBWBP is the closure of #BWBP under finite subtractions; DiffBWBP =
{f − g | f, g ∈ #BWBP}.

The above three classes coincide:

Proposition 2.2 ([6]). GapNC1 = GapBWBP = DiffBWBP.

We will often use the following equivalent form for GapNC1 functions: for any
GapNC1 function f , there is a BWBP B with start node s, two target nodes t1
and t2, and f(a) = #[s � t1](a) −#[s � t2](a). We say that B gap-represents
the function f .

It is known that NC1 circuits can be made unambiguous [9]. In terms of
arithmetic circuits, this yields:

Proposition 2.3. Let L be any AC0 (or NC1) language. Then there is an a-AC0

(a-NC1, respectively) circuit family C that does not use the constant −1 such that
for each string w, C(w) = χL(w).

The classes C=NC1 and PNC1, central to this paper, are defined as follows.

C=NC1 :=
{
L ∈ {0, 1}∗

∣∣∣∣ for some f ∈ GapNC1, for all x ∈ {0, 1}∗,
x ∈ L if and only if f(x) = 0.

}
PNC1 :=

{
L ∈ {0, 1}∗

∣∣∣∣ for some f ∈ GapNC1, for all x ∈ {0, 1}∗,
x ∈ L if and only if f(x) > 0.

}
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Proposition 2.4 ([6])

1. NC1 ⊆ C=NC1 ⊆ PNC1 ⊆ L.
2. C=NC1 is closed under union and intersection.
3. PNC1 is closed under union, intersection and complementation.

Arithmetic-Boolean circuits: Let a test gate for “=0?” (respectively “>0?”) be
a unary gate that outputs 1 if its input is equal to 0 (respectively greater than 0)
and 0 otherwise. Define an a-NC1

= circuit (respectively a-NC1
> circuit) to be an

arithmetic circuit of logarithmic depth and polynomial size over Boolean input
gates, binary +- and ×-gates, constants −1, 0 and 1 as well as test gates for
“=0?” (respectively “>0?”). From the definitions, it follows that

Proposition 2.5. A language L is in C=NC1 (or PNC1) if and only if χL can be
computed by an a-NC1

= (respectively a-NC1
>) circuit family in which each circuit

has exactly one test gate appearing as the output gate.

Miscellaneous We denote by C1 · C2 a circuit which can be split horizontally into
two parts, with the top part being a circuit of type C1, and all its inputs being
either circuit inputs (literals or constants) or circuits of type C2. We denote by
[C] an oracle gate for a language in C. Thus [C] ·AC0 is the class of all languages
accepted by AC0(C) oracle circuits such that each circuit has a single oracle gate
at the output, and each input bit to the oracle gate is the output of an AC0

sub-circuit.

3 Hierarchies: Definitions and Upper Bounds

Among the simplest is the Boolean hierarchy, which characterizes the languages
expressible as Boolean combinations of any constant number of languages from
respectively C=NC1 or PNC1.

Definition 3.1 (The Boolean Hierarchy). Let C be a complexity class. The
Boolean hierarchy over C is defined as the set of languages L for which there
exists an NC0 circuit C with k inputs and A1, . . . , Ak ∈ C such that for all
x ∈ {0, 1}∗,

x ∈ L⇐⇒ C(χA1(x), χA2 (x), . . . , χAk
(x)) = 1

We denote this class of languages by NC0 · C or BH(C).

Remark 3.2. A more standard way of defining the Boolean hierarchy is to define
the levels BH0(C) := C, BHi(C) := {L1'L2 | L1, L2 ∈ BHi−1(C)}, and then take
the union

⋃
i>0 BHi(C). If C is closed under union and intersection, then these

definitions coincide with each other and with the definition of NC0 ·C above ([8]).

The other way of defining hierarchies is via oracle queries. As shown in [3] (see
also [2]), nesting queries above a base machine is equivalent to adding oracle gates
in an AC0 circuit. And it also often turns out to be equivalent to adding oracle
gates in an NC1 circuit. We present the oracle-circuit definitions first introduced
by Wilson [14] below.
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Let L be any language. An AC0(L) circuit family is a sequence {Cn}n≥0 of
AC0circuits containing additional oracle gates for L of unbounded fan-in. Sim-
ilarly, an NC1(L) circuit family is a sequence {Cn}n≥0 of NC1 circuits with
additional oracle gates for L of unbounded fan-in such that oracle gates of fan-in
m account for depth �logm�.

Definition 3.3 (The AC0 and the NC1 Hierarchy). Let C be a complexity
class. Then AC0(C) (respectively NC1(C)) is defined to comprise those problems
decidable by an AC0(L) (respectively NC1(L)) circuit family for some L ∈ C.

We now characterize the hierarchies using Arithmetic-Boolean Circuits. From
Proposition 2.5, we know that C=NC1 and PNC1 have equivalent Arithmetic-
Boolean circuits. It is natural to ask whether there are equivalent such circuits
for the hierarchies above these classes. For the AC0 hierarchy, this is easy to see;
we show below that AC0(C=NC1) and AC0(PNC1) can be characterized using
arithmetic-Boolean circuits. We need the notion of nesting depth: in a circuit C,
the nesting depth of gates of a type t is the largest number k such that some
path from the output to a leaf of C goes through exactly k gates of type t.

Proposition 3.4. AC0(C=NC1) (respectively AC0(PNC1)) equals the class of
languages decidable by a-NC1

= (respectively a-NC1
>) circuit families such that the

nesting depth of test gates is bounded by a constant and the output gate of each
circuit is a test gate.

It is tempting to believe that dropping the requirement on nesting depth of test
gates will characterize NC1(C=NC1) and NC1(PNC1). This, however, is not the
case. The conversion from left to right (NC1(C=NC1) to a-NC1

=) goes through,
but for the converse, the requisite depth bound does not follow. We describe a
certain condition under which we can obtain an exact characterization.

Let C be an a-NC1
= circuit (respectively a-NC1

> circuit) with n inputs and let
g1, . . . , gm enumerate all of its test gates. Denote by Si the maximal connected
sub-circuit of C rooted at gi that consists of +, ×-gates and the constants −1,
0, 1; these are the “blobs” in the proof of Proposition 3.4. As the depth of C
is logarithmic in the number of its inputs, we may without loss of generality
assume that S1, . . . , Sm induce a partition of the non-input gates of C. Thus any
path from the output to a leaf in C goes through a chain of these blobs. There
can be O(log n) blobs on any such chain, and the logarithm of the size of a blob
can be as large as θ(log n), and this causes the problem in replicating the above
proof. We “define away” the problem: We say that C has the small-blob-chains
property if for every path π from the root of C to an input gate or a constant,∑

gi occurs in π

log |Si| ∈ O(log n).

Now we can characterize exactly the NC1 hierarchies above C=NC1 and PNC1.

Proposition 3.5. NC1(C=NC1) (respectively NC1(PNC1)) equals the class of
languages decidable by a-NC1

= (respectively a-NC1
>) circuit families with the small-

blob-chains property in which the output gate of each circuit is a test gate.
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It is not hard to see that there exist arithmetic-Boolean circuits violating the
small-blob-chains property. Hence, dropping the small-blob-chains property from
the circuits in Proposition 3.5 leads to presumably different class of languages.
We denote these classes by AH, for arithmetic hierarchy, defined analogously to
the classes figuring in Propositions 2.5 and 3.5.

Definition 3.6 (Arithmetic Circuit Hierarchies over C=NC1 and PNC1).
A language L is said to be in AH(C=NC1) (or AH(PNC1)) if and only if χL can
be computed by an a-NC1

= (respectively a-NC1
>) circuit family such that in each

circuit, the output gate is a test gate.

The following chain of inclusions holds.

Observation 3.7.

C=NC1

PNC1

⊆

⊆

BH(C=NC1)⊆

BH(PNC1)

⊆

⊆

AC0(C=NC1)⊆

AC0(PNC1)

⊆

⊆

NC1(C=NC1)⊆

NC1(PNC1)

⊆

⊆

AH(C=NC1)⊆

AH(PNC1).

⊆

Remark 3.8. We can also augment the a-NC1
= and a-NC1

> circuits in Defini-
tion 3.6 by allowing oracle gates, with �log(fan-in(g))� charged to the depth
of each such gate g. Since, without loss of generality, we deal with languages
over a binary alphabet, the inputs to the oracle gate must be Boolean inputs.
But the circuit computes arithmetic values, except at test gates. Thus, we will
require that all the inputs to an oracle gate are either Boolean circuit inputs
(literals or the constants 0,1, but not −1) or the outputs of test gates. It can be
shown that allowing C=NC1 oracle gates in a-NC1

= circuits, or PNC1 oracle gates
in a-NC1

> circuits, with this condition, does not add to the power of the circuit
families beyond AH(C=NC1) and AH(PNC1) respectively.

We now show some upper bounds. We first establish that the AC0 and the
NC1 hierarchies over C=NC1 and PNC1 are contained in L. By the containments
depicted in Observation 3.7, it suffices to show this bound for NC1(PNC1).

Theorem 3.9. NC1(PNC1) ⊆ L.

We give two proofs of this theorem; one works directly with the oracle circuit,
and the second works with the a-NC1

= circuit. By Proposition 3.5, AH(PNC1)
differs from NC1(PNC1) only in the small-blob-chains property. In the absence
of this property, the recursive simulation in the second proof of Theorem 3.9
yields only a O(log2 n) space bound. Also, since the log-space evaluation of each
blob may not be read-once in its inputs, each blob may have to be evaluated
several times. So we cannot obtain a polynomial time bound for the recursive
procedure. However, using a bottom-up evaluation, we can show that AH(PNC1)
circuits can be evaluated in TC1.

Theorem 3.10. AH(PNC1) ⊆ TC1.
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4 The PNC1 Hierarchy Collapses

In this section we show that the constant-depth PNC1 hierarchy, AC0(PNC1),
collapses to the base level.

Theorem 4.1. AC0(PNC1) = PNC1.

Proof. Since PNC1 is closed under complementation, and since unbounded fan-
in ∨ and ∧ functions are in NC1 and hence in PNC1, we can assume without
loss of generality that the AC0(PNC1) circuit has only oracle gates. Theorem 4.2
below shows how to collapse two adjacent levels of PNC1 oracle gates into one.
Applying this repeatedly gives the desired result. �

The rest of this section is devoted to proving Theorem 4.2:

Theorem 4.2. [PNC1] · [PNC1] = PNC1.

We adapt the techniques of [11] to the case of constant width branching programs.
Also, as in [11], we use the polynomial technique developed earlier ([5, 7]) to
show closure properties of the complexity class PP. A new ingredient we need is
read-once certified circuits and exponential sums, from [10].

4.1 Overview of the Collapse Argument

Consider a language L in [PNC1] · [PNC1]. Then there is a language H ∈ PNC1

and a circuit family {Cn} accepting L where each Cn has depth 2 and has only
oracle gates for H . That is, the output gate g is an oracle gate whose inputs are
themselves oracle gates or literals or constants. Without loss of generality, we
can assume that in fact all inputs to g are outputs of oracle gates. Let g have
fan-in t. On input x, its inputs are χH(Y1), χH(Y2), . . . , χH(Yt), where each Yi
is a projection (re-ordering of bits) of the input x.

Let f be the GapNC1 function witnessing that H ∈ PNC1. Then there is a
a-BWBP family computing f . The idea is to consider the a-BWBP B for inputs
of length t, say y1, . . . , yt, and try to replace each edge labeled yi by a copy of
the a-BWBP on Yi. However, since Yi is the input to an oracle gate, we want a
0-1 value for the sign of f(Yi), not the value of f(Yi) itself. If the sign function
can be computed by a suitable polynomial function, then we can apply this
function to each f(Yi) to get another GapNC1 function. Unfortunately, the sign
function cannot be represented in this fashion. However, it can be approximated
by rational functions (ratios of polynomials); this approximation was first used
in [5], and later in [7] and [11]. We follow the presentation from [11].

To show that using such approximations is valid, we require that B satisfies
a certain condition: All paths should have equal susceptibility to error, so as
to not change the overall outcome. In particular, since a yi edge label corre-
sponds to using the output of an oracle gate, and since different oracle gates can
have different errors, we will require that each path has exactly the same multi-
set of edge labels, independent of the input. This is a strong normal form. Such a
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normal form was required to collapse AC0(PL) to PL, and was shown in [11]. We
show a corresponding normal form for a-BWBPs in Lemma 4.3.

Finally, we need to show that there is a GapBWBP function h which has
the same sign as the value of the a-BWBP B with the rational approximations
in place. In [11], the analogous result is shown by describing an appropriate
probabilistic log-space machine. In the GapBWBP setting, things are a bit more
complicated since we have only O(1) storage. We get around this by using the
notion of exponential sums over read-once certified circuits, introduced in [10].
The GapBWBP family computing the desired h is described in Section 4.2, com-
pleting the proof of Theorem 4.2.

4.2 Some Details of the Proof

We introduce a notation here. A node v in a BP B is called a nondeterministic
node if there is an input assignment for which v has two out-edges labelled 1. We
show the following normal form for branching programs computing functions in
GapNC1; this is analogous to Lemma 3.1 in [11] for PL and #L functions.

Lemma 4.3. Let f be a function in GapNC1. Then there exists a branching
program Q of width O(1) such that

1. Q has a single start node s and two terminal nodes t1 and t2;
2. every path originating from s ends at either t1 or t2 and nowhere else;
3. any path of Q on any given input x contains exactly q nondeterministic

nodes;
4. every edge is labelled by a literal yi or ¬yi;
5. on any input y, Q has exactly 2q paths, originating from s, where q = q(n) ≤

poly(n);
6. f = #[s � t1]−#[s � t2].

We use the following characterization of the class PNC1.

Proposition 4.4. A language L belongs to PNC1 if and only if there is a func-
tion f ∈ GapNC1 such that if x ∈ L then f(x) ≥ 1 and if x /∈ L then f(x) ≤ −1.

We now complete the proof of Theorem 4.2. Let L ∈ [PNC1]·[PNC1]. As described
in Section 4.1, there is a GapNC1 function f and a circuit family accepting L such
that for any word x, f(x) �= 0 and x ∈ L⇔ f(b1, . . . , bt) > 0, where bi = χH(Yi)
and so bi = 1 if f(Yi) > 0; bi = 0 otherwise. Each query string Yi is obtained
from x by a projection and is an oracle query at the bottom layer; bi is the oracle
reply.

Replace each bi by a variable yi and apply Lemma 4.3 to get a polynomial size
branching program Q, with three special nodes s, t1, and t2, computing f(Y ) on
t-bit inputs via the gap f = #[s � t1] − #[s � t2]. Note that for every layer
k of Q, there is a variable uk ∈ Y such that the edges from layer k to layer
k + 1 are labelled from the set {uk,¬uk}. Note that all the uk need not be
distinct. Henceforth, we denote by yk and Yk the variable at layer k of Q and
the corresponding query string, respectively. Without loss of generality we can
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assume that every layer is a nondeterministic layer. Let Q have p layers. Then
every pair of bit-strings w, u, each of length p, uniquely represents a path in the
BP Q, by considering the ith bit wi of w as the query answer at the ith layer
and ith bit ui of u as the nondeterministic choice. For w, u, with |w| = |u| = p,
define the Boolean function e(x,w, u) as follows: e(x,w, u) = 1 if and only if the
path of Q represented by the strings w and u on input x is an accepting path
(that is, it terminates at t1). Now define the following functions:

T (x) :=
∑

u,w∈{0,1}p

e(x,w, u)S̃(x,w),

a(x) :=
∑

u,w∈{0,1}p

e(x,w, u)α̃(x,w), and

h(x) := 4a(x)− 2p+1β(x).

Here, S̃(x,w), α̃(x,w) and β(x) are Ogihara’s polynomials (see [11]).
As shown in [11], T (x) = a(x)/β(x). Using the properties of S̃ we have:

Lemma 4.5. [11] If x ∈ L then T (x) > 2p−1, and if x /∈ L then T (x) < 2p−1.
Hence, x ∈ L if and only if h(x) ≥ 0.

Now it suffices to prove the following;

Lemma 4.6. h(x) ∈ GapBWBP=GapNC1.

5 The Hierarchy above C=NC1

Since we do not even know if C=NC1 is closed under complementation, we can-
not hope for a direct collapse of the hierarchies above C=NC1 all the way down
to C=NC1. However, we show here two partial collapses. For the analogous class
C=L, it has been shown in [2] that the hierarchy collapses to LC=L, and that
testing feasibility of systems of linear equations FSLE is complete for this class.
At the level of NC1, we show that the analogous situation splits into two counter-
parts. We define an appropriate non-trivial notion of constant-dimension FSLE
and show that it is complete for the Boolean hierarchy over C=NC1, BH(C=NC1).
We then show that the constant-depth hierarchy over C=NC1, AC0(C=NC1), col-
lapses to a certain level within the hierarchy that we denote AC0 · C=NC1; this
is contained in the second level of the hierarchy.

5.1 The Boolean Hierarchy above C=NC1

Definition 5.1. For any k ∈ N, and any class C of functions from words to
integers, the language class FSLEk[C] is defined as follows: A language L belongs
to the class FSLEk[C] if there are functions Aij ∈ C for 1 ≤ i, j ≤ k and a vector
b ∈ Zk such that for each w ∈ {0, 1}∗, w ∈ L if and only if the system Az = b
of linear equations in k variables zj, where Aij = Aij(w), has a feasible solution
over the rationals. The class FSLEbdd[C] is the union of FSLEk[C] over all k.
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Proposition 5.2. The following two containments hold:

coC=NC1 ⊆ FSLE1[GapNC1], C=NC1 ⊆ FSLE2[GapNC1].

We prove something stronger, by showing that FSLEbdd[GapNC1] can express
conjunctions and negations.

Lemma 5.3. NC0
d · C=NC1 ⊆ FSLE3(2d+1−1)[GapNC1].

We establish a converse as well, with somewhat different parameters. The proof
uses the fact that to check feasibility, the ranks of finitely many sub-matrices
need to be computed.

Lemma 5.4. FSLEk[GapNC1] ⊆ NC0
3k · C=NC1.

From Lemmas 5.3 and 5.4, we have shown the following:

Theorem 5.5. NC0 · C=NC1 = FSLEbdd[GapNC1].

5.2 The AC0 Hierarchy above C=NC1

We now show the collapse of the constant-depth hierarchy over C=NC1, that is,
we prove AC0(C=NC1) = AC0

3 · [C=NC1]. First we set up some notation.
Let AC0

k(C) denote the class of languages accepted by AC0 oracle circuits,
where the oracle gates are for a language in C, and where on any root-to-leaf
path, the number of oracle gates encountered is at most k. (This is in analogy
with AC0

k denoting depth-k AC0 circuits.) Then, AC0
k(C) is exactly AC0 · [C] ·

AC0 . . . (k times) . . . [C] · AC0. In particular, when C = C=NC1, using notation
from Proposition 3.4 we can see that AC0

k(C=NC1) equals a-NC1
= circuits where

the nesting depth of the test gates is at most k.

Proposition 5.6. [C=NC1] · AC0 = C=NC1 and [coC=NC1] · AC0 = coC=NC1.

The heart of our collapse result is the following lemma, stating that two adjacent
levels of coC=NC1 oracle gates can be combined into one.

Lemma 5.7. [coC=NC1] · [coC=NC1] ⊆ AC0 · [coC=NC1]. In particular, the AC0

circuitry is of depth 3, with an OR of ANDs and some negations at the leaves.

The result follows immediately from Lemma 5.8 below.

Lemma 5.8. Let h : {0, 1}t −→ {0, 1}, f1, f2, . . . , ft : {0, 1}n −→ {0, 1} be
functions in GapNC1, where for all w, fi(w) ≥ 0. Then for some T ∈ tO(1), there
exist GapNC1 functions g1, g2, . . . , gT : {0, 1}n −→ {0, 1} and an AC0 circuit H
on T inputs such that, for all w ∈ {0, 1}n,

h(b1, b2, . . . , bt) �= 0 ⇐⇒ H(d1, d2, . . . , dT ) = 1

where bi :=
{

1 if fi(w) �= 0,
0 otherwise, and dj :=

{
1 if gj(w) �= 0,
0 otherwise.



Counting Classes and the Fine Structure between NC1 and L 317

To establish this, we define appropriate symmetric polynomials such that when
evaluated at the values fi(w), a simple predicate involving them reveals the
value of h. We then use the fact that the symmetric polynomials are efficiently
computable over fields.

Using Proposition 5.6 and Lemma 5.7, we get our collapse result.

Theorem 5.9. The AC0 hierarchy over C=NC1 collapses to its first level, re-
quiring a single layer of oracle gates and a depth-3 circuit above it,

AC0(C=NC1) = AC0 · [C=NC1] = AC0 · [coC=NC1] = AC0
3 · [C=NC1].
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Minimization Algorithm Is O(n log log n)�
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Abstract. We prove that the average complexity, for the uniform distri-
bution on complete deterministic automata, of Moore’s state minimiza-
tion algorithm is O(n log log n), where n is the number of states in the
input automata.

1 Introduction

Due to their efficiency to represent regular languages and perform most of usual
computations they involve, finite state automata are used in various fields such as
linguistics, bioinformatics, program verification and data compression. A min-
imal automata is the smallest complete deterministic automata that can be
associated to a regular language. Because this automaton is unique, up to iso-
morphism on the labels of the states, it is a canonical representation of a reg-
ular language and permits to test the equality between regular languages and
equivalence between automata. Most state minimization algorithms compute the
minimal automaton of a regular language taking a deterministic automaton as
an input, by identifying the indistinguishable states.

Moore proposed the first minimization algorithm[8], which is based on the
calculus of the Myhill-Nerode equivalence, by refinements of partitions of the
set of states. There are at most n − 2 such refinements, each of them requiring
a linear running time: in the worst case, the complexity is quadratic. Though,
in [1], it is proved that the average complexity of the algorithm is bounded
by O(n logn). Since this result does not rely on the underlying graph of the
automaton, it holds for any probabilistic distribution on this graph. Also, the
bound is tight for unary automata.

Hopcroft’s state minimization algorithm [6] is the best known algorithm with
an O(n logn) worst-case complexity. It also uses partition refinements to com-
pute the minimal automaton, but its description is not deterministic, making
its analysis complicated. Different proofs of its correctness were given [5,7] and
several authors [3,4] proved the tightness of the upper bound of the complexity
for different families of automata.

In this paper, we prove that for the uniform distribution on complete de-
terministic automata, the average complexity of the algorithm due to Moore is
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O(n log logn). The article is organized as follows: after recalling the basics of
automata minimization (Section 2), we introduce the tools we use for the av-
erage analysis (Subsections 2.3 to 2.5). Section 3 is dedicated to the average
time complexity analysis of Moore’s algorithm. Due to a lack of space, the proof
of Lemma 6 is not fully detailed, but an idea of the proof is given. The paper
closes with a discussion on Hopcroft’s algorithm executions, which are faster
than Moore’s algorithm ones, for any input automaton and a conjecture on the
average complexity of both algorithms, for various distributions on automata.

2 Preliminaries

2.1 Definitions and Notations

A finite deterministic automaton A = (A,Q, ·, q0, F ) is a quintuple where Q is
a finite set of states, A is a finite set of letters called alphabet, the transition
function · is a mapping from Q×A to Q, q0 ∈ Q is the initial state and F ⊂ Q is
the set of final states. An automaton is complete when its transition function is
total. The transition function can be extended by morphism to all words of A∗:
p · ε = p for any p ∈ Q and for any u, v ∈ A∗, p · (uv) = (p ·u) · v. A word u ∈ A∗

is recognized by an automaton when p · u ∈ F . The set of all words recognized
by A is denoted by L(A). We note Ai the words of length i and A≤i the word of
length less or equal to i. An automaton is accessible when for any state p ∈ Q,
there exists a word u ∈ A∗ such that q0 · u = p.

A transition structure is an automaton where the set of final states is not spec-
ified. Given such a transition structure T = (A,Q, ·, q0) and a subset F of Q, we
denote by (T , F ) the automaton (A,Q, ·, q0, F ). For a given deterministic transi-
tion structure with n states there are exactly 2n distinct deterministic automata
that can be built from this transition structure. Each of them corresponds to a
choice of set of final states.

In the following we only consider complete deterministic automata and com-
plete deterministic transition structures, the accessibility is not guaranteed. Con-
sequently these objects will most of the time just be called respectively automata
or transition structures. The set Q of an n-state transition structure will be de-
noted by {1, . . . , n}. The set of automata and the set of transition structures
with n states will respectively be denoted An and Tn. Also, since there are kn
transitions and since for each transition, there are n possible arrival states, we
have |Tn| = nkn and |An| = 2nnkn (when |E| is the cardinal of the set E). The
term 2n comes from the choice of the set of final states.

The military order on words, noted <mil, is defined as follows: ∀u, v ∈ A∗,
u <mil v if |u| < |v| or |u| = |v| and u is smaller than v in the lexicographical
order. Let Cond be a Boolean condition, the Iverson bracket [[Cond]] is equal to
1 if the condition Cond is satisfied and 0 otherwise.

For any non-negative integer i, two states p, q ∈ Q are i-equivalent, denoted by
p ∼i q, when for all words u ∈ A≤i , [[p · u ∈ F ]] = [[q · u ∈ F ]]. Two states p and
q are equivalent (noted p ∼ q) when for all u ∈ A∗, [[p · u ∈ F ]] = [[q · u ∈ F ]]. This
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equivalence relation on Q is called Myhill-Nerode equivalence [9]. This relation
is said to be right invariant, meaning that

for all u ∈ A∗ and all p, q ∈ Q, p ∼ q ⇒ p · u ∼ q · u.

Proposition 1. Let A = (A,Q, ·, q0, F ) be a deterministic automaton with n
states. The following properties hold:

(1) For all i ∈ N, ∼i+1 is a partition refinement of ∼i, that is, for all p, q ∈ Q,
if p ∼i+1 q then p ∼i q.

(2) For all i ∈ N and for all p, q ∈ Q, p ∼i+1 q if and only if p ∼i q and for all
a ∈ A, p · a ∼i q · a.

(3) If for some i ∈ N (i+ 1)-equivalence is equal to i-equivalence then for every
j ≥ i, j-equivalence is equal to Myhill-Nerode equivalence.

For any integer n ≥ 1 and any m ∈ N, we denote by Am
n the set of automata

with n states for which m is the smallest integer such that the m-equivalence
∼m is equal to Myhill-Nerode equivalence. It is well known that m ≤ n− 2.

2.2 Moore’s State Minimization Algorithm

In this section we describe Moore’s algorithm [8] to compute the minimal au-
tomaton of a regular language represented by a deterministic automaton. It
builds the partition of the set of states corresponding to Myhill-Nerode equiva-
lence and mainly relies on properties (2) and (3) of Proposition 1: The partition
π is initialized according to the 0-equivalence ∼0, then at each iteration the
partition corresponding to the (i + 1)-equivalence ∼i+1 is computed from the
one corresponding to the i-equivalence ∼i using property (2). The algorithm
halts when no new partition refinement is obtained, and the result is Myhill-
Nerode equivalence according to property (3). The minimal automaton can then
be computed from the resulting partition since it is the quotient automaton by
Myhill-Nerode equivalence.

According to Proposition 1, if an automaton is minimized in more than �
partition refinements, then there exists at least a pair of states p, q and a word
u of length �+ 1, such that p ∼� q and p · u �0 q · u, that is to say at least two
states are separated during the �+ 1-th partition refinement. In the remainder
of this section we introduce the dependency tree and a modification of the
dependency graph introduced in [1]. Those tools will allow us to give an
upper bound on the number of automata minimized in more than � partition
refinements, which is useful for the average complexity analysis.

2.3 The Dependency Tree

In the following, we introduce the dependency tree to model a set of transition
structures. To begin with, we explain how a dependency tree R(p) can be ob-
tained from a fixed transition structure τ and a fixed state p and then how this
object will help to estimate the cardinal of a set of transition structures. For a
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Algorithm 1. Moore’s algorithm
if F = ∅ then1

return (A, {1}, ∗, 1, ∅)2

if F = {1, . . . , n} then3

return (A, {1}, ∗, 1, {1})4

forall p ∈ {1, . . . , n} do5

π′[p] = [[p ∈ F ]]6

π = undefined7

while π 
= π′ do8

π = π′
9

compute π′ from π10

return the quotient of A by π11

In this description of Moore’s algorithm,
∗ denotes the function such that 1 ∗a = 1
for all a ∈ A. Lines 1-4 correspond to the
special cases where F = ∅ or F = Q. In
the process, π′ is the new partition and π
the former one. Lines 5-6 is the initializa-
tion of π′ to the partition of ∼0, π is ini-
tially undefined. Lines 8-10 are the main
loop of the algorithm where the new par-
tition is computed, using the second algo-
rithm below. The number of iterations of
Moore’s algorithm is the number of times
those lines are executed.

The computation of the new partition
is done using the following property on
associated equivalence relations:

p ∼i+1 q ⇔
{

p ∼i q

p · a ∼i q · a ∀a ∈ A

To each state p is associated a signa-
ture s[p] such that p ∼i+1 q if and only
if s[p] = s[q]. The states are then sorted
according to their signature, in order
to compute the new partition. The use
of a lexicographic sort provides a com-
plexity of Θ(kn) for this part of the al-
gorithm.

Algorithm 2. Computing π′ from π

forall p ∈ {1, . . . , n} do1

s[p] = (π[p], π[p · a1], . . . , π[p · ak])2

compute the permutation σ that3

sorts the states according to s[]

i = 04

π′[σ(1)] = i5

forall p ∈ {2, . . . , n} do6

if s[p] 
= s[p − 1] then i = i + 17

π′[σ(p)] = i8

return π′
9

Fig. 1. Description of Moore’s algorithm

fixed transition structure with n states over a k-letter alphabet and a fixed state
p, we define the function isnode mapping A∗ to {0, 1} as follows:

isnode(w) =

{
0 if ∃v ∈ A∗ such that p · w = p · v and v <mil w,

1 otherwise.

R(p) is a tree in which nodes and leaves of depth h are labelled by words of
length h. It is built recursively, using a breadth-first traversal of the nodes of
the tree starting from the node p. For each node of depth h labelled by w, and
each letter a in the alphabet, we add a node labelled by wa at depth h + 1 if
isnode(wa) is equal to 1, and a leaf otherwise. Figure 2 gives an example of a
dependency tree. Note that this construction resembles the method used in [2]
to randomly generate accessible automata, except the authors use a depth-first
traversal. It is easy to see that some dependency trees can be obtained from
several fixed transition structures and states. In the remainder of the paper, we
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(b)

Fig. 2. Let (a) be the fixed transition structure and 2 be the fixed state, (b) is the
associated dependency tree R(2). We have S2(2) = {ε, a, b, aa, ab}, L2(2) = {aa, ab}
and s2(2) = {2, 3, 4, 5, 6}.

characterize sets of transition structures corresponding to particular dependency
trees.

We introduce some notations associated to a dependency tree R(p): Sh(p)
denotes the set of all nodes of depth less or equal to h, Lh(p) denotes the set of
all the nodes at given depth h. Since every node in the tree is labelled by a word,
we note w ∈ Sh(p) or w ∈ Lh(p) if w is a word labelling a node in those sets.
We also define the set sh(p) of all the states that are reached from a state p by
following a path labelled by a word of less or equal to h. For all the transition
structures associated to a dependency tree R(p), we have |sh(p)| = |Sh(p)|.

Lemma 1. For any fixed state p, if a dependency tree R(p) contains f leaves
at a depth less or equal to h, then the number of associated transition structures

is bounded above by |Tn|
(
|Sh(p)|

n

)f
.

Proof. We recall that |Tn| is equal to the product of the cardinals of the sets
of possible arrival states, for each transition. Let wa be the label of a leaf at
depth less than h. For every transition structure associated to the tree R(p), the
transition labelled by a outgoing from the state p · w ends in a state p · v, with
v ∈ Sh(p). Therefore, the number of possible arrival states for this transition
is bounded above by |Sh(p)| instead of n. This is a rough upper bound but
sufficient for the needs of the proof.

2.4 The T -Dependency Graph

We introduce another model for sets of transition structures. For two fixed
states p and q, two fixed x-tuples (x is a fixed integer) of non-empty words
−→u = (u1, . . . , ux) and −→v = (v1, . . . , vx), two fixed sets ϕp and ϕq of pairs of
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words (w,w′) such that w′ <mil w, we define the set Tn(p, q, ϕp, ϕq,−→u ,−→v ) as
follows:

Tn(p, q, ϕp, ϕq,−→u ,−→v ) = {τ ∈ Tn |∀(wp, w
′
p) ∈ ϕp, p · wp = p · w′

p,

∀(wq, w
′
q) ∈ ϕq, q · wq = q · w′

q,

∀i ≤ x, p · ui = q · vi}

We define the x-tuples of words
−→
u′ = (u′1, . . . , u

′
x) and

−→
v′ = (v′1, . . . , v

′
x) and

the x-tuples of letters
−→
α′ = (α′

1, . . . , α
′
x) and

−→
β′ = (β′1, . . . , β

′
x), such that for

all i ≤ x we have ui = u′iαi and vi = v′iβi. From Tn(p, q, ϕp, ϕq,−→u ,−→v ), one
can define the undirected graph Gn(p, q, ϕp, ϕq,−→u ,−→v ), called the T -dependency
graph, as follows:

– its vertices are pairs (r, a), with r ∈ Q and a ∈ A, that model transitions.
– There is an edge ((r, a), (t, b)) in Gn(p, q, ϕp, ϕq,−→u ,−→v ) if and only if for all
τ ∈ Tn(p, q, ϕp, ϕq,−→u ,−→v ), r · a = t · b.

The T -dependancy graph Gn(p, q, ϕp, ϕq,−→u ,−→v ) satisfies the two following prop-
erties:

– For all i ≤ x, there exists an edge ((p · u′i, αi), (q · v′i, βi)).
– For all (w1, w2) ∈ ϕp (resp. (w3, w4) ∈ ϕq), we have w1 = w′

1a1 and
w2 = w′

2a2 with a1, a2 ∈ A and such that there exists an edge ((p ·w′
1, a1), (p ·

w′
2, a2)) (resp. ((q · w′

3, a3), (q · w′
3, a3))).

Lemma 2. If Gn(p, q, ϕp, ϕq,−→u ,−→v ) contains an acyclic subgraph induced by a
subset of nodes with j edges, then:

|Tn(p, q, ϕp, ϕq,−→u ,−→v )| ≤ |Tn|
nj

Proof. Two transitions in the same connected components of Gn(p, q, ϕp, ϕq,-−→u ,−→v ) share the same arrival state. Hence if x is the number of connected com-
ponents in the graph, then |Tn(p, q, ϕp, ϕq,−→u ,−→v )| ≤ nx. If Gn(p, q, ϕp, ϕq,−→u ,−→v )
contains an acyclic subgraph with exactly j edges, then there is at most kn− j
connected components.

2.5 The F-Dependency Graph

In this subsection, we slightly modify the notion of dependency graph introduced
in [1]. Let τ be a fixed transition structure with n states and � be an integer such
that 1 ≤ � < n. Let p, q be two states of τ such that p �= q and u a word of length �.
We define Fτ (p, q, u) as the set of sets of final states F for which in the automaton
(τ, F ) the states p and q are separated by the word u. That is to say :

Fτ (p, q, u) = {F ⊂ {1, . . . , n} | for all (τ, F ), p ∼|u|−1 q,

[[p · u ∈ F ]] �= [[q · u ∈ F ]]}

From the set Fτ (p, q, u) one can define the undirected graph Gτ (p, q, u), called
the F-dependency graph, as follows:
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Fig. 3. (a) is a fixed transition structure and (b) the F-dependency graph for p = 3,
q = 9 and u = abbaa. Thanks to (b), we know that all states in a same connected
component will be either all final or all non-final. Hence, there are at most 24 possible
sets of final states, instead of 29.

– its set of vertices is {1, . . . , n}, the set of states of τ ;
– there is an edge (s, t) between two vertices s and t if and only if there exists

a word w of length less than � such that s = p · w and t = q · w and for all
F ∈ Fτ (p, q, u), [[s ∈ F ]] = [[t ∈ F ]].

The F -dependency graph contains some information that is a basic ingredient
of the proof: it is a convenient representation of necessary conditions for a set
of final states to be in Fτ (p, q, u), that is, for Moore’s algorithm to require more
than |u| iterations because of p, q and u. Figure 3 shows an example of a F -
dependency graph.

Lemma 3. [1] If Gτ (p, q, u) contains an acyclic subgraph with at least i edges,
then |Fτ (p, q, u)| ≤ 2n−i.

The notions of dependency graphs and dependency tree will be used in subsec-
tions 3.2 and 3.3 to obtain upper bounds on the cardinal of sets of automata with
given properties and prove that their contribution to the average complexity is
negligible.

3 Moore’s Algorithm: Average Case Analysis

In [1], it is proved that the average complexity of Moore’s state minimization
algorithm is O(n log n). Since the result is obtained by studying only properties
on the sets of final states of automata minimized in a given complexity, it holds
for any distribution on the set of transition structures. In this paper, in order to
improve the upper bound on the average complexity, we also have to study some
properties of transition structures. Since the enumeration of accessible automata
with given properties is an open problem, we focus our study on the uniform
distribution over the set of complete deterministic automata.
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3.1 Main Result and Decomposition of the Proof

The main result of this paper is the following.

Theorem 1. For any fixed integer k ≥ 2 and for the uniform distribution over
the deterministic and complete automata with n states over a k-letter alphabet,
the average complexity of Moore’s state minimization algorithm is O(n log logn).

Recall that the number of partition refinements made by Moore’s state minimiza-
tion algorithm is smaller or equal to n − 2 and that Ai

n is the set of automata
of An for which i is the smallest integer such that ∼i is equal to Myhill-Nerode
equivalence. The average number of partition refinements is given by:

Nn =
1
|An|

(
n−2∑
i=0

(i+ 1)× |Ai
n|
)

We define λ = �logk log2 n
3 +2�, which will be used in the sequel. We gather the

sets Ai
n , in order to obtain the following upper bound:

Nn ≤
λ+ 1
|An|

∑
i≤λ

|Ai
n|︸ ︷︷ ︸ +

(5 log2 n+ 1)
|An|

5 log2 n∑
i=λ+1

|Ai
n|︸ ︷︷ ︸ +

n− 1
|An|

n−2∑
i=5 log2 n+1

|Ai
n|︸ ︷︷ ︸

S1 S2 S3

S1 is less than λ and equal to O(log logn).
In [1], it is proved that

∑n−2
i=5 log2 n+1 |Ai

n| ≤
|An|
n . Therefore we know that S3 is

equal to O(1). Hence, in the following, we prove that:

S2 =
(5 log2 n+ 1)

|An|

5 log2 n∑
i=λ+1

|Ai
n| = O(log logn) (1)

For any � > 0, we define the set An(p, q, �) as the set of automata with n states,
where the states p and q are separated during the �-th partition refinement:

An(p, q, �) = {(τ, F ) ∈ An | τ ⊂ Tn, F ⊆ {1, . . . , n}, p ∼�−1 q, p �� q}

Remark 1. Note that if in the automaton (τ, F ), for all letter a ∈ A, p · a =
q · a, then either p �0 q or p ∼ q. Therefore (τ, F ) /∈ An(p, q, �) with � > 0.
Consequently, in the remainder of the proof, in all sets of transition structures
where p and q are fixed, there exists a letter a such that p · a �= q · a.

The following statement comes from the definition of the sets it involves:⋃
i>λ

Ai
n =

⋃
p,q∈{1,...,n}

An(p, q, λ+ 1)

Let τ be a transition structure, and p, q be two distinct states. Recalling that
sh(p) is defined in Section 2.3, if A is a k-letter alphabet, and μ a positive integer,
we define two properties associated to transition structures:
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(1) largeT ree(τ, p, μ) is true if and only if |sμ(p)| ≥ kμ − 1.
Note that this implies that |sμ−2(p)| ≥ kμ−2 − 1.

(2) noIntersection(τ, p, q) is true if and only if sλ−2(p) ∩ sλ−2(q) = ∅.

For fixed states p and q, an automaton is in An(p, q, λ + 1) if its associated
transition structure is in one of the three distinct sets we are about to define:

– Xn is the set of all transition structures τ such that:
• there exists a state r ∈ Q such that largeT ree(τ, r, λ) is false.

Note that this set does not rely on the values of p and q.
– Yn(p, q) is the set of transition structures τ such that:

• for all state r ∈ Q, the property largeT ree(τ, r, λ) is true,
• for all words w ∈ A≤2, the property noIntersection(τ, p · w, q · w) is
false.

– αn(p, q) is the set of transition structures τ such that:
• for all state r ∈ Q, the property largeT ree(τ, r, λ) is true,
• there exists w ∈ A≤2 such that noIntersection(τ, p · w, q · w) is true.

3.2 Transition Structures with a Huge F-Dependency Graph

Lemma 4. For any fixed transition structures τ ∈ αn(p, q), and a fixed word u
of length λ+1, the following property holds: every F-dependency graph Gτ (p, q, u)
contains an acyclic subgraph with at least kλ−2 − 1 edges.

Proof. Let G′ be the subgraph Gτ (p, q, u) defined as follows: there exists an edge
(p·wv, q·wv) in G′, if and only if v labels a node in Sλ−2(p·w). G′ contains exactly
|sλ−2(p ·w)| edges, since for all v ∈ Sλ−2(p ·w), the states p ·wv are all pairwise
distinct. Since largeT ree(τ, r, λ) is true for all state r ∈ Q, we have |sλ−2(p·w)| ≥
kλ−2−1. G′ is acyclic: indeed, the property noIntersection(τ, p·w, q ·w) indicates
that the set of nodes connected to at least one edge forms a bipartite graph (the
nodes of sλ−2(p ·w) on one side and the nodes of sλ−2(q ·w) on the other), where
all the nodes of sλ−2(p · w) are only connected to one edge.

Corollary 1. For λ = �logk log2 n
3+2�, the number of automata in An(p, q, λ+

1) whose transition structures are in αn(p, q) is O
(
|Tn|2

n logn
n3

)
.

Proof. This follows directly from Lemmas 3 and 4 : for any distinct states p and
q, any word u of length λ + 1 , and any fixed transition structure τ ∈ αn(p, q),
we have

|Fτ (p, q, u)| = O
(
2n−log2 n

3
)

For a fixed transition structure τ ∈ αn(p, q), since the number of words in Aλ+1

is O(log n), the number of choices of sets of final states such that the automata
are in An(p, q, λ+ 1) is bounded above by:∑

u∈Aλ+1

|Fτ (p, q, u)| = O
(

2n log n
n3

)
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3.3 Negligible Sets of Transition Structures

Lemma 5. The number of transition structure in Xn is O
(
|Tn| log

5 n
n

)
.

Proof. For a fixed state r and a fixed integer μ ∈ {1, . . . , λ}, we define the sets
Xn(r, μ) of all transition structures τ for which μ is the smallest integer such
that the property largeT ree(τ, r, μ) is false. We have :

Xn =
⋃

r∈{1,...,n}

⎛⎝ ⋃
μ∈{1,...,λ}

Xn(r, μ)

⎞⎠
For all transition structures in Xn(r, μ), the dependency tree R(r) contains at
least two leaves of depth less or equal to μ. Indeed, if R(r) contains at most one
leaf of depth less than μ, then there exist k−1 letters a ∈ A such thatR(r·a) does
not contain any leaf of depth less than μ. Therefore we have |Sμ(p)| ≥ kμ − 1.
We decompose the possible dependency trees R(r) into two different kinds:

1. All leaves are at level μ. Let k be the size of the alphabet and f the number
of leaves, the number of trees of this kind is equal to

∑kμ

f=2

(
kμ

f

)
.

2. There exists exactly one leaf of depth h (with h < μ), and at least one of
depth μ. The number of trees of this kind is at most

∑μ−1
h=1

(
kh
∑kμ

f=1

(
kμ

f

))
.

Using the upper bound of Lemma 1 on the number of transition structures
counted by each tree, we obtain:

|Xn(r, μ)| ≤
kμ∑
f=2

[(
kμ

f

)
|Tn|

(
|Sμ(r)|
n

)f
]
+
μ−1∑
h=1

kμ∑
f=1

[
kh
(
kμ

f

)
|Tn|

(
|Sμ(r)|
n

)f+1
]

Since μ ≤ λ, we have |Sμ(r)| < kλ+1 and:

|Xn(r, μ)| < |Tn|

⎛⎝ kλ∑
f=2

[(
kλ

f

)(
kλ+1

n

)f
]

+
λk2λ+1

n

kλ∑
f=1

[(
kλ

f

)(
kλ+1

n

)f
]⎞⎠

Since we have
(
kλ

f

) (
kλ+1

n

)f
≤
(
k2λ+1

n

)f
:

|Xn(r, μ)| < |Tn|

⎛⎝k4λ+2

n2

∞∑
f=0

(
k2λ+1

n

)f

+
λk4λ+2

n2

∞∑
f=0

(
k2λ+1

n

)f
⎞⎠

|Xn(r, μ)| = O
(
|Tn|

λk4λ

n2

)
= O

(
|Tn|

log4 n3 × log logn3

n2

)
Since this upper bound holds for any μ ∈ {1, . . . , λ} and any r ∈ Q, we obtain:

|Xn| ≤

⎛⎝ ∑
r∈{1,...,n}

∑
μ∈{1,...,λ}

|Xn(r, μ)|

⎞⎠ = O
(
|Tn|

log4 n3 × log2 logn3

n

)
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Lemma 6. For any distinct states p and q, the number of transition structures
in Yn(p, q) is O

(
|Tn| log

6 n
n3

)
.

Proof. For any transition structure in Yn(p, q), for all words w ∈ A≤2, there
exist two words u, v ∈ A≤λ−2 such that p · wu = q · wv. We partition the set
Yn(p, q) according to the leaves the dependency trees contain.
Both trees do not contain a leaf of depth less or equal to λ : let E be the set of
letters, such that for all a ∈ E, p · a = q · a. We define e = |E|. According to
Remark 1, we have e < k. For all b ∈ A \ E and all c ∈ A, noIntersection(τ, p ·
bc, q · bc) is false. For −→u and −→v of size x = e + k(k − e), such that for all
1 ≤ j ≤ e, we have uj = vj = aj with aj ∈ E and such that for all e < j′ ≤ x,
w′
j is a prefix of uj′ and vj′ , where w′

j is a word of the form bc. This subset is
included in: ⋃

E�A
∀a∈E, p·a=q·a

⋃
−→u ,−→v

Tn(p, q, ∅, ∅,−→u ,−→v )

There are 2k−1 possible subsets E. There are less than k2λ(x−e) possible choices
for ui, vi ∈ A≤λ, for e < i ≤ x. For all j, l ≤ x, j �= l, since uj and ul (resp.
vj and vl) label nodes in R(p) (resp. R(q)), setting uj = u′jαj and ul = u′lαl,
we have (p · u′j, αj) �= (p · u′l, αl) and there is no path between (p · u′j, αj) and
(p · u′l, αl) since if would imply that p · uj = p · ul and that either uj or ul labels
a leaf. Therefore, Gn(p, q, ∅, ∅,−→u ,−→v ) contains an acyclic graph with x edges
((p · u′j , αj), (q · v′j , βj)). Since x ≥ k + 1 (for e = k − 1), using Lemma 2, we
obtain the upper bound stated above.
At least one tree contains a leaf of depth less or equal to λ : due to a lack of
space, we will not describe this set. The idea is that, just like in the previous case,
we are able to guarantee that a T -dependency graph always contains an acyclic
subgraph with k + 1 edges and that there is O(log2(k+1) n) possible graphs.

3.4 Concluding the Proof

Recall that we want to prove Equation 1. We define X̃n, α̃n(p, q) and Ỹn(p, q) as
the sets of automata whose transition structure are respectively in Xn, αn(p, q)
and Yn(p, q). We have:

⋃
i>λ

Ai
n =

⋃
p,q∈{1,...,n}

An(p, q, λ+ 1) ⊆ X̃n ∪

⎛⎝ ⋃
p,q∈{1,...,n}

α̃n(p, q) ∪ Ỹn(p, q)

⎞⎠
Using Lemmas 4,5 and 6 we obtain:∑
i>λ

|Ai
n| ≤ |Tn|

2n log5 n

n
+ n2

(
|Tn| ×

2n logn
n3 + |Tn|

2n log6 n

n3

)
≤ |An|

log6 n

n

(5 log2 n+ 1)
|An|

5 log2 n∑
i=λ+1

|Ai
n| = O

(
log7 n

n

)
= O (log logn)

Hence Nn = O(log logn), this concludes the proof of the main theorem.
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4 Conclusion

In this paper, we obtained a new upper bound on the average complexity of
Moore’s state minimization algorithm, for the uniform distribution on complete
deterministic automata. Also, it is possible to describe a set of Hopcroft’s al-
gorithm executions which, for any deterministic automata, compute the equiv-
alence in less steps than Moore’s algorithm (due to a lack of space, we are not
giving the description of those executions in this paper). Hence, for the uniform
distribution on complete deterministic automata with n states, there exists an
execution of Hopcroft’s algorithm whose average complexity is O(n log logn).
This paper is a first step to prove the conjecture made in the conclusion of [1]:
for the uniform distribution on complete deterministic accessible automata, the
average complexity of Moore algorithm is Θ(n log logn). To prove this conjec-
ture is not an easy task, since it requires a better knowledge of the average
size of the accessible part in a complete deterministic automaton, but also the
average number of minimal automata amongst the complete deterministic and
accessible.

I would like to thank Phillipe Duchon for the fruitful discussion on upper
bound of the cardinal of the set Xn, but also Cyril Nicaud and Frederique Bassino
for their advices and comments.
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Connected Searching of Weighted Trees

Dariusz Dereniowski�

Department of Algorithms and System Modeling,
Gdańsk University of Technology, Poland

deren@eti.pg.gda.pl

Abstract. In this paper we consider the problem of connected edge
searching of weighted trees. Authors claim in [L. Barrière at al., Capture
of an intruder by mobile agents, SPAA’02 (2002) 200-209] that there ex-
ists a polynomial-time algorithm for finding an optimal search strategy.
However, due to some flaws in their algorithm, the problem turns out
to be open. It is proven in this paper that the considered problem is
strongly NP-complete even for node-weighted trees (the weight of each
edge is 1). It is also shown that there exists a polynomial-time algorithm
for finding an optimal connected search strategy for a given bounded
degree tree with arbitrary weights on the edges and on the vertices.

Keywords: connected searching, graph searching, search strategy.

1 Introduction

The background and related work
Given a simple undirected graph G, a fugitive is located on an edge of G. The
task is to design a sequence of moves of a team of searchers that results in
capturing the fugitive. The fugitive is invisible for the searchers — they can
deduce the location of the fugitive only from the history of their moves; the
fugitive is fast, i.e. whenever he moves, he can traverse a path of arbitrary length
in the graph, as long as the path is free of searchers. Finally, the fugitive has a
complete knowledge about the graph and about the strategy of the searchers,
which means that he will avoid the capture as long as it is possible. The allowable
moves for the searchers are, in general, placing a searcher on a vertex, removing
a searcher from a vertex and sliding a searcher along an edge of G. An edge is
clear if it cannot contain the fugitive, otherwise it is contaminated. Capturing the
fugitive is then equivalent to clearing all the edges of G. The minimum number
of searchers sufficient to clear the graph is the search number of G, denoted by
s(G). For a survey on graph searching problems see [7].

A key property of a search strategy is the monotonicity. A search is mono-
tone if the strategy ensures that the fugitive cannot reach an edge that has been
already cleared. The minimum number of searchers needed to construct a mono-
tone search strategy for G is denoted by ms(G). A search is internal if removing
� Partially supported by the Foundation for Polish Science (FNP) and by MNiSW

grant N N206 379337 (2009-2011).

P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 330–341, 2010.
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the searchers from the graph is not allowed, while for the search to be connected
we require that after each move the subgraph of G that is clear is connected.
The smallest number k for which a connected k-search strategy S exists is the
connected search number of G, denoted by cs(G). The minimum number of k
searchers such that there exists a monotone connected k-search for G is called
the monotone connected search number of G, and is denoted by mcs(G). If a
(monotone) connected search strategy S uses (mcs(G)) cs(G) searchers, then S
is called an optimal (monotone) connected search strategy for G.

It has been proven that recontamination does help for connected search-
ing [13], and the difference between cs(G) and mcs(G) can be arbitrarily large
for some graphs G [13]. However, if T is a tree then cs(T ) = mcs(T ) [1]. Sev-
eral algorithmic results for connected searching of special classes of graphs are
known, including chordal graphs [11], hypercubes [6], a pyramid [12], chordal
rings and tori [5], or outerplanar graphs [8]. The non-connected searching prob-
lem for weighted trees has been proven to be NP-complete [10].

The summary of the results
Authors in [1] provided an efficient algorithm for connected searching of weighted
trees. However, due to some flaws in the algorithm, it does not always produce
an optimal solution (the tree in Figure 1 in Section 3 may serve as an example),
which results in an approximation algorithm. The complexity status of searching
weighted trees turns out to be NP-complete, which we prove in this work. This
gives a motivation for finding non-trivial subclasses of trees that are computa-
tionally tractable. From the NP-completeness proof presented here it follows that
if a tree has been partially cleared, i.e. for a given vertex v a subset X of edges
incident to v is contaminated, then finding the order of clearing the edges in X
in an optimal connected search strategy is in general ‘as difficult’ as finding the
strategy itself. For this reason we focus on an algorithm designed for bounded
degree trees. However, unlike in the case of searching unweighted trees (both
in the classical and connected models), if several subtrees of the tree to search
are contaminated, then, in general, a connected search strategy that clears them
sequentially (i.e. clears all the edges of one tree and then proceeds to clearing
another tree) cannot be optimal. We use the dynamic programming method (we
keep a collection of search strategies for some subtrees) together with a greedy
rule to narrow down the search space and derive a polynomial running time for
bounded degree trees with arbitrary weight functions.

2 Preliminaries

In the following we assume that all graphs G = (V (G), E(G), w) are connected,
i.e. there exists a path between each pair of vertices of G. The sets V (G) and
E(G) are, respectively, the vertices and the edges of G, while w : V (G)∪E(G) →
N+ is a weight function. (N+ is the set of positive integers.)

Now we define our problems formally. Let k ≥ 0 be an integer. Initially all the
edges of a weighted graph G = (V (G), E(G), w) are contaminated. A connected
k-search strategy S selects a vertex v0 ∈ V (G), called the homebase, and places k
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searchers on v0. Each move of S consists of sliding j ≥ 1 searchers along an edge
e ∈ E(G). If e is contaminated, then we require j ≥ w(e), and e becomes clear
as a result of the move. A clear edge uv ∈ E(G) becomes contaminated if there
exists an edge vy that can contain the fugitive (i.e. vy is contaminated) and less
than w(v) searchers occupy v. The set of clear edges has to form a connected
subgraph after each move of S. After the last move of S all the edges of G are
clear. In the Connected Searching problem (CS) we ask for an optimal connected
k-search strategy for a given graph G. The problem where the homebase is a part
of the input is denoted by CSFH (Connected Searching with Fixed Homebase).

Given any strategy S, s(S) is the number of searchers used by S, |S| is the
number of moves in S and S[i] is its ith move, 1 ≤ i ≤ |S|. For each i = 1, . . . , |S|,
δ(S[i]) is the set of vertices v, occupied by searchers at the end of move i, such
that there exists a contaminated edge incident to v. We say that the vertices in
δ(S[i]) are guarded in step i. Thus, to avoid recontamination, for each v ∈ δ(S[i])
at least w(v) searchers occupy v.

The number of searchers used for guarding at the end of step S[i] is denoted
by |S[i]|. Note that |S[i]| =

∑
v∈δ(S[i]) w(v). The searchers which are not used

for guarding in a given step S[i] are called free searchers in step i. In particular,
if more than w(v) searchers occupy v ∈ δ(S[i]), then w(v) of them are guarding
v, while the remaining ones are considered to be free. Free searchers can move
arbitrarily along the clear edges until the next move S[i′], i′ > i, which clears
an edge uv, where u ∈ δ(S[i]). The move S[i′] can be performed only if the
required number of j searchers (with j′ free searchers among them), which will
slide along uv in S[i′], is at u. So, each move among S[i+ 1], . . . ,S[i′− 1] which
is not necessary for gathering the j searchers for clearing uv in S[i′] can be
performed after S[i′]. Moreover, each set of j′ searchers, which are free at the
end of move S[i], can be used to clear uv in S[i′]. For this reason, we do not list
the moves of sliding searchers along clear edges. Thus, due to this simplifying
assumption, |S| = |E(G)| for monotone strategies S.

We say that a strategy is partial if it clears a subset of the edges of G. Given
a search strategy S for G, the symbol S[( i], i ∈ {1, . . . , |S|}, is used to denote
the partial search strategy consisting of the moves S[1], . . . ,S[i]. Clearly, if S is
connected, then S[( i] is also connected. Given a partial search strategy S′, we
extend our notation so that δ(S′) is the set of guarded vertices after the last move
of S′, δ(S′) = δ(S′[|S′|]). Let CE(S′) denote the set of edges cleared by a partial
strategy S′. In particular, if S clears G, then δ(S) = ∅ and CE(S) = E(G).

3 Searching Trees — Basic Properties

We will make several simplifying assumptions on connected search strategies
restricted to weighted trees T = (V (T ), E(T ), w). The symbol cs(T, r) is used
to denote the minimum number of searchers needed to clear T when r is the
homebase. Note that

cs(T ) = min{cs(T, v) : v ∈ V (T )}. (1)
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All considered trees T are rooted at the homebase r ∈ V (T ). Ev is the set of
edges between v and its children, v ∈ V (T ), and Tv is the subtree of T rooted
at v. For each tree T it holds mcs(T ) = cs(T ) [1]. Thus, in what follows each
connected search strategy is monotone. As mentioned in Section 2, we only list
the clearing moves of a search strategy S, which implies |S| = |E(T )|.

Consider a connected search strategy S for T . Let S[i] be a move of clearing
an edge uv. If v is a leaf and v �= r, then the number of searchers that need
to slide along uv to clear it in step S[i] is w(uv) and is independent of w(v),
because there is no need to guard v at the end of S[i]. Similarly, if v is a leaf and
v = r, then i = 1, and max{w(uv), w(u)} searchers suffice to clear uv (r does
not have to be guarded at the end of S[1]). So, we may w.l.o.g. assume that

w(v) = 1 for each leaf v ∈ V (T ). (2)

Given a connected search strategy S for T with homebase r, consider a move
S[i] of clearing an edge uv, where v is a child of u. At the beginning of S[i] the
vertex v is unoccupied and u is guarded by w(u) searchers. To clear uv we need
to slide max{w(uv), w(v)} searchers along uv. If w(uv) < w(v), then by (2) v is
not a leaf of T , and consequently, v has to be guarded at the end of S[i], which
means that we have to slide w(v) searchers along uv. Thus, for each edge uv,
where u is the parent of v we w.l.o.g. obtain

w(uv) ≥ w(v). (3)

Our next simplifying assumption is considering the CS and CSFH problems for
node-weighted trees only, and we argue that it does not lead to the loss generality.
Consider now a new tree T ′ = (V (T ′), E(T ′), w′) obtained from T by replacing
each edge uv by two edges uxuv and vxuv, where xuv is a new vertex of T ′

corresponding to the edge uv of T (in other words, we subdivide the edges of
T to obtain T ′). Let w′(uxuv) = w′(vxuv) = 1 and w(xuv) = w(uv) for each
uv ∈ E(T ) and let w′(v) = w(v) for each v ∈ V (T ). Clearly, |E(T ′)| = 2|E(T )|.

Lemma 1. For each T and its corresponding tree T ′, cs(T ′, r) = cs(T, r) for
each r ∈ V (T ). 


We skip the proof of the lemma. In the remaining part of this paper we assume
that the weight of each edge e ∈ E(T ) is 1.

Definition 1. Let S and S′ be partial (not necessarily connected) search strate-
gies for T , where CE(S) ∩ CE(S′) = ∅. S ⊕ S′ is a search strategy such that:

1. (S ⊕ S′)[i] = S[i] for each i = 1, . . . , |S|,
2. (S ⊕ S′)[|S| + i], i = 1, . . . , |S′|, clears the edge cleared in the move S′[i],
while the set of guarded vertices at the end of the move (S ⊕ S′)[|S| + i] is
δ((S ⊕ S′)[|S| + i]) = δ(S′[i]) ∪ (δ(S) \ X), where X is the set of vertices
initially guarded in S′.
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In other words, S ⊕ S′ clears all the edges cleared by S and S′ in the order
corresponding to the moves S[1], . . . ,S[|S|],S′[1], . . . ,S′[|S′|]. Note that in par-
ticular CE((S⊕S′)[( i]) = CE(S[( i]) for each i = 1, . . . , |S|, and CE((S⊕S′)[(
(|S|+ i)]) = CE(S)∪CE(S′[( i]) for each i = 1, . . . , |S′|. Furthermore, for S⊕S′

to be a partial connected search with homebase r, S has to be a partial connected
search with homebase r.

Definition 2. Suppose that we are given a tree T rooted at a homebase r, a
vertex v ∈ V (T ), and an integer k ≥ 0. We say that a partial connected k-search
Sv for Tv, v ∈ V (T ), is (k, v)-minimal if w(δ(Sv)) ≤ w(v) and w(δ(Sv)) ≤
w(δ(S′

v)) for each partial connected k-search S′
v for Tv.

It follows from the definition that a (k, v)-minimal search strategy is also assumed
to be partial and connected. A strategy Sv is not minimal if there exists no k
such that S is (k, v)-minimal. A partial connected search strategy S for Tr can
be extended to a (k, r)-minimal search for Tr if there exists a search strategy
S′ such that S ⊕ S′ is a (k, r)-minimal search strategy for Tr. The latter in
particular implies that s(S) ≤ k. Given a tree Tr and E′ ⊆ E(Tr), Tr − E′ is
the set of maximal rooted subtrees induced by the edges in E(Tr) \ E′.

Lemma 2. A partial non-minimal connected search strategy S for Tr can be
extended to a (k, r)-minimal search for Tr if and only if there exist T ′

v (rooted
at v) in T −CE(S) and a (k−w(δ(S) \ {v}), v)-minimal search Sv for T ′

v, such
that S ⊕ Sv can be extended to a (k, r)-minimal search strategy for Tr.

Proof. The “only if” part is obvious. To prove the “if” part let S ⊕S1 be a (k, r)-
minimal search for Tr. For each v ∈ δ(S) there exists a contaminated edge in Ev,
which implies that there exists a nonempty subtree T ′

v in Tr − CE(S) rooted at
v. (If all edges in Ev are contaminated, then T ′

v = Tv.) First we argue that there
exist v ∈ δ(S) and a (k−w(δ(S)\{v}), v)-minimal search strategy Sv for T ′

v. For
each v ∈ δ(S) and for each move S1[i] define B(i, v) = δ(S1[i])∩V (T ′

v). Find the
minimum l such that w(B(l, v)) < w(v) for some v ∈ δ(S). Such an integer l does
exist, because otherwise w(δ(S ⊕ S1)) ≥ δ(S) which contradicts the minimality
of S ⊕ S1. Let S′

v be S1 restricted to clearing the edges in CE(S1[( l]) ∩ E(T ′
v)

in the same order as they are cleared by S1. S ⊕ S′
v uses at most k searchers

(which gives that s(S′
v) ≤ k−w(δ(S)\{v})), and w(δ(S′

v)) = w(B(l, v)) < w(v).
So, the set of partial (k − w(δ(S) \ {v}))-search strategies S′

v for T ′
v satisfying

w(δ(S′
v)) < w(v) is nonempty and, by the definition, a strategy Sv with the

minimum w(δ(Sv)) is (k − w(δ(S) \ {v}), v)-minimal.
We will use S1 to extend S⊕Sv to a (k, r)-minimal search strategy S⊕Sv⊕S2

for Tr. To obtain S2 we simply remove from S1 all the operations of clearing the
edges in CE(Sv), preserving the order of clearing the remaining edges in S1. One
can prove that S ⊕ Sv ⊕ S2 is connected.

It remains to prove that s(S ⊕Sv⊕S2) ≤ k. By the definition, s(S ⊕Sv) ≤ k,
so let us consider a move (S ⊕ Sv ⊕ S2)[i2] of clearing an edge e, i2 > |S ⊕ Sv|.
Select i1 > |S| so that (S ⊕ S1)[i1] is the move of clearing e. It is sufficient to
prove that |(S ⊕ Sv ⊕ S2)[i2]| ≤ |(S ⊕ S1)[i1]|. Let

U = δ((S ⊕ Sv ⊕ S2)[i2]) \ δ((S ⊕ S1)[i1]). (4)
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In other words, U is the set of vertices guarded at the end of step i2 of S⊕Sv⊕S2
but unguarded at the end of step i1 of S⊕S1. Clearly, U ⊆ δ(Sv). For each u ∈ U
there exists a vertex xu ∈ δ((S ⊕ S1)[i1]) on the path connecting v and u in T ′

v,
because CE((S ⊕S1)[( i1])∩E(T ′

v) ⊆ CE((S ⊕Sv ⊕S2)[( i2])∩E(T ′
v). Let XU

be the set of all such vertices xu, u ∈ U . We argue that

w(XU ) ≥ w(U). (5)

Suppose for a contradiction that (5) does not hold. Find a set X , with minimum
w(X), such that each path connecting v and u, u ∈ δ(Sv), contains a vertex in X
(possibly u). It holds w(X) < w(δ(Sv)), because w((δ(Sv)\U)∪XU) < w(δ(Sv))
and by the minimality of X , w(X) ≤ w((δ(Sv)\U)∪XU ). Define S′

v which clears
the edges that are in CE(Sv) but not in E(Tx) for each x ∈ X in the same order as
they are cleared in Sv. Then, s(S′

v) ≤ s(Sv) and w(δ(S′
v)) = w(X) < w(δ(Sv)).

Thus, Sv is not (k−w(δ(S)\{v}), v)-minimal — a contradiction, which proves (5).
Hence, |(S ⊕ Sv ⊕ S2)[i2]| ≤ |(S ⊕ S1)[i1]| ≤ cs(T, r). Since i2 has been chosen
arbitrarily, we have proven the thesis. 


As an example consider a tree in Fig. 1(a). Let S be a partial strategy clearing
the edges ru, rv, rt (in this order). s(S) = 12 and δ(S) = {u, v, t}. Denote by Sv
the (8, v)-minimal search strategy for Tv (Sv completely clears the left branch of
Tv first). There exist a (8, u)-minimal strategy Su for Tu with δ(Su) = {x} (this
strategy clears the two edges on the path from u to x) and a (8, t)-minimal search
St for Tt, where δ(St) = {y, z} (St clears the three edges on the paths connecting
t and y, z). Fig. 1(b) depicts a partial strategy S⊕St⊕Su⊕Sv, where the dashed
arrows represent the moves of the strategy. Their labels i : c + g indicate the
number i of the clearing move, while c and g are, respectively, the number of
searchers that move along the corresponding edge and guard other vertices in
this move. This strategy can be extended to a connected 12-serach strategy
for T by clearing the subtrees Ty, Tz and Tx in this order. Finally, note that
clearing each of the subtrees Tu, Tv, Tt completely while guarding r results in a
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Fig. 1. (a) a node weighted tree Tr; (b) S ⊕ St ⊕ Su ⊕ Sv



336 D. Dereniowski

search strategy using more than 12 searches, which implies that the algorithm
for searching weighted trees presented in [1] is not optimal.

4 An Efficient Algorithm for Bounded-Degree Trees

In this section we provide an algorithm for searching bounded degree weighted
trees. In an informal way, our method may be described as follows. We start by
placing k searchers at the root r of Tr. Assume that the algorithm calculated
a partial search strategy S. If δ(S) = ∅, then S clears Tr and the computation
stops. Otherwise we select a vertex v ∈ δ(S) and a partial connected search Sv
for Tv. We continue with S ⊕ Sv. Note that S ⊕ Sv requires s(S) searchers to
perform S and then the moves of Sv follow, where w(δ(S)\ {v}) searchers guard
the vertices that are not in Tv, that is those in δ(S)\{v}, and, in addition, s(Sv)
searchers work on Tv. So, if S can be extended to a connected k-search for Tr and
if we find a (k−w(δ(S)\{v}), v)-minimal strategy Sv, then, by Lemma 2, S⊕Sv
can be extended to a connected k-search for Tr. The fact that any such vertex
v is sufficient reduces the size of the search space for the algorithm. However, it
follows immediately from the NP-completeness proof in Section 5 that finding a
strategy Sv is intractable, unless P=NP.

For each v ∈ V (Tr) a set Cv is a global variable, a collection of (k, v)-minimal
search strategies for Tv, for selected values of k.

We start by describing a procedure, called MCPS (Minimal Connected Par-
tial Strategy), which for a given integer k, a rooted tree Tr, and an ordering
rv1, . . . , rvd of the edges in Er, finds a (k, r)-minimal search strategy S, which
clears the edges in Er according to the given order, whenever such a strategy
exists. Our final algorithm will process Tr in a bottom-up fashion, so when MCPS
is called, then for each v ∈ V (Tr)\ {r} some (k′, v)-minimal search strategies for
Tv belong to Cv for some integers k′. Moreover, w(r) searchers already occupy r
when MCPS starts. The procedure is as follows:

Step 1. For each i = 1, . . . , d − 1 repeat the following: (i) if k searchers are
sufficient to clear rvi, then clear rvi as the next step of S and find (k′, vi)-
minimal search Svi ∈ Cvi with maximum k′ such that k′ ≤ k−w(δ(S)\{vi}).
If Svi exists, then let S := S ⊕ Svi , otherwise proceed to i+ 1; (ii) if more
than k searchers are needed to clear rvi, then return ‘failure’.

Step 2. Clear rvd. (If k′ searchers are not sufficient to do it, then return ‘failure’.)
While there exist v ∈ δ(S) and Sv ∈ Cv such that Sv is (k′, v)-minimal,
k′ ≤ k − w(δ(S) \ {v}), then S := S ⊕ Sv.

Step 3. Return S.

Lemma 3. If S can be extended to a (k, r)-minimal search strategy that clears
the edges in Er according to the order π = (rv1, . . . , rvd), then MCPS returns such
a strategy.

Proof. Assume that there exists a (k, r)-minimal search strategy Sopt clearing
the edges in Er according to the order π. Let, for brevity, Si denote the partial
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connected search strategy calculated in Steps 1-2 of MCPS, where clearing rvi is
the last move of Si, i = 1, . . . , d.

We use an induction on i = 1, . . . , d to prove that Si can be extended to
(k, r)-minimal search for Tr. The claim follows immediately for i = 1, since by
assumption, Sopt starts by clearing rv1. Assume that rvi has been cleared by Si,
i < d. The procedure MCPS proceeds in Step 1 by finding a (k−w(δ(Si)\{vi}), vi)-
minimal search strategy Svi for Tvi . If Svi exists, then by Lemma 2, Si ⊕ Svi

can be extended to a (k, r)-minimal search for Tr. By the definition, there is no
v ∈ δ(Si⊕Svi)\{r} for which there exists a (k−w(δ(Si⊕Svi)\{v}), v)-minimal
search strategy for Tv. Thus, the next edge e cleared by Si ⊕Svi must be in Er.
On the other hand, if Svi does not exist, then the next edge e to clear is in Er.
Hence, in both cases e = rvi+1 which results in strategy Si+1.

Thus, we obtain that Sd can be extended to a (k, r)-minimal search for Tr.
Then, MCPS finds in Step 2 a sequence of vertices vd+1, . . . , vd+l and search strate-
gies Sd+1, . . . ,Sd+l such that Sd+i is (k−w(δ(Sd⊕· · ·⊕Sd+i−1)\{vd+i}), vd+i)-
minimal and vd+i ∈ δ(Sd⊕ · · · ⊕Sd+i−1). By Lemma 2, each strategy Sd⊕ · · · ⊕
Sd+i, i = 0, . . . , l, can be extended to a (k, r)-minimal search for T .

Let S = Sd ⊕ · · · ⊕ Sd+l. We obtain that S is (k, r)-minimal, because other-
wise, as proved above, it can be extended to a (k, v)-minimal search for Tr, and
consequently, by Lemma 2, there exists v ∈ δ(S) and a (k − w(δ(S) \ {v}), v)-
minimal search Sv such that S ⊕ Sv can be extended to a (k, v)-minimal search
for Tr, which gives a contradiction with the fact that no such vertex has been
found following vd+l by MCPS. 


Now we are ready to give a listing of the algorithm CST (Connected Searching
of a Tree) for finding an optimal connected search strategy for a tree Tr with
homebase r. This algorithm is exponential in the maximum degree of T .

Step 1. For each child v of r call CST(Tr). This step guarantees that for each
v ∈ V (T ) \ {r} the collection Cv of all minimal search strategies for Tv is
calculated (which is required for subsequent calls of MCPS).

Step 2. Fix a permutation π = (rv1, . . . , rvd) of the edges in Er. Set k := 1. If
Step 3 has been executed for all the d! permutations π, then Exit.

Step 3. Call MCPS(k, Tr, π). If the ‘failure’ has been returned, then increase k
and repeat Step 3. If a search strategy Sr has been returned and there is no
S ∈ Cr such that w(δ(S)) ≤ w(δ(Sr)) and s(S) ≤ s(Sr) then add Sr to Cr
and remove from Cr all search strategies S �= Sr such that w(δ(S)) ≥ w(δ(S))
and s(S) ≥ s(Sr). If δ(Sr) = ∅, then go to Step 2 to fix the next permutation
π. Otherwise increase k and repeat Step 3.

The following theorem can be proved using an induction on the size of the tree
to search (we skip the proof due to the space limitations).

Lemma 4. Let k be an integer. The set Cv contains a (k, r)-minimal search
strategy for Tr whenever such a strategy exists. 

Lemma 4 in particular implies, that CST finds an optimal solution to the CSFH
problem, because an optimal connected search strategy S is (cs(T, r), r)-minimal
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and δ(S) = ∅. During an execution of MCPS in Step 3 of CST the algorithm records
the minimum k′ > k for which the execution of MCPS Step 3 returns a different
strategy for the same input permutation π. The strategy corresponding to k
clears a proper subset of edges cleared by the strategy corresponding to k′.
Therefore, there are at most |E(Tr)| different values of k for which we execute
MCPS is Step 3 of CST. We obtain the following.

Lemma 5. Given a bounded degree tree T , the running time of the algorithm
CST is O(n3 logn), where n = |V (T )|. 

The complexity of solving CS for trees remains the same, because for each vertex
v we calculate the search strategies for at most degT (v) subtrees rooted at v when
all the n possible homebases are considered.

Theorem 1. Given a bounded degree weighted tree T , an optimal connected
search strategy for T can be computed in O(n3 logn) time, n = |V (T )|. 

Our final remark is that CSFH has been designed to clear node-weighted trees.
Thus, for clearing a tree T with non-unit edge weights we apply first to T the
transformations from Section 3, which results in a tree T ′ with unit edge weights,
cs(T ) = cs(T ′) and an optimal connected search strategy for T can be obtained
on the basis of the strategy calculated by CST for T ′.

5 Connected Searching of Weighted Trees Is Hard

First we recall a problem of scheduling time-dependent (deteriorating) tasks,
where a set of tasks J = {J1, . . . , Jn} is given, where each task Jj ∈ J has
an integer deadline dj and a non-decreasing function pj : {0, . . . , dj − 1} → N+
defining its the execution time (the execution time of a task Jj depends on
sj , the point of time when the execution of Jj start, i.e. it equals pj(sj)). The
completion time of Jj is Cj = sj+pj(sj). We are interested in the single machine
scheduling. A schedule D is feasible if the completion time Cj of each task
Jj is not greater than its deadline, Cj ≤ dj , and the execution intervals of
two different tasks do not overlap. The makespan of a schedule D is ms(D) =
max{Cj : Jj ∈ J }. Observe that a scheduleD can be described by a permutation
πD : {1, . . . , |J |} → J , because the idle times between the execution of two
consecutive tasks are not necessary for non-decreasing (in time) execution times.
In the Time-Dependent Scheduling (TDS) problem we ask whether there exists
a feasible schedule for J . A good survey and a more detailed description of
this problem can be found in [4]. For a survey on scheduling problems and
terminology see [2].

The integer valued functions pj imply that in each schedule sj and Cj are
integers, Jj ∈ J , which also justifies the fact that we consider the values of
pj only at integer points. For each Jj ∈ J let fj be the latest possible integer
starting point for Jj , i.e. fj = max{t ∈ N : t + pj(t) ≤ dj}. The integer L is
selected to be an upper bound for the length of each feasible schedule,

L = max{dj : Jj ∈ J }. (6)
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There are several NP-completeness results for very restricted (linear) functions
for execution time of a task, see e.g. [3,9]. We may use them to prove that
the problem of connected searching of weighted trees is weakly NP-hard, i.e.
when the input to the problem is given in binary. However, to obtain a stronger
result, i.e. NP-completeness of the CS problem for instances with integer and
polynomially bounded weights on the vertices, we use the following theorem (we
skip the proof due to the space limitations).

Theorem 2. Given a set of tasks J with integer deadlines and integer non-
decreasing (in time) execution times, the problem of deciding if there exists a
feasible schedule for J is strongly NP-complete. 


To prove NP-hardness of CS problem we start by reducing TDS to CSFH. Then,
we conclude that CS is NP-complete as well.

Given J , we construct a node-weighted tree T = (V (T ), E(T ), w) rooted at
r. For each Jj ∈ J define a path Pj with V (Pj) = {uij, vij : i = 0, . . . , fj} and

E(Pj) = {uijvij : i = 0, . . . , fj} ∪ {vi+1
j uij : i = 0, . . . , fj − 1}.

The tree T , in addition to the vertices in
⋃

Jj∈J V (Pj), contains the vertices r

and yj , zj, j = 0, . . . , |J |. The root r is adjacent to y0 and to the endpoint ufj

j of
each path Pj , j = 1, . . . , |J |. The other endpoint of Pj , namely the vertex v0

j , is
adjacent to yj for each j = 1, . . . , |J |. Finally, for each 0 = 1, . . . , |J | the vertex
yj is the parent of zj . The weight function w : V (G) → N+ is as follows

w(r) = 2L,w(yj) = 3L,w(zj) = 1 j = 0, . . . , |J |, (7)

w(uij) = 2L− i and w(vij) = pj(i), j = 1, . . . , |J |, i = 0, . . . , fj. (8)

Let k = 4L. Note that for each uij and vi
′
j , 0 ≤ i, i′ ≤ fj , it holds

w(uij) > L ≥ w(vi
′
j ), (9)

because fj < L for each j = 1, . . . , |J |. Moreover,

w(u0
j) > w(u1

j ) > · · · > w(ufj

j ), j = 1, . . . , |J |, (10)

w(vfj

j ) > w(vfj−1
j ) > · · · > w(v0

j ), j = 1, . . . , |J |. (11)

Given a schedule D for J , we construct a k-search strategy S for Tr:

Step 1: Initially 4L searchers occupy r.
Step 2: For each i = 1, . . . , |J | do the following: let Jj = πD(i); clear the path

Pj(D) ⊆ Pj consisting of the vertices ufj

j , vfj

j , . . . , u
sj

j , vsj

j . (After this step,
by (8), w(vsj

j ) = pj(sj) searchers occupy vsj

j to guard it.)
Step 3: Clear the edges ry0 and y0z0.
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Step 4: For each Jj ∈ J clear the path usj−1
j , vsj−1

j , . . . , u0
j , v0

j , yj , zj (after this
step the subtree rooted at vfj

j is clear).

Lemma 6. If there exists a valid schedule for J , then there exists a connected
4L-search strategy for the weighted tree T rooted at r.

Proof. It is enough to prove that S defined above is a connected search for T
and that s(S) ≤ 4L. It is easy to see that after each step the subtree that is
clear is connected. Now we prove that the number of searchers used is at most
k. Initially 2L searchers guard r. We prove by induction on i = 1, . . . , |J | that
k searchers suffice to clear the path Pj(D) in Step 2, where Jj = πD(i), and
the number of searchers used in S for guarding when the vertex v

sj

j becomes
guarded is

xi = 2L+
∑

j′ : π−1
D (Jj′ )≤i

pj′(sj′ ). (12)

The cases when i = 1 and i > 1 are analogous (x0 = 2L), so we prove it for i,
assuming that it is true for i− 1, 1 ≤ i ≤ |J |.

Let Pj(D) ⊆ Pj be the ith path cleared, i.e. Jj = πD(i). By (9) and (10),
w(usj

j ) = max{w(v) : v ∈ V (Pj(D))}. So, by (12), w(usj

j ) + xi−1 searchers are
needed to clear Pj(D). We obtain

w(usj

j ) + xi−1 = (2L− sj) + 2L+
∑

j′ : π−1
D (Jj′ )<i

pj′(sj′) = 4L,

because, by the definition of a schedule for time-dependent tasks the execution
of a task Jj starts immediately after the execution of the preceding task, which
can be stated as

sj =
∑

j′ : π−1
D (Jj′ )<i

pj′ (sj′).

Thus, xi = xi−1 + w(vsj

j ) = xi−1 + pj(sj) and (12) follows. This proves that
4L searchers are used during search moves defined in Steps 1 and 2 above.
When the execution of all search operations constructed in Step 2 is completed,
2L searchers are used for guarding r, while for guarding the vertices vsj

j , j =
1, . . . , |J | we need

∑
j=1,...,|J | pj(sj) ≤ L searchers. The last inequality follows

from Equation (6) and from the fact that in a valid schedule D each task is
completed within interval [0, L]. Thus, we can use 3L searchers to clear y0, z0
and then the remaining subpaths usj−1

j , vsj−1
j , . . . , u0

j , v0
j , yj , zj . 


Due to the space limitations we omit a technical proof of the following.

Lemma 7. If there exists a connected 4L-search strategy S for the weighted tree
Tr, then there exists a valid schedule for J . 


The CSFH is clearly in NP, and the reduction is polynomial in n = |J |, because
L is, by Theorem 2, polynomially bounded in n. Lemmas 6 and 7 give us the
theorem.
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Theorem 3. Given a weighted tree T rooted at r and an integer k ≥ 0, deciding
whether cs(T, r) ≤ k is NP-complete. 

Let Tr = (V (T ), E(T ), w) and k be an input to the CSFH problem. Define
T 2
r = (V (T ), E(T ), 2w) to be the tree with the same vertex and edge sets as Tr,

while the weight of each vertex v of T 2
r is two times bigger than the weight of v

in Tr. There exists a connected k-search strategy for Tr if and only if there exists
a connected (2k)-search strategy for T 2

r . Take three copies of T 2
r , and a vertex

r′ (the weight of r′ is 1), and let the roots of the trees T 2
r be the children of r′.

The new tree is denoted by T ′
r. We obtain that cs(T ′, r) = 2k + 1. Moreover, if

S′ is a connected (2k+1)-search strategy for T ′
r then regardless of the homebase

in S′, the strategy is forced to clear one of the subtrees T 2
r in T ′

r by starting at
r and using 2k searchers. This leads to the following
Corollary 1. The problem of connected searching of weighted trees is strongly
NP-hard. 
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Abstract. Iterated regret minimization has been introduced recently by
J.Y. Halpern and R. Pass in classical strategic games. For many games of inter-
est, this new solution concept provides solutions that are judged more reasonable
than solutions offered by traditional game concepts – such as Nash equilibrium
–. In this paper, we investigate iterated regret minimization for infinite duration
two-player quantitative non-zero sum games played on graphs.

1 Introduction

The analysis of complex interactive systems like embedded systems or distributed sys-
tems is a major challenge of computer aided verification. Zero-sum games on graphs
provide a good framework to model interactions between a component and an envi-
ronment as they are strictly competitive. However in the context of modern interactive
systems, several components may interact and be controlled independently. Non-zero
sum games on graphs are more accurate to model such systems, as the objectives of the
components are not necessarily antagonist. Because of the quantitative aspects of the
components (like energy consumption), we need some solution concept to be able to
synthesis a component that respects some formal specification and is, in some sense,
optimal. In the context of non-zero sum games on graphs for verification and synthesis,
Nash equilibria or particular classes of Nash equilibria have been studied for qualitative
objectives [5,2,3] or quantitative objectives [1]. Recently, J.Y. Halpern and R. Pass de-
fined the notion of iterated regret minimization (IRM) [6] in the general framework of
(single-shot) strategic games, where the players choose in parallel their strategy among
a finite number of strategies, and their respective payoffs are given by a finite matrix.

A2 B2

A1 (2, 1) (3, 4)
B1 (1, 2) (4, 3)

Fig. 1.

They show that for many games of interest, Nash equilibria sug-
gest strategies that are rejected by common sense, while iterated
regret is an alternative solution concept that sometimes pro-
poses more intuitive solutions. In this paper we consider games
where the matrix is not given explicitly but defined implicitly
by a game graph and we study the algorithmic aspects of IRM on such games. While it
is easy to compute the iterated regret on a finite matrix, it is not that simple for game
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played on trees or graphs, as the number of strategies (and therefore the underlying
matrix) is exponential in the size of a tree and even infinite for a graph.

The IRM solution concept assumes that instead of trying to minimize what she has
to pay, each player tries to minimize her regret. The regret is informally defined as the
difference between what a player actually pays and what she could have payed if she
knew the strategy chosen by the other player1. More formally, if c1(λ1, λ2) represents
what Player 1 pays2 when the pair of strategies (λ1, λ2) is played, reg1(λ1, λ2) =
c1(λ1, λ2) − minλ′

1
c1(λ′1, λ2). Consider the strategic game defined by the matrix of

Figure 1. In this game, Player 1 has two strategies A1 and B1 and Player 2 has two
strategies A2 and B2. The two players choose a strategy at the same time and the pairs
of strategies define what the two players have to pay. The regret of playingA1 for Player
1 when Player 2 plays A2 is equal to 1 because c1(A1, A2) is 2 while c1(B1, A2) is 1.
Knowing that Player 2 plays A2, Player 1 should have played B1 instead of A1.

As players have to choose strategies before knowing how the adversary will play, we
associate a regret with each strategy as follows. The regret of a strategy λ1 of Player
1 is : reg1(λ1)=maxλ2 reg1(λ1, λ2). In the example, the regret of strategy A1 is 1,
because when Player 2 playsA2, Player 1’s regret is 1, and when Player 2 playsB2 her
regret is 0. A rational player should minimize her regret, so that Player 1’s regret is de-
fined as reg1=minλ1 reg1(λ1), summarizing, we get reg1=minλ1 maxλ2(c1(λ1, λ2)−
minλ′

1
c1(λ′1, λ2)). A symmetrical definition can be given for Player 2’s regret.

Let us come back to the example. The regret attached to strategy B1 is 1. So A1
and B1 are equivalent for Player 1 w.r.t. regret minimization. On the other hand, for
Player 2, the regret of A2 is 0, and the regret of B2 is 3. So, if Player 1 assumes that
Player 2 tries to minimize her regret, then she must conclude that Player 2 will play
A2. Knowing that, Player 1 recomputes her regret for each action, and in this case, the
regret of action A1 is 1 while the regret of B1 is 0. So rational players minimizing their
regret should end up playing (B1, A2) in this game.

Reasoning on rationality is formalized by Halpern and Pass by introducing a delete
operator that removes strictly dominated strategies. This operator takes sets of strate-
gies (Λ1, Λ2) for each player and returns D(Λ1, Λ2) = (Λ′

1, Λ
′
2) the strategies that

minimize regret. Then D(Λ′
1, Λ

′
2) returns the strategies that minimize regret under the

hypothesis that adversaries minimize their regret i.e., choose their strategies in Λ′
1 and

Λ′
2 respectively. We iterate this operator until we reach a fixpoint, which represents the

strategies minimizing the iterated regret.
In this paper, we consider games where the matrix is not given explicitly but defined

implicitly by a game graph. In particular, we use the same definition of iterated regret
as Halpern and Pass. More precisely, we consider graphs where vertices are partitioned
into vertices that belong to Player 1 and vertices that belong to Player 2. Each edge
is annotated by a cost for Player 1 and one for Player 2. Additionally, there are two
designated sets of vertices, one that Player 1 tries to reach and the other one that Player
2 tries to reach. The game starts in the initial vertex of the graph and is played for an
infinite number of rounds as follows. In each round, the player who owns the vertex
on which the pebble is placed moves the pebble to an adjacent vertex using an edge of

1 We only consider 2-player games, but our work can be easily extended to n-player games.
2 We could have considered rewards instead of penalties, everything is symmetrical.
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the graph, and a new round starts. The infinite plays generate an infinite sequence of
vertices and the amount that the players have to pay are computed as follows. Player 1
pays +∞ if the sequence does not reach the target set assigned to her, otherwise she
pays the sum of edge costs assigned to her on the prefix up to the first visit to her target
set. The amount to pay for Player 2 is defined symmetrically. Strategies in such games
are functions from the set of histories of plays (sequences of visited vertices) to the set
of edges (choice of moves for the pebble).

Contributions. We first consider target-weighted arenas, where the payoff function is
defined for each state of the objectives. We give a PTIME algorithm to compute the
regret by reduction to a min-max game (and in linear time for trees). We then consider
edge-weighted arenas. Each edge is labeled by a pair of integers – one for each player –,
and the payoffs are defined by the sum of the weights along the path until the first visit
to an objective. We give a pseudo-PTIME algorithm to compute the regret in an edge-
weighted arena, by reduction to a target-weighted arena. We then study the problem of
IRM. We provide a delete operator that removes strictly dominated strategies. We show
how to compute the effect of iterating this operator on tree arenas and on the general
class of graphs where the weights are stricly positive. In the first case, we provide a
quadratic time algorithm and in the second case, a pseudo-exponential time algorithm.

Related works. Regret mimimization is a popular notion to define a goal for a learning
agent [7] (in the machine learning theory). One can consider the selection of some
strategies as a learning process. IRM is however not a classical concept of machine
learning, since this notion is meaningless when there is a single learning agent. Like
[6], our work is thus more related to game theory than learning theory.

[9] investigates how to find a strategy that “mimimizes” the regret in extensive games
with imperfect information. This kind of games can be considered as games on a prob-
abilistic finite tree arena. We also consider finite tree arenas in Section 5.1. However in
that paper, the strategies that achieve the mimimal value for regret are not computed,
but a strategy with a regret less than a bound depending on the range of utilities, the
number of actions and the number of rounds. IRM is not considered neither.

There are several notions of equilibria for reasoning on 2-player non-zero-sum (strate-
gic) games, for instance Nash equilibrium, sequential equilibrium, perfect equilibrium
- see [8] for an overview. Those equilibria formalize notions of rational behavior by
defining optimality criteria for pairs of strategies. As it has be shown by Halpern and
Pass for several examples like the Centipede game or the Traveller’s dilemma, IRM pro-
poses solutions that are more intuitive and natural than Nash equilibria.

2 Weighted Games and Regret

Given a cartesian product A × B of two sets, we denote by proji the i-th projection,
i = 1, 2. It is naturally extended to sequence of elements ofA×B by proji(c1 . . . cn) =
proji(c1) . . . proji(cn). For all k ∈ N, we let [k] = {0, . . . , k}.
Reachability Games. Turn-based two-player games are played on game arenas by two
players. A (finite) game arena is a tuple G = (S = S1 � S2, s0, T ) where S1, S2 are
finite disjoint sets of player positions (S1 for Player 1 and S2 for Player 2), s0 ∈ S is
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1. cG
i (π) =

⎧⎨⎩+∞ if π is not winning for Player i∑min{k | πk∈Ci}−1
j=0 μi(πj , πj+1) otherwise

cost of a play π

2. cG
i (λ1, λ2) = cG

i (OutG(λ1, λ2)) cost of two strategies λ1, λ2.

3. brGi (λ−i) = minλi∈Λi(G) cG
i (λi, λ−i) best response of player i against λ−i

4. regG
i (λi, λ−i) = cG

i (λi, λ−i) − brGi (λ−i). regret of two strategies λ1, λ2

5. regG
i (λi) = maxλ−i∈Λ−i(G) regG

i (λi, λ−i) regret of a strategy λi

6. regG
i = minλi∈Λi(G) regG

i (λi). regret of Player i

Fig. 2. Cost, best response, and regret

the initial position, and T ⊆ S×S is the transition relation. A finite play onG of length
n is a finite word π = π0π1 . . . πn ∈ S∗ such that π0 = s0 and for all i = 0, . . . , n− 1,
(πi, πi+1) ∈ T . Infinite plays are defined similarly. We denote by Pf (G) (resp. P∞(G))
the set of finite (resp. infinite) plays on G, and we let P(G) = Pf (G) ∪ P∞(G). For
any node s ∈ S, we denote by (G, s) the arena G where the initial position is s.

Let i ∈ {1, 2}. We let −i = 1 if i = 2 and −i = 2 if i = 1. A strategy λi : Pf (G) →
S ∪ {⊥} for Player i is a mapping that maps any finite play π whose last position –
denoted last(π) – is in Si to⊥ if there is no outgoing edge from last(π), and to a position
s such that (last(π), s) ∈ T otherwise. The set of strategies of Player i in G is denoted
by Λi(G). Given a strategy λ−i ∈ Λ−i(G), the outcome OutG(λi, λ−i) is the unique
play π = π0 . . . πn . . . such that (i) π0 = s0, (ii) if π is finite, then there is no outgoing
edge from last(π), and (iii) for all 0 ≤ j ≤ |π| and all κ = 1, 2, if πj ∈ Sκ, then
πj+1 = λκ(π0 . . . πj). We also define OutG(λi) = {OutG(λi, λ−i) | λ−i ∈ Λ−i(G)}.
A strategy λi is memoryless if for any play h ∈ Pf (G), λ1(h) only depends on last(h).
Thus λi can be seen as a function Si �→ S ∪ {⊥}. It is finite-memory if λ1(h) only
depends on last(h) and on some state of a finite state set (see [4] for formal definitions).

A reachability winning condition for Player i is given by a subset of positions Ci ⊆ S
– called the target set –. A play π ∈ P(G) is winning for Player i if some position of π
is in Ci. A strategy λi for Player i is winning if all the plays of OutG(λi) are winning.
In this paper, we often consider two target sets C1,C2 for Player 1 and 2 respectively.
We write (S1, S2, s0, T,C1,C2) to denote the game arenaG extended with those target
sets. Finally, let λi ∈ Λi(G) be a winning strategy for Player i and λ−i ∈ Λ−i(G). Let
π0π1 · · · ∈ P(G) be the outcome of (λi, λ−i). The outcome of (λi, λ−i) up to Ci is
defined by OutG,Ci(λi, λ−i) = π0 . . . πn such that n = min{j | πj ∈ Ci}. We extend

this notation to sets of plays OutG,Ci(λi) naturally.

Weighted Games. We add weights on edges of arenas and include the target sets. A
(finite) weighted game arena is a tupleG = (S = S1�S2, s0, T, μ1, μ2,C1,C2) where
(S, s0, T ) is a game arena, μi : T → N is a weight function for Player i and Ci its target
set, i = 1, 2. We let MG

i be the maximal weight of Player i, i.e. MG
i = maxe∈T μi(e)

and MG = max(MG
1 ,M

G
2 ).

G is a target-weighted arena (TWA for short) if only the edges leading to a target
node are weighted by strictly positive integers, and any two edges leading to the same



346 E. Filiot, T. Le Gall, and J.-F. Raskin

node carry the same weight. Formally, for all (s, s′) ∈ T , if s′ �∈ Ci, then μi(s, s′) = 0,
otherwise for all (s′′, s′) ∈ T , μi(s, s′) = μi(s′′, s′). Thus for target-weighted arenas,
we assume in the sequel that the weight functions map Ci to N.

Plays, cost, best response and regret. Let π = π0π1 . . . πn be a finite play in G.
We extend the weight functions to finite plays, so that for all i = 1, 2, μi(π) =∑n−1

j=0 μi(πj , πj+1). Let i ∈ {1, 2}, the cost cGi (π) of π (for Player i) is +∞ if π
is not winning for Player i, and the sum of the weights occuring along the edges de-
fined by π until the first visit to a target position otherwise, see Fig. 2(1). In Fig. 2(2),
we extend this notion to the cost of two strategies λ1, λ2 of Player 1 and 2 respectively.
The best response of Player i to λ−i, denoted by brGi (λ−i), is the least cost Player i
can achieve against λ−i (Fig. 2(3)). The regret for Player i of playing λi against λ−i

is the difference between the cost Player i pays and the best response to λ−i (Fig.
2(4)). Note that regGi (λi, λ−i) ≥ 0, since brGi (λ−i) ≤ cGi (λi, λ−i). The regret of λi
for Player i is the maximal regret she gets for all strategies of Player −i (Fig. 2(5)).
Finally, the regret of Player i in G is the minimal regret she can achieve (Fig. 2(6)).
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I J
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0/0

3/0 0/0 3/2 0/2
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0/0

0/0

0/0

Fig. 3. Weighted Graph Arena

We let +∞− (+∞) = +∞.

Proposition 1. regGi < +∞ iff Player i
has a winning strategy, i = 1, 2.

Proof. If Player i has no winning strategy,
then for all λi ∈ Λi(G), there is λ−i ∈
Λ−i(G) s.t. cGi (λi, λ−i) = +∞. Thus
regGi (λi, λ−i) = +∞. Therefore regGi =
+∞. If Player i has a winning strategy λi,
then for all λ−i ∈ Λ−i(G), cGi (λi, λ−i) <
+∞ and brGi (λ−i) ≤ cGi (λi, λ−i) < +∞.
Thus regGi ≤ regGi (λi) < +∞. 


Example 1. Consider the game arena G
of Fig. 3. Player 1’s positions are circle
nodes and Player 2’s positions are square
nodes. The target nodes are represented

by double circles. The initial node is A. The weights are given by pairs of integers
for Player 1 and 2 respectively. In this example, we first compute Player 1’s regret.

Let λ1 be the memoryless strategy defined by λ1(B) = C and λ1(C) = E. For
all λ2 ∈ Λ2(G), OutG1 (λ1, λ2) is either ACE or ABCE, depending on whether
Player 2 goes directly to C or passes by B. In both cases, the outcome is winning and
cG1 (λ1, λ2) = 3. What is the regret of playing λ1 for Player 1? To compute reg1

G(λ1),
we should consider all possible strategies of Player 2, but a simple observation allows
us to restrict this range. Indeed, to maximize the regret of Player 1, Player 2 should
cooperate in subtrees where λ1 prevents to go, i.e. in the subtrees rooted at D and F .
Therefore we only have to consider the two following memoryless strategies λ2 and λ′2:
both λ2 and λ′2 move from F to J and fromD toH , but λ2(A) = B while λ′2(A) = C.
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In both cases, going to F is a best response to λ2 and λ′2 for Player 1, i.e. brG1 (λ2) =
brG1 (λ′2) = 0. Therefore we get regG1 (λ1, λ2) = cG1 (λ1, λ2) − brG1 (λ2) = 3 − 0 = 3.
Similarly regG1 (λ1, λ

′
2) = 3. Therefore regG1 (λ1) = 3.

As a matter of fact, the strategy λ1 minimizes the regret of Player 1. Indeed, if she
chooses to go fromB to D, then Player 2 moves fromA to B and fromD to G (so that
Player 1 gets a cost 3) and cooperates in the subtree rooted at C by moving from F to
J . The regret of Player 1 is therefore 3. If Player 1 moves from B to C and from C to
F , then Player 2 moves from A to C and from F to I (so that Player 1 gets a cost 4),
and from D to H , the regret of Player 1 being therefore 4. Similarly, one can show that
all other strategies of Player 1 have a regret at least 3. Therefore regG1 = 3.

Note that the strategy λ1 does not minimize the regret in the subgame defined by the
subtree rooted at C. Indeed, in this subtree, Player 1 has to move from C to F , and the
regret of doing this is 4 − 3 = 1. However the regret of λ1 in the subtree is 3. This
example illustrates a situation where a strategy that minimizes the regret in the whole
game does not necessarily minimize the regret in the subgames. Therefore we cannot
apply a simple inductive bottom-up algorithm to compute the regret. As we will see in
the next section, we first have to propagate some information in the subgames.

3 Regret Minimization on Target-Weighted Graphs

In this section, our aim is to give an algorithm to compute the regret of Player i. This
is done by reduction to a min-max game, defined in the sequel. We say that we solve
the regret minimization problem (RMP for short) if we can compute the minimal regret
and a (finite representation of a) strategy that achieves this value. We first introduce the
notion of games with minmax objectives. LetG = (S = S1�S2, s0, T, μ1, μ2,C1,C2)
be a TWA and i = 1, 2. We let minmaxGi = minλi∈Λi(G) maxλ−i∈Λ−i(G) cGi (λi, λ−i).

Proposition 2. Given a TWA G = (S, s0, T, μ1, μ2,C1,C2), i ∈ {1, 2} and K ∈ N,
one can decide whether minmaxGi ≤K in timeO(|S|+|T |). The value minmaxGi and a
memoryless strategy that achieves it can be computed in timeO(log2(M

G
i )(|S|+ |T |)).

Since the player have symmetric roles, wlog we can focus on computing the regret
of Player 1 only. Therefore we do not consider Player 2’s targets and weights. Let
G = (S = S1 � S2, s0, T, μ1,C1) be a TWA (assumed to be fixed from now on). Let
λ1 ∈ Λ1(G) be a winning strategy of Player 1 (if it exists). Player 2 can enforce Player
1 to follow one of the paths of OutG,C1(λ1) by choosing a suitable strategy. When
choosing a path π ∈ OutG,Ci(λ1), in order to maximize the regret of Player 1, Player
2 cooperates (i.e. she minimizes the cost) if Player 1 would have deviated from π. This
leads to the notion of best alternative along a path. Informally, the best alternative along
π is the minimal value Player 1 could have achieved if she deviated from π, assuming
Player 2 cooperates. Since Player 2 can enforce one of the paths of OutG,C1(λ1), to
maximize the regret of Player 1, she will choose the path π with the highest difference
between cG1 (π) and the minimal best alternative along π. As an example consider the
TWA arena of Fig. 3. In this example, if Player 1 moves from C to E, then along the
pathACE, the best alternative is 0. Indeed, the other alternative was to go from C to F
and in this case, Player 2 would have cooperated.
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We now formally define the notion of best alternative. Let s ∈ S1. The best value
that can be achieved from s by Player 1 when Player 2 cooperates is defined by:

bestG1 (s) = min
λ1∈Λ1(G,s)

min
λ2∈Λ2(G,s)

c(G,s)
1 (λ1, λ2)

Let (s, s′) ∈ T . The best alternative of choosing s′ from s for Player 1, denoted by
baG1 (s, s′), is defined as the minimal value she could have achieved by choosing another
successor of s (assuming Player 2 cooperates). Formally:

baG1 (s, s′) =
{

+∞ if s ∈ S2

min(s,s′′)∈T,s′′ 
=s′ bestG1 (s′′) if s ∈ S1

with min ∅ = +∞. Finally, the best alternative of a path π = s0s1 . . . sn is defined as
+∞ if n = 0 and as the minimal best alternative of the edges of π otherwise:

ba1
G(π) = min

0≤j<n
ba1

G(sj , sj+1)

We first transform the graphG into a graphG′ such that all the paths that lead to a node
s have the same best alternative. This can be done since the number of best alternatives
is bounded by |C1|. The construction of G′ is done inductively by storing the best
alternatives in the positions.

Definition 1. The graph of best alternatives of G is the TWA G′ = (S′ = S′
1 �

S′
2, s

′
0, T

′, μ′1,C
′
1) where S′

i = Si × ([MG
1 ] ∪ {+∞}), s′0 = (s0,+∞), C′

1 = S′
1 ∩

(C1× [MG
1 ]), for all (s, b) ∈ C′

1, μ
′
1(s, b) = μ1(s), and for all (s, b1), (s′, b′1) ∈ S′,

((s, b1), (s′, b′1)) ∈ T ′ iff (s, s′) ∈ T and

b′1 =
{

min(b1, baG1 (s, s′)) if s ∈ S1
b1 if s ∈ S2

The best alternative along the paths that lead to the same node is unique. Moreover, as
the number of best alternatives is bounded by |C1|, G′ can be constructed in PTime:

Proposition 3. For all (s, b) ∈ S′ and all finite path π in G′ from (s0,+∞) to (s, b),
baG

′
1 (π) = b. G′ can be constructed in time O

(
(|C1|+ log2(MG

1 ))× (|S|+ |T |)
)
.

Since the best alternative information depends only on the paths, the paths of G and
those of G′ are in bijection. This bijection can be extended to strategies. In particu-
lar, we define two mappings Φi from Λi(G) to Λi(G′), for all i = 1, 2. For all path
π = s0s1 . . . in G (finite or infinite), we denote by B(π) the path of G′ defined by
(s0, b0)(s1, b1) . . . where b0 = +∞ and for all j > 0, bj = ba1

G(s0 . . . sj−1). The
mappingB is bijective, and its inverse corresponds to proj1.

The mapping Φi maps any strategy λi ∈ Λi(G) to a strategy Φi(λi) ∈ Λi(G′) such
that Φi(λi) behaves as λi on the first projection of the play and adds the best alternative
information to the position. Let h ∈ S′∗ such that last(h) ∈ S′

i. Let s = λi(proj1(h)).
Then Φi(λi)(h) = (s, ba1

G(proj1(h).s)). The inverse mapping Φ−1
i just projects the
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best alternative information. In particular, for all λ′i ∈ Λi(G′), and all h ∈ S∗ such that
last(h) ∈ Si, Φ−1

i (λi)(h) = proj1(λi(B(h))). Clearly, the mappings Φi are bijective.
The best alternative information is crucial. This is a global information that allows

us to compute the regret locally. For all (s, b) ∈ C′
1, we let ν1(s, b) = μ1(s) −

min(μ1(s), b), and extend ν1 to strategies naturally (ν1(λ1, λ2) = +∞ if λ1 is
losing).

Lemma 1. Let H = (S′, s′0, T
′, ν1,C′

1) where S′, s′0, T
′,C′

1 are defined in Definition
1. For all λ1 ∈ Λ1(G) and all λ′1 ∈ Λ1(G′), the following holds:

1. regG1 (λ1)= regG
′

1 (Φ1(λ1)) 2. regG
′

1 (λ′1)= max
λ′
2∈Λ2(G′)

ν1(λ′1, λ
′
2) 3. regG1 =minmaxH1

Proof. 1 and 2 are in the full version of the paper. For 3, we have
regG1 = min

λ1∈Λ1(G)
regG1 (λ1) (by definition) = min

λ1∈Λ1(G)
regH1 (Φ1(λ1)) (by 1)

= min
λ1∈Λ1(H)

regH1 (λ1) (by 1) = min
λ1∈Λ1(H)

max
λ2∈Λ2(H)

ν1(λ1, λ2) (by 2)�

As a consequence of Lemma 1, we can solve the RMP on TWAs. We first compute
the graph of best alternatives and solve a minmax game. This gives us a memoryless
strategy that achieves the minimal regret in the graph of best alternatives. To compute
a strategy in the original graph, we apply the inverse mapping Φ−1

1 : this gives a finite-
memory strategy whose memory is exactly the best alternative seen along the current
finite play. Therefore the needed memory is bounded by the number of best alternatives,
which is bounded by |C1|.

Theorem 1. The RMP on a TWAG = (S, s0, T, μ1,C1) can be solved in timeO(|C1|·
log2(MG

1 ) · (|S|+ |T |)), where MG
1 = maxe∈T μi(e).

4 Regret Minimization in Edge-Weighted Graphs

In this section, we give a pseudo-polynomial time algorithm to solve the RMP in
weighted arenas (with weights on edges). In a first step, we prove that if the regret
is finite, the strategies minimizing the regret generates outcomes whose cost is bounded
by some value which depends on the graph. This allows us to reduce the problem to the
RMP in a TWA, which can then be solved by the algorithm of the previous section.

Let G = (S = S1 � S2, s0, T, μ1,C1) be a weigthed game arena with objective C1.
As in the previous section, we assume that we want to minimize the regret of Player 1,
so we omit the weight function and the target of Player 2.

Definition 2 (Bounded strategies). Let B ∈ N and λ1 ∈ Λ1(G). The strategy λ1 is
bounded by B if for all λ2 ∈ Λ2(G), cG1 (λ1, λ2) ≤ B.

Note that a bounded strategy is necessarily winning, since by definition, the cost of
some outcome is infinite iff it is loosing. The following lemma states that the winning
strategies that minimize the regret of Player 1 are bounded.

Lemma 2. For all weighted arena G = (S, s0, T, μ1,C1) and for any strategy λ1 ∈
Λ1(G) winning in G for Player 1 that minimizes her regret, λ1 is bounded by 2MG|S|.
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Proof (Sketch). If there is a winning strategy, there is a memoryless winning strategy
γ1 ([4]). Then regG1 ≤ regG1 (γ1). For any λ2, OutG,C1(γ1, λ2) does not contain twice
the same position. Thus c1

G(γ1, λ2) ≤ MG|S|. Moreover, brG1 (λ2) ≤ c1
G(γ1, λ2) ≤

MG|S|. Thus regG1 ≤ regG1 (γ1, λ2) ≤ MG|S|. Let λ1 minimizing regG1 (λ1). Then
regG1 (λ1, λ2) ≤MG|S|, so cG1 (λ1, λ2) ≤MG|S|+ br1(λ2) ≤ 2MG|S|, for any λ2.

Let B = 2MG|S|. Thanks to Lemma 2 we can reduce the RMP in a weighted arena
into the RMP in a TWA. Indeed, it suffices to enrich every position of the arena with the
sum of the weights occuring along the path used to reach this position. A position may
be reachable by several paths, therefore it will be duplicated as many times as they are
different path utilities. This may be unbounded, but Lemma 2 ensures that it is sufficient
to sum the weights up to B only. This may results in a larger graph, but its size is still
pseudo-polynomial (polynomial in the maximal weight and the size of the graph).

Definition 3. Let G = (S = S1 � S2, s0, T, μ1,C1) be a weigthed game arena. The
graph of cost is the TWA G′ = (S′ = S′

1 � S′
2, s

′
0, T

′, μ′1,C
′
1) defined by: (i) S′

i =
Si × [B] and s′0 = (s0, 0); (ii) for all (s, u), (s′, u′) ∈ S′, ((s, u), (s′, u′)) ∈ T ′ iff
(s, s′) ∈ T and u′ = u + μ1(s, s′); (iii) C′

1 = (C1 × [B]) ∩ S′ and ∀(s, u) ∈ C′
1,

μ′1(s, u) = u.

Lemma 3. regG1 = regG
′

1

Proof (Sketch). We define a mapping Φ that maps the strategies of Player i in G to the
strategies of Player i in G′, for all i ∈ {1, 2}, which satisfies Φ(Λi(G)) = Λi(G′) and
preserves the regret of Player 1’s strategies bounded byB, i.e. regG1 (λ1)= regG1 (Φ(λ1)),
for all λ1 ∈ Λ1(G) bounded by B. 


To solve the RMP for a weighted arena G, we first construct the graph of cost G′, and
then apply Theorem 1, since G′ is a TWA. Correctness is ensured by Lemma 3. This
returns a finite-memory strategy of G′ that minimizes the regret, whose memory is the
best alternative seen so far. To obtain a strategy of G minimizing the regret, one applies
the inverse mapping Φ−1. This gives us a finite-memory strategy whose memory is the
cost of the current play up to MG and the best alternative seen so far.

Theorem 2. The RMP on a weighted arena G = (S = S1 � S2, s0, T, μ1,C1) can be
solved in time O

(
(MG)2 · log2(|S| ·MG) · |S| · |C1| · (|S|+ |T |)

)
.

5 Iterated Regret Minimization (IRM)

In this section, we show how to compute the iterated regret for tree arenas and for
weighted arenas where weights are strictly positive (by reduction to a tree arena).

Let G = (S = S1 � S2, s0, T, μ1, μ2,C1,C2) be a weighted arena. Let i ∈ {1, 2},
Pi ⊆ Λi(G) and P−i ⊆ Λ−i(G). The regret of Player i when she plays strategies of Pi
and when Player −i plays strategies of P−i is defined by:

regG,Pi,P−i

i = min
λi∈Pi

max
λ−i∈P−i

cGi (λi, λ−i)− brG,Pi

i (λ−i)

brG,Pi

i (λ−i) = minλ∗
i ∈Pi cGi (λ∗i , λ−i)
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For all λi ∈ Pi and λ−i ∈ P−i, we define regG,Pi,P−i

i (λi) and regG,Pi,P−i

i (λi, λ−i)
accordingly. We now define the strategies of rank j, which are the ones that survived j
times the deletion of strictly dominated strategies. The strategies of rank 0 for Player i
is Λi(G). The strategies of rank 1 for both players are those which minimize their regret
against strategy of rank 0. More generally, the strategies of rank j for Player i are the
strategies of rank j − 1 which minimize her regret against Player −i’s strategies of rank
j − 1. Formally, let i ∈ {1, 2}, P1 ⊆ Λ1(G) and all P2 ⊆ Λ2(G). Then Di(P1, P2) is
the set of strategies λi ∈ Pi such that regG,Pi,P−i

i = regG,Pi,P−i

i (λi). Then the strategies
of rank j are obtained via a delete operator D : 2Λ1(G) × 2Λ2(G) → 2Λ1(G) × 2Λ2(G)

such that D(P1, P2) = (D1(P1, P2), D2(P1, P2)). We let Dj = D ◦ · · · ◦D (j times).

Definition 4 (j-th regret). Let j ≥ 0. The set of strategies of rank j for Player i
is P j

i = proji(D
j(Λ1(G), Λ2(G))). The j + 1-th regret for Player i is defined by

regG,j+1
i = reg

G,P j
i ,P

j
−i

i . In particular, regG,1
i = regGi .

Proposition 4. Let i ∈ {1, 2}. For all j ≥ 0, P j+1
i ⊆ P j

i and regG,j+1
i ≤ regG,j

i .
Moreover, there is $ ≥ 1 such that for all j ≥ $, for all i ∈ {1, 2}, regG,j

i = regG,�
i .

Definition 5 (iterated regret). For all i = 1, 2, the iterated regret of Player i is regG,�
i .

Example 2. Consider the example of Fig. 3. We already saw that the strategies that
minimize Player 1’s regret are B �→ C �→ E and B �→ D, in which cases we have
regG1 = regG,1

1 = 3. The strategies that minimize Player 2’s regret are λ2 : A �→
C,F �→ I and λ′2 : A �→ C,F �→ J , in which cases her regret is 0. If Player 1 knows
that Player 2 plays according to λ2 or λ′2, she can still play C �→ E but now her regret
is 0, so that regG,�

1 = 0. Similarly, regG,�
2 = 0.

5.1 IRM in Tree Arenas

In this section, we let i ∈ {1, 2} and G = (S = S1 � S2, s0, T, μ1, μ2,C1,C2) be a
finite edge-weighted tree arena. We can transform G into a target-weighted tree arena
such that C1 = C2 (denoted by C in the sequel) is the set of leaves of the tree, if we
allow the functionsμi to take the value +∞. This transformation results in a new target-
weighted tree arena G′ = (S = S1 � S2, s0, T, μ

′
1, μ

′
2,C) with the same set of states

and transitions as G and for all leaf s ∈ C, μ′i(s) = cG
′

i (π), where π is the root-to-leaf
path leading to s. The time complexity of this transformation is O(|S|).

We now assume that G = (S = S1 � S2, s0, T, μ1, μ2,C) is a target-weighted tree
arena where C is the set of leaves. Our goal is to define a delete operator D such that
D(G) is a subtree of G such that for all i = 1, 2, Λi(D(G)) are the strategies of Λi(G)
that minimize regGi . In other words, any pairs of subsets of strategies for both players
in G can be represented by a subtree of G. This is possible since all the strategies in a
tree arena are memoryless. A set of strategies Pi ⊆ Λi(G) is therefore represented by
removing from G all the edges (s, s′) such that there is no strategy λi ∈ Pi such that
λi(s) = s′. In our case, one first computes the set of strategies that minimize regret.
This is done as in Section 3 by constructing the tree of best alternatives H (but in this
case with the best alternative of both players) and by solving a min-max game. FromH
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we delete all edges that are not compatible with a strategy that minimize the minmax
value of some player. We obtain therefore a subtree D(H) of H such that any strategy
of H is a strategy of D(H) for Player i iff it minimizes the minmax value in H for
Player i. By projecting away the best alternative information in D(H), we obtain a
subtree D(G) of G such that any Player i’s strategy of G is a strategy of D(G) iff it
minimizes Player i’s regret in G. We can iterate this process to compute the iterated
regret, and we finally obtain a subtreeD∗(G) such that any strategy ofGminimizes the
iterated regret for Player i iff it is a Player i’s strategy in D∗(G).

Definition 6. The tree of best alternatives of G is the tree H = (S′
1, S

′
2, s

′
0, T

′, μ′1, μ
′
2,

C′) where: (i) S′ = S′
1 � S′

2 with S′
i = {(s, b1, b2) | s ∈ Si, bκ = baGκ (πs), κ = 1, 2}

where πs is the path from the root s0 to s, (ii) s′0 = (s0,+∞, ,+∞), (iii) for all s, s′ ∈
S′, (s, s′) ∈ T ′ iff (proj1(s), proj1(s

′)) ∈ T , (iv) C′ = {s ∈ S′ | proj1(s) ∈ C}, (v)
for all (s, b1, b2)∈C′, μ′i(s, b1, b2) = μi(s)−min(μi(s), bi).

Note that H is isomorphic to G. There is indeed a one-to-one mapping Φ between
the states of G and the states of H : for all s ∈ S, Φ(s) is the only state s′ ∈ S′ of
the form s′ = (s, b1, b2). Moreover, this mapping is naturally extended to strategies.
Since all strategies are memoryless, any strategy λi ∈ Λi(G) is a function Si → S.
Thus, for all s′ ∈ S′

i, Φ(λi)(s′) = Φ
(
λi(Φ−1(s′))

)
. Without loss of generality and

for a technical reason, we assume that any strategy λi is only defined for states s ∈ Si
that are compatible with this strategy, i.e. if s is not reachable under λi then the value
of λi does not need to be defined. The lemmas of Section 3 still hold for the tree H .
In particular, for all i ∈ {1, 2}, Φ(Λi(G)) = Λi(H) and any strategy λi ∈ Λi(G)
minimizes regGi iff Φ(λi) minimizes minmaxHi . Moreover regGi = minmaxHi .

As in Section 3, the RMP on a tree arena can be solved by a min-max game. For all
s ∈ S′, we define minmaxHi (s) = minmax(H,s)

i and compute these values inductively
by a bottom-up algorithm that runs in time O(|S|). This algorithm not only allows us
to compute minmaxHi for all i ∈ {1, 2}, but also to compute a subtree D(H) that
represents all Player i’s strategies that achieve this value. We actually define the op-
erator D in two steps. First, we remove the edges (s, s′) ∈ T ′, such that s ∈ S′

i and
minmaxHi (s′) > minmaxHi for all i = 1, 2. We obtain a new graph H ′ consisting
of several disconnected tree components. In particular, there are some states no longer
reachable from the root s′0. Then we keep the connected component that contains s′0
and obtain a new tree D(H). Since there is a one-to-one correspondence between the
strategies minimizing the regret in G and the strategies minimizing the minmax value
in H , we can define D(G) by applying to D(H) the isomorphism Φ−1, in other words
by projecting the best alternatives away, and by restoring the functions μi.

We obtain a new treeD(G) whose Player i’s strategies minimize the regret of Player
i, i = 1, 2. We can iterate the regret computation on D(G) and get the Player i’s
strategies that minimize the regret of rank 2 of Player i, i = 1, 2. We continue iteration
until we get a tree G′ such that D(G′) = G′. We let D0(G) = G and Dj+1(G) =
D(Dj(G)).

Proposition 5. Let i ∈ {1, 2} and j > 0. We have regG,j
i = regD

j−1(G)
i .



Iterated Regret Minimization in Game Graphs 353

Theorem 3. Let G = (S = S1 � S2, s0, T, μ1, μ2,C) be a tree arena. For all i = 1, 2,
the iterated regret of Player i, regG,�

i , can be computed in time O(|S|2).

Proof. There is an integer j such that regG,�
i = regD

j(G)
i . According to the definition

of D(G), j ≤ |S| because we remove at least one edge of the tree at each step. Since
D(G) can be constructed in time O(|S|), the whole time complexity is O(|S|2). 


5.2 IRM in Positive Weighted Arenas

A weighted arena G is said to be positive if all edges are weighted by strictly positive
weights only. In this section, we let G = (S = S1 � S2, s0, T, μ1, μ2,C1,C2) be
a positive weighted arena. Remind that P j

i (G) is the set of strategies that minimize
regG,j

i , for all j ≥ 0 and i = 1, 2. As for the regret computation in edge-weighted
graphs, we define a notion of boundedness for strategies. Then the iterated regret is
computed on the unfolding of the graph, up to some cost bound.

Definition 7 (j-winning and j-bounded strategies). Let i ∈ {1, 2} and λi ∈
Λi(G). The strategy λi is j-winning if for all λ−i ∈ P j

−i(G), OutG(λi, λ−i) is winning.
It is j-bounded by some B ≥ 0 if it is j-winning, and for all λ−i ∈ P j

−i(G) and all

κ ∈ {i,−i}, μκ(OutG,Ci(λi, λ−i)) ≤ B.

Note that j-boundedness differs from boundedness as we require that the utilities of
both players are bounded. We let bG = 6(MG)3|S|. We get a similar result than the
boundedness of strategies that miminize the regret of rank 1, but for any rank:

Lemma 4. For all i = 1, 2 and all j ≥ 0, all j-winning strategies of Player i which
minimize the (j + 1)-th regret are j-bounded by bG.

Lemma 4 allows us to reduce the problem to the IRM in a weighted tree arena, by
unfolding the graph arenaG up to some maximal cost value. Lemma 4 suggests to take
bG for this maximal value. However the best responses to a strategy j-bounded by bG

are not necessarily bounded by bG, but they are necessarily j-bounded by bG · MG,
since the weights are strictly positive. Therefore we let BG = bG ·MG and take BG

as the maximal value. Since the j-winning strategies are j-bounded by bG and the best
responses are j-bounded byBG, we do not lose information by taking the unfolding up
to BG. Finally we apply Theorem 3 on the unfolding. One of the most technical result
is to prove the correctness of this reduction.

Theorem 4. The iterated regret for both players in a positive weighted arenaG can be
computed in pseudo-exponential time (exponential in |S|, |T | and MG).

For all i = 1, 2, the procedure of Section 5.1 returns a finite-memory strategy λi min-
imizing the iterated regret in G′ whose memory is the best alternatives seen so far by
both players. From λi we can compute a finite-memory strategy inGminimizing the it-
erated regret of Player i, the needed memory is the best alternatives seen by both players
and the current finite play up to BG. When the cost is greater than BG, then any move
is allowed. Therefore one needs to add one more bit of memory expressing whether the
cost is greater than BG.
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Conclusion. The theory of infinite qualitive non-zero sum games over graphs is still in
an initial development stage. We adapted a new solution concept from strategic games
to game graphs, and gave algorithms to compute the regret and iterated regret. The
strategies returned by those algorithms have a finite memory. One open question is
to know whether this memory is necessary. In other words, are memoryless strategies
sufficient to minimize the (iterated) regret in game graphs? Another question is to deter-
mine a lower bound on the complexity of (iterated) regret minimization. Iterated regret
minimization over the full class of graphs is still open. In the case of (strictly) positive
arenas, the unfolding of the graph arena up to some cost bound can be seen as a finite
representation of (possibly infinite) set of strategies of rank j in G. Finding such a rep-
resentation is not obvious for the full class of weighted arenas, since before reaching
its objective, a player can take a 0-cost loop finitely many times without affecting her
minimal regret. This suggests to add fairness conditions on edges to compute the IR.
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Abstract. Visibly pushdown transducers (VPTs) form a strict subclass of push-
down transducers (PTs) that extends finite state transducers with a stack. Like
visibly pushdown automata, the input symbols determine the stack operations.
It has been shown that visibly pushdown languages form a robust subclass of
context-free languages. Along the same line, we show that word transductions
defined by VPTs enjoy strong properties, in contrast to PTs. In particular, func-
tionality is decidable in PTIME, k-valuedness is in NPTIME and equivalence of
(non-deterministic) functional VPTs is EXPTIME-C. Those problems are unde-
cidable for PTs. Output words of VPTs are not necessarily well-nested. We iden-
tify a general subclass of VPTs that produce well-nested words, which is closed
by composition, and for which the type checking problem is decidable.

1 Introduction

Visibly pushdown languages (VPLs) form a robust subclass of context-free languages
(CFLs) [2]. This class strictly extends the class of regular languages and still enjoys
strong properties: closure under all Boolean operators and decidability of emptiness,
universality, inclusion and equivalence. On the contrary, context-free languages are not
closed under complement nor under intersection, moreover universality, inclusion and
equivalence are all undecidable. Along the same line, we study the class of visibly
pushdown transductions, a subclass of pushdown transductions, and we show that while
extending regular transductions it also preserves desired properties.

Visibly pushdown automata (VPAs), that characterize VPLs, are obtained as a restric-
tion of pushdown automata. In these automata the input symbols determine the stack
operations. The input alphabet is partitioned into call, return and internal symbols: if
a call is read, the automaton must push a symbol on the stack; if it reads a return, it
must pop a symbol; and while reading an internal symbol, it can not touch, not even
read, the stack. Visibly pushdown transducers (VPTs) are obtained by adding outputs
to VPAs: each time the VPA reads an input symbol it also outputs a word. No restriction
is imposed on the output word.
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A transducer is k-valued if it transforms an input word into at most k (output) words.
It is functional if it is 1-valued. The functionality problem for finite state (word) trans-
ducers has been extensively studied. The first proof of decidability was given in [19],
and later in [4]. The first PTIME upper bound has been proved in [10], more generally
this algorithm can be used for deciding k-valuedness. Also, this proof can be refined to
get an NLOGSPACE upper bound [9]. An efficient procedure for testing functionality
has been given in [3]. Those problems are undecidable for PTs.

We claim that VPTs form a rather robust model between finite-state transducers
(FSTs) and pushdown transducers (PTs). Our main contribution is to show that interest-
ing problems are decidable for VPTs: inclusion of the domain into a VPL, functionality
(in PTIME), equivalence of functional transducers (EXPTIME-C), and most notably k-
valuedness (in NPTIME). VPTs are not closed under composition and the type check-
ing is undecidable. We exhibit the class of well-nested VPTs (wnVPTs), a subclass
of VPTs, closed under composition and with decidable type checking (EXPTIME-C).
As the output words are well-nested, this class is well-suited to model unranked tree
transformations. To the best of our knowledge, this is the first class of unranked tree
transducers that supports concatenation of tree sequences with decidable k-valuedness.

Visibly pushdown transducers have been first introduced in [18]. In that paper, VPTs
allow for ε-transitions that can produce outputs and only a single letter can be produced
by each transition. Using ε-transitions causes many interesting problems to be undecid-
able, such as functionality and equivalence (even of functional transducers). In contrast
to [18], in this paper we consider visibly pushdown transducers where ε-transitions are
not allowed, but where the transitions can output a word. Moreover, no visibly restriction
is imposed on the output word. Therefore in the sequel we call the transducers of [18] ε-
VPTs, and VPTs will denote the visibly pushdown transducers considered here. VPTs
are exactly the so called nested word to word transducers of [23]. XML-DPDTs [14],
equivalent to left-to-right attribute grammars, correspond to the deterministic VPTs.

Deciding equivalence of deterministic (and therefore functional) VPTs has been
shown to be in PTIME [23]. However, functional VPTs can be exponentially more
succinct and are strictly more expressive than deterministic VPTs. In particular, non-
determinism is often needed to model functional transformations whose current produc-
tion depends on some input which may be arbitrary far away from the current input. For
instance, the transformation that swaps the first and the last input symbols is functional
but non-determinism is needed to guess the last input. The proof of [23] is based on a
reduction to the morphism equivalence problem on a context-free language, which is
known to be decidable in PTIME [17]. In this paper, we show that the same reduction
can be applied to prove that functionality is decidable in PTIME for VPTs, and as a
consequence, equivalence of functional transducers is decidable. Moreover we extend
this result by showing that the k-valuedness problem for VPTs can be reduced to the
multiple morphism equivalence problem on a CFL which was proved to be decidable
in [11]. Finally, we show this last problem can be decided in NPTIME.

While functionality and equivalence are decidable, the class of visibly pushdown
transductions, characterized by VPTs, is not closed under composition and the type
checking problem is undecidable. We identify a subclass of VPTs in which a connection
is imposed between stack symbols and nesting of outputs. We call the resulting class
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well-nested visibly pushdown transducers (wnVPTs), as it only accepts well-nested
input words and the output condition ensures that output words are also well-nested. As
a subclass of VPTs, it enjoys all the good properties stated above, and in addition it is
closed under composition and type checking is EXPTIME-C. This class is of particular
interest for XML document transformations as well-nested words can naturally model
such documents.

Relation to tree transducers. We distinguish ranked trees from unranked trees, whose
nodes may have an arbitrary number of ordered children. There is a strong connec-
tion between wnVPTs and unranked tree transducers. Indeed, unranked trees over an
arbitrary finite alphabet Σ can be naturally represented by well-nested words over the
structured alphabet Σ × {c} ∪ Σ × {r}. wnVPTs are therefore well-suited to model
tree transformations. To the best of our knowledge, wnVPTs consist in the first (non-
deterministic) model of unranked tree transformations (that support concatenation of
tree sequences) for which k-valuedness and equivalence of functional transformations
are decidable. Finite (ranked) tree transducers [5] on binary encodings of unranked
trees do not support concatenation, they are incomparable to wnVPTs, as they allow
for copy, which is not the case of wnVPTs, but cannot define all context-free languages
as codomain, what wnVPTs can do, as they support concatenation of tree sequences.
Functionality is known to be decidable in PTIME for tree transducers [20]. More gen-
erally, finite-valuedness of (and equivalence of finite-valued) tree transducers is decid-
able [21]. However, those results cannot be lifted to unranked trees, as unranked tree
transformations have to support concatenation of tree sequences, making usual binary
encodings unsuitable. Considering finite tree transducers, their ability to copy subtrees
is the main concern when dealing with k-valuedness. However for wnVPTs, it is more
their ability to concatenate sequences of trees which makes this problem difficult. While
concatenation of tree sequences cannot be modeled by ranked tree transducers on binary
encodings, it can be simulated by macro (ranked) tree transducers (MTTs) by using pa-
rameters [8]. This makes wnVPTs strictly less expressive than MTTs. However, equiv-
alence is decidable for the subclass of linear size increase deterministic MTTs, which
are equivalent to deterministic MSO tree transductions [7,6]. In particular, k-valuedness
is still open for MTTs. There have been several attempts to generalize ranked tree trans-
ducers to unranked tree transducers [15,16,14], but again, k-valuedness is still open.

Organization of the paper In Section 2, we define VPTs as an extension of VPAs. In
Section 3, we give basic results about properties of VPTs. We prove in Section 4 the
PTIME decidability of functionality for VPTs as well as the NPTIME result for deciding
k-valuedness of VPTs. Finally, well-nested transducers are introduced in Section 5.

2 Visibly Pushdown Transducers

LetΣ be a finite alphabet partitioned into two disjoint sets Σc andΣr denoting respec-
tively the call and return alphabets1. We denote by Σ∗ the set of (finite) words over Σ

1 In contrast to [2], we do not consider internal symbols i, as they can be simulated by a (unique)
call ci followed by a (unique) return ri. All our results extend trivially to alphabets with inter-
nal symbols. We make this assumption to simplify notations.
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and by ε the empty word. The length of a word u is denoted by |u|. The set of well-
nested wordsΣ∗

wn is the smallest subset ofΣ∗ such that ε ∈ Σ∗
wn and for all c ∈ Σc, all

r ∈ Σr, all u, v ∈ Σ∗
wn, cur ∈ Σ∗

wn and uv ∈ Σ∗
wn. The height of a well-nested word is

inductively defined by h(ε) = 0, h(cur) = 1 + h(u), and h(uv) = max(h(u), h(v)).

Visibly Pushdown Languages A visibly pushdown automaton (VPA) [2] on finite words
over Σ is a tuple A = (Q, I, F, Γ, δ) where Q is a finite set of states, I ⊆ Q, respec-
tively F ⊆ Q, the set of initial states, respectively final states, Γ the (finite) stack
alphabet, and δ = δc � δr where δc ⊆ Q × Σc × Γ × Q are the call transitions,
δr ⊆ Q×Σr × Γ ×Q are the return transitions.

On a call transition (q, a, q′, γ) ∈ δc, γ is pushed onto the stack and the control goes
from q to q′. On a return transition (q, γ, a, q′) ∈ δr, γ is popped from the stack.

Stacks are elements of Γ ∗, and we denote by ⊥ the empty stack. A run of a VPA
A on a word w = a1 . . . al is a sequence {(qk, σk)}0≤k≤l, where qk is the state and
σk ∈ Γ ∗ is the stack at step k, such that q0 ∈ I , σ0 = ⊥, and for each k < l, we have
either: (i) (qk, ak+1, γ, qk+1) ∈ δc and σk+1 = σkγ; or (ii) (qk, ak+1, γ, qk+1) ∈ δr,
and σk = σk+1γ. A run is accepting if ql ∈ F and σl = ⊥. A word w is accepted by
A if there exists an accepting run of A over w. L(A), the language of A, is the set of
words accepted by A. A language L over Σ is a visibly pushdown language if there is
a VPA A over Σ such that L(A) = L.

In contrast to [2] and to ease the notations, we do not allow return transitions on the
empty stack and we accept on empty stack only. Therefore the words accepted by a
VPA are well-nested (every call symbol has a matching return symbol and conversely).

Visibly Pushdown Transducers As finite-state transducers extend finite-state automata
with outputs, visibly pushdown transducers extend VPAs with outputs. To simplify no-
tations, we suppose that the output alphabet is Σ, but our results still hold for an arbi-
trary output alphabet.

Definition 1 (Visibly pushdown transducers). A visibly pushdown transducer2 (VPT)
on finite words over Σ is a tuple T = (Q, I, F, Γ, δ) where Q is a finite set of states,
I ⊆ Q is the set of initial states, F ⊆ Q the set of final states, Γ is the stack alpha-
bet, δ = δc � δr the (finite) transition relation, with δc ⊆ Q × Σc × Σ∗ × Γ × Q,
δr ⊆ Q×Σr ×Σ∗ × Γ ×Q.

A configuration of a VPT is a pair (q, σ) ∈ Q × Γ ∗. A run of T on a word u =
a1 . . . al ∈ Σ∗ from a configuration (q, σ) to a configuration (q′, σ′) is a finite sequence
ρ = {(qk, σk)}0≤k≤l such that q0 = q, σ0 = σ, ql = q′, σl = σ′ and for each
1 ≤ k ≤ l, there exist vk ∈ Σ∗ and γk ∈ Γ such that (qk−1, ak, vk, γk, qk) ∈ δc
and either ak ∈ Σc and σk = σk−1γk, or ak ∈ Σr and σk−1 = σkγk. The word

v = v1 . . . vl is called an output of ρ. We write (q, σ)
u/v−−→ (q′, σ′) when there exists a

run on u from (q, σ) to (q′, σ′) producing v as output. The transducer T defines a binary

word relation �T � = {(u, v) | ∃q ∈ I, q′ ∈ F, (q,⊥)
u/v−−→ (q′,⊥)}.

2 In contrast to [18], there is no producing ε-transitions (inserting transitions) but a transition
may produce a word and not only a single symbol. Moreover, the images of a word may not
be necessarily well-nested.
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c1/dfc, γ1
c3/ab, γ3 r3/ε, γ3

c1/d, γ1

c3/f, γ3 r3/cab, γ3
r1/gh, γ1

r1/gh, γ1

c2/ε, γ2 r2/cabcab, γ2

c2/abc, γ2 r2/cab, γ2

Fig. 1. A functional VPT on Σc = {c1, c2, c3} and Σr = {r1, r2, r3}

The domain of T (denoted by Dom(T )), resp. the codomain of T (denoted by
CoDom(T )), is the domain of �T �, resp. the codomain of �T �. Note that the domain of
T contains only well-nested words, which is not necessarily the case of the codomain.

Consider the VPT T of Figure 1. Call (resp. return) symbols are denoted by c (resp.
r). The domain of T is Dom(T ) = {c1(c2)nc3r3(r2)nr1 | n ∈ N}. For each word
of Dom(T ), there are two accepting runs, corresponding respectively to the upper and
lower part of T . For instance, when reading c1, it pushes γ1 and produces either d
(upper part) or dfc (lower part). By following the upper part (resp. lower part), it pro-
duces words of the form dfcab(cabcab)ngh (resp. dfc(abc)nab(cab)ngh). Therefore T
is functional.

3 Properties of VPTs

In this section, we present results about expressiveness of VPTs and decision problems.
We let VPLs, resp. CFLs, denote the class of visibly pushdown languages, resp. context-
free languages, over Σ.

Proposition 1 (Domain and codomain). Let T be a VPT, let L be a VPL. The domain
Dom(T ) of T is a VPL and the language T (L) is a CFL. Moreover, for any CFL L′ over
Σ, there exists a VPT whose codomain CoDom(T ) is L′. All these constructions can
effectively be done in polynomial time.

Proof (Sketch). By projecting the transitions of a VPT T on the input (resp. on the
output), we obtain a VPA (resp. a pushdown automaton) which defines Dom(T ) (resp.
CoDom(T )). As a consequence, givenL ∈ VPL, by restricting Dom(T ) to Lwhich can
be done by a classical product construction, we obtain T (L) is a CFL. To produce as
output a CFL L′ on alphabet Σ, it is already known [2] that there exists a VPL L′′ on
a structured alphabet Σ̂ and a renaming π : Σ̂ → Σ such that π(L′′) = L′. The VPT
implements π. 


As a consequence of Proposition 1 and of the fact that language inclusion for VPAs
is EXPTIME-C, we can test whether a VPL is included in the domain of a given VPT
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and conversely. This is of particular interest for XML transformations as it amounts to
decide if any document valid for an input XML schema will be transformed. This is
undecidable for ε-VPTs and PTs.

Thanks to non-determinism, transductions defined by VPTs are closed under union.
This is not the case however for composition and inverse. Non-closure under com-
position can be simply proved by using Proposition 1 and by producing two VPTs
whose composition transforms a VPL into a non CFL language. More formally, let
Σ = {c1, r1, c2, r2, c3, r3} be an alphabet where ci’s are call symbols and ri’s are
return symbols. We let li = ciri for i = 1, 2, 3. First consider the following VPL lan-
guage: L1 = (c1)n (r2)n (l3)∗. We can easily construct a VPT that transforms L1 into
the language L2 = (c1)n (l2)n (r3)∗. Applying the identity transducer on L2 produces
the non CFL language L3 = (c1)n (l2)n (r3)n. This identity transducer has a domain
which is a VPL and thus it extracts from L2 the well-nested words which form the non
CFL set L3. Non closure under inverse is a consequence of the fact that, for any VPT
T , for any word w, T (w) is a finite set while a word w can be the image of an infinite
number of input words. Finally, note that, as in the case of FSTs, VPTs are not closed
under intersection (easy coding of PCP).

The following problem is known as the translation membership problem [13].

Proposition 2 (Translation Membership). Let T be a VPT and (u, v) ∈ Σ∗ × Σ∗,
the problem of deciding whether (u, v) ∈ �T � is in PTIME.

Proof. We can first restrict T to a transducer T |u such that Dom(T |u) = {u} and
T |u(u) = T (u). By Proposition 1, membership in CoDom(T |u) can be tested in
PTIME. 


Theorem 1 (Type Checking). Given a VPT T and two VPAsA1,A2, it is undecidable
if T (L(A1)) ⊆ L(A2).

Proof. Given an instance (u1, v1), (u2, v2), . . . , (un, vn) of PCP defined on the finite
alphabet Σ, we associate with this instance a CFL and a VPL language defined on
the alphabet Σc = Σ and Σr = {1 . . . n}. For all j, we let lj = |uj |. The CFL
language is L1 = {vi1 . . . vik #(ik)lk . . . (i1)l1 | i1, . . . , ik ∈ Σr}. The VPL language
is L2 = {ui1 . . . uik#(ik)lk . . . (i1)l1 | i1, . . . , ik ∈ Σr}. Clearly the PCP instance is
negative if and only if L1 is included in L2. By Proposition 1, there exists a VPT T
whose image is L1 and by definition, there exists a VPA that accepts L2, because VPAs
are closed under complementation. 


4 On k-Valuedness of VPTs

Let k ∈ N. A VPT T is k-valued if for all u ∈ Σ∗, |{v | (u, v) ∈ �T �}| ≤ k. T is
functional if it is 1-valued. Two VPTs T1, T2 are equivalent if �T1� = �T2�. In this
section, we prove that deciding if a VPT is k-valued is decidable in NPTIME (for a
fixed k), and in PTIME for k = 1. The proof is done via a reduction to the multiple
morphism equivalence problem on a context-free language, which was proved to be
decidable in [11]. This reduction extends the one of [23], which was used to prove
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the decidability of equivalence of deterministic (and therefore functional) VPTs (k =
1). By using a recent result of [24] on the complexity of constructing an existential
Presburger formula for the Parikh image of a pushdown automaton, we give an upper
bound for the multiple morphism equivalence problem. When there is only one pair of
morphisms, this problem is known to be in PTIME [17].

Let Σ1, Σ2 be two finite alphabets. A morphism is a mapping Φ : Σ∗
1 → Σ∗

2 such
that Φ(ε) = ε and for all u, v ∈ Σ∗

1 , Φ(uv) = Φ(u)Φ(v). A morphism can be finitely
represented by its restriction on Σ1, i.e. by the set of pairs (a, Φ(a)) for all a ∈ Σ1.
Therefore its size is |Σ|+Σa∈Σ |Φ(a)|.

Definition 2 (Multiple Morphism Equivalence on Context-Free Languages). Given
� pairs of morphisms (Φ1, Ψ1), . . . , (Φ�, Ψ�) fromΣ∗

1 toΣ∗
2 and a context free language

L on Σ1, (Φ1, Ψ1), . . . , (Φ�, Ψ�) are equivalent on L if for all u ∈ L, there exists i such
that Φi(u) = Ψi(u).

The next result was proved to be decidable in [11] on any class of languages whose
Parikh images are effectively semi-linear. In the case of context-free languages, we
show that it can be decided in NPTIME. The main part of our proof is to show that,
for a fixed k, the emptiness of one-reversal pushdown machine with k counters is in
NPTIME.

Theorem 2. Let � be fixed. Given � pairs of morphisms and a pushdown automatonA,
testing whether they are equivalent on L(A) can be done in NPTIME. It is in PTIME if
� = 1 and if the context-free language is given by a grammar in Chomsky normal form
(Plandowski [17]).

Proof. In order to prove this theorem, we briefly recall the procedure of [11] in the
particular case of pushdown machines. It relies on the emptiness problem of reversal-
bounded pushdown machines with a fixed number of counters. Let k,m ∈ N, an m-
reversal pushdown machine with k counters (m-k-RBPM) on an alphabet Σ is a push-
down automaton on Σ augmented with k counters. Each counter can be incremented
or decremented by one and tested for zero, but the number of alternations between a
nondecreasing and a non-increasing mode is bounded by m in any computation. The
emptiness problem for such machines is decidable [12]. In order to decide the mor-
phism equivalence problem of � pairs of morphisms on a CFL L, the idea is to construct
an 1-2�-RBPM that accepts the language L′ = {w ∈ L | Φi(w) �= Ψi(w) for all i}.
Clearly, L′ = ∅ iff the morphisms are equivalent on L. Let A be the pushdown au-
tomaton that accepts L. We construct a pushdown automaton A′ augmented with 2�
counters c11, c12, . . . , c�1, c�2 that simulatesA on the input word and counts the lengths
of the outputs by the 2� morphisms. For all i ∈ {1, . . . , �}, A′ guesses some position
pi where Φi(w) and Ψi(w) differ: it increments in parallel (with ε-transitions) the coun-
ters ci1 and ci2 and non-deterministically decides to stop incrementing after pi steps.
Then when reading a letter a ∈ Σ1, the two counters ci1 and ci2 are decremented by
|Φi(a)| and |Ψi(a)| respectively (by possibly several transitions as the counters can be
incremented by at most one at a time). When one of the counter reaches zero A′ stores
the letter associated with the position (in the control state). At the end of the compu-
tation, for all i ∈ {1, . . . , �}, one has to check that the two letters associated with the
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position pi in Φi(w) and Ψi(w) are different. If n is the number of states of A and m
is the maximal length of an image of a letter a ∈ Σ1 by the 2� morphisms, then A′

has O(n ·m · |Σ2|2�) states, because for all 2� counters one has to store the letters at
the positions represented by the counter values. This is polynomial as � is fixed. Note
that the resulting machine is 1-reversal bounded (counters are first set to zero and are
incremented up to a position in the output word, and then are decremented to zero).

We now show that the emptiness of a one-reversal pushdown machine A with k
counters on an alphabet Σ is in NPTIME. Wlog, we assume that each counter starts
and ends with zero value, which is the case in the previous reduction. The NPTIME

upper bound remains true without this assumption. For this, we recall the construction
of [11] for testing emptiness of reversal-bounded machines with counters. The idea is to
construct a semi-linear set for the Parikh image ofA.3 The emptiness ofA then reduces
to the emptiness of its Parikh image. Following [11], one extends the alphabet Σ with
3k letters +j,−j , sj �∈ Σ intended to simulate the increasing, decreasing transitions of
the j-th counter, and the transitions that do not change the j-th counter (skip). We denote
by Σ+ this alphabet. We construct a pushdown automaton B on Σ+ that simulates A.
When reading a letter a ∈ Σ, B tries to apply a transition of A, and passes into a mode
in which it verifies that the next letters correspond to the increasing, decreasing or skip
actions on the counters of the transition. Moreover, since A is 1-reversal bounded, B
has to ensure that each counter does at most one reversal. The language of B is the set
of words of the form w = a1t1a2t2 . . . antn where ai ∈ Σ and each ti is a word of
the form bi1 . . . b

i
k where bij ∈ {+j,−j , sj}, j ∈ {1, . . . , k}. Moreover, we require that

(i) there exists a run of B on a1 . . . an ending up in a final state such that the counter
actions of the transitions corresponds to t1 . . . tn (ii) for all j ∈ {1, . . . , k}, b1j . . . bnj ∈
{+j, sj}∗{−j, sj}∗ (one reversal). Let ψ(w) = a1 . . . an and ψj(w) = b1j . . . b

n
j for all

j ∈ {1, . . . , k}. Condition (i) is enforced by a simple simulation of A, and condition
(ii) is enforced by adding vectors of {+,−}k to the control states indicating whether
the j-th counter is in increasing or decreasing mode. Note that L(A) ⊆ ψ(L(B)),
but this inclusion may be strict, as we do not require that the counters end up in a
zero value. More formally, we have L(A) =

⋂k
j=1{ψ(w) | w ∈ L(B) and ψj(w) ∈

s∗j (+j .s
∗
j )

�(−j .s
∗
j )

�, � ≥ 0}.
As L(B) is a context-free language, it is known by Parikh’s theorem that the Parikh

image of L(B) is semi-linear. Therefore there exists an existential Presburger formula
φ with |Σ|+3k free variables (xa)a∈Σ and (x+j , x−j , xsj )j∈{1,...,k} which defines the
Parikh image of L(B). Moreover, this formula can be constructed in time O(|B|) [24].
Finally, the formula ∃x+1∃x−1∃xs1 . . . ∃x+k

∃x−k
∃xsk

φ ∧
∧k

j=1 x+j = x−j defines
exactly the Parikh image of L(A). Since B can be constructed in O(|A| · 2k) (which
is polynomial as k is fixed) and the satisfiability of existential Presburger formulas is
in NP [24], one gets an NP algorithm to test the emptiness of A. We can conclude the
proof by combining this result to the reduction of the multiple morphism equivalence
problem described in the first part of the proof. 


3 The Parikh image of a language L ⊆ Σ∗ over an ordered alphabet Σ = {a1, . . . , an} is the
set {(#a1(u), . . . , #an(u)) | u ∈ L} where #ai(u) is the number of occurences of ai in u.
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Following ideas introduced in [3] for deciding functionality of FSTs, we define a notion
of product for the class of VPTs. The k-power of T simulates k parallel executions on
the same input. Note that this construction is possible for VPTs (but not for general
PTs) because two runs along the same input have necessarily the same stack behavior.
Let T = (Q, I, F, Γ, δ) be a VPT and OT the set of outputs words occurring in the

transitions of T , i.e. OT = {u | ∃(p a/u−−→ q) ∈ δ}. As this set is finite, it can be
regarded as an alphabet. The k-power of T is a VPT from words over Σ to words over
(OT )k defined as follows:

Definition 3 (k-Power). The k-power of T , denoted T k, is the VPT defined from Σ
to (OT )k by T k = (Qk, Ik, F k, Γ k, δk) where the transition relation δk = δkc � δkr is
defined for all α ∈ {c, r} and all a ∈ Σα by:

(q1, . . . , qk)
a|(u1,...,uk),(γ1,...,γk)−−−−−−−−−−−−−−→ (q′1, . . . , q

′
k)∈δkα iff qi

a|ui,γi−−−−→ q′i∈δα ∀1≤ i≤k

For all k ≥ 0, we define the morphisms Φ1, . . . , Φk as follows:

Φi : (OT )k → Σ∗

(u1, . . . , uk) �→ ui

Clearly, we obtain the following equivalence:

Proposition 3. T is k-valued iff (Φi, Φj)1≤i
=j≤k+1 are equivalent on CoDom(T k+1).

By Proposition 1 the language CoDom(T k) is a context-free language. By Theorem 2,
as CoDom(T k) is represented by an automaton of polynomial size if k is fixed, we get:

Theorem 3 (k-valuedness). Let k ≥ 0 be fixed. The problem of deciding whether a
VPT is k-valued is in NPTIME. It is in PTIME if k = 1.

To get the PTIME bound when k = 1, one can construct a context-free grammarGT in
Chomsky normal form whose language is exactly the codomain of T 2.

Given two functional VPTs, they are equivalent iff their union is functional and
they have the same domains. The domains being VPLs, testing their equivalence is
EXPTIME-C. Therefore as a consequence of Theorem 3, we have:

Theorem 4 (Equivalence). Testing equivalence of functional VPTs is EXPTIME-C.

We end this section with a result on k-ambiguity of VPTs. A VPT is k-ambiguous if
its underlying VPA is k-ambiguous, i.e. for each input word there are at most k accept-
ing runs. The notion of k-ambiguity is stronger than k-valuedness. k-ambiguity can be
tested in PTIME for tree automata. The standard construction to obtain a tree automaton
(top-down or bottom-up) equivalent to a given VPA preserves the number of accepting
runs, however it can yield an exponential blowup [1]. Therefore the PTIME bound can-
not be obtained directly from this translation. For a given k, a PTIME construction to
test k-ambiguity for VPAs can be obtained with a straightforward generalization of the
construction for finite state automata. Basically, one constructs a VPA that simulates
k+1 runs of the original VPA (this is possible because the stack are synchronized), and
records which of these runs are different. It will accept any word that is accepted by the
original VPA with k + 1 different runs. If k is fixed, this construction can be done in
PTIME, moreover testing emptiness of VPAs is in PTIME.
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Proposition 4 (k-Ambiguity). Let k ∈ N be fixed. Given a VPA A, resp. a VPT T , the
problem of deciding whether A, resp. T , is k-ambiguous is in PTIME.

5 Well-Nested VPTs

We have seen that VPTs are not closed under composition and their type checking
problem is undecidable. In this section we introduce a natural subclass of VPTs that is
closed for composition and for which the type checking is decidable.

The undecidability of the type checking is a consequence of the fact that the stack
of the transducers and the stack of the output VPA are not synchronized, because no
(visibly) restriction is imposed on the output words. Similarly, non-closure under com-
position is a consequence of the fact that the stack of both VPTs are not synchronized.
To overcome those problems we introduce a restriction between the stack symbols and
the output words.

Definition 4. A VPT T = (Q, I, F, Γ, δ) is well-nested (wnVPT) if
for all (q1, c, u, γ, q′1) ∈ δc and (q2, r, v, γ, q′2) ∈ δr, we have uv ∈ Σ∗

wn.

This restriction ensures that all output words are well-nested.

Lemma 1. For all wnVPTs T and all words w ∈ Σ∗
wn, T (w) ⊆ Σ∗

wn.

We now show that this class of transducers is closed under composition and has a de-
cidable type checking problem.

Proposition 5 (Closure properties). The class of wnVPTs is effectively closed under
union and composition.

Proof (Sketch).
We first need an additional notion in order to present the construction of the composition
of two such transducers. A word is return-matched (resp. call-matched) if there is no
unmatched returns (resp. calls). Let m(w) be equal to the number of unmatched returns
(resp. unmatched calls) if w is call-matched (resp. return-matched).

It is easy to show that a VPT T = (Q, I, F, Γ, δ) is well-nested iff (i) for all
(q, α, w, γ, q′) ∈ δc (resp. δr), the word w is return-matched (resp. call-matched),
and (ii) there exists a function val : Γ → N (called a valuation) such that for all
(q, α, w, γ, q′) ∈ δ, we have val(γ) = m(w). This valuation is unique and can be com-
puted in linear time.

Let Ti = (Qi, Ii, Fi, Γi, δi), i ∈ {1, 2}, be two wnVPTs, and vali their associ-
ated valuation. We define their composition T as the tuple (Q1 × Q2, I1 × I2, F1 ×
F2, Γ, δ, val). Intuitively, it is a synchronized product in which the synchronization is
not letter to letter, but is based on mappings vali. More precisely, the stack alphabet Γ
of T is defined as the finite set {(γ1, σ2) ∈ Γ1 × Γ ∗

2 | val1(γ1) = |σ2|}. The valuation
val is defined by val(γ1, σ2) = val2(σ2) where the extension of val2 to Γ ∗

2 is defined
as follows: if σ2 = γ2,1γ2,2 . . . γ2,n then val2(σ2) =

∑n
i=1 val2(γ2,i). Call transitions

are defined, for c ∈ Σc, by (q1, q2)
c/w,(γ1,σ2)−−−−−−−→ (q′1, q

′
2) ∈ δc if and only if there exists
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Table 1. Decision problems and closure properties

Functionality Equivalence Type checking ∪ ◦
/ k-valuedness of functional (against VPL)

FST NL/P PSPACE-C EXP-C Yes Yes
dVPT - P [23] Undec No No
VPT P/NP Exp-c Undec Yes No
wnVPT P/NP Exp-c Exp-c Yes Yes
ε-VPT [18] Undec Undec EXP-C [18] Yes No
dPT - Dec[22] Undec No No
PT Undec Undec Undec Yes No

v ∈ Σ∗ such that q1
c/v,γ1−−−−→ q′1 ∈ δ1c , and (q2,⊥)

v/w−−→ (q′2, σ2) is a run in the trans-
ducer T2. Note that as T1 is well-nested, we have val1(γ1) = m(v), and then, as T2 is a
VPT, val1(γ1) = |σ2|. Return transitions are defined similarly and one can verify that
T is a wnVPT and that the construction is correct. 


Theorem 5 (Type Checking). Given a wnVPT T , two VPAs A1, A2, the problem of
deciding if T (L(A1)) ⊆ L(A2) is EXPTIME-C. It is in PTIME if A2 is deterministic.

Proof. For the EXPTIME-HARD part, first note that we can construct a wnVPT Tid

whose domain is the set of well-nested words on the structured alphabet Σ and whose
relation is the identity relation. Given any VPA A1, A2, we have that Tid(L(A1)) ⊆
L(A2) if and only if L(A1) ⊆ L(A2). This later problem is EXPTIME-C [2].

To prove it is in EXPTIME, we consider the wnVPT T2 whose domain is L(A2) and
whose relation is the identity relation. As wnVPTs are closed under composition, we
can construct a wnVPT T ′ such that T ′ = T ◦ T2. Then we can note that Dom(T ′) =
T−1(L(A2)). As T (L(A1)) ⊆ L(A2) if and only if L(A1) ⊆ T−1(L(A2)) and as all
those transducers and automata can be constructed in polynomial time, we conclude
that we can decide our problem in EXPTIME by checking the former inclusion using
the algorithm for language inclusion between VPA. 


6 Conclusion

Table 1 summarizes the known results on several classes of word transducers. The re-
sults of this paper are in bold face. PTs denotes the class of pushdown transducers, and
deterministic classes are denoted with a preceding d. Undecidability of ambiguity and
functionality for PTs is well-known and can for example be proved by reduction of the
emptiness problem for the intersection of two CFLs. Undecidability of the equivalence
problem for two functional PTs is a direct consequence of the undecidability of the
equivalence problem for CFLs. Undecidability of these problems for ε-VPTs can be
proved in the exact same way since we can embed any CFL into the domain of such a
transducer [18]. The undecidability of type checking for dPTs and PTs against VPLs
can be proved as in Theorem 1. Finally, note that for all classes where equivalence of
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functional transducers is decidable, the complexity depends on the complexity of testing
equivalence of their domains.

As future works, we would like to investigate several problems. The first problem
is the sequentiality problem for VPTs [3]. In particular, this problem asks whether a
given VPT is equivalent to an input-deterministic VPT. Input-determinism is relevant
to XML streaming transformations, as very large documents have to be processed on-
the-fly without storing the whole document in memory. A second problem is to decide
if two k-valued VPTs are equivalent.

Acknowledgments. We are grateful to the referees for their valuable comments and rel-
evant questions, and we warmly thank Oscar H. Ibarra for pointing out some references.
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Second-Order Algebraic Theories
(Extended Abstract)

Marcelo Fiore and Ola Mahmoud

University of Cambridge, Computer Laboratory

Abstract. Fiore and Hur [10] recently introduced a conservative exten-
sion of universal algebra and equational logic from first to second order.
Second-order universal algebra and second-order equational logic respec-
tively provide a model theory and a formal deductive system for lan-
guages with variable binding and parameterised metavariables. This work
completes the foundations of the subject from the viewpoint of categori-
cal algebra. Specifically, the paper introduces the notion of second-order
algebraic theory and develops its basic theory. Two categorical equiva-
lences are established: at the syntactic level, that of second-order equa-
tional presentations and second-order algebraic theories; at the semantic
level, that of second-order algebras and second-order functorial models.
Our development includes a mathematical definition of syntactic trans-
lation between second-order equational presentations. This gives the first
formalisation of notions such as encodings and transforms in the context
of languages with variable binding.

1 Introduction

Algebra started with the study of a few sample algebraic structures: groups,
rings, lattices, etc. Based on these, Birkhoff [3] laid out the foundations of a
general unifying theory, now known as universal algebra.

Birkhoff’s formalisation of the notion of algebra starts with the introduction
of equational presentations. These constitute the syntactic foundations of the
subject. Algebras are then the semantics or model theory, and play a crucial role
in establishing the logical foundations. Indeed, Birkhoff introduced equational
logic as a sound and complete formal deductive system for reasoning about
algebraic structure.

The investigation of algebraic structure was further enriched by the advent of
category theory, with the fundamental work of Lawvere on algebraic theories [18]
and of Linton on finitary monads [17]. These approaches give a presentation-
independent treatment of the subject. Algebraic theories correspond to the syn-
tactic line of development; monads to the semantic one (see e.g. [15]).

We contend that it is only by looking at algebraic structure from all of the
above perspectives, and the ways in which they interact, that the subject is
properly understood. In the context of computer science, for instance, consider
that: (i) initial-algebra semantics provides canonical compositional interpreta-
tions [14]; (ii) free constructions amount to abstract syntax [19], that is amenable
to proofs by structural induction and definitions by structural recursion [4];
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(iii) equational presentations can be regarded as (bidirectional) rewriting theo-
ries, and studied from a computational point of view [16]; (iv) algebraic theories
come with an associated notion of algebraic translation [18], whose syntactic
counterpart provides the right notion of syntactic translation between equa-
tional presentations [12, 13]; (v) strong monads have an associated metalogic
from which equational logics can be synthesised [9, 10].

The realm of universal algebra is restricted to first-order languages. In par-
ticular, this leaves out languages with variable binding. Variable-binding con-
structs are at the core of fundamental calculi and theories in computer science
and logic [5, 6], and incorporating them into algebra has been a main founda-
tional research problem. The present work develops such a programme from the
viewpoint of algebraic theories.

Our presentation is in two parts. The first part (Sections 2 and 3) sets up
the necessary background; the second part (Sections 4 to 6) constitutes the
contribution of the paper.

The background material gives an introduction to the work of Fiore and
Hur [10] on a conservative extension of universal algebra and its equational logic
from first to second order, i.e. to languages with variable binding and parame-
terised metavariables. Our summary recalls: (i) the notion of second-order equa-
tional presentation, that allows the specification of equational theories by means
of schematic identities over signatures of variable-binding operators; (ii) the
model theory of second-order equational presentations by means of second-order
algebras; and (iii) the deductive system underlying formal reasoning about
second-order algebraic structure.

The crux of our work is the notion of second-order algebraic theory (Defini-
tion 4.1). At the syntactic level, the correctness of our definition is established by
showing a categorical equivalence between second-order equational presentations
and second-order algebraic theories (Theorem 5.2). This involves distilling a no-
tion of syntactic translation between second-order equational presentations that
corresponds to the canonical notion of morphism between second-order algebraic
theories. These syntactic translations provide a mathematical formalisation of
notions such as encodings and transforms. On top of the syntactic correspon-
dence, we furthermore establish a semantic one, by which second-order functorial
semantics is shown to correspond to the model theory of second-order universal
algebra (Theorem 6.1 and Corollary 6.1).

2 Second-Order Equational Logic

We briefly present Second-Order Equational Logic as introduced by Fiore and
Hur [10] together with the syntactic machinery that surrounds it. For succinct-
ness, our exposition is restricted to the unityped setting. The general multi-typed
framework can be found in [10].

Signatures. A (unityped second-order) signature Σ = (O, |− |) is specified by
a set of operators O and an arity function |−| : O �� N∗, see [1, 2]. For o ∈ O, we
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write o : (n1, . . . , nk) whenever |o | = (n1, . . . , nk). The intended meaning is that
the operator o takes k arguments with the ith argument binding ni variables.

Example 2.1. The signature of the λ-calculus has operators abs : (1) and
app : (0, 0).

Terms. We consider terms in contexts with two zones, respectively declar-
ing metavariables and variables. Metavariables come with an associated natural
number arity. A metavariable m of arity m, denoted m : [m], is to be parame-
terised by m terms. We represent contexts as m1 : [m1], . . . ,mk : [mk] � x1, . . . , xn
where the metavariables mi and the variables xj are assumed distinct.

Signatures give rise to terms in context. Terms are built up by means of opera-
tors from both variables and metavariables, and hence referred to as second-order.
The judgement for terms in context (Θ � Γ � −) is defined by the following rules.

(Variables) For x ∈ Γ ,

Θ � Γ � x
(Metavariables) For (m : [m]) ∈ Θ,

Θ � Γ � ti (1 ≤ i ≤ m)

Θ � Γ � m[t1, . . . , tm]

(Operators) For o : (n1, . . . , nk),

Θ � Γ, %xi � ti (1 ≤ i ≤ k)

Θ � Γ � o
(
( %x1) t1, . . . , ( %xk) tk

)
where %xi stands for xi,1, . . . , xi,ni .

Second-order terms are considered up the α-equivalence relation induced by
stipulating that, for every operator o, in the term o

(
. . . , (%xi)ti, . . .

)
the %xi are

bound in ti.

Example 2.2. Two terms for the λ-calculus signature (Example 2.1) follow:

m : [1],n : [0] � · � app
(
abs
(
(x)m[x]

)
,n[ ]

)
, m : [1],n : [0] � · � m[n[ ]] .

Substitution calculus. The second-order nature of the syntax requires a two-
level substitution calculus [1, 8]. Each level respectively accounts for the sub-
stitution of variables and metavariables, with the latter operation depending on
the former.

The operation of capture-avoiding simultaneous substitution of terms for vari-
ables maps

Θ � x1, . . . , xn � t and Θ � Γ � ti (1 ≤ i ≤ n)
to

Θ � Γ � t[ti/xi]1≤i≤n

according to the following inductive definition:
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– xj [ti/xi]1≤i≤n = tj

–
(
m[. . . , s, . . .]

)
[ti/xi]1≤i≤n = m

[
. . . , s[ti/xi]1≤i≤n, . . .

]
–
(
o(. . . , (y1, . . . , yk)s, . . .)

)
[ti/xi]1≤i≤n

= o
(
. . . , (z1, . . . , zk)s[ti/xi, zj/yj]1≤i≤n,1≤j≤k, . . .

)
with zj �∈ dom(Γ ) for all 1 ≤ j ≤ k

The operation of metasubstitution of abstracted terms for metavariables maps

m1 : [m1], . . . ,mk : [mk] � Γ � t and Θ � Γ, %xi � ti (1 ≤ i ≤ k)
to

Θ � Γ � t{mi := (%xi)ti}1≤i≤k

according to the following inductive definition:

– x{mi := (%xi)ti}1≤i≤k = x

–
(
m�[s1, . . . , sm]

)
{mi := (%xi)ti}1≤i≤k = t�[s

′
j/xi,j]1≤j≤m

where, for 1 ≤ j ≤ m, s′j = sj{mi := (%xi)ti}1≤i≤k

–
(
o(. . . , (%x)s, . . .)

)
{mi := (%xi)ti}1≤i≤k = o

(
. . . , (%x)s{mi := (%xi)ti}1≤i≤k, . . .

)
Presentations. An equational presentation is specified by a signature together
with a set of axioms over it, each of which is a pair of terms in context.

Example 2.3. The equational presentation of the λ-calculus extends the signa-
ture of Example 2.1 with the following equations.

(β) m : [1],n : [0] � · � app
(
abs( (x)m[x] ),n[ ]

)
≡ m

[
n[ ]
]

(η) f : [0] � · � abs
(
(x)app(f[ ], x)

)
≡ f[ ]

Logic. The rules of Second-Order Equational Logic are given in Figure 1. Be-
sides the rules for axioms and equivalence, it consists of just one additional rule
stating that the operation of metasubstitution in extended variable contexts is
a congruence.

We note the following basic result from [10]: Second-Order Equational Logic
is a conservative extension of (First-Order) Equational Logic.

3 Second-Order Universal Algebra

The model theory of Fiore and Hur [10] for second-order equational presentations
is recalled. This is presented here in concrete elementary terms, but could have
also been given in abstract monadic terms. The reader is referred to [10] for the
latter perspective.
Semantic universe. We write F for the free cocartesian category on an ob-
ject. Explicitly, it has set of objects N and morphisms m �� n given by func-
tions ‖m‖ �� ‖n‖, where, for � ∈ N, ‖�‖ = {1, . . . , �}.

We will work within and over the semantic universe SetF of sets in variable
contexts [11]. We write y for the Yoneda embedding Fop � � �� SetF.
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(Axiom)

(Θ � Γ � s ≡ t) ∈ E

Θ � Γ � s ≡ t

(Equivalence)

Θ � Γ � t

Θ � Γ � t ≡ t

Θ � Γ � s ≡ t

Θ � Γ � t ≡ s

Θ � Γ � s ≡ t Θ � Γ � t ≡ u

Θ � Γ � s ≡ u

(Extended metasubstitution)

m1 : [m1], . . . ,mk : [mk] � Γ � s ≡ t Θ � Δ, �xi � si ≡ ti (1 ≤ i ≤ k)

Θ � Γ, Δ � s{mi := (�xi)si}1≤i≤k ≡ t{mi := (�xi)ti}1≤i≤k

Fig. 1. Second-Order Equational Logic

Substitution. We recall the substitution monoidal structure in semantic uni-
verses [11]. It has tensor unit and tensor product respectively given by y1 and
X • Y =

∫ k∈F
X(k)× Y k.

A monoid y1 ν �� A ς�� A•A for the substitution monoidal structure equips
A with substitution structure. In particular, the map νk = (yk ∼= (y1)k νk �� Ak)
induces the embedding(

Ayn ×An
)
(k) �� A(k + n)×Ak(k)×An(k) ��

(
A •A

)
(k)

which together with the multiplication yield a substitution operation

ςn : Ayn ×An �� A .

These substitution operations provide the interpretation of metavariables.

Algebras. Every signature Σ induces a signature endofunctor on SetF given
by FΣX =

∐
o:(n1,...,nk) inΣ

∏
1≤i≤kX

yni . FΣ-algebras FΣX �� X provide an
interpretation [[o]]X :

∏
1≤i≤kX

yni �� X for every operator o : (n1, . . . , nk) in
Σ.

We note that there are canonical natural isomorphisms∐
i∈I(Xi • Y ) ∼=

(∐
i∈I Xi

)
• Y(∏

1≤i≤nXi

)
• Y ∼=

∏
1≤i≤n(Xi • Y )

and, for all points η : y1 �� Y , natural extension maps

η#n : X yn • Y �� (X • Y )yn .

These constructions equip every signature endofunctor with a pointed strength
'X,y1 ��Y : FΣ(X) • Y �� FΣ(X • Y ). See [8] for details.

Models. The models that we are interested in (referred to as Σ-monoids in [11,
8]) are algebras equipped with a compatible substitution structure. For a sig-
nature Σ, we let Σ-Mod be the category of Σ-models with objects A ∈ SetF
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equipped with an FΣ-algebra structure α : FΣA �� A and a monoid structure
y1 ν �� A ς�� A •A that are compatible in the sense that the diagram

FΣ(A) •A

α • A
��

�A,ν
�� FΣ(A •A)

FΣς
�� FΣ(A)

α
��

A •A ς
�� A

commutes. Morphisms are maps that are both FΣ-algebra and monoid homo-
morphims.

Semantics. For Θ = (m1 : [m1] . . . ,mk : [mk]) and Γ = (x1, . . . , xn), the inter-
pretation of a term Θ � Γ � t in a model A is a morphism

[[Θ � Γ � t]]A : [[Θ � Γ ]]A �� A ,

where [[Θ � Γ ]]A =
∏

1≤i≤k A
ymi ×yn, given by structural induction as follows:

– [[Θ � Γ � xj ]]A is the composite [[Θ � Γ ]]A
π2 �� yn

νn �� An
πj

�� A.

– [[Θ � Γ � mi[t1, . . . , tmi ]]]A is the composite

[[Θ � Γ ]]A
〈πi π1,f〉

�� Aymi ×Ami
ςmi �� A

where f =
〈
[[Θ � Γ � tj ]]

〉
1≤j≤mi

.

– For o : (n1, . . . , n�),

[[Θ � Γ � o
(
(%y1)t1, . . . , (%y�)t�

)
]]

is the composite [[Θ � Γ ]]A
〈fj〉1≤j≤�

��
∏

1≤j≤� A
ynj

[[o]]A �� A where fj is the
exponential transpose of∏
1≤i≤k A

ymi × yn× ynj ∼=
∏

1≤i≤k A
ymi × y(n+ nj)

[[Θ�Γ, �yj�tj ]]A �� A .

Equational models. We say that a model A satisfies Θ � Γ � s ≡ t, for which
we use the notation A |= (Θ � Γ � s ≡ t), iff [[Θ � Γ � s]]A = [[Θ � Γ � t]]A.

For an equational presentation (Σ,E), we write (Σ,E)-Mod for the full sub-
category of Σ-Mod consisting of the Σ-models that satisfy the axioms E.

Soundness and completeness [10].
For an equational presentation (Σ,E), the judgement Θ � Γ � s ≡ t is
derivable from E iff A |= (Θ � Γ � s ≡ t) for all (Σ,E)-models A.

4 Second-Order Algebraic Theories

We introduce the notion of unityped second-order algebraic theory and establish
it as the categorical counterpart to that of second-order equational presentation.
The generalisation to the multi-typed case should be evident.

Remark. Having omitted the monadic view of second-order universal algebra,
the important role played by the monadic perspective in our development will
not be considered here.
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Theory of equality. The theory of equality plays a pivotal role in the defi-
nition of algebraic theory. Thus, we proceed first to identify the second-order
algebraic theory of equality. This we do both in syntactic and semantic terms.
The (first-order) algebraic theory of equality is then considered from this new
perspective.

The syntactic viewpoint leads us to define the category M with set of objects
N∗ and morphisms (m1, . . . ,mk) �� (n1, . . . , n�) given by tuples

〈m1 : [m1], . . . ,mk : [mk] � x1, . . . , xni � ti 〉i∈‖�‖
of terms under the empty signature. The identity on (m1, . . . ,mk) is given by

〈m1 : [m1], . . . ,mk : [mk] � x1, . . . , xmi � mi[x1, . . . , xmi ] 〉i∈‖k‖ ;

whilst the composition of

〈m1 : [�1], . . . ,mi : [�i] � x1, . . . , xmp � sp 〉p∈‖j‖ : (�1, . . . , �i) �� (m1, . . . ,mj)

and

〈m1 : [m1], . . . ,mj : [mj ] � x1, . . . , xnq � tq 〉q∈‖k‖ : (m1, . . . ,mj) �� (n1, . . . , nk)

is given by metasubstitution as follows:

〈m1 : [�1], . . . ,mi : [�i] � x1, . . . , xnq � tq{mp := (x1, . . . , xmp)sp}p∈‖j‖ 〉q∈‖k‖ .

The category M is strict cartesian, with terminal object given by the empty
sequence and binary products given by concatenation. Furthermore, the object
(0) ∈M is exponentiable. Indeed, the exponential object (0) �� (m1, . . . ,mk) is
(m1 + 1, . . . ,mk + 1) with evaluation map

(m1 + 1, . . . ,mk + 1, 0) �� (m1, . . . ,mk)
given by〈

m1 : [m1 + 1], . . . ,mk : [mk + 1],mk+1 : [0] � x1, . . . , xmi

� mi

[
x1, . . . , xmi ,mk+1[ ]

] 〉
i∈‖k‖

In fact, this structure provides a semantic characterisation of M.

Lemma 4.1 (Universal property of M). The category M, together with the
object (0) ∈M, is initial amongst cartesian categories equipped with an exponen-
tiable object (with respect to cartesian functors that preserve the exponentiable
object).

Loosely speaking, then, M is the free (strict) cartesian category on an exponen-
tiable object.

Algebraic theories. We extend Lawvere’s fundamental notion of (first-order)
algebraic theory [18] to second order.

Definition 4.1 (Second-order algebraic theories). A second-order alge-
braic theory consists of a cartesian category T and a strict cartesian identity-
on-objects functor M �� T that preserves the exponentiable object (0).
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The most basic example is the second-order algebraic theory of equality given by
M (together with the identity functor).

Every second-order algebraic theory has an underlying (first-order) algebraic
theory. To formalise this, recall that the (first-order) algebraic theory of equal-
ity L = Fop is the free (strict) cartesian category on an object and consider the
unique cartesian functor L �� M mapping the generating object to the expo-
nentiable object. Then, the (first-order) algebraic theory underlying M �� T is
L �� T0 for L �� T0

� � �� T the identity-on-objects/full-and-faithful factorisation
of L �� M �� T. In particular, L underlies M.

The theory of a presentation. For a second-order equational presentation E ,
the classifying category M(E) has set of objects N∗ and morphisms %m �� %n, say
with %m = (m1, . . . ,mk) and %n = (n1, . . . , n�), given by tuples〈

[m1 : [m1], . . . ,mk : [mk] � x1, . . . , xni � ti ]E
〉
i∈‖�‖

of equivalence classes of terms under the equivalence relation that identifies
two terms iff they are provably equal from E in Second-Order Equational Logic.
(Identities and composition are defined on representatives as in M.)

Lemma 4.2. For a second-order equational presentation E, the category M(E)
together with the canonical functor M �� M(E) is a second-order algebraic the-
ory.

We refer to M �� M(E) as the second-order algebraic theory of E .

The presentation of a theory. The internal language E(T ) of a second-order
algebraic theory T : M �� T is the second-order equational presentation defined
as follows:

(Operators) For every f : (m1, . . . ,mk) �� (n) in T, we have an operator of of
arity (m1, . . . ,mk, 0, . . . , 0︸ ︷︷ ︸

n times

).

(Equations) Setting

tf =of

(
(x1, . . . , xm1)m1[x1, . . . , xm1 ], . . . , (x1, . . . , xmk )mk[x1, . . . , xmk ], x1, . . . , xn

)
for every f : (m1, . . . ,mk) �� (n) in T, we have

– m1 : [m1], . . . ,mk : [mk] � x1, . . . , xn � s ≡ tT 〈s〉

for every 〈s〉 : (m1, . . . ,mk) �� (n) in M,

– m1 : [m1], . . . ,mk : [mk]�x1, . . . , xn� th≡ tg{mi :=(x1, . . . , xni)tfi}1≤i≤�

for every h : (m1, . . . ,mk) �� (n), g : (n1, . . . , n�) �� (n), and fi :
(m1, . . . ,mk) �� (ni), 1 ≤ i ≤ �, such that h = g ◦ 〈f1, . . . , f�〉 in T.

Algebraic translations. For second-order algebraic theories T : M �� T and
T ′ : M �� T′, a second-order algebraic translation T �� T ′ is a functor F :
T �� T′ such that T ′ = F T . We write SOAT for the category of second-order
algebraic theories and algebraic translations.
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Theorem 4.1 (Theory/presentation correspondence). Every second-order
algebraic theory T : M �� T is isomorphic to the second-order algebraic theory of
its associated equational presentation M �� M(E(T )).

5 Second-Order Syntactic Translations

We introduce the notion of syntactic translation between second-order equa-
tional presentations. This we justify by establishing its equivalence with that of
algebraic translation between the associated second-order algebraic theories.

Signature translations. A syntactic translation τ : Σ �� Σ′ between second-
order signatures is given by a mapping from the operators of Σ to the terms of
Σ′ as follows:

o : (m1, . . . ,mk)
� �� m1 : [m1], . . . ,mk : [mk] � · � τo .

Note that the term associated to an operator has an empty variable context and
that the metavariable context is determined by the arity of the operator.

A translation τ : Σ �� Σ′ extends to a mapping from the terms of Σ to the
terms of Σ′

Θ � Γ � t � �� Θ � Γ � τ(t)
according to the following inductive definition:

– τ(x) = x

– τ
(
m[t1, . . . , tm]

)
= m

[
τ(t1), . . . , τ(tm)

]
– τ
(
o
(
( %x1)t1, . . . , ( %xk)tk

))
= τo{mi := (%xi)τ(ti)}1≤i≤k

Lemma 5.1 (Compositionality). The extension of a syntactic translation be-
tween second-order signatures commutes with substitution and metasubstitution.

Example 5.1 (Continutation Passing Style). A formalisation of the CPS trans-
form for the λ-calculus as a syntactic translation due to Plotkin [20] follows. We
provide it in informal notation for ease of readability.

app : (0, 0) � �� m : [0],n : [0] � · � λk.m[ ]
(
λm.m (λ�.n[ ] �) k

)
abs : (1) � �� f : [1] � · � λk. k

(
λx. (λ�. f[x] �)

)
Equational translations. A syntactic translation between second-order equa-
tional presentations τ : (Σ,E) �� (Σ,′E′) is a translation τ : Σ �� Σ′ such
that, for every axiom Θ � Γ � s ≡ t in E, the judgement Θ � Γ � τ(s) ≡ τ(t)
is derivable from E′.

Lemma 5.2. The extension of a syntactic translation between second-order
equational presentations preserves second-order equational derivability.

We write SOEP for the category of second-order equational presentations and
syntactic translations. (The identity syntactic translation maps an operator
o : (m1, . . . ,mk) to the term o

(
. . . , (x1, . . . , xmi)mi[x1, . . . , xmi ], . . .

)
; whilst the

composition of τ followed by τ ′ maps o to τ ′(τo).)
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Theorem 5.1 (Presentation/theory correspondence). Every second-order
equational presentation E is isomorphic to the second-order equational presenta-
tion of its associated algebraic theory E(M(E)).

Syntactic and algebraic translations. A syntactic translation τ : E �� E ′ in-
duces the algebraic translation M(τ) :M(E) ��M(E ′), mapping 〈 [t1]E , . . . , [t�]E 〉
to 〈 [τ(t1)]E′ , . . . , [τ(t�)]E′ 〉. This gives a functor SOEP �� SOAT . Conversely,
an algebraic translation F : T �� T ′ induces the syntactic translation E(F ) :
E(T ) �� E(T ′), mapping an operator of , for f : (m1, . . . ,mk) �� (n) in T, to
the term tFf

[
mk+1[ ]/x1, . . . ,mk+n[ ]/xn

]
. This gives a functor SOAT �� SOEP .

Theorem 5.2. The categories SOAT and SOEP are equivalent.

6 Second-Order Functorial Semantics

We extend Lawvere’s functorial semantics for algebraic theories [18] from first
to second order.

Functorial models. The category Mod (T ) of (set-theoretic) functorial models
of a second-order algebraic theory T : M �� T is the category of cartesian
functors T �� Set and natural transformations between them.

Every E-model A, for a second-order equational presentation E , provides a
functorial model M(E) �� Set as follows:

– on objects, (m1, . . . ,mk) is mapped to
∏

1≤i≤k A(mi);

– on morphisms, 〈 [m1 : [m1], . . . ,mk : [mk] � x1, . . . , xni � tj]E 〉j∈‖�‖ is mapped
to 〈 (fj)0〉1≤j≤� where fj :

∏
1≤i≤k A

ymi �� Aynj is the exponential trans-
pose of [[m1 : [m1], . . . ,mk : [mk] � x1, . . . , xnj � tj ]]A.

As we proceed to show, every functorial model essentially arises in this man-
ner (see Corollary 6.1).

Clones. We need recall and develop some aspects of the theory of clones from
universal algebra (see e.g. [7]).

Let C be an exponentiable object in a cartesian category C . Recall that the
family 〈C〉 = {Cn �� C}n∈N has a canonical clone structure

ι
(n)
i : 1 �� 〈C〉n (1 ≤ i ≤ n ∈ N) , ςm,n : 〈C〉m × 〈C〉nm �� 〈C〉n (m,n ∈ N)

known as the clone of operations on C. Thus, as it is the case with every clone,
the family 〈C〉 canonically extends to a functor F �� C : n � �� 〈C〉n.

For every m1, . . . ,mk ∈ N (for k ∈ N), n ∈ N, and f :
∏

1≤i≤k〈C〉mi
�� 〈C〉n

in C let f̃ = {f̃�}�∈N be given by setting

f̃� =
(∏

1≤i≤k〈C〉�+mi
∼= C� ��∏

1≤i≤k〈C〉mi

C� ��f
�� C� �� 〈C〉n ∼= 〈C〉�+n

)
.

The family f̃ is a natural transformation
∏

1≤i≤k〈C〉(−)+mi
�� 〈C〉(−)+n and

commutes with the clone structure. The latter in the sense that, for
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w� =
(
〈C〉qp ∼= 〈C〉qp × 1

〈C〉j
p×〈ι(q+�)

q+i 〉1≤i≤�
�� 〈C〉q+�

p × 〈C〉q+�
� ∼= 〈C〉q+�

p+�
)

where j denotes the inclusion ‖q‖ ↪ �� ‖q + �‖, the diagram∏
1≤i≤k〈C〉p+mi × 〈C〉q+mi

p+mi∏
1≤i≤k ςp+mi,q+mi

����������������

∏
1≤i≤k〈C〉p+mi × 〈C〉q

p

f̃p×wn

��

〈id×wmi
〉1≤i≤k

����������������� ∏
1≤i≤k〈C〉q+mi

f̃q

��

〈C〉p+n × 〈C〉q+n
p+n

ςp+n,q+n

�� 〈C〉q+n

commutes for all p, q ∈ N.
Let Σ be a second-order signature, and consider a functorial model S :

M(Σ) �� Set . Then, the image under the cartesian functor S of the clone of op-
erations induced by the exponentiable object (0) ∈M(Σ) together with the fam-
ily {f̃o}o:(m1,...,mk) inΣ , where fo = 〈 o(. . . , (x1, . . . , xmi)mi[x1, . . . , xmi ], . . .) 〉,
yields a Σ-model S ∈ SetF.

Furthermore, for all f = 〈m1 : [m1], . . . ,mk : [mk] � x1, . . . , xn � t 〉 in M(Σ)
we have that the image of f̃ under S : M(Σ) �� Set amounts to the interpre-
tation of t in S. Thus, for all second-order equational presentations E = (Σ,E),
the Σ-model induced by the restriction of a functorial model M(E) �� Set to
M(Σ) is an E-model.

The above constructions between functorial and algebraic models provide an
equivalence.

Theorem 6.1. For every second-order equational presentation E, the category
of algebraic models E-Mod and the category of functorial models Mod (M(E))
are equivalent.

Corollary 6.1. For every second-order algebraic theory T , the category of func-
torial models Mod (T ) and the category of algebraic models E(T )-Mod are equiv-
alent.

Algebraic functors. As in the first-order case, every algebraic translation F :
T �� T ′ between second-order algebraic theories contravariantly induces an alge-
braic functor Mod (T ′) �� Mod (T ) : S � �� S F between the corresponding cat-
egories of models. We also have the following fundamental result.

Theorem 6.2. The algebraic functorMod (T ′) �� Mod (T ) induced by a second-
order algebraic translation T �� T ′ has a left adjoint.

7 Concluding Remarks

We have introduced second-order algebraic theories (Section 4): (i) showing them
to be the presentation-independent categorical syntax of second-order equational
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presentations (Theorems 4.1, 5.1, and 5.2), and (ii) establishing that their func-
torial semantics amounts to second-order universal algebra (Theorem 6.1 and
Corollary 6.1). In the context of (i), our development included a notion of
second-order syntactic translation (Section 5), which, in the context of (ii),
contravariantly gives rise to algebraic functors between categories of models
(Theorem 6.2).

With this theory in place, one is now in a position to: (a) consider con-
structions on second-order equational presentations in a categorical setting,
and indeed the developments for (first-order) algebraic theories on limits, col-
imits, and tensor product carry over to the second-order setting; (b) investi-
gate conservative-extension results for second-order equational presentations in
a mathematical framework; and (c) study Morita equivalence for second-order
algebraic theories.
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Abstract. We are interested in frame definability of classes of trees,
using formulas of the μ-calculus. In this set up, the proposition letters
(or in other words, the free variables) in the μ-formulas correspond to
second order variables over which universally quantify. Our main result
is a semantic characterization of the MSO definable classes of trees that
are definable by a μ-formula. We also show that it is decidable whether
a given MSO formula corresponds to a μ-formula, in the sense that they
define the same class of trees.

Basic modal logic and μ-calculus can be seen as logical languages for talking
about Kripke models and Kripke frames. On Kripke models every modal formula
is equivalent to a first order formula in one free variable and every μ-calculus
formula is equivalent to a monadic second order formula in one free first order
variable. On Kripke frames, we universally quantify over the free propositional
variables occurring in the formulas and each modal formula or μ-formula is
equivalent to a sentence of monadic second order logic. For example, the modal
formula p→ �p corresponds locally on Kripke models to the first order formula
α(u, P ) = P (u) → ∃v(uRv ∧P (v)) (where P is a unary predicate corresponding
to p, R is the binary relation of the model and u is a point of the model). The
same modal formula corresponds globally on Kripke frames to the second order
sentence ∀P∀uα(u, P ), which happens to be equivalent to the first order sentence
∀u, uRu.

The expressive power of modal logic from both perspectives (models and
frames) has been extensively studied. For Kripke models, Johan van Benthem
characterized modal logic semantically as the bisimulation invariant fragment of
first order logic [vB76]. The problem whether a formula of first order logic in
one free variable has a modal correspondent on the level of models, is undecid-
able [vB96].

The expressive power of modal logic on Kripke frames has been studied since
the 1970s and this study gave rise to many key results in the modal logic area.
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When interpreted on frames, modal logic corresponds to a fragment of monadic
second order logic, because the definition of validity involves quantifying over all
the proposition letters in the formulas. However, most work has concentrated on
the first order aspect of modal definability.

A landmark result is the Goldblatt-Thomason Theorem [GT75] which gives
a characterization of the first order definable classes of frames that are modally
definable, in terms of semantic criteria. It is undecidable whether a given first
order sentence corresponds to a modal formula, in the sense that they define the
same class of frames.

On the level of Kripke models, the expressive power of the μ-calculus is well
understood. In [JW96], David Janin and Igor Walukiewicz showed that the
μ-calculus is the bisimulation invariant fragment of MSO. It is undecidable
whether a class of Kripke models definable in MSO is definable by a formula of
the μ-calculus. For classes of trees, the problem becomes decidable (see [JW96]).

About the expressive power of the μ-calculus on the level of Kripke frames,
nothing is known. This paper contributes to a partial solution of this question by
giving a characterization of the MSO definable classes of trees that are definable
by a μ-formula. Our main result states that an MSO definable class of trees is
definable in the μ-calculus iff it is closed for subtrees and p-morphic images. We
also show that given an MSO formula, it is decidable whether there exists a
μ-formula which defines the same class of trees as the MSO formula.

The proof is in three steps. First, we use the connection between MSO and
the graded μ-calculus proved by Igor Walukiewicz [Wal02] and establish a cor-
respondence between the MSO formulas that are preserved under p-morphic
images and a fragment that is between the μ-calculus and the graded μ-calculus
(the fragment with a counting � operator and a usual � operator). We call this
fragment the �-graded μ-calculus.

The second step consists in showing that each �-graded μ-formula ϕ can be
translated into a μ-formula ψ such that locally, the truth of ϕ (on trees seen as
Kripke models) corresponds to the validity of ψ (on trees seen as Kripke frames).
So this step is a move from the model perspective to the frame perspective. The
last step consists in shifting from the local perspective to the global one (that
is, we are interested in validity at all points, not at a given point).

1 Preliminaries

μ-calculus. The set of formulas of the μ-calculus (over a set Prop of proposition
letters and a set Var of variables) is given by

ϕ ::= ) | p | ¬p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �ϕ | μx.ϕ | νx.ϕ,

where p ranges over the set Prop, x ranges over the set Var .
A Kripke frame over a set Prop is a pair (W,R), where W is a set and R

a binary relation on W . A Kripke model over Prop is a triple (W,R, V ) where
(W,R) is a Kripke frame and V : Prop → P(W ) a valuation.



Frame Definability for Classes of Trees in the μ-calculus 383

Given a formula ϕ, a Kripke model M = (W,R, V ) and an assignment τ :
Var → P(W ), we define a subset [[ϕ]]M,τ that is interpreted as the set of points
at which ϕ is true. We only recall that

[[μx.ϕ]]M,τ =
⋂
{U ⊆W | [[ϕ]]M,τ [x:=U ] ⊆ U},

[[νx.ϕ]]M,τ =
⋃
{U ⊆W | U ⊆ [[ϕ]]M,τ [x:=U ]},

where τ [x := U ] is the assignment τ ′ such that τ ′(x) = U and τ ′(y) = τ(y), for
all y �= x. The set [[μx.ϕ]]M,τ is the least fixpoint of the map ϕx : P(W ) → P(W )
defined by ϕx(U) := [[ϕ]]M,τ [x:=U ], for all U ⊆W .

In case w ∈ [[ϕ]]M,τ , we write M, w �τ ϕ and we say that ϕ is true at w. If all
the variables in ϕ are bound, we simply write M, w � ϕ. A formula ϕ is true in
M, notation: M � ϕ, if for all w ∈ W , we have M, w � ϕ. Two formulas ϕ and
ψ are equivalent if for all models M and for all w ∈ M, M, w � ϕ iff M, w � ψ.

If (W,R) is a Kripke frame and w belongs to W , we say that ϕ is valid at
w if for all valuations V , ϕ is true at w in (W,R, V ). We use the notation
(W,R), w � ϕ. Finally, ϕ is valid in (W,R), notation: (W,R) � ϕ, if ϕ is valid
at w, for all w in W .

Trees. Our characterizations apply only to classes of trees, not classes of arbi-
trary Kripke frames.

Let (W,R) be a Kripke frame. A point r in W is a root if for all w in W , there
is a sequence w0, . . . , wn such that w0 = r, wn = w and (wi, wi+1) belongs to R,
for all i ∈ {0, . . . , n− 1}. The frame (W,R) is a tree if it has a root, every point
distinct from the root has a unique predecessor and the root has no predecessor.
If (W,R, V ) is a Kripke model over a set Prop and (W,R) is a tree, we say that
(W,R, V ) is a tree Kripke model over Prop or simply a tree over Prop or a tree
model. Two formulas ϕ and ψ over Prop are equivalent on tree models if for all
trees t over Prop with root r, t, r � ϕ iff t, r � ψ.

If the frame (W,R) is a tree, v is child of w if (w, v) ∈ R and we write Child(w)
to denote the children of w. A subtree of a tree t is a tree consisting of a node
in t and all of its descendants in t. If t is a tree and u is a node of t, we let t|u
denote the subtree of t at position u.

A class of trees L over Prop is a regular class of trees if there exists an MSO
formula α such that for all trees t, t belongs to L iff α is valid on t. When this
happens, we say that α defines L.

2 μ-definability on Trees

We are interested in characterizing the regular classes of trees (seen as Kripke
frames) that are definable using μ-formulas. The characterization we propose, is
very natural and only involves two well-known notions of modal logic: subtree
and p-morphism. We recall these notions together with the notion of definability
and state our main result (Theorem 1).
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μ-definability. A class of trees L is μ-definable if there exists a μ-formula ϕ
such that L is exactly the class of trees which make ϕ valid.

p-morphisms. Let M = (W,R, V ) and M′ = (W ′, R′, V ′) be two models. A
map f : W → W ′ is a p-morphism between M and M′ if the two following
conditions hold. For all w, v ∈ W such that wRv, f(w)R′f(v). For all w ∈ W
and v′ ∈ W ′ such that f(w)R′v′, there exists v ∈ W such that f(v) = v′ and
wRv.

A class L of Kripke models is closed under p-morphic images if for all Kripke
models M ∈ L and and for all Kripke models M′ such that there is a surjective
p-morphism between M and M′, we have that M′ belongs to L. An MSO
formula α is preserved under p-morphic images for tree models if the class of
tree models defined by α is closed under p-morphic images.

Closure for subtrees. A class of trees L is closed for subtrees if for all t ∈ L
and all u ∈ t, we have that t|u belongs to L.

Theorem 1. A regular class of trees is μ-definable iff it is closed under p-
morphic images for tree models and closed for subtrees.

The rest of this paper is devoted to the proof of Theorem 1. First we characterize
the class of regular classes of trees which are preserved under p-morphic images.
It corresponds to some fragment of the graded μ-calculus (roughly, the fragment
where we allow counting with the � operator, but not the � operator). Next
we prove that this fragment defines the regular classes of trees which are of the
form {t tree | for all V : Prop′ → P(t), (t, V ), r � ϕ}, where r is the root of t
and ϕ is a formula of the μ-calculus. Finally we show how to derive Theorem 1.

3 Graded μ-calculus: Connection with MSO and
Disjunctive Normal Form

An important tool for characterizing the class of regular tree languages which
are preserved under p-morphic images, is the connection between MSO and
graded μ-calculus. We also use fact that there is a normal form for the graded
μ-formulas (when they are expressed using a ∇-like operator).

Graded μ-calculus. The set μGL of formulas of the graded μ-calculus (over a
set Prop of proposition letters and a set Var of variables) is given by

ϕ ::= ) | p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | �kϕ | �kϕ | μx.ϕ | νx.ϕ,

where p ranges over the set Prop, x ranges over the set Var and k is a natural
number. Given a formula ϕ, a model M = (W,R, V ), an assignment τ : Var →
P(W ) and w ∈W , the relation M, w � ϕ is defined by induction as in the case
of the μ-calculus with the extra conditions:
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M, w �τ �kϕ if there exist successors w0, . . . , wk of w s.t. for all i �= j,
wi �= wj and for all i ∈ {0, . . . , k}, M, wi � ϕ

M, w �τ �kϕ if w has no successors or there exist successors w1, . . . , wk

of w s.t. for all w /∈ {w1, . . . , wk},M, w � ϕ.

We define a ∇-like operator corresponding to graded μ-calculus (inspired
by [Wal02]). The ∇-formulas of the graded μ-calculus correspond exactly to
the formulas of the graded μ-calculus.

∇ operator for the graded μ-calculus. Given a multiset Φ of formulas, the
multiplicity of a formula ϕ in Φ is the number of occurrences of ϕ in Φ. The
total number of elements in a multiset, including repeated memberships, is the
cardinality of the multiset. We denote by card(Φ), the cardinality of Φ. A literal
over a set Prop is a proposition letter in Prop or the negation of a proposition
letter.

The set μGL∇ of ∇-formulas of the graded μ-calculus (over a set Prop of
proposition letters and a set Var of variables) is given by:

ϕ ::= x | ϕ ∨ ϕ | ϕ ∧ ϕ | Π • ∇g(Φ;Ψ) | μx.ϕ | νx.ϕ,

where x ranges over the set Var , Π is a conjunction literals or Π = ), Φ is a
multiset of formulas and Ψ is a finite set of formulas.

Given a formula ϕ, a model M = (W,R, V ), an assignment τ : Var → P(W )
and w ∈ W , the relationM, w �τ ϕ is defined by induction as in the case of the
μ-calculus with the extra condition: M, w �τ Π • ∇g(Φ, Ψ) iff M, w �τ Π and
for some {wϕ successor of w | ϕ ∈ Φ}, we have

1. the size of the set {wϕ | ϕ ∈ Φ} is equal to card(Φ),
2. M, wϕ �τ ϕ,
3. for all successors u of w such that u /∈ {wϕ | ϕ ∈ Φ}, M, u �τ

∨
Ψ .

A map m : μGL∇ → P(R[w]) is a ∇g-marking for (Φ, Ψ) if there exists a set
{wϕ | ϕ ∈ Φ} of size card(Φ) such that wϕ ∈ m(ϕ) and for all successors u of w
such that u /∈ {wϕ | ϕ ∈ Φ}, there is ψ ∈ Ψ such that u ∈ m(ψ).

A formula in μGL∇ is in disjunctive normal form if its only subformulas of
the form ϕ0 ∧ϕ1 are such that ϕ0 and ϕ1 are literals or conjunctions of literals.

The next result is proved by a standard (although a bit tedious) induction on
the complexity of the formulas.

Proposition 1. Each formula in μGL is equivalent to a formula in μGL∇. Each
formula in μGL∇ is equivalent to a formula in μGL.

In [Wal02], Igor Walukiewicz showed that on trees, MSO is equivalent to first
order logic extended with the unary fixpoint operator. By adapting1 the proof
of Lemma 44 in [Wal02], we can obtain the following result (see also [JL03]).
1 This adaptation is mainly based on the following observation (which is immediate

from Proposition 1): For all formulas ϕ ∈ DBF(n) (as defined in [Wal02]), there is
ψ ∈ μGL such that for all trees t, for all nodes u in t, ψ is true at u iff the formula
obtained from ϕ by relativizing all the quantifiers to the children of u, holds.
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Theorem 2 (from [Wal02]). For every MSO formula α, there is a graded
μ-formula ϕ such that for all trees t with root r, α is valid on t iff ϕ is true at
r. For every graded μ-formula ϕ, there is an MSO formula α such that for all
trees t with root r, ϕ is true at r iff α is valid on t.

As mentioned earlier, a key result for one of our proofs is the fact that the graded
μ-calculus has a normal form. This follows from a result proved by David Janin
in [JW95].

Theorem 3. Each formula of the graded μ-calculus is equivalent to a formula
of the graded μ-calculus in disjunctive normal form.

4 �-graded μ-Calculus and Preservation under p-morphic
Images

We establish a correspondence between the MSO formulas that are preserved
under p-morphic images and some set of formulas, that is in between the μ-
calculus and the graded μ-calculus. We call this set the set of �-graded formulas,
as we are only allowed to count with the � operator. For this set of �-graded
formulas, we also introduce a ∇-like operator, that we write ∇′.

�-graded μ-calculus. The set μGL� of fixpoint �-graded formulas (over a set
Prop of proposition letters and a set Var of variables) is given by

ϕ ::= ) | p | x | ϕ ∨ ϕ | ϕ ∧ ϕ | �ϕ | �kϕ | μx.ϕ | νx.ϕ,

where p ranges over the set Prop, x ranges over the set Var and k is a natural
number. Given a formula ϕ, a model M = (W,R, V ), an assignment τ : Var →
P(W ) and w ∈ W , the relationM, w �τ ϕ is defined by induction as in the case
of the graded μ-calculus, with � = �0.

The set μGL∇′
of ∇′-formulas of the graded μ-calculus are given by:

ϕ ::= x | ϕ ∨ ϕ | ϕ ∧ ϕ | Π • ∇′(Φ;Ψ) | μx.ϕ | νx.ϕ,

where x ranges over the set Var of variables, Π is a conjunction of literals or
Π = ), Φ is a multiset of formulas and Ψ is a finite set of formulas.

Given a formula ϕ, a Kripke model M = (W,R, V ), an assignment τ : Var →
P(W ) and a point w ∈ W , the relation M, w �τ ϕ is defined by induction as
in the case of the μ-calculus with the extra condition: M, w �τ Π •∇g(Φ, Ψ) iff
M, w �τ Π and for some {wϕ successor of w | ϕ ∈ Φ}, we have

1. M, wϕ �τ ϕ,
2. for all successors u of w such that u /∈ {wϕ | ϕ ∈ Φ}, M, u �τ

∨
Ψ .

A map m : μGL∇′
→ P(R[w]) is a ∇′-marking for (Φ, Ψ) if the set there exists

a set {wϕ | ϕ ∈ Φ} such that wϕ ∈ m(ϕ) and for all successors u of w such that
u /∈ {wϕ | ϕ ∈ Φ}, there is ψ ∈ Ψ such that u ∈ m(ψ).
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The only difference between a ∇′-marking and a ∇g-marking is that the set
of successors associated to a ∇′-marking might not contain points which are
pairwise distinct (as in the case for the ∇g-marking).

A formula ϕ ∈ GL�∪μGL∇′
is equivalent on tree models to an MSO formula

α if for all tree models t, α is valid on t iff ϕ is true at the root of t.
We also introduce a game semantic for the languages μGL∇ and μGL∇′

. The
fact the the existence of a winning strategy for a player in the game corresponds
to the truth of a formula at a given point, is proved using classical methods (as
in the case of μ-calculus).

Game semantics. Let ϕ be a formula in μGL∇∪μGL∇′
such that each variable

in ϕ is bound. Without loss of generality, we may assume that for all x ∈ Var
which occurs in ϕ, there is a unique subformula of ϕ, which is of the form ηx.δx,
where η ∈ {μ, ν}. We also fix a model M = (W,R, V ). We define the evaluation
game E(M, ϕ) as a parity game between two players, ∀ and ∃. The rules of the
game are given in the table below.

Position Player Possible moves
(), w) ∀ ∅
(x,w) - {(δx, w)}
(ϕ1 ∧ ϕ2, w) ∀ {(ϕ1, w), (ϕ2, w)}
(ϕ1 ∨ ϕ2, w) ∃ {(ϕ1, w), (ϕ2, w)}
(ηx.ψ, w) - {(ψ,w)}
(Π • ∇g(Φ, Ψ), w) ∃ {m : μGL∇g

→ P(R[w]) | M, w � Π
and m ∇g-marking for (Φ, Ψ)}

(Π • ∇′(Φ, Ψ), w) ∃ {m : μGL∇′
→ P(R[w]) | M, w � Π

and m ∇′-marking for (Φ, Ψ)}
m : μGL∇ ∪ μGL∇′

→ P(R[w]) ∀ {(ψ, u) | u ∈ m(ψ)}

where w belongs to W , x belongs to Var , η belongs to {μ, ν}, ϕ1, ϕ2 and ψ

belongs to μGL∇ ∪μGL∇′
, Π is a conjunction of literals or Π = ), Ψ is a finite

subset of μGL∇ ∪ μGL∇′
, Φ is a finite multiset of formulas in μGL∇ ∪ μGL∇′

.
If a match is finite, the player who get stuck, loses. If a match is infinite, we

let Inf be the set of variables x such that there are infinitely many positions
of the form (x,w) in the match. Let x0 be a variable in Inf such that for all
variables x ∈ Inf , δx is a subformula of δx0 . If x0 is bound by a μ-operator, then
∀ wins. Otherwise ∃ wins.

The notions of strategy and winning strategy for a player are defined as usual.
If h is a strategy for a player P , a match during which P plays according to h
is called an h-conform match.

Proposition 2. Let ϕ be a formula in μGL∇ ∪ μGL∇′
. For all Kripke models

M = (W,R, V ) and all w ∈ W , M, w � ϕ iff ∃ has a winning strategy in the
game E(M, ϕ) with starting position (w,ϕ).

We are now ready to show that modulo equivalence on trees, the MSO formulas
preserved under p-morphic images are exactly the �-graded formulas.
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Proposition 3. Let α be an MSO formula. The following are equivalent:

– α is equivalent on tree models to a �-graded formula,
– α is equivalent on tree models to a formula in μGL∇′

,
– α is preserved under p-morphic images for tree models .

Proof. We only give details for the hardest implication which is that an MSO
formula which is preserved under p-morphic images for tree models is equivalent
on tree models to a ∇′-graded fixpoint formula. Let α be an MSO formula that
is preserved under p-morphic images for tree models. By Theorem 2, there is
a graded μ-formula χ such that for all tree models t with root r, α is valid on
t iff χ is true at r. By Proposition 3, we may assume the formula χ to be in
disjunctive normal form.

Now let δ be the formula χ in which we replace each operator ∇g by ∇′. We
show that under the assumption that α is preserved under p-morphic images for
trees, χ and δ are equivalent on tree models. It is easy to check that for all tree
models, if χ holds at a node, then δ also holds at the node.

For the other direction, let t be a tree model with root r and suppose that
δ is true at r. We have to show that χ is true at r. Since δ is true at r, ∃
has a winning strategy h in the evaluation game with starting position (r, δ).
We start by fixing some notation. We denote by N∗ the set of finite sequences
over N. The empty sequence ε belongs to N∗. If ϕ is a ∇′-formula, we write ϕg

for the formula obtained by replacing ∇′ by ∇g in ϕ. If Φ is set (multiset) of
formulas, we write Φg for the set (multiset) {ϕg | ϕ ∈ Φ}. We also let A be the
set {(u,n) | u is a node of t and n ∈ N∗)}.

The idea is to define a new tree model t′ the domain of which is a subset
of A and the child relation of which is such that for all (u1, (n1, . . . , nk)) and
(u2,m) in t′, (u2,m) is a child of (u1, (n1, . . . , nk)) iff u2 is a child of u1 in t and
there is a natural number nk+1 such that m = (n1, . . . , nk, nk+1). The depth of
a node (u1, (n1, . . . , nk)) in t′ is k+1. The tree t′ will also be such that its root is
(r, ε). Finally, we define a positional strategy h′ for the evaluation game E(t′, χ)
with starting position ((r, ε), χ) which satisfies the following conditions. For all
(u,n) ∈ t, there is exactly one match during which (u,n) occurs. Moreover, a
position of the form ((u,n), ϕg) is reached in an h′-conform match iff the position
(u, ϕ) is reached in an h-conform match.

The definitions of t′ and h′ will be by induction. More precisely, at stage i of
the induction, we specify which are the nodes of t′ of depth i and we also define
∃’s answer (according to h′) when a position of the form ((u,n), ϕg) is reached,
where the depth of (u,n) in t′ is i− 1.

For the basic case, the only node of depth 1 in t′ is the node (r, ε). For the in-
duction step, take i > 1 and suppose that we know already which are the nodes
in t′ of depth at most i and that we also have defined the strategy h′ for all
positions of the form ((u,n), ϕ), where the depth of (u,n) in t′ is at most i− 1.
We have to specify which points of the form (u, (n1, . . . , ni)) belongs to t′ and
what is the strategy for the points of depth i. Let (u,n) = (u, (n1, . . . , ni−1)) be
a node in t′ of depth i (note that if i = 1, then (n1, . . . , ni−1) is ε). Suppose that
in a (partially defined) h′-conform match π′, a position of the form ((u,n), ϕg)
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is reached and if n = ε, we can assume that ϕ = δ and ϕg = χ. By induc-
tion hypothesis, such a match π′ is unique. Moreover, we know (by induction
hypothesis if i > 1 or trivially if i = 1) that the position (u, ϕ) is reached in
an h-conform match π. Now, there are different possibilities depending on the
shape of ϕ. First, suppose that ϕ is a disjunction ϕ1∨ϕ2. Then, in the h-conform
match π, the position following (u, ϕ) is of the form (u, ψ), where ψ is either ϕ1
or ϕ2. We define h′ such that the position following ((u,n), ϕg) is ((u,n), ψg).
Finally, suppose that ϕg is of the form Π • ∇g(Φg;Ψg). Then, in the h-conform
match π, the position following (u, ϕ) is a marking m : Φ ∪ Ψ → P(Child(s))
such that m is a ∇′-marking for (Φ, Ψ). In the h′-conform match π′, we first
define which are the children of (u,n) in t′ and then, we give a ∇g-marking
mg : Child(u,n) → P(Ψg ∪ Γ g) for (Φg, Ψg).

Since m is a ∇′-marking for (Φ, Ψ), there exists {uϕ | ϕ ∈ Φ} such that the
two following conditions holds. For all ϕ ∈ Φ, uϕ is a child of u and uϕ belongs to
m(ϕ). For all children v of u such that v does not belong to {uϕ | ϕ ∈ Φ}, there
exists ψ ∈ Ψ such that v belongs to m(ψ). We let u1, . . . , uk be the children of u
such that {u1, . . . , uk} = {uψ | ψ ∈ Ψ} and ui �= uj, if i �= j. Fix i in {1, . . . , k}.
Let Φi be the biggest submultiset of Φ such that for all ϕ in Φi, uϕ = ui. We let
k(i)+1 be the size of Φi and we fix an arbitrary bijection fi between Φi and the
set {0, . . . , k(i)}. Now, we add to t′ the set of nodes

{(ui, (n1, . . . , ni−1, j)) | i ∈ {1, . . . , k}, 0 ≤ j ≤ k(i)}∪
{(v, (n1, . . . , ni−1, 0)) | v child of u, v /∈ {u1, . . . , uk}}.

These points are the children of (u,n) in t′.
We are now going to define a ∇g-marking mg : Φg ∪ Ψg → P(Child(s,n)) for

(Φg, Ψg). Fix a formula ϕg in Φg. We define mg(ϕg) as {(ui, (n1, . . . , ni−1, j))},
if ϕ belongs to Φi and fi(ϕ) = j. Next fix a formula ψg in Ψg. We define mg

such that mg(ψg) = {(v, (n1, . . . , ni−1, 0)) | v /∈ {u1, . . . , uk}, v ∈ m(ψ)}. The
proofs that mg is a ∇g-marking for (Φg, Ψg) and that the induction hypothesis
remain true are standard. This finishes the definition of t′ and h′.

It is easy to check that the strategy h′ is winning for ∃ in the evaluation
game E(t′, χ) with starting position ((r, ε), χ). Therefore, the formula χ is true
at the root of t′. Now the map which sends a node (u,n) to u is a surjective
p-morphism between t′ and t. So t is a p-morphic image of t′. Since α is preserved
under p-morphic images for trees, χ is also true at the root of t and this finishes
the proof that χ and δ are equivalent on tree models. It follows that χ and α are
also equivalent on trees.

5 μ-definability at the Root and μ-definability

μ-definability at the root. A tree language L over Prop is μ-definable at
the root if there are a set Prop ′ of proposition letters and a μ-formula ϕ over
Prop∪Prop ′ such that L is equal to {t tree | for all V : Prop′ → P(t), (t, V ), r �
ϕ}, where r is the root of t.
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Proposition 4. A regular class of trees over Prop is μ-definable at the root iff
it is closed under p-morphic images for tree models.

Proof. The only difficult direction is from right to left. Let L be a regular class of
trees over Prop that is closed under p-morphic images for trees. By Proposition 3,
there is a �-graded formula ϕ over Prop such that for all trees t over Prop with
root r, ϕ is true at r iff t belongs to L. Now we show by induction on the
complexity of ϕ that there exist a set of propositions Prop′ and a μ-formula ψ
over Prop ∪ Prop′ such that for all trees t over Prop with root r and for all
assignments τ : Var → P(t),

t, r �τ ϕ iff for all valuations V : Prop ′ → P(t), (t, V ), r �τ ψ. (1)

When this happens, we will say that ψ is a μ-translation of ϕ. Moreover, we
prove that for all trees t over Prop and for all assignments τ : Var → P(t), there
is a valuation Vψ(τ) : Prop′ → P(t) such that for all nodes u in t,

(t, Vψ(τ)), u �τ ψ iff for all valuations V : Prop′ → P(t), (t, V ), u �τ ψ. (2)

When a valuation Vψ(τ) : Prop′ → P(t) satisfies condition (2), we say that Vψ(τ)
is a distinctive valuation for t, τ and ψ.

We only treat the most two difficult cases where ϕ is a formula of the form
�kϕ1 or of the form ηx.ϕ1, where η belongs to {μ, ν}.

Suppose that ϕ is of the form �kϕ1. By induction hypothesis, there is a
set Prop′

1 and there is a μ-formula ψ1 over Prop ∪ Prop′
1 such that ψ1 is a μ-

translation of ϕ1. We let p0, . . . , pk be fresh proposition letters and we define
Prop′ as Prop′

1 ∪ {p0, . . . , pk}. We let ψ be the formula∨
{�(¬pi ∨ ψ1) | 0 ≤ i ≤ k} ∨

∨
{�(pi ∧ pi′) | 0 ≤ i, i′ ≤ k, i �= i′}.

Fix a tree model t and an assignment τ : Var → P(t). We define Vψ(τ). Let V0
be the assignment Vψ1(τ) and let u be a point in t. We define U = {uj | j ∈ J} as
the biggest set of successors of u such that for all j ∈ J , we have (t, V0), uj � ψ1.
Suppose first that the size of U is less or equal to k. So U is a set of the form
{u1, . . . , un}, where n ≤ k. Then we can fix a valuation Vu which satisfies the
following. For all i ∈ {0, . . . , k}, Vu(pi) is a set of the form {ui}, where ui ∈ U .
Moreover, for all v ∈ U , there is i ∈ {0, . . . , k} such that Vu(pi) = {v}.

Next suppose that U is infinite or U is a finite set of size strictly greater than
k. Then we can fix an arbitrary valuation Vu such that the following hold. For
all i ∈ {0, . . . , k}, Vu(pi) is a set of the form {ui}, where ui ∈ U . Moreover, for
all i, i′ ∈ {0, . . . , k}, if i �= i′, then ui �= ui′ . That is, for all i, i′ ∈ {0, . . . , k}, if
i �= i′, then Vu(pi) ∩ Vu(pj) = ∅.

We are now ready to define Vψ(τ). For all propositions p′ ∈ Prop ′, we have

Vψ(τ)(p′) =

{⋃
{Vu(pi) | u ∈ t} if p′ = pi for some i ∈ {0, . . . , k},

V0(p′) otherwise.

The proofs ψ is a μ-translation of ϕ and that Vψ(τ) is a distinctive valuation for
t, are left as an exercise to the reader.
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Next, suppose that ϕ is a formula of the form ηx.ϕ1, where η belongs to
{μ, ν}. We will assume that η = μ, but the proof can be easily adapted to the
case where η = ν. By induction hypothesis, there is a set Prop′

1 and there is a
μ-formula ψ1 over Prop ∪Prop ′

1 such that ψ1 is a μ-translation of ϕ1. Moreover,
for all trees t and all assignments τ : Var → P(t), there is a distinctive valuation
Vψ1(τ) for t, τ and ψ1.

Now we define ψ as μx.ψ1 and given a tree model t and an assignment τ :
Var → P(t), we define Vψ(τ) as the valuation Vψ1(τ [x �→ U0]), where U0 :=
[[μx.ϕ1]]t,τ (= [[ϕ]]t,τ ). We have to show that Vψ(τ) is a distinctive valuation for
t, τ and ψ and that ψ is a μ-translation of ϕ. It is sufficient to prove that for all
trees t, all assignments τ : Var → P(t) and all u ∈ t, we have

t, u �τ ϕ ⇒ for all valuations V : Prop′ → P(t), (t, V ), u �τ ψ, (3)

(t, Vψ(τ)), u �τ ψ ⇒ t, u �τ ϕ. (4)

First, we show that condition (3) holds. So suppose that t, u �τ μx.ϕ1 and let
V : Prop′ → P(t) be a valuation. We have to verify that (t, V ), u �τ μx.ψ1.
That is, for all subsets U of t such that [[ψ1]](t,V ),τ [x �→U ] ⊆ U , we have u ∈ U .

So fix a subset U of t such that [[ψ1]](t,V ),τ [x �→U ] ⊆ U . Since ψ1 is a μ-translation
of ϕ1, we know that [[ϕ1]]t,τ [x �→U ] is a subset of [[ψ1]](t,V ),τ [x �→U ]. It follows that
[[ϕ1]]t,τ [x �→U ] is a subset of U . That is, U is a pre-fixpoint of (ϕ1)x in t under
the assignment τ . Since t, u �τ μx.ϕ1, this implies that u belongs to U and this
finishes the proof of implication (3).

Next we show that implication (4) is true. Assume that (t, Vψ(τ)), u �τ μx.ψ1.
We have to prove that u belongs to [[ϕ]]t,τ . That is, u belongs to U0. Since
(t, Vψ(τ)), u �τ μx.ψ1, u belongs to all the pre-fixpoints of the map (ψ1)x in the
tree (t, Vψ(τ)) under the assignment τ . So it is sufficient to show that the set U0
is a pre-fixpoint of the map (ψ1)x in the tree (t, Vψ(τ)) under the assignment τ .
That is,

[[ψ1]](t,Vψ(τ)),τ0 ⊆ U0, (5)

where τ0 is the assignment τ [x �→ U0]. By definition of Vψ(τ), we have that
[[ψ1]](t,Vψ(τ)),τ0 is equal to [[ψ]](t,Vψ1(τ0)),τ0 . Recall that for all assignments τ ′ :
Var → P(t), we have that [[ψ1]](t,Vψ1 (τ ′)),τ ′ is equal to [[ϕ1]]t,τ ′ , as Vψ1(τ ′) is a
distinctive valuation for t, τ ′ and ψ1. In particular, [[ψ1]](t,Vψ1(τ0)),τ0 is equal to
[[ϕ1]]t,τ0 . Since U0 = [[μx.ϕ1]]t,τ , we also have that [[ϕ1]]t,τ0 is equal to [[μx.ϕ1]]t,τ .
That is, [[ϕ1]]t,τ0 is equal to U0. Putting everything together, we obtain that
[[ψ1]](t,Vψ(τ)),τ0 is equal to U0. Condition (5) immediately follows.

We can now prove Theorem 1.

Proof. We concentrate on the hardest direction, which is from left to right. Let
L be a regular tree language, which is closed under p-morphic images for tree
models and closed for subtrees. It follows from Proposition 4 that there is a
μ-formula ϕ such that for all trees t, t belongs to L iff the formula ϕ is valid at
the root of t. Now we prove that for all trees t, t belongs to L iff the formula ϕ
is valid at all the nodes of t. It will immediately follow that L is μ-definable.
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For the direction from right to left, let t be a tree such that ϕ is valid at all
the nodes of t. In particular, ϕ is valid at the root. Therefore, t belongs to L.

For the other direction, let t be a tree in L. We have to show that for all nodes
u in t, ϕ is valid at u. Fix a node u in t. Since t belongs to L and since L is
closed under subtrees, the tree t|u belongs to L. That is, the formula ϕ is valid
at the root of t|u. It follows that the formula ϕ is valid at u in t.

Corollary 1. It is decidable whether a regular class of trees is μ-definable.

In order to derive this corollary from Theorem 1, it is sufficient to show that both
closure for subtrees and closure under p-morphic images are decidable properties
of regular classes of trees. Given a regular class of trees L, it is possible to find an
MSO formula α such that L is closed for subtrees iff α is valid on trees. Decid-
ability of closure for subtrees follows then from the decidability of MSO on trees.
Decidability of closure under p-morphic images follows from a careful inspection
of the proof of Proposition 3 together with the decidability of MSO on trees.

6 Discussion

A natural further question is to investigate the μ-definability for classes of frames,
not only classes of trees. Unlike on trees, graded μ-calculus does not have the
same expressive power as MSO on models: it corresponds to the fragment of
MSO invariant under counting bisimilation (see [JL03] and [Wal02]). Moreover,
the proof of Proposition 3 does not work for classes of frames, as it relies on the
fact that given a disjunctive formula, a strategy for ∃ in the game associated to
the formula and a tree t, there is at most one match conform to the strategy
during which a given node occurs.
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Evaluating Non-square Sparse Bilinear Forms on
Multiple Vector Pairs in the I/O-Model

Gero Greiner and Riko Jacob

Technische Universität München

Abstract. We consider evaluating one bilinear form defined by a sparse
Ny × Nx matrix A having h entries on w pairs of vectors The model
of computation is the semiring I/O-model with main memory size M
and block size B. For a range of low densities (small h), we determine
the I/O-complexity of this task for all meaningful choices of Nx, Ny, w,
M and B, as long as M ≥ B2 (tall cache assumption). To this end, we
present asymptotically optimal algorithms and matching lower bounds.
Moreover, we show that multiplying the matrix A with w vectors has
the same worst-case I/O-complexity.

1 Introduction

We consider the problem of computing w scalars z(i) = y(i)TAx(i), 0 ≤ i ≤ w,
where A is a sparse matrix with h non-zero entries, and all x(i) and y(i) are
(dense) vectors. This is highly related to the matrix vector products Ax(i),
0 ≤ i ≤ w, and we show that both tasks actually have asymptotically the same
complexity in our model. While, from a traditional point of view, bilinear form
and matrix vector product are easily obtained with a number of multiplications
equal to the number of matrix entries, the sparseness sometimes induces irreg-
ular access patterns that lead to situations where memory access becomes the
bottleneck of computation. Empirical studies show that for the naive algorithm,
CPU-usage can be as low as 10% [6,9].

One way of dealing with this problem is the construction of algorithms where,
instead of CPU-cycles, the movement of data between layers of the memory
hierarchy is optimized. In this paper, we use a slight modification of the I/O-
model [1], the semiring I/O-model with the parameters M and B, denoting the
memory size, and the size of a block, see Section 2 for details. In this model,
Bender, Brodal, Fagerberg, Jacob and Vicari [2] determined the I/O-complexity
of computing the sparse matrix vector product for square matrices. These results
are generalised here to the case of non-square matrices. Furthermore, we extend
the results to the evaluation of multiple products, i.e., the matrix vector products
of multiple vectors with the same matrix. Considering the evaluation of matrix
vector products on multiple vectors is a step towards closing the gap between
sparse matrix vector multiplication and sparse matrix dense matrix multiplica-
tion since the set of w vectors x(i) constitutes a dense Nx × w matrix X.

P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 393–404, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



394 G. Greiner and R. Jacob

Related work. Evaluating the matrix vector product Ax for an N × N
matrix A with kN entries has been investigated in [2]. They show that the
I/O-complexity of this task for matrices in the so called column major layout
is Θ

(
min

{
kN
B log M

B

N
max{M,k} , kN

})
1, and Θ

(
min

{
kN
B log M

B

N
Mk , kN

})
for a

layout chosen by the program.
The multiplication of two dense matrices has been examined by Hong and

Kung in [5], showing a bound of Θ
(

N3

B
√
M

)
on the number of I/Os. Very re-

cently, in [4] the multiplication of a sparse matrix with a dense matrix was
considered.give the formulas? For sparse N ×N matrices with kN entries, it is
shown that for certain ranges of k, the performance can be increased by finding
denser than average submatrices.

The evaluation of bilinear forms in the I/O-model has been considered as an
optimisation problem in [7]. There it has been shown that an optimal program
for the evaluation of matrix vector products is NP-hard to find, even for B = 1.
In [8], the I/O-complexity of evaluating the bilinear form for a (non-square)
Ny ×Nx matrix with h entries that form a diagonal band, i.e., entries are only

placed near the diagonal, is determined to be Θ
(

h
BM + Nx+Ny

B

)
.

Our results. In this work, we consider the case where the number of entries
for each submatrix in A is proportional to the number of rows and columns of
the submatrix. This is possible if the average number of entries per column in A
is some k ≤ Ny

M1−εNε
x

with constant ε > 0. For such k, a modification of the proof

of [4] shows that the I/O-complexity of AX for any w ≥ B is Θ
(
wh
B

)
. As a lower

bound, this extends directly to the case of multiplying a sparse matrix with w
vectors, even if the program is allowed to choose the layout of the vectors.

The case of w ≤ B is examined here in detail, forming a bridge between the
results of [2] and [4]. For matrices of the described density (h/Nx ≤ Ny

M1−εNε
x
),

we cover all dimensions of A, and products with an arbitrary number of vectors.
However, for all other choices of h, we present upper bounds in form of algo-
rithms. For certain cases where B/w is small the algorithms are indeed optimal
for all ranges of h. Furthermore, we show that evaluating the bilinear form has
the same I/O-complexity as multiplying vectors with the same matrix.

Theorem 1. Given a matrix A with fixed layout and fixed parameters M and
B. Evaluating w bilinear forms with A has the same semiring I/O-complexity as
evaluating the matrix vector product of A with w vectors if at least � = Ω

(
hw
B

)
I/Os are required.

This result is explained in Section 3 and allows us to extend the results from [2]
to matrices in row major layout, i.e., where the entries are given in external
memory in a consecutive ordering by their row index, and their column index
to break ties. Moreover, our main results hold for bilinear forms and matrix
vector products, both, in column major and row major layout. Note that for

1 logb(x) := max{logb(x), 1}.
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Theorem 2, the dimensions Nx and Ny have to be swapped if A is given in row
major layout.

For the complexity of the task, we are going to prove the following theorems
depending on the layout of the matrix A. Similar to [4], our bounds are only
asymptotically tight if we assume a tall cache, i.e., M ≥ B2. However, this is
only necessary to transpose X for some of the presented algorithms.

Our results for the case that the matrix A is stored in column major layout,
are given in the following theorem.

Theorem 2. Given an Ny×Nx matrix A with h entries in column major layout
and parameters B, M . Assume M ≥ 4B, h/Nx ≤ N ε

y, and logNx ≤ N ε
y for

some 0 < ε < 1. Then, evaluating w bilinear products with A has (worst-case)
complexity in the semiring I/O-model

Θ
(
min

{
h ,

h logNy

logNx
, hB log M

B
min

{
Ny

M ,
NxNy

h

}
+ hw

B log M
B

NxNy

hM

})
unless this term is asymptotically smaller than hw

B .

The terms are obtained by a modification of the proof in [2] for a single matrix
vector multiplication, also keeping track of the different matrix dimensions. Ad-
ditionally, the lower bounds of Theorem 3 apply which yields the second term
of the sum.

On the algorithmic side, for very asymmetric matrices A, where the number of
columns is much higher than the number of rows, building a table of tuples with
multiple dimensions of all y(i) vectors can be superior to the direct algorithm.
The direct algorithm simply scans over A and loads for each aij the correspond-
ing vector elements x(0)

j , . . . , x
(w)
j and y(0)

i , . . . , y
(w)
i to create products.

In [2], an algorithm is presented based on sorting the matrix entries to build
row sums. This sorting approach can be used to initially change the layout of A
to the best-case layout. Then, the sorting algorithm for best-case layout can be
applied for one vector pair after another.

For the best-case layout, i.e., if the algorithm is allowed to choose the layout
of the matrix, the following theorem holds.

Theorem 3. Given an Ny × Nx matrix A with h entries in best-case layout
and parameters B, M . Assume M ≥ 4B, for Ny ≤ Nx, and h/Nx ≤ 6

√
Ny.

Then, evaluating w bilinear products with A has (worst-case) complexity in the
semiring I/O-model

Θ
(
min

{
hw
B log M

B

NxNy

hM , h , h log(wNxNy logNx

BhM )/ logNx

})
unless this term is asymptotically smaller than hw

B .

All our algorithms require at least hw/B I/Os. In contrast, we do not know a
corresponding lower bound that would hold for all choices of the parameters.
However, if the dimensions are polynomially bounded in each other (which is
expressed using a condition on the density in the lemma), the results of [4] can
be extended to obtain a lower bound of Ω (hw/B) by the following lemma.
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Lemma 1. Let A be a sparse Ny×Nx matrix with h non-zero entries for Nx ≥
Ny. For an average number of entries per column h/Nx ≤ Ny/(M1−εN ε

x) with
constant ε > 0, evaluating w bilinear products over a semiring requires Ω

(
hw
B

)
I/Os.

The proof of this lemma can be found in [3]. Hence, for a Ny × Nx matrix A
with h non-zero entries, for Nx ≥ Ny but N2ε

x ≤ Ny, and average number of
entries per column h/Nx ≤

√
Ny/M a lower bound of Ω (hw/B) is given.

1.1 Outline

The outline of the paper is as follows: In Section 2, the model of computation is
introduced along with the terminology used in this paper. The main results are
then proven by providing (optimal) algorithms for upper bounding the complex-
ity in Section 4 and up to constant factors matching lower bounds in Section 5.
Due to size limitations, not all proofs are presented in full detail here, but they
can be found the full version of the paper [3].

2 Model of Computation

We use a combination of the I/O-model described in [1] and the model used in [5],
the so called semiring I/O-model introduced in [2]. It models two layers of the
memory hierarchy, namely a fast memory of limited capacity M called internal
memory. Calculations, namely addition, multiplication, copying, and deletion,
can only be performed on the elements residing in internal memory, whereas the
program inputs and any (intermediate) results are stored on an external memory
(aka disk) of unbounded size which is organised in blocks (aka tracks) of size B.
The I/O cost of a program is the number of transfers of a block between internal
and external memory. Programs are assumed to work for an arbitrary semiring
defining addition and multiplication, i.e., subtraction and division may not be
used. Hence, all intermediate results have one of the following forms: ajkx

(i)
k ,

y
(i)
j ajk, x

(i)
k y

(i)
j and y

(i)
j ajkx

(i)
k , for 1 ≤ i ≤ w, j ∈ [Nx], k ∈ [Ny], are referred

to as elementary products, using the notation [N ] = {1, . . . , N}. Sums of the
form

∑
k∈S′ ajkx

(i)
k ,
∑

j∈S y
(i)
j ajk, and

∑
j∈S
∑

k∈S′ y
(i)
j ajkx

(i)
k , with 1 ≤ i ≤ w,

S ⊆ [Nx] and S′ ⊆ [Ny], are called partial sums. Altogether, the term canonical
partial result refers to any of these forms. The detailed definition and the argu-
ment leading to this classification can be found in [3]. For the lower bounds we
use the non-uniform notion that an algorithm is a family of programs where the
program can be chosen according to the parameters underlying the problem. By
�(A), we denote the maximum number of I/Os induced by the algorithm A for
all choices of the parameters, unless otherwise noted. In particular, for matrix
multiplications, the parameters are the dimensions, the sparseness, the confor-
mation of the matrix A, i.e., the position of the non-zero entries in A, the
memory size M and the block size B.

Since we can assume that every program requires at least one I/O, when
writing complexity using O, Θ, or Ω at least 1 is meant.
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3 Transformations

In this section, we discuss how a program that evaluates bilinear forms can be
transformed into one that computes matrix vector multiplications.

Lemma 2. In a normalised semiring I/O program evaluating a bilinear form
on multiple vector pairs, no elementary product is created twice.

For the proof of Theorem 1, we present transformations in both directions in the
following lemmas. Note that the layout of the matrix A is not of concern, it just
has to be the same for both tasks. We state the easy transformation without a
proof:

Lemma 3. If the matrix vector products Ax(i) for 1 ≤ i ≤ w can be computed
for an arbitrary semiring with � I/Os, then the bilinear forms y(i)TAx(i) can be
evaluated with at most 3� I/Os.

Lemma 4. If the bilinear forms y(i)TAx(i), 1 ≤ i ≤ w can be evaluated in the
semiring I/O-model with internal memory size M and block size B using � I/Os,
then the w products c(i) = Ax(i) can be computed using 2�+ 4wh/B I/Os with
internal memory size M +B and block size B.

Proof. Here, we will only give a short description of the transformation of a
program. A more detailed analysis can be found in [3].

Let P be a program to evaluate the w bilinear forms using � I/Os. By Lemma 2,
there is a program P̂ for the same task which computes only canonical partial
results with at most � I/Os. We can then use P̂ to construct a program for the
matrix vector products. This construction is based on the following idea. During
a simulation of P̂ , canonical partial results are extracted, and temporarily stored
on disk. In a second phase, P̂ is simulated time-reversed, as will be described later
on, and the movement of y(i)

j variables in P̂ can be used to lead the previously
extracted results to the corresponding position in y(i). In the end, the memory
cells, where y(i) is expected for P , constitute c(i).

Construction. For the first phase, we create a program PF for the semiring
I/O-model with internal memory size M+B. We use the first M cells in memory
for a simulation of P̂ , and reserve the last B cells (mM+1, . . . ,mM+B) =: B for
further output operations. As soon as B is entirely full, i.e., no element in B is
0, the block is moved to disk.

During the simulation of P̂ , the following additional operations are performed.
If a computation σ in P̂ performs a multiplication of an element ml = y

(i)
j or

ml = y
(i)
j x

(i)
k with an element ml′ then ml′ is copied into an empty position of B

immediately before σ is performed. Furthermore, whenever in P̂ a computation σ
involves an element ml = x

(i)
k , the result can only be of the form x

(i)
k ajk, x

(i)
k y

(i)
j ,

x
(i)
k (y(i)

j ajk), or x(i)
k (
∑

j∈S y
(i)
j ajk). For the latter two cases, x(i)

k is copied into an
empty cell of B before performing σ. We call these newly created copy operation
snapshot and σ its associated operation.
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The program PF is executed with input A and x(i) as given, but y(i) =
(1, . . . , 1) for all 1 ≤ i ≤ w. For each elementary product created in P̂ , there
are at most two elements copied to B (the corresponding x(i)

k and ajk). Recall
that in P̂ elementary products are only created once. Since there are at most
wh elementary products necessary, PF performs no more than �+

⌈2wh
B

⌉
I/Os.

For the second phase, we have to time-reverse PF . In this phase, we consider
only the elements that consist of a polynomial containing a y(i)

j , all other elements
are ignored. When time is inverted, naturally an input becomes an output and
vice versa. Internal computation operations are mapped in the following way.
To this end, each copy operation of P̂ that sets mk := ml becomes a sum
operation ml := ml +mk in the time-reversed program PB. Each sum operation
mi := mj + mk in PF becomes a copy operation mj := mk := mi in PB .
Delete operations of PF are simply ignored in PB , i.e., nothing is created. The
additional snapshot operations introduced in PF are only made when an y

(i)
j

is involved in a computation operation σ. Considering the different cases of
associated operations, the elements that were extracted in PF are now copied,
multiplied, or added into one of the cells that are accessed by σ.

Correctness. Since every canonical partial result that includes some y(i)
j has

an input of the element y(i)
j as its predecessor in PF , in the time-reversed PB ,

all created partial results can be transferred to the initial position of y(i)
j . Fur-

thermore, since all hw elementary products have to be created for the bilinear
product, and an y(i)

j is a predecessor for each, the created vectors c(i), 1 ≤ i ≤ w
are complete, i.e., the summation does not lack summands.

4 Algorithms

Note that all the presented algorithms can be used for both, evaluating matrix
vector products and bilinear forms, by Theorem 1.

4.1 Direct Algorithm

The computation of w ≤ B bilinear forms is possible with O (h) I/Os by con-
sidering the non-zero entries of A in an arbitrary order. For every entry ajk

the elementary products x(0)
k ajky

(0)
j , . . . , x

(w)
k ajky

(w)
j are added to the respective

current partial sums z(0), . . . , z(w). For this to occur only a constant number
of I/Os, the values x(0)

k , . . . , x
(w)
k need to be stored in one block (or at least

consecutively on disk), similarly to y(0)
j , . . . , y

(w)
j . This can be achieved by trans-

posing the matrices X =
[
x(0) . . . x(w)

]
and Y =

[
y(0) . . . y(w)

]
, which takes

O ((Nx +Ny)/B) = O (h) I/Os [1], given the tall cache assumption M ≥ B2.

4.2 Sorting Based Algorithm

In [2] a sorting based approach for evaluating the product Ax for square matrices
is presented. These algorithms can be extended straightforwardly to the matrix
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vector product of a non-square matrix A with one vector x. For column major
layout the vector c := Ax can be created with O

(
h
B logM/B min

{
NxNy

h ,
Ny

M

})
I/Os.

For the best-case layout the algorithm uses O
(
h
B logM/B

NxNy

Mh

)
I/Os. With

slight modifications, this algorithm can also be described for a broader class of
layouts. For this class of best-case layouts, the matrix A is given as a split-up
of its columns into meta-columns where each meta-column is written in row
major layout. Columns of a meta-column have to be continuous, each column is
assigned to only one meta-column, and each meta-columns consist of an arbitrary
number of columns, but at most M − B. Additionally, the number of meta-
columns is at most �Nx/B�+ 2 �h/Ny�. Since each meta-column consists of no
more than M −B continuous columns, for each meta-column, the corresponding
elements of x can all be loaded into internal memory, and the meta-column
is scanned to create elementary products which are then written back to A.
Afterwards, if Nx/B > h/Ny, meta-columns are merged together using Merge
sort until there are at most h/Ny runs. Since in this case there are no more than

3 �Nx/B� meta-columns, O
(
h
B logM/B

NxNy

Bh

)
= O

(
h
B logM/B

NxNy

Mh

)
I/Os are

sufficient. Otherwise, if h/Ny ≥ Nx/B, there are at most 3 �h/Ny�meta-columns.
Since meta-columns and runs are in row major layout, with one scan of each
meta-column / run, elements from the same row can be summed together, and
meta-columns / runs become a single column. All created columns can then be
summed into the first column with O

(
h
Ny
· Ny

B

)
I/Os. Hence, in all cases, the

matrix vector product for a matrix A given in a layout meeting the conditions
described can be determined with O

(
h
B logM/B

NxNy

Mh

)
I/Os.

Multiple Vectors. For the evaluation of w matrix vector products, the algo-
rithms can simply be run for each single vector, which increases the running time
by a factor w. However, for column major layout, it can be faster to transform
the layout of A into one belonging to the class of generalized best-case layouts
described above, and then use that algorithm for each single vector.

The transformation of the layout has two cases, depending on the parame-
ters. The first case handles situations with Nx ≤ h/(M − B), where the av-
erage column consists of more than M − B already sorted entries. Then the
Nx columns are bottom up merged using the M/B-way Merge sort, each time
reducing the number of meta-columns by a factor of M/B. This is contin-
ued as long as the resulting meta columns have width ≤ M − B, and the
number of meta columns is greater than h/Ny. Hence, the running time of

this merging is O
(
h
B logM/B min

{
M,

NxNy

h

})
I/Os, and there are at most

max {�Nx/(M −B)� , �h/Ny�} meta-columns that can contain less than Ny/2
entries, i.e., they form a generalised best case layout.

The second case assumes h/(M −B) ≤ Nx, and mimics the creation of initial
runs of length M −B. The possibility of columns having vastly different number
of entries makes this slightly more involved. First, the columns of A are split
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into 2h/Ny continuous groups such that each group contains at most Ny entries.
Then, each group that spans at most M − B columns is transformed into row
major layout using the classical M/B-way Merge sort in O

(
h
B logM/B

Ny

M

)
I/Os

Groups that span more than M − B columns are divided into subgroups that
span at most M −B. This can be achieved by greedily assigning the blocks of a
group to subgroups such that each subgroup spans no more than M−B columns.
Splitting blocks that belong to two columns is possible with O (Nx/M) I/Os.
The subgroups are then transformed into row major layout using Merge sort.
Since there are at most Ny/B blocks per group, this can be done with another

O
(
h
B logM/B

Ny

M

)
I/Os.

Because one block spans at most B columns, each of the subgroups, except at
most one per group, spans at least M − 2B columns. Since we assume M ≥ 4B
in this paper, for each group, there can be at most one meta-column with span
less than 2B. Hence, in the created layout, we have at most Nx/(2B) + 2h/Ny

meta-columns, each spanning at most M − B columns, and the algorithm for
the class of generalised best-case layouts can be applied.

4.3 Table Based Algorithm

For very asymmetric cases of A where Nx + Ny, the construction of tuples of
rows of Y, such that arbitrary dimensions of each vector can be loaded within
one I/O. We present the following algorithms in the setting of evaluating of
bilinear products.

Column Major Layout. The bilinear forms y(i)Ax(i) for w vector pairs can
be evaluated with O

(
max

{
wh
B , h

logNy

logNx

})
I/Os as follows. The algorithm starts

by creating a table of all c-tuples of rows of Y in lexicographical order of the row
indices. To this end, define c := min

{⌊
B
w

⌋
− 1,

⌊
logNx

2 logNy

⌋}
such that a c-tuple of

rows of Y does not exceed one block. Since we assume that Y is in column major
layout, it first has to be transposed which is possible with O (wNy/B) I/Os (cf.
Section 4.1). Further, since we assume a tall cache, i.e. M ≥ B2, internal memory
can hold c blocks at a time and one for the output of a created tuple.

A table of all c-tuples has size wcN c
y ≤ wc

√
Nx ≤ wNx, where the last

inequality relies upon c ≤ 1
2 logNx

√
Nx, which is true for all Nx. The table can

easily be created in O (wNx/B) I/Os, a term dominated by the I/Os needed to
read X.

After creating a table of all c-tuples of rows of Y, the algorithm simultaneously
scans the entries of A and the corresponding elements of X. Since we have
M ≥ 4B, we use one block for the scanning of A, one for elements of X, one for
a c-tuple of Y, and the last block to sum elementary results together for each
of the w ≤ B vectors. Throughout the scanning of A, for each c ≤ B entries
ai1,j1 , . . . , aic,jc , the c-tuple containing the corresponding rows i1, . . . ic of Y is
loaded, and elementary products for each pair of vectors are created. These can
be summed immediately into the block reserved for the results. Hence, O (h/c)
I/Os are sufficient to evaluate the w bilinear forms.
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Best-case Layout. If w < B and Nx ≥ N2
y , the table-based approach for

column major layout can be improved using a different layout of A. In the
following, we assume c ≤ B/w, otherwise the algorithm for column major layout
is applied. Similarly, the matrices X and Y are transposed in the beginning.

Again, we create a table of c-tuples of rows of Y, but for different c. This time,
the matrix A is read in tiles such that each tile contains on average (M −B)/w
entries, and the layout of A reflects these tiles. Using this, a tile can be loaded
and all elementary products can be created while still one free block is available
in internal memory. For a tile of height wc2

B
2NxNy

hM rows and width MB
2wc columns,

we get a performance of

O

⎛⎝h log
(
wNxNy

hBM logNx

)
logNx

⎞⎠ .

The details of the calculations can be found in the full version of the paper [3].

5 Lower Bounds

For the lower bounds, we only consider matrix vector products. By Theorem 1
this also implies lower bounds for bilinear products.

5.1 Column Major Layout

The following lower bound is only for single matrix vector products. However,
together with the lower bound for the best-case layout, multiple evaluations are
covered too.

Lemma 5. Computing over an arbitrary semiring the bilinear product with an
Nx×Ny matrix A with h entries, stored in column major layout has (worst-case)
I/O-complexity for B,M with M ≥ 4B

Ω

(
min

{
h

B
log M

B

Nx

M
,

h

B
log M

B

NxNy

h
, h , hmax

{
1
B
,
logNx

logNy

}})
.

To proof this lemma, the dimensions of A have to be simply replaced in the
proof in [2]. The calculations can be found in [3].

5.2 Best-Case Layout

As described in Section 2, for the best-case layout it is up to the program to choose
the layout of A. The proof of Lemma 5 is based on the task of computing row
sums. To obtain a lower bound for the best-case layout, we have to use a different
approach because producing row sums is trivial when using a row major layout.
Therefore, we consider the sequence of configurations of a program and follow the
movement of input variables of X and partial results of Y. Furthermore, we allow
accessing A for free. This can only weaken the lower bound.
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We count the number of different matrix conformations that can be handled
by programs for matrix vector multiplication with � I/Os. For a given program,
the conformation of a matrix can be identified by considering multiplication
operations including input variables, and their results: When there is an input
variable x(i)

j loaded, and it is used to form an elementary product that is a pre-

decessor of c(i)k , this describes the existence of a non-zero entry aik in A. Hence,
by tracking all copies of input variables x(i)

j and all elements that are predeces-

sors of a unique result c(i)k (this can be elementary products or partial sums),
and by choosing the positions in a program where multiplications involving such
elements are performed, the conformation of a matrix is uniquely determined.
To do this, it suffices to consider the tracking of elements only for one of the w
matrix vectors multiplication. All these information will be called trace in the
following.

In order to describe the trace, we normalise programs which changes the num-
ber of I/Os only by constant factors. The following normalisation is a variation
of [5, Theorem 3.1].

Lemma 6. Assume there is an I/O program A performing � I/Os for parame-
ters M and B. Then there is an I/O program B computing the same function
performing at most 3� + M/B I/Os for parameters 2M and B, that works in
rounds: Each round consists of 2M/B input operations, an arbitrary number of
computation operations followed by 2M/B output operations such that after each
round internal memory is empty.

In the following, we consider programs in rounds according to the above lemma.
To determine the traces of input variables and result predecessors in a round-
based program, we consider the transfer of blocks between rounds, i.e. a block
that is output by one round and input by another.

The movements of input variables can be described as follows. For a vector
x(k), we consider the subset TV ,i ⊆ [Nx] of indices of elements x(k)

i in a block i
and trace the copying and deletion of variables in each round. For the trace of
a predecessor of a unique result c(k)j , we abstract from the element itself, and
consider only the index of the result j. Hence, we have the subset TR,i ⊆ [Ny]
of indices of unique result predecessors transferred by block i.

As written before, it suffices to consider the traces for one pair of input and
result vector only. Every block of an I/O can be separated into values belonging
to the w different tasks implied by the different pairs of vectors. Hence, for the
l-th I/O, we have the number u(k)

l of elements belonging to vector pair k. By
averaging we have

∑
0≤l≤� u

(k)
l ≤ B�/w for some k, and we determine the traces

for this pair of vectors in the following.

Describing the traces. Because we will describe the traces of programs by
blocks transferred between rounds, we view the input variables as output of
rounds with no cost. Further, we are only interested in lower bounds below h
such that we can assume � ≤ h. Let R be the total number of rounds. For each
block that is an output of a round, and input of another round there are R2 ≤ h2
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possibilities to choose the origin and destination of the block. Because there are
�/2 blocks transferred, h� is an upper bound on the total number of possible
macroscopic structures of how blocks travel between rounds.

Further, the values of u(k)
l can be chosen which yields at most B� possibili-

ties. Every traced element that is transferred by a block can terminate at the
destination, i.e., it is not copied further. Hence, there are 2�B/w choices of ter-
minating elements. Each of the si non-terminal incoming elements of round i
can appear up to M/B times in the outgoing blocks, namely once per outgoing
block. Hence, there are

(
siM/B

ti

)
possibilities to choose the ti outgoing elements

of round i, for some ti ≥ si. Since we have
∑

1≤i≤R ti ≤ B�/w, the total number
of possibilities for this is bounded by

(M�/w
B�/w

)
.

Finally, we have to specify the subset of possible multiplications that are
actually performed. To this end, let Wi be the number of partial results output
by round i. Together with the number of vector variables Ui loaded in round
i, there are

∑
i≤� B

M
UiWi possible multiplications with matrix entries during

the program. Additionally, we have the conditions Ui ≤ M , Wi ≤ M , and∑
i≤� B

M
(Ui + Wi) ≤ �B

w . The term
∑

i≤� B
M
UiWi is hence maximised for Ui =

Wi = M , for some indices i ∈ I, I ⊆ [� BM ] with |I| = �B
2Mw , and the size of the

set of possible multiplications is at most �B
2Mw ·M2 = �MB

2w . From this, we select
a subset of size h, yielding no more than

(
�MB/(2w)

h

)
possibilities.

Calculations. With the above discussion, we get(
NxNy

h

)
≤ h� ·B� · 2�B/w ·

(
eM

B

)
·
( �MB

2w
h

)
.

W.l.o.g. we assume Nx ≥ Ny. Define k = h/Nx, i.e., the average number of

entries per column. Rearranging terms yields � ≥ h
log

Ny
k −log e�MB

wh

log h+logB+ B
w (1+log eM

B ) . In

the following, we can assume h ≥ M ≥ B, and thus �
h ≥

log
(

Ny
k · wh

e�MB

)
2 log h+ B

w (log 6M
B ) .

Otherwise, if h ≤ M , the task is trivial and a scanning bound of Ω
(
h
B

)
for

reading A suffices. Applying Lemma B.2 in [2] (x = �/h, t = 2 logh+ B
w (log 6M

B ),

s = wNy

ekMB ), and estimating t ≥ logNx+3B
w , we get 2�

h ≥
log
(

wNy
ekMB ·( 3B

w +logNx)
)

2 log h+ B
w (log 6M

B ) .

Now, it remains to distinguish according to the leading term in the denominator.

Case 1 (2 log h ≤ B
w (log 6M

B )): �
h ≥

log Ny
kM

4 B
w (log 6M

B ) Using M > 4B yields � ≥
hw
B

log Ny
kM

4· 32 log M
B

= hw
6B log M

B

Ny

kM which matches the sorting based bound.

Case 2 (2 log h > B
w (log 6M

B )): 2�
h ≥

log
(

wNy
BekM logNx

)
4 log h matches the table based

bound. Recall that the table based upper bound requires Nx ≥ N2
y .

However, for Nx ≤ N2
y , a linear lower bound is obtained as follows. Assuming

k ≤ 6
√
Ny, B ≥ 16w, and Nx ≥ 230 implies Ny

BkeM ≥ 8
√
Nx (for details see [3]),

such that 2�
h ≥

log wNy
BekM

2 log h ≥ log 8
√

Ny

4(1+1/2) logNy
≥ 1

48 .
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Otherwise, if Ny ≤ Nx < 230, also h is bounded from above, and thus, the
task is trivially possible in O (1). Together with the presented algorithms and
the lower bound from Lemma 1, this discussion yields Theorem 3. Furthermore,
together with the lower bounds for column major layout, the proof of Theorem 2
is completed.
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Abstract. The problems studied in this article originate from the
Graph Motif problem introduced by Lacroix et al. [17] in the con-
text of biological networks. The problem is to decide if a vertex-colored
graph has a connected subgraph whose colors equal a given multiset of
colors M . Using an algebraic framework recently introduced by Koutis
et al. [15,16], we obtain new FPT algorithms for Graph Motif and
variants, with improved running times. We also obtain results on the
counting versions of this problem, showing that the counting problem is
FPT if M is a set, but becomes #W[1]-hard if M is a multiset with two
colors.

1 Introduction

An emerging field in the modern biology is the study of the biological networks,
which represent the interactions between biological elements [1]. A network is
modeled by a vertex-colored graph, where nodes represent the biological com-
pounds, edges represent their interactions, and colors represent functionalities of
the graph nodes. Networks are often analyzed by studying their network motifs,
which are defined as small recurring subnetworks. Motifs generally correspond
to a set of elements realizing a same function, and which may have been evo-
lutionarily preserved. Therefore, the discovery and the querying of motifs is a
crucial problem [20], since it can help to decompose the network into functional
modules, to identify conserved elements, and to transfer biological knowledge
across species.

The initial definition of network motifs involves conservation of the topology
and of the node labels; hence, looking for topological motifs is roughly equivalent
to subgraph isomorphism, and thus is a computationally difficult problem. How-
ever, in some situations, the topology is not known or is irrelevant, which leads
to searching for functional motifs instead of topological ones. In this setting, we
still ask for the conservation of the node labels, but we replace topology conser-
vation by the weaker requirement that the subnetwork should form a connected
subgraph of the target graph. This approach was advocated by [17] and led to
the definition of the Graph Motif problem [10]: given a vertex-colored graph
G = (V,E) and a multiset of colors M , find a set V ′ ⊆ V such that the induced

P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 405–416, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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subgraph G[V ′] is connected, and the multiset of colors of the vertices of V ′ is
equal to M . In the literature, a distinction is made between the colorful case
(when M is a set), and the multiset case (when M is an arbitrary multiset).
Although this problem has been introduced for biological motivations, [3] points
out that it may also be used in social or technical networks.

Not surprisingly, Graph Motif is NP-hard, even if G is a bipartite graph
with maximum degree 4 and M is built over two colors only [10]. The problem
is still NP-hard if G is a tree, but in this case it can be solved in O(n2c+2) time,
where c is the number of distinct colors in M , while being W[1]-hard for the
parameter c [10]. The difficulty of this problem is counterbalanced by its fixed-
parameter tractability when the parameter is k, the size of the solution [17,10,3].
The currently fastest FPT algorithms for the problem run in O∗(2k) time for the
colorful case, O∗(4.32k) time for the multiset case, and use exponential space 1.

Our contribution is twofold. First, we consider in Section 3 the decision ver-
sions of the Graph Motif problem, as well as some variants: we obtain improved
FPT algorithms for these problems, by using the algebraic framework of mul-
tilinear detection for arithmetic circuits [15,16], presented in the next section.
Second, we investigate in Section 4 the counting versions of the Graph Motif

problem: instead of deciding if a motif appears in the graph, we now want to
count the occurrences of this motif. This allows to assess if a motif is over- or
under- represented in the network, by comparing the actual count of the motif
to its expected count under a null hypothesis [19]. We show that the counting
problem is FPT in the colorful case, but becomes #W[1]-hard for the multiset
case with two colors. We refer the reader to [12,11] for definitions related to
parameterized counting classes.

2 Definitions

This section contains definitions related to arithmetic circuits, and to the Multi-

linear Detection (MLD) problem. It concludes by stating Theorem 1, which
will be used throughout the paper.

2.1 Arithmetic Circuits

In the following, a capital letter X will denote a set of variables, and a lower-
case letter x will denote a single variable. If X is a set of variables and A is a
commutative ring, we denote by A[X ] the ring of multivariate polynomials with
coefficients in A and involving variables of X . Given a monomial m = x1...xk
in A[X ], where the xis are variables, its degree is k, and m is multilinear iff its
variables are distinct.

An arithmetic circuit overX is a pair C = (C, r), where C is a labeled directed
acyclic graph (dag) such that (i) the children of each node are totally ordered,

1 We use the notations O∗ and Õ to suppress polynomial and polylogarithmic factors,
respectively.
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(ii) the nodes are labeled either by op ∈ {+,×} or by an element of X , (iii) no
internal node is labeled by an element of X , and where r is a distinguished node
of C called the root. We denote by VC the set of nodes of C, and for a given
node u we denote by NC(u) the set of children (i.e. out-neighbors) of u in C.
We recall that a node u is called a leaf of C iff NC(u) = ∅, an internal node
otherwise. We denote by T (C) the size of C (defined as the number of arcs), and
we denote by S(C) the number of nodes of C of indegree ≥ 2.

Given a commutative ring A, evaluating C over A under a mapping φ : X → A

consists in computing, for each node u of C, a value val(u) ∈ A as follows: 1. for
a leaf u labeled by x ∈ X , we let val(u) = φ(x), 2. for an internal node u labeled
by + (resp. ×), we compute val(u) as the sum (resp. product) of the values of
its children. The result of the evaluation is then val(r). The symbolic evaluation
of C is the polynomial PC ∈ Z[X ] obtained by evaluating C over Z[X ] under the
identity mapping φ : X → Z[X ].

We stress that the above definition of arithmetic circuits does not allow con-
stants, a restriction which is necessary for the algorithms. However, we can safely
allow the two constants 0A and 1A, the zero and the unit of A (which is assumed
to be a unital ring). For simplicity, these two constants will be represented by
an empty sum and an empty product, respectively.

2.2 Multilinear Detection

Informally, the Multilinear Detection problem asks, for a given arithmetic
circuit C and an integer k, if the polynomial PC has a multilinear monomial
of degree k. However, this definition does not give a certificate checkable in
polynomial-time, so for technical reasons we define the problem differently.

A monomial-subtree of C is a pair T = (C′, φ), where C′ = (C′, r′) is an
arithmetic circuit over X whose underlying dag C′ is a directed tree, and where
φ : VC′ → VC is such that (i) φ(r′) = r, (ii) if u ∈ VC′ is labeled by x ∈ X , then
so is φ(u), (iii) if u ∈ VC′ is labeled by + then so is φ(u), and NC′(u) consists of a
single element v ∈ NC(φ(u)), (iv) if u ∈ VC′ is labeled by ×, then so is φ(u), and
φ maps bijectively NC′(u) into NC(φ(u)) by preserving the ordering on siblings.
The variables of T are the leaves of C′ labeled by variables in X . We say that
T is distinctly-labeled iff its variables are distinct.

Intuitively, a monomial-subtree tells us how to construct a multilinear from
the circuit: Condition (i) tells us to start at the root, Condition (iii) tells us
that when reaching a + node we are only allowed to pick one child, and Condi-
tion (iv) tells us that when reaching a × node we have to pick all children. The
(distinctly-labeled) monomial-subtrees of C with k variables will then correspond
to the (multilinear) monomials of PC having degree k. Therefore, we formulate
the Multilinear Detection problem as follows:

Name: Multilinear Detection (MLD)
Input: An arithmetic circuit C over a set of variables X , an integer k
Solution: A distinctly-labeled monomial-subtree of C with k variables.
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Solving MLD amounts to decide if PC has a multilinear monomial of degree k
(observe that there are no possible cancellations), and solving #MLD amounts
to compute the sum of the coefficients of multilinear monomials of PC having
degree k. The restriction of MLD when |X | = k is called Exact Multilinear

Detection (XMLD). In this article, we will rely on the following far-reaching
result from [21,16] to obtain new algorithms for Graph Motif:

Theorem 1 ([21,16]). MLD can be solved by a randomized algorithm which
uses Õ(2kT (C)) time and Õ(S(C)) space.

3 Finding Vertex-Colored Subtrees

In this section, we consider several variants of the Graph Motif problem,
and we obtain improved FPT algorithms for these problems by reduction to
MLD. Notably, we obtainO∗(2k) time algorithms for problems involving colorful
motifs, and O∗(4k) time algorithms for multiset motifs.

3.1 The Colorful Case

In the colorful formulation of the problem, the graph is vertex-colored, and we
seek a subtree with k vertices having distinct colors. This leads to the following
formal definition:

Name: Colorful Graph Motif (CGM)
Input: A graph G = (V,E), k ∈ N, a set C, a function χ : V → C
Solution: A subtree T = (VT , ET ) of G s.t. (i) |VT | = k and (ii) for each
u, v ∈ VT distinct, χ(u) �= χ(v).

The restriction of Colorful Graph Motif when |C| = k is called Exact

Colorful Graph Motif (XCGM). Note that this restriction requires that the
vertices of T are bijectively labeled by the colors of C. In [7], the XCGM problem
was shown to be solvable in O∗(2k) time and space, while it is not difficult to
see that the general CGM problem can be solved in O∗((2e)k) time and O∗(2k)
space by color-coding. By using a reduction to Multilinear Detection, we
improve upon these complexities. In the following, we let n and m denote the
number of vertices and the number of edges of G, respectively.

Proposition 1. CGM is solvable by a randomized algorithm in Õ(2kk2m) time
and Õ(kn) space.

Proof (Sketch). Let I be an instance of CGM. We construct the following circuit
CI : its set of variables is {xc : c ∈ C}, and we introduce intermediary nodes Pi,u
for 1 ≤ i ≤ k, u ∈ V , as well as a root node P . Informally, the multilinear
monomials of Pi,u will correspond to colorful subtrees of G having i vertices,
including u. The definitions are as follows:

Pi,u =
i−1∑
i′=1

∑
v∈NG(u)

Pi′,uPi−i′,v if i > 1, P1,u = xχ(u)
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and P =
∑

u∈V Pk,u. The resulting instance of MLD is I ′ = (CI , k). By applying
Theorem 1, and by observing that T (CI) = O(k2m) and S(CI) = O(kn), we
solve I ′ in Õ(2kk2m) time and Õ(kn) space. The correctness of the construction
follows by showing by induction on 1 ≤ i ≤ k that: xc1 ...xcd

is a multilinear
monomial of Pi,u iff (i) d = i and (ii) there exists T = (VT , ET ) colorful subtree
of G such that u ∈ VT and χ(VT ) = {c1, ..., cd}. 


3.2 The Multiset Case

We consider the multiset formulation of the problem: we now allow some colors
to be repeated but impose a maximum number of occurrences for each color.
This problem can be seen as a generalization of the original Graph Motif

problem.
Given a multiset M over a set A, and given an element x ∈ A, we denote

by nM (x) the number of occurrences of x in M . Given two multisets M,M ′,
we denote their inclusion by M ⊆ M ′. We denote by |M | the size of M , where
elements are counted with their multiplicities. Given two sets A,B, a function
f : A→ B and a multiset X over A, we let f(X) denote the multiset containing
the elements f(x) for x ∈ X , counted with multiplicities; precisely, given y ∈ B
we have nf(X)(y) =

∑
x∈A:f(x)=y nX(x).

We now define the following two variants of Colorful Graph Motif, which
allow for multiset motifs:

Name: Multiset Graph Motif (MGM)
Input: A graph G = (V,E), an integer k, a set C, a function χ : V → C, a
multiset M over C.
Solution: A subtree T = (VT , ET ) of G s.t. (i) |VT | = k and (ii) χ(VT ) ⊆M .

Name: Multiset Graph Motif With Gaps (MGMG)
Input: A graph G = (V,E), integers k, r, a set C, a function χ : V → C, a
multiset M over C.
Solution: A subtree T = (VT , ET ) of G s.t. (i) |VT | ≤ r and (ii) there exists
S ⊆ VT of size k such that χ(S) ⊆M .

The restriction of Multiset Graph Motif when |M | = k is called Exact

Multiset Graph Motif (XMGM). Note that in this case we require that
T contains every occurrence of M , i.e. χ(VT ) = M . In this way, the XMGM

problem coincides with the Graph Motif problem defined in [10,3], while the
MGM problem is the parameterized version of the Max Motif problem consid-
ered in [9]. The notion of gaps is introduced in [17], and encompasses the notion
of insertions and deletions of [7].

Previous algorithms for these problems relied on color-coding [2]; these algo-
rithms usually have an exponential space complexity, and a high time complexity.
For the Graph Motif problem, [10] gives a randomized algorithm with an im-
plicit O(87kkm) running time, while [3] describes a first randomized algorithm
running in O(8.16km), and shows a second algorithm with O(4.32kk2m) running
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time, using two different speed-up techniques ([4] and [13]). For the Max Mo-

tif problem, [9] presents a randomized algorithm with an implicit O((32e2)kkm)
running time. Here again, we can apply Theorem 1 to improve the time and space
complexities:

Proposition 2. 1. MGM is solvable by a randomized algorithm in Õ(4kk2m)
time and Õ(kn) space.

2. MGMG is solvable by a randomized algorithm in Õ(4kr2m) time and Õ(rn)
space.

Proof. Point 1. We modify the circuit of Proposition 1 as follows. For each color
c ∈ C with nM (c) = m, we introduce variables yc,1, ..., yc,m, and we introduce a
node Qc = yc,1 + ...+ yc,m. For each vertex u ∈ V , we introduce a variable xu,
and we define:

Pi,u =
i−1∑
i′=1

∑
v∈NG(u)

Pi′,uPi−i′,v if i > 1, P1,u = xuQχ(u)

and P =
∑

u∈V Pk,u. Note that we changed only the base case in the recurrence
of Proposition 1. The intuition is that the variables xu will ensure that we choose
different vertices to construct the tree, and that the variables yc,i will ensure that
a given color cannot occur more than required. The resulting instance of MLD

is I ′ = (CI , 2k), and since T (CI) = O(k2m) and S(CI) = O(kn), we solve it
in the claimed bounds by Theorem 1. A similar induction as in Proposition 1
shows that: for every 1 ≤ i ≤ k, a multilinear monomial of Pi,u has the form
xv1yc1,j1 ...xviyci,ji , and it is present iff there is a subtree (VT , ET ) of G such that
u ∈ VT , VT = {v1, ..., vi} and χ(VT ) = {{c1, ..., ci}} ⊆M .

Point 2. We modify the construction of Point 1 by now setting P1,u = 1 +
xuQχ(u) for each u ∈ V , and P =

∑
u∈V

∑r
i=1 Pi,u. Informally, adding the

constant 1 to each P1,u permits to ignore some vertices of the subtree, allowing
to only select a set S of k vertices such that χ(S) ⊆ M . The correctness of
the construction is shown by a similar induction as above. The catch here is
that when considering two trees T1, T2 obtained from Pi′,u, Pi−i′,v, their selected
vertices will be distinct, but they may have ”ignored” vertices in common; we
can then find a subset of E(T1)∪E(T2)∪{uv} which forms a tree containing all
selected vertices from T1, T2. 


3.3 Edge-Weighted Versions

We consider an edge-weighted variant of the problem, where the subtree is now
required to have a given total weight, in addition to respecting the color con-
straints. This variant has been studied in [6] under the name Edge-Weighted

Graph Motif. In our case, we define two problems, depending on whether we
consider colorful or multiset motifs.

Name: Weighted Colorful Graph Motif (WCGM)
Input: A complete graph G = (V,E), a function χ : V → C, a weight function
w : E → N, integers k, r
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Solution: A subtree T = (VT , ET ) of G such that (i) |VT | = k, (ii) χ is injective
on VT , (iii)

∑
e∈ET

w(e) ≤ r.

Name: Weighted Multiset Graph Motif (WMGM)
Input: A complete graph G = (V,E), a function χ : V → C, a weight function
w : E → N, integers k, r, a multiset M
Solution: A subtree T = (VT , ET ) of G such that (i) |VT | = k, (ii) χ(VT ) ⊆M ,
(iii)

∑
e∈ET

w(e) ≤ r.

We observe that the WMGM problem contains as a special case the Min-CC

problem introduced in [8], which seeks a subgraph respecting the multiset motif,
and having at most r connected components. Indeed, we can easily reduce Min-

CC to WMGM: given the graph G, we construct a complete graph G′ with
the same vertex set, and we assign a weight 0 to edges of G, and a weight 1 to
non-edges of G.

Proposition 3. 1. WCGM is solvable by a randomized algorithm in
Õ(2kk2r2m) time and Õ(krn) space.

2. WMGM is solvable by a randomized algorithm in Õ(4kk2r2m) time and
Õ(krn) space.

Proof. We only prove 1, since 2 relies on the same modification as in Proposition
2. The construction of the arithmetic circuit is similar to the construction in
Proposition 1. The set of variables is {xc : c ∈ C}, and we introduce nodes
Pi,j,u, for 1 ≤ i ≤ k and 0 ≤ j ≤ r, whose multilinear monomials will correspond
to colorful subtrees having i vertices including u, and with total weight ≤ j. The
definitions are as follows:

P1,j,u = xχ(u)

Pi,j,u =
i−1∑
i′=1

∑
v∈V

j−w(uv)∑
j′=0

Pi′,j′,uPi−i′,j−j′−w(uv),v if i > 1

and P =
∑

u∈V Pk,r,u. The resulting instance of MLD is I ′ = (CI , k), and since
T (CI) = O(k2r2m) and S(CI) = O(krn), we solve it in the claimed bounds
by Theorem 1. The correctness of the construction follows by showing that:
given 1 ≤ i ≤ k, 0 ≤ j ≤ r, u ∈ V , xc1 ...xcd

is a multilinear monomial of
Pi,j,u iff (i) d = i and (ii) there exists T = (VT , ET ) colorful subtree of G with
u ∈ VT , χ(VT ) = {c1, ..., cd} and

∑
e∈ET

w(e) ≤ j. 


4 Counting Vertex-Colored Subtrees

In this section, we consider the counting versions of the problems XCGM and
XMGM introduced in Section 3. For the former, we show that its counting
version #XCGM is FPT; for the latter, we prove that its counting version
#XMGM is #W[1]-hard.
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4.1 FPT Algorithms for the Colorful Case

We show that #XCGM is fixed-parameter tractable (Proposition 5). We rely
on a general result for #XMLD (Proposition 4), which uses inclusion-exclusion
as in [14].

Say that a circuit C is k-bounded iff PC has only monomials of degree ≤ k.
Observe that given a circuit C, we can efficiently transform it in a k-bounded
circuit C′ such that (i) C and C′ have the same monomials of degree k, (ii)
|C′| ≤ (k + 1)2|C|; the details of the construction are omitted 2. The following
result shows that we can efficiently count solutions for k-bounded circuits with
k variables (and thus for general circuits, with an extra O(k2) factor in the
complexity).

Proposition 4. #XMLD for k-bounded circuits is solvable in O(2kT (C)) time
and O(S(C)) space.

Proof. Let C be the input circuit on a set X of k variables. For a monomial
m let V ar(m) denote its set of variables. Given S ⊆ X , let NS, resp. N ′

S , be
the number of monomials m of PC such that V ar(m) = S, resp. V ar(m) ⊆ S.
Observe that for every S ⊆ X , we have N ′

S =
∑

T⊆S NT . Therefore, by Möbius
inversion it holds that for every S ⊆ X , NS =

∑
T⊆S(−1)|S\T |N ′

T .
Since C is k-bounded, NX is the number of multilinear monomials of PC

having degree k. Now, each value N ′
S can be computed by evaluating C under

the mapping φ : X → Z defined by φ(v) = 1 if v ∈ S, φ(v) = 0 if v /∈ S. By
the Möbius inversion formula, we can thus compute the desired value NX in
O(2kT (C)) time and O(S(C)) space. 


It is worth mentioning that Proposition 4 generalizes several counting algorithms
based on inclusion-exclusion, such as the well-known algorithm for
#Hamiltonian Path of [14], as well as results of [18]. Indeed, the problems
considered in these articles can be reduced to counting multilinear monomials of
degree n for circuits with n variables (where n is usually the number of vertices
of the graph), which leads to algorithms running in O∗(2n) time and polynomial
space.

Let us now turn to applying Proposition 4 to the #XCGM problem. Recall
that we defined in Proposition 1 a circuit CI for the general CGM problem; we
will have to modify it slightly for the purpose of counting solutions.

Proposition 5. #XCGM is solvable in O(2kk3m) time and O(k2n) space.

Proof. Let I be an instance of XCGM. A rooted solution for I is a pair (u, T )
where T is a solution of XCGM on I and u is a vertex of T (which should
be seen as the root of the tree). The solutions of XCGM on I are also called
unrooted solutions. LetNr(I) andNu(I) be the number of rooted, resp. unrooted,

2 The idea is to assume w.l.o.g. that C has outdegree 2. Then, we create k + 1 copies
u0, ..., uk of each node u of C, such that the monomials of ui correspond to the degree
i-monomials of u. If r is the root node of C, then rk becomes the root node of C′.
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solutions for I. We will show how to compute Nr(I) in the claimed time and
space bounds; since Nu(I) = Nr(I)

k , the result will follow.
To compute Nr, observe first that we cannot apply Proposition 4 to the circuit

CI of Proposition 1. Indeed, the circuit CI counts the ordered subtrees, and not
the unordered ones. Therefore, we need to modify the circuit in the following
way: at each vertex v of VT , we examine its children by increasing color. This
leads us to define the following circuit C′I : suppose w.l.o.g. that C = {1, ..., k},
introduce nodes Pi,j,u for each 1 ≤ i ≤ k, 1 ≤ j ≤ k + 1, u ∈ V , variables xi for
each 1 ≤ i ≤ k, and define:

P1,j,u = xχ(u), Pi,j,u = 0 if i ≥ 2, j = k + 1

Pi,j,u = Pi,j+1,u +
i−1∑
i′=1

∑
v∈NG(u):χ(v)=j

Pi′,j+1,uPi−i′,1,v if i ≥ 2, 1 ≤ j ≤ k

Let us also introduce a root node P =
∑

u∈V Pk,1,u. Given 1 ≤ i, j ≤ k and
u ∈ V , let Si,j,u denote the set of pairs (u, T ) where (i) T is a properly colored
subtree of I containing u and having i vertices, (ii) the neighbors of u in T
have colors ≥ j. It can be shown by induction on i that: there is a bijection
between Si,j,u and the multilinear monomials of Pi,j,u. Therefore, the number
of multilinear monomials of P is equal to Nr; since T (C′I) = O(k3m), S(C′I) =
O(k2n) and since C′I is k-bounded, it follows by Proposition 4 that Nr can be
computed in O(2kk3m) time and O(k2n) space. 


4.2 Hardness of the Multiset Case

In this subsection, we show that #XMGM is #W[1]-hard. For convenience, we
first restate the problem in terms of vertex-distinct embedded subtrees.

Let G = (V,E) and H = (V ′, E′) be two multigraphs. An homomorphism
of G into H is a pair φ = (φV , φE) where φV : V → V ′ and φE : E → E′,
such that if e ∈ E has endpoints x, y then φE(e) has endpoints φV (x), φV (y).
An embedded subtree of G is denoted by T = (T, φV , φE) where T = (VT , ET )
is a tree, and (φV , φE) is an homomorphism from T into G. We say that T is a
vertex-distinct embedded subtree of G (a ”vdst” of G) if φV is injective. We say
T is an edge-distinct embedded subtree of G (an ”edst” of G) iff φE is injective.
We restate XMGM as follows:

Name: Exact Multiset Graph Motif (XMGM)
Input: A graph G = (V,E), an integer k, a set C, a function χ : V → C, a
multiset M over C s.t. |M | = k.
Solution: A vdst (T, φV , φE) of G s.t. χ ◦ φV (VT ) = M .

We first show the hardness of two intermediate problems (Lemma 1). Before
defining these problems, we need the following notions. Consider a multigraph
G = (V,E). Consider a partition P of V into V1, ..., Vk, and a tuple t ∈ [r]k.
A (P , t)-mapping from a set A is an injection ψ : A → V × [r] such that for
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every x ∈ A, if ψ(x) = (v, i) with v ∈ Vj , then 1 ≤ i ≤ tj . From ψ, we
define its reduction as the function ψr : A → V defined by ψr(x) = v whenever
ψ(x) = (v, i). We also define a tuple T (ψ) = (n1, ..., nk) ∈ [r]k such that for each
i ∈ [k], ni = maxv∈Vi |{x ∈ A : ψr(x) = v}|.

Given two tuples t, t′ ∈ [r]k, denote t ≤ t′ iff ti ≤ t′i for each i ∈ [k]. Note
that for a (P , t)-mapping ψ, we always have T (ψ) ≤ t since ψ is injective. We
say that a (P , t)-labeled edst for G is a tuple (T, ψV , ψE) where (i) T = (VT , ET )
is a tree, (ii) ψV is a (P , t)-mapping from VT , (iii) (T, ψr

V , ψE) is an edst of G.
Our intermediate problems are defined as follows:

Name: Multicolored Embedded Subtree-1 (MEST− 1)
Input: Integers k, r, a k-partite multigraph G with partition P , a tuple t ∈ [r]k

Solution: A (P , t)-labeled edst (T, ψV , ψE) for G s.t. |VT | = r and T (ψV ) = t.

The MEST − 2 problem is defined similarly, except that we do not require
that T (ψV ) = t (and thus we only have T (ψV ) ≤ t). While we will only need
#MEST − 2 in our reduction for #XMGM, we first show the hardness of
#MEST− 1, then reduce it to #MEST− 2.

Lemma 1. #MEST−1 and #MEST−2 are #W[1]-hard for parameter (k, r).

The proof is omitted due to space constraints.

Proposition 6. #XMGM is #W[1]-hard for parameter k.

Proof. We reduce from #MEST − 2, and conclude using Lemma 1. Let I =
(k, r,G, t) be an instance of #MEST − 2, where G = (V,E) is a multigraph,
and let SI be its set of solutions. From G, we construct a graph H as follows:
(i) we subdivide each edge e ∈ E, creating a new vertex a[e], (ii) we substitute
each vertex v ∈ Vi by an independent set formed by ti vertices b[v, 1], ..., b[v, ti].
We let A be the set of vertices a[e] and B the set of vertices b[v, i], we therefore
have a bipartite graph H = (A ∪B,F ). We let I ′ = (H, 2r − 1, C, χ,M), where
C = {1, 2}, χ maps A to 1 and B to 2, and M consists of r− 1 occurrences of 1
and r occurrences of 2.

Then I ′ is our resulting instance of #XMGM, and we let SI′ be its set of
solutions. Notice that by definition of χ and M , SI′ is the set of vdst (T, φV , φE)
of H containing r − 1 vertices mapped to A and r vertices mapped to B. We
now show that we have a parsimonious reduction, by describing a bijection Φ :
SI → SI′ . Consider T = (T, ψV , ψE) in SI ; we define Φ(T ) = (T ′, φV , φE) as
follows:

– For each edge e = uv ∈ E(T ), we have fe := ψE(e) ∈ E(G): we then
subdivide e, creating a new vertex xe. Let T ′ be the resulting tree;

– For each vertex xe, we define φV (xe) = a[fe]. For each other vertex u of T ′,
we have u ∈ V (T ), let (v, i) = ψV (u); we then set φV (u) = b[v, i] (this is
possible since if v ∈ Vj then 1 ≤ i ≤ tj , by definition of ψV ).
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From φV , we then define φE in a natural way. Then T ′ = Φ(T ) is indeed in SI′ :
(i) T ′ is a vertex distinct subtree of H (by definition of φV and since T was edge-
distinct, the values φV (xe) are distinct; by injectivity of ψV , the other values
φV (u) are distinct); (ii) it has r−1 vertices mapped to A and r vertices mapped
to B. To prove that Φ is a bijection, we describe the inverse correspondence
Ψ : SI′ → SI . Consider T ′ = (T ′, φV , φE) in SI′ ; we define Ψ(T ′) = (T, ψV , ψE)
as follows. Let A′, B′ be the vertices of T ′ mapped to A,B respectively. Let i be
the number of nodes of A′ which are leaves: since the nodes of A′ have degree 1
or 2 in T ′ depending on whether they are leaves or internal nodes, we then have
|E(T ′)| ≤ i + 2(r − 1 − i) = 2r − i − 2; since |E(T ′)| = 2r − 2, we must have
i = 0. It follows that all leaves of T ′ belong to B′; from T ′, by contracting each
vertex of A′ in T ′ we obtain a tree T with r vertices. We then define ψV , ψE
as follows: (i) given u ∈ B′, if φV (u) = b[v, j], then ψV (u) = (v, j); (ii) given
e = uv ∈ E(T ), there corresponds two edges ux, vx ∈ E(T ′) with x ∈ A′, and we
thus have φV (x) = a[f ], from which we define ψE(e) = f . It is easily seen that
the resulting T = Ψ(T ′) is in SI , and that the operations Φ and Ψ are inverse
of each other. 


5 Conclusion

In this paper, we have obtained improved FPT algorithms for several variants of
the Graph Motif problem. Reducing to the Multilinear Detection prob-
lem resulted in faster running times and a polynomial space complexity. We
have also considered the counting versions of these problems, for the first time
in the literature. Our results demonstrate that the algebraic framework of [16]
has potential applications to computational biology, though a practical evalua-
tion of the algorithms remains to be done. In particular, how do they compare
to implementations based on color-coding or ILPs [7,5]?

We conclude with some open questions. A first question concerns our results of
Section 3.2 for multiset motifs: is it possible to further reduce the O∗(4k) running
times? Another question relates to the edge-weighted problems considered in
Section 3.3: our algorithms are only pseudopolynomial in the maximum weight r,
can this dependence in r be improved? Finally, is approximate counting possible
for the #XMGM problem? We believe that some of these questions may be
solved through an extension of the algebraic framework of Koutis and Williams.
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13. Hüffner, F., Wernicke, S., Zichner, T.: Algorithm Engineering For Color-Coding
To Facilitate Signaling Pathway Detection. In: APBC 2007, pp. 277–286 (2007)

14. Karp, R.M.: Dynamic-programming meets the principle of inclusion and exclusion.
Oper. Res. Lett. 1, 49–51 (1982)

15. Koutis, I.: Faster Algebraic Algorithms for Path and Packing Problems. In: Aceto,
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Abstract. The decrease of a Boolean function f : {0, 1}n → {0, 1},
denoted by d(f) is the maximum number of inverse indices in any in-
creasing chain of inputs x1, . . . , x� ∈ {0, 1}n, where i is an inverse index
if f(xi) > f(xi+1). It follows from a theorem of Markov (JACM 1958)
that the minimum number of negation gates in a circuit necessary and
sufficient to compute any Boolean function f is �log(d(f)+1)�. A recent
result due to Morizumi (ICALP 2009) proves that d(f) negations are
necessary and sufficient when the computation is done by formulas. We
explore the situation in between formulas (directed trees) and general
circuits (DAGs), and related models. We obtain the following results:
1. We argue that for any Boolean function f , there is a circuit comput-

ing f , that uses �log(d(f)+1)� negations and has treewidth at most
�log(d(f)+1)�+1. For 1 ≤ k ≤ �log(d(f)+1)�, we prove that d(f) ·
8k/2k negations are sufficient to compute any Boolean function f by
circuits of treewidth at most k. Moreover, if there is a circuit family
of size s = s(n) and treewidth k = k(n) computing {fn}, then there
exists a circuit family of size s·nO(1) ·2O(min{k,log n}) and treewidth at
most 2k which computes {fn} and contains O(max{nk/22k , log n})
negation gates.

2. We obtain tight bounds on the number of negation gates required to
compute specific functions such as Parityn,Parityn and Invertern

by one-input-face upward planar circuits. We extend these lower
bounds to a larger class of functions (which also includes natural func-
tions like Add and Subtract) and we show a direct sum theorem for
this class with respect to the number of negations.

3. We demonstrate the limitations of the one-input-face constraint in
the upward planar circuits by showing the explicit function which
can be computed by a monotone upward planar circuit, but cannot
be computed by any montone one-input-face upward planar circuit.

4. We prove that for every Boolean function f , there exists a multi-
lective upward planar circuit which uses at most � d(f)+1

2
� negation

gates for computing f .

1 Introduction

Proving super-polynomial size lower bounds for circuits computing explicit func-
tions in NP is a central problem in circuit complexity theory. Theory of mono-
tonicity in Boolean circuits became fruitful in this context and it culminated in
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the exponential size lower bound due to Razborov [13] for any monotone circuit
computing the clique function. Tardos [17] demonstrated that there are explicit
functions in P which requires exponential size for monotone circuits comput-
ing them. This area received a lot of attention and several important resource
lower bounds were proved against monotone Boolean circuits [6,12]. Relaxing
the monotonicity constraint, Amano and Maruoka [1] proved exponential size
lower bounds for an explicit function when the circuit is allowed to use only
1
6 log logn negations.

How far can one improve the above lower bound result in terms of the number
of negations allowed in the circuit? This highlights the importance of exploring
the power of negation gates in Boolean circuits. A very fundamental question in
this direction is about the number of negations that is required to compute any
Boolean function, called the inversion complexity of the function. Historically
much earlier (in 1958), Markov [8] came up with a surprisingly tight bound
for the inversion complexity of any Boolean function. Let f : {0, 1}n → {0, 1},
and let (x1, x2, . . . , xn) and (y1, y2, . . . , yn) be two Boolean vectors in {0, 1}n.
Define x ≤ y if xi ≤ yi for all i. The decrease of function f with respect to
an increasing chain of Boolean vectors v1, . . . , vm ∈ {0, 1}n, is defined as the
number of i such that f(vi) > f(vi+1). The decrease of the function, denoted
by d(f) is the maximum decrease over all increasing chains of Boolean vectors.
Thus, the decrease of the function f can at most be n. Markov [8] showed a tight
characterization of the inversion complexity of a function f as �log(d(f) + 1)�.
However, the circuits that Markov constructed are of exponential size although
they use only O(log n) negations. Complementing this, Fischer [4] showed that
for every poly-sized circuit, there is an equivalent poly-sized circuit which uses
at most �log(n+ 1)� negations.

Many years after Markov’s and Fischer’s results, Santha and Wilson [14] (see
also [16]) showed a contrasting picture in the constant depth world: there are
functions requiring super-logarithmic number of negation gates in any poly-sized
constant-depth circuit computing them. Recently, Morizumi [11] studied the case
of formulas and proved tight lower and upper bounds for the inversion complexity
of Boolean functions. More precisely, he proved that the inversion complexity in
formulas computing the function f is exactly d(f). He also proved an analogue
of Fischer’s result in this context: if there is a polynomial size formula computing
a function f , then there is a polynomial size formula for f which uses at most
�n2 � number of negations.

In this paper, we study circuit classes between formulas (directed trees) and
general circuits (directed acyclic graphs). Many parameters interpolate between
the two. Two important ones we consider here are upward planarity and the
treewidth of the underlying undirected graph of the circuit. We defer the formal
definition of these parameters to Section 2.

Roughly speaking, treewidth measures how formula-like the circuit is (the
treewidth of a formula is 1). We consider circuits of treewidth k, and parame-
terize the number of negations in the circuit in terms of k. The power of such
circuits has been considered earlier in the context of classical [5] and quantum
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computation [9]. As noted in [5], leveled circuits (or graphs) of width k has
treewidth at most 2k − 1, and they showed that width bounded and treewidth
bounded circuit classes roughly interleave in terms of computational power. As
noted earlier, the treewidth bounded classes also generalizes formulas. It was
shown in [5] that the circuits of treewidth k and size s can also be simulated
by formulas of size roughly sk

2
. However, the number of negations used in the

construction is large even if the original circuit is monotone.
We explore the power of such circuits in the context of inversion complex-

ity. To begin with, we argue that treewidth beyond O(log n) does not help in
general(Theorem 5). We prove the following parameterized upper bound:

Theorem 1. Let f be a Boolean function, 1 ≤ k ≤ �log(d(f)+1)�. There exists
a circuit of treewidth at most k computing f using at most d(f)·8k/2k negations.

However, as in the case of Markov’s theorem, the size of the circuit in the above
theorem could be exponentially large. We also obtain an analogue of Fisher’s
result in our context; i.e. the inverse complexity under size constraints.

Theorem 2. Let {fn} be a family of Boolean functions. If there is a circuit
family of size s = s(n) and treewidth k = k(n) computing {fn}, then there exists
a circuit family of size s · nO(1) · 2O(min{k,logn}) and treewidth at most 2k which
computes {fn} and contains O(max{nk/22k, logn}) negation gates.

Upward planar circuits are circuits whose underlying graph is upward planar (see
Section 2). These circuit classes have been considered in the literature in many
contexts [10,3,2,7]. In this model, we require that each input label appears at
most once in the circuit and that all input vertices are in one face and all edges
in the circuit go upwards in the plane. These are better known in the literature
as one-input-face upward planar circuits (and are also considered by McColl [10]
and Beynon and Buckle [3] in the context of monotone circuits.) For this model,
we explore the inversion complexity of specific functions and prove tight upper
and lower bounds for the Parity function and the Inverter function. More
specifically we prove the following:

Theorem 3. Let n ≥ 2, f ∈ {Parityn,Parityn}. The inversion complexity
of the function f with respect to one-input-face upward planar circuits is n− 1.
The inversion complexity of Invertern with respect to such circuits is n.

We generalize this argument further to a non-trivial collection of Boolean func-
tions (Theorem 7). For functions in this class, we show a direct sum theorem
(Theorem 8) by proving a tight lower bound on the number of negations required
to compute t functions simultaneously using a one-input-face upward planar cir-
cuit. We also exhibit the limitation of the one-input-face constraint by showing
an explicit function which can be computed by a monotone upward planar cir-
cuit, but cannot be computed by any monotone one-input-face upward planar
circuit (Theorem 9).

Although formulas are planar, the above model does not include them since
formulas allow input labels to be duplicated. A planar circuit model where the
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inputs can be duplicated is called multilective planar circuit (which was intro-
duced in [15]). Formulas are clearly multilective planar circuits. For this more
powerful class of circuits, we are able to improve the upper bound on the inver-
sion complexity (denoted as IM−UP (f)) slightly.

Theorem 4. For every Boolean function f , IM−UP (f) ≤ �d(f)+1
2 �.

2 Preliminaries

We introduce some basic definitions in this section. Let Bn,m denote the set of
Boolean functions f : {0, 1}n → {0, 1}m. Bn stands for Bn,1. For a function
f = f(x1, . . . , xn), we say f essentially depends on xi if f |xi=0 �= f |xi=1.

A circuit is an acyclic directed graph, in which all vertices of fan-in 0 (input
gates) are associated with some variable x ∈ {x1, . . . , xn} or a constant c ∈
{0, 1}, and all other nodes are either ∧,∨ or ¬. The size of a circuit is the
number of gates contained in it, and the depth of a circuit is the length of the
longest directed path from any input vertex to any output vertex. We refer to a
standard text book [19] for more definitions.

A circuit is called semilective if for all x ∈ {x1, . . . , xn}, at most 1 input
vertices in the circuit is associated with x. It is called multilective otherwise. A
formula is a multilective circuit all vertices of which have fan-out at most 1.

For a Boolean function f , the inversion complexity of f , denoted by I(f),
is the minimum number of negation gates contained in any circuit computing
f . If restricting the circuits to be formulas (then f should be a single-output
function), we get the definition of inversion complexity of f in formulas, denoted
by IF (f). The inversion complexity of a family of Boolean functions can be
similarly defined, as a function of n. In this notation, Markov [8] proved that
I(f) = �log(d(f) + 1)� for every Boolean function f and Morizumi [11] proved
that IF (f) = d(f).

A tree decomposition of a graphG = (V,E) is given by a tuple (T, (Xd)d∈V [T ]),
where T is a tree, eachXd is a subset of V called a bag, satisfying 1)

⋃
d∈V [T ]Xd =

V , 2) For each edge (u, v) ∈ E, there exists a tree node d with {u, v} ⊆ Xd, and
3) For each vertex u ∈ V , the set of tree nodes {d : u ∈ Xd} forms a connected
subtree of T . Equivalently, for any three vertices t1, t2, t3 ∈ V [T ] such that t2
lies in the path from t1 to t3, it holds that Xt1 ∩Xt3 ⊆ Xt2 . The width of the
tree decomposition is defined as maxd |Xd| − 1. The treewidth tw(G) of a graph
G is the minimum width of a tree decomposition of G.

A planar circuit is a circuit in which each input label appears exactly once
and the underlying undirected graph can be embedded on the plane without
edge crossings. It is further called an upward planar circuit if it has some pla-
nar embedding in which all edges go upwards (monotonically increasing in the
vertical direction), and is called one-input-face upward planar if besides upward
planarity all input nodes are placed at the lowest level.

For every function f , let IOUP (f) denote the minimum number of negation
gates required for computing f by any one-input-face upward planar circuit.
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3 Bounded Treewidth Circuits

In this section we consider circuits with bounded treewidth, which naturally
generalizes formulas. We allow circuits to be multilective, i.e., they may contain
duplicated input variables. By a Boolean function we will mean a single-output
Boolean function.

3.1 Inversion Complexity in Bounded Treewidth Circuits

Recall that Markov’s theorem states that for every Boolean function f , the min-
imum number of negation gates contained in a circuit computing f is precisely
�log(d(f) + 1)�; that is, I(f) = �log(d(f) + 1)�. We will first show that, if we
only care the number of negation gates, then treewidth beyond I(f) is useless.

Theorem 5. For every Boolean function f , there is a circuit computing f that
contains �log(d(f)+1)� negations and has treewidth at most �log(d(f)+1)�+1.

We need the following definition of connectors. For any two Boolean functions f0
and f1 with the same set of input variables, a connector of f0 and f1 is a function
μ(y, y′, x) satisfying that μ(i, 1 − i, x) = fi(x) for both i = 0, 1, where x is the
input vector of f0 and f1. Markov showed that there always exists a connector
of f0 and f1 containing at most max{I(f0), I(f1)} negation gates, which is then
used in the construction of negation-limited circuits. We first demonstrate the
existence of a special connector for which we can show a bound on the treewidth.

Lemma 1. Every pair of Boolean functions f0(x) and f1(x) has a connector
μ(y, y′, x) which can be computed by a circuit containing max{I(f0), I(f1)} nega-
tion gates and having treewidth at most 1 + max{I(f0), I(f1)}.

The outline of the proof of the above lemma is similar to that of Markov’s
connector, and proceeds by induction on m. The main observation is that at the
induction step we can optimize on the treewidth while the negation gates are
being combined. The proof of Theorem 5 also uses some observations about the
treewidth while implementing Markov’s construction. We skip the details.

Let Ik(f) denote the minimum number of negation gates contained in any
circuit computing f with treewidth at most k. In this notation, I1(f) = IF (f) =
d(f) and I�log(d(f)+1)�+1(f) = I(f) = �log(d(f)+1)�. Now we prove Theorem 1,
which gives an upper bound on Ik(f) for any 1 ≤ k ≤ �log(d(f) + 1)�.

Proof of Theorem 1: We will prove, by induction on d(f), that Ik(f) ≤
d(f) · 8k/2k − 1 for all 1 ≤ k ≤ �log(d(f) + 1)�. The statement is obvious
for d(f) = 1. Suppose d(f) ≥ 2 and the theorem holds for all f ′ such that
d(f ′) < d(f). Let S ⊆ {0, 1}n be the set of all input vectors x such that every
chain Y starting with x satisfies that dY (f) ≤ d(f)/2. Then, for every chain Y
ending at a vector x �∈ S, dY (f) ≤ d(f)/2 (otherwise we can find a chain with
decrease ≥ d(f) + 1 by concatenating Y and the chain witnessing x �∈ S). We
also have (x ∈ S and x ≤ y) ⇒ y ∈ S.
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Define two functions f0(x) and f1(x) as follows:

f0(x) =
{

1 if x ∈ S,
f(x) if x �∈ S, and f1(x) =

{
f(x) if x ∈ S,

0 if x �∈ S.

It is easy to see that max{d(f0), d(f1)} ≤ d(f)/2 and f(x) = (hS(x) ∧ f1(x)) ∨
(hS(x) ∧ f0(x)), where hS(x) is the characteristic function of the set S, which
is monotone and hence can be computed by a monotone formula. If there exists
Ci computing fi for both i = 0, 1 such that Ci has treewidth at most k and
contains at most t negation gates, we can obtain a circuit with treewidth at
most k which computes f and contains at most 2t + 1 negation gates. Having
t = d(f) · 4k/2k − 1 will suffice.

If k ≤ �log(d(fi) + 1)� for both i = 0, 1, we are done by induction hypothesis.
If k > �log(d(fi) + 1)� for some i ∈ {0, 1}, we can get directly from Theorem 5
that there exists a circuit computing fi with treewidth at most k which contains
exactly I(fi) = �log(d(fi) + 1)� < k negation gates. Since k ≤ �log(d(f) + 1)�,
we have 2k ≤ 2(d(f) + 1) ≤ 4d(f), from which it follows that I(fi) ≤ k − 1 ≤
d(f) · 4k/2k− 1. Therefore, for both i = 0, 1, there exists a circuit Ci computing
fi which has treewidth ≤ k and contains ≤ d(f) · 4k/2k− 1 negation gates. This
finishes the induction proof. 


3.2 Inversion Complexity under Polynomial Size Constraints

In this subsection we show Theorem 2 stated in the introduction. Let f ∈ Bn.
Borrowing the notation from [11], we say f ′ is a pseudo ith slice of f iff f ′(x) =
f(x) for all x = (x1, . . . , xn) such that

∑n
j=1 xj = i. Let C be a circuit computing

f of treewidth k and size s. For i = 0, 1, . . . , n, we construct a circuit C(i), which
computes a monotone pseudo ith slice of f , by pushing all negations in C down to
the input nodes by the De Morgan’s law and then replacing xi with Thn−1

i (x−i).
Here we use x−i to denote (x1, . . . , xi−1, xi+1, . . . , xn), and Thnm is the threshold
function which equals 1 iff at least m out of n input variables are 1. It can be
seen that pushing the negations down (with possible duplications of gates) can
cause at most a doubling of the treewidth of the circuit (we skip the details of
this construction). Using nO(1)-sized formulas [18] for threshold functions in the
above construction gives the following:

Lemma 2. For a Boolean function f ∈ Bn which can be computed by a circuit of
size s and treewidth k, and an integer i ∈ {0, 1, . . . , n}, there exists a monotone
circuit of size s · nO(1) and treewidth 2k which computes a pseudo ith slice of f .

The basic idea is to make use of these pseudo slices to reconstruct f and hence
save on the number of negation gates in the process. For this, we divide them
into groups containing some consecutive slices of f . We will use groups of 22k

concecutive slices each (which is a generalization of Morizumi’s argument [11]
which puts two neighboring slices into one group). Among each group, we find a
circuit of limited treewidth and limited number of negation gates which plays the
role of a “selector”, in the sense that it selects which slice to use according to the
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number of 1’s in the inputs. Finally, a formula serving as a “universal selector”
is applied to choose the correct group, which will not increase the treewidth.

Before presenting the proof, we need to introduce some notations. Let X =
{x1, x2, . . . , xn} be a set of variables, and H = {h1, h2 . . . , hm} be a set of
Boolean functions each taking x1, . . . , xn as inputs. A circuit augmented with
H is similarly defined as a normal circuit, except that every fan-in 0 vertex is
now assigned with some function hi ∈ H. Functions in H are called help func-
tions, and circuits augmented with H are also called H-circuits. The normal
definition of circuits can be seen as a special case in which H = {x1, x2, . . . , xn};
that is, the help functions are exactly the variables themselves.

In the following we fix H = {Thni : i = 0, 1, . . . , n} ∪ {f (i) : i = 0, 1, . . . , n},
where f (i) is a pseudo ith slice function of f . For every pair of integers a, b such
that 0 ≤ a ≤ b ≤ n, a Boolean function g is called a (a, b)-selector of f iff g is a
pseudo ith slice function of f for every i such that a ≤ i ≤ b. It follows that f (i)

is a (i, i)-selector of f , and f is a (0, n)-selector of itself.
For a H-circuit C, we say C is a (a, b)-selector circuit of f if it computes a

(a, b)-selector of f . We call it a good (a, b)-selector circuit of f if in addition it
satisfies the following “replacement rule”: For every integer r such that −a ≤
r ≤ n− b, if we replace every input vertex Thni of C by Thni+r, and replace every
input vertex f (i) of C by f (i+r), for every 0 ≤ i ≤ n, then the resulting circuit is
a (a+ r, b+ r)-selector circuit of f . Now we show the following existence lemma.

Lemma 3. For every a, b ∈ {0, 1, . . . , n} such that b − a + 1 = 2k for some
integer k ≥ 1, there is a good (a, b)-selector circuit of f which has size at most
5k, treewidth at most k and contains at most k negation gates.

Proof. By induction on k. When k = 1, the circuit be
(
Thnb ∧ f (b)

)
∨
(
Thnb ∧ f (a)

)
is a good (a, b)-selector circuit of f with size 4, treewidth 1 and contains 1
negation gate. Now suppose k ≥ 2 and the theorem holds for all smaller k. Let
Ck−1 be a good (a, a + 2k−1 − 1)-selector circuit of f which has size at most
5k−1, treewidth at most k − 1 and contains at most k − 1 negation gates. Let v
be an arbitrary input vertex of Ck−1. If v is Thni for some i, we replace it with(
Thna+2k−1 ∧ Thni+2k−1

)
∨
(
Thn

a+2k−1 ∧ Thni
)
. If v is f (i) for some i, we replace

it with
(
Thna+2k−1 ∧ f (i+2k−1)

)
∨
(
Thn

a+2k−1 ∧ f (i)
)
. After we replacing every

input node v, we combine all the negations connected to nodes assigned with
Thna+2k−1 together to form a new node. Call the new circuit Ck. Since only one
copy of Thn

a+2k−1 is used, Ck contains exactly 1 more negation gates than Ck−1.
The treewidth of Ck is at most k, as we first replace each input vertex with a
tree (which will preserve the treewidth of Ck−1) and then combine some vertices
together to form a new one (which will increase the treewidth by at most 1). To
bound the size of Ck, we note that each input node of Ck−1 is replaced with a
circuit of size 4, and the number of input nodes does not exceed the number of
gates in Ck−1. Therefore, the size of Ck is at most 5k−1 + 4 · 5k−1 = 5k.

It remains to show that Ck is a good (a, b)-selector circuit of f . Due to our
construction, when

∑n
j=1 xj < a + 2k−1 (that is, Thna+2k−1(x) = 0), Ck is
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equivalent to Ck−1, and hence Ck is a (a, a + 2k−1 − 1)-selector circuit of f .
When

∑n
j=1 xj ≥ a + 2k−1, Ck becomes the circuit obtained from Ck−1 by re-

placing Thni with Thni+2k−1 and replacing f (i) with f (i+2k−1), which is of course
a (a + 2k−1, a + 2k − 1)-selector circuit of f because Ck−1 is good by the in-
duction hypothesis. Hence, Ck is a (a, b)-selector circuit of f (remember that
b = a + 2k − 1). To see why Ck is good, we shift all the parameters (except n)
by r for every −a ≤ r ≤ b, and can similarly prove that the resulting circuit is
a (a+ r, b+ r)-selector circuit of f . This completes the induction step. 


Proof of Theorem 2: Let f ∈ Bn and C be a circuit computing it with size
s and treewidth k. Let t be the minimum integer such that n ≤ 2t − 1, and let
n′ = 2t − 1. Let k′ = min{k, t/2}. It is clear that n′ ≤ 2n − 1 and logn ≤ t ≤
�logn�+1. We add n′−n dummy input variables to f and regard it as a function
in Bn′ . For l = 0, 1, . . . , 2t−2k′−1, let C′

l be a (22k′
l, 22k′

(l+1)−1)-selector circuit
of f constructed by Lemma 3, which has size at most 52k′

, treewidth at most 2k′

and contains at most 2k′ negations. Let C′ be a formula-like circuit of the form∨2t−2k′

l=0

(
Thn

′
22k′ l ∧ Th

n′
22k′(l+1)

∧C′
l

)
(different terms will use different copies of

input vertices). It is easy to see that C computes exactly f and contains at most
(2k′ + 1)2t−2k′

= (2k′ + 1)(n′ + 1)/22k′ ≤ 2n(2k′ + 1)/22k′
negation gates. Since

k′ = min{k, t/2} and logn ≤ t ≤ �logn� + 1, this is at most max{2n(2k +
1)/22k, 2n(t + 1)/2t} = max{O(nk/22k), O(log n)} = O(max{nk/22k, logn}).
Furthermore, C′ has size at most 2t−2k′

(4+52k′
) = n·2O(k′) = n·2O(min{k,t/2}) ≤

n · 2O(min{k,log n}), and has treewidth at most 2k′. Note that C′ is not a “true”
circuit, but one augmented with help functions {Thni : i = 0, 1, . . . , n} ∪ {f (i) :
i = 0, 1, . . . , n}. We replace every input node of C′ with a circuit computing the
corresponding help function. Since Thni is computable by a poly-sized formula,
and by Lemma 2 f (i) is computable by a monotone circuit of treewidth 2k and
size s ·nO(1), the resulting circuit has size s ·nO(1) ·2O(min{k,logn}) and treewidth
at most max{2k, 2k′} = 2k. This finishes the proof of Theorem 2. 


4 Inversion Complexity in Planar Circuits

4.1 Lower Bounds for One-Input-Face Upward Planar Circuits

In this section we will focus on the inversion complexity in one-input-face upward
planar circuits. We will prove Ω(n) lower bounds of IOUP (f) for many functions
f , including some tight results. Since I(f) = O(log n) for all f ∈ Bn,m, an
exponential gap between the number of negation gates used in general circuits
and one-input-face upward planar circuits is obtained for a number of natural
functions, including Parity, Inverter, Add and Subtract.

Theorem 6. For f ∈ {Parityn,Parityn} where n ≥ 2, IOUP (f) = n− 1.

Proof. To prove that n − 1 is an upper bound, just notice that Parityn =
Equiv(Parityn−1(x1, . . . , xn−1), xn) (Equiv(x, y) computes x ≡ y), and that
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both the XOR gate and the Equiv gate can be simulated by planar circuits
each containing one negation gate (by standard constructions).

Next we prove that IOUP (f) ≥ n − 1 for f ∈ {Parityn,Parityn} where
n ≥ 2. The statement will be proved by induction on n. It is obvious when
n = 2, since both functions are non-monotone. Now suppose n ≥ 3 and the
statement holds for all n′ < n. Let f ∈ {Parityn,Parityn}. For the sake
of contradiction, let C be a one-input-face upward planar circuit computing f
which contains at most n− 2 negation gates. Without loss of generality, let the
order of the input variables (from left to right in the input face) be x1, . . . , xn.

Suppose G is the predecessor of the first negation gate in C (under some
topological order of the underlying graph of C). Let g denote the function com-
puted at the gate G. Let S = {xi | g essentially depends on xi, 1 ≤ i ≤ n}. Let
l = min{i | xi ∈ S} and r = max{i | xi ∈ S}. Denote by PI the set of all prime
implicants of g. Since g is monotone, every prime implicant of it only contains
positive literals. First we argue that S = {xi | l ≤ i ≤ r}. For this, assume the
contrary that xi �∈ S for some l < i < r. We set all variables in S to 1. Since g is
monotone, this will fix G to be 1. Hence we can find one path from xl to G on
which each gate is fixed to be 1, and another path from xr to G with the same
property. The output gate of C (denoted by O) must lie out of the area defined
by these two paths and the input face due to its non-monotonicity. Since C is
upward planar, we know that every path connecting xi and O must intersect the
two 1-paths previously found. Thus the variable xi is “disconnected” from O,
and gives a contradiction since the function being computed is Parity. Similarly
we can show that any prime implicant is an “interval”.

Lemma 4. Let p = xi1xi2 . . . xik ∈ PI be any prime implicant of g, where
l ≤ i1 < . . . < ik ≤ r. Then im = im−1 + 1 for all 2 ≤ m ≤ k.

Using the induction hypothesis (we skip the details) we can show that each prime
implicant of g has size at least 2. In addition, we can prove the following: Let
pl and pr be the prime implicants of g containing xl and xr, respectively. Then
pl and pr do not intersect with each other; that is, they contain no common
variables. Thus, PI contains at least 2 different prime implicants.

Now we are ready to prove Theorem 6. Let CG be the induced sub-circuit of
C with output gate G. More precisely, CG contains all vertices of C (variables
and gates) from which G is reachable, and all edges spanning them. So CG

computes the function g. Let pl = x1x2 . . . xj and pr = xkxk+1 . . . xr be the
prime implicants of g containing xl and xr, respectively. By the arguments in
the previous paragraph, we have l < j < k < r. Imagine the scenario where
all variables except xk are set to 0. Since f still essentially depends on xk after
this restriction, there exists a “switching path” P from xk to the output gate
of C such that flipping the value of xk will cause all gates on P to change their
values (given that other variables are set to 0). Also note that the output gate
is not contained within the area of CG. Due to the upward planarity of C, P
must intersect the boundary of CG. Let Pin denote the inside part of P respect
to CG. As CG is monotone, any gate on Pin switches from 0 to 1 if xk switches
from 0 to 1, given that other variables are 0. Therefore, setting xk to 1 will fix
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all gates on Pin to evaluate to 1, regardless of the assignment to other variables.
Pin. The following two cases finishes the induction proof.
Case 1: Pin intersects the right boundary of CG. We set xl = xl+1 = . . . =
xk−1 = 0 and xk = xk+1 = . . . = xr−1 = 1. Under this restriction G will
compute exactly xr. But xr cannot affect G now, since any path from xr to G
must intersect Pin This leads to a contradiction.
Case 2: Pin intersects the left boundary of CG. We set x1 = x2 = . . . = xj−1 = 1,
xj+1 = . . . = xk−1 = 0, xk = 1 and xk+1 = . . . = xr = 0. Under this restriction
G will compute exactly xj . But any path from xj to G must intersect Pin, which
again gives a contradiction. 


We next introduce the classes of functions for which we can apply a similar
argument and prove linear lower bounds on IOUP (f). Although the definition
seems restrictive, it can be shown that several natural functions fall into these
classes. Define the class Wn

k,n0
for k, n0, n,m ∈ N, k ≥ 1 of functions f ∈ Bn,m

as the ones with the two properties: (1) If n > n0, then for any variable x ∈ X
and any “uniform” restriction σ which maps all variables in X \ {x} to the same
constant b ∈ {0, 1}, there exists a non-monotone output y ∈ Y such that y|σ
essentially depends on x. (2) If n > n0, then for any variable x0 ∈ X and any
constant c0 ∈ {0, 1}, there exists a set of k′ variables {x1, . . . , xk′} ⊆ X \ {x0}
and a sequence of Boolean constants c1, . . . , ck′ , where 0 ≤ k′ ≤ min{k−1, n−1},
such that f |γ ∈ Wn−k′−1

k,n0
, where γ denotes the restriction which maps xi to ci

for all 0 ≤ i ≤ k′. Now we state the following theorem about the functions in this
class, the proof of which is essentially a generalisation of the proof of Theorem 6.
We skip the details due to space constraints.

Theorem 7. IOUP (f) ≥ �n−n0
k � if f ∈ Wn

k,n0
.

It can be verified that the class W contains some natural functions such as
{Inverter,Add,Subtract,OrOfParity} (OrOfParity is the OR of tPar-

ity’s defined on pairwise-disjoint variables). Combined with the trivial upper-
bound for Inverter, this gives:

Corollary 1. – IOUP (Invertern) = n for all n ≥ 1.

– IOUP (OrOfParityn1,...,nt) ≥
∑ t

i=1 ni

2 where all ni’s are even.
– For f ∈ {Add2n,Subtract2n} where n ≥ 1, IOUP (f) ≥ n.

A Direct Sum Theorem: We consider the direct sum of Boolean functions,
i.e., a collection of different Boolean functions on pairwise disjoint variable sets.
If f is the direct sum of f1, . . . , ft, then each of the functions is called an element
of f . What is the relationship between the inversion complexity of f and that
of its elements? Trivially I(f) ≤

∑t
i=1 I(fi), but the result is far from tight; for

example, when each fi is Parity
√
n and t =

√
n, the LHS is O(log n) but the

RHS is
∑t

i=1 I(fi) = nΘ(1). This indicates that computing the direct sum of
functions (with large decreases) can benefit from interconnections between its
seemingly independent elements. We will show that this is not always the case
if we adopt planar circuits as our computation model.
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Theorem 8. Let fi ∈ Wni

ki,mi
, ∀i ∈ [t]. If f is the direct sum of fi’s, then

IOUP (f) ≥
∑t

i=1�ni−mi

ki
�.

The proof of this theorem is again based on induction, and Theorem 7 forms the
base case of it. The induction step further generalizes the proof of Theorem 6.
The only difference is that, when dealing with a special input variable xi, we
need to identify which function it belongs to. We skip the details of the proof in
this short version. It is straightforward from Theorems 6,8 and the bounds for
the functions that I(f) =

∑t
i=1 I(fi) if each fi is Parity, Parity or Inverter,

and f is the direct sum of all fi’s. This differs from general circuits.

Limitation of the One-Input-Face Constraint: We show that restrict-
ing all input vertices to be on the same face (or equivalently on the exterior
face, or at the lowest level in the plane) may increase the number of nega-
tion gates used for computing some functions. We prove a stronger result, by
showing a monotone (multi-output) function which has a monotone upward
planar circuit computing it, but cannot be computed by any monotone one-
input-face cylindrical circuits. Here a circuit is called cylindrical if it can be
embedded on a cylinder surface without edge crossings and every edge goes
upwards. It is easy to see that cylindricality generalizes upward planarity. Let
MinMaxn(x1, x2, . . . , xn) = (

∧n
i=1 xi,

∨n
i=1 xi). Thus MinMaxn ∈ Bn,2 and

computes the minimum and maximum values among all input variables. It is
easy to construct a monotone upward planar circuit for it. Using an argument
similar to that of the proof of Theorem 6, in the context of cylindricality, we can
prove the following theorem:

Theorem 9. Let n ≥ 3. Then MinMaxn can be computed by a monotone up-
ward planar circuit, but cannot be computed by any monotone one-input-face
cylindrical circuit.

4.2 Multilective Upward Planar Circuits

In this subsection, we will outline the proof of Theorem 4. That is, for every
single-output Boolean function f , IM−UP (f) ≤ �d(f)+1

2 �. The proof follows a
similar line to that of Markov’s. Given a circuit C, we say a vertex (an input
variable or a gate) in G is out if it lies in the outer-face of C. We say C is
out-negationed if either C is monotone, or there is a negation gate in C which
is out, and the sub-circuit below it is monotone.

The following statement essentially captures the argument. For i = 0, 1, let
fi(x) be a Boolean function which can be computed by a out-negationed multi-
lective upward planar circuit containing ti negation gates. In addition suppose
t1 = 1. Then f0 and f1 have a connector μ(y, y′, x) which can be computed by a
multilective upward planar circuit containing at most max{t0, t1} negation gates
and exactly one input node assigned with the variable y′. Moreover, this y′-node
is out. The proof of Theorem 4 now follows by a careful induction combined with
some crucial observations in Markov’s original proof.
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On the Topological Complexity of MSO+U
and Related Automata Models

Szczepan Hummel, Michał Skrzypczak, and Szymon Toruńczyk�
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Abstract. We show that Monadic Second Order Logic on ω-words ex-
tended with the unbounding quantifier (MSO+U) can define non-Borel
sets. We conclude that there is no model of nondeterministic automata
with a Borel acceptance condition which captures all of MSO+U. We
also give an exact topological complexity of the classes of languages
recognized by nondeterministic ωB-, ωS- and ωBS-automata studied
by Bojańczyk and Colcombet in [BC06]. Furthermore, we show that
corresponding alternating automata have higher topological complexity
than nondeterministic ones — they inhabit all finite levels of the Borel
hierarchy.

Introduction

Motivation and background. The notion of an ω-regular language is well estab-
lished in the theory of automata. This class of languages carries over to ω-words
many of the good properties of regular languages of finite words. It can be de-
scribed using automata, namely by nondeterministic Büchi automata, or the
equivalent deterministic Muller automata, and also alternating automata. In
terms of logic, they are equivalent to both Monadic Second Order Logic (MSO)
and Weak Monadic Second Order Logic (Weak MSO) – the fragment of MSO
where quantifiers may only bind finite sets. Such connections between logic and
automata are extremely important in the field of verification and specification.

Recently, in [Boj10, Boj09, BT09] it has been suggested that there are other
robust classes of languages of ω-words, extending the canonical notion. It has
been advocated that natural examples of languages that might be seen as regular
(for instance, because of a finite Myhill-Nerode index) are languages such as

LB = {an1ban2b . . . | lim supni <∞},
LS = {an1ban2b . . . | lim inf ni = ∞}.

which are not ω-regular in the usual sense.
These papers describe several such classes of languages, but none of them is

known to have all the robust properties of ω-regular languages. On one hand,
automata models often allow deciding emptiness, on the other hand, a class
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described in terms of logic usually has good closure properties. Ideally, one would
like to have a class of languages which can be described both in terms of automata
and in terms of logic, as in the case of ω-regular languages.

The connection between automata and logic is better understood when re-
stricted to deterministic automata and weak logics. Deterministic max-automata,
introduced in [Boj09], have an alternative description in terms of logic, namely
Weak MSO extended with the unbounding quantifier U, which is defined so that
the formula UX.ϕ(X) is equivalent to writing:

“ϕ(X) is satisfied by arbitrarily large finite sets X of positions”

Thus U is suited to capture (the complement of) LB.
As shown in [BT09], the correspondence between deterministic automata and

weak logics extends to various other classes of languages, for instance determin-
istic min-max-automata are equivalent to a logic called Weak MSO +U+R, and
embrace both LB and LS.

Problems arise when we look for classes closed under set-theoretic projection,
which corresponds to full existential quantification in logic or to nondetermin-
ism on the automata side. In [BC06], ωBS-automata were defined as automata
equipped with counters which can be incremented or reset, but not read. The
acceptance condition may require a counter to be bounded (the B-condition) or
convergent to ∞ (the S-condition). Although nondeterministic ωBS-automata
are not closed under complementation, there is a partial fix to this problem.
The main technical result of [BC06] shows that the complement of a language
defined by an ωB-automaton is accepted by an ωS-automaton and vice versa,
where the two are subclasses of ωBS-automata using only the B-condition or the
S-condition, respectively. However, boolean combinations of ωB-automata are
not closed under existential quantification.In consequence, it seems unlikely to
find any sensible logic corresponding to either ωBS-automata or boolean com-
binations of ωB-automata. To try to overcome these issues, one might consider
alternating ωBS-automata. So far, it was not known whether in the ωBS-setting
there is any advantage of alternation over nondeterminism.

From the logic side, in order to capture nondeterminism, it seems natural to
consider the logic MSO+U, which extends the class of languages recognized by
ωBS-automata. However, we face the essential question, whether this logic is
decidable. In this paper we analyze large classes of automata to seek for a model
capable of capturing MSO+U.
Topological complexity. Our approach is to investigate from the topological view-
point the classes of languages mentioned above and also explore other large
classes of automata. Such an analysis can guide in constructing a suitable model
of automata for MSO+U, or show that such a model cannot exist. For instance,
we prove that a large class of models of nondeterministic automata cannot cap-
ture MSO+U. We also discover that alternating ωBS-automata are strictly more
expressive than boolean combinations of nondeterministic ωBS-automata.

Let us illustrate these techniques here with some elementary examples. The
language LS corresponds to a property of a sequence of numbers n1, n2, . . . –
namely, being convergent to ∞ – which is equivalent to:
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∨
m

∧
i≥m

(ni > k).

Being able to define LS with a formula with three alternations of logical conec-
tives directly translates into its topological complexity — we say that LS is (at
most) in the third level of the Borel hierarchy. Similarly, it is easy to see that
LB is in the second level of the Borel hierarchy.

A run of a deterministic automaton is a continuous function which maps an
input word into a sequence of states. The recognized language is the inverse image
of the set of accepting runs under this mapping. A basic property of continuous
mappings proves that the language is topologically not more complex than this
set of accepting runs.

This immediately yields several results: ω-regular languages occupy at most
the first two levels of the Borel hierarchy, since such is the complexity of the
Muller acceptance condition; max-automata (equivalently, Weak MSO+U) also
fall into the first two levels of the hierarchy, as their acceptance condition is LB.

As a sample impossibility result (stated in [Boj09]), observe that deterministic
max-automata do not recognize the language LS since it is in the third level of
the Borel hierarchy and provably not lower.

In Section 2 we exhibit an example of a language M definable in MSO+U
which is analytic-complete, i.e. lays beyond the infinite Borel hierarchy. This
instantly proves that there can be no deterministic model of automata with a
Borel acceptance condition which captures all of MSO+U.

The above method does not give upper bounds for the complexity of languages
defined by nondeterministic automata. Such bounds require some nontrivial
combinatorial results, usually determinization (as for ω-regular languages). We,
in turn, use two difficult results to give upper bounds concerning nondetermin-
istic automata.

In Section 2, Corollary 1, we use a strong topological result of Souslin to
conclude that no model of nondeterministic automata with a Borel acceptance
condition can capture all of MSO+U.

In Section 3, we use the combinatorial complementation result of [BC06] which
allows us to compute the topological complexity of languages defined by non-
deterministic ωB-, ωS- and ωBS-automata. In particular, ωBS-automata, which
form the largest among all the subclasses of MSO+U that we know to have
decidable emptiness, reach only the fourth level of the Borel hierarchy.

However, there is still some hope in alternating automata. In Section 4 we
define the alternating variant of ωBS-automata and we prove that they inhabit
at least all finite levels of the Borel hierarchy. This implies that alternating ωBS-
automata are strictly more powerful than (boolean combinations of) nondeter-
ministic ωBS-automata. However, we do not know whether they can recognize
analytic languages, such as M . This leaves open the question whether this model
captures MSO+U.
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1 Basic Notions

Logic. We assume familiarity with the Monadic Second Order Logic (MSO). Fix
an alphabet A. We denote positions of ω-words using symbols x, y, . . . and sets
of positions with symbols X,Y, . . .. For a ∈ A, the unary predicate Pa holds in
all positions of the word where an a stands. It is well known that languages that
can be described by this logic are exactly ω-regular languages.

MSO+U allows building formulas using MSO constructs and an additional
quantifier U, called the unbounding quantifier, defined as follows. The formula
UX.ϕ(X) holds in a word w if ϕ(X) is satisfied for arbitrarily large finite sets
X of positions. Formally, UX.ϕ(X) is equivalent to:∧

n∈N

∃X. (ϕ(X) ∧ n < |X | <∞)

The canonical examples of languages that can be described are the languages
LB and LS defined in the introduction.
Topology. For a fixed alphabet A, we treat Aω as a topological space. A basic
open set is determined by a prefix s ∈ A∗ and is of the form s · Aω. Other
open sets are obtained by taking unions of basic open sets. If A is finite, this
topological space is homeomorphic (i.e. topologically isomorphic) to the Cantor
space.
The Borel hierarchy. The Borel hierarchy is defined inductively. We assist the
definition with the following diagram1.

Σ0
1 ��

Σ0
2 ��

Σ0
3 ��

Σ0
4

���

BC1 ��

��
BC2 ��

��
BC3 ��

��
. . .

Π0
1

��
Π0

2

��
Π0

3

��
Π0

4

���

Σ0
1 denotes the class of open sets and Π0

1 denotes the class of closed sets, i.e.
complements of open sets. Having defined Σ0

n and Π0
n, we define BCn as (finite)

boolean combinations of Σ0
n-sets and Π0

n-sets. In the next step, we define Σ0
n+1

as unions of countable families of BCn-sets and Π0
n+1 as intersections of countable

families of BCn-sets. Note that for each n, Π0
n consists of complements of Σ0

n-
sets, and vice versa.

This way we define all finite levels of the Borel hierarchy, which is all we will
need in this paper. Note that for each n, both Σ0

n and Π0
n are strictly contained

in both Σ0
n+1 and Π0

n+1. In fact, in order to obtain a class which is closed under
both complements and countable unions, one should continue the construction
using transfinite induction up to level ω1, where we arrive at the class of Borel
sets. For these and other facts concerning the Borel hierarchy see e.g. [Sri98,
Chapter 3.6].
1 This diagram is more commonly presented with the larger class Δ0

n+1 = Σ0
n+1∩Π0

n+1

in place of BCn. However, we will not use the classes Δ0
n.
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Analytic sets. The direct image of a Borel set under a continuous mapping may
no longer be a Borel set. We call such sets analytic, and the class of all analytic
sets is denoted Σ1

1. Complements of analytic sets are called coanalytic and form
the class Π1

1. An important result in the theory, the theorem of Souslin (see e.g.
[Kec95, Chapter 14.C]) states that if both a set and its complement are analytic
then they are in fact Borel. It is worth mentioning that the Borel hierarchy
and analytic sets are part of a bigger hierarchy of classes, called the projective
hierarchy.

Topological complexity. A topological complexity class C, for the needs of this
paper is any of the classes Σ0

n, Π0
n where n is a finite number (although the full

Borel hierarchy has levels above ω), and the classes Σ1
1 and Π1

1. Analogously
to complexity theory, we have the notions of reductions and completeness. Let
A,B be two alphabets and let K ⊆ Aω and L ⊆ Bω. We say that a continuous
mapping f : Aω → Bω is a reduction of K to L if K = f−1(L). It is a simple
property of continuous mappings that if L belongs to a topological complexity
class C then so does K. The language L is called C-hard iff any set K ∈ C can
be reduced to L. We say that L is C-complete if additionally L ∈ C.

2 Non-borel Sets in MSO+U

In this section we show that the set B of trees on N (i.e. prefix closed subsets
of N∗) with an infinite branch is MSO+U-definable modulo some encoding. The
set B is well known to be Σ1

1-complete (see [Kec95, Theorem 27.1]).
To simplify notation, we consider B as a subset of T — the set of infinite

trees. Since B ⊆ T and T ⊆ 2N∗
is in Π0

2, this restriction doesn’t affect the
topological complexity of B.

Let ≺ be some fixed order of type ω on N∗. We continuously embed T into Aω ,
where A = {a, b, c}. For a given vertex v = (n1, n2, . . . , nm) ∈ N∗, let K(v) =
an1ban2b . . . banm ∈ A∗. For a given tree T ∈ T , let K(T ) = K(v1)cK(v2)c . . . ∈
Aω, where vi is the i’th vertex of T in the order ≺. It is easy to see that K : T →
Aω defined above is a homeomorphism onto its image.

Proposition 1. There exists an MSO+U formula ϕ such that

T ∈ B ⇔ K(T ) |= ϕ.

Proof. Below, pre(G) denotes the set of prefixes of elements of G.
Lemma 1. Let T ∈ T be a tree. The following conditions are equivalent:

1. T has an infinite branch,
2. T has an infinite set of vertices G such that for any subset S of pre(G), if
S has bounded height then S is finite.

The proof of the lemma is an easy application of König’s Lemma.
To prove Proposition 1 it suffices to show that the second condition can be

verified by a formula of MSO+U on K(T ). The construction of such a formula
is described below.

For fixed w ∈ Aω, S ⊆ ω, let ψ(S) express the following properties:
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– for each block of the form c(a∗b)∗a∗c in w, S contains some initial segment
of its positions,

– there is a bound r such that within every block the number of b’s contained
in S is bounded by r. Let rS denote the minimal bound.

Let γ(S) express that all a-blocks inside S are jointly bounded in length.
Let ϕ be an MSO+U formula expressing that there exists an infinite set G ⊆ ω

containing only whole blocks of the form c(a∗b)∗a∗c, such that

∀S ⊆ G. ψ(S) ⇒ γ(S) (1)

The formula ϕ verifies the second condition of the lemma. 


Let us denote M = L(ϕ) = {w ∈ Aω : w |= ϕ} . Therefore we have shown that
K is a reduction of B to M .

Proposition 2. M ⊆ Aω is a Σ1
1-set.

Proof. Let Z be a set of pairs (w,G) ⊆ Aω × 2ω with G being a witness for ϕ
and (w,G) satisfying the formula (1).

Note that for each rS ∈ N and G ⊆ ω, there is a maximal set S ⊆ G, satisfying
ψ(S) with given rS bound. Such S depends continuously on (w,G). If we take
S ⊆ S′ ⊆ G, then γ(S′) ⇒ γ(S). Therefore, to check the validity of (1) it is
enough to consider only countably many maximal S’s (one per each rS ∈ N).
The formula γ(S) defines a Borel set. So Z is a countable intersection of Borel
sets. Since M = π1(Z), M is Σ1

1. 


Therefore, we have proved:

Theorem 1. M ⊆ Aω is a Σ1
1-complete set (in particular, non-Borel) and is

definable in MSO+U.

Corollary 1. There is no model of nondeterministic automata with a Borel
acceptance condition, capturing all of MSO+U.

Proof. Assume that for each MSO+U formula ψ, there exists a nondeterministic
automaton A with a Borel acceptance condition F ⊆ Qω, such that L(A) =
L(ψ). In this proof the set Q can be even infinite (but countable), taking into
account values of counters or any other additional state information. Then, L(ψ)
is a Σ1

1-set — it is the projection of the Borel set of pairs (w, ρ) such that ρ is
a run of A on w.

Therefore, both L(ϕ) = M and L(¬ϕ) = Aω \M are Σ1
1-sets. By the theorem

of Souslin, M must be Borel, which is a contradiction. 


3 ωBS-Automata

We will now define ωBS-automata as described in [BC06, Boj10]. They define a
strict subclass of MSO+U, but it is the greatest subclass of MSO+U of which
we know to have decidable emptiness.
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An ωBS-automaton A, as other nondeterministic finite automata, has a finite
input alphabet A, a finite setQ of states and an initial state qI . Apart from that it
is equipped with a finite set Γ of counters. The counters can only be updated and
cannot be read during the run. They will be used by the acceptance condition. A
transition of the automaton is a transformation of states, as in standard NFA’s,
and additionally a finite sequence of counter updates. A counter update can be
either an increment or a reset of a counter c ∈ Γ .

The value of a counter c is initially set to 0 and is incremented or reset
according to the transitions in a run. For c ∈ Γ we define a sequence valρ(c),
where valρ(c)i is the value of counter c right before its i-th reset in the run
ρ. Note that if a counter c is reset only finitely many times then the sequence
valρ(c) is finite.

The acceptance condition of ωBS-automaton is a boolean combination of con-
straints that can be of one of the forms:

lim sup
i

valρ(c)i <∞ lim inf
i

valρ(c)i = ∞

The first constraint is called the B-condition (bounded), the second — the S-
condition (strongly unbounded). In order that lim inf and lim sup make sense,
the constraints implicitly require the corresponding sequences to be infinite.

It is a simple observation that the negation of a B-condition can be simulated
using an S-condition and nondeterminism, and vice versa. Thanks to this fact
we can consider automata with acceptance conditions that are positive boolean
combinations of S- and B-conditions, without loss of expressive power.

We will use the notation B(c) for the B-condition and S(c) for the S-condition
imposed on a counter c.

If the acceptance condition of an automaton is a positive boolean combination
of B-conditions, the automaton is called an ωB-automaton. We similarly define
ωS-automata.

Languages recognized by ωBS-automata (ωB-automata, ωS-automata) are
called ωBS-regular (resp. ωB-regular, ωS-regular). An important result of [BC06]
is that the complement of an ωB-regular language is an ωS-regular language and
vice versa. Both classes are extensions of the class of ω-regular languages since
the Büchi condition can be simulated by either a B-condition or an S-condition.

Example 1. The language LS defined in the introduction can be recognized by
an ωS-automaton. The automaton has one state and uses one counter that is
increased when reading a letter a and is reset after each b. The acceptance
condition is simply an S-condition on the only counter.

3.1 Complexity of ωB- and ωS-Regular Languages

Theorem 2. Each ωB-regular language is in Σ0
3.

Proof. Fix an ωB-automaton A recognizing a language L, and let us first assume
that its accepting condition is a conjunction of B-conditions, i.e. is of the form:∧

c∈ΓB

B(c)
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Each of the considered counters is bounded iff there is a common bound k for
all of them. Therefore L can be defined as:

L =
{
w : ∃ρ.

∧
c∈ΓB

valρ(c) is bounded but infinite
}

=
⋃
k

{
w : ∃ρ.

∧
c∈ΓB

valρ(c) is bounded by k and infinite
}︸ ︷︷ ︸

Lk

,

where the quantification is over the set of all runs of A on w.
It is easy to see that for a fixed k, Lk can be recognized by a nondeterministic

Büchi automaton. We simply store the counter values in the state and do not
allow them to be incremented above k. The acceptance condition requires each
of the counters c ∈ ΓB to be reset infinitely often. Hence Lk is ω-regular. Since
all ω-regular languages are in BC2, L ∈ Σ0

3 as a countable union of BC2-sets.
In the general form, the acceptance condition of an ωB-automaton is a pos-

itive boolean combination of B-conditions. We can write such a condition in
disjunctive normal form (DNF). The language accepted by this automaton is a
union of languages corresponding to each disjunct. Hence it is in Σ0

3. 


Thanks to the complementation result of [BC06], we have:

Corollary 2. Each ωS-regular language is in Π0
3.

The complexity bounds given by Theorem 2 and Corollary 2 are tight.

Theorem 3. There is a Σ0
3-complete set that is ωB-regular and a Π0

3-complete
set that is ωS-regular.

Proof. Because ωB-regular languages are complements of ωS-regular languages,
it suffices to show only one of the claims.

We recall that the language LS is in Π0
3 and ωS-regular. Π0

3-completeness of
LS follows from [Kec95, Exercise 23.2] via an obvious reduction. 


3.2 Complexity of ωBS-Regular Languages

Now we switch to languages recognized by automata that can use both S- and
B-conditions. We prove the following.

Theorem 4. Each ωBS-regular language is in Σ0
4.

Proof. The proof, on the one hand, will use the result of Theorem 2 and, on the
other hand, will repeat a similar reasoning.

Let us fix an ωBS-regular language L and an automaton A recognizing it.
First consider an acceptance condition of the form:∧

c∈ΓB

B(c) ∧
∧
c∈ΓS

S(c)
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The language L can then be defined by:

L =
⋃
k

{
w : ∃ρ.

∧
c∈ΓB

valρ(c) is bounded by k and infinite∧
c∈ΓS

valρ(c) converges to ∞

}
︸ ︷︷ ︸

Lk

Note that each Lk language is ωS-regular, hence (by Theorem 2), it is in Π0
3. So

L, as a countable union of such languages, is in Σ0
4.

A general acceptance condition can be written in disjunctive normal form
(DNF). Again, the language accepted by such an automaton is a union of lan-
guages corresponding to each disjunct, so it is in Σ0

4. 


Now we show that the bound is tight. For that we consider the language, that
was used in [BC06, Corollary 2.8] to show that the class of ωBS-regular languages
is not closed under complements. Let

G =

⎧⎨⎩an1ban2b . . . :
the sequence n1, n2, . . . can be partitioned into
a (possibly empty) bounded subsequence and
a (possibly empty) subsequence tending to ∞

⎫⎬⎭
The following fact is presented as an example in [TL93, page 595].

Lemma 2. The language G is Σ0
4-complete.

Now it suffices to note that the language G is ωBS-regular. It is proven in [BC06]
(by showing an appropriate ωBS-regular expression), but it is straightforward
to construct an automaton recognizing it.

4 Alternating ωBS-Automata

On the way towards finding a model of automata for the logic MSO+U we
consider alternating ωBS-automata.

Alternating ωBS-automata are defined similarly as nondeterministic ωBS-
automata. The difference is that the state space Q is split into Q∀ (universal
states) and Q∃ (existential states).

We use standard game semantics for such automata. For a given alternating
automaton A and word w ∈ Aω we define a two-player game. A play in this
game starts in the initial state of the automaton and in the first position of
the word and proceeds by applying transitions of the automaton on the word w
consistent with current state and a letter in current position in the word. Player
∀ chooses transitions when the automaton is in a state from Q∀, Player ∃— from
Q∃. Finally the play produces an infinite sequence of transitions consistent with
consecutive letters of the word. The word w is accepted by the automaton iff
Player ∃ has a winning strategy in the game with the winning condition of exactly
the same form as an acceptance condition of nondeterministic ωBS-automata,
i.e. a boolean combination of B- and S-conditions.
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4.1 Languages Complete for the Classes Π0
2n

We will now present examples of languages of infinite words complete for the
Borel classes Π0

2n, which are recognized by alternating ωBS-automata.
To make proofs easier, we will work with the spaces of sequences of vectors

of numbers Nn = (Nn)ω. An easy embedding will transfer the results into the
space of infinite words. For n = 0, the above definition gives a space of sequences
of empty tuples, i.e. N0 = {ω}.

Let us fix an alphabet A = {a, b, c}. We use encoding of a sequence of vectors
into the space Aω, where each vector (zn, zn−1, . . . , z1) is mapped to the word
aznbazn−1b . . . az1c. We will call the embedding defined this way Wn : Nn → Aω .

We will use the following notations to easily operate on sequences of vectors.
– For η ∈ Nn and m ∈ N, let η�m be a subsequence of η consisting of those

vectors that have value m at the first coordinate.
– Let πn : Nn → Nn−1 be the projection which cuts off the first coordinate

from each vector in a given sequence.

Definition 1. Let Ln ⊆ Nn for n > 0 be the set of all η ∈ Nn such that

∃∞mn
∃∞mn−1

. . . ∃∞m1
∃∞x∈ωη(x) = (mn,mn−1, . . . ,m1) ,

where ∃∞ stands for “exists infinitely many”. Additionally, let L0 = {ω} = N0.

The following lemma describes the languages Ln in an inductive fashion.
Lemma 3. For n > 0, η ∈ Ln iff there exist infinitely many m ∈ N such that
η�m is an infinite sequence and πn (η�m) ∈ Ln−1.
The topological complexity of the languages Wn(Ln) is presented as an example
in [TL93, pages 595–596], here we only recall it.

Theorem 5. For every n>0, the language Wn(Ln) is Π0
2n+2-complete.

Logic. Now we present MSO+U formulas describing the languages Ln. We do
not formally prove that the formulas define exactly the desired sets, but they will
serve as a guideline for us in the construction of alternating automata recognizing
the languages.

First define a formula overNn, expressing boundedness of the first coordinates
of vectors marked by X :

Bndn(X) ≡ ∃k∈N∀x∈X η(x)1 ≤ k.

Now we build the formula for the language Ln inductively:

ϕn ≡ ∀X.Bndn(X) =⇒ ∃Y.Bndn(Y ) ∧ (X ∩ Y=∅) ∧ (ϕn−1|Y ) , (2)

where ϕn−1|Y is ϕn−1 with all quantifiers restricted to Y and operating on Nn

by ignoring the first coordinates of vectors, and ϕ0 simply states that a sequence
is infinite.

The formula (2) deals with sequences of vectors, but it is easy to rewrite it in
such a way that it works on ω-words over A and defines Wn(Ln). It is possible
because properties like “being a maximal block of consecutive a’s that correspond
to the k-th coordinate of one of the vectors in a sequence” are expressible in MSO.
Expressing Bndn in this context requires U.
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4.2 Automata Construction

Theorem 6. For each n ∈ N there is an alternating ωBS-automaton recognizing
a Π0

2n+2-hard language.

Proof. For a fixed n, it is possible to construct an ωBS-automaton recognizing
exactly the language Wn(Ln). However, to avoid some technical inconveniences,
we construct an automaton An for which we only require that it accepts a word
Wn(η) iff η ∈ Ln.

The automaton will mimic the formula ϕn. The problem that we face is that
alternation in automata and quantifier alternation in logic have different seman-
tics. In logic, using the second order quantifier refers to choosing a set all at once,
while in automata, players make decisions step by step (position by position).
We will be able to overcome this problem using properties of the B-condition.
Automaton. The automaton An will be defined in the following way.

While reading the code of a sequence of vectors, before reading each vector
Player ∀ decides if he selects the first component of the vector. If ∀ has not chosen
the component, ∃ can choose it. If the component was chosen by ∀, counter an
counts its length and then resets. If the component was chosen by ∃, counter en
counts its length and then resets.

If the first component was chosen by ∃ then the procedure is repeated for the
second component and for the counters an−1 and en−1. We continue with the
next components until Player ∃ does not select a component or all components
of the vector are selected by ∃.

The whole process is repeated for all the vectors in a word.
Player ∀ can additionally reset any of ai counters at any time (except the

moment when it is actually incremented). This is to allow Player ∀ to select a
finite (even empty) set.

The acceptance condition (winning condition for ∃ in the game) requires
that among the counters an, en, an−1, en−1, . . . , a1, e1, the left-most which is un-
bounded (or reset finitely many times) is an a-counter, or all counters are reset
infinitely many times and are bounded.
Soundness. For a given word w = Wn(η) such that η ∈ Ln, we have to prove
that the existential player has a winning strategy in An on w. We proceed by
induction. As stated above, η ∈ Ln if and only if there exist infinitely many
m ∈ N such that

η�m is infinite and πn (η�m) ∈ Ln−1 (3)

Player ∃ uses the following strategy. Let k be the greatest value of the first
component among vectors selected by ∀ so far. Letmk be the leastm greater than
k, for which condition (3) holds. Player ∃ selects a vector if its first component
is equal to mk.

Note that we may assume that k is increased only finitely many times during
the run (otherwise Player ∀ loses). Hence, there exists a value mk0 that occurs at
the first component of almost all vectors selected by Player ∃. By the assumption,
πn(η�mk0

) ∈ Ln−1. Since the set Ln is prefix-independent (i.e. for all ν ∈ (Nn)∗,
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η ∈ Ln iff νη ∈ Ln), also η restricted to the vectors selected by ∃, with the first
component erased, belongs to Ln−1. It follows by inductive assumption that ∃
has a strategy on further components of vectors of this restricted sequence.

Induction basis: The automaton recognizing the set L0 simply accepts all
infinite sequences.
Correctness. Now let us take w = Wn(η) such that η /∈ Ln. We prove that
the universal player has a winning strategy in An on w. We, again, proceed by
induction. Note that if η /∈ Ln there exists m0 such that for all m ≥ m0

η�m is finite or πn (η�m) /∈ Ln−1 (4)

Player ∀ marks all the vectors whose first coordinate is less than m0. If there
are only finitely many such vectors, ∀ uses additional resets. During the game,
Player ∀ remembers the largest first coordinateM of a vector selected by Player ∃.

For every i ∈ {m0, . . . ,M} we have η�i is finite or πn (η�i) /∈ Ln−1, so

ηM := η�{m0,m0+1,...,M} is finite or ηM := πn (ηM ) /∈ Ln−1.

If ηM is finite ∃ will lose the game (if he doesn’t increase M). Otherwise, at
every moment, Player ∀ assumes that M will not increase and uses the winning
strategy from the inductive assumption for ηM at the next coordinates.

The valueM can increase only finitely many times during the game (otherwise
∃ loses). Using prefix independence, we obtain that ∀ wins the game.

The inductive basis is trivial here, since there is no η ∈ N0 \ L0. 


5 Conclusion

Our results seem to indicate that deciding MSO+U (if possible at all) might
require considering the emptiness problem of some rather complicated model of
automata, such as alternating ωBS-automata.
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Abstract. Systems of equations with sets of integers as unknowns are
considered, with the operations of union, intersection and addition of
sets, S + T = {m + n | m ∈ S, n ∈ T}. These equations were recently
studied by the authors (“On equations over sets of integers”, STACS
2010 ), and it was shown that their unique solutions represent exactly
the hyperarithmetical sets. In this paper it is demonstrated that greatest
solutions of such equations represent exactly the Σ1

1 sets in the analytical
hierarchy, and these sets can already be represented by systems in the
resolved form Xi = ϕi(X1, . . . , Xn). Least solutions of such resolved
systems represent exactly the recursively enumerable sets.

1 Introduction

Consider equations ϕ(X1, . . . , Xn) = ψ(X1, . . . , Xn), in which the unknowns Xi

are sets of integers, and the expressions ϕ, ψ may contain addition S + T =
{m+ n | m ∈ S, n ∈ T }, Boolean operations and ultimately periodic constants.
At a first glance, they might appear as a simple arithmetical object. However,
already their simple special case, expressions and circuits over sets of integers,
have a non-trivial computational complexity, studied by McKenzie and Wag-
ner [10] in the case of nonnegative integers and by Travers [18] in the case of all
integers.

If only nonnegative integers are allowed in the equations, they become iso-
morphic to language equations [8] over a one-letter alphabet. Language equations
over multiple-letter alphabets are known to be computationally complete [15,14]:
their unique solutions represent exactly the recursive sets, while their least and
greatest solutions represent exactly the recursively enumerable sets and their
complements, respectively. This result has been subsequently re-created by the
authors [4,5] for the one-letter case, that is, for equations over sets of natural
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numbers. As recently shown by Lehtinen and Okhotin [9], this computational uni-
versality extends to systems of such a simple form as {X+X+C = X+X+D,
X + E = F}, with a unique unknown X .

The first study of equations over sets of integers, both positive and negative,
was recently conducted by the authors [6]. The main result was that a set is
representable by a unique solution of such a system if and only if it is hyper-
arithmetical. Hyper-arithmetical sets are defined as the intersection Σ1

1 ∩Π1
1 of

the two bottom classes of the analytical hierarchy, and are accordingly a proper
superset of the sets representable in first-order Peano arithmetic. The results
on unique solutions of such systems are recalled and commented in Section 2.
Concerning least and greatest solutions of these equations, one can easily see
that they must belong to Π1

1 and to Σ1
1 , respectively, though no lower bounds

are yet known.
This paper begins the study of least and greatest solutions of equations over

sets of integers with systems of the following form:⎧⎪⎨⎪⎩
X1 = ϕ1(X1, . . . , Xn)

...
Xn = ϕn(X1, . . . , Xn)

(*)

This is the same general form as in the most well-known kind of language equa-
tions used to define context-free grammars [1]. It is known that such a system
has a least solution corresponding to the context-free derivation; it is a folklore
knowledge that greatest solutions are context-free as well. Least and greatest
solutions are obtained by the fixpoint iteration, in which a solution is always
reached after ω iterations. These results extend to a natural generalization of
the context-free grammars, the conjunctive grammars [11,12].

In this paper, the unknowns in a system (*) are sets of integers, and the
operations are union, intersection and addition. Tarski’s fixpoint theorem [17]
guarantees the existence of a least and a greatest solution, and, as explained
in Section 3, an iterative version of Tarski’s theorem asserts that a fixpoint is
always reachable in ω1 iterations, that is, iterating over countable ordinals. In
Section 4 it is shown that in the case of greatest solutions, all ω1 iterations are
actually used, and that every set in Σ1

1 can be represented by a greatest solution
of such a system. On the other hand, Section 5 demonstrates that least solutions
can be always reached in only ω iterations, and the family of sets represented by
these solutions is exactly the family of recursively enumerable sets.

2 Equations over Sets of Integers

Consider systems of equations of the resolved form Xi = ϕi(X1, . . . , Xn) with
i ∈ {1, . . . , n}, where the unknowns Xi are sets of integers, and the expressions
ϕi may use the operations of union, intersection and addition of sets, as well
as ultimately periodic constants1. When such a system has a unique solution, it
1 A set of integers S ⊆ Z is ultimately periodic if there exist such numbers n0 	 0 and

p 	 1, that n ∈ S if and only if n + p ∈ S for all n with |n| 	 n0.
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can be regarded as a definition of the sets in that solution. When a system of
this form has multiple solutions, it is known from Tarski’s fixpoint theorem [17]
that among them there is the least and the greatest solution with respect to the
partial order of componentwise inclusion.

If the unknowns are sets of natural numbers, such equations were first studied
by Jeż [2], who established their nontriviality by representing the set {4n |n 	 0}:

Example 1 (Jeż [2]). The system of equations⎧⎪⎪⎨⎪⎪⎩
X1 =

[
(X1 +X3) ∩ (X2 +X2)

]
∪ {1}

X2 =
[
(X1 +X1) ∩ (X2 +X6)

]
∪ {2}

X3 =
[
(X1 +X2) ∩ (X6 +X6)

]
∪ {3}

X6 = (X1 +X2) ∩ (X3 +X3)

over sets of natural numbers has a least solution with X1 = {4n | n 	 0},
X2 = {2 · 4n | n 	 0}, X3 = {3 · 4n | n 	 0} and X6 = {6 · 4n | n 	 0}.

To understand this construction, it is useful to consider positional notation of
numbers. Let Γk = {0, 1, . . . , k − 1} be digits in base-k notation. For every
w ∈ Γ ∗

k , let (w)k be the number defined by this string of digits. For a language
L ⊆ Γ ∗

k of positional notations, define (L)k = {(w)k | w ∈ L}. Now the so-
lution of the above system can be conveniently represented in base-4 notation
as
(
(10∗)4, (20∗)4, (30∗)4, (120∗)4

)
. Substituting these four sets into the first

equation, one obtains(
(10∗)4+(30∗)4

)
∩
(
(20∗)4+(20∗)4

)
=

=
(
(10+)4 ∪ (10∗30∗)4 ∪ (30∗10∗)4

)
∩
(
(10+)4 ∪ (20∗20∗)4

)
= (10+)4,

that is, both sums contain some“garbage”, yet the garbage in the sums is disjoint,
and is accordingly “filtered out” by the intersection. Finally, the union with {1}
yields the set {4n | n 	 0}, turning the first equation into an equality. The rest
of the equations are verified similarly [2].

The idea of this example was generalised by the authors [3] by representing
every set of numbers with their positional notation recognised by a certain kind of
cellular automata. These are one-way real-time cellular automata, known under
a proper name of trellis automata [13].

Proposition 1 (Jeż, Okhotin [3, Thm. 3]). For every k 	 2 and for every
trellis automaton M over Γk = {0, . . . , k− 1}, such that L(M)∩ 0Γ ∗

k = ∅, there
exists and can be effectively constructed a resolved system of equations over sets
of natural numbers using the operations of union, intersection and addition and
singleton constants, such that its least solution contains a component (L(M))k.

Trellis automata are notable, in particular, for recognising the language of com-
putation histories of a Turing machine, which is generally defined in the form
VALC(T ) = {CT (w)*w | w ∈ L(T )}, where CT (w) is a sequence of consecutive
configurations in the accepting computation of T on w, encoded in a suitable
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way. This follows from the fact that trellis automata can recognise any finite
intersections of linear context-free languages, and VALC(T ) is representable as
such an intersection. Assume that VALC(T ) is defined over an alphabet of k-
ary digits Γk. Then, any computation represents a number (CT (w)*w)k , and
Proposition 1 asserts that the set of such numbers is a solution of some system
of equations [3]. A more complicated construction on top of (VALC(T ))k allows
extracting (L)k out of VALC(T ), leading to a representation of every recursive
(r.e., co-r.e.) set by unique (least, greatest, respectively) solution of a system
ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn) over sets of natural numbers [4].

When constructing equations over sets of integers, applying Proposition 1
to VALC(T ) remains a useful technique. As in the authors’ previous work on
systems of equations over sets of integers [6], VALC(T ) shall be defined over the
alphabet of digits in base-7 notation, with each computation encoded by a string
CT (w) ∈ {3, 6}+, and with

VALC(T ) = {CT (w)1w | w ∈ T }.

The exact details of the encoding are not important, as trellis automata are
flexible enough to recognise such a variant of VALC(T ). Then the corresponding
set of numbers

{(CT (w)1w)7 | (w)7 ∈ L(T )}
is representable by the unique solution of a resolved system of equations over
sets of natural numbers with union, intersection and addition [3, Thm. 3]. If
every occurrence of every variable X is replaced with X ∩ (N + 1), the system
will have the same unique solution if interpreted over sets of integers.

Using equations over sets of integers, the set (L(T ))7 can be obtained out of
(VALC(T ))7 generally by subtracting the computation history from each number
in VALC(T ) as follows: (CT (w)1w)7 − (CT (w)10|w|)7 = (w)7. This has to be
done by adding a set of negative numbers to VALC(T ), and filtering out numbers
of the form (CT (w)1w)7−(x)7 with x �= (CT (w)10|w|)7. Since CT (w) is a string
of digits 3 and 6, this subtraction can be regarded as the removal of the prefix
{3, 6}+, or as an existential quantification over such prefixes:

Lemma 1 (Representing the existential quantifier [6, Lemma E]). The
value of the expression[

(X ∩ ({3, 6}+1Γ ∗
7 )7) + (−({3, 6}+0∗)7)

]
∩ (1Γ ∗

7 )7

on any S ⊆ ({3, 6}+1Γ ∗
7 )7 is E(S) = {(1w)7 | ∃x ∈ {3, 6}∗ (x1w)7 ∈ S}.

Then E(VALC(T )) = {(1w)7 | w ∈ L(T )}, and it is left to remove the leading
digit 1, which is performed by the expression in the next lemma:

Lemma 2 (Removing leading digit 1 [6]). The value of the expression⋃
i∈Γ7\{0}

⋃
t∈{0,1}

[
(X ∩ (1iΓ t

7(Γ
2
7 )∗)7) + (−10∗)7

]
∩ (iΓ t

7(Γ
2
7 )∗)7

on any S ⊆ (1(Γ+
7 \ 0Γ ∗

7 ))7 is {(w)7 | (1w)7 ∈ S}.
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The two above lemmata yield a representation of r.e. sets:

Theorem 1. Every r.e. set S ⊆ Z is the unique solution of a resolved system
of equations over sets of integers using union, intersection and addition, as well
as singleton constants and the constants N, −N.

Proof (sketch). Assume first that S ⊆ N and let T be a Turing machine accepting
S. Then, as long as the constant VALC(T ), and the constants in Lemmata 1
and 2 are given, the expression Remove1(E(VALC(T ))) yields the set S.

The constant VALC(T ) ⊆ N, as well as the constant sets of natural numbers
in the Lemmata, are representable by equations over sets of natural numbers by
Proposition 1. This construction is replicated for equations over sets of integers,
by applying an intersection with a constant N. The constant sets of negative in-
tegers in Lemmata 1 and 2 are represented as if the sets of the opposite numbers,
negating all constants in the system.

This construction can be applied to any r.e. set of negative integers by rep-
resenting the set of opposite numbers as above, and then by replacing every
constant C by −C. Finally, any r.e. set of integers S ⊆ Z is represented as
a union of its positive and negative subsets. 


The natural counterpart of the “existential quantifier” E(X) is the function
A(X), defined as A(S) = {(1w)7 | ∀x ∈ {3, 6}∗ (x1w)7 ∈ S}. Equations of
the general form ϕi(X1, . . . , Xn) = ψ(X1, . . . , Xn) representing A(X) were con-
structed by the authors [6]. Then, applying A(X) and E(X) to a recursive
set finitely many times allowed constructing every set from the arithmetical
hierarchy, and doing this iteratively led to the representation of every hyper-
arithmetical set as a unique solution of such a system [6]. Intuitively, that
system implemented an equation X = A(E(X)) ∪ C, for a recursive constant
C ⊆ ((1{3, 6}+)∗10Γ ∗

7 )7, in which the digit blocks {3, 6}+ correspond to the
quantified variables, 1 is a separator, while 10 marks the end of the quantifier
prefix. Processing the latter requires an extra equation:

Lemma 3 (Removing leading digits 10 [6]). The value of the expression

Remove10(Z) = (Z ∩ {(10)7} − {(10)7})
∪

⋃
i∈Γ7\{0}

⋃
t∈{0,1,2}

(Z ∩ (10iΓ t
7(Γ

3
7 )∗)7)− (10∗)7 ∩ (iΓ t

7(Γ
3
7 )∗)7

on any S ⊆ (10(Γ ∗
7 \ 0Γ ∗

7 ))7 is Remove10(S) = {(w)7 | (10w)7 ∈ S}.

Proposition 2 (Jeż, Okhotin [6, Thm. 2]). For every hyper-arithmetical set
S ⊆ Z there is a system of equations over subsets of Z using union, addition,
singleton constants and the constants N and −N, with a unique solution (S, . . .).

This representation result has a matching upper bound: whenever such a system
has a unique solution, it is a hyper-arithmetical set [6]. The proof of this upper
bound can actually be split into two statements: first, least solutions are demon-
strated to be in the class Π1

1 , and second, greatest solutions always belong to
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Σ1
1 . As unique solutions are both least and greatest at the same time, they are

in the class Π1
1 ∩ Σ1

1 = Δ1
1, that is, are hyper-arithmetical. These bounds are

based upon the following translation of equations into an arithmetical formula:

Proposition 3 (Jeż, Okhotin [6]). For every system of equations in variables
X1, . . . , Xn using operations expressible in first-order arithmetic there exists an
arithmetical formula Eq(X1, . . . , Xn), where X1, . . . , Xn are free second-order
variables, such that Eq(S1, . . . , Sn) is true if and only if Xi = Si is a solution
of the system.

Constructing this formula is only a matter of reformulation. As an example, an
equation Xi = Xj +Xk is represented by

(∀n)
[
n ∈ Xi ↔ (∃�)(∃m) n = �+m ∧ � ∈ Xj ∧ m ∈ Xk

]
.

Applying existential quantification to the set variables produces a Σ1
1-formula

ϕ(x) = (∃X1) . . . (∃Xn)Eq(X1, . . . , Xn) ∧ (x ∈ X1) representing the great-
est solution, while universal quantification leads to a Π1

1 -formula ϕ′(x) =
(∀X1) . . . (∀Xn)Eq(X1, . . . , Xn) → (x ∈ X1) for the least solution:

Proposition 4. For every system of equations in variables X1, . . . , Xn using
operations expressible in first-order arithmetic that has a least (greatest) solution
Xi = Si, the sets Si are in the class Π1

1 (in Σ1
1 , respectively).

3 Resolved Systems and Their Properties

A system of equations is called explicit or resolved if it is of the form

Xi = ϕi(X1, . . . , Xn) (1 
 i 
 n). (1)

When the unknowns are formal languages, such equations are used to define the
context-free grammars and their generalization, the conjunctive grammars [11].

It is convenient to regard (1) as a single equation X = ϕ(X), where X is an
unknown n-tuple of sets, while ϕ = (ϕ1, . . . , ϕn) is an operator on the set of such
n-tuples. A solution of such equation is known as a fixpoint of the operator ϕ.
As long as ϕ is monotone under some partial ordering, that is, if

A � A′ =⇒ ϕ(A) � ϕ(A′),

a least and a greatest fixpoint exists by Tarski’s [17] theorem.
In case of vectors of sets of integers, the partial ordering is defined by

(S1, . . . , Sn) � (T1, . . . , Tn) if Si ⊆ Ti for each i. The operations of union, inter-
section and addition are all monotone with respect to this ordering.

Another general property of operators is continuity. A sequence of sets
{An}n�0 is convergent if for every element x ∈

⋃
nAn the set {n|x ∈ An} is either

finite or co-finite; in such a case limn→∞ An = {x |x is in infinitely many An’s}.
Now ϕ is continuous, if for every convergent sequence {An}∞n=1,

lim
n→∞

ϕ(An) = ϕ( lim
n→∞

An).
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A composition of monotone (continuous) operators is monotone (continuous).
Provided that a system (1) has monotone and continuous right-hand sides, its
least solution is reached by ω iterations of ϕ, beginning with a vector of empty
sets:

⊔∞
k=1 ϕ

k(∅, . . . ,∅). If the iteration begins with the top element (∅, . . . ,∅),
then the greatest solution is similarly reached after ω steps of a similar iteration,
with intersection instead of union. This is the case with language equations
using concatenation, union and intersection [1,12], or similar equations over sets
of natural numbers [3].

However, when equations over sets of integers are considered (that is, if neg-
ative numbers are allowed), the addition of such sets is no longer continuous:
consider ϕ(X) = X +X and a sequence Xn = {−n, n}. Then limn→∞Xn = ∅

and ϕ(limn→∞Xn) = ∅. On the other hand, 0 ∈ Xn + Xn for each n, and
accordingly 0 ∈ limn→∞ ϕ(Xn). This makes the above ω-step fixpoint iteration
inapplicable to such systems, as the vector obtained after ω steps need not be
a solution.

When all is known about a system (1) is that its right-hand sides are mono-
tone, Tarski’s [17] fixpoint theorem asserts that it has a least and a greatest
solution. This result can be shown using a transfinite induction as follows. De-
note by ω1 the first uncountable ordinal. For each ordinal α 
 ω1, define the
vector of sets after α iterations of ϕ:

S(0) = (∅, . . . ,∅) (2a)

S(α+1) = ϕ(S(α)) (2b)

S(α) =
⊔
γ<α

S(γ) when α is a limit ordinal (2c)

Lemma 4. S(ω1) is the least fixpoint of the system (1).

The proof proceeds along the following steps. First it is shown that S(α) is a
weakly increasing sequence, that is, S(α) � S(γ) for all ordinals α < γ. Then
it is proved that there are countably many ordinals α with S(α) � S(α+1),
and accordingly the sequence converges to a fixpoint in fewer than ω1 steps.
This fixpoint is then proved to be the least. All arguments are by a transfinite
induction on the ordinals.

Similarly, for the greatest solutions define

T (0) = (Z, . . . ,Z) (3a)

T (α+1) = ϕ(T (α)) (3b)

T (α) = ⊔

γ<α

T (γ) when α is a limit ordinal (3c)

Lemma 5. T (ω1) is the greatest fixpoint of the system (1).
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4 Greatest Solutions

The greatest solution of any system of equations over sets of integers is in Σ1
1 in

the analytical hierarchy. It shall now be proved that, conversely, every set S ⊆ N

in Σ1
1 is representable. The construction combines the definition of a certain

Σ1
1 -complete set T ⊆ N with a reduction function from S to T . Representing

any Σ1
1-subset of Z is achieved by a simple additional step.

The announced Σ1
1 -hard set contains the yes-instances of the following prob-

lem (its complement is Π1
1 -complete [16, Thm. 16-XX]): “Given a Turing ma-

chine M working on natural numbers, determine whether there exists an infinite
sequence of strings {xi}∞i=1 with xi ∈ {3, 6}+, such that, for all k 	 0, the
number (1xk1xk−11 . . . 1x11)7 is in L(M)”. Base-7 notations of these numbers
encode finite sequences of natural numbers, and are formatted for processing by
Lemmata 1 and 2. Now for any Σ1

1 set S there exists a total recursive reduction
function fS, such that

n ∈ S ⇐⇒ ∃{xi}∞i=1∀k 	 0 (1xk1xk−11 . . . 1x11)7 ∈ L(MfS(n)),

where M0,M1, . . . ,Mi, . . . is any effective enumeration of Turing machines.
Fix S and its reduction fS witnessing S 
rec T . Define the set

C =
{
(1xk1xk−11 . . . 1x110s)7

∣∣ s ∈ Γ ∗
7 \ 0Γ ∗

7 ,

∀k′ 
 k (1xk′1xk′−11 . . .1x11)7 ∈ L(MfS((s)7))
}
,

which is r.e.: given a number (1xk1xk−11 . . .1x110s)7, a Turing machine calcu-
lates its base-7 notation, extracts (s)7, constructs MfS((s)7) and simulates it on
each input (1)7, . . . , (1xk1xk−11 . . . 1x11)7. If they are all accepted, this num-
ber belongs to C. By Theorem 1, C can be represented as a unique (and, in
particular, the greatest) solution of a resolved system of equations.

For any fixed number (s)7 ∈ N, the set C induces a set of finite sequences{
(n1, . . . , nk−1, nk)

∣∣ (1xk1xk−11 . . . 1x110s)7 ∈ C, where each xi represents

the binary notation of ni, using 3 for zero and 6 for one
}
.

This set of sequences is closed under taking prefixes, and thus may be regarded
as a tree. Each sequence is a node of the tree. A node (n1, n2, . . . , nk−1, nk) is a
child of the node (n1, n2, . . . , nk−1), which is its parent. The empty sequence is
the unique node without a parent, that is, the root of the tree; a node is a leaf
if it has no children. A tree has an infinite path if there exists such a sequence
(n1, n2, . . . , nk, . . . ) that all of its finite prefixes belong to the tree. This tree
terminology shall be adopted for a fixed (s)7 when referring to C: for example,
(1xk1xk−11 . . . 1x110s)7 ∈ C is the parent of (1xk+11xk1 . . . 1x110s)7 ∈ C, etc.

In this terminology, an element (1xk1xk−11 . . . 1x110s)7 ∈ C is said to have
an infinite path if the tree corresponding to s has an infinite path beginning with
the node corresponding to this element; or, equivalently, if

∃{xk+i}∞i=0 ∀� 	 0 (1xk+�1xk+�−11 . . . 1x110s)7 ∈ C
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In particular, a number (s)7 is in S if and only if the element (10s)7 has an
infinite path. The goal is to construct an equation with the greatest solution
comprised exactly of numbers with an infinite path. Since the greatest solution
is a limit of a descending chain of sets, see Lemma 5 and (3), the equation shall
iteratively shorten finite paths, so that the numbers without an infinite path are
eventually eliminated.

For every node with finitely many descendants there is a well-defined height
of its subtree. This concept is generalised to trees with infinite paths and infinite
degrees of nodes as follows. The rank of an element of C, see Rogers [16, §16],
is an ordinal defined by

r(x) =

{
1, if x is a leaf,
sup{r(y) + 1 | y is a child of x}, otherwise.

(4a)

For some elements of C the recursion does not terminate, and the definition is
extended by

r(x) = ω1, when r(x) is not defined by (4a). (4b)

Lemma 6. The rank of an element (1xk1xk−11 . . . 1x110s)7 ∈ C is not defined
by (4a) if and only if it has an infinite path.

As argued by Rogers [16, Thm. 16-XVIII(a)], all ordinals assigned by (4a) are
countable. By definition, ω1 > α for every countable ordinal α, that is, for every
rank defined in (4a). Now it can be said that the elements without an infinite path
are those with a countable rank. There exists a natural approach of removing
these elements by an iterative removal of the leaves. While it is easily seen that
this works for elements with a finite rank, it is not so obvious, what happens
for elements ranked with an infinite ordinal. Nevertheless, it turns out that this
approach works in the general case of countable ordinals.

Consider an equation

X = C ∩ E(Remove1(X)),

Denote its right-hand side by ϕ(X) = C ∩ E(Remove1(X)), and consider the
sequence T (α) corresponding to this equation, see (3). Note, that T (0) = Z,
T (1) = C and T (α) ⊆ C for every ordinal α. Every step of this sequence contains
the fathers of all elements occurring at the previous step:

Lemma 7. For every countable ordinal α, x ∈ T (α+1) if and only if x =
(1xk1xk−11 . . . 1x110s)7 and there is xk+1 with (1xk+11xk1 . . . 1x110s)7 ∈ T (α).

Intuitively, the rank of an element specifies how many times this transformation
can be applied until the element disappears. This is formalised as follows:

Lemma 8. For every countable ordinal α, (1xk1xk−11 . . .1x110s)7 ∈ T (α) if
and only if r((1xk1xk−11 . . .1x110s)7) 	 α.
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The proof is by an iterative application of Lemma 7 in a transfinite induction
on α.

After ω1 iterations, all elements with a countable rank are eliminated, and the
greatest fixed point T (ω1) consist exactly of the elements with an infinite path,
as they are invariant under ϕ.

Lemma 9. (1xk . . .1x110s)7 ∈ T (ω1) if and only if r((1xk . . . 1x110s)7) = ω1.

Taking Lemma 6 into account, (1xk . . .1x110s)7 ∈ T (ω1) if and only if there
exists an infinite sequence xk+1, . . .xk+�, . . ., such that for each � 	 0,
(1xk+�1xk+�−1 . . . 1x110s)7 ∈ C. It remains to extract the set S out of T (ω1).
This is done using the expression Remove10(F ) = {(w)7 | (10w)7 ∈ F} defined
in Lemma 3. Consider a new variable Y with an new equation, which forms the
following system: {

X = C ∩E(Remove1(X))
Y = Remove10(X) (5)

Main Lemma. The system (5) has a greatest solution with Y = S.

The system constructed in this section uses a recursively enumerable constant
set C ⊆ N, as well as several constants required by Lemmata 1, 2 and 3. The
former constant is representable by Theorem 1, while the rest of the constants are
expressed as in the proof of that theorem. The method in the proof of Theorem 1
is also used to represent a set of integers from its positive and negative part. This
yields the following result:

Theorem 2. Every Σ1
1 -set S ⊆ Z is a unique solution of a resolved system of

equations over sets of integers using union, intersection and addition, as well as
singleton constants and the constants N, −N.

The construction in the this section essentially used the infinite constants N and
−N. It turns out that at least one infinite constant is needed, as otherwise only
trivial greatest solutions can be obtained.

Lemma 10. For every solution of a resolved system of equations over Z using
union, intersection, addition and finite constants, there is a greater solution with
each component either finite or equal to Z.

5 Least Solutions of Resolved Systems

As mentioned in Section 3, whenever a monotone operator is also continuous,
reaching its least fixed point does not require a transfinite number of iterations:
S(ω) is always the least solution. In fact, this holds for a weaker property than
continuity.

An operator ϕ is said to be ∪-continuous if ϕ
(⊔

i∈NBi

)
=
⊔

i∈N ϕ(Bi) holds
for every increasing sequence Bi. A composition of ∪-continuous operators is
∪-continuous as well. It turns out that while addition of sets of integers is not
continuous, it possesses this weaker property.
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Table 1. Expressive power of solutions

least unique greatest
unresolved over 2N, with {+,∪} Σ0

1 (r.e.) [4] Δ0
1 (rec.) [4] Π0

1 (co-r.e.) [4]
resolved over 2Z, with {+,∪,∩} Σ0

1 Σ0
1 Σ1

1

unresolved over 2Z, with {+,∪} ? Δ1
1 (HA) [6] Σ1

1

Lemma 11. A function over sets of integers defined as a composition of union,
intersection, addition and any constants is ∪-continuous.

Then it is known that the least fixpoint of any such function is reached in ω
iterations. This leads to the following theorem:

Theorem 3. The least solution of every resolved system of equations Xi =
ϕi(X1, . . . , Xn) over sets of integers using union, intersection, addition and r.e.
constants is an r.e. set.

For singleton constants, an algorithm constructs S(α) for all α < ω, until the
input number is found. The case of r.e. constants is reduced to the former case
by encoding the constants as in Theorem 1.

Conversely, by Theorem 1, every r.e. set is represented by such a unique
solution of a system with singleton constants and constants N and −N, and
hence by a least solution of such a system. Furthermore, the sets N and −N can
be expressed as least solutions of the following equations:

X = (X + 1) ∪ {0} X ′ = (X ′ + {−1}) ∪ {0}.
Altogether, the following characterization is obtained:

Corollary 1. Least solutions of resolved systems of equations Xi =
ϕi(X1, . . . , Xn) over sets of integers using union, intersection, addition and con-
stants {1} and {−1} represent exactly the r.e. sets. If all r.e. constants are al-
lowed, only r.e. sets can be represented.

6 Conclusion

The new results on the expressive power of least and greatest solutions of equa-
tions over sets of integers are summarised and compared to related results
in Table 1. The same results extend to a slightly different model: equations
over sets of natural numbers with union, intersection, addition and subtraction:
A−· B = {a− b | a ∈ A, b ∈ B, a 	 b} their least solutions represent exactly the
r.e. sets, while their greatest solutions represent all sets in Σ1

1 . These equations
are isomorphic to language equations over a unary alphabet, with the opera-
tions of union, intersection, concatenation and quotient. Furthermore, the same
results could be extended to language equations over multiple-letter alphabets,
by a technically much simpler construction than presented in this paper.

Of the decision problems for these equations, solution existence is trivial (as
there is always a least and a greatest solution), while the complexity of testing
whether a system has a unique solution is left as an open problem.
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2. Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Inter-
national Journal of Foundations of Computer Science 19(3), 597–615 (2008)
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Abstract. The standard simulation of a nondeterministic Turing ma-
chine (NTM) by a deterministic one essentially searches a large bounded-
degree graph whose size is exponential in the running time of the NTM.
The graph is the natural one defined by the configurations of the NTM.
All methods in the literature have required time linear in the size S of this
graph. This paper presents a new simulation method that runs in time
Õ(

√
S). The search savings exploit the one-dimensional nature of Turing

machine tapes. In addition, we remove most of the time-dependence on
nondeterministic choice of states and tape head movements.

1 Introduction

How fast can we deterministically simulate a nondeterministic Turing machine
(NTM)? This is one of the fundamental problems in theoretical computer sci-
ence. Of course, the famous P �= NP conjecture, as most believe, would an-
swer that we cannot hope to simulate nondeterministic Turing machines very
fast. However, the best known result to date is the famous theorem of Paul,
Pippenger, Szemerédi, and Trotter [11] that NTIME(O(n)) is not contained in
DTIME(o((n log∗ n)1/4)). This is a beautiful result, but it is a long way from
the current belief that the deterministic simulation of a nondeterministic Turing
machine should in general take exponential time.

We look at NTM simulations from the opposite end: rather than seeking better
lower bounds, we ask how far can one improve the upper bound? We suspect
even the following could be true:

For any ε > 0,

NTIME(t(n)) ⊆ DTIME(2εt(n)).

To our knowledge, this does not contradict any of the current strongly held
beliefs. This interesting question has been raised before, see e.g., [3].

Our main theorem is:

P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 453–464, 2010.
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Theorem 1. Any k-tape NTM N with tape alphabet size a that runs in time
t(n), can be simulated by a deterministic Turing machine in time

akt(n)/2 ·H
√

t(n) log t(n)
N ,

up to polynomial factors, and where HN is a constant that depends only on a.

Our bound has two key improvements. First, all nondeterminism arising from
the choice of the next state or tape head movements is subsumed into the fac-

tor H
√

t(n) log t(n)
N with much smaller time dependence, compared to the main

exponential term. Second, while N may write any of S = akt(n) strings non-
deterministically on its k tapes, our simulator needs to search only

√
S of that

space. Thus, we search the NTM graph in the square-root of its size.
There is no general deterministic procedure that can search a graph of size

S in
√
S time, even if the graph has a simple description. Hence to prove our

theorem we must use the special structure of the graph: we must use that the
graph arises from an NTM. We use several simple properties of the operation
of Turing tapes and the behavior of guessing to reduce the search time by the
square root.

We believe that while the actual theorem is interesting, the techniques that
are used to prove the theorem may be of use in other problems. We speculate
that our methods may be extended to lower the exponent further.

In section 5, we consider NTMs with limited nondeterminism, and prove:

Theorem 2. Suppose t(n) = nr(n), where r(n) is constructible in unary in
O(n) time, and fix an input alphabet of size b. Then for any NTM N that runs
in time t(n) with o(n) nondeterminism and computes a function f , there exist
circuits Cn of size O(t(n) log r(n)) that compute f correctly on bn−o(n) inputs.

2 Model and Problem Statement

We use a standard model of a nondeterministic multitape Turing machine, in
which nondeterminism may arise through characters written, head motions on
the tapes, and/or the choice of next state. Heads may stay stationary as well
as move one cell left or right in any step. We stipulate that an NTM N runs
in time t(n) if all branches of computations on inputs of length n halt within
t(n) steps. Since our results involve bounds t(n) that are fully time and space
constructible, this is equivalent to definitions that apply the time bound only
to accepting computations. Throughout this paper, we use q for the number of
states, k for the number of tapes, and a for the alphabet size of N . Our results
hold for all sufficiently large input lengths n.

Our question is, in terms of a, k, q, what is the most efficient simulation of N
by a deterministic Turing machine (DTM)? We identify three basic strategies:

1. Tracing the computation tree: Since we do not limit N to be binary-
branching, individual nodes of the tree may have degree as high as v = ak3kq,
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where the “3” allows each head on each tape to move left, right, or stationary.
This is reflected in classic theorem statements of the form

Theorem 3. Any NTM N with time complexity t(n) can be simulated by a
DTM M in time c(N)t(n), where c(N) is a constant depending on N .

According to proofs such as that in [10], c(N) depends on q as well as k and
a. There is thus a factor qt in the running time of M . It will be our goal to
eliminate such a factor.

2. Enumerating a witness predicate: That is, one finds a predicate R(x, y) that
is deterministically efficient to decide, such that for all x, N accepts x iff
for some y of a given length, R(x, y) holds. Then one tries all possible y.
This may be specific to the language L(N) rather than simulate N in the
direct sense of strategy 1. However, when R(x, y) is the predicate “y codes
an accepting path in the computation tree” it is the same as strategy 1.

3. Searching the configuration graph: A configuration of a Turing machine is
an encoding of the current state, the non-blank contents of the tapes, and
current position of the tape heads. Configurations form a directed graph
where there are directed edges from a configuration to a valid successor con-
figuration, with sources being the initial configurations Ix on given inputs x
and sinks being accepting configurations Ia (perhaps including non-accepting
halting configurations too). When N uses at most space s on any one tape,
the number S of nodes in the graph (below Ix) is at most

S = qakssk.

Notice that s ≤ t holds trivially, where t is the running time of N . Using a
look up table for simulating the transition function of the machine N , the
dominant term in the running time is

O(Sv · log(Sv) · logS) = q2(3at)kaktpoly(log q, k, t, a).

Note that the dependence on q is at most q2, not qt.

The classic tradeoff between strategy 1 and strategy 3 concerns the space re-
quirement. Tracing the tree requires storing only the current path from the root
and some local information, though it may waste time by re-computing nodes
that are reached by multiple paths when the computation is treated as a graph.
Breadth-first search of the graph avoids redundant expansion at the expense of
storing the whole list of visited nodes. In this paper we find that by judicious
mixing-in of strategy 2, there is also mileage to be gained on the running time
alone. The following preliminary result illustrates the basic idea:

Proposition 1. Any NTM N with time complexity t(n) can be simulated by a
DTM M in time c(N)t(n), where the constant c(N) depends on the alphabet size
a and the number of tapes k of N , but is independent of q.

Proof. We define a weak trace as comprising the move labels on an accepting
path in the computation tree, but omitting the next-state information. There are
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only (ak3k)t such potential witnesses to enumerate. We call a path “compatible
with the weak trace y” if it adds states q0, . . . , qt to the parts specified by y to
make a legal computation. Below, we show that each of these weak traces can
be verified in time q2a2k3kpoly(log q, a, k, t).

For each step j in the computation, define Qj to be the set of states N can
be in at step j on some full path that is compatible with y. Initially Q0 = { q0 },
the start state of N . Given Qj−1, to compute Qj we take each state r in Qj−1
and look up all possible next states r′ in a pre-computed lookup table based
on the transition relation of N . After computing each Qj , M needs to sort and
remove the duplicate states in Qj , else the size could explode by the end of the
simulation. The simulation finally accepts if and only if Qt contains the accepting
state qa, which we may suppose persists for each step once it is entered.

Our deterministic machine M has k + 3 tapes, k to re-create the tapes of N
guided by the weak trace, one to code the transition function of N serially as a
lookup table, plus two for bookkeeping. The lookup table rows are indexed by
the current state, the k symbols currently read, the k symbols that would be
written, and movements left, right or stay for each tape head. The entries give all
possible next-states for N in such a transition. There are q(3a2)k rows, and each
row can have at most q states. The cost of a serial lookup is upper-bounded1 by
q(3a2)k · [k log(3a2) + log q + q log q].

After the lookups, we need to sort and remove duplicates from a set (of states)
which could be potentially q2 in size. This takes q2 log q comparisons, where each
comparison costs log q, yielding a running time of q2 log2 q. Multiplying the whole
expression by t, we get that the running time per weak trace is

[q(3a2)k · [k log(3a2) + log q + q log q] + q2 log2 q] · t,

which can be upper bounded by

h(a, q, k, t) = q2a2k3kpoly(log q, a, k, t).

The overall running time is (3kak)t multiplied by the function h. The factor h is
majorized by (1+δ)t for any δ > 0 as t becomes sufficiently large. The whole time
is thus bounded by (3kak + δ′)t, where δ′ = 3kakδ. Note that δ′ is independent
of q and can likewise be made arbitrarily small when a and k are fixed. Hence
the deterministic simulation time is asymptotically bounded by c(N)t(n) where
c(N) is independent of q. 


Our further improvements come from (a) slimming witnesses y further, (b) more-
sophisticated precomputation, and (c) trading off strategies 1 and 3 according
to the space actually used by N on the one-dimensional Turing tapes.

1 One can remove the q log q inside the brackets by organizing the rows in canonical
order of the subsets of states they produce, and having M count special aliased
dividers up to 2q in binary as it scans serially, to determine which subset goes with
a given row. A final q log q outside the brackets can be for wriings out the indexed
subset as a list of states. However, this extra efficiency does not matter to our results.
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3 Block-Trace Simulation

We begin the push for faster simulations by breaking computations by NTMs N
into “blocks” of d steps, where d will be specified later.

Definition 1. A segment of size d for a k-tape NTM N with alphabet of size a
is a sequence of 4-tuples

τ = [(r1, f1, �1, u1), . . . , (rk, fk, �k, uk)]

where for each tape j, 1 ≤ j ≤ k:

– rj ∈ { 0, . . . , d } stands for the maximum number of cells to the right of its
starting position the tape head will ever be over the next d steps,

– fj ∈ { 0, . . . , d− rj } is the number of cells left of the position of rj that the
tape head ends up after the d-th step, and

– �j ∈ { 1, . . . , d } is the number of distinct cells that shall be changed over
the next d steps on tape j. For a given rj and fj we have the bound �j ≤
d+ 1−min{ rj , fj }.

– uj is a string of length �j, which is interpreted as the final contents of those
cells.

Technically �j can always be set to the stated bound, but we keep it separate
for clarity.

Definition 2. A block trace of block-size d, for an NTM N , is a sequence of
segments of size d.

Definition 3. An accepting full path is compatible with a block trace if the latter
has �t/d� blocks where t is the total number of steps in the path, and in every
block each 4-tuple (rj , fj , �j, uj) correctly describes the head locations after the
corresponding d steps of the full path, and every character in uj is the correct
final content of its cell after the d steps.

Our witness predicate now asserts the existence of a block trace y with which
some accepting computation is compatible. Clearly every accepting computation
gives rise to such a y, so the predicate is correct. The running time of the
resulting simulation is a consequence of the following lemmas. Notice that the
above definition includes all the possible head movements of N over the next d
steps.

Lemma 1. The number B of valid segments is at most (32ad)k. Hence the num-
ber of potential block trace witnesses is at most Bt/d = akt32kt/d.

Proof. We first bound the number of 4-tuples per each tape. We note that for �
cells affected for a particular segment, there are a� possible strings u. We sum
over all the possible values of � – ranging from d to 1. Direct calculation gives
us that for � = d, there are at most 6 possible sets of (r, f), for � = d−1 at most
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14, etc. The bound on number of possible sets for � = d+1− i is i2 +5i. A total
number of distinct 4-tuples is upper bounded by

1∑
�=d

[(d+ 1− �)2 + 5(d+ 1− �)]a� = ad ·
d∑

i=1

(i2 + 5i)/ai−1 ≤ 32ad

where the last inequality follows by the worst case value a = 2. Since we have k
tapes, we obtain B ≤ (32ad)k. (In fact, we can get B ≤ (Caa

d)k where Ca −→ 6
as a −→ ∞, but we do not need this tighter counting.) 


Lemma 2. Whether there is an accepting computation that is compatible with
a given block trace witness can be decided by a deterministic Turing machine in
time q2a3kdpoly(log q, k, t, a, d).

Proof. We generalize the ideas in Proposition 1. We are given a block trace
witness, i.e., t/d segments of size d each. The idea is to maintain the set Qi of
states that N on input x can possibly be in, this time after the i-th segment of d
steps in some computation path. We precompute a lookup table Td whose values
are sets of states, and whose rows are indexed by the following information:

– An initial state p entering the segment of d steps.
– Strings wj of length at most 2d− 1 indicating the true contents in the cells

surrounding the head on tape j. The cases where a segment of cells on the
right or left are blank (through never having been visited before) are handled
by adjoining integers bj indicating such cells.

– The string uj and integers rj , fj for each tape j, representing a segment in
a block trace.

The lookup table is the d-length segment equivalent of the lookup table in Propo-
sition 1. There are qa(3d−1)kd2 rows of the table, the length of each index in bi-
nary being thus asymptotic to log2 q+(3d−1)k log2 a+2 log2 d. The cost of each
lookup is thus upper bounded by qa3kdd2(log q+3kd log a+ 2 log d)+ q log q. By
including the time for sorting the states, and multiplying by the running time
of t/d segments, we get

[qa3kdd2(log q + 3kd log a+ 2 log d) + q log q + q2 log2 q] · t/d.

which is upper bounded by

q2a3kdpoly(log q, k, t, a, d).




Theorem 4. A nondeterministic k-tape TM with q states and alphabet size a
can be simulated by a multi-tape deterministic TM in time

aktC
√
t

N · q2poly(log q, k, t, a),

where CN is a constant that depends only on a and k.
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Proof. This follows from Lemmas 1 and 2. The simulator machine tries out all
the possible block witnesses, with a running time

q2akt+3kd32kt/dpoly(log q, k, t, a, d).

The two factors in the above expression that depend on d in a big way are
a3kd and 32kt/d. We can choose d to be such that these the product of these
two factors are minimized. Direct calculation gives us that this happens when
d =

√
5t/(3 log2 a). Setting CN = 22k

√
15 log2 a, we get a running time of

aktC
√
t

N · q2poly(log q, k, t, a). 


4 Main Theorem

We have seen two simulations of an NTM where the dominant term in the run-
ning time is akt. One is strategy 3, searching the configuration graph, discussed
in Section 2, with a running time of q2(3at)kaktpoly(log q, k, t, a). The other is
the block trace method, with a running time of aktC

√
t

N · q2poly(log q, k, t, a).
Even though the time bounds seem similar, the approaches are quite different –
a difference that we shall exploit in this section.

Our goal in this section is to reduce the exponent of the simulation time by
half. In the graph search method, the dominating part in the running time is
caused by the number of configurations. There are at most qakttk of them. If the
NTM used only a tape space of kt/2 over all the k tapes, then the dominating
part in counting the number of configurations would have reduced. We have only
a maximum possible akt/2 combinations of tape contents. This would lead to a
simulation which requires q2(3at)kakt/2poly(log q, k, t, a) time.

But of course, not all NTM simulations use less than kt/2 tape space. Here we
will use the block trace method to exploit an interesting property of the Turing
machines. We make the following observation: the last time we visit a location
in the NTM tape, we need not write any character there. This is because the
tape head is not going to return to that position. If the NTM visits at least kt/2
locations on all tapes together, then there are at least kt/2 locations visited
for a last time. Now, when we consider block traces, we do not need to have a
symbol to write down, if we are visiting a tape location for a last time. We could
potentially save on a factor of akt/2 on the running time. This brings down the
main factor in the running time in Theorem 4 to akt/2 as well.

For the final theorem, we need one more definition.

Definition 4. A directional segment of size d for a k-tape NTM N with alphabet
size a is a segment of size d, omitting the strings uj, that is

τ = [(r1, f1, �1), . . . , (rk, fk, �k)]

where rj , fj, �j are defined as in Definition 1.
A directional trace of block size d, is a sequence of directional segments of size d.
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Lemma 3. The number of segments of block size d is upper bounded by d3. The
number of potential directional trace witnesses is at most (d3)t/d.

Proof. The calculations are similar to those in the proof of Lemma 1. The dif-
ference here is that we do not need to count the number of possible strings u for
each tape. This bounds the number of directional segments to

∑d
i=1(i

2 + 5i) =
1
3d(d + 1)(d+ 8) ≤ d3, for d large enough. The bound on directional traces fol-
lows. 


We are now ready to prove the main theorem.

Theorem 1. (Restated.) A nondeterministic k-tape TM N with q states and
alphabet size a can be simulated by a multi-tape deterministic TM in time

akt(n)/2H

√
t(n) log t(n)

N · q2poly(log q, k, t(n), a),

where t(n) is the running time of N and HN is a constant that depends only on a.

Proof. We assume that we know an upper bound t = t(n) as a function of the
input length n. (If not, one can run the simulations for t = 1, 2, 3, · · ·, and this
will introduce a multiplicative factor t(t−1)/2, which is polynomial in t anyway.)

The simulation consists of three parts. First, preprocessing the directional
traces. Second, running the block trace simulation for those traces which have
tape usage ≥ kt/2. And third, running the graph search simulation restricting
the tape usage to kt/2.

1. In the preprocessing stage, the simulator lists down all the possible di-
rectional traces. There are d3t/d such traces by Lemma 3. For d =√

5t/(3 log2 a), as optimized in Theorem 4, we get that the number of traces
is (
√
t)O(

√
t) or H

√
t log t

N , where HN is a constant that depends on only a.
Using the directional trace, the simulator calculates the total tape usage of
N . In particular, the simulator decides if the total tape usage is ≤ kt/2 or
≥ kt/2. The simulator also calculates the time of the last visit to each of
the tape locations. This data is stored in a lookup table, which is stored in
another tape of the simulator. All of the above operations can be performed
in time poly(k, t) per directional trace.

2. If the total tape usage is ≥ kt/2 for a given directional trace, the block trace
simulation is performed. All the block traces which match the (r, f, �) parts
of the directional trace are generated—with a twist. For those time instances
for which the tape head is visiting the location for the last time, the block
trace is generated with a character in the corresponding location. The
preprocessed data from the directional traces would be used to determine if
the location is being visited for the last time or not.
There are at least kt/2 locations visited for the last time, so the number of
block traces that correspond to a given directional trace is ≤ akt/2. So the
total number of relevant block traces here is upper bounded by H

√
t log t

N akt/2.
The running time in the Lemma 2 holds essentially by the following ob-
servation. The lookup table could be expanded (slightly) to accommodate



Improved Simulation of NTMs 461

one more symbol in the alphabet, the ‘ ’ symbol. The set of states that are
possible in the lookup table after a doing block trace move with a are the
union of the set possible states after a move with the block trace with one
of the original a characters in place of the .
The running time contribution of this stage is akt/2H

√
t log t

N ·
q2poly(log q, k, t, a).

3. For the cases when the total tape usage is ≤ kt/2, the directional trace is
discarded. For all such cases combined, one call to the graph search simula-
tion is enough. The simulator needs to keep track of the configurations, and
reject a branch as soon as the tape usage exceeds kt/2. This gives a running
time of akt/2q2(3at)kpoly(log q, k, t, a).

The theorem follows by observing that if the NTM has an accepting computation
path, at least one of the two simulations, the block trace, or the graph search
method would yield an accepting path. The running time is

T (n) = akt/2H
√
t log t

N · q2poly(log q, k, t, a). 


We remark that a similar bound applies in a uniform simulation, meaning a
single DTM M that takes an NTM N and its input x as arguments. Reducing
from the k tapes of N to the fixed tapes of M via [14] incurs a factor of logT (n)
penalty, but it gets absorbed into the poly(log q, k, t, a) term. The program size
of N is bounded by 3q2a2 log q, and even if the largest value n′ = n+3q2a2 log q
is used for the length of the input 〈N, x〉 to M , expressing the bound T (n) in
terms of n′ does not change its nature much.

5 Sub-linear Nondeterminism and Small Circuits

Now we consider NTMs N that have o(n) nondeterministic steps in any com-
putation path on inputs of length n, where the inputs are over an alphabet Σ
of size b. For each n, it follows that some nondeterministic choice string αn is
used for a set of at least bn−o(n) strings. When N is a language acceptor, the
computation on αn also gives the correct answer for all rejected strings, so we
add them when defining S to be the set of inputs on which N -with-αn works
correctly. When N computes a partial multi-valued function f , S includes all
strings not in the domain of f , and for all other x ∈ S, N with αn outputs a
legal value of f(x). We can hard-wire αn into deterministic circuits Cn that work
correctly on S. The main theorem of [14] gives Cn size O(t(n) log t(n)). We show
that for t(n) near linear time we can improve the size of Cn considerably.

Theorem 2. (Restated.) Suppose t(n) = nr(n), where r(n) is constructible
in unary in O(n) time. Then for any NTM N that runs in time t(n) with
o(n) nondeterminism and computes a function f , there exist circuits Cn of size
O(t(n) log r(n)) that compute f correctly on bn−o(n) inputs.

The size improves on [14] when r(n) = no(1). When r(n) = (logn)O(1), meaning
t(n) is quasi-linear time, this reduces the size of Cn to t(n) log log t(n). When
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t(n) = O(n), this says we can reduce the overhead to any constructible slow-
growing unbounded function, in a sense getting the circuit size as close to linear
as desired. Of course the circuits Cn work only on a sizable fraction of the
inputs—on other x ∈ dom(f) they may incorrectly fail to output a legal value.

The proof employs Wolfgang Paul’s notion of a block respecting Turing Ma-
chine, from his paper with Hopcroft and Valiant [4] separating time and space.
The result of [4] were later extended to multi-dimensional and tree-structured
tapes in [13] and [12]. The notion of block-respecting Turing machines has been
used a number of times to prove other results, e.g. in [8]. We refer the reader to
[15] for a discussion on the results of [4].

Proof. Given n, take B = r(n)2. Let the Turing machine N computing f have
k tapes, and regard those tapes as segmented into “blocks” of length B. By the
block-respecting construction in [4], we can modify N into N ′ computing f in
time t′(n) = O(t(n)) such that on all inputs of length n, all tape heads of N ′(x)
cross a block boundary only at time-steps that are multiples of B.

For all length-n strings x, and nondeterministic choice strings αn, we define
the “block-respecting graph” Gx,α to have vertices V�,i standing for the ith block
on tape �, and Wj for 0 ≤ j < t′(n)/B—note also i < t′(n)/B since N ′ runs
in t′(n) space. We use the notation i(j, �) to denote the block that N is on the
�th tape, during the time block from (j − 1)B to jB. For all time steps jB, if
the heads before that step were in blocks V�,i(j−1,�) and are in blocks V�,i(j,�)
afterward, then Gx,α has edges from all V�,i(j−1,�) to Wj and from Wj to the
nodes V�,i(j,�). Because there are at most 3 choices of next-block per tape at any
j, there are at most R(n) = (3k)t

′(n)/B different block-respecting graphs. By
the choice of B, R(n) = bO(n/r(n)). There are also A(n) = |A|o(n)-many possible
αn. Hence, by the pigeonhole principle, there is some block-respecting graph Gn

that equals Gx,αn for at least bn/R(n)A(n) = bn−O(n/r(n))−o(n) = bn−o(n)-many
x’s.

Now from Gn we define the circuits gn as a cascade of t′(n)/B-many segments
Sj . Each Sj represents a time-B computation whose input xj is the current
contents of the r-many blocks V�,i(j,�), with output written to those blocks. By
the result of [14], Sj needs circuit size only O(B logB). So the entire circuit has

size O
(
t′(n)
B

)
B logB = O(t(n) log r(n)).

To finish the proof, we note that there are also junctures between segments
that represent any cases head on tape crossing a block boundary at time jB. If
in fact the head does not cross the boundary, then the juncture generates a null
value ‘∗’, which then propagates through all remaining segments to produce a
rejecting output. The sizes for the junctures are negligible, so the above bound
on the size of the circuits holds. 


6 Conclusions

We have shown techniques by which we can search the computation tree of an
NTM in time square root of the size of the graph. It would be interesting to see
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if these techniques can be used to push the running time even lower. Also, it
would be interesting to see lower bounds for the problem, i.e., to understand the
limitations of determinism as compared to nondeterminism.

6.1 Some Related Work

The only separation of nondeterministic from deterministic time known is
DTIME(n) �= NTIME(n) proved in [11], which is also specific to the multi-
tape Turing machine model. It is also known that nondeterministic two-tape
machines are more powerful than deterministic one-tape machines [6], and non-
deterministic multi-tape machines are more powerful than deterministic multi-
tape machines with additional space bound [7]. Limited nondeterminism was
analyzed in [3], which showed that achieving it for certain problems implies a
general subexponential simulation of nondeterministic computation by determin-
istic computation. In [18] an unconditional simulation of time-t(n) probabilistic
multi-tape Turing machines Turing machines operating in deterministic time
o(2t) is given.

For certain NP-complete problems, improvements over exhaustive search that
involve the constant in the exponent were obtained in [17], [16], and [1], while
[9] and [5] also found NP-complete problems for which exhaustive search is not
the quickest solution. Williams [19] showed that having such improvements in
all cases would collapse other complexity classes. Drawing on [18], Williams [19]
showed that the exponent in the simulation of NTM by DTM can be reduced
by a multiplicative factor smaller than 1. The NTMs there are allowed only the
string-writing form of nondeterminism, but may run for more steps; since the
factor is not close to 1/2, the result in [19] is incomparable with ours.

Finally there remains the question asked at the beginning: Is

NTIME(t(n)) ⊆ DTIME(2εt(n))

for all ε > 0? We have not found any “dire” collapses of complexity classes that
would follow from a ‘yes’ answer, but it would show that nondeterminism is
weaker than we think. David Doty [2] showed that there is an oracle relative to
which the answer is no. Our techniques do not resolve this question as yet, but
may provide new leads.

Acknowledgments. We thank David Doty, Bart de Keijzer, Ryan Williams,
and the anonymous referees for suggestions and helpful comments.
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Abstract. In this paper, we consider the prize-collecting edge dominat-
ing set problem, which is a generalization of the edge dominating set
problem. In the prize-collecting edge dominating set problem, we are
not forced to dominate all edges, but we need to pay penalties for edges
which are not dominated. It is known that this problem is NP-hard, and
Parekh presented a 8

3
-approximation algorithm. To the best of our knowl-

edge, no polynomial-time solvable case is known for this problem. In this
paper, we show that the prize-collecting edge dominating set problem in
trees can be solved in polynomial time.

1 Introduction

Throughout this paper, we denote by Z+ and R+ the sets of nonnegative integers
and nonnegative real numbers, respectively. Given a function or a vector f on a
ground set U , we use the notation f(X) =

∑
e∈X f(e) for each X ⊆ U .

Let G = (V,E) be an undirected graph with a vertex set V and an edge set
E. In this paper, we regard an edge as a set of exactly two vertices. For each
X ⊆ V , we denote by δ(X) be the set of e ∈ E such that e ∩X �= ∅. For each
v ∈ V , we use the notation δ(v) instead of δ({v}). We say that F ⊆ E dominates
e ∈ E if e ∈ δ(f) for some f ∈ F . We call F ⊆ E an edge dominating set of
G if F dominates all the edges of E. The edge dominating set problem asks for
finding an edge dominating set of G with minimum cardinality. This problem is
one of fundamental covering problems such as the vertex cover problem.

Yannakakis and Gavril [1] proved that the edge dominating set problem is
NP-hard in a graph which is planar or bipartite of maximum degree 3. Gotthilf,
Lewenstein and Rainshmidt [2] presented a (2−c logn

n )-approximation algorithm
which is based on the local search technique, where c is an arbitrary constant
and n is the number of vertices. As a special case, several classes of graph in
which this problem can be solved in polynomial time are known, e.g., trees [3].

In the weighted edge dominating set problem, we are given a weight function
w : E → R+, and this problem asks for finding an edge dominating set of G
with minimum weight, where the weight of F ⊆ E is defined by w(F ). Fujito
and Nagamochi [4] and Parekh [5] independently presented a 2-approximation
� Supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science

and Technology of Japan.
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algorithm for this problem. As a special case, Berger and Parekh [6] gave a
polynomial-time algorithm for this problem in trees.

In this paper, we consider the prize-collecting edge dominating set problem,
which is a generalization of the weighted edge dominating set problem. Recall
that in the edge dominating set problem we have to dominate all edges. However,
in the prize-collecting edge dominating set problem we are not forced to dominate
all edges, but we need to pay penalties for edges which are not dominated.
More formally, the prize-collecting edge dominating set problem is defined as
follows. We are given a graph G = (V,E), a weight function w : E → R+ and a
penalty function π : E → R+. The cost of F ⊆ E is defined by w(F ) + π(F ′),
where F ′ denotes the set of the edges of E which are not dominated by F .
The prize-collecting edge dominating set problem asks for finding a subset of E
with minimum cost. Prize-collecting type variants of combinatorial optimization
problems have been extensively studied (for example, see [7,8]).

For the prize-collecting edge dominating set problem, Parekh [9] gave a 8
3 -

approximation algorithm. To the best of our knowledge, no polynomial-time
solvable case is known for this problem. In this paper, we show that the prize-
collecting edge dominating set problem in trees can be solved in polynomial
time. Our algorithm is based on the algorithm of Berger and Parekh [6] for the
weighted edge dominating set problem in trees, but we should emphasize that
the extension is non-trivial.

The rest of this paper is organized as follows. Section 2 gives our algorithm for
the prize-collecting edge dominating set problem in trees. In Section 3, we show
the correctness of our algorithm. In Section 4, we consider the time complexity of
our algorithm. In Section 5, we consider the total dual integrality of a polyhedron
related to our problem and some generalization.

Notations. Let G = (V,E) be a tree, and we specify an arbitrary vertex of G as
a root. For each v ∈ V , the depth of v is the number of the edges contained in
the (unique) path from the root to v (denoted by d(v)), and the parent of v is
the (unique) vertex u ∈ V such that d(u) = d(v) − 1 and {u, v} ∈ E. For each
v ∈ V , let pv and ev be the parent of v and the edge {v, pv}, respectively. We
say that v ∈ V is a child of pv. For each v ∈ V , we denote by gv the parent of
pv.

2 Algorithm

In this section, we present an algorithm for the prize-collecting edge dominating
set problem in trees. More precisely, we give an algorithm for a more general
problem, called the prize-collecting b-edge dominating set problem. In this prob-
lem, we are given a graph G = (V,E), a weight function w : E → R+, a penalty
function π : E → R+ and a demand function b : E → {0, 1}. The cost of F ⊆ E
is defined by w(F ) + π(F ), where F is the set of e ∈ E such that b(e) = 1 and
e is not dominated by F . If b(e) = 1 for all e ∈ E, the prize-collecting b-edge
dominating set problem is equivalent to the prize-collecting edge dominating set
problem.
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In the sequel, let G be a tree with a root. For each v ∈ V , let δ1(v) be
the set of e ∈ δ(v) such that b(e) = 1, let δc(v) be the set of e ∈ E between
v and its children, and let δc1(v) (resp., δc0(v)) be the set of e ∈ δc(v) such
that b(e) = 1 (resp., b(e) = 0). We denote by M the set of v ∈ V such that
d(v) = maxu∈V d(u), and let M1 be the set of v ∈M such that b(ev) = 1.

Our algorithm is recursively defined according to the number of vertices v ∈ V
such that d(v) > 1. For the base case, we consider the case where there exists
no v ∈ V such that d(v) > 1, i.e., G is a star. Let E1 be the set of e ∈ E such
that b(e) = 1. If mine∈E w(e) ≤ π(E1), the algorithm outputs a minimizer of
mine∈E w(e). Otherwise, the algorithm outputs ∅.

From here we consider the case where there exists v ∈ V such that d(v) > 1.
We divide this case into the following subcases.

Case A : M1 �= ∅.
Case A1 : There exists v ∈M1 such that b(epv) = 0.
Case A2 : There exists v ∈M1 such that b(epv) = 1 and

min
e∈δ(pv)

w(e) ≤
∑

e∈δc
1(pv)

π(e). (1)

Case A3 : For all v ∈M1 such that b(epv) = 1, (1) does not hold.
Case B : M1 = ∅.

In the rest of this section, we give the detail of our algorithm for each case.
Given a subgraph G′ = (V ′, E′) of G, a weight function w′ : E′ → R+ and
a demand function b′ : E′ → {0, 1}, an instance I ′ = (G′, w′, b′) is the prize-
collecting b′-edge dominating set problem in G′ with w′ and the restriction of
π on E′. Namely, the original problem is an instance I = (G,w, b). Let AI be
the output of our algorithm for the instance I. (We adopt this notation for any
instance I ′, i.e., we denote by AI ′ the output of our algorithm to I ′.)

2.1 Case A1

In this subsection, we give an algorithm for Case A1. Let v ∈ M1 be a vertex
such that b(epv) = 0. We define α by

α = min
(

min
e∈δ(pv)

w(e),
∑

e∈δc
1(pv)

π(e)
)
.

Let G′ = (V ′, E′) be the graph obtained from G by removing the children of pv
and the edges of δc(pv). We define a weight function w′ on E′ by

w′(e) =
{
w(e)− α, if e = epv,
w(e), otherwise.

We define a demand function b′ on E′ by b′(e) = b(e) for all edges of E′. Let I ′ be
an instance (G′, w′, b′). If epv ∈ AI ′, our algorithm outputs AI ′, i.e., AI = AI ′.
If epv /∈ AI ′ and

min
e∈δ(pv)

w(e) ≤
∑

e∈δc
1(pv)

π(e), (2)
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the algorithm outputs AI ′ ∪ {e∗}, where e∗ is a minimizer of the left-hand side
of (2). If epv /∈ AI ′ and (2) does not hold, our algorithm outputs AI ′.

2.2 Case A2

In this subsection, we give an algorithm for Case A2. Let v ∈ M1 be a vertex
such that b(epv) = 1 and (1) holds. Let G′ = (V ′, E′) be the graph obtained from
G by removing the children of pv and the edges of δc(pv). We define a weight
function w′ on E′ by

w′(e) =

{
w(e)− min

e∈δ(pv)
w(e), if e = epv,

w(e), otherwise.

We define a demand function b′ on E′ by b′(epv) = 0 and b′(e) = b(e) for the other
edges of E′. Let I ′ be an instance (G′, w′, b′). If epv ∈ AI ′, our algorithm outputs
AI ′. Otherwise, the algorithm outputs AI ′∪{e∗}, where e∗ is a minimizer of the
left-hand side of (1).

2.3 Case A3

In this subsection, we give an algorithm for Case A3. Let v ∈ M1 be a vertex
such that b(epv) = 1 and (1) does not hold. We define β and γ by

β = min
{

min
e∈δ(pv)

w(e),
∑

e∈δ1(pv)

π(e)
}
−

∑
e∈δc

1(pv)

π(e),

γ = min
(

min
e∈δ(gv)\{epv}

w(e), β
)
.

Let G′ = (V ′, E′) be the graph obtained from G by removing the children of pv
and the edges of δc(pv). We define a weight function w′ on E′ by

w′(e) =

⎧⎪⎪⎨⎪⎪⎩
w(e)−

(
γ +

∑
e∈δc

1(pv)

π(e)
)
, if e = epv,

w(e)− γ, if e ∈ δ(gv) \ {epv},
w(e), otherwise.

We define a demand function b′ on E′ by b′(epv) = 0 and b′(e) = b(e) for the
other edges of E′. Let I ′ be an instance (G′, w′, b′). If AI ′ contains an edge of
δ(gv), our algorithm outputs AI ′. From here, we consider the case where AI ′

does not contain an edge of δ(gv). If

min
e∈δ(gv)\{epv}

w(e) ≤ β, (3)

our algorithm outputs AI ′ ∪ {e∗1}, where e∗1 is a minimizer of the left-hand side
of (3). If (3) does not hold and

min
e∈δ(pv)

w(e) ≤
∑

e∈δ1(pv)

π(e), (4)
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our algorithm outputs AI ′ ∪ {e∗2}, where e∗2 is a minimizer of the left-hand side
of (4). If (3) and (4) do not hold, our algorithm outputs AI ′.

2.4 Case B

In this subsection, we give an algorithm for Case B. Let v be a vertex of M .
Without loss of generality we can assume that b(epv) = 1. Otherwise, we can
remove edges of δc(pv). We define η by

η = min
(

min
e∈δ(epv)

w(e), π(epv)
)

Let G′ = (V ′, E′) be the graph obtained from G by removing the children of pv
and the edges of δc(pv). We define a weight function w′ on E′ by

w′(e) =
{
w(e) − η, if e ∈ δ(gv),
w(e), otherwise.

We define a demand function b′ on E′ by b′(epv) = 0 and b′(e) = b(e) for the
other edges of E′. Let I ′ be an instance (G′, w′, b′). If AI ′ contain an edge of
δ(gv), our algorithm outputs AI ′. If AI ′ does not contain an edge of δ(gv) and

min
e∈δ(epv)

w(e) ≤ π(epv), (5)

our algorithm outputs AI ′ ∪ {e∗}, where e∗ is a minimizer of the left-hand side
of (5). If AI ′ does not contains an edge of δ(epv) and (5) does not hold, our
algorithm outputs AI ′.

3 Correctness

In this section, we prove the correctness of the algorithm presented in Section 2.
The integer programming formulation IP(I) of an instance I = (G,w, b) can be
described as follows.

IP(I)

∣∣∣∣∣∣∣
min 〈w, x〉 + 〈π, y〉
s.t. x(δ(e)) + y(e) ≥ b(e) (∀e ∈ E)

x, y ∈ ZE
+,

where let 〈f, g〉 be the inner product of f and g for vectors f and g on the same
ground set. The dual problem Dual(I) of the linear programming relaxation of
IP(I) can be described as follows.

Dual(I)

∣∣∣∣∣∣∣∣∣
max 〈b, z〉
s.t. z(e) ≤ π(e) (∀e ∈ E)

z(δ(e)) ≤ w(e) (∀e ∈ E)
z ∈ RE

+.

By the weak duality theorem [10], a feasible solution z to Dual(I) such that
w(AI) + π(AI) ≤ 〈b, z〉, AI is optimal to an instance I. Hence, in order to show
the correctness, it suffices to prove the following lemma.
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Lemma 1. Given an instance I = (G,w, b), there exists a feasible solution z to
Dual(I) such that w(AI) + π(AI) ≤ 〈b, z〉.

In the sequel, we show Lemma 1 for each case by induction on the number of
v ∈ V such that d(v) > 1. For an instance I, we denote by c(I) the cost of a
solution which our algorithm outputs, i.e., c(I) = w(AI) + π(AI).

3.1 The Star Case

In this subsection, we consider the case where G is a star. We first consider
the case of mine∈E w(e) ≤ π(E1). We arbitrarily name the edges of E1 as
e1, . . . , em, where m = |E1|. Since mine∈E w(e) ≤ π(E1), there exists the in-
dex l ∈ {1, . . . ,m} such that

l−1∑
i=1

π(ei) < min
e∈E

w(e) ≤
l∑

i=1

π(ei).

We define z ∈ RE
+ as follows. Set z(ei) = π(ei) for all i ∈ {1, . . . , l − 1}, and

z(el) = min
e∈E

w(e)−
l−1∑
i=1

π(ei).

Set z(e) = 0 for the other edges e. By the definition, z(e) ≤ π(e) and z(δ(e)) =
minf∈E w(f) ≤ w(e) for all e ∈ E. Hence, z is feasible for Dual(I). Furthermore,
c(I) = mine∈E w(e) and 〈b, z〉 = mine∈E w(e) clearly holds.

Next we consider the case of mine∈E w(e) > π(E1). In this case, set z(e) =
π(e) for all e ∈ E1 and z(e) = 0 for the other edges e. By the definition,
z(e) ≤ π(e) for all e ∈ E. Since mine∈E w(e) > π(E1), z(δ(e)) = π(E1) < w(e)
for all e ∈ E. Hence, z is feasible to Dual(I). Furthermore, c(I) = π(E1) and
〈b, z〉 = π(E1) clearly holds. This completes the proof.

3.2 Case A1

By the induction hypothesis, there exists a feasible solution z′ to Dual(I ′) such
that c(I ′) ≤ 〈b′, z′〉. We define z ∈ RE

+ as follows. For each e ∈ δc1(pv), define
z(e) so that z(e) ≤ π(e) and ∑

f∈δc
1(pv)

z(f) = α.

By the definition α, we can do this in the same manner for the star case. For
each e ∈ δc0(pv), set z(e) = 0. For the other edges e of E′, define z(e) = z′(e).

Now we consider the feasibility of z. By the definition, z(e) ≤ π(e) for all
e ∈ δc(pv). Hence, by the induction hypothesis, z(e) ≤ π(e) for all e ∈ E. Next
we consider the second condition. Here it should note that we can assume that
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z′(epv) = 0 since b′(epv) = 0 holds. Since z(epv) = 0 holds by z(epv) = z′(epv),
z(δ(e)) = α ≤ w(e) for each e ∈ δc(pv). By the definition of w′,

z(δ(epv)) = z′(δ(gv)) + α ≤ w(epv).

For the other edges, the condition is satisfied by the induction hypothesis, which
implies the feasibility of z.

Finally, we show that c(I) ≤ 〈b, z〉. In every case, c(I)− c(I ′) ≤ α and 〈b, z〉−
〈b′, z′〉 = α. This completes the proof.

3.3 Case A2

By the induction hypothesis, there exists a feasible solution z′ to Dual(I ′) such
that c(I ′) ≤ 〈b′, z′〉. We define z ∈ RE

+ as follows. For each e ∈ δc1(pv), define
z(e) so that z(e) ≤ π(e) and∑

f∈δc
1(pv)

z(f) = min
f∈δ(pv)

w(f).

Since (1) holds, we can do this in the same manner for the star case. For each
e ∈ δc0(pv), set z(e) = 0. For the other edges e of E′, define z(e) = z′(e).

Now we consider the feasibility of z. By the definition, z(e) ≤ π(e) for all
e ∈ δc(pv). Hence, by the induction hypothesis, z(e) ≤ π(e) for all e ∈ E.
Next we consider the second condition. We can assume that z′(epv) = 0 since
b′(epv) = 0 holds. Since z(epv) = 0 holds by z(epv) = z′(epv),

z(δ(e)) =
∑

f∈δc
1(pv)

z(f) = min
f∈δ(pv)

w(f) ≤ w(e)

for each e ∈ δc(pv). By the definition of w′,

z(δ(epv)) = z′(δ(gv)) + min
e∈δ(pv)

w(e) ≤ w(epv).

For the other edges, the condition is satisfied by the induction hypothesis, which
implies the feasibility of z.

Finally, we show that c(I) ≤ 〈b, z〉. In both cases,

c(I)− c(I ′) ≤ min
e∈δ(pv)

w(e), 〈b, z〉 − 〈b′, z′〉 = min
e∈δ(pv)

w(e).

This completes the proof.

3.4 Case A3

By the induction hypothesis, there exists a feasible solution z′ to Dual(I ′) such
that c(I ′) ≤ 〈b′, z′〉. We define z ∈ RE

+ by

z(e) =

⎧⎪⎪⎨⎪⎪⎩
π(e), if e ∈ δc1(v),
0, if e ∈ δc0(v),
γ, if e = epv,
z′(e), otherwise.
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First we consider the feasibility of z. By the definition, z(e) ≤ π(e) for all
e ∈ δc(pv). By the definition of γ, z(epv) = γ ≤ π(epv) holds. Hence, by the
induction hypothesis, z(e) ≤ π(e) for all e ∈ E. Next we consider the second
condition. For each e ∈ δc(pv).

z(δ(e)) = γ +
∑

e∈δc
1(pv)

π(e) ≤ min
f∈δ(pv)

w(f) ≤ w(e). (6)

Furthermore, by the definition of w′,

z(δ(epv)) = z′(δ(gv)) + γ +
∑

e∈δc
1(pv)

π(e) ≤ w(epv). (7)

For each e ∈ δ(gv) \ {epv},

z(δ(e)) = z′(δ(e)) + γ ≤ w(e) (8)

Notice that in (6)-(8) the first equation follows from that we can assume z′(epv) =
0 since b′(epv) = 0. For the other edges, the condition is satisfied by the induction
hypothesis, which implies the feasibility of z.

Next we show that c(I) ≤ 〈b, z〉. For this, we first show that we can assume
that AI ′ contains at most one edge of δ(gv). Suppose that AI ′ contains more
than one edge of δ(gv). In this case, AI ′ contains at least one edge e of δc(gv).
When e is incident to a leaf, c(I ′) does not increase by removing e from AI ′. If
e is not incident to a leaf, c(I ′) does not increase removing e from AI ′ since (2)
does not hold. Hence, by the optimality of AI ′, we can assume that AI ′ contains
at most one edge of δ(gv). By this fact, in every case c(I)− c(I ′) is at most

γ +
∑

e∈δc
1(pv)

π(e), (9)

by z′(epv) = 0 and 〈b, z〉 − 〈b′, z′〉 is equal to (9). This completes the proof.

3.5 Case B

By the induction hypothesis, there exists a feasible solution z′ to Dual(I ′) such
that c(I ′) ≤ 〈b′, z′〉. We define z ∈ RE

+ as follows.

z(e) =

⎧⎨⎩
0, if e ∈ δc(v),
η, if e = epv,
z′(e), otherwise.

First we consider the feasibility of z. By the definition of η, z(epv) = η ≤ π(epv)
holds. Hence, by the induction hypothesis, z(e) ≤ π(e) for all e ∈ E. Next we
consider the second condition. For each e ∈ δc(pv), z(δ(e)) = η ≤ w(e). By the
definition of w′,

z(δ(e)) = z′(δ(e)) + η ≤ w(e)
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for each e ∈ δ(gv) \ {epv}. The first equation follows from that we can assume
z′(epv) = 0 since b′(epv) = 0 holds. Furthermore, by the definition of w′,

z(δ(epv)) = z′(δ(gv)) + η ≤ w(epv).

For the other edges, the condition is satisfied by the induction hypothesis, which
implies the feasibility of z.

Next we show that c(I) ≤ 〈b, z〉. For this, we first show that we can assume
thatAI ′ contains at most one edge of δ(gv). Suppose that AI ′ contains more than
one edge of δ(gv). In this case, AI ′ contains at least one edge e of δc(gv). Since
b(ev) = 0 for all v ∈M , c(I ′) does not increase by removing e from AI ′. Hence,
by the optimality of AI ′, we can assume that AI ′ contains at most one edge of
δ(gv). By this fact, in the both cases c(I) − c(I ′) ≤ η and 〈b, z〉 − 〈b′, z′〉 = η.
This completes the proof.

4 Time Complexity

In this section, we consider the time complexity of our algorithm. Our algorithm,
called Algorithm PEDS, can be described as follows.

Algorithm PEDS

1. Compute d(v) for all v ∈ V , and set l = maxv∈V d(v).
2. If l > 1, remove all the vertices v ∈ V such that d(v) = l, and change the

weight function and the demand function in the manner describe in Section 2,
whiling keeping the followings in mind.
(a) We give priority to vertices for which the conditions of Case A1, Case A2,

Case A3 and Case B in this order.
(b) When we remove a vertex for which the conditions of Case A3, some

vertices may become to satisfy the conditions of Case A2, i.e., (1). In
this case, we remove these vertices before other vertices for which the
conditions of Case A3.

(c) After removing all the vertices v ∈ V such that d(v) = l, update l = l−1.
3. Notice that in this step the input graph becomes a star. Hence, compute

an optimal solution to the star, and construction an optimal solution to the
original problem.

Theorem 1. Given a tree G = (V,E), a weight function w : E → R+, a penalty
function π : E → R+ and a demand function b : E → {0, 1}, Algorithm PEDS
can solve the prize-collecting b-edge dominating set problem in O(|V |2) time.

Proof. Since the correctness of our algorithm is proved in the previous section,
we consider the time complexity. Clearly, we can complete Step 1 in O(|V |) time.
Also Step 3 can be done in O(|V |) time by storing the order in which vertices
are removed. Hence, the time required to complete Step 2 is dominating factor
of our algorithm. Although the problem is that we have to check some vertex
become to satisfy the conditions of Case A2, we can do this in constant time by
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storing a difference of the both sides of (1). Hence, we can do Step 4 in O(|Vl|2)
time for each l, where Vl is the set of v ∈ V such that d(v) = l. This completes
the proof. 


Here we give a bad example for which our algorithm requires Ω(|V |2) time.
A vertex set V consists of a root r and vertices X = {x1, . . . , xk} and Y =
{y1, . . . , yk}. An edge set E consists of {r, xi} and {xi, yi} for all i ∈ {1, . . . , k}.
For all e ∈ E, we define b(e) = 1, and w(e) = +∞ and π(e) = 1. Then, whenever
we remove a vertex of Y , we have to update the weights of all the edges of δ(r).
Hence, our algorithm requires Ω(|V |2) time for this instance.

5 Total Dual Integrality and Generalization

In this section, we consider the total dual integrality of a polytope related to our
problem and some generalization.

5.1 Total Dual Integrality of a Related Polyhedron

In our algorithm, we have an integral dual optimal solution if a weight and a
penalty of each edge are integral. Hence, we can obtain the following polyhedral
result. Let A be a p× q-matrix in which every entry is rational, and let b be a
p-dimensional rational vector. Then, a system Ax ≥ b for x ∈ R

q
+ is called total

dual integral when for each l ∈ Zq the dual problem of minimizing 〈l, x〉 over
Ax ≥ b has an integer optimal solution if the dual problem has a feasible solution
and the optimal objective value of the dual problem is finite. It is known [11]
that if a system Ax ≥ b for x ∈ R

p
+ is total dual integral and b ∈ Zp, every

vertex of the polyhedron which is determined by a system Ax ≥ b has integer
coordinates.

Theorem 2. Given a tree G = (V,E) and a demand function b : E → {0, 1}, a
system {x(δ(e)) + y(e) ≥ b(e) | e ∈ E} for x, y ∈ RE

+ is total dual integral.

Proof. For a weight function w : E → Z+ and a penalty function π : E → Z+, it
follows from the proof of the correctness of our algorithm that Dual(I) has an
integral optimal solution, where I is an instance (G,w, b). For a weight function
w and a penalty function π such that there exists e ∈ E such that w(e) < 0 or
π(e) < 0, Dual(I) has no solution. This completes the proof. 


5.2 Generalization

Here we consider a generalization of the prize collecting b-edge dominating set
problem. It is natural to generalize an image of a demand function b from {0, 1}
to Z+. More precisely, the generalized prize-collecting b-edge dominating set prob-
lem is defined as follows. We are given a graph G = (V,E), a weight function
w : E → R+, a penalty function π : E → R+ and a demand function b : E → Z+.
The cost of a vector x ∈ ZE

+ is defined by 〈w, x〉 + 〈π, x〉, where x ∈ RE
+ is
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defined max{0, b(e)− x(δ(e))} for each e ∈ E. Notice that the integer program-
ming formulation of this problem is also IP(I). Although it is open whether the
generalized prize-collecting b-edge dominating set problem in trees can be solved
in polynomial time, by using the theory of total unimodular we can show that
this problem in a path G can be solved in polynomial time. A matrix A is called
totally unimodular when if every square submatrix has determinant 0,±1. The
following theorem is known (see also [10, Corollary 19.2a]).

Theorem 3 (Hoffman and Kruskal [12]). Let A be a totally unimodular
p × q-matrix. Then, for each b ∈ Zp, every extreme point of the polyhedron
determined by a system Ax ≥ b for x ∈ R+ has integer coordinates.

We define the edge-edge adjacency matrix AG of G as follows. Letting |E| = m
and E = {e1, . . . , em}, AG is an m × m-matrix whose entry corresponding to
a i-th row and a j-th column is defined by 1 if ei ∩ ej �= ∅, and 0 otherwise.
By Theorem 3, if [AG, Δ] is totally unimodular, the generalized prize-collecting
b-edge dominating set problem can be solved in polynomial time by solving
the linear programming relaxation of IP(I), where Δ is an identity matrix and
[AG, Δ] is a matrix obtained by combining AG and Δ. If G is a path, we can
prove this by using the following theorems.

Theorem 4 (Schrijver [10, Example 7 in p.279]). If every entry of a matrix
A is 0 or 1 and each row of A has its 1’s consecutively, A is totally unimodular.

Theorem 5 (Ghoulia-Houri [13]). A matrix A is totally unimodular if and
only if each collection R of rows of A can be partitioned into classes R1 and R2
such that the sum of the rows in R1 minus the sum of the rows in R2 is a vector
with entries 0,±1 only.

If G is a path, it follows from Theorem 4 that AG is totally unimodular, and
then each collection R of rows of AG can be partitioned into classes R1 and R2
satisfying the condition in Theorem 5. It is clear that for the classes R1 and R2,
Δ satisfies the condition in Theorem 5. Hence, it follows from Theorem 5 that
[AG, Δ] is totally unimodular, which implies the polynomial-time solvability of
the generalized prize-collecting b-edge dominating set problem in paths.

Theorem 6. The generalized prize-collecting b-edge dominating set problem in
paths can be solved in polynomial time.
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Abstract. The multivariate resultant is a fundamental tool of computa-
tional algebraic geometry. It can in particular be used to decide whether
a system of n homogeneous equations in n variables is satisfiable (the re-
sultant is a polynomial in the system’s coefficients which vanishes if and
only if the system is satisfiable). In this paper we present several NP-
hardness results for testing whether a multivariate resultant vanishes,
or equivalently for deciding whether a square system of homogeneous
equations is satisfiable. Our main result is that testing the resultant for
zero is NP-hard under deterministic reductions in any characteristic, for
systems of low-degree polynomials with coefficients in the ground field
(rather than in an extension). We also observe that in characteristic zero,
this problem is in the Arthur-Merlin class AM if the generalized Riemann
hypothesis holds true. In positive characteristic, the best upper bound
remains PSPACE.

1 Introduction

Given two univariate polynomials, their Sylvester matrix is a matrix built on
the coefficients of the polynomials which is singular iff the polynomials have a
common root. The determinant of the Sylvester matrix is known as the resultant
of the polynomials. This determinant is easy to compute since the size of the
Sylvester matrix is the sum of the degrees of the polynomials. The study of the
possible generalizations to multivariate systems comes within the scope of the
theory of elimination [33, 26, 11, 27, 32, 12]. This theory proves that the only case
where a unique polynomial can testify to the existence of a common root to the
system is the case of n homogeneous polynomials in n variables: the resultant of a
square system of homogeneous polynomials f1, . . . , fn ∈ K[x1, . . . , xn] is a poly-
nomial in the indeterminate coefficients of f1, . . . , fn which vanishes iff f1, . . . , fn
have a nonzero common root in the algebraic closure of K. The resultant of such
a system is known as the multivariate resultant in the literature. This captures
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the case of two univariate polynomials modulo their homogenization. Further-
more, in many cases a system of more than n homogeneous polynomials in n
variables can be reduced to a system of n homogeneous polynomials, so that
the square case is an important one. This result is sometimes known as Bertini’s
theorem (as explained toward the end of this section, we will use an effective
version of this result in one of our NP-hardness proofs). In this paper, we focus
on the multivariate resultant which we simply refer to as the resultant.

The resultant has been extensively used to solve polynomial systems [25, 29, 7,
9] and for the elimination of quantifiers in algebraically or real-closed fields [30,
17]. More recently, the multivariate resultant has been of interest in pure and
applied domains. For instance, the problem of robot motion planning is closely
related to the multivariate resultant [3, 4, 8], and more generally the multivariate
resultant is used in real algebraic geometry [5, 22]. Finally, in the domain of
symbolic computation progress has been made for finding explicit formulations
for the resultant [21, 6, 10, 2, 9, 18], see also [20].

Definition 1. Let K be a field and f1, . . . , fn be n homogeneous polynomials in
K[x1, . . . , xn], fi(x̄) =

∑
|α|=di

γi,αx
α. The multivariate resultant R of f1, . . . , fn

is an irreducible polynomial in K[γi,α] such that

R(γi,α) = 0 ⇐⇒ ∃x̄ ∈ K̄, f1(x̄) = · · · = fn(x̄) = 0. (1)

The multivariate resultant is unique up to a constant factor.

The problem we are interested in is testing the resultant for zero. This is the
same as deciding whether a square system of homogeneous polynomials (that is
n polynomials in n variables) has a non-trivial root. This is closely related to
the decision problem problem for the existential theory of an algebraically closed
field. This problem is sometimes called the Hilbert Nullstellensatz problem:

Definition 2. Let K be a field and K̄ be an algebraic closure of K. The Hilbert
Nullstellensatz problem over K, HN(K), is the following: Given a system f of s
polynomials in K[x0, . . . , xn], does there exist a root of f in K̄n+1?

Let us now assume that the s components of f are homogeneous polynomials.
Then the homogeneous Hilbert Nullstellensatz problem over K, H2N(K), is to
decide whether a non trivial (that is, nonzero) root exists in K̄.

If f is supposed to contain as many homogeneous polynomials as variables,
the problem is called the square homogeneous Hilbert Nullstellensatz over K,
H2N�(K).

In the case of the field Q, it is more natural to have coefficients in Z. We shall
use the notations HN, H2N and H2N� for this case where the system is made of
integer polynomials. In the sequel, for any prime number p, the finite field with
p elements is denoted by Fp. The notation is extended to characteristic zero, and
F0 = Q.

In the case of polynomials with coefficients in Z, Canny [4] gave in 1987 a
PSPACE algorithm to compute the resultant. To the authors’ knowledge, this is



The Multivariate Resultant Is NP-hard in Any Characteristic 479

the best known upper bound. In this paper we show that testing the resultant
for zero is NP-hard in any characteristic. In other words, H2N(K) is NP-hard for
any field K.

Main Results and Proof Techniques

In Section 2 we observe that for polynomials with integer coefficients, testing the
resultant for zero is a problem in the Arthur-Merlin (AM) class. This result as-
sumes the generalized Riemann hypothesis, and follows from a simple reduction to
the Hilbert Nullstellensatz. For this problem, membership in AM assuming GRH
was established in [23]. The remainder of the paper is devoted to hardness results.

In characteristic zero, it seems to be a “folklore” result that testing the resul-
tant for zero is NP-hard. We give a proof of this fact in the full version of this
paper [16] since we have not been able to find one in the literature. In fact, we
give two proofs of two results of incomparable strength. The first proof is based
on a reduction from the Partition problem [14, problem SP12]. The second
proof is based on a result of Plaisted [28] and shows that the problem remains
NP-hard for systems of only two homogeneous polynomials. For the latter result
to be true, we need to use a sparse encoding for our two polynomials (their
degree can therefore be exponential in the input size).

The first proof does not carry over to positive characteristic since the NP-
hardness of Partition relies in an essential way on the fact that the data are
integers (in fact, in any finite field the analogue problem can be solved in poly-
nomial time by dynamic programming).

Plaisted’s result can be adapted to positive characteristic [34, 19] but this
requires randomization. By contrast, our ultimate goal is NP-hardness for de-
terministic reductions and low degree polynomials. We therefore need to use
different techniques. Our starting point is a fairly standard encoding of 3− SAT
by systems of polynomial equations. Using this encoding we show at the begin-
ning of Section 3 that deciding the existence of a nontrivial solution to a system
of homogeneous equations is NP-hard in any characteristic. The resulting system
has in general more equations than variables. In order to obtain a square system
two basic strategies can be explored:

(i) Decrease the number of equations.
(ii) Increase the number of variables.

In [16], we give a randomized NP-hardness result based on the first strategy.
The idea is to replace the initial system by a random linear combinations of the
system’s equations (the fact this does not change the solution set is sometimes
called a “Bertini’s theorem”).

In Section 3 we use the second strategy to obtain two NP-hardness results for
deterministic reductions. The main difficulty is to make sure that the introduc-
tion of new variables does not create spurious solutions (we do not want to turn
an unsatisfiable system into a satisfiable system). Our solution to this problem
can be viewed as a derandomization result. Indeed, it can be shown that the
coefficients of the monomials where the new variables occur could be chosen at
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random. It would be interesting to find out whether the proof based on the first
strategy can also be derandomized.

2 Complexity of the Resultant in Characteristic 0

In this section we show that testing the resultant for zero is reducible to HN(K).
In the case K = Z, this allows us to conclude (under the Generalized Riemann
Hypothesis) that our problem is in the polynomial hierarchy, and more precisely
in the Arthur-Merlin class. In fact, we show that this applies more generally
to the satisfiability problem for homogeneous systems (recall that testing the
resultant for zero corresponds to the square case).

Proposition 1. For any field K, the problem H2N(K) is polynomial-time many-
one reducible to HN(K).

Proof. Consider an instance S of H2N(K), that is s homogeneous polynomials
f1, . . . , fs ∈ K[x1, . . . , xn]. The polynomials f1, . . . , fs can be viewed as elements
of K[x1, . . . , xn, y1, . . . , yn] where y1, . . . , yn are new variables which do not ap-
pear in the fi. Let T be the system containing all the fi and the new (non-
homogeneous) polynomial

∑n
i=1 xiyi − 1. This is an instance of the problem

HN(K). It remains to prove that S and T are equivalent.
Given a root (a1, . . . , an, b1, . . . , bn) of T , the new polynomial ensures that

there is at least one nonzero ai. So (a1, . . . , an) is a non trivial root of S. Con-
versely, suppose that S has a non trivial root (a1, . . . , an), and let i be such that
ai �= 0. Then the tuple (a1, . . . , an, 0, . . . , 0, a−1

i , 0, . . . , 0) where a−1
i corresponds

to the variable yi is a root of T .
Thus H2N(K) is polynomial-time many-one reducible to HN(K).

Koiran [23] proved that HN ∈ AM under the Generalized Riemann Hypothesis.
We denote here by AM the Arthur-Merlin class, defined by interactive proofs
with public coins (see [1]). Thereby,

Corollary 1. Under the Generalized Riemann Hypothesis, H2N is in the class
AM.

In positive characteristic, the best upper bound on the complexity of the Hilbert
Nullstellensatz known to this day remains PSPACE (in particular it is not known
whether the problem lies in the polynomial hierarchy, even assuming some plau-
sible number-theoretic conjecture such as the generalized Riemann hypothesis).

We now give our first NP-hardness result, for the satisfiability of square sys-
tems of homogeneous polynomial equations. As explained in the introduction,
this seems to be a “folklore” result. We give the (short) proof in the full ver-
sion [16] since finding an explicit statement (and proof) of this result in the
literature appears to be difficult. The second part of the theorem shows that the
problems remains NP-hard even for systems with small integer coefficients (i.e.,
coefficients bounded by 2). This is achieved by a standard trick: we introduce
new variables in order to “simulate” large integers coefficients. It is interesting to
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note, however, that a similar trick for reducing degrees does not seem to apply
to the resultant problem (more on this in the full version [16]).

Theorem 1. The problem H2N� of deciding whether a square system of homo-
geneous polynomials with coefficients in Z has a non trivial root is NP-hard.

The problem remains NP-hard even if no polynomial has degree greater that 2
and even if the coefficients are bounded by 2.

The reduction is done from Partition which is known to be NP-hard [14, prob-
lem SP12]. For a full proof of this theorem, please refer to [16].

A related result is Plaisted’s [28] on the NP-hardness of deciding whether
the gcd of two sparse univariate polynomials has degree greater than one. By
homogenization of the polynomials, this is the same problem as in Theorem 1 for
only two bivariate polynomials. Note that the polynomials are sparse and can
be of very high degree since exponents are written in binary (this polynomial
representation is sometimes called “supersparse” [19]). If both polynomials were
dense, the resultant could be computed in polynomial time since it is equal to
the determinant of their Sylvester matrix. Plaisted’s theorem stated in the same
language as Theorem 1 is the following:

Theorem 2. Given two sparse homogeneous polynomials in Z[x, y], it is NP-
hard to decide whether they share a common root in C2.

3 The Resultant is NP-hard in Arbitrary Characteristic

In this section we give two increasingly stronger NP-hardness results for testing
the resultant. We prove these two NP-hardness results for deterministic reduc-
tions: the first one applies to systems with coefficients in an extension of the
ground field, and the second (stronger) result to systems with coefficients in the
ground field only. Both results are based on the strategy of increasing the number
of variables to make the system square. Note that the other strategy consisting
in decreasing the number of polynomials can also be used. We use this strat-
egy to give another hardness result, but for randomized reduction, in [16]. The
starting point for these three NP-hardness results is the following lemma.

Lemma 1 ([24]). Given a field K of any characteristic, it is NP-hard to decide
whether a system of s homogeneous polynomials in K[x0, . . . , xn] has a non trivial
root. That is, H2N(K) is NP-hard.

In [24], H2N(K) was proven NP-hard by reduction from Boolsys. An input of
Boolsys is a system of boolean equations in the variablesX1, . . . , Xn where each
equation is of the form Xi = True, Xi = ¬Xj , or Xi = Xj ∨Xk. The question
is the existence of a valid assignment for the system, that is an assignment of
the variables such that each equation is satisfied. This problem is easily shown
NP-hard by reduction from 3− SAT. We now give a proof of this lemma since
the specific form of the systems that we construct in the reduction will be useful
in the sequel. This proof is a slight variation on the proof from [24].
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Proof. Let K be a field of any characteristic p, p being either zero or a prime
number. At first, p is supposed to be different from 2. The proof has to be slightly
changed in the case p = 2 and this case is explained at the end of the proof.

Let B be an instance of Boolsys. Let us define a system of homogeneous
polynomials from this instance with the property that B is satisfiable iff the
polynomial system has a non trivial common root. The variables in the system
are x0, . . . , xn where xi, 1 ≤ i ≤ n, corresponds to the boolean variable Xi in
Boolsys, and x0 is a new variable. The system contains four kinds of polynomi-
als:

– x2
0 − x2

i , for each i > 0;
– x0 · (xi + x0), for each equation Xi = True in Boolsys;
– x0 · (xi + xj), for each equation Xi = ¬Xj ;
– (xi + x0)2 − (xj + x0) · (xk + x0), for each equation Xi = Xj ∨Xk.

Let us denote by f the polynomial system obtained from B. The first kind of
polynomials ensures that if (a0, . . . , an) is a non trivial root of f , then a2

0 = a2
1 =

· · · = a2
n. Now if f has a non trivial root (a0, . . . , an), then one can readily check

that the assignment Xi = True if ai = −a0 and Xi = false if ai = a0 satisfies
B. Conversely, if there is a valid assignment X1, . . . , Xn for B, any (n+ 1)-tuple
(a0, . . . , an) where a0 �= 0 and ai = −a0 if Xi = True and ai = a0 if Xi = false
is a non trivial root of f .

This proof works for any field of characteristic different from 2. The problem
in characteristic 2 is the implementation of Boolsys in terms of a system of
polynomials. Indeed, for the other characteristics, the truth is represented by
−a0 and the falseness by a0. In characteristic 2, those values are equal. Yet, one
can just change the polynomials and define in the case of characteristic 2 the
following system:

– x0xi − x2
i , for each i > 0;

– x0(xi + x0), for each equation Xi = True in Boolsys;
– x0(xi + xj + x0), for each equation Xi = ¬Xj ;
– x2

i + xjxk + x0 · (xj + xk), for each equation Xi = Xj ∨Xk.

Now, given any nonzero value a0 for x0, the truth of a variable Xi is represented
by xi = a0 whence the falseness is represented by xi = 0. A root of the system is
in particular a root of the polynomials defined by the first item. Therefore each
xi has to be set either to a0 or to 0. The system has a non trivial root iff the
instance of Boolsys is satisfiable. 

We now show that testing the resultant for zero is NP-hard for deterministic
reductions.

Theorem 3. Let p be either zero or a prime number. The following problem is
NP-hard under deterministic reductions:

- INPUT: a square system of homogeneous equations with coefficients in a
finite extension of Fp.

- QUESTION: is the system satisfiable in the algebraic closure of Fp?

In the case p = 0, the results also holds for systems with coefficients in Z.
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Proof. The proof of Lemma 1 gives a method to implement an instance of
Boolsys with a system f of s homogeneous polynomials in n+ 1 variables with
coefficients in Fp. It remains to explain how to construct a square system g that
has a non trivial root iff f does. Let us denote by f1, . . . , fs the components
of f , with for each i = 1, . . . , n, fi = x2

0 − x2
i if p �= 2 and fi = x0xi − x2

i if
p = 2. A new system g of s polynomials in s variables is built. The s variables
are x0, . . . , xn and y1, . . . , ys−n−1, that is (s − n − 1) new variables are added.
The system g is the following:

g(x̄, ȳ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(x̄)
...

fn(x̄)
fn+1(x̄) +λy2

1
fn+2(x̄) −y2

1 +λy2
2

...
fn+i(x̄) −y2

i−1 +λy2
i

...
fs−1(x̄)−y2

s−n−2+λy2
s−n−1

fs(x̄) −y2
s−n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

The parameter λ is to be defined later. Clearly, if f has a non trivial root ā, then
(ā, 0̄) is a non trivial root of g. Let us now prove that the converse also holds
true for some λ: if g has a non trivial root, then so does f . Note that a suitable
λ has to be found in polynomial time.

Let (a0, . . . , an, b1, . . . , bs−n−1) be any non trivial root of g. Since ā must be
a common root of f1, . . . , fn, we have a2

0 = · · · = a2
n if p �= 2, and ai ∈ {0, a0}

for every i if p = 2. Now, either a0 = 0 and fi(ā) = 0 for every i, or a0 can be
supposed to equal 1. Therefore, if p �= 2 either ā = 0̄ or ai = ±1 for every i, and
if p = 2 either ā = 0̄ or ai ∈ {0, 1} for every i. Let us define εi = fn+i(ā) ∈ Fp.
As (ā, b̄) is a root of g, the b2i satisfy the linear system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε1 + λY1 = 0,
ε2 − Y1 + λY2 = 0,

...
εs−n−1 − Ys−n−2 + λYs−n−1 = 0,
εs−n − Ys−n−1 = 0.

(3)

This system can be homogenized by replacing each εi by εiY0 where Y0 is a fresh
variable. This gives a square homogeneous linear system. The determinant of
the matrix of this system is equal to (−1)s−n−1

(
ε1 + ε2λ+ · · ·+ εs−nλ

s−n−1
)
.

Let us consider this determinant as a polynomial in λ. This polynomial van-
ishes identically iff all the εi are zero. In that case, the only solutions satisfy
Yi = 0 for i > 0, that is (ā, 0̄) is a root of g and therefore ā is a root of f . If
some εi are nonzero, this is a nonzero polynomial of degree (s− n− 1). If λ can
be chosen such that it is not a root of this polynomial (for any possible nonzero
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value of ε̄), then the only solution to the linear system is the trivial one. This
means that the only non trivial root of g is (ā, 0̄) where ā is a root of f .

If the polynomials have coefficients in Z, λ = 3 (or any other integer λ > 2)
satisfies the condition. Indeed, one can check that εi = fn+i(ā) ∈ {−4, 0, 2, 4}
when a0 = 1. The determinant is zero iff ε′1 + ε′2λ + · · · + ε′s−nλ

s−n−1 = 0
where ε′i = εi/2 ∈ {−2, 0, 1, 2}. For each i, let ε+i = max{ε′i, 0} and ε−i =
max{−ε′i, 0}. Then ε′i = ε+i − ε−i , and 0 ≤ ε+i , ε

−
i ≤ 2. Now the determinant is

zero iff
∑

i ε
+
i 3i =

∑
i ε

−
i 3i. By the unicity of base-3 representation, this means

that for all i, ε+i = ε−i , and so ε′i = 0.
For a field of positive characteristic, this argument cannot be applied. The

idea is to find a λ that is not a root of any polynomial of degree (s − n −
1). Nothing else can be supposed on the polynomial because if Fp = F3 for
example, any polynomial of Fp[λ] can appear. This also shows that λ cannot be
found in the ground field. Suppose an extension of degree (s − n) is given as
Fp[X ]/(P ) where P is an irreducible degree-(s−n) polynomial with coefficients
in Fp. Then a root of P in Fp[X ]/(P ) cannot be a root of a degree-(s− n − 1)
polynomial with coefficients in Fp. Thus, if one can find such a P , taking for λ
the indeterminate X is sufficient. For any fixed characteristic p, Shoup gives a
deterministic polynomial-time algorithm [31] that given an integer N outputs a
degree-N irreducible polynomial P in Fp[X ]. Thus, the system g is now a square
system of polynomials in (Fp[X ]/(P )) [x̄, ȳ] and this system has a non trivial
root iff f has a non trivial root. And Shoup’s algorithm allows us to build g in
polynomial time from f .

For any field Fp, it has been shown that from an instance B of Boolsys a square
system g of polynomials with coefficients in an extension of Fp (in Z for integer
polynomials) can be built in deterministic polynomial time such that g has a non
trivial root iff B is satisfiable. This shows that the problem is NP-hard. 


The previous result is somewhat unsatisfactory as it requires, in the case of
positive characteristic, to work with coefficients in an extension field rather than
in the ground field. A way to get rid of this limitation is now shown. Yet, a
property of the previous result is lost. Instead of having constant-degree (even
degree-2) polynomials, our next result uses linear-degree polynomials. It is not
clear whether the same result can be obtained for degree-2 polynomials (for
instance, as explained in the full version [16] reducing the degree by introducing
new variables can create unwanted solutions at infinity).

The basic idea behind Theorem 4 is quite simple (we put the irreducible
polynomial used to build the extension field into the system), but some care is
required in order to obtain an equivalent homogeneous system.

Recall from the introduction that H2N�(Fp) is the following problem:

- INPUT: a square system of homogeneous equations with coefficients in Fp.
- QUESTION: is the system satisfiable in the algebraic closure of Fp?

Theorem 4. For any prime p, H2N�(Fp) is NP-hard under deterministic reduc-
tions.
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Proof. The idea for this result is to turn coefficient λ in the previous proof into a
variable and to add the polynomial P as a component of the system. Of course,
considering λ as a variable implies that the polynomials are not homogeneous
anymore. Thus, it remains to explain how to keep the system homogeneous.

First, the polynomial P needs to be homogenized. This is done through the
variable x0 in the canonical way. As P (λ) is irreducible, it is in particular not
divisible by λ. Hence, the homogenized polynomial P (λ, x0) contains a monomial
αλd and another one βxd0 where d is the degree of P . Hence x0 is zero iff λ is.

The other polynomials have the form fn+i(x̄)− y2
i−1 +λy2

i . It is impossible to
homogenize those polynomials by multiplying fn+i and y2

i−1 by x0 (or any other
variable) because then the variable yi−1 never appears alone in a monomial, and
a s-tuple with all variables set to 0 but yi−1 would be a non trivial solution.
Moreover, in the previous proof, the fact that the yi all appear with degree 2
is used to consider the system as a linear system in the y2

i . Thus replacing the
monomial λy2

i by λyi does not work either. Instead, we construct the slightly
more complicated homogeneous system:

gh(x̄, ȳ, λ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1(x̄)
...

fn(x̄)
xs−n−1

0 fn+1(x̄) +λys−n
1

xs−n−2
0 fn+2(x̄) −ys−n

1 +λys−n−1
2

...
xs−n−i

0 fn+i(x̄)−ys−n−i+2
i−1 +λys−n−i+1

i
...

x0fs−1(x̄) −y3
s−n−2 +λy2

s−n−1
fs(x̄) −y2

s−n−1
P (λ, x0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

Contrary to the previous proof, the yi do not appear all at the same power. Yet,
all the occurrences of each yi have the same degree, and we shall prove that this
is sufficient.

Let us prove that if f does not have any non trivial root, then neither does gh.
Some of the observations made for g in the previous proof remain valid. Hence,
it is sufficient to prove that a non trivial (s+1)-tuple (ā, b̄, �) cannot be solution
of gh whenever a0 = 1, b̄ �= 0̄ and a2

0 = · · · = a2
n if p �= 2 or ai ∈ {0, a0} if

p = 2. By a previous remark on the polynomial P , � can also be supposed to be
nonzero.

So, similarly as in the previous proof, let us define εi = as−n−i
0 fn+i(ā) ∈ Fp. In

the system gh, the variable yi only appears at the power (s−n−i+1). Therefore,
given a value of ā and �, the tuple (ā, b̄, �) is a root of gh iff the bs−n−i+1

i satisfy
the linear system
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ε1 + �Y1 = 0
ε2 − Y1 + �Y2 = 0

...
εs−n−1 − Ys−n−2 + �Ys−n−1 = 0
εs−n − Ys−n−1 = 0

(5)

This is the same system as in the previous proof. Now if (�, 1) is supposed to be
a root of P , as P is an irreducible polynomial of degree (s − n), � cannot be a
root of a univariate polynomial of degree less than (s−n) with coefficient in Fp.
But the determinant of the linear system is such a polynomial, and thus cannot
be zero. This determinant is then 0 iff all the εi = 0. The same arguments as in
the previous proof can be used to conclude that (ā, b̄, �) can be a root of gh iff ā
is a root of f .

Thus, from an instance B of Boolsys, a square homogeneous system gh of
polynomials with coefficients in the ground field Fp is built in deterministic
polynomial time. This system has a non trivial root iff B is satisfiable. The
result is proved. 


4 Final Remarks

In characteristic zero, the upper and lower bounds on H2N� are in a sense close
to each other. Indeed, NP ⊆ AM ⊆ Π2P, that is, AM lies between the first
and the second level of the polynomial hierarchy. Furthermore, “under plausible
complexity conjectures, AM = NP” [1, p157]. Improving the NP lower bound
may be challenging as the proof of Proposition 1 shows that this would imply
the same lower bound for Hilbert’s Nullstellensatz.

In positive characteristic, the situation is quite different. Indeed, the best
known upper bound for Hilbert’s Nullstellensatz as well as for the resultant is
PSPACE. As in characteristic zero, the known upper and lower bounds are there-
fore the same for both problems. But as the gap between the NP lower bound and
the PSPACE upper bound is rather big, these problems might be of widely differ-
ent complexity (more precisely, testing the resultant for zero could in principle
be much easier than deciding whether a general polynomial system is satisfiable).
Canny’s algorithm for computing the resultant [4] involves the computation of
the determinants of exponential-size matrices, known as Macaulay matrices, in
polynomial space. Those matrices admit a succinct representation (in the sense
of [13]). One can prove that computing the determinant of a general succinctly
represented matrix is FPSPACE-complete (and even testing for zero is PSPACE-
complete) [15]. It follows that the FPSPACE upper bound could be improved
only by exploiting the specific structure of the Macaulay matrices in an essen-
tial way, or by finding an altogether different (non Macaulay-based) approach to
this problem. As pointed out in Section 2, in characteristic zero a different ap-
proach is indeed possible for testing whether the resultant vanishes (rather than
for computing it). This problem is wide open in positive characteristic.

Finally, an interesting open question is whether the randomized reduction
mentioned in Section 3 that we give in [16] can be derandomized.
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Abstract. For a finite set Γ of Boolean relations, Max Ones SAT(Γ )
and Exact Ones SAT(Γ ) are generalized satisfiability problems where
every constraint relation is from Γ , and the task is to find a satisfying
assignment with at least/exactly k variables set to 1, respectively. We
study the parameterized complexity of these problems, including the
question whether they admit polynomial kernels. For Max Ones SAT(Γ ),
we give a classification into 5 different complexity levels: polynomial-time
solvable, admits a polynomial kernel, fixed-parameter tractable, solvable
in polynomial time for fixed k, and NP-hard already for k = 1. For Exact
Ones SAT(Γ ), we refine the classification obtained earlier by having a
closer look at the fixed-parameter tractable cases and classifying the sets
Γ for which Exact Ones SAT(Γ ) admits a polynomial kernel.

1 Introduction

The constraint satisfaction problem (CSP) provides a framework in which it is
possible to express, in a natural way, many combinatorial problems encountered
in artificial intelligence and computer science. A CSP instance is represented by
a set of variables, a domain of values for each variable, and a set of constraints
on the values that certain collections of variables can simultaneously take. The
basic aim is then to find an assignment of values to the variables that satisfies
the constraints. Boolean CSP (when all variables have domain {0, 1}) generalizes
satisfiability problems such as 2SAT and 3SAT by allowing that constraints are
given by arbitrary relations, not necessarily by clauses.

As Boolean CSP problems are NP-hard in general, there have been intensive
efforts at finding efficiently solvable special cases of the general problem. One
well-studied type of special cases is obtained by restricting the allowed constraint
relations to a fixed set Γ ; we denote by SAT(Γ ) the resulting problem. We expect
that if the relations in Γ are simple, then SAT(Γ ) is easy to solve. For example,
if Γ contains only binary relations, then SAT(Γ ) is polynomial-time solvable, as
it can be expressed by 2SAT. On the other hand, if Γ contains all the ternary
relations, then SAT(Γ ) is more general than 3SAT, and hence it is NP-hard.
� The second author is supported by ERC Advanced Grant DMMCA and the Hun-
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A celebrated classical result of T.J. Schaefer [18] from 1978 characterizes the
complexity of SAT(Γ ) for every finite set Γ : it shows that if Γ has certain simple
combinatorial properties, then SAT(Γ ) is polynomial-time solvable, and if Γ does
not have these properties, then SAT(Γ ) is NP-hard. This result is surprising for
two reasons. First, Ladner’s Theorem [14] states that if P �= NP, then there are
problems in NP that are neither in P nor NP-complete. Therefore, it is surprising
that every SAT(Γ ) problem is either in P or NP-complete, and no intermediate
complexity appears for this family of problems. Second, it is surprising that the
borderline between the P and NP-complete cases of SAT(Γ ) can be conveniently
characterized by simple combinatorial properties.

Schaefer’s result has been generalized in various directions. Bulatov [3] general-
ized it from Boolean CSP to CSP over a 3-element domain and it is a major open
question if it can be generalized to arbitrary finite domains (see [4,10]). Creignou
et al. [6] classified the polynomial-time solvable cases of the problem Exact Ones
SAT(Γ ), where the task is to find a satisfying assignment such that exactly k vari-
ables have value 1, for some integer k given in the input. Natural optimization
variants of SAT(Γ ) were considered in [5,7,12] with the goal of classifying the ap-
proximability of the different problems. In Max SAT(Γ ) we have to find an assign-
ment maximizing the number of satisfied constraints, while in Min UnSAT(Γ ) we
have to find an assignment minimizing the number of unsatified constraints. Min
Ones SAT(Γ ) and Max Ones SAT(Γ ) ask for a satisfying assignment minimizing
and maximizing, respectively, the number of variables having value 1.

Parameterized complexity. Recently, there have been investigations of the
hardness of CSP from the viewpoint of parameterized complexity [15,13]. This
paradigm investigates hardness in finer detail than classical complexity, which
focuses mostly on polynomial-time algorithms. A parameterization of a problem
is assigning an integer k to each input instance. Consider, for example, two stan-
dard NP-complete problems Vertex Cover and Clique. Both have the natural
parameter k: the size of the required vertex cover/clique. Both problems can
be solved in time nO(k) on n-vertex graphs by complete enumeration. Notice
that the degree of the polynomial grows with k, so the algorithm becomes use-
less for large graphs, even if k is as small as 10. However, Vertex Cover can be
solved in time O(2k · n2) [11,9]. In other words, for every fixed cover size there
is a polynomial-time (in this case, quadratic in the number of vertices) algo-
rithm solving the problem where the degree of the polynomial is independent of
the parameter. Problems with this property are called fixed-parameter tractable.
The notion of W[1]-hardness in parameterized complexity is analogous to NP-
completeness in classical complexity. Problems that are shown to be W[1]-hard,
such as Clique [11,9], are very unlikely to be fixed-parameter tractable.

Kernelization. One of the most basic techniques for showing that a problem
is fixed-parameter tractable is to show that the computationally hard “core”
of the problem can be extracted in polynomial time. Formally, kernelization
is a polynomial-time transformation that, given an instance I of problem P
with parameter k, creates an equivalent instance I ′ of problem P with param-
eter k′ ≤ f(k) such that the size of I ′ is at most g(k) for some functions f , g
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(usually, k′ ≤ k is achievable). For example, a classical result of Nemhauser and
Trotter [16] shows that every instance I of Vertex Cover with parameter k can
be transformed into an instance I ′ with parameter k′ ≤ k such that I ′ has at
most g(k) = 2k vertices. Observe that the existence of a kernelization algorithm
for P immediately implies that P is FPT, assuming that P is decidable: per-
forming the kernelization and then doing a brute force solution on I ′ clearly
takes only nO(1) + f(k) time for some function f . From the practical point of
view, polynomial kernels, i.e., kernelization algorithms where g(k) is a polyno-
mial, are of particular interest. If a problem has this property, then this means
that there is an efficient preprocessing algorithm for the problem with a prov-
able bound on the way it shrinks the instance. Such a preprocessing can be an
invaluable opening step in any practical solution for the problem. Very recently,
however, it has been shown that under standard complexity assumptions, not
every FPT problem has a polynomial kernel: e.g., the k-Path problem can be
solved in (randomized) time 2k · nO(1) [19], but has no polynomial kernel unless
NP ⊆ co-NP/poly [1]. The negative toolkit developed in [1] has been successfully
applied to a number of other problems [2,8].

Results. The parameterized complexity of Exact Ones SAT(Γ ) was studied
in [15], where it was shown that a property called weak separability characterizes
the complexity of the problem: Exact Ones SAT(Γ ) is FPT if Γ is weakly sepa-
rable, and W[1]-complete otherwise. The problem Min Ones SAT(Γ ) is FPT for
every Γ by a simple branching algorithm, but it is not obvious to see for which Γ
there is a polynomial kernel. This question has been resolved in [13] by showing
that (unless NP ⊆ co-NP/poly) Min Ones SAT(Γ ) has a polynomial kernel if
and only if Min Ones SAT(Γ ) is in P or Γ has a property called mergebility.

We continue this line of research by considering the so far unexplored problem
Max Ones SAT(Γ ) and revisit Exact Ones SAT(Γ ). We will characterize (under

Table 1. Examples of sets of relations Γ and the properties for Min Ones SAT(Γ ),
Exact Ones SAT(Γ ), and Max Ones SAT(Γ ). Problems marked PK have polynomial
kernels; problems marked FPT are FPT but admit no polynomial kernelization unless
NP ⊆ co-NP/poly.

Γ Min Ones Exact Ones Max Ones

width-2 affine P P P
{ODD3} PK PK P
{EVEN3} P FPT PK

{EVEN3, (x)} FPT FPT PK
{ODD4}, general affine FPT FPT PK

{(x ∨ y), (x 
= y)} PK PK PK
{((x → y) ∧ (y 
= z))} PK FPT FPT

{(x ∨ y), (x 
= y), (x → y)} PK W[1]-complete FPT
bijunctive PK W[1]-complete W[1]-hard, XP

{R1-in-3} PK PK not in XP
{∑i xi = p (mod q)} FPT FPT not in XP

general FPT W[1] not in XP
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standard complexity assumptions) parameterized Max Ones SAT(Γ ) problems
for finite constraint languages Γ as the following 5 types: solvable in polynomial
time; NP-hard, but having polynomial kernelization; being FPT but admitting
no polynomial kernelization; being W[1]-hard and in XP; and not being in XP.
The characterization uses results of Nordh and Zanuttini [17] on frozen co-clones.
For Exact Ones SAT(Γ ), we refine the classification of [15] by precisely charac-
terizing those weakly separable sets Γ for which Exact Ones SAT(Γ ) is not only
FPT, but admits a polynomial kernel. Table 1 shows some examples.

The kernelization lower bounds for both problems use reductions from a maxi-
mization problem Multiple Compatible Patterns, which is FPT but admits
no polynomial kernelization unless NP ⊆ co-NP/poly. This problem may be use-
ful for other hardness reductions as well.

2 Preliminaries and Notation

Boolean CSP. A formula φ is a pair (V,C) consisting of a set V of variables
and a set C of constraints. Each constraint ci ∈ C is a pair 〈si, Ri〉, where
si = (xi,1, . . . , xi,ri) is an ri-tuple of variables (the constraint scope) and Ri ⊆
{0, 1}ri is an ri-ary Boolean relation (the constraint relation). A function f : V →
{0, 1} is a satisfying assignment of φ if (f(xi,1), . . . , f(xi,ri)) is in Ri for every
ci ∈ C. Let Γ be a set of Boolean relations. A formula is a Γ -formula if every
constraint relation Ri is in Γ . In this paper, Γ is always a finite set containing
only non-empty relations. For a fixed finite Γ , every Γ -formula φ = (V,C) can be
represented with length polynomial in |V | and |C|: each constraint relation can
be represented by constant number of bits (depending only on Γ ). The weight
w(f) of an assignment f is the number of variables x with f(x) = 1.

We also use some definitions from [17]. Let φ = (V,C) be a formula and x ∈ V
a variable. Then x is said to be frozen in φ if x takes the same value in every
satisfying assignment of φ. Further, let Γ be a set of relations, and R an n-ary
relation. Then Γ freezingly implements R if there is a formula φ over Γ∪{=} such
that R(x1, . . . , xn) ≡ ∃Xφ, where φ uses variables X ∪ {x1, . . . , xn} only, and
all variables in X are frozen in φ. If only relations of Γ are used, then we have
a frozen implementation without equality. This will be our standard notion of
implementation in the paper, and as such is shortened to simply “implements”.

We recall some standard definitions concerning Boolean constraints (cf. [5]):

– R is 0-valid if (0, . . . , 0) ∈ R.
– R is 1-valid if (1, . . . , 1) ∈ R.
– R is Horn or weakly negative if it can be expressed as a conjunction of

clauses such that each clause contains at most one positive literal. It is
known that R is Horn if and only if it is AND-closed: if (a1, . . . , ar) ∈ R and
(b1, . . . , br) ∈ R, then ((a1 ∧ b1), . . . , (ar ∧ br)) ∈ R.

– R is anti-Horn or weakly positive if it can be expressed as the conjunction
of clauses such that each clause contains at most one negated literal. It is
known that R is anti-Horn if and only if it is OR-closed: if (a1, . . . , ar) ∈ R
and (b1, . . . , br) ∈ R, then ((a1 ∨ b1), . . . , (ar ∨ br)) ∈ R.
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– R is bijunctive if it can be expressed as the conjunction of constraint such
that each constraint is the disjunction of two literals.

– R is affine if it can be expressed as a conjunction of constraints of the form
x1+x2+ · · ·+xt = b, where b ∈ {0, 1} and addition is modulo 2. The number
of tuples in an affine relation is always an integer power of 2. We denote by
EVENr the r-ary relation x1 + x2 + · · · + xr = 0 and by ODDr the r-ary
relation x1 + x2 + · · ·+ xr = 1.

– R is width-2 affine if it can be expressed as a conjunction of constraints of
the form x = y, x �= y, (x), and (¬x).

– R is monotone if a ∈ R and b ≥ a implies b ∈ R, where ≥ is applied
component-wise. Such a relation is implementable by positive clauses, by
adding a clause over the false positions of every maximal false tuple.

– The relation Rp-in-q (for 1 ≤ p ≤ q) has arity q and Rp-in-q(x1, . . . , xq) is true
if and only if exactly p of the variables x1, . . . , xq have value 1.

The above is extended to properties of sets of relations, by saying that a set of
relations Γ is 0-valid (1-valid, Horn, . . . ) if this holds for every R ∈ Γ .

Theorem 1 (Schaefer [18]). Let Γ be a set of Boolean relations. Then SAT(Γ )
is in P if Γ has one of the following properties: 0-valid, 1-valid, Horn, anti-Horn,
bijunctive, or affine. Otherwise, SAT(Γ ) is NP-complete.

Max Ones SAT(Γ ) and Exact Ones SAT(Γ ). For a fixed set of relations Γ ,
Max Ones SAT(Γ ) is the following problem:

Input: A formula φ over Γ ; an integer k.
Parameter: k.
Task: Decide whether there is a satisfying assignment for φ of weight at
least k.

For example, Max Ones SAT(¬x ∨ ¬y) is equivalent to Independent Set, and is
thus W[1]-complete. Further examples can be found in Table 1. Similarly, Exact
Ones SAT(Γ ), for a fixed set of relations Γ , is the following problem.

Input: A formula φ over Γ ; an integer k.
Parameter: k.
Task: Decide whether there is a satisfying assignment for φ of weight
exactly k.

Parameterized complexity and kernelization. A parameterized problem Q
is a subset of Σ∗ × N; the second component is called the parameter. The
problem Q is fixed-parameter tractable (FPT) if there is an algorithm that de-
cides (I, k) ∈ Q in time f(k) · nO(1), where f is some computable function. A
kernelization is a polynomial-time mapping K : (I, k) �→ (I ′, k′) such that (I, k)
and (I ′, k′) are equivalent, k′ ≤ f(k), and |I ′| ≤ g(k), for some functions f and g.
Usually, f can be taken as the identity function, i.e., k′ ≤ k; this will be the
case throughout this paper. If |I ′| is bounded by a polynomial in k, then K is
a polynomial kernelization. It is well-known that every decidable parameterized
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problem is fixed-parameter tractable if and only if it has a (not necessarily poly-
nomial) kernelization [11]. A polynomial time and parameter reduction from Q
to Q′ is a polynomial-time mapping Φ : (I, k) �→ (I ′, k′) such that (I, k) ∈ Q if
and only if (I ′, k′) ∈ Q and such that k′ is polynomially bounded in k; we denote
the existence of such a reduction by Q ≤Ptp Q′. These reductions were intro-
duced by Bodlaender et al. [2], who also showed that they preserve polynomial
kernelizability.
The MCP problem. Our kernelization lower bounds will use the problem
Multiple Compatible Patterns (MCP), defined as follows:

Input: A set of patterns from {0, 1,�}r, where � (the wildcard char-
acter) matches 0 or 1; an integer k.
Parameter: r + k.
Task: Decide whether there is a string in {0, 1}r that matches at least k
patterns.

A kernelization lower bound for MCP follows from the methods of [1]. Briefly,
we get NP-completeness by a reduction from Clique, and compositionality by
adding log t bits to compose t instances.

Lemma 2. Multiple Compatible Patterns (MCP) is FPT, NP-complete,
and admits no polynomial kernelization unless NP ⊆ co-NP/poly.

3 Max Ones Characterization

This section contains the our characterization of the parameterized complexity
properties of Max Ones SAT(Γ ) problems.

As a very first distinction, observe that if SAT(Γ ) is NP-complete, then Max
Ones SAT(Γ ) is NP-complete even for a parameter k = 0. Thus, we know by
Schaefer (Theorem 1) that Γ has to fall in one of the classes 0-valid, 1-valid,
affine, Horn, anti-Horn, or bijunctive for the problem to be in XP. Of these, the
classes of 1-valid relations and anti-Horn relations are polynomial-time solvable,
leaving four classes to examine. The cases of affine, Horn, and 0-valid relations
can be characterized without too much difficulty, and will be treated summarily,
as we will focus on the more interesting cases that occur when Γ is bijunctive.

We begin with the polynomial cases, as proven by Khanna et al. [12].

Theorem 3 ([12]). Max Ones SAT(Γ ) is in P if Γ is 1-valid, weakly positive
(i.e. anti-Horn), or width-2 affine, and APX-hard in all other cases.

The following lemma covers the properties of every set of relations Γ except the
bijunctive cases; full proofs will be found in the full version.

Lemma 4. Let Γ be a set of relations; the following hold.

1. If Γ is affine, then Max Ones SAT(Γ ) has a kernel with O(k) variables.
2. If Γ is Horn, but not anti-Horn and not 1-valid, then Max Ones SAT(Γ ) is

W[1]-hard.
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3. If Γ is 0-valid, but neither anti-Horn, 1-valid, affine, nor Horn, then Max
Ones SAT(Γ ) is NP-hard for k = 1.

Proof (sketches). 1. We can check in polynomial time which variables have to be
set to false in every solution, and remove these. For the rest, we can by a greedy
procedure find a solution which sets at least half the remaining variables to be
true. Thus, we either find a solution with weight at least k, or leave a kernel
with at most 2k variables.

2. If Γ is Horn, and the listed cases do not apply, then Γ admits a reduction
from Independent Set by implementing (¬x ∨ ¬y); either directly, or, e.g., via
relations (x ∧ y → z) and (¬z).

3. Let Γ be 0-valid such that no listed case applies. It can be shown that Γ
implements R(x, y, z) = {(0, 0, 0), (1, 1, 0), (1, 0, 1)}; we will show that Max Ones
SAT(R) is NP-hard for k = 1. By a trick of splitting variables, we can adjust
a given formula to add a universal variable z1 such that z1 = 1 in any solution
where at least one variable is true. Relations R(z1, x, y) then become (x �= y)
in any such solution, effectively constructing a reduction from SAT(R, (x �= y)).
By Theorem 1, this problem is NP-complete, and the claim follows. 


3.1 Bijunctive Cases

In this subsection we treat the cases of Max Ones SAT(Γ ) where Γ is bijunctive
but not Horn, anti-Horn, or width-2 affine (or 0-valid, or 1-valid, but this follows
implicitly). This corresponds to the sets Γ which, using existentially quantified
variables, can implement all 2SAT clauses; see [17]. See also Table 1 for a sum-
mary of the maximal cases.

For the result, we will need the results of Nordh and Zanuttini [17]. Recall the
definition of a frozen implementation (with equality). The frozen partial co-clone
〈Γ 〉fr generated by Γ is the set of all relations that can be freezingly implemented
by Γ . We will use the characterization of [17] of the frozen partial co-clones that
our Γ can generate. The free use of equality constraints is somewhat more general
than what we wish to allow, but we will find that it causes no problems.

We need the following special cases.

1. Γ p
=
2 = {(x ∨ y), (x �= y)}

2. Rn
3 = (¬x ∨ ¬y) ∧ (x �= z); Γn

3 = {Rn
3}

3. Γ p
=i
2 = {(x ∨ y), (x �= y), (x→ y)}

Finally, we need a technical lemma to show that we can assume that we have
access to the constants. We refer to the full version for a proof.

Lemma 5. If Γ is neither 0-valid, 1-valid, nor affine, but SAT(Γ ) is not NP-
hard, then the constants can be implemented.

Let us now proceed with settling the remaining cases of Max Ones SAT(Γ ).

Lemma 6. Assume that Γ is bijunctive but not Horn or anti-Horn. Then the
following hold.
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1. If Γ ⊆ 〈Γ p
=
2 〉fr, where Γ p
=

2 = {(x ∨ y), (x �= y)}, then Max Ones SAT(Γ )
has a polynomial kernel (of O(k2) variables). Otherwise, Max Ones SAT(Γ )
admits no polynomial kernelization, unless NP ⊆ co-NP/poly.

2. If Γ ⊆ 〈Γ p
=i
2 〉fr, where Γ p
=i

2 = {(x ∨ y), (x �= y), (x → y)}, then Max Ones
SAT(Γ ) is FPT (with running time O∗(2k)). Otherwise, Max Ones SAT(Γ )
is W[1]-hard.

Proof. Let (φ, k) be a Max Ones SAT(Γ ) instance. Assume throughout that the
instance is feasible (as otherwise, the problem is trivial). We split the proof into
proofs of feasibility (1a, 2a), and lower bound proofs (1b, 2b).

1a. By [17], every relation in Γ , and thus all of φ, has a frozen implementation
over Γ p
=

2 ∪ {=}. We will refer to this implementation when inferring a kernel,
but the kernelization will apply for the original Γ as well. Let a set of at least
two variables which are connected by disequality or equality, with at least one
disequality, be referred to as a class of variables. If there are at least k variable
classes, then any solution will contain at least k true variables, and can be found
in polynomial time. If any class contains at least 2k variables, then either the
variables of this class have fixed values, in which case we make the corresponding
assignments, or we can find a solution with at least k true variables. Finally, if
any variable does not occur in a variable class, it can safely be set to 1. These
observations leave a kernel with O(k) variable classes and O(k2) variables in
total. Finally, as the only changes we made to the formula were assignments, we
can apply the kernelization using only relations in Γ by replacing all assigned
variables by the constant variables z1 or z0.

1b. By [17], there is an implementation of Rn
3 over Γ ∪ {=}. As the equal-

ity constraint will not be useful in such an implementation, there is also an
implementation directly over Γ , showing Max Ones SAT(Γn

3 ) ≤Ptp Max Ones
SAT(Γ ); we will in turn show that MCP ≤Ptp Max Ones SAT(Γn

3 ) (the problem
MCP was defined in Section 2).

Observe that, renaming variables, Rn
3 can be written as (x �= y) ∧ (z → x).

Let (I, k) be an instance of MCP, with string length r. Create variables (xi �= yi)
for 1 ≤ i ≤ r, coding the entries of the string; these variables contribute weight
exactly r to any solution. Now for every pattern i, create a variable zi, and for
every position j of pattern i containing 0, add a constraint (xj �= yj)∧(zi → xj).
For positions containing 1, create the same constraint with an implication instead
to yj . Any solution with r + k true variables corresponds one-to-one to a string
in {0, 1}r and k patterns matching it. Thus (by [2]), Max Ones SAT(Γ ) admits
no polynomial kernelization unless NP ⊆ co-NP/poly.

2a. As before, there is an implementation of φ over Γ p
=i
2 ∪{=}. Again consider

the variable classes; if they number at least k, then find a solution in polyno-
mial time. Otherwise, we check all O(2k) assignments to variables of the variable
classes. For each such assignment, propagate assignments to the remaining vari-
ables. Any formula that remains after this is 1-valid.

2b. By [17], there is an implementation of (¬x∨¬y) over Γ ∪ {=}, and again
the equality constraint would not be useful. Thus there is an FPT reduction
from Independent Set to Max Ones SAT(Γ ).
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Our results for Max Ones SAT(Γ ) summarize into the following picture.

Theorem 7. Let Γ be a finite set of Boolean relations. Then Max Ones SAT(Γ )
falls into one of the following cases.

1. If Γ is 1-valid, anti-Horn, or width-2 affine, then Max Ones SAT(Γ ) is in P;
in the remaining cases, it is NP-complete.

2. If Γ is affine, or if Γ ⊆ 〈(x ∨ y), (x �= y)〉fr, then Max Ones SAT(Γ ) has a
polynomial kernel.

3. If Γ ⊆ 〈(x ∨ y), (x �= y), (x → y)〉fr, then Max Ones SAT(Γ ) is in FPT,
with a running time of O∗(2k), but if the previous case does not apply, then
there is no polynomial kernelization unless NP ⊆ co-NP/poly.

4. If none of these cases applies, then Max Ones SAT(Γ ) is W[1]-hard; if Γ is
Horn or bijunctive, then Max Ones SAT(Γ ) is in XP.

5. Otherwise Max Ones SAT(Γ ) is NP-complete for k = 1.

4 Exact Ones CSP

In this section we classify Exact Ones SAT(Γ ) into admitting or not admit-
ting a polynomial kernelization depending on the set of allowed relations Γ . We
start from the characterization of its fixed-parameter tractability [15] as well
as the characterization of when Min Ones SAT(Γ ) admits a polynomial ker-
nelization [13]. To this end we recall the invariants called weak separability and
mergeability used for the respective characterization. We also introduce a joined,
stronger version of the two partial polymorphisms defining weak separability; this
will be used to characterize kernelizability of Exact Ones SAT(Γ ).

Definition 8. A t-ary partial polymorphism is a partially defined function f :
{0, 1}t → {0, 1}. For an r-ary relation R, we say that R is invariant under f
if for any t tuples α1, . . . , αt ∈ R, such that f(α1(i), . . . , αt(i)) is defined for
every i ∈ [r], we have (f(α1(1), . . . , αt(1)), . . . , f(α1(r), . . . , αt(r))) ∈ R.

We present partial polymorphisms in a matrix form, where the columns represent
the tuples for which f is defined, and the value below the horizontal line is the
corresponding value of f .

Definition 9 ([15,13]). Let FPT(1), FPT(2), and FPT(1 +- 2) denote the
following partial polymorphisms:

FPT(1)
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1

FPT(2)
0 1 0 1
0 1 1 1
0 0 0 1
0 0 1 1

FPT(1 +- 2)
0 1 0 0 1
0 1 0 1 1
0 0 1 0 1
0 0 1 1 1

A boolean relation R is weakly separable if it is invariant under FPT(1) and
FPT(2). It is semi-separable if it is invariant under FPT(1 +- 2). Finally, a
relation is mergeable if it is invariant under the following partial polymorphism:
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Mergeable
0 1 0 1 1 0 1
0 1 0 0 0 0 1
0 0 1 1 0 1 1
0 0 1 0 0 0 1
0 1 0 1 0 0 1

Theorem 10 ([15]). Exact Ones SAT(Γ ) is fixed-parameter tractable if every
relation R ∈ Γ is weakly separable. In the remaining cases it is W[1]-complete.

Since any kernelization for a problem also implies fixed-parameter tractability,
we will only need to further classify the fixed-parameter tractable cases.

By a simple observation, Min Ones SAT(Γ ) reduces to Exact Ones SAT(Γ )
by a polynomial time and parameter reduction. This allows us to transfer lower
bounds from the min ones to the exact ones setting.

Lemma 11. Min Ones SAT(Γ ) reduces to Exact Ones SAT(Γ ) by a polynomial
time and parameter reduction.

Thus, using the kernelization dichotomy for Min Ones SAT(Γ ) [13], we may
exclude further cases.

Theorem 12 ([13]). Unless NP ⊆ co-NP/poly, Min Ones SAT(Γ ) admits a
polynomial kernel if and only if every relation in Γ is mergeable or Min Ones
SAT(Γ ) is in P.

Corollary 13. If Γ is not mergeable and Min Ones SAT(Γ ) is NP-hard then
Exact Ones SAT(Γ ) does not admit a polynomial kernel unless the polynomial
hierarchy collapses.

According to Khanna et al. [12] Min Ones SAT(Γ ) is in P when Γ is 0-valid,
weakly negative, or width-2 affine; in all other cases it is NP-hard (APX-hard).

Theorem 14. Let Γ be a finite set of weakly separable relations.

1. If Γ is width-2 affine then Exact Ones SAT(Γ ) is in P; this includes the cases
where Γ is Horn, or both 0-valid and mergeable. In the remaining cases, the
problem is NP-complete.

2. If Γ is anti-Horn, or both mergeable and semi-separable, then Exact Ones
SAT(Γ ) admits a polynomial kernelization.

3. In all other cases Exact Ones SAT(Γ ) does not admit a polynomial kernel-
ization unless NP ⊆ co-NP/poly.

We only give an outline of the proof; the full proof will be given in the full
version.

Proof (outline). We first consider the cases when Min Ones SAT(Γ ) is in P,
i.e., when Γ is zero-valid, Horn, or width-2 affine [12]. In all other cases, due to
Corollary 13, we may then use that Γ is mergeable (since otherwise Exact Ones
SAT(Γ ) does not admit a polynomial kernel).
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If Γ is width-2 affine, then by Creignou et al. [6], Exact Ones SAT(Γ ) is in P;
otherwise it is NP-complete. If Γ is Horn we show that it can be implemented
by {=, (x), (¬x)} and Exact Ones SAT(Γ ) is in P. The same is true if Γ is
zero-valid and mergeable.

If Γ is zero-valid but not mergeable then (unless Γ is Horn) we are able to
reduce Exact Ones SAT(Γ ′) to Exact Ones SAT(Γ ) where Γ ′ = Γ ∪ {(x), (¬x)}
by a polynomial time and parameter reduction. Since Γ ′ is neither zero-valid,
Horn, nor width-2 affine we conclude that Min Ones SAT(Γ ′) is NP-hard. This
implies that Exact Ones SAT(Γ ′) does not admit a polynomial kernelization by
Corollary 13, which extends also to Exact Ones SAT(Γ ) through our reduction.

For all further choices of Γ (i.e., neither zero-valid, Horn, nor width-2 affine)
we have that Min Ones SAT(Γ ) and Exact Ones SAT(Γ ) are NP-hard. Therefore,
by Corollary 13, we assume that Γ is mergeable.

If Γ is anti-Horn (and weakly separable) we show that it can be implemented
by equality, negative assignments, and positive clauses. This also means that Γ
is semi-separable and mergeable. Now one of two cases applies. If Γ is monotone,
then Exact Ones SAT(Γ ) reduces to d-Hitting Set and we are done. Otherwise,
Exact Ones SAT(Γ ∪{(x), (¬x)}) reduces to Exact Ones SAT(Γ ), implying that
we have constants available. We will later show that for any semi-separable and
mergeable Γ that contains (x) and (¬x) Exact Ones SAT(Γ ) admits a polynomial
kernel.

Otherwise, in particular, if Γ is not Horn or anti-Horn, we show that Exact
Ones SAT(Γ ∪ {�=, (x), (¬x)}) reduces to Exact Ones SAT(Γ ) by a polynomial
time and parameter reduction; i.e., as above we may assume to have disequality
and constants available in Γ . Then if Γ is not semi-separable, we show that Exact
Ones SAT(Γ ) does not admit a polynomial kernel by a polynomial time and
parameter reduction from the MCP problem: The central fact is that we must
have a witness against semi-separability (i.e., invariant under FPT(1 +- 2)), but
all relations in Γ are weakly separable (i.e., invariant under FPT(1) and FPT(2)).
Using disequality this witness permits us to implement (x → y) ∧ (y �= z); we
then use the reduction from MCP as in Lemma 6.

To conclude our proof it now suffices to give a polynomial kernelization for
the case that Γ is mergeable, semi-separable, and contains positive and nega-
tive assignments. To this end we use a sunflower lemma for tuples to repeatedly
find and simplify sunflowers while there are too many non-zero-valid constraints.
The crucial part is that semi-separability allows us to essentially split constraints
that form a sunflower into a core constraint and independent petal constraints:
The core assignment and the petal assignment are independent for all feasible as-
signments to the core variables. Mergeability of Γ restricts zero-valid constraints
to be implementable by equality and assignments, which can be handled in a
straightforward way. 


Corollary 15. Let Γ be a finite set of relations. Then Exact Ones SAT(Γ ) is
FPT if and only if Γ is weakly separable, unless FPT = W[1]; and admits a
polynomial kernel if and only if Γ is semi-separable and mergeable, unless NP
⊆ co-NP/poly.
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Abstract. This paper discusses cake-cutting protocols when the cake
is a heterogeneous good that is represented by an interval in the real
line. We propose a new desirable property, the meta-envy-freeness of
cake-cutting, which has not been formally considered before. Though
envy-freeness was considered to be one of the most important desirable
properties, envy-freeness does not prevent envy about role assignment
in the protocols. We define meta-envy-freeness that formalizes this kind
of envy. We show that current envy-free cake-cutting protocols do not
satisfy meta-envy-freeness. Formerly proposed properties such as strong
envy-free, exact, and equitable do not directly consider this type of envy
and these properties are very difficult to realize. This paper then shows
meta-envy-free cake-cutting protocols for two and three party cases.

1 Introduction

Cake-cutting is an old problem in game theory. It can be employed for such
purposes as dividing territory on a conquered island or assigning jobs to members
of a group. This paper discusses the cake-cutting problem when the cake is a
heterogeneous good that is represented by an interval [0, 1] in the real line. The
most famous cake-cutting protocol is ‘divide-and-choose’ for two players. Player
1 (Divider) cuts the cake into two equal size pieces. Player 2 (Chooser) takes the
piece that she prefers. Divider takes the remaining piece. This protocol is proved
to be envy-free. Envy-freeness is defined as: after the assignment is finished, no
player wants to exchange his/her part for that of the other player. Divider must
cut the cake into two equal size pieces (using Divider’s utility function), otherwise
Chooser might take the larger piece and Divider will obtain less than half. Since
Divider cuts the cake into equal size pieces, she never envies Chooser whichever
piece Chooser selects. Chooser never envies Divider because she chooses first.

Although it appears that the ‘divide-and-choose’ protocol is perfect, actually
it is not, because it is not a complete protocol. When Alice and Bob execute this
protocol, they must first decide who will be Divider and Chooser. Chooser is the
better choice as mentioned in several papers [3][9]. If the utility functions of Alice
and Bob are the same, Divider and Chooser obtain exactly half of the cake by
using their utility function. Next we consider a case where the utility functions of

P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 501–512, 2010.
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Alice and Bob differ. Let us assume that Bob is Divider. Let us also assume that by
using Bob’s utility function, [0, 1/4] and [1/4, 1] is an exact division, because the
cake is chocolate coated near 0 and Bob likes chocolate. Alice does not have such
a preference, thus by choosing [1/4, 1], Alice’s utility is 3/4. If Alice is Divider,
she cuts to [0, 1/2] and [1/2, 1]. Then Bob chooses [0, 1/2] and obtains more than
half by his utility. Therefore, Chooser is never worse than Divider, and Chooser
is properly better than Divider if their utility functions differ. If both Alice and
Bob know this fact, they both want to be Chooser. Therefore, they must employ
a method such as coin-flipping to decide who will be Divider. If Alice is assigned
the role of Divider, she definitely envies Bob who is Chooser.

Some readers might think that coin-flipping will result in a fair decision be-
tween Alice and Bob, and so it is not a problem. If this supposition is accepted,
the following protocol must also be accepted: ‘Flip a coin and the winner takes
the whole cake and the loser gets nothing.’ This is an unfair (envy) assignment
using fair coin-flipping. Game-theory researchers have discussed cake-cutting
protocols where the unfairness (envy) is minimized. If there is the possibility of
unfair assignment, we need to consider a better way that eliminates it. Now that
we know ‘divide-and-choose’ is unfair, we must consider eliminating this kind
of envy. Although this type of envy is known, it has not been formally defined.
This paper defines this type of envy for the first time as meta-envy and proposes
new protocols that eliminate it for two-party case and three-party case.

Previous studies defined stronger properties for the obtained portion such as
strong envy-free, super envy-free, exact, and equitable [6][13]. These properties
are hard to realize and do not directly consider this type of envy. We can ob-
tain a three-party meta-envy-free protocol by modifying a three player envy-free
protocol.

Note that we do not eliminate every coin-flip. For the above example of ‘divide-
and-choose’, if Alice and Bob’s utility functions are exactly the same, their cut-
ting points are the same. Thus, both Alice and Bob think that the values of the
two pieces are the same. To complete the protocol, we must assign each party
either piece. Coin-flipping is necessary for such a case, but can only be allowed
if its result causes no envy.

2 Preliminaries

Throughout this paper, the cake is a heterogeneous good that is represented by
an interval [0, 1] in the real line. Each party Pi has a utility function μi that has
the following three properties. (1) For any non-empty X ⊆ [0, 1], μi(X) > 0.
(2) For any X1 and X2 such that X1 ∩ X2 = ∅, μi(X1 ∪ X2) = μi(X1) +
μi(X2). (3) μi([0, 1]) = 1. The tuple of Pi(i = 1, . . . , n)’s utility function is
denoted by (μ1, . . . , μn). Utility functions might differ among parties. No party
has knowledge of the other parties’ utility functions.

In this paper, ‘party’ indicates a person such as Alice, Bob, etc. and is denoted
by P . ‘Player’ is a role in a protocol and is denoted by p. We sometimes state
that ‘party X is assigned to player y’ if a person X executes the role of player
y in the protocol.
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An n-player cake-cutting protocol f assigns several portions of [0, 1] to the
players such that every portion of [0, 1] is assigned to one player. We denote
fi(μ1, . . . , μn) as the set of portions assigned to player pi by f , when party
Pi(i = 1, . . . , n) is assigned to player pi(i = 1, . . . , n) in f . When f is a random-
ized algorithm, let us denote fi(μ1, . . . , μn; r) as the assignment to pi when the
sequence of random values used in f is r.

All parties are risk averse, namely they avoid gambling. They try to maximize
the worst case utility they can obtain.

A desirable property for cake-cutting protocols is strategy-proofness [6]. A
protocol is strategy-proof if there is no incentive for any player to lie about his
utility function. A protocol defines what to do for each player pi according to
its utility function μi. Since μi is unknown to any other player, pi can execute
some action that differs from the protocol’s definition (by pretending that pi’s
utility function is μ′i(�= μi)). If pi obtains more utility by lying about his utility
function, the protocol is not strategy-proof. If a protocol is not strategy-proof,
each player has to consider what to do and the result might differ from the
intended result. If a protocol is strategy-proof, the best policy for each player
is simply observing the rule of the protocol. Thus strategy-proofness is very
important. As for ‘divide-and-choose’, the protocol requires Divider to cut the
cake in half by using Divider’s true utility function. Divider can cut the cake
other than in half. However, if Divider does so, Chooser might take the larger
portion and Divider might obtain less than half. Thus a risk averse party honestly
executes the protocol, and ‘divide-and-choose’ is strategy-proof.

3 Meta-Envy-Freeness

This section provides the definition of meta-envy-freeness. We offer two defini-
tions and show that they are equivalent.

Definition 1. A cake-cutting protocol f is meta-envy-free if for any (μ1, . . . , μn),
i, j, and r,

μi(fi(μ1, . . . , μi, . . . , μj , . . . , μn; r)) ≥ μi(fj(μ1, . . . , μj , . . . , μi, . . . , μn; r)) (1)

This definition considers the following two executions of f . (1) party Pi (whose
utility function is μi) plays the role of player pi and party Pj (whose utility
function is μj) plays the role of player pj in f . (2) party Pi plays the role of player
pj and party Pj plays the role of player pi in f , that is, Pi and Pj swap role
assignments. If the swap does not increase the utility of the obtained portions,
Pi will not want to swap the role assignment, thus the protocol is envy-free as
regards the role assignment.

Next we show a stronger definition.

Definition 2. A cake-cutting protocol f is meta-envy-free if for any (μ1, . . . , μn),
permutation π : {1, . . . , n}→ {1 . . . , n}, i, and r,

μi(fi(μ1, . . . , μn; r)) = μi(fπ−1(i)(μπ(1), . . . , μπ(n); r)) (2)
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This definition allows any permutation of the role assignment, which includes
the case where Pi’s role is unchanged. In addition, the utility must be unchanged
for any permutation.

Theorem 1. Definition 1 and Definition 2 are equivalent.

Proof. If the condition of Definition 2 is satisfied, the condition of Definition 1
is obviously satisfied. Thus we prove the opposite direction.

Suppose that f satisfies the condition of Definition 1 and for some
(μ1, . . . , μi, . . . , μj , . . . , μn), i, j, and r,

μi(fi(μ1, . . . , μi, . . . , μj , . . . , μn; r)) > μi(fj(μ1, . . . , μj , . . . , μi, . . . , μn; r)) (3)

is satisfied.Then consider another executionoffwith (μ1, . . . , μj , . . . , , μi, . . . , μn),
that is, Pi’s utility function is μj and Pj ’s utility function is μi. Since the condition
of Definition 1 is satisfied, swapping the roles of Pi and Pj does not increase Pj ’s
utility, that is,

μi(fj(μ1, . . . , μj , . . . , μi, . . . , μn; r)) ≥ μi(fi(μ1, . . . , μi, . . . , μj , . . . , μn; r)) (4)

This contradicts Eq. (3). Thus, for any (μ1, . . . , μi, . . . , μj , . . . , μn), i, j, and r,

μi(fi(μ1, . . . , μi, . . . , μj , . . . , μn; r)) = μi(fj(μ1, . . . , μj , . . . , μi, . . . , μn; r)) (5)

is satisfied.
Next we consider a general permutation of the role assignment. Any permu-

tation π can be realized by a sequence in which two elements are swapped. As
shown above, Pi’s utility is unchanged when the swap involves Pi, thus we discuss
Pi’s utility when there is a swap between the other parties. Consider two utilities
μi(fi(. . . , μi, . . . , μj , . . . , μk, . . . ; r)) and μi(fi(. . . , μi, . . . , μk, . . . , μj , . . . ; r)).

The roles of Pj and Pk can be swapped by the sequence of (S1) swapping
Pi and Pj , (S2) swapping Pi (current role is pj) and Pk, and (S3) swapping Pi
(current role is pk) and Pj (current role is pi).

For each swap, Eq. (5) must be satisfied. From these equalities, we obtain

μi(fi(. . . , μi, . . . , μj , . . . , μk, . . . ; r)) = μi(fj(. . . , μj , . . . , μi, . . . , μk, . . . ; r))
μi(fj(. . . , μj , . . . , μi, . . . , μk, . . . ; r)) = μi(fk(. . . , μj , . . . , μk, . . . , μi, . . . ; r))
μi(fk(. . . , μj , . . . , μk, . . . , μi, . . . ; r)) = μi(fi(. . . , μi, . . . , μk, . . . , μj , . . . ; r)).

From these equalities, we obtain

μi(fi(. . . , μi, . . . , μj , . . . , μk, . . . ; r)) = μi(fi(. . . , μi, . . . , μk, . . . , μj , . . . ; r)).

Since this equality holds for any single swap, the equality holds for any permu-
tation π. 


Several desirable properties have been defined as shown below [6][13], but these
definitions do not take role assignment into consideration.
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Simple fair For any i, μi(fi(μ1, . . . , μn)) ≥ 1/n.
Strong fair For any i, μi(fi(μ1, . . . , μn)) > 1/n.
Envy-free For any i, j(i �= j), μi(fi(μ1, . . . , μn)) ≥ μi(fj(μ1, . . . , μn)).
Strong envy-free For any i, j(i �= j), μi(fi(μ1, . . . , μn)) > μi(fj(μ1, . . . , μn)).
Super envy-free For any i, j(i �= j), μi(fj(μ1, . . . , μn)) < 1/n.
Exact For any i, j, μi(fj(μ1, . . . , μn)) = 1/n.
Equitable For any i, j, μi(fi(μ1, . . . , μn)) = μj(fj(μ1, . . . , μn)).

Simple fair division can be achieved for any number of parties by using the
moving-knife protocol [8]. Strong fair division cannot be achieved if every party
has an identical utility function μ. Woodall [14] proposed an algorithm for achiev-
ing strong fair division provided that there is a portion X ⊂ [0, 1] such that
μ1(X) �= μ2(X), when n = 2. The algorithm for obtaining such a portion X
is an open problem. Envy-free division can be achieved for any number of par-
ties [5], however the protocol is very complicated.

As regards strong envy-free cake-cutting, the lower bound of the number of
cuts is shown [10]. Super envy-free division can be achieved if utility functions
μ1, . . . , μn are linearly independent, however the algorithm for obtaining an ac-
tual assignment is not shown[2]. An exact division algorithm has been reported
for two players using a moving knife method [1]. Though existence of exact di-
vision was proved [11], no algorithm has been shown for n ≥ 3. An equitable
division algorithm between two parties has been described [9]. The case where
n ≥ 3 is an open problem.

As shown above, stronger properties than envy-free such as strong-envy-free,
super-envy-free, exact, and equitable are very hard to realize.

A definition, similar to ours, called ‘anonymous,’ is provided in [12]. A cake-
cutting protocol is anonymous if for any (μ1, . . . , μi, . . . , μj , . . . , μn), i, and j,

fi(μ1, . . . , μi, . . . , μj , . . . , μn) = fj(μ1, . . . , μj , . . . , μi, . . . , μn)

holds. This is a severe definition that requires the assigned portion to be identical
for any role swapping. In meta-envy-freeness the assigned portions need not be
identical but their utilities must be identical for any role swapping. In addition,
randomization is not explicitly considered in the definition of anonymity.

Equitability does not imply meta-envy-freeness. There can be an (artificial)
protocol that is equitable but not meta-envy-free. Party P1’s utility μ1 satisfies
μ1([0, 1/4]) = 0.3, μ1([1/4, 1/2]) = 0.3, μ1([1/2, 3/4]) = 0.2, and μ1([3/4, 1]) =
0.2. Party P2’s utility μ2 satisfies μ2([0, 1/4]) = 0.2, μ2([1/4, 1/2]) = 0.2,
μ2([1/2, 3/4]) = 0.3, and μ2([3/4, 1]) = 0.3. A protocol f initially assigns [0, 1/4]
to the first player and [3/4, 1] to the second player. The result of f(μ1, μ2)
is f1(μ1, μ2) = [0, 1/2] and f2(μ1, μ2) = [1/2, 1] and the utilities are 0.6 for
both parties. On the other hand, f(μ2, μ1) might result in f1(μ2, μ1) = ([0, 1/4],
[1/2, 3/4]) and f2(μ2, μ1) = ([3/4, 1], [1/4, 1/2]), thus the utilities are 0.5 for both
parties. Therefore this (artificial) protocol is equitable, but not meta-envy-free,
since P1 prefers the first player. On the other hand, the meta-envy-free protocols
shown in the next section are not equitable. Note that meta-envy-freeness does
not imply envy-freeness. As shown in the introduction, the following holds.
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1: begin
2: p1 cuts into three pieces (so that p1 considers their sizes are the same)
3: Let X1, X2, X3 be the pieces where X1 is the largest and X3 is the smallest for p2.
4: if X1 is larger than X2 for p2 then
5: p2 cuts L from X1 so that X ′

1 = X1 − L is the same as X2 for p2.
6: p3 selects the largest (for p3) among X ′

1, X2, and X3.
7: if X ′

1 remains then
8: begin
9: p2 must select X ′

1.
10: Let (pa, pb) be (p3, p2).
11: end
12: else
13: begin
14: p2 selects X2 (the largest for p2).
15: Let (pa, pb) be (p2, p3).
16: end
17: p1 obtains the remaining piece.
18: if L is not empty then
19: pa cuts L into three pieces (such that pa considers their sizes are the same) and

pb, p1, and pa selects one piece in this order.
20: end.

Fig. 1. Three-player envy-free protocol

Theorem 2. The ‘divide-and-choose’ protocol is not meta-envy-free.

Next, we consider the envy-free cake-cutting protocol for three players, found
independently by Selfridge and Conway (introduced in [6]), and shown in Fig. 1.

Note that without loss of envy-freeness, we assume that when a player cuts
L from X1 = [x1, x2], L must be cut as [x1, x3] for some x3.

Theorem 3. The protocol in Fig. 1 is not meta-envy-free.

Proof. Let there be three parties Px, Py, and Pz whose utility functions are μx,
μy, and μz, respectively.

We show that party Px prefers the role of player p3 to that of p2 in this
protocol. Let us consider the following two executions:
(Ex1) (p1, p2, p3) = (Pz , Py, Px) and (Ex2) (p1, p2, p3) = (Pz, Px, Py).

The result of the initial cut by Pz at line 2 is the same in (Ex1) and (Ex2). Let
the three pieces be Z1, Z2, and Z3. Without loss of generality, Z’s are ordered
from the largest to the smallest for Py . All possible cases are categorized as
follows.

(Case 1) Py does not cut L in (Ex1).
(Case 1-1) Px cuts L′ from some piece Z in (Ex2).
(Case 1-2) Px does not cut L in (Ex2).
(Case 2) Py cuts L from Z1 in (Ex1).
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(Case 2-1) Px also cuts L′ from Z1 in (Ex2).
(Case 2-1-1) L′ is larger1 than L. (Case 2-1-2) L′ is smaller than L.
(Case 2-1-3) L′ = L.

(Case 2-2) Px cuts L′ from another piece Z in (Ex2).
(Case 2-3) Px does not cut L′ in (Ex2).

(Case 1-1) Let the largest piece for Px be Z ′
1. Px selects Z ′

1 at line 6 in (Ex1)
and obtains utility μx(Z ′

1). In contrast, at lines 7-16 of (Ex2), Px obtains a
piece whose utility equals μx(Z ′

1 −L′), because there are two pieces with utility
μx(Z ′

1 − L′) after cutting L′. At line 19 of (Ex2), Px obtains a cut of L′ whose
utility is smaller than μx(L′). Thus, the total utility of Px is smaller than μx(Z ′

1).
Therefore, (Ex1) is better for Px.

(Case 1-2) There are at least two largest pieces for Px among Z1, Z2, and Z3.
Px selects the largest piece at line 6 in (Ex1). In contrast, after Py has selected
Z1 at line 6 in (Ex2), Px can select one of the largest pieces at lines 7-16. Thus
Px obtains the same utility in (Ex1) and (Ex2).

(Case 2-1-1) At line 6 in (Ex1), the largest piece for Px is Z1 − L, since L′

is larger than L. At line 19, Px obtains at least μx(L)/3. Thus, Px obtains at
least μx(Z1)− 2μx(L)/3 in total. In contrast, Py selects Z2, which is larger than
Z1 − L′, at line 6 in (Ex2). Thus Px selects Z1 − L′ at line 9. In addition, Px
obtains at least μx(L′)/3. Px obtains at least μx(Z1)−2μx(L′)/3 in total. Thus,
(Ex1) is better for risk averse party Px.

(Case 2-1-2) At line 6 in (Ex1), Px does not select Z1 − L, since it is not
greater than the second largest piece, whose utility is μx(Z1 − L′), for Px. Px
chooses the piece and obtains μx(Z1 − L′). In addition, at line 19, Px obtains
μx(L)/3 because Px cuts L. Px obtains μx(Z1) − μx(L′) + μx(L)/3 in total. In
contrast, at line 6 in (Ex2), Py selects Z1−L′, which is the largest for Py. Thus
Px selects Z2 or Z3 whose utility is μx(Z1−L′). Px then obtains μx(L′)/3 at line
19 because Px cuts L′. Px obtains μx(Z1)− 2μx(L′)/3 in total, which is smaller
than that in (Ex1), since L′ is smaller than L.

(Case 2-1-3) In both (Ex1) and (Ex2), Px obtains a piece whose utility is
μx(Z1−L). The only difference is who cuts L. As shown in the proof of ‘divide-
and-choose’, being Chooser is the better than being Divider at line 19. In (Ex1),
Px can select Z1 − L and become Chooser. In (Ex2), if Py selects Z1 − L, Px
must become Divider. Thus (Ex1) is better than (Ex2).

(Case 2-2) In (Ex1), Px selects the largest piece, which is not Z1−L, at line 6
and obtains μx(Z). At line 19, Px obtains at least μx(L)/3. In (Ex2), Py selects
Z1 not Z − L′ at line 6. Thus Px obtains μx(Z) − μx(L′) at line 9. At line 19,
Px obtains less than μx(L′). Px obtains less than μx(Z) in total, which is worse
than in (Ex1).

(Case 2-3) There are at least two largest pieces among Z1, Z2, and Z3 for
Px. Let μx(Z) be the utility of the largest piece. In (Ex1), Px can obtain μx(Z)
at line 6. In addition, Px obtains μx(L)/3 at line 19. In contrast, in (Ex2), Px
obtains μx(Z). Thus (Ex1) is better than (Ex2) for Px. 

1 To compare the sizes of L and L′, they must be cut in a canonical way. Thus the

additional rule for cutting L is necessary.
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1: begin
2: Pi(i = 1, 2) simultaneously declare ci that satisfies μi([0, ci]) = 1/2.
3: if c1 = c2 then
4: Cut at c1, coin-flip and decide which party obtains [0, c1] or [c1, 1].
5: else
6: Cut as [0, (c1 + c2)/2], [(c1 + c2)/2, 1]. Pi obtains the piece which contains ci.
7: end.

Fig. 2. Two-party meta-envy-free protocol

4 Meta-Envy-Free Protocols for Two and Three Parties

This section shows meta-envy-free cake-cutting protocols for two and three par-
ties. Note that the word ‘party’ is used in the descriptions in this section because
every player’s role is identical. When there are two parties, the protocol proposed
in [4], shown in Fig. 2, is meta-envy-free.

The simultaneous declaration of values by multiple parties can be realized in
several ways, (1) Trusted third party (TTP): Pi sends ci to the TTP. After the
TTP receives all the values, he broadcasts them to all parties. (2) Commitment
scheme [7]: Pi first sends comi(ci), which is a commitment of ci. The other parties
cannot obtain the value ci from comi(ci). After Pi has obtained the other parties’
committed values, Pi opens its commitment (that is, sends ci and a proof that
comi(ci) is really made by ci). Pi cannot provide a false proof that comi(ci) is
made by c′i(�= ci).

Theorem 4. The protocol in Figure 2 is meta-envy-free, envy-free, and strategy-
proof.

Proof. The cut point depends only on the parties’ declared values. The result is
independent of the role assignment or the order of declaration. Thus the protocol
is meta-envy-free. The protocol is envy-free because both parties obtain at least
half evaluated by their utility functions. The protocol is strategy-proof since if
P1 declares false cut point c′1, P2’s true cut point c2 might satisfy c2 = c′1 and
P1 might obtain less than half by coin-flipping. Thus, risk adverse parties obey
the rule and declare their true cut points. 


There is another method for assigning portions when the declared values differ.
Without loss of generality, assume that c1 < c2. Assign [0, c1] to P1, [c2, 1] to
P2, and execute the same protocol again for the remaining piece [c1, c2]. Al-
though this method might need an infinite number of declaration rounds and
each party might obtain multiple fragments of the cake, the assignment guaran-
tees μ1(f1(μ1, μ2)) = μ2(f2(μ1, μ2)).

Avoiding multiple declaration is possible if Pi simultaneously declares the
utility density function ui. Utility density function ui satisfies ui(z) > 0 for [0, 1]
and

∫ 1
0 ui(z)dz = 1.
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When the remaining piece is [l(j), r(j)] at round j (l(1) = 0 and r(1) = 1), The
cut point declaration at round j is the point c(j)i that satisfies∫ c

(j)
i

l(j)
ui(z)dz =

∫ r(j)

c
(j)
i

ui(z)dz. (6)

If c(j)1 �= c
(j)
2 , let l(j+1) = min(c(j)1 , c

(j)
2 ), r(j+1) = max(c(j)1 , c

(j)
2 ), and execute

next round.
A protocol that uses a utility density function is also proposed in [3]. Here

the cake is cut into two pieces. However, the protocol has the disadvantage that
it is not strategic-proof, that is, a party can obtain more utility by declaring a
false utility density function.

Next we show a protocol for a three-party case in Fig. 3. The protocol is
outlined as follows. First, each party Pi simultaneously declares cut point li
such that [0, li] is 1/3 for Pi. Cases are switched according to how many of l1, l2,
and l3 are the same. If at least two of them are the same, the parties with the
same value simultaneously declare cut point ri such that [ri, 1] is 1/3 for Pi.
Envy-free assignment can be easily obtained using the declared values when at
least two of l1, l2, and l3 are the same. The remaining case is when l1, l2, and l3
are all different (without loss of generality, assume that l1 < l2 < l3). Here, we
execute the three-player envy-free protocol in Fig. 1 with the role assignment
(p1, p2, p3)=(P3, P2, P1), that is, P3 plays the role of p1 in the protocol, and so on,
with the restriction that P3 must use l3 as a cut. Note that this role assignment
is executed by the declared value li, thus the protocol is meta-envy-free.

Although (p1, p2, p3)=(P3, P2, P1) is not a unique acceptable role assignment,
there are unacceptable role assignments. Let us consider the following role as-
signment: (p1, p2, p3)=(P2, P1, P3), namely, the cake is cut at l2, r2 and P1 cuts
L from the largest piece. Suppose that [0, l2] is the largest for P1. P1 cuts L from
[0, l2]. In this case, [0, l2] is less than 1/3 for P3 because l3 > l2. After P1 cuts L
from [0, l2], P3 will never select [0, l2] − L as the largest piece for P3. P1 knows
this fact from l3 > l2, thus P1 will not cut L honestly from [0, l2]. In this case, P3
will select some piece other than [0, l2]. P1 then selects [0, l2] and obtains more
utility than when honestly cutting L. Thus, the protocol is not strategy-proof.

Theorem 5. The protocol in Fig. 3 is meta-envy-free, envy-free, and strategy-
proof.

Proof. The protocol is meta-envy-free because the role is decided solely by the
declared values. Next let us consider envy-freeness. All possible cases are catego-
rized as follows. (Case 1) l1 = l2 = l3 and r1 = r2 = r3. (Case 2) l1 = l2 = l3,
r1 = r2, and r3 > r1. (Case 3) l1 = l2 = l3, r1 = r2, and r1 > r3. (Case 4)
l1 = l2 = l3 and r1 < r2 < r3. (Case 5) l1 = l2(�= l3) and r1 = r2. (Case 6)
l1 = l2(�= l3) and r1 < r2. (Case 7) l1 < l2 < l3.

(Case 1) Since the utilities of [0.l1], [l1, r1], and [r1, 1] are 1/3 for all parties,
no assignment causes envy.

(Case 2) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same for P1 and P2.
[r1, 1] is the largest for P3 since r3 > r1 and l3 = l1. Thus assigning [r1, 1] does
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1: Each party Pi simultaneously declares li such that [0, li] is 1/3 for Pi.
2: if l1 = l2 = l3 then
3: begin
4: Each party Pi simultaneously declares ri such that [ri, 1] is 1/3 for Pi.
5: if r1 = r2 = r3 then
6: Cut at l1 and r1. Coin-flip and assign [0, l1], [l1, r1], [r1, 1] to the parties.
7: else
8: if two of r1, r2, r3 are the same then
9: begin /* Without loss of generality, let r1 = r2. */

10: Cut at l1 and r1.
11: if r3 > r1 then Assign [r1, 1] to P3.
12: else /* r3 < r1 */
13: Assign [l1, r1] to P3.
14: Coin-flip and assign the remaining two pieces to P1 and P2.
15: end
16: else /* Without loss of generality, let r1 < r2 < r3. */
17: Cut at l1 and r2. Assign [0, l1] to P2, [l1, r2] to P1, and [r2, 1] to P3.
18: end /* end of case l1 = l2 = l3. */
19: else
20: if two among l1, l2, and l3 are the same then
21: begin /* Without loss of generality, let l1 = l2. */
22: P1 and P2 simultaneously declare ri such that [ri, 1] is 1/3 for Pi.
23: if r1 = r2 then
24: begin
25: Cut at l1 and r1. P3 selects one piece among [0, l1], [l1, r1], and [r1, 1].
26: Coin-flip and assign the remaining two pieces to P1 and P2.
27: end
28: else /* r1 
= r2. */
29: begin /* Without loss of generality, let r1 < r2. */
30: Cut at l1, r1, r2. L ← [r1, r2]. P3 selects one among [0, l1], [l1, r1], [r2, 1].
31: if P3 selects [0, l1] then
32: begin
33: Assign [l1, r1] and [r2, 1] to P1 and P2, respectively.
34: P3 cuts L into three pieces. P1, P2, P3 selects one in this order.
35: end
36: else
37: if P3 selects [l1, r1] then
38: begin
39: Assign [0, l1] and [r2, 1] to P1 and P2, respectively.
40: P3 cuts L into three pieces. P2, P1, P3 selects one in this order.
41: end
42: else /* P3 selects [r2, 1]. */
43: begin
44: Assign [l1, r1] and [0, l1] to P1 and P2, respectively.
45: P3 cuts L into three pieces. P1, P2, P3 selects one in this order.
46: end
47: end
48: end
49: else /* l1, l2 and l3 are different. Without loss of generality, let l1 < l2 < l3. */
50: Execute Fig. 1 with (p1, p2, p3)=(P3, P2, P1) and l3 is used as a cut.

Fig. 3. Three party meta-envy-free protocol
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not cause any party envy. Assigning the remaining pieces to P1 and P2 can be
arbitrary.

(Case 3) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same for P1 and P2.
[l1, r1] is the largest for P3 since r3 < r1 and l3 = l1. Thus assigning [l1, r1] does
not cause any party envy. Assigning the remaining pieces to P1 and P2 can be
arbitrary.

(Case 4) Among [0, l1], [l1, r2], and [r2, 1], [l1, r2] is the largest for P1 since
r1 < r2. [r2, 1] is the largest for P3 since r2 < r3 and l1 = l3. P2 feels the three
pieces are the same size, thus assigning [0, l1] to P2 does not cause envy.

(Case 5) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same for P1 and P2.
Thus, P3’s selection from these pieces does not cause envy.

(Case 6) The utilities of [0, l1], [l1, r1], and [r1, 1] are the same for P1. The
utilities of [0, l1], [l1, r2], and [r2, 1] are the same for P2. Cutting the cake into
four pieces, [0, l1], [l1, r1], [r2, 1], and L = [r1, r2] is exactly the same situation
as during three-player envy-free cutting (Case 6-1) P1 executes the initial cut
([0, l1], [l1, r1], and [r1, 1]) and P2 cuts L from the largest piece [r1, 1] so that its
size becomes that of the second largest piece [0, l1] and (Case 6-2) P2 executes
the initial cut ([0, l1], [l1, r2], and [r2, 1]) and P1 cuts L from the largest piece
[l1, r2] so that its size becomes that of the second largest piece [0, l1].

When P3 selects [0, l1] from the three pieces, we can regard this as (Case 6-2)
being executed. With the three-player envy-free protocol, next P1 must select
[l1, r1] and P2 selects the remaining piece [r2, 1]. P3 cuts L into three pieces. P1,
P2, and P3 each select one piece in this order. Because of the envy-freeness of
the three-player protocol, the result is envy-free.

When P3 selects [l1, r1] from the three pieces, we can regard this as (Case 6-1)
being executed. With the three-player envy-free protocol, next P2 must select
[r2, 1] and P1 selects the remaining piece [0, l1]. P3 cuts L into three pieces. P2,
P1, and P3 each select one piece in this order. Because of the envy-freeness of
the three-player protocol, the result is envy-free.

Lastly, when P3 selects [r2, 1] from the three pieces, we can regard this as
(Case 6-2) being executed. With the three-player envy-free protocol, next P1
must select [l1, r1] and P2 selects the remaining piece [0, l1]. P3 cuts L into three
pieces. P1, P2, and P3 each select one piece in this order. Because of the envy-
freeness of the three-player protocol, the result is envy-free.

(Case 7) Since the players execute the three-player envy-free protocol, the
result is envy-free.

Lastly, let us discuss strategy-proofness. When Pi declares a cut point li (or
ri) simultaneously with some other process Pj , declaring a false value l′i (or r′i)
might result in a worse utility, since Pj ’s true value lj (or rj) might satisfy lj = l′i
(or rj = r′i) and Pi might obtain a smaller piece by coin-flipping.

When P3 selects one piece at line 30, a false selection results in a worse utility
for P3. Note that this selection does not affect who will be the divider of L.

Next, consider the execution of the three-player envy-free protocol with extra
information l1 < l2 < l3. When P3 cuts as [0, l3], [l3, r3], and [r3, 1], a false cut
r′3 might result in P3 obtaining less than 1/3. When P2 cuts L from the largest
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piece, information of l1 does not help P2 to obtain greater utility with false cut
L′ even if P2 cuts L from [0, l3]. The reason is as follows. For any true cut L,
either of the two cases can happen according to P1’s utility (that is unknown to
P2): (1) [l3, r3] or [r3, 1] is the largest for P1 or (2) [0, l3] − L is the largest for
P1. Thus, if P2 cuts L′ that is smaller than L, P1 might select [0, l3] − L′ and
P2’s utility might become worse. If P2 cuts L′′ that is larger than L, P1 might
select [l3, r3] and P2’s utility might become worse. With respect to cutting L into
three pieces, the strategy-proofness is exactly the same as that of the original
three-player envy-free protocol. Therefore, the protocol is strategy-proof. 
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Abstract. We look at the finite satisfiability problem of the two variable
fragment of first order logic with the successors of two linear orders.
While the logic with both the successors and their transitive closures
remains undecidable, we prove that the logic with only the successors is
decidable.

1 Introduction

The two variable fragment of the first order logic is known to have an elementar-
ily decidable satisfiability problem [1,2] and reasonably good expressive power
(it contains several propositional modal logics). Recently, in the context of veri-
fication and semi-structured data, several extensions of FO2 have been studied
[3,4,5]. Strongly inspired by these results, we consider the decidability of FO2

over finite structures with two linear orders.
A detailed context of the results in this paper is presented later. In the fol-

lowing we give a short account of the results on finite satisfiability problem
(henceforth referred as FinSat) of several FO2 extensions. In [6] it is shown
that FinSat of FO2 over words is Nexptime-complete. [7] shows that FinSat

is undecidable for FO2 with (at least) eight orders. In [8] it is shown that FO2

with two transitive relations (without equality) is undecidable. In [9] it is shown
that FO2 is undecidable with three equivalence relations, but is decidable when
the number of equivalence relations is two. Later in [10] it is shown that in the
case of two equivalence relations, FinSat is decidable in 3-Exptime. In the
same paper the undecidability is sharpened to one equivalence relation and one
transitive relation. In [3] it is shown that FO2 over words with an equivalence
relation is decidable. The same authors in [4] showed that FO2 over trees with
an equivalence relation is decidable when only the successor relation in the tree
is used.

Recently, considerations from semi-structured data and infinite state verifi-
cation motivated the notion of datawords : linear orders labelled by a pair of
elements, one from a finite set and one from an infinite domain. Formally, a
dataword w = (a1, d1) . . . (an, dn), ai ∈ Σ, di ∈ D where Σ is a finite alpha-
bet and D is an infinite set. When operations on D is limited to only equality
checking, it is easy to see that w can also be seen as a word with an equivalence
relation on its positions. In a landmark paper, the authors of [3] showed that
FO2 (Σ,≺,≺+,∼) is decidable. The idea behind the proof, which goes back to

P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 513–524, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Büchi, is to define a suitable automaton mechanism (called Data Automata)
over datawords and to reduce the formulas of the logic to equivalent automata.
Thus, the satisfiability problem of the logic is reduced to a reachability problem
of the automaton, which is then shown decidable. In [3] it is also shown that
a lot of natural extensions of FO2 (Σ,≺,≺+,∼) are undecidable, in particular
FO2 (Σ,≺,≺+,∼, <′) where <′ is a linear order on the data values. When all the
data values are distinct, this logic deals with structures with two linear orders.

Almost all the proofs in this paper extensively follow the technique developed
in [3]. However, there is a significant departure in the technical details, which
we believe will make the results interesting. One crucial aspect where the proof
differs is in the use of marking. In the case of Data automata, as shown in [11]
the marking can be dispensed with. In the case of text automata it is not clear
how to do this. Also, the translation from logic to automata depends on the fact
that the marked string projection to the second order can be computed on the
fly from the marked string projection to the first order.

Results. Our main result is the following : The finite satisfiability problem of
FO2 over two linear orders where the vocabulary contains only the successor
relations of the orders is decidable. Our proof is automata theoretic. We define
the notion of a text automaton and study its properties. We show that the
emptiness checking of the automaton is decidable in NP. Finally, we show that
a formula of the logic can be converted to an equivalent text automaton in
2-Exptime.

Related work. Recently, Thomas Schwentick and Thomas Zeume proved that
finite satisfiability of two-variable logic over structures with a linear order and a
total preorder FO2 (Σ,<,) is Expspace-Complete [12]. Since it is expressible
in FO2 that a total preorder is a linear order, this result implies that FinSat

of FO2
(
Σ,≺+

1 ,≺+
2

)
is in Expspace. Their results deal with the order relations

and not successor relations, thus renting them incomparable to our results, but
certainly complementing the results in this paper. In [13] the author showed that
existential MSO over two successors is strictly weaker than over linear orders.
(We give an alternative proof of this fact in this paper).

2 Preliminaries

Let T be a finite set. We say a binary relation R on T is a (strict) partial order
if it is (1) irreflexive (2) transitive and hence asymmetric. We say a partial order
R is a (strict) linear order if it is (3) total. We call the binary relation S ⊆ R,
defined as {(a, b) | aRb,¬∃c ∈ T, aRc ∧ cRb} the successor or covering relation
of R.

We denote by N the set of natural numbers and we represent the successor
relation on N by ≺N. For an n ∈ N, we denote by [n] the set {1, . . . n}. We
represent by ≺N

n the successor relation on N restricted to the set [n], that is
≺N

n=≺N ∩ ([n]× [n]).
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Let Σ be an alphabet, a non-empty finite set. A word w over Σ is any finite
sequence of characters from Σ. For a word w, we denote the length of w as |w|.
Given a word w = a1a2 . . . an over Σ, we can represent the word as a first order
structure W = ([n], λw,≺N

n), where λw : [n] → Σ is the labeling function, defined
as λw(i) = ai.

A text T over Σ is a first order structure T = (T, λ,≺1,≺2) where T is a finite
set, λ : T → Σ is a labeling function, ≺1,≺2 are successor relations of two linear
orders over T . We denote the the linear order corresponding to ≺1 (alternatively
≺2) by the symbol ≺+

1 (alternatively ≺+
2 ). Restricting the structure T to either

of the orders yields a word, we call the word (T, λ,≺1) the projection of T to
the order ≺1.

Given any text T = (T, λ,≺1,≺2) where |T | = n we can rewrite T uniquely
as ([n], λ′,≺N

n,≺′
2) such that λ′ = κ−1 ◦λ and ≺′

2= {(κ(x), κ(y)) | x ≺2 y} where
κ is the unique isomorphism from (T,≺1) to ([n],≺N

n). Similarly, it can be also
rewritten uniquely as ([n], λ′′,≺′

1,≺N

n).
By FOn (τ) we mean the n-variable first order logic with the vocabulary τ

(including equality) over texts. The predicate ≺1 (alt.≺2) is interpreted as the
successor relation in the first (alt. second) linear order. The predicate ≺+

1 (alt.
≺+

2 ) is interpreted as the first (alt. second) linear order. The predicate ≺i
1 (alt.

≺i
2) is interpreted as the ‘i-th successor’ relation of the first (alt. second) linear

order.

3 Automata on Texts

Given a text of the form T = ([n], λ,≺1=≺N

n,≺2), let ([n], λ,≺N

n) = a1a2 . . . an
be the projection of T to the order ≺1. We define the marked string projection of
T to ≺1, abbreviated as msp≺1

(T), as the word (a1, b1)(a2, b2) . . . (an, bn) where
bi ∈ {−1, 0, 1}, such that

bi =

⎧⎨⎩
−1 if 1 ≤ i < n and i+ 1 ≺2 i

1 if 1 ≤ i < n and i ≺2 i+ 1
0 otherwise

Given any text T we can define its msp≺1
(T) by converting it into the above

form.
Similarly, we can define the marked string projection of T to ≺2 denoted as

msp≺2
(T). For this, we first convert it into the form T′ = ([n], λ,≺1,≺2=≺N

n)
where |T | = n. let ([n], λ,≺N

n) = a1a2 . . . an be the projection of T′ to the order
≺2. msp≺2

(T) = msp≺2
(T′) is defined as the word (a1, b1)(a2, b2) . . . (an, bn)

where bi ∈ {−1, 0, 1}, such that

bi =

⎧⎨⎩−1 if 1 ≤ i < n and i+ 1 ≺1 i
1 if 1 ≤ i < n and i ≺1 i+ 1
0 otherwise

In the following we define the notion of a text automaton. Fix an alphabet Σ.
A text automaton A = (B,C) is a composite automaton consisting of two word



516 A. Manuel

automata B and C. The automaton B is a non-deterministic letter-to-letter
word transducer with the input alphabet Σ×{−1, 0, 1} and an output alphabet
Σ′ (included in the definition of B). The automaton C is a non-deterministic
finite state recognizer accepting words over the alphabet Σ′. Given a text T =
(T, λ,≺1,≺2) the automaton works as follows. The transducer B runs over the
msp≺1

(T) yielding a string w = (T, λ′,≺1) in Σ′∗, where λ′ : T → Σ′. The
automaton C runs over the string w′ = (T, λ′,≺2), notice that w is permuted
to the order ≺2. Finally, the automaton A accepts T if both B and C have a
successful run, that is they both finish in one of their final states respectively.

Formally, let A = (B,C), where B is a word transducer given by the tuple
B = (Qb, (Σ × {−1, 0, 1}) , Σ′, Ob, Δb, Ib, Fb), where Qb is the finite set of states,
(Σ × {−1, 0, 1}) is the input alphabet, Σ′ is the output alphabet, Ib ⊆ Qb is the
set of initial states, Fb ⊆ Qb is the set of final states,Δb ⊆ Qb×(Σ × {−1, 0, 1})×
Qb is the set of transitions and Ob : Qb × (Σ × {−1, 0, 1}) → Σ′ is the output
function. Given a marked string w = (a1, b1)(a2, b2) . . . (an, bn) we define a run
ρB of B as a sequence q0q1 . . . qn such that q0 ∈ Ib and for every i ∈ [n] there is
a transition (p, (a, b), q) in Δb such that qi−1 = p, qi = q, ai = a and bi = b. The
run ρb is accepting if qn ∈ Fb. Given an accepting run ρb of B on w, it uniquely
defines an output string w′ = a′1a

′
2 . . . a

′
n ∈ Σ′∗ where a′i = Ob (qi−1, ai). The

automaton C is given by the tuple C = (Qc, Σ
′, Δc, Ic, Fc) where Qc is the finite

set of states, Σ′ is the alphabet, Ic ⊆ Qc is the set of initial states, Fc ⊆ Qc is
the set of final states, Δc ⊆ Qc×Σ′×Qc is the set of transitions. Given a word
w′ = a′1a

′
2 . . . a

′
n ∈ Σ′∗ a run ρc of C is a sequence q0q1 . . . qn such that q0 ∈ Ic

and for every i ∈ [n] there is a transition (p, a′, q) in Δc such that qi−1 = p,
qi = q and a′i = a′. The run ρc is accepting if qn ∈ Fc. Now, we define the run
ρ of A on the text T = (T, λ,≺1,≺2) as a pair (ρb, ρc) such that (i) ρb is an
accepting run of B on msp≺1

(T) yielding a word (T, λ′,≺1) and (ii) ρc is an
accepting run of C on the word (T, λ′,≺2).

We look at some example languages. Let L1 be the language of texts where
both the orders coincide, that is L1 = {T | T |= ∀xy x ≺+

1 y ⇔ x ≺+
2 y}. This

is easily done by checking the markings. What is more interesting is that we
can accept texts whose string projections are non-regular. Consider the formula,
ϕ = ϕ≺1 ∧ϕ≺2 , where ϕ≺1 says that the word projection of the text to the order
≺1 belongs to the language a∗b∗c∗, whereas ϕ≺2 says that the projection to ≺2
belongs to the language (abc)∗. Hence, the projection of the text to ≺1 has to
be the language {anbncn | n ∈ N}. A text automaton can accept L (ϕ) in the
following way, the transducer projects the marked string to Σ and checks if it
belongs to a∗b∗c∗. The automaton C checks if its input is in (abc)∗.

Lemma 1. Given a regular language L ⊆ Σ∗, there is a text automaton accept-
ing all texts whose projections to ≺1 is in L. Similarly, there is a text automaton
accepting all texts whose projections to ≺2 is in L.

Proof. In the first case the transducer B checks if the projection of the text
to ≺1 (ignoring the markings) is in L and C accepts Σ′∗. For the second case,
the transducer B simply copies the string (again ignoring the markings) and C
accepts if its input is in L.
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Lemma 2. Languages recognized by text automata are closed under union, in-
tersection and renaming.

Proof. Closure under union and intersection is obtained from usual product
construction (using a composed output alphabet). Closure under renaming is
achieved using the non-determinism of the transducer.

Consider the language LM , the collection of texts such that (1) the projection
to ≺1 is in $1a

+#1$2b
+#2. (2) projection to ≺2 is in $1$2(ab)+#1#2. (3) There

exists two positions x0, x1 having the same label from {a, b} such that x0 ≺+
1 x1

and x1 ≺+
2 x0. The language, LM is accepted by a text automaton. Conditions

1 and 2 can be checked easily by B and C. For condition 3, the transducer B
non-deterministically chooses two positions having the same label (either a or
b), x0 ≺+

1 x1 and outputs 0 at x0 and 1 at x1 and $ at every other position. The
automaton C verifies that its input is of the form $∗1$∗0$∗.

But LM , the complement of the above language is not accepted by any text
automaton. For the sake of contradiction, assume that there is a text automaton
A = (B,C) accepting LM . Let the number of states in B be n. Consider the text
T1 =

(
[2k + 4], λ,≺N

2k+4,≺2
)

such that
(
[2k + 4], λ,≺N

2k+4

)
is $1a

k#1$2b
k#2 and

≺2 is the order {(1, k+3), (k+3, 2), (2, k+4), (k+4, 3) . . . (k+2, 2k+4)} where
k > n. Note that in the msp≺1

(T) all the markings are zero. Since T is in LM ,
there is an accepting run of B such that there exists two positions i < j with
label a and qi−1 = qj−1 in the run. We define the order ≺′

2 as

{(l, k + 2 + l) | 1 ≤ l ≤ k + 2, l �= i, l �= j}
∪ {(k + 2 + l, l+ 1) | 1 ≤ l < k + 2, l+ 1 �= i, l + 1 �= j}
∪ {(k + 1 + i, j), (j, k + 2 + i), (k + 1 + j, i), (i, k + 2 + j)}

In the relation ≺′
2 only the positions i and j are switched from ≺2. Let T′

1 =(
[2k + 4], λ,≺N

2k+4,≺′
2
)
. It is the case that msp≺1

(T) = msp≺1
(T′) and B has

an accepting run on msp≺1
(T′) outputting the same string as in the case of T,

which then permuted to ≺2 and ≺′
2 gives the same string. Hence C also has an

accepting run. But, T′ does not belong to LM , leading to a contradiction. This
shows that,

Lemma 3. The class of languages accepted by text automata are not closed
under complementation.

Using a similar argument, we can show that the class of text automata where
the transducer B is deterministic is strictly weaker.

We can prove the following proposition analogous to the EMSO2 (Σ,≺) char-
acterisation (Büchi–Elgot–Trakhtenbrot) of finite state automata.

Proposition 1. For every text automaton A, there is an EMSO2 (Σ,≺1,≺2)
formula ϕA such that L(A) = L(ϕA).

4 Decidability of the Text Automaton

In the definition of the automaton A, the transducer has access to msp≺1
(T),

whereas C can only access the output of B permuted to ≺2. In the following, we
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show that it is possible for B to output a string which then permuted to≺2, yields
msp≺2

(T). Let T = (T, λ,≺1,≺2) be a text and msp≺1
(T) = (a1, b1)(a2, b2) . . .

(an, bn). Let b′i be the marking of the position i in msp≺2
(T). It is easy to verify

that b′i is a function of bi and bi−1 as evidenced by the following table.

bi−1 bi b
′
i

− 0 0
− −1 0
− 1 1
0 0 0

bi−1 bi b
′
i

0 1 1
1 0 0
1 1 1
0 −1 0

bi−1 bi b′i
−1 0 −1
−1 −1 −1
−1 1 ⊥

1 −1 ⊥

Note that the configurations bi−1 = −1, bi = 1 and bi−1 = 1, bi = −1 does not
constitute a valid marking. The above table immediately gives a strategy for
outputting msp≺2

(T). The automaton B always remembers the previous posi-
tion’s marking in its states, and computes b′i. Once the output of B is permuted
to ≺2, the string becomes msp≺2

(T).
Using the above fact, we can show that the emptiness problem for a text

automaton is decidable in NPtime. The idea is the following: Given a text
automaton A = (B,C), L(A) is non-empty if there is a marked word w accepted
by B such that a permutation of output of B on w, ‘consistent’ with the marking
of w, is accepted by C.

Fix an alphabet Σ. Given a marked word w ∈ (Σ × {0, 1,−1})∗ we denote
the projection of w to Σ by w ↓ Σ. Let w = ([|w|], λ,≺N) be a marked word.
A permutation π : [|w|] → [|w|] is a bijection and π(w) is defined as the word(
[|w|], π−1 ◦ λ,≺N

|w|

)
. Note that π defines an order ≺π= π−1(1) . . . π−1(|w|) on

the positions of w. We say that the permutation π is consistent with the marking
if w is the marked string projection of the text T =

(
[|w|], λ,≺N

|w|,≺π

)
to the

order ≺N

|w|. Given a word w′ ∈ Σ∗, by mperm(w′), we denote the set of all
the marked words w such that there is a permutation π consistent with the
marking such that π(w ↓ Σ) = w′. Given L ⊆ Σ∗, we define mperm(L) =
∪w′∈L mperm(w′). Next we show that if L is regular then mperm(L) is accepted
by a Presburger automaton.

A Presburger automaton A is a tuple (B,ϕ) where B is a finite state au-
tomaton with states q0, . . . qn and ϕ is a Presburger formula with free variables
|q0|, . . . , |qn|. A word w is accepted by the automaton A if there is an accepting
run ρ of B on w such that ϕ (|q0|, . . . , |qn|) is true, where |qi| is the number of
times qi appears in ρ.

Lemma 4. If L is regular then mperm(L) is accepted by a Presburger automa-
ton.

Proof. The idea is to adapt the technique from [14]. Let A = (Q,Σ,Δ, q0, F )
be a non-deterministic finite state automaton accepting L. Given a marked
word w = (a0, b0) . . . (an, bn) ∈ (Σ × {0,−1, 1})∗, the Presburger automaton PA
checks non-deterministically if there is a run of A on some consistent permutation
of w. To achieve this, the automaton PA assigns a transition δ = (p, ai, q) ∈ Δ
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to each position i of the marked word. The information whether the transition
should or should not be ‘joined’ with the transitions of the neighbouring po-
sitions is also remembered. All this information is stored in the state occuring
immediately after position i. If the marking is 1 or −1 the automaton ensures
that the successive transitions associated with the positions are consistent with
the marking. We can define a flow f where each transition δ of A is labelled
by the number of times it is associated with a position. Finally, we can write a
Presburger formula which checks that,

1. f is locally consistent.
2. the subgraph induced by the states with a non-zero flow is connected.
3. f is consistent with the marking.

Properties 1 and 2 is encoded as in the proof of theorem 1 in [14]. Property 3
is easily encoded as a summation. The resulting automata PA is poly-sized in
terms of the size of A.

Theorem 1. Emptiness checking of a text automaton is in NP.

Proof. Given the text automaton A = (B,C), we construct a Presburger au-
tomaton PC which accepts mperm(L(C)). We take the intersection of the trans-
ducer B and PC such a way that the output of B is supplied as the input of PC .
Finally we check the emptiness of the resulting automaton which is in NP.

Next we show that the emptiness problem of Presburger automata which is
NP-hard reduces to the emptiness problem for text automata, yielding a lower
bound.

Theorem 2. Emptiness checking of a Presburger automaton is polynomial time
reducible to the emptiness checking of a text automaton.

Proof. We use an alternative definition of Presburger automaton from [5], which
is a type of automata with counters. A Presburger automaton PA is a finite state
automaton with a set of counters {1 . . . k} holding integer (possibly negative)
values. Formally it is a tuple (Q,Σ,Δ, q0, F ) where Q is the finite set of states,
q0 is the initial state and F is the set of final states. The transition relation Δ is a
subset of Q×Σ×{I(j), D(j) | 1 ≤ j ≤ k}×Q. A configuration of the automaton
is of the form (p, ū) where p ∈ Q and ū : [k] → Z. The automaton starts in the
initial state with all the counters being zero. On a state p with counter values
ū, the automaton can make a transition (p, a, I(j), q) (alt. (p, a,D(j), q)) on the
letter a resulting in the state q with counter values being the same, except for
the counter j which is incremented (alt. decremented) by one. Finally at the end
of the word, the automaton accepts if it reaches an accepting state with all the
counters being zero.

For emptiness checking, without loss of generality we can ignore the labels on
the transitions. We construct a text automaton whose alphabet isQ∪{I1, D1, . . . ,
Ik, Dk}. We can represent the transition (p, I(j), q) as the word pIjq over this
alphabet. A run ρ of PA is represented by a text where (1) the string projection
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to the first order represents a sequence of transitions δ1 . . . δn, δi ∈ Δ which
is consistent — the run starts in the initial state, ends in a final state and
two successive transitions have a common state (2) the string projection to the
second order belongs to the language Q∗ · (I1D1 + . . .+ IkDk)

∗. This language
can be recognized using a text automaton A = (B,C) where B verifies (1) and
C verifies (2). It is easy to see that L(PA) is non-empty if and only if L(A) is
non-empty.

5 Reduction from Logic to Automata

In this section we show that given an FO2 (Σ,≺1,≺2) formula we can transform
it into an equivalent text automaton. Below, we shorthand the formula ¬x ≺1 y
as x �≺1 y, similarly the others too. First of all, given a formula ϕ ∈ FO2(Σ,≺1
,≺2) we transform it into an equivalent formula in Scott normal form which is
of the form,

∃R1 . . . Rn

(
∀x∀y χ ∧

∧
i

∀x∃y ψi

)
where the predicates Ri are unary, and χ and ψi are quantifier-free formulas in
FO2(Σ,≺1,≺2). The resulting formula is linear in terms of the size of the original
formula. Earlier we showed that text automata are closed under renaming and
intersection. Therefore it suffices to show that we can construct a text automaton
for each of the formulas ∀x∃y χ and ∀x∃y ψi. The following two lemmas show
precisely that.

In the following a type is a one variable quantifier-free formula containing only
unary predicates.

Lemma 5. Given an FO2(Σ,≺1,≺2) formula of the form ϕ = ∀x∀y χ where χ
is quantifier free, an equivalent text automaton of doubly exponential size can be
constructed.

Proof. Firstly, we write ϕ in CNF causing an exponential blowup in the size
of the formula, followed by distributing the universal quantification over the
conjunctions and rewriting the formula as

∧
i ∀x∀y χi where each χi is of the

form,
χi = α(x) ∨ β(y) ∨ ε(x, y) ∨ δ1(x, y) ∨ δ2(x, y).

Above α(x) and β(y) are unary types. The formulas in the group ε(x, y) are x = y
and x �= y. The formula δ1 is a disjunction of literals from the setO1 and δ2 is a dis-
junction of literals from the set O2, where O1 = {x ≺1 y, x �≺1 y, y ≺1 x, y �≺1 x}
and O2 = {x ≺2 y, x �≺2 y, y ≺2 x, y �≺2 x}. It is enough to construct a text au-
tomaton for each χi since the automata are closed under intersection. The alpha-
bet Σ of the automata is going to be bit vectors which represent the evaluation of
the unary predicates including Ri used in the formula at a given position. Hence,
the size of the alphabet is exponential in the length of the formula. The automaton
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we construct in each case has constant number of states, but may have exponen-
tially many transitions. Finally the intersection of these automata is of size doubly
exponential.

We note that whenever χi describes a regular property, we can construct an
equivalent text automaton by converting the finite state automaton equivalent
to χi. If one of δ1(x, y) and δ2(x, y) is absent, the formula χi describes a regular
property over one linear order. Therefore we restrict our attention to those χi
where both δ1 and δ2 are present. Suppose ε(x, y) ≡ x = y ∨ x �= y. In this case,
the formula is tautology hence we construct a text automaton which accepts all
texts.

Suppose ε(x, y) ≡ x �= y. In this case we can rewrite χi as,

χi ≡ [α′(x) ∧ β′(y) ∧ x = y] → [δ1(x, y) ∨ δ2(x, y)] .

Substituting x for y, we can see that the consequent reduces to either ) or ⊥.
In both cases, the formula describes a regular property.

When ε(x, y) ≡ x = y and δ1(x, y) or δ2(x, y) contains a negative literal, we
can rewrite χi in one of the following two forms,

χi ≡ [α′(x) ∧ β′(y) ∧ x �= y ∧ δ′1(x, y)] → δ2(x, y),
χi ≡ [α′(x) ∧ β′(y) ∧ x �= y ∧ δ′2(x, y)] → δ1(x, y),

where α′, β′, δ′1, δ
′
2 are the negations of α, β, δ1, δ2 respectively. We choose the

appropriate form such that δ′1(x, y) or δ′2(x, y) contains a positive literal. In this
case the automaton can verify the formula χi by looking at the marked string
projection to ≺1 or ≺2 depending upon the chosen form.

The only remaining case is when ε(x, y) ≡ x = y, and neither δ1 nor δ2
contains a negative literal, that is when δ1 and δ2 are disjunctions of positive
literals. We rewrite χi in the following form,

χi = [α′(x) ∧ β′(y) ∧ x �= y] → [δ1(x, y) ∨ δ2(x, y)] .

The formula says the following. Whenever α′ holds at x and β′ holds at y and
x, y are distinct then either they are neighbours in ≺1 as dictated by δ1 or
neighbours in ≺2 as dictated by δ2. If there is no α′ in the word there can be any
number of β′. Similarly there can be any number of α′ if there is no β′ occurring
in the word. The automaton B can guess both these cases and verify them easily.
When there is at least one α′ and β′ present in the word the number of α′ and
β′ are bounded. Therefore in this case the formula χi can be checked by a text
automaton by labelling the α′ and β′.

This completes the proof.

Lemma 6. For each FO2(Σ,≺1,≺2) formula of the form ∀x∃y ψ where ψ is
quantifier free, an equivalent text automaton of doubly exponential size can be
constructed.

Proof. First of all, ψ can be written (using the truth table for ψ) as an exponen-
tial size conjunction of disjunctions of the form ∀x∃y

∧
i

∨
j [αi(x) → θij(x, y)],
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where αi enumerates through all possible maximal types, that is
∨

i(αi(x)) is a
tautology and ¬ (αi(x) ∧ αj(x)) for all i �= j. The formula θij is either ⊥ or of
the form,

β(y) ∧ ε(x, y) ∧ δ1(x, y) ∧ δ2(x, y)

where, β is a type, ε is one of x = y, x �= y, δ1 is in O1 and δ2 is in O2.
We notice that the premise occurring in distinct conjuncts are distinct (and

mutually exclusive). Hence it is possible to distribute the ∀x∃y over the con-
junction. The resulting formula is of the form, ∧i∀x∃y ∨j (αi(x) ⊃ θij(x, y)).
We eliminate the disjunction by adding to every disjunct a new unary predicate
Λij(x) which denotes that at the position x, the j-th disjunct is witnessing αi.
We can rewrite every conjunct in the above formula as,

∃Λi1Λi2 . . . (∀x ∨j Λij(x)) ∧
∧
j

∀x∃y [(αi(x) ∧ Λij(x)) → θij(x, y)]

A text automaton can guess the predicates Λij . So it is enough to construct
a text automaton for each formula of the form ∀x∃y [α(x) ⊃ θij(x, y)]. If the
consequent is false, the language is regular. So we concentrate on the cases where
the consequent is satisfiable.

∀x∃y [α(x) → (β(y) ∧ ε(x, y) ∧ δ1(x, y) ∧ δ2(x, y))]

We do a case analysis. If ε(x, y) ≡ x = y, the language is regular. Hence now
onwards we fix ε to be x �= y.

As in the previous proof, we have two cases, when δ1 or δ2 contains a positive
literal and when they do not. If δ1 or δ2 contains a positive literal, we can easily
verify the formula by looking at the marked string projection to the appropriate
order.

The only remaining case is when neither δ1 nor δ2 contains a positive literal.
Consider the case when δ1 ≡ x �≺1 y and δ2 ≡ x �≺2 y. The formula says that if
there is an α at x there should be a witness y with β holding there, such that y
is not a successor of x in both the orders. Notice that if there are at least four β
occurring in the word we will be able to find a witness for any α. The automaton
guesses whether the word contains at least four β and verifies it, in which case
the formula is taken care of. If the automaton guesses that the word contains
fewer than four β, it labels each β distinctly and verifies that for every αthere is
atleast one β witnessing it. Since the number of β is bounded, this can be done
easily.

In the cases where δ1 ∧ δ2 is one of y �≺1 x ∧ x �≺2 y, x �≺1 y ∧ y �≺2 x,
y �≺1 x ∧ y �≺2 x, the sufficient number of β is three. When δ1 ∧ δ2 is x �≺1
y ∧ y �≺1 x ∧ x �≺2 y ∧ y �≺2 x, the sufficient number of β is five. In all other
cases the sufficient number of β is four. In all the above cases, the construction
is similar.

This completes the proof.

Now, we can state the main result.
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Theorem 3. FinSat of FO2(Σ,≺1,≺2) is in 2-Nexptime.

In [15], it is shown that FinSat of FO2(Σ) and FinSat of FO2(≺) with one
unary predicate are Nexptime-hard. This lower bound applies to FinSat of
FO2(Σ,≺1,≺2) as well.

Using a reduction to PCP similar to the one in [3] we can show the following.

Theorem 4. The satisfiability problems for the following logics are undecidable.

(a) FO2
(
Σ,≺1,≺+

1 ,≺2,≺+
2

)
(b) FO3 (Σ,≺1,≺2)
(c) FO2 (Σ,≺1,≺2

1,≺3
1,≺2,≺2

2
)

The above theorem has to be compared with Proposition 29 from [3].

6 Discussion and Conclusion

In this paper we introduced a class of automata working over texts. Using this
we proved that FO2(Σ,≺1,≺2) is decidable in 2-Nexptime. The present lower
bound is the obvious one, Nexptime, leaving a gap of one exponent.

In the beginning we showed that FO2(Σ,≺1,≺2,≺+
1 ,≺+

2 ) is undecidable.
From [12] we know that FO2(Σ,≺+

1 ,≺+
2 ) is decidable in Expspace. This leaves

open the decidability question of the following fragments (we omit the sym-
metric cases) FO2(Σ,≺1,≺+

2 ), FO2(Σ,≺1,≺2,≺+
2 ). However, it is interesting to

note that these fragments contain languages which are not accepted by any text
automaton. Consider the following languages,

L1 = {T | T |= ∀x∀y
(
a(x) ∧ a(y) ∧ x ≺+

1 y ⊃ x ≺+
2 y
)
}

L2 = {T | T |= ∀x∀y
(
a(x) ∧ a(y) ∧ x ≺1 y ⊃ x ≺+

2 y
)
}

The language L1 is definable in FO2(Σ,≺+
1 ,≺+

2 ) and L2 in FO2(Σ,≺1,≺+
2 )

[also in FO2(Σ,≺1,≺2,≺+
2 )]. To show that these languages are not accepted by

any text automaton, we refer back to lemma 3. We considered a text T1 which
belongs to LM , note that T1 also belongs to both L1 and L2. Using a similar
argument we can construct the text T′

1 which does not belong to L1 (also L2),
but is accepted by any automata accepting L1 (alternatively L2). This essentially
shows that our automaton is unable to check any transitive relations. This also
implies the theorem which is proved in [13].

We want to draw the attention to why the decidability proof does not gener-
alize to FO2 (Σ,≺1,≺2,≺3). The reason is that we relied on msp≺1

to compute
msp≺2

. This step is not possible in the case of three successor relations. This
can be however overcome by providing the component automata (each running
on ≺1,≺2 and ≺3) with their own marked string projection, in which case it is
not clear how to prove the decidability of the text automaton.
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Abstract. We provide a strong normalization result for MLF, a type
system generalizing ML with first-class polymorphism as in system F.
The proof is achieved by translating MLF into a calculus of coercions,
and showing that this calculus is just a decorated version of system F.

Keywords: MLF, strong normalization, coercions, polymorphic types.

1 Introduction

One of the most efficient techniques for assuring that a program“behaves well” is
static type-checking : types are assigned to every subexpression of a program, so
that consistency of such an assignment (checked at compile time) implies well-
behavedness. Such assignment may be explicit, i.e. requiring the programmer to
annotate the types at key points in the program (e.g. variables), as in C or Java.
Otherwise we can free the programmer of the hassle and leave to an automatic
type reconstructor, part of the compiler, the boring task of scattering the code
with types. One of the most prominent examples of this approach is ML [1] and
its dialects, a functional programming language, as such based on λ-calculus.

In this context type polymorphism allows greater flexibility, making it pos-
sible to reuse code that works with elements of different types. For example
an identity function will have type α → α for any α, so one can give it the
type ∀(α)(α → α). However full polymorphism (like in system F [2]) leads to
undecidable type systems: no automatic reconstructor would be available. For
this reason ML has the so called second-class polymorphism (i.e. available only
for named variables), more restricted but allowing a type inference procedure.
Unfortunately, the programmer is also forced to use second-class polymorphism
only. One could wish for a more flexible approach, where one would write just
enough type annotations to let the compiler’s type reconstructor do the job,
while still being able to employ first-class polymorphism, if desired.

MLF [3] answers this call by providing a partial type annotation mechanism
with an automatic type reconstructor. This extension allows to write system F
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programs, which is not possible in general in ML, while remaining conservative:
ML programs still type-check without needing any annotation. An important
feature are principal type schemata, lacking in system F, which are obtained
by employing a downward bounded quantification ∀(α ≥ σ)τ , called a flexible
quantifier. Such a type intuitively denotes that τ may be instantiated to any
τ {σ′/α}, provided that σ′ is an instantiation of σ. Usual quantification is recov-
ered by allowing ⊥ (morally equivalent to ∀α.α) as bound. MLF also uses a rigid
quantifier ∀(α = σ)τ , fundamental for type inference but not for the semantics1.

One of the properties of well-behavedness that a type system can assure is
strong normalization (SN), that is the termination of all typable programs what-
ever execution strategy is used. For example, system F is strongly normalizing.
As already pointed out, system F is contained in MLF; it is not yet known, but it
is conjectured [3], that the inclusion is strict. This makes the question of SN of
MLF a non-trivial one, to which we answer positively in this paper. The result is
proved via a suitable simulation in system F, with additional decorations dealing
with the complex type instantiations possible in MLF.

Our starting point is xMLF [4], the Church version of MLF, briefly presented
in section 2. In xMLF type inference and the rigid quantifier ∀(α = σ)τ are aban-
doned, with the aim of providing an internal language to which a compiler might
map the surface language briefly presented above (which in fact is denoted more
precisely by eMLF2). Compared to Church-style system F, the type reduction →ι

of xMLF is more complex, and may a priori cause unexpected glitches: it could
cause non-termination, or block the reduction of a β-redex. To prove that none
of this happens, we use as target language of our translation a decoration of
system F, the coercion calculus Fc, which has its own interest. Indeed, xMLF has
syntactic entities (the instantiations φ) testifying an instance relation between
types, and it is natural to regard them as coercions. The delicate point is that
some of these instantiations (the “abstractions” !α) behave in fact as variables,
abstracted when introducing a bounded quantifier: in a way, ∀(α ≥ σ)τ expects
a coercion from σ to α, whatever the choice for α may be.

A question naturally arising is: what does it mean to be a coercion in this con-
text, where such operations of coercion abstraction and substitution are avail-
able? Our answer, which works for xMLF, is in the form of a type system (Fc,
Figure 2). In section 3 we will show the good properties enjoyed by Fc: it is a
decoration of system F, so it is SN; moreover it has a coercion erasure which
ideally recovers the actual semantics of a term, and establishes a weak bisimula-
tion with system F, where coercion reductions →c take the role of silent actions,
while β-reduction →β remains the observable one.

The generality of coercion calculus allows then to lift these results to xMLF

via the above mentioned translation (section 4). Its main idea is the same as for
the one shown for eMLF in [5], where however no dynamic property was studied.

1 Indeed ∀(α = σ)τ can be regarded as being τ {σ/α}.
2 There is also a completely annotation-free version, iMLF, clearly at the cost of loosing

type inference. For details on the different versions of MLF, the reader may be referred
to http://gallium.inria.fr/~remy/mlf/

http://gallium.inria.fr/~remy/mlf/
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Here we produce a proof of SN for all versions of MLF. Moreover the bisimulation
result establishes that xMLF can indeed be used as an internal language for eMLF,
as the additional structure cannot block reductions of the intended program.

As a final note before entering the details of the work, one may wonder whether
the candidates of reducibility deliver the same result, and indeed it was the first
approach we tried. A näıve interpretation3 fails in general. A more elaborate
interpretation works for the recast version [6], and in any case only for the β-
reduction, leaving outside the type reduction (the ι one). Contrary to system
F the latter is non trivial, so its presence is another reason for abandoning the
reducibility approach.

Notations. Given reductions →1 and →2, we write →1→2 (resp. →12) for their
concatenation (resp. their union). Moreover ←, +→, =→ and ∗→ denote the trans-
pose, the transitive, the reflexive and the transitive-reflexive closures of → re-
spectively. In confluence diagrams, solid arrows denote reductions one starts
with, while dashed arrows are the entailed ones.

2 A Short Presentation of xMLF

Currently, MLF comes in a Curry-style version iMLF, where no type information
is needed, and a type-inference version eMLF requiring partial type information,
though a large amount of type information is still inferred. A truly Church-style
version of MLF, called xMLF, has been recently introduced in [4] and will be our
main object of study in this paper. However, we will draw conclusions for iMLF

and eMLF too. We warn the reader that we we will only present the definition
we need, while we refer to [4] for an in-depth discussion on xMLF.

All the syntactic definitions of xMLF can be found in Figure 1. Types include:
usual variable and arrow types; a type ⊥ corresponding to system F’s type ∀α.α;
the flexible quantification ∀(α ≥ σ)τ generalizing ∀α.τ of system F. Intuitively,
∀(α ≥ σ)τ restricts the variable α to range just over instances of σ. The variable
α is bound in τ but not in σ. The instantiation φ maps a type σ to a type τ
which is an instance of σ. Thus φ can be seen as a ‘witness’ of the instance
relation holding between σ and τ . In ∀(α ≥)φ, α is bounded in φ.

Environments Γ are finite maps assigning types (resp. bounds) to term (resp.
type) variables. We write: dom(Γ ) for the set of all term and type variables that
are bound by Γ ; ftv(τ) for the set of type variables appearing free in τ . Environ-
ments of shape Γ, α ≥ τ, Γ ′ or Γ, x : τ, Γ ′ are well-formed if ftv(τ) ⊆ dom(Γ ).
All environments in this paper are supposed to be well-formed. Reduction rules
are divided into →β (regular β-reductions) and →ι, reducing instantiations. We
recall (from [4, Sec. 2.1]) that both →β and →ι enjoy subject reduction. One of
the ι-steps uses the definition of type instantiation τφ, giving the unique type
such that Γ � φ : τ ≤ τφ, if φ type-checks.

The original calculus contains a let construct which is however added mainly
to accommodate eMLF’s type reconstructor. In the whole paper we suppose that
3 Namely interpreting flexible quantification by [[∀α ≥ σ.τ ]]Σ = ∩S⊇[[σ]]Σ

[[τ ]]Σ[α�→S].



528 G. Manzonetto and P. Tranquilli

Syntactic definitions

α, β, . . . (type variables) x, y, z, . . . (variables)
σ, τ ::= α | σ → τ | ⊥ | ∀(α ≥ σ)τ (types) a, b, c ::= x | λ(x : τ)a | ab
φ, ψ ::= τ | φ;ψ | 1 | & | ` | Λ(α ≥ τ)a | aφ

| !α | ∀(≥ φ) | ∀(α ≥)φ
(instantiations) | letx= a in b

(terms)

Γ ::= ∅ | Γ, α ≥ τ | Γ, x : τ (environments) A,B ::= a | φ (expressions)

Instantiation rules

IBot
Γ � τ : ⊥ ≤ τ

Γ, α ≥ τ � φ : τ1 ≤ τ2
IUnder

Γ � ∀(α ≥)φ : ∀(α ≥ τ)τ1 ≤ ∀(α ≥ τ)τ2

α ≥ τ ∈ Γ
IAbs

Γ � !α : τ ≤ α

Γ � φ : τ1 ≤ τ2
IInside

Γ � ∀(≥ φ) : ∀(α ≥ τ1)τ ≤ ∀(α ≥ τ2)τ

α /∈ ftv(τ)
IIntro

Γ � ` : τ ≤ ∀(α ≥ ⊥)τ
IElim

Γ � & : ∀(α ≥ σ)τ ≤ σ {τ/α}
Γ � φ : τ1 ≤ τ2 Γ � ψ : τ2 ≤ τ3

IComp
Γ � φ;ψ : τ1 ≤ τ3

IId
Γ � 1 : τ ≤ τ

Typing rules

Γ (x) = τ
Var

Γ � x : τ

Γ � a : τ Γ, x : τ � b : σ
Let

Γ � letx= a in b : σ

Γ, x : τ � a : σ
Abs

Γ � λ(x : τ)a : τ → σ

Γ � a : σ → τ Γ � b : σ
App

Γ � ab : τ

Γ, α ≥ σ � a : τ α /∈ ftv(Γ )
TAbs

Γ � Λ(α ≥ σ)a : ∀(α ≥ σ)τ

Γ � a : τ Γ � φ : τ ≤ σ
TApp

Γ � aφ : σ

Type instantiation

τ(!α) := α, ⊥τ := τ, τ1 := τ, τ(φ;ψ) := (τφ)ψ,
τ` := ∀(α ≥ ⊥)τ, α /∈ ftv(τ), (∀(α ≥ σ)τ)& := τ {σ/α} ,
(∀(α ≥ σ)τ)(∀(≥ φ)) := ∀(α ≥ σφ)τ, (∀(α ≥ σ)τ)(∀(α ≥)φ) := ∀(α ≥ σ)(τφ).

Reduction rules

(λ(x : τ)a)b →β a {x/b} a` →ι Λ(α ≥ ⊥)a, α /∈ ftv(τ)
letx= b in a →β a {x/b} (Λ(α ≥ τ)a)& →ι a {1/!α} {τ/α}

a1 →ι a (Λ(α ≥ τ)a)(∀(α ≥)φ) →ι Λ(α ≥ τ)(aφ)
a(φ;ψ) →ι (aφ)ψ (Λ(α ≥ τ)a)(∀(≥ φ)) →ι Λ(α ≥ τφ)a {φ; !α/!α}

Fig. 1. Syntactic definitions, typing and reduction rules of xMLF

in all xMLF terms every letx= a in b has been replaced by (λ(x : σ)b)a, with σ
the correct type of a.

The type erasure �a� of an xMLF (or eMLF) term a is straightforwardly defined
by erasing all type and instantiation annotations, mapping a to an ordinary λ-
term. From [4, Lemma 7, Theorem 6 and §4.2] we know the following.

Theorem 1. For every iMLF or eMLF term a, there is an xMLF term [[a]] such
that �[[a]]� = �a�4.
4 We only need to apply type erasure on the right for partially annotated eMLF terms.
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3 The Coercion Calculus Fc

In this section we will introduce the coercion calculus Fc, which is (as shown in
subsection 3.2) a decoration of system F accompanied by a type system. Before
introducing the details, we point out that the version of Fc presented here is
tailored down to suit xMLF. As such, there are natural choices that have been
intentionally left out or restrained. If Fc is to serve as a good meta-theory of coer-
cions, more liberal choices and constructs are needed, as discussed at page 536.
The syntax, the type system and the reduction rules of Fc

5 are presented in
Figure 2. In this calculus the notion of ‘coercion’ is captured by suitable types.

Syntactic definitions
α, β, . . . (type variables) Γ ::= ∅ | x : τ, Γ
σ, τ ::= α | σ → τ | x : σ � α, Γ

(regular env.)

| κ → τ | ∀α.τ (types)
L ::= ∅ | z : τ (linear env.)

κ ::= σ � τ (coercion types) Γ ;L (environments)
ζ ::= τ | κ (type expr.) Γ ;�t a : σ (term judgements)
x, y, z, . . . (variables) Γ ;�c a : σ � τ (coercion judgements)
a, b ::= x | λx.a | λx.a | λx.a Γ ; z : τ �� a : σ (linear judgements)

| ab | a  b | a � b
(terms) �xy, x, y ∈ { t, c, � } stands for �x or �y.

u, v ::= λx.a | λx.u | x  u (c-values)

Typing rules

Γ (y) = ζ
Ax

Γ ;�t� y : ζ

Γ, x : τ ;�t a : σ
Abs

Γ ;�t λx.a : τ → σ

Γ ;�t a : σ → τ Γ ;�t b : σ
App

Γ ;�t ab : τ

LAx
Γ ; z : τ �� z : τ

Γ ; z : τ �� a : σ
LAbs

Γ ;�c λz.a : τ � σ

Γ, x : κ;L �t� a : σ
CAbs

Γ ;L �t� λx.a : κ → σ

Γ ;�c a : σ1 � σ2 Γ ;L �t� b : σ1
LApp

Γ ;L �t� a  b : σ2

Γ ;L �t� a : κ → σ Γ �c b : κ
CApp

Γ ;L �t� a � b : σ

Γ ;L �t� a : σ α /∈ ftv(Γ ;L)
Gen

Γ ;L �t� a : ∀α.σ
Γ ;L �t� a : ∀α.σ

Inst
Γ ;L �t� a : σ {τ ′/α}

Reduction rules

(λx.a)b →β a {b/x} , ( λx.a) � b →c a {b/x} , (λx.a)  b →c a {b/x} ,
( λx.u) � b →cv u {b/x} , (λx.a)  u →cv a {u/x} , if u is a c-value.

Fig. 2. Syntactic definitions, typing and reduction rules of coercion calculus

Definition 2 (Coercion). An Fc term a is a coercion if Γ ;�c a : σ � τ .

The use of linear implication for the type of coercions is not casual. Indeed the
type system can be seen as a fragment of DILL, the dual intuitionistic linear
logic [7]. This captures an aspect of coercions: they consume their argument
5 We present the coercion calculus in Curry-style, whereas arguably its usefulness

outside of this work would rather be in Church-style (which is easy to define).
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without erasing it (as they must preserve it) nor duplicate it (as there is no
true computation, just a type recasting). Environments are of shape Γ ;L, where
Γ is a map from variables to type expressions, and L is the linear part of the
environment, containing (contrary to DILL) at most one assignment. Notice the
restriction to σ � α for coercion variables, which might at first seem overtly
restrictive. However, Theorem 19 relies on this restriction, though the preceding
results do not. Alternative, more permissive restrictions preserving the bisimu-
lation result are left for future work.

Typing judgments come in three sorts. However, the subscripts we use to
distinguish them (�t, �c and ��) are only for easy recognition, as the sort of the
judgment can be recovered from the shape of the environment and the type.

A note on DILL and λ-calculus. The language presented in [7] is the term calculus
of the logical system, and as such has a constructor for every logical rule. Notably,
that work provides no intuitionistic arrow, as the translation A→ B ∼= !A � B
is preferred. Employing DILL as a type system for ordinary λ-terms leads to
a system (which we might call F�) using types rather than terms to strictly
differentiate between linear and regular constructs. This system is known as
folklore6 but, as far as we know, it has never been studied in the literature. The
absence of a thorough presentation of F� prevents us from deriving properties
such as subject reduction (Theorem 7) more or less directly from a more general
framework. We leave to further work the rather straightforward presentation of
such a system together with a more general version of Fc, along the lines hinted
at page 536.

Syntax. Fc terms are extensions of usual λ-terms with two abstractions λ, λ
and two applications +, -. The linear abstraction λ (whose application is +) is
used by coercions to ask for the regular term to coerce, so they cannot erase or
duplicate it. The coercion abstraction λ(whose application is -) can be used in
regular or coercion terms to ask for a coercion, so it is not subject to particular
restrictions. The applications +, - locate coercions within the terms without
carrying the typing around: the triangle’s side indicates where the coercion is.

Reductions. Reduction steps are divided into →β (the actual computation) and
→c (the coercion reduction). The reduction →c has a conditional subreduction
→cv that fires c-redexes only when c-values are at the right of the + or left of
the -. Intuitively, this reduction is what is strictly necessary to “unearth” a λ-
abstraction. Its main role here is that it is general enough to have bisimulation
(Theorem 19) and small enough to correspond to xMLF’s ι-steps (Theorem 26).
As usual, rules are closed by context.

3.1 Some Basic Properties of Fc

We start presenting some basic properties of the coercion calculus. The first
statements restrain the shape and the behaviour of coercions.
6 As an example we might cite [8], where a fragment of F� is used to characterize

poly-time functions.
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Remark 3. A coercion a is necessarily either a variable or a coercion abstraction,
as Ax and LAbs are the only rules having a coercion type in the conclusion.

Lemma 4. If Γ ;L �c� a : ζ then no subterm of a is of the form λx.b or bc. In
particular a is β-normal.

Lemma 5. Let a be an Fc term. If Γ ;�c a : σ � τ , then a is cv-normal.

Proof. Immediate by Theorem 4: there cannot be any subterm λx.a′ of a, so in
particular a does not contain any c-value. 


Following are basic properties of type systems. Note that though there are two
substitution results (points (ii), (iii) below) to accommodate the two types of
environment, no weakening property is available to add the linear assignment.

Lemma 6 (Weakening and substitution). We have the following:

(i) Γ ;L �tc� a : ζ and x /∈ dom(Γ ;L) entail Γ, x : ζ′;L �tc� a : ζ;
(ii) Γ ;�tc a : ζ′ and Γ, x : ζ′;L �tc� b : ζ entail Γ ;L �tc� b {a/x} : ζ;
(iii) Γ ;L �t� a : σ and Γ ;x : σ �� b : ζ entail Γ ;L �t� b {a/x} : ζ.

Proposition 7 (Subject reduction). If a →βc b and Γ ;L �t�c a : ζ, then
Γ ;L �t�c b : ζ.

Proposition 8 (Confluence). All of →β, →c, →cv and →βc are confluent.

Proof. The proof by Tait-Martin Löf’s technique of parallel reductions does not
pose particular issues. 


3.2 Coercion Calculus as a Decoration of System F

The following definition presents the coercion calculus as a simple decoration of
usual Curry-style system F. The latter can be recovered by just collapsing the
extraneous constructs �, λ, λ, - and + to their regular counterpart. Notably
this will lead to a strong normalization result.

Definition 9. The decoration erasure is defined by:

|α| := α, |ζ → τ | := |ζ|→ |τ |, |σ � τ | := |σ|→ |τ |,
|x| := x, |λx.a| = |λx.a| = | λx.a| := λx.|a|, |a - b| = |a + b| = |ab| := |a||b|,

|Γ |(y) := |Γ (y)| for y ∈ dom(Γ ), |Γ ; z : τ | := |Γ |, z : |τ |.

The next lemma ensures that the decoration erasure preserves typability (with
system F’s typability denoted by �F).

Lemma 10. Let a be an Fc term. If Γ ;L �t� a : ζ then |Γ ;L| �F |a| : |ζ|.

Proof. It suffices to see that through | . | all the new rules collapse to their regular
counterpart: LAx becomes Ax, CAbs, LAbs become Abs, and CApp, LApp

become App. In the latter cases the weakening lemma for �F may have to be
applied to add the missing z : |τ | to one of the two branches. 
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Lemma 11. Given an Fc term a we have |a| {|b|/x} = |a {b/x} |. Moreover, if
a→βc b then |a|→ |b|. If a is typable, then |a|→ c implies c = |b| with a→βc b.

Proof. The first two claims are immediate. The converse needs the typability
hypothesis: take |a| = (λx.b′1)b

′
2, then there are bi with |bi| = b′i and a is one

of nine combinations ((λx.b1)b2, (λx.b1)b2, (λx.b1) - b2, etc.). However as a is
typable only the three matching combinations are possible, giving rise to the
three possible redexes in the coercion calculus. 


Corollary 12 (Termination). The coercion calculus is strongly normalizing.

Proof. Immediate by Lemmas 10 and 11, using the strong normalization of sys-
tem F [2, Sec. 14.3]. 


3.3 Preservation of the Semantics

We will now turn to establishing why coercions a : τ � σ can be truly called
such. First, we need a way to extract the semantics of a term, i.e., a way to strip
it of the structure one may have added to it in order to manage coercions.

Definition 13. The coercion erasure is defined by

�x� := x, �λx.a� := λx.�a�, �ab� := �a��b�,
�λx.a� = � λx.a� := �a�, �a - b� := �a�, �a + b� := �b�.

Lemma 14.

(i) If Γ, x : κ;L �t� a : σ then x /∈ fv(�a�);
(ii) if Γ ; z : τ �� a : σ then �a� = z.

Notice that property (i) above entails that � . � is well-defined with respect to
α-equivalence on regular, typed terms: given a term λx.a issued from a coer-
cion abstraction, � λx.a� = �a� is independent from x. This is not the case for
coercions, as for example �λx.x� = x.

As for property (ii), it greatly restricts the form of a coercion: if a : σ � τ then
it is either a variable or an abstraction λx.a′ (as already written in Theorem 3),
with �a′� = x. Apart when they are variables, coercions are essentially identities.

The problem whether the erasure maps Fc to a larger set of terms than sys-
tem F is an open one, probably related to the open question whether MLF types
more terms than System F.

A note on unrestricted coercion variables. If we dropped the condition on coer-
cion variables, namely that they are typed σ � α in the context, we would get
way too many terms: indeed the coercion erasure would cover the whole of the
untyped λ-calculus. It would suffice to use two coercion variables yo→o : o �
(o → o) and yo : (o → o) � o modelling the recursive type o → o . o. For ex-
ample, we would have aδ := yo + (λx.(yo→o +x)x) : o and aΔ := (yo→o +aδ)aδ : o,
though �aΔ� = (λx.xx)(λx.xx) is the renown divergent and untypable term.
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Lemma 15. �a {b/x}� = �a� {�b�/x}.
Lemma 16. If Γ ;x : τ �� a : σ and b→β c, then a {b/x}→β a {c/x}.
Proof (sketch). Essentially the proof is by linearity of x in a. Formally it is
carried out by an easy induction on the derivation. 

The following will state some basic dynamic properties of coercion reductions.
Intuitively we will prove that β-steps are actual steps of the semantics (point
(ii)) and that c-steps preserves it in a strong sense: they are collapsed to the
equality (point (iii)) and they preserve β-steps (point (i)).

Proposition 17. Suppose that a is an Fc term. Then:
(i) if b1 ←c a→β b2 then there is c with b1 →β c

∗←c b2;
(ii) if a→β b then �a�→ �b�;
(iii) if a→c b then �a� = �b�.

a b2

b1 c

β

c c∗
β

In order to truly see coercions as additional information that is not strictly
needed for reduction, one may ask that some converse of property (ii) should
also hold. Here the condition on coercion variables (x : σ � α) starts to play a
role7. Indeed in general this is not the case: take a = λy.(y + I)I with I = λx.x,
that would be typable with ;� a : (σid � σid) → σid (where σid := ∀α.(α → α)).
Its coercion erasure is typable but it has a redex that is blocked by a coercion
variable.

With the condition on coercion variables in place we are ready to prove a
complete correspondence between the β-reductions of the coerced terms and the
ones of their coercion erasure. In fact Theorem 19 states that a �→ �a� is a weak
bisimulation for →β , taking →cv as the silent actions on the side of coercion
calculus. The proof uses the following lemma.

Lemma 18. Every typable cv-normal term a such that �a� = λx.b is a c-value.
In particular if a has an arrow type then a = λx.c with �c� = b.

Theorem 19 (Bisimulation of � . �). If Γ ;�t a : σ, then
�a�→β b iff a

∗→cv→β c with �c� = b.

a c

�a� b

cv∗ β

/
β

Proof. The if part is given by Theorem 17. For the only if part we can suppose
that a = a1a2 with �a1� = λx.d, so that (λx.d)�a2� is the redex fired in �a�, i.e.
b = d {�a2�/x}. We can reduce to such a case reasoning by structural induction
on a, discarding all the parts of the context where the reduction does not occur.

As a1 is applied to a2 there is a derivation giving Γ ′;�t a1 : τ → τ ′ for some
Γ ′, τ, τ ′. We can then cv-normalize a1 to a′1 (Theorem 12), which by subject
reduction has the same type. Moreover by Theorem 17(iii) �a′1� = �a1� = λx.d,
and we conclude by Theorem 18 that a′1 = λx.e with �e� = d, and we fi-
nally get a1a2

∗→cv (λx.e)a2 →β e {a2/x}. Now by Theorem 15 �e {a2/x}� =
�e� {�a2�/x} = d {�a2�/x} = b and we are done. 

Notice that the above result entails bisimulation with →c as a more general silent
action: Theorem 17 gives the if part, while →cv ⊆→c gives the only if one.
7 All the results shown so far are valid also without such a condition.
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Types and contexts

α• := α, (σ → τ)• := σ• → τ•, (x : τ)• := x : τ•,

⊥• := ∀α.α, (∀(α ≥ σ)τ)• := ∀α.(σ• � α) → τ•, (α ≥ τ)• := iα : τ• � α.

Instantiations

τ◦ := λx.x, (`)◦ := λx. λiα.x, (φ;ψ)◦ := λz.ψ◦  (φ◦  z),
(!α)◦ := iα, (&)◦ := λx.x � λz.z, (1)◦ := λz.z,

(∀(≥ φ))◦ := λx. λiα.x � (λz.iα  (φ◦  z)),
(∀(α ≥)φ)◦ := λx. λiα.φ

◦  (x � iα).

Terms

x◦ := x, (λ(x : τ)a)◦ := λx.a◦, (ab)◦ := a◦b◦,

(Λ(α ≥ τ)a)◦ := λiα.a
◦, (aφ)◦ := φ◦  a◦.

Fig. 3. Translation of types, instantiations and terms into the coercion calculus. For
every type variable α we suppose fixed a fresh term variable iα.

4 The Translation

A translation from xMLF terms and instantiations into the coercion calculus is
given in Figure 3. The idea is that instantiations can be seen as coercions; thus
a term starting with a type abstraction Λ(α ≥ τ) becomes a term waiting for
a coercion of type τ• � α, and a term aφ becomes a◦ coerced by φ◦. The rest
of this section is devoted to showing how this translation and the properties of
the coercion calculus lead to the main result of this work, SN of both xMLF and
eMLF. First one needs to show that the translation maps to typed terms. Then
with a substitution lemma we will be close to our result.

Lemma 20. Let a be an xMLF term and φ be an instantiation:

(i) if Γ � φ : σ ≤ τ then Γ •;�c φ◦ : σ• � τ•.
(ii) if Γ � a : σ then Γ •;�t a◦ : σ•.

Lemma 21. Let A be an xMLF term or an instantiation. Then we have:

(i) (A {b/x})◦ = A◦ {b◦/x},
(ii) (A {1/!α} {τ/α})◦ = A◦ {λz.z/iα},
(iii) (A {φ; !α/!α})◦ = A◦ {(λz.iα + (φ◦ + z))/iα}.

Theorem 22 (Coercion calculus simulates xMLF). If a→β b (resp. a→ι b)
in xMLF, then a◦ →β b

◦ (resp. a◦ +→c b
◦) in coercion calculus.

Proof. (Sketch) As the translation is contextual, it suffices to analyze each re-
duction rule, perform the reductions and apply Theorem 21 where needed. 


Corollary 23 (Termination). xMLF is strongly normalizing.
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The above already shows SN of xMLF, however in order to prove that eMLF is
also normalizing we need to make sure that ι-redexes cannot block β ones: in
other words, a bisimulation result. We first need some technical lemmas, proved
by structural induction. We recall that �a� is the type erasure of a (page 528).

Lemma 24. The type erasure of an xMLF term a coincides with the coercion
erasure of its translation, i.e. �a� = �a◦�.
Lemma 25.

(i) If a◦ →β b then a→β c with c◦ = b;
(ii) if a◦ →cv b then a→ι c with b =→cv c

◦.

a c

a◦ b

β

β

a c

a◦ b c◦

ι

cv cv=

Notice that the above is not true in general for →c in place of →cv: for example
x& is normal in xMLF, but (x&)◦ = (λy.y) + x→c x.

The following lemma allows us lift to xMLF the reduction in coercion calculus
that bisimulates β-steps (see Theorem 19).

Lemma 26 (Lifting). Given a typed xMLF term a, we have
that if a◦ ∗→cv→β b then a ∗→ι→β c with b ∗→c c

◦.

a c

a◦ b c◦

ι∗ β

cv∗ β c∗

Proof. As →cv is strongly normalizing (Theorem 12), we can reason by well-
founded induction on a◦ with respect to →cv.

First let us suppose that a◦ →β b: we then apply Theorem 25(i) and get the
result directly. Suppose then that a◦ +→cv→β b. We have the following diagram:

a a1 c

a◦1 c◦

a◦ b

ι ι∗ β

cv∗ β c∗

cv cv∗
cv=

β

cv∗ c∗
(i)

(ii) (iii)

(iv)

where (i) comes from Theorem 25(ii), (ii) is by confluence (Theorem 8), (iii) is
by Theorem 17(i) and (iv) is by inductive hypothesis, as a◦ +→cv a

◦
1. 


Theorem 27 (Bisimulation of � . �). Given a typed xMLF

term a, we have that �a�→β b iff a
∗→ι→β c with �c� = b.

a c

�a� b

ι∗ β

/
β

Proof. For the if part, by Theorem 22 we have a◦ ∗→c→β c
◦, which by Theorem 24

and Theorem 17 implies �a� = �a◦�→β �c◦� = �c�. For the only if part, as �a◦� =
�a� →β b, by Theorem 19 a◦ ∗→cv→β b′ with �b′� = b. Now by Theorem 26 we
have that b′ ∗→c c

◦ with a ∗→ι→β c. To conclude, we see that �c� = �c◦� = �b′� = b,
where we used Theorem 24 and Theorem 17(iii). 

The above proof may be completely carried out within xMLF, by applying a
suitably modified version of Theorem 18. However, we preferred this formulation
since it provides a better understanding of what happens on the side of the
coercion calculus.
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Corollary 28. Terms typed in iMLF and eMLF are strongly normalizing.

Proof. Immediate by the above result and Theorem 1. 


Further work. We were able to prove new results for MLF (namely SN and
bisimulation of xMLF with its type erasure) by employing a more general calculus
of coercions. It becomes natural then to ask whether its type system may be a
framework to study coercions in general. A first natural target are the coercions
arising from Leijen’s translation of MLF [5], which is more optimized than ours,
in the sense that it does not add additional and unneeded structure to system
F types. We plan then to study the coercions arising in Fη [9] or when using
subtyping [10]. As explained at the beginning of section 3, Fc was purposely
tailored down to suit xMLF, stripping it of natural features.

A first, easy extension would consist in more liberal types and typing rules,
allowing coercion polymorphism, coercion abstraction of coercions or even co-
ercions between coercions (i.e. allowing types ∀α.κ, κ1 → κ2 and κ1 � κ2).
To progress further however, one would need a way to build coercions of arrow
types, which are unneeded in xMLF. Namely, given coercions c1 : σ2 � σ1 and
c2 : τ1 � τ2, there should be a coercion c1 ⇒ c2 : (σ1 → τ1) � (σ2 → τ2), allow-
ing a reduction (c1 ⇒ c2) + λx.a→c λx.c2 + a {c1 + x/x}. This could be achieved
either by introducing it as a primitive, by translation or by special typing rules.
Indeed, if some sort of η-expansion would be available while building a coercion,
one could write c1 ⇒ c2 := λf.λx.(c2 + (f(c1 + x))). However how to do this
without loosing bisimulation is under investigation.

Acknowledgements. We thank Didier Rémy for stimulating discussions and re-
marks, and the anonymous referees for careful reading and detailed comments.
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Abstract. Weighted automata model quantitative aspects of systems like memory
or power consumption. Recently, Chatterjee, Doyen, and Henzinger introduced a
new kind of weighted automata which compute objectives like the average cost
or the longtime peak power consumption. In these automata, operations like aver-
age, limit superior, limit inferior, limit average, or discounting are used to assign
values to finite or infinite words. In general, these weighted automata are not semi-
ring weighted anymore. Here, we establish a connection between such new kinds
of weighted automata and weighted logics. We show that suitable weighted MSO
logics and these new weighted automata are expressively equivalent, both for finite
and infinite words. The constructions employed are effective, leading to decidabil-
ity results for the weighted logic formulas considered.

1 Introduction

In the last years, there has been increasing interest in quantitative features of the spec-
ification and analysis of systems. Such quantitative aspects are the consumption of a
certain resource or the output of a benefit. Important considerations concern the overall
peak of power consumption, the long-time maximal output, or the average consumption
of some resource. Weighted automata modeling the average and long-time behavior of
systems were introduced recently by Chatterjee, Doyen, and Henzinger [5,6,7,8]. These
weighted automata do not fit into the framework of other weighted automata like semi-
ring weighted automata, cf. [1,11,22,23,29], or lattice automata [24]. Here, we present
weighted logics which are expressively equivalent to such new weighted automata.

The connection between MSO logic and finite automata as established by Büchi and
Elgot [4,17] has proven to be most fruitful. A weighted version of such a result was
shown for a new semiring weighted MSO logic a few years ago [9]. The concept of
weighted MSO logics worked not only fine for words but also for other structures like
trees, traces, pictures, nested words or timed words, see e.g. [14,19,26,27,28]. Such
weighted logics also encompass several versions of probabilistic CTL, cf. [3].

The weighted MSO logic used here combines the one from [9,10] (usual MSO logic
enriched by the elements of the weight structure) and an idea from [3]. Concerning
the semantics, disjunction and existential quantification were interpreted by the sum,
whereas the semantics of conjunction and universal quantification were defined by the
product of the semiring. If we use the max-plus-semiring for example, the semantical
interpretation of ∀xϕ is the sum of all weights (rewards or time) defined by ϕ for all
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different positions x. But there are other objectives of high interest: the average re-
ward over all positions, the long-run average reward for infinite sequences, the long-run
maximal reward, or a discounted sum of the rewards gained at the single positions.
Therefore, in the weighted MSO logic which we consider here, the semantics of univer-
sal quantification will be defined by such kinds of valuation functions. This corresponds
precisely to the valuation functions of Chatterjee, Doyen, and Henzinger used to deter-
mine the weight of a run in a weighted automaton [5]. The second novelty concerns
conjunction. For a semiring weighted logic, the semantics of both universal quantifica-
tion and conjunction was computed by means of the semiring product. Here, we may
use completely different operations for conjunction and universal quantification. If the
last one is interpreted by average, we may use average, sum, or infimum to interpret
conjunction.

The weighted automata which we use are a combination of classical finite automata
and of those used in [5]. They are more general than those from [5] because they are
equipped with an acceptance condition (accepting states for finite words, resp. a Muller
condition for infinite words) and the valuation function can have values in more general
structures than � which we call valuation monoids. The weight of a run is computed by
a valuation function and non-determinism is resolved by the monoid operation.

Our main results are as follows. Both for finite and infinite words, we consider three
fragments of weighted MSO logic. In all fragments, the use of universal quantification
is restricted as it had to be done already for semiring weighted MSO logic [9,10]. The
fragments differ in the use of conjunction. All the restrictions for the use of conjunction
are purely syntactic ones. Our main results show that weighted automata and these three
fragments of weighted MSO logic are expressively equivalent, under suitable assump-
tions on the underlying valuation monoid, see Theorems 4.4 and 6.2. The properties of
the valuation monoid used for these results are nearly the same for finite and infinite
words. Our main theorems comprise and generalize results obtained before for condi-
tionally complete commutative semirings [10,13] and for a discounted setting [12] and
give new characterizations for a variety of new weighted settings such as longtime peak
or average cost. Moreover, for special weight structures using limit superior or limit in-
ferior [5,6,7,8] we show that the whole weighted MSO logic is expressively equivalent
to weighted automata, see Theorem 6.4.

We would like to point out that some of our Büchi-like results do not need dis-
tributivity of multiplication over addition or commutativity or even associativity of
multiplication. Before, these properties were assumed to be essential for weighted au-
tomata [1,11,22,23,29]. Such results were also obtained in [15], but the weight struc-
tures considered there have strong (locally) finiteness conditions. With an interpretation
by average for universal quantification and for conjunction, no such finiteness holds
anymore. Thus, our results show that the theory of weighted automata can be extended
to a new kind of automata. Logics with such non-standard properties were also consid-
ered in other areas like in multi-valued logics [21,25] or in quantum logics where the
failure of distributivity of conjunction over disjunction is crucial [2].

All our automata constructions are effective. Thus, decision problems for weighted
logic translate into decision problems of weighted automata. Such decision problems
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were solved in [5] and we can carry over some of the algorithms to our setting whereas
for others the details still have to be explored.

2 Valuation Monoids and Weighted Automata on Finite Words

Let Σ be an alphabet and Σ+ the set of non-empty finite words.

Definition 2.1. A valuation monoid (D,+,Val, �) consists of a commutative monoid
(D,+, �) and a valuation function Val : D+ → D with Val(d) = d and
Val(d1, . . . , dn) = � whenever di = � for some i.

(D,+,Val, 0, �, �) is a product valuation monoid, or a pv-monoid for short, if (D,+,
Val, �) is a valuation monoid, � ∈ D, and 0 : D2 → D with Val(�)1≤i≤n = � for all
n ≥ 1 and � 0 d = d 0 � = �, � 0 d = d 0 � = d for all d ∈ D.

Whereas valuation monoids suffice to define the behavior of weighted automata, pv-
monoids will be used to define a semantics for weighted MSO logic. Especially, the
semantics of conjunction will be defined by the operation 0. Note that the operation 0
has to be neither associative nor commutative. However, if 0 is restricted to {�, �} then
it is both associative and commutative and is modeling conjunction in the two-valued
boolean algebra.

Definition 2.2. A weighted automaton A = (Q, I, T, F, γ) over the alphabet Σ and a
valuation monoid (D,+,Val, �) consists of a finite state set Q, a set I ⊆ Q of initial
states, a set F ⊆ Q of final states, a set T ⊆ Q ×Σ ×Q of transitions, and a weight
function γ : T → D.

In other words, a weighted automaton is a usual finite automaton equipped with a weight
function for the transitions. Runs r = (ti)0≤i≤n are defined as usual as finite sequences
of matching transitions, say ti = (qi, ai, qi+1). Then we call the word w = �(r) =
a0a1 . . . an the label of the run r and r a run on w. Furthermore, γ(r) =

(
γ(ti)

)
0≤i≤n

is the sequence of the transition weights of r, and Val(γ(r)) is the weight of r. A run is
successful if it starts in I and ends in F . Let succ(A) be the set of successful runs ofA.
The behavior ofA is the function ‖A‖ : Σ+ → D given by ‖A‖(w) =

∑(
Val(γ(r)) |

r ∈ succ(A) and �(r) = w
)
; if there is no successful run on w, then ‖A‖(w) = �. Any

function S : Σ+ → D is called a series (or a quantitative language as in [5]) overΣ+.
If S = ‖A‖ for a weighted automatonA, then S is called recognizable.

Example 2.3. (�∪{−∞}, sup, avg,−∞) with avg(d1, . . . , dn) = 1
n

∑n
i=1 di is a val-

uation monoid. As an example automaton, letA = ({q}, {q}, T, {q}, γ) over the alpha-
bet Σ = {!, ?} (! stands for a send event, ? for a receive) with T = {(q, !, q), (q, ?, q)},
γ(q, !, q) = 1, and γ(q, ?, q) = −1. Then A computes the average difference of sends
and receives, e.g., ‖A‖(!?!?) = 0, ‖A‖(!!!) = 1, and ‖A‖(!?!) = 1

3 .

A pv-monoid (D,+,Val, 0, �, �) is left-+-distributive if d0(d1+d2) = (d0d1)+(d0d2)
for any d, d1, d2 ∈ D; right-+-distributivity is defined analogously. If D is both left-
and right-+-distributive, then it is +-distributive. If 0 is associative, then D is called
associative. Moreover,D is left-multiplicative if for all n ≥ 1 and d, di ∈ D

d 0Val(d1, d2, . . . , dn) = Val(d 0 d1, d2, . . . , dn) (1)
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We call D left-Val-distributive if for all n ≥ 1 and d, di ∈ D
d 0Val(d1, d2, . . . , dn) = Val(d 0 d1, d 0 d2, . . . , d 0 dn) (2)

If d 0 d′ = d′ 0 d, we say that d and d′ commute. Let C,C′ ⊆ D. If d 0 d′ = d′ 0 d
for all d ∈ C and d′ ∈ C′, then C and C′ commute. D is conditionally commutative
if for any n ≥ 1 and any two sequences (d1, . . . , dn) and (d′1, . . . , d

′
n) from D with

di 0 d′j = d′j 0 di for all 1 ≤ j < i ≤ n, we have

Val(d1, . . . , dn) 0Val(d′1, . . . , d
′
n) = Val(d1 0 d′1, . . . , dn 0 d′n) (3)

A pv-monoid D is left-distributive if it is left-+-distributive and, moreover,
left-multiplicative or left-Val-distributive. Whenever D is +-distributive and associa-
tive, then (D,+, 0, �, �) is a semiring and we call (D,+,Val, 0, �, �) a valuation semi-
ring. A valuation semiring which is also left-multiplicative or left-Val-distributive, and
conditionally commutative is a cc-valuation semiring.

We call d ∈ D regular if for every alphabet Σ there is a weighted automaton Ad

such that ‖Ad‖(w) = d for every w ∈ Σ+. D is regular if every d ∈ D is regular.
As is easy to see, any left-distributive pv-monoid is regular.

Example 2.4. (�∪{−∞}, sup, avg,+,−∞, 0) is a pv-monoid which is associative, +-
distributive, left-Val-distributive, and conditionally commutative, thus, a cc-valuation
semiring. But we can put also d0d′ = 1

2 (d+d′). In this case we have to add a new � to
the structure which is neutral with respect to 0. Moreover, we put sup(d, �) = � for all
d and avg(d1, . . . , dn) is the arithmetic mean of all di �= � (where we put avg(Ø) = �).
In this way, we get a regular pv-monoid which, however, is neither associative nor +-
distributive nor Val-distributive but conditionally commutative.

Example 2.5. Let λ ∈ � with λ > 0. Then (� ∪ {−∞}, sup, discλ,−∞) with the
discounted sum discλ(d0, . . . , dn) =

∑n
i=0 λ

idi is a valuation monoid. We put � = 0
and 0 = + to obtain a left-multiplicative cc-valuation semiring.

Remark 2.6. Classical weighted automata work over semirings � = (K,+, ·, �, �). In
such automata, weights are multiplied along a run and summed up over all possible
runs. This setting fits into our framework: We define Val(d1, . . . , dn) = d1 · . . . · dn.
Then (K,+,Val, ·, �, �) is a left-multiplicative cc-valuation semiring. Examples for
such semirings are the natural numbers with addition and multiplication, or the reals
together with sup as the sum operation and inf , sup, or addition as multiplication.

Let (D,+,Val, 0, �, �) be a pv-monoid and S, S′ : Σ+ → D. Then S + S′ and S 0 S′

are defined pointwise as (S+S′)(w) = S(w)+S′(w) and (S0S′)(w) = S(w)0S′(w)
for all w ∈ Σ+.

Now S : Σ+ → D is a recognizable step function if there are finitely many pairwise
disjoint recognizable languagesL1, . . . , Lk ⊆ Σ+ (recognizable by a finite automaton)
and values d1, . . . , dk ∈ D such that S(w) = di iff w ∈ Li (1 ≤ i ≤ k); we write
S =

∑k
i=1 di�Li . We call S a boolean step function if S is a recognizable step function

with S(Σ+) ⊆ {�, �}. We write �L for � �L.

Lemma 2.7. Let (D,+,Val, �) be a regular valuation monoid. Every recognizable
step function S overD is a recognizable series. For a pv-monoidD, the class of recog-
nizable step functions is closed under + and 0.



Describing Average- and Longtime-Behavior by Weighted MSO Logics 541

Table 1. The semantics of weighted MSO-formulas

[[ d ]]V(w, σ) = d

[[ Pa(x) ]]V(w, σ) =

{
� if wσ(x) = a,

� otherwise

[[ x ≤ y ]]V(w, σ) =

{
� if σ(x) ≤ σ(y),

� otherwise

[[ x ∈ X ]]V(w, σ) =

{
� if σ(x) ∈ σ(X),

� otherwise

[[¬β ]]V(w, σ) =

{
� if [[ β ]]V(w, σ) = �,

� otherwise

[[ ϕ ∨ ψ ]]V(w, σ) =[[ ϕ ]]V (w, σ) + [[ ψ ]]V (w, σ)

[[ ϕ ∧ ψ ]]V(w, σ) =[[ ϕ ]]V (w, σ) � [[ ψ ]]V (w, σ)

[[ ∃x ϕ ]]V(w, σ) =
∑

i∈dom(w)

[[ ϕ ]]V (w, σ[x/i])

[[ ∀x ϕ ]]V(w, σ) =Val
(
[[ ϕ ]]V(w, σ[x/i])

)
i∈dom(w)

[[ ∃X ϕ ]]V(w, σ) =
∑

I⊆dom(w)

[[ ϕ ]]V(w, σ[X/I ])

[[ ∀X β ]]V(w, σ) =Val
(
[[ β ]]V (w, σ[X/I ])

)
I⊆dom(w)

3 Weighted MSO Logic

We provide a countable set V of first order and second order variables. Lower-case
letters like x, y denote first order variables whereas capital letters like X , Y etc. de-
note second order variables. The syntax of weighted MSO logics over a pv-monoid
(D,+,Val, 0, �, �) is a combination of the one in [9] with an idea from [3]:

β ::= Pa(x) | x ≤ y | x ∈ X | ¬β | β ∧ β | ∀xβ | ∀X β

ϕ ::= d | β | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ

where d ∈ D, a ∈ Σ, x, y,X ∈ V . The formulas β are called boolean formulas and the
formulas ϕ weighted MSO-formulas, for short wMSO. Note that negation and universal
second order quantification are allowed in boolean formulas only.

To define the semantics of formulas, we follow the usual approach for MSO [31]
adapted to weighted settings as in [9,10]. The set free(ϕ) of free variables in ϕ is defined
as usual. Let w ∈ Σ+, dom(w) = {0, . . . , |w| − 1}. Let V be a finite set of variables
with free(ϕ) ⊆ V. A (V , w)-assignment is a mapping σ : V → dom(w) ∪ 2dom(w)

where every first order variable is mapped to an element of dom(w) and every sec-
ond order variable to a subset of dom(w). The update σ[x/i] for i ∈ � is defined
as σ[x/i](x) = i and σ[x/i] �V \{x}= σ �V \{x}. The update σ[X/I] for I ⊆ � is
defined similarly. We encode (V , w)-assignments as usual within an extended alphabet
ΣV = Σ×{0, 1}V. Hereby, we refer to a word over the alphabetΣV by (w, σ). A word
(w, σ) overΣV represents an assignment if and only if for every first order variable the
respective row in the extended word contains exactly one 1; then we call (w, σ) valid.

For (w, σ) ∈ Σ+
V we define the semantics [[ϕ ]]V (w, σ) of ϕ under the (V , w)-

assignment σ: if (w, σ) is not valid, then [[ϕ ]]V(w, σ) = �; for all valid (w, σ) the
semantics is defined inductively as shown in Table 1 where for ∀Xϕ the subsets I ⊆
dom(w) are enumerated in some fixed order, e.g. lexicographically. By induction, we
can show easily that [[β ]]V ∈ {�, �} for any boolean formula β. Also, the value
[[ϕ ]]V(w, σ) is determined by σ �free(ϕ). We put [[ϕ ]] = [[ϕ ]]free(ϕ).

Example 3.1. Let Σ = {!, ?} and D = (� ∪ {−∞}, sup, avg,+,−∞, 0) be the pv-
monoid from Example 2.4. Consider the wMSO-formula

ϕ = ∀x
(
(P!(x) → 1) ∧ (P?(x) → −1)

)
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where P!(x) → 1 is an abbreviation for (P!(x) ∧ 1) ∨ (¬P!(x) ∧ 0) and, similarly, for
P?(x) → −1. Hence, [[P!(x) → 1 ]](w, σ) equals 1 if wσ(x) = ! and 0 otherwise. Thus,
[[ (P!(x) → 1) ∧ (P?(x) → −1) ]](w, σ) is 1 if wσ(x) = ! and equals −1 if wσ(x) = ?.
Now universal quantification is interpreted by average, i.e., [[ϕ ]](w) equals the average
difference of send events ! and receive events ? in w. Hence, [[ϕ ]] = ‖A‖ for the
weighted automaton from Example 2.3.

Next, we will define suitable fragments of weighted MSO because already for semi-
ring weighted automata, the full weighted MSO logics is expressively stronger than
weighted automata [9]. Since a boolean formula β does not contain any d ∈ D, we can
regard it also as a classical boolean MSO formula defining the language L(β). Now
one can show easily: [[β ]] = �L(β), i.e., its semantics is a boolean step function. Addi-
tionally, for every classical boolean MSO-formula α there is a boolean weighted MSO
formula β with [[β ]] = �L(α). Now the class of almost boolean formulas of weighted
MSO is the smallest class containing all constants d ∈ D and all boolean formulas and
which is closed under disjunction and conjunction. Almost boolean formulas define se-
ries which take only finitely many values over recognizable languages (therefore the
name ‘almost boolean’):

Proposition 3.2. Let ϕ be an almost boolean formula. Then [[ϕ ]] is a recognizable step
function. Conversely, if S : Σ+ → D is a recognizable step function, then S = [[ϕ ]]
for some almost boolean formula ϕ.

Now we define the crucial fragments. Let const(ϕ) be the set of elements from D
occurring in ϕ. A weighted MSO formula ϕ is ∀-restricted, if whenever it contains a
sub-formula ∀xψ, then ψ is almost boolean. Furthermore, ϕ is

1. strongly ∧-restricted, if for every sub-formula ψ1 ∧ ψ2 of ϕ either both ψ1 and ψ2
are almost boolean, or ψ1 or ψ2 is boolean,

2. ∧-restricted, if for every sub-formula ψ1 ∧ ψ2 of ϕ either the sub-formula ψ1 is
almost boolean or ψ2 is boolean,

3. commutatively ∧-restricted, if for all sub-formulas ψ1 ∧ ψ2 of ϕ either the sets
const(ψ1) and const(ψ2) commute, or ψ1 is almost boolean.

If ϕ is strongly ∧-restricted, then it is ∧-restricted. If ϕ is ∧-restricted, it is commu-
tatively ∧-restricted. The fragment of ∀- and commutatively ∧-restricted formulas is
similar to the fragment of syntactically restricted formulas as defined in [10].

4 Characterization of Recognizable Series

In this section, we wish to characterize the collection of recognizable series by suitable
fragments of wMSO. For this, first we build for weighted MSO formulas ϕ weighted
automata Aϕ recognizing [[ϕ ]]. For cc-valuation semirings we can choose the weights
of Aϕ to belong to the sub-semiring generated by const(ϕ) with + and 0.

Proposition 4.1. Let D be a pv-monoid and ϕ, ψ be two wMSO-formulas such that
[[ϕ ]] and [[ψ ]] are recognizable. Then [[ϕ ∨ ψ ]], [[ ∃xϕ ]], and [[ ∃Xϕ ]] are recognizable.
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Proof idea. For disjunction, we build the disjoint union of the weighted automata rec-
ognizing [[ϕ ]] and [[ψ ]], respectively. Concerning existential quantification, we can use
the closure of recognizable series under projection of alphabets. We show this closure
by a new automaton construction because we have no distributivity law between sum
and Val. Therefore, we have to code the projected alphabet into the states of the con-
structed automaton to preserve the right number of runs for each word. 

Proposition 4.2. Let D be a pv-monoid and ϕ, ψ be two wMSO formulas.
(a) If [[ϕ ]] is recognizable andψ is boolean, then [[ϕ∧ψ ]] and [[ψ∧ϕ ]] are recognizable.
(b) Let D be left-distributive. If ϕ is almost boolean and [[ψ ]] is recognizable, then
[[ϕ ∧ ψ ]] is recognizable.
(c) Let D be a cc-valuation semiring and ϕ, ψ be ∀-restricted and commutatively ∧-
restricted. If [[ϕ ]] and [[ψ ]] are recognizable, and const(ϕ) and const(ψ) commute,
then [[ϕ ∧ ψ ]] is recognizable.

Proof sketch. (a) Sinceψ is boolean, [[ψ ]] can be recognized by a deterministic weighted
automaton which has only weights � and �. Then the product automaton of the two
weighted automata recognizing [[ψ ]] and [[ϕ ]] recognizes [[ϕ ∧ ψ ]] = [[ψ ∧ ϕ ]].
(b) Let d ∈ D and L be a regular language. Since D is left-distributive, (d�L) 0 [[ψ ]]
can be recognized by a product automaton of a deterministic automaton recognizing L
and the weighted automaton recognizing [[ψ ]]. Hence, [[ϕ ∧ ψ ]] is recognizable.
(c) Since D is a cc-valuation semiring and const(ϕ) commutes with const(ψ), using
the above observation we can construct inductively weighted automataAϕ andAψ rec-
ognizing [[ϕ ]] and [[ψ ]], respectively, such that the weights occurring in Aϕ commute
with those occurring in Aψ. Now we build the product automaton A of Aϕ and Aψ.
Since D is conditionally commutative,A recognizes [[ϕ ∧ ψ ]]. 

Proposition 4.3. Let D be a pv-monoid and let ϕ be an almost boolean formula. Then
[[ ∀xϕ ]] is recognizable.

Proof sketch. We follow ideas of [9,10]. Sinceϕ is almost boolean, [[ϕ ]] =
∑n

i=1 di�Li

is a recognizable step function. We can encode the information for which update of x
a word is in Li into a recognizable language L̃ over an extended alphabet Σ̃. Then we
enrich an unweighted deterministic automaton Ã recognizing L̃ in a suitable way with
the weights di and obtain a weighted automatonA. Using the valuation function we can
show that [[ ∀xϕ ]] is a projection of ‖A‖ which is again recognizable. 

The following is our main result for finite words.

Theorem 4.4. Let D be a pv-monoid and S : Σ+ → D a series.
(a) Let D be regular. Then S is recognizable if and only if S = [[ϕ ]] for a ∀-restricted
and strongly ∧-restricted wMSO-sentence ϕ.
(b) Let D be left-distributive. Then S is recognizable if and only if S = [[ϕ ]] for a
∀-restricted and ∧-restricted wMSO-sentence ϕ.
(c) Let D be a cc-valuation semiring. Then S is recognizable if and only if S = [[ϕ ]]
for a ∀-restricted and commutatively ∧-restricted wMSO-sentence ϕ.

Proof idea. For a regular pv-monoidD, the semantics of atomic formulas are recogniz-
able by Proposition 3.2 and Lemma 2.7. Now Propositions 3.2 – 4.3 imply the recogniz-
ability of [[ϕ ]] for formulasϕ from the respective fragments. For the other direction, the
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formula of weighted MSO logic which defines the behavior of some weighted automa-
ton A is built as in [10]. It is ∀-restricted because the requirements for universal quan-
tification were already satisfied in [10], and the requirements for strongly ∧-restriction
can be guaranteed since the weights have to be used in the formula only in a very spe-
cial way. 


5 Omega-Valuation Monoids and Weighted Automata
on Infinite Words

Let Σω be the set of infinite words over Σ. For a set D, let (Dfin)ω =
⋃

C⊆finD
Cω.

A monoid (D,+, �) is complete, cf. [16], if it has infinitary sum operations
∑

I :
DI → D for any index set I such that

–
∑

i∈Ø di = �,
∑

i∈{k} di = dk,
∑

i∈{j,k} di = dj + dk for j �= k, and

–
∑

j∈J

(∑
i∈Ij

di

)
=
∑

i∈I di if
⋃

j∈J Ij = I and Ij ∩ Ik = Ø for j �= k.

Note that every complete monoid is commutative.

Definition 5.1. An ω-valuation monoid (D,+,Valω, �) is a complete monoid (D,+, �)
equipped additionally with an ω-valuation function Valω : (Dfin)ω → D such that
Valω(di)i∈� = � whenever di = � for some i ∈ �.

(D,+,Valω, 0, �, �) is a product ω-valuation monoid , for short ω-pv-monoid, if
(D,+,Valω , �) is an ω-valuation monoid, � ∈ D, and 0 : D2 → D with Valω(�ω) =
�, � 0 d = d 0 � = �, and � 0 d = d 0 � = d for all d ∈ D.

Forω-pv-monoids, we define associativity, left-+-distributivity, left-multiplicativity (1),
left-Valω-distributivity (2), and conditional commutativity (3) as for pv-monoids by re-
placing + by

∑
, Val by Valω, and finite sequences by infinite sequences. Especially, we

have left-distributive ω-pv-monoids, ω-valuation semirings, and cc-ω-valuation semi-
rings.

For the next examples, considered in [5], we put �̄ = � ∪ {−∞,∞}.
Example 5.2. The structure (�̄, sup, lim sup,−∞) is an ω-valuation monoid if we put
lim sup(. . . ,−∞, . . .) = −∞. For the product 0 we have several possibilities: The
ω-pv-monoids (�̄, sup, lim sup, inf,−∞,∞) and (�̄, sup, lim sup,+,−∞, 0) are left-
Valω-distributive ω-valuation semirings, but they are not conditionally commutative.

Example 5.3. (�̄, sup, lim avg,−∞) is an ω-valuation monoid where

lim avg(dn)n∈� = lim inf
n→∞

1
n

n−1∑
i=0

di = lim
n→∞

inf

(
1
k

k−1∑
i=0

di | k ≥ n

)
.

For 0 and � there are several possibilities:
(�̄, sup, lim avg, inf,−∞,∞) is an ω-valuation semiring but neither left-distributive
nor conditionally commutative. (�̄, sup, lim avg,+,−∞, 0) is a left-distributive
ω-valuation-semiring. But (�̄, sup, lim avg, avg,−∞,∞) with avg(d,∞) = d for ev-
ery d ∈ �̄ and otherwise avg(d, d′) = d+d′

2 yields an ω-pv-monoid which is not even
left-+-distributive.
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In the literature, discounting has found much interest recently (cf. [5,12,20] and the
references cited there).

Example 5.4. Let 0 < λ < 1. The structure (�̄, sup, discλ,−∞) with discλ(dn)n∈� =
limn→∞

∑n
i=0 λ

idi is an ω-valuation monoid. Now (�̄, sup, discλ, inf,−∞,∞) is an
ω-valuation semiring but neither left-multiplicative nor left-Valω-multiplicative. But
(�̄, sup, discλ,+,−∞, 0) is a left-multiplicative cc-ω-valuation semiring.

Remark 5.5. Various authors have also considered totally complete semirings
(� ,+, ·, �, �) which have both infinitary sum operations

∑
and countably infinite

products
∏

satisfying several natural axioms, cf. [18] for an overview. This fits into
our setting: (� ,+,

∏
, ·, �, �) is a left-multiplicative ω-valuation semiring. But in a to-

tally complete semiring there is, moreover, an infinitary associativity law for
∏

and
also an infinitary distributivity law of

∏
over

∑
which we do not need here. A totally

complete semiring which is conditionally commutative is called a conditionally com-
plete commutative semiring in [10]. Hence, these structures are particular instances of
cc-ω-valuation semirings.

Now we turn to the automaton model for infinite words.

Definition 5.6. A weighted Muller automaton (WMA) A = (Q, I, T,F , γ) over the
alphabetΣ and an ω-valuation monoid (D,+,Valω , �) consists of a finite state set Q,
a set I ⊆ Q of initial states, a set T ⊆ Q × Σ × Q of transitions, a set F ⊆ 2Q of
accepting sets, and a weight function γ : T → D.

A run r is an infinite sequence of matching transitions r=(ti)i∈� with ti=(qi, ai, qi+1).
The label of r is �(r) = w = a0a1a2 . . . and r is then a run on w. We put γ(r) =(
γ(ti)

)
i∈�, i.e., γ(r) is the infinite sequence of the weights occurring along r and

Valω(γ(r)) its weight. A run is successful if it starts in an initial state and {q ∈ Q | q =
qi for infinitely many i ∈ �} ∈ F . The behavior of A is the function ‖A‖ : Σω → D
defined by ‖A‖(w) =

∑(
Valω(γ(r)) | r ∈ succ(A) and �(r) = w

)
; if there is no suc-

cessful run for w, then ‖A‖(w) = �. Any function f : Σω → D is called an ω-series.
Every ω-series S : Σω → D which is the behavior of some WMA over D is called
ω-recognizable.

Remark 5.7. The weighted automata on infinite words as defined in [5] can be under-
stood as total weighted Muller automata with F = 2Q and γ(T ) ⊆ �.

We call an ω-valuation monoid (D,+,Valω, �) regular if for every d ∈ D there is a
WMA Ad such that ‖Ad‖(w) = d for all w ∈ Σω. All ω-valuation monoids given in
the examples above and all left-distributive ω-pv-monoids are regular.

6 A Characterization of ω-Recognizable Series

We define weighted MSO logics as we have done for finite words, cf. Section 3. Also
the semantics is defined in the same manner, this time as ω-series over an extended
alphabet. The inductive definition is given in Table 1 where we have to replace Val by
Valω. For w ∈ Σω, we let dom(w) = {0, 1, 2, . . .} = �. To define the semantics of
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∀Xϕ, we have to extend Valω to index sets of size continuum such that � is still anni-
hilating and Valω(�)i∈I = �. However, we will use these products only for sequences
over {�, �}, i.e., we need uncountable products only for boolean values.

Example 6.1. Consider Σ = {!, ?}, (�̄, sup, lim avg,+,−∞, 0) from Example 5.3,
and the wMSO-formula ϕ = ∀x

(
(P! → 1) ∧ (P? → −1)

)
which is defined as in

Example 3.1. Since universal quantification is interpreted as limit average, [[ϕ ]](w)
equals the long-run average difference between send events ! and receive events ? in
w ∈ Σω. For example, [[ϕ ]](!!!!!!?!?!? . . .) = 0 and [[ϕ ]](!!?!!?!!? . . .) = 1

3 .
Here, [[ϕ ]] = ‖A‖ for the weighted Muller automaton A = ({q}, {q}, T, {{q}}, γ)

with T = {(q, !, q), (q, ?, q)}, γ(q, !, q) = 1, and γ(q, ?, q) = −1.

The different fragments of weighted MSO are defined as before. If ϕ is an almost
boolean formula, then [[ϕ ]] =

∑k
i=1 di�Li is an ω-recognizable step function where

every Li is an ω-recognizable language. If ϕ is a boolean formula, then [[ϕ ]] is an
ω-boolean step function, i.e., an ω-recognizable step function with S(Σω) ⊆ {�, �}.
Using these concepts we obtain our second main result:

Theorem 6.2. Let D be an ω-pv-monoid and S : Σω → D an ω-series.
(a) LetD be regular. Then S is ω-recognizable if and only if S = [[ϕ ]] for a ∀-restricted
and strongly ∧-restricted wMSO-sentence ϕ.
(b) Let D be left-distributive. Then S is ω-recognizable if and only if S = [[ϕ ]] for a
∀-restricted and ∧-restricted wMSO-sentence ϕ.
(c) Let D be a cc-ω-valuation semiring. Then S is ω-recognizable if and only if S =
[[ϕ ]] for a ∀-restricted and commutatively ∧-restricted wMSO-sentence ϕ.

Proof idea. The proof follows the same lines as the one of Theorem 4.4. When con-
structing inductively the WMA recognizing [[ϕ ]] for the different fragments, now we
have to keep track of the Muller acceptance condition which can be done for disjoint
unions, product automata, or the automaton recognizing a projection. For the closure
under universal first-order quantification, it is important that we use Muller automata
because we need a deterministic device in the proof to recognize the corresponding ω-
language L̃. Conversely, we can find for every WMA A a ∀- and strongly ∧-restricted
sentence ϕ with [[ϕ ]] = ‖A‖. This time, we have to define the Muller acceptance con-
dition by a boolean formula, cf. [10,13]. 

Remark 6.3. By Theorem 6.2, the different wMSO-fragments all define the class of
ω-recognizable series over D, regardless of the choice of 0 for interpretation of con-
junction, provided the assumptions on D are satisfied.

For special ω-valuation monoids considered in [5,6,7,8], even every weighted MSO
formula can be translated into an equivalent weighted Muller automaton because both
formalisms define exactly the class of ω-recognizable step functions.

Theorem 6.4. Let D be one of the following ω-pv monoids:

(R̄, sup, lim sup, inf,−∞,∞), (R̄, sup, lim sup,+,−∞, 0),
(R̄, sup, lim inf, inf,−∞,∞), (R̄, sup, lim inf,+,−∞, 0),

and let S : Σω → D. Then S is ω-recognizable if and only if S = [[ϕ ]] for some
wMSO-sentence ϕ.
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Conclusion

We have extended the use of weighted MSO logic to a new class of quantitative settings
comprising average- and long-run objectives. We succeeded in a translation of different
fragments to weighted automata. We would like to note that we can enlarge the used
fragments of weighted MSO logic under additional idempotency conditions which is,
due to space restrictions, not elaborated here in detail.

The translation of formulas into automata opens the way to algorithms deciding ques-
tions like satisfiability or equivalence. The proofs of Theorems 4.4, 6.2, and 6.4 are
constructive. Thus, satisfiability or equivalence of formulas of weighted logics reduce
to the emptiness or equivalence problem for weighted automata. In [5], decision algo-
rithms are given for these problems. But the model of weighted automata used in [5]
does not have an acceptance condition like final states or a Muller condition as we use
here. For infinite words and lim sup, e.g., emptiness can be decided by an adaptation of
the algorithm listed in [5]. In our setting, we can synchronously check the Muller condi-
tion. We conjecture that we can also decide emptiness for lim avg-WMA. This works if
the lim avg-automaton does not have an additional Muller condition [5], due to a result
about the existence of positional strategies for Markov decision procecces with a limit
average reward. But further work has to be done in elaborating these algorithms for the
setting considered here.

Another open question is the expressive power of the first order fragment for these
new settings, cf. [9]. The development of weighted temporal logic and model checking
procedures would be interesting, cf. [20,24].

A subject of on-going work by the authors is the characterization of this new kind of
weighted automata by regular expressions [30].
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20. Fischer, D., Grädel, E., Kaiser, Ł.: Model checking games for the quantitative μ-calculus. In:

STACS 2008, pp. 301–312 (2008)
21. Kreinovich, V.: Towards more realistic (e.g., non-associative) “and”- and “or”-operations in

fuzzy logic. Soft Comput. 8(4), 274–280 (2004)
22. Kuich, W.: Semirings and formal power series: their relevance to formal languages and au-

tomata. In: Handbook of Formal Languages. Word, Language, Grammar, vol. 1, pp. 609–677.
Springer, Heidelberg (1997)

23. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. In: EATCS Monographs in The-
oretical Computer Science, vol. 5. Springer, Heidelberg (1986)

24. Kupferman, O., Lustig, Y.: Lattice automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007.
LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)

25. Mallya, A.: Deductive multi-valued model checking. In: Gabbrielli, M., Gupta, G. (eds.)
ICLP 2005. LNCS, vol. 3668, pp. 297–310. Springer, Heidelberg (2005)

26. Mathissen, C.: Weighted logics for nested words and algebraic formal power series. In:
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Abstract. The problem of finding a satisfying assignment for a 2-SAT
formula that minimizes the number of variables that are set to 1 (min ones

2–sat) is NP-complete. It generalizes the well-studied problem of finding
the smallest vertex cover of a graph, which can be modeled using a 2-SAT
formula with no negative literals. The natural parameterized version of
the problem asks for a satisfying assignment of weight at most k.

In this paper, we present a polynomial-time reduction from min ones

2–sat to vertex cover without increasing the parameter and ensuring
that the number of vertices in the reduced instance is equal to the num-
ber of variables of the input formula. Consequently, we conclude that this
problem also has a simple 2-approximation algorithm and a 2k variables
kernel subsuming these results known earlier. Further, the problem ad-
mits algorithms for the parameterized and optimization versions whose
runtimes will always match the runtimes of the best-known algorithms
for the corresponding versions of vertex cover.

1 Introduction and Motivation

Satisfiability is a fundamental problem that encodes several computational prob-
lems. Variations of the problem appear as canonical complete problems for sev-
eral complexity classes. While it is well known that the satisfiability of a formula
in CNF form is a canonical NP–complete problem, testing whether a CNF for-
mula has a satisfying assignment with weight1 at least k is a canonical complete
problem for the parameterized complexity class W [2] [DF99]. If the number
of variables in each clause is bounded, it is a canonical W [1]-complete prob-
lem [DF99]. These results imply that it is unlikely that these problems are fixed
parameter tractable (FPT). In other words, it is unlikely that they have an al-
gorithm with running time O(f(k)nO(1)) on input formulas of size n.

On the other hand, if the question is whether a d-CNF formula (for fixed
d) has a satisfying assignment with weight at most k, then this generalizes the
well-studied d-hitting set problem and independently, turns out to be fixed pa-
rameter tractable with the weight as a parameter ([Nie06, MR99], cf. Section
2). When we restrict our attention to 2-CNF formulas (min ones 2–sat) this

� This work was done when the author was on sabbatical from IIT Madras.
1 The weight of an assignment is the number of variables assigned 1 by the assignment.

P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 549–555, 2010.
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problem generalizes the well-studied vertex cover problem. For, given a graph
G = (V,E), a satisfying assignment of weight at most k on the formula ∧(u ∨ v),
where the ∧ runs over all edges (u, v) in E, where u and v are variables corre-
sponding to vertices u and v of G, corresponds to a vertex cover of size at most k
in G. However, notice that we do not require negated literals to encode vertex

cover using 2-CNF formulas, and thus it appears that min ones 2–sat is a
more general version of the vertex cover problem.

Gusfield and Pitt[GP92] considered this min ones 2–sat problem and gave a
2-approximation algorithm. The algorithm that follows a greedy approach, gives
a solution whose weight is at most twice that of the optimum (assuming that
the formula is satisfiable). As satisfiability of 2-CNF-SAT is well known to be
polynomial time solvable, we can assume without loss of generality that the given
2-SAT formula is satisfiable. Hochbaum et al [HMNT93] showed that the classical
Nemhauser-Trotter theorem for vertex cover [NT75] holds for min ones 2–sat
as well. This implies a 2-approximation algorithm for the optimization version,
and a 2k-variable kernel for the parameterized version.

There is a reduction from min ones 2–sat to vertex cover, pointed out
by Seffi Naor (see [Hoc97]). This reduction takes an instance F of min ones

2–sat on n variables and returns a graph G(F ) that has one vertex for every
literal participating in F (i.e. with up to 2n vertices), and an edge between a pair
of literals whenever they appear together in a clause of F , and an edge (x, x̄)
for every variable x. Further, the reduction introduces, for every variable x, the
edges (u, v) — where u ∈ N(x) and v ∈ N(x̄), and N(l) is the set of all literals
l′ such that (l, l′) is a clause of F . It can be shown that if there is a satisfying
assignment of weight at most k for F , then there is a vertex cover of size n in
G(F ). Conversely, a vertex cover of size n in G(F ) translates to a satisfying
assignment for F (i.e. that the vertex cover never needs to choose both x and x̄
of a variable — however, the weight of such an assignment can be as large as n.

Observe that this reduction produces a graph with the number of vertices
equal to twice the number of variables and, in the parameterized setting, does
not transform k into a function of k alone. Since the reduction loses track of the
weight of the solution, it does not enable us to employ vertex cover to solve
an instance of min ones 2–sat.

In this paper, we demonstrate a simple extension of this reduction that pre-
serves both k and n, and allows us to carry over everything we know about
vertex cover to the more general setting of min ones 2–sat. Thus, we have
that the apparently more general problem of minones can be handled as easily
as vertex cover, in both the optimization and parameterized settings. In partic-
ular, the problem now has a 2k-variable kernel, a 2-approximation algorithm,
and FPT and exact algorithms that will run as fast as the best algorithms for
the corresponding versions of the vertex cover problem (the current best being
O∗(1.27k) [CKX06]2 and O(1.2132n) [KLR09]). In particular, our reduction sub-
sumes the earlier results (2-approximation algorithms, and Nemhauser-Trotter
theorem) on this problem.

2 We use the notation O∗() to “hide” functions that are polynomial in the variables.
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2 Preliminaries

A parameterized problem is denoted by a pair (Q, k) ⊆ Σ∗ × N. The first com-
ponent Q is a classical language, and the number k is called the parameter. Such
a problem is fixed–parameter tractable (FPT) if there exists an algorithm that
decides it in time O(f(k)nO(1)) on instances of size n. A kernelization algorithm
takes an instance (x, k) of the parameterized problem as input, and in time poly-
nomial in |x| and k, produces an equivalent instance (x′, k′) such that |x′| is a
function purely of k. The output x′ is called the kernel of the problem and its
size is |x′|. We refer the reader to [DF99, Nie06] for more details on the notion
of fixed-parameter tractability.

Let P be an arbitrary set, whose elements we shall refer to as variables. A
literal is either a variable or its negation. An assignment for P is a function
t : P → {0, 1}. Sometimes, we also refer to an assignment setting (mapping) a
variable to ‘true’ or ‘false’ when we mean to say 1 or 0 respectively.

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses,
where a clause is a disjunction of literals. A c-SAT formula has at most c literals
in any clause. The weight of an assignment is the number of variables that are
set to one by that assignment. We refer to the problem of finding a smallest
weight satisfying assignment for c-SAT formulae as min ones c–sat.

Simple FPT algorithm for weight at most k assignments. The natural parame-
terized version of min ones c–sat is FPT for any fixed c, when parameterized
by the weight: pick a clause that contains only positive literals (as long as one
exists) and branch by setting each of the variables to 1. This results in a c-way
branch of depth at most k. Notice that at the leaves, every clause has at least
one negated literal and the assignment that sets all the remaining variables to
0 satisfies all such clauses. This results in an O(ckm) algorithm where m is the
number of clauses in the formula.

3 Reduction of min ones 2–sat to vertex cover

In this section, we present a reduction from min ones 2–sat to vertex cover.
Throughout, we use F to denote an instance of min ones 2–sat, and C(F )
denotes the set of clauses in F . Also, let D(F ) denote the implication graph of
F , which has one vertex for every literal of F , and the directed arcs (l̄1, l2) and
(l1, l̄2) for every clause (l1, l2) ∈ C(F ). Also, let A(D(F )) denote the set of arcs
in D(F ).

The implication graph of a 2-CNF formula is very well-studied — for example,
see Section 1.10 in [BJG08]. We begin by recalling Lemma 1.10.2 from [BJG08]
(the proof is reiterated here for completeness).

Lemma 1 ([BJG08]). If D(F ) contains a path from l1 to l2, then, for every
satisfying truth assignment t, t(l1) = 1 implies that t(l2) = 1.
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Proof. Observe that F contains a clause of the form x̄ ∨ y when D(F ) contains
the arc (x, y). Further, every clause takes the value 1 under any satisfying truth
assignment. Thus, by the fact that t is a satisfying truth assignment and by the
definition of D(F ), we have that for every arc (x, y) ∈ A(D(F )), t(x) = 1 implies
t(y) = 1. Now the claim follows easily by induction on the length of the shortest
(l1, l2)-path in D(F ).

We now describe a formula that is easier to work with, because we ensure that
such paths are also witnessed by edges. Let F ∗ be the smallest formula which
contains all the clauses of F , and the clause(s) (l1∨ l2), for each pair of literals l1
and l2 such that there is a directed path from l̄1 to l2 in D(F ). We refer to F ∗ as
the closure of F . One way to compute the closure of F is to compute the transitive
closure of the implication graph of F (in polynomial time, see [CLRS01]). The
formula corresponding to the graph thus obtained (when treated also as an
implication graph) is the closure of F . We work with the closed formula F ∗ in
the discussion that follows.

Theorem 1. Given a 2-CNF formula F , let F ∗ be the closure of F , and (F ∗)+
denote the set of all clauses of F ∗ where both literals occur positively. Let G be
the graph that has one vertex for every variable in (F ∗)+, and (u, v) ∈ E(G) if
and only if (u ∨ v) ∈ C((F ∗)+). Then F has a satisfying assignment of weight
at most k if and only if G has a vertex cover of size at most k.

Proof. Suppose that F has a satisfying assignment of weight at most k. Then it
implies that the same satisfying assignment is a satisfying assignment of F ∗ as
well. For, if c = (l1 ∨ l2) is in C(F ∗) \ C(F ), then there is a directed path from
l̄1 to l2, by construction. Hence if the satisfying assignment of F sets l1 to false,
then l̄1 is set to true and hence by Lemma 1, l2 is set to 1 by the assignment,
thus satisfying c. Hence (F ∗)+, a sub formula of F ∗ has a satisfying assignment
of weight at most k, which means that the graph G has a vertex cover of size at
most k.

Conversely let G have a vertex cover of size k. Let t be the truth assignment
corresponding to a minimal vertex cover, say K, of size at most k in G, i.e. let
t(x) = 1 if and only if x ∈ K, and t(x) = 0 otherwise. Clearly, t is a satisfying
assignment of (F ∗)+ and is of weight at most k. We now show that t is indeed a
satisfying assignment of F ∗. The proof is by contradiction. Let us assume that
F ∗ is not satisfied by t. This implies there is a clause C ∈ F ∗ that is not satisfied
by t. Clearly, C �∈ (F ∗)+. There are two possibilities for C: either C = (x ∨ ȳ),
or C = (x̄ ∨ ȳ), where x and y are variables. In either case, we arrive at a
contradiction to the assumption that t is a satisfying assignment of (F ∗)+.

1. C = (x∨ ȳ): Since C is falsified by t, it follows that t(x) = 0 (or equivalently,
t(x̄) = 1) and t(y) = 1. Since t is obtained from a minimal vertex cover K
(that containts y as t(y) = 1), there is a clause (y ∨ z) ∈ (F ∗)+ such that
t(z) = 0.

Notice that D(F ∗) has arcs from x̄ to ȳ and from ȳ to z, and therefore
a path from x̄ to z. By Lemma 1, therefore, t(x̄) = 1 must imply t(z) = 1, a
contradiction.
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2. C = (x̄ ∨ ȳ): Since C is falsified by t, it follows that t(x) = 1 and t(y) =
1. Since t is obtained from a minimal vertex cover K, there are clauses
(y ∨ z1), (x ∨ z2) ∈ (F ∗)+ such that t(z1) = 0, t(z2) = 0 (Note that z1 could
be equal to z2).

As before, we observe that D(F ∗) has a path from x to z1 (through ȳ),
and again by an application of Lemma 1, we observe that t(x) = 1 implies
that t(z1) = 1, a contradiction.

Consequently, our assumption that t is not a satisfying assignment of F ∗ is
wrong and hence F ∗ has a satisfying assignment of weight at most k. Since F is
a sub-formula of F , it follows that so does F .

Corollary 1. Given a 2-CNF formula F on n variables and a positive integer
k, it can be checked if F admits a satisfying assignment of weight at most k in
time O∗(1.27k) [CKX06]. A satisfying assignment of minimum weight may be
obtained in time O(1.2132n) [KLR09].

Observe that the reduction stated in Theorem 1 is valid for the weighted version
of the problem (where each variable has a non-negative real weight, and the
weight of an assignment is the sum of the weights of the variables that it sets to
one), and that the proof remains the same is easily verified.

Corollary 2. Given a 2-CNF formula F on n variables with a weight function
w : V (F ) → R+ such that w(v) ≥ 1, for all v ∈ V (F ) and a positive integer k, it
can be checked if F admits a satisfying assignment of weight at most k in time
O∗(1.37k) [NR03]. A satisfying assignment of minimum weight may be obtained
in time O(1.32n) [DJ02].

The problem of solving a 0− 1 integer program which has at most two variables
per constraint with an assignment of weight at most k is known to be equivalent
to min ones 2–sat. This is due to a reduction that does not increase the number
of variables or the weight of the solution (Section 4, [HMNT93]). The reduction in
[HMNT93] is from a more general integer program, one that assumes a bounded
range (not necessarily 0− 1) for each variable. However, in the general case, the
number of variables created in the reduced instance is a function of the ranges.
For 0− 1 integer programs, the number of variables remains the same as that of
the original. Thus, we also have that a binary integer program may be solved as
fast as weighted vertex cover3.

Corollary 3. Consider a binary integer program where the objective function
is to be minimized, and every constraint has at most two variables. Given such
a program and a positive integer k, it can be checked if the optimum feasible
assignment is at most k in time O∗(1.37k) [NR03], and the optimum assignment
may be obtained in time O(1.32n) [DJ02].

3 In case the coefficients for all variables in the objective function are one, then the
problem may in fact be solved as fast as the unweighted vertex cover.
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4 Concluding Remarks

We show min ones 2–sat to be equivalent to vertex cover in both the pa-
rameterized and optimization settings, by demonstrating a polynomial-time re-
duction from min ones 2–sat to vertex cover that preserves the optimum
value and keeps the number of vertices of the graph to the number of variables
in the formula. This allows us to employ the best known algorithms for vertex

cover to min ones 2–sat incurring only an additional polynomial cost.
The complexity of min ones c–sat for c > 2 is an interesting line of research.

In this case, the problem is a natural generalization of c-hitting set. While c-
hitting set has a kO(c) kernel [AK07], a polynomial sized kernel is unlikely for
min ones c–sat even for c = 3, as a special case of min ones 3–sat (not-1-in-3
SAT) is unlikely to have a polynomial sized kernel [KW09]. See [KWar] for a
classification of the types of bounded variable constraints for which polynomial
sized kernel is possible. Improving the obvious O(ckm) time bound (mentioned
in Section 2) for the parameterized question is a natural open problem.
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Abstract. Nondeterministic finite automata (NFA) with at most one
accepting computation on every input string are known as unambigu-
ous finite automata (UFA). This paper considers UFAs over a unary
alphabet, and determines the exact number of states in DFAs needed to
represent unary languages recognized by n-state UFAs: the growth rate
of this function is eΘ(

3√
n ln2 n). The conversion of an n-state unary NFA

to a UFA requires UFAs with g(n)+O(n2) = e
√

n ln n(1+o(1)) states, where
g(n) is Landau’s function. In addition, it is shown that the complement
of n-state unary UFAs requires up to at least n2−o(1) states in an NFA,
while the Kleene star requires up to exactly (n − 1)2 + 1 states.

1 Introduction

This paper is concerned with a noteworthy family of automata located be-
tween deterministic finite automata (DFA) and nondeterministic finite automata
(NFA): the unambiguous finite automata (UFA), that is, NFAs that have at
most one accepting computation for every string. Apparently, this family was
first studied by Schmidt [19], whose unpublished thesis contains an interest-
ing method of proving lower bounds for UFAs based upon the rank of certain
matrices, and a 2Ω(

√
n) lower bound on the tradeoff between UFAs and DFAs.

These methods were further elaborated by Leung [10,11] and by Hromkovič et
al. [6], who studied degrees of nondeterminism in finite automata. In particular,
Leung [11] established a precise 2n− 1 UFA–DFA tradeoff. Computational com-
plexity of testing properties of UFAs was studied by Stearns and Hunt [21] and
recently by Björklund and Martens [2].

This paper considers UFAs in the special case of a unary alphabet Σ = {a}.
The main properties of DFAs and NFAs over a unary alphabet are quite dif-
ferent from the case of a general alphabet. Lyubich [12] and Chrobak [3] have
shown that in the unary case the DFA–NFA tradeoff is g(n) + O(n2), where
g(n) = e(1+o(1))

√
n lnn is the maximum order of an element in the group of per-

mutations on n objects, known as Landau’s function [9]. State complexity of
basic operations on unary DFAs was first studied by Yu, Zhuang and K. Salo-
maa [22], and elaborated by Pighizzini and Shallit [17]. A similar study for unary
� Supported by the Academy of Finland under grant 134860.
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Fig. 1. An 11-state unary UFA and the 13-state minimal equivalent DFA

NFAs was carried out by Holzer and Kutrib [5], and the hardest languages for
complementation were further studied by Mera and Pighizzini [14]. Succinctness
of two-way automata over a unary alphabet has received particular attention in
the works of Chrobak [3], Mereghetti and Pighizzini [15] and Geffert et al. [4].

The first natural question about unary UFAs is whether they are nontrivial:
that is, any more succinct than unary DFAs. The smallest example of a nontrivial
UFA is presented in Figure 1, left; it is unambiguous, because only strings of
even length are accepted in the first cycle, and only strings of odd length are
accepted in the second cycle. This UFA has 1 + 4 + 6 = 11 states, while the
smallest equivalent DFA shown on the right requires 1 + lcm(4, 6) = 13 states.
This example motivates the study of unary UFAs, which is undertaken in the
present paper.

It should be noted that the existing methods of proving lower bounds on the
size of UFAs, based upon the matrix methods of Schmidt [19], are quite hard
to apply in the case of a unary alphabet. For unary inputs, Schmidt’s matrix
belongs to a class of circulant matrices, and the problem of determining the rank
of a circulant matrix of 0s and 1s, studied by Ingleton [7], is surprisingly hard
in the general case. Unless the matrix for a particular language happens to be
of some special form, finding its rank is difficult.

New methods of analysis are thus required, and they shall be derived from the
earlier work on unary NFAs. Perhaps the most important basic result on unary
NFAs is the Chrobak normal form, in which there is one tail of states, ending
with transitions into one or more disjoint cycles. It was proved by Chrobak [3]
that every n-state NFA can be transformed to this normal form, with the cycles
of combined length at most n and with the tail of length O(n2). For the case for a
UFA, Chrobak’s transformation was refined by Jiang, McDowell and Ravikumar
[8, Thm. 2.2] to a transformation to the same normal form, but without increasing
the number of states.

This paper begins with formulating an additional condition in the Chrobak
normal form that is specific to UFAs. This condition is then used to determine
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the precise tradeoff between UFAs and DFAs, which is expressed in terms of
a more complicated variant of Landau’s function, denoted g̃. In particular, the
UFA–DFA tradeoff is asymptotically equivalent to g̃, and the growth rate of the
latter is determined as 2Θ( 3√

n ln2 n). A close lower bound on the tradeoff between
NFAs and UFAs is established using the matrix methods of Schmidt [19], and
the tradeoff is found to be of the order of the original Landau’s function, that
is, e(1+o(1))

√
n lnn. Finally, the complexity of operations on UFAs is approached,

and an n2−o(1) lower bound for complementation is established, which shows
for the first time that the complement of a UFA sometimes requires additional
states. The complexity of Kleene star is determined precisely as (n− 1)2 + 1.

2 Chrobak Normal Form for Unambiguous Automata

A nondeterministic finite automaton (NFA) is a quintuple A = (Σ,Q,Q0, δ, F ),
where Σ is an input alphabet, Q is a finite nonempty set of states; Q0 ⊆ Q is the
set of initial states; δ : Q×Σ → 2Q is the transition function; F ⊆ Q is the set
of accepting states. The automaton A is said to accept a string w = a1 . . . an if
there exists a sequence of states r0, . . . , rn ∈ Q, in which r0 ∈ Q0, ri ∈ δ(ri−1, ai)
for all i, and rn ∈ F . The language recognized by an NFA, denoted by L(A),
is the set of all strings it accepts. The transition function shall be extended to
δ : Q×Σ∗ → 2Q by δ(q, ε) = {q} and δ(q, aw) =

⋃
q′∈δ(q,a) δ(q

′, w).
In some literature, NFAs are defined with a unique initial state, that is, with

Q0 = {q0}. Every NFA can be converted to an NFA with a unique initial state
by adding a new initial state.

A deterministic finite automaton (DFA) is an NFA with a unique outgoing
transition from each state by each symbol (|δ(q, a)| = 1 for all q, a) and with
a unique initial state (|Q0| = 1). An NFA A is a partial DFA if |Q0| = 1 and
|δ(q, a)| � 1 for all q and a.

An NFA is unambiguous if for every w ∈ L(A) the corresponding sequence
of states r0, . . . , r|w| in the definition of acceptance is unique. An unambiguous
NFA is called an unambiguous finite automaton (UFA).

The first lower bound argument for UFAs was given by Schmidt [19, Thm. 3.9]
in his proof of a 2Ω(

√
n) lower bound on the NFA–UFA tradeoff. The following

general statement of Schmidt’s lower bound method is due to Leung [11]:

Schmidt’s Theorem [19,11]. Let L ⊆ Σ∗ be a regular language and let
{(u1, v1), . . . , (un, vn)} with n � 1 and ui, vi ∈ Σ∗ be a finite set of pairs of
strings. Consider the integer matrix M ∈ Zn×n defined by Mi,j = 1 if uivj ∈ L,
and Mi,j = 0 otherwise. Then every UFA recognizing L has at least rankM
states.

The study of NFAs over a unary alphabet Σ = {a} is founded upon the following
normal form:

Definition 1 (Chrobak [3]). An NFA over {a} is said to be in Chrobak nor-
mal form if its set of states is {q0, . . . , q�−1} ∪

⋃k
i=1 Ri, with � � 0, k � 0,
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Ri = {ri,0, . . . , ri,pi−1} and 1 � p1 < p2 < . . . < pk, the unique initial state is
q0 if � � 1 or there is a set of initial states {r1,0, . . . , rk,0} if � = 0, and the
transitions are:

δ(qi, a) = {qi+1} (0 � i � �− 2)
δ(q�−1, a) = {r1,0, r2,0, . . . , rk,0} (if � � 1)
δ(ri,j , a) = {ri,j+1 mod pi} (1 � i � k, 0 � j � pi − 1),

The set of accepting states may be arbitrary.

It is known from Chrobak [3] that every NFA with n states can be transformed
to an equivalent NFA in this normal form, with � = O(n2) and

∑k
i=1 pn � n.

The growth in the number of states is thus at most quadratic.
Turning to unary UFAs, in this case the transformation to the Chrobak normal

form can be always done without increasing the number of states:

Proposition 1 (Jiang, McDowell, Ravikumar [8, Thm. 2.2]). For every
UFA recognizing an infinite language over {a} there exists (and can be effectively
constructed) a UFA in Chrobak normal form with the same number of states
recognizing the same language. Furthermore, if the original UFA has a unique
initial state, then so does the resulting UFA.

Once a UFA is converted to the Chrobak normal form, the following key restric-
tion of unambiguous automata is exposed:

Main Condition. An NFA ({a}, Q, q0, δ, F ) in Chrobak normal form recogniz-
ing an infinite language over {a} is unambiguous if and only if for every two
accepting states ri,f , rj,f ′ ∈ F with i �= j, the offsets f and f ′ are different
modulo gcd(pi, pj).

The proof is based upon the Chinese Remainder Theorem. The Main Condition,
in particular, implies that the lengths of the cycles cannot be primes (unless
there is a unique cycle), and that gcd(pi, pj) � 2 for any two distinct cycles.
For example, the UFA in Figure 1 in the introduction has gcd(4, 6) = 2, and
accepting states are separated by the parity of their offsets.

3 UFA–DFA Tradeoff

An upper bound on the number of states in a DFA needed to represent unary lan-
guages recognized by n-state unary NFAs has been established by Lyubich [12].
It is asymptotically equivalent to the maximum order of a permutation on n
elements:

g(n) = max{ lcm(p1, . . . , pk) | k � 1, p1 + . . .+ pk � n }.

This function is known as Landau’s function, as its e
√
n lnn(1+o(1)) asymptotics

was determined by Landau [9], see also Miller [16] for a more accessible argument.
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Twenty years after Lyubich, an asymptotically matching lower bound on the
unary NFA to DFA tradeoff was obtained by Chrobak [3], who also gave a new,
combinatorial proof of Lyubich’s upper bound. These results can be stated as
follows:

Proposition 2 (Lyubich [12], Chrobak [3]). For every n-state unary NFA
there exists a DFA with at most g(n) + n2 states recognizing the same language.
Conversely, for every n there is a language recognized by an n-state NFA, such
that every equivalent DFA requires g(n) states.

The essense of this result is a natural correspondence between unary NFAs and
Landau’s function. The numbers p1, . . . , pk in the definition of g(n) correspond
to lengths of cycles of an NFA in Chrobak normal form, the sum p1 + . . . + pk
represents the number of states in an NFA, and an equivalent DFA has to have
lcm(p1, . . . , pk) states.

This analysis of NFAs can be extended to UFAs, if the constraints on their
Chrobak normal form given in the Main Condition are embedded into the defi-
nition of Landau’s function. This leads to the following variant of this function:

g̃(n) = max
{

lcm(p1, . . . , pk)
∣∣ k � 1, p1 + . . .+ pk � n,

∃f1, . . . , fk with fi ∈ {0, . . . , pi − 1} :

∀i, j (i �= j) fi �= fj (mod gcd(pi, pj))
}

For n up to 9 the value of g̃(n) is n. The next value is g̃(10) = 12, given by
k = 2, p1 = 4, p2 = 6, f1 = 0 and f2 = 1 with 0 �= 1 (mod gcd(4, 6)). This
function can be asymptotically estimated as eΘ( 3√

n ln2 n), and this estimation
will be the subject of the next section. Now the task is to express the tradeoff
between UFAs and DFAs using this function, which can be done as follows:

Theorem 1. For every n � 1, the following number of states is sufficient and
in the worst case necessary for a DFA to recognize a unary language recognized
by an n-state UFA with multiple initial states:

fUFA–DFA(n) =

⎧⎨⎩n+ 1, if n � 9
max

0��<n
g̃(n− �) + �, if n � 10

For UFAs with a unique initial state, the tradeoff function takes the following
form:

fUFA1–DFA(n) =

⎧⎨⎩n+ 1, if n � 10
max

1��<n
g̃(n− �) + �, if n � 11

For n � 9, UFAs are not yet any more powerful than partial DFAs, and thus
can be simulated by DFAs with n + 1 states, with the lower bound witnessed
by a finite language. Once there are sufficiently many states to reach nontrivial
values of g̃, the following witness languages can be represented:
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Lemma 1. Let k � 2, � � 0, p1, . . . , pk � 2 and f1, . . . , fk � 0 with 0 � fi < pi
be any numbers, such that (a) fi �= fj (mod gcd(pi, pj)) for all 1 � i < j � k,
(b) lcm(p1, . . . , pi−1, pi+1, . . . , pk) is not divisible by pi for any 1 � i � k, and
(c) fi = pi − 1 for some i. Then the language

L = a� ·
k⋃

i=1

afi(api)∗

has a UFA with �+p1+. . .+pk states, while every DFA for this language requires
�+ lcm(p1, . . . , pm) states.

The matching upper bound is implied by the following lemma:

Lemma 2. For every n-state UFA in Chrobak normal form with a tail of length
� � 0 there exists a DFA with at most �+ g̃(n − �) states recognizing the same
language.

Theorem 1 is as a consequence of the above lemmata. The exact values of the
tradeoff can now be computed: for instance, fUFA–DFA(50) = g̃(50) = 560 with a
witness language a13(a14)∗∪a12(a16)∗∪a14(a20)∗, and fUFA1–DFA(50) = g̃(46)+
4 = 424, witnessed by a15(a12)∗ ∪ a16(a14)∗ ∪ a17(a20)∗.

4 Estimation of g̃

The function g̃ characterizes the expressive power of unary UFAs, and estimating
the growth rate of this function, especially in comparison with g, is essential to
understand the power of ambiguity in finite automata over a unary alphabet.
So what is the asymptotic behaviour of the function g̃? The first step towards
determining its growth rate is estimating the maximum number of cycles k for
a given sum of cycle lengths.

Lemma 3. Let k � 1 and let π1, . . . , πk � 2 be any integers, for which (a)
there exist f1, . . . , fk ∈ N with fi �= fj (mod gcd(πi, πj)) for all i �= j, and (b)
lcm(π1, . . . , πi−1, πi+1, . . . , πk) is not divisible by pi for any 1 � i � k. Then
π1 + . . .+ πk >

4
9k

3 ln k − 8
27k

3
√

ln k.

As in Lemma 1, the condition of each cycle contributing something to the least
common multiple is essential: if it is lifted, then taking k cycles each of length k
gives

∑
πi = k2, and the statement does not hold.

For each i, let ri = lcm(π1,...,πk)
lcm(π1,...,πi−1,πi+1,...,πk) and let πi = risi. Then the numbers

r1, . . . , rk are pairwise relatively prime, each of them is at least 2 by the condition
(b), and hence gcd(πi, πj) = gcd(si, sj) for i �= j. In this notation, the statement
of the lemma can be equivalently reformulated as follows:

min
r1,...,rk�2

relatively prime

min
s1,...,sk∈N
∃f1,...,fk∈N

fi 
=fj (mod gcd(si,sj))

k∑
i=1

risi >
4
9k

3 ln k − 8
27k

3
√

ln k.
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The proof proceeds by simplifying the expression in the left-hand side, decreasing
its value, but in the end still obtaining a value greater than 4

9k
3 ln k− 8

27k
3
√

ln k.
The first simplification step is replacing the condition on s1, . . . , sk involving the
numbers f1, . . . , fk with the following simpler consequence of this condition:

Claim 3.1 For any s1, . . . , sk � 1, if there exist f1, . . . , fk ∈ N with fi �= fj
modulo gcd(si, sj), then 1

s1
+ . . .+ 1

sk
� 1.

Aiming to estimate the smallest values of the sum
∑
risi, it is convenient to

allow the values of si to be any positive real numbers. This will slightly reduce
the value of the minimum, but will make it analytically calculable as follows:

Claim 3.2 Let a1, . . . , am > 0 be any positive real numbers. Then

min
x1,...,xk∈R+
1

x1
+...+ 1

xk
=1

k∑
i=1

aixi =
(√
a1 + . . .+

√
ak
)2

and the minimum is reached at the point xi =
√
a1+...+

√
ak√

ai
.

Therefore, a lower bound on the sum
∑k

i=1 risi is (
√
r1 + . . .+

√
rk)2, and the

next task is to estimate the least value of this sum for all applicable ri, that is,
for every choice of pairwise relatively prime r1, . . . , rk � 2. In fact, the minimum
is achieved by taking the first k primes.

Claim 3.3 Let 2 � r1 < . . . < rk be any pairwise relatively prime natural
numbers. Then pi � ri, where pi is the ith prime.

Therefore, the sum is decreased (or unaltered) by replacing each ri with the ith
prime:

(
√
r1 + . . .+

√
rk)2 � (

√
p1 + . . .+

√
pk)2.

In order to estimate the sum
∑k

i=1
√
pi, consider the following known fact:

Proposition 3. pn > n lnn for all n � 1.

It remains to calculate the resulting sum:

Claim 3.4
∑k

n=1

√
n lnn > 2

3k
√
k ln k − 2

9k
√
k for all k � 1.

The sum is approximated by the integral
∫ k
1

√
x ln xdx, which can be estimated

as stated in the claim. With all these auxiliary results established, Lemma 3 is
proved by the following chain of inequalities.
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min
r1,...,rk�2

relatively prime

min
s1,...,sk∈N
∃f1,...,fk∈N

fi 
=fj (mod gcd(si,sj))

k∑
i=1

risi� min
r1,...,rk�2

relatively prime

min
s1,...,sk∈N

1
s1

+...+ 1
sk

�1

k∑
i=1

risi �

� min
r1,...,rk�2

relatively prime

min
x1,...,xk∈R+
1

x1
+...+ 1

xk
�1

k∑
i=1

rixi = min
r1,...,rk�2

relatively prime

(√
r1 + . . .+

√
rk
)2 =

=
(√
p1 + . . .+

√
pk
)2
>
( k∑

i=1

√
i ln i

)2
>
( 2

3k
√
k ln k − 2

9k
√
k
)2
>

> 4
9k

3 ln k − 8
27k

3
√

ln k.

This estimation can be reformulated as a lower bound on k as a function of n.

Lemma 4. Under the assumptions of Lemma 3, k < 3
3√4

3

√
n

lnn−2
√

lnn
, where

n = π1 + . . .+ πk � 55.

The following upper bound of g̃(n) can be inferred from this bound on k.

Theorem 2 (Upper bound). g̃(n) < e
3√2n ln2 n(1+o(1)).

The proof of the theorem relies only on the upper bound on k, and otherwise
ignores the additional constraints in the definition of g̃ as compared to g. The
first step is to replace the least common multiple of π1, . . . , πk with their product,
and then allow the cycle lengths to be real numbers. Then the maximum of the
product is reached for all factors being identical:

Proposition 4. max
x1+...+xk�x

x1 . . . xk = (xk )k for every k ∈ N and x ∈ R+.

Another fact about elementary functions is that (nk )k reaches its maximum at
k = n

e , and since the values of k allowed by Lemma 4 are much smaller, one
should choose k as large as possible to obtain the greatest value of (nk )k.

Proposition 5. The function f(y) = (ny )y increases on 0 < y � n
e , has a

maximum at y = n
e and decreases on n

e � y.

The rest of the proof of Theorem 2 is a straightforward calculation.
The second task is to establish a lower bound on g̃, and the following asymp-

totically close estimation shall be obtained:

Theorem 3 (Lower bound). g̃(n) > e
3
√

2
9

3√
n ln2 n(1+o(1)).

Given a number n, the proof begins with finding the largest k, such that the sum
sk =

∑k
i=1 kpi, where pi is the ith prime, is at most n. The numbers πi = kpi

satisfy the definition of g̃ with fi = i − 1 for each i, and therefore the value of
g̃ on sk must be at least lcm(kp1, . . . , kpk) = k

∏k
i=1 pi. Consider the following

known facts about primes:
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Proposition 6 ([1]).
∑k

i=1 pi = (1 + o(1))1
2k

2 ln k.

Proposition 7.
∏k

i=1 pi = e(1+o(1))k ln k.

Using these facts to estimate the numbers sk and k
∏k

i=1 pi and carrying out
some straightforward calculations proves Theorem 3.

According to Theorems 2–3, the values of the function g̃ are confined within
the following bounds:

e
3
√

2
9

3√
n ln2 n(1+o(1)) < g̃(n) < e

3√2 3√
n ln2 n(1+o(1)).

Corollary 1. g̃(n) = eΘ
(

3
√

n(lnn)2
)
.

Returning to the UFA–DFA tradeoff, note that the tradeoff function satisfies
g̃(n) � fUFA–DFA � g̃(n)+n, while in the case of UFAs with a unique initial state,
g̃(n− 1) � fUFA1–DFA � g̃(n− 1) + n. Therefore, both functions asymptotically
behave as g̃:

Corollary 2. fUFA–DFA = eΘ
(

3
√

n(lnn)2
)

and fUFA1–DFA = eΘ
(

3
√

n(lnn)2
)
.

5 NFA–UFA Tradeoff

An NFA can be transformed to an equivalent UFA simply by converting it to a
DFA. It turns out that for some NFAs no better transformation is possible:

Lemma 5. For all k � 1 and p1, . . . , pk � 2, the language

L = {ε} ∪ a
k⋃

i=1

{ε, a, a2, . . . , api−2}(api)∗ = (alcm(p1,...,pk))∗ ∪ {ε}

has an NFA with 1+
∑k

i=1 pi states, while the smallest UFA for L needs at least
1 + lcm(p1, . . . , pk) states.

This smallest UFA is actually a DFA. The lower bound on the size of any UFA for
L is proved using the method of Schmidt [19]. Consider the strings ui = vi = ai−1

for 1 � i � lcm(p1, . . . , pk) + 1 = n + 1. The corresponding (n + 1) × (n + 1)
matrix M is defined by Mi,j = 0 for i + j = n + 2 and for i = j = n + 1,
and Mi,j = 1 for the rest of the entries. It is easy to check that it is a full-rank
matrix, and the lower bound follows by Schmidt’s Theorem.

Thus g(n − 1) + 1 is a lower bound on the NFA to UFA transformation.
An asymptotically matching upper bound of g(n − 1) + O(n2) is given by
Chrobak’s [3, Thm. 4.4] construction, which begins by converting an n-state
NFA to the Chrobak normal form with a tail of length O(n2) and with at most
n−1 states in the cycles, and then proceeds by determinizing the cycles, making
at most g(n− 1) states.

Theorem 4. For every n � 1, the number of states in a UFA sufficient and, in
the worst case, necessary to represent languages recognized by n-state NFAs is
g(n− 1) +O(n2) = e

√
n lnn(1+o(1)).
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6 Complementing Unary UFAs

With respect to DFAs, complementation has state complexity n, since in order
to represent the complement of a language recognized by a DFA, it is sufficient
to complement its set of accepting states. For unary NFAs, Holzer and Kutrib [5]
have shown that complementation may require a blowup of up to g(n) states:
that is, complementing some unary NFAs basically requires determinizing them.

The situation with UFAs is quite nontrivial. On one hand, for a substantial
class of UFAs, the complement can be constructed by changing the set of ac-
cepting states, like in the case of DFAs. On the other hand, it will be proved
that complementing some UFAs requires additional states.

The following subclass of UFAs allows efficient complementation:

Lemma 6. Let A = (Σ,Q, q0, δ, F ) be a unary UFA in Chrobak normal form
recognizing an infinite language, and assume that there exists a number p
that divides the length of every cycle, such that for every two accepting states
ri,f , rj,f ′ ∈ F with i �= j, it holds that f �= f ′ (mod p). Then there exists a set
F ′, such that A′ = (Σ,Q, q0, δ, F ′) is a UFA recognizing L(A).

The new set of accepting states is defined as follows: F ′ = { qi | qi /∈ F }∪{ ri,f |
(f mod p) ∈ Si, ri,f /∈ F }.

In particular, this lemma is applicable to all UFAs with k = 2 cycles, such
as the one in Figure 1. But for k � 3 the lengths of the cycles need not have
a common divisor, which leads to examples of UFAs not covered by the above
lemma. Sometimes the lengths of the cycles may have a common divisor, yet the
separation of offsets required by the Main Condition would not be possible. The
following example illustrates the latter case.

Example 1. Let k = 3 and consider cycle lengths p1 = 8, p2 = 10 and p3 = 12,
where gcd(8, 10) = 2, gcd(8, 12) = 4 and gcd(10, 12) = 2. Then the numbers
f1 = 7, f2 = 8 and f3 = 9 satisfy the Main Condition, as 7 �= 8 (mod 2),
7 �= 9 (mod 4) and 8 �= 9 (mod 2). This leads to a UFA with 1 + 8 + 10 +
12 = 31 states recognizing the language a8(a8)∗ ∪a9(a10)∗ ∪a10(a12)∗. However,
gcd(8, 10, 12) = 2 and 7 = 9 (mod 2), and thus Lemma 6 is not applicable to
this UFA, and would not be applicable for any choice of offsets f1, f2, f3.

The idea of this example can be generalized to the following lower bound:

Lemma 7. Let k � 1 and let p1, . . . , p2k+1 be any pairwise distinct primes.
Then the language L =

⋃2k+1
i=1 Li, where

Li = { a1+n | n �= 0 (mod pi), n = 0 (mod pi+1 . . . pi+k) }

(with addition modulo 2k+1 in subscripts), has a UFA with 1+
⋃2k+1
i=1 pi . . . pi+k

states, while every NFA for L contains at least p1 . . . p2k+1 states.

The key element of the proof is the establishing that every infinite periodic
subset of L containing any string a1+n with n = 0 (mod p1 . . . p2k+1) has period
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divisible by p1 . . . p2k+1. Now the witness language from Lemma 7 can be used
to obtain the following modest lower bound on the complexity of complementing
UFAs:

Lemma 8. Let k � 1. Then the number of states in an NFA necessary
to represent complements of n-state UFAs over a unary alphabet is at least

1
22k+1(2k+1)2 · n

2− 1
k+1 for all n � (2k + 1)(4(2k + 1) ln 4(2k + 1))k+1.

For a given n, the goal is to find 2k + 1 distinct primes p1, . . . , p2k+1, which
should be as large as possible, as long as 1 +

∑2k+1
i=1 pipi+1 . . . pi+k � n, so that

the language in Lemma 7 has an n-state UFA. These primes are chosen by a well-
known theorem of Ramanujan [18], which asserts that for every m large enough
there are at least 2k+1 primes between m

2 and m. To be more precise, m should
be greater or equal to the (2k+ 1)-th Ramanujan prime r2k+1, and the proof of
Lemma 8 relies upon the asymptotic estimation of ri due to Sondow [20].

Finally, letting k increase with n, the following lower bound can be obtained:

Theorem 5. The state complexity of complementation for UFAs over a unary
alphabet is at least n2−o(1) and at most fUFA–DFA(n).

7 State Complexity of Intersection and Star

Consider the operation of intersection, which has state complexity mn both for
DFAs [13,22] and for NFAs [5], and both over unary and larger alphabets. It
maintains the same complexity for UFAs: the upper bound is by the standard
direct product construction, which always produces a UFA for UFA arguments,
and a matching lower bound for select values of m,n is already known from
Holzer and Kutrib [5]: for all relatively prime m,n � 2, the language (amn)∗ =
(am)∗ ∩ (an)∗ requires an NFA with at least mn states.

Theorem 6. The state complexity of intersection for UFAs over a unary alpha-
bet is at most mn. This bound is reachable for all relatively prime m,n.

Turning to the Kleene star, its state complexity for unary DFAs is (n− 1)2 + 1,
obtained by Yu, Zhuang and Salomaa [22, Thm. 5.3]. An identical result holds
for UFAs, in spite of the differences between the two models. The lower bound
argument uses a language with a co-finite star, and for such languages UFAs are
no more succinct than DFAs:

Lemma 9. Let L ⊆ a∗ be a co-finite language, let am be the longest string not
in L. Then the smallest NFA in Chrobak normal form for L contains m + 2
states and coincides with the smallest DFA for L.

Theorem 7. For every n � 1, star of an n-state UFA is representable by a UFA
with (n−1)2 +1 states, and this number of states is in the worst case necessary.

Establishing the complexity of union and concatenation and improving the
bounds on the complementation are left as main open problems.
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Abstract. We study several problems related to finding reset words in
deterministic finite automata. In particular, we establish that the prob-
lem of deciding whether a shortest reset word has length k is complete for
the complexity class DP. This result answers a question posed by Volkov.
For the search problems of finding a shortest reset word and the length of
a shortest reset word, we establish membership in the complexity classes
FPNP and FPNP[log], respectively. Moreover, we show that both these
problems are hard for FPNP[log]. Finally, we observe that computing a
reset word of a given length is FNP-complete.

1 Introduction

A synchronising automaton is a deterministic finite automaton that can be reset
to a single state by reading a suitable word. More precisely, we require needs
to exist a word w such that, no matter at which state of the automaton we
start, w takes the automaton to the same state q; we call any such word w a
reset word or a synchronising word. Although it is easy to decide whether a given
automaton is synchronising and to compute a reset word, finding a shortest reset
word seems to be a hard problem.

The motivation to study reset words does not only come from automata the-
ory: There are applications in the fields of many-valued logics, biocomputing, set
theory, and many more [12]. A purely mathematical viewpoint can be obtained
by identifying letters with their associated transition functions, which act on a
finite set. The task is then to find a composition of these functions such that the
resulting function is constant.

The theory of synchronising automata has been established in the 1960s and
is still actively developed. The famous Černý Conjecture was formulated in 1971
[3]. The conjecture claims that every synchronising automaton with n states
has a reset word of length (n− 1)2. As of now, the conjecture has neither been
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proved nor disproved; the best known upper bound on the length of a reset word
is (n3 − n)/6, as shown by Pin [8].

While Eppstein [4] showed that the problem of deciding whether there exists
a reset word of a given length k is NP-complete, the complexity of deciding
whether a shortest reset word has length k is not known to be in NP. In his
survey paper [12], Volkov asked for the precise complexity of this problem. In
this paper, we show that deciding whether a shortest reset word has length k is
complete for the class DP, the closure of NP∪coNP under finite intersections. In
particular, since every DP-complete problem is both NP-hard and coNP-hard,
it is unlikely that the problem of deciding the length of a shortest reset word lies
in NP ∪ coNP.1

The class DP is contained in the class PNP, i.e. every problem in DP can
be solved by a deterministic polynomial-time Turing machine that has access
to an oracle for an NP-complete problem. In fact, two oracle queries suffice for
this purpose. If one restricts the number of oracle queries to be logarithmic in
the size of the input, one arrives at the class PNP[log], which is believed to be
a proper superclass of DP. We show that the problem of computing the length
of a shortest reset word (as opposed to deciding whether it is equal to a given
integer) is, in fact, complete for FPNP[log], the functional analogue of PNP[log].
Hence, this problem seems to be even harder than deciding the length of a
shortest reset word. Our result complements a recent result by Berlinkov [1],
who showed that, unless P = NP, there is no polynomial-time algorithm that
approximates the length of a shortest reset word within a constant factor.

For the more general problem of computing a shortest reset word (not only its
length), we prove membership in FPNP, the functional analogue of PNP. While
our lower bound of FPNP[log] on computing the length of a shortest reset word
carries over to this problem, we leave it as an open problem whether computing
a shortest reset word is also FPNP-hard.

Apart from studying problems related to computing a shortest reset word, we
also consider the problem of computing a reset word of a given length (repre-
sented in unary). We observe that this problem is complete for the class FNP
of search problems for which a solution can be verified in polynomial time. In
other words: the problem is as hard as computing a satisfying assignment for a
given Boolean formula.

2 Preliminaries

Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA) with finite state
setQ, finite alphabetΣ and transition function δ : Q×Σ → Q. The transitive clo-
sure of δ can be defined inductively by δ∗(q, ε) = q and δ∗(q, wa) = δ(δ∗(q, w), a)
for each q ∈ Q, w ∈ Σ∗ and a ∈ Σ. We call any word w ∈ Σ∗ such that
|{δ∗(q, w) | q ∈ Q}| = 1 a reset word for A, and we say that A is synchronising
1 We have been informed that Gawrychowski [5] has shown DP-completeness of

shortest-reset-word earlier, but his proof has never been published. While his
reduction uses a five-letter alphabet, we prove hardness even over a binary alphabet.
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if such a word exists. Note that, if w is a reset word for A, then so is xwy for all
x, y ∈ Σ∗.

We assume that the reader is familiar with basic concepts of complexity theory,
in particular with the classes P, NP and coNP. We will introduce the other classes
that play a role in this paper on the fly. For details, see [7,10].

3 Decision Problems

The most fundamental decision problem concerning reset words is to decide
whether a given deterministic finite automaton is synchronising. Černý [2] noted
that it suffices to check for each pair (q, q′) of states whether there exists a
word w ∈ Σ∗ with δ∗(q, w) = δ∗(q′, w). The latter property can obviously be
decided in polynomial time. The best known algorithm for computing a reset
word is due to Eppstein [4]: his algorithm runs in time O(|Q|3 + |Q|2 · |Σ|).
Computing a shortest reset word, however, cannot be done in polynomial time
unless the following decision problems are in P.

short-reset-word: Given a DFA A and a positive integer k, decide
whether there exists a reset word for A of length k.

shortest-reset-word: Given a DFA A and a positive integer k, decide
whether the minimum length of a reset word for A equals k.

If the parameter k is given in unary, it is obvious that short-reset-word is
in NP. However, even if k is given in binary, this problem is in NP: since every
synchronising automaton has a reset word of length p(|Q|) (where p is a low-
degree polynomial, e.g. p(n) = (n3 − n)/6), to establish whether there exists a
reset word of length k, it suffices to guess a reset word of length min{p(|Q|), k}.
Eppstein [4] gave a matching lower bound by proving that short-reset-word
is also NP-hard.

Regarding shortest-reset-word, Samotij [9] showed that the problem is
NP-hard. We prove that shortest-reset-word is complete for DP, the class
of all languages of the form L = L1 \ L2 with L1, L2 ∈ NP. Since DP is a
superclass of both NP and coNP, our result implies hardness for both of these
classes. In fact, we show that shortest-reset-word is DP-hard even over a
binary alphabet.

Theorem 1. shortest-reset-word is DP-complete.

Proof. It is easy to see that shortest-reset-word belongs to DP: indeed, we
can write shortest-reset-word as the difference of short-reset-word and
short-reset-word−, where

short-reset-word− = {(A, k + 1) | (A, k) ∈ short-reset-word},

a problem which is obviously in NP (even if k is given in binary).
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It remains to prove that shortest-reset-word is DP-hard. We reduce from
the canonical DP-complete problem sat-unsat: given two Boolean formulae ϕ
and ψ (in CNF), decide whether ϕ is satisfiable and ψ is unsatisfiable. More
precisely, we show how to construct (in polynomial time) from a pair (ϕ, ψ) of
Boolean formulae in CNF over propositional variables X1, . . . , Xk a synchronis-
ing automaton A over the alphabet Σ = {0, 1} with the following properties:

1. If ϕ and ψ are satisfiable, then there exists a reset word of length k + 2.
2. If ϕ is satisfiable and ψ is unsatisfiable, then a shortest reset word has

length k + 3.
3. If ϕ is unsatisfiable, then every reset word has length at least k + 4.

From 1.–3. we get that ϕ is satisfiable and ψ is unsatisfiable if and only if a
shortest reset word has length k + 3.

Given formulae ϕ = C1 ∧ . . .∧Cn and ψ = D1 ∧ . . .∧Dn where, without loss
of generality, ϕ and ψ have the same number n of clauses, and no propositional
variable occurs in both ϕ and ψ, the automaton A consists of the states s, t1,
t2, pi,j and qi,j , i ∈ {1, . . . , n}, j ∈ {⊥,	, 1, . . . , k}; the transitions are depicted
in Fig. 1: an edge from p to q labelled with Σ′ ⊆ Σ has the meaning that
δ(p, a) = q for each a ∈ Σ′. The sets Σji ⊆ Σ are defined by 0 ∈ Σji ⇔ ¬Xj ∈ Ci
and 1 ∈ Σji ⇔ Xj ∈ Ci, and the sets Γ ji ⊆ Σ are defined by 0 ∈ Γ ji ⇔ ¬Xj ∈ Di
and 1 ∈ Γ ji ⇔ Xj ∈ Di. Hence, e.g. 0 ∈ Σji if we can satisfy the ith clause of ϕ
by setting variable Xj to false.

Clearly, A can be constructed in polynomial time from ϕ and ψ. To establish
our reduction, it remains to verify 1.–3.

To prove 1., assume that ϕ and ψ are both satisfiable. Since ϕ and ψ share
no variable, there exists an assignment α : {X1, . . . , Xk} → {true, false} that
satisfies both ϕ and ψ. We claim that the word 01w, where w = w1 . . . wk ∈
{0, 1}k is defined by wj = 1⇔ α(Xj) = true, resets A to s. Clearly, δ∗(q, w) = s
for all states q that are not of the form q = pi,⊥, q = pi,�, q = qi,⊥ or q =
qi,�. Since δ∗(pi,⊥, 01) = δ∗(pi,�, 01) = pi,1 and δ∗(qi,⊥, 01) = δ∗(qi,�, 01) =
qi,1 for each i = 1, . . . , n, it suffices to show that δ∗(pi,1, w) = δ∗(qi,1, w) = s
for all i. To prove that δ∗(pi,1, w) = s, consider the least j such that either
Xj ∈ Ci and α(Xj) = true or ¬Xj ∈ Ci and α(Xj) = false (such j exists
since α satisfies ϕ). We have δ∗(pi,1, w1 . . . wj−1) = pi,j and δ(pi,j , wj) = s and
therefore also δ∗(pi,1, w) = s. The argument for δ∗(qi,1, w) = s is analogous.

Towards proving 2., assume that ϕ is satisfiable but ψ is not. Consider an
assignment α : {X1, . . . , Xk} → {true, false} that satisfies ϕ. It follows with the
same reasoning as above that the word 01w1, where w ∈ {0, 1}k is defined by
wj = 1⇔ α(Xj) = true, resets A to s.

To show that a shortest reset word has length k + 3, it remains to show that
there exists no reset word of length k + 2. Towards a contradiction, assume
that w = w1 . . . wk+2 is such a word. Note that w resets A to s and that there
exists l ≥ 2 such that δ∗(qi,⊥, w1 . . . wl) = qi,1 and δ∗(qi,1, wl+1 . . . wk+2) = s
for all i = 1, . . . , n. Define α : {X1, . . . , Xk} → {true, false} by setting α(Xj) =
true ⇔ wl+j = 1. Since l ≥ 2 but δ∗(qi,1, wl+1 . . . wk+2) = s, for each i there
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Fig. 1. Reducing sat-unsat to shortest-reset-word

must exist j ∈ {1, . . . , k} such that δ(qi,j , wl+j) = s. But then either Xj ∈ Di
and α(Xj) = true or ¬Xj ∈ Di and α(Xj) = false. Hence, α is a satisfying
assignment for ψ, contradicting our assumption that ψ is unsatisfiable.

Finally, assume that ϕ is unsatisfiable. With the same reasoning as in the
previous case, it follows that there is no reset word of length k + 3. �
The above reduction shows DP-hardness for an alphabet size of |Σ| = 2. For
the special case of only one input letter, note that each reset word is of the
form 1n for some n. Asking whether there exists a reset word of length k thus
collapses to the question whether 1k is a reset word for A. This property can
be decided with logarithmic space. Hence, both problems, short-reset-word
and shortest-reset-word, are in Logspace for |Σ| = 1.
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4 Search Problems

In this section, we leave the realm of decision problems and enter the (rougher)
territory of search problems, where the task is not only to decide whether a reset
word of some length exists, but to compute a suitable word (or its length). More
precisely, we deal with the following search problems:

– Given a DFA A and a positive integer k in unary, compute a reset word
for A of length k.

– Given a DFA A, compute the length of a shortest reset word for A.
– Given a DFA A, compute a shortest reset word for A.

Let us start with the first problem of computing a reset word of a given
length. It turns out that this problem is complete for the class FNP of search
problems where the underlying binary relation is both polynomially balanced
and decidable in polynomial time.

Proposition 2. The problem of computing a reset word of a given length is
FNP-complete.

Proof. Membership in FNP follows from the fact that the binary relation

{((A, 1k), w) | w is a reset word for A of length k}
is polynomially balanced and polynomial-time decidable.

To prove hardness, we reduce from fsat, the problem of computing a satis-
fying assignment for a given Boolean formula in conjunctive normal form. To
this end, we describe two polynomial-time computable functions f and g, where
f computes from a CNF formula ϕ a synchronising automaton A = f(ϕ) over
the alphabet {0, 1} and a unary number k ∈ N, and g computes from ϕ and
w ∈ Σ∗ an assignment for ϕ, such that, if w is a reset word for A of length k,
then the generated assignment satisfies ϕ.

Eppstein [4] showed how to compute in polynomial time, given a CNF for-
mula ϕ = C1 ∧ . . . ∧ Cn over the variables X1, . . . , Xk, an automaton Aϕ over
the alphabet {0, 1} with the following two properties:

1. A word w = w1 · · ·wk is a reset word for A if and only if the assignment α,
defined by α(Xj) = true⇔ wj = 1, satisfies ϕ.

2. An assignment α : {X1, . . . , Xk} → {true, false} satisfies ϕ if and only if the
word w ∈ {0, 1}k, defined by wj = 1⇔ α(Xj) = true, is a reset word for A.

(Note that the reduction we use to prove Theorem 1 has similar properties and
could also be used.)

Hence, we can choose f to be the function that maps ϕ to (Aϕ, 1k) and g to
be the function that maps (ϕ,w) to the corresponding assignment α. (If |w| �= k,
then α can be chosen arbitrarily.) �
Remark 3. Note that the mapping f : {0, 1}k → {true, false}{X1,...,Xk}, defined
by f(w)(Xj) = true ⇔ wj = 1, is a bijection. Eppstein’s reduction shows that
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Algorithm 1. Computing the length of a shortest reset word

if A is not synchronising then reject
low := −1
high := (n3 − n)/6
while high − low > 1 do
k := �(low + high)/2�
if A has a reset word of length k then

high := k
else

low := k
end while
return high

one can compute from a Boolean formula ϕ over the variables {X1, . . . , Xk} an
automaton A such that f remains a bijection when one restricts the domain to
reset words for A and the range to assignments that satisfy ϕ. Therefore, his
reduction can be viewed as a parsimonious reduction from #sat, the problem of
counting all satisfying assignments of a given Boolean formula, to the problem of
counting all reset words of a given length (represented in unary). Since the first
problem is complete for #P [11], the second problem is #P-hard. On the other
hand, it is easy to see that the second problem is in #P. Hence, this problem is
#P-complete.

Next, we consider the problem of computing the length of a shortest reset word
for a given automaton: we establish that this problem is complete for the class
FPNP[log] of all problems that are solvable by a polynomial-time algorithm with
access to an oracle for a problem in NP where the number of queries is restricted
to O(logn).

Theorem 4. The problem of computing the length of a shortest reset word is
FPNP[log]-complete.

Proof. To prove membership in FPNP[log], consider Algorithm 1 which is a bi-
nary-search algorithm for determining the length of a shortest reset word for an
automaton A with n states. The algorithm is executed in polynomial time: the
while loop is repeated O(logn) times and asks O(logn) queries to the oracle,
which is used for determining whether A has a reset word of a given length.

Krentel [6] showed that max-sat-size, the problem of computing the maxi-
mum number of simultaneously satisfiable clauses of a CNF formula, is complete
for FPNP[log]. Therefore, to establish FPNP[log]-hardness, it suffices to give a re-
duction from max-sat-size to our problem. Such a reduction consists of two
polynomial-time computable functions f and g with the following properties:
f computes from a CNF formula ϕ a (synchronising) automaton A = f(ϕ), and
g computes from ϕ and l ∈ N a new number g(ϕ, l) ∈ N such that, if l is the
length of a shortest reset word for A, then the maximum number of simultane-
ously satisfiable clauses in ϕ equals g(ϕ, k).
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Fig. 2. Reducing max-sat-size to computing the length of a shortest reset word
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Given a formula ϕ = C1 ∧ . . . ∧ Cn over propositional variables X1, . . . , Xk,
the resulting automaton A is depicted in Fig. 2: The input alphabet is Σ :=
{0, 1, $}, and the sets Σji ⊆ Σ are defined as in the proof of Theorem 1; we set
λ := k + n(n + 4). The behaviour of the transition function on vertices of the
form ri,j is defined as follows:

– δ(ri,j , $) = pi,1 for all j ∈ {−2, . . . , n+ 1};
– δ(ri,j , 1) = ri,j+1, δ(ri,j , 0) = ri,−2 for all j ∈ {−2,−1, i};
– δ(ri,j , 1) = ri,−2, δ(ri,j , 0) = ri,j+1 for all j ∈ {0, . . . , i− 1, i+ 1, . . . , n};
– δ(ri,n+1, 1) = ri,−2, δ(ri,n+1, 0) = s.

It is not difficult to see that A can be constructed in polynomial time from ϕ.
Moreover, we claim that, for each m ∈ {0, 1, . . . , n}, there exists an assignment
that satisfies at least n − m clauses of ϕ if and only if A has a reset word of
length 1+λ+k+m(n+4). Hence, if l is the length of a shortest reset word for A,
then the maximal number of simultaneously satisfiable clauses of ϕ is given by
n−
⌈

max{0,l−1−λ−k}
n+4

⌉
. Clearly, this number can be computed in polynomial time

from ϕ and l.
(⇒) Assume that α : {X1, . . . , Xk} → {true, false} is an assignment that satis-

fies all clauses except (possibly) the clauses Ci1 , . . . , Cim , and consider the word

w := $1λx1 . . . xkzi1 . . . zim ,

where zi = 110i10n−i+1 ∈ {0, 1}n+4 for i ∈ {1, . . . , n} and

xj :=

{
1 if α(Xj) = true,
0 otherwise.

Note that w has length 1+λ+k+m(n+4). We claim that w resets A to s. Since
reading $ has the effect of going from each state of the form pi,j , qi,j or ri,j to pi,1
and from t to s, and reading 1λ has the effect of going from pi,1 to qi,1, it suffices to
show that δ∗(qi,1, x1 . . . xkzi1 . . . zim) = s. If Ci is satisfied by α, then this follows
from the fact that there exists j such that δ(qi,j , xj) = s. Otherwise, we have
δ∗(qi,1, x1 . . . xk) = ri,−2, δ∗(ri,−2, zj) = ri,−2 for all j �= i, but δ∗(ri,−2, zi) = s.
Since i ∈ {i1, . . . , im}, this implies that δ∗(qi,1, x1 . . . xkzi1 . . . zim) = s.

(⇐) Assume that A has a reset word of length 1 + λ + k + m(n + 4), and
let w be a shortest reset word for A. We claim that w has the form w = $u
or w = u$ for u ∈ {0, 1}∗. Otherwise, w = u$v for u, v ∈ Σ+. Towards a
contradiction, we distinguish the following two cases: |u| ≤ λ and |u| > λ. If
|u| ≤ λ, then δ∗(pi,1, u$) = pi,1 for all i = 1, . . . , n, and the word $v would be
a shorter reset word than w. Now assume that |u| > λ. It must be the case
that δ∗(pi,1, u) �= s for some i ∈ {1, . . . , n} because otherwise $u would be a
shorter reset word than w. But then δ∗(pi,1, u$) = pi,1. Hence, since w resets A
to s and the shortest path from pi,1 to s has length greater than λ, |v| > λ and
|w| > 1 + 2λ ≥ 1 + λ+ k + n(n+ 4) ≥ 1 + λ+ k +m(n+ 4), a contradiction.

Now, if ϕ is satisfiable, we are done. Otherwise, let us fix u ∈ {0, 1}∗ such that
w = $u or w = u$. Since ϕ is not satisfiable, |u| ≥ λ + k. Let u = yx1 . . . xkz
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where y, z ∈ {0, 1}∗, |y| = λ, and xj ∈ {0, 1} for all j = 1, . . . , k. Now consider
the assignment α defined by

α(Xj) =

{
true if xj = 1,
false otherwise.

Moreover, let

I := {i ∈ {1, . . . , n} | Ci is not satisfied by α}.
We claim that |I| ≤ m (so α satisfies at least n −m clauses of ϕ). To see this,
first note that δ∗(pi,1, yx1 . . . xk) = ri,−2 for all i ∈ I. Hence, we must have that
δ∗(ri,−2, z) = s for all such i. By the construction of A, this is only possible if
z contains the word 110i10n−i+1 as an infix for each i ∈ I. Since these infixes
cannot overlap, |z| ≥ |I| ·(n+4). On the other hand, since |u| ≤ λ+k+m(n+4),
we must have |z| ≤ m(n+ 4). Hence, |I| ≤ m. �
The construction we have presented to prove Theorem 4 uses a three-letter al-
phabet. With a little more effort, we can actually reduce the alphabet to an
alphabet with two letters 0 and 1: For each state q /∈ {s, t} of A, there are three
states (q, 0), (q, 1) and (q, 2) in the new automaton A′. Additionally, A′ contains
the states (t, 0), (t, 1) and s. The new transition function δ′ is defined as follows:

δ′((q, 0), 0) = (q, 1), δ′((q, 0), 1) = (q, 2),
δ′((q, 1), 0) = (q, 1), δ′((q, 1), 1) = (δ(q, $), 2),
δ′((q, 2), 0) = (δ(q, 0), 0), δ′((q, 2), 1) = (δ(q, 1), 0)

for all q /∈ {s, t}, and

δ′((t, 0), 0) = s, δ′((t, 0), 1) = (t, 1),
δ′((t, 1), 0) = (t, 0), δ′((t, 1), 1) = (t, 1),
δ′(s, 0) = s, δ′(s, 1) = s.

Intuitively, taking a transition in A corresponds to taking two transitions in A′.
It is not difficult to see that a shortest reset word for A′ has length 2l if a shortest
reset word for A has length l.

For the potentially harder problem of computing a shortest reset word (not
only its length), we can only prove membership in FPNP, the class of all search
problems that are solvable in polynomial time using an oracle for a problem
in NP (without any restriction on the number of queries). Of course, hardness
for FPNP[log] carries over from our previous result. We have not been able to
close the gap between the two bounds. To the best of our knowledge, the same
situation occurs e.g. for max-sat, where the aim is to find an assignment of a
given Boolean formula that satisfies as many clauses as possible.

Theorem 5. The problem of computing a shortest reset word is in FPNP and
hard for FPNP[log].
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Algorithm 2. Computing a shortest reset word

if A is not synchronising then reject
Compute the length l of a shortest reset word for A
w := ε
while |w| < l do

for each a ∈ Σ do
if A has a reset word of length l with prefix wa then
w := wa; break for

end if
end for

end while
return w

Proof. To prove membership in FPNP, consider Algorithm 2 for computing a
shortest reset word for an automaton A over any finite alphabet Σ. The al-
gorithm obviously computes a reset word of length l, which is the length of a
shortest reset word. To see that the algorithm runs in polynomial time if it has
access to an NP oracle, note that deciding whether A has a reset word of a given
length with a given prefix is in NP (since a nondeterministic polynomial-time
algorithm can guess such a word). Moreover, as we have shown above, computing
the length of a shortest reset word can be done by a polynomial-time algorithm
with access to an NP oracle.

Hardness for FPNP[log] follows from Theorem 4 since the problem of comput-
ing the length of a shortest reset word is trivially reducible to the problem of
computing a shortest reset word: an instance of the former problem is also an
instance of the latter problem, and a solution of the latter problem can be turned
into a solution of the former problem by computing its length. �

5 Conclusion

We have investigated several decision problems and search problems about find-
ing reset words in finite automata. The results we have obtained shed more
light on the difficulty of computing such words. In particular, deciding whether
for a given automaton a shortest reset word has length k is DP-complete, and
computing the length of a shortest reset word is FPNP[log]-complete, i.e. as hard
as calculating the maximum number of simultaneously satisfiable clauses of a
Boolean formula. A summary of all our results is depicted in Fig. 3. (See [7,10]
for the relationships between the referred complexity classes.)

Acknowledgements. We thank an anonymous reviewer for pointing out [5].
Moreover, we are grateful to Christof Löding and Wolfgang Thomas for helpful
comments on an early draft of this paper.
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Does Treewidth Help in Modal Satisfiability?
(Extended Abstract)

M. Praveen

The Institute of Mathematical Sciences, Chennai, India

Abstract. Many tractable algorithms for solving the Constraint Sat-
isfaction Problem (Csp) have been developed using the notion of the
treewidth of some graph derived from the input Csp instance. In partic-
ular, the incidence graph of the Csp instance is one such graph. We
introduce the notion of an incidence graph for modal logic formulae
in a certain normal form. We investigate the parameterized complex-
ity of modal satisfiability with the modal depth of the formula and the
treewidth of the incidence graph as parameters. For various combinations
of Euclidean, reflexive, symmetric and transitive models, we show either
that modal satisfiability is Fpt, or that it is W[1]-hard. In particular,
modal satisfiability in general models is Fpt, while it is W[1]-hard in
transitive models. As might be expected, modal satisfiability in transi-
tive and Euclidean models is Fpt.

1 Introduction

Treewidth as a parameter has been very successful in obtaining Fixed Parame-
ter Tractable (Fpt) algorithms for many classically intractable problems. One
such class of problems is constraint satisfaction and closely related problems
like satisfiability in propositional logic and the homomorphism problem [8, 30].
There have been recent extensions to quantified constraint satisfaction [6, 27].
In such problems, treewidth is used as a measure of modularity inherent in the
given problem instance and algorithms make use of the modularity to increase
their efficiency. Understanding the extent to which treewidth can be stretched
in such problems is an active area of research [24, 15]. This work explores the
applicability of such techniques to modal satisfiability.

Apart from having many applications (reasoning about knowledge [10], pro-
gramming [28] and hardware verification [29] etc.), modal logics have nice compu-
tational properties [32, 14]. Many tools have been built for checking satisfiability of
modal formulae [21, 26], despite being intractable in the classical sense (Pspace-
complete or Np-complete in most cases). Complexity of modal logic decision prob-
lems is well studied [23, 17, 16]. Another motivation for this work is to strengthen
the complexity classification of modal logics through the refined analysis offered
by parameterized complexity.

Our results: It is known that any modal logic formula can be effectively converted
into a Conjunctive Normal Form (CNF) [9, 20]. Given a modal logic formula in

P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 580–591, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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CNF, we associate a graph with it. Restricted to propositional CNF formulae
(which are modal formulae with modal depth 0), this graph is precisely the
incidence graph associated with propositional CNF formulae (see [30] for details).
We prove that

1. with the treewidth of the graph and the modal depth of the formula as
parameters, satisfiability in general models is Fpt,

2. with treewidth and modal depth as parameters, satisfiability in transitive
models is W[1]-hard and

3. with treewidth as the parameter, satisfiability in models that are Euclidean1

and any combination of reflexive, symmetric and transitive is Fpt.

Since modal formulae of modal depth 0 contain all propositional formulae, bound-
ingmodaldepth alonewill not giveFpt results (unlessPtime=Np).Themain idea
behind our Fpt results is to express satisfiability of a modal formula in Monadic
Second Order (MSO) logic over the formula’s associated graph and then apply
Courcelle’s theorem [7]. Modal formulae with low treewidth are quite powerful,
capable of encoding complex problems (see the conclusion for relevant pointers).
On the other hand, modal formulae with low treewidth contain propositional CNF
formulae of low treewidth, which arisenaturally inmanypractical applications. See
[12, Section 1.4] and references therein for some context on this.

Related work: In [16], Halpern considers the effect of bounding different pa-
rameters (such as the number of propositional variables, modal depth etc.,
but not treewidth) on complexity. In [25], Nguyen shows that satisfiability of
many modal logics reduce to Ptime under the restriction of Horn fragment and
bounded modal depth. In [1], Achilleos et. al. consider parameterized complex-
ity of modal satisfiability in general models with the number of propositional
variables and other structural aspects (but not treewidth) as parameters. In [2],
Adler et. al. associate treewidth with First Order (FO) formulae and use it to
obtain a Fpt algorithm for model checking.

The Complexity of satisfiability of modal logics follow a pattern. In [18],
Halpern et. al. prove that with the addition of Euclidean property, complex-
ity of (infinitely) many modal logics drop from Pspace-hard to Np-complete.
[19] is another work in this direction. Similar pattern is observed in graded modal
logics [22]. With treewidth and modal depth as parameters, our results indicate
similar behaviour in the world of parameterized complexity — satisfiability in
transitive models is W[1]-hard, while satisfiability in Euclidean and transitive
models is Fpt, even with treewidth as the only parameter. However, more work
is needed in this direction. First, the results in [18, 19] hold for infinitely many
cases while we consider only a few fixed cases. Second, satisfiability in general
models is Pspace-complete and drops to Np-complete with the addition of Eu-
clidean property. In our setting, satisfiability in general models is already Fpt

(but see conclusion for a discussion about why satisfiability in general models is
not Fpt unless Ptime=Np, when treewidth is the only parameter).

1 A binary relation 	→ is Euclidean if ∀x, y, z, x 	→ y and x 	→ z implies y 	→ z.
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2 Preliminaries

Let N denote the set of natural numbers. For k ∈ N, we denote the set {1, . . . , k}
by [k]. We use standard notation about parameterized complexity like Fpt algo-
rithms, Fpt reductions and W[1]-hardness from [13]. We will also use notation
and definitions of relational structures and their tree decompositions from [13]:
a relational vocabulary τ is a set of relation symbols. Each relation symbol R
has an arity arity(R) ≥ 1. A τ -structure S consists of a set D called the domain
and an interpretation RS ⊆ Darity(R) of each relation symbol R ∈ τ . A graph
is an {E}-structure, where E is a binary edge relation. A tree is a graph with-
out cycles. A path decomposition is a tree decomposition [13, Definition 11.23]
whose underlying tree is a path. The pathwidth of a structure is the minimum of
the widths of all path decompositions. It is known that computing optimal tree
and path decompositions of a relational structure is Fpt when parameterized
by treewidth; cf. [13, Corollary 11.28] and [5].

Courcelle’s theorem ([13, Theorem 11.37]) states that given a relational struc-
ture and a MSO sentence, checking whether the MSO sentence is true in the
structure is Fpt when parameterized by the treewidth of the structure and the
length of the sentence.

We use standard notation for modal logic from [3]: well formed modal logic
formulae are defined by the grammar φ ::= q ∈ Φ | ⊥ | ¬φ | φ ∨ ψ | ♦φ | �φ,
where Φ is a set of propositional variables. A Kripke model for the basic modal
language is a triple M = (W, �→, V l), where W is a set of worlds, �→ is a binary
accessibility relation on W and V l : W × Φ → {),⊥} is a valuation function.
For w, v ∈ W , if w �→ v, v is said to be a successor of w. The pair (W, �→) is
called the frame A underlying M. If �→ is reflexive, then A and M are said
to be a reflexive frame and a reflexive model respectively. Similar nomenclature
is followed for other properties of �→. The relation �→ is Euclidean if for all
w1, w2, w3, w1 �→ w2 and w1 �→ w3 implies w2 �→ w3. We denote the fact that
a modal formula φ is satisfied at a world w in a model M by M, w |= φ. For
q ∈ Φ, M, w |= q iff V l(w, q) = ). Negation ¬ and disjunction ∨ are treated
in the standard way. For any formula φ, M, w |= ♦φ (M, w |= �φ) iff some
(all) successor(s) v of w satisfy M, v |= φ. A modal formula φ is satisfiable if
there is a model M and a world w in M such that M, w |= φ. Satisfiability in
general, reflexive and transitive models are all Pspace-complete [23], while in
equivalence models, it is Np-complete [23].

The modal depth md(φ) of a modal formula φ is inductively defined as follows.
md(q) = md(⊥) = 0. md(¬φ) = md(φ). md(φ ∨ ψ) = max{md(φ),md(ψ)}.
md(♦φ) = md(�φ) = md(φ) + 1. We will use the Conjunctive Normal Form
(CNF) for modal logic defined in [20]:

literal ::= q | ¬q | �clause | ♦CNF
clause ::= literal | clause ∨ clause | ⊥
CNF ::= clause | CNF ∧ CNF
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where q ranges over Φ. Any arbitrary modal formula φ can be effectively trans-
formed into CNF preserving satisfiability [9]. A CNF is a conjunction of clauses
and a clause is a disjunction of literals. A literal is either a propositional variable,
a negated propositional variable or a formula of the form �clause or ♦CNF . If
one of the many literals in a clause is ⊥, then ⊥ can be ignored without affect-
ing satisfiability. A literal of the form ♦⊥ can similarly be ignored. However, a
clause that has ⊥ as the only literal cannot be ignored since �⊥ is satisfied by
a world in some Kripke model iff that world has no successors. Henceforth, we
will assume that ⊥ occurs only inside sub-formulae of the form �⊥.

Suppose φ is a modal formula in CNF. If φ is of the form clause1 ∧ clause2 ∧
· · ·∧clausem, then clause1, clause2, . . . , clausem and all literals appearing in these
clauses are said to be at level md(φ). If �clause1 is a literal at some level i, then
clause1 and all literals occurring in clause1 are said to be at level i−1. If ♦CNF
is a literal at some level i and CNF is of the form clause1∧clause2∧· · ·∧clausem′ ,
then clause1, clause2, · · · , clausem′ and all literals appearing in these clauses are
said to be at level i−1. Note that a single propositional variable can occur in the
form of a literal at different levels. The concept of level is similar to the concept
of distance defined in [26]. The process of checking satisfiability we describe in
section 3 can be considered a variant of the level-based bottom-up algorithm
given in [26], which is also implicitly used in [1, Theorem 5]. It requires more
work and combination of other ideas to prove that this process can be formalized
in MSO logic.

Proofs of lemmata marked with (*) are skipped due to lack of space. A full
version of this paper with the same title is available at arXiv, which contains all
the proofs.

3 Modal Satisfiability in General Models

In this section, we will associate a relational structure with a modal CNF for-
mula. We show that checking satisfiability of a modal CNF formula is Fpt,
parameterized by modal depth and the treewidth of the associated relational
structure. We begin with an example modal CNF formula.

Consider the modal CNF formula {¬q ∨� [r ∨ ¬s]}∧{q ∨ ♦⊥}∧{r ∨ ♦ [¬s]}∧
{¬r ∨ ♦ [(t ∨ ¬s) ∧ (r)]}. Its modal depth is 1 and has 4 clauses at level 1. Fig-
ure 1 shows a graphical representation of this formula, which is very similar to
the formula’s syntax tree. The 4 clauses at level 1 are represented by e1, e2, e3
and e4. e1 represents the clause {¬q ∨� [r ∨ ¬s]}. Since ¬q occurs as a literal in
this clause, there is a dotted arrow from e1 to q. � [r ∨ ¬s] (represented by e9)
also occurs as a literal in clause e1 and hence there is an arrow from e1 to e9.
e4 represents the fourth clause at level 1, which contains ♦ [(t ∨ ¬s) ∧ (r)] as a
literal. This ♦CNF formula is represented by e10. The two clauses (t ∨ ¬s) and
(r) are represented by e7 and e8 respectively and are connected to e10 by arrows.
The propositional variable r occurs as literal at 2 levels, indicated as Lv0 and
Lv1.

Now we will formalize the above example. The intuition behind the following
definition is to represent all clauses and literals of a modal CNF formula by the
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s r t

e5 e6 e7 e8

e9 q r e10

e1 e2 e3 e4

Lv1

Lv0

Fig. 1. Relational structure associated with the modal formula {¬q ∨ � [r ∨ ¬s]} ∧
{q ∨ ♦⊥} ∧ {r ∨ ♦ [¬s]} ∧ {¬r ∨ ♦ [(t ∨ ¬s) ∧ (r)]}

domain elements of a relational structure. Binary relations are used to indicate
which literals occur in which clause (and which clauses occur in which literal).
Unary relations are used to indicate which elements represent literals and which
elements represent clauses. This will enable us to reason about clauses, literals
and their dependencies using MSO formulae over the relational structure.

Definition 3.1. Given a modal CNF formula φ, we associate with it a relational
structure S(φ). It will have one domain element for every clause in φ. It will
have one domain element for every literal of the form �clause or ♦CNF in φ.
It will also have one domain element for every propositional variable used in φ.
There are no domain elements representing the propositional constant ⊥. They
will be handled as special cases.

The relational structure will have two binary relations Oc (occurs) and Oc (oc-
curs negatively). Oc(e1, e2) iff e1 represents a clause and e2 represents a propo-
sitional variable occurring negated as a literal in the clause represented by e1. If
e1 represents a clause, then Oc(e1, e2) iff e2 represents a literal (occurring in the
clause represented by e1) of the form �clause, ♦CNF or a non-negated propo-
sitional variable. If e1 represents a literal of the form �clause, then Oc(e1, e2)
iff e2 represents the corresponding clause. If e1 represents a literal of the form
♦CNF, then Oc(e1, e2) iff e2 represents a clause in the corresponding CNF. Fi-
nally, the following unary relations are present:

Cl : contains all domain elements representing clauses
Lt : all domain elements representing literals
U : all literals of the form �⊥
B� : all literals of the form �clause
D0 : all literals of the form ♦CNF

(Lvi)0≤i≤md(φ) : all clauses and literals at level i

For clauses and literals of the form �clause or ♦CNF , there is one domain el-
ement for every occurrence of the clause or literal. For example, if the literal
♦(q1 ∧ q2) occurs in two different positions of a big formula φ, the two occur-
rences will be represented by two different domain elements in S(φ). In contrast,
different occurrences of a literal that is just a propositional variable will be rep-
resented by the same domain element. In the rest of the paper, whenever we refer
to the treewidth of a modal CNF formula φ, we mean the treewidth of S(φ).
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If e1 represents a clause, Oc(e1, e2) means that the clause represented by e1
can be satisfied by satisfying the literal represented by e2. Oc(e1, e2) means that
the clause represented by e1 can be satisfied by setting the propositional variable
represented by e2 to false.

If C�0 ⊆ Cl ∩ Lv0 is a subset of domain elements representing clauses at
level 0, let CNF (C�0) be the modal CNF formula that is the conjunction of
clauses represented by domain elements in C�0. We will now see how to check
satisfiability of CNF ({e7, e8}) in Fig. 1 and describe the generalization of this
process given in (1) below. We use c� and lt for first order variables intended to
represent clauses and literals respectively. First of all, there must be a subset
T r0 ⊆ {r, s, t} = Lt∩Lv0 that will be set to ), as written in the beginning of (1).
Then, we must check that this assignment satisfies each clause c� in C�0, written
as ∀c� ∈ C�0 in (1). To check that the clause represented by e7 is satisfied, either
a positively occurring literal like t must be set to ) and hence in T r0 (written as
“∃lt ∈ T r0 : Oc(c�, lt)” in (1)) or a negatively occurring literal like s must be set
to ⊥ and hence not in T r0 (“∃lt ∈ (Lt∩Lv0) \ T r0 : Oc(c�, lt)” in (1)). A similar
argument applies to e8 as well.

ξ[0](C�0)
�
= ∃T r0 ⊆ (Lt ∩ Lv0) : ∀c� ∈ C�0 :[

(∃lt ∈ T r0 : Oc(c�, lt)) ∨
(
∃lt ∈ (Lt ∩ Lv0) \ T r0 : Oc(c�, lt)

)] (1)

ξ[i](C�i)
�
= ∃T ri ⊆ (Lt ∩ Lvi) : ∀c� ∈ C�i :[

(∃lt ∈ T ri : Oc(c�, lt)) ∨
(
∃lt ∈ (Lt ∩ Lvi) \ T ri : Oc(c�, lt)

)]
∧[Cmi−1 = {c�

′ ∈ (Cl ∩ Lvi−1) | ∃lt′ ∈ T ri ∩B�, Oc(lt′, c�
′)}⇒

∀lt ∈ T ri ∩D0 : Dmi−1 = {c� ∈ (Cl ∩ Lvi−1) | Oc(lt, c�)}⇒
ξ[i− 1](Dmi−1 ∪Cmi−1)]

(2)

Checking satisfiability at higher levels is slightly more complicated. Suppose
C�i ⊆ Cl ∩ Lvi is a subset of clauses at level i. We will take C�1 = {e1, e3, e4}
from Fig. 1 as an example. If some world w in some Kripke model M satisfies
CNF (C�1), there must be some subset T r1 of literals at level 1 satisfied at w
(“∃T ri ⊆ (Lt∩Lvi)” in (2)). As before, we check that for every clause represented
in C�1 (“∀c� ∈ C�i” in (2)), there is either a positively occurring literal in T r1
(“∃lt ∈ T ri : Oc(c�, lt)” in (2)) or a negatively occurring literal not in T r1 (“∃lt ∈
(Lt ∩ Lvi) \ T ri : Oc(c�, lt)” in (2)). Next, we must check that the literals we
have chosen to be satisfied at w (by putting them into T r1) can actually be
satisfied. Suppose T r1 was {e9, q, r, e10}. Since e9 represents a literal of the form
�clause (with the clause represented by domain element e5), we are committed
to satisfy the clause represented by e5 in any world succeeding w. Let Cm0 =
{e5} be the set of clauses occurring at level 0 that we have committed to as
a result of choosing corresponding �clause literals to be in T r1 (“Cmi−1 =
{c�

′ ∈ (Cl ∩ Lvi−1) | ∃lt′ ∈ T ri ∩ B�, Oc(lt′, c�
′)}” in (2)). Now, since we have

also chosen e10 to be in T r1 and e10 represents a ♦CNF formula, there is a
demand to create a world w′ that succeeds w and satisfies the corresponding
CNF formula. We have to check that every such demand in T r1 can be satisfied
(“∀lt ∈ T ri ∩ D0” in (2)) by creating successor worlds. In case of the demand
created by e10, {e7, e8} = Dm0 is the set of clauses in the demanded CNF
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formula (“Dmi−1 = {c� ∈ (Cl ∩ Lvi−1) | Oc(lt, c�)}” in (2)). Our aim now is to
create a successor world w′ in which all clauses represented in Dm0 are satisfied.
However, w′ is a successor world and we have already committed to satisfying
all clauses represented in Cm0 in all successor worlds. Hence, we actually check
if the clauses represented in Cm0 ∪Dm0 are satisfiable by inductively invoking
ξ[0](Dm0 ∪Cm0) (“ξ[i− 1](Dmi−1 ∪ Cmi−1)” in (2)).

For the sake of clarity, we have skipped handling literals of the form �⊥ in
the above discussion. They will be handled in the formal arguments that follow.

Lemma 3.2 (*). The property ξ[i](C�i) can be written in a MSO logic formula
of size linear in i. If φ is any modal formula in CNF and C�i is any subset of
domain elements representing clauses at level i, then CNF (C�i) is satisfiable iff
ξ[i](C�i) is true in S(φ).

Theorem 3.3. Given a modal CNF formula φ, there is a Fpt algorithm that
checks if φ is satisfiable in general models, with treewidth of S(φ) and modal
depth of φ as parameters.

Proof. Given φ, S(φ) can be constructed in polynomial time. To check that
all clauses of φ at level md(φ) are satisfiable in some world w of some Kripke
model M, we check whether the formula ∃C�md(φ)∀c�(C�md(φ)(c�) ⇔ (Cl(c�) ∧
Lvmd(φ)(c�)))∧ξ[md(φ)](C�md(φ)) is true in S(φ). By Lemma 3.2, this is possible
iff φ is satisfiable and length of the above formula is linear in md(φ). An appli-
cation of Courcelle’s theorem will give us the Fpt algorithm. 


4 Models with Euclidean Property

In this section, we will investigate the parameterized complexity of satisfiability
in Euclidean models. The main observation leading to the Fpt algorithm is the
fact that if a modal formula is satisfied in a Euclidean model, then it is satisfied
in a rather simple model. As proved in [22], if a modal formula is satisfied at
some world w0 in some Euclidean modelM, then it is satisfied in a model whose
underlying frame is of the form (W ∪ {w0}, �→) where W ×W ⊆ �→. Therefore,
almost all worlds are successors of almost all other worlds. If one world satisfies a
formula �clause1, then almost all worlds satisfy the formula clause1 (and hence
satisfy �clause1 as well). If one world satisfies a formula ♦CNF 1, then almost all
worlds satisfy ♦CNF 1 as well. Thus, most of the worlds are very similar to each
other and we can reason about them using small MSO formulae. This holds even
if we add more properties like reflexivity, transitivity etc. The technical details
needed for the following result can be found in the full version.

Theorem 4.1. Let φ be a modal CNF formula. With treewidth of S(φ) as pa-
rameter, there is a Fpt algorithm for checking whether φ is satisfiable in a
Kripke model that satisfies Euclidean property and any combination of reflexiv-
ity, symmetry and transitivity.
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5 Transitive Models

In transitive models, formulae with small modal depth can check properties of
all worlds reachable from a given world. To formalize this into a W[1]-hardness
proof, we introduce the parameterized Partitioned Weighted Satisfiability (p-
Pw-Sat ) problem. An instance of p-Pw-Sat problem is a triple (F , part :
Φ→ [k], tg : [k] → N), where F is a propositional CNF formula, part partitions
the set of propositional variables into k parts and we need to check if there is
a satisfying assignment that sets exactly tg(p) variables to ) in each part p.
Parameters are k and pathwidth of the primal graph of F (one vertex for each
propositional variable, an edge between two variables iff they occur together in
a clause). The following lemma can be proved by a Fpt reduction from the
Number List Coloring Problem [11].

Lemma 5.1 (*). The p-Pw-Sat problem is W[1]-hard when parameterized by
the number of parts k and the pathwidth of the primal graph.

Theorem 5.2. With treewidth and modal depth as parameters, modal satisfia-
bility in transitive models is W[1]-hard.

The rest of this section is devoted to a proof of the above theorem, which is
by a Fpt reduction from p-Pw-Sat to satisfiability of modal CNF formulae in
transitive models. Given an instance (F , part : Φ → [k], tg : [k] → N) of p-Pw-

Sat problem with the pathwidth of the primal graph of F being pw, we construct
a modal CNF formula φF of modal depth 2 in Fpt time such that the pathwidth
(and hence the treewidth) of S(φF ) is bounded by a function of pw and k and
p-Pw-Sat is a Yes instance iff φF is satisfiable in a transitive model. Suppose
the propositional variables used in F are q1, q2, . . . , qn. The idea is that if φF is
satisfied at some world w0 in some transitive model M, then M, w0 |= F . To
check that the required targets of the number of variables set to true in each
partition are met, φF will force the existence of worlds w1, w2, . . . , wn arranged
as w0 �→ w1 �→ w2 �→ · · · �→ wn. In the formula φF , we will maintain a counter
for each partition of the propositional variables. At each world wi, if qi is true,
we will force the counter corresponding to part(qi) to increment. At the world
wn, the counters will have the number of variables set to ) in each partition.
We will then verify in the formula φF that these counts meet the given target.
Such counting tricks have come under standard usage in complexity theoretic
arguments of modal logic. The challenge here is to implement the counting in a
modal formula of small pathwidth.

In a p-Pw-Sat instance containing n propositional variables and k partitions,
we will denote the number of variables in partition p by n[p]. We first construct an
optimal path decomposition of the primal graph of F in Fpt time. We will name
the variables occurring in the first bag as q1, . . . , qi. We will name the variables
newly introduced in the second bag as qi+1, . . . , qi′ and so on. In the rest of
the construction, we will use this same ordering q1, . . . , qn of the propositional
variables. This will be important to maintain the pathwidth of the resulting
modal formula low. The modal CNF formula φF will use all the propositional
variables q1, . . . , qn used by F and also use the following additional variables:
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– t↑1, . . . , t↑k, f↑1, . . . , f↑k: partition indicators.
– For each partition p, tr0p, . . . , tr

n[p]
p , f l0p, . . . , f l

n[p]
p : counters to count the num-

ber of variables set to ) and ⊥ in partition p.
– d0, . . . , dn+1: depth indicators.

The modal CNF formula φF is the conjunction of the formulae described below.
For clarity, we have used the shorthand notation ⇒ but they can be easily con-
verted to CNF. Also for notational convenience, we will use part(i) instead of
part(qi). Φ(p) is the set of variables among {q1, . . . , qn} in partition p. The formula
determined ensures that all successors ofw0 preserve the assignment of q1, . . . , qn.
The formula depth ensures that for all i, di ∧ ¬di+1 holds in the world wi.

In wi−1, if qi is set to ), we want to indicate that in wi, the counter for
partition part(i) should be incremented. We will indicate this in the formula
setCounter by setting the variable t↑part(i) to ). Similar indication is done for
the counter keeping track of variables set to ⊥ in partition p.

determined
�
=

n∧
i=1

qi ⇒ �qi ∧
n∧
i=1

¬qi ⇒ �¬qi

depth
�
= ♦(d1 ∧ ¬d2) ∧

n−1∧
i=1

� [(di ∧ ¬di+1) ⇒ ♦(di+1 ∧ ¬di+2)]

setCounter
�
= (q1 ⇒ t↑part(1)) ∧ (¬q1 ⇒ f↑part(1))

∧
n∧
i=2

�
{
[di−1 ∧ ¬di] ⇒ [(qi ⇒ t↑part(i)) ∧ (¬qi ⇒ f↑part(i))]

}
incCounter

�
= (t↑part(1) ⇒ �tr1part(1)) ∧ (f↑part(1) ⇒ �f l1part(1))

∧
k∧

p=1

n[p]−1∧
j=0

�[t↑p ⇒ (trjp ⇒ �trj+1
p )] ∧�[f↑p ⇒ (f ljp ⇒ �f lj+1

p )]

targetMet
�
=

k∧
p=1

�[dn ⇒ (trtg(p)p ∧ ¬trtg(p)+1
p )]

∧
k∧

p=1

�[dn ⇒ (f ln[p]−tg(p)
p ∧ ¬f ln[p]−tg(p)+1

p )]

Variables tr0p, . . . , tr
n[p]
p implement the counter keeping track of variables set to )

in partition p. If j variables in Φ(p)∩ {q1, . . . , qi} are set to ), then we want trjp
to be set to ) in wi. To maintain this, in wi−1, if it is indicated that a counter
is to be incremented (by setting t↑p to )), we will force all successors of wi−1 to
increment the trp counter in the formula incCounter. Finally, we check that at
wn, all the targets are met in the formula targetMet.

The modal CNF formula φF we need is the conjunction of F , the formulae
defined above and the miscellaneous formulae below (which ensure that counters
are initiated properly and are monotonically non-decreasing).
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determined′
�
=

k∧
p=1

tr0p ⇒ �tr0p ∧
k∧

p=1

f l0p ⇒ �f l0p

countInit
�
= d0 ∧ ¬d1 ∧

k∧
p=1

(¬tr1p ∧ ¬f l1p ∧ tr0p ∧ f l0p)

depth′
�
=

k∧
p=1

n[p]∧
j=0

[
�(trjp ⇒ �trjp) ∧�(f ljp ⇒ �f ljp)

]
countMonotone

�
=

n∧
i=1

�(di ⇒ di−1) ∧
k∧

p=1

n[p]∧
j=2

[
�(trjp ⇒ trj−1

p ) ∧�(f ljp ⇒ f lj−1
p )

]

Lemma 5.3 (*). If a p-Pw-Sat instance is a Yes instance, then the modal
formula constructed above is satisfied in a transitive Kripke model.

Lemma 5.4 (*). Suppose the modal CNF formula φF constructed above is sat-
isfied at some world w0 of some transitive Kripke model M. Then M contains
distinct worlds w1, . . . , wn such that for each i between 1 and n, wi is a successor
of wi−1. Moreover, {d0, . . . , di} are set to ) and {di+1, . . . , dn+1} are set to ⊥
in wi. For any partition p, if j variables in Φ(p) ∩ {q1, . . . , qi} are set to ) in
w0, then {tr0p, . . . , trjp} are all set to ) in wi. If j′ variables in Φ(p)∩{q1, . . . , qi}
are set to ⊥ in w0, then {f l0p, . . . , f lj

′
p } are all set to ) in wi.

Theorem 5.5 (*). If φF constructed above is satisfied in a transitive model,
then the p-Pw-Sat instance is a Yes instance.

Given an instance of p-Pw-Sat problem, the formula φF described above can be
constructed in Fpt time. To complete the proof of Theorem 5.2, we will prove
that the pathwidth of φF is bounded by some function of k and pw. φF has been
carefully constructed to keep pathwidth low.

Lemma 5.6 (*). Pathwidth of S(φF ) is at most 4pw + 2k + 5.

In the absence of transitivity, the above reduction would require a formula of
modal depth that depends on n (and hence it would no longer be a Fpt reduc-
tion). The above hardness proof will however go through for any class of transi-
tive frames that has paths of unbounded length of the formw1 �→ w2 �→ · · · �→ wn

without any reverse paths2. See [31] for some context on such classes of transitive
frames of unbounded depth.

6 Conclusions and Future Work

By expressing satisfiability of modal formulae as a MSO property, we obtained
a Fpt algorithm for modal satisfiability in general models with treewidth and
2 The author acknowledges an anonymous referee for pointing this out.
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modal depth as parameters. Due to the dependence of the constructed MSO
sentence on modal depth, the Fpt algorithm obtained in section 3 has a running
time with a tower of 2’s whose height is O(md(φ)). Unless, Ptime=Np, such
dependence on modal depth cannot be avoided due to the following observation.
In [1, Lemma 1], it is shown how to encode an arbitrary propositional CNF
formula into an equivalent modal formula (the propositional formula is satisfiable
iff the modal formula is satisfiable in a general model). This modal formula has
some very low modal depth h such that any function growing slower than a tower
of 2’s of height h − 5 is a polynomial in the size of the propositional formula.
The treewidth of this modal formula can be verified to be a constant. This also
proves that unless Ptime=Np, modal satisfiability in general models is not Fpt

when treewidth is the only parameter.
We can work out a composition algorithm [4], and hence conclude that with

treewidth and modal depth as parameters, there is no polynomial kernel for
modal satisfiability in general models.

One direction for future research is towards meta classification as done in
[19], instead of the case by case analysis of this work. We can also consider
variations in treewidth, such as having different domain elements representing
same propositional variable at different levels in S(φ). Other variations are modal
circuits instead of modal formulae and generalizations of primal/dual graphs
instead of incidence graphs.
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Abstract. We address the strategy problem for ω-regular two-player
games with partial information, played on finite game graphs. We con-
sider two different kinds of observability on a general model, a stan-
dard synchronous and an asynchronous one. In the asynchronous setting,
moves which have no visible effect for a player are hidden completely from
that player. We generalize the usual powerset construction for eliminat-
ing partial information to arbitrary, not necessarily observation based,
winning conditions, both in the synchronous and in the asynchronous
case, and we show that this generalized construction effectively preserves
ω-regular winning conditions. From this we infer decidability of the strat-
egy problem for arbitrary ω-regular winning conditions, in both cases. We
also show that our ω-regular framework is sufficient for reasoning about
synchronous and asynchronous knowledge by proving that any formula
of the epistemic temporal specification formalism ETL can be effectively
translated into an S1S-formula defining the same specification.

1 Introduction

In a two-player graph game the players, called 0 and 1, move a token along the
edges of a labeled nonterminating graph by choosing appropriate edge labels,
also called actions. This results in an infinite sequence of positions and actions
called play, and each such play is either won by player 0 or by player 1 and
lost by the other player. We consider games played on finite graphs where the
set of plays won by player 0 is ω-regular, i.e., recognizable by a nondeterminis-
tic Büchi automaton. These specifications play a key role in modern computer
science. They generalize parity objectives and capture fundamental properties
of nonterminating reactive systems, cf. [12]. Such a system can be modeled as
a two-player game where changes of the system state correspond to changes of
the game position. Situations where the change of the system can be controlled
correspond to positions of player 0, uncontrollable situations correspond to po-
sitions of player 1. A winning strategy for player 0 then yields a controller that
forces the system into satisfying an ω-regular specification. The problem to de-
termine, for a given game G and a position v, whether player 0 has a winning
strategy for G from v is called the strategy problem. An important special case
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of ω-regular games are parity games. Parity games with full information have
received much attention during the past years, cf. [7]. The key property of parity
games is memoryless determinacy which proves that the strategy problem is in
NP ∩ co-NP. In general, ω-regular games with full information are determined
with finite memory and winning strategies can be synthesized effectively.

However, assuming that both players have full information about the history
of events in an ω-regular game is not always realistic. For example, if the infor-
mation about the system state is acquired by imprecise sensors or the system
encapsulates private states which cannot be read from outside, then a controller
for this system must rely on the information about the state and the change of
the system to which it has access. I.e., in the game model, player 0 has uncer-
tainties about the positions and actions in the game, so we have to add partial
information to games in order to model this kind of problems. Solving the strat-
egy problem for such games is much harder than solving ω-regular games with
full information since we have to keep track of the knowledge of player 0 during
the course of events. Such a knowledge tracking is inherently unavoidable and
leads to an exponential lower bound for the time complexity of the strategy prob-
lem for reachability games with partial information [11] and a super-polynomial
lower bound for the memory needed to implement winning strategies in reacha-
bility games [1,10]. To keep track of the knowledge of player 0 during a play we
compute, for any finite history, the set of positions that player 0 considers pos-
sible in this situation. This method, which is called powerset construction, has
originally been suggested by John H. Reif in [11] to solve the strategy problem
for reachability games with partial information. We note that this is not the only
possibility for tracking knowledge. Tree-automata techniques have been used to
solve synthesis problems with partial information from linear [15] and branch-
ing [8] temporal specifications in input-output frameworks. A tree-automaton
processes the tree-representation of a strategy, so the information on which the
strategy can rely is always given implicitly by the history.

We consider two different kinds of observability on a general model, a syn-
chronous and an asynchronous one. In the standard synchronous case it is as-
sumed that both players know how many moves have been performed. Intuitively,
the players share a common clock. If a player moves from position u to v and the
opponent cannot distinguish u from v, then this move has no visible effect for the
opponent. However, the common clock tells him that a move has been performed.
Now, if the system under consideration is not adapted to synchronization, that
means, it cannot be reasonably timed by a global signal, then this assumption
is not adequate. The asynchronous case, where we do not require the existence
of such a common clock but hide a move completely from a player if it has no
visible effect for him, is suited for such settings. Several other cases of asyn-
chronous synthesis have already been studied. For example in [9], asynchronism
is imposed by requiring a program to be robust against all possible schedules
and observability is given by the points at which the system is scheduled to read.
In [15], an action-based model with blind components is considered, where all
that a player knows is the past history of his own actions. Asynchronism is given
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by the possibility of the components to remain idle, at any point of a run for an
arbitrary number of steps. In our setting, which comprehends the model of [15],
uncertainties about positions and actions can be arbitrary and asynchronism
is defined via observability. Moreover, the behavior of both players is a priori
constrained by an arbitrary finite graph. The same notion of asynchronism has
also been used in [2] where stutter closed winning conditions (cf. Section 2) have
been considered. The main novelty there is a powerset construction for timed
games and an efficient symbolic implementation.

Here, we develop a unified solution for arbitrary winning conditions on a gen-
eral model and we apply this to the powerful specification formalism of ω-regular
languages. We also show that the expressiveness of ω-regular languages captures
all ETL-specifications. In Section 3 we adapt the powerset construction to our
model and we generalize it to arbitrary, not necessarily observation based, win-
ning conditions. We prove that ω-regular winning conditions are effectively pre-
served by this generalized construction. From this we infer that the synchronous
strategy problem for ω-regular specifications is decidable on our model and finite
memory strategies can be synthesized which has, in the synchronous case, also
been obtained for various related models in [15,8,14] using tree automata. It has
to be strongly emphasized that ω-regular games with partial information are not
determined, even for reachability conditions. So this result does not imply that
from each position one of the players actually has a winning strategy. It merely
says that if one of the players has a winning strategy, then he has a finite memory
winning strategy which can be constructed effectively. In Section 3.1 we modify
the construction in order to obtain the same results for the asynchronous case. In
Section 4 we consider the epistemic temporal specification formalism ETL which
is a valuable tool in the presence of partial information, since it allows to refer
explicitly to the knowledge of the players when specifying the intended behavior
of a system. We investigate a version of ETL which contains knowledge operators
for both synchronous and asynchronous knowledge and we give some examples
for the usefulness of ETL. We furthermore discuss an underlying assumption
on the evaluation of knowledge operators which, in particular, has interesting
consequences on the synthesis of distributed systems from ETL-specifications,
cf. [14]. Our main result is that any ETL-formula can be effectively translated
into an S1S-formula, so our ω-regular framework is sufficient for reasoning about
synchronous and asynchronous knowledge. In particular, this adapts the decid-
ability result of [13] to the asynchronous case.

2 Preliminaries

Games and Strategies. A deterministic turn based two-player win-loss game
has the form G = (V, V0, (fa)a∈A,W0), where V is the set of positions, A is the
set of actions and for a ∈ A, fa : dom(fa) ⊆ V → V is a function. Furthermore,
V0 ⊆ V are the positions of player 0 and W0 ⊆ V (AV )ω is the winning condition
of player 0. Let V1 = V \V0 and W1 = V (AV )ω \W0. For each position v ∈ V the
set act(v) = {a ∈ A | v ∈ dom(fa)} of actions available at v has to be nonempty.
For i = 0, 1 let Ai =

⋃
{act(v) | v ∈ Vi}. The directed labeled graph (V, (Ea)a∈A)
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with Ea = {(u, v) ∈ V × V | u ∈ dom(fa) and fa(u) = v} is called the game
graph of G. We consider games played on finite graphs, i.e., V and A are finite.

A play in G from v0 is an infinite sequence π = v0a1v1 . . . ∈ V (AV )ω such
that vi ∈ dom(fai+1) and fai+1(vi) = vi+1 for each i < ω. A prefix ρ ( π of a
play is called a history and Hfin denotes the set of all finite histories π ∈ V (AV )∗

of plays in G. If π ∈ V (AV )α, we denote α ≤ ω by l(π) and π(≤ j) denotes
the unique finite prefix of π with π(≤ j) ∈ V (AV )j . Moreover, if l(π) < ω,
by last(π) we denote the last position in π. A strategy for player i for G is a
function g : {π ∈ Hfin | last(π) ∈ Vi} → A such that g(π) ∈ act(last(π)) for all
π ∈ dom(g). A history π = v0a1v1 . . . is compatible with g if for all j < l(π) such
that vj ∈ Vi we have aj+1 = g(π(≤ j)). A strategy g for player i is winning from
v0 if each play π in G from v0 that is compatible with g is won by player i, that
means, π ∈Wi. A memory structure for G has the form M = (S, δ0, δ) where S
is a set of states, δ0 : V → S is the initializing function and δ : S× (A×V ) → S
is the update function. A strategy for player i with memory M is a function
g : S × Vi → A such that g(s, v) ∈ act(v) for all (s, v) ∈ S × Vi. A history
π = v0a1v1 . . . is called compatible with g if for all j < l(π) such that vj ∈ Vi
we have aj = g(δ∗(π(≤ j)), vj), where the function δ∗ : Hfin → S is inductively
defined by δ∗(v) = δ0(v) for v ∈ V and δ∗(πajvj) = δ(δ∗(π), (aj , vj)) for π ∈
Hfin, aj ∈ act(last(π)) and faj (last(π)) = vj .

Partial Information. The knowledge of player i is given by an equivalence
relation ∼i on Hfin. Equivalent histories are indistinguishable for player i, i.e.,
if π ∼i ρ then after π has been played and after ρ has been played, player i
has exactly the same information, so he cannot distinguish one situation from
the other. We refer to [4] for an extensive treatment of knowledge in multi-agent
systems. A strategy g : {π ∈ Hfin | last(π) ∈ Vi} → A for player i for G is
called a partial information strategy with respect to ∼i (∼i-strategy, for short)
if g(π) = g(π′) for all π, π′ ∈ Hfin with π ∼i π

′. Notice that a ∼i-strategy g for
player i is winning from all positions in a set U ⊆ V if and only if it is winning
from a simulated initial position v0 which belongs to player 1− i and from which
he can secretly choose any position v ∈ U . Moreover, any ∼i-strategy g which
is only defined on histories from some initial position v0 can be extended to a
∼i-strategy g′ with dom(g) = {π ∈ Hfin | last(π) ∈ Vi} by giving g′ appropriate
value on histories from some initial position v′0 �= v0. So in our antagonistic two-
player setting, it suffices to consider strategies which are winning from single
initial positions v0 and only defined on histories from v0. If we are given a game
G, a position v0 in G and some equivalence relation ∼i on Hfin, the question
whether player i has a winning ∼i-strategy for G from v0 is independent of the
partial information of player 1− i. Therefore, when solving the strategy problem
we consider games with partial information only for player 0. However, the logic
ETL explicitly refers to the knowledge of player 1 via the knowledge operator
K1 so we introduce the general model with partial information for both players.

We consider games played on finite graphs where the players have uncertain-
ties about the positions and actions in the game, modeled by equivalence rela-
tions. The relation ∼i is then obtained by extending these equivalence relations
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to an equivalence relation on Hfin. We consider two different types of extensions,
resulting in the synchronous and the asynchronous case respectively. A two-
player game with partial information has the form G = (G, (∼V

i )i=0,1, (∼A
i )i=0,1)

where G = (V, V0, (fa)a∈A,W0) is a two-player game and for i = 0, 1, ∼V
i ⊆ V ×V

and ∼A
i ⊆ A×A are equivalence relations such that the following conditions hold.

(1) If u, v ∈ V with u ∼V
i v then u, v ∈ Vi or u, v /∈ Vi.

(2) If a, b ∈ Ai with a �= b then a �∼A
i b.

(3) If u, v ∈ Vi with u ∼V
i v, then act(u) = act(v).

Condition (1) says that player i always knows when it is his turn and condition
(2) says that player i can distinguish all the actions that are available to him
at some position of the game. Condition (3) ensures that player i always knows
which actions are available to him when it is his turn.

Now we consider two ways to extend the equivalence relations on positions
and actions to equivalence relations on finite histories. For positions u, v ∈ V
we say that u → v is a private move of player i, if u ∈ Vi and u ∼V

1−i v. For
π = v0a1v1 . . . anvn, ρ = w0b1w1 . . . bmwm ∈ V (AV )∗ let
– π ∼∗

i ρ :⇐⇒ n = m and vj ∼V
i wj and aj ∼A

i bj for all j
– π ←−∼∗

i ρ :⇐⇒ ←−π ∼∗
i
←−ρ

where ←−π is obtained from π by contracting each maximal sequence vrar+1vr+1
. . . asvs of private moves of player 1− i in π to vr and analogously for ←−ρ .

Games where indistinguishability of histories is given by∼∗
i model synchronous

systems. Intuitively, the players share a common clock which tells them how many
moves have been performed, even if some of those moves did not have any effect
which they could observe. On the other hand, ←−∼∗

i defines an asynchronous case
where we hide such private moves of the opponent completely from a player. If
there is no common clock, this is intrinsic to the system.

Remark. Consider the interaction between components of a system where the
behavior of each component is prescribed by a controller which has to rely on
the information available to this component. In such settings it might seem more
appropriate to ask for a ∼∗

0-strategy for player 0 which is winning against all ∼∗
1-

strategies of player 1 rather than a winning ∼∗
0-strategy for player 0. However,

it is easy to see that in our perfect recall setting, this is equivalent. Therefore,
we use the reduced form G = (G,∼V ,∼A) of our model with partial information
only for player 0. The relations ∼∗

0 and ←−∼∗
0 are accordingly denoted ∼∗ and ←−∼∗.

The winning region WinG
0 of player 0 in G is the set of all positions v ∈ V

such that player 0 has a winning ∼∗-strategy for G from v. The winning region
WinG,h

0 of player 0 in G if private moves are hidden is the set of all positions v ∈ V
such that player 0 has a winning ←−∼∗-strategy for G from v. Notice that we are
really considering two different notions of strategies. Of course, π ∼∗ π′ implies
π←−∼∗π′ for all finite histories π, π′. Therefore, a ←−∼∗-strategy is a ∼∗-strategy. In
particular, WinG,h

0 ⊆ WinG
0 . However, as one can easily see the converse inclusion

does not hold in general, even for reachability games.
A ∼∗-memory structure for G is a memory structure M = (S, δ0, δ) for G such

that δ(s, (a, v)) = δ(s, (b, w)) for all s ∈ S and all (a, v), (b, w) ∈ A × V with
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v ∼V w and a ∼A b. M is called a ←−∼∗-memory structure for G if additionally,
for all π, πav ∈ Hfin such that last(π) → v is a private move of player 1, we have
δ∗(πav) = δ∗(π). A strategy for player 0 for G with memory M is a strategy
g : S × V0 → A for player 0 with memory M such that for all s ∈ S and all
u, v ∈ V with u ∼V v we have g(s, u) = g(s, v).

Notation. For a position v ∈ V let [v] := {w ∈ V |w ∼V v} be the equivalence
class of v and for a ∈ A let [a] := {b ∈ A | b ∼A a} be the equivalence class of
a. Moreover, for a set U ⊆ V of positions and a set B ⊆ A of actions we define
PostB(U) = {v ∈ V | ∃ u ∈ U, ∃ b ∈ B : b ∈ act(u) ∧ fb(u) = v}.
Winning Conditions. The winning condition W0 is called observation based
if there is a coloring col : V → C for a set C ⊆ N of colors with col(u) = col(v)
for all u ∼V v and a set W ⊆ Cω such that π = v0a1v1 . . . ∈ W0 if and only if
col(v0) col(v1) . . . ∈W . W0 is called stutter closed if, additionally, W is invariant
under extending and contracting finite sequences of identical colors, i.e., stutter
closed winning conditions are asynchronously observation based. In this case,
the private moves of player 1 do not really matter. He just makes those moves
to reach some position, but what happens during the moves does not affect the
winner of the play. So we can let player 0 observe the private moves of player 1
and in return give player 1 the possibility to skip these moves: For any v ∈ V1
we insert new edges with appropriate labels to all positions, which are reachable
from v by a sequence of private moves, followed by one non-private move. W0 re-
mains unchanged. This yields a polynomial time reduction of the asynchronous
strategy problem for stutter closed specifications to the synchronous strategy
problem for observation based specifications. However, assuming that the speci-
fication is completely based on the observations of player 0 is often not realistic.
So we do not make such assumptions but allow arbitrary winning conditions.

Nondeterministic Games. The powerset construction which we present in
Section 3 yields a nondeterministic game in general. A nondeterministic two-
player game has the form G = (V, V0, (Ea)a∈A,W0) with edge relations Ea ⊆
V × V for a ∈ A and all the other components are as before. Plays, strategies,
memory strategies and winning strategies are defined as before. Nondetermin-
istic games are not determined in general, even for reachability conditions, and
hence not equivalent to deterministic games. However, for each nondeterminis-
tic game G and each player i ∈ {0, 1}, we can construct a deterministic game
Gi such that winning strategies for player i are preserved. We simply resolve
the nondeterminism by giving player 1 − i control of nondeterministic choices.
Technically, for any v ∈ V and any a ∈ act(v) we add a unique a-successor of v
to the game graph which belongs to player 1− i and from which he can choose
any a-successor of v in the original game graph. The winner of a play in Gi is
the winner of the corresponding play in G where we delete all positions and ac-
tions which do not belong to G. It is easy to see that this construction preserves
ω-regular winning conditions and all special cases like parity conditions.
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3 Powerset Construction

First, we consider the standard synchronous strategy problem. We present a
powerset construction which turns a game with partial information into a game
with full information such that the existence of winning strategies for player 0
is preserved. The idea of this construction has originally been suggested by
John H. Reif in [11] where he considered reachability objectives on a somewhat
restricted game model with finitely branching game graphs. The construction can
also easily be applied to observation based parity conditions on finitely branch-
ing graphs and for this case, improved methods for solving the resulting games
with full information have been developed, cf. [3,1]. We apply the construction
to our model and we generalize the definition of the winning condition of the
resulting game, so that it works for arbitrary, not necessarily observation based,
winning conditions. Notice that, although we consider only finite game graphs
here, this generalized construction can be applied to arbitrary graphs.

The construction yields a game in which both players always know the recent
position, so if winning strategies for player 0 shall be preserved, any position
of this game must precisely capture the uncertainties about the recent position
that player 0 actually has after some finite history π ∈ Hfin. So the positions of
the new game are of the form v(π) = {last(π′) | π′ ∼∗ π} for π ∈ Hfin. Each
such set is a subset of some equivalence class [v] of positions, so as the set of
positions of the new game we simply take the set of all such subsets. Moreover,
in the new game graph, there is an edge with label a from v(π) to v(ρ) if and
only if ρ = πav for some v ∈ V . The following proposition provides an update
mechanism which computes, for finite histories π and πav, the set v(πav) from
the set v(π), the action a and the position v, without knowing the history π. In
particular, the set of a-successors of v(π) in the new game graph depends only
on the set v(π) and the action a, but not on the history π.

Proposition 1. v(πaw) = Post[a](v(π)) ∩ [w].

Let G = (G,∼V ,∼A), G = (V, V0, (fa)a∈A,W0) be a game with partial infor-
mation We define the corresponding game G = (V , V 0, (Ea)a∈A,W 0) with full
information as follows. First, V = {v ∈ 2V | ∃v ∈ V : v ⊆ [v]} and V 0 = V ∩2V0 .
Moreover, for a ∈ A we have (v, w) ∈ Ea if and only if there is some w ∈ Posta(v)
such that w = Post[a](v) ∩ [w]. Finally,

π = v0a1v1a2v2 . . . ∈ W 0 :⇐⇒
for each play π = v0a

′
1v1a

′
2v2 . . . in G, the following holds:

if vi ∈ vi and a′i+1 ∼A ai+1 for all i < ω

then π ∈W0.

Proposition 2. Player 0 has a winning ∼∗-strategy f for G from v0 if and only
if he has a winning strategy f for G from v0 = {v0}.

Omega-Regular Winning Conditions. Now we prove that ω-regular winning
conditions are effectively preserved by this powerset construction, i.e., if the win-
ning condition of the given game G with partial information is recognized by a
Büchi-automaton, then the winning condition of the corresponding game with
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full information is again recognized by a Büchi-automaton which can be con-
structed effectively. From this we infer decidability of the synchronous strategy
problem for arbitrary ω-regular winning conditions as formulated in Theorem 4.

For the proof we use the fact that Büchi automata can be complemented
effectively. That means, from a given Büchi automaton B, we can effectively
construct a Büchi automaton Bc such that L(Bc) is the complement of L(B),
see for example [5]. Therefore, it suffices to construct, from a Büchi automaton
A = (VA, Q, q0, Δ, F ) recognizing W1, a Büchi automaton A recognizing W 1.
As usual Q is the finite set of states, q0 ∈ Q is the initial state, Δ ⊆ Q×Σ ×Q
is the transition relation and F ⊆ Q is the set of Büchi-states. By definition
of W 0, for each play π = v0a1v1a2v2 in G from v0 = {v0} we have π ∈ W 1 if
and only if there is some play π = v0a

′
1v1a

′
2v2 . . . in G from v0 with a′i ∼A ai

and vi ∈ vi for all i < ω such that π ∈ W1. The automaton A that recognizes
W 1, guesses such a play π which is a potential witness for π ∈ W 1 and at the
same time simulates A on π. Formally, we define A = (VA, Q, (q0, v0), Δ, F ) as
follows. First Q = Q× V and F = F × V . Moreover,

((p, v), va, (q, w)) ∈ Δ :⇐⇒ v ∈ v and there is some action b ∼A a such
that b ∈ act(v), fb(v) = w and (p, vb, q) ∈ Δ.

Proposition 3. For each play π = v0a1v1a2v2 . . . in G from v0 = {v0} we have
π ∈ W 1 if and only if π ∈ L(A).

Theorem 4. Given an ω-regular game G with partial information and some
position v0, we can decide whether v0 ∈ WinG

0 . If v0 ∈ WinG
0 we can effectively

construct a finite memory winning ∼∗-strategy for player 0 for G from v0.

3.1 The Asynchronous Case

To solve the asynchronous strategy we use a modified version of the powerset
construction. The idea of the construction is the same as in the synchronous case,
i.e., any position of the new game captures the uncertainties about the recent
position that player 0 has after some finite history π ∈ Hfin. These uncertainties
are now given by the equivalence relation ←−∼∗, so the positions of the new game
are of the form ṽ(π) = {last(π′) | π′←−∼∗ π} for π ∈ Hfin. Again, each such set is
a subset of some equivalence class [v], so as the set of positions of the new game
we take the set of all such subsets. And again, in the new game graph, there is
an edge with label a from ṽ(π) to ṽ(ρ) if and only if ρ = πav for some v ∈ V .
The corresponding update mechanism is, however, more involved than in the
synchronous case. For a set U ⊆ V of positions, let Reachp(U) ⊇ U be the set of
all positions which are reachable from some position in U by a (possibly empty)
sequence of private moves of player 1. Moreover, for a set U ⊆ V , an action a
and a position w ∈ Posta(U), we define U [aw] to be U , if U ⊆ V1 and w ∼V v
for some v ∈ U and we define U [aw] to be Reachp(Post[a](U) ∩ [w]), otherwise.

Proposition 5. ṽ(πaw) = ṽ(π)[aw].

Let G = (G,∼V ,∼A), G = (V, V0, (fa)a∈A,W0) be a game with partial infor-
mation. We define the corresponding game G̃ = (Ṽ , Ṽ0, (Ẽa)a∈A, W̃0) with full
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information as follows. First, Ṽ = {ṽ ∈ 2V | ∃v ∈ V : ṽ ⊆ [v]} and Ṽ0 = Ṽ ∩ 2V0 .
Moreover, for a ∈ A we have (ṽ, w̃) ∈ Ea if and only if there is some w ∈ Posta(ṽ)
such that w̃ = ṽ[aw]. Finally,

π̃ = ṽ0a1ṽ1a2ṽ2 . . . ∈ W̃0 :⇐⇒
for each play π = v0a

′
1v1a

′
2v2 . . . in G, the following holds:

if there are numbers 0 = k0 < k1 < . . . with vki , . . . , vki+1−1 ∈ ṽi
and a′ki+1

∼A ai+1 for all i and ki+1 − ki = 1, if ṽi ∈ Ṽ0

then π ∈ W0.

Proposition 6. Player 0 has a winning ←−∼∗-strategy f for G from v0 if and only
if he has a wining strategy f̃ for G̃ from ṽ0 = ṽ(v0).
Omega-Regular Winning Conditions. Now we prove that ω-regular win-
ning conditions are effectively preserved by the powerset construction in the
asynchronous case. Again, we use complementation. Let A = (VA, Q, q0, Δ, F )
be a Büchi automaton with L(A) = W1. The idea for the automaton Ã recog-
nizing W̃1 is as in the synchronous case, that means, for a given play π̃ in G̃ it
guesses a play π in G which is a potential witness for π̃ ∈ W1 and at the same
time checks whether A accepts this play. Such potential witnesses are more com-
plicated objects than in the synchronous case, so the construction of Ã is more
involved. Moreover, it is not obvious that the construction is effective, which we
shall prove separately. We define Ã = (ṼA, Q̃, (q0, v0, 0), Δ̃, F̃ ) as follows. First,
Q̃ = Q× V × {0, 1} and F̃ = {(q, v, i) | q ∈ F} ∪ {(q, v, 1) | q ∈ Q}. Moreover,

((p, v, i), ṽa, (q, w, j)) ∈ Δ̃ :⇐⇒
there is a finite history v1a2v2 . . . anvn in G such that:
1. n = 1, if ṽ ∈ Ṽ0

2. v1 = v and vl ∈ ṽ for all 1 ≤ l ≤ n

3. there is some b ∈ act(vn) with b ∼A a and fb(vn) = w

4. there are q1, . . . , qn−1 ∈ Q such that
4.1 (p, v1a2, q1), . . . , (qn−2, vn−1an, qn−1), (qn−1, vnb, q) ∈ Δ
4.2 ql ∈ F for some 0 < l < n if j = 1.

Proposition 7. For each play π̃ = ṽ0a1ṽ1a2ṽ2 . . . in G̃ from ṽ0 = ṽ(v0) we have
π̃ ∈ W̃1 if and only if π̃ ∈ L(Ã).

Proposition 8. The following problem is decidable.
Given a transition t = ((p, v, i), ṽa, (q, w, j)), is t ∈ Δ̃?

Proof. (Sketch) If ṽ ∈ Ṽ0, t ∈ Δ̃ is clearly decidable, so let ṽ ∈ Ṽ1. We construct
an NFA Bfin over VA accepting precisely those words which are finite histories
in G such that conditions 2. and 3. hold. Let Cfin be the product automaton of
Bfin and the NFA Afin obtained from A, by defining all states to be accepting
and augmenting A by a state to remember whether some state in F has been
seen if j = 1. Then Cfin accepts precisely those words which are finite histories
in G such that conditions 2. - 4. hold. So t ∈ Δ̃ if, and only if, L(Cfin) �= ∅. 


Theorem 9. Given an ω-regular game G with partial information and some
position v0, we can decide whether v0 ∈ WinG,h

0 . If v0 ∈ WinG,h
0 we can



Asynchronous Omega-Regular Games with Partial Information 601

effectively construct a finite memory winning ←−∼∗-strategy for player 0 for G
from v0.

4 Epistemic Temporal Logic

In this section we consider games G = (G, (∼V
i )i=0,1, (∼A

i )i=0,1) with partial in-
formation for both players. Basically, epistemic temporal logic ETL is obtained
from LTL (linear temporal logic) by adding the epistemic operators Ki where
Kiϕ for some formula ϕ means that agent i in the system knows ϕ. Many incar-
nations of this concept have been investigated, for an overview and discussion we
refer to [6]. Of course the semantics of the knowledge operators has a different
character than the semantics of LTL operators, since we cannot evaluate these
formulas by considering a single play but we have to take into account all plays
where the history up to the current point is indistinguishable for player i from
the actual one. Formally, the syntax of ETL is defined by the grammar

ϕ ::= Pva |ϕ ∧ ϕ | ¬ϕ |Xϕ |ϕUϕ |Kiϕ |
←−
K iϕ

where i ∈ {0, 1} and for va ∈ VA, Pva is an atomic proposition. Notice that
since we consider two kinds of observability, we also have two knowledge opera-
tors for each agent i, Ki for the synchronous and

←−
K i for the asynchronous case.

Incorporating both operators into the same logic enables us to express proper-
ties of systems where, e.g., player 0 has a synchronous view and player 1 has an
asynchronous view. We evaluate formulas at points during plays in G, so for a
formula ϕ, a play π = v0a1v1 . . . ∈ (VA)ω and some t < ω we have to define the
truth of π, t |= ϕ. First, π, t |= Pva if vtat+1 = va. The semantics of the boolean
connectives is as usual. Furthermore, π, t |= Xϕ if π, t+1 |= ϕ and π, t |= ϕ1Uϕ2
if there is some s ≥ t such that π, s |= ϕ2 and π, u |= ϕ1 for all t ≤ u < s. Finally
π, t |= Kiϕ if and only if for all plays ρ and all s < ω with π(≤ t) ∼∗

i ρ(≤ s) we
have π, s |= ϕ and π, t |= ←−

K iϕ if and only if for all plays ρ and all s < ω with
π(≤ t)←−∼ ∗

i ρ(≤ s) we have ρ, s |= ϕ. Notice that π(≤ t) ∼∗
i ρ(≤ s) implies s = t

which is not necessarily the case for ←−∼∗
i .

Now a formula ϕ ∈ ETL defines a set W0 = {π ∈ (VA)ω |π, 0 |= ϕ}. In [13],
it is shown that the synchronous strategy problem for ETL-specifications with
only the knowledge operator K0 is decidable. In this section we prove that W0 is
ω-regular for any ETL-formula ϕ. This result is of general interest since it shows
that ω-regular languages capture the ability to reason about knowledge. More-
over, our techniques can be used to synthesize finite memory winning strategies
from ETL specifications, both in the synchronous and in the asynchronous case.
Notice that we should clearly assume player 0 to know his own strategy, so if
player 0 plays according to some strategy f then in particular he always consid-
ers only those histories possible, which are consistent with f . Thus, when given
an ETL-formula ϕ, we are actually interested in a strategy f for player 0, such
that π, 0 |= ϕ for each play which is consistent with f , where the evaluation of
the knowledge operator K0 is relative to histories which are consistent with f .
However, in our two-player setting this makes no difference since if π ∼0 ρ for
∼0∈ {∼∗

0,
←−∼∗

0}, then π is consistent with f if, and only if, ρ is consistent with f .
This is due to the fact that player 0 can distinguish any two of his own actions.
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On the other hand, for the knowledge operator K1 to make sense, we have
to assume that player 1 does not know the strategy of player 0, since other-
wise player 1 has full information about the history, so K1ϕ is equivalent to ϕ.
Whether this is appropriate depends highly on the given application. If player 0
models a controller of an environment which is not actually antagonistic but
merely unpredictable, then given any strategy f for player 0, the joint system is
constrained by f , so the knowledge of both players should be relative to f . On the
contrary, if player 0 models a network server which might interact with a user,
then the protocol of the server may be off-limits to the user, so player 1 does not
know f . One requirement for the protocol might be that the user is never able
to learn the value of some internal variables of the server. This can be expressed
using K1. Moreover, using K1 we can talk about higher-level knowledge, i.e.,
knowledge about knowledge about knowledge . . . Consider, e.g., a parity game
G with coloring col : V → {1, . . . , r}. For U ⊆ V we abbreviate

∨
v∈U,a∈A Pva by

U and we use the usual abbreviations G and F defining globally and finally. No-
tice that all formulas in the example can be constructed effectively from a given
game. The LTL-formula parity :=

∨
c evenGF col−1(c) ∧ FG

∧
c′<c ¬ col−1(c′)

defines the parity objective for player 0. Moreover, the ETL-formula Kcol
0 :=∨

c∈C K0 col−1(c) says that player 0 knows the color of the recent position. So
the formula ϕ = parity ∧ G(¬K1K

col
0 ∧ ¬K1¬Kcol

0 ) additionally requires that
player 1 never knows whether player 0 knows the recent color.

Theorem 10. For any epistemic temporal formula ϕ ∈ ETL we can effectively
construct an S1S(TVA)-sentence ϕ̂ such that L(ϕ̂) = {π ∈ (VA)ω |π, 0 |= ϕ}.

Proof. (Sketch) By induction over ϕ we construct an S1S(TVA)-formula ϕ̂(x)
such that for all plays π and all t < ω we have π, t |= ϕ if and only if π |= ϕ̂(t).
The interesting case is ϕ = Ziψ for i ∈ {0, 1} and Z ∈ {K,←−K}. We only consider
Zi = K0, the other cases are analog. Let A be a Büchi automaton over VA such
that L(A) = L(¬ψ). We construct a Büchi automaton B over VA × {0, 1} such
that for all plays π = v0a1v1a2v2 . . . ∈ (VA)ω and all t < ω we have π, t |= ¬K0ψ
if and only if π∧αt ∈ L(B). Where π∧αt = (v0a1, αt(0)) . . . and for t < ω,
αt(t) = 1 and αt(s) = 0, if s �= t. The idea is as follows. We have π, t |= ¬K0ψ if
and only if there is some play ρ and some s < ω such that ρ(≤ s) ∼∗

0 π(≤ t) and
ρ, s |= ¬ψ. So B guesses such a ρ and checks that ρ, s |= ¬ψ by simulating A on
ρ from position s. To ensure that ρ(≤ s) ∼∗

0 π(≤ t), while reading π, B keeps
track of the set of positions that player 0 considers possible, using the update
mechanism from Proposition 1. Now let ϑ ∈ S1S(TVA×{0,1}) with L(ϑ) = L(B).
By refined projection we obtain from ϑ a formula ϕ̂(x) such that π |= ϕ̂(t) if
and only if π∧αt �|= ϑ i.e., παt /∈ L(B) which is equivalent to π, t |= K0ψ = ϕ 


Consequences on Multiplayer Games. In [14] it is shown, that it is unde-
cidable whether two players 0 and 1 can cooperate against a player 2 to ensure
satisfaction of an ETL specification, even if player 1 is omniscient and player 0
is blind and the strategy f for player 0 is fixed in advance. However, the proof
makes heavy use of the underlying assumption that player 0 knows the strategy
g which player 1 uses, i.e., evaluation of K0 is relative to histories which are
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consistent with both f and g. But g is yet to be synthesized and histories which
are consistent with g and those which are not may very well be indistinguishable
for player 0, which makes the problem undecidable. If we assume that player 0
is completely ignorant about the strategy of player 1, then evaluation of K0 is
relative only to plays which are consistent with f . So, by Theorem 10, the given
ETL-specification is ω-regular. This generalizes to the case of n cooperating
players and ETL-formulas with knowledge operators Ki for any i ∈ {1, . . . , n},
where each player i is completely ignorant about the strategy of any player j �= i.
Hence, in this case ETL-specifications can be reduced to parity conditions which
are LTL-definable. For LTL-specifications, however, [14] proves that the coop-
eration problem is decidable for synchronous hierarchical games. So our result
shows that modeling the cooperation problem for ETL-specifications under the
assumption that cooperating players are ignorant about each others strategies,
turns the problem decidable for synchronous hierarchical games.
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Abstract. We address the strategy problem for parity games with par-
tial information and observable colors, played on finite graphs of bounded
graph complexity. We consider several measures for the complexity of
graphs and analyze in which cases, bounding the measure decreases
the complexity of the strategy problem on the corresponding classes
of graphs. We prove or disprove that the usual powerset construction
for eliminating partial information preserves boundedness of the graph
complexity. For the case where the partial information is unbounded we
prove that the construction does not preserve boundedness of any mea-
sure we consider. We also prove that the strategy problem is Exptime-
hard on graphs with directed path-width at most 2 and Pspace-complete
on acyclic graphs. For games with bounded partial information we obtain
that the powerset construction, while neither preserving boundedness of
entanglement nor of (undirected) tree-width, does preserve boundedness
of directed path-width. Therefore, parity games with bounded partial
information, played on graphs with bounded directed path-width can be
solved in polynomial time.

1 Introduction

Parity games are played by two players which move a token along the edges of a
labeled graph by choosing appropriate edge labels, also called actions. The ver-
tices of the graph, also called positions, have priorities and the winner of an infi-
nite play of the game is determined by the parity of the least priority which occurs
infinitely often. Parity games play a key role in modern approaches to verification
and synthesis of state-based systems. They are the model-checking games for the
modal μ-calculus, a powerful specification formalism for verification problems.
Moreover, parity objectives are a canonical form to express ω-regular objectives
and therefore capture fundamental properties of non-terminating reactive sys-
tems, cf. [17]. Such a system can be modeled as a two-player game where changes
of the system state correspond to changes of the game position. Situations where
the change of the system can be controlled correspond to positions of player 0,
uncontrollable situations correspond to positions of player 1. A winning strategy
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for player 0 then yields a controller that forces the system into satisfying an ω-
regular specification.

The problem to determine, for a given parity gameG and a position v, whether
player 0 has a winning strategy for G from v, is called the strategy problem.
The algorithmic theory of parity games with full information has received much
attention during the past years, cf. [10]. The most important property of parity
games with full information is the memoryless determinacy which proves that
the strategy problem for parity games is in NP ∩ co-NP.

However, assuming that both players have full information about the history
of events in a parity game is not always realistic. For example, if the information
about the system state is acquired by imprecise sensors or the system encap-
sulates private states which cannot be read from outside, then a controller for
this system must rely on the information about the state and the change of the
system to which it has access. I.e., in the game model, player 0 has uncertainties
about the positions and actions in the game, so we have to add partial informa-
tion to parity games in order to model this kind of problems. The uncertainties
are represented by equivalence relations on the positions and actions in the game
graph meaning that equivalent positions respectively actions are indistinguish-
able for player 0. Solving the strategy problem for such games is much harder
than solving parity games with full information, since we have to keep track of
the knowledge of player 0 during a play of the game. For this we compute, for
any finite history, the set of positions that player 0 considers possible in this
situation. This procedure is often referred to as powerset construction.

Such a knowledge tracking is inherently unavoidable and leads to an exponen-
tial lower bound for the time complexity of the strategy problem for reachability
games with partial information [15] and a super-polynomial lower bound for the
memory needed to implement winning strategies in reachability games [3,14].
Therefore, it is expedient to look for classes of games with partial information,
where the strategy problem has a lower complexity. A simple while effective
approach is to bound the partial information in the game, i.e., the size of the
equivalence classes of positions which model the uncertainties of player 0 about
the current position. This is appropriate in situation where, e.g., the imprecision
of the sensors or the amount of private information of the system does not grow if
the system grows. Then, the game which results from the powerset construction
has polynomial size, so partial information parity games with a bounded num-
ber of observable priorities can be solved in polynomial time. Hereby observable
means, that the priorities are constant over equivalence classes. However, if the
number of priorities is not bounded, we cannot prove this approach to be effi-
cient, since the question whether full information parity games with arbitrarily
many priorities can be solved in polynomial time is still open.

To obtain a class of parity games with partial information that can be solved in
polynomial time, one has to bound certain other parameters. A natural approach
is to bound the complexity of the game graphs with respect to appropriate
measures. Such graph complexity measures have proven enormous usefulness in
algorithmic graph theory. Several problems which are intractable in general can
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be solved efficiently on classes of graphs where such measures are bounded. The
key note here is that bounded complexity with respect to appropriate measures
allows to decompose the graph into small parts which are only sparsely related
within the graph in a certain sense. One can then solve the problem on these small
parts which requires, for each part, only a fixed amount of time, and combine
the partial solutions in an efficient way. This has proven to be applicable to a
large number of graph theoretic decision problems, e.g., all MSO-definable graph
properties [5]. More recently, it has also been applied to the strategy problem for
(full information) parity games. It has been shown that parity games played on
graphs with bounded tree-width or bounded (monotone) DAG-width or bounded
entanglement can be solved in polynomial time [2,4,12]. The natural question is
whether such results can also be obtained for games with partial information.

Since the direction of the edges is inherently important when solving games
and when performing the powerset construction, we primarily consider measures
for directed graphs. However, we prove a negative result about (undirected)
tree-width, which is the most important measure for undirected graphs, as a
prototype witness for the high potential of the powerset construction to create
graph complexity when the direction of edges is neglected. From the large variety
of measures for directed graphs we focus on DAG-width, directed path-width and
entanglement. Two other important measures are directed tree-width [9] and
Kelly-width [8]. For those measures, however, our techniques cannot be applied
directly, due to somewhat inconvenient conditions in the definitions.

In Section 3 we prove that in the case where the partial information is un-
bounded, there are classes of graphs G with complexity at most 2 such that the
complexity of the corresponding powerset graphs is exponential in the size of
G for any measure we consider. We also prove that the strategy problem for
reachability games with partial information is Exptime-hard on graphs with
entanglement at most 2 and directed path-width at most 2 and that the prob-
lem is Pspace-complete on acyclic graphs. Notice that reachability games form
a subclass of parity games. Roughly speaking, these results show that bounding
the graph complexity does not decrease the complexity of the strategy problem,
as long as the partial information is unbounded.

In Section 4 we consider parity games with bounded partial information. In
this case, the graphs which result from the powerset construction have polyno-
mial size, so if the construction additionally preserves boundedness of appro-
priate graph complexity measure, then the corresponding strategy problem is
in Ptime. For the case of tree-width and entanglement, however, we disprove
this preservation of boundedness. Finally, we prove that the construction does
preserve boundedness of directed path-width and of non-monotone DAG-width.
So, parity games with bounded partial information, played on graphs of bounded
directed path-width can be solved in polynomial time. Moreover, if DAG-width
has bounded monotonicity cost, which is an open question, the same result holds
for the case of bounded DAG-width. Detailed proofs of all results appear in the
full version of the paper.
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2 Preliminaries
Games and Strategies. A parity game has the form G = (V, V0, (fa)a∈A, col),
where V is the set of positions, A is the set of actions and for each action
a ∈ A, fa : dom(fa) ⊆ V → V is a function. We write v a−→ w if fa(v) = w.
Furthermore, V0 ⊆ V are the positions of player 0 and col : V → C is a function
into a finite set C ⊆ N of colors (also called priorities). We define V1 := V \ V0
and Ai :=

⋃
{act(v) | v ∈ Vi} for i = 0, 1. The directed graph (V,E) with E =⋃

{Ea | a ∈ A} where Ea = {(u, v) ∈ V × V | u ∈ dom(fa) and fa(u) = v} for
each a ∈ A is called the game graph of G. Here we consider only finite games,
i.e., games where V and A are finite.

For a finite sequence π ∈ V (AV )∗, by last(π) we denote the last position in
π. For v ∈ V , a play in G from v is a maximal finite or infinite sequence π =
v0a0v1 . . . ∈ v(AV )∗ ∪ v(AV )ω such that vi ∈ dom(fai) and fai(vi) = vi+1 for
each i. A finite play π is won by player 0 if last(π) ∈ V1. An infinite play π is won
by player 0 if min{c ∈ C | col(vi) = c for infinitely many i < ω} is even. A play π is
won by player 1 if and only if it is not won by player 0. A reachability game is a par-
ity game with C = {1}, i.e., player 0 wins only finite plays which end in positions
v ∈ V1. Now letHfin be the set of all finite histories π ∈ V (AV )∗ of plays inG from
v. A strategy for player i forG is a function g : {π ∈ Hfin | last(π) ∈ Vi}→ A such
that g(π) ∈ act(last(π)) for all π ∈ dom(g). A history π = v0a0v1a1v2 . . . is called
compatible with g if for all j such that vj ∈ Vi we have aj = g(v0a0 . . . aj−1vj). We
call a strategy g for player i a winning strategy from v0 if each play π in G from
v0 that is compatible with g is won by player i.

Partial Information. The knowledge of player i after some history π ∈ Hfin is
given by an equivalence relation ∼i⊆ Hfin ×Hfin where π ∼i π

′ if π and π′ are
indistinguishable for player i by means of his given information. So, after π has
been played, to the best of player i’s knowledge, it is possible that instead, π′

has been played. A strategy g : {π ∈ Hfin | last(π) ∈ Vi}→ A for player i for G
is called a partial information strategy with respect to ∼i (∼i-strategy, for short)
if g(π) = g(π′) for all π, π′ ∈ Hfin with π ∼i π

′. Notice that a ∼i-strategy g for
player i is winning from all positions in a set U ⊆ V if and only if it is winning
from a simulated initial position v0 which belongs to player 1− i and from which
he can secretly choose any position v ∈ U . Moreover, any ∼i-strategy g which
is only defined on histories from some initial position v0 can be extended to a
∼i-strategy g′ with dom(g) = {π ∈ Hfin | last(π) ∈ Vi} by giving g′ appropriate
value on histories from some initial position v′0 �= v0. So in our antagonistic two-
player setting, it suffices to consider strategies which are winning from single
initial positions v0 and only defined on histories from v0.

Now, if we are given a gameG, a position v in G and some equivalence relation
∼i on Hfin, then the question whether player i has a winning ∼i-strategy for G
from v is independent of the partial information of player 1 − i. Therefore, in
this work we investigate games with partial information only for player 0.

We consider games played on finite graphs where player 0 has uncertainties
about the positions and actions in the game, modeled by equivalence relations.
The relation ∼0 is then obtained by extending these equivalence relations to an
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equivalence relation onHfin. In particular,∼0 is finitely represented which is nec-
essary when considering decision problems for games with partial information.
A parity game with partial information has the form G = (G,∼V ,∼A), where
G = (V, V0, (fa)a∈A, col) is a parity game and ∼V⊆ V × V and ∼A⊆ A×A are
equivalence relations such that the following conditions hold:

(1) If u, v ∈ V with u ∼V v then u, v ∈ V0 or u, v /∈ V0,
(2) If a, b ∈ A0 with a �= b then a �∼A b,
(3) If u, v ∈ V0 with u ∼V v, then act(u) = act(v).
(4) If u, v ∈ V with u ∼V v then col(u) = col(v).

Condition (1) says that player 0 always knows when it is his turn and condition
(2) says that player 0 can distinguish all the actions that are available to him
at some position of the game. Condition (3) ensures that player 0 always knows
which actions are available to him when it is his turn. Finally, condition (4) says
that the colors of the game are observable for player 0.

We say that a game G has bounded partial information, if there is some k ∈ N,
such that for any position v ∈ V the equivalence class [v] := {w ∈ V | v ∼Vw} of
v has size at most k. Notice that the equivalence classes [a] := {b ∈ A | a ∼A b}
of actions a ∈ A may, however, be arbitrarily large.

The equivalence relation on finite histories is defined as follows. For π =
v0a0 . . . an−1vn, ρ = w0b0 . . . bm−1wm ∈ V (AV )∗, let

π ∼∗ ρ :⇐⇒ n = m and vj ∼V wj and aj ∼A bj for all j.

The winning region WinG
0 of player 0 in G is the set of all positions v ∈ V such

that player 0 has a winning ∼∗-strategy for G from v.

Remark. Consider the interaction between components of a system where the
behavior of each component is prescribed by a controller which has to rely on
the information available to this component. In such settings it might seem more
appropriate to ask for a ∼∗

0-strategy for player 0 which is winning against all ∼∗
1-

strategies of player 1 rather than a winning ∼∗
0-strategy for player 0. However,

it is easy to see that in our perfect recall setting, this is equivalent.

Powerset Construction. The usual method to solve games with partial infor-
mation is a powerset construction originally suggested by John H. Reif in [15].
The construction turns a game with partial information into a nondeterminis-
tic game with full information such that the existence of winning strategies for
player 0 is preserved.

A nondeterministic parity game has the form G = (V, V0, (Ea)a∈A, col) where
V , V0, A, and col are as in a deterministic game and for a ∈ A, Ea is a binary
relation on V . Plays, strategies and winning strategies are defined as before.
Nondeterministic games are not determined in general and hence not equiva-
lent to deterministic games. However, for each nondeterministic game G and
each player i ∈ {0, 1}, we can construct a deterministic game Gi such that the
existence of winning strategies for player i is preserved. We simply resolve the
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nondeterminism by giving player 1− i control of nondeterministic choices. Tech-
nically, for any v ∈ V and any a ∈ act(v) we add a unique a-successor of v to
the game graph which belongs to player 1− i and from which he can choose any
a-successor of v in the original game graph. The coloring of such a new position
is the coloring of its unique predecessor. This construction does not increase the
complexity of the game graph with respect to any measure we consider here.

Now for a parity game G = (G,∼V ,∼A), G = (V, V0, (fa)a∈A, col) with partial
information, we construct the corresponding game G = (V , V 0, (Ea)a∈A, col)
with full information as follows. First, for S ⊆ V and B ⊆ A we define the
set PostB(S) := {v ∈ V | ∃ s ∈ S, ∃ b ∈ B : b ∈ act(s) ∧ fb(s) = v}. The
components of G are defined as follows.

– V = {v ∈ 2V | ∃v ∈ V : v ⊆ [v]} and V 0 = V ∩ 2V0

– ∀ a ∈ A: (v, w) ∈ Ea :⇐⇒ ∃w ∈ Posta(v): w = Post[a](v) ∩ [w]
– col(v) = col(v) for some v ∈ V .

It can be shown that this construction in fact preserves winning strategies for
player 0, that means, for any v0 ∈ V , player 0 has a winning ∼∗-strategy for
G from v0 if and only if he has a winning strategy for G from {v0}. So when
asking for a winning ∼∗-strategy for player 0 from a given position v0, we are
only interested in the part of the graph G which is reachable from {v0}. We
denote this subgraph of G by Gv0 . The key-property for the correctness of the
construction is given in the following lemma which is proved straightforwardly.

Lemma 1. For each finite history π = v0a1v1 . . . anvn in G and all vn ∈ vn,
there is a finite history π = v0a

′
1v1 . . . a

′
nvn in G such that vi ∈ vi for all i ∈

{0, . . . , n} and a′i ∼A ai for all i ∈ {1, . . . , n}.

Graph Complexity. We consider only directed graphs without multi-edges,
but possibly with self-loops, i.e., a graph is a pair G = (V,E) where E ⊆ V ×V .
An undirected graph is a graph with a symmetric edge relation.

All measures we consider can be characterized in terms of cops and robber
games, where several cops try to catch a robber on a graph. Technically, these
games are reachability games. We do not give formal descriptions of the games
but merely describe them in an informal way. In a graph searching game there
are two players, a cop player and a robber player. Basically, the robber player
moves a robber token along cop free paths of the graph. The cop player has a
number k of cops at his disposal and he can place and move them on and between
vertices. At the very moment a cop is moving he does not block any vertex. The
goal of the cop player is to place a cop on the robber, the robber player’s goal
is to elude capture. That means, infinite plays are won by the robber and finite
plays, which end in a position where the robber has no legal moves available, are
won by the cops. The number k of cops is a parameter of the game, that means,
for any natural number k we have a k-cops and robber game.

Tree-width, see [16], denoted tw, is a measure defined for undirected graphs
and the tree-width of a directed graph is the tree-width of his symmetric closure.
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In the tree-width game, the cops can be placed and moved in the graph arbitrarily.
When a new set U of at most k vertices is chosen to be occupied by the cops, the
robber may move along any cop-free path, i.e. no vertex on this path which has
been occupied by a cop is also occupied by a cop according to U . The robber may
move at unlimited speed, i.e., he may move along a whole path in one step.

DAG-width, introduced in [2,13] and denoted dw, is a generalization of tree-
width to directed graphs. The DAG-width game has exactly the same rules as
the tree-width game with the only difference that now, the robber has to respect
the direction of the edges. The directed path-width, denoted dpw, is defined
by the same game where now, the robber is invisible. So, a strategy for the cop
player has to yield the same decision in any two situations which differ only in
the current position of the robber.

Finally, in the entanglement-game [4] the cop player may, in each round,
do nothing or place one of the k cops on the current position of the robber. No
matter what the cops do, the robber must go from his recent vertex to a new
vertex, which is not occupied by a cop, along an edge of the graph.

For X ∈ {tw, dw, dpw}, X(G) is the least natural number k such that k+1
cops (k cops, if X = dw) have a (robber-)monotone winning strategy for the X-
game on G. A strategy f for the cops is called (robber-)monotone, if in any play
compatible with f , the robber can never reach any vertex that has previously
been unavailable for him. Such a monotone winning strategy for k cops yields
a decomposition of G into (possibly complex) parts of size at most k which
are only sparsely related among each other. Such decompositions often allow for
efficient dynamic solutions of hard graph problems. Notice that clearly, dw(G) ≤
dpw(G) + 1 for any graph G.

The entanglement of a graph G, denoted ent(G), is the least natural number k
such that k cops have an arbitrary winning strategy for the entanglement game
on G. For entanglement, only for k = 2, a decomposition in the above sense is
known [6]. Nevertheless, parity games can be solved efficiently on graph classes
of bounded entanglement.

In the following, let M = {tw, dw, dpw, ent}. We say that a measure X ∈M
has monotonicity cost at most f for a function f : N → N if, for any graph G
such that k cops have a winning strategy for the X-game on G, k + f(k) cops
have a monotone winning strategy for the X-game on G. We say that X has
bounded monotonicity cost if there is a function f : N → N such that X has
monotonicity cost at most f . Tree-width has monotonicity cost 0 [16] and the
same holds for directed path-width, [1,7]. On the contrary, DAG-width does not
have monotonicity cost 0 [11]. Whether DAG-width has bounded monotonicity
cost, is an important open problem in structure theory of directed graphs.

3 Unbounded Partial Information

First, when the partial information is unbounded, it is easy to prove that bound-
edness of graph complexity measures is not preserved by the powerset construc-
tion. We show that they grow even exponentially.
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Proposition 2. There are games Gn, n ∈ N with partial information and with
X(Gn) ≤ 2 for all n ∈ N and for any X ∈M, such that the powerset graphs Gn

have exponential measure X in the size of Gn for any X ∈ M.

Proof. (Sketch) Consider a disjoint union of n cycles of length 2 where all 2n
positions are equivalent. Additionally, we have an initial position v0 with an edge
to exactly one position from each cycle. Applying the powerset construction from
v0, we obtain a set which contains exactly one element from each cycle. Such
sets represent binary numbers with n bits and for each bit we have an action
which causes exactly this bit to flip. So, using the Gray-code, we can generate
all binary numbers with n bits by successively flipping each bit. If we do this
independently for the first n/2 bits and for the last n/2 bits, it is easy to see that
the resulting positions are connected in such a way, that they form an undirected
grid Gn of size 2n/2 × 2n/2, for which X(Gn) ≥ 2n/2 for any X ∈M. 


Towards our analysis of the complexity of the strategy problem for games with
partial information on graphs of bounded complexity, we first note that on trees,
solving games with partial information is not harder than solving games with full
information. Performing the powerset construction on a tree, we again obtain
a tree, where the set of positions on each level partitions the set of positions
on the corresponding level of the original tree. This new tree can be computed
in polynomial time and has at most as many vertices as the original tree. In
the following we prove that, as soon as we consider at least DAGs, the strategy
problem for reachability games with partial information becomes intractable as
long as we do not bound any other parameters.

Theorem 3. The following problem is Exptime-hard. Given a partial informa-
tion reachability game G = (G,∼V ,∼A) with ent(G) ≤ 2 and dpw(G) ≤ 2 and a
position v0 ∈ V (G), is v0 ∈ WinG

0 ?

Proof. (Sketch) Let M = (Q,Γ,Σ, δ, q0, q+, q−) be a 1-tape TM with space
bound nk. For simplicity, we consider the case where M is deterministic and
prove the claim for ent(G) ≤ 1 and dpw(G) ≤ 1. The proof can be carried
out similarly for alternating machines and ent(G) ≤ 2 and dpw(G) ≤ 2. For
Δ = Σ � (Q × Σ) � {#} we can describe each configuration of M by a word
C = #w0 . . . wi−1(qwi)wi+1 . . . wt# ∈ Δnk+2. Moreover, for a configuration C of
M and some 2 ≤ i ≤ nk+1 the symbol number i of C′ where C′ = Next(C) only
depends on the symbols number i−1, i and i+1 of C. Now let u = u1 . . . un ∈ Γ ∗

be an input word forM . The idea for the game corresponding to u is that player 0
constructs the unique run of M on u by selecting symbols from Δ while player 1
checks the correctness of the construction. For this he may, exactly once, se-
cretly memorize the last three symbols that player 0 has selected and verify the
corresponding next symbol locally, according to the above remark.

We implement this as follows. The game graph G consists of |Δ|3 · nk + 1
augmented DAGs t0 and tδi , i = 1, . . . , nk, δ ∈ Δ3, each of which has a unique
top node, edges from any non-bottom level only to the level below and 2 ·nk +1
levels in total. For any fixed i ∈ {1, . . . , nk}, the union of all tδi for δ ∈ Δ3 is



612 B. Puchala and R. Rabinovich

denoted by ti. We also have a unique root v0 for the whole graph, from which
there is an edge to the top of t0 and, for any 1 ≤ i ≤ nk, an edge to exactly
one top node of ti. From any leaf node of ti, 0 ≤ i ≤ nk, there is a back-edge to
some top node of ti. Finally, the i-th level of tδi for i ≥ 1, has no outgoing edges.
Obviously ent(G) ≤ 1 and dpw(G) ≤ 1. In any of the ti, the players alternate
in making moves. From an odd level of ti, player 0 moves to the next level of ti
by choosing a symbol δ ∈ Δ or, from the bottom level, to the top of ti. During
a traverse of t0, player 0 constructs one configuration. From an even level 2j,
j ∈ {0, . . . , nk} of t0, player 1 can go to the same position at level 2j + 1 of t0
or of tδj , where δ is the sequence of the last three symbols chosen by player 0,
which is stored in the current position. In the latter case, player 1 memorizes the
last three symbols chosen by player 0: after player 1 has left t0, the information
δ does not change anymore. (If player 1 goes from v0 to a top node of some
ti with i > 0 then he memorizes the symbols i − 1, i and i + 1 of the initial
configuration.) From a position in some tj with j ≥ 1, player 1 can only move
to the same position on the next level of tj . At level i of tδi , the correctness of
the construction that player 0 provides is checked according to the memorized
information i and δ, yielding a winner of the game. If player 0 provides a faulty
construction, player 1 can detect this by memorizing the symbols of player 0 at
the appropriate step. To ensure that the construction player 0 provides is not
affected by this trick, we define the equivalence relations ∼V and ∼A in such a
way that the only information player 0 has, is the player whose turn it is, the
current level and the last character that he has chosen. Hence, player 0 does
not observe whether player 1 leaves t0 or not. The goal of player 0 is to reach a
position where player 1 has tried to detect an error but has failed, or a position
where he can safely write down (q+, a) for some a ∈ Σ. This defines the partial
information reachability game Gu with u ∈ L(M) if, and only if, v0 ∈WinG

0 . 


Remark. It easy to see, that the tree-width of the game graphs constructed
in the proof of Theorem 3 is bounded by some k ∈ N which is independent of
the input u. Therefore, the strategy problem for reachability games with partial
information on graphs of tree-width at most k is Exptime-hard.

The cases of entanglement and directed path-width at most 1 are still open.
However, the strategy problem for sequence-forcing games with partial infor-
mation, where player 0 tries to enforce a certain sequence of fixed length of
positions, is Exptime-hard on graphs of entanglement and directed path-width
at most 1. Sequence-forcing games can be polynomially reduced to reachability
games so we obtain, roughly speaking, the following result.

Theorem 4. Adding partial information to games played on graphs of entan-
glement at most 1 and directed path-width at most 1 can cause an unavoidable
exponential blow-up of the time complexity of the corresponding strategy problem.

Finally, if the we consider acyclic game graphs, the strategy problem for partial
information reachability games is Pspace-complete.
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Theorem 5. The strategy problem for reachability games with partial informa-
tion on acyclic graphs is Pspace-complete.

Proof. (Sketch) Carrying out the powerset construction on an acyclic graph G
we again obtain an acyclic graph G where, by Lemma 1, the paths in G are not
longer than the paths in G. So, we can solve the reachability game on G by an
(Pspace =) APtime algorithm. Conversely, if the machine from the proof of
Theorem 3 is a Ptime ATM, we do not insert edges back to the top of ti but
we go to roots of a new copy of ti. Since M is polynomially time bounded, the
resulting graph has polynomial size and is, by construction, acyclic. 


4 Bounded Partial Information

We turn to the case where the size of the equivalence classes of positions is
bounded. The first observation is that bounded tree-width may become un-
bounded when applying the powerset construction. Afterwards we shall see, that
the same results holds for entanglement.

Proposition 6. There are games Gn, n ∈ N with bounded partial information
and X(Gn) ≤ 2 for all n ∈ N and any X ∈ M such that the corresponding
powerset graphs Gn have unbounded tree-width.

Proof. (Sketch) The game graph Gn is a disjoint union of n (undirected) paths
Pi of length n together with a vertex v0 and (undirected) edges from v0 to
any other vertex. For every even positive (resp. odd) j and every odd (resp. even
positive) i, the j-th vertices of Pi and Pi+1 are not distinguishable. The powerset
graph Gn is again a union of isomorphic copies of the paths Pi, augmented by
the following gadgets inserted between each two distinguishable j-th vertices vij
and vi+1

j of the paths Pi and Pi+1. A gadget is one vertex with directed edges
to vij and vi+1

j (and some other edges). While tw(Gn) = 2, tw(Gn) ≥ n/2. 

Proposition 7. There are games Gn, n ∈ N with bounded partial information
and X(G) ≤ 2 for all n ∈ N and any X ∈M\{dpw} such that the corresponding
powerset graphs Gn have unbounded entanglement.

Proof. (Sketch) The graph Gn consists of two disjoint copies T1 and T2 of the
full undirected binary tree. From a vertex in T1, a directed edge leads to the
corresponding vertex in T2 and there are no edges from T2 to T1. Undirected trees
have entanglement two, so ent(G) = 2. The edges from T1 to T2 are implemented
by gadgets which create, when the powerset construction is performed, a back
edge while also preserving the original edge. So the graph Gn again consists of
two disjoint copies of the full undirected binary tree but corresponding vertices
are now connected in both directions. Adapting a proof from [4] for similar
graphs we obtain that ent(Gn) ≥ n/2− 2. 

Now we prove that in contrast to tree-width and entanglement, non-monotone
DAG-width is preserved by the powerset construction. In the following, let G =
(G,∼V ,∼A) be a game with bounded partial information, i.e., there is some
r ∈ N such that |[u]| ≤ r for all u ∈ V (G). Let G be the powerset graph of G.
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Proposition 8. If k cops win the DAG-width game on G, then k · r · 2r−1 cops
win the DAG-width game on G.

Proof. (Sketch) We translate strategies for k cops from G to G and robber’s
strategies in the opposite direction. Consider positions in games on both graphs.
When the robber makes a move on G to a vertex {v1, . . . , vl} we consider l plays
in the game on G where he moves to v1, v2,. . . , vl. For each of these moves, the
strategy for the cops for the game on G supplies an answer, moving the cops
from U to U ′. All these moves are translated into a move in which the cops
occupy precisely the vertices of G that include a vertex from some U ′. These
moves of the cop player on G can be realized with k · r · 2r−1 cops and guarantee
that moves of the robber can always be translated back to the game on G. The

key argument here is that by Lemma 1, for any path u0 E−→ u1 E−→ . . .
E−→ ut

in G and for any ut ∈ ut, there is a path u0 E−→ u1 E−→ . . .
E−→ ut in G such

that ui ∈ ui for any i ∈ {0, . . . , t}. So if a play continues infinitely on G then at
least one corresponding play on G continues infinitely. Hence, if we start from a
winning strategy for k cops for the game on G, no strategy for the robber can
be winning against k · r · 2r−1 cops on G. By determinacy, the result follows. 

Unfortunately, this strategy translation does not necessarily preserve mono-
tonicity, so boundedness of DAG-width does not follow. On the other hand,
boundedness of directed path-width can be proved by translating strategies non-
monotonously, as it has monotonicity cost 0. However, since directed path-width
is defined via partial information strategies, the translation has to be refined.

Proposition 9. If dpw(G) ≤ k, then dpw(G) ≤ (k + 1) · 2r−1.

Corollary 10. Parity games with bounded partial information can be solved in
polynomial time on graphs of bounded directed path-width.

An interesting special case where an equiped translation of strategies does pre-
serve monotonicity is given by games with strongly connected equivalence classes
of positions. Intuitively this means that for any characteristic of the current state
which player 0 is unsure about, it is possible for player 1 to change the value of
this characteristic into any other possible value privately, i.e., without changing
any characteristics visible for player 0 in between. This is appropriate for situ-
ations where, e.g., the uncertainties of player 0 concern some private states of
player 1 which are independent of the states visible for player 0.

Proposition 11. If dw(G) ≤ k and each equivalence class of positions is strongly
connected, then dw(G) ≤ k · r2 · 2r−1.

Finally, we remark that our direct translation of the robber’s moves back to the
game on G cannot be immediately applied to the games which define Kelly-width
and directed tree-width. In the Kelly-width game, the robber can only move if a
cop is about to occupy his vertex. It can happen that the cops occupy a vertex
{v1, . . . , vl} in G but not all vertices v1, . . . , vl in G. In the directed tree-width
game, the robber is not permitted to leave the strongly connected component in
which he currently is, which again obstructs a direct translation of the robber’s
moves from G back to G.
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10. Jurdziński, M.: Games for Verification: Algorithmic Issues. PhD thesis, University
of Aarhus (2000)

11. Kreutzer, S., Ordyniak, S.: Digraph Decompositions and Monotonicity in Digraph
Searching. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 336–347. Springer, Heidelberg (2008)
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Abstract. We prove that coverability and termination are not primitive-recursive
for lossy counter machines and for Reset Petri nets.

1 Introduction

Lossy counter machines [16,19] and Reset Petri nets [8] are two computational models
that can be seen as weakened versions of Minsky counter machines. This weakness
explains why some problems (e.g., termination) are decidable for these two models,
while they are undecidable for the Turing-powerful Minsky machines.

While these positive results have been used in the literature, there also exists a neg-
ative side that has had much more impact. Indeed, we showed in [18] that decidable
verification problems for lossy channel systems are Ackermann-hard and hence cannot
be answered in primitive-recursive time or space. We also claimed that the construction
used for lossy channels could be adapted for lossy counters and Reset Petri nets.

Hardness Theorem (in the Introduction of [18]). Reachability, termination and cov-
erability for lossy counter machines are Ackermann-hard.
Termination and coverability for Reset Petri nets are Ackermann-hard.

These hardness results turned out to be relevant in several other areas. Using lossy
counter machines, hardness results relying on the first half of the Hardness Theorem
have been derived for a variety of logics and automata dealing with data words or data
trees [6,7,14,12,20]. Ackermann-hardness has also been shown by reductions from
Reset and Transfer nets, relying on the second half of the Hardness Theorem. Examples
can be found in, e.g., [1,13]. We refer to [3,4] and the references therein for hardness
inherited from lossy channel systems.

Our contribution. In this paper we prove the Hardness Theorem with a simplified con-
struction. Compared to [18], we introduce three main simplifications:
1. We use counter machines and not channel systems, which is more direct since the
crux of the construction is the computation of numerical functions.
2. We use a tail-recursive presentation of the Fm functions from the Fast-Growing Hi-
erarchy. Thus we do not build our counter machines in nested stages like in [18]. As a
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consequence, the correctness of the numerical computations is obvious and we obtain a
clearer view of how many counters are really used.
3. We do not define, nor compute, inverses of the Fm functions as done in [18]. Instead,
the tail-recursive definition is a simple rewrite loop that can easily be run backwards.

In addition, we strove for extra simplicity. E.g., we use counter machines extended
with simple primitives that make computing Ackermann’s function less cumbersome.

There are several reasons for providing a new proof of an old result. First, the re-
sults are important and influential as demonstrated by the number and the variety of
applications we listed above: they definitely deserve being revisited, polished, adver-
tised, etc. Second, our original proof has already been adapted to yet other computa-
tional models (e.g., in [15]) and a simplified proof will probably be easier to adapt to
further models. Finally, we note that the main contents of [18] is now obsolete since
Ackermann-hardness is not optimal for lossy channel systems [3]. However, for lossy
counter machines and Reset nets, the Hardness Theorem is optimal (see [17,11]) and
will not become obsolete.

Outline of the paper. Section 2 defines counter machines, both reliable and lossy. Sec-
tion 3 builds counter machines that compute Ackermann’s function. Section 4 puts
Minsky machines on a budget, a gadget that is essential in Section 5 where the main
reduction is given and the hardness of reachability and coverability for lossy counter
machines is proved. We then show how to deal with reset nets in Section 6 and how to
prove hardness of termination in Section 7. Some proofs have been omitted for lack of
space: they can be found in the full version of this paper.

2 Counter Machines, Reliable and Lossy

Counter machines are a model of computation where a finite-state control acts upon a
finite number of counters, i.e., storage locations that hold a natural number. The com-
putation steps are usually restricted to simple tests and updates. For Minsky machines,
the tests are zero-tests and the updates are increments and decrements.

For our purposes, it will be convenient to use a slightly extended model that allows
more concise constructions, and that will let us handle Reset nets smoothly.

2.1 Extended Counter Machines and Minsky Machines

Formally, an extended counter machine with n counters, often just called a “counter
machine” (a CM), is a tuple M = (Loc,C,Δ) where Loc = {�1, . . . , �p} is a finite set of
locations, C = {c1, . . . ,cn} is a finite set of counters, and Δ ⊆ Loc×OP(C)× Loc is
a finite set of transition rules. The transition rules are depicted as directed edges (see
Fig. 1, 2, and 3 below) between control locations labeled with an instruction op∈OP(C)
that is either a guard (a condition on the current contents of the counters for the rule
to be firable), or an update (a method that modifies the contents of the counters), or both.
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For CM’s, the instruction set OP(C) is given by the following abstract grammar:

OP(C) � op ::= c=0? /* zero test */ | c:=0 /* reset */

| c>0?c-- /* decrement */ | c=c′? /* equality test */

| c++ /* increment */ | c:=c′ /* copy */

where c,c′ are any two counters in C. (We also allow a no_op instruction that does not
test or modify the counters.)

A Minsky machine is a CM that only uses instructions among zero tests, decre-
ments and increments (the first three types). Petri nets and Vector Addition Systems
with States (VASS’s) can be seen as counter machines that only use decrements and
increments (i.e., Minsky machines without zero-tests).

2.2 Operational Semantics

The operational semantics of a CM M = (Loc,C,Δ) is given under the form of tran-
sitions between its configurations. Formally, a configuration (written σ,θ, . . .) of M is
a tuple (�,aaa) with � ∈ Loc representing the “current” control location, and aaa ∈ NC, a
C-indexed vector of natural numbers representing the current contents of the counters.
If C is some {c1, . . . ,cn}, we often write (�,aaa) under the form (�,a1, . . . ,an). Also, we
sometimes use labels in vectors of values to make them more readable, writing, e.g.,
aaa = (0, . . . ,0,ck : 1,0, . . . ,0).

Regarding the behavior induced by the rules from Δ, there is a transition (also called

a step) σ δ−→std σ′ if, and only if, σ is some (�,a1, . . . ,an), σ′ is some (�′,a′1, . . . ,a
′
n),

Δ � δ = (�,op, �′) and either:
– op is ck=0? (zero test): ak = 0, and a′i = ai for all i = 1, . . . ,n, or
– op is ck>0?ck-- (decrement): a′k = ak−1, and a′i = ai for all i �= k, or
– op is ck++ (increment): a′k = ak + 1, and a′i = ai for all i �= k, or
– op is ck:=0 (reset): a′k = 0, and a′i = ai for all i �= k, or
– op is ck=cp? (equality test): ak = ap, and a′i = ai for all i = 1, . . . ,n, or
– op is ck:=cp (copy): a′k = ap, and a′i = ai for all i �= k.
(The steps carry a “std” subscript to emphasize that we are considering the usual, stan-
dard, operational semantics of counter machines, where the behavior is reliable.)

As usual, we write σ Δ−→std σ′, or just σ −→std σ′, when σ δ−→std σ′ for some δ ∈ Δ.
Chains σ0 −→std σ1 −→std · · · −→std σm of consecutive steps, also called runs, are denoted
σ0 −→∗

std σm, and also σ0 −→+
std σm when m> 0. Steps may also be written more precisely

under the form M � σ−→std σ′ when several counter machines are at hand and we want
to be explicit about where the steps take place.

For a vector aaa = (a1, . . . ,an), or a configuration σ = (�,aaa), we let |aaa|= |σ|= ∑n
i=1 ai

denote its size. For N ∈ N, we say that a run σ0 −→ σ1 −→ · · · −→ σm is N-bounded if
|σi| ≤ N for all i = 0, . . . ,n.

2.3 Lossy Counter Machines

Lossy counter machines are counter machines where the contents of the counters can
decrease non-deterministically (the machine can “leak”, or “lose data”).
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Technically, it is more convenient to see lossy machines as counter machines with
a different operational semantics (and not as a special class of machines): thus it is
possible to use simultaneously the two semantics and relate them.

Formally, this is defined via the introduction of a partial ordering between the con-
figurations of M:

(�,a1, ...,an)≤ (�′,a′1, ...,a
′
n)

def⇔ �= �′ ∧a1 ≤ a′1∧·· ·∧an ≤ a′n.

σ≤ σ′ can be read as “σ is σ′ after some losses (possibly none)”.

Now “lossy” steps, denoted M � σ δ−→lossy σ′, are given by the following definition:

σ δ−→lossy σ′ def⇔ ∃θ,θ′ : (σ≥ θ ∧ θ δ−→std θ′ ∧ θ′ ≥ σ′). (∗)

Note that reliable steps are a special case of lossy steps:

M � σ−→std σ′ implies M � σ−→lossy σ′. (†)

2.4 Behavioral Problems on Counter Machines

We consider the following decision problems:

Reachability: given a CM M and two configurations σini and σgoal, is there a run M �
σini −→∗ σgoal?

Coverability: given a CM M and two configurations σini and σgoal, is there a run M �
σini −→∗ σ for some configuration σ≥ σgoal that covers σgoal?

(Non-)Termination: given a CM M and a configuration σini, is there an infinite run
M � σini −→ σ1 −→ · · · −→ σn −→ · · ·?

These problems are parameterized by the class of counter machines we consider and,
more importantly, by the operational semantics that is assumed. Recall that reachability
and termination are decidable for lossy counter machines, i.e., counter machines assum-
ing lossy steps [16,19]. Observe that, for lossy machines, reachability and coverability
coincide (except for runs of length 0). For the standard semantics, the same problems
are undecidable for Minsky machines but become decidable for VASS’s and, except for
reachability, for Reset nets (see Section 6).

3 The Fast-Growing Hierarchy

The Fast-Growing Hierarchy [10] turns the class of all primitive-recursive functions into
a strict cumulative hierarchy built from a sequence (Fk)k=0,1,2,... of number-theoretic
functions. The functions Fk : N → N are defined by induction over k ∈ N:

F0(n) def= n + 1, Fk+1(n) def= Fn+1
k (n) =

n+1 times︷ ︸︸ ︷
Fk(Fk(. . .Fk(n) . . .)). (D)
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This induces F1(n) = 2n−1 and F2(n) = (n + 1)2n+1−1, hence F2 is not polynomial.
Writing down an expression for F3(n) needs a tower of n exponents and F3 is non-
elementary. Note that, for all k and n, Fk(n + 1)> Fk(n) and that Fk+1 dominates Fk.

Each Fk is primitive-recursive. A classic result is that every primitive-recursive func-
tion f : N → N is eventually dominated by some Fk.

It is possible to define a variant of Ackermann’s function by a diagonalisation pro-

cess: Ack(n) def= Fn(n). The Ack function is recursive but it eventually dominates any Fk,
so it is not primitive-recursive.

A tail-recursive definition. The functions (Fk)k∈N can be defined in a convenient tail-
recursive way via the introduction of a generalized, so-called “vectorial”, function F
with two arguments. Formally, for a vector aaa = (am, . . . ,a0) ∈ Nm+1, we define

F(aaa;n) = F(am, . . . ,a0;n) def= Fam
m (. . .Fa1

1 (Fa0
0 (n))). (V)

Hence Ack(m) is F(1,000;m), i.e., F(1,0, . . . ,0;n) with m zeroes, and (D) can be refor-
mulated in vectorial form:

F(000;n) = F(0, . . . ,0;n) = n, (D0)

F(am, . . . ,a0 + 1;n) = F(am, . . . ,a0;n + 1), (D1)

F(am, . . . ,ak + 1,

k>0 zeroes︷ ︸︸ ︷
0, . . . ,0 ;n) = F(am, . . . ,ak,n + 1,

k−1 zeroes︷ ︸︸ ︷
0, . . . ,0 ;n). (D2)

Fact 3.1 (Monotonicity). If aaa≤ aaa′ and n≤ n′ then F(aaa;n)≤ F(aaa′;n′).

Reading (D0–2) as left-to-right rewrite rules turns them into a functional program for

evaluating F: Write 〈aaa;n〉 D−→ 〈aaa′;n′〉 when (D1) or (D2) transforms the term F(aaa;n)
into F(aaa′;n′). Clearly, 〈aaa;n〉 D−→ 〈aaa′;n′〉 implies F(aaa;n) = F(aaa′;n′).

�evalF �1 �′1 �′′1 �′′′1

�2 �′2 �′′2 �′′′2

· · · · · ·· · ·

�m �′m �′′m �′′′m

r

a0>0?

a0--
n++

am=0?

a0=0?

a1=0?

a2=0?

am−1=0?

a1>0?a1-- a0:=n a0++

a2>0?a2-- a1:=n a1++

am>0?am-- am−1:=n am−1++

...

n

a0

a1

am

Fig. 1. MevalF(m), a counter machine evaluating F vectorially on Nm+1
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Now,
D−→ terminates since 〈aaa;n〉 D−→ 〈aaa′;n′〉 implies aaa>lexico aaa′ (recall that the lexico-

graphical ordering is a linear extension of ≤, hence a well-ordering of Nm+1). Further-
more, if aaa �= 000, one of the rules among (D1) and (D2) can be applied to 〈aaa;n〉. Hence for

all aaa and n there exists some n′ such that 〈aaa;n〉 D−→ ∗〈000;n′〉, and then n′ = F(aaa;n) since

F(aaa;n) and F(000;n′), i.e., n′, must coincide. (The reverse relation
D−→ −1 terminates too

since, in a step 〈aaa′;n′〉 D−→ −1〈aaa;n〉, either n′ is decreased, or it stays constant and the
number of zeroes in aaa′ is increased.)

A counter machine evaluating F vectorially. Being tail-recursive, the vectorial F can be

evaluated via a simple while-loop that implements the
D−→ rewriting. Fix a level m ∈ N:

we need m+2 counters, one for the n argument, and m+1 for the aaa ∈ Nm+1 argument.
We define a counter machine MevalF(m) = (LocevalF,C,ΔevalF), or MevalF for short,

with C = {a0,a1, ...,am,n}. Its rules are defined pictorially in Fig. 1: they implement
D−→ as a loop around a central location �evalF , as captured by the following lemma.

Lemma 3.2 (Behavior of MevalF). For all aaa,aaa′ ∈Nm+1 and n,n′ ∈ N:

a. If 〈aaa;n〉 D−→ 〈aaa′;n′〉 then MevalF � (�evalF,aaa,n)−→∗
std (�evalF,aaa′,n′).

b. If MevalF � (�evalF,aaa,n)−→∗
std (�evalF,aaa′,n′) then F(aaa;n) = F(aaa′;n′).

c. If MevalF � (�evalF,aaa,n)−→∗
lossy (�evalF,aaa′,n′) then F(aaa;n)≥ F(aaa′;n′).

A counter machine inverting F. The rules (D0–D2) can also be used from right to
left. Used this way, they invert F . This is implemented by another counter machine,
MbackF(m) = (LocbackF,C,ΔbackF), or MbackF for short, defined pictorially in Fig. 2.

MbackF implements
D−→ −1 as a loop around a central location �backF, as captured by

Lemma 3.3. Note that MbackF may deadlock if it makes the wrong guess as whether ai

contains n + 1, but this is not a problem with the construction.

...

n

a0

a1

am
· · ·

· · ·

· · ·

�backF
n>0?

n--

a0++ a1++ a2++ am++

a0:=0 a1:=0 am−1:=0

a0>0?
a0--

a0=n?

a1>0?
a1--

a1=n?

am−1>0?
am−1--

am−1=n?

a0=0?
∧m−2

i=1 ai=0?

a0=0?

Fig. 2. MbackF(m), a counter machine inverting F vectorially on Nm+1
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Lemma 3.3 (Behavior of MbackF). For all aaa,aaa′ ∈ Nm+1 and n,n′ ∈ N:

a. If 〈aaa;n〉 D−→ 〈aaa′;n′〉 then MbackF � (�backF,aaa′,n′)−→∗
std (�backF,aaa,n).

b. If MbackF � (�backF,aaa,n)−→∗
std (�backF,aaa′,n′) then F(aaa;n) = F(aaa′;n′).

c. If MbackF � (�backF,aaa,n)−→∗
lossy (�backF,aaa′,n′) then F(aaa;n)≥ F(aaa′;n′).

4 Minsky Machines on a Budget

With a Minsky machine M = (Loc,C,Δ) we associate a Minsky machine Mon_budget =
(Locb,Cb,Δb), called Mb for short. (Note that we are only considering Minsky machines
here, and not the extended counter machines from earlier sections.)

Mon_budget is obtained by adding to M an extra “budget” counter B and by adapting the
rules of Δ so that any increment (resp. decrement) in the original counters is balanced
by a corresponding decrement (resp. increment) on the new counter B, so that the sum
of the counters remains constant. This is a classic idea in Petri nets. The construction
is described on a schematic example (Fig. 3) that is clearer than a formal definition.
Observe that extra intermediary locations (in gray) are used, and that a rule in M that
increments some ci will be forbidden in Mb when the budget is exhausted.

M

�0

�1

�2 �3

c3=0?

c1++

c2>0?c2--

4

3

0

c1

c2

c3 ⇒

Mon_budget, aka Mb

�0

�1

�2 �3

c3=0?

B>0?B--

c1++

c2>0?c2-- B++

4

3

0

93 c1

c2

c3

B

Fig. 3. From M to Mb (schematically)

We now collect the properties of this construction that will be used later. The fact
that Mb faithfully simulates M is stated in Lemmas 4.2 and 4.3. There and at other
places, the restriction to “�,�′ ∈ Loc” ensures that we only relate behavior anchored at
the original locations in M (locations that also exist in Mb) and not at one of the new
intermediary locations introduced in Mb.

First, the sum of the counters in Mb is a numerical invariant (that is only temporarily
disrupted while in the new intermediary locations).

Lemma 4.1. If Mb � (�,B,aaa)−→∗
std (�′,B′,aaa′) and �,�′ ∈ Loc, then B + |aaa|= B′+ |aaa′|.

Observe that Mb can only do what M would do:
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Lemma 4.2. If Mb � (�,B,aaa)−→∗
std (�′,B′,aaa′) and �,�′ ∈Loc then M � (�,aaa)−→∗

std (�′,aaa′).

Reciprocally, everything done by M can be mirrored by Mb provided that a large enough
budget is allowed. More precisely:

Lemma 4.3. If M � (�,aaa) −→∗
std (�′,aaa′) is an N-bounded run of M, then Mb has an N-

bounded run Mb � (�,B,aaa)−→∗
std (�′,B′,aaa′) for B

def
= N−|aaa| and B′

def
= N−|aaa′|.

Now, the point of the construction is that Mb can distinguish between lossy and non-
lossy runs in ways that M cannot. More precisely:

Lemma 4.4. Let Mb � (�,B,aaa) −→∗
lossy (�′,B′,aaa′) with �,�′ ∈ Loc. Then Mb �

(�,B,aaa)−→∗
std (�′,B′,aaa′) if, and only if, B + |aaa|= B′+ |aaa′|.

Proof (Idea). The “(⇐)” direction is an immediate consequence of (†).
For the “(⇒)” direction, we consider the hypothesized run Mb � (�,B,aaa) = σ0 −→lossy

σ1 −→lossy · · · −→lossy σn = (�′,B′,aaa′). Coming back to definition (∗), these lossy steps
require, for i = 1, . . . ,n, some reliable steps θi−1 −→std θ′i with σi−1 ≥ θi−1 and θ′i ≥ σi,
and hence |θ′i| ≥ |θi| for i < n. Combining with |θi−1| = |θ′i| (by Lemma 4.1), and
|σ0| = |σn| (from the assumption that B + |aaa| = B′ + |aaa′|), proves that all these con-
figurations have same size. Hence θ′i = σi = θi and the lossy steps are also reliable
steps. 


Corollary 4.5. Assume Mb � (�,B,000)−→∗
lossy (�′,B′,aaa) with �,�′ ∈ Loc. Then:

1. B≥ B′+ |aaa|, and
2. M � (�,000) −→∗

std (�′,aaa) if, and only if, B = B′+ |aaa|. Furthermore, this reliable run of
M is B-bounded.

5 Ackermann-Hardness for Lossy Counter Machines

We now collect the ingredients that have been developed in the previous sections.
Let M be a Minsky machine with two fixed “initial” and “final” locations �ini and �fin.

With M and a level m ∈ N we associate a counter machine M(m) obtained by stringing
together MevalF(m), Mon_budget, and MbackF(m) and fusing the extra budget counter B
from Mon_budget with the accumulator n of MevalF(m) and MbackF(m) (these two share
their counters). The construction is depicted in Fig. 4.

Theorem 5.1. The following are equivalent:
1. M(m) has a lossy run (�evalF,am : 1,000,n : m,000) −→∗

lossy θ for some θ ≥
(�backF,1,000,m,000).
2. Mon_budget has a lossy run (�ini,B : Ack(m),000)−→∗

lossy (�fin,Ack(m),000).
3. Mon_budget has a reliable run (�ini,Ack(m),000)−→∗

std (�fin,Ack(m),000).
4. M(m) has a reliable run (�evalF,1,000,m,000)−→∗

std (�backF,1,000,m,000).
5. M has a reliable run (�ini,000)−→∗

std (�fin,000) that is Ack(m)-bounded.
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MevalF

MbackF
Mon_budget

�ini

�fin

m

0

0

0

0
...

...

01

n

a0

a1

am

B

c1

c2

ck

�evalF

�backF

ΔevalF

ΔbackF

no_op

no_op

Fig. 4. Constructing M(m) from Mb, MevalF and MbackF

Proof (Sketch).
— For “1 ⇒ 2”, and because coverability implies reachability by (∗), we may assume
w.l.o.g. that M(m) has a run (�evalF,1,000,m,000) −→∗

lossy (�backF,1,000,m,000). This run must

go through Mon_budget and be in three parts of the following form:

(�evalF,1,000,m,000)
ΔevalF−−−→

∗
lossy (�evalF,aaa,n : x,000) (starts in MevalF)

−→lossy (�ini, . . . ,B,000)
Δb−→
∗
lossy (�fin, . . . ,B

′,ccc) (goes through Mon_budget)

−→lossy (�backF,aaa
′,x′, . . .)

ΔbackF−−−→
∗
lossy (�backF,1,000,m,000). (ends in MbackF)

The first part yields F(1,000;m) ≥ F(aaa;x) (by Lemma 3.2.c), the third part F(aaa′;x′) ≥
F(1,000;m) (by Lemma 3.3.c), and the middle part B≥ B′+ |ccc| (by Coro. 4.5.1). Lossi-
ness further implies x ≥ B, B′ ≥ x′ and aaa ≥ aaa′. Now, the only way to reconcile
F(aaa;x) ≤ F(1,000;m) = Ack(m) ≤ F(aaa′;x′), aaa′ ≤ aaa, x′ ≤ x, and the monotonicity of F
(Fact 3.1) is by concluding x = B = B′ = x′ = Ack(m) and ccc = 000. Then the middle part
of the run witnesses Mon_budget � (�ini,Ack(m),000)−→∗

lossy (�fin,Ack(m),000).
— “2 ⇒ 5” is Coro. 4.5.2.
— “5 ⇒ 3” is given by Lemma 4.3.
— “3 ⇒ 4” is obtained by stringing together reliable runs of the components, relying
on Lemmas 3.2.a and 3.3.a for the reliable runs of MevalF and MbackF .
— Finally “3 ⇒ 2” and “4 ⇒ 1” are immediate from (†). 


With Theorem 5.1, we have a proof of the Hardness Theorem for reachability and cov-
erability in lossy counter machines: Recall that, for a Minsky machine M, the existence
of a run between two given configurations is undecidable, and the existence of a run
bounded by Ack(m) is decidable but not primitive-recursive when m is part of the input.
Therefore, Theorem 5.1, and in particular the equivalence between its points 1 and 5,
states that our construction reduces a nonprimitive-recursive problem to the reachability
problem for lossy counter machines.
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6 Handling Reset Petri Nets

Reset nets [2,5] are Petri nets extended with special reset arcs that empty a place when
a transition is fired. They can equally be seen as special counter machines, called “reset
machines”, where actions are restricted to decrements, increments, and resets. This is
the view we adopt in this paper. Note that zero-tests are not allowed in reset machines.

It is known that termination and coverability are decidable for reset machines while
other properties like reachability of a given configuration, finiteness of the reachability
set, or recurrent reachability, are undecidable [8,9].

Our purpose is to prove the Ackermann-hardness of termination and coverability for
reset machines. We start with coverability and refer to section 7 for termination.

6.1 R(M): Replacing Zero-Tests with Resets

For a counter machine M, we let R(M) be the counter machine obtained by replacing
every zero-test instruction c=0? with a corresponding reset c:=0. Note that R(M) is a
reset machine when M is a Minsky machine.

Clearly, the behavior of M and R(M) are related in the following way:

Lemma 6.1.
1. M � σ−→std σ′ implies R(M) � σ−→std σ′.

2. R(M) � σ−→std σ′ implies M � σ−→lossy σ′.

In other words, the reliable behavior of R(M) contains the reliable behavior of M and is
contained in the lossy behavior of M.

We now consider the counter machine M(m) defined in Section 5 and build R(M(m)).

Theorem 6.2. The following are equivalent:
1. R(M(m)) has a reliable run (�evalF,am : 1,000,n : m,000)−→∗

std (�backF,1,000,m,000).
2. R(M(m)) has a reliable run (�evalF,1,000,m,000)−→∗

std θ for some θ≥ (�backF,1,000,m,000).
3. M has a reliable run (�ini,000)−→∗

std (�fin,000) that is Ack(m)-bounded.

Proof. 1 ⇒ 3: The reliable run in R(M(m)) gives a lossy run in M(m) (Lemma 6.1.2),
and we conclude using “1⇒5” in Theorem 5.1.
3⇒ 2: We obtain a reliable run in M(m) (“5⇒4” in Theorem 5.1) which gives a reliable
run in R(M(m)) (Lemma 6.1.1) which in particular witnesses coverability.
2⇒ 1: The covering run in R(M(m)) gives a lossy covering run in M(m) (Lemma 6.1.2),
hence also a lossy run in M(m) that reaches exactly (�backF,1,000,m,000) (e.g., by losing
whatever is required at the last step). From there we obtain a reliable run in M(m)
(“1⇒4” in Theorem 5.1) and then a reliable run in R(M(m)) (Lemma 6.1.1). 


We have thus reduced an Ackermann-hard problem (point 3 above) to a coverability
question (point 2 above).

This almost proves the Hardness Theorem for coverability in Reset nets, except for
one small ingredient: R(M(m)) is not a reset machine properly because M(m) is an
extended counter machine, not a Minsky machine. I.e., we proved hardness for “ex-
tended” reset machines. Before tackling this issue, we want to point out that something
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as easy as the proof of Theorem 6.2 will prove Ackermann-hardness of reset machines
by reusing the hardness of lossy counter machines.

In order to conclude the proof of the Hardness Theorem for Reset nets, we only need
to provide versions of MevalF and MbackF in the form of Minsky machines (M and Mb

already are Minsky machines) and plug these in Figure 4 and Theorem 5.1. This is an
easy and unsurprising exercise that we only tackle in the full version of this paper.

7 Hardness for Termination

We can prove hardness for termination by a minor adaptation of the proof for coverabil-
ity. This adaptation, sketched in Fig. 5, is similar to the one used in [18]. It applies to
both lossy counter machines and reset machines.

MevalF

MbackF

Mb

add “T>0?T--” to
each simulation
of a step of M

�ini

�fin

0

m

0

0

0

0
...

...

01

n

a0

a1

am

B

T

c1

c2

ck

�evalF

�backF

�ω
n>0?
n-- am>0?

am--

m times︷ ︸︸ ︷
ΔevalF

ΔbackF

T:=n

no_op

Fig. 5. Hardness for termination: A new version of M(m)

Basically, Mb now uses two copies of the initial budget. One copy in B works as
before: its purpose is to ensure that losses will be detected by a budget imbalance as in
Lemma 4.4. The other copy, in a new counter T, is a time limit that is initialized with
n and is decremented with every simulated step of M: its purpose is to ensure that the

new Mb always terminates. Since MevalF and MbackF cannot run forever (because
D−→ and

D−→ −1 terminate, see Section 3), we now have a new M(m) that always terminate when
started in �evalF and that satisfies the following variant of Theorems 5.1 and 6.2:

Theorem 7.1. The following are equivalent:
1. M(m) has a lossy run (�evalF,am : 1,000,n : m,000)−→∗

lossy θ≥ (�backF,1,000,m,000).
2. R(M(m)) has a reliable run (�evalF,1,000,n : m,000)−→∗

lossy θ≥ (�backF,1,000,m,000).
3. M has a reliable run (�ini,000)−→∗

std (�fin,000) of length at most Ack(m).

Finally, we add a series of m + 1 transitions that leave from �backF, and check that

σgoal
def= (�backF,1,000,m,000) is covered, i.e., that am contains at least 1 and n at least m.
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If this succeeds, one reaches a new location �ω, the only place where infinite looping is
allowed unconditionally. This yields a machine M(m) that has an infinite lossy run if,
and only if, it can reach a configuration that covers σgoal, i.e., if, and only if, M has a
reliable run of length at most Ack(m), which is an Ackermann-hard problem.

8 Concluding Remarks

We proved Ackermann-hardness for lossy counter machines and, with very minor adap-
tations to the proof, for Reset Petri nets. These results are important in the field of al-
gorithmic verification. Indeed, they have been abundantly cited in recent years even
though they were only claimed in the introduction of [18]. The proof we present has
several simplifications over the one that was given in [18] for channel systems instead
of counter machines. We hope that these improvements will facilitate the wider dissem-
ination of these results.

Acknowledgements. We thank Pierre Chambart and Sylvain Schmitz who greatly
helped by proof-reading this paper at various stages.
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Abstract. We study the problem of generating monomials of a poly-
nomial in the context of enumeration complexity. We present two new
algorithms for restricted classes of polynomials, which have a good delay
between two generated monomials and the same global running time as
the classical ones. Moreover they are simple to describe, use small eval-
uation points and one of them is parallelizable. We introduce TotalPP,
IncPP and DelayPP, which are probabilistic counterparts of the most
common classes for enumeration problems, hoping that randomization
will be a tool as strong for enumeration as it is for decision. Our inter-
polation algorithms prove that a few interesting problems are in these
classes like the enumeration of the spanning hypertrees of a 3-uniform
hypergraph. Finally we give a method to interpolate degree 2 polynomi-
als with an acceptable (incremental) delay. We also prove that finding a
specified monomial in a degree 2 polynomial is hard unless RP = NP. It
suggests that there is no algorithm with a delay as good (polynomial) as
the one we achieve for multilinear polynomials.

1 Introduction

Enumeration, the task of generating all solutions of a given problem, is an inter-
esting generalization of decision and counting. Since a problem typically has an
exponential number of solutions, the way we study enumeration complexity is
quite different from decision. In particular, the delay between two solutions and
the time taken by an algorithm relative to the number of solutions seem to be
the most considered complexity measures. In this paper, we revisit the famous
problem of polynomial interpolation, i.e. finding the monomials of a polynomial
from its values, with these measures in mind.

It has long been known that a finite number of evaluation points is enough
to interpolate a polynomial and efficient procedures (both deterministic and
probabilistic) have been studied by several authors [1,2,3]. The complexity de-
pends mostly on the number of monomials of the polynomial and on an a priori
bound on this number which may be exponential in the number of variables.
The deterministic methods rely on prime numbers as evaluation points, with the
drawback that they are very large. The probabilistic methods crucially use the
Schwarz-Zippel lemma, which is also a tool in this article, and efficient solving
of particular linear systems.
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As a consequence of a result about random efficient identity testing [4], Kli-
vans and Spielman give an interpolation algorithm, which happens to have an
incremental delay. In this vein, the present paper studies the problem of gener-
ating the monomials of a polynomial with the best possible delay. In particular,
we consider natural classes of polynomials such as multilinear polynomials, for
which we prove that interpolation can be done efficiently. Similar restrictions
have been studied in works about identity testing for a quantum model [5] or
for depth 3 circuits which thus define almost linear polynomials [6]. Moreover, a
lot of interesting polynomials are multilinear like the Determinant, the Pfaffian,
the Permanent, the elementary symmetric polynomials or anything defined by a
syntactically multilinear arithmetic circuit.

In Sec. 4 we present an algorithm which works for polynomials such that
no two of their monomials use the same set of variables. It is structured as in
[4] but is simpler and has better delay, though polynomially related. In Sec. 5
we propose a second algorithm for multilinear polynomials. It has a polynomial
delay in the number of variables, which makes it exponentially better than the
previous one and is also easily parallelizable. In addition, both algorithms enjoy
a global complexity as good as the algorithms of the literature, are deterministic
for monotone polynomials, and use only small evaluation points making them
suitable to work over finite fields.

We describe in Sec. 6 three complexity classes for enumeration, namely TotalP,
IncP, DelayP which are now commonly used [7,8,9] to formalize what is an effi-
ciently enumerable problem. We introduce probabilistic variants of these classes,
which happen to characterize the enumeration complexity of the different inter-
polation algorithms. Their use on polynomials computable in polynomial time en-
able us to prove that well-known problems belong to these classes. Those problems
already have better enumeration algorithms except the last, enumeration of the
spanning hypertrees of a 3-uniform hypergraph, for which our method gives the
first efficient enumeration algorithm.

In the last section, we explain how to combine the two presented algorithms
to interpolate degree 2 polynomials with incremental delay. We then encode a
restricted version of the Hamiltonian path problem in a polynomial given by the
Matrix-Tree theorem (see [10]), to prove that the problem of finding a mono-
mial in a degree 2 polynomial is hard. Thus, a polynomial delay interpolation
algorithm for degree 2 polynomials similar to the one for degree 1 would solve
the latter problem and it implies RP = NP. Finally, we compare our two algo-
rithms with several classical ones and show that they are good with regard to
parameters like number of calls to the black box or size of the evaluation points.

2 Enumeration Problems

In this section, we recall basic definitions about enumeration problems and com-
plexity measures and we introduce the central problem of this article.

The computation model is a RAM machine as defined in [9] which has, in
addition to the classical definition, an instruction Write(A) which outputs the
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content of the register A. The result of a computation of a RAM machine is
the sequence of integers which were in A when the instructions Write(A) were
executed. For simplicity we consider that these integers encode words, and that
the input of the machine is also a word represented by suitable integers in the
input registers. Let M be such a machine and x a word, we write M(x) the
result of the computation of M on x. The order in which the outputs are given
does not matter, therefore M(x) will denote the set of outputs as well as the
sequence. We choose a RAM machine instead of a Turing machine since it may
be useful to deal with an exponential amount of memory in polynomial time, see
for instance the enumeration of the maximal independent sets of a graph [7].

Definition 1 (Enumeration Problem). Let A be a polynomially balanced bi-
nary predicate, i.e. A(x, y) ⇒ |y| ≤ Q(|x|), for a polynomial Q. We write A(x)
for the set of y such that A(x, y). We say that a RAM machine M solves the
enumeration problem associated to A, Enum·A for short, if M(x) = A(x) and
there is no repetition of solutions in the computation.

Let T (x, i) be the time taken by a machine M to return i outputs from the
instance x. Like for decision problems, we are interested by the total time taken
by M . We are also interested by the delay between two solutions, that is to say
T (x, i + 1) − T (x, i). M has an incremental delay when it is polynomial in |x|
and i, and M has a polynomial delay when it is polynomial in |x| only.

A probabilistic RAM machine has a special instruction rand which writes in
a specific register the integer 0 or 1 with equal probability. All outcomes of the
instruction rand during a run of a RAM machine are independent.

Definition 2 (Probabilistic enumeration). We say that the probabilistic
RAM machine M solves Enum·A with probability p if P [A(x) = M(x)] > p
and there is no repetition of solutions in the computation.

We adapt the model to the case of a computation with an oracle, by a special
instruction which calls the oracle on a word contained in a specific register and
then writes the answer in another register in unit time.

In this article, we interpret the problem of interpolating a polynomial given by
a black box as an enumeration problem. It means that we generate the monomials
of a polynomial given by the number of its variables and an oracle which allows
to evaluate it on any point in unit time. The general problem is denoted by
Enum·Poly but we solve it only for restricted classes of polynomials.

3 Finding One Monomial

In this section we introduce all the basic tools we need to build interpolation
algorithms. One consider polynomials with n variables and rational coefficients.
A sequence of n positive integers e = (e1, . . . , en) characterizes the monomial
Xe = Xe1

1 X
e2
2 . . . Xen

n . We call t the number of monomials of a polynomial P
written P (X) =

∑
1≤j≤t

λjX
ej .
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The degree of a monomial is the maximum of the degrees of its variables and
the total degree is the sum of the degrees of its variables. Let d (respectively D)
denote the degree (respectively the total degree) of the polynomial we consider,
that is to say the maximum of its monomial’s degree (respectively total degree).
In Sec. 5 we assume that the polynomial is multilinear, i.e. d = 1 and D is thus
bounded by n.

We assume that the maximum of the bitsize of the coefficients appearing in
a polynomial is O(n) to simplify the statement of some results, in the examples
of Sec. 6 it is even O(1). When analyzing the delay of an algorithm solving
Enum·Poly we are interested in both the number of calls to the black box and
the time spent between two generated monomials. We are also interested in
the size of the integers used in the calls to the oracle, since in real cases the
complexity of the evaluation depends on it.

The support of a monomial is the set of indices of variables which appears in
the monomial. Let L be a set of indices of variables, for instance a support, then

fL is the homomorphism of Q[X1, . . . , Xn] defined by
{
Xi → Xi if i ∈ L,
Xi → 0 otherwise.

From now on, we denote fL(P ) by PL. It is the polynomial obtained by
substituting 0 to every variable of index not in L, that is to say the sum of
monomials of P which have their support in L. We call XL the multilinear term
of support L, which is the product of all Xi with i in L.

Lemma 1. Let P be a polynomial without constant term and whose monomials
have distinct supports and L a minimal set (for inclusion) of variables such that
PL is not identically zero. Then PL is a single monomial of support L.

The first problem we want to solve is to decide if a polynomial given by a black
box is the zero polynomial, a problem called Polynomial Identity Testing. We are
especially interested in the corresponding search problem, i.e. giving explicitly
one term and its coefficient. Indeed, we show in Sec. 4 how to turn any algorithm
solving this problem into an incremental interpolation algorithm.

It is easy to see [2] that a polynomial with t monomials has to be evaluated
in t points to be sure that it is zero. If we do not have any a priori bound on t,
then we must evaluate the polynomial on at least (d+1)n n-tuples of integers to
determine it. As we are not satisfied with this exponential complexity, we intro-
duce probabilistic algorithms, which nonetheless have a good and manageable
bound on the error.

Lemma 2 (Schwarz-Zippel [11]). Let P be a non zero polynomial with n
variables of total degree D, if x1, . . . , xn are randomly chosen in a set of integers
S of size D

ε then the probability that P (x1, . . . , xn) = 0 is bounded by ε.

A classical probabilistic algorithm to decide if a polynomial P is identically zero
can be derived from this lemma. It picks x1, . . . , xn randomly in [Dε ]1 and calls
the oracle to compute P (x1, . . . , xn). If the result is zero, the algorithm decides

1 We write [x] for the set of integers between 1 and �x.
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that the polynomial is zero otherwise it decides that it is non zero. Remark
that the algorithm never gives a false answer when the polynomial is zero. The
probability of error when the polynomial is non zero is bounded by ε thanks to
Lemma 2: Polynomial Identity Testing is thus in the class RP.

This procedure makes exactly one call to the black box on points of size log(Dε ).
The error rate may then be made exponentially smaller by increasing the size of
the points. There is an other way to achieve the same reduction of error.Repeat the
previous algorithm k times for ε = 1

2 , that is to say the points are randomly chosen
in [2D]. If all runs return zero, then the algorithm decides that the polynomial
is zero else it decides it is non zero. The probability of error of this algorithm is
bounded by 2−k, thus to achieve an error bound of ε, we have to set k = log(1

ε ).
We denote by not zero(P, ε) the latter procedure, which is given as inputs P , a
black box polynomial, and ε, a bound on the probability of error. It uses slightly
more random bits but it only involves numbers less than 2D.

Up to Sec. 5, all polynomials have monomials with distinct supports and no
constant term. This class of polynomials contains the multilinear polynomials
but is much larger. Moreover being without constant term is not restrictive since
we can always replace a polynomial by the same polynomial minus its constant
term that we compute beforehand by a single oracle call to P (0, . . . , 0).

We now give an algorithm which finds, in randomized polynomial time, a
monomial of a polynomial P thanks to the previous lemmas. In this algorithm,
L is a set of indices of variables and i an integer used to denote the index of the
current variable.

Algorithm 1. Find monomial
Data: A polynomial P with n variables and the error bound ε
Result: A monomial of P
L ←− {1, . . . , n}
if not zero(P , ε

n+1
) then

for i = 1 to n do
if not zero(PL\{i}, ε

n+1
) then

L ←− L \ {i}
return The monomial of support L

else
return “Zero”

Once a set L is found such that PL is a monomial λXe, we must compute
λ and e. The evaluation of PL on (1, . . . , 1) returns λ. For each i ∈ L, the
evaluation of PL on Xi = 2 and for j �= i, Xj = 1 returns λ2ei . From these n
calls to the black box, we compute e in linear time and thus output λXe.

We analyze this algorithm, assuming first that the procedure not zero never
makes a mistake. We also assume that P is not zero, which means that the
algorithm has not answered “Zero”. Therefore, at the end of the algorithm, PL is
not zero because an element is removed from L only if this condition is respected.
Since removing any element from L would make PL zero by construction, the
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set L is minimal for the property of PL being non zero. Then by Lemma 1 we
know that PL is a monomial of P , which allows us to output it as previously
explained.

Errors only appear in the procedure not zero with probability ε
n+1 . Since we

use this procedure n+ 1 times we can bound the total probability of error by ε.
The total complexity of this algorithm is O(n log(nε )) since each of the n calls
to the procedure not zero makes O(log(nε )) calls to the oracle in time O(1). We
summarize the properties of this algorithm in the next proposition.

Proposition 1. Given a polynomial P as a black box, whose monomials have
distinct supports, Algorithm 1 finds, with probability 1− ε, a monomial of P by
making O(n log(nε )) calls to the black box on entries of size log(2D).

4 An Incremental Algorithm for Polynomials with
Distinct Supports

We build an algorithm which enumerates the monomials of a polynomial incre-
mentally by using the procedure find monomial defined in Proposition 1. Recall
that incrementally means that the delay between two consecutive monomials is
bounded by a polynomial in the number of already generated monomials.

We use a procedure subtract(P , Q), which acts as a black box for the poly-
nomial P − Q where P is a black box and Q is an explicit set of monomials.
Let D be the total degree of Q, C a bound on the size of its coefficients and i
the number of its monomials. One evaluates the polynomial subtract(P , Q) on
points of size m as follows:

1. compute the value of each monomial of Q in time O(Dmax(C,m))
2. add the values of the i monomials in time O(iDmax(C,m))
3. call the black box to compute P on the same points and return this value

minus the one we have computed for Q

Algorithm 2. Incremental computation of the monomials of P
Data: A polynomial P with n variables and the error bound ε
Result: The set of monomials of P
Q ←− 0
while not zero(subtract(P ,Q), ε

2n+1 ) do
M ←− find monomial(subtract(P ,Q), ε

2n+1 )
Write(M)
Q ←− Q + M

Theorem 1. Let P be a polynomial whose monomials have distinct supports
with n variables, t monomials and a total degree D. Algorithm 2 computes the
set of monomials of P with probability 1 − ε. The delay between the ith and
i + 1th outputted monomials is bounded by O(iDn2(n + log(1

ε ))) in time and
O(n(n+ log(1

ε ))) calls to the oracle. The algorithm performs O(tn(n+ log(1
ε )))

calls to the oracle on points of size log(2D).
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5 A Polynomial Delay Algorithm for Multilinear
Polynomials

In this section we introduce an algorithm which enumerates the monomials of
a multilinear polynomial with a polynomial delay. This algorithm has the inter-
esting property of being easily parallelizable, which is obviously not the case of
the incremental one.

Let P be a multilinear polynomial with n variables and a total degree D. Let
L1 and L2 be two disjoint sets of indices of variables and l the cardinal of L2. We
can write PL1∪L2 = XL2P1(X) + P2(X), where XL2 does not divide P2(X).
We want to decide if there is a monomial of P , whose support contains L2 and
is contained in L1 ∪ L2. It is equivalent to decide wether or not P1(X) is the
zero polynomial. To this purpose, we define a univariate polynomial H(Y ) from
PL1∪L2 :

1. substitute a randomly chosen value xi in [2D] to Xi for all i ∈ L1
2. substitute the variable Y to each Xi with i ∈ L2

The polynomial H(Y ) can be written Y lP1(x) + P2(x, Y ). If P1 is a non zero
polynomial then P1(x) is a non zero constant with probability at least 1

2 because
of Lemma 2. Moreover P2(x, Y ) is a polynomial of degree strictly less than l.
Hence, to decide if the polynomial P1 is not zero, we have to decide if H(Y ) is
of degree l.

To this aim we do the interpolation of H(Y ): for this we need to make l oracle
calls on values from 1 to l. The time needed to do the interpolation thanks to
these values, with s a bound on the size of H(i) for 1 ≤ i ≤ l, is O(l2 log(s)).
We improve the probability of error of the described procedure from 1

2 to ε by
repeating it log(1

ε ) times and name it not zero improved(L1, L2, P, ε).
We now describe a binary tree which contains informations about the mono-

mials of P . The set of node of this tree is the pairs of list (L1, L2) such that
there exists a monomial of support L in P with L2 ⊆ L ⊆ L1 ∪ L2. Consider
a node labeled by (L1, L2), we note i the smallest element of L1, it has for left
child (L1 \ {i}, L2) and for right child (L1 \ {i}, L2 ∪ {i}) if they exist. The root
of this tree is ([n], ∅) and the leaves are of the form (∅, L2). There is a bijection
between the leaves of this tree and the monomials of P : a leaf (∅, L2) represents
the monomial of support L2.

To enumerate the monomials of P , Algorithm 3 does a depth first search
in this tree using not zero improved and when it visits a leaf, it outputs the
corresponding monomial thanks to the following procedure coefficient(P , L). We
have L of cardinality l, the support of a term and we want to find its coefficient.
Consider H(Y ) built from L1 = ∅ and L2 = L, the coefficient of Y l in H(Y ) is
the coefficient of the monomial of support L. We interpolate H(Y ) with l calls
to the oracle and return this coefficient.

Theorem 2. Let P be a multilinear polynomial with n variables, t monomials
and a total degree D. Algorithm 3 computes the set of monomials of P with
probability 1 − ε. The delay between the ith and i + 1th outputted monomials is
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Algorithm 3. A depth first search of the monomials of P , recursively
written

Data: A multilinear polynomial P with n variables and the error bound ε
Result: All monomials of P
Monomial(L1 , L2, i) =
if i = n + 1 then

Write(coefficient(P, L2))
else

if not zero improved(L1 \ {i}, L2, P, ε
2nn

) then
Monomial(L1 \ {i}, L2, i + 1)

if not zero improved(L1 \ {i}, L2 ∪ {i}, P, ε
2nn

) then
Monomial(L1 \ {i}, L2 ∪ {i}, i + 1)

in Monomial([n], ∅, 1)

bounded in time by O(D2n2 log(n)(n+log(1
ε ))) and by O(nD(n+log(1

ε ))) oracle
calls. The whole algorithm performs O(tnD(n + log(1

ε ))) calls to the oracle on
points of size log(2D).

There is a possible trade-off in the way not zero improved and coefficient are
implemented: if one knows a bound on the size of the coefficients of the polyno-
mial and uses exponentially bigger evaluations points then one only needs one
oracle call. The number of calls in the algorithm is then less than tn which is
close to the optimal 2t.

Remark that when a polynomial is monotone (coefficients all positive or all
negative) and is evaluated on positive points, the result is zero if and only if
it is the zero polynomial. Algorithms 2 and 3 may then be modified to work
deterministically for monotone polynomials with an even better complexity.

Moreover both algorithms can be extended to work over finite fields. Since
they only use evaluation points less than 2D, polynomials over any field of size
more than 2D can be interpolated with very few modifications, which is better
than most classical algorithms.

6 Complexity Classes for Enumeration

In this part the results about interpolation in the black box formalism are trans-
posed into more classical complexity results. We are interested in enumeration
problems defined by predicatesA(x, y) such that, for each x, there is a polynomial
Px whose monomials are in bijection with A(x). If Px is efficiently computable,
an interpolation algorithm gives an effective way of enumerating its monomials
and thus to solve Enum·A.

Example 1. We associate to each graph G the determinant of its adjacency ma-
trix. The monomials of this multilinear polynomial are in bijection with the
cycle covers of G. Hence the problem of enumerating the monomials of det(M)
is equivalent to enumerating the cycle covers of G.
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The specialization of different interpolation algorithms to efficiently com-
putable polynomials naturally correspond to three “classical” complexity classes
for enumeration and their probabilistic counterparts. We present several prob-
lems related to polynomials, like in Example 1, to illustrate how easily the inter-
polation methods described in this article produce enumeration algorithms for
combinatorial problems. Although the first two examples already had efficient
enumeration algorithms, the last did not, which shows that this technique can
bring new results in enumeration complexity.

In all the following definitions, we assume that a predicate which defines
an enumeration problem is decidable in polynomial time, that is to say the
corresponding decision problem is in P.

Definition 3. A problem Enum·A is decidable in polynomial total time TotalP
(resp. probabilistic polynomial total time TotalPP) if there is a polynomial
Q(x, y) and a machine M which solves Enum·A (resp. with probability greater
than 2

3) and satisfies for all x, T (x, |M(x)|) < Q(|x|, |M(x)|).

The class TotalPP is very similar to the class BPP for decision problems. By
repeating a polynomial number of times an algorithm working in total polyno-
mial time and returning the set of solutions generated in the majority of runs,
one decreases exponentially the probability of error. The choice of 2

3 is hence
arbitrary, everything greater than 1

2 would do. This property holds for the after-
mentioned probabilistic classes, and unlike TotalPP, the predicate which defines
the enumeration problem has to be decidable in polynomial time.

Early termination versions of Zippel’s algorithm [3] solve Enum·Poly in a
time polynomial in the number of monomials. If we now use this algorithm
on the Determinant which is computable in polynomial time, we enumerate its
monomials in probabilistic polynomial total time. Thanks to Example 1, the
enumeration of the cycle covers of a graph is in TotalPP.

Definition 4. A problem Enum·A is decidable in incremental polynomial time
IncP (resp. probabilistic incremental polynomial time IncPP) if there is a poly-
nomial Q(x, y) and a machine M which solves Enum·A (resp. with probability
greater than 2

3 ) and satisfies for all x, T (x, i+ 1)− T (x, i) ≤ Q(|x|, i).

Since Zippel’s algorithm finds all monomials in its last step, even when the
polynomial is multilinear, it seems hard to turn it into an incremental algorithm.
On the other hand Algorithm 2 does the interpolation with incremental delay.

Example 2. To each graph we associate a polynomial PerfMatch, whose mono-
mials represent the perfect matchings of this graph. For graphs with a “Pfaffian”
orientation, such as the planar graphs, this polynomial is related to a Pfaffian
and is then efficiently computable. Moreover all the coefficients of this graph
are positive, therefore we can use Algorithm 2 to interpolate it deterministi-
cally in incremental delay. We have then proved that the enumeration of perfect
matching in planar graphs is in IncP.
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Definition 5. A problem Enum·A is decidable in polynomial delay DelayP,
(resp. probabilistic polynomial delay DelayPP) if there is a polynomial Q(x, y)
and a machine M which solves Enum·A (resp. with probability greater than 2

3)
and satisfies for all x, T (x, i+ 1)− T (x, i) ≤ Q(|x|).

Example 3 (Spanning Hypertrees). The notion of a spanning tree of a graph has
several interesting generalizations to hypergraphs. Nevertheless, deciding if there
is a spanning hypertree is polynomially computable only for the notion of Berge
acyclicity and 3-uniform hypergraphs [12], thanks to an adaptation of the Lovász
matching algorithm in linear polymatroids [13].

A polynomial Z is defined for each 3-uniform hypergraph [14] with coefficients
−1 or 1, whose monomials are in bijection with the spanning hypertrees of the
hypergraph. A new Matrix-Tree theorem [14] shows that Z is the Pfaffian of a
matrix, whose coefficients are linear polynomials depending on the hypergraph.
Thus Z is efficiently computable by first evaluating a few linear polynomials and
then a Pfaffian. This has been used to give a simple RP algorithm [15] to decide
the existence of a spanning hypertree in a 3-uniform hypergraph.

If we use Algorithm 3 we can enumerate the monomials of Z with probabilistic
polynomial delay. The delay is good in practice, since the total degree of the
monomials is small and the size of the coefficients is 1. As a conclusion, the
problem of enumerating the spanning hypertrees of a 3-uniform hypergraph is
in DelayPP.

7 Degree 2 Polynomials

7.1 An Incremental Algorithm for Degree 2 Polynomials

We now give an incremental algorithm for the case of polynomials of degree
d = 2. We describe, in the following, a procedure which returns a monomial of
a polynomial P , since Algorithm 2 turns it into an incremental algorithm for
Enum·Poly.

First, let us remark that Algorithm 1 may be used on a polynomial P of arbi-
trary degree to find a minimal support L. Since it is minimal, all monomials of
PL have L as support and PL(X) = XLQ(X) with Q a multilinear polynomial.
Therefore if we find a monomial of Q(X) and multiply it by XL, we have a
monomial of P .

One may simulate an oracle call to Q(X) by a call to PL and a divi-
sion by the value of XL as long as no Xi is chosen to be 0. The procedure
not zero improved(L′, L \ L′, Q, ε) calls the black box only on strictly positive
values, since L = L′ ∪ (L \ L′), and decides if Q has a monomial whose sup-
port contains L′. One then grows L′ until it is maximal for the last property.
Since Q(X) is multilinear there is only one term with support L′ and one finds
its coefficient by the procedure coefficient(Q,L′). Therefore, we have described
an algorithm which can be used to implement the procedure find monomial for
degree 2 polynomials in Algorithm 2.



Enumeration of the Monomials of a Polynomial 639

7.2 Limit to the Polynomial Delay Approach

We study the problem of deciding if a term has coefficient zero in a polynomial.
When the polynomial is multilinear, the procedure not zero improved solves the
problem in polynomial time, but for degree 2 polynomials we prove it is impos-
sible unless RP = NP. Therefore there is no generalization of Algorithm 3 to
higher degree polynomials, although a polynomial delay algorithm may exist.

Proposition 2. Assume there is an algorithm which, given a polynomial of de-
gree 2 and a term, can decide in probabilistic polynomial time if the term has a
non zero coefficient in the polynomial then RP = NP.

Proof. Let G be a directed graphs on n vertices, the Laplace matrix L(G) is
defined by L(G)i,j = −Xi,j when (i, j) ∈ E(G), L(G)i,i =

∑
(i,j)∈E(G)

Xi,j and 0

otherwise. The Matrix-Tree theorem is the following equality where Ts is the set
of spanning trees of G whose all edges are oriented away from the vertex s and
L(G)s,t is the minor of L(G) where row s and column t have been deleted:

det(L(G)s,t)(−1)s+t =
∑
T∈Ts

∏
(i,j)∈T

Xi,j

We substitute toXi,j the product of variables YiZj in the polynomial det(L(G)s,t)
which makes it a polynomial in 2n variables still computable in polynomial time.
Every monomial represents a spanning tree whose maximum outdegree is the de-
gree of the polynomial. We assume that every vertex of G has indegree and out-
degree less or equal to 2 therefore det(L(G)s,t) is of degree 2.

Remark now that a spanning tree, all of whose vertices have outdegree and
indegree less or equal to 1 is an Hamiltonian path. Therefore G has an Hamilto-
nian path beginning by s and finishing by a vertex v if and only if det(L(G)s,t)
contains the monomial YsZv

∏
i
=s,v YiZj .

There is only a polynomial number of pairs (s, v), thus if we assume there is a
probabilistic polynomial time algorithm to test if a term has a non zero coefficient
in a degree 2 polynomial, we can use it to decide if G – of outdegree and indegree
at most 2 – has an Hamiltonian path. Since this problem is NP-complete [16],
we have RP = NP.

8 Conclusion

Let us compare our method to three classical interpolation algorithms, which
unlike our method can interpolate polynomials of any degree. Once restricted
to multilinear polynomials, Algorithm 3 is really efficient compared to the algo-
rithm of Klivans and Spielman (KS), which is the only known method with a
bound on the delay. In the next table, T is a bound on t, the number of monomi-
als, that Ben-Or Tiwari and Zippel algorithms need to do the interpolation. In
the row labeled Enumeration is written the kind of enumeration algorithm the
interpolation method gives when the polynomial is polynomially computable.
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Ben-Or Tiwari [1] Zippel [2] KS [4] Algorithm 3
Algorithm type Deterministic Probabilistic Probabilistic Probabilistic
Number of calls 2T tnD t(nD)6 tnD(n+ log( 1ε ))
Total time Quadratic in T Quadratic in t Quadratic in t Linear in t
Enumeration Exponential TotalPP IncPP DelayPP

Size of points T log(n) log(nT
2

ε ) log(nDε ) log(D)

Acknowledgements. Thanks to Hervé Fournier “l’astucieux”, Guillaume Malod,
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10. Aigner, M.: A course in enumeration. Springer, Heidelberg (2007)
11. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities.

Journal of the ACM 27(4), 717 (1980)
12. Duris, D.: Acyclicité des hypergraphes et liens avec la logique sur les structures

relationnelles finies. PhD thesis, Université Paris Diderot - Paris 7 (2009)
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Abstract. We improve the running time of the general algorithmic tech-
nique known as Baker’s approach (1994) on H-minor-free graphs from
O(nf(|H|)) to O(f(|H |)nO(1)). The numerous applications include, e.g. a
2-approximation for coloring and PTASes for various problems such as
dominating set and max-cut, where we obtain similar improvements.

On classes of odd-minor-free graphs, which have gained significant at-
tention in recent time, we obtain a similar acceleration for a variant of
the structural decomposition theorem proved by Demaine et al. (2010).
We use these algorithms to derive faster 2-approximations; furthermore,
we present the first PTASes and subexponential FPT-algorithms for in-
dependent set and vertex cover on these graph classes using a novel
dynamic programming technique.

We also introduce a technique to derive (nearly) subexponential pa-
rameterized algorithms on H-minor-free graphs. Our technique applies,
in particular, to problems such as Steiner tree, (directed) subgraph with
a property, (directed) longest path, and (connected/independent) domi-
nating set, on some or all proper minor-closed graph classes. We obtain
as a corollary that all problems with a minor-monotone subexponential
kernel and amenable to our technique can be solved in subexponential
FPT-time on H-minor free graphs. This results in a general methodol-
ogy for subexponential parameterized algorithms outside the framework
of bidimensionality.

Keywords: Subexponential Algorithms; Graph Minors; Odd Minors.

1 Introduction

One of the seminal results in algorithmic graph theory is Baker’s approach [1]
for designing polynomial-time approximation schemes (PTAS) for a wide range
of problems on planar graphs. Ever since its discovery, it has been applied and
generalized in various ways, see e.g. [2,3,4,5]. The essence of the idea is the
following: for any given t, one can partition a planar graph into t parts, so that
removing any one of the parts results in a graph of bounded treewidth. Now, to
obtain a PTAS, we observe that if t is appropriately chosen, there must exist a
part that contains at most an ε-fraction of an optimal solution; this can often
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be combined with the solution in the remainder of the graph to obtain a (1+ ε)-
approximation.

H-minor-free graphs, i.e. proper graph classes that are closed under building
minors, have gained significant attention in the past two decades, especially due
to Robertson and Seymour’s graph minor theory, one of the deepest and most far-
reaching theories in discrete mathematics in the past few decades. These classes
include, e.g. planar graphs, bounded-genus graphs, linklessly embeddable graphs
and apex graphs. Using the deep Robertson-Seymour (RS-) decomposition the-
orem [6], Grohe [3] generalized Baker’s technique to H-minor-free graphs and
Demaine et al. [5] showed the partitioning theorem mentioned above for all these
graph classes. However, both their methods result in algorithms with running
time O(nf(|H|)), for some computable function f ; since H is assumed to be fixed,
this is considered polynomial.

Improving Baker’s Decomposition. Weprovide the first algorithm forBaker’s
decomposition running in time O(g(|H |)nO(1)), for some computable function g.
This is a significant acceleration of the previous results, especially considering the
fact that the constants in graph minor theory, such as the functions f, g above,
are usually huge. This immediately implies similar improvements on all the con-
sequences of this algorithm, especially all the generic approximation algorithms
and schemes in [3,5] and Baker’s original problems [1]. In particular, we obtain
the first 2-approximation for Coloring H-minor-free graphs in the given time
bound and the first PTAS for Independent Set, Max-Cut, Min Color Sum,
Max P -Matching, and Dominating Set on these graph classes while avoiding
|H | in the exponent ofn in their running time. Ourmain idea is derived from Dawar
et al.’s approach [7] of finding a certain tree decomposition of H-minor-free graphs
that is more tractable than the RS-decomposition.

Parameterized Complexity. In the language of parameterized complexity, our
result above shows that partitioning H-minor-free graphs in the described way is
fixed-parameter tractable (FPT) when parameterized by |H |. In this framework,
for a given problem of size n and parameter k, we are interested in algorithms
with a running time of O(f(k)nO(1)), where f is some computable function
depending solely on k; we then say that the problem at hand is in FPT. The
theory also provides negative evidence that some problems are most likely not
FPT; we refer to the books of Downey and Fellows [8] and Flum and Grohe [9]
for more background on parameterized complexity.

Once a problem is shown to be FPT, the challenge is to provide algorithms
that have the smallest dependence on the parameter k, i.e. make the function
f in the running time as small as possible. It is especially desirable to obtain
subexponential functions and thus provide particularly fast algorithms. Whereas
this is often not possible in general graphs, a plethora of results exist that show
the existence of such algorithms on restricted graph classes, such as H-minor-free
graphs. Perhaps the most general technique to obtain subexponential parame-
terized algorithms on these graph classes is the theory of bidimensionality [10]
that captures almost all known results of this type on H-minor-free graphs.
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Still, this theory does not apply to a number of prominent problems, such as
Steiner Tree, Connected Dominating Set, and Directed k-Path.

One way to show fixed-parameter tractability of a problem is to show the
existence of a kernel for the problem, which is a polynomial-time algorithm that
transforms any instance into an equivalent instance whose size is bounded by
a function g solely dependent on k called the size of the kernel. Kernelization
can be seen as polynomial-time pre-processing with a quality guarantee and has
gained much theoretical importance in the recent years – besides its natural
practical importance. For an introduction to kernels we refer to the survey by
Guo and Niedermeier [11].

Guess and Conquer. In this work, we provide a new framework, that we call
guess and conquer to obtain (nearly) subexponential parameterized algorithms
on H-minor-free graphs for an abundant number of parameterized problems. We
obtain an algorithm with a running time O(2O(

√
k log n)nO(1)) = inf0<ε≤1O((1+

ε)k + nO(1/ε)) which we call nearly subexponential. Note that if k = O(log n),
our running time is fully polynomial in the input and if k = ω(log n), it is
subexponential FPT in k. Hence, except for a “small range” of possible parameter
values, we have a subexponential FPT algorithm. In fact, we show that the
problems we consider admit a minor-monotone subexponential kernel on H-
minor-free graphs if and only if they admit a subexponential FPT algorithm on
these graph classes. Note that in general graphs, even a linear kernel results only
in an exponential FPT-algorithm.

Our technique applies in particular to Connected Dominating Set and
Steiner Tree (at least) in bounded-genus graphs and Directed k-Path in
all H-minor-free graphs, none of which are known to admit subexponential FPT-
algorithms in H-minor-free graphs; for the latter two, such algorithms are not
even known for planar graphs.

At the time of preparation of this paper, we became aware that Dorn et al. [12]
recently and independently obtained similar nearly subexponential algorithms
for some problems, albeit only on apex-minor-free graphs – whereas our tech-
niques apply to general H-minor-free graphs. Also, they discuss it as a solution
method for a particular problem and not in the general setting in which we in-
troduce the technique. Furthermore, our technique for domination and covering
problems is completely new.

Odd-Minor-Free Graphs. The class of odd-minor-free graphs has attained ex-
tensive attention in the graph theory literature [13,14] and recently, in theoretical
computer science [15,16,17]. They are strictly more general than H-minor-free
graphs as they include, for example, all bipartite graphs and may contain a
quadratic number of edges. In addition to their role in graph minor theory and
structural graph theory, they bear important connections to the Max-Cut prob-
lem [13] and Hadwiger’s conjecture [15]. We refer to [16] for a more thorough
introduction to odd-minor-free graphs and their significance.

Demaine et al. [16] prove a decomposition theorem for odd-H-minor-free
graphs similar to the RS-decomposition of H-minor-free graphs and present an
O(nf(|H|)) algorithm to compute such a decomposition. From this, they derive a
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Baker-style decomposition of odd-minor-free graphs into two graphs of bounded
treewidth. We identify an intermediate decomposition implicit in [16] that is
computable in FPT-time and proves to be very useful algorithmically: on one
hand, we deduce the Baker-style decomposition into two parts and a number
of 2-approximation algorithms (most notably for Coloring) in FPT-time as a
corollary; on the other hand, we can answer a question that is posed by Demaine
et al. in [16], affirmatively: namely, whether the PTASes and subexponential
FPT-algorithms for Vertex Cover and Independent Set can be generalized
from H-minor-free graphs to odd-minor-free graphs. These are the first PTASes
and subexponential FPT-algorithms developed on odd-minor-free graphs.

2 Preliminaries

We denote graphs by letters G, H , and refer to their vertex/edge sets by V (G)
and E(G), respectively. Unless otherwise mentioned, our graphs have n vertices
and m edges. For a subset U ⊆ V (G), we write G[U ] to denote the subgraph of
G induced by U . We denote the standard parameterization of a problem Π by
k-Π, i.e. the problem Π parameterized by the solution size k, which is usually
the number of vertices or edges in the solution; this applies in particular to
k-Steiner Tree.

The Classes SUBEPTand SUBEPT+. Recall that the classes EPT and SUBEPT
are defined to be the bounded parameterized complexity classes 2O(k)-FPT, and
2oeff(k)-FPT. A problem is subexponential fixed-parameter tractable if it is in
SUBEPT. Observe that if a problem is in SUBEPT then there exists an algo-
rithm for the problem, so that for any fixed α > 0 the algorithm runs in time
O(2αknO(1)). A parameterized problem k-Π is said to be in SUBEPT+ if it can be
solved by an algorithm A such that for any fixed α > 0, the running time of A is
bounded by O(2αknO(1/α)). In this case, A is called a nearly subexponential time
algorithm. Observe that we require a single (uniform) algorithm to have this
property for the considered problem. Clearly, SUBEPT ⊆ SUBEPT+ ⊆ EPT.
Note that the non-uniform exponential time hypothesis (ETH) implies that
SUBEPT+ �= EPT.

Minors and Odd Minors. A model of H in G is a map that assigns to every
vertex v of H , a connected subtree Tv of G such that the images of the vertices
of H are all disjoint in G and there is an edge between them if there is an edge
between the corresponding vertices in H . A graph H is a minor of G if and
only if G contains a model of H . Recall that H-minor-free graphs have bounded
average degree (depending on |H |), i.e. they fulfill m = OH(n) [18]. We use the
notation OH to denote that the constants hidden in the big-O depend on |H |;
this is necessary since in graph minor theory, the dependence is often not known.

A graph H is an odd-minor of a graph G if H is a minor of G, and additionally
the vertices of the trees in the model of H in G can be 2-colored in such a way
that (i) the edges of each tree Tv are bichromatic; and (ii) every edge eG in G
that connects two trees Tu and Tv and corresponds to an edge eH = uv of H is
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monochromatic. A graph is odd-H-minor-free if it excludes H as an odd minor.
For example, bipartite graphs are odd-K3-minor-free.
Tree Decompositions. We denote a tree decomposition of a graph G by a pair
(T,B), where T is a tree and B = {Bu|u ∈ V (T )} is the family of the bags of the
tree decomposition. For a vertex v ∈ V (G), we let Tv be the connected subtree
of T whose bags contain v. The adhesion of a tree decomposition is defined as
max{|Bu ∩Bt| | {u, t} ∈ ET }. We denote the treewidth of a graph G by tw(G).

3 Partitioning H-Minor-Free Graphs

In [5], Demaine et al. show how to decompose H-minor free graphs into parts,
so that upon removal of any part, the problem at hand becomes tractable. In
this section, we show how this decomposition can be achieved in FPT-time with
|H | as parameter; furthermore, we introduce a refinement of this method. Due
to space restrictions, we only state our results. The proofs heavily draw from
the work of Dawar et al. [7], Grohe [3,19], and the original proof of Demaine et
al. [5]. We refer the interested reader to the full version of our work for further
details.

Theorem 1. For every graph H there is a constant cH such that for any integer
p ≥ 1 and for every H-minor-free graph G, the vertices (edges) of G can be
partitioned into p sets such that any p− 1 of the sets induce a graph of treewidth
at most cHp. Furthermore,

(i) for every H, there exists an algorithm that computes such a partition in time
OH(n5); and

(ii) there exists an explicit uniform algorithm that computes such a partition in
time OH(nO(1)).

The first algorithm mentioned above running in time OH(n5) uses the graph
minor theorem [20] and is hence non-uniform, meaning that for every H , an al-
gorithm is guaranteed to exist but is not known explicitly. The second algorithm
is slower but is uniform and is based on the decomposition theorem given by
Dawar et al. [7].

In some of our applications, we need a more specific version of Theorem 1; we
would like to obtain a partition of the edges while still being able to bound the
number of parts in which each vertex might appear. To this end, we shall bound
the number of distinct edge-labels incident to each vertex in an edge-partition of
the graph. A closer look at Demaine et al.’s [5] proof of Theorem 1 reveals that
this number is indeed bounded by OH(1); so, we are able to prove the following
version as well:

Theorem 2. For any fixed graph H there are constants cH and dH such that
for any integer p ≥ 1 and every H-minor-free graph G, the edges of G can be
partitioned into p parts such that any p−1 of the parts induce a graph of treewidth
at most cHp and every vertex appears in at most dH of the parts. Furthermore,
such a partition can be found in explicit uniform FPT-time, i.e. OH(nO(1)).
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3.1 Approximation Algorithms and PTAS

We improve all the generic approximation and PTAS results given by Demaine
et al. in [5] (specifically, Theorems 3.3–3.7) and also by Grohe in [3] by removing
the dependence on |H | from the exponent of n in the presented algorithms. We
refrain from re-stating all the generic results and highlight only some important
concrete corollaries below.

Corollary 3. There exists a 2-approximation algorithm for Coloring an H-
minor-free graph in time OH(nO(1)).

Corollary 4. There exists a PTAS for Independent Set, Vertex Cover,
Max-Cut, Dominating Set, Min Color Sum, and Max P -Matching in
H-minor-free graphs running in time OH,ε(nO(1)).

For all the problems mentioned above, our method results in the first algorithm
with this running time. The class of problems to which these techniques apply is
very large and includes all the problems originally considered by Baker [1] and
also most minor-bidimensional problems, whereas for the latter, other known
techniques also result in such PTASes [21,22].

4 (Nearly) Subexponential FPT-Algorithms

In this section, we introduce the technique of guess and conquer that for a wide
range of problems shows their membership in SUBEPT+.

4.1 The Technique of Guess and Conquer

We state our main technique for a broad class of parameterized problems. Given
a graph property π, which is simply a set of directed or undirected graphs, we
consider the following generic problem:

k-Subgraph with Property π: Given a graph G, does G contain a
subgraph with at most k vertices that has property π, i.e. is isomorphic
to some graph in π?

The problem is abbreviated as k-sp (π). If we insist on finding induced subgraphs
with property π, we use the notation k-isp (π) and if we want k to be the
number of edges in an edge-induced subgraph then the problem is denoted by
k-eisp (π). We allow that some vertices in the graphs in π have fixed labels, in
which case, the task becomes to find a subgraph of a (partially) labeled graph
G isomorphic to a graph in π, so that the labels match. Another variant is that
we are additionally given a set R ⊆ V (G) of roots (or terminals) in G and we
are seeking a subgraph with property π that contains all the roots. We use the
letters l and r to account for the labeled and rooted version of the problem,
respectively, and the letter d to emphasize that we are dealing with directed
graphs. Finally, we might be given a vertex- or edge-weighted graph and our
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goal is to find among all subgraphs of G with property π and at most k vertices
(or edges), the one of minimum or maximum weight. We denote this whole class
of problems by ({Min,Max})k-{d,r,l,e,i}sp(π).

For example, k-Steiner Tree can be seen as a Min k-rsp(π) problem,
where π is the set of all trees and R is the set of terminals that are to be
connected in G. Directed st-k-Path is an instance of k-dleisp (π) where π
contains only a directed path of length k, in which the first vertex is labeled
s and the last vertex is labeled t. Other interesting choices for π include being
chordal, bipartite, edge-less (Independent Set), of maximum degree r ≥ 1,
a clique, planar, or containing only/avoiding cycles of specified length [5]. We
obtain the following general result:

Theorem 5. Let π be a graph property such that on graphs of treewidth t one
can find a (maximum/minimum weight/rooted/labeled/induced) subgraph with
property π in time O(2O(t)nO(1)). For any (directed/partially labeled) H-minor-
free graph G, there exists an algorithm solving ({Min,Max})k-{d,r,l,e,i}sp(π)

and that for any α ≥ 1 and fixed δ > 0 runs in time O(2OH(
√

k log n)nO(1))
= O(2OH(k/α) + nO(α)) = inf0<ε≤1O((1 + ε)k + nOH(1/ε)) = o(nO(1)+δ

√
k). In

particular, the considered problem belongs to SUBEPT+.

Proof. Let p be some fixed integer; apply Theorem 1 to G to obtain a partition
V1, . . . , Vp of the vertex set of the graph, so that the graph induced by any p−1 of
the sets has treewidth at most cHp; such partition can be found in timeOH(nO(1)).
Now, consider an optimal subgraph S� fulfilling the requirements of the problem;
since S� is assumed to have at most k vertices, there exists an i� ∈ {1, . . . , p}, so
that Vi� contains at most �k/p� vertices of S�. Since we do not know the value of
i�, we simply guess it; there are at most p possibilities to do so and we try all of
them. Hence, for each i ∈ {1, . . . , p}, we repeat the following:

For a fixed i, we have to determine which vertices of Vi belong to S�; once
more, since we do not know these vertices, we simply guess them; there are at
most n k/p! possible subsets to try because we assumed that Vi contains at most
�k/p� vertices of S�. For each such subset T ⊆ Vi, we consider the subgraph
G′ = (G− Vi) ∪ T . The treewidth of this subgraph is at most cHp + �k/p�, and
hence, we can find an optimal solution in G′ in time O(2O(cHp+k/p)nO(1)) and
we are done. This expression is minimized for p =

⌊√
k log n/cH

⌋
. See the full

paper for further details. 


Using the result ofDorn et al. [23] that the following problems are in EPT on (some)
H-minor-free graphs when parameterized by treewidth, we immediately obtain:

Corollary 6. For any graph H, the problem Directed k-Path is in SUBEPT+

when restricted to H-minor-free graphs; the same is true for k-Steiner Tree

at least on bounded-genus graphs.1

1 In [23] it is claimed that Steiner Tree is in EPT on H-minor-free graphs when
parameterized by treewidth; however, I know by private communication that at this
time, a proof actually exists only up to bounded-genus graphs. The same is true for
Connected Dominating Set.
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The two problems mentioned above are prominent problems that were not known
to admit FPT-algorithms with running time better than O(2knO(1)) before, even
on planar graphs. Besides improving on the best known FPT-algorithms for
these problems, our result shows that it is very likely that they indeed admit
subexponential FPT-algorithms.

4.2 Guess and Conquer for Domination, Covering, and More

We introduced our technique for the class of k-{d,r,l,e,i}sp (π) problems, where
we are looking for a subgraph with a certain property. Whereas many problems
can be formulated as an instance of this generic problem class, some others like
k-Vertex Cover, k-Dominating Set, or k-Leaf Tree and variants can not.
We capture another class of problems below by using Theorem 2.

Theorem 7. Let Π be a problem that takes as input a graph G and outputs a
set S ⊆ V of vertices, and let k-Π be its parameterization by |S|. Suppose that

(i) on graphs of treewidth t, Π can be solved in time O(2O(t)nO(1)); and
(ii) if for an edge e ∈ E(G) it is known that some solution of S excludes both

endpoints of e then Π can be reduced to finding a solution in G − e; that
is, there exists a k′ ≤ k such that given a solution for (G − e, k′), one can
compute a solution for (G, k) in polynomial time.

Then for any graph G excluding a fixed minor H, there exists an algorithm A
solving k-Π on instance (G, k) such that for any α ≥ 1 and fixed δ > 0, algorithm
A runs in time O(2OH(

√
k log n)nO(1)) = O(2OH(k/α) +nO(α)) = inf0<ε≤1O((1+

ε)k + nOH(1/ε)) = o(nO(1)+δ
√

k). In particular, k-Π belongs to SUBEPT+.

The k-Vertex Cover problem satisfies property (ii) above because if for an
edge e, we know that both endpoints do not belong to the solution, then we can
reject, since e is not covered. For k-Dominating Set, such an edge is simply ir-
relevant, even for the connected version. That Connected k-Dominating Set

fulfills property (i) was shown by Dorn et al. [23] (see footnote on page 647).
Hence, we have

Corollary 8. (Connected, Independent) k-Dominating Set and (Con-

nected, Independent) k-Vertex Cover (at least) in bounded-genus graphs
belong to the class SUBEPT+.

Still, Theorems 5 and 7 do not capture all problems to which the basic idea of
our technique applies; for example, a modification of the proof of Theorem 7
shows that the technique also works for the undirected k-Leaf Tree or k-
Bounded Degree Deletion(d) problem.

4.3 Further Analysis and Relation to Kernels

The analysis in the proof of Theorem 5 reveals that if k = O(log n), then our
algorithm runs in polynomial time; on the other hand, if k = ω(log n), i.e. if
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k is known to be at least Ω(ι(n) log n) for any computable, non-decreasing and
unbounded function ι : N → N, then we have a SUBEPT algorithm with time
complexity 2OH(k/

√
ι(k)). But the condition k = ω(log n) is nothing else but

asking for a subexponential kernel ; hence, we obtain

Corollary 9. Let k-Π be a parameterized problem on H-minor-free graphs that
can be solved in time O(2OH(

√
k log n)nO(1)) and admits a minor-monotone subex-

ponential kernel. Then k-Π belongs to SUBEPT. In particular, if k-Π admits
a minor-monotone polynomial kernel then it can be solved in SUBEPT-time
O(2OH(

√
k log k)nO(1)).

Any parameterized problem that can be solved in time O(f(k)nO(1)) admits
a kernel of size f(k) [24]. It follows that all problems in SUBEPT also have a
subexponential kernel. Our corollary above shows the reverse direction of this
observation for the problems that admit our technique on H-minor-free graphs;
for these problems, we obtain that a subexponential FPT algorithm exists if and
only if a minor-monotone subexponential kernel can be constructed.

5 Algorithms on Odd-Minor-Free Graphs

In [16], Demaine et al. prove a structural decomposition theorem for odd-minor-
free graphs that is very similar to the RS-decomposition theorem for H-minor-
free graphs [6]. They also present an algorithm running in time nOH(1) to com-
pute such a decomposition. However, upon inspecting their proof, we obtain a
simpler intermediate result that turns out to be more useful for algorithmic pur-
poses when combined with known results on H-minor-free graphs; in particular,
it can be used to obtain FPT-versions of various algorithms when combined with
our results from Section 3. The precise phrasing of the decomposition needs a
lot of preparation which we are forced to omit due to space restrictions; but
basically, it is as follows: one can obtain a tree decomposition with constant ad-
hesion of a given odd-H-minor-free graph such that each bag contains either (i)
a bipartite graph with at most a constant number of additional vertices called
apices; or (ii) an H-minor-free graph appearing in the leaf of the tree decompo-
sition. Furthermore, each bag intersects the bipartite graph of its parent bag in
at most one vertex. See the full version of this work for more details. Analogous
to Theorem 1, we obtain

Theorem 10. For any fixed graph H there is a constant cH such that for every
odd-H-minor-free graph G, the vertices of G can be partitioned into two parts
such that each of the parts induces a graph of treewidth at most cH . Furthermore,
such a partition can be found in explicit uniform FPT-time, i.e. OH(nO(1)).

This is the best possible analog to the Baker-style decomposition of Theorem 1
for odd-minor-free graphs since these graph classes include all bipartite graphs;
and complete bipartite graphs can not be partitioned into more than two parts
of bounded treewidth. A direct corollary is the following:



650 S. Tazari

Corollary 11. There exists a 2-approximation algorithm for Coloring an odd-
H-minor-free graph in time OH(nO(1)).

Also, 2-approximations with the same FPT-running time for various other prob-
lems, such as many of the ones mentioned in Section 3.1, can be obtained. See [5]
and [16] for more details.

5.1 PTASes on Odd-Minor-Free Graphs

Grohe [3] showed that various problems admit a PTAS on H-minor-free graphs.
Most of these PTASes can not be generalized to odd-minor-free graphs as they
would imply corresponding PTASes on bipartite or even general graphs for APX-
hard problems. However, Demaine et al. ask in [16] whether the PTASes for
Vertex Cover and Independent Set can be generalized to odd-minor-free
graphs; this seems plausible since these two problems can be solved in poly-
nomial time on bipartite graphs. Indeed, we are able to answer this question
affirmatively. To this end, we define the take-or-leave version of these problems
as follows: every vertex of the graph is associated with two numbers w+ and w−;
if a vertex is chosen to be in the solution, i.e. in the vertex cover or independent
set, it contributes a value of w+ to the objective function; if it is not included in
the solution, it contributes w− to the objective function (the usual unweighted
variants are then special cases of the take-or-leave version where w+ = 1 and
w− = 0 for every vertex).

Lemma 12. The take-or-leave versions of Vertex Cover and Independent

Set can be solved in polynomial time on bipartite graphs.

Theorem 13. There exists a PTAS for Vertex Cover and Independent

Set in odd-H-minor-free graphs running in time OH,ε(nO(1)).

The proof is based on performing dynamic programming on the tree decomposi-
tion of odd-minor-free graphs mentioned above and crucially uses the fact that
the bags of the tree decomposition intersect the bipartite graphs of their parent
bags in at most one vertex; once we have solutions for all the children of a bag,
this enables us to define a take-or-leave version of the problem in the bag and
obtain solutions in polynomial time. Once more, we refer to the full paper for
details. Also note that Theorem 13 holds also for the vertex-weighted versions
of these problems; the proof is analogous.

5.2 Subexponential FPT for Odd-Minor-Free Graphs

Another question that is asked by Demaine et al. [16] is whether k-Vertex

Cover and k-Independent Set admit SUBEPT-algorithms on odd-minor-free
graphs. As in the case of the PTASes, these are basically the only problems for
which this seems possible as such algorithms for most other prominent problems
would contradict hardness results in parameterized complexity. Indeed, we can
obtain subexponential parameterized algorithms for these problems in a similar
way as the PTASes above. First, let us state the following known result.2

2 I would like to thank Fedor Fomin for a helpful discussion on this matter.
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Lemma 14 (partly taken from [10,25]). There exists an algorithm that,
given an H-minor-free graph G and an integer k, runs in time O(2OH(

√
k)nO(1))

and

(i) decides if G contains a vertex cover of size at most k and in this case, returns
a minimum vertex cover of G; and

(ii) decides if G contains an independent set of size at least k and if this is not
the case, returns an independent set of maximum size in G.

Theorem 15. There exists an algorithm that, given an odd-H-minor-free graph
G and an integer k, runs in time O(2OH(

√
k)nO(1)) and

(i) decides if G contains a vertex cover of size at most k and in this case, returns
a minimum vertex cover of G; and

(ii) decides if G contains an independent set of size at least k and if this is not
the case, returns an independent set of maximum size in G.

Acknowledgment. I would like to thank Holger Dell, Martin Grohe, and
Matthias Mnich for helpful discussions and comments on this work.
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Abstract. A reduction system for regular expressions is presented. For
a regular expression t, the reduction system is proved to terminate in
a state where the most-reduced expression readily yields a semi-linear
representation for the Parikh image of the language of t.

1 Introduction

Let A = {a1, · · · , an} be a finite set, and fix an order on the elements of A,
say a1 < · · · < an. The commutative image, or Parikh image, of w ∈ A∗,
denoted Ψ(w), is a vector in Nn in which the ith element encodes how many
times ai appears in w. Hence, Ψ is a morphism from the monoid (A∗, ·, ε) to
the monoid (Nn, +,0). The commutative image of any regular subset of A∗

(in general, any context-free language) is a semi-linear set [6], i.e. it can be
written as the union of finitely many linear sets. A linear set is of the form
{v | v = v0 +λ1v1 + · · ·+λkvk, with k, λi ∈ N, vi ∈ Nn}. In this paper, we study
the following problem:

Given a regular expression t, compute a semi-linear representation for
the Parikh image of the regular language that t denotes.

Contributions. A terminating reduction system is proposed which reduces a
regular expression t to a simpler regular expression t′, with certain constraints,
such that t and t′ have the same Parikh image. The reduction system is proved
to terminate in a state where the resulting most-reduced expression is of star-
height at most one. A semi-linear representation of the Parikh image of the initial
expression t is then computed from the most-reduced expression by resolving the
accumulated constraints.

As an example, consider the regular expression t = (a∗ · b)∗, with alphabet
A = {a, b}, and a < b. In order to compute a semi-linear representation for Ψ(t),
we introduce the notion of constrained regular expressions. In the example above,
we reduce t to (a∗)∗ · b∗, which is in turn reduced to a∗ · b∗, while a constraint
is added to the expression asserting that “if there is no b, then there is no a”.
Intuitively, adding constraints to regular expressions allows us to encode the
dependency between nested Kleene stars. The reduction system then propagates
these constraints downwards while descending and pushing the Kleene stars

P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 653–664, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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down the parse tree of the regular expression. This procedure eventually leads to
a constrained regular expression of star-height at most one. In a second phase, the
accumulated constraints are resolved into linear conditions using case distinction.
In the example above, either there is no b, and therefore no a, or there is at least
one b and an arbitrary number of as. The resulting constraints are linear, hence
their union semi-linear.

Related work. Algorithms for computing semi-linear Parikh images of regular
grammars (hence, regular expressions) can be extracted from Parikh’s original
proof [6]. However, Parikh’s proof, as well as some of the later variants [4,2], do
not specifically aim at constructing semi-linear images. For instance, in [6], after
a careful rearrangement of derivation trees for context-free grammars one reads:
“We claim there is only a finite number of trees satisfying [a certain condition],
since in any such tree the length of any chain cannot be greater than the square
of the number of symbols [of the grammar]”. Intuitively, this proof relies on
finiteness of a certain set, and in effect, derives an upper bound on the number
of possible elements in another set.

Roughly speaking, semi-linear Parikh images of regular expressions can be
constructed via two different strategies: bottom-up and top-down.

– The bottom-up strategy is perhaps the first method that comes to mind.
Start with the symbols of the alphabet, and proceed inductively: Assume
that semi-linear images of t1 and t2 are given, and use the following rules for
computing semi-linear images of more complex expressions.

• Ψ(t1 · t2) = Ψ(t1)⊕ Ψ(t2), where A⊕B = {a + b | a ∈ A, b ∈ B} for two
sets A and B.

• Ψ(t1 ∪ t2) = Ψ(t1) ∪ Ψ(t2)
• Ψ(t∗1) = S∗

1⊕· · ·⊕S∗
r , if Ψ(t1) = S1∪· · ·∪Sr, with Si being linear sets, and

S∗
i = {0}∪{v | v = v0+λ0v0+λ1v1+· · ·+λkvk, with k, λi ∈ N, vi ∈ Nn}

if Si = {v | v = v0 + λ1v1 + · · ·+ λkvk, with k, λi ∈ N, vi ∈ Nn}.

The inductive method gives a terminating algorithm for computing semi-
linear Parikh images, e.g. see [3] for a correctness proof for these rules.

– The main idea of the top-down strategy is to obtain from regular expres-
sion t a regular expression t′ which has star-height of at most one, while
L(t) = L(t′) modulo commutativity. Deriving semi-linear Parikh images of
the languages of regular expressions of star-height at most one is immediate.
A prominent example of the top-down approach is the equational axioms
of Piling [7], which can be used to convert any regular expression t to an
equivalent regular expression t′, modulo commutativity, such that t′ is of
star-height at most one. See [1] for an excellent overview. These equational
axioms however do not immediately lend themselves to a terminating algo-
rithm for computing semi-linear Parikh images. This is because the axioms
contain the equation x · y = y · x, among others. This equation can cause a
cyclic behavior, and hence non-termination, in automated procedures that
use it for reducing the star-height of regular expressions.
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Our reduction system also follows the top-down strategy. What distinguishes
the proposed reduction system from the aforementioned equational axioms is
termination – the reduction system is proved to always terminate. The difference
between the reduction system and the (bottom-up) inductive method however
lies not in termination, but in the width of the produced images.

Consider a semi-linear set S represented as S = S1∪· · ·∪S�, with Si∈1..� being
linear sets. The width of S, denoted ω(S), is the number of linear components
in S, that is � in this case. Obviously a semi-linear set may have different rep-
resentations with different widths. The width of semi-linear representations for
Parikh images of regular expressions is pertinent to certain decision procedures
for regular languages, e.g. see [5,10]. In these procedures, various properties of
regular languages are decided by solving a linear Diophantine equation for each
linear component of the semi-linear Parikh image of the language. In this con-
text, images with lower width are preferred, because then fewer Diophantine
equations need to be solved for answering the decision problem at hand.

The width of the semi-linear representation that the aforementioned inductive
method produces for regular expression t grows fast as the widths of the images
of the subterms of t grow. This is intuitively due to the “multiplicative” nature
of the inductive method. Suppose semi-linear representations for Parikh images
of regular expressions t1 and t2 are given, resp. with widths w1 and w2. The
width of the representations that the inductive method produces can then be
calculated as ω(Ψ(t1 · t2)) = w1w2, ω(Ψ(t1 ∪ t2)) = w1 + w2 and ω(Ψ(t∗1)) = 2w1 .

Our proposed reduction system produces semi-linear Parikh images which
are of (exponentially) lower width, compared to the inductive method. As a
simple example, for the Parikh image of the regular expression a∗ · (b ∪ c∗)∗ ·
d, with alphabet A = {a, b, c, d}, the reduction system produces a semi-linear
representation of width 2, while the inductive method produces an image of
width 16. Formally, for unit form regular expressions t1 and t2, whose images
have widths w1 and w2 respectively, the width of the representations that the
reduction system produces is given by ω(Ψ(t1 · t2)) = w1w2, ω(Ψ(t1 ∪ t2)) =
w1 + w2 and ω(Ψ(t∗1)) = 2w1. The definition of unit form expressions, as well
as precise bounds for the widths of Parikh images that the reduction system
produces are given in the following sections.

Note that, w.r.t. the width of produced Parikh images, the equational axioms
of [7,1] cannot be directly compared to the inductive method and the reduction
system. This is because, in [7,1], depending on the axioms which are chosen for
simplification, and their order, the resulting images may have different widths.

In a related work, Verma, Seidl and Schwentick give a linear-time algorithm for
generating semi-linear Parikh images of context-free grammars, represented as
existential Presburger formulae [9]. Converting existential Presburger formulae
into the set representation that we use is of exponential-time complexity.

Structure of the paper. Section 2 presents the preliminaries. Section 3 describes
our reduction system, and contains the proofs of its termination and correctness.
Extracting semi-linear representations of Parikh images from the most-reduced
expressions is explained in section 4.
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2 Preliminaries

An alphabet is a finite set A = {a1, · · · , an}. Throughout the paper we assume
alphabets are totally (and, lexicographically) ordered. The set of all finite se-
quences of elements of A is denoted by A∗, while ε stands for the empty sequence.
A language over A is a subset of A∗. For two sequences w1, w2 ∈ A∗, let w1 ·w2 de-
note the concatenation of w1 and w2. Clearly ε is the neutral element of concate-
nation. For two sets L1, L2 ⊆ A∗, define L1 · L2 = {w1 · w2 | w1 ∈ L1, w2 ∈ L2}.
For L ⊆ A∗, we define L0 = {ε} and Ln = L · Ln−1, with n ∈ N, n > 0.

A regular expression t, for short regexp, over A is defined as usual, t ::= ∅ | ε |
a | t · t | t∪ t | t∗, with a ∈ A. Here ·, ∪ and ∗ denote, respectively, concatenation,
union, and Kleene star operators. Any regular expression t defines a regular
language, L(t), in the standard way: L(∅) = ∅, L(ε) = {ε}, L(a) = {a} for all
a ∈ A, L(t1 · t2) = L(t1) ·L(t2), L(t1 ∪ t2) = L(t1)∪L(t2), and L(t∗) =

⋃
i≥0 Li.

We write t ≈ t′ for regexps t and t′ iff L(t1) = L(t2). When confusion is unlikely
we may use a regexp t and its corresponding language L(t) interchangeably.

Any regular expression has a unique parse tree, up to isomorphism. Nodes
of a parse tree are either elements of the alphabet (besides ε and ∅), or the
symbols ·, ∪ or ∗. Nodes labeled with elements of the alphabet (and ε and ∅) are
terminal, nodes labeled with either of · or ∪ have two descendants, while nodes
labeled with ∗ have only one descendant. The parse trees of regular expressions
correspond to the ground term algebra induced by the signature Sig : the elements
of the alphabet are nullary function symbols in Sig , · and ∪ are binary function
symbols, and ∗ is a unary function symbol.

A regexp is said to be of unit form, for short U-form, iff in its parse tree each
path from the root to a node labeled with ∪ contains at least one node labeled
with ∗. The following lemma is immediate as · is distributive over ∪ modulo ≈.

Lemma 1. Any regexp t can be rewritten into finitely many regexps t1, · · · , tn,
such that t ≈ t1 ∪ t2 ∪ · · · ∪ tn, with ti being of U-form.

For L ⊆ A∗, let Ψ(L) = {Ψ(w) | w ∈ L}. When computing semi-linear Parikh
images of languages of regexps, lemma 1 allows us to confine to U-form expres-
sions. This is because Ψ(L1 ∪ L2) = Ψ(L1) ∪ Ψ(L2). In the following, thus, we
focus on U-form regexps.

Below, we define a simple extension of regexps which is useful in proving
our results. Fix a countable set of name tags Names = {n1, n2, . . .}. A tagged
regexp t is a regexp where some of the nodes labeled with ∗ in the parse tree of t
are assigned with elements of Names. Note that any regexp is a tagged regexp,
where none of its parse tree nodes are tagged. As a convention, in the text we
subscript a ∗ operator of a tagged regexp with its name. For instance, suppose the
node labeled with ∗ in the parse tree of (a·(b∪c))∗ is assigned with n1. We denote
this by (a · (b∪ c))∗n1 . An evaluation function is a total function e : Names → N.
For a tagged regexp t, we write te for the regexp that corresponds to t when all
∗s assigned with n are replaced with e(n), for all n ∈ Names. For example, with
e(n1) = 2 and t = (a · (b ∪ c))∗n1 , te corresponds to regexp (a · (b ∪ c))2. Recall
that rk = r · rk−1 for k ≥ 1, and r0 = ε, for regexp r.
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A constrained regexp is a tuple (t; φ), where t is a tagged regexp, and φ is a
finite set of constraints. Each constraint is of either of these forms: ni +nj = nk,
or ni = 0 =⇒ nj = 0, with ni, nj, nk ∈ Names.

Given an evaluation function e : Names→N, and a set of constraints φ(n1, · · · ,
n�), we say e satisfies φ, denoted e |= φ, iff all the constraints in φ evaluate to true
when each n ∈ Names in φ is substituted with e(n). That is, φ(e(n1), · · · , e(n�))
evaluates to true. The language of a constrained regexp (t; φ), denoted L(t; φ), is
the set of all w ∈ A∗ where there exists an evaluation function e such that w ∈ te
and e |= φ. We observe that (t; φ) can in general correspond to a non-regular
language.

The example below shows that simply assigning names to ∗ nodes of a regexp
can affect the language of the corresponding constrained regexp, even if those
names are not bound by any constraint.

Example 1. Consider the constrained regexps (t; ∅), with t = (a · b∗n1 )∗n2 . Here
the constraint set is empty. Note that w = a · b · a · b · b does not belong to the
language of (t; ∅), while obviously w does belong to the language of (a · b∗)∗. •

3 The Reduction System

Fix a signature S, and a countable set of variables V . The term algebra induced
by S with variables V is denoted by TS(V). We write var(t) for the set of variables
appearing in term t. A ground term is an element of TS(∅).

A reduction system R is a finite set of ordered pairs, written as l → r, where
l, r ∈ TS(V), and var(r) ⊆ var(l). Let l → r ∈ R and t ∈ TS(∅) be a ground
term. If for some substitution σ, σ(l) is a subterm of t, then we can reduce t by
replacing one occurrence of σ(l) with σ(r) in t. If the resulting term is t′, we
write t → t′ and call it a reduction step. A term t is irreducible if ¬∃t′. t → t′;
otherwise t is reducible. A reduction sequence is a sequence t1, t2, . . ., such that
ti → ti+1, for i ≥ 1. A reduction system is terminating iff it admits no infinite
reduction sequences. See [8] for more on reduction systems.

Below, we introduce R, our set of reduction rules for constrained regexps,
that is the signature of R is Sig introduced in the previous section. As already
mentioned, the ground term algebra TSig(∅) corresponds to the set of all parse
trees of regular expressions. Therefore, the following reduction rules are described
in terms of parse trees. This greatly improves the presentation. The definitions
and proofs can however be formalized in the corresponding term algebra as well.

The following reduction rules primarily work on parse trees of regexps of U-
form. If a reduction rule is applicable on an expression t, i.e. t → t′, then the
rule transforms the constrained regexp (t; φ) into (t′; φ′). In the following, how
φ′ is constructed using φ is also specified.

Definition 1 (Reduction rules R). The reduction rules depicted in figure 1
will be applied on constrained regexps (t; φ) where t is of U-form. Here, in rules
R2 and R3 fresh name tags are retrieved from Names as n1 and n2, and n′

respectively.
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·

t1 t1 t2t2

∗n1∪
∗n

t1

∗n ∗n·
∗n ·

t1 t1 t2t2

∗n2
∗n′

∗n

∗
t1

R1 R2 R3

φ′ :=
φ ∪ {n1 + n2 = n}

φ′ :=
φ ∪ {n = 0 =⇒ n′ = 0}

φ′ := φ

Fig. 1. Reduction rules; name tags of ∗ operators are written beside them

Intuitively, the rules of the reduction system R eliminate ∗ functions that are
applied on other functions (that is ·,∪, and other ∗). Informally, rule (1), that is
R1, states (t1 · t2)∗ can be rewritten to t∗1 · t∗2. The newly created stars (on top of
t1 and t2) are assigned with the same name as the initial star. No constraint is
added to φ in this case. Rule (2) states that (t1 ∪ t2)∗ can be rewritten to t∗1 · t∗2.
The newly created stars (on top of t1 and t2) are assigned with new names. A
constraint is added to the constraint set φ, which requires the sum of the new
names to be equal to the name of the initial star. Finally, rule (3) states that
from (t∗1)

∗ the higher star can be removed. A constraint is however added to φ
which requires if the name of the higher star equals zero, the name of the lower
one should also be equal to zero.

Remark that the reduction rules of R can be consequently applied, because
if t is of U-form, and t → t′ according to R, then t′ is of U-form.

Applying R on U-form regular expressions. Given a regexp t, we first
seed t; this results in a constrained regexp. Then R is applied on the resulting
constrained regexp, following the top-most reduction strategy. These notions are
described below.

Seeding A node in the parse tree of t is called a ∗-node iff the node is labeled
with symbol ∗. Given a U-form regexp t, all the nodes in the parse tree of t
which are labelled with ∗ and have no ancestor ∗-node are assigned with fresh
name tags. By abuse of notation, we write t also for the resulting tagged
regexp. Then, the constrained regexp (t; ∅) is constructed. This process is
called seeding t. Note that the language of (t, ∅) right after seeding is the
same as the language of regexp t.

Top-most reduction strategy We assume a top-most reduction strategy, i.e.
in the parse tree of a regexp the top-most reducible subterm of t is reduced
first. The top-most reduction strategy corresponds to the left-most reduction
strategy in the term algebra TSig(∅), cf. [8]. The correctness of the reduction
system, proved in theorem 3, assumes this reduction strategy.

We proceed with an example.

Example 2. Fix the alphabet A = {a, b, c}. Below we demonstrate how R is
applied on t = ((b · a∗) ∪ c)∗. Note that t is indeed of U-form. Seeding t yields
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the pair ((b · a∗) ∪ c)∗n ; ∅. Applying the top-most reduction strategy results in
the following reduction sequence.

((b · a∗) ∪ c)∗n ; ∅
→R2 (b · a∗)∗n1 · c∗n2 ; {n = n1 + n2}
→R1 b∗n1 · (a∗)∗n1 · c∗n2 ; {n = n1 + n2}
→R3 b∗n1 · a∗n3 · c∗n2 ; {n = n1 + n2, n1 = 0 =⇒ n3 = 0} •

3.1 Termination

The reduction system R is terminating when applied to seeded U-form regexps,
intuitively because by applying each of the rules ofR, the ∗ operators are pushed
down the parse tree, see figure 1. Ultimately there will be ∗ operators whose
operands are constants (elements of A, or the symbols ε and ∅). These cannot
be further reduced according to R; the reduction process thus halts.

Theorem 1. The reduction system R is terminating for U-form regexps.

For proving this theorem we need a few definition and lemmas. First, we define a
mapping ℵ from the set of regular expressions, over alphabet A, to N3. Intuitively,
ℵ counts the number of non-reduced subterms of a regexp, w.r.t. R.

Definition 2. Function ℵ from the set of regexps over alphabet A to N3 is de-
fined recursively by:

ℵ(∅) = ℵ(ε) = ℵ(a) = ℵ(ε∗) = ℵ(a∗) = (0, 0, 0)
ℵ(t ∪ t′) = ℵ(t · t′) = ℵ(t) + ℵ(t′)
ℵ((t · t′)∗) = (1, 0, 0) + ℵ(t∗) + ℵ(t′∗)
ℵ((t ∪ t′)∗) = (0, 1, 0) + ℵ(t∗) + ℵ(t′∗)
ℵ((t∗)∗) = (0, 0, 1) + ℵ(t∗)

where a ∈ A. For any expression t, norm of t is defined as ||t|| =
∑3

i=1 ℵi(t),
where ℵi(t) is the ith element of the ℵ(t)-triplet.

The reduction system R strictly reduces the norms of regexps. This is proved
in the following lemma. Remark that ℵ is agnostic to the tagging applied to
regexps. Indeed, tagging plays no role in proving termination of R.

Lemma 2. If t → t′ by the reduction system R, then ||t′|| < ||t||.

Proof. The proof is by case analysis. Imagine t = (r∗)∗ for some regexp r. Ob-
serve that ℵ3(t) ≥ 1, and clearly R3 of R is applicable on t. Using R3, t is
reduced to r∗, that is t′ = r∗. Here ||t|| > ||t′||, because ||t|| = Σ3

i=1ℵi((r∗)∗) =
1 + ℵ3(r∗) + Σ2

i=1ℵi(r∗) = 1 + Σ3
i=1ℵi(r∗) = 1 + ||r∗|| = 1 + ||t′||. Similarly,

||(t1 · t2)∗|| = 1 + ||t∗1 · t∗2|| and ||(t1 ∪ t2)∗|| = 1 + ||t∗1 · t∗2||. The argument imme-
diately carries over to the case a proper subterm of t is reduced. 


Now we are ready to present the proof of theorem 1.
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Proof (Theorem 1). According to lemma 2, all reduction rules of R strictly
reduce the norms of regexps. Hence, for any U-form regexp t, after at most ||t||
steps the resulting term cannot be any further reduced. Thus, R terminates. 


Time complexity of the reduction system (the number of steps performed before
the reduction process halts) is quadratic in the length of the input regexp. The
length of regexp t, denoted len(t), is measured by counting the number of nodes
in t’s parse tree. The proof of the theorem is straightforward.

Theorem 2. Time complexity of the reduction systemR is ofO(len(t)2), where t
is the input U-form regexp.

3.2 Correctness: Preserving Parikh Images

The reduction system R preserves the Parikh images of regexps.

Theorem 3. Let (t; φ) be a constrained regexp, and (t; φ) → (t′; φ′) by applying
one of the rules of R. Then, Ψ((t; φ)) = Ψ((t′; φ′)).

Proof. Below, we assume that t coincides with the subterm that is reduced.
The case a proper subterm of t is reduced follows immediately by structural
induction. The proof goes by case analysis.

– Rule (1) is applicable, i.e. t = (t1 · t2)∗n and t′ = t∗n
1 · t∗n

2 , and φ′ = φ.
Suppose e is an evaluation function, and e(n) = k for some k. Note that in
general Ψ(tk1 · tk2) = Ψ((t1 · t2)k). Since φ′ = φ, e |= φ iff e |= φ′. Therefore,
Ψ((t; φ)) = Ψ((t′; φ′)).

– Rule (2) is applicable, i.e. t = (t1 ∪ t2)∗n and t′ = t
∗n1
1 · t∗n2

2 , and φ′ =
φ ∪ {n1 + n2 = n}. Suppose e is an evaluation function, and e(n) = k for
some k. In general Ψ((t1 ∪ t2)k) =

⋃
(i,j)∈N×N, i+j=k Ψ(ti1 · t

j
2). Let e′ be an

evaluation function equal to e, except that e′(n1) = i and e′(n2) = j, for
some i, j ∈ N, such that i + j = k. Now, if e |= φ, then e′ |= φ′. Therefore,
Ψ((t; φ)) ⊆ Ψ((t′; φ′)).
For the other direction, suppose e is any evaluation function such that e |= φ′,
that is e(n1) = i, e(n2) = j, e(n) = k, for some i, j, k ∈ N, such that i+j = k.
Note e′ |= φ, simply because n1 and n2 are chosen freshly. It is obvious that
the language of t′e is a subset (or equal) to the language of te. Therefore,
Ψ((t′; φ′)) ⊆ Ψ((t; φ)).

– Rule (3) is applicable, that is t = (t∗1)
∗n and t′ = t

∗n′
1 , and φ′ = φ ∪ {n =

0 =⇒ n′ = 0}. Suppose e is an evaluation function, and e(n) = k for
some k. We consider two cases: (1) k �= 0, and (2) k = 0. Case (1): Take
an arbitrary w ∈ te. Note that in general (r∗)k = r∗, for any regexp r and
k �= 0. Therefore, k �= 0 implies w ∈ ti1, for some i ∈ N. Define e′ as an
evaluation function that is equal to e, except that e′(n′) = i. Clearly w ∈ t′e′ .
Since k �= 0, e |= φ entails e′ |= φ′. Case (2): If k = 0, then the language
of rk is the set {ε} for any regexp r. Define e′ as an evaluation function that
is equal to e, except that e′(n′) = 0. Note that the only constraint that is in
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φ′ and not in φ (i.e. n = 0 =⇒ n′ = 0), is satisfied by e′. Thus, from e |= φ
we derive e′ |= φ′. Therefore, Ψ((t; φ)) ⊆ Ψ((t′; φ′)).
For the other direction, suppose e′ is any evaluation function such that e′ |=
φ′, that is e′(n) = k, e′(n′) = k′, for some k, k′ ∈ N, such that (k �= 0)∨(k′ =
0). It is obvious that t′e′ = te′ when k = 0 (and consequently k′ = 0). Now,
let k �= 0. Remark that not only n′ is freshly chosen from Names and hence
not present in t, but also the ∗-node tagged with t′ is not tagged in t at all.
This is due to our top-most reduction strategy; see figure 1. This is a crucial
fact here, since simply tagging nodes, even when those tags are not bound
in any constraint, affects the language of constrained regexps, cf. example 1.
Now, from (r∗)k = r∗, with k �= 0, it follows that Ψ((t′; φ′)) ⊆ Ψ((t; φ)).

This completes our proof. 


4 Extracting Parikh Images from Most-Reduced Regexps

Suppose (ti; ∅) is a seeded U-form regexp, and (ti; ∅) is reduced using R to (t; φ),
where t is irreducible. According to theorem 1, such a t is always reached in a
finite number of reduction steps, and due to theorem 3, Ψ(ti; ∅) = Ψ(t; φ). This
in particular implies Ψ(ti) = Ψ(t; φ), due to the seeding procedure. Our goal here
is to extract a semi-linear representations of Ψ(ti) from (t; φ). We consider two
cases: (i) φ contains no implication constraints (i.e. no constraints of the form
ni = 0 =⇒ nj = 0), and (ii) φ contains at least one implication constraint. Com-
puting a semi-linear Parikh image of ti in case (i) is straightforward, as described
below. For case (ii), we give a procedure, called remove imp, which removes the
implication constraints from φ, and returns a finite set of implication-free con-
straint sets. It is then proved (theorem 4) that Ψ(ti) = ∪ϕ∈remove imp(φ)Ψ(t; ϕ).
Intuitively, case (ii) is reduced to case (i).

Case (i). Constraint set with no implication constraint. In case φ contains no im-
plication constraints, computing semi-linear representations of the Parikh image
of (t; φ) is straightforward. This is because constraints of the form ni + nj = nk

are inherently linear constraints. We demonstrate this via a number of examples.

Example 3. Let ti = (a · (b ∪ c))∗n , with alphabet A = {a, b, c}. The following
steps show how R reduces (ti; ∅).

(a · (b ∪ c))∗n ; ∅
→R1 a∗n · (b ∪ c)∗n ; ∅
→R2 a∗n · b∗n1 · c∗n2 ; {n1 + n2 = n}

From the final irreducible constrained regexp we get Ψ(ti) = {v ∈ N3 | v =
(λb + λc)e1 + λbe2 + λce3, λb, λc ∈ N}. This is indeed a linear representation. •
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Example 4. Let ti = ((a∪ b) · (c∪ d) · e)∗n , with alphabet A = {a, b, c, d, e}. The
following steps show how R reduces (ti; ∅).

((a ∪ b) · (c ∪ d) · e)∗n ; ∅
→R1 (a ∪ b)∗n · ((c ∪ d) · e)∗n ; ∅
→R1 (a ∪ b)∗n · (c ∪ d)∗n · e∗n ; ∅
→R2 a∗n1 · b∗n2 · (c ∪ d)∗n · e∗n ; {n1 + n2 = n}
→R2 a∗n1 · b∗n2 · c∗n3 · d∗n4 · e∗n ; {n1 + n2 = n; n3 + n4 = n}

Notice that equations of the form n1 +n2 = n3 +n4, with ni ∈ N, are satisfiable
iff there exist λ1, λ2, λ3, λ4 ∈ N, such that n1 = λ1 + λ2, n2 = λ3 + λ4, n3 =
λ1 + λ3 and n4 = λ2 + λ4. In general, any finite number of equations of the
form A1 + B1 = · · · = A� + B�, with Ai∈1..�, Bi∈1..� ∈ N, are simultaneously
satisfiable iff there exist 2� natural numbers λ1, · · · , λ2� , whose combinations
constitute Ai and Bi. Therefore, from the final irreducible constrained regexp
we get Ψ(ti) = {v ∈ N5 | v = (λ1+λ2)e1+(λ3+λ4)e2+(λ1+λ3)e3+(λ2+λ4)e4+
(λ1 + λ2 + λ3 + λ4)e5, λi∈1..4 ∈ N}. This is indeed a linear representation. •

Case (ii). Constraint set with at least one implication constraint. Implication
constraints, i.e. constraints of the form ni = 0 =⇒ nj = 0, are intuitively
“non-linear”. In the following, we give a case splitting procedure to remove such
constraints from φ, without affecting the set of evaluation functions that sat-
isfy φ. This implies that the procedure does not change the language of (t; φ).

Let φ be a set of constraints of the form defined in section 2 over Names.
We give an algorithm to remove implication constraints from φ. For this pur-
pose, we extend the definition of constraint sets (given in section 2) to include
constraints of the form n = 0, and n = n′ + 1 as eligible members. The re-
lated definitions (satisfiability, etc.) are extended in the obvious way. Further-
more, in the following we assume that all implication constraints in φ which
have the same antecedent are lumped together. For example, two constraints
(n = 0 =⇒ n1 = 0) and (n = 0 =⇒ n2 = 0) are lumped into the constraint
n = 0 =⇒ n1 = 0 ∧ n2 = 0. This merely syntactical convention decreases the
number of times the procedure remove imp recurs on φ.

Theorem 4. Fix a constrained regexp (t; φ). Given the set of constraints φ,
algorithm 1 returns a finite set of constraint sets Φ = {φ1, · · · , φn} such that
L(t; φ) = ∪φi∈ΦL(t; φi).

Proof. Remark that Φ is finite because the number of implication constraints
in φ is strictly decreasing in each recursion of algorithm 1. The claim of the
theorem is immediate by noting that for any evaluation function e, e |= φ ⇐⇒∨

φi∈Φ e |= φi. This is because ∀n ∈ N. (n = 0 ∨ ∃nν ∈ N. n = nν + 1). 


Example 5. Let φ = {n3 = 0 =⇒ n4 = 0; n2 + n3 = n; n = 0 =⇒ n1 = 0}.
Suppose the first implication chosen by algorithm 1 is n3 = 0 =⇒ n4 = 0. This
results in two constraint sets φ1 = {n3 = 0; n4 = 0; n2 + n3 = n; n = 0 =⇒
n1 = 0} and φ2 = {n3 = n′ + 1; n2 + n3 = n; n = 0 =⇒ n1 = 0}. Recursively,
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Algorithm 1. Removes implications from constraint sets
procedure remove imp(φ)

if there exists a constraint (n = 0 =⇒ n1 = 0 ∧ · · · ∧ n� = 0) in φ then
let φ := φ \ {n = 0 =⇒ n1 = 0 ∧ · · · ∧ n� = 0}
return

remove imp({n = 0, n1 = 0, · · · , n� = 0} ∪ φ)
∪

remove imp({n = nν + 1} ∪ φ) where nν ∈ Names is freshly chosen
end if
return {φ}

on φ1 the algorithm returns φ3 = {n3 = 0; n4 = 0; n2 + n3 = n; n = 0; n1 = 0}
and φ4 = {n3 = 0; n4 = 0; n2 + n3 = n; n = n′′ + 1}. Similarly, on φ2 the
algorithm returns φ5 = {n3 = n′+1; n2+n3 = n; n = 0; n1 = 0} and φ6 = {n3 =
n′+1; n2+n3 = n; n = n′′+1}. Ultimately, remove imp(φ) = {φ3, φ4, φ5, φ6}. •

Algorithm 1 effectively transforms constraint set φ into a finite set of constraint
sets Φ = {φ1 · · · , φ�}, such that φi contains no implication constraints. That is,
case (ii) is reduced to case (i), except for constraints of the form n = nν + 1
that algorithm 1 may introduce. To cast constraints of the form n = nν + 1 into
case (i) we need another round of case distinction. This is best explained via an
example.

Example 6. Let ti = ((a ∪ b) · c∗ · d)∗, with A = {a, b, c, d}. The most-reduced
constrained regexp thatR produces from ti is then (t; φ) with t = a∗n1 ·b∗n2 ·c∗n3 ·
d∗n and φ = {n = 0 =⇒ n3 = 0, n1+n2 = n}. Then, remove imp(φ) = {φ1, φ2}
where φ1 = {n = 0, n3 = 0, n1 + n2 = n} and φ2 = {n = nν + 1, n1 + n2 = n}.
The constraints in φ1 are all linear, hence fall into case (i). In φ2 however the
constraint n1+n2 = nν+1 results in n1 = λ1+λ2, n2 = λ3+λ4, nν = λ1+λ3 and
1 = λ2 +λ4 (cf. example 4). The last constraint needs a case distinction; namely,
either λ2 = 1 and λ4 = 0, or λ2 = 0 and λ4 = 1. With this case distinction, φ2
also falls into case (i). •

Width of produced images. We now turn to the width of produced semi-linear
representations of Parikh images of regexps.

Theorem 5. Let t be a U-form regexp. Then, the width of Ψ(t), produced by the
reduction process, is (at worst case) given by

ω(Ψ(t)) = 2ℵ2(t)+ℵ3(t)

Proof. Take seeded constrained regexp (t; ∅) and suppose it is reduced using R
to (r; φ), where r is irreducible. The key observation is that the width of Ψ(t)
is equal to |remove imp(φ)| multiplied by the number of case distinctions per-
formed for linearizing n = nν + 1 constraints.

Note that |remove imp(φ)| = 2ℵ3(t), by definition 2. Now, all the sets in
remove imp(φ) (might) require further case distinctions for constraints of the
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form n = nν + 1 (cf. example 6). The number of these case distinctions is 2ℵ2(t),
according to definition 2. The number of linear components in Ψ(t) is therefore
bounded by 2ℵ2(t)+ℵ3(t). 


To relate theorem 5 to the measures given in the introduction (section 1), let us
assume that the widths of images of U-form regexps t1 and t2 are, respectively, w1
and w2. The reduction process generates an image of width w1 + w2 for t1 ∪ t2
(cf. lemma 1). For t1 · t2, we note that ℵi(t1 · t2) = ℵi(t1) + ℵi(t2), for i ∈
{2, 3}. Then, due to theorem 5, ω(Ψ(t1 · t2)) = w1w2. For t∗1, we remark that
reducing t∗1 using R results in a constraint set which has at most one implication
constraint more than the constraint set generated for t1. This is due to lumping
the implication constraints (see the discussion right before theorem 4). Then,
due to theorem 5, ω(Ψ(t∗1)) = 21+ℵ2(t1)+ℵ3(t1), that is ω(Ψ(t∗1)) = 2w1.
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Abstract. Karchmer, Kushilevitz and Nisan formulated the formula
size problem as an integer programming problem called the rectangle
bound and introduced a technique called the LP bound, which gives a
formula size lower bound by showing a feasible solution of the dual prob-
lem of its LP-relaxation. As extensions of the LP bound, we introduce
novel general techniques proving formula size lower bounds, named a
quasi-additive bound and the Sherali-Adams bound. While the Sherali-
Adams bound is potentially strong enough to give a lower bound match-
ing to the rectangle bound, we prove that the quasi-additive bound can
surpass the rectangle bound.

1 Introduction

Proving formula size lower bounds is a fundamental problem in complexity the-
ory as a weaker version of the circuit size lower bound problem and P �= NP.
A super-polynomial formula size lower bound for a function in NP implies
NC1 �= NP [19]. As generalizations of the classical result of Khrapchenko [8]
who proved an n2 formula size lower bound for the parity function, there are a lot
of techniques studied to improve formula size lower bounds. With all the efforts,
improvements are far and few between. Karchmer, Kushilevitz and Nisan [6]
formulated the formula size problem as an integer programming problem called
the rectangle bound and introduced a technique called the LP bound, which
gives a lower bound by showing a feasible solution of the dual problem of its
LP-relaxation. At the same time, they also showed that it cannot prove a lower
bound larger than 4n2 for non-monotone formula size in general. Lee [14] proved
that the LP bound [6] subsumes the quantum adversary bound of Laplante, Lee
and Szegedy [10], which in turn subsumes most of known techniques such as
Khrapchenko [8], its extension by Koutsoupias [9] and a key lemma used in the
proof of H̊astad [3] showing the current best formula size lower bound n3−o(1).
Ueno [20] devised a stronger version of the LP bound by a cutting plane approach
utilizing the theory of stable set polytope. However, it is difficult to determine
the complete facet structure of the polytope associated with the formula size
problem. Thus, improvements of the approach are limited.
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Lift-and-project methods systematically incorporate tighter and tighter con-
straints into any LP formulation. There are several lift-and-project methods
such as Sherali and Adams [16,17], Balas, Ceria and Cornuejols [2] and Lovász
and Schrijver [15] and Lasserre [11]. Laurent [12] gave a comparison among
these techniques. Among the several techniques, the technique of Sherali and
Adams [16,17] has some advantages as the strongest one for LP formulations with
relatively simpler descriptions. These techniques have attracted much attention
from several contexts. In Section 5, we devise further another stronger version of
the LP bound using the lift and project method of Sherali and Adams [16,17] and
its application to the set partition polytope by Sherali and Lee [18]. It yields a
convex hull of integral solutions and completely closes the integrality gap which
causes the limit of the original technique. It is potentially strong enough to prove
a lower bound matching to the rectangle bound.

More recently, Hrubeš, Jukna, Kulikov and Pudlák [5] discussed a notion
of subadditive rectangle measures on combinatorial rectangles as a conceptual
extension of a well-known notion of formal complexity measures. Inspired by this
notion and the Sherali-Adams bound, we introduce yet another stronger version
of the LP bound, which we name a quasi-additive bound, in Section 3. It directly
gives a lower bound for formula size and the protocol partition number of the
Karchmer-Wigderson game. In Section 4, we show that the quasi-additive bound
can surpass the rectangle bound. So, the quasi-additive bound is not upper-
bounded by the rectangle bound in general. This is quite surprising because
the quasi-additive bound can be seen as a simple extension of the LP bound of
Karchmer, Kushilevitz and Nisan [6], which is originally defined as a relaxation
of the rectangle bound. In fact, we can prove that the quasi-additive bound
is potentially strong enough to prove the matching formula size lower bound
for any Boolean function and the matching protocol partition number for any
relation. Another interesting property of the quasi-additive bound is that we can
derive a formula size lower bound for any Boolean function from a solution of
the quasi-additive bound for the universal relation.

Since the Sherali-Adams and quasi-additive bounds are pure extensions of the
LP bound, they can prove formula size lower bounds provable by any techniques
subsumed by the LP bound. To extend a solution space for them, we intro-
duce two useful techniques, named a cross argument and a triplet argument in
Section 4 and Section 6, respectively. The cross argument is useful to break the
rectangle bound barrier and applicable only for the quasi-additive bound. On the
other hand, the triplet argument can cover a main part of techniques discussed
in [20] and is applicable for both the Sherali-Adams and quasi-additive bounds.
Breaking the rectangle bound barrier against formula size lower bounds implies
a strong potential of the quasi-additive bound because the rectangle bound is
not so far from formula size in general (See Theorem 2 and [13]) and almost all
Boolean functions require formula size of at least Ω(2n/ logn) (See, e.g., [21]).
We hope that our generic techniques will be useful to surpass the best formula
size lower bound n3−o(1) of H̊astad [3].
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2 Preliminaries

We assume that the readers are familiar with the basics of Boolean functions and
linear programming. A Boolean function f is called monotone if x ≤ y implies
f(x) ≤ f(y) for all x, y ∈ {0, 1}n.

Definition 1 (Formula Size). A formula is a binary tree with each leaf labeled
by a literal and each internal node labeled by either of the binary connectives ∧
and ∨. A literal is either a variable or its negation. The size of a formula is its
number of literals. We define formula size L(f) of a Boolean function f as the
size of the smallest formula computing f . We also define Lm(f) as the monotone
formula size of a monotone Boolean function f where a monotone formula is a
formula without negations.

Karchmer and Wigderson [7] characterize formula size of any Boolean function
in terms of a communication game. In the game, given a Boolean function f ,
Alice gets an input x such that f(x) = 1 and Bob gets an input y such that
f(y) = 0. The goal of the game is to find an index i such that xi �= yi. Here,
xi and yi denote the i-th bits of x and y, respectively. The number of leaves
in a best communication protocol for the Karchmer-Wigderson game is equal
to the formula size of f . From the Karchmer-Wigderson game, we consider the
following matrix called the communication matrix.

Definition 2 (Communication Matrix). Given a Boolean function f , its
communication matrix is defined as a matrix whose rows and columns are indexed
by X = f−1(1) and Y = f−1(0), respectively. Each cell of the matrix contains
indices i such that xi �= yi. A combinatorial rectangle is a direct product X ′ ×
Y ′ where X ′ ⊆ X and Y ′ ⊆ Y . A combinatorial rectangle X ′ × Y ′ is called
monochromatic if every cell (x, y) ∈ X ′ × Y ′ contains the same index i. To
describe it simply, we define a relation Rf ⊆ X × Y × {1, 2, · · · , n} as Rf =
{(x, y, i) | x ∈ X, y ∈ Y, xi �= yi}. We can also define the monotone version of
the communication matrix and the relation associated with a monotone Boolean
function f as Rm

f = {(x, y, i) | x ∈ X, y ∈ Y, xi = 1, yi = 0}.

To prove a lower bound, we sometimes restrict rows and columns of the com-
munication matrix as R′ = {(x, y, i) | (x, y, i) ∈ R, x ∈ X ′, y ∈ Y ′} for some
X ′ ⊆ X and Y ′ ⊆ Y . The number of leaves in a best communication protocol
for the Karchmer-Wigderson game is equivalent to the following bound.

Definition 3 (Protocol Partition Number). For any combinatorial rectan-
gle X ′×Y ′, we call its partition a pair of X ′

1×Y ′ and X ′
2×Y ′ where X ′ = X ′

1∪X ′
2

and X ′
1 ∩ X ′

2 = ∅, or a pair of X ′ × Y ′
1 and X ′ × Y ′

2 where Y ′ = Y ′
1 ∪ Y ′

2 and
Y ′

1 ∩ Y ′
2 = ∅. The minimum number of disjoint monochromatic rectangles which

recursively partition the communication matrix associated with a relation R is
defined as CP (R), called the protocol partition number.

Then, the theorem of Karchmer and Wigderson [7] can be stated as follows.

Theorem 1 ([7]). ∀f, CP (Rf ) = L(f) and CP (Rm
f ) = Lm(f).
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The minimum number of disjoint monochromatic rectangles which exactly cover
all cells in the communication matrix gives a lower bound for the protocol parti-
tion number because a protocol partition itself is one of exact covers by disjoint
monochromatic rectangles. We call it the rectangle bound defined as follows.

Definition 4 (Rectangle Bound). The minimum size of an exact cover by
disjoint monochromatic rectangles for the communication matrix associated with
a relation R is defined as CD(R), called the rectangle bound.

On the relation between the protocol partition number and the rectangle bound,
we know the following result. For the proof, we recommend [13].

Theorem 2 ([6]). ∀R, CD(R) ≤ CP (R) ≤ 2O(log2 CD(R)).

Karchmer, Kushilevitz and Nisan [6] formulate the rectangle bound as an integer
programming problem and give its LP relaxation.

Definition 5 (LP Bound). We define LP(R) as the optimal value of the fol-
lowing linear programming formulation associated with a relation R. Let C be
the set of all defined cells, M be the set of all monochromatic rectangles and Zr

be a variable associated with each monochromatic rectangle r ∈ M . Then, the
LP-relaxation can be written as min

∑
r∈M Zr such that

∑
r$c Zr = 1 for each

cell c ∈ C and Zr ≥ 0 for each r ∈ M . The dual problem can be written as
max

∑
c∈C Wc such that

∑
c∈r Wc ≤ 1 for each r ∈ M . Here, Wc is a variable

indexed by a cell c ∈ C.

From the duality theorem, showing a feasible solution of the dual problem gives
a formula size lower bound.

Theorem 3 ([6]). ∀f, LP(Rf ) ≤ L(f) and LP(Rm
f ) ≤ Lm(f).

They define the universal relation to show the limitation of their technique.

Definition 6 (Universal Relation). The universal relation Un represents a
matrix whose rows and columns are indexed by X = Y = {0, 1}n and each cell
(x, y) is indexed by {i | xi �= yi}. It is defined as Un = {(x, y, i) | x ∈ {0, 1}n, y ∈
{0, 1}n, xi �= yi}. CP (Un) and CD(Un) are defined in the same way. Note that
any cell (x, y) where x = y is undefined and are not counted for any partition.
That is, monochromatic rectangles partition all defined cells without covering
undefined cells.

It subsumes any relation Rf as a submatrix. Its protocol partition number and
rectangle bound also subsume those of any Boolean function as CP (Rf ) ≤
CP (Un) and CD(Rf ) ≤ CD(Un) for any Boolean function f . They show a limi-
tation of their technique by showing the following theorem.

Theorem 4 ([6]). ∀f, LP(Rf ) ≤ LP(Un) ≤ 4n2.

Thus, the LP bound and all the subsumed techniques [10] cannot prove a formula
size lower bound larger than 4n2. Limits inherent in previously known proof
techniques which get stuck around Ω(n2) heavily rely on the above theorem.
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3 A Quasi-additive Bound for Formula Size Lower
Bounds

In this section, we devise a stronger version of the LP bound, which is derived
from a concept of subadditive rectangle measures by Hrubeš, Jukna, Kulikov and
Pudlák [5] and inspired by the Sherali-Adams bound discussed in Section 5. We
write Γ as the set of combinatorial rectangles and 5 as the set of real numbers.
Hrubeš, Jukna, Kulikov and Pudlák [5] introduce a notion of rectangle measures.
We call μ : Γ �→ 5 a subadditive rectangle measure if it satisfies the following
two properties.

1. Normalization: μ(m) ≤ 1 for each monochromatic rectangle m ∈M .
2. Subadditivity: μ(r) ≤ μ(r1) + μ(r2) for each combinatorial rectangle r ∈ Γ

and its arbitrary partition into r1 and r2.

They show that μ(r) gives a lower bound for the protocol partition number
CP (R) by a simple inductive argument and any relation R where r is the whole
rectangle associated with the relation R. We can simply extend it for the uni-
versal relation as follows.

Lemma 1 ([5]). If μ is a subadditive rectangle measure for a relation R, then
μ(X × Y ) ≤ CP (R), even in the case of the universal relation in which μ(r) =
0 for every combinatorial rectangle r containing only an undefined cell, where
X × Y is the whole matrix associated with the relation R.

A remarkable fact is that, if we strengthen the condition “Subadditivity” as

3. Additivity: μ(r) = μ(r1) + μ(r2) for each combinatorial rectangle r ∈ Γ and
its arbitrary partition into r1 and r2,

then it is equivalent to the dual problem of the original LP formulation of Karch-
mer, Kushilevitz and Nisan [6]. Then, we consider the following LP formulation.

Definition 7 (Quasi-Additive Bound). Let C be the set of all cells, M be
the set of all monochromatic rectangles and Γ be the set of all combinatorial
rectangles associated with a relation R. We define QA(R) as the optimal value
of the following linear program formulation.

max
∑
c∈C

Vc

s.t.
∑
c∈r

Vc +
∑
c 
∈r

Vc,r ≤ 1, (for each r ∈M)∑
c 
∈r1

Vc,r1 +
∑
c 
∈r2

Vc,r2 ≥
∑
c 
∈r

Vc,r.

(for each r ∈ Γ and its arbitrary partition into r1 and r2)

When we consider the universal relation, we fix Vc = 0 for every undefined cell
and Vc,r = 0 for every combinatorial rectangle r which only contains an undefined
cell.
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We refer to it as the quasi-additive bound. It is stronger than the LP bound and
gives a lower bound for the protocol partition number.

Lemma 2. ∀R, LP(R) ≤ QA(R) ≤ CP (R).

Proof. If we set Vc,r = 0 for each c and r of the quasi-additive bound, it is
equivalent to the original LP bound. So, we have LP(R) ≤ QA(R). To see
QA(R) ≤ CP (R), we regard μ(r) =

∑
c∈r Vc +

∑
c 
∈r Vc,r as a rectangle mea-

sure. Then, we have μ(X ×Y ) =
∑

c∈C Vc, which is equal to the objective value
of the quasi-additive bound, because C = X×Y is the whole rectangle associated
with R. From the additivity of Vc, the conditions “Normalization” and “Subad-
ditivity” is equivalent to the first and second constraints of the quasi-additive
bound, respectively. Thus, if assignments of Vc and Vc,r satisfy all of the first and
second constraints of the quasi-additive bound, μ(r) is a subadditive rectangle
measure. Consequently, we have QA(R) ≤ CP (R). 


We can derive a formula size lower bound for any Boolean function from a solu-
tion for QA(Un) by calculating

∑
c∈r Vc +

∑
c 
∈r Vc,r where r is f−1(1)×f−1(0).

We can eliminate the redundancy of the quasi-additive bound by summarizing
variables as V r =

∑
c 
∈r Vc,r for each combinatorial rectangle r and adding a

constraint V X×Y = 0. However, as we will show, this redundancy is useful to
construct a solution for the quasi-additive bound. We can also prove that it is
potentially strong enough to give the matching formula size lower bounds.

Theorem 5. ∀R, QA(R) = CP (R).

Proof. From the information of the protocol partition number P (r) for each
combinatorial rectangle r, we can construct a feasible solution whose objective
value is equal to P (X × Y ) (= CP (R)). More precisely, we assign Vc so as to
satisfy

∑
c∈C Vc = P (X × Y ). Then, we assign Vc,r so as to satisfy

∑
c 
∈r Vc,r =

P (r)−
∑

c∈r Vc. These assignments satisfy all the constraints of the quasi-additive
bound and give the matching lower bound. 


Corollary 1. ∀f, QA(Rf ) = L(f) and QA(Rm
f ) = Lm(f).

4 A Cross Argument for the Quasi-additive Bound

In this section, we give an example of a relation for which the quasi-additive
bound can surpass the rectangle bound. For this purpose, we devise a novel
technique named a cross argument to give a solution of the quasi-additive bound.

Theorem 6. ∃R, QA(R) > CD(R).

Proof. We take 2 disjoint subsets of {0, 1}8 as

X = {10011000, 00101001, 00010110, 01100100},

Y = {01011101, 10110101, 01111010, 10101110}.
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01011101 10110101 01111010 10101110
10011000 1 5 1 4
00101001 3 5 8 8
00010110 7 7 6 4
01100100 3 2 6 2

Fig. 1. The Monotone Communication Matrix of the Relation R

01011101 10110101 01111010 10101110
10011000 a b c d
00101001 e f g h
00010110 h g f e
01100100 d c b a

Fig. 2. 8 pairs of 2 cells from 16 cells

Then, we consider the monotone relation R of X and Y as Figure 1. For the
relation R, it is easy to see that CP (R) ≤ 10, CD(R) ≤ 8 by a cover with 8
maximal monochromatic rectangles and LP(R) ≥ 8 by assigning a weight 1

2 for
each cell.

Now, we prove QA(R) ≥ 10. We assign Vc = 5
8 for each cell. So, the total

weight is 10. To give an assignment rule of Vc,r, we consider 2 sorts of 8 pairs
from 16 cells. One is composed of 8 pairs each of which has 2 cells with the same
index in Figure 1. The other is composed of 8 pairs each of which has 2 cells with
the same alphabet in Figure 2. For any 2 cells c1 and c2 and any combinatorial
rectangle r such that c1 �∈ r1 and c2 ∈ r2, we define Δc1,r(c2) as follows. Let c′2
be the other cell which has the same index with c2.

– If c1 and c2 have the same alphabet and r contains c′2, we define Δc1,r(c2) =
− 1

8 .
– If c1 and c2 have the same alphabet and r does not contain c′2, we define

Δc1,r(c2) = 3
8 .

– If c1 and c2 have different alphabets, we define Δc1,r(c2) = 0.

Then, we assign Vc1,r =
∑

c2∈r Δc1,r(c2) for any c1 �∈ r. To verify the first
constraints of the quasi-additive bound, it is sufficient to consider the 2 cases
as monochromatic rectangles with either 1 or 2 cells. In both cases, we have∑

c∈r Vc +
∑

c 
∈r Vc,r = 1.
From now on, we consider the second constraint

∑
c 
∈r1

Vc,r1 +
∑

c 
∈r2
Vc,r2 ≥∑

c 
∈r Vc,r where r1 and r2 be an arbitrary partition of a combinatorial rectangle
r. We can assume that there is a pair of 2 cells c1 and c2 with the same alphabet in
r. Otherwise, the constraint cannot be violated because Δc1,r(c2) = Δc1,r1(c2) =
Δc1,r2(c2) = 0 for any c1, c2 ∈ r. We can also assume that the pair is partitioned
into the 2 combinatorial rectangles as c1 ∈ r1 and c2 ∈ r2 in the following
argument. We consider the case in which any pair of 2 cells c1 and c2 in r with
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the same alphabet are also in r1. In this case, the assignments of Δ concerned
with any pair of c1 and c2 in r do not decrease by the partition because 3

8 ≥ −
1
8 .

Moreover, no (negative) assignments of Δ do not appear by the partition. Hence,
the constraint cannot be violated. The same thing is true for the case of r2 instead
of r1.

Then, we define the diagonal pair pd of a pair p in Figure 2 as the pair such
that the 4 cells in pd and p compose a 4 × 4 combinatorial rectangle. As an
example, we consider the case when c1 = [1, a] ∈ r1 and c2 = [2, a] ∈ r2 without
loss of generality. Here, we identify each cell by its index and alphabet in the
figures. In this case, r1 and r2 must also partition the diagonal pair c3 = [3, d]
and c4 = [4, d]. Then, we take c′1 = [1, c], c′2 = [2, c], c′3 = [3, e] and c′4 = [4, e] be
the 4 cells which have the same index with c1, c2, c3 and c4, respectively. If at
least one of 4 pairs (c1, c

′
1) , (c2, c

′
2), (c3, c

′
3) and (c4, c

′
4) has been already divided

at the time of the partition into r1 and r2, then the changes of assignments of Δ
concerned with only c1, c2, c3 and c4 are represented as either 3

8 −
1
8 −

1
8 −

1
8 ≥ 0,

3
8+ 3

8−
1
8−

1
8 ≥ 0, 3

8+ 3
8 + 3

8−
1
8 ≥ 0 or 3

8+ 3
8+ 3

8 + 3
8 ≥ 0. Any of these does not cause

a violation of the constraint. The same thing is true for any other pairs with the
same alphabet. So, we can assume either c1, c

′
1, c3, c

′
3 ∈ r1 and c2, c

′
2, c4, c

′
4 ∈ r2,

or c1, c
′
1, c4, c

′
4 ∈ r1 and c2, c

′
2, c3, c

′
3 ∈ r2. In both cases, we have

∑
c 
∈r1

Vc,r1 = 0
and

∑
c 
∈r2

Vc,r2 = 0 where r1 and r2 are 2 × 4 combinatorial rectangles. Since
r is the whole rectangle, we also have

∑
c 
∈r Vc,r = 0. Consequently, all the

constraints of the quasi-additive bound are satisfied. 


We also know a smaller relation R′ of a 3 × 3 matrix having the gap between
the rectangle bound and the protocol partition number. In this case, the gap is
also smaller as CP (R′) = 6 and CD(R′) = 5.

The communication matrix discussed in the above proof is monotone and re-
stricted. We can give an example of a non-monotone and whole communication
matrix with the gap between the rectangle bound and the protocol partition
number. Laplante, Lee and Szegedy [10] defined a 4-bit Boolean function fA

called Ambainis’ function following a similar construction of Ambainis [1]. (See
[10] and [4] for more detailed treatment of Ambainis’ function.) It outputs 1 when
x1 ≤ x2 ≤ x3 ≤ x4 or x1 ≥ x2 ≥ x3 ≥ x4. In Figure 3, we write the whole com-
munication matrix RfA of Ambainis’ function. We can prove LP(RfA) ≥ 8 by
assigning a weight 1

2 for each cell whose number of indices is 1 and a weight 0 oth-
erwise. In Figure 4, we show an upper bound of its rectangle bound CD(RfA) ≤ 8.
(Distinct numbers and numbers with apostrophe represent distinct monochro-
matic rectangles.) Thus, any rectangle bound based techniques cannot improve
the LP bound. On the other hand, we know a smallest formula of size 10 for
Ambainis’ function as

((x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ ¬x4) ∨ ((¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ x4).

Thus, L(fA) = CP (RfA) ≤ 10. To the best of our knowledge, the quasi-additive
bound is the first generic technique which can prove the matching lower bound
L(fA) ≥ QA(RfA) ≥ 10.
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0100 0010 1010 0110 1001 0101 1101 1011
0000 2 3 1,3 2,3 1,4 2,4 1,2,4 1,3,4
1000 1,2 1,3 3 1,2,3 4 1,2,4 2,4 3,4
1100 1 1,2,3 2,3 1,3 2,4 1,4 4 2,3,4
1110 1,3 1,2 2 1 2,3,4 1,3,4 3,4 2,4
0001 2,4 3,4 1,3,4 2,3,4 1 2 1,2 1,3
0011 2,3,4 4 1,4 2,4 1,3 2,3 1,2,3 1
0111 3,4 2,4 1,2,4 4 1,2,3 3 1,3 1,2
1111 1,3,4 1,2,4 2,4 1,4 2,3 1,3 3 2

Fig. 3. The Communication Matrix of Ambainis’ function

0100 0010 1010 0110 1001 0101 1101 1011
0000 2 3 3 2 1’ 2 2 1’
1000 1 3 3 1 4’ 4’ 4’ 4’
1100 1 3 3 1 4’ 4’ 4’ 4’
1110 1 2’ 2’ 1 2’ 3’ 3’ 2’
0001 2 3 3 2 1’ 2 2 1’
0011 4 4 4 4 1’ 3’ 3’ 1’
0111 4 4 4 4 1’ 3’ 3’ 1’
1111 1 2’ 2’ 1 2’ 3’ 3’ 2’

Fig. 4. An Upper Bound 8 for the Rectangle Bound of Ambainis’ function

5 Applying Sherali-Adams’ Method to the LP Bound

In this section, we strengthen the technique ofKarchmer,Kushilevitz and Nisan [6]
by a lift and project technique of Sherali and Adams [16,17]. While it is upper-
bounded by the rectangle bound, it is worthwhile to introduce because it has a sim-
ilar structure with the quasi-additive bound. So, a solution for the Sherali-Adams
bound may be useful to give a solution for the quasi-additive bound.

We write P � M when all monochromatic rectangles in P ⊆ M are disjoint.
We also write r⊥P when a monochromatic rectangle r does not intersect any
monochromatic rectangle in P . Let C be the set of all defined cells, M be the set
of all monochromatic rectangles and ZP be a variable associated with a set of
disjoint monochromatic rectangles P in M . Now, we apply the lift and project
technique to the LP-relaxation of the rectangle bound. The primal problem is
written as follows.

min
∑
r∈M

Z{r}

s.t.
∑

r:c∈r⊥P

ZP∪{r} = ZP , (for each c ∈ C and each P �M s.t. c �∈
⋃
r∈P

r)

ZP ≥ 0, (for each P � M)
Z∅ = 1.
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This is a simple modification of Sherali and Lee [18], which discuss the set
partition polytope in general. The dual problem is written as follows.

max
∑
c∈C

Wc,∅

s.t.
∑
c∈r

Wc,∅ −
∑
c 
∈r

Wc,{r} ≤ 1, (for each r ∈ M)∑
r∈P

∑
c∈r

Wc,P\{r} −
∑
r∈P

∑
c 
∈r

Wc,P ≤ 0. (for each P �M s.t. |P | > 1)

Note that Wc,P is defined only when P � R and c �∈
⋃
r∈P

r.

From the theory of Sherali and Adams [16,17] and Sherali and Lee [18], giving
the optimal solution for this dual problem shows the rectangle bound of the
corresponding relation.

Definition 8 (Sherali-Adams Bound). We define SAh(R) as the optimal
value of the h-th level of the Sherali-Adams relaxation associated with R, which
corresponds to the restriction of Wc,P = 0 where |P | > h.

If we restrict the Sherali-Adams bound to the first level as SA1(R), we have the
following simplification of the dual problem by replacing Wc,∅ by Vc and −Wc,{r}
by Vc,r.

max
∑
c∈C

Vc

s.t.
∑
c∈r

Vc +
∑
c 
∈r

Vc,r ≤ 1, (for each r ∈M)∑
c∈r1

Vc,r2 +
∑
c∈r2

Vc,r1 ≥ 0. (for each {r1, r2} �M)

Giving a feasible solution of the above formulation shows a lower bound for
the rectangle bound and hence formula size. Since CD(R) is upper-bounded by
the number of cells, we have the following theorem.

Theorem 7 ([16,17,18]).

∀R, LP(R) = SA0(R) ≤ SA1(R) ≤ · · · ≤ SA|C|(R) = CD(R).

6 A Triplet Argument for the Sherali-Adams and
Quasi-additive Bounds

In this section, we introduce a general technique named a triplet argument for
giving a solution for the Sherali-Adams bound and the quasi-additive bound.
The technique is applicable for any relation. For the explanation, we look at the
3-bit majority function. A majority function MAJ2l+1 with 2l + 1 input bits
outputs 1 if the number of 1’s in the input bits is greater than or equal to l + 1
and 0 otherwise. Note that we know LP(RMAJ3) ≤ 4.5.
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Proposition 1. SA1(RMAJ3) ≥ 5 and QA(RMAJ3) ≥ 5.

Proof. We consider a communication matrix of the 3-bit majority function whose
rows and columns are restricted to minterms and maxterms, respectively. We
consider a triplet (c1, c2, c3) composed of 3 cells. Here, in the case of the 3-bit
majority function, we consider a triplet of 3 cells each of which has 3 indices.

We firstly assume Vc,r = 0 for any c and r and change assignments of Vc,r (for
each triplet sequentially in general case) without violating the second constraints
of the Sherali-Adams bound and the quasi-additive bound in the following way.
If a combinatorial rectangle r contains 2 cells of the triplet, e.g., c2 and c3, we
increment Vc1,r by −2δ for the remaining 1 cell. If a combinatorial rectangle r
contains 1 cell of the triplet, e.g., c1, we increment Vc2,r and Vc3,r by δ for the
remaining 2 cells. In the case of 3-bit majority function, we set δ = 1

6 for the
triplet. Then, it is easy to verify the changes of assignments do not violate a con-
straint

∑
c 
∈r1

Vc,r1 +
∑

c 
∈r2
Vc,r2 ≥ 0 for any 2 disjoint combinatorial rectangles

r1 and r2. We also have
∑

c 
∈r(Vc,r−Vc,r1−Vc,r2) ≤ 0 for any combinatorial rect-
angle r and its arbitrary partition into r1 and r2. Thus, all the second constraints
cannot be violated.

We give a weight − 1
3 for each cell in the triplet and a weight 1 for each cell

from the other 6 cells with 1 index. Then, we can also verify the assignments
satisfies all the first constraints of the quasi-additive bound and the Sherali-
Adams bound. As a consequence, we have the lower bound of 5. 


Combining the triplet argument explained in the above proof and the idea of [20],
we can prove the same lower bound L(MAJ2l+1) ≥ (l+1)2

1−ε(l) where ε(l) = l2(l+1)
6·(2l+1

l )
as that of [20] for the majority function by both of the first level of the Sherali-
Adams bound and the quasi-additive bound.

7 Conclusions

In this paper, we introduced the novel general techniques proving formula size
lower bounds, the Sherali-Adams bound and the quasi-additive bound, as ex-
tensions of the LP bound of Karchmer, Kushilevitz and Nisan [6]. In particular,
we proved that the quasi-additive bound can surpass the rectangle bound by
the cross argument. We also showed that the quasi-additive and Sherali-Adams
bounds can cover a main part of techniques discussed in the previous paper [20]
by the triplet argument.
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Mesh Deformation of Dynamic Smooth
Manifolds with Surface Correspondences
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Abstract. Maintaining a moving mesh of a deforming surface is widely
studied in various disciplines. However, difficulties arise with require-
ments of topology changes, homeomorphism between mesh and surface,
and guarantees of triangle quality. We propose a mesh deformation algo-
rithm to satisfy the above requirements. We employ the skin surface by
Edelsbrunner that approximates objects in fields like computer graph-
ics, molecular modeling and engineering. We complete the general de-
formation framework by introducing a new mesh point movement and
scheduling function to satisfy the requirements.

1 Introduction

Given a differentiable manifold F(t) in R3 that changes its shape, curvature and
topology with a parameter t ∈ [0..1] as time, this work develops an algorithm
to approximate F(t) with a deforming triangulation M(t) while maintaining a
homeomorphism to F(t). This algorithm guarantees triangle quality and surface
coordinate correspondence between M(t) and M(t + Δt). We work on general
deformation [6,10] (See Figure 1) and is considered as a generalization of and
“completion” of the previous work that is limited to only the growth model
[5,13].

Fig. 1. A general skin deformation into a mannequin skin model (12,684 spheres) from
a question mark skin model (7 spheres)

1.1 Motivation

Skin surface deformation, introduced by Edelsbrunner [12], is useful in various
fields such as computer graphics, molecular modeling and physical simulations
because of its five advantages. In computer graphics and animation, one object

P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 677–688, 2010.
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can deform to another by their skin representations [9]. We can even interpolate
more than two objects to perform shape synthesis by their skin models [4]. Apart
from the “virtual world”, realistic physical simulations for engineering purposes
employ deforming surfaces as boundaries of spatial domains that vary with time.
An example is molecular surface diffusion that moves each point on a surface
according to the normal velocity proportional to Laplacian of mean curvature of
the surface in protein folding processes [2,11]. Another example is modeling the
deforming boundaries in simulations such as the isosurface of a certain threshold
of temperature in a heat dynamic system, or the isosurface of the solidification
of liquid formed at the “freezing point”. For such deformation applications, the
skin surface deformation has five advantages over other surface representations
and deformations:

1. Automatic topology change handling. When a surface is deforming,
its topology changes when its components are split or merged, or when the
surface creates or destroys voids and tunnels. Controlling these changes are
not trivial with explicit surfaces [1]. Skin surface deformation addresses this
issue, and pre-schedules all topology change handling in the process of de-
formation. For example, in Figure 1, a creation of tunnel and a destruction
of void are automatically handled in the process of deformation.

2. Intuitive object representation and editing. On one hand, explicit sur-
faces are not suitable for topology changes. On the other hand, implicit sur-
faces face difficulties in local manipulation, namely, a local change in a small
part of the surface may cause the whole shape to change unexpectedly. How-
ever, small local changes can be performed on skin surfaces independently.
Moreover, skin surfaces are able to approximate objects within an Hausdorff
distance that is better than implicit surfaces [9].

3. Quality triangulation. The triangulation of the surface requires good tri-
angle quality to help numerical analysis in physical simulations and maintain
homeomorphism to the surface while deforming. Our previous works [5,8]
show that we can triangulate the skin surface with good quality triangles.
However, CGAL [17] (version 3.5) gives triangles with very small angles,
which leads to bad visualization and inaccurate computation (See Figure
3(b) for a comparison).

4. Point-wise surface correspondence. During morphing, every surface
point p(t) ∈ F(t) moves to a new position p(t + Δt) ∈ F(t + Δt) and
the pair p(t) and p(t + Δt) establishes correspondence for relating different
portions between the two surfaces F(t) and F(t + Δt). This relationship
provides point-wise surface correspondence between the same surface in dif-
ferent times during deformation, which is a crucial feature for computation
and visualization purposes in fields like medical imaging [16,18], animation
[14] (e.g. texture and bump mappings) and physical simulations [3] (e.g.
finite element analysis).

5. Efficiency Improvement. Shape deformation requires visually continuous
frames of meshes during morphing. Current static skin meshing algorithms
[6,8,10,15,17] build each intermediate frame from scratch. For example, in
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Figure 1, each construction of the intermediate frame requires more than five
minutes with any existing static skin mesh approach. We improve the skin
deformation algorithm so that each intermediate skin mesh is obtained from
the previous time frame. This improvement makes real time visualization of
skin deformation possible.

In this paper, we present a new approach of skin surface deformation which
generates intermediate skin meshes efficiently with point-wise correspondence.
During the deformation, we maintain the triangle quality of the skin mesh by
local modifications to the triangulations. All topology changes are scheduled and
therefore are handled automatically.

1.2 Problem Definition and Related Work

General skin surface deformation is desired. However, there is still no applications
that can handle the general skin deformation efficiently. All current algorithms
are not suitable for creating deforming meshes for real time visualization pur-
poses. Several algorithms have been proposed to create a good quality mesh of
a certain instance of a skin surface [6,8,10,15]. They are good algorithms but
not suitable for creating deformation mesh sequences. First, creating each frame
in a sequence individually is not fast enough for real time applications. Second,
there is no surface correspondence between each pair of consecutive frames of
meshes. The better idea is to modify an instance of the mesh in the deformation
sequence from the previous mesh instead of creating each frame individually.

The closest algorithm that adopts this approach is the Dynamic Skin Trian-
gulation (DST) [5,13], but it is only limited to the growth model. DST maintains
the triangle quality and topological correctness during a “deformation”. How-
ever, this deformation is limited to the growth model and the purpose is only
to construct the mesh of a certain skin surface by growing. This growth model
cannot handle the general deformation that has a totally different structure,
such as new additional types of mixed cells, new types of topology changes and
new ways of surface point movement, etc. Although we can adopt the overall
idea of the algorithm in DST to our problem, new designs and reconsiderations
are needed to adapt to the new intermediate complex that is more sophisticated
than the underlying structure of the growth model.

1.3 Approach and Contribution

The overall approach is similar to DST [5,13]. However, more sophisticated in-
termediate complex, surface point movements and scheduling are introduced.
We provide solutions to these new issues and complete the general skin surface
deformation problem.

Approach. We maintain the triangle quality of the mesh at any time t to a
certain quality that guarantees homeomorphism between the mesh and the skin
surface. This is described in Section 2.4. Assuming at time t, a triangle τ is
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in good quality. We schedule a time t + Δt in the future into a priority queue
such that τ may fail the quality check but is not beyond repair. Checks and
refinements (if necessary) are performed at time t + Δt, and all the involved
triangles are rescheduled again after refinement. At the same time, topological
change operations are also scheduled into the priority queue to maintain the
mesh.

New Issues. Firstly, the nature of the mixed cells in the general deformation is
more complex than in the growth model. The entire space is partitioned into a
finite number of convex polytopes called mixed cells and the intersection of each
of them and the skin surface is a portion of a quadratic surface. In the growth
model, there are only four types of mixed cells and they are fixed in the space.
However, there are seven types of mixed cells in the general deformation and
they are moving and deforming. Thus, computing the trajectory of each surface
point within a mixed cell and the escaping time when it transfers from one mixed
cell to another are the new issues that have to be reconsidered.

Secondly, movement of these new mixed cells make trajectories of surface
points complicated. In the growth model, if we follow the surface normals, each
surface point within a mixed cell moves in a straight line or a quadratic curve
and this makes the prediction of the triangle distortion possible. The mixed
cells in the general deformation deform and the surface points do not move in
such simple manners. Following surface normals is not an easy task for general
deformation and we propose a new way of surface point movement. We claim
that this new movement improves the efficiency of DST.

Thirdly, the topology changes are different. In the growth model, there is at
most one topology change within one mixed cell but there are at most two in
the general deformation.

Contribution. Our algorithm solves the general skin surface deformation prob-
lem based on the DST with new remedies. New types of mixed cell and their
transformations are addressed. New surface point movement is proposed to deal
with more complicated surface movement. New topology changes are handled
by scheduling. In overall, our algorithm improves the efficiency in generating
intermediate skin meshes.

2 Background

In this section, we introduce the necessary background for the skin [12], the
intermediate Voronoi complexes during deformation [4], the quality criteria of
the mesh [5], and the mesh deformation algorithm for growth model [13]. This
section serves the purpose of stating notations for later sections. For more details,
readers may refer to the specific references.

2.1 Delaunay and Voronoi Complexes

A weighted point in Rd can be written as bi = (zi, wi) ∈ Rd × R, where zi ∈ Rd

is the position and wi ∈ R is the weight. Given a finite set B = {b1, b2, ..., bn},
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z(B) ⊂ Rd is denoted as the set of positions of the weighted points in B. The
weighted distance of a point x ∈ Rd from a weighted point bi is defined as
πbi(x) = ‖x− zi‖2 − wi. The Voronoi region νi for each weighted point bi ∈ B
is defined as,

νi = {x ∈ Rd | πbi(x) ≤ πbj (x), bj ∈ B}.

For a set of weighted points X ⊆ B, the Voronoi cell of X is defined as νX =⋂
bi∈X νi. The collection of all the non-empty Voronoi cells is called the Voronoi

complex of B, denoted as, VB . For each νX ∈ VB, its corresponding Delaunay
cell, δX , is the convex hull of the set of centers of X , namely, conv (z(X)). The
collection of all the Delaunay cells is called the Delaunay complex of B, denoted
as DB. The Delaunay complex is simplicial under the following general position
assumption in Rd, ∀νX ∈ VB0 , card(X) = dim(δX) + 1.

2.2 Skin

A skin surface is specified by a set of weighted points B = {bi ∈ Rd × R | i =
1, 2, ..., n}. First, three operations on weighted points are defined in the sphere
algebra. For bi, bj ∈ B and γ ∈ R, the addition, scalar multiplication and square
root of weighted points are defined as,

bi + bj = (zi + zj , wi + wj + 2〈zi, zj〉),
γbi = (γzi, γwi + (γ2 − γ)||zi||2),√
bi = (zi, wi/2),

where 〈zi, zj〉 is the dot product of zi and zj . The convex hull of B is defined as

conv (B) =
{∑

λibi |
∑

λi = 1 and λi ≥ 0, i = 1, ..., n
}

.

the skin surface is the boundary of the union of all shrunken balls in conv (B)
[5]. Formally,

skin (B) = ∂

(⋃{√
b̂ | b̂ ∈ conv (B)

})
.

Skin Decomposition. The skin of can be decomposed by mixed cells. A mixed
cell μX is the Minkowski sum of a Delaunay cell and its corresponding Voronoi
cell, formally μX = (δX + νX) /2. With card(X) = 1, 2, 3, 4, the four types of
mixed cells are convex polyhedrons, prisms, triangular prisms and tetrahedra
respectively. The center and size of a mixed cell are defined as

zX = aff (δX) ∩ aff (νX), and

wX = wi − ‖zXzi‖2.

where bi = (zi, wi) is any weighted point in X . Indeed, wX is the negative square
radius of the ball orthogonal to X .
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Within each mixed cell μX , skin (B) ∩ μX is a quadratic surface. In R3, skin
patches are pieces of spheres and hyperboloids of revolution, which can be ex-
pressed in standard forms

x2
1 + x2

2 + x2
3 = R2, (1)

x2
1 + x2

2 − x2
3 = ±R2, (2)

after the translation of zX to the origin and the oriented axis to x3-axis if
they are hyperboloid patches. In Equation (2), the plus sign on the right hand
side gives the one-sheeted hyperboloid and the minus sign gives the two-sheeted
hyperboloid.

2.3 General Skin Deformation and Intermediate Complexes

The deformation starts with an initial shape, ends with a goal shape and gener-
ates frames of intermediate shapes in between. We first discuss the definition and
the generation of intermediate shapes and then state the theorem of invariance
of the intermediate Voronoi complexes [4].

Let B0, B1 be the weighted point sets of initial shape skin (B0) and goal shape
skin (B1) respectively. Denote B = {B0, B1}. The intermediate weighted points
set at time t ∈ [0, 1] is defined as,

B(t) = {bij(t) = (1 − t)bi + tbj | bi ∈ B0, bj ∈ B1}, for t ∈ [0, 1].

The intermediate shape is defined as skin (B(t)) and it deforms smoothly as
the changing of t. Here, card(B) = 2 but B can be extended to B′ such that
card(B′) > 2 and the intermediate shapes become the skin of convex combina-
tions of B′. The intermediate shape can be further extended to be the skin of
the affine combination of B′. However, all the extensions are based on the case
of card(B) = 2 and we only consider this case in this paper.

The intermediate Voronoi complexes V is defined as the Voronoi complex of
B(t) and is required for the generation of skin (B(t)). Chen and Cheng [4] prove
that all intermediate surfaces share the same intermediate Voronoi complex V
which is the superimposing of all Voronoi complexes of B. Let VB0 , VB1 be the
Voronoi complexes of B0 and B1 respectively, we have

V = {νXY = νX ∩ νY | νX ∈ VB0 , νY ∈ VB1}.

Each combination of various cardinalities of X and Y produces a type of mixed
cells.

2.4 Dynamic Skin Triangulation

The triangulation of the skin surface guarantees homeomorphism and good qual-
ity of triangles if the following Conditions [U] and [L] are satisfied when the mesh
is deforming. At any point x on the skin surface, denote κ(x) as the maximum
curvature at x and the local length scale at x as �(x) = 1/κ(x). For an edge ab,



Mesh Deformation of Dynamic Smooth Manifolds 683

let Rab = ‖a− b‖/2 be the half length, and for a triangle abc, let Rabc be the
circumcircle radius of the triangle. The mesh is homeomorphic to the surface if
it satisfies the Lower bound Condition [L] and the Upper bound Condition [U]
below. Let �ab be the maximum of �(a) and �(b), and �abc be the minimum of
�(a), �(b) and �(c). Then the two conditions are,

[L] Rab/�ab > C/Q for every edge ab, and
[U] Rabc/�abc < CQ for every triangle abc,

where C and Q are positive constants chosen empirically. The triangle quality
is guaranteed by the minimum angle of the triangles, namely sin−1 1

Q2 . For C =
0.08 and Q = 1.65, the minimal angle of the mesh is proven to be larger than
21.54◦ [5].

During the deformation, mesh refinement and maintenance operations are
scheduled with a priority queue from time to time. The two basic operations are
edge contraction and point insertion. These two operations fix an edge or a tri-
angle that violates the two Conditions to maintain quality and homeomorphism.

3 Surface Deformation

In this section, we describe the trajectory of each point on the skin surface
during the deformation within and across mixed cells. First, we present the
deformation of each mixed cell. Second, we describe the trajectory of a point
within such a deforming mixed cell in a local coordinate system. Finally, we
compute the escaping time when a point moves across one mixed cell to another.
This happens when the point hits the boundary of its deforming mixed cell.

3.1 Mixed Cell Deformation

The skin patch within a mixed cell μX(t) is determined by the position, the
size and the shape of μX(t). The position and size are determined by the center
zX(t) and the size wX(t) and the later defines R =

√
wX(t)/2 in Equations (1)

and (2).
We first compute zX(t) that is the intersection of the affine hulls of νX(t) and

δX(t). Because νX(t) is unchanged and all the centers of X(t) moves linearly
according to t, δX(t) moves linearly and, thus, the intersection zX(t) moves
linearly along νX(t) also. We first compute the two position zX(0) and zX(1),
and we have

zX(t) = (1− t) · zX(0) + t · zX(1), (3)
wX(t) = wi(t)− ‖zi(t)zX(t)‖2, (4)

where bi(t) = (zi(t), wi(t)) ∈ X(t).
For the shape of μX(t), it is a convex polytope formed by the intersection of

finitely many halfspaces. Each halfspace HXY (t) is bounded by a plane hXY (t)
that separates the two mixed cells μX(t) and μY (t) with Y (t) ⊂ B(t) and δY (t)
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is a face or coface of δX(t). Namely, the symmetric difference X(t) & Y (t) is a
singleton set. Formally,

HXY (t) = {x ∈ R3 | 〈x, nXY (t)〉 ≤ 〈mXY (t), nXY (t)〉},

where the normal of hXY (t) and a point on hXY (t) are

nXY (t) = zY (t)− zX(t),

mXY (t) =
zX(t) + zY (t)

2
.

3.2 Computing the Trajectory for a Sample Point

We employ a new way of moving the surface vertices on the mesh that is more ef-
ficient and “intuitive” than the previous work that moves vertices following their
normal directions [5,13]. Firstly, the previous method creates a lot of “stretch-
ing” or “compressing” near the tips of two-sheet hyperboloids and the waists
of one-sheet hyperboloids. The concentration of triangle modification (creation
and deletion) at these areas leads to unreasonable or undesirable texture distor-
tion in animation or numerical instability in computations. Secondly, all surface
triangles in Type 1 and 2 mixed cells require frequent checks on the triangles
and edges to ensure their qualities to ensure the homeomorphism between the
triangulation and the skin surface. Lastly but the most importantly, the previous
work has a simpler movement of surface vertices because the deformation is lim-
ited to the growth model and mixed cells do not move nor deform. This makes
the scheduling of checks and updates is easier than our general deformation in
this paper. Therefore, we propose a new type of vertex movement in order to
improve and make it possible for general deformation.

We decide to move vertices only towards and away from their corresponding
mixed cell centers to improve efficiency. According to the local coordinate system
of a mixed cell, its surface patch within at time t1 is a scaling with a factor of√

wX(t1)/wX(t0) of the patch at time t0. Therefore, surface vertices are only
shrunken towards their mixed cell centers with that factor. Given a surface
vertex p(t0) in a mixed cell μX(t0) at time t0, p(t) moves with a scaling factor
within its mixed cell and a translation of its mixed cell center. Using the notation
p′(t) = p(t)− zX(t) as the local coordinates of p(t) in its mixed cell, the location
of p(t) is

p(t) = zX(t) +

√
wX(t)
wX(t0)

p′(t0). (5)

Note that every point on the surface is moving along a straight line within a
mixed cell locally and the mixed cell is translating in a linear manner. However,
it does not cause the point to move on a straight line after the composition of
these two movements above. Thus, we still need to handle and compute the time
when a point reaches the boundary of its mixed cell and enters another one. We
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call this moment the escaping time and it happens when a surface vertex p(t) in
μX(t) transfers to another nearby mixed cell μY (t) when p(t) is on the boundary
of HXY (t).

There are two superior benefits in this new movement scheme over the previous
work in DST where surface points move along their normal direction. First, it is
faster and simpler to move a point in a straight line manner within a mixed cell.
In previous work, every point is moving along a hyperbola and it requires the
solving of a quartic equation to compute a new location of the point. Secondly,
an element (a triangle or an edge) in a single mixed cell does not need checks
and updates on its quality because they are only under scaling according to
Conditions [U] and [L]. Thus, only the elements that are across more than one
mixed cell requires scheduling and it greatly reduces the priority queue size. By
experimental results, the triangles that span a few mixed cells only occupy less
than about 8% of the total triangle population.

4 Handling Topology Changes

The topology changes in the general deformation model is different from the
growth model in DST because there may be at most two changes in each mixed
cell. In the former case, there is at most one topology change for each patch in a
mixed cell during the growth but it is different in the case of general deformation
while each mixed cell size wX(t) is a quadratic function of t. Moreover, we
schedule a topology changing operation only if the mixed cell center is in the
mixed cell. Note that both the center and the cell are moving and deforming,
which is different from that in the growth model. This indicates that there is a
possibility that the center is not in the mixed cell when wX(t) = 0.

In order to preserve the homeomorphism between the mesh and the skin,
metamorphosis are scheduled around the time of topology changes. There are
two types of topology changes, namely,

– creating or destroying a sphere,
– changing from a one-sheet to two-sheet hyperboloid or vice versa.

These topology changes in a mixed cell occur if and only if the size of a mixed
cell reaches a zero value and that is the time to schedule metamorphosis, namely,
wX(t′) = 0. However, we use a special sampling within a hot sphere [5] at the time
slightly before and after the time t′. The triangulation within the hot sphere is
specially restructured and controlled from the time t′−εX to t′+εX in μX(t) for
a small value of εX . For the details of how the mesh changes by metamorphosis,
please refer to the dynamic skin triangulation of the growth model [5].

5 Experimental Results

Experimental results show that our skin deformation algorithm is much faster
than existing static skin mesh algorithms in terms of generating each frame
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of intermediate skin mesh model with triangle quality guaranteed. In Table 1,
we show the time taken in three different sets of skin models deformations: a
mannequin skin model to a question mark skin model; a question mark skin
model to a woman skin model; a woman skin model to a fish skin model. All
these experiments are performed with Intel Duo Core 2.33GHz and 4GB RAM.
In order to show smooth deformation processes, we generate one thousand frames
(intermediate skin model meshes) for each example. Therefore, if a short video
clip requires 24 frames per second, we are producing a deformation process of
approximately one minute. We compare our general skin deformation algorithm
(GSDA) with a modern computational geometry library CGAL [17] (version
3.5) and the static skin section of dynamic skin deformation algorithm (DST)
developed by Cheng [5,13].

Fig. 2. A zoom-in snapshot of the general deformation between a mannequin skin
model and a question mark skin model, triangles are shown in wireframe

In the first experiment (Figure 1), a mannequin skin mesh model (built by
12, 684 spheres) deforms to a question mark (7 spheres). In Figure 2 we show
the details of our triangulation quality. In Table 1, we show that our GSDA
is hundreds times faster than both static skin mesh algorithms (CGAL-3.5 and
DST). These static skin algorithms are slow because they generate each interme-
diate skin mesh model from scratch. On the other hand, they can be faster if the
skin models are built by fewer spheres. In the examples of Question Mark.skn
(7 spheres) deforming to Woman.skn (8 Spheres) and Woman.skn deforming to
Fish.skn(8 spheres), our algorithm is only about two times faster than CGAL-3.5.
However, our program produces meshes with better triangle quality as compared
to CGAL-3.5 (See Figure 3(b)).

The faster performance of GSDA is also due to the new way of linear vertex
movement. Time is saved when we only test the triangles that cross more than
one mixed cell. Figure 3(a) shows the minority of triangles that are being tested
and refined during the time interval of two frames. Note that the total number
of triangles being refined is constant for each deformation no matter how many
frames are generated in the whole deformation process.
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Table 1. Average time taken by different algorithms for different examples. Each
deformation process runs with 1,000 frames.

Experiments GSDA CGAL-3.5 DST

Mannequin.skn ↔ Question Mark.skn 1.748 sec 323.8 sec 695.0 sec

Question Mark.skn ↔ Woman.skn 0.708 sec 1.047 sec 2.025 sec

Woman.skn ↔ Fish.skn 0.615 sec 1.025 sec 1.875 sec

(a) (b)

Fig. 3. (a) we show frame 344 and 345 during the deformation. The zoom-in snap
shots show triangle and vertex correspondences. The red regions in frame 345 are
triangles being refined from frame 344. (b) we show A comparison of the triangle
quality produced by our algorithm and CGAL-3.5. Our algorithm produces better
quality triangles.

6 Conclusion

With the ability to approximate any object [9] and the speed boost for the de-
formation [4], we give an algorithm that allows automatic free form deformation
between two objects or even mixing several objects into one. This enhancement
does not only make shape synthesis possible in computer animation, engineering
and biogeometry applications, but also facilitate shapes manipulations such as
shape space searching, simplification or compression. In terms of performance,
our algorithm performs the best when the time difference between two frames
of deformation are small. The surface correspondence, guaranteed triangle qual-
ity and homeomorphism enable robust computation for engineering simulations.
As a by-product, this algorithm can be used to replace the dynamic skin tri-
angulation to construct a skin mesh. Namely, we can construct a skin mesh by
deforming from empty into the desired skin mesh.

Future research includes controlling the deformation locally, for example, re-
ducing the topology changes during the deformation so that they can be further
controlled. The other interesting area is to investigate new types of possible ver-
tex movement scheme such as following orthogonal and parallel directions with
the rotational axis of the hyperboloids to enhance performance and quality.
Another exciting challenge is to extend our algorithm to construct a deform-
ing volume tetrahedral mesh for physical simulation purposes. The tetrahedral
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refinement in a deforming body is more difficult than the surface mesh. A pre-
vious work shows that a good surface mesh of the boundary of an object helps
the construction of the volumetric mesh [7].
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Counting Dependent and Independent Strings
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Abstract. We derive quantitative results regarding sets of n-bit strings
that have different dependency or independency properties. Let C(x) be
the Kolmogorov complexity of the string x. A string y has α dependency
with a string x if C(y) − C(y | x) ≥ α. A set of strings {x1, . . . , xt} is
pairwise α-independent if for all i �= j, C(xi) − C(xi | xj) ≤ α. A tuple
of strings (x1, . . . , xt) is mutually α-independent if C(xπ(1) . . . xπ(t)) ≥
C(x1) + . . . + C(xt) − α, for every permutation π of [t]. We show that:

– For every n-bit string x with complexity C(x) ≥ α + 7 log n, the
set of n-bit strings that have α dependency with x has size at least
(1/poly(n))2n−α. In case α is computable from n and C(x) ≥ α +
12 log n, the size of same set is at least (1/C)2n−α − poly(n)2α, for
some positive constant C.

– There exists a set of n-bit strings A of size poly(n)2α such that any
n-bit string has α-dependency with some string in A.

– If the set of n-bit strings {x1, . . . , xt} is pairwise α-independent, then
t ≤ poly(n)2α. This bound is tight within a poly(n) factor, because,
for every n, there exists a set of n-bit strings {x1, . . . , xt} that is
pairwise α-dependent with t = (1/poly(n)) · 2α (for all α ≥ 5 log n).

– If the tuple of n-bit strings (x1, . . . , xt) is mutually α-independent,
then t ≤ poly(n)2α (for all α ≥ 7 log n + 6).

1 Introduction

A fact common to many mathematical settings is that in a sufficiently large
set some relationship emerges among its elements. Generically, these are called
Ramsey-type results. We list just a few examples: any n + 1 vectors in an n-
dimensional vector space must be dependent; for every k and sufficiently large
n, any subset of [n] of constant density must have k elements in arithmetic
progression; any set of 5 points in the plane must contain 4 points that form
a convex polygon. All these results show that in a sufficiently large set, some
attribute of one element is determined by the other elements.

We present in this paper a manifestation of this phenomenon in the very gen-
eral framework of algorithmic information theory. We show that in a sufficiently
large set some form of algorithmical dependency among its elements must exist.
Informally speaking, poly(n) · 2α binary strings of length n must share at least
� http://triton.towson.edu/~mzimand
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α bits of information. For one interpretation of “share”, we also show that this
bound is tight within a poly(n) factor.

Central to our investigation are the notions of information in a string and the
derived notion of dependency between strings. The information in a string x is
captured by its Kolmogorov complexity C(x). A string y has α-dependency with
string x if C(y)−C(y | x) ≥ α. The expression C(y)−C(y | x), denoted usually
more concisely as I(x : y), represents the quantity of information in x about y
and is a key concept in information theory. It is known that I(x : y) = I(y :
x) ± O(log n) (Symmetry of Information Theorem [20]), where n is the length
of the longer between the strings x and y, and therefore I(x : y) is also called
the mutual information of x and y. For any n-bit string x and positive integer
α, we are interested in estimating the size of the set Ax,α of n-bit strings y such
that C(y) − C(y | x) ≥ α. One can see by a standard counting argument that
|Ax,α| ≤ 2n−α+c for some constant c. Regarding a lower bound for |Ax,α|, it is
easy to see that if C(x) ( α, then Ax,α is empty (intuitively, in order for x to
have α bits of information about y, it needs to have α bits of information to
start with, regardless of y). The lower bound that we establish holds for any
string having Kolmogorov complexity 6 α.1 For such strings x, we show that
|Ax,α| ≥ (1/poly(n))2n−α. A related set is Bx,α consisting of the n-bit strings y
with the property C(y | n)−C(y | x) ≥ α. This is the set of n-bit strings about
which x has α bits of information besides the length. Note that Bx,α ⊆ Ax,α.
The same observations regarding an upper bound for |Bx,α| and the emptiness
of Bx,α in case C(x) ( α remain valid. For x with C(x) 6 α and α computable
from n, we show the lower bound |Bx,α| ≥ (1/C) · 2n−α − poly(n) · 2α, for some
positive constant C.

We turn to the Ramsey-type results announced above. A set of n-bit strings
{x1, . . . , xt} is pairwise α-independent if for all i �= j, C(xi) − C(xi | xj) ≤ α.
Intuitively, this means that any two strings in the set have in common at most
α bits of information. For the notion of mutual independence we propose the
following definition (but other variants are conceivable). The tuple of n-bit
strings (x1, . . . , xt) ∈ ({0, 1}n)t is mutually α-independent if C(xπ(1) . . . xπ(t)) ≥
C(x1) + . . . + C(xt) − α, for every permutation π of [t]. Intuitively this means
that x1, . . . , xt share at most α bits of information. We show that if {x1, . . . , xt}
is pairwise α-independent or if (x1, . . . , xt) is mutually α-independent then t ≤
poly(n)2α. The bound in the pairwise independent case is tight within a poly-
nomial factor.

We also show that there exists a set B of size poly(n)2α that “α-covers” the
entire set of n-bit strings, in the sense that for each n-bit string y there exists a
string x in B that has α bits of information about y (i.e., y is in Ax,α).

The main technical novelty of this paper is the technique used to lower bound
the size of Bx,α = {y ∈ {0, 1}n | C(y | n) − C(y | x) ≥ α}, which should be
contrasted with a known and simple approach. This “normal” and simple ap-
proach is best illustrated when x is random. In this case, the prefix x(1 : α) of

1 We use notation poly(n) for nO(1) and ≈, � and � to denote that the respective
equality or inequality holds with an error of at most O(log n).
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x of length α is also random and, therefore, if we take z to be an (n − α) long
string that is random conditioned by x(1 : α), then C(zx(1 : α)) = n−O(log n),
C(zx(1 : α) | x(1 : α)) = n − α − O(log n), and thus, zx(1 : α) ∈ Bx,α+O(log n).
There are approximately 2n−α strings z as above, and this leads to a lower bound
of 2n−α for |Bx,α+O(log n)|, which implies a lower bound of (1/poly(n))2n−α for
|Bx,α|. This method is so basic and natural that it looks hard to beat. How-
ever, using properties of Kolmogorov complexity extractors, we derive a better
lower bound for |Bx,α| that does not have the slack of 1/poly(n), in case α
is computable from n (even if α is not computable from n, the new method
gives a tighter estimation than the above “normal” method). A Kolmogorov
complexity extractor is a function that starting with several strings that have
Kolmogorov complexity relatively small compared to their lengths, computes a
string that has Kolmogorov complexity almost close to its length. A related no-
tion, namely multi-source randomness extractors, has been studied extensively in
computational complexity (see[3,1,2,12,11]). Hitchcock, Pavan and Vinodchan-
dran [8] have shown that Kolmogorov complexity extractors are equivalent to
a type of functions that are close to being multisource randomness extractors.
Fortnow, Hitchcock, Pavan, Vinodchandran and Wang [7] have constructed a
polynomial-time Kolmogorov complexity extractor based on the multi-source
randomness constractor of Barak, Impagliazzo and Wigderson [1]. The author
has constructed Kolmogorov complexity extractors for other settings, such as ex-
tracting from infinite binary sequences [18,16] or from binary strings that have
a bounded degree of dependence [16,19,17]. The latter type of Kolmogorov com-
plexity extractors is relevant for this paper. Here we modify slightly an extractor
E from [17], which, on inputs two n-bit strings x and y that have Kolmogorov
complexity at least s and dependency at most α, constructs an m-bit string z
with m ≈ s and Kolmogorov complexity equal to m−α−O(1) even conditioned
by any one of the input strings. Let us call a pair of strings x and y with the
above properties as good-for-extraction. We fix x ∈ {0, 1}n with C(x) ≥ s. Let z
be the most popular image of the function E restricted to {x}×{0, 1}n. Because
it is distinguishable from all other strings, given x, z can be described with only
O(1) bits (we only need a description of the function E and of the input length).
Choosing m just slightly larger than α we arrange that C(z | x) < m−α−O(1)
. This implies that all the preimages of z under E restricted as above are bad-
for-extraction. Since the size of E−1(z) ∩ ({x} × {0, 1}n) is at least 2n−m, we
see that at least 2n−m pairs (x, y) are bad-for-extraction. A pair of strings (x, y)
is bad-for-extraction if either y has Kolmogorov complexity below s (and it is
easy to find an upper bound on the number of such strings), or if y ∈ Bx,α. This
allows us to find the lower bound for the size of Bx,α.

2 Preliminaries

We work over the binary alphabet {0, 1}; N is the set of natural numbers. A
string x is an element of {0, 1}∗; |x| denotes its length; {0, 1}n denotes the set of
strings of length n; |A| denotes the cardinality of a finite set A; for n ∈ N, [n] de-
notes the set {1, 2, . . . , n}. We recall the basics of (plain) Kolmogorov complexity
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(for an extensive coverage, the reader should consult one of the monographs by
Calude [4], Li and Vitányi [10], or Downey and Hirschfeldt [6]; for a good and
concise introduction, see Shen’s lecture notes [13]). Let M be a standard Turing
machine. For any string x, define the (plain) Kolmogorov complexity of x with
respect to M , as CM (x) = min{|p| | M(p) = x}. There is a universal Turing
machine U such that for every machine M there is a constant c such that for
all x, CU (x) ≤ CM (x) + c. We fix such a universal machine U and dropping
the subscript, we let C(x) denote the Kolmogorov complexity of x with respect
to U . We also use the concept of conditional Kolmogorov complexity. Here the
underlying machine is a Turing machine that in addition to the read/work tape
which in the initial state contains the input p, has a second tape containing
initially a string y, which is called the conditioning information. Given such a
machine M , we define the Kolmogorov complexity of x conditioned by y with
respect to M as CM (x | y) = min{|p| | M(p, y) = x}. Similarly to the above,
there exist universal machines of this type and they satisfy the relation similar
to the above one, but for conditional complexity. We fix such a universal ma-
chine U , and dropping the subscript U , we let C(x | y) denote the Kolmogorov
complexity of x conditioned by y with respect to U .

There exists a constant cU such that for all strings x, C(x) ≤ |x|+ cU . Strings
x1, x2, . . . , xk can be encoded in a self-delimiting way (i.e., an encoding from
which each string can be retrieved) using |x1|+ |x2|+ . . .+ |xk|+2 log |x2|+ . . .+
2 log |xk|+O(k) bits. For example, x1 and x2 can be encoded as (bin(|x2|)01x1x2,
where bin(n) is the binary encoding of the natural number n and, for a string
u = u1 . . . um, u is the string u1u1 . . . umum (i.e., the string u with its bits
doubled).

Given a string x and its Kolmogorov complexity C(x), one can effectively
enumerate all descriptions y of x of length C(x), i.e., the set {y ∈ {0, 1}C(x) |
U(y) = x}. We denote x∗ the first string in this enumeration. Note that C(x)−
O(1) ≤ C(x∗) ≤ |x∗|+ O(1) = C(x) + O(1).

The Symmetry of Information Theorem [20] states that for any two strings x
and y,

(a) C(xy) ≤ C(y) + C(x | y) + 2 log C(y) + O(1).

(b) C(xy) ≥ C(x) + C(y | x)− 2 log C(xy)− 4 log log C(xy) −O(1).

(c) If |x| = |y| = n, C(y)− C(y | x) ≥ C(x) − C(x | y)− 5 logn.

(The proof of this variant follows the standard technique and is available in the
full version of this paper.)

As discussed in the Introduction, our main focus is on sets of strings having
certain dependency or independency properties. For convenience, we restate here
the main definitions.

Definition 1. The string y has α-dependency (where α ∈ N) with the string x
if C(y)− C(y | x) ≥ α or if x coincides with y.

We have included the case “x coincides with y” to make a string dependent with
itself even in case it has low Kolmogorov complexity.



Counting Dependent and Independent Strings 693

Definition 2. The strings x1, . . . , xt are pairwise α-independent if for all i �= j,
C(xi)− C(xi | xj) ≤ α.

Definition 3. The tuple of strings (x1, . . . , xt) is mutually α-independent (where
α ∈ N) if C(xπ(1)xπ(2) . . . xπ(t)) ≥ C(x1) + C(x2) + . . . + C(xt) − α, for every
permutation π of [t].

3 Strings Dependent with a Given String

Given a string x ∈ {0, 1}n, and α ∈ N, how many strings have dependency with
x at least α? That is we are interested in estimating the size of the set

Ax,α = {y ∈ {0, 1}n | C(y)− C(y | x) ≥ α}.

This is the set of strings about which, roughly speaking, x has at least α bits of
information. A related set is

Bx,α = {y ∈ {0, 1}n | C(y | n)− C(y | x) ≥ α},

consisting of the n-bit strings about which x provides α bits of information
besides the length n. Clearly, Bx,α ⊆ Ax,α, and thus an upper bound for |Ax,α|
also holds for |Bx,α|, and a lower bound for |Bx,α| also holds for |Ax,α|.

We show that for some polynomial p and for some constant C, for all x and
α except some special values,

(1/p(n)) · 2n−α ≤ |Ax,α| ≤ C2n−α,

and, in case α(n) is computable from n,

(1/C) · 2n−α − p(n)2α ≤ |Bx,α| ≤ C2n−α,

The upper bounds for the sizes of Ax,α and Bx,α can be readily derived. Observe
that the set Ax,α is included in {y ∈ {0, 1}n | C(y | x) < n − α + c} for some
constant c, and therefore

|Ax,α| ≤ C · 2n−α,

for C = 2c.
We move to finding a lower bound for the size of Ax,α. A first observation

is that for Ax,α to be non-empty, it is needed that C(x) 6 α. Indeed, it is
immediate to observe that for any strings x and y of length n,

C(y) ≤ C(x) + C(y | x) + 2 log C(x) + O(1) ≤ C(x) + C(y | x) + 2 logn + O(1),

and thus, if C(y) − C(y | x) ≥ α, then C(x) ≥ α − 2 logn − O(1). Intuitively,
if the information in x is close to α, not too many strings can be α-dependent
with it.

We provide a lower bound for |Ax,α|, for every string x with C(x) ≥ α+7 log n.
The proof uses the basic ”normal” approach presented in the Introduction. To
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simplify the discussion, suppose C(x) = α. Then if we take a string z of length
n− α that is random conditioned by x∗, it holds that C(x∗z) ≈ n and C(x∗z |
x∗) ≈ n−α. Thus, C(x∗z)−C(x∗z | x∗) 6 α. Note that there are approximately
2n−α such strings x∗z. Since x∗ can be obtained from x and C(x), we can replace
x∗ by x in the conditioning at a small price. We obtain approximately 2n−α

strings in Ax,α.

Theorem 1. For every natural number n, for every natural number α and for
every x ∈ {0, 1}n such that C(x) ≥ α + 7 logn,

|Ax,α| ≥
1

2n7 2n−α,

provided n is large enough.

Proof. Let k = C(x) and let β = α + 7 logn. Let x∗ be the smallest description
of x as described in the Preliminaries. Let x∗

β be the prefix of x∗ of length β.
Since x∗ is described by x∗

β and by its suffix of length k − β, C(x∗) ≤ C(x∗
β) +

(k − β) + 2 logC(x∗
β) + O(1) and, thus

C(x∗
β) ≥ C(x∗)− (k − β)− 2 log C(x∗

β)−O(1)
≥ (k −O(1)) − (k − β)− 2 log C(x∗

β)−O(1)
≥ β − 2 log β −O(1).

The set B = {z ∈ {0, 1}n−β | C(z | x∗
β) ≥ n−β−1} has size at least (1/2) ·2n−β

(using a standard counting argument). Consider a string y ∈ {0, 1}n of the from
y = x∗

βz with z ∈ B. There are at least (1/2) · 2n−β such strings.
By symmetry of information,

C(y) = C(x∗
βz) ≥ C(x∗

β) + C(z | x∗
β)− (2 log n + 4 log log n + O(1))

≥ (β − 2 logβ) + (n− β − 1)− (2 log n + 4 log log n + O(1))
≥ n− (4 log n + 4 log log n + O(1)) ≥ n− 5 logn.

On the other hand, C(y | x∗
β) = C(x∗

βz | x∗
β) ≤ C(z) + O(1) ≤ (n − β) + O(1).

Note that
C(y | x) ≤ C(y | x∗

β) + 2 logn + 4 log log n + O(1),

because one can effectively construct x∗
β from x, k and β. Therefore,

C(y | x) ≤ (n− β) + 2 logn + 4 log log n + O(1),

and thus

C(y)− C(y | x) ≥ β − (6 log n + 8 log log n + O(1)) ≥ β − 7 logn.

So, y ∈ Ax,β−7 log n = Ax,α. Since this holds for all the strings y mentioned
above, it follows that |Ax,α| ≥ (1/2)2n−β = (1/(2n7)) · 2n−α.

The lower bound for |Bx,α| is obtained using a technique based on Kolmogorov
complexity extractors, as explained in the Introduction. We use the following
theorem which can be obtained by a simple modification of a result from [17].
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Theorem 2. For any computable functions s(n), m(n) andα(n)with n≥s(n)≥
α(n) + 7 logn and m(n) ≤ s(n)− 7 logn, there exists a computable ensemble of
functions E : {0, 1}n × {0, 1}n → {0, 1}m(n) such that for all x and y in {0, 1}n

– if C(x) ≥ s(n), C(y | n) ≥ s(n) and C(y | n)− C(y | x) ≤ α(n)

– then C(E(x, y) | x) ≥ m(n)− α(n)− O(1).

Theorem 3. Let α(n) be a computable function. For every sufficiently large
natural number n, for every x ∈ {0, 1}n such that C(x) ≥ α(n) + 8 logn,

|Bx,α(n)| ≥
1
C
· 2n−α(n) − n82α(n),

for some positive constant C.

Proof. Let m = α(n) + c and s = α(n) + 8 log n, where c is a constant that
will be specified later. Consider E : {0, 1}n×{0, 1}n → {0, 1}m the Kolmogorov
extractor given by Theorem 2 for these parameters. Let z ∈ {0, 1}m be the string
that has the largest number of E preimages in the set {x} × {0, 1}n. Note that,
for some constant c1, C(z | x) ≤ c1, because, given x, z can be constructed
from a table of E, which at its turn can be constructed from n which is given
because it is the length of x. On the other hand, if y ∈ {0, 1}n is a string with
C(y | n) ≥ s and C(y | n) − C(y | x) ≤ α(n), then Theorem 2 guarantees
that, for some constant c2, C(E(x, y) | x) ≥ m − α(n) − c2 = c − c2 > c1, for
an appropriate c. Therefore all the strings y such that E(x, y) = z are bad for
extraction, i.e., they belong to the union of {y ∈ {0, 1}n | C(y | n) < s} and
{y ∈ {0, 1}n | C(y | n) ≥ s and C(y | n)−C(y | x) ≥ α}. Since there are at least
2n−m such strings y and the first set above has less than 2s elements, it follows
that

|{y ∈ {0, 1}n | C(y | n)−C(y | x) ≥ α(n)}| ≥ 2n−m−2s =
1
2c
·2n−α(n)−n82α(n).

This concludes the proof.

The proof of Theorem 1 actually shows more: The lower bound applies even to a
subset of Ax,α containing only strings with high Kolmogorov complexity. More
precisely, if we denote Ax,α,s = {y ∈ {0, 1}n | C(y) ≥ s and C(y) − C(y | x) ≥
α}, then |Ax,α,n−5 log n| ≥ 1

2n7 2n−α. Note that there is an interesting “zone”
for the parameter s that is not covered by this result. Specifically, it would
be interesting to lower bound the size of Ax,α,n. This question remains open.
Nevertheless, the technique from Theorem 3 can be used to tackle the variant in
which access to the set R = {u ∈ {0, 1}n | C(u) ≥ |u|} is granted for free. Thus,
let AR

x,α,n = {y ∈ {0, 1}n | CR(y) ≥ n and CR(y)− CR(y | x) ≥ α}.

Proposition 1. For the same setting of parameters as in Theorem 3, |AR
x,α,n| ≥

1
C · 2n−α(n), for some positive constant C.

Proof. Omitted from this extended abstract.
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4 Pairwise Independent Strings

We show that if the n-bit strings x1, . . . , xt are pairwise α-independent, then
t ≤ poly(n)2α. This upper bound is relatively tight, since there are sets with
(1/poly(n)) · 2α n-bit strings that are pairwise α-independent.

Theorem 4. For every sufficiently large n and for every natural number α,
the following holds. If x1, . . . , xt are n-bit strings that are α-independent, then
t < 2n3 · 2α.

Proof. There are less than 2α+3 log n strings with Kolmogorov complexity less
than α+3 logn. We discard such strings from x1, . . . , xt and assume that x1, . . . ,
xt′ are the strings that are left. Since t < 2α+3 log n + t′, we need to show that
t′ ≤ n32α.

For 1 ≤ i ≤ t′, let ki = C(xi) and let x∗
i be the shortest description of xi

as described in the Preliminaries. Let β = α + 3 logn (we assume that α ≤
n− 3 logn, as otherwise the statement is trivial). We show that the prefixes of
length β of the strings x1, . . . , xt′ are all distinct, from which we conclude that
t′ ≤ 2β = n3 · 2α.

Suppose that there are two strings in the set that have equal prefixes of length
β. W.l.o.g. we can assume that they are x1 and x2. Then

C(x∗
1 | x∗

2) ≤ (k1 − β) + log β + 2 log log β + O(1),

because, given x∗
2, x∗

1 can be constructed from β and the suffix of length k1 − β
of x∗

1. Note that

C(x∗
1 | x2) ≤ C(x∗

1 | x∗
2) + log k2 + 2 log log k2 + O(1),

because x∗
2 can be constructed from x2 and k2. Also note that C(x1 | x2) ≤

C(x∗
1 | x2) + O(1). Thus,

C(x1 | x2) ≤ C(x∗
1 | x∗

2) + log k2 + 2 log log k2 + O(1).

Therefore,

C(x1)− C(x1 | x2) ≥ k1 − (C(x∗
1 | x∗

2) + log k2 + 2 log log k2 + O(1))
≥ k1 − (k1 − β)− log β − 2 log log β − log k2 − 2 log log k2

−O(1)
≥ β − 3 logn = α,

which is a contradiction.

The next result shows that the upper bound in Theorem 4 is relatively tight.
It relies on the well-known Turán’s Theorem in Graph Theory [14], in the form
due to Caro (unpublished) and Wei [15] (see [9, page 248]): Let G be a graph
with n vertices and let di be the degree of the i-th vertex. Then G contains an
independent set of size at least

∑ 1
di+1 .
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Theorem 5. For every natural number n and for every natural number α sat-
isfying 5 logn ≤ α ≤ n, there exists a constant C and t = 1

Cn5 · 2α n-bit strings
x1, . . . , xt that are pairwise α-independent.

Proof. Let β = α − 5 log n. Consider the graph G = (V, E), where V = {0, 1}n

and (u, v) ∈ E iff C(u) − C(u | v) ≥ β and C(v) − C(v | u) ≥ β. Note that
for every u ∈ {0, 1}n, the degree of u is bounded by |Au,β | ≤ 2n−β+c, for some
constant c. Therefore, by Turán’s theorem, the graph G contains an independent
set I of size at least 2n · 1

2n−β+c+1 ≥ 2β−c−1 = 1
Cn5 · 2α. For any two elements

u, v in I, we have either C(u) − C(u | v) < β or C(v) − C(v | u) < β. In the
second case, by symmetry of information, C(u)− C(u | v) < β + 5 log n = α. It
follows that the strings in I are pairwise α-independent.

5 Mutually Independent Strings

In this section we show that the size of a mutually α-independent tuple of n-bit
strings is bounded by poly(n)2α.

For u ∈ {0, 1}n, we define Dα(u) = {x ∈ {0, 1}n | u ∈ Ax,α} = {x ∈ {0, 1}n |
C(u)− C(u | x) ≥ α} and dα(u) = |Dα(u)|.

Lemma 1. For every natural number n sufficiently large, for every natural num-
ber α, and for every u ∈ {0, 1}n, with C(u) ≥ α + 12 logn,

1
2n12 2n−α ≤ dα(u) ≤ n5 · 2n−α.

Proof. For every x ∈ Au,α+5 log n, C(x) − C(x | u) ≥ α + 5 log n which by
symmetry of information implies C(u) − C(u | x) ≥ α + 5 logn − 5 logn = α,
and therefore, u ∈ Ax,α. Thus

dα(u) ≥ |Au,α+5 log n| ≥
1

2n7 2n−α−5 log n =
1

2n12 2n−α.

For every u ∈ {0, 1}n,

x ∈ Du,α ⇒ u ∈ Ax,α

⇒ C(u)− C(u | x) ≥ α
⇒ C(x) − C(x | u) ≥ α− 5 log n
⇒ C(x | u) ≤ n− α + 5 logn.

Thus, dα(u) ≤ |{x ∈ {0, 1}n | C(x | u) ≤ n− α + 5 log n}| ≤ n5 · 2n−α.

Since for any string x and natural number α, |Ax,α| ≤ 2n−α−c, for some constant
c, it follows that we need at least T = 2α−c strings x1, . . . , xT to “α-cover” the set
of n-bit strings, in the sense that for each n-bit string y, there exists xi, i ∈ [T ]
such that y is α-dependent with xi. The next theorem shows that poly(n)2α

strings are enough to α-cover the set of n-bit strings.
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Theorem 6. For every natural number n sufficiently large, for every natural
number α, there exists a set B ⊆ {0, 1}n of size poly(n)2α such that each string
in {0, 1}n is α-dependent with some string in B, i.e., {0, 1}n =

⋃
x∈B Ax,α. More

precisely the size of B is bounded by (2n13 + n12) · 2α.

Proof. (a) We choose T = 2n132α strings x1, . . . , xT , uniformly at random in
{0, 1}n. The probability that a fix u with C(u) ≥ α+12 logn does not belong to
any of the sets Axi,α, for i ∈ [T ], is at most (1− 1

2n122α )T < e−n (by Lemma 1).
By the union bound, the probability that there exists u ∈ {0, 1}n with C(u) ≥
α+12 logn, that does not belong to any of the sets Axi,α, for i ∈ [T ], is bounded
by 2n·e−n < 1. Therefore there are strings x1, . . . , xT in {0, 1}n such that

⋃
Axi,α

contains all the strings u ∈ {0, 1}n having C(u) ≥ α + 12 logn. By adding to
x1, . . . , xT , the strings that have Kolmogorov complexity < α + 12 logn, we
obtain the set B that α-covers the entire {0, 1}n.

To estimate the size of a mutually α-independent tuple of strings, we need the
following lemma (whose proof is available in the full version of the paper).

Lemma 2. Let α, β ∈ N and let the tuple of n-bit strings (x1, x2, . . . , xk) satisfy
C(x1 . . . xk) ≥ C(x1)+ . . .+C(xk)−β. Then there exists a constant d such that

|Ax1,α ∩ . . . ∩Axk,α| ≤ dn7k+5k32n−kα+β .

Finally, we prove the upper bound for the size of a mutually α-independent tuple
of n-bit strings.

Theorem 7. For every sufficiently large natural number n the following holds.
Let α be an integer such that α > 7 log n + 6. Let (x1, . . . , xt) be a mutually
α-independent tuple of n-bit strings. Then t ≤ poly(n)2α.

Proof. By Theorem 6, there exists a set B of size at most poly(n)2α+5 log n such
that every n-bit string x is in Ay,α+5 log n, for some y ∈ B. We view {x1, . . . , xt}
as a multiset. Let y be the string in B that achieves the largest size of multiset
Ay,α+5 log n ∩ {x1, . . . , xt} (we take every common element with the multiplicity
in {x1, . . . , xt}). Let k be the size of the above intersection. Clearly, k ≥ t/|B|.
We will show that k = poly(n), and, therefore, t ≤ k · |B| = poly(n) · 2α.

Without loss of generality suppose Ay,α+5 log n ∩ {x1, . . . , xt} = {x1, . . . , xk}
(as multisets). Since, for every i ∈ [k], C(xi) − C(xi | y) ≥ α + 5 logn, by
symmetry of information, it follows that C(y)−C(y | xi) ≥ α. Thus y ∈ Ax1,α∩
. . . ∩ Axk,α. In particular, Ax1,α ∩ . . . ∩ Axk,α is not empty. We want to use
Lemma 2 but before we need to estimate the difference between C(x1 . . . xk)
and C(x1) + . . . + C(xk).

Claim. C(x1 . . . xk) ≥ C(x1) + . . . + C(xk)− β, where β = α + 4 log(nt/2).

The proof of this claim is available in the full version of the paper.
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Now, by Lemma 2,

|Ax1,α ∩ . . . ∩Axk,α| ≤ dn7k+5k32n−kα+β

= dn7k+5k32n−(k−1)α+4 log t+4 log(n/2)

≤ dn7k+5k325n−(k−1)α+4 log(n/2),

where in the last line we used the fact that t ≤ 2n.
It can be checked that if α > 7 logn + 6 and k ≥ n, then the above upper

bound is less than 1, which is a contradiction. It follows that k < n.

6 Final Remarks

This paper provides tight bounds (within a polynomial factor) for the size of
Ax,α (the set of n-bit strings that have α-dependency with x) and for the size
of sets of n-bit strings that are pairwise α-independent.

The size of a mutually α-independent tuple of n-bit strings is at most poly(n)2α.
We do not know how tight this bound is and leave this issue as an interesting open
problem.

We have recently learned about the paper [5], which obtains similar results
regarding the size of sets of pairwise and k-independence strings, for a notion of
independence that is suitable for strings with large Kolmogorov complexity.
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Impossibility of Independence Amplification in
Kolmogorov Complexity Theory

Marius Zimand�

Department of Computer and Information Sciences, Towson University,
Baltimore, MD, USA

Abstract. The paper studies randomness extraction from sources with
bounded independence and the issue of independence amplification of
sources, using the framework of Kolmogorov complexity. The dependency
of strings x and y is dep(x, y) = max{C(x)− C(x | y), C(y)−C(y | x)},
where C(·) denotes the Kolmogorov complexity. It is shown that there
exists a computable Kolmogorov extractor f such that, for any two
n-bit strings with complexity s(n) and dependency α(n), it outputs a
string of length s(n) with complexity s(n) − α(n) conditioned by any
one of the input strings. It is proven that the above are the optimal
parameters a Kolmogorov extractor can achieve. It is shown that
independence amplification cannot be effectively realized. Specifically, if
(after excluding a trivial case) there exist computable functions f1 and
f2 such that dep(f1(x, y), f2(x, y)) ≤ β(n) for all n-bit strings x and y
with dep(x, y) ≤ α(n), then β(n) ≥ α(n) − O(log n).

Keywords: Kolmogorov complexity, random strings, independent
strings, randomness extraction.

1 Introduction

Randomness extraction is an algorithmical process that improves the quality of
a source of randomness. A source of randomness can be modeled as a finite prob-
ability distribution, or a finite binary string, or an infinite binary sequence and
the randomness quality is measured, respectively, by min-entropy, Kolmogorov
complexity, and constructive Hausdorff dimension. All the three settings have
been studied (the first one quite extensively).

It is desirable to have an extractor that can handle very general classes of
sources. Ideally, we would like to have an extractor that obtains random bits
from a single defective source under the single assumption that there exists a
certain amount of randomness in the source. Unfortunately, this is not possible.
In the case of finite distributions, impossibility results for extraction from a
single source have been established by Santha and Vazirani [19] and Chor and
Goldreich [6]. In the case of finite binary strings and Kolmogorov complexity
randomness, Vereshchagin and Vyugin [22] show that there exists strings x with
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P. Hliněný and A. Kučera (Eds.): MFCS 2010, LNCS 6281, pp. 701–712, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://triton.towson.edu/~mzimand


702 M. Zimand

relatively high Kolmogorov complexity so that any string shorter than x by a
certain amount and which has small Kolmogorov complexity conditioned by x
(in particular any such shorter string effectively constructed from x) has small
Kolmogorov complexity unconditionally. The issue of extraction from one infinite
sequence has been first raised by Reimann and Terwijn [18], and after a series
of partial results [18,14,3], Miller [13] has given a strong negative answer, by
constructing a sequence x with dim(x) = 1/2 such that, for any Turing reduction
f , dim(f(x)) ≤ 1/2 (or f(x) does not exist; dim(x) is the constructive Hausdorff
dimension of the sequence x).

Therefore, for extraction from a general class of sources, one has to consider
the case of t ≥ 2 sources, and in this situation, positive results are possible.
Computable extractors from t = 2 distributions with min-entropy k = O(log n)
are constructed in [6,8]. The construction of polynomial-time multisource ex-
tractors is a difficult problem. Currently, for t = 2, the best results are by
Bourgain [4] who achieves k = (1/2− α)n for a small constant α, and Raz [17]
who achieves k = polylogn for one distribution and k = (1/2+α)n for the other
one. Polynomial-time extractors for 3 or more distributions with lower values
of k for all distributions are constructed in [1,2,17,16,15]. Dodis et al. [7] con-
struct a polynomial-time 2-source extractor for k > n/2, where the extracted
bits are random conditioned by one of the sources. Kolmogorov extractors for
t ≥ 2 sources also exist. Fortnow et al. [10] actually observe that any randomness
extractor for distributions is a Kolmogorov extractor and Hitchcock et al. [11]
show that a weaker converse holds, in the sense that any Kolmogorov extrac-
tor is a randomness condenser with very good parameters (“almost extractor”).
For t = 2, the works [23,25] construct computable Kolmogorov extractors with
better properties than those achievable by converting the randomness extractors
from [6] and [8]. The case of infinite sequences is studied in [24], which shows
that it is possible to effectively increase the constructive dimension if the input
consists of two sources.

All the positive results cited above require that the sources are independent.
At a first glance, without independence, even the distinction between one and
two (or more) sources is not clear. However, independence can be quantified
and then we can consider two sources having bounded independence. It then be-
comes important to determine to what extent randomness extraction is possible
from sources with a limited degree of independence and whether the degree of
independence can be amplified.

We address these questions for the case of finite strings and Kolmogorov
complexity-based randomness. The level of dependency of two strings is based on
the notion of mutual information. The information that string x has about string
y is I(x : y) = C(y)−C(y | x), where C(y) is the Kolmogorov complexity of y and
C(y | x) is the Kolmogorov complexity of y conditioned by x. By the symmetry
of information theorem, I(x : y) ≈ I(y : x) ≈ C(x) + C(y) − C(xy).1 We define
the dependency of strings x and y as dep(x, y) = max{I(x : y), I(y : x)}. Let

1 We use ≈, � and � for equalities and inequalities that hold within an additive error
bounded by O(log n).
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Sk,α be the set of all pairs of strings (x, y) such that C(x) ≥ k, C(y) ≥ k and
dep(x, y) ≤ α. A Kolmogorov extractor for the class of sources Sk,α is a function
f : {0, 1}n × {0, 1}n → {0, 1}m such that for all (x, y) ∈ Sk,α, C(f(x, y)) is
“close” to m. In other words, if we define the randomness deficiency of a string
z as |z| −C(z), we would like that the randomness deficiency of f(x, y) is small.
Our first result shows that the randomness deficiency of f(x, y) cannot be smaller
than essentially the dependency of x and y.

Result 1 (informal statement; see full statement in Theorem 2). There exists
no computable function f with the property that, for all (x, y) ∈ Sk,α, the
randomness deficiency of f(x, y) is less than α − log n − O(log α). This holds
true even for high values of k such as k 6 n − α. The only condition is that
m ≥ α (m is the length of the ouput of f).

We observe that the similar result holds for the case of finite distribu-
tions. Let Sk,α be the set of all random variables over {0, 1}n that have min-
entropy at least k and dependency at most α. (The min-entropy of X is
H∞(X) = mina∈{0,1}n,X(a)>0 log(1/Prob[X = a]) and the dependency of X
and Y is H∞(X) + H∞(Y ) − H∞(X, Y ).) Then, for every α and m ≥ α and
for every function f : {0, 1}n × {0, 1}n → {0, 1}m (even non-computable), there
exists (X, Y ) ∈ Sk,α with dependency at most α and min-entropy of f(X, Y ) at
most m− α.

Our next result (and the main technical contribution of this paper) is a posi-
tive one. Keeping in mind Result 1, the best one can hope for is a Kolmogorov
extractor that from any strings x and y having dependency at most α obtains a
string z whose randomness deficiency is ≈ α. We show that this is possible in a
strong sense.

Result 2 (informal statement; see full statement in Theorem 4). For every
k > α, there exists a computable function f : {0, 1}n×{0, 1}n → {0, 1}m, where
m ≈ k, and such that for every (x, y) ∈ Sk,α, C(f(x, y) | x) = m−α−O(1) and
C(f(x, y) | y) = m− α−O(1).

Thus, optimal Kolmogorov extraction from sources with bounded indepen-
dence can be achieved effectively and in a strong form. Namely, the randomness
deficiency of the extracted string z is minimal (i.e., within an additive constant
of α) even conditioned by any one of the input strings and furthermore the length
of z is maximal. In [23] a similar but weaker theorem has been established. The
difference is that in [23] the length of the output is only ≈ k/2 and k has to
be at least 2α. The proof method of Result 2 extends the one used in [23] in a
non-trivial way (the novel technical ideas are described in Section 4.1). We note
that the Kolmogorov extractor that can be obtained from the randomness ex-
tractor from [8] using the technique in [10] would have weaker parameters (more
precisely, the output length would be m ≈ k − 2α).

Thedependencyof two stringsxandy is anothermeasure of thenon-randomness
in (x, y) considered as a joint source. Similarly to Kolmogorov extractors that re-
duce randomness deficiency, itwouldbe desirable to haveanalgorithmthat reduces
dependency (equivalently, amplifies independence). The main result of the paper
shows that effective independence amplification is essentially impossible. We say
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that two functions f1, f2 : {0, 1}n × {0, 1}n → {0, 1}l(n) amplify independence
from level α(n) to level β(n) (for β(n) < α(n)) if dep(f1(x, y), f2(x, y)) ≤ β(n)
whenever dep(x, y) ≤ α(n). Note that this is trivial to achieve if f1(x, y) or f2(x, y)
haveKolmogorovcomplexity at most β(n). Therefore,we also request that f1(x, y)
and f2(x, y) have Kolmogorov complexity at least β(n)+c log n, for some constant
c. However, as a consequence of Result 1 and Result 2, this is impossible for any
reasonable choice of parameters.

Result 3 (informal statement; see full statement in Theorem 5). Let f1 and f2
be computable functions such that for all (x, y) ∈ Sk,α, dep(f1(x, y), f2(x, y)) ≤
β(n) (and C(f1(x, y)) 6 β(n), C(f2(x, y)) 6 β(n)). Then β(n) 6 α(n). This
holds true for any α(n) ( n/2 and any k ( n− α(n).

Discussion of some technical aspects. As it is typically the case in probabilis-
tic analysis, handling sources with bounded independence is difficult. In this
discussion, an (n, k) source is a random variable over {0, 1}n with min-entropy
k. Chor and Goldreich [6] show that a random function starting from any two
independent sources of type (n, k) extracts ≈ k/3 bits that are close to random.
Dodis and Oliveira [8] using a more refined probabilistic analysis (based on a
martingale construction) show the existence of an extractor that from two inde-
pendent sources X and Y of type (n, k1) and respectively (n, k2) obtains ≈ k1
bits that are close to random even conditioned by Y . Both constructions use in
an essential way the independence of the two input distributions. The indepen-
dence property allows one to reduce the analysis to the simpler case in which the
two input distributions are so called flat distributions. A flat distribution with
min-entropy k assigns equal probability mass to a subset of size 2k of {0, 1}n and
probability zero to the elements outside this set. Extractors that extract from
flat distributions admit a nice combinatorial description. Namely, an extractor
E : {0, 1}n×{0, 1}n → {0, 1}m for two flat distributions X, Y with min-entropy
k corresponds to an N -by-N table (where N = 2n) whose cells are colored with
M colors (where M = 2m) that satisfy the following balancing property: For
any set of colors A ⊆ [M ] and for any K-by-K subrectangle of the table (where
K = 2k), the number of A-colored cells is close to |A|/M . Such tables can be
obtained with the probabilistic method.

If the two input distributions are not independent, then the reduction to flat
distributions is not known to be possible and the above approach fails. This is
why almost all of the currently known randomness extractors (whether running
in polynomial time, or merely computable) assume that the weak sources are
perfectly independent (one exception is the paper [21]).

In this light, it is surprising that Kolmogorov extractors for input strings that
are not fully independent (actually with arbitrarily large level of dependency)
can be obtained via balanced tables, as we do in this paper. This approach
succeds because the Kolmogorov complexity-based analysis views the level of
independence of sources as just another parameter and there is no need for
any additional machinery to handle sources that are not fully independent. We
believe (based on some partial results) that Kolmogorov complexity is a useful
tool not only for analyzing Kolmogorov extractors but also for circumventing
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some of the technical difficulties in the investigation of multi-source extractors
for sources with bounded independence.

Note. Because of the space constraints, this extended abstract has no proofs.
They are available from the full version of this work.

2 Preliminaries

We work over the binary alphabet {0, 1}; N is the set of natural numbers. A
string x is an element of {0, 1}∗; |x| denotes its length; {0, 1}n denotes the set of
strings of length n; |A| denotes the cardinality of a finite set A; for n ∈ N, [n] de-
notes the set {1, 2, . . . , n}. We recall the basics of (plain) Kolmogorov complexity
(for an extensive coverage, the reader should consult one of the monographs by
Calude [5], Li and Vitányi [12], or Downey and Hirschfeldt [9]; for a good and
concise introduction, see Shen’s lecture notes [20]). Let M be a standard Turing
machine. For any string x, define the (plain) Kolmogorov complexity of x with
respect to M , as CM (x) = min{|p| | M(p) = x}. There is a universal Turing
machine U such that for every machine M there is a constant c such that for
all x, CU (x) ≤ CM (x) + c. We fix such a universal machine U and dropping the
subscript, we let C(x) denote the Kolmogorov complexity of x with respect to U .
We also use the concept of conditional Kolmogorov complexity. Here the under-
lying machine is a Turing machine that in addition to the read/work tape which
in the initial state contains the input p, has a second tape containing initially
a string y, which is called the conditioning information. Given such a machine
M , we define the Kolmogorov complexity of x conditioned by y with respect to
M as CM (x | y) = min{|p| | M(p, y) = x}. There exist universal machines of
this type and they satisfy the relation similar to the above, but for conditional
complexity. We fix such a universal machine U , and dropping the subscript U ,
we let C(x | y) denote the Kolmogorov complexity of x conditioned by y with
respect to U .

For every sufficiently large n and k ≤ n, for every n-bit string y, 2k−2 log n <
|{x ∈ {0, 1}n | C(x | y) ≤ k}| < 2k+1.

The Symmetry of Information Theorem [26] states that for any two strings x
and y,

(a) C(xy) ≤ C(y) + C(x | y) + 2 log C(y) + O(1).

(b) C(xy) ≥ C(x) + C(y | x)− 2 log C(xy)− 4 log log C(xy) −O(1).

(c) If |x| = |y| = n, C(y)− C(y | x) ≥ C(x) − C(x | y)− 5 logn

For integers m ≤ n, let b(n, m) =
(
n
0

)
+
(
n
1

)
+ . . . +

(
n
m

)
. Note that m(log n −

log m) < log b(n, m) < m(log n− log m) + m log e + log(1 + m) (since (n/m)m <(
n
m

)
< (en/m)m).

All the Kolmogorov extractors will be ensembles of functions f = (fn)n∈N,
of type fn : ({0, 1}n)t → {0, 1}m(n). The parameter t is constant and indi-
cates the number of sources (in this paper we only consider t = 1 and t = 2).
For readability, we usually drop the subscript and the expression “function
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f : {0, 1}n → {0, 1}m ...” is a substitute for “ensemble f = (fn)n∈N, where
fn : {0, 1}n → {0, 1}m(n), ...”

We say that an ensemble of functions f = (fn) is computable with advice
k(n), if for every n there exists a string p of length at most k(n) such that
U(p, 1n) outputs the table of the function fn.

We use the following standard version of the Chernoff bounds. Let X1, . . . , Xn

be independent random variables that take the values 0 and 1, let X =
∑

Xi

and let μ be the expected value of X . Then, for any 0 < d ≤ 1, Prob[X >

(1 + d)μ] ≤ e−d2μ/3.

2.1 Limited Independence

Definition 1. (a) The dependency of two strings x and y is dep(x, y) =
max{C(x)− C(x | y), C(y)− C(y | x)}.

(b) Let d : N → N. We say that strings x and y have dependency at most d(n)
if dep(x, y) ≤ d(max(|x|, |y|)).

The Symmetry of Information Theorem implies that |dep(x, y)− (C(x) − C(x |
y))| ≤ O(log(C(x)) + log(C(y))). If the strings x and y have length n, then
|dep(x, y)− (C(x) − C(x | y))| ≤ 5 log n.

3 Limits on Kolmogorov Complexity Extraction

3.1 Limits on Extraction from One Source

We first show that for any single-source function computable with small advice
there exists an input with high Kolmogorov complexity whose image has low
Kolmogorov complexity.

Proposition 1. Let f : {0, 1}n → {0, 1}m be a function computable with advice
k(n). There exists x ∈ {0, 1}n with C(x) ≥ n−m and C(f(x)) ≤ k(n) + log n +
2 log log n + O(1).

The following result is, in a sense, a strengthening of the previous proposition.
It shows that there exists a string with relatively high Kolmogorov complexity,
so that all functions computable with a given amount of advice fail to extract its
randomness. We provide two incomparable combinations of parameters. Part (b)
is essentially a result of Vereshchagin and Vyugin [22].

Theorem 1. For every k, every n, any computable function m:
(a) There exists a string x ∈ {0, 1}n such that for every function f : {0, 1}n →

{0, 1}m that is computable with advice k = k(n),

(1) C(x) > n−log b(M, K) ≥ n−K(m−k+O(1)), where M = 2m, K = 2k+1−1,
and

(2) C(f(x)) < 2k + 2 log k + log n + 2 log log n + O(1) or f(x) is not defined.



Impossibility of Independence Amplification 707

and
(b) There exists a string x ∈ {0, 1}n such that for every function f : {0, 1}n →

{0, 1}m that is computable with advice k,

(1) C(x) > n−K log(M + 1) ≈ n−Km, where M = 2m, K = 2k+1 − 1, and

(2) C(f(x)) < k + log n + 2 log log n + O(1) or f(x) is not defined.

3.2 Limits on Extraction from Two Sources

The following theorem shows that there is no uniform function that from two
sources x and y that are α-dependent (i.e., dep(x, y) 6 α), produces an output
whose randomness deficiency is less than α− log n−O(log α).

Theorem 2. Let f : {0, 1}n × {0, 1}n → {0, 1}m be a computable function and
let α ∈ N, α ≤ m. Then there exists a pair of strings x ∈ {0, 1}n, y ∈ {0, 1}n

such that the following three properties hold: (1) C(x | y) ≥ n − α − 2 logn,
(2) C(y | x) ≥ n− α− 2 logn, (3) C(f(x, y)) ≤ m− α + log n + 2 logα + O(1).

The following is the analog of Theorem 2 for distributions.

Theorem 3. Let f : {0, 1}n × {0, 1}n → {0, 1}m be a function and let α ∈ N,
α ≤ m. Then there exists two random variables X and Y taking values in {0, 1}n

such that the following four properties hold: (1) H∞(X) ≥ n− α, (2) H∞(Y ) ≥
n− α, (3) H∞(X, Y ) ≥ 2n− α, (4) H∞(f(X, Y )) ≤ m− α.

4 Kolmogorov Complexity Extraction

We construct a Kolmogorov extractor that on input two n-bit strings with Kol-
mogorov complexity at least s(n) and dependency at most α(n) outputs a string
of length ≈ s(n) having complexity ≈ s(n)−α(n) conditioned by any one of the
input strings.

4.1 Construction Overview

We describe the main ideas of the method. We also explain the non-trivial way
in which the new construction extends the technique from the earlier works [23]
and [25]. For readability, some details are omitted and some estimations are
slightly imprecise. Let us fix, for the entire discussion, x and y, two n-bit strings
with C(x) ≥ s(n) and C(y) ≥ s(n) and having dependency at most α(n). We
denote N = 2n, M = 2m and S = 2s(n). Let Bx = {u | C(u) ≤ C(x)} and
By = {v | C(v) ≤ C(y)}. An N -by-N table colored with M colors is a function
T : [N ] × [N ] → [M ]. If we randomly color such a table T , with parameter
m ( 2s(n), then, with high probability, no color appears in the Bx×By rectangle
more than 2 · (1/M) fraction of times (we say that a table that satisfies the
above balancing property is balanced in Bx × By). Clearly (x, y) ∈ Bx × By

and in a table T balanced in Bx × By there are at most 2 · (1/M) · |Bx| ×
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|By| ≈ 2 · (1/M)2C(x)2C(y) = 2C(x)+C(y)−m+1 entries with the color z = T (x, y).
Therefore (x, y) is described by the color z = T (x, y), the rank r of the (x, y)
cell in the list of all z-colored cells in Bx ×By, by the table T , and by O(log n)
additional bits necessary to enumerate the list. Thus, C(xy) ≤ C(z) + log r +
C(table T ) + O(log n). By the above estimation, log r ≈ C(x) + C(y)−m. Also
C(xy) ≥ C(x)+C(y)−dep(x, y). Suppose that we are able to get a balanced table
T with C(table T ) = O(log n), i.e., a table that can be described with O(log n)
bits. Then we would get that C(T (x, y)) = C(z) ≥ m − dep(x, y), which is our
goal. How can we obtain C(table T ) = O(log n)? The normal approach would
be to enumerate all possible N -by-N tables with all possible colorings with M
colors and pick the first one that satisfies the balancing property. However, Bx

and By can be enumerated only if C(x) and respectively C(y) are given. Thus
we can not check the balancing property in a uniform way. Therefore, instead
of restricting to only Bx and By, we require that a table T should satisfy the
balancing property for all rectangles B1 ×B2 with sizes |B1| ≥ S and |B2| ≥ S,
where S = 2s(n). The simple probabilistic analysis involves only an additional
union bound and carries over showing that such balanced tables exist at the cost
that this time we need m ( s(n). Now we can pick in an effective way the smallest
(in some canonical order) table T having the balancing property, because we can
check the balancing property in an exhaustive manner (look at all S × S-sized
rectangles, etc.). Therefore this table T can be described with log n + O(1) bits,
as desired. In this way, from any x and y, each having Kolmogorov complexity at
least s(n), we obtain m ≈ s(n) bits having Kolmogorov complexity m−dep(x, y).
We reobtain m ≈ 2s(n) if we change the balancing property and require that
for any subset of colors A ⊆ [M ] of size M/D, for D ≈ 2α(n), for any rectangle
B1 × B2 with sizes |B1| ≥ S and |B2| ≥ S, the fraction of A-colored cells in
B1×B2 should be at most 2 · (|A|/M) = 2 · (1/D). Such a table can be obtained
with m ≈ 2s(n), and thus we can extract ≈ 2s(n) bits having Kolmogorov
complexity ≈ 2s(n)− dep(x, y), which is optimal.

Let us consider next the problem of extracting bits that are random even
conditioned by x, and also conditioned by y. Suppose we use tables that satisfy
the first balancing property. We focus on Bx = {u | C(u) ≤ C(x)} and we call
a column v bad for a color a ∈ [M ] if the fraction of a-colored cells in the strip
Bx × {v} of the table T is more than 2 · (1/M). The number of bad columns
is less than S; otherwise the table would have an S × S-sized rectangle that
does not have the balancing property. Note that a bad column for a color a
can be described by the color a and its rank in an enumeration of the columns
that are bad for a plus additional O(log n) bits. So if v is a bad column, then
C(v) ( m + s(n) ≈ 2s(n). Therefore if C(y) 6 2s(n), y is good for any color.
An adaptation of the above argument shows that for z = T (x, y) it holds that
C(x | y) ( C(z | y) + C(x) + C(y) − m, which combined with C(x | y) 6
C(x)+C(y)−dep(x, y), implies C(z | y) 6 m−dep(x, y). The above holds only
for y with C(y) ≥ 2s(n) and since the probabilistic analysis requires m to be
less than s(n), it follows that the number of extracted bits (which is m) is less
than half the Kolmogorov complexity of y.
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The above technique was used in [23] and in [25]. To increase the number of
extracted bits, we introduce a new balancing property, which we dub rainbow
balancing. Fix some parameter D, which eventually will be taken such that
log D ≈ dep(x, y). Let AD be the collection of sets of colors A ⊆ [M ] with size
|A| ≈ M/D. Let B1 ⊆ [N ] be a set of size a multiple of S, let v = {v1 < v2 . . . <
vS} be a set of S columns, and let A = (A1, . . . , AS) be a tuple with each Ai in
AD. We say that a cell (u, vi) such that T (u, vi) ∈ Ai is properly colored with
respect to v and A. Finally we say that a table T : [N ] × [N ] → [M ] is (S, D)-
rainbow balanced if for every B1, every v, and every A, the fraction of cells in
B1 × v that are properly colored with respect to v and A is at most 2 · (1/D).
The probabilistic method shows that such tables exist provided m ( s(n) and
log D ( s(n). Since the rainbow balancing property can be effectively checked,
there is an (S, D)-rainbow balanced table T : [N ] × [N ] → [M ] that can be
described with log n+O(1) bits and m ≈ s(n) and log D ≈ s(n). Let z = T (x, y)
and suppose that C(z | y) < m− t, where t = α(n) − c log n, for some constant
c that will be defined later (in the actual proof we do a tighter analysis and we
manage to take t = α(n) − O(1)). For each v, let Av = {w ∈ [M ] | C(w | v) <
m− t}. For log D ≈ α(n)+ c log m, it holds that Av ∈ AD for all v. Let us call a
column v bad if the fraction of cells in Bx×{v} that are Av-colored is larger than
2·(1/2t). Analogously to our earlier discussion, the number of bad columns is less
than S and from here we infer that if v is a bad column, then C(v) ( s(n). Since
C(y) ≥ s(n), it follows that y is a good column. Therefore the fraction of cells
in the Bx×{y} strip of the table T that have a color in Ay is at most 2 · (1/2t).
Since (x, y) is one of these cells, it follows that, given y, x can be described by the
rank r of (x, y) in an enumeration of the Ay-colored cells in the strip Bx × {y},
a description of the table T , and by O(log n) additional bits necessary for doing
the enumeration. Note that there are at most 2 · (1/2t) · |Bx| ≈ 2−t+1 ·2C(x) cells
in Bx×{y} that are Ay-colored and, therefore, log r ≤ C(x)−t+1. From here we
obtain that C(x | y) ≤ C(x)− t+1+O(log n) = C(x)−α(n)−c log n+O(log n).
Since C(x | y) ≥ C(x) − α(n), we obtain a contradiction for an appropriate
choice of the constant c. Consequently C(z | y) ≥ m − t = m − α(n) + c log n.
Similarly, C(z | x) ≥ m − α(n) + c log n. Thus we have extracted m ≈ s(n)
bits that have Kolmogorov complexity ≈ m − α(n) conditioned by x and also
conditioned by y.

4.2 Construction of the Kolmogorov Extractor

For n and m natural numbers, let N = 2n and M = 2m. Henceforth, we identify
{0, 1}n with [N ] and {0, 1}m with [M ].

We consider functions of the form T : [N ] × [N ] → [M ], which we view
as N -by-N tables whose cells are colored with colors in [M ]. Let S and D be
parameters with S ≤ N and D ≤ M .

Let AD = {A | A ⊆ [M ], (M/D) ≤ |A| ≤ (M/D)m2}. Thus, the elements of
AD are those sets of colors having at least M/D colors and not much more than
that.
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Let B2 ⊆ [N ] be a subset of size S; we name its elements B2 = {v1 <
v2 < . . . < vS}. We view B2 as a set of columns in the table. Let (A1, . . . , AS) ∈
(AD)S . The cell (u, vi) ∈ [N ]×B2 is properly colored with respect to the columns
in B2 and (A1, . . . , AS) if T (u, vi) ∈ Ai. A similar notion of a cell being properly
colored with respect to rows in a set B1 ⊆ [N ] will also be used.

Definition 2. A table T : [N ]× [N ] → [M ] is (S, D)-rainbow balanced if

(a) • for all B1 ⊆ [N ] of size k · S for some positive natural number k,

• for all B2 ⊆ [N ] of size S,

• for all (A1, . . . , AS) ∈ (AD)S,

it holds that the number of cells in B1 × B2 that are properly colored with
respect to columns B2 and (A1, . . . , AS) is at most 2m2 |B1|·|B2|

D ,

and

(b) if the similar relation holds if we switch the roles of B1 and B2.

Lemma 1. If S ≥ 12D + 3(1 + lnD)Mm2 + 6D ln(N/S), there exists a table
T : [N ]× [N ] → [M ] that is (S, D)-rainbow balanced.

Theorem 4. For any computable functions s(n) and α(n) with n ≥ s(n) ≥
α(n) + 7 logn + O(1), for every computable function m(n) with m(n) ≤ s(n) −
7 logn, there exists a computable function E : {0, 1}n × {0, 1}n → {0, 1}m(n),
such that for all x and y in {0, 1}n if

(i) C(x) ≥ s(n), C(y) ≥ s(n),

(ii) C(x) − C(x | y) ≤ α(n) and C(y)− C(y | x) ≤ α(n),

then

(1) C(E(x, y) | x) ≥ m− α(n)− O(1),

(2) C(E(x, y) | y) ≥ m− α(n) −O(1).

5 Impossibility of Independence Amplification

The dependence of strings x and y is given by dep(x, y) = C(x) + C(y) −
C(xy). The smaller dep(x, y) is, the more independent the strings x and y are.
Thus, amplifying independence amounts to reducing dependence. An effective
dependence reducer would consist of two computable functions f1 and f2 that
for two functions α(n) > β(n) guarantee that for all x, y of length n,

dep(x, y) ≤ α(n) ⇒ dep(f1(x, y), f2(x, y)) ≤ β(n). (1)

Note that, since dep(u, v) ≤ β(n) whenever C(u) ≤ β(n) or C(v) ≤ β(n),
dependency reduction would be achieved by two functions that simply out-
put strings with Kolmogorov complexity ≤ β(n). To avoid this trivial and
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non-interesting type of dependency reduction, we require that, in addition to
requierement (1), C(f1(x, y)) 6 β(n) and C(f2(x, y)) 6 β(n). More precisely,
we seek two computable functions f1 : {0, 1}n × {0, 1}n → {0, 1}l(n) and
f2 : {0, 1}n × {0, 1}n → {0, 1}l(n) that satisfy the following DEPENDENCY
REDUCTION TASK.

DEPENDENCY REDUCTION TASK for parameters α(n), β(n), s(n),
l(n), and a.
For all x ∈ {0, 1}n, y ∈ {0, 1}n with dep(x, y) ≤ α(n), C(x) ≥ s(n) and
C(y) ≥ s(n) the following should hold:

1. dep(f1(x, y), f2(x, y)) ≤ β(n),

2. C(f1(x, y)) ≥ β(n) + a · log n and C(f2(x, y)) ≥ β(n) + a · log n.

We show that effective independence amplification is essentially impossible.

Theorem 5. Let α(n) be a function such that α(n) ≤ n/2 − 5 log n and let
β(n) = α(n) − log n − 3 log α(n). Let s(n) be a function such that s(n) ≤ n −
α(n)− 2 log n−O(1) and let l(n) be a function such that l(n) ≥ β(n) + 8 logn.

There are no computable functions f1 : {0, 1}n × {0, 1}n → {0, 1}l(n) and
f2 : {0, 1}n × {0, 1}n → {0, 1}l(n) satisfying the DEPENDENCY REDUCTION
TASK for parameters α(n), β(n), s(n), l(n) and a = 8.
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Löwe, B., Merkle, W. (eds.) CiE. LNCS, vol. 5635, pp. 499–508. Springer, Hei-
delberg (2009)

26. Zvonkin, A., Levin, L.: The complexity of finite objects and the development of
the concepts of information and randomness by means of the theory of algorithms.
Russian Mathematical Surveys 25(6), 83–124 (1970)



Author Index

Akatov, Dmitri 42
Ambainis, Andris 1
Ananichev, Dmitry 55

Babai, László 66
Bachrach, Yoram 78
Badban, Bahareh 653
Baruah, Sanjoy K. 90
Baskar, A. 102
Bendich, Paul 12
Betzler, Nadja 114
Bezáková, Ivona 126
Bilò, Davide 138, 150
Bodirsky, Manuel 162
Bodlaender, Hans L. 174
Bollig, Beate 186
Bonifaci, Vincenzo 90
Bournez, Olivier 198
Boyer, Laurent 209
Bshouty, Nader H. 221

Carraro, Alberto 233
Chatterjee, Krishnendu 246, 258
Chatzigiannakis, Ioannis 270
Cheng, Ho-Lun 677
Csirik, János 282
Czyzowicz, Jurek 294

Dalmau, Victor 162
D’Angelo, Gianlorenzo 90
Datta, Samir 306
David, Julien 318
Dereniowski, Dariusz 330
Doyen, Laurent 246, 258
Droste, Manfred 537

Edelsbrunner, Herbert 12
Ehrhard, Thomas 233
Epstein, Leah 282

Filiot, Emmanuel 342, 355
Fiore, Marcelo 368
Fontaine, Gaëlle 381
Friedlander, Adam J. 126

Gimbert, Hugo 246
Gottlob, Georg 42
Graça, Daniel S. 198
Greiner, Gero 393
Grenet, Bruno 477
Gualà, Luciano 138, 150
Guillemot, Sylvain 405
Gusev, Vladimir 55

Hainry, Emmanuel 198
Hansen, Kristoffer Arnsfelt 66
He, Jing 417
Henzinger, Thomas A. 246, 258
Hromkovič, Juraj 24
Hummel, Szczepan 429

Imreh, Csanád 282

Jacob, Riko 393
Jeż, Artur 441

Kalyanasundaram, Subrahmanyam 453
Kamiyama, Naoyuki 465
Kerber, Michael 12
Koiran, Pascal 477
Kosowski, Adrian 294
Královič, Rastislav 24
Královič, Richard 24
Kratsch, Stefan 489

Le Gall, Tristan 342
Levin, Asaf 282
Liang, Hongyu 417
Li, Haohan 90
Lipton, Richard J. 453
Lokshtanov, Daniel 37

Mahajan, Meena 306
Mahmoud, Ola 368
Manabe, Yoshifumi 501
Manuel, Amaldev 513
Manzonetto, Giulio 525
Marchetti-Spaccamela, Alberto 90
Martin, Barnaby 162



714 Author Index

Marx, Dániel 489
Mazzawi, Hanna 221
Megow, Nicole 90
Meinecke, Ingmar 537
Michail, Othon 270
Misra, Neeldhara 549
Mohar, Bojan 38

Narayanaswamy, N.S. 549
Nikolaou, Stavros 270

Okamoto, Tatsuaki 501
Okhotin, Alexander 441, 556
Olschewski, Jörg 568

Patel, Amit 12
Pavlogiannis, Andreas 270
Pelc, Andrzej 294
Pinsker, Michael 162
Place, Thomas 381
Podolskii, Vladimir V. 66
Portier, Natacha 477
Praveen, M. 580
Proietti, Guido 138, 150
Puchala, Bernd 592, 604

Rabinovich, Roman 604
Raghavendra Rao, B.V. 306
Ramanujam, R. 102
Raman, Venkatesh 549
Raskin, Jean-François 342, 355
Regan, Kenneth W. 453
Reynier, Pierre-Alain 355
Rosenschein, Jeffrey S. 78

Salibra, Antonino 233
Sarma, Jayalal M.N. 417

Schnoebelen, Philippe 616
Servais, Frédéric 355
Shankar, Bal Sri 549
Shokrieh, Farbod 453
Sikora, Florian 405
Skrzypczak, Michał 429
Spirakis, Paul G. 270
Stougie, Leen 90
Strozecki, Yann 629
Sun, Xiaoming 66
Suresh, S.P. 102

Talbot, Jean-Marc 355
Tazari, Siamak 641
Theyssier, Guillaume 209
Thomas, Michael 306
Torabi Dashti, Mohammad 653
Toruńczyk, Szymon 429
Tranquilli, Paolo 525

Ueno, Kenya 665
Ummels, Michael 568

van Leeuwen, Erik Jan 174
van Rooij, Johan M.M. 174
Vatshelle, Martin 174
Volkov, Mikhail 55
Vollmer, Heribert 306

Wahlström, Magnus 489
Wooldridge, Michael 78

Yan, Ke 677

Zimand, Marius 689, 701
Zuckerman, Michael 78


	Title
	Preface
	Organization
	Table of Contents
	New Developments in Quantum Algorithms
	History of Quantum Algorithms
	First Quantum Algorithms
	Quantum Walks and Adiabatic Algorithms
	Most Recent Algorithms

	Formula Evaluation
	Overview
	The Model
	Results

	Linear Equations
	Overview
	More Details

	References

	Persistent Homology under Non-uniform Error
	Introduction
	Background
	Non-uniform Error
	Transformation to Uniform Error
	Linear Error
	Discussion
	References

	Information Complexity of Online Problems
	Introduction
	Information Content of Online Problems
	Relative Information Content of Online Problems
	Relating Information Content to Computational Complexity
	References

	Algorithmic Lower Bounds for Problems on Decomposable Graphs
	Do We Really Understand the Crossing Numbers?
	Introduction
	References

	Balanced Queries: Divide and Conquer
	Introduction
	Preliminaries
	Balanced Decompositions
	Robber and Sergeants
	TheDCHierarchy
	Membership in DC^{1}
	DC^{1}-Completeness
	Determinization, Parallelization and Future Work
	References

	Slowly Synchronizing Automata and Digraphs
	Background and Overview
	Preliminaries
	Exponents of Digraphs vs. Lengths of Reset Words
	Some Series of Slowly Synchronizing Automata
	Experiments
	References

	Weights of Exact Threshold Functions
	Introduction
	Preliminaries
	Weights of an Exact Threshold Function
	Example
	Upper and Lower Bounds for the Linear Case
	Small Dimension Upper Bound
	Small Dimension Lower Bound
	Higher Degree Bounds

	Conclusion
	References

	Proof Systems and Transformation Games
	Introduction
	Preliminaries
	Transformation Games
	Transformation Games and Logical Proofs

	Problems and Algorithms
	TGs with Costs
	Related Work and Conclusions
	References

	Scheduling Real-Time Mixed-Criticality Jobs
	Introduction
	Model and Definitions
	Complexity of MC-Schedulability
	MC-Schedulability Testing Using Resource Augmentation
	References

	A {\sc dexptime}-Complete Dolev-Yao Theory with Distributive Encryption
	Introduction
	Extension of the Dolev-Yao Model with Blind Pairs
	Normal Proofs
	The Automaton Construction
	A {\sc dexptime} Lower Bound for the Derivability Problem 
	Discussion
	References

	On Problem Kernels for PossibleWinner Determination under the $k$-Approval Protocol
	Introduction
	Fixed Number of Zero-Positions
	Problem Kernel
	Parameterized Algorithms

	Fixed Number of One-Positions
	Problem Kernels
	Kernel Lower Bound

	Outlook
	References

	Counting Minimum $(s, t)$-Cuts in Weighted Planar Graphs in Polynomial Time
	Introduction
	Preliminaries
	Reduction to Forward-Cuts
	Minimum Cuts in Planar Graphs
	Proof of Theorem 3
	References

	Finding Best Swap Edges Minimizing the Routing Cost of a Spanning Tree
	Introduction
	Preliminaries
	The Algorithm
	On the Quality of the Swap Tree When $S$ = $V$
	References

	Improved Approximability and Non-approximability Results for Graph Diameter Decreasing Problems
	Introduction
	Approximation Algorithms for BCMD
	An $O$(log $n$)-Approximation Algorithm for MCBD
	On the Existence of Bicriteria Approximation Algorithms
	References

	Distance Constraint Satisfaction Problems
	Introduction
	Preliminaries
	Endomorphisms
	Definability of Successor
	The Power of Consistency
	Classification
	Concluding Remarks
	References

	Faster Algorithms on Branch and Clique Decompositions
	Introduction
	Preliminaries
	Dominating Set
	Using State Changes to Improve the Algorithm
	Using Fast Matrix Multiplication

	Counting Perfect Matchings
	$[\rho,\sigma]$-Domination Problems
	Cliquewidth
	Conclusions
	References

	Exponential Space Complexity for Symbolic Maximum Flow Algorithms in 0-1 Networks
	Introduction
	Preliminaries
	Ordered Binary Decision Diagrams
	Symbolic OBDD-Based Graph Representations
	The Maximum Flow Problem

	OBDD-Based Maximum Flow Algorithms in 0-1 Networks Need Exponential Space
	References

	Robust Computations with Dynamical Systems
	Introduction
	Formal Setting: Continuous-Time Dynamical Systems
	Formal Setting: Recursive Analysis
	Formal Setting: Robustness
	MainResults
	Conclusion
	References

	On Factor Universality in Symbolic Spaces
	Introduction and Definitions
	Factor Universality
	A Large Class with a Universal Object
	Perspectives
	References

	Toward a Deterministic Polynomial Time Algorithm with Optimal Additive Query Complexity
	Introduction
	Coin Weighing Problem
	Reconstructing Weighted Graphs Using Additive Queries

	Preliminaries
	Notation
	Fourier Representation

	Search Matrix
	The Main Algorithm
	References

	Resource Combinatory Algebras
	Introduction
	Preliminaries
	Bag-Applicative Algebras
	The Linear Resource Lambda Calculus
	The $r\gl$-calculus from the Algebraic Point of View
	Resource Combinatory Algebras
	Resource $\gl$-algebras
	From Resource to Classical Lambda Calculus
	AnExample
	References

	Randomness for Free
	Introduction
	Definitions
	Randomness for Free in Transition Function
	Separation of Probability and Interaction
	Simulating Probability by Complete-Observation Concurrent Determinism
	Simulating Probability by One-Sided Complete-Observation Turn-Based Determinism

	Randomness for Free in Strategies
	Conclusion
	References

	Qualitative Analysis of Partially-Observable Markov Decision Processes
	Introduction
	Definitions
	Upper Bounds for the Qualitative Analysis of POMDPs
	Lower Bounds for the Qualitative Analysis of POMDPs
	Optimal Memory Bounds for Strategies
	References

	All Symmetric Predicates in $NSPACE(n^{2}) AreStably Computable by the Mediated Population Protocol Model
	Introduction - Population Protocols
	Enhancing the Model
	Our Results - Roadmap
	The Mediated Population Protocol Model
	Formal Definition
	Stable Computation
	Correctly Labeled Line Graphs

	The Computational Power of the SMPP Model
	A First Inclusion: $SSPACE(n)\subseteq MPS$
	An Exact Characterization: $MPS=SNSPACE(n^2)$

	References

	Online Clustering with Variable Sized Clusters
	Introduction
	The Flexible Model
	The Strict Model
	The Intermediate Model
	References

	Deterministic Rendezvous of Asynchronous Bounded-Memory Agents in Polygonal Terrains
	Introduction
	Exact Rendezvous of Anonymous Agents
	Exact Rendezvous of Labeled Agents
	$\eps$-rendezvous
	Conclusion
	References

	Counting Classes and the Fine Structure between NC^{1} and L
	Introduction
	Background
	Hierarchies: Definitions and Upper Bounds
	The PNC^{1} Hierarchy Collapses
	Overview of the Collapse Argument
	Some Details of the Proof

	The Hierarchy above {\mbox{{\sf C$_=$NC}$^1$}}
	The Boolean Hierarchy above The Boolean Hierarchy above {\mbox{{\sf C$_=$NC}$^1$}}
	The {\mbox{{\sf AC}$^0$}} Hierarchy above {\mbox{{\sf C$_=$NC}$^1$}}

	References

	The Average Complexity of Moore’s StateMinimization Algorithm Is $\O( n \log \log n)$
	Introduction
	Preliminaries
	Definitions and Notations
	Moore’s State Minimization Algorithm
	The Dependency Tree
	The $\T$ -Dependency Graph
	The $\F$-Dependency Graph

	Moore’s Algorithm: Average Case Analysis
	Main Result and Decomposition of the Proof
	Transition Structures with a Huge \$F$-Dependency Graph
	Negligible Sets of Transition Structures
	Concluding the Proof

	Conclusion
	References

	Connected Searching of Weighted Trees
	Introduction
	Preliminaries
	Searching Trees — Basic Properties
	An Efficient Algorithm for Bounded-Degree Trees
	Connected Searching of Weighted Trees Is Hard
	References

	Iterated Regret Minimization in Game Graphs
	Introduction
	Weighted Games and Regret
	Regret Minimization on Target-Weighted Graphs
	Regret Minimization in Edge-Weighted Graphs
	Iterated Regret Minimization (IRM)
	IRM in Tree Arenas
	IRM in PositiveWeighted Arenas

	References

	Properties of Visibly Pushdown Transducers
	Introduction
	Visibly Pushdown Transducers
	Properties of VPTs
	On $k$ -Valuedness of VPTs
	Well-Nested VPTs
	Conclusion
	References

	Second-Order Algebraic Theories
	Introduction
	Second-Order Equational Logic
	Second-Order Universal Algebra
	Second-Order Algebraic Theories
	Second-Order Syntactic Translations
	Second-Order Functorial Semantics
	Concluding Remarks
	References

	Frame Definability for Classes of Trees in the $\mu$-calculus
	Preliminaries
	$\mu$-definability on Trees
	Graded $\mu$-calculus: Connection with MSO and Disjunctive Normal Form
	$\Box$-graded $\mu$-Calculus and Preservation under $p$-morphic Images
	$\mu$-definability at the Root and $\mu$-definability
	Discussion
	References

	Evaluating Non-square Sparse Bilinear Forms on Multiple Vector Pairs in the I/O-Model
	Introduction
	Model of Computation
	Transformations
	Algorithms
	Direct Algorithm
	Sorting Based Algorithm
	Table Based Algorithm

	Lower Bounds
	Column Major Layout
	Best-Case Layout

	References

	Finding and Counting Vertex-Colored Subtrees
	Introduction
	Definitions
	Arithmetic Circuits
	Multilinear Detection

	Finding Vertex-Colored Subtrees
	The Colorful Case
	The Multiset Case
	Edge-Weighted Versions

	Counting Vertex-Colored Subtrees
	FPT Algorithms for the Colorful Case
	Hardness of the Multiset Case

	Conclusion
	References

	Limiting Negations in Bounded Treewidth and Upward Planar Circuits
	Introduction
	Preliminaries
	Bounded Treewidth Circuits
	Inversion Complexity in Bounded Treewidth Circuits
	Inversion Complexity under Polynomial Size Constraints

	Inversion Complexity in Planar Circuits
	Lower Bounds for One-Input-Face Upward Planar Circuits
	Multilective Upward Planar Circuits

	References

	On the Topological Complexity of MSO+U and Related Automata Models
	Introduction
	BasicNotions
	Non-borel Sets in MSO+U
	\wBS-Automata
	Complexity of \wB- and \wS-Regular Languages
	Complexity of \wBS-Regular Languages

	Alternating \wBS-Automata
	Languages Complete for the Classes $\mult 0{2\ii}$
	Automata Construction

	Conclusion
	References

	Least and Greatest Solutions of Equations over Sets of Integers
	Introduction
	Equations over Sets of Integers
	Resolved Systems and Their Properties
	Greatest Solutions
	Least Solutions of Resolved Systems
	Conclusion
	References

	Improved Simulation of Nondeterministic Turing Machines
	Introduction
	Model and Problem Statement
	Block-Trace Simulation
	MainTheorem
	Sub-linear Nondeterminism and Small Circuits
	Conclusions
	Some Related Work

	References

	The Prize-Collecting Edge Dominating Set Problem in Trees
	Introduction
	Algorithm
	Case A1
	Case A2
	Case A3
	Case B

	Correctness
	The Star Case
	Case A1
	Case A2
	Case A3
	Case B

	Time Complexity
	Total Dual Integrality and Generalization
	Total Dual Integrality of a Related Polyhedron
	Generalization

	References

	The Multivariate Resultant Is NP-hard in Any Characteristic
	Introduction
	Complexity of the Resultant in Characteristic 0
	TheResultantisNP-hard in Arbitrary Characteristic
	FinalRemarks
	References

	Parameterized Complexity and Kernelizability of Max Ones and Exact Ones Problems
	Introduction
	Preliminaries and Notation
	Max Ones Characterization
	Bijunctive Cases

	ExactOnesCSP
	References

	Meta-Envy-Free Cake-Cutting Protocols
	Introduction
	Preliminaries
	Meta-Envy-Freeness
	Meta-Envy-Free Protocols for Two and Three Parties
	References

	Two Variables and Two Successors
	Introduction
	Preliminaries
	AutomataonTexts
	Decidability of the Text Automaton
	Reduction from Logic to Automata
	Discussion and Conclusion
	References

	Harnessing \pdfMLF{} with the Power of System \pdfSF
	Introduction
	A Short Presentation of \pdfxMLF
	The Coercion Calculus \pdfFc
	Some Basic Properties of \pdfFc
	Coercion Calculus as a Decoration of System \pdfSF
	Preservation of the Semantics

	The Translation
	References

	Describing Average- and Longtime-Behavior by Weighted MSO Logics
	Introduction
	Valuation Monoids andWeighted Automata on FiniteWords
	Weighted MSO Logic
	Characterization of Recognizable Series
	Omega-Valuation Monoids and Weighted Automata on Infinite Words
	A Characterization of \w-Recognizable Series
	References

	Solving {{\sc min ones $2$--sat}} as Fast as {{\sc vertex cover}}
	Introduction and Motivation
	Preliminaries
	Reduction of {{\sc min ones $2$--sat}} to {{\sc vertex cover}}
	Concluding Remarks
	References

	Unambiguous Finite Automata over a Unary Alphabet
	Introduction
	Chrobak Normal Form for Unambiguous Automata
	UFA–DFA Tradeoff
	Estimation of $\gtilde$
	NFA–UFA Tradeoff
	Complementing Unary UFAs
	State Complexity of Intersection and Star
	References

	The Complexity of Finding Reset Words in Finite Automata
	Introduction
	Preliminaries
	Decision Problems
	Search Problems
	Conclusion
	References

	Does Treewidth Help in Modal Satisfiability?
	Introduction
	Preliminaries
	Modal Satisfiability in General Models
	Models with Euclidean Property
	Transitive Models
	Conclusions and Future Work
	References

	Asynchronous Omega-Regular Games with Partial Information
	Introduction
	Preliminaries
	Powerset Construction
	The Asynchronous Case

	Epistemic Temporal Logic
	References

	Parity Games with Partial Information Played on Graphs of Bounded Complexity
	Introduction
	Preliminaries
	Unbounded Partial Information
	Bounded Partial Information
	References

	Revisiting Ackermann-Hardness for Lossy Counter Machines and Reset Petri Nets
	Introduction
	Counter Machines, Reliable and Lossy
	Extended Counter Machines and Minsky Machines
	Operational Semantics
	Lossy Counter Machines
	Behavioral Problems on Counter Machines

	The Fast-Growing Hierarchy
	Minsky Machines on a Budget
	Ackermann-Hardness for Lossy Counter Machines
	Handling Reset Petri Nets
	$R(M)$: Replacing Zero-Tests with Resets

	Hardness for Termination
	Concluding Remarks
	References

	Enumeration of the Monomials of a Polynomial and Related Complexity Classes
	Introduction
	Enumeration Problems
	Finding One Monomial
	An Incremental Algorithm for Polynomials with Distinct Supports
	A Polynomial Delay Algorithm for Multilinear Polynomials
	Complexity Classes for Enumeration
	Degree2Polynomials
	An Incremental Algorithm for Degree 2 Polynomials
	Limit to the Polynomial Delay Approach

	Conclusion
	References

	Faster Approximation Schemes and Parameterized Algorithms on $H$-Minor-Free and Odd-Minor-Free Graphs
	Introduction
	Preliminaries
	Partitioning $H$-Minor-Free Graphs
	Approximation Algorithms and PTAS

	(Nearly) Subexponential FPT-Algorithms
	The Technique of Guess and Conquer
	Guess and Conquer for Domination, Covering, and More
	Further Analysis and Relation to Kernels

	Algorithms on Odd-Minor-Free Graphs
	PTASes on Odd-Minor-Free Graphs
	Subexponential FPT for Odd-Minor-Free Graphs

	References

	Semi-linear Parikh Images of Regular Expressions via Reduction
	Introduction
	Preliminaries
	The Reduction System
	Termination
	Correctness: Preserving Parikh Images

	Extracting Parikh Images from Most-Reduced Regexps
	References

	Breaking the Rectangle Bound Barrier against Formula Size Lower Bounds
	Introduction
	Preliminaries
	A Quasi-additive Bound for Formula Size Lower Bounds
	A Cross Argument for the Quasi-additive Bound
	Applying Sherali-Adams’ Method to the LP Bound
	A Triplet Argument for the Sherali-Adams and Quasi-additive Bounds
	Conclusions
	References

	Mesh Deformation of Dynamic Smooth Manifolds with Surface Correspondences
	Introduction
	Motivation
	Problem Definition and Related Work
	Approach and Contribution

	Background
	Delaunay and Voronoi Complexes
	Skin
	General Skin Deformation and Intermediate Complexes
	Dynamic Skin Triangulation

	Surface Deformation
	Mixed Cell Deformation
	Computing the Trajectory for a Sample Point

	Handling Topology Changes
	Experimental Results
	Conclusion
	References

	Counting Dependent and Independent Strings
	Introduction
	Preliminaries
	Strings Dependent with a Given String
	Pairwise Independent Strings
	Mutually Independent Strings
	FinalRemarks
	References

	Impossibility of Independence Amplification in Kolmogorov Complexity Theory
	Introduction
	Preliminaries
	Limited Independence

	Limits on Kolmogorov Complexity Extraction
	Limits on Extraction from One Source
	Limits on Extraction from Two Sources

	Kolmogorov Complexity Extraction
	Construction Overview
	Construction of the Kolmogorov Extractor

	Impossibility of Independence Amplification
	References

	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




