
Chapter 9.
The Absolute Galois Group of C(t)

Let C be an algebraically closed field of cardinality m, x an indeterminate,
E a finite extension of C(x) of genus g, and S a set of prime divisors of E/C.
We denote the maximal extension of E ramified at most over S by ES . If
X is a smooth projective model of E/C, then we interpret S as a subset of
X(C), call Gal(ES/E) the fundamental group of X � S, and denote it by
π1(X � S). Starting from the fundamental group of the corresponding Rie-
mann surface and applying the Riemann existence theorem, one proves that
when r = card(S) < ∞, Gal(ES/E) is the free profinite group generated
by r + 2g elements σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g with the unique defining rela-

tion σ1 · · ·σr[τ1, τ
′
1] · · · [τg, τ

′
g] = 1 (Proposition 9.1.2). Using Grothendieck’s

specialization theorem, we generalize that result to an arbitrary algebraically
closed field C of characteristic 0 (Proposition 9.1.5). In particular, if r ≥ 1,
then Gal(ES/E) ∼= F̂r+2g−1. When m = card(S) is infinite, we take the limit
on all finite subsets of S to conclude that Gal(ES/E) ∼= F̂m (Corollary 9.1.9).
In particular, if S is all of the prime divisors of E/C, then card(S) = card(C)
and we find that Gal(E) ∼= F̂m (Corollary 9.1.10). In particular, Gal(E) is
projective (Corollary 9.1.11).

The situation is quite different when char(C) is a positive prime number
p. We can not use the Riemann existence theorem to determine the struc-
ture of Gal(ES/E). Indeed, if S is nonempty and of cardinality less than
that of C, then Gal(ES/E) is even not a free profinite group (Proposition
9.9.4) as is the case in characteristic 0. What we do know is the structure
of the Galois group Gal(ES,p′/E), where ES,p′ is the maximal Galois exten-
sion of E ramified at most over S and of degree not divisible by p. Using
Grothendieck’s lifting to characteristic 0, one proves that the latter group is
just the maximal quotient of order not divisible by p of the corresponding
group in characteristic 0 (Proposition 9.2.1). But, this does not help us to
compute Gal(E). Instead, we prove by algebraic means that Gal(E) is a free
profinite group of cardinality m. This proof works over every algebraically
closed field and does not use the Riemann existence theorem.

The first step is to prove that Gal(E) is projective (Proposition 9.4.6).
Our proof applies some basic properties of the cohomology of profinite groups.
Then we use that every finite split embedding problem for Gal(E) has m
solutions (Proposition 8.6.3) to conclude that Gal(E) ∼= F̂m (Corollary 9.4.9).

Interesting enough, the same arguments work if E is a finite extension
of K(x), where K is a field of cardinality m of positive characteristic p and
Gal(K) is a pro-p group. Thus, even in this case Gal(E) ∼= F̂m (Theorem
9.4.8).

Next we prove for each nonempty set of prime divisors of E/C that
Gal(ES/E) is projective (Corollary 9.5.8). In addition to the projectivity of
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9.1. The Fundamental Group of a Riemann Surface

Gal(E), the main tool used in the proof is the Jacobian variety of a smooth
projective model Γ of E/C. The same tool helps us to prove that Gal(ES/E)
is not projective if S is empty (Proposition 9.6.1). The latter group can be
interpreted as the fundamental group of Γ.

Finally we consider the case where E = C(x) and apply algebraic patch-
ing to solve each split embedding problems m times in ES , first in the case
that C is complete under an ultrametric absolute value and then when C is
an arbitrary algebraically closed field. This proves that Gal(ES/E) ∼= F̂m if
card(S) = m (Theorem 9.8.5). This is an optimal result in characteristic p.
In that case, Gal(ES/E) is not free if card(S) < m (Proposition 9.9.4).

9.1. The Fundamental Group of a Riemann Surface

Algebraic topology teaches us that the fundamental group of a sphere punc-
tured in r points is generated by r elements σ1, . . . , σr with the single relation
σ1 · · ·σr = 1. The theory of Riemann surfaces and in particular Riemann ex-
istence theorem translates this result to a theorem about finite Galois groups
over C(x) (Proposition 9.1.1) and more generally over algebraic function fields
E of one variable over C (Proposition 9.1.2). Using Grothendieck’s special-
ization theorem, it is possible to generalize these results to arbitrary alge-
braically closed field C of characteristic 0 (Proposition 9.1.5). Taking the
limit over the sets of prime divisors that we allow to ramify in the extensions
prove the main result of this section: Let S be a set of prime divisors of E/C
of infinite cardinality m. Denote the maximal Galois extension of E ramified
at most over S by ES . Then Gal(ES/E) ∼= F̂m (Proposition 9.1.9). In par-
ticular, Gal(E) is the free profinite group of rank equal to card(C) (Corollary
9.1.10).

Proposition 9.1.1 ([Voe96, Thm. 2.13]):
(a) Let F be a finite Galois extension of C(x). Let p1, . . . , pr be the prime

divisors of C(x) which are ramified in F . Then there exist generators
σ1, . . . , σr of Gal(F/C(x)) with σ1 · · ·σr = 1 such that σi generates an
inertia group over pi, i = 1, . . . , r.

(b) If G is a finite group generated by σ1, . . . , σr with σ1 · · ·σr = 1, then C(x)
has a finite Galois extension F ramified at most over p1, . . . , pr such that
σi generates an inertia group over pi, i = 1, . . . , r.

No algebraic proof is known to either parts of Proposition 9.1.1. It would
be highly desirable to have one.

Similar transition from topology to complex analysis and then to algebra
generalizes Proposition 9.1.1 to Galois extensions of function fields of one
variable over C. Following the usual convention of group theory, we set
[x, y] = x−1y−1xy for elements x, y of a group G.

Proposition 9.1.2 ([Ser92, Section 6.2]): Let E be a finite extension of
C(x) of genus g and S = {p1, . . . , pr} a set of r prime divisors of E/C.
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Chapter 9. The Absolute Galois Group of C(t)

(a) Let F be a finite Galois extension of E such that Ram(F/E) ⊆ S. Then
F has prime divisors P1, . . . ,Pr respectively lying over p1, . . . , pr and
there are elements σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g generating Gal(F/E) such

that σi generates the decomposition group DPi/pi
for i = 1, . . . , r and

(1) σ1 · · ·σr[τ1, τ
′
1] · · · [τg, τ

′
g] = 1.

(b) Let G be a finite group generated by elements σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g

satisfying relation (1). Then E has a Galois extension F such that
Gal(F/E) ∼= G and F has prime divisors P1, . . . ,Pr respectively lying
over p1, . . . , pr such that σi generates DPi/pi

, i = 1, . . . , r.

On the other hand, it is not difficult to replace C in Propositions 9.1.1
and 9.1.2 by an arbitrary algebraically closed field C of characteristic 0. This
depends on the ability to descend from an algebraically closed field to an
algebraically closed subfield.

Let E be a function field of one variable over an algebraically closed field
K, S a set of prime divisors of E/K, and G a finite group. We denote the
set of all Galois extensions F such that Gal(F/E) ∼= G and Ram(F/E) ⊆ S
by F(E,S, G). If E = K(x) is a field of rational functions, we identify the
set of prime divisors of E/K with the set K ∪ {∞} and Ram(F/E) with
Branch(F/E).

Lemma 9.1.3: Let K ⊆ L be an extension of algebraically closed fields, S a
finite subset of K ∪{∞}, G a finite group, and x an indeterminate. Suppose
F(L(x), S,G) is a finite set. Then the map F �→ FL maps F(K(x), S,G)
bijectively onto F(L(x), S,G). In particular, F(K(x), S,G) is a finite set.

Proof: If S is empty, then so is F(K(x), S,G) and F(L(x), S,G) (a conse-
quence of the Riemann-Hurwitz formula (Remark 5.8.1(f)). Thus, we may
assume that S is nonempty. Applying a Möbius transformation, we may
assume that ∞ ∈ S.

Since L/K is a regular extension, the map F �→ FL maps F(K(x), S,G)
injectively into the set F(L(x), S,G). The proof that the map is surjective
breaks up into two parts.

Part A: Suppose F(L(x), S,G) consists of only one field F . We denote the
set of zeros of a polynomials h ∈ L[x] by Zero(h). By [Has80, p. 64], there
are polynomials f1, . . . , fm ∈ L[X, Y ] monic in Y and primitive elements
y1, . . . , ym of F/L(x) such that fi(x, Y ) is irreducible in L(x)[Y ], fi(x, yi) = 0,
and

(2) Branch(F/L(x)) �{∞} =
m⋂

i=1

Zero(discr(fi(x, Y ))).

There exist u1, . . . , un ∈ L and polynomials gi ∈ K[U1, . . . , Un, x, Y ]
such that fi(x, Y ) = gi(u, x, Y ), where u = (u1, . . . , un), Fu = K(u, x, yi) is
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9.1. The Fundamental Group of a Riemann Surface

a Galois extension of K(u, x) independent of i with Galois group G. Since L
is algebraically closed, we may enlarge the set {u1, . . . , un} if necessary such
that it contains Zero(discr(fi(x, Y ))) for each i. The same reason implies that
the polynomials fi(x, Y ) are absolutely irreducible. Since K is algebraically
closed, u generates an absolutely irreducible variety U = Spec(K[u]) in An

K

defined over K.
By Hilbert [FrJ08, Lemma 13.1.1] and Bertini-Noether [FrJ08, Prop.

9.4.3], U has a nonempty Zariski-open subset U ′ such that for each u′ ∈
U ′(K) the K-specialization u → u′ extends to a K(x)-place ′ of the field Fu

with residue field Fu′ that has all the properties of the preceding paragraph
with u′ replacing u.

Hilbert’s Nullstellensatz gives a u′ ∈ U ′(K). Thus, Fu′ is a Galois
extension of K(x) with Galois group G, gi(u′, x, Y ) is absolutely irreducible
(as a polynomial in x, Y ), gi(u′, x, y′i) = 0, and Fu′ = K(x, y′i). Moreover,
discr(fi(x, Y ))′ = discr(gi(u, x, Y )′) = discr(gi(u′, x, Y )) for each i. Hence,
by (2),

Zero(discr(gi(u′, x, Y ))) = Zero(discr(fi(x, Y ))′)
= Zero(discr(fi(x, Y )))′ ⊆ S′ = S.

The second equality holds because we assumed that discr(fi(x, Y )) decom-
poses into linear factors over K(u).

Again, by [Has80, p. 64],

Branch(Fu′/K(x)) �{∞} ⊆
m⋂

i=1

Zero(discr(gi(u′, x, Y ))) ⊆ S.

It follows from ∞ ∈ S that Branch(Fu′/K(x)) ⊆ S, so Fu′ ∈ F(K(x), S,G).
By the second paragraph of the proof, Fu′L ∈ F(L(x), S,G) = {F}. Conse-
quently, Fu′L = F .

Part B: The general case. We list the fields of F(L(x), S,G) as F1, . . . , Fs

and set F to be their compositum. Then F is a finite Galois extension of
K, say with Galois group H. Moreover, Branch(F/L(x)) ⊆ S and H is the
compositum of all normal subgroups N with H/N ∼= G. If F ′ is another
field in F(L(x), S,H), then F ′ is a compositum of Galois extensions F ′i ,
i = 1, . . . , s, that belong to F(L(x), S,G). Each of them must be contained
in F , so F ′ ⊆ F . Since both fields have the same Galois group over L(x),
they coincide. It follows that F(L(x), S,H) = {F}.

Part A gives a field E ∈ F(K(x), S,H) with EL = F . By the defini-
tion of H, E is the compositum of s distinct fields E1, . . . , Es with Galois
group G. The corresponding composita E1L, . . . , EsL are s distinct fields in
F(L(x), S,G) contained in F . Hence {E1L, . . . , EsL} = {F1, . . . , Fs}. Conse-
quently, the map E �→ EL from F(K(x), S,G) to F(L(x), S,G) is surjective.
�
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Chapter 9. The Absolute Galois Group of C(t)

We generalize Lemma 9.1.3 from rational function fields to algebraic
function fields.

Proposition 9.1.4: Let K ⊆ L be an extension of algebraically closed fields,
E a function field of one variable over K algebraically independent from L
over K, S a finite subset of prime divisors of E/K, and G a finite group. We
identify S with a set of prime divisors of EL/L and suppose F(EL,S, G) is a
finite set. Then the map λ: F(E,S, G) → F(EL,S, G) defined by λ(F ) = FL
is bijective. In particular, F(E,S, G) is a finite set.

Proof: The map λ is injective because the fields Ẽ and L are linearly disjoint
over K. The proof that λ is surjective applies Lemma 9.1.3.

Let x be a separating transcendental element for the extension E/K.
Then x is also a separating transcendental element for EL/L. We choose a
finite subset T of K ∪ {∞} that contains Ram(E/K(x)) and the restriction
of S to K(x). Now consider F ′ ∈ F(EL,S, G), let F̂ ′ be the Galois closure of
F ′/L(x), and set H = Gal(F̂ ′/L(x)). Then F̂ ′ ∈ F(L(x), T, H). By Lemma
9.1.3, there exists F̂ ∈ F(K(x), T, H) with F̂L = F̂ ′. By linear disjointness,
the map res: Gal(F̂ ′/L(x)) → Gal(F̂ /K(x)) is an isomorphism. Hence, E has
a Galois extension F in F̂ satisfying FL = F ′ and Gal(F/E) ∼= G. Finally
consider p ∈ Ram(F/E). Then the unique extension of p to a prime divisor
of EL/L ramifies in F ′, so p ∈ S. Consequently, F ∈ F(E,S, G). �

Proposition 9.1.5: Let C be an algebraically closed field of characteristic
0, E a finite extension of C(x) of genus g and S = {p1, . . . , pr} a set of r
prime divisors of E/C.
(a) Let F be a finite Galois extension of E with Ram(F/E) ⊆ S. Then F

has prime divisors P1, . . . ,Pr respectively lying over p1, . . . , pr and there
are elements σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g generating Gal(F/E) such that

σi generates the decomposition group DPi/pi
, i = 1, . . . , r, and

(1) σ1 · · ·σr[τ1, τ
′
1] · · · [τg, τ

′
g] = 1.

(b) Let G be a finite group generated by elements σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g

satisfying relation (1). Then E has a Galois extension F such that
Gal(F/E) ∼= G and F has prime divisors P1, . . . ,Pr respectively lying
over p1, . . . , pr such that σi generates DPi/pi

, i = 1, . . . , r.

Proof: First we consider the case where C = C. Let ES be the maximal ex-
tension of E that is ramified at most over S. Let Γ be the free profinite group
with generators σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g and the unique defining relation

(1). Then Γ is finitely generated and, by Lemma 9.1.2, has the same finite
quotients as Gal(ES/E). Hence, Γ ∼= Gal(ES/E) [FrJ08, Prop. 16.10.7(b)].
It follows from [FrJ08, Lemma 16.10.2] that F(E,S, G) is finite. Moreover,
the cardinality n(r, g,G) of F(E,S, G) depends only on r, g, and G.

Next we consider the case where C ⊆ C. Without loss we may assume
that E is algebraically independent from C over C and identify S with a
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9.1. The Fundamental Group of a Riemann Surface

set of prime divisors of EC/E by extending the field of constants from C to
C. By the preceding paragraph, F(EC, S,G) is finite. Hence, by Proposi-
tion 9.1.4, the map F �→ FC maps F(E,S, G) bijectively onto F(EC, S,G).
Moreover, g = genus(E/C) = genus(EC/C) [FrJ08, Prop. 3.4.2(b)]. Hence,
by the first paragraph, |F(E,S, G)| = n(r, g,G). By linear disjointness,
res: Gal(FC/EC) → Gal(F/E) is an isomorphism for each F ∈ F(E,S, G).
Since res maps the decomposition group over EC of a prime divisor P of
FC/C isomorphically onto the decomposition group of P|F over E, (a) and
(b) of our proposition follow from (a) and (b) of Proposition 9.1.2.

In the general case we find an algebraically closed subfield C0 of C with
a finite transcendence degree over Q, a function field E0 of one variable over
C0 algebraically independent from C over C0 with E0C = E, and a set
S0 = {p0,1, . . . , p0,r} of prime divisors of E0/C0 that uniquely extends to S
when C0 extends to C. Without loss we may assume that C0 ⊆ C. Then,
g = genus(E/C) = genus(E0/C0) = genus(E0C/C). By the preceding para-
graph, |F(E0, S0, G)| = n(r, g,G). Moreover, (a) and (b) hold for C0, E0, S0

replacing C, E, S. If F(E,S, G) had more than n(r, g,G) fields, then we
could choose C0 such that F(E0, S0, G) would also have more that n(r, g,G)
fields, in contrast to the previous conclusion. Therefore, F(E,S, G) is finite.
We may therefore apply Proposition 9.1.4 again and conclude that the map
F0 �→ F0C maps the set F(E0, S0, G) bijectively onto the set F(E,S, G).
This map is compatible with restriction of Galois groups and decomposition
groups. Therefore, (a) and (b) hold also for C, E, S. �

Giving a function field E of one variable over a field K and a set S
of prime divisors of E/K, we denote (as in the proof of Proposition 9.1.5)
the compositum of all finite Galois extensions F of E with Ram(F/E) ⊆ S
by ES . Thus, ES is a Galois extension of E. If S′ is another set of prime
divisors of E/K and S ⊆ S′, then ES ⊆ ES′ . If S is empty, then ES is the
compositum of all unramified finite Galois extensions of E. In this case we
denote ES also by Eur.

Proposition 9.1.6: Let C be an algebraically closed field of characteristic
0, E a finite extension of C(x) of genus g, and S = {p1, . . . , pr} a set of r
prime divisors of E/C. Then Gal(ES/E) is the free profinite group generated
by elements σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g satisfying the relation (1) and each

σi is a generator of the decomposition group of a prime divisor of ES/C lying
over pi.

Proof: We extend the argument of the first paragraph of the proof of Propo-
sition 9.1.5. For each finite Galois extension F of E in ES we consider the
finite set A(F/E) of all (2r + 2g)-tuples

(3) (P1, . . . ,Pr, σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g)

such that Pi is a prime divisor of F/C lying over pi, σi is a generator of
the decomposition group DPi/pi

, i = 1, . . . , r, and σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g
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Chapter 9. The Absolute Galois Group of C(t)

are generators of Gal(F/E) satisfying relation (1). If F ′ is a finite Galois
extension of E in ES that contains F and P′i is a prime divisor of F ′/C lying
over pi, then Pi = P′i|F is a prime divisor of F/C lying over pi and the
epimorphism res: Gal(F ′/E) → Gal(F/E) maps DP′

i/pi
onto DPi/pi

[Ser79,
Chap. 1, Prop. 22(b)]. Hence res induces a map of A(F ′/E) into A(F/E).
By Proposition 9.1.5(a), each A(F/E) is nonempty. Therefore, the inverse
limit of the sets A(F/E) is nonempty [FrJ08, Lemma 1.1.3]. Each element
of that inverse limit is an (2r + 2g)-tuple (3) satisfying relation (1) such that
Pi is a prime divisor of ES/C lying over pi and σi generates DPi/pi

.
Now, let Γ be the free profinite group on the generators σ1, . . . , σr,

τ1, τ
′
1, . . . , τg, τ

′
g satisfying relation (1). By Proposition 9.1.5, Gal(ES/E) and

Γ have the same finite quotients. Consequently, by [FrJ08, Prop. 16.10.7],
Gal(ES/E) ∼= Γ. �
Corollary 9.1.7: In the notation of Proposition 9.1.6,
(a) If g = 0 and r ≥ 2 or g ≥ 1 and r ≥ 1, then 〈σi〉 ∼= Ẑ, i = 1, . . . , r.
(b) If r ≥ 1, then Gal(ES/E) ∼= F̂r−1+2g.

Proof of (a): In order to prove that 〈σi〉 ∼= Ẑ, it suffices to prove that for
each positive integer n the cyclic group Cn of order n is a quotient of 〈σi〉.

Let y be a generator of Cn. If r ≥ 2, we choose j �= i, 1 ≤ j ≤ r.
Then we map σi onto y, σj onto y−1 and all other generators to 1 to get an
epimorphism Gal(ES/E) → Cn that maps 〈σi〉 onto Cn.

It remains to consider the case where r = 1 and g ≥ 1. Let D2n be
the dihedral group of order 2n generated by elements x, y with the defining
relations x2n = 1, y2 = 1, and y−1xy = x−1. Then [x, y] = x−1y−1xy = x−2

has order n. Hence, the map σ1 �→ [x, y]−1, τ1 �→ x, τ ′1 �→ y, τj �→ 1, and
τ ′j �→ 1 for j ≥ 2 extends to an epimorphism of Gal(ES/E) onto D2n mapping
〈σ1〉 onto the cyclic group of order n generated by [x, y].

Proof of (b): By Proposition 9.1.6, Gal(ES/E) is the free profinite group
generated by the elements σ2, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g. The extra generator

σ1 can be expressed in terms of the other generators via (1). �
Remark 9.1.8: Inverse limit of free profinite groups. One way to construct
a free profinite group of arbitrary rank is to start from disjoint sets S, T such
that T is finite. For each subset A of S we set A′ = A ∪ T and consider the
free profinite group F̂A′ with basis A′. If A, B are finite subsets of S and
A ⊆ B, then the map B′ → A′ that maps each a ∈ A′ onto itself and each
b ∈ B � A onto 1 uniquely extends to an epimorphism αBA: F̂B′ → F̂A′ . The
inverse limit F of the groups F̂A′ and the maps αBA is isomorphic to the free
profinite group F̂S′ with basis S′ = S ∪ T . Indeed, for each A let αSA be
the limit of all maps αBA, where B ranges over all finite subsets B of S that
contain A. For each open normal subgroup N of F there exists a finite subset
A of S such that Ker(αSA) ≤ N , so S′� A′ ⊆ N . Thus, S′ converges to 1 in
the sense of [FrJ08, Section 17.1]. Moreover, if ϕ0 is a map of S′ into a finite
group H that maps the complement of some A′ onto 1, then ϕ0 decomposes
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9.1. The Fundamental Group of a Riemann Surface

through αSA: S′ → A′. Since A′ is a basis of F̂A′ , we may extend ϕ0 to a
continuous homomorphism ϕ: F → H.

Using compactness, it is possible to relax the above rigid condition on
the maps αBA. Consider a projective limit G = lim←−GA of profinite groups,

where A ranges over all finite subsets of S. Assume for each A the group
GA is isomorphic to F̂A′ , and if B ⊇ A, then the associated homomorphism
ρBA: GB → GA is surjective. Consider the compact space (GA)A′

(in the
product topology) of all functions from A′ into GA. Let ΦA be a closed subset
of (GA)A′

. Suppose each ϕ ∈ ΦA satisfies 〈ϕ(a) | a ∈ A′〉 = GA. Suppose also
that if B ⊇ A and ϕ′ ∈ ΦB , then ϕ = ρBA ◦ ϕ′|A′ ∈ ΦA and ρBA(ϕ′(b)) = 1
for each b ∈ B � A. Then ϕ (resp. ϕ′) uniquely extends to an epimorphism
ϕA: F̂A′ → GA (resp ϕB : F̂B′ → GB) such that ρBA ◦ ϕB = ϕA ◦ αBA. By
[FrJ08, Lemma 17.4.11], ϕA (resp. ϕB) is an isomorphism.

GB

ρBA

��

F̂B′

αBA

��

ϕB��

B′
ϕ′

��������
��������

GA F̂A′
ϕA��

A′
ϕ

��������
��������

��

It follows that Φ = lim←−ΦA is nonempty [FrJ08, Lemma 1.1.3]. Each ϕ ∈ Φ

gives an isomorphism of F̂S′ onto G. In particular, ϕ(S′) is a basis of G and
for each A we have ρSA ◦ ϕ|A ∈ ΦA. �

Proposition 9.1.9: Let C be an algebraically closed field of characteristic
0, E a function field of one variable over C, S an infinite set of cardinality
m of prime divisors of E/C. Then Gal(ES/E) ∼= F̂m.

Proof: We choose a prime divisor p1 ∈ S and denote the collection of all
finite nonempty subsets of S �{p1} by A. We also choose a set T disjoint
from S of 2g elements, where g = genus(E/C). For each A ∈ A let GA =
Gal(E{p1}∪A/E) and A′ = A ∪ T . By Corollary 9.1.7(b), GA

∼= F̂A′ . Let ΦA

be the set of all functions ϕ: A′ → GA such that GA = 〈ϕ(a) | a ∈ A′〉 and
for each p ∈ A, ϕ(p) generates a decomposition group of a prime divisor of
E{p1}∪A/C over p.

Claim: ΦA is closed in GA′
A . Indeed, suppose a function ψ: A′ → GA be-

longs to the closure of ΦA. Then for each finite Galois extension F of E in
E{p1}∪A there exists ϕ ∈ ΦA such that ψ(a)|F = ϕ(a)|F for each a ∈ A′. It
follows that Gal(F/E) = 〈ψ(a)|F | a ∈ A′〉 and for each p ∈ A, ψ(p)|F gen-
erates a decomposition group of a prime divisor of F/C lying over p. Taking
the limit over all possible F , we find that ψ ∈ ΦA, as claimed.
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Next note that if B ∈ A and A ⊆ B, then E{p1}∪A ⊆ E{p1}∪B . Let
ρBA: GB → GA be the restriction map. Consider ϕB ∈ ΦB and p ∈ B � A.
Then ϕB(p) generates the decomposition group of some prime divisor of
E{p1}∪B/C lying over p. Therefore, ϕB(p)|E{p1}∪A

generates the decompo-
sition group of a prime divisor P of E{p1}∪A/C lying over p. Since C is
algebraically closed, DP/p = IP/p. However, p is unramified in E{p1}∪A,
because p /∈ A. Hence, IP/p = 1, so ρBA(ϕB(p)) = ϕB(p)|E{p1}∪A

= 1.
Finally observe that ρBA maps each set of generators of GB onto a set

of generators of GA. Therefore, ρBA ◦ ϕB |A ∈ ΦA.
Consequently, by Remark 9.1.8, Gal(ES/E) ∼= F̂m. �

If we take S in Proposition 9.1.9 to be the set of all prime divisors of
E/C, then ES = Ẽ. In this case the group Gal(ES/E) becomes the absolute
Galois group of E and card(S) = card(C).

Corollary 9.1.10 ([Dou64, Théorème 2]): Let C be an algebraically closed
field of characteristic 0 and of cardinality m and E a function field of one
variable over C. Then Gal(E) ∼= F̂m.

Since each free profinite group is projective [FrJ08, Cor. 22.4.5], the
combination of Corollary 9.1.7(b) and Proposition 9.1.9 gives the following
result:

Corollary 9.1.11: Let C be an algebraically closed field of characteristic
0 and S a nonempty set of prime divisors of E/C. Then Gal(ES/E) is
projective. In particular, Gal(E) is projective.

Remark 9.1.12: Freeness and projectivity. The projectivity of Gal(ES/E)
obtained in Corollary 9.1.11 is a much weaker property than the freeness of
the group. Yet we generalize it in Theorem 9.5.7 for an arbitrary characteris-
tic by algebraic means and deduce the freeness of Gal(ES/E) for infinite sets
S (Theorem 9.8.5). If however, char(C) > 0 and S is finite, then Gal(ES/E)
is not free (Proposition 9.9.4). �

9.2 Fundamental Groups in Positive Characteristic

We continue our survey of the theory of fundamental groups of curves over
an algebraically closed fields and move to the case where the characteristic
is a prime number p. The results obtained in characteristic 0 can be carried
over as long as we “stay away” from p, but are completely different in the
general case.

Proposition 9.2.1 ([SGA1, Exposé XIII, Cor. 2.12]): Let C be an alge-
braically closed field of characteristic p, E a function field of one variable
over C of genus g, and S = {p1, . . . , pr} a finite set of prime divisors of E/C.

(a) Let ES,tr be the compositum of all finite Galois extensions F of E such
that Ram(F/E) ⊆ S and each p ∈ Ram(F/E) is tamely ramified. Then
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Gal(ES,tr/E) is generated by elements σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g satis-

fying the relation

(1) σ1 · · ·σr[τ1, τ
′
1] · · · [τg, τ

′
g] = 1.

(b) Let ES,p′ be the compositum of all finite Galois extensions F of E of
degree not divisible by p such that Ram(F/E) ⊆ S. Then Gal(ES,p′/E)
is the free group generated by elements σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g with

the defining relation (1) in the category of profinite groups with order
not divisible by p.

(c) In both (a) and (b), σi can be chosen to generate a decomposition group
of a prime divisor lying over pi, i = 1, . . . , r.

Sketch of proof: One chooses a smooth projective model Γ for E/C. Then
one finds a complete discrete valuation ring R, with residue field C, and
an algebraically closed quotient field K of characteristic 0 and a projective
connected smooth curve Δ over S = Spec(R) whose special fiber is Δ ×S

Spec(C) ∼= Γ. Let ΔK be the generic fiber of Δ. Then genus(ΔK) = g.
Let p1, . . . ,pr be the points of Γ(C) corresponding to p1, . . . , pr. By Hensel’s
lemma, the points p1, . . . ,pr lift to points q1, . . . ,qr of ΔK(R). Let F be the
function field of ΔK over K and q1, . . . , qr the prime divisors corresponding
to the points q1, . . . ,qr. Let T = {q1, . . . ,qr}. Using knowledge of the
behavior of the tamely ramified covers of the curve, one proves that there
is a surjective map Gal(FT /F ) → Gal(ES,tr/E) defining an isomorphism
Gal(FT,p′/F ) → Gal(ES,p′/E) compatible with decomposition groups. Using
Proposition 9.1.6, this gives (a), (b), and (c). �

Remark 9.2.2: Abhyankar’s conjecture. Let C be an algebraically closed
field of positive characteristic p, E a function field of one variable of genus g,
S a finite nonempty set of r prime divisors of E/C. Proposition 9.2.1 gives us
information only on the maximal tamely ramified quotient and the maximal
p′-quotient of Gal(ES/E). The structure of Gal(ES/E) is unknown, even
in the case where E = C(x) and S consists of one prime divisor. That is,
we do not know the structure of the fundamental group of the affine line in
characteristic p. What we do know is the set of finite quotients of Gal(ES/E).

Consider a finite Galois extension F of E in ES . Let G = Gal(F/E)
and denote the normal subgroup of G generated by all p-Sylow subgroups
of G by G(p). Let F0 be the fixed field of G(p) in F . Then F0 is a finite
Galois extension of E in ES of order not divisible by p. It follows from
Proposition 9.2.1(b) that G/G(p) ∼= Gal(F0/E) is generated by elements
σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g satisfying Relation (1). In particular, if E is a field

of rational functions over C and r = 1, then g = 0, so σ1 = 1 and F0 = E.
This follows also from the Riemann-Hurwitz formula for tamely ramified
extensions [FrJ05, Remark 3.6.2(d)]. Therefore, G = G(p) is generated by
its p-Sylow subgroups. A finite group having that property is said to be a
quasi-p group.
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This observation led Shreeram Abhyankar in [Abh57] to conjecture that
each finite group G such that G/G(p) is generated by r + 2g elements sat-
isfying Relation (1) with r ≥ 1 appears as a quotient of Gal(ES/E). In the
case G(p) = 1, the conjecture follows from Proposition 9.2.1(b). Jean-Pierre
Serre proved Abhyankar’s conjecture for solvable groups G [Ser90] using class
field theory. Raynaud proved Abhyankar’s conjecture for an arbitrary quasi-p
group over the affine line [Ray94], and David Harbater settled the general
Abhyankar’s conjecture [Hrb94a] by reducing it to the case of the affine line
proved by Raynaud. Finally, [Pop95] proves that every finite split embedding
problem for Gal(ES/E) whose kernel is a finite quotient of the fundamental
group of the affine line is solvable. If S is nonempty, then Gal(ES/E) is a
projective group (Corollary 9.5.8). Using Proposition 9.2.1 and Raynaud’s
result this gives an alternative proof of Abhyankar’s conjecture.

Indeed, let G be a finite group such that G/G(p) is generated by r + 2g
elements satisfying Relation (1) with r ≥ 1. By Proposition 9.2.1(b), there
is an epimorphism ϕ: Gal(ES/E) → G/G(p). Let α: G → G/G(p) be
the quotient map. Since Gal(ES/E) is projective, there is a homomor-
phism γ: Gal(ES/E) → G such that α ◦ γ = ϕ. Denote the fixed field of
Ker(γ) by Ê. Then there are epimorphisms ϕ̂: Gal(ES/E) → Gal(Ê/E)
and ϕ̄: Gal(Ê/E) → G/G(p) such that ϕ = ϕ̄ ◦ ϕ̂. Moreover, there is an
embedding γ̄: Gal(Ê/E) → G such that γ = γ̄ ◦ ϕ̂ and α ◦ γ̄ = ϕ̄. Let
Ĝ = G×G/G(p) Gal(Ê/E) be the corresponding fiber product and let α̂: Ĝ →
Gal(Ê/E) be the projection on the second factor. Then (ϕ̂: Gal(ES/E) →
Gal(Ê/E), α̂: Ĝ → Gal(Ê/E)) is a finite split embedding problem for
Gal(ES/E) whose kernel is isomorphic to G(p), so it is a finite quotient
of the fundamental group of the affine line (by Raynaud). It follows from
Pop’s theorem that the embedding problem is solvable. In particular, G is a
quotient of Gal(ES/E), as claimed. �

Remark 9.2.3: Half Riemann existence theorem. One may refer to Propo-
sition 9.2.1 as the tame Riemann existence theorem. The best known
approximation to Proposition 9.1.1 is the so called Half Riemann exis-
tence theorem, due to Pop [Pop94]. It applies to an arbitrary Henselian
field (K, v). For a positive integer r let S = {a1, b1, . . . , ar, br} be a subset
of Ks such that ai �= bi, v(ai − bi) > v(ai − bj) for all i �= j, and both
{a1, . . . , ar} and {b1, . . . , br} are invariant under Gal(K). Let Π be F̂r if
char(K) = char(K̄v) and the free product of r copies of Ẑ/Zp if char(K) = 0
and char(K̄v) = p > 0. Then the field K(x) of rational functions in x
over K has a Galois extension N with Branch(N/K(x)) = S such that
Gal(N/Ks(x)) ∼= Π and Gal(N/K(x)) = Gal(K) � Gal(N/Ks(x)). More-
over, one may choose generators σ1, . . . , σr for Π such that σi generates an
inertia group of both ai and bi, i = 1, . . . , r. See also [Hrb03, Thm. 4.3.3 and
Remark 4.4.4(c)]. �
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9.3 Cohomology of Groups

9.3 Cohomology of Groups

We survey in this section the basic notions and results of the cohomology of
profinite groups needed in this book. Our basic references are [Rib70] and
[Ser79]. In this Chapter we apply a small part of our survey to prove that
Gal(E) is projective for each extension E of transcendence degree 1 over an
algebraically closed field (Proposition 9.4.6). In Chapter 11 we build on our
survey to prove local-global theorems for Brauer groups. This leads to fields
of transcendence degree 1 over PAC fields with projective absolute Galois
groups.

9.3.1 G-modules.
Let G be a profinite group and A a discrete Abelian (additive) group.

We say that A is a G-module if G acts continuously on A from the left, that
is there is a continuous map G×A → A mapping a pair (σ, a) ∈ G×A onto
the element σa of A such that
(1a) (στa) = σ(τa),
(1b) σ(a + b) = σa + σb, and
(1c) 1a = a

for all a, b ∈ A and σ, τ ∈ G. If σa = a for all σ ∈ G and a ∈ A we say that
A is a trivial G-module. Our basic examples occur when G = Gal(L/K)
is a Galois group and A is either the additive group L+ or the multiplicative
group L× of L (where in the latter case we have to switch to a multiplicative
module). We may also take A to be the group of all roots of unity belonging
to L or the group J(L), where J is an Abelian variety defined over K.

For each closed subgroup U of G we write AU for the fixed module of
A under U . For each a ∈ A the equality 1a = a implies that there exists an
open subgroup U of G such that σa = a for each σ ∈ U , i.e. a ∈ AU . Thus

(2) A =
⋃

AU ,

where U ranges on all open subgroups (or even open normal subgroups) U
of G.

A map ϕ: A → B between G-modules is a G-homomorphism if ϕ is a
group homomorphism that satisfies ϕ(σa) = σϕ(a) for all σ ∈ G and a ∈ A.

9.3.2 Definition of the Cohomology Groups.
Given a G-module A, we consider for each q ≥ 0 the group Cq(G, A)

of all continuous maps f : Gq → A (called non-homogeneous q-cochains)
and the homomorphisms ∂q+1: Cq(G, A) → Cq+1(G, A) (called the non-
homogeneous coboundary operators) defined by (∂1f)(σ) = σf(1)−f(1)
and for q ≥ 1 by

(∂q+1f)(σ1, . . . , σq+1) = σ1f(σ2, . . . , σq+1)(3)

+
q∑

i=1

(−1)if(σ1, . . . , σi−1, σiσi+1, σi+2, . . . , σq+1)

+ (−1)q+1f(σ1, . . . , σq).
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One proves that

(4) ∂q+1 ◦ ∂q = 0,

so that
0 → C0(G, A) ∂1−→C1(G, A) ∂2−→C2(G, A) ∂3−→ . . .

is a complex. Each element of the group Zq(G, A) = Ker(∂q+1) is a q-
cocycle whereas each element of the group Bq(G, A) = Im(∂q) is a q-
coboundary. By (4), Bq(G, A) ≤ Zq(G, A). This gives rise to the q-th
cohomology group with coefficients in A:

Hq(G, A) = Zq(G, A)/Bq(G, A).

Note that C0(G, A) is the set of all functions f : {1} → A. Taking ∂0 = 0,
we get B0(G, A) = 0 and H0(G, A) = Z0(G, A) = AG. A 1-coboundary is
a map fa: G → A defined by fa(σ) = σa − a for a fixed a ∈ A. A 1-
cocycle is a crossed homomorphism, namely a map f : G → A satisfying
f(στ) = σf(τ) + f(σ). Thus, an element of H1(G, A) is an equivalence
class of crossed homomorphisms modulo coboundaries. If A is a trivial G-
module, then each 1-coboundary is 0 and each crossed homomorphism is a
homomorphism G → A. Thus, in this case H1(G, A) = Hom(G, A).

9.3.3 Functoriality of the Cohomology Groups.
The cohomology groups are functorial in both variables. Each G-homo-

morphism α: A → B of G-modules induces a homomorphism α: Cq(G, A) →
Cq(G, B) of the corresponding cochain groups that commutes with the
coboundary operator: (αf)(σ1, . . . , σq) = α(f(σ1, . . . , σq)). It follows that
α(Zq(G, A)) ≤ Zq(G, B) and α(Bq(G, A)) ≤ Bq(G, B). Hence, α yields a
homomorphism α: Hq(G, A) → Hq(G, B). Each of the assignments A �
Cq(G, A), A � Zq(G, A), A � Bq(G, A), and A � Hq(G, A) is a covariant
functor from the category of G-modules to the category of Abelian groups.
This means that the composition β ◦ α of homomorphisms of G-modules
is assigned to the composition β ◦ α of Abelian groups and the identity of
G-modules is assigned to the corresponding identity of Abelian groups.

9.3.4 Short and Long Exact Sequences.
The most important feature of group cohomology is the theorem about

the exact sequences: To each short exact sequence

0 → A
α−→B

β−→C → 0

of G-modules there corresponds a long exact sequence

0 → AG α−→BG β−→CG

δ−→H1(G, A) α−→H1(G, B)
β−→H1(G, C)

δ−→H2(G, A) α−→H2(G, B)
β−→H2(G, C) δ−→· · · ,

176



9.3 Cohomology of Groups

where the connecting homomorphisms δ are functorial [Rib70, p. 115,
Prop. 4.4].

9.3.5 Compatible Homomorphisms.
Generalizing the functoriality of the cohomology to both variables, we

consider a G-module A and an H-module B. A pair (ϕ, β) consisting of
a homomorphism of profinite groups ϕ: G → H and a homomorphism
β: B → A of H and G modules, respectively, is said to be compatible
if σ(β(b)) = β(ϕ(σ)b) for all σ ∈ G and b ∈ B. In this case they define
for each q ≥ 0 a homomorphism (ϕ, β): Cq(H,B) → Cq(G, A) by the for-
mula: ((ϕ, β)g)(σ1, . . . , σq) = β(g(ϕ(σ1), . . . , ϕ(σq))) for g ∈ Cq(H,B) and
σ1, . . . , σq ∈ G. As in Subsection 9.3.3, (ϕ, β) commutes with the coboundary
homomorphisms, so it induces natural homomorphisms

(ϕ, β): Hq(H,B) → Hq(G, A).

The maps (ϕ, β) behave functorially in the following sense. If I is a profinite
group, C is an I-module, and ψ: H → I and γ: C → B are compatible
homomorphisms, then (ψ ◦ ϕ, β ◦ γ) is a pair of compatible homomorphisms
from G to I and C to A and the following triangle is commutative:

(5) Hq(H,B)

(ϕ,β) ������������
Hq(I, C)

(ψ,γ)��

(ψ◦ϕ,β◦γ)������������

Hq(G, A)

9.3.6 Inflation and Restriction.
An important example occurs when N is a closed normal subgroup of

G. Let A be a G-module and denote the image of an element σ ∈ G in
G/N under the quotient map by σ̄. Then G/N acts on AN by σ̄a = σa and
this action is compatible with the inclusion AN → A. Thus, it induces for
each q ≥ 0 the inflation homomorphism inf : Hq(G/N, AN ) → Hq(G, A).
Similarly, the restriction of the action of G on A to N is compatible with the
identity map A → A, so it gives rise to the restriction homomorphisms
res: Hq(G, A) → Hq(N, A).

Lemma 9.3.7: Let G be a profinite group, N a closed normal subgroup, A
a G-module, and q ≥ 1. Suppose Hi(G, A) = 0 for 1 ≤ i ≤ q − 1. Then the
sequence

(6) 0 → Hq(G/N,AN ) inf−→Hq(G, A) res−→Hq(N, A)

is exact. In particular, if H1(G, A) = 0, then the following sequence is exact:

(7) 0 → H2(G/N, AN ) inf−→H2(G, A) res−→H2(N, A).
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The proof of the lemma for q = 1 is carried out by direct verification
on cocycles. Then one applies “dimension shifting” to continue the proof
for arbitrary q by induction. This is done in [CaF67, p. 100, Prop. 4] for
abstract groups and in [Koc70, Sec. 3.7] for profinite groups. Note that the
latter source adds two more groups to the sequence (6). The same five terms
sequence is also proved to be exact in [Rib70, p. 177, Cor. 5.4] by application
of spectral sequences.

9.3.8 Corestriction.
We consider an open subgroup U of a profinite group G and choose a set

S of representatives for the left cosets of G modulo U , thus G =
⋃· σ∈S σU .

Then we define for each G-module A a group homomorphism NG/U : AU →
AG by NG/U (a) =

∑
σ∈S σa. It can be uniquely extended to a natural trans-

formation corU
G: Hq(U, A) → Hq(G, A), called the corestriction [Rib70,

p. 136]. Composing the corestriction with the restriction gives multiplication
with the index of U in G:

(8) corU
G ◦ resG

U = (G : U)id.

In particular, if G is finite and we apply (8) to an element x ∈ Hq(G, A)
with q ≥ 1, we find that resG

1 (x) ∈ Hq(1, A) = 0, hence |G|x = 0. In other
words, Hq(G, A) is a torsion group and the order of each element of Hq(G, A)
divides the order of G.

9.3.9 Direct Systems.
In order to generalize the latter result to profinite groups, we have to be

able to take direct limits of cohomology groups. To this end we consider a
direct system (Ai, αij)i,j∈I of Abelian groups. Thus, I is a partially ordered
nonempty set such that for all i, j ∈ I there exists k ∈ I with i, j ≤ k. For
all i, j ∈ I with i ≤ j the system has a homomorphism αij : Ai → Aj such
that αjk ◦ αij = αik if i ≤ j ≤ k. Moreover, αii = idAi

for i ∈ I. Let R
be the subgroup of

⊕
i∈I Ai generated by all elements ai − aj with i, j ∈ I,

ai ∈ Ai, aj ∈ Aj for which there exists k ≥ i, j such that αik(ai) = αjk(aj).
The factor group A = lim−→Ai = (

⊕
i∈I Ai)/R is called the direct limit of

the system (Ai, αij)i,j∈I . Viewing each Ai as a subgroup of
⊕

i∈I Ai, we may
consider the homomorphism αi: Ai → lim−→Ai given by αi(ai) = ai + R. The

homomorphisms αi satisfy the compatibility condition αj ◦ αij = αi if i ≤ j.
Moreover, given an Abelian group B and homomorphisms βi: Ai → B such
that βj ◦αij = βi whenever i ≤ j, there is a unique homomorphism β: A → B
such that β ◦ αi = βi for all i ∈ I.

Each a ∈ A can be written as a =
∑

i∈I0
ai + R, where I0 is a finite

subset of I and ai ∈ Ai for each i ∈ I0. We choose j ∈ I with i ≤ j for all
i ∈ I0 and let aj =

∑
i∈I0

αij(ai). Then aj ∈ Aj and a = aj + R = αj(aj).
Consequently, A =

⋃
i∈I αi(Ai).

If ai ∈ Ai and αi(ai) = 0, then ai is a sum of elements aij−aik in ⊕r∈IAr

with aij ∈ Aj , aik ∈ Ak, and there exists l ≥ j, k with αjl(aij) = αkl(aik).
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Since in a direct sum equality holds if and only if it holds in each coordinate,
we may assume that aij , aik ∈ Ai for all j, k. We choose an m ∈ I greater
or equal to i and all of the l’s occurring in the above conditions. Then
αim(ai) = 0. Of course, if the latter condition holds, then αi(ai) = 0.

9.3.10 Cohomology Groups as Directed Limes.
Now we consider an inverse system (Gi, πji)i,j∈I of profinite groups and

a directed system (Ai, αij)i,j∈I of Abelian groups such that Ai is a Gi-module
and for all i ≤ j the pair (πji, αij) is compatible. Let G = lim←−Gi and A =

lim−→Ai. For each i ∈ I let πi: G → Gi be the projection on the ith component

and αi: Ai → A the map defined by the embedding of Ai in
⊕

i∈I Ai. Then G
is a profinite group, A is an Abelian group, and G acts on A in the following
way: Given σ ∈ G and a ∈ A, we choose i ∈ I and ai ∈ Ai with αi(ai) = a and
set σi = πi(σ). Then we define σa = αi(σiai). One checks that this definition
is good and that the action of G on A is continuous, so that A becomes a
G-module. For all q ≥ 0 and i ≤ j the compatibility condition yields a
homomorphism (πij , αij): Hq(Gi, Ai) → Hq(Gj , Aj). By the commutativity
of the triangle (5), this leads to a directed system of cohomological groups
(Hq(Gi, Ai), (πij , αij))i,j∈I . By [Rib70, p. 109, Prop. 4.1],

(9) Hq(G, A) = lim−→Hq(Gi, Ai).

Starting from an arbitrary profinite group G and a G-module A, we
present G as an inverse limit G = lim←−G/U , where U ranges over all open

normal subgroups of G, and recall that A =
⋃

AU . Note that if U ′ ⊆ U ,
then AU ≤ AU ′

. Let πU ′,U : G/U ′ → G/U be the quotient map and let
αU,U ′ : AU → AU ′

be the inclusion map. Then, (9) yields in this case an
isomorphism

(10) Hq(G, A) = lim−→Hq(G/U, AU ).

Given an Abelian group A and a positive integer n we set An = {a ∈
A | na = 0}. For each prime number p we let Ap∞ =

⋃∞
k=1 Apk be the p-

primary part of A. If A is a torsion group, then A =
⊕

Ap∞ . It follows that
if α: A → B is a homomorphism of torsion Abelian groups, then α(Ap∞) ≤
Bp∞ for each p. Hence, each exact sequence A → B → C of torsion Abelian
groups yields an exact sequence Ap∞ → Bp∞ → Cp∞ of their p-primary
parts.

Since each of the groups G/U is finite, the order of each element of
Hq(G/U, AU ) is finite (Subsection 9.3.8). It follows that Hq(G, A) is a torsion
Abelian group. As such it has a presentation

(11) Hq(G, A) =
⊕

p

Hq(G, A)p∞ .
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Lemma 9.3.11: Let G be a profinite group acting on a vector space V over
Q. Then:
(a) Hq(G, V ) = 0 for each q ≥ 1.
(b) Hq−1(G, Q/Z) ∼= Hq(G, Z) for each q ≥ 2.

Proof of (a): First we suppose G is finite and consider the restriction map
res: Hq(G, V ) → Hq(1, V ) and the corestriction map

cor: Hq(1, V ) → Hq(G, V ).

Both maps are trivial, so α = cor ◦ res: Hq(G, V ) → Hq(G, V ) is also trivial.
By (8), α is multiplication by the order n of G.

Now let f : Gq → V be a q-cocycle. Since V is divisible, there exists a
function g: Gq → V such that ng = f . Since division by n is unique, g is
a cocycle. It follows from the preceding paragraph that f is a coboundary.
Consequently, Hq(G, V ) = 0.

In the general case we use the presentation (10). By the preceding
paragraph, Hq(G/U, V U ) = 0 for each U . Consequently, Hq(G, V ) = 0.

Proof of (b): The short exact sequence of trivial G-modules 0 → Z → Q →
Q/Z → 0 induces for each q ≥ 1 a four terms exact sequence

Hq−1(G, Q) → Hq−1(G, Q/Z) → Hq(G, Z) → Hq(G, Q).

By (a), the first and the fourth terms of this sequence are 0 for each q ≥ 2,
so (b) holds. �
9.3.12 Induced Modules.

Let H ≤ G be profinite groups. For each H-module A we denote by
IndG

H(A) the Abelian group of all continuous maps f : G → A such that
f(ησ) = ηf(σ) for all η ∈ H and σ ∈ G. The action of G on IndG

H(A)
is defined by (σ′f)(σ) = f(σσ′). This action is continuous [Rib70, p. 142,
Prop. 7.1], so IndG

H(A) is a G-module. Note that IndG
H(A) is naturally iso-

morphic to the G-module
∏

σ∈S A, where S is a system of representatives
for the right cosets of G modulo H. Indeed, each continuous map f : S → A
uniquely extends to an element f̂ of IndG

H(H) by f̂(ησ) = ηf(σ) for η ∈ H
and σ ∈ S.

Shapiro’s lemma ensures that

(12) Hq(G, IndG
H(A)) ∼= Hq(H,A)

for each q ≥ 0 [Rib70, p. 145, Thm. 7.4].
In the special case where H = 1, the right hand side of (12) is 0 for each

q ≥ 1. Hence, Hq(G, IndG
1 (A)) = 0.

9.3.13 Cohomological Triviality.
Let G be a finite group and A a G-module. The norm map norm: A → A

is defined by norm(a) =
∑

σ∈G σa. By [CaF, p. 113, Thm. 9], Hq(G, A) = 0
for each q ≥ 1 if AG = norm(A) and H1(G, A) = 0.
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9.3.14 Cohomological p-Dimension.
Let G be a profinite group, p a prime number, and n ≥ 0 an inte-

ger. We write n = cdp(G) if there exists a torsion G-module A such that
Hn(G, A)p∞ �= 0 but Hq(G, B)p∞ = 0 for each q ≥ n + 1 and every torsion
G-module B. In that case Hq(G, B)p∞ = 0 for each q ≥ n + 2 and every
G-module B [Rib70, p. 197, Prop. 1.4]. Finally we note that for the inequal-
ity cdp(G) ≤ n to hold it suffices that Hn+1(G, A) = 0 for all finite simple
p-primary G-modules A [Rib70, p. 200, Prop.1.5]. Here we say that A is a
simple G-module if the only G-submodules of A are 0 and A itself. In this
case A ∼= (Z/pZ)r for some nonnegative number r.

9.3.15 Cohomological Dimension.
The cohomological dimension, cd(G) of a profinite group G is the

supremum of cdp(G), where p ranges on all prime numbers. Thus, if n =
cd(G) < ∞, then there exists a torsion G-module A with Hn(G, A) �= 0 and
for all q ≥ n + 1, all torsion G-modules B, and every prime number p we
have Hq(G, B)p∞ = 0. By (11), Hq(G, B) = 0. Similarly, the latter equality
holds if q ≥ n + 2 and B is an arbitrary G-module.

9.3.16 Group Extensions.
We consider an exact sequence

(13) 0 → A → E
π−→G → 1

of profinite groups, where A is an additive finite Abelian group, choose a con-
tinuous section s: G → E of π [FrJ08, Lemma 1.2.7], and define a continuous
action of G on A by the formula (σ, a) �→ s(σ)as(σ)−1. This action does not
depend on s. We call (13) an extension of A by G. The extension (13)
is equivalent to another extension 0 → A → E

π′
−→G → 1 if there exists a

homomorphism E → E′ making the diagram

0 		 A 		 E 		

��

G 		 1

0 		 A 		 E′ 		 G 		 1

commutative. Given a profinite group G and a finite G-module A, there is a
bijective correspondence between the equivalence classes of extensions of A
by G with the given G-action and the elements of H2(G, A) [Rib70, p. 100,
Thm. 3.1]. The class of split extensions corresponds under that correspon-
dence to the 0 element of H2(G, A) [Rib70, p. 105]. By Subsection 9.3.14 we
have for each prime number p that cdp(G) ≤ 1 if and only if H2(G, A) = 0
for all finite simple p-primary G-modules A. Hence, cdp(G) ≤ 1 if and only
if each exact sequence 0 → (Z/pZ)r → E → G → 1 splits. Consequently, by
[FrJ08, Cor. 22.4.3], G is projective if and only if cd(G) ≤ 1.

By [FrJ08, Prop. 22.10.4] (whose proof does not depend on cohomol-
ogy), a profinite group G is projective if and only if each of its p-Sylow
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groups (for all p) is a free pro-p group, alternatively a projective group [FrJ08,
Prop. 22.7.6].

9.3.17 Galois Cohomology.
Let L/K be a Galois extension. By the normal basis theorem,

H1(Gal(L/K), L+) = 0

[Rib70, p. 246, Prop. 1.1]. By the multiplicative form of Hilbert’s Theorem
90,

(14) H1(Gal(L/K), L×) = 1

[Rib70, p. 246, Prop. 1.2]. If p = char(K) > 0, then cdp(Gal(K)) ≤ 1 [Rib70,
p. 256, Thm. 3.3]. Thus, by Subsection 9.3.16, every p-Sylow subgroup of
Gal(K) is projective. It follows from the last paragraph of Subsection 9.3.16
that Gal(K) is projective if every l-Sylow subgroup of Gal(K), for each l �= p,
is projective.

9.3.18 Brauer Groups.
Let K be a field. A central simple K-algebra is an associative (but

not necessarily commutative) K-algebra A whose center is K and with no
nontrivial two sided ideals. If A is finitely generated, then by Wedderburn-
Artin [Bou58, p. 51, Cor. 2] there exist a division ring D with center K and
a positive integer n such that A is isomorphic to the algebra Mn(D) of all
n × n matrices with entries in D. Another finitely generated central simple
K-algebra A′ is equivalent to A if A′ ∼= Mn′(D) for some positive integer
n′. We denote the equivalence classes of A by [A]. Let Br(K) be the set of
all equivalence classes of finitely generated central simple K-algebras. The
operation ([A], [A′]) �→ [A ⊗K A′] makes Br(K) a group whose unit element
is the class of K [Bou58, p. 117]. If L is a field extension of K, then the
map [A] → [A ⊗K L] is a group homomorphism α: Br(K) → Br(L) [Bou58,
p. 118, Prop. 6]. The kernel of α consists of all classes [A] such that A splits
over L, i.e. A ∼=L Mn(L) for some positive integer n. One denotes Ker(α) by
Br(L/K).

There is an isomorphism H2(Gal(L/K), L×) ∼= Br(L/K) [Jac96, Thm.
2.5.11] such that if K ⊆ L ⊆ N is a tower of fields and N/K is Galois, then
the following diagram is commutative [Lor08, p. 194]

0 		 H2(Gal(L/K), L×)

��

inf 		 H2(Gal(N/K), N×)

��

res 		 H2(Gal(N/L), N×)

��
0 		 Br(L/K) 		 Br(N/K) 		 Br(N/L)

where the second arrow in the lower row is the inclusion map and the third
one is [A] �→ [A⊗K L]. Since, by (14), H1(Gal(N/K), N×) = 1, Lemma 9.3.7
implies that the upper row is exact. Hence, so is the lower.
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If cdp(Gal(K)) ≤ 1, then Br(K)p = 0 for each p �= char(K) [Rib70,
p. 262, Cor.3.7]. If Br(L) = 0 for each finite separable extension L of K, then
cd(Gal(K)) ≤ 1 [Rib70, p. 263, Cor. 3.8], so Gal(K) is projective (Subsection
9.3.16). If cd(Gal(K)) ≤ 1 and K is perfect, then Br(K) = 0 [Rib70, p. 263,
Prop. 3.9].

9.4 The Projectivity of Gal(C(t))
Our third main goal in these notes is to prove that for each algebraically closed
field C, the group Gal(C(x)) is free. It would then follow that Gal(C(x)) is
projective [FrJ08, Lemma 22.3.6]. However, the projectivity of Gal(C(x)) is
an essential step in our proof that Gal(C(x)) is free. So, we first prove that
Gal(C(x)) is projective. Our proof uses Galois cohomology, but it replaces
advanced tools by more basic ones.

Remark 9.4.1: Ci fields. A field K is said to be Ci if every form (i.e. ho-
mogeneous polynomial) f ∈ K[X0, . . . , Xn] of positive degree d with di ≤ n
has a nontrivial zero in Kn+1. Thus, for K to be C0 means that every ho-
mogeneous polynomial in K[X0, X1] has a nontrivial zero in K2. In other
words, K is algebraically closed. The field K is C1 if and only if each ho-
mogeneous polynomial f ∈ K[X0, . . . , Xn] with deg(f) ≤ n has a nontrivial
zero in Kn+1. For example, every finite field is C1 (a theorem of Chevalley
[FrJ08, Proposition 21.2.4]), every PAC field of characteristic 0 is C1 [Kol07,
Thm. 1], and every perfect PAC field of positive characteristic is C2 [FrJ08,
Thm. 21.3.6]. Moreover, if K is Ci and L is a field extension of K of transcen-
dence degree j, then L is Ci+j [FrJ08, Prop. 21.2.12]. In particular, if K is
algebraically closed and x is an indeterminate, then every algebraic extension
of K(x) is C1. �
Lemma 9.4.2: Let L/K be a finite Galois extension.
(a) If K is C1, then normL/KL× = K×.
(b) In the general case, traceL/KL = K.

Proof of (a): Let w1, . . . , wd be a basis of L/K and set G = Gal(L/K).
Then

f(X1, . . . , Xd) =
∏
σ∈G

(X1w
σ
1 + · · · + Xdw

σ
d )

is a form of degree d with coefficients in K. If x1, . . . , xd ∈ K and
f(x1, . . . , xd) = 0, then there exists τ ∈ G such that z = x1w

τ
1 + · · ·+xdw

τ
d =

0. Hence, all conjugates of z over K are zero. Thus, x1w
σ
1 + · · · + xdw

σ
d = 0

for all σ ∈ G. Since det(wσ
i ) �= 0 [Lan93, p. 266, Cor. 5.4], we have

x1 = · · · = xd = 0.
Let now a ∈ K×. Since K is C1, there exist y0, y1, . . . , yd ∈ K, not

all 0, such that f(y1, . . . , yd) = yd
0a. By the preceding paragraph, y0 �= 0.

Hence, with xi = yi/y0, i = 1, . . . , d, and b = x1w1 + · · · + xdwd, we have
normL/Kb = a.
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Proof of (b): By Artin’s theorem about the linear independence of characters
[Lan93, p. 283, Thm. 4.1], there exists x ∈ L with a =

∑
σ∈G xσ �= 0. Then,

a = traceL/Kx and a ∈ K. Consequently, each b ∈ K can now be written as
b = traceL/K

(
b
ax). �

Lemma 9.4.3: Let L/K be a finite cyclic field extension.

(a) If K is C1, then every short exact sequence

(1) 1−→L×−→E
h−→Gal(L/K)−→ 1

of groups with the usual Galois action of Gal(L/K) on L× splits. Thus,
H2(Gal(L/K), L×) = 1.

(b) In the general case, every short exact sequence

(2) 0−→L+ −→E
h−→Gal(L/K)−→ 1

of groups with the usual Galois action of Gal(L/K) on L+ splits. Thus,
H2(Gal(L/K), L+) = 0.

Proof: Let n = [L : K] and let σ be a generator of Gal(L/K). We have to
find ε ∈ E such that h(ε) = σ and εn = 1.

By assumption, there exists ε ∈ E such that h(ε) = σ. For each y ∈ L×,
we have yε = yσ. Also, εn ∈ L×. Hence, (εn)σ = (εn)ε = εn, so εn ∈ K×.

By Lemma 9.4.2, there exists x ∈ L× such that normL/Kx = ε−n in
Case (a) and traceL/Kx = ε−n in Case (b). For arbitrary elements x, ε of a
group G, one proves by induction on n that

(xε)n = εnxεn

xεn−1 · · ·xε.

In Case (a), this formula gives

(3) (xε)n = εnxεn

xεn−1 · · ·xε = εnxσn

xσn−1 · · ·xσ = εnnormL/Kx = 1.

Therefore, xε is the desired element of E.
In Case (b) the operation of L+ is addition, so we have to replace (3) by

(xε)n = εn(xεn

+ xεn−1
+ · · · + xε)

= εn(xσn

+ xσn−1
+ · · · + xσ) = εntraceL/Kx = 1.

Again, xε is the desired element of E.
The triviality of the second cohomology groups follows now from Sub-

section 9.3.16. �
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Lemma 9.4.4: Let K be a C1 field, p a prime number, and E a p-Sylow ex-
tension of K (i.e. E is the fixed field in Ks of a p-Sylow subgroup of Gal(K).)
Then
H2(Gal(E), E×s ) = 1.

Proof: By Subsection 9.3.10, H2(Gal(E), E×s ) = lim−→H2(Gal(N/E), N×),

where N ranges over all finite Galois extensions of E and the maps involved
in the direct limit are inflations. We prove by induction on the degree,
that for each finite Galois extension N/L with E ⊆ L ⊆ N ⊆ Ks we have
H2(Gal(N/L), N×) = 1.

Indeed, N/L is a p-extension. If this extension is nontrivial, it has a cyclic
subextension M/L of degree p. By Remark 9.4.1, L is C1, hence by Lemma
9.4.3(a), H2(Gal(M/L), M×) = 1. By induction, H2(Gal(N/M), N×) = 1.
Finally we use the exactness of the inflation restriction sequence

1−→H2(Gal(M/L), M×) inf−→H2(Gal(N/L), N×) res−→H2(Gal(N/M), N×)

(Lemma 9.3.7) to conclude that H2(Gal(N/L), N×) = 1. �
Lemma 9.4.5: Let K be a C1 field, p a prime number, and E a p-Sylow
extension of K. Then, Gal(E) is projective, hence pro-p free.

Proof: The statement holds for p = char(E) by [Rib70, p. 256]. So, we
assume that p �= char(E).

By Subsection 9.3.16, we have to prove that H2(Gal(E), Z/pZ) = 0. To
this end consider the short exact sequence

(4) 1−→μp −→E×s
p−→E×s −→ 1,

where μp is the group of roots of unity of order p and the map from E×s to
E×s is raising to the pth power. Since [E(μp) : E] divides p − 1 and Gal(E)
is a pro-p group, [E(μp) : E] = 1, so μp ⊆ E and the action of Gal(E) on
μp is trivial. Hence, μp is isomorphic to Z/pZ as a Gal(E)-module. Now we
consider the following segment of the long exact sequence derived from the
exact sequence (4) (Subsection 9.3.4):

(5) H1(Gal(E), E×s )−→H2(Gal(E), Z/pZ)−→H2(Gal(E), E×s ).

The left term of (5) is trivial, by Subsection 9.3.17. The right term of (5) is
trivial, by Lemma 9.4.4. Hence, the middle term of (5) is also trivial. �
Proposition 9.4.6 (Tsen):
(a) Let E be a C1 field. Then Gal(E) is projective.
(b) Let E be an extension of transcendence degree 1 over a separably closed

field C. Then Gal(E) is projective.

Proof of (a): By Lemma 9.4.5, each of the Sylow subgroups of Gal(E) is
projective. It follows from [FrJ08, Prop. 22.10.4] that Gal(E) is projective.
Note that the proof of the latter theorem is carried out without cohomology.
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Proof of (b): First we note that (EC̃)s/EsC̃ is both a separable extension
and a purely inseparable extension, so it is a trivial extension. Thus, EsC̃ =
(EC̃)s. In addition, Es ∩ EC̃ = E, hence Gal(E) ∼= Gal(EC̃). We may
therefore assume that C is algebraically closed. By Remark 9.4.1, E is a C1

field. Hence, by (a), Gal(E) is projective. �
Following [FrJ08, Remark 17.4.7], we denote the free profinite group of

rank m by F̂m and rephrase a special case of [FrJ08, Lemma 25.1.8]:

Proposition 9.4.7: Let m be an infinite cardinal and G a projective group
of rank at most m. Suppose every finite split embedding problem for G with
a nontrivial kernel has m solutions. Then G ∼= F̂m.

Theorem 9.4.8: Let K be a field of characteristic p and cardinality m and
let E be a function field of one variable over K. Suppose Gal(K) is trivial if
p = 0 or Gal(K) is a pro-p group if p > 0. Then Gal(E) ∼= F̂m.

Proof: We choose a separating transcendental element x for E/K. Consider
a prime number l �= p and let Gl be an l-Sylow subgroup of Gal(K(x)). Since
Gal(Ks(x)/K(x)) ∼= Gal(K) is trivial if p = 0 or a pro-p group if p > 0, Gl

is an l-Sylow subgroup of Gal(Ks(x)). By Proposition 9.4.6(b), Gal(Ks(x))
is projective. Hence, by Subsection 9.3.16, Gl is projective. It follows from
Subsection 9.3.17 that Gal(K(x)) is projective.

By Theorem 5.8.3, K is ample. Hence, by Proposition 8.6.3, every fi-
nite split embedding problem for Gal(K(x)) with a nontrivial kernel has m
solutions. In particular, m ≥ rank(Gal(K(x))) ≥ ℵ0. By Proposition 9.4.7,
Gal(K(x)) ∼= F̂m. It follows from [FrJ08, Prop. 25.4.2] that Gal(E) ∼= F̂m. �
Corollary 9.4.9: Let K be a separably closed field of cardinality m and let
E be an algebraic function field of one variable over K. Then Gal(E) ∼= F̂m.

Remark 9.4.10: An analog of Shafarevich’s Conjecture. We denote the ex-
tension of a field K generated by all roots of unity by Kcycl. As mentioned in
Example 5.10.5, Shafarevich’s conjecture predicts that Gal(Kcycl) ∼= F̂ω for
each number field K.

As is the case with several other conjectures (e.g. the Riemann hypoth-
esis), the analog of Shafarevich’s conjecture for function fields K of one vari-
able over finite fields is true. In this case Kcycl = F̃pK, where p = char(K).
Thus, if we choose a transcendental element x of K over Fp, then Kcycl is a
finite extension of F̃p(x). Therefore, by Corollary 9.4.9, Gal(Kcycl) ∼= F̂ω, as
claimed. �

9.5 Projectivity of Fundamental Groups

Let C be an algebraically closed field, E a function field of one variable over
C, S a nonempty set of prime divisors of E/C, and ES the maximal Galois
extension of E ramified at most over S. The only known proof of the Riemann
existence theorem uses complex analytic methods. It follows, as mentioned
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in Remark 9.1.12, that the proof of the projectiveness of Gal(ES/E) in the
case char(C) = 0, stated in Corollary 9.1.11, relies on analytic methods.

The aim of this section is to prove that Gal(ES/E) is projective, with-
out any restriction on the characteristic, by algebraic means. This will in
particular reproves the projectivity of Gal(ES/E) in characteristic 0.

As mentioned in the proof of Proposition 9.4.6, a profinite group G is
projective if and only if for each prime number p each p-Sylow subgroup
Gp of G is projective [FrJ08, Prop. 22.10.4]. We therefore say that G is p-
projective if Gp is projective. We say that an embedding problem (ϕ: H →
A, α: B → A) is central if Ker(α) is contained in the center of B.

Lemma 9.5.1: Let p be a prime number.
(a) Let G be a profinite group. Suppose for every open subgroup H, each

finite nonsplit central embedding problem

H

ϕ

��
0 		 Z/pZ 		 B

α 		 A 		 1

for which B is a p-group is solvable. Then G is p-projective.
(b) Let N/E be a Galois extension. Suppose for each finite subextension K

of N/E, for each finite p-subextension L/K of N/K, and every nonsplit
central exact sequence of p-groups

(1) 0−→Z/pZ−→B
α−→Gal(L/K)−→ 1

there exists a Galois extension L̂ of K in N that contains L and there
exists an isomorphism γ: Gal(L̂/K) → B such that α ◦ γ = resL. Then
Gal(N/E) is p-projective.

Proof: Statement (b) is a reinterpretation of (a) for Galois groups, so we
prove (a).

Let Gp be a p-Sylow subgroup of G. In order to prove that Gp is pro-
jective, it suffices to prove that each finite embedding problem

(2) Gp

ϕp

��
1 		 B0

		 B
α 		 A 		 1

in which B is a p-group and B0 is a minimal normal subgroup of B is weakly
solvable, that is there exists a homomorphism γ: Gp → B such that α◦γ = ϕp

[FrJ08, Lemma 22.3.4 and Lemma 22.4.1]. By elementary group theory, B0

is isomorphic to Z/pZ and lies in the center of B. This means that the short
exact sequence in (2) is central.
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If the short exact sequence in (2) splits, there exists a homomorphism
α′: A → B such that α◦α′ = idA. Then α′ ◦ϕp weakly solves (2). Otherwise
we choose an open normal subgroup N of G such that Gp ∩ N = Ker(ϕp).
Let H = GpN . Then H is an open subgroup of G that contains Gp and
ϕp extends to a homomorphism ϕ: H → A. By assumption, there exists a
homomorphism γ: H → B such that α ◦ γ = ϕ. The restriction of γ to Gp

weakly solves embedding problem (2). Note that since we are now assuming
that α does not split, B0 ∩ γ(Gp) �= 1, so B0 ≤ γ(Gp). Therefore, γ|Gp

is
even surjective. �
Lemma 9.5.2: Let A be a finite group, p a prime number, and let

0−→Z/pZ−→Ei
εi−→A−→ 1

i = 1, 2, be central group extensions. Then there exists an isomorphism
ϕ: E1 → E2 such that ε2 ◦ ϕ = ε1 if and only if the two group extensions

0−→Z/pZ−→E1 ×A E2
πi−→Ei −→ 1,

where πi: E1 ×A E2 → Ei is the projection onto Ei, split.

Proof: Suppose there exists an isomorphism ϕ: E1 → E2 such that ε2 ◦
ϕ = ε1. Then ϕ induces a homomorphism ϕ′: E1 → E1 ×A E2 such that
π1 ◦ ϕ′ = idE1 [FrJ08, Prop. 22.2.1]. Applying the same argument to ϕ−1

yields the splitting of π2.
Conversely, suppose π1: E1 ×A E2 → E1 has a group theoretic section

π′1: E1 → E1 ×A E2, that is π1 ◦ π′1 = idE1 . Let ψ2 = π2 ◦ π′1. Then,
ε2◦ψ2 = ε2◦π2◦π′1 = ε1◦π1◦π′1 = ε1, so Ker(ψ2) ≤ Ker(ε1). If Ker(ψ2) = 1,
then ψ2: E1 → E2 is the desired isomorphism ϕ. Otherwise, since Ker(ε1) =
Z/pZ, we have Ker(ψ2) = Ker(ε1). Therefore, ψ2 induces a monomorphism
ψ′2: A → E2 such that ε2 ◦ ψ′2 = idA. It follows that E2 = Z/pZ × ψ′2(A).

Arguing with π2, we are reduced to the case where the latter consequence
of the preceding paragraph holds and in addition E1 = Z/pZ×ψ′1(A), where
ψ′1: A → E1 is a group theoretic section of ε1. Now we define a map ϕ: E1 →
E2 whose restriction to Z/pZ is the identity map and ϕ(ψ′1(a)) = ψ′2(a) for
each a ∈ A. Then ϕ is an isomorphism such that ε2 ◦ ϕ = ε1, as desired. �
Lemma 9.5.3: Let L/K be a Galois extension, p �= char(K) a prime number,
and (1) a nonsplit central exact sequence of p-groups. Suppose K contains a
root ζ of 1 of order p and let L(x1/p) be a solution field of (1) with x ∈ L×.
Then the set of solution fields of (1) coincides with the set of fields L((ax)1/p),
a ∈ K×.

Proof: Set x1 = x, N1 = L(x1/p
1 ), E1 = Gal(N1/K), and A = Gal(L/K).

Let ε1: E1 → A be the restriction map. By assumption, N1 is a solution field
of (1). Hence, 0 → Z/pZ → E1

ε1−→A → 1 is a nonsplit central extension
(because (1) is).
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Now consider an a ∈ K×. Set x2 = ax1, N2 = L(x1/p
2 ), and N =

N1N2. Then N = N1K(a1/p) is a Galois extension of K. Moreover, if
σ ∈ Gal(N/L), then σ|N1 is in the center of Gal(N1/K) (by assumption) and
σ|L(a1/p) is in Gal(L(a1/p)/L), hence is also in the center of Gal(L(a1/p)/K)
(because Gal(L(a1/p)/K) = Gal(L(a1/p)/L) × Gal(L(a1/p)/K(a1/p)) and
Gal(L(a1/p)/L) is cyclic). Thus, Gal(N/L) is contained in the center of
Gal(N/K). It follows that N2 (that lies between L and N) is a Galois exten-
sion of K and Gal(N2/L) is contained in the center of Gal(N2/K).

Assuming N1 �= N2, we set E2 = Gal(N2/K) and let ε2: E2 → A be the
restriction map. Then Gal(N2/L) ∼= Z/pZ (otherwise, a1/p ∈ N1, so the ε1

splits) and
0 → Z/pZ → E2

ε2−→A → 1 is a central exact sequence. Moreover,

Gal(N/K) ∼= E1 ×A E2

[FrJ08, Example 22.2.7(a)] is a split extension of both E1 and E2. Hence, by
Lemma 9.5.2, there exists an isomorphism ϕ: E1 → E2 that commutes with
restriction to L. Therefore, N2 is also a solution field of (1).

Conversely, suppose N2 = L(x1/p
2 ) with x2 ∈ L× is a solution field of

embedding problem (1) and N2 �= N1 and let E2 and ε2 be as above. Then
there exists an isomorphism ϕ: E1 → E2 such that ε2 ◦ ϕ = ε1. Then, with
N = N1N2, Gal(N/K) ∼= E1 ×A E2. By Lemma 9.5.2, the group extension
0 → Z/pZ → Gal(N/K) → Gal(N1/K) → 1 splits, which implies that N =
N1(a1/p) with a ∈ K×. But N = N1(x

1/p
2 ), so by Kummer theory, x2a

−1 ∈
(N×

1 )p (replacing a by a power of a if necessary). Hence, L((x2a
−1)1/p) ⊆ N1.

If equality holds, then by Kummer theory, x2a
−1x−1

1 ∈ (L×)p (replacing x1

by some power of itself if necessary), therefore N2 = L(x1/p
2 ) = L((ax)1/p),

as claimed.
Otherwise, x2a

−1 ∈ (L×)p, so N2 = L(x1/p
2 ) = L(a1/p). Hence, the short

exact sequence 1 → Gal(N2/L) → Gal(N2/K) → Gal(L/K) → 1 splits.
Therefore, also the short exact sequence 1 → Gal(N1/L) → Gal(N1/K) →
Gal(L/K) → 1 splits (because both N1 and N2 are solution fields of (1)).
This contradicts the assumption that embedding problem (1) does not split.
�

Lemma 9.5.4: Let K be a function field of one variable over an algebraically
closed field C, S a finite nonempty set of prime divisors of K/C, p �= char(K)
a prime number, and L/K a finite Galois subextension of KS/K. Suppose
(1) is a nonsplit central p-embedding problem which is solvable in Ks. Then
(1) has a solution field L̂ in KS .

Proof: Let L(x1/p) be a solution field of (1) in Ks. By Lemma 9.5.3, it
suffices to find a ∈ K× such that L((ax)1/p) ⊆ KS .

We extend each σ ∈ Gal(L/K) to an element σ of Gal(L(x1/p)/K). Then
L((x1/p)σ) = L(x1/p). Hence, (x1/p)σ = xi/pu for some 0 ≤ i ≤ p−1 and u ∈
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L× (by Kummer theory). Now we consider the element τ ∈ Gal(L(x1/p)/L)
defined by (x1/p)τ = ζx1/p, where ζ is a root of unity of order p. Then
(x1/p)τσ = (ζx1/p)σ = ζxi/pu and (x1/p)στ = (xi/pu)τ = ζixi/pu. Since
(1) is central, τσ = στ , so i = 1. It follows that xσ = xup, so div(xσ) ≡
div(x) mod pDiv(L/C). Hence, vP(xσ) ≡ vP(x) mod p for each prime
divisor P of L/C. Since vP(xσ) = vPσ−1 (x), this implies that vPσ (x) ≡
vP(x) mod p for all P and σ. Since the set of prime divisors of L/C lying
over each prime divisor p of K/C form a conjugacy class under the action of
Gal(L/K), we may denote the common residue modulo p of vP(x) for all P
dividing p by np and write div(x) ≡ ∑

p np

∑
P|p P mod pDiv(L/C), where

p ranges over the prime divisors of K/C.
If p /∈ S, then p is unramified in L, so p =

∑
P|p P. Hence,

div(x) =
∑
p/∈S

np

∑
P|p

P +
∑
p∈S

np

∑
P|p

P mod pDiv(L/C)

≡ a + B mod pDiv(L/C),

where a ∈ Div(K/C) and B is a divisor of L/C that involves only primes
over S.

We choose o ∈ S. By Subsection 6.3.2, there exists a ∈ K× with
div(a) + a − deg(a)o ≡ 0 mod pDiv(K/C). Therefore, div(ax) ≡ deg(a)o +
B mod pDiv(L/C). This implies that vP(ax) ≡ 0 mod p for each P which
does not lie over S. Such P is unramified in L((ax)1/p) [FrJ08, Example
2.3.8]. Consequently, L((ax)1/p) ⊆ KS . �

In order to prove an analog of Lemma 9.5.3 also for p = char(C) > 0,
we have to replace Kummer theory in the above arguments by Artin-Schreier
theory. To that end we consider till the end of the proof of Lemma 9.5.6
only fields of characteristic p. Let ℘ be the additive operator defined on
fields of characteristic p by ℘(x) = xp − x. Recall that if L/K is a cyclic
extension of degree p, then L = K(x), where ℘(x) ∈ K � ℘(K) [Lan93,
p. 290, Thm. 6.4]. For each subgroup A of the additive group of K we
have [K(℘−1(A)) : K] = [A + ℘(K) : ℘(K)] [Lan93, p. 296, Thm. 8.3]. In
particular, let x, y, z ∈ Ks with ℘(x), ℘(y), ℘(z) ∈ K. Then
(3a) K(x) = K if and only if ℘(x) ∈ ℘(K).
(3b) If K(x) = K(y), then there exist k, l ∈ Z not both divisible by p such

that ℘(kx) + ℘(ly) ≡ 0 mod ℘(K). Conversely, if neither of k, l is
divisible by p and ℘(kx) + ℘(ly) ≡ 0 mod ℘(K), then K(x) = K(y).

(3c) If x /∈ K and K(x) = K(y), then there exists k ∈ Z such that p � k and
℘(y) ≡ ℘(kx) mod ℘(K).

(3d) If xi ∈ Ks, ai = ℘(xi) ∈ K for i = 1, . . . , n, and a1, . . . , an are linearly
independent over Fp modulo ℘(K), then the fields K(x1), . . . , K(xn)
are linearly disjoint cyclic extensions of K of degree p.

We use the rules (3) in the proof of the following additive analog of
Lemma 9.5.3.
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Lemma 9.5.5: Let L/K be a finite Galois extension of fields of positive
characteristic p and let (1) be a nonsplit central exact sequence. Suppose
L(x) is a solution field of (1) and ℘(x) ∈ L. Then L̂ is a solution field of (1)
if and only if L̂ = L(y) with ℘(y) ∈ L and ℘(y) ≡ ℘(x) mod K + ℘(L).

Proof: First suppose y is an element of Ks such that ℘(y) ∈ L and ℘(y) ≡
℘(x) + a mod ℘(L) with a ∈ K. Set A = Gal(L/K) and N = L(x, y) and
assume L(x) �= L(y). We choose z ∈ Ks such that ℘(z) = a. Then K(z)/K
is a cyclic extension of degree 1 or p and ℘(y) ≡ ℘(x + z) mod ℘(L). Hence,
L(x, y) = N = L(x, x + z) = L(x)K(z) (by (3b)). Therefore, the extension

(4) 1−→Gal(N/L(x))−→Gal(N/K)−→Gal(L(x)/K)−→ 1

splits. Next note that Gal(L(z)/K) = Gal(L(z)/L) × Gal(L(z)/K(z)) and
Gal(L(z)/L) is cyclic. Hence, Gal(L(z)/L) is contained in the center of
Gal(L(z)/K). In addition, by assumption, Gal(L(x)/L) is contained in
the center of Gal(L(x)/K). Hence, Gal(N/L) is contained in the center
of Gal(N/K). It follows that L(y)/K is Galois and 1 → Gal(L(y)/L) →
Gal(L(y)/K) → Gal(L/K) → 1 is a central exact sequence. Moreover, the
relation ℘(y − z) ≡ ℘(x) mod ℘(L) implies that L(y)K(z) = N , so the
extension

(5) 1−→Gal(N/L(y))−→Gal(N/K)−→Gal(L(y)/K)−→ 1

splits. Then Gal(N/K) ∼= Gal(L(x)/K) ×A Gal(L(y)/K) and the restric-
tion maps on L(x) and L(y) correspond to the projections on the groups
Gal(L(x)/K) and Gal(L(y)/K). By Lemma 9.5.2 there exists an isomor-
phism ϕ: Gal(L(y)/K) → Gal(L(x)/K) that commutes with the restriction
to L. It follows that L(y) is a solution field of (1).

Conversely, suppose L̂ is a solution field of (1). In particular, L̂ is a
cyclic extension of degree p of L. Hence L̂ = L(y0) with ℘(y0) ∈ L and there
exists an isomorphism ϕ: Gal(L(y0)/K) → Gal(L(x)/K) that commutes
with the restriction to L. Hence, with y0 replacing y, both extensions (4)
and (5) split (Lemma 9.5.2). This implies that N = L(x, z) with ℘(z) ∈ K.
If L(y0) = L(x), then ℘(ky0) ≡ ℘(x) mod ℘(L) for some k ∈ Z with p � k
(by (3c)).

If L(y0) �= L(x), then there exist k, l ∈ Z with p � k such that ℘(ky0) +
℘(lz) ≡ ℘(x) mod ℘(L) (by (3d)), so ℘(ky0) ≡ ℘(x) mod K +℘(L). In both
cases y = ky0 satisfies the requirements of the lemma. �
Lemma 9.5.6: Let K be a function field of one variable over an algebraically
closed field C of characteristic p > 0. Let S be a finite nonempty set of prime
divisors of K/C. Let L/K be a finite Galois subextension of KS/K. Suppose
the central nonsplit embedding problem (1) has a solution. Then (1) has a
solution field L̂ in KS .

Proof: By assumption there exists u ∈ L � ℘(L) and there exists x ∈ Ks

such that ℘(x) = u and L(x) solves (1). If P is a prime divisor of L/C that
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does not lie over S, then P is unramified over K. Moreover, the residue field
of L at P is C (because C is algebraically closed), hence equals to the residue
field of K at P|K . Therefore, K is P-dense in L. Since S is nonempty, the
strong approximation theorem [FrJ08, Prop. 3.3.1] gives an a ∈ K such that

(6)
vP(a − u) ≥ 0 if P|K /∈ S ∧ vP(u) < 0

vP(a) ≥ 0 if P|K /∈ S ∧ vP(u) ≥ 0.

We choose y ∈ Ks such that ℘(y) = u−a. By Lemma 9.5.5, L(y) is a solution
field of (1). By (6), vP(u− a) ≥ 0 for each P that does not lie over S, hence
by [FrJ08, Example 2.3.9], each such P is unramified in L(y). Consequently,
L(y) ⊆ KS , as desired. �

We combine Lemmas 9.5.4 and 9.5.6 with Lemma 9.5.1(b):

Theorem 9.5.7: Let E be a function field of one variable over an alge-
braically closed field C and S a finite nonempty set of prime divisors of E/C.
Then Gal(ES/E) is projective.

Proof: Consider a finite extension K of E in ES , a prime number p, a finite
p-extension L of K in ES , and a central nonsplit embedding problem (1).
By Lemma 9.5.1(b) it suffices to solve (1) in ES . Let S′ be the set of prime
divisors of K/C that lie over S. Then KS′ = ES . Hence, without loss, we
may assume that K = E and S′ = S. Therefore, by Lemmas 9.5.4 and 9.5.6,
it suffices to solve embedding problem (1) in the separable closure Ks of K.

By Proposition 9.4.6(b), Gal(K) is projective. Hence, there exists a
homomorphism γ: Gal(K) → B with α ◦ γ = resL. In particular,

α(γ(Gal(K))) = Gal(L/K).
If Z/pZ∩γ(Gal(K)) is trivial, then α has a group theoretic section, in contrast
to our assumption. Therefore, Z/pZ ⊆ γ(Gal(K)), so γ is surjective. The
fixed field of Ker(γ) in Ks is the desired field L(x). �
Corollary 9.5.8: Let E be a function field of one variable over an alge-
braically closed field C and S a nonempty set of prime divisors of E/C. Then
Gal(ES/E) is projective.

Proof: Every finite embedding problem for Gal(ES/E) is equivalent to an
embedding problem of the form
(7) (res: Gal(ES/E) → Gal(F/E), α: B → Gal(F/E)),
where F is a finite Galois extension of E in ES , B is a finite group, and α is
an epimorphism. The case F = E being trivial, we may assume that F is a
proper extension of E. Then the set T of all prime divisors of E/C ramified in
F is finite and we have F ⊆ ET ⊆ ES . Since S is nonempty, we may extend
F in ES , if necessary, to assume that T is nonempty. By Theorem 9.5.7,
there is a homomorphism γ: Gal(ET /E) → B such that α ◦ γ = resET /F . It
follows that the homomorphism γ′ = γ ◦ resES/ET

weakly solves embedding
problem (7). Consequently, Gal(ES/E) is a projective group. �

192



9.6 Maximal Unramified Extensions

9.6 Maximal Unramified Extensions
Let C be an algebraically closed field, E a function field of one variable over C,
and S a set of prime divisors of E/C. Theorem 9.5.7 states that Gal(ES/E)
is projective if S is nonempty. In this section we consider the case when
S is empty and redenote ES by Eur. Thus Eur is the maximal unramified
extension of E. In this case Theorem 9.5.7 is false, that is Gal(Eur/E) is not
projective. We prove it in two ways. The first method uses Proposition 9.2.1,
hence the Riemann existence theorem. The second method is algebraic and
involves the Jacobian of E.

Proposition 9.6.1: Let E be a function field of one variable over an alge-
braically closed field C of positive genus g. Then Gal(Eur/E) is not projec-
tive.

First proof: Let p = char(C) and choose a prime number l �= p. We denote
the compositum of all finite unramified Galois extensions of E of degree not
divisible by p by E′ur and of an l-power degree by E

(l)
ur . Then E ⊆ E

(l)
ur ⊆

E′ur ⊆ Eur. Assume Gal(Eur/E) is projective. Then Gal(E(l)
ur /E), being the

maximal pro-l quotient of Gal(Eur/E), is also projective [FrJ08, Prop. 22.4.8],
hence pro-l free [FrJ08, Prop. 22.7.6]. On the other hand, by Proposition
9.2.1(b), Gal(E′ur/E) is the free group generated by elements τ1, τ

′
1, . . . , τg, τ

′
g

with the defining relation

(1) [τ1, τ
′
1] · · · [τg, τ

′
g] = 1

in the category of profinite groups with order not divisible by p. Since
Gal(E(l)

ur /E) is also the maximal pro-l quotient of Gal(E′ur/E), it is the free
pro-l group generated by elements τ1, τ

′
1, . . . , τg, τ

′
g with the defining relation

(1). Now choose a basis t1, t
′
1, . . . , tg, t

′
g for the Fl-vector space F2g

l . The map

τi �→ ti and τ ′i �→ t′i for i = 1, . . . , g extends to an epimorphism of Gal(E(l)
ur /E)

onto F2g
l . Since the rank of the latter group is 2g and that of the former one

is at most 2g, we deduce that rank(E(l)
ur /E) = 2g. It follows from [FrJ08,

Lemma 17.4.6(b)] that τ1, τ
′
1, . . . , τg, τ

′
g, viewed as generators of Gal(E(l)

ur /E)
form a basis of that group. Thus, every map of the basis into an l-group
A extends to a homomorphism of Gal(E(l)

ur /E) into A. In particular, this is
the case if we choose A to be noncommutative and a1, a

′
1 elements of A with

[a1, a
′
1] �= 1. Then the map τ1 �→ a1, τ ′1 �→ a′1, τi �→ 1, and τ ′i �→ 1 for i ≥ 2

extends to a homomorphism into A. It follows from (1) that [a1, a
′
1] = 1.

This contradiction proves that Gal(Eur/E) is not projective. �
The second proof of Proposition 9.6.1 depends on the following piece of

information.

Lemma 9.6.2: Let E be a function field of one variable of genus g over an
algebraically closed field C. Let l �= char(C) be a prime number and A the
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subgroup of E×/(E×)l consisting of all cosets x(E×)l such that l|vp(x) for
all prime divisors p of E/C. Then, A ∼= (Z/lZ)2g.

Proof: We distinguish between two cases.

Case A: g = 0. Then E = C(t) is the field of rational functions over C
in an indeterminate t [FrJ08, Example 3.2.4]. In this case, each finite prime
divisor of E/C has a prime element of the form t − a with some a ∈ C.
Thus, if x(E×)l ∈ A, then x = c

∏
a∈C(t − a)lk(a) with c ∈ C× and with

k(a) ∈ Z such that k(a) = 0 for all but finitely many a’s. Moreover, since
C is algebraically closed, c is an l-power in C. Hence, x(E×)l is the unit
element of E×/(E×)l. Consequently, A is trivial.

Case B: g ≥ 1. We consider the group Div0(E/C) of divisors of E/C
of degree 0, its subgroup div(E×) of principal divisors, and the Jacobian
variety J of E/C (which exists since genus(E/C) > 0). For each x(E×)l ∈ A
there exists a divisor a of E/C such that div(x) = la. It satisfies 0 =
l deg(a), so deg(a) = 0. We map x(E×)l onto a + div(E×). If y ∈ E×,
then div(xyl) = l(a + div(y)), so our map defines a homomorphism α: A →
Div0(E/C)/div(E×). If x(E×)l ∈ Ker(α), then a = div(z) for some z ∈ E×,
so div(xz−l) = 0. Hence, xz−l ∈ C× [FrJ08, Sec. 3.1]. Since C is algebraically
closed, there exists c ∈ C× such that x = (cz)l. It follows that α is injective.
Note that since la = div(x), we have l(a + div(E×)) = 0. Thus, the image of
α lies in the subgroup D of Div0(E/C)/div(E×) of all elements annihilated
by l. Conversely, if a + div(E×) ∈ D, then there exists x ∈ E× such that
la = div(x), so α(x(E×)l) = a + div(E×). It follows that Im(α) = D. Hence
A ∼= D.

As mentioned in Subsection 6.3.2, there is an isomorphism

Div0(E/C)/div(E×) ∼= J(C).

Hence, D ∼= J(C)l. By Subsection 6.3.1, J(C)l
∼= (Z/lZ)2g. Consequently,

A ∼= (Z/lZ)2g. �

Next we apply Kummer theory.

Lemma 9.6.3: Let E be a function field of one variable over an algebraically
closed field C and let l �= char(C) be a prime number. Denote the maximal

unramified pro-l extension of E by E
(l)
ur and set g = genus(E/C). Then

rank(Gal(E(l)
ur /E)) = 2g.

Proof: Denote the compositum of all cyclic unramified extensions of E of de-
gree l by F . By [FrJ08, Lemma 22.7.4], Gal(E(l)

ur /F ) is the Frattini subgroup
of Gal(E(l)

ur /E) and Gal(F/E) ∼= (Z/lZ)r, where r = rank(Gal(E(l)
ur /E)).

On the other hand, since E contains a root of unity of order l, each cyclic
extension of E of degree l has the form E(x1/l) with x ∈ E×. That ex-
tension is unramified over E if and only if l|vp(x) for each prime divisor p
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of E/C [FrJ08, Example 2.3.8]. Thus, by Kummer Theory [Lan93, p. 295,
Thm. 8.2], Gal(F/E) ∼= A, where A is as in Lemma 9.6.2, hence by that
lemma Gal(F/E) ∼= (Z/lZ)2g. Combining that with the opening statement
of the proof, we conclude that rank(E(l)

ur /E) = 2g. �
Proposition 9.6.1: Let E be a function field of one variable over an alge-
braically closed field C of positive genus g. Then Gal(Eur/E) is not projec-
tive.

Second proof: Let p = char(C) and choose a prime number l �= p. We
denote the compositum of all finite unramified Galois extensions of E of
degree not divisible by p by E′ur and of an l-power degree by E

(l)
ur . Then

E ⊆ E
(l)
ur ⊆ E′ur ⊆ Eur. Assume that Gal(Eur/E) is projective. Then

G = Gal(E(l)
ur /E), being the maximal pro-l quotient of Gal(Eur/E), is also

projective [FrJ08, Prop. 22.4.8], hence pro-l free [FrJ08, Prop. 22.7.6]. By
Lemma 9.6.3, rank(G) = 2g.

Now we choose a proper finite extension F of E in E
(l)
ur and set h =

genus(F/C). Since F is unramified over E, Riemann-Hurwitz genus formula
simplifies to 2h − 2 = [F : E](2g − 2) (Remark 5.8.1(f)). hence

(2) h − 1 = [F : E](g − 1).

On the other hand, H = Gal(E(l)
ur /F ) is an open subgroup of G of index

[F : E]. Hence, by Nielsen-Schreier [FrJ08, Prop. 17.5.7], rank(H)− 1 = [F :
E](rank(G) − 1). Note that F

(l)
ur = E

(l)
ur , so by Lemma 9.6.3, rank(H) = 2h.

Hence,

(3) 2h − 1 = [F : E](2g − 1)

Substituting the value of h from (2) in (3) leads to [F : E] = 1. This
contradiction to our assumption proves that Gal(Eur/E) is not projective. �

9.7 Embedding Problems with Given Branching

We fix for the whole section a rational function field E = C(x) over an
algebraically closed field C. Assume that C is complete with respect to an
ultrametric absolute value. We show in this section how to solve finite split
embedding problems with an extra information on the branch points of the
solution fields. This prepares the way in the next section to prove for general
C that Gal(ES/E) is free of rank m, if |S| = m = card(C).

Lemma 9.7.1: For each integer n > 1 there exists a cyclic extension F/E of
degree n such that Branch(F/E) = {1,∞}.
Proof: The lemma follows from Lemma 4.2.5 by applying a suitable Möbius
transformation. Nevertheless, we supply a direct proof to the special case at
hand.
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If char(C) � n, let F = E(y), where yn = x− 1. If n = p = char(C) > 0,
let F = E(y), where yp − y = x2

x−1 . Then Branch(F/E) = {1,∞} [FrJ08,
Examples 2.3.8 and 2.3.9]. In each case F/E is a cyclic extension of degree
n.

The rest of the proof reduces the general case to these two cases.

Part A: Without loss of generality n is a prime power. Indeed, if n =∏m
i=1 pri

i , where p1, . . . , pm are distinct primes, and for each 1 ≤ i ≤ m there
is a cyclic extension Fi/E of degree pri

i , ramified at {1,∞} and unramified
elsewhere, then the compositum F =

∏m
i=1 Fi has the required properties.

Part B: Without loss of generality n is prime. Indeed, assume that n is a
power of a prime p and there is a cyclic extension F1/E of degree p, whose
branch points are 1,∞. Let S = {1,∞}. By Theorem 9.5.7, the embedding
problem

(α: Z/nZ → Z/pZ = Gal(F1/E), res: Gal(ES/E) → Gal(F1/E))

for Gal(ES/E) has a weak solution, say, ψ: Gal(ES/E) → Z/nZ. But ψ is
surjective, because α(ψ(Gal(ES/E))) = Z/pZ and Z/nZ is the only subgroup
H of Z/nZ with α(H) = Z/pZ. The fixed field F of Ker(ψ) has the required
properties. �
Lemma 9.7.2: Suppose C is complete with respect to an ultrametric absolute
value | |. Let c ∈ C, r ∈ C×, and set w = r

x−c . Let n > 1 be an integer. Then
there exists 0 < ε < |r| such that for all distinct b1, b2 ∈ C with |b1 − c|, |b2 −
c| ≤ ε there is a cyclic extension F/E of degree n, with Branch(F/E) =
{b1, b2} and F ⊆ Quot(C{w}).
Proof: Lemma 9.7.1 gives a cyclic extension F1/E of degree n with
Branch(F1/E) = {1,∞}. Since F1/E is unramified at 0 and C is alge-
braically closed, we have F1 ⊂ C((x)). Let y be a primitive element of
F1/E integral over C[x]. By Proposition 2.4.5, y converges at some point
b ∈ C. Thus, if we write y =

∑∞
n=0 anxn, then the series

∑∞
n=0 anbn con-

verges. Set ε = min(1, |rb|, |r|2 ). Then for each a ∈ C× with |a| ≤ |rb| we
have μa(y) =

∑∞
n=0 ananxn =

∑∞
n=0 an

(
a
r

)n(rx)n, so the latter series in rx
converges. This means that μa(y) ∈ C{rx} and μa(F1) ⊆ Quot(C{rx}).

Let b1, b2 ∈ C such that |b1 − c|, |b2 − c| ≤ ε. Set a = b2 − b1 and
F2 = μa(F1). Then |a| ≤ ε ≤ |rb|, so F2 ⊆ Quot(C{rx}). By Remark 4.1.4,

Branch(F2/E) = (μ′a)−1(Branch(F1/E))

=
1
a
{1,∞} = { 1

b2 − b1
,∞}.

Let θ be the C-automorphism of E given by θ(x) = 1
x−c , so that θ(rx) =

w. Extend θ to an isomorphism of fields θ: F2 → F3. Then F3 ⊆ Quot(C{w})
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and by Remark 4.1.4,

Branch(F3/E) = (θ′)−1(Branch(F2/E))

= (θ′)−1{ 1
b2 − b1

,∞} = {c + b2 − b1, c}.

Let d = c − b1. Then |d| ≤ ε ≤ 1. Let λ be the automorphism of C{w}
that maps f =

∑∞
n=0 anwn onto

λ(f) =
∞∑

n=0

an(w + d)n =
∞∑

n=0

an

n∑
k=0

(
n

k

)
dn−kwk

=
∞∑

k=0

( ∞∑
n=k

(
n

k

)
andn−k

)
wk.

Then
(
n
k

)
andn−k → 0 as n → ∞, so the series

∑∞
n=k

(
n
k

)
andn−k converges in

C, hence λ is well defined. Moreover,

∣∣ ∞∑
n=k

(
n

k

)
andn−k

∣∣ ≤ max
n≥k

|an|.

We extend λ to an automorphism of Quot(C{w}). The restriction of λ to E
is the map w �→ w + d. Let F = λ(F3). Then F ⊆ Quot(C{w}) and

Branch(F/E) = (λ′)−1(Branch(F3/E)) = {c+b2−b1−d, c−d} = {b2, b1}. �
Remark 9.7.3: A disk in C ∪ {∞} is a set of the form

D = θ({a ∈ C | |a| ≤ ε})
where ε > 0 and θ is a Möbius transformation over C. Thus, each set of the
form D = {a ∈ C | |a − c| ≤ ε} or D = {a ∈ C | |a| ≥ ε} ∪ {∞} , where
c ∈ C, is a disk. (In fact, each disk is of this form; but we shall not use this
fact.) Note that the cardinality of a disk is the same as the cardinality of C.
�
Lemma 9.7.4: Assume C is complete with respect to an ultrametric absolute
value. Let F1/E be a finite Galois extension with group G1 and

(1) α: G = G1 � H → G1 = Gal(F1/E)

a finite split embedding problem for Gal(E) with a nontrivial kernel H. Con-
sider a finite set J that does not contain 1 and let {Gi}i∈J be a finite family of
nontrivial cyclic subgroups of G that generate H. Then there exists a family
of pairwise disjoint disks {Di}i∈J in C such that for every B ⊂ ⋃

i∈J Di with
card(B ∩ Di) = 2 for each i ∈ J , there exists a solution field F of (1) with
Branch(FG1/E) = B.

Proof: Let I = J ∪{1}. Then G = 〈Gi | i ∈ I〉. We choose distinct elements
ci ∈ C, i ∈ I, and an element r ∈ C× with |r| ≤ |ci−cj | for all distinct i, j ∈ I.
Then let wi = r

x−ci
, Pi = Quot(C{wj | j �= i}) and P ′i = Quot(C{wi}).
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Claim: We may assume that F1 ⊆ P ′1. Indeed, since C is algebraically
closed, every prime divisor of F1/C is of degree 1. In particular, F1/C
has an unramified prime divisor of degree 1. By Lemma 4.3.7, there is
a C-automorphism of E that extends to an embedding θ: F1 → P ′1. Let
F ′1 = θ(F1) and extend θ to an automorphism of Es. Then θ defines isomor-
phisms θ∗: Gal(F1/E) → Gal(F ′1/E) and θ∗: Gal(E) → Gal(E) such that the
following diagram commutes

Gal(E)
θ∗ 		

res

��

Gal(E)

res

��
G

α 		 Gal(F1/E)
θ∗ 		 Gal(F ′1/E).

Suppose that there is a family of disjoint disks {D′i}i∈J in C such that for
every B′ ⊂ ⋃

i∈J D′i with card(B′ ∩ D′i) = 2 , for each i ∈ J , the embedding
problem

(θ∗ ◦ α: G → Gal(F ′1/E), res: Gal(E) → Gal(F ′1/E))

has a solution field F ′ with Branch(F ′G1/E) = B′. Let θ′ be the permutation
of C ∪ {∞} induced by θ as in Remark 4.1.4. Then the disks Di = θ′(Di),
for i ∈ J , have the required property.

Indeed, if B ⊂ ⋃
i∈J Di and card(B ∩ Di) = 2 , for each i ∈ J , we put

B′ = (θ′)−1(B), let F ′ be as above, and extend θ to an automorphism of Es.
Then F = θ−1(F ′) solves (1) and θ(FG1) = F ′G1 . By Remark 4.1.4,

θ′(Branch(F ′G1/E)) = Branch(FG1/E).

Hence, B = Branch(FG1/E), as desired.
Thus, replacing F1 by F ′1 we may assume that F1 ⊆ P ′1.
By Lemma 9.7.2, there is an 0 < ε < |r| such that the (necessarily

disjoint) disks Di = {a ∈ C | |a − ci| ≤ ε}, for i ∈ J , have the following
property: For every B ⊂ ⋃

i∈J Di with card(B ∩ Di) = 2, for each i ∈
J , there exist Galois extensions Fi/E with the cyclic Galois group Gi and
Branch(Fi/E) = B ∩ Di and Fi ⊆ Quot(C{wi}i∈I), for each i ∈ J . Let
P = Quot(C{wi}i∈I).

By Proposition 3.4.5, E = (E,Fi, Pi, Q; Gi, G)i∈I is patching data. Its
compound F is, by Lemma 1.3.1(c), a Galois extension of E that solves (1).
By Lemma 7.2.3(c),

Branch(FG1/E) =
⋃
i∈J

Branch(Fi/E) =
⋃
i∈J

B ∩ Di = B. �
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9.8 Descent
We wish to apply Lemma 9.7.4 to a sufficiently large complete extension of
a given algebraically closed field. Thus we consider the following situation.
Let C1 ⊆ C2 be two algebraically closed fields and x an intermediate. We set
E1 = C1(x), E2 = C2(x), and let

(1) ρ: G = G1 � H → G1 = Gal(F1/E1)

be a finite split embedding problem for Gal(E1) with a nontrivial kernel H.
Let F2 = F1E2. Then the restriction map Gal(F2/E2) → Gal(F1/E1) is an
isomorphism. We identify Gal(F2/E2) with G1 = Gal(F1/E1) via this map.
Then (1) induces a finite split embedding problem

(2) ρ: G = G1 � H → G1 = Gal(F2/E2)

for Gal(E2) with a nontrivial kernel.
Before dealing with embedding problems let us notice a simple fact:

Remark 9.8.1: Let A be an infinite subset of a field K. Then every nonempty
Zariski K-open subset of An meets An. Indeed, the only polynomial in n
variables over K that vanishes on An is 0. �
Lemma 9.8.2: Let A be an infinite subset of C1. Suppose (2) has a solution
field L2 such that ∞ /∈ Branch(LG1

2 /E2) and the elements of Branch(LG1
2 /E2)

are algebraically independent over C1. Then (1) has a solution field L1 with
Branch(LG1

1 /E1) ⊆ A.

Proof: There is an irreducible monic polynomial h ∈ C2[x, Z] such that
L2 = E2(z), with h(x, z) = 0. Furthermore, there are irreducible polynomials
f1, . . . , fr ∈ C2[x, Z] such that a root zj of fj is a primitive element of LG1

2 /E2

(hence also of L2/F2), and

(3) Branch(LG1
2 /E2) =

r⋂
j=1

Zero(discr(fj))

[Has80, p. 64].
We set Branch(LG1

2 /E2) = {u1, . . . , uk} and choose uk+1, . . . , ul ∈ C2

such that h, f1, . . . , fr ∈ C1[u][x, Z]. We also set Eu = C1(u, x), Fu =
F1(u) and add more elements of C2 to {u1, . . . , ul}, if necessary, such that
Lu = Eu(z) is a Galois extension of Eu that solves the embedding problem
G → Gal(Fu/Eu) induced from (1), and LG1

u = Eu(zj), j = 1, . . . , r.
Let U = Spec(C1[u]) be the irreducible variety that u generates over

C1. For each u′ ∈ U(C1) the C1-specialization u → u′ first extends to an
F1-place ′: Fu → F1 ∪ {∞}, and then to a place ′: Lu → Ẽ1 ∪ {∞}. Let
B = {u′1, . . . , u′k} ⊂ C1 be the image of Branch(LG1

2 /E2) = {u1, . . . , uk}.
The variety U has a nonempty Zariski-open subset U ′ such that for all

u′ ∈ U ′ the following statements hold:
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(4a) h′, f ′1, . . . , f
′
r ∈ C1[x, Z] are irreducible over C1(x) [FrJ08, Prop. 9.4.3];

(4b) L1 = E1(z′) is Galois over E1 and L1 solves embedding problem (1)
[FrJ08, Lemma 13.1.1];

(4c) the respective roots z′1, . . . , z
′
r of f ′1, . . . , f

′
r are primitive elements for

LG1
1 /E1.

From (3), B =
⋂r

j=1 Zero(discr(f ′j)). Since LG1
1 /E1 is unramified at each

point outside Zero(discr(f ′j)), j = 1, . . . , r (by [Has80, p. 64]),
(4d) Branch(LG1

1 /E1) ⊆ B.
By assumption, u1, . . . , uk are algebraically independent over C1. Therefore,
the projection on the first k coordinates pr: U → Ak is a dominant map,
hence pr(U ′) contains a Zariski-open subset of Ak [Lan58, p. 88, Prop. 4]. By
Remark 9.8.1, we may choose u′ ∈ U ′(C1)∩pr−1(Ak), so B = {u′1, . . . , u′k} ⊂
A. Consequently, Branch(LG1

1 /E1) ⊆ A. �
To achieve the algebraic independence in Lemma 9.8.2 we use:

Lemma 9.8.3: Let C1 ⊂ C2 be two algebraically closed fields such that
card(C1) < card(C2). Let {Dj}j∈J be a finite collection of pairwise disjoint
subsets of C2 of cardinality card(C2). Then there exists a set B ⊆ ⋃

j∈J Dj

such that card(B ∩ Dj) = 2 for each j ∈ J and the elements of B are
algebraically independent over C1.

Proof: Write J as {1, . . . , k}, and suppose, by induction, that we have al-
ready found bj , b

′
j ∈ Dj , for j = 1, . . . , k − 1, such that b1, b

′
1, . . . , bk−1, b

′
k−1

are algebraically independent over C1. The cardinality of the algebraic closure
C ′1 of C1(b1, b

′
1, . . . , bk−1, b

′
k−1) in C2 is card(C1) < card(C2) = card(Dk), so

there exist bk, b′k ∈ Dk algebraically independent over C ′1. Thus,
b1, b

′
1, . . . , bk, b′k are algebraically independent over C1. �

Lemma 9.8.4: Let G be a projective group of rank m. Set m′ = 1 if m = ℵ0

and m′ = m if m > ℵ0. Suppose every finite split embedding problem for G
with a nontrivial kernel has m′ solutions. Then G ∼= F̂m.

Proof: The case where m > ℵ0 is settled in [FrJ08, Lemma 21.5.8]. Consider
the case where m = ℵ0. By Iwasawa, it suffices to prove that every finite
embedding problem

(5) (ϕ: G → A, α: B → A)

is solvable [FrJ08, Cor. 24.8.3]. Indeed, since G is projective, there exists a
homomorphism γ: G → B with α ◦ γ = ϕ. Then Ker(γ) is an open normal
subgroup of G, so Â = G/Ker(γ) is a finite group. Let ϕ̂: G → Â be the
quotient map and ϕ̄: Â → A and γ̂: Â → B the homomorphisms induced by
ϕ and γ, respectively. In particular α◦γ̂ = ϕ̄. Next consider the fiber product
B̂ = B ×A Â with the corresponding projections β: B̂ → B and α̂: B̂ → Â.
The defining property of the fiber product gives a homomorphism α̂′: Â → B̂
such that α̂ ◦ α̂′ = idÂ. In other words, α̂ splits. By assumption there exists
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an epimorphism δ: G → B̂ such that α̂ ◦ δ = ϕ̂. Thus, β ◦ δ solves embedding
problem (5). Consequently, G ∼= F̂ω. �

The preceding lemmas yield the main result of this chapter:

Theorem 9.8.5: Let C be an algebraically closed field of cardinality m,
E = C(x) the field of rational functions over C, and S a subset of C ∪ {∞}
of cardinality m. Then Gal(ES/E) is isomorphic to the free profinite group
of rank m.

Proof: Put C1 = C and E1 = E. By Corollary 9.5.8, Gal(ES/E) is pro-
jective. Therefore, by Lemma 9.8.4, it suffices to show that every finite split
embedding problem (1) for Gal(ES/E) with a nontrivial kernel has m′ solu-
tion fields, where m′ = 1 if m = ℵ0, and m′ = m otherwise.

Let β < m be an ordinal number. Suppose, by transfinite induction,
that {Nα}α<β is a family of distinct solution fields of (1). For each α, the
set Branch(Nα/E) is finite. Hence, A = S �

⋃
α<β Branch(Nα/E) is infinite.

We choose an algebraically closed field C2 that contains C and is com-
plete with respect to a nontrivial ultrametric absolute value such that
card(C) < card(C2). For instance, choose a field C ′ that contains C such that
card(C) < card(C ′), and let C2 be the completion of the algebraic closure of
C ′((t)). We consider the induced embedding problem (2).

Let {Gj | j ∈ J} be a nonempty set of nontrivial cyclic groups that gen-
erate H with 1 /∈ J . By Lemma 9.7.4, there exists a family of disks {Dj}j∈J

in C2 such that for every B ⊂ ⋃
j∈J Dj with card(B ∩ Dj) = 2 for each

j ∈ J there exists a solution field L2 to (2) with Branch(LG1
2 /C2(x)) = B.

We choose such a set B. By Remark 9.7.3, card(Dj) = card(C2). By
Lemma 9.8.3, we may assume that the elements of B are algebraically inde-
pendent over C. Therefore, by Lemma 9.8.2, (1) has a solution field N = Nβ

such that Branch(NG1/E) ⊆ A.
Since N = F1N

G1 , we have

Branch(N/E) = Branch(F1/E) ∪ Branch(NG1/E)

(Remark 4.1.1). Furthermore,

Branch(F1/E),Branch(NG1/E) ⊆ S,

so Branch(N/E) ⊆ S. Since Branch(NG1/E) ⊆ A, we have

Branch(NG1/E) ∩ Branch(Nα/E) = ∅
for each α < β. In addition, [NG1 : E] = |H| > 1, so by the Riemann-Hurwitz
genus formula (Remark 5.8.1(f)), Branch(NG1/E) �= ∅. Since

Branch(NG1/E) ⊂ Branch(N/E),

it follows that Branch(N/E) �= Branch(Nα/E) for each α < β. Consequently
N �= Nα for each α < β. �
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Remark 9.8.6: Fundamental groups. In the special case of Theorem 9.8.5,
where S is the set of all prime divisors, C(x)S = C(x)s. Thus, Gal(C(x)) ∼=
F̂m. If F is a finite extension of C(x), then Gal(F ) is isomorphic to an open
subgroup of Gal(C(x)), so Gal(F ) ∼= F̂m [FrJ08, Prop. 25.2.2]. It follows that
Theorem 9.8.5 is essentially a generalization of Corollary 9.4.9.

One may try to generalize the latter observation to a proper finite exten-
sion F of C(x) and a set S of prime divisors of F/C of cardinality card(C).
Let T be the set of all prime divisors of C(x)/C that lie under S and those
that ramify in F . Then FS ⊆ C(x)T , so Gal(C(x)T /F ) is an open sub-
group of Gal(C(x)T /C(x)). By Theorem 9.8.5 and [FrJ08, Prop. 25.2.2],
Gal(C(x)T /F ) ∼= F̂m. However, Gal(FS/F ) might be a proper quotient of
Gal(C(x)T /F ), so our methods fail to prove that the latter group is also
isomorphic to F̂m.

Nevertheless, using formal patching, Harbater proved that Gal(FS/F ) ∼=
F̂m if the complement of S is finite [Hrb95, Thm. 4.4]. Using rigid analytic
patching, Pop proved the latter isomorphism under the weaker condition
that card(S) = m [Pop95, p. 556, Thm. A]. Note that both Harbater and
Pop consider a smooth projective model X for F/C, reinterpret S as a subset
of X(C), call Gal(FS/F ) the fundamental group of X � S, and denote it
by Π(X � S). �

9.9 Fundamental Groups with S Finite

We consider again a function field E of one variable of genus g over an
algebraically closed field C of characteristic p. Let S be a finite nonempty set
of prime divisors of E/C. As before we denote the maximal Galois extension
of E ramified at most over S by ES . By Corollary 9.1.7, Gal(ES/E) is a free
profinite group if p = 0. We prove in this section that this is false if p > 0.

For each prime number l we denote the maximal pro-l extension of E

which is ramified at most over S by E
(l)
S .

Lemma 9.9.1: Let E be a function field of one variable over an algebraically
closed field C, S a finite nonempty set of prime divisors of E/C, and l a

prime number. Then Gal(E(l)
S /E) is a free pro-l group.

Proof: The group Gal(E(l)
S /E) is the maximal pro-l quotient of Gal(ES/E).

By Theorem 9.5.7, the latter group is projective. Hence, by [FrJ08, Prop.
22.4.8], so is the former. Alternatively, one may repeat the proof of Theorem
9.5.7. �
Lemma 9.9.2: Let C be an infinite field of positive characteristic p and
cardinality m. Let E be a function field of one variable over C and S a

nonempty set of prime divisors of E/C. Then rank(Gal(E(p)
S /E)) = m.

Proof: Since card(E) = m, the field E has at most m finite extensions in
E

(p)
S , hence rank(Gal(E(p)

S /E)) ≤ m [FrJ08, Prop. 17.1.2]. Thus, it suffices to

202



9.9 Fundamental Groups with S Finite

prove that rank(Gal(E(p)
S /E)) ≥ m. The rest of the proof breaks up into

two parts.

Part A: Assume E = C(x) with a transcendental element x over C. Since
Gal(C(x)(p)

S /C(x)) is a pro-p group, it suffices to construct m linearly disjoint
cyclic extensions in C(x)S of degree p [FrJ08, Lemma 22.7.1].

We apply a Möbius transformation on C(x), if necessary, to assume that
the pole px,∞ of x belongs to S. Then C(x)(p)

{px,∞} ⊆ C(x)(p)
S . Therefore, we

may further assume that S = {px,∞}. Since C is infinite, the dimension of
C as a vector space over Fp is m. Let B be a basis of C over Fp. For each
b ∈ B let yb be an element of C(x)s such that yp

b − yb = bx. Then C(x, yb) is
a cyclic extension of degree p. Moreover, since px,∞ is the only pole of bx, no
prime divisor of C(x)/C but px,∞ is ramified in C(x, yb). This means that

C(x, yb) ⊆ C(x)(p)
S . To conclude the proof we have now to prove that the

elements of Bx are linearly independent over Fp modulo ℘(C(x)) (Statement
(3d) of Section 9.5).

To that end consider distinct elements b1, . . . , bn of B and arbitrary
elements β1, . . . , βn ∈ Fp. Assume there exists u ∈ C(x) with

(1)
n∑

i=1

βibix = up − u.

Then u is integral over C[x], and because C[x] is integrally closed, u ∈ C[x].
If deg(u) ≥ 1, then the degree of the right hand side of (1) is greater than
1 while the degree of the left hand side of (1) is 1. If deg(u) = 0, then∑n

i=1 βibi = 0. Consequently, βi = 0 for each i, as contended.

Part B: The general case. We choose a transcendental element x of E
over C and denote the set of prime divisors of C(x)/C lying under S by T .
By Part A, rank(Gal(C(x)(p)

T /C(x))) = m. Since E is a finite extension of

C(x), so is E0 = C(x)(p)
T ∩E, hence Gal(C(x)(p)

T /E0) is an open subgroup of

Gal(C(x)(p)
T /C(x)), hence rank(Gal(C(x)(p)

T /E0)) = m [FrJ08, Cor. 17.1.5].

Now observe that C(x)(p)
T ⊆ E

(p)
S , so Gal(C(x)(p)

T /E0) is a quotient of the

group Gal(E(p)
S /E). Therefore, by [FrJ08, Cor. 17.1.4], rank(Gal(E(p)

S /E)) ≥
m, as contended. �

Lemma 9.9.3: Let C be an algebraically closed field, E a function field of
one variable over C, S a finite set of prime divisors of E/C, and l a prime

number that does not divide char(C). Then rank(Gal(E(l)
S /E)) < ∞.

Proof: Let E′ be the compositum of all cyclic extensions of E of degree l

in E
(l)
S . Since Gal(E(l)

S /E′) is a pro-l group and Gal(E(l)
S /E′) is the Frat-

tini subgroup of Gal(E(l)
S /E), the rank of Gal(E(l)

S /E) is equal to that of
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Gal(E′/E) [FrJ08, Lemma 22.7.4]. Thus, it suffices to prove that Gal(E′/E)
is finite.

Let S′ be the complement of S in the set of all prime divisors of E/C.
Denote the subgroup of E× consisting of all elements x satisfying l|vp(x) for
all p ∈ S′ by B′. Then E′ = E(x1/l | x ∈ B′) [FrJ08, Example 2.3.8]. Let
B be the subgroup of E×/(E×)l consisting of all x(E×)l with x ∈ B′. By
Kummer theory [Lan93, p. 294, Thm. 8.1], B ∼= Gal(E′/E). Thus, we have
to prove that B is finite.

To that end consider the map ν: B → (Z/lZ)S defined by

ν(x(E×)l) = (vp(x) + lZ)p∈S .

Then Ker(ν) consists of all left classes x(E×)l such that l|vp(x) for all prime
divisors of E/C. By Lemma 9.6.2, Ker(ν) is finite. Since (Z/lZ)S is finite, it
follows that B is also finite. �
Proposition 9.9.4: Let C be an algebraically closed field of positive char-
acteristic, E a function field of one variable over C, and S a set of prime
divisors of E/C with card(S) < card(C). Suppose that S is nonempty or E
is not rational. Then Gal(ES/E) is not a free profinite group.

Proof: If S is empty, then ES = Eur. By assumption, genus(E) > 0, so
Gal(ES/E) is not projective (Proposition 9.6.1). It follows that Gal(ES/E)
is not free [FrJ08, Cor. 22.4.5].

Assume S is nonempty and Gal(ES/E) is a free profinite group of rank
m. Then, for each prime number l, the maximal pro-l quotient Gal(E(l)

S /E) of
Gal(ES/E) is a free pro-l group of rank m [FrJ08, Lemma 17.4.10]. Applying
Lemma 9.9.2 for the case l = char(C), we conclude that

m = rank(Gal(E(l)
S /E)) = card(C)

is infinite.
On the other hand consider the case l �= char(C). If S is finite, then

rank(Gal(E(l)
S /E)) < ∞ (Lemma 9.9.3). This contradicts the conclusion of

the preceding paragraph.
If S is infinite, then ℵ0 ≤ card(S) < m. Let A be the collection of all

finite subsets of S. Then card(A) = card(S) and E
(l)
S =

⋃
A∈AE

(l)
A . Since

m is infinite, rank(Gal(E(l)
S /E)) is equal to the cardinality of the set of all

finite extensions of E in E
(l)
S [FrJ08, Prop. 17.1.2]. Each of these extensions

is contained in E
(l)
A for some A ∈ A. For each A ∈ A, E has at most

countably many finite extensions in E
(l)
A (because rank(Gal(E(l)

A /E)) < ∞).
It follows that rank(Gal(ES/E)) ≤ card(A)ℵ0 = card(S)ℵ0 < m. Again,
this is a contradiction to the conclusion of the second paragraph of the proof.
We conclude from this contradiction that Gal(ES/E) is not a free profinite
group. �
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Notes

Remark 9.9.5: Non-isomorphic fundamental groups. Let E be a function
field of one variable of genus g > 0 over an algebraically closed field of
characteristic p and let S be a finite set of prime divisors of r elements. By
Proposition 9.1.6, Gal(ES/E) is uniquely determined up to an isomorphism
by r and g if p = 0. This is not the case if p > 0.

Indeed, for p �= 0, 2 consider elements a and a′ in F̃p such that the elliptic
curve Γ defined over F̃p with j-invariant a is ordinary and the elliptic curve
Γ′ defined over F̃p with j-invariant a′ is supersingular. Let F (resp. F ′) be
the function field of Γ (resp. Γ′). Then Gal(Fur/F ) �∼= Gal(F ′ur/F ′) although
genus(F/F̃p) = 1 = genus(F ′/F̃p). Indeed, F has a unique unramified Z/pZ-
extension while F ′ has none [Hrb77, p. 338, Exercise 4.8].

Similarly, let E = F̃p(x), S = {0, 1,∞, a} and S′ = {0, 1,∞, a′} with
distinct a, a′ ∈ F̃p. By [Hrb94b, Thm. 1.8], Gal(ES/E) �∼= Gal(ES′/E) al-
though they have the same invariants, r = 4 and g = 0. �

Notes
The proof of Proposition 9.1.1 and its generalization, Proposition 9.1.2, uses
non-algebraic tools such as algebraic topology and the theory of Riemann sur-
faces, so it goes beyond the scope of this book. For a complete detailed proof
of Proposition 9.1.1 we refer the reader to Helmut Völklein’s book [Voe96].
See also [MaM99, Chap. 1, Thms. 1.3 and 1.4]. A proof of Proposition 9.1.2
can be found in [Dou79], [Matz87, p. 30, Satz 1], and [Ser92, Section 6.2].
Proposition 9.1.5 is reduced to Proposition 9.1.2 via Proposition 9.1.4. This
reduction goes also under the name of “Grothendieck specialization theo-
rem”. Standard projective limit argument allows us to deduce Proposition
9.1.6 from Proposition 9.1.5. This transition appears also in [Matz87, p. 37,
Satz 3]. Corollary 9.1.10 is due to Douady. It is a special case of Proposition
9.1.9. The proof of the latter theorem applies Proposition 9.1.6 and a projec-
tive limit argument over all finite subsets of S. Although we do not include
information about the decomposition groups in Proposition 9.1.9 that infor-
mation enters into the limit argument in an essential way. We have borrowed
that ingredient of the proof from the proof of [Rib70, p. 70, Thm. 8.1].

A survey of Abhyankar’s conjecture, Raynaud’s proof of the conjec-
ture for the affine line, and Pop’s reduction to Raynaud’s result appears
in [MaM99, Sections 5.2, 5.3, and 5.4].

Section 9.3 surveys the cohomology of groups and Galois cohomology to
the extent needed in the book. Our main source is [Rib70].

Section 9.4 reproduces [Jar99, Sec. 1], which by itself puts together well
known arguments. The standard proof of Lemma 9.4.4 uses a special case of
cohomological triviality: Let G be a finite group and let A be a G-module.
If Ĥ0(G, A) = AG/NA = 0 (where Na = Σσ∈Gσa) and H1(G, A) = 0, then
H2(G, A) = 0 [CaF67, p. 113, Thm. 9]. In our case, G = Gal(N/K), A = N×

and AG/NA = K×/normN/KN× = 1. Also, H1(G, N×) = 1, by Hilbert’s
theorem 90. So, indeed, H2(G, A) = 1. Replacing cohomological triviality in
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the proof of Lemma 9.4.4 by the more elementary argument is due to Sigrid
Böge (private communication).

Proposition 9.4.6 is usually referred to as Tsen’s theorem, because
Tsen proved the essential ingredient of its proof, namely that the field of
ratioanl functions over an algebraically closed field is C1 [Tse33].

The proof that Gal(ES/E) is projective in Section 9.5 is based on tips
of Heinrich Matzat.

Lemma 9.5.2 is a rewrite of [Son94, Lemma 2.6]. Lemma 9.5.3 is due to
Shafarevich [Sha89, p. 109]. See also [Son94, Prop. 2.5]. The proof of Lemma
9.5.4 is a modification of the proof of [Son94, Prop. 3.2]. Theorem 9.5.7 is
proved by Serre [Ser90, Prop. 1], using étale cohomology.

The second proof of Proposition 9.6.1 that do not use Riemann’s exis-
tence theorem arose from discussions with Gerhard Frey. The same goes for
the proof of Lemma 9.6.2.

Harbater proves Theorem 9.8.5 in the case where C ∪ {∞}� S is finite
by formal patching [Har95, Thm. 4.1]. Pop proves Theorem 9.8.5 in its
full strength by rigid methods [Pop05, p. 556, Cor.]. We follow [HaJ00a].
Corollary 9.4.9 is a special case of Theorem 9.8.5 and Theorem 9.4.8 is a
slight generalization of Corollary 9.4.9.

Shafarevich discussed his conjecture on the freeness of Gal(Qab) during
a talk in Oberwolfach in 1964. Latter it appeared in [Bey80].

A Galois theoretic version of Lemma 9.8.4 appears in [Matz87, p. 231,
Lemma 1].
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