
Chapter 11.
Function Fields of One Variable
over PAC Fields

We prove that if K is an ample field of cardinality m and E is a function
field of one variable over K, then Gal(E) is semi-free of rank m (Theorem
11.7.1). It follows from Theorem 10.5.4 that if F is a finite extension of E, or
an Abelian extension of E, or a proper finite extension of a Galois extension
of E, or F is “contained in a diamond” over E, then Gal(F ) is semi-free.

We apply the latter results to the case where K is PAC and E = K(x),
where x is an indeterminate. We construct a K-radical extension F of E
in a diamond over E and conclude that F is Hilbertian and Gal(F ) is semi-
free and projective (Theorem 11.7.6), so Gal(F ) is free. In particular, if K
contains all roots of unity of order not divisible by char(K), then Gal(E)ab
is free of rank equal to card(K) (Theorem 11.7.6).

11.1 Henselian Fields
We give a sufficient condition for the absolute Galois group of a Henselian
field (M,v) to be projective. Our proof is valuation theoretic and starts
almost from the basic definitions. In particular, we do not use the connection
between projectivity and the vanishing of the Brauer groups.

Let p be a prime number and A an Abelian group. We say that A is
p′-divisible, if for each a ∈ A and every positive integer n with p � n there
exists b ∈ A such that a = nb. Note that if p = 0, then “p′-divisible” is the
same as “divisible”.

Lemma 11.1.1: Let p be 0 or a prime number, B a torsion free Abelian group,
and A a p′-divisible subgroup of finite index. Then B is also p′-divisible.

Proof: First suppose that p = 0 and let m = (B : A). Then, for each b ∈ B
and a positive integer n there exists a ∈ A such that mb = mna. Since B is
torsion free, b = na. Thus, B is divisible.

Now suppose p is a prime number, let mpk = (B : A), with p � m and
k ≥ 0, and consider b ∈ B. Then mpkb ∈ A. Hence, for each positive integer
n with p � n there exists a ∈ A with mpkb = mna. Thus, pkb = na. Since
p � n, there exist x, y ∈ Z such that xpk +yn = 1. It follows from xpkb = xna
that b = n(xa + yb), as claimed. �
Corollary 11.1.2: Let L/K be an algebraic extension, v a valuation of L,
and p = 0 or p is a prime number. Suppose that v(K×) is p′-divisible. Then
v(L×) is p′-divisible.

Proof: Let x ∈ L× and n a positive integer with p � n. Then v(K(x)×)
is a torsion free Abelian group and v(K×) is a subgroup of index at most
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Chapter 11. Function Fields of One Variable over PAC Fields

[L : K]. Since v(K×) is p′-divisible, Lemma 11.1.1 gives y ∈ K(x)× such
that v(x) = nv(y). It follows that v(L×) is p′-divisible. �

Given a Henselian valued field (M,v), we use v also for its unique exten-
sion to Ms. We use a bar to denote the residue with respect to v of objects
associated with M , let OM be the valuation ring of M , and let ΓM = v(M×)
be the value group of M .

Proposition 11.1.3: Let (M, v) be a Henselian valued field. Suppose p =
char(M) = char(M̄), Gal(M̄) is projective, and ΓM is p′-divisible. Then
Gal(M) is projective.

Proof: We denote the inertia field of M by Mu. It is determined by its
absolute Galois group: Gal(Mu) = {σ ∈ Gal(M) | v(σx − x) > 0 for all x ∈
Ms with v(x) ≥ 0}. The map σ �→ σ̄ of Gal(M) into Gal(M̄) such that
σ̄x̄ = σx for each x ∈ OMs is a well defined epimorphism [Efr06, Thm. 16.1.1]
whose kernel is Gal(Mu). It therefore defines an isomorphism

(1) Gal(Mu/M) ∼= Gal(M̄).

Claim A: M̄u is separably closed. Let g ∈ Mu[X] be a monic irreducible
separable polynomial of degree n ≥ 1. Then there exists a monic polynomial
f ∈ OMu

[X] of degree n such that f̄ = g. We observe that f is also irreducible
and separable. Moreover, if f(X) =

∏n
i=1(X−xi) with x1, . . . , xn ∈ Ms, then

g(X) =
∏n

i=1(X − x̄i). Given 1 ≤ i, j ≤ n there exists σ ∈ Gal(Mu) such
that σxi = xj . By definition, x̄j = σxi = σ̄x̄i = x̄i. Since g is separable,
i = j, so n = 1. We conclude that M̄u is separably closed.

Claim B: Each l-Sylow group of Gal(Mu) with l �= p is trivial. Indeed, let
L be the fixed field of an l-Sylow group of Gal(Mu) in Ms. If l = 2, then
ζl = −1 ∈ L. If l �= 2, then [L(ζl) : L]|l − 1 and [L(ζl) : L] is a power of l, so
ζl ∈ L.

Assume that Gal(L) �= 1. By the theory of finite l-groups, L has a cyclic
extension L′ of degree l. By the preceding paragraph and Kummer theory,
there exists a ∈ L such that L′ = L( l

√
a). By Corollary 11.1.2, there exists

b ∈ L× such that lv(b) = v(a). Then c = a
bl satisfies v(c) = 0. By Claim

A, L̄ is separably closed. Therefore, c̄ has an lth root in L̄. By Hensel’s
lemma, c has an lth root in L. It follows that a has an lth-root in L. This
contradiction implies that L = Ms, as claimed.

Having proved Claim B, we consider again a prime number l �= p and let
Gl be an l-Sylow subgroup of Gal(M). By the claim, Gl∩Gal(Mu) = 1, hence
the map res: Gal(M) → Gal(Mu/M) maps Gl isomorphically onto an l-Sylow
subgroup of Gal(Mu/M). By (1), Gl is isomorphic to an l-Sylow subgroup of
Gal(M̄). Since the latter group is projective, so is Gl, i.e. cdl(Gal(M)) ≤ 1
[Ser79, p. 58, Cor. 2].

Finally, if p �= 0, then cdp(Gal(M)) ≤ 1 [Ser79, p. 75, Prop. 3], because
then char(M) = p. It follows that cd(Gal(M)) ≤ 1 [Ser79, p. 58, Cor. 2]. �
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11.2 Brauer Groups of Henselian Fields

We establish a short exact sequence for the Brauer group of a finite unramified
extension of a Henselian field. That sequence will be used in the proof of
Lemma 11.5.1.

Again, when (M,v) is a Henselian field, we denote its valuation ring by
OM , the maximal ideal of OM by mM , the group of units of M by UM , the
value group of (M,v) by ΓM , and use a bar to denote reduction modulo mM

Proposition 11.2.1: Let (M,v) be a Henselian valued field and (N, v) a
finite Galois extension with a trivial inertia group. Set G = Gal(N/M). Then
the G-module 1+mN is G-cohomologically trivial, that is Hi(G, 1+mN ) = 0
for all positive integers i.

Proof: By Subsection 9.3.13, it suffices to prove the following equalities:

(1)
(1 + mN )G = normN/M (1 + mN )

Z1(G, 1 + mN ) = B1(G, 1 + mN ).

Since the right hand sides of (1) are contained in the left hand sides, it suffices
to prove only the other inclusions. This is done in two parts.

Part A: Proof that (1 + mN )G ≤ normN/M (1 + mN ). Note that (1 +
mN )G = 1+mM . Thus, we have to prove that 1+mM ≤ normN/M (1+mN ).

Since G0(N/M) = 1, (1) of Section 11.1 implies that the map σ �→ σ̄
is an isomorphism Gal(N/M) ∼= Gal(N̄/M̄). By the normal basis theorem
there exists x ∈ ON such that {σ̄x̄ | σ ∈ G} is a basis of N̄/M̄ [Lan93,
p. 312 for the case where M is infinite and Jac64, p. 61 for M finite]. Then
the elements σx, σ ∈ G, are linearly independent over M , so they form a
basis of N/M . If traceN/M (x) = 0, then traceN/M (σx) = 0 for each σ ∈ G,
so traceN/M (y) = 0 for all y ∈ N . This contradiction to the fact that
traceN/M : N → M is a nonzero M -linear function [Lan93, p. 286, Thm. 5.2]
proves that a = traceN/M (x) �= 0. Dividing x by a, we may assume that
traceN/M (x) = 1.

Now let n = [N : M ] = |G| and consider y ∈ mM and the polynomial

f(Z) = −y + Z + a2Z
2 + · · · + an−1Z

n−1 + normN/M (x)Zn

with ak =
∑

σ xσ1 · · ·xσk , where σ ranges over all injections from {1, . . . , k}
into G. In particular, f ∈ OM [Z]. For each z ∈ OM we have

normN/M (1 + xz) =
∏

σ∈G

(1 + xσz)

= 1 + traceN/M (x)z + a2z
2 + · · · + an−1z

n−1 + normN/M (x)zn

= 1 + z + a2z
2 + · · · + an−1z

n−1 + normN/M (x)zn,

so f(z) = normN/M (1 + xz) − 1 − y.

235



Chapter 11. Function Fields of One Variable over PAC Fields

Since y ∈ mM , we have

f(y) = a2y
2 + · · · + an−1y

n−1 + normN/M (x)yn ≡ 0 mod m2
M

and

f ′(y) = 1+2a2y
2+· · ·+(n−1)an−1y

n−2+n·normN/M (x)yn−1 ≡ 1 mod m2
M .

The Henselianity of (M, v) gives a z ∈ mM with f(z) = 0, that is

normN/M (1 + xz) = 1 + y,

as desired.

Part B: Z1(G, 1 + mN ) ≤ B1(G, 1 + mN ). Consider a 1-cocycle

a ∈ Z1(G, 1 + mN ).

Then a ∈ Z1(G, N×). Since H1(G, N×) = 1 (Hilbert’s theorem 90, Subsec-
tion 9.3.17), there exists b ∈ N× such that aσ = (σ − 1)b for each σ ∈ G.
Since v(N×) = v(M×), there exists b′ ∈ M× with v(b′) = v(b). Then c = b

b′
satisfies v(c) = 0 and aσ = (σ − 1)c for each σ ∈ G. Since aσ ∈ 1 + mN ,
we have 1 = (σ̄ − 1)c̄, hence σ̄c̄ = c̄ for all σ ∈ G. Therefore, c̄ ∈ M̄ , so
there exists c′ ∈ OM with c′ = c̄. The element d = c

c′ is in 1 + mN and
satisfies aσ = (σ − 1)d for all σ ∈ G. This means that a ∈ B1(G, 1 + mN ), as
contended. �

Proposition 11.2.1 has a series of consequences expressed in the following
lemmas.

Lemma 11.2.2: Let M , N , and G be as in Proposition 11.2.1. Then, for each
positive integer i there is a natural isomorphism, Hi(G, UN ) ∼= Hi(G, N̄×).

Proof: The short exact sequence 1 → 1 + mN → UN → N̄× → 1 of G-
modules, in which UN → N̄× is the reduction map, induces a natural long
exact sequence

Hi(G, 1 + mN ) → Hi(G, UN ) → Hi(G, N̄×) → Hi+1(G, 1 + mN )

(Subsection 9.3.4). The first and the fourth terms of that sequence are trivial
by Proposition 11.2.1. Hence the second and the third terms of that sequence
are naturally isomorphic. �

Lemma 11.2.3: Let M , N , v, and G be as in Proposition 11.2.1. Then for
each positive integer i there is a natural short exact sequence

1 → Hi(G, N̄×
v ) → Hi(G, N×) v−→Hi(G, ΓM ) → 0.
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11.2 Brauer Groups of Henselian Fields

In particular, for i = 2 the following short sequence is exact:

0 → Br(N̄v/M̄v) → Br(N/M) → H2(G, ΓM ) → 0

Proof: The short exact sequence 1 → UN → N× v−→ΓN → 0 gives rise to a
long exact sequence

(2) · · · δ−→Hi(G, UN ) → Hi(G, N×) v−→Hi(G, ΓN ) δ−→· · · .

By Lemma 11.2.2, we may replace Hi(G, UN ) by Hi(G, N̄×). Since N/M is
unramified, ΓN = ΓM . Hence, (2) simplifies to a long exact sequence

(3) · · · δ−→Hi(G, N̄×) → Hi(G, N×) v−→Hi(G, ΓM ) δ−→· · ·

of cohomology groups. We have to prove that each of the homomorphisms
δ is the zero map. This is equivalent to proving that the map v in (3) is
surjective for each i ≥ 0.

To this end we consider a finitely generated subgroup A of ΓM . Since
ΓM is torsion free, A is free. Lifting free generators of A to elements of M×

gives generators of a subgroup B of M× that v maps isomorphically onto A.
Since G acts trivially both on M and on ΓM , v|B is a G-isomorphism.

N× v �� ΓN

M× v ��

��

ΓM

B
v ��

��

A

��

Ignoring the second row and taking cohomology gives a commutative diagram

Hi(G, N×) v �� Hi(G, ΓM )

Hi(G, B)

��

v �� Hi(G, A)

��

in which the lower arrow v is an isomorphism. In particular, each element of
Hi(G, A) lies in the image of v. Since Hi(G, ΓM ) is the inductive limit of all
of the groups Hi(G, A) (Subsection 9.3.10), the upper arrow of the preceding
diagram is surjective. �
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Chapter 11. Function Fields of One Variable over PAC Fields

11.3 Local-Global Theorems for Brauer Groups

We establish a commutative diagram for the Brauer group of a generalized
function field of one variable over a field K relating it to the product of the
Brauer groups of the Henselizations.

Remark 11.3.1: Let K be a perfect field and F a generalized function field of
one variable over K, that is a regular extension of K of transcendence degree
1. We denote the set of all equivalence classes of valuations of F that are
trivial on K by P(F/K). We choose a representative vp in each p ∈ P(F/K)
and a Henselian closure Fp of F at vp. Then the residue fields F̄p of both F
and Fp are the same and so are the value groups Γp. We extend the residue
map of Fp to a place x �→ x̄ of Fs onto K̃ ∪ {∞} that fixes the elements of
K̃. Then the map σ �→ σ̄ defined by σ̄x̄ = σx is an epimorphism of Gal(Fp)
onto Gal(F̄p). In particular, σ̄x = σx for each σ ∈ Gal(Fp) and every x ∈ K̃,
that is the map σ → σ̄ is the restriction map. It follows that Fp ∩ K̃ = F̄p.
Moreover, if σ ∈ Gal(Fp), then σ̄x̄ = x̄ for all x ∈ Fs with x̄ ∈ K̃ if and only
if σ ∈ Gal(FpK̃). Thus, Gal(FpK̃) is the inertia group of the extension of p

to Fs and the restriction map Gal(FpK̃/Fp) → Gal(F̄p) is an isomorphism.
�
Lemma 11.3.2: Let F be a generalized function field of one variable over a
field K and let p be a prime number. Suppose for each function field E of
one variable over K in F the map

(1) res: Br(E)p∞ →
∏

p∈P(E/K)

Br(Ep)p∞

is injective and its image lies in
⊕

p∈P(E/K) Br(Ep)p∞ . Then the map

(2) res: Br(F )p∞ →
∏

p∈P(F/K)

Br(Fp)p∞

is injective.

Proof: Given an algebraic extension of fields E ⊆ E′, we denote the restric-
tion map Br(E)p∞ → Br(E′)p∞ by resE

E′ . Now we consider a function field
E of one variable over K in F , let p ∈ P(E/K), and let x ∈ Br(Ep)p∞ . Sup-
pose resEp

Fq
(x) = 0 for each q ∈ P(F/K) over p. Let E be the set of all finite

extensions of E in F . We prove there exists E′ ∈ E such that resEp

E′
q
(x) = 0

for each q ∈ P(E′/K) lying over p.
To this end we recall that for each E′ ∈ E the set of prime divisors of

E′/K that lie over p bijectively corresponds to the set of all Ep-isomorphisms
of E′Ep into Es. If σ′ is such an isomorphism and q′ is the corresponding
prime divisor of E′/K, we choose σ′(E′Ep) as the Henselian closure E′

q′ of
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11.3 Local-Global Theorems for Brauer Groups

E′ at q′. This choice ensures that if E′′ is a finite extension of E′ in F and
q′′ is a prime divisor of E′′/K that lies over q′, then E′

q′ ⊆ E′′
q′′ .

Now assume E has no extension E′ as in the first paragraph of the proof.
Then for each E′ ∈ E the finite set Q(E′) of all prime divisors q ∈ P(E′/K)
lying over p such that resEp

E′
q
(x) �= 0 is nonempty. If E′′ is a finite extension

of E′ in F , then restriction of divisors maps Q(E′′) into Q(E′). Since the
inverse limit of nonempty finite sets is nonempty [FrJ08, Cor. 1.1.4], there
exists a set Q = {qE′ ∈ Q(E′) | E′ ∈ E} such that qE′ is the restriction of
qE′′ for all E′, E′′ ∈ E with E′ ⊆ E′′. The set Q determines an element q of
P(F/K) such that resEp

Fq
(x) �= 0, in contrast to the assumption made in the

first paragraph of the proof.

Claim: The map (2) is injective. Otherwise, there exists z ∈ Br(F )p∞ such
that z �= 0 and resF

Fq
(z) = 0 for every q ∈ P(F/K). Since F is the union

of function fields E of one variable over K and Br(F )p∞ is the direct limit
of the groups Br(E)p∞ (Subsections 9.3.10 and 9.3.18), there exist such a
field E and an element x ∈ Br(E)p∞ with x �= 0 and resE

F (x) = z. By our
assumption on the image of the map (1), resE

Ep
(x) = 0 for all but finitely

many p ∈ P(E/K). We denote the exceptional set by P . For each p ∈ P

let xp = resE
Ep

(x). Then resEp

Fq
(xp) = resF

Fq
(z) = 0 for each q ∈ P(F/K)

lying over p. By what we have proved above, E has a finite extension E(p)
in F such that resEp

E(p)q
(xp) = 0 for each q ∈ P(E(p)/K) lying over p. Let

E′ =
∏

p∈P E(p). Then E′ is a finite extension of E in F and resE
E′

q
(x) = 0 for

each p ∈ P and every q ∈ P(E′/K) lying over p. It follows from the definition
of P that resE

E′
q
(x) = 0 for each p ∈ P(E/K) and every q ∈ P(E′/K) lying

over p. Finally, let y = resE
E′(x). Then resE′

F (y) = z �= 0, so y �= 0. On the
other hand, resE′

E′
q
(y) = 0 for all q ∈ P(E′/K). This contradicts the injectivity

of the map (1). �
Lemma 11.3.3: In the notation of Remark 11.3.1 and with P = P(F/K)
there is a natural commutative diagram
(3)

Br(F )
β ��

res��

H2(Gal(K), (FK̃)×)
γ ��

res��

H2(Gal(K), (FK̃)×/K̃×)

��∏
p∈P Br(Fp)

β′
�� ∏

p∈P H2(Gal(F̄p), (FpK̃)×)
γ′

��
∏

p∈P H2(Gal(F̄p),Γp)

where β and β′ are isomorphisms.

Proof: The inflation-restriction sequence for Brauer groups (Subsection
9.3.18) applied to Gal(F ) and Gal(FK̃) is
(4)
1 → H2(Gal(FK̃/F ), (FK̃)×) inf−→H2(Gal(F ), F×

s ) res−→H2(Gal(FK̃), F×
s ).
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Since F/K is regular, the map res: Gal(FK̃/F ) → Gal(K) is an isomorphism.
By Proposition 9.4.6(b), cd(Gal(FK̃)) ≤ 1, so H2(Gal(FK̃), F×

s ) = 1 (Sub-
section 9.3.18). Thus, inf in (4) is an isomorphism. We denote its inverse by
β to get the left upper map in Diagram (3). The homomorphism γ in (3) is
induced by the quotient map (FK̃)× → (FK̃)×/K̃×.

For each p ∈ P we replace F and K in the preceding argument by Fp and
F̄p, respectively, and use that Fp/F̄p is a regular extension (Remark 11.3.1) to
produce an isomorphism βp: Br(Fp) → H2(Gal(F̄p), (FpK̃)×) that commutes
with the restriction map. Then we define β′ as the product of all the βp’s.

Similarly, for each p ∈ P, the quotient map (FpK̃)× → (FpK̃)×/K̃×

yields a homomorphism

γp: H2(Gal(F̄p), (FpK̃)×) → H2(Gal(F̄p), (FpK̃)×/K̃×).

The valuation vp extended to FpK̃ maps (FpK̃)× onto the valuation group
Γp and vanish on K̃×. So it defines a homomorphism

γ′
p: H2(Gal(F̄p), (FpK̃)×/K̃×) → H2(Gal(F̄p),Γp).

We let γ′ =
∏

p∈P γ′
p ◦ γp. Finally, noting that FK̃ = FpK̃, the third vertical

arrow in (3) is just
∏

p∈P γ′
p ◦ res. �

11.4 Picard Groups

Let F be a function field of one variable over a perfect field K. Thus, F/K
is a finitely generated regular extension of transcendence degree 1. Let P =
P(F/K) be the set of prime divisors of F/K (Remark 11.3.1). Using the
notation of Remark 5.8.1, we recall that each a ∈ Div(F/K) has a unique
representations as a =

∑
p∈P vp(a)p, with integers vp(a), all but finitely many

are 0. In particular, div(f) =
∑

p∈P vp(f)p for each f ∈ F×. Thus, the map
a �→ (vp(a))p∈P is a natural isomorphism,

(1) Div(F/K) ∼=
⊕

p∈P

Γp

The map div: F× → Div(F/K) is a homomorphism with Ker(div) =
K× [Deu73, p. 25]. The Picard group of F/K is the cokernel of div,
also called the group of divisor classes of F/K, that is, Pic(F/K) =
Div(F/K)/div(F×). Since div(F×) ∼= F×/K×, we get the following natural
short exact sequence:

(2) 1 → F×/K× div−→Div(F/K) → Pic(F/K) → 0.

Recall that the group of divisors of degree 0, Div0(F/K), contains
div(F×) (Remark 5.8.1(a)). Hence, Pic0(F/K) = Div0(F/K)/div(F×) is
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11.4 Picard Groups

a subgroup of Pic(F/K) and (2) yields the following natural short exact
sequence:

(3) 1 → F×/K× div−→Div0(F/K) → Pic0(F/K) → 0.

Analogous convention and rules hold for the function field FK̃/K̃. Here we
write P̃ = P(FK̃/K̃).

Lemma 11.4.1: There is a natural isomorphism

Div(FK̃/K̃) ∼=
⊕

p∈P

IndGal(K)

Gal(F̄p)
(Γp)

of Gal(K)-modules.

Proof: Consider a prime divisor p ∈ P and a prime divisor P ∈ P̃ lying over p.
We identify Gal(FK̃/K̃) with Gal(K) via restriction. For each σ ∈ Gal(K)
the prime divisor σP is the equivalence class of the valuation vσP of FK̃
defined by vσP(x) = vP(σ−1x). When σ ranges over Gal(K), the divisor
σP ranges over all extensions of p to FK̃. By Remark 11.3.1, the stabilizer
of P under this action is Gal(F̄p). Hence,

⊕
Q|p ΓQ =

⊕
σ∈S ΓσP, where S

is a subset of Gal(K) satisfying Gal(K) =
⋃· σ∈S Gal(F̄p)σ. Note that for

each Q ∈ P̃ lying over p the value group ΓQ is Z, so we may identify it
with Γp. It follows from Subsection 9.3.12 that

⊕
Q|p ΓQ =

⊕
σ∈S ΓσP =

⊕
σ∈S Γp = IndGal(K)

Gal(F̄p)
(Γp). Consequently, Div(FK̃/K̃) ∼= ⊕

p∈P

⊕
Q|p ΓQ =

⊕
p∈P IndGal(K)

Gal(F̄p)
(Γp), as claimed. �

Lemma 11.4.2: Let G be a profinite group acting trivially on a discrete
torsion free Abelian group A. Then H1(G, A) = Hom(G, A) = 0.

Proof: The left equality follows from the definition of H1 (Subsection 9.3.2).
Each element of Hom(G, A) is a continuous homomorphism f : G → A. Its
image is a compact subgroup, so must be finite. Since A is torsion free,
f(G) = 0. Therefore, Hom(G, A) = 0. �
Lemma 11.4.3: Let F be a function field of one variable over a perfect field
K. Then there is a natural exact sequence

(4)

0 → H1(Gal(K),Pic(FK̃/K̃)) → H2(Gal(K), (FK̃)×/K̃×)

→
⊕

p∈P(F/K)

H2(Gal(F̄p),Γp) → H2(Gal(K),Pic(FK̃/K̃))

→ H3(Gal(K), (FK̃)×/K̃×).

Proof: As above we set P = P(F/K) and start from the short exact sequence
for FK̃/K̃ analogous to (2):

1 → (FK̃)×/K× div−→Div(FK̃/K̃) → Pic(FK̃/K̃) → 0.
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It induces a long exact sequence:

(5)

H1(Gal(K),Div(FK̃/K̃)) → H1(Gal(K),Pic(FK̃/K̃))

→ H2(Gal(K), (FK̃)×/K̃×) → H2(Gal(K),Div(FK̃/K̃))

→ H2(Gal(K),Pic(FK̃/K̃)) → H3(Gal(K), (FK̃)×/K̃×).

By Lemma 11.4.1 and by Shapiro’s Lemma (Subsection 9.3.12), we have for
i = 1, 2 natural isomorphism

Hi(Gal(K),Div(FK̃/K̃)) ∼=
⊕

p∈P

Hi(Gal(K), IndGal(K)

Gal(F̄p)
(Γp))

∼=
⊕

p∈P

Hi(Gal(F̄p),Γp),

where the action of Gal(F̄p) on Γp is trivial. Since Γp is a torsion free discrete
Abelian group, H1(Gal(K),div(FK̃/K̃)) = 0 (Lemma 11.4.2). Collecting
this information into (5) gives the exact sequence (4). �
Lemma 11.4.4: Let F be a function field of one variable over a perfect field
K and let p be a prime number. Then:
(a) The natural map

H1(Gal(K),Pic0(FK̃/K̃)) → H1(Gal(K),Pic(FK̃/K̃))

is surjective.
(b) If F/K has a prime divisor of degree 1, then

Hi(Gal(K),Pic0(FK̃/K̃))p∞ = 0

for each i > cdp(Gal(K)) and
(c) there is a natural isomorphism

Hi(Gal(K),Pic(FK̃/K̃))p∞ ∼= Hi−1(Gal(K), Q/Z)p∞

for each i > max(1, cdp(Gal(K))).

Proof of (a): The definition of the Picard groups gives rise to a short exact
sequence

(6) 0 → Pic0(FK̃/K̃) → Pic(FK̃/K̃)
deg−→Z → 0

of Gal(K)-modules. We consider a segment of the corresponding long exact
sequence of cohomology groups:

H1(Gal(K),Pic0(FK̃/K̃)) → H1(Gal(K),Pic(FK̃/K̃)) → H1(Gal(K), Z).
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Since Gal(K) acts trivially on Z, Lemma 11.4.2 implies that H1(Gal(K), Z) =
0, hence (a) is true.

Proof of (b): Let J be the Jacobian variety of F/K. By Subsection 6.3.1,
J(K̃) is a divisible Abelian group. Hence, multiplication by pn gives a short
exact sequence:

0 → J(K̃)pn → J(K̃)
pn

−→ J(K̃) → 0,

which in turn gives for each positive integer i a long exact sequence

Hi(Gal(K), J(K̃)pn) → Hi(Gal(K), J(K̃))(7)
pn

−→Hi(Gal(K), J(K̃))
→ Hi+1(Gal(K), J(K̃)pn).

If i > cdp(Gal(K)), then both the first and the last groups in (7) are zero.
Therefore multiplication with pn is an automorphism of Hi(Gal(K), J(K̃)).
In particular, Hi(Gal(K), J(K̃))p∞ = 0. Finally, by Subsection 6.3.2,

Pic0(FK̃/K̃) ∼= J(K̃)

as Gal(K)-modules. Consequently, Hi(Gal(K),Pic0(FK̃/K̃))p∞ = 0, as
claimed.

Proof of (c): For each i ≥ 0 the short exact sequence (6) induces an exact
sequence

(8)

Hi(Gal(K),Pic0(FK̃/K̃)) → Hi(Gal(K),Pic(FK̃/K̃))

→ Hi(Gal(K), Z)

→ Hi+1(Gal(K),Pic0(FK̃/K̃)).

By Subsection 9.3.10, the p-primary part

Hi(Gal(K),Pic0(FK̃/K̃))p∞ → Hi(Gal(K),Pic(FK̃/K̃))p∞

→ Hi(Gal(K), Z)p∞

→ Hi+1(Gal(K),Pic0(FK̃/K̃))p∞

of (8) is also exact. By (b), the first and the last groups in the latter sequence
are zero if i > cdp(Gal(K)). In addition, by Lemma 9.3.11, there is a natural
isomorphism Hi(Gal(K), Z) ∼= Hi−1(Gal(K), Q/Z) if i ≥ 2. Hence, there is
a natural isomorphism as in (c) if i > max(1, cdp(Gal(K))). �
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11.5 Fields of Cohomological Dimension at most 1
We analyze the exact sequence of Lemma 11.4.3 in the case where
cd(Gal(K)) ≤ 1 and prove a local-global principle for Brauer groups of gen-
eralized function fields of one variable over perfect PAC fields.

Lemma 11.5.1: Let F be a generalized function field over a perfect field K
with cd(Gal(K)) ≤ 1. Then:
(a) The natural homomorphism

γ: H2(Gal(K), (FK̃)×) → H2(Gal(K), (FK̃)×/K̃×)

induced by the quotient map (FK̃)× → (FK̃)×/K̃× is an isomorphism.
(b) Hi(Gal(K), (FK̃)×/K̃×) = 0 for i ≥ 3.
(c) For each p ∈ P(F/K), the valuation map

H2(Gal(F̄p), (FpK̃)×) → H2(Gal(F̄p),Γp)

is an isomorphism.

Proof: The short exact sequence

1 → K̃× → (FK̃)× → (FK̃)×/K̃× → 1

of Gal(K)-modules gives rise to an exact sequence

(1)
H2(Gal(K), K̃×) → H2(Gal(K), (FK̃)×)

→ H2(Gal(K), (FK̃)×/K̃×) → H3(Gal(K), K̃×)

of cohomology groups. Since cd(Gal(K)) ≤ 1, we have H2(Gal(K), K̃×) ∼=
Br(K) = 0 (Subsection 9.3.18) and H3(Gal(K), K̃×) = 0 for each i ≥ 3
(Subsection 9.3.15). Thus, (a) follows from (1). Moreover, (b) holds.

Finally, let p ∈ P(F/K) and apply Lemma 11.2.3 for Fp, FpK̃, and vp

rather than to M , N , and v. Recall that we have identified Gal(FpK̃/Fp) with
Gal(F̄p) (Remark 11.3.1). Hence, that lemma gives a short exact sequence

0 → Br(F̄p) → H2(Gal(F̄p), (FpK̃)×) → H2(Gal(F̄p),Γp) → 0.

Now we use that Gal(F̄p) as a closed subgroup of Gal(K) has cohomological
dimension at most 1 to deduce that Br(F̄p) = 0 and conclude the proof of
(c). �
Lemma 11.5.2: Let F be a generalized function field over a perfect field K
with cd(K) ≤ 1. Then there is a natural commutative square

Br(F ) ��

res

��

H2(Gal(K), (FK̃)×/K̃×)

��∏
p∈P(F/K) Br(Fp) ��

∏
p∈P(F/K) H2(Gal(F̄p),Γp)
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where the horizontal arrows are isomorphisms.

Proof: By Lemma 11.5.1, the maps γ and γ′ of Lemma 11.3.3 are isomor-
phisms. Hence, so are the maps γ◦β and γ′◦β′ of the latter lemma. Therefore,
the diagram of Lemma 11.3.3 shrinks to the diagram of our lemma. �
Lemma 11.5.3: Let F be a function field of one variable over a perfect field
K. Suppose F/K has a prime divisor of degree 1 and cd(Gal(K)) ≤ 1. Then
there exists a natural exact sequence

0 → H1(Gal(K),Pic(FK̃/K̃)) → Br(F )
res−→

⊕

p∈P(F/K)

Br(Fp)

→ Hom(Gal(K), Q/Z) → 0

Proof: We apply Lemma 11.5.2 to replace

H2(Gal(K), (FK̃)×/K̃×) and
⊕

p∈P(F/K)

H2(Gal(F̄p),Γp)

in the exact sequence of Lemma 11.4.3 by Br(F ) and
⊕

p∈P(F/K) Br(Fp),
respectively. Since cd(Gal(K)) ≤ 1 and each cohomology group of positive
degree is the sum of its primary parts, Lemma 11.4.4(c) implies that

H2(Gal(K),Pic(FK̃/K̃)) ∼= H1(Gal(K), Q/Z) = Hom(Gal(K), Q/Z).

By Lemma 11.5.1(b), H3(Gal(K), (FK̃)×/K̃×) = 0. Consequently, the exact
sequence of Lemma 11.4.3 becomes the sequence of our lemma. �
Lemma 11.5.4: Let F be a function field of one variable over a perfect PAC
field K. Then there is a natural exact sequence

0 → Br(F ) res−→
⊕

p∈P(F/K)

Br(Fp) → Hom(Gal(K), Q/Z) → 0

Proof: Let J be the Jacobian variety of F/K. Since K is PAC,

H1(Gal(K), J(K̃)) = 0.

(Subsection 6.3.3). By Subsection 6.3.2, Pic0(FK̃/K̃) ∼= J(K̃) as Gal(K)-
modules. Hence,

H1(Gal(K),Pic0(FK̃/K̃)) = 0.

Therefore, by Lemma 11.4.4(a), H1(Gal(K),Pic(FK̃/K̃)) = 0. Consequen-
tly, the exact sequence of Lemma 11.5.3 shortens to the exact sequence of
the present lemma. �

Using lemma 11.3.2, we extract the following result for generalized func-
tion fields from Lemma 11.5.4:
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Proposition 11.5.5 (Efrat): Let F be a generalized function field of one
variable over a perfect PAC field K. Then the restriction map

res: Br(F ) →
∏

p∈P(F/K)

Br(Fp)

is injective

Corollary 11.5.6: Let F be a generalized function field of one variable over
a perfect PAC field K. Suppose Gal(Fp) is projective for each p ∈ P(F/K).
Then Gal(F ) is projective.

Proof: For each p ∈ P(F/K) the group Gal(Fp) is projective, hence
cd(Gal(Fp)) ≤ 1 (Subsection 9.3.16). Since K is perfect, Br(Fp) = 0 (Sub-
section 9.3.18). Therefore, by Proposition 11.5.5, Br(F ) = 0.

The same conclusion holds for every finite separable extension F ′ of F ,
because the algebraic closure of K in F ′ is perfect and PAC [FrJ08, Corol-
lary 11.2.5] and closed subgroups of projective groups are projective [FrJ08,
Prop. 22.4.7]. By Subsection 9.3.18, Gal(F ) is projective. �

11.6 Radical Extensions
We call an algebraic extension F/E of fields of characteristic p radical if for
each a ∈ E and every positive integer n with p � n there exists xa,n ∈ F such
that xn

a,n = a and F = E(xa,n)a∈E, p�n. The following conjecture is a variant
of a conjecture of Bogomolov-Positselski [BoP05, Conjecture 1.1]:

Conjecture 11.6.1: Let E be an extension of a field K with
trans.deg(E/K) = 1 and F an algebraic extension of E. Suppose F con-
tains a radical algebraic extension of E. Then Gal(F ) is projective.

We prove Conjecture 11.6.1 in the special case where K is PAC. It turns
out that in this case it suffices to adjoin much less radicals to E than de-
manded by the definition of the radical extension.

Definition 11.6.2: K-radical extensions. Let E/K be a function field of one
variable and F an algebraic extension of E. In the notation of Remark 11.3.1
we say that F/E is a K-radical extension if for each p ∈ P(E/K) and for
each positive integer n with char(K) � n there exists an element xp,n ∈ F
such that xn

p,n ∈ E, vp(xn
p,n) = 1, and F = K(xp,n)p∈P(E/K),char(K)�n.

In particular, if F/E is a radical extension, then F/E is also a K-radical
extension. �
Definition 11.6.3: Let K be a field of characteristic p and F an extension of
K of transcendence degree 1. We say that F has p′-divisible K-functional
valuation groups if the value group of F at each valuation trivial on K is
p′-divisible.

Note that in that case each algebraic extension F ′ of F also has p′-
divisible K-functional valuation groups (Remark 11.1.2). �
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Lemma 11.6.4: Let p be either 0 or a prime number and let Γ be an additive
subgroup of Q. Suppose 1

n ∈ Γ for each positive integer n with p � n. Then
Γ is p′-divisible.

Proof: We consider γ ∈ Γ. If p = 0, we write γ = a
b , with a ∈ Z and b ∈ N.

Given n ∈ N, we have γ
n = a · 1

nb ∈ Γ.
If p > 0, we write γ = a

bpk , where a ∈ Z, b ∈ N, k ∈ Z, and p � a, b.

Let n ∈ N with p � n. If k < 0, then γ
n = ap−k · 1

nb ∈ Γ. If k > 0, we may

choose x, y ∈ Z such that xpk + ynb = 1. Then γ
n = a

nbpk = axpk+aynb
nbpk =

ax · 1
nb + by · a

bpk ∈ Γ, as claimed. �

Lemma 11.6.5: Let E/K be a function field of one variable of characteristic
p and F a K-radical extension of E. Then F has a p′-divisible K-functional
valuation groups.

Proof: Let p ∈ P(E/K) and consider a valuation w of F extending vp.
Thus, w(y) = vp(y) for each y ∈ E. Since F is an algebraic extension of
E the value group Γ of w is contained in Q. On the other hand, for each
p ∈ P(E/K) and each n not divisible by p there is xp,n ∈ F such that
1
n = 1

nvp(xn
p,n) = w(xp,n) ∈ Γ. By Lemma 11.6.4, Γ is p′-divisible. �

Proposition 11.6.6: Let K be a PAC field of characteristic p, F an exten-
sion of K of transcendence degree 1 with p′-divisible K-functional valuation
groups. Then Gal(F ) is projective.

Proof: By assumption, the value group of each valuation of F/K is p′-
divisible. Hence, so is the value group of each valuation of every algebraic
extension F ′ of F , therefore also of each Henselian closure of F ′.

By Ax-Roquette, each algebraic extension of a PAC field is again PAC
[FrJ08, Cor. 11.2.5]. Hence, we may first replace K by Kins and F by FKins

to assume that K is perfect. Then, we may replace K by F ∩ K̃ to assume
that F is a generalized function field of one variable over K.

Now we consider a prime divisor p of F/K and its Henselization Fp.
The residue field F̄p is an algebraic extension of K, so F̄p is PAC. Hence,
by [FrJ08, Thm. 11.6.2], Gal(F̄p) is projective. It follows from Proposition
11.1.3 that Gal(Fp) is projective. By Corollary 11.5.6, Gal(F ) is projective.
�

Corollary 11.6.7: Let K be a PAC field, E a function field of one variable
over K, and F an algebraic extension of a K-radical extension of E. Then
Gal(F ) is projective.

Proof: Let p = char(K). By Lemma 11.6.5 and Definition 11.6.3, F has
a p′-divisible K-functional valuation groups. Hence, by Proposition 11.6.6,
Gal(F ) is projective. �
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11.7 Semi-Free Absolute Galois Groups

The chapter culminates with its main new result. We construct for each PAC
field K of cardinality m an algebraic extension F of K(x) in Kcycl(x)ab such
that F is Hilbertian and Gal(F ) ∼= F̂m. If K contains all roots of unity, then
Gal(K(x)ab) ∼= F̂m. The latter result, can be considered as an analog of a
well known conjecture of Shafarevich saying that Gal(Qab) ∼= F̂ω.

First of all we apply the main result of Chapter 8 to the absolute Galois
group of a function field of one variable over an ample field.

Theorem 11.7.1: Let E be a function field of one variable over an ample
field K of cardinality m. Then Gal(E) is semi-free of rank m.

Proof: We choose a separating transcendence element x for E/K. Since K is
ample, m is infinite and m = card(K(x)) = card(E). Hence,
rank(Gal(K(x))) ≤ m. By Proposition 8.6.3, each finite split embedding
problem for Gal(K(x)) with a nontrivial kernel has m linearly disjoint solu-
tions. Thus, Gal(K(x)) is semi-free of rank m (Remark 10.1.6). Since Gal(E)
is an open subgroup of Gal(K(x)), Gal(E) is semi-free of rank m (Lemma
10.4.1). �

The combination of Theorems 10.5.8 and 11.7.1 gives the following result:

Theorem 11.7.2: Let K be an ample field with rank(Gal(K)) = m, E a
function field of one variable over K, and F a separable algebraic extension
of E. Then Gal(F ) is a semi-free profinite group of rank m in each of the
following cases:
(a) [F : E] < ∞.
(b) weight(F/E) < m.
(c) F/E is small.
(d) F is contained in an E-diamond.
(e) F is a proper finite extension of an extension E0 of E and E0 is contained

in a Galois extension N of E that does not contain F .
(f) F is a proper finite extension of a Galois extension of E.
(g) F/E is Abelian.

The next construction will allow us to move from a function field F of
one variable to infinite extensions of F that are not too large.

Lemma 11.7.3: Let E be a function field of one variable over a field K, F
a finite extension of E, and p a prime divisor of E/K tamely and totally
ramified in F . Then F is a regular extension of K.

Proof: The extension F/E is separable, because p is tamely and totally
ramified in F . Since E/K is separable, also F/K is separable.

It remains to prove that K is algebraically closed in F . Thus, it suffices
to prove that F ∩ EL = E for each finite extension L of K. Indeed, let L0

be the maximal separable extension of K in L. Then p is unramified in EL0.
Hence, F ∩EL0 = E and each extension p′ of p to EL0 is tamely and totally
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ramified in FL0. Since EL/EL0 is purely inseparable, p′ is either unramified
or wildly ramified in EL. Therefore, FL0 ∩ EL = EL0. Consequently,
F ∩ EL = E. �

Given a field E and a prime number p, we write E
(p′)
ab for the maximal

Abelian extension of E of degree prime to p.

Construction 11.7.4: Special K-radical extensions. Let K be a field of char-
acteristic p and infinite cardinality m. Let x be a variable and set E = K(x).
We denote the set of all monic irreducible polynomials of K[x] by F . Let
F =

⋃· r
i=1 Fi be a partition of F such that card(Fi) = F = m for i = 1, . . . , r.

For each i we choose a wellordering Fi = (fi,α)α<m. Then, for each α < m
and every positive integer n with p � n we choose a root (f1,α · · · fr,α)1/n in

Es such that if n = dd′, then
(
(f1,α · · · fr,α)1/n

)d = (f1,α · · · fr,α)1/d′
. Then

we consider the separable algebraic field extension

F0 = E
(
(f1,α · · · fr,α)1/n

)
α<m, p�n

of E and call F0 a special K-radical extension of E. Note that F0Kcycl

is an Abelian extension of Kcycl(x) of degree not divisible by p. Hence,

F0 ⊆ Kcycl(x)(p
′)

ab .
In the special case where r = 1, the presentation of F0 is simplified to

F0 = E(f1/n)f∈F, p�n. �
Lemma 11.7.5: Let K, x, E, and F0 be as in Construction 11.7.4. Then:
(a) F0/E is a K-radical extension (Definition 11.6.2).
(b) F0/K is regular, thus F0/K is a generalized function field of one variable.

(c) Every extension F of F0 in Kcycl(x)(p
′)

ab is contained in an E-diamond,
hence F is Hilbertian.

(d) If K contains no primitive root of order l for some prime number l �=
char(K), then F0/E is not Galois.

Proof of (a): For each prime divisor p �= px,∞ of K(x)/K there exist (unique)
1 ≤ j ≤ r and α < m such that vp(fj,α) = 1. Since the Fi’s are disjoint,
vp(fi,α) = 0 if i �= j. For p � n, let xp,n = (f1,α · · · fr,α)1/n. Then xp,n ∈ F0,
xn

p,n ∈ E, and vp(xn
p,n) = 1. Next, for p = px,∞ we set p′ = px,0 and

xp,n = x−1
p′,n. Then xp,n ∈ F0, xn

p,n ∈ E, and vp(xn
p,n) = 1. Finally, by

construction, F0 is the field obtained from E by adjoining all xp,n where
p ∈ P(E/K) and p � n. Thus, F0 is a K-radical extension of E.

Proof of (b): Every finite extension E′ of E in F0 is contained in a field

Er = E(f1/n1
1 , . . . , f1/nr

r ),

where f1, . . . , fr are distinct elements of F and n1, . . . , nr are positive integers
not divisible by p. Inductively assume Er−1 = E(f1/n1

1 , . . . , f
1/nr−1
r−1 ) is a
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regular extension of K. For i = 1, . . . , r, let vi be the valuation of E/K
satisfying vi(fi) = 1. Then vi(fj) = 0 for i �= j. By [FrJ08, Example
2.3.8], vr is unramified in Er−1. Let w be an extension of vr to Er−1. Then
w(fr) = 1, so again by [FrJ08, Example 2.3.8], w tamely and totally ramifies
in Er. By Lemma 11.7.3, Er/K is regular. Consequently, F0 is a regular
extension of K.

Proof of (c): Let N1 be the field obtained from E by adjoining all roots of
unity ζn and all roots x1/n with p � n. Let N2 be the field obtained from E by
adjoining all ζn and all roots f1/n with f ∈ F �{x} and p � n. Then both N1

and N2 are Galois extensions of E and N1N2 = Kcycl(x)(p
′)

ab , so F ⊆ N1N2.
Moreover, px,1 is ramified in F0 but unramified in N1, so F �⊆ N1. Similarly,
px,0 is ramified in F0 but unramified in N2, so F0 �⊆ N2, hence F �⊆ N2.
Thus, F is contained in a diamond over E. By [FrJ08, Thm. 13.4.2], E is
Hilbertian. Hence, by Haran’s diamond theorem [FrJ08, Thm. 13.8.3], F is
Hilbertian.

Proof of (d): Now we assume that ζl /∈ K for some prime number l �= p.
Then, by (b), ζl /∈ F0. Let f = f1,0 · · · fr,0. Then f1/l ∈ F0. If F0/E is Galois,
then also ζlf

1/l ∈ F0, hence ζl ∈ F0. It follows from this contradiction that
F0 is not a Galois extension of E. �
Theorem 11.7.6: Let K be a PAC field of characteristic p and cardinality
m and let F0 be a special K-radical extension of E = K(x) (Construction
11.7.4). Then:

(a) Every extension F of F0 in Kcycl(x)p′
ab is Hilbertian and Gal(F ) ∼= F̂m.

(b) If K contains no primitive root of order l for some prime number l �= p,
then F0/E is not Galois.

(c) If K contains all roots of unity, then Eab is a Hilbertian field with
Gal(Eab) ∼= F̂m.

Proof: By Lemma 11.7.5(a), F0 is indeed a K-radical extension of E. Let
F be as in (a). By Lemma 11.7.5(c), F is contained in an E-diamond, in
particular F is Hilbertian. By Theorem 11.7.1, Gal(E) is semi-free of rank m.
Hence, by Theorem 11.7.2(d), Gal(F ) is semi-free of rank m. By Corollary
11.6.7, Gal(F ) is projective. Hence, by Proposition 10.1.14, Gal(F ) is free of
rank m as claimed in (a).

Statement (b) is a special case of Lemma 11.7.5(d). To prove (c) note
that since F0 is generated by radicals of elements of E and all roots of unity
of order prime to p are contained in E, we have F0 ⊆ Eab. In particular,
Eab is an Abelian extension of F . Since F is Hilbertian, so is Eab [FrJ08,
Thm. 16.11.3]. Since Gal(F ) is isomorphic to F̂m, so is Gal(Eab) [FrJ08,
Cor. 25.4.8]. �
Remark 11.7.7: Note that Theorem 11.7.6(c) follows already from the results
of David Harbater quoted in the second paragraph of Section 10.6. Indeed
according to those results, if K is a PAC field that contains all roots of unity,
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Notes

then Gal(K(x)) is quasi-free of rank m, hense so is Gal(K(x)ab). In addition,
by Corollary 11.6.7, Gal(K(x)ab) is projective. Hence, by Proposition 9.4.7,
Gal(K(x)ab) ∼= F̂m.

The condition that K contains all roots of unity of order not divisible
by char(K) is necessary for Theorem 11.7.6(c) to hold. In fact given an odd
prime number l, we have examples of Hilbertian PAC fields K that contain all
roots of unity of order not divisible by n with ζl /∈ K such that Gal(K(x)ab)
is not projective. In particular Gal(K(x)ab) is not free. We will publish those
examples elsewhere. �
Example 11.7.8: Starting from a PAC field K of cardinality m, Theorem
11.7.6 gives an extension F of K(x) in K(x)ab such that Gal(F ) ∼= F̂m and F
is Hilbertian. It is however not clear to us whether F is ample. We suspect
it is not.

However, [GeJ01, Thm. 2.6] gives an example of a Hilbertian field F
with Gal(F ) ∼= F̂ω (in particular, Gal(F ) is projective), but F is nonample.
�

Notes
Proposition 11.1.3 about the projectivity of Gal(M) for a Henselian field
M under appropriate assumptions on the residue field and the value group
reproduces [JaP09, Lemma 1.3].

The results about the cohomology of local Galois groups appearing in
Section 11.2 are taken from [Pop88, §2].

Sections 11.3, 11.4, and 11.5 are a work out of part of Efrat’s work
[Efr01]. The main result of [Efr01] we use is Proposition 11.5.5.

Lemma 11.3.2 is a special case of a more general lemma on a local-
global principle for the Brauer group of a field that is a directed union of
fields satisfying a local-global principle for their Brauer groups (see [Pop88,
Lemma 4.4], or [Efr01, Lemma 3.3]).

Proposition 11.6.6 is [JaP09, Lemma 1.4].
One of the main results of the chapter is Theorem 11.7.1. It also appears

as [BHH10, Thm. 7.2]. The proof of the latter theorem is an adjustment of
the proof of [HaS05, Thm. 4.3] about quasi-freeness.

We note that [BHH10, Section 8] gives an account of Construction 11.7.4
and of Theorem 11.7.6 with a reference to our book. That work also refers
to Theorem 11.7.1 (see [BHH08, comment following the proof of Thm. 7.2]).
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