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Introduction

The central problem of contemporary Galois theory is to describe the absolute
Galois group Gal(K) of a given field K. A less ambitious problem, also known
as the “inverse Galois problem over K” is to list all finite quotients of Gal(K);
that is, to find which finite groups occur as Galois groups over K.

1. Background.

1.1 The inverse problem of Galois theory over Q. The case where K is the
field Q of rational numbers has been the most prominent one. It is the
consequence of the theory of cyclotomic extensions, developed in the 19th
century, that every finite Abelian group can be realized as a Galois group
over Q. Using class field theory, Shafarevich was able in the 20th century to
realize every finite solvable group over Q. For a non-Abelian simple group,
one usually tries to realize G over a finitely generated purely transcendental
extension E = Q(x1, . . . , xn) of Q. Once this has been successfully done, it
is possible to apply Hilbert’s irreducibility theorem to specialize the Galois
extension of E to a Galois extension of Q with an isomorphic Galois group.
This procedure was initiated by Hilbert in [Hil1892], where he realized each
one of the symmetric groups Sn and the alternating groups An over Q. Fur-
ther work along these lines was done by Matzat, Thompson, Völklein, and
others in the fourth quarter of the 20th century. Starting from the Riemann
existence theorem which gives a realization of each finite group G over C(x)
with a detailed description of ramification, they used several criteria, most
notably rigidity, to descend those realizations to Galois extensions over Q. In
this way they succeeded to realize all sporadic simple groups (except M23)
over Q and several families of simple non-Abelian finite groups. For more
details, the reader is referred to [MaM99] and [Voe96].

1.2 Complex analytic methods. While a solution to the inverse Galois prob-
lem over Q seems to be still out of reach, interest in Galois theory has been
extended to other base fields, especially to fields of local flavor. Starting
again from the Riemann existence theorem, Fried and Völklein constructed
for each finite group G and “ramification data” for G a complex analytic
space H. Then they used a higher dimensional analog to the Riemann ex-
istence theorem due to Grauert and Remmert to prove that H is indeed an
absolutely irreducible algebraic variety defined over C. Moreover, if K is a
subfield of C over which H is defined and H(K) �= ∅, then G is realizable over
K(x) with additional information about branch points and inertia groups. If
K is a PAC subfield of C (i.e. every absolutely irreducible variety defined
over K has a K-rational point), then H can be chosen to be defined over
K and then, by definition, H(K) �= ∅. This shows that the inverse Galois
problem over K(x) has a positive solution. In the case when K is in addition
Hilbertian, Fried and Völklein exploited the fact that Gal(K) is projective
and proved that every finite split embedding problem over K is solvable. In
particular, if K is countable, it follows that Gal(K) is isomorphic to the free
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profinite group F̂ω of rank ℵ0, giving a satisfactory solution to the structure
problem of Galois theory over K, and solving one of the open problems of
Field Arithmetic [FrJ86, Problem 24.41] in characteristic 0. The reader may
consult the original papers [FrV91] and [FrV92] as well as Völklein’s book
[Voe96] on that subject.

1.3 Formal Patching. The application of complex analytic methods restricts
the results of the former subsection to fields of characteristic 0. In the general
case one uses one of several methods of “patching”.

The first method of this kind is called “Formal Patching”. It uses
Grothendieck’s formal schemes and was developed by Harbater in [Hrb87]
in order to prove that if R is a complete local domain which is not a field and
K = Quot(R), then each finite group occurs as a Galois group over K(x). It
follows for example that the inverse Galois problem has a positive solution
over Qp(x) or over K0((x1, . . . , xn))(x), where K0 is a field and n ≥ 1. Among
further applications of Formal Patching by Harbater and his collaborators let
us mention the solution of the generalized Abhyankar’s problem over curves
in positive characteristic [Hrb94a] (see also Remark 9.2.2). Moreover, they
proved that if F is a function field of one variable over a separably closed
field, then Gal(F ) is a free profinite group of rank card(F ) [Hrb95].

1.4 Rigid Patching. Following an idea of Serre, Liu translated in 1990 Har-
bater’s method to the language of rigid analytic geometry and reproved that
for each complete field K under a nonarchimedean absolute value, every
finite group is realizable over K(x) [Liu95]. Instead of “Formal Patching” one
speaks here about “Rigid Patching”. An account of rigid analytic geometry
can be found in [FrP04].

At the end of 1990, Pop proved that if a field K is either PAC or
Henselian, then each finite group has a K-regular realization over K(x). As
explained in a letter from Roquette to Geyer from December 1990, this follows
from the result of Harbater-Liu, because in both cases, K is existentially
closed in K((t)). This common property of PAC fields and Henselian fields
was at that time somewhat surprising, because by Frey-Prestel, a field K
cannot be both PAC and Henselian except if K is separably closed [FrJ08,
Cor. 11.5.5].

Pop formalizes that property in [Pop96]. He calls a field K large if K
is existentially closed in K((t)). Alternatively, K is large (or ample as we
prefer to call it) if every absolutely irreducible K-curve C with a K-rational
simple point has infinitely many K-rational points [Pop96, Prop. 1.1]. In
particular, K((t)) itself is ample, because it is Henselian.

Using rigid patching, Pop proved that every finite split embedding prob-
lem over K((t)) has a K((t))-regular solution over K((t))(x) [Pop96, Lemma
1.4]. In particular, this reproves the result of Harbater and Liu. Again, if K
is ample, then the same statement holds over K [Pop96, Main Theorem A].

In particular, if K is PAC, then every finite split embedding problem
over K(x) is solvable. If, in addition, K is Hilbertian, then every finite split
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embedding problem over K is solvable. Since the absolute Galois group of a
PAC field is projective, each finite embedding problem over K can be reduced
to a finite split embedding problem [FrJ08, Thm. 11.6.2]. It follows that every
finite embedding problem over K is solvable. If further, K is countable, then
by Iwasawa [FrJ08, Thm. 24.8.1], Gal(K) ∼= F̂ω [Pop96, Thm. 1]. This
completes the proof of [FrJ86, Problem 24.41] in the general case.

If K is algebraically closed, then by Tsen Theorem (Proposition 9.4.6),
Gal(K(x)) is projective. Since K is ample, every finite split embedding prob-
lem over K(x) is solvable. If in addition, K is countable, then as in the pre-
ceding paragraph, Gal(K(x)) ∼= F̂ω. In particular, Gal(F̃p(x)) ∼= F̂ω. Note
that in the latter case, F̃p(x) is obtained from Fp(x) by adjoining all roots of
unity. Thus, the latter result appears as an analog to the still open problem
of Shafarevich that asks whether Gal(Qab) is free.

Generalizing the analog of Shafarevich’s conjecture to the case where K
is an algebraically closed field of an arbitrary infinite cardinality m, Harbater
[Hrb95] and Pop [Pop95] independently proved that if E is a function field
of one variable over K, then every finite split embedding problem over E has
m solutions. Adding the projectivity of Gal(E) a generalization of Iwasawa’s
theorem due to Melnikov-Chatzidakis, that implies that Gal(E) ∼= F̂m.

We note that [Pop96] was printed from a manuscript that was ready in
1993. In a subsequent manuscript [Pop93], Pop applies rigid patching once
more to prove that if E is a function field of one variable over an ample field
K (called “a field with a universal local-global principle” in that paper), then
every finite split embedding problem over E has a “regular solution”.

Harbater improved Pop’s result and proved that if K is an ample field of
cardinality m, E is a function field of one variable over K, and E is a finite
split embedding problem, than the number of solutions of E is m [Hrb09,
Thm. 3.4]. Theorem A below improves Harbater’s result even further.

Another application of Rigid Patching by Pop was to reduce the general
Abhyankar’s conjecture to the special one over the affine line proved by Ray-
naud [Pop95]. A detailed account of the patching methods mentioned so far
can be found in [Hrb03].

Both Formal Patching and Rigid Patching draw inspiration from “cut-
and-paste” methods in topology and analysis, in which spaces are constructed
on metric open sets and glued on overlaps. In the case of Formal Patching,
one considers “formal opens” which are defined by rings of formal power
series and patches them together in order to get a formal total space. By
applying the “formal GAGA”, more precisely Gorthendieck’s existence theo-
rem [Gro61, Thm. 2.1.1], one concludes that the formal total space originates
actually from the “usual” algebraic geometry. In the context of Rigid Patch-
ing, one considers “affinoids” which are defined by Tate algebras and patches
them together to get a total rigid analytic space. Applying the “rigid GAGA”
one concludes that the total rigid analytic space originates from algebraic
geometry. Both of these constructions are actually parallel to the complex
analytic construction, where one concludes by using Serre’s complex analytic
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GAGA and the Grauert-Remmert theorem. The key technical point in prov-
ing GAGA type results is always some form of Cartan’s lemma on matrix
factorization [Hrb03, discussion proceeding Theorem 2.2.5].

2. Algebraic patching. Inspired by a talk of v. d. Put, Haran and
Völklein realized that the formal/rigid GAGA, on which formal/rigid patch-
ing relies in an essential way, can be actually replaced by a more specialized
and simpler algebraization technique. In a few words, Haran and Völklein
work in [HaV96] directly with the Tate algebras defining the affinoids to be
patched, and using Cartan’s Lemma, show that the final patching results
originates from Galois theory.

The paper [HaV96], develops all the theory needed from scratch, without
any prerequisites, and solves the inverse Galois problem over K(x), where K
is a complete discrete valued field. It also proves that Gal(K(x)) ∼= F̂ω if K
is an algebraically closed countable field. The method Haran and Völklein
developed got the name “Algebraic Patching”. That method is further de-
veloped in [HaJ98a], [HaJ98b], and [HaJ00a]. In those papers, most of the
results about absolute Galois groups of fields previously achieved by Formal
Patching and Rigid Patching are proved by Algebraic Patching.

The basic idea behind each of the patching methods is that every finite
group G is generated by finite cyclic groups. It is not very difficult to realize
each of these groups over a given rational function field K(x). The question
is how to construct a Galois extension F of K(x) with Galois group G out of
these extensions. For example, their compositum will almost never give the
desired field F .

2.1 Patching data. Algebraic patching takes an axiomatic approach to the
problem of realizing finite groups, like the one used in [Pop94, Subsection
(1.1)] for Rigid Patching. Starting from a field E and a finite group G,
we choose finitely many cyclic subgroups Gi, i ∈ I, that generate G. For
each i ∈ I we construct a Galois extension Fi of E with Galois group Gi.
Similar to the formal/rigid patching, algebraic patching proceeds in three
steps: lifting, inducing, and algebraization. The first two steps are easier
and of rather formal nature, whereas the the third one is more difficult and
includes a GAGA type assertion.

To be more precise, algebraic patching assumes the existence of an ex-
tension field Pi of E, (which we view as an “analytic field”), i ∈ I, and a
field Q containing all Pi’s. The data obtained should satisfies the following
conditions:

(1a) Fi ⊆ P ′
i , where P ′

i =
⋂

j �=i Pj , i ∈ I;
(1b)
⋂

i∈I Pi = E; and
(1c) Let n = |G|. Then for every B ∈ GLn(Q) and each i ∈ I there exist

B1 ∈ GLn(Pi) and B2 ∈ GLn(P ′
i ) such that B = B1B2 (Cartan’s

decomposition).
We call E = (E, Fi, Pi, Q; Gi, G)i∈I a patching data. The lifting step

takes Fi to Qi = PiFi and we observe that Qi is a Galois extension of Pi
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with Gal(Qi/Pi) = Gi. Then we consider the induced vector spaces Ni =
IndG

Gi
Qi, i ∈ I, and N = IndG

1 Q, and use (1c) to construct a basis for N/Q
which is also a basis for Ni/Qi for each i ∈ I. Once this is done, we prove that
a certain proper E-translate F of

⋂
i∈I Ni into Q (called the compound of

E) is a Galois extension of E with Gal(F/E) ∼= G (Lemma 1.1.7).
Next suppose E is a finite Galois extension of a field E0 with a Galois

group Γ and Γ acts properly on E . This means that Γ acts on the group G,
on the set I, and on the field Q in a compatible way. Thus:
(2a) The action of Γ on Q extends the action of Γ on E.
(2b) F γ

i = Fiγ , P γ
i = Piγ , and Gγ

i = Giγ , for all i ∈ I and γ ∈ Γ.
(2c) (aτ )γ = (aγ)τγ

for all i ∈ I, a ∈ Fi, τ ∈ Gi, and γ ∈ Γ.
By Proposition 1.2.2, the compound F is a Galois extension of E0 that

solves the finite split embedding problem Γ � G → Gal(E/E0); that is,
there is an isomorphism Gal(F/E0) ∼= Γ � G identifying the projection of
Γ � G onto Γ with the restriction map Gal(F/E0) → Gal(E/E0). Moreover,
the action of Γ on F as a subgroup of Gal(F/E0) coincides with the action
of Γ on Q restricted to F . In this case we also have, by Lemma 1.1.7, that
PiF = Qi for each i ∈ I.

2.2 Complete fields under ultra-metric absolute values. We are able to put
together a patching data for fields of the form E = K̂(x), where K̂ is a
complete field with respect to an ultra-metric absolute value | |. Parallel to
[Pop94], we start with a finite set I. For each i ∈ I we choose an element ci ∈
K̂ such that ci �= cj if i �= j and an element r ∈ K̂× satisfying |r| ≤ |ci − cj |
for i �= j. Then we set wi = r

x−ci
and consider the ring R = RI = K̂{wi}i∈I

of all power series f = a0 +
∑

i∈I

∑∞
n=1 ainwn

i , where a0, ain ∈ K̂ and |ain|
tends to 0 as n → ∞ (Section 3.2). It turns out that R is a complete ring
with respect to the norm ‖f‖ = max(|a0|, |ain|)i,n (Lemma 3.2.1). Also, R is
a principal ideal domain, hence a unique factorization domain. Moreover, for
each i ∈ I, every ideal of R is generated by an element of K̂[wi] (Proposition
3.2.9). We let Q = PI = Quot(RI). Similarly, we construct the fields Pi =
Quot(K̂{wj}j �=i) and P ′

i = Quot(K̂{wi}). By Corollary 3.3.2, P ′
i =
⋂

j �=i Pj

and
⋂

i∈I Pi = E. Thus, the “analytic” fields Pi satisfy Condition (1b) and
the second part of Condition (1a). By definition, each element of R is a sum
of an element of RI �{i} and an element of R{i}. This implies that the Pi’s
also satisfy Condition (1c) (Corollary 3.4.4).

Given a finite group G, we choose I such that for each i ∈ I there is
a cyclic subgroup Gi whose order is a power of a prime number and G =
〈Gi〉i∈I . It is classical that E has a cyclic extension Fi in K̂((x)) with Galois
group Gi [FrJ08, Section 16]. Here we construct Fi/E with control on its
ramification. In particular, each prime divisor of E/K̂ that ramifies in Fi is
totally ramified (Lemma 4.2.5). Now we apply Proposition 2.4.5 saying that
every power series z ∈ K̂[[x]] which is algebraic over E converges at some
c ∈ K̂×. This allows us to shift Fi into P ′

i . Thus, the first half of Condition
(1a) is also satisfied.
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Finally, assume that K̂ is a finite Galois extension of a field K̂0 with
Galois group Γ that acts on G and K̂0 is complete with respect to the re-
striction of | |. Set E0 = K̂0(x). Then the proof of Proposition 4.4.2 shows
how to choose the set I, the groups Gi, the fields Fi, and the fields Pi such
that Γ acts properly on the patching data E = (E, Fi, Pi, Q; Gi, G)i∈I . It
follows that the finite split embedding problem Γ � G → Gal(K̂/K̂0) (also
called a constant finite split embedding problem) is solvable over E0.
Moreover, the solution field F has a K̂-rational place ϕ unramified over E0

and ϕ(x) ∈ K̂0. In particular, F is a regular extension of K̂. Thus, F is a
regular solution of the embedding problem.

2.3 Ample fields. If K0 is an ample field and K is a finite Galois extension
of K0 with Galois group Γ, then K is also an ample field (Lemma 5.5.1). Let
K̂0 = K0((t)) and K̂ = K((t)). Then K̂/K̂0 is a Galois extension of complete
fields under the t-adic absolute value with Γ = Gal(K̂/K̂0). Thus, if Γ acts
on a finite group G, then K̂(x) has a finite extension F̂ , Galois over K̂0(x)
and regular over K̂, that solves the constant finite split embedding problem
Γ � G → Gal(K̂/K̂0). By definition, K0 is existentially closed in K̂0. Since
K̂0/K0 is a regular extension, we may apply the Bertini-Noether theorem
and descend from F̂ to a field F , Galois over K0(x) and regular over K, that
solves the finite split embedding problem Γ�G → Gal(K/K0) (Lemma 5.9.1)
over K0(x). As noticed above, in the special case where K0 is a countable
Hilbertian PAC field, this reproves the isomorphism Gal(K0) ∼= F̂ω.

One of the equivalent conditions for a field K to be ample is that the
set V (K) of K-rational points of each absolutely irreducible variety V de-
fined over K with a simple K-rational point is Zariski-dense in V (Lemma
5.3.1). It turns out that under the above conditions, card(V (K)) = card(K)
(Proposition 5.4.3). Moreover, if h is a nonconstant rational function of V ,
then card{h(a) | a ∈ V (K)} = card(K) (Corollary 5.4.4).

In addition to PAC fields and Henselian fields we find that real closed
fields are ample. So are the quotient fields of Henselian domains (Proposition
5.7.7). In particular, for every field K0 and n ≥ 1, the field of formal power
series K0((X1, . . . , Xn)) is ample. Similarly, Quot(Zp[[X1, . . . , Xn]]) is ample
for every prime number p and n ≥ 0 (Remark 5.7.8). Finally, if the absolute
Galois group of a field K is pro-p for some prime number p, then K is ample
(Theorem 5.8.3).

2.4 Non-ample fields. Chapter 6 reveals the other side of the coin. It gives
examples of nonample fields. By Corollary 5.3.3, every finite field is non-
ample. Elementary arguments that apply the Riemann-Roch formula show
that every finitely generated transcendental extension F of a field K is non-
ample. Moreover, if F is a union of a directed family of function fields of
one variable over K of bounded genus, then F is nonample (Theorem 6.1.8).
The proof that every number field is nonample uses a deep result, namely
Faltings’ theorem that curves of genus at least 2 over number fields have only
finitely many rational points (Proposition 6.2.5). To give examples of infinite
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algebraic extensions of Q that are nonample, we use even more advanced
tools, namely the Mordell-Lang conjecture proved in characteristic 0 by Falt-
ings and others. That theorem implies that if A is a nonzero Abelian variety
defined over an ample field K of characteristic 0, then dimQ(A(K)⊗Q) = ∞.
Now we refer to an example of Kato and Rohrlich of an Abelian infinite ex-
tension K of Q with Gal(K/Q) finitely generated and an elliptic curve E
defined over Q such that E(K) is finitely generated. Thus, K is nonample
(Example 6.5.5). Using Faltings’ result again and the concept of gonality of
curves, we construct for every positive integer d a linearly disjoint sequence
K1, K2, K3, . . . of extensions of degree d of a given number field whose com-
positum K = K1K2K3 · · · is nonample (Proposition 6.8.8).

2.5 Many solutions. While the solvability of constant finite split embedding
problems for Gal(K) over K(x) suffices to prove that Gal(K) ∼= F̂ω if K is a
countable PAC Hilbertian field, it does not give us enough information about
nonconstant embedding problems over K(x) and ignores the uncountable
case. Both problems are addressed in Chapter 7 over complete fields. The
most effective way to create uncountably many solutions to a finite split em-
bedding problem is to solve the embedding problem with information about
the branch points. Proposition 7.3.1 considers a complete field K̂0 with re-
spect to an ultrametric absolute value, a finite Galois extension E/E0 over
E0 = K̂0(x) such that Gal(E/E0) acts on a finite group H (we have replaced
E′ appearing in Proposition 7.3.1 by E). We assume that E has a K̂-rational
place unramified over the algebraic closure K̂ of K̂0 in E. Then the embed-
ding problem Gal(E/E0) � H → Gal(E/E0) has a solution field F̂ regular
over K̂. Moreover, if Gj , j ∈ J , are finitely many cyclic subgroups of H of
prime power orders that generate H, then for each j ∈ J the extension F̂ /E0

has a branch point bj with Gj as an inertia group. Moreover, if K̂0 is an
extension of infinite transcendence degree of a field K0, then we may choose
the bj ’s to be algebraically independent over K0.

The next step is to solve a finite split embedding problem

Gal(E/K0(x)) � H → Gal(E/K0(x))

(which we denote by E) for an ample field K0 in many ways. As in the case
of constant split embedding problems, we go over to the field K̂0 = K0((t)),
let Ê = EK̂0, and solve the finite split embedding problem Gal(Ê/K̂0(x)) �
H → Gal(Ê/K̂0(x)) (which we denote by Ê) as in Proposition 7.3.1 (with E
replacing E′). Then we choose appropriate u1, . . . , un ∈ K̂0 and descend the
embedding problem with its solution field to an embedding problem (which
we denote by Eu) with a solution field Fu over K0(u), keeping the branch
points and the corresponding inertia groups. The new decisive step is to
reduce Fu to a solution field F of E with sufficient information on the reduced
branch points b̄j . To this aim we apply good reduction to the function field
of one variable Fu/K(u) such that the inertia group Īj over b̄j contains Gj .
We also use the information that bj is transcendental over K0 to choose
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the reduction such that the branch point b̄j is unramified in E and in the
compositum N of all solution fields of E obtained in a transfinite induction up
to that point. This implies that Īj is contained in Gal(F/F ∩ N). Since the
Gj ’s were chosen to generate H (which we identify with Gal(F/E)), the Īj ’s
generate Gal(F/E). This implies that F ∩N = E. In this way our transfinite
induction constructs a transfinite sequence (Fκ)κ<card(K0) of solutions to E
that are linearly disjoint over E (see also Lemma 7.4.1).

2.6 Algebraically closed base fields. Section 9.1 surveys the classical results
about fundamental groups of Riemann surfaces. Given a finite set S of prime
divisors of C(x)/C, we denote the maximal extension of C(x) in its algebraic
closure that ramifies at most over S by C(x)S . A consequence of the Rie-
mann existence theorem then describes Gal(C(x)S/C(x)) by generators and
relations, where each generator generates an inertia group over an element
of S. We are then able to take the limit over all the sets S and deduce that
Gal(C(x)) is a free profinite group of rank card(C). In particular, Gal(C(x))
is projective (Corollary 9.1.11).

That result can be carried over to a result over an arbitrary algebraically
closed field C of characteristic 0. If p = char(C) > 0, the same result holds
provided one stays away from p (Proposition 9.2.1). However, it is not true
any more in its general form (Proposition 9.9.4). In particular, in the notation
of the preceding paragraph, Gal(C(x)S/C(x)) is not free. Consequently, we
are not able to repeat the proof that works in characteristic 0 that Gal(C(x))
is free in the general case.

Nevertheless the latter result is still true for each algebraically closed
field. The first step is a proof that Gal(C(x)) is projective. Since we try to
be as self-contained as possible, we give a direct proof of the projectivity
of Gal(C(x)) based on simple results about homogeneous equations that we
prove and basic results about Galois cohomology that we survey (Proposition
9.4.6). Combined with Proposition 8.6.3, this proves that Gal(C(x)) is iso-
morphic to the free profinite group of rank card(C). In positive characteristic
p, we generalize that result and prove that if the absolute Galois group of a
field K is pro-p and F is a function field of one variable over K, then Gal(F )
is free of rank card(K) (Theorem 9.4.8).

2.7 Semi-free groups. Chapter 10 develops consequences of Proposition 7.3.1
from the point of view of profinite groups. We say that a profinite group G
of infinite rank m is semi-free if every finite split embedding problem for
G with a nontrivial kernel has m independent solutions. This condition is
transferred to every open subgroup of G (Lemma 10.4.1), to every closed
normal subgroup N such that G/N is finitely generated (Lemma 10.4.2) or
Abelian (Theorem 10.5.4), and to every closed subgroup M of G that is
contained in a diamond (Theorem 10.5.3).

As we saw above, one of the major steps to prove that the absolute Galois
group of a field is free is to show that this group is projective. If K is PAC,
then this is guaranteed by an old theorem of Ax [FrJ08, Thm. 11.6.2]. Going
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over to a function field E of one variable over K raises the cohomological
dimension by 1, in particular, Gal(E) is usually not projective. However, we
prove a local-global principle for the Brauer group Br(E) of E: the restriction
map Br(E) →

∏
p Br(Ep) is injective and the image of each element of Br(E)

in Br(Ep) is 0 for all but finitely many p (Lemma 11.5.4). Here p ranges over
all prime divisors of E/K and Ep is the Henselian closure of E at p. This
implies an embedding Br(F ) →

∏
Br(Fp) for each regular extension F of

K of transcendence degree 1 (Proposition 11.5.5). In particular, if x ∈ F is
transcendental over K and F contains an nth root of each monic irreducible
polynomial in K[x] for each n with char(K) � n, then the valuation groups
of Fp are divisible away from char(K). This implies that Br(Fp) = 0 for each
p (Proposition 11.1.3). It follows that Br(F ) = 0. Since the same holds for
each finite extension of F , Gal(F ) is projective (Proposition 11.6.6).

On the other hand, we use the previous results to prove that if E is a
function field of one variable over an ample field K, then Gal(E) is semi-free.
In particular, this is the case when K is PAC. We then choose nth roots
n
√

f in a compatible way for each monic irreducible polynomial f ∈ K[x] and
every positive integer n with char(K) � n. We let F = K( n

√
f)f,n and prove

that F lies in a diamond over K(x). This implies that Gal(F ) is semi-free of
rank m = char(K) and projective. It follows that Gal(F ) ∼= F̂m (Theorem
11.7.6). We call F a special K-radical extension of K(x). In the special
case where K contains all roots of unity, we get that Gal(K(x)ab) ∼= F̂m. This
is an analog to a well known conjecture of Shafarevich that Gal(Qab) ∼= F̂ω.

2.8 Hilbertian ample Krull fields. In the last chapter we consider an ample
Hilbertian field K. Although every finite split embedding problem over K
is solvable (Theorem 5.10.2), Gal(K) need not be semi-free of rank card(K)
(Example 10.6.7). However, if K is the quotient field of a complete local
Noetherian domain of height at least 2, then K is ample, Hilbertian, and
Gal(K) is semi-free (Theorem 12.4.3). One of the main ingredients of the
proof is a quantitative Chebotarev type theorem for K. We prove that K
is a Krull field. Thus, K has a set V of discrete valuations such that
{v ∈ V | v(a) �= 0} is finite for each a ∈ K× and for each finite Galois
extension L of K there are card(K) elements v ∈ V that completely split in
L.

The leading examples for fields K as in the preceding paragraph are
K0((X1, . . . , Xn)), for any field K0 and n ≥ 2, Quot(Zp[[X1, . . . , Xn]]), where
p is prime and n ≥ 1, and Quot(Z[[X1, . . . , Xn]]), where n ≥ 1 (Example
12.4.4). In the special case where K = C((X1, X2)) and C is algebraically
closed of cardinality m, it follows that Gal(Kab) ∼= F̂m (Theorem 12.4.6).

3. Main Results.

3.1 List of main results. Each result is followed by a short reference. We
expand on it in the notes at the end of the chapters where the theorems are
proved.

The two main results of the book are perhaps the following theorems.
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Theorem A: Let K be an ample field of cardinality m and E a function
field of one variable over K. Then Gal(E) is semi-free of rank m (Theorem
11.7.1).

See notes to Chapters 7 and 11 for the history of Theorem A.

Theorem B: Let K be a Hilbertian ample Krull field of cardinality m. Then
Gal(K) is semi-free of rank m (Theorem 12.4.1).

Pop proves this result in [Pop10], where the notion of a Krull field is
introduced.

Among the consequences of Theorems A and B we mention the following:

Theorem C: Every Hilbertian PAC field is ω-free (Theorem 5.10.3).

This theorem is proved by Fried-Völklein [FrV92] when char(K) = 0 and
by Pop [Pop96] in general. Haran-Jarden reprove the result using algebraic
patching in [HaJ98a].

Theorem D: Let Qtr be the field of totally real algebraic numbers. Then
Gal(Qtr(

√
−1)) ∼= F̂ω (Example 5.10.7).

This example is a special case of a more general example: Let S be a
finite set of primes of Q and let QS be the field of totally S-adic numbers.
Then Gal(QS(μ∞)) ∼= F̂ω [Pop96]. Notice that Qtr(

√
−1) = Qtr(μ∞) is even

PAC, whereas the former fields are not.

Theorem E: Let K be a field of characteristic p and cardinality m and let
E be a function field of one variable over K. Suppose that Gal(K) is a pro-p
group. Then Gal(E) ∼= F̂m (Theorem 9.4.8).

In the case where K is algebraically closed the theorem was proved inde-
pendently by Harbater [Hrb95] and Pop [Pop95]. Haran-Jarden use algebraic
patching in [HaJ98b] to reprove the theorem. The proof of the general case
follows along the same lines.

Theorem F: Let K be a PAC field of cardinality m, x a variable, and F
a special K-radical extension of K(x). Then F is Hilbertian and Gal(F ) ∼=
F̂m. In particular, if K contains all roots of unity, then Gal(K(x)ab) ∼= F̂m

(Theorem 11.7.6).

The result is proved by Jarden-Pop in [JaP09] and gives evidence for a
conjecture of Bogomolov-Positselski.

Theorem G: Let R be a Noetherian domain, m a prime ideal of R of height
at least 2, and a an ideal of R in m such that R is complete in the a-adic
topology. Then K = Quot(R) is Hilbertian, ample, and Krull. Moreover,
Gal(K) is semi-free of rank card(K) (Theorem 12.4.3).

The proof of Theorem G is based, among others, on Theorem B. It
appears in [Pop10]. The following special cases of Theorem G are proved by
Paran in [Par10] by other methods.
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Theorem H: Let R be a complete local Noetherian domain of height at
least 2 and of cardinality m. Set K = Quot(R). Then Gal(K) is semi-free of
rank m (Theorem 12.4.5).

Theorem I: In each of the following cases Gal(K) is semi-free of rank
card(K):
(a) K = K0((X1, . . . , Xn)), where K0 is an arbitrary field and n ≥ 2;
(b) K = Quot(Zp[[X1, . . . , Xn]]), where p is a prime number and n ≥ 1;
(c) K = Quot(Z[[X1, . . . , Xn]]), where n ≥ 1;
(Example 12.4.4).

Two interesting results that we prove use ingredients whose proofs are
unfortunately beyond the scope of this book:

Theorem J (Fehm-Petersen): Let A be a nonzero Abelian variety defined
over an ample field K of characteristic 0. Then, the rational rank of A(K) is
infinite (Theorem 6.5.2).

Theorem K: Let K be a separably closed field of cardinality m. Then
Gal(K((X1, X2))ab) ∼= F̂m (Theorem 12.4.6).

The case where K is algebraically closed is due to Harbater [Hrb09]. We
have observed that Harbater’s proof applies to the general case. A general-
ization appears in [Pop10]. �
3.2 Sources. The proofs of Theorems A and B are self-contained up to
basic results of Field Arithmetic that we quote from [FrJ08]. A few of the
applications, C – K, rely on extra information that we properly quote.

The first three chapters of the book give a quick self-contained introduc-
tion into Algebraic Patching. Over an ample field K, it leads to the result
that every constant split embedding problem over K(x) is solvable (Theorem
5.9.2). Using basic results of Field Arithmetic taken from [FrJ08], that part
of the book culminates with the proof of Theorem C.

Theorem A generalizes Theorem 5.9.2, and its proof requires much more
effort to achieve linear disjointness of the solution fields through a careful
choice of the branch points with additional information about their inertia
groups. Again, the proof is self-contained.

The first application of Theorem A appears in the proof of Theorem F.
Here the first task is to prove that Gal(K(x)ab) is projective. The proof uses
some basic Galois cohomology that we survey in Section 9.3.

The proofs of Theorems G, H, and I use several results from commutative
algebra. The proof of Theorem J uses, among others, the Mordel-Lang Con-
jecture proved by Faltings. The proof of Theorem K applies a result whose
proof applies étale cohomology.

3.3 Advantages and disadvantages of Algebraic Patching. Our method of
Algebraic Patching has the advantage of being quickly accessible. The cost
of this convenience is its inability to deal with fundamental groups of curves
over algebraically closed fields K. Indeed, every Galois extension Fi of K(x)
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involved in patching data (see 2.1), contributes at least one extra branch
point to the solution field of the given embedding problem. In addition, our
patching is carried out only over rational fields K(x) (geometrically, over
the line) and not over algebraic function fields of one variable (geometrically,
over curves). Thus, that method seems not to be suitable to handle ques-
tions like the general Abhyankar’s conjecture that was reduced to the special
Abhyankar’s conjecture by both the Formal Patching and the Rigid Patching
methods. Nevertheless, we have been able to apply several methods of de-
scent from function fields of one variable to rational function fields and prove
all of the above mentioned results about absolute Galois groups.

4. Field Patching. David Harbater and Julia Hartmann have recently
developed a new kind of patching called “field patching”. In its simplest
form, that method considers fields F ⊆ F1, F2 ⊆ F0 such that F = F1 ∩ F2

and for each matrix A0 ∈ GLn(F0) there exist matrices A1 ∈ GLn(F1) and
A2 ∈ GLn(F2) such that A0 = A1A2. Thus, these fields satisfy the second
part of Condition (1a) and Conditions (1b) and (1c) in the special case where
I = {1, 2}, E is replaced by F , and P1, P2 are replaced by F1, F2. They prove
that if for i = 0, 1, 2, Vi is a vector space of dimension n over Fi and F0Vi = V0

for i = 1, 2, then V = V1∩V2 is a vector space of dimension n over F [HaH10,
Prop. 2.1]. This corresponds to Lemma 1.1.7, where Vi is replaced by the
algebra Ni (again for I = {1, 2}) and V is replaced by the field F ′ (which is
a Galois extension of E of degree equal to dimPi Ni).

Harbater and Hartmann verify the axioms of Field Patching over a com-
plete discrete valuation ring T with uniformizer t and quotient field K. They
consider a smooth projective curve X̂ over T , let X be its closed fiber and
F the function field of X. Then they consider proper subsets U1, U2 of X
such that X = U1 ∪ U2, and set U0 = U1 ∩ U2. For i = 0, 1, 2 they let Ri be
the ring of rational functions of X̂ that are regular on Ui. Now they consider
the t-adic completion R̂i of Ri and let Fi = Quot(R̂i). They prove that
these objects satisfy the axioms of the preceding paragraph, hence also their
conclusion [HaH10, Thm. 4.10]. In contrast to Formal Patching, the proofs
rely only on elementary arguments such as the Riemann-Roch theorem for
function fields of one variable.

In the special case where X̂ is the projective line over T , R1 = T [x],
R2 = T [x−1], and R0 = T [x, x−1], the corresponding t-adic completions are
R̂1 = T{x}, R̂2 = T{x−1}, and R̂0 = T{x, x−1}. These rings are respectively
contained in the rings R′

1 = K{x}, R′
2 = K{x−1}, and R′

0 = K{x, x−1} that
appear in [HaV96] and also, in a more general form in Chapters 2 and 3.
Moreover, Quot(R̂i) = Quot(R′

i) for i = 0, 1, 2 and F = K(x).
While Algebraic Patching works only over rational function fields of one

variable and aims at Galois Theory and in particular toward applications to
absolute Galois groups, Field Patching works over arbitrary function fields of
one variable (over Quot(T )) and has been also applied to other areas of alge-
bra, most notably to differential algebra, quadratic forms, and Brauer groups.
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We mention here only one result: In the notation of the first paragraph of
4, let G be a connected linear algebraic group over F whose function field
over F is rational and let H be an F -variety. Suppose G(F ′) acts transitively
on H(F ′) for each extension F ′ of F and that H(Fi) �= ∅ for i = 1, 2. Then
H(F ) �= ∅ [HHK09].

For each field K let u(K) be the maximal number of variables of a
quadratic form over K with no nontrivial zero. As an application, [HHK09]
proves that if K is a complete discrete valued field whose residue field is a
Cd-field, then u(F ) ≤ 2d+2 for each function field F of one variable over K.
In particular, if F is a function field of one variable over Qp, a finite extension
of Quot(Zp[[X]]), or a finite extension of Quot(Fp[[X, Y ]]), with p �= 2, then
u(F ) = 8. Thus, every quadratic form in 9 variables over F has a nontrivial
zero but there is a quadratic form in 8 variables over F that fails to have
a nontrivial zero. See also an earlier proof of that result by Parimala and
Suresh [PaS07] that use other methods and a recent generalization of the
result by David Leep to function fields of several variables over Qp.
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Notation and Convention

Z = the ring of rational integers.
Zp = the ring of p-adic integers.
Q = the field of rational numbers.
R = the field of real numbers.
C = the field of complex numbers.
Fq = the field with q elements.
Ks = the separable closure of a field K.
K̃ = the algebraic closure of a field K.
Gal(L/K) = the Galois group of a Galois extension L/K.
We call a polynomial f ∈ K[X] separable if f has no multiple root in K̃.
Gal(K) = Gal(Ks/K) = the absolute Galois group of a field K.
irr(x, K) = the monic irreducible polynomial of an algebraic element x over

a field K.
Whenever we form the compositum EF of field extensions of a field K we

tacitly assume that E and F are contained in a common field.
card(A) = the cardinality of a set A.
R× = the group of invertible elements of a ring R.
Quot(R) = the quotient field of an integral domain R.
A ⊂ B means “the set A is properly contained in the set B”.
ax = x−1ax, for elements a and x of a group G.
Hx = {hx | h ∈ H}, for a subgroup H of G.
Given subgroups A, B of a group G, we use “A ≤ B” for “A is a subgroup

of B” and “A < B” for “A is a proper subgroup of B”.
Given an Abelian (additive) group A and a positive integer n, we write An

for the subgroup {a ∈ A | na = 0}. For a prime number p we let
Ap∞ =

⋃∞
i=1 Api .

For a group B that acts on a group A from the right, we use B �A to denote
the semidirect product of A and B.

Bold face letters stand for n-tuples, e.g. x = (x1, . . . , xn).
ord(x) is the order of an element x in a group G.
In the context of fields, ζn stands for a primitive root of unity of order n.⋃
· i∈I Bi is the disjoint union of sets Bi, i ∈ I.



Chapter 1.
Algebraic Patching

Let E be a field, G a finite group, and {Gi | i ∈ I} a finite set of subgroups
of G with G = 〈Gi | i ∈ I〉. For each i ∈ I we are given a Galois extension
Fi of E with Galois group Gi. We suggest a general method how to ‘patch’
the given Fi’s into a Galois extension F with Galois group G (Lemma 1.1.7).
Our method requires extra fields Pi, all contained in a common field and
satisfying certain conditions making E = (E,Fi, Pi, Q; Gi, G)i∈I into ‘patch-
ing data’ (Definition 1.1.1). The auxiliary fields Pi in this data substitute, in
some sense, analytic fields in rigid patching and fields of formal power series
in formal patching.

If in addition to the patching data, E is a Galois extension of a field E0

with Galois group Γ and Γ ‘acts properly’ (Definition 1.2.1) on the patching
data E , then we construct F above to be a Galois extension of E0 with Galois
group isomorphic to Γ � G (Proposition 1.2.2).

1.1 Patching

Let E be a field and G a finite group, generated by finitely many subgroups
Gi, i ∈ I. Suppose for each i ∈ I we have a finite Galois field extension Fi

of E with Galois group Gi. We use these extensions to construct a Galois
field extension F of E (not necessarily containing Fi) with Galois group G.
First we ‘lift’ each Fi/E to a Galois field extension Qi/Pi, where Pi is an
appropriate field extension of E such that Pi ∩Fi = E and all of the Qi’s are
contained in a common field Q. Then we define F to be the maximal subfield
contained in

⋂
i∈I Qi on which the Galois actions of Gal(Qi/Pi) combine to

an action of G.
The construction works if certain patching conditions on the initial data

are satisfied.

Definition 1.1.1: Patching data. Let I be a finite set with |I| ≥ 2. A patch-
ing data

E = (E,Fi, Pi, Q; Gi, G)i∈I

consists of fields E ⊆ Fi, Pi ⊆ Q and finite groups Gi ≤ G, i ∈ I, such that
(1a) Fi/E is a Galois extension with Galois group Gi, i ∈ I;
(1b) Fi ⊆ P ′

i , where P ′
i =
⋂

j �=i Pj , i ∈ I;
(1c)
⋂

i∈I Pi = E; and
(1d) G = 〈Gi | i ∈ I〉.
(1e) (Cartan’s decomposition) Let n = |G|. Then for every B ∈ GLn( )

and each i ∈ I there exist B1 ∈ GLn(Pi) and B2 ∈ GLn(P ′
i ) such that

B = B1B2. �

Q

Q
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We extend E by more fields. For each i ∈ I let Qi = PiFi be the
compositum of Pi and Fi in Q. Conditions (1b) and (1c) imply that Pi∩Fi =
E. Hence Qi/Pi is a Galois extension with Galois group isomorphic (via the
restriction of automorphisms) to Gi = Gal(Fi/E). We identify Gal(Qi/Pi)
with Gi via this isomorphism.

We need some auxiliary results from linear algebra. Let

(2) N =
{∑

ζ∈G

aζζ | aζ ∈
}

be the vector space over Q with basis (ζ | ζ ∈ G), where G is given some
fixed ordering. Thus dimQ N = |G|. For each i ∈ I we consider the following
subset of N :

(3) Ni =
{∑

ζ∈G

a
ζ
ζ ∈ N | a

ζ
∈ Qi, aη

ζ
= a

ζη
for all ζ ∈ G, η ∈ Gi

}
.

It is a vector space over Pi.

Lemma 1.1.2: Let i ∈ I. Then N has a Q-basis which is contained in Ni.

Proof: Let Λ = {λ1, . . . , λm} be a system of representatives of G/Gi and
let η1, . . . , ηr be a listing of the elements of Gi. Thus, G = {λkην | k =
1, . . . , m; ν = 1, . . . , r}. Let z be a primitive element for Qi/Pi. The following
sequence of |G| elements of Ni

( r∑
ν=1

(zj−1)ην λkην | j = 1, . . . , r; k = 1, . . . , m
)

(in some order) is linearly independent over Q, hence it forms a basis of N
over Q.

Indeed, let ajk ∈ Q such that
∑r

j=1

∑m
k=1 ajk

(∑r
ν=1(z

j−1)ην λkην

)
= 0.

Then
m∑

k=1

r∑
ν=1

( r∑
j=1

ajk(zj−1)ην
)
λkην = 0.

This gives
∑r

j=1 ajk(zj−1)ην = 0 for all k, ν. Thus, for each k, (a1k, . . . , ark)
is a solution of the homogeneous system of equations with the Vandermonde
matrix

(
(zj−1)ην

)
. Since this matrix is invertible, ajk = 0 for all j, k. �

Lemma 1.1.3 (Common lemma): N has a Q-basis in
⋂

i∈I Ni.

Proof: Consider a nonempty subset J of I. By induction on |J | we find a
Q-basis in

⋂
j∈J Nj . For J = I this gives the assertion of the lemma.

For each i ∈ I, Lemma 1.1.2 gives a Q-basis vi of N in Ni, so the result
follows when |J | = 1. Assume |J | ≥ 2 and fix i ∈ J . By induction N has a

Q

2



1.1 Patching

Q-basis u in
⋂

j∈J �{i} Nj . The transition matrix B ∈ GLn(Q) between vi

and u satisfies

(4) u = viB.

By (1e), there exist B1 ∈ GLn(Pi) and B2 ∈ GLn(P ′
i ) ⊆
⋂

j∈J �{i} GLn(Pj).

such that B = B1B2. Then uB−1
2 = viB1 is a Q-basis of N in

⋂
j∈J Nj .

This finishes the induction. �

We introduce a special subset F of
⋂

i∈I Qi, call it the ‘compound of
the special data E ’, and prove that F is a Galois extension of E with Galois
group G and additional properties.

Definition 1.1.4: Compound. The compound of the patching data E is the
set F of all a ∈

⋂
i∈I Qi for which there exists a function f : G →

⋂
i∈I Qi

such that
(5a) a = f(1) and
(5b) f(ζτ) = f(ζ)τ for every ζ ∈ G and τ ∈

⋃
i∈I Gi.

Note that for each a ∈
⋂

i∈I Qi, the function f is uniquely determined
by (5a) and (5b). Indeed, let f ′: G →

⋂
i∈I Qi be another function such

that f ′(1) = 1 and f(ζτ) = f(ζ)τ for all ζ ∈ G and τ ∈
⋃

i∈I Gi. In
particular, f ′(1) = f(1). By (1d), each σ ∈ G, σ �= 1, can be written as
σ = τ1 · · · τm with τi ∈

⋃
i∈I Gi, i = 1, . . . , m, and m ≥ 1. Set ζ = τ1 · · · τm−1

and τ = τm. By induction on m we assume that f ′(ζ) = f(ζ). Then
f ′(σ) = f ′(ζ)τ = f(ζ)τ = f(σ).

We call f the expansion of a and denote it by fa. Thus, fa(1) = a and
fa(ζτ) = fa(ζ)τ for all ζ ∈ G and τ ∈

⋃
i∈I Gi. �

We list some elementary properties of the expansions:

Lemma 1.1.5: Let F be the compound of E . Then:

(a) Every a ∈ E has an expansion, namely the constant function ζ �→ a.

(b) Let a, b ∈ F . Then a + b, ab ∈ F ; in fact, fa+b = fa + fb and fab = fafb.

(c) Let 0 �= a ∈ F , then a−1 ∈ F . More precisely: fa(ζ) �= 0 for all ζ ∈ G,
and ζ �→ fa(ζ)−1 is the expansion of a−1.

(d) Let a ∈ F and σ ∈ G. Then fa(σ) ∈ F ; in fact, ffa(σ)(ζ) = fa(σζ).

Proof: Statement (a) holds, because aτ = a for each τ ∈
⋃

i∈I Gi. Statement
(b) follows from the uniqueness of the expansions and from the observation
(fa+b)(1) = a + b = fa(1) + fb(1) = (fa + fb)(1).

Next we consider a nonzero a ∈ F and let ζ ∈ G. Using (1d), we
write ζ = τ1 · · · τm with τ1, . . . , τm ∈

⋃
i∈I Gi and set ζ ′ = 1 if m = 1 and

ζ ′ = τ1 · · · τm−1 if m ≥ 2. If m = 1, then fa(ζ ′) = a �= 0, by assumption. If
m ≥ 2, then fa(ζ ′) �= 0, by an induction hypothesis. In each case, fa(ζ) =
fa(ζ ′)τm �= 0. Since taking inverse in

⋂
i∈I Qi commutes with the action of

G, the map ζ �→ fa(ζ)−1 is the expansion of a−1. This proves (c).

3



Chapter 1. Algebraic Patching

Finally, we check that the map ζ → fa(σζ) has the value fa(σ) at ζ = 1
and it satisfies (5b). Hence, that map is an expansion of fa(σ), as claimed in
(d). �

Definition 1.1.6: G-action on F . For a ∈ F and σ ∈ G put

(6) aσ = fa(σ),

where fa is the expansion of a. �

Lemma 1.1.7: The compound F of the patching data E is a Galois field
extension of E with Galois group G acting by (6). Moreover, for each i ∈ I,

(a) the restriction of this action to Gi coincides with the action of Gi =
Gal(Qi/Pi) on F as a subset of Qi

(b) and Qi = PiF .

Proof: By Lemma 1.1.5(a),(b),(c), F is a field containing E. Furthermore,
(6) defines an action of G on F . Indeed, if a ∈ F and σ, ζ ∈ G, then by
Lemma 1.1.5(d), (aσ)ζ = fa(σ)ζ = ffσ

a
(ζ) = fa(σζ) = a(σζ).

Proof of (a): Let τ ∈ Gi and a ∈ F . Then fa(τ) = fa(1)τ = aτ , where τ
acts as an element of G = Gal(Qi/Pi). Thus, that action coincides with the
action given by (6).

The rest of the proof of (a) breaks up into three parts.

Part A: FG = E. Indeed, by Lemma 1.1.5(a), elements of E have constant
expansions, hence are fixed by G. Conversely, let a ∈ FG. Then for each
i ∈ I we have a ∈ QGi

i = Pi. Hence, by (1c), a ∈ E.

Part B: [F : E] ≥ |G|. We define a map T : F → N by

T (a) =
∑
ζ∈G

fa(ζ)ζ.

By Lemma 1.1.5(a),(b), T is an E-linear map, and Im(T ) =
⋂

i∈I Ni. By
Lemma 1.1.3, Im(T ) contains |G| linearly independent elements over Q, hence
over E. Therefore, [F : E] = dimE F ≥ |G|.

Part C: F/E is Galois and Gal(F/E) = G. The action (6) of G on F
maps G onto a subgroup Ḡ of Aut(F/E). By Part A, F Ḡ = E. Hence, by
Galois theory, F/E is a Galois extension with Galois group Ḡ. In particular,
[F : E] = |Ḡ| ≤ |G|. By Part B, [F : E] ≥ |G|, Hence G ∼= Ḡ. So, we may
(and we will) identify Gal(F/E) with G.

Proof of (b): By (a), the restriction Gal(Qi/Pi) → Gal(F/E) is injective.
Hence Qi = PiF . �
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1.2 Galois Action on Patching Data

Remark 1.1.8: The vector spaces N and Ni defined by (2) and (3) are
actually induced from Q and Pi, respectively, namely N = IndG

1 Q and
Ni = IndG

Gi
Qi. We may define multiplication on N componentwise:∑

ζ∈G

aζζ
∑
ζ∈G

bζζ =
∑
ζ∈G

aζβζζ.

Then N becomes a Q-Algebra and Ni becomes a Pi-algebra. By Lemma
1.1.5, the map T : F →

⋂
i∈I Ni defined in Part B of the proof of Lemma

1.1.7, is an E-linear isomorphism of E-algebras whose inverse is the map∑
ζ∈G aζζ �→ a1. Hence, by that lemma, F ′ =

⋂
i∈I Ni is a Galois extension

of E with Galois group G. The following diagram describes the respective
location of all fields and algebras mentioned in our construction:

(7) Ni

���
�

N

��
��

Pi
Gi

Qi Q

F ′

��
��

F

���������
T��

E
Gi

Fi P ′
i

�

1.2 Galois Action on Patching Data

A finite split embedding problem over a field E0 is an epimorphism

(1) pr: Γ � G → Γ

of finite groups, where Γ = Gal(E/E0) is the Galois group of a Galois ex-
tension E/E0, G is a finite group on which Γ acts from the right, Γ � G is
the corresponding semidirect product, and pr is the projection on Γ. Each
element of Γ � G has a unique representation as a product γζ with γ ∈ Γ
and ζ ∈ G. The product and the inverse operation are given in Γ � G by
the formulas γζ · δη = γδ · ζδη and (γζ)−1 = γ−1(ζγ−1

)−1. A solution
of (1) is a Galois extension F of E0 that contains E and an isomorphism
ψ: Gal(F/E0) → Γ � G such that pr ◦ ψ = resE . We call F a solution field
of (1).

Suppose the compound F of a patching data E (§1.1) realizes G over E.
A ‘proper’ action of Γ on E will then ensure that F is even a solution field
for the embedding problem (1).

Definition 1.2.1: Let E/E0 be a finite Galois extension with Galois group
Γ. Let E = (E,Fi, Pi, Q; Gi, G)i∈I be a patching data (Definition 1.1.1). A
proper action of Γ on E is a triple that consists of an action of Γ on the

5



Chapter 1. Algebraic Patching

group G, an action of Γ on the field Q, and an action of Γ on the set I such
that the following conditions hold:
(2a) The action of Γ on Q extends the action of Γ on E.
(2b) F γ

i = Fiγ , P γ
i = Piγ , and Gγ

i = Giγ , for all i ∈ I and γ ∈ Γ.
(2c) (aτ )γ = (aγ)τγ

for all i ∈ I, a ∈ Fi, τ ∈ Gi, and γ ∈ Γ.
The action of Γ on G defines a semidirect product Γ�G such that τγ = γ−1τγ
for all τ ∈ G and γ ∈ Γ. Let pr: Γ � G → Γ be the canonical projection. �

Proposition 1.2.2: In the notation of Definition 1.2.1 suppose that Γ =
Gal(E/E0) acts properly on the patching data E given in Definition 1.2.1.
Let F be the compound of E . Then Γ acts on F via the restriction from its
action on Q and the actions of Γ and G on F combine to an action of Γ � G
on F with fixed field E0. This gives an identification Gal(F/E0) = Γ � G
such that the following diagram of short exact sequences commutes:

1 �� G �� Γ � G
pr �� Γ �� 1

1 �� Gal(F/E) �� Gal(F/E0)
res �� Gal(E/E0) �� 1

Thus, F is a solution field of the embedding problem (1).

Proof: We break the proof of the proposition into three parts.

Part A: The action of Γ on F .
Let i ∈ I and γ ∈ Γ. Then Qi = PiFi, so by (2b), Qγ

i = Qiγ . Moreover,
we have identified Gal(Qi/Pi) with Gi = Gal(Fi/E) via restriction. Hence,
by (2b), for all a ∈ Pi and τ ∈ Gi we have τγ ∈ Giγ and aγ ∈ Piγ , so
(aτ )γ = aγ = (aγ)τγ

. Together with (2c), this gives

(4) (aτ )γ = (aγ)τγ

for all a ∈ Qi and τ ∈ Gi.

Consider an a ∈ F and let fa be the expansion of a (Definition 1.1.4).
Define fγ

a : G →
⋂

i∈I Qi by fγ
a (ζ) = fa(ζγ−1

)γ . Then fγ
a is the expansion

faγ of aγ . Indeed, fγ
a (1) = fa(1γ−1

)γ = aγ and if ζ ∈ G and τ ∈ Gi, then
τγ−1 ∈ Giγ−1 . Hence, by (4) with iγ

−1
, fa(ζγ−1

), τσ−1
, respectively, replacing

i, a, τ , we have

fγ
a (ζτ) = fa(ζγ−1

τγ−1
)γ =

(
fa(ζγ−1

)τγ−1 )γ
=
(
fa(ζγ−1)γ)τγ−1γ

=
(
fa(ζγ−1

)γ
)τ = fγ

a (ζ)τ .

Thus aγ ∈ F . It follows that the action of Γ on Q gives an action of Γ on F .

6



1.3 The Compound of the Patching Data

Part B: The action of Γ � G on F . Let a ∈ F and γ ∈ Γ. We claim that

(5) (aσ)γ = (aγ)σγ

for all σ ∈ G,

where aσ = fa(σ) (Definition 1.1.6). Indeed, write σ as a word in
⋃

i∈I Gi.
Then (5) follows from (4) by induction on the length of the word. If σ = 1,
then (5) is an identity. Suppose (5) holds for some σ ∈ G and let τ ∈

⋃
i∈I Gi.

Using the identification of the action of each τ ∈ Gi on F as an element of
Gi with its action as an element of G (Lemma 1.1.7(a)) and (4) for aσ rather
that a, we have

(aστ )γ =
(
(aσ)τ

)γ =
(
(aσ)γ

)τγ

=
(
(aγ)σγ)τγ

= (aγ)σγτγ

= (aγ)(στ)γ

.

Now we apply (5) to aγ−1
instead of a to find that

((
aγ−1)σ)γ

= aσγ

. It

follows that the actions of Γ and G on F combine to an action of Γ � G on
F .

(6) Pi Qi Q

F

��
��

��
��

E0 E Fi P ′
i

Part C: Conclusion of the proof. Since FG = E (Lemma 1.1.7) and EΓ =
E0, we have FΓ�G = E0. Furthermore, [F : E0] = [F : E] · [E : E0] =
|G| · |Γ| = |G � Γ|. By Galois theory, Gal(F/E0) = Γ � G and the map
res: Gal(F/E0) → Gal(E/E0) coincides with the canonical map pr: Γ � G →
Γ. �

1.3 The Compound of the Patching Data

This section offers additional useful information about the patching data
E = (E,Fi, Pi, Q; Gi, G)i∈I and the diagram (5) of §1.2.

Lemma 1.3.1: Let F be the compound of the patching data E . Then:
(a) Suppose 1 ∈ I, G = G1 � H and H = 〈Gi | i ∈ I �{1}〉. Then, F1 = FH

and the identification Gal(F/E) = G of Lemma 1.1.7 gives the following
commutative diagram of short exact sequences:

1 �� H �� G = G1 � H
pr �� G1

�� 1

1 �� Gal(F/F1) �� Gal(F/E) res �� Gal(F1/E) �� 1

7



Chapter 1. Algebraic Patching

(b) If, in addition to the assumptions of (a), E is a finite Galois extension of
a field E0 with Galois group Γ that acts properly on E such that 1γ = 1
for each γ ∈ Γ, then F is a Galois extension of E0, F1, Q1, and G1

are Γ-invariant, F1/E0 is Galois, and we can identify groups as in the
following commutative diagram:

Gal(F1/E0) � H
pr �� Gal(F1/E0)

res

��
Γ � G

id×pr �� Γ � G1
pr �� Γ

Gal(F/E0)
res �� Gal(F1/E0)

res �� Gal(E/E0)

Proof of (a): The proof breaks up into several parts.

Part A: F1 ⊆
⋂

i∈I Qi. Indeed, F1 ⊆ F1P1 = Q1 and F1 ⊆ Pi ⊆ Qi for
i �= 1, by Condition (1b) of Section 1.1.

Part B: F1 ⊆ F . Let a ∈ F1. Then aσ ∈ F1 ⊆
⋂

i∈I Qi for every σ ∈ G1.
Every ζ ∈ G has a unique presentation ζ = ση, where σ ∈ G1 and η ∈ H.
Use this to define a function f : G →

⋂
i∈I Qi by f(ση) = aσ. We prove that

f = fa is the expansion of a.
First note that f(1) = a. Fix σ ∈ G1 and η ∈ H and let i ∈ I and τ ∈ Gi.

If i = 1, then σητ = (στ)ητ , στ ∈ G1, and ητ ∈ H. Hence f(σητ) = aστ =
(aσ)τ = f(ση)τ . If i �= 1, then σητ = σ(ητ), σ ∈ G1, and ητ ∈ H. Also,
aσ ∈ F1 ⊆ Pi = QGi

i , so (aσ)τ = aσ. Hence f(σητ) = aσ = (aσ)τ = f(ση)τ .
Thus, in both cases f(σητ) = f(ση)τ . It follows from Definition 1.1.4 that
f = fa.

Part C: aτ = apr(τ) for all a ∈ F1 and τ ∈ G. Since pr is a homomorphism,
it suffices to prove the equality for each τ in a set of generators of G. So we
may assume that τ ∈ Gi for some i ∈ I. If i = 1, then pr(τ) = τ and the
assertion follows. If i �= 1, then pr(τ) = 1, whence apr(τ) = a. Moreover,
a ∈ F1 ⊆ Pi = QGi

i , so aτ = a, as claimed.

Part D: Completion of the proof. Part C says that res: Gal(F/E) →
Gal(F1/E) and pr: G → G1 coincide. Hence, the H = Gal(F/F1), F1 = FH ,
and the diagram in (c) commutes.

Proof of (b): Note that F γ
1 = F1γ = F1 and similarly Qγ

1 = Q1 and Gγ
1 = G1

for each γ ∈ Γ. Thus, Γ�G1 is a subgroup of Γ�G = Gal(F/E0) that leaves
F1 invariant. The fixed field of Γ�G1 in F1 is E0. Since |Γ�G1| = [F1 : E0],
this implies by Galois theory that F1/E0 is Galois with Galois group Γ�G1.
The identification Gal(F1/E0) = Γ � G1 restricts further to Gal(E/E0) = Γ.
This completes the commutativity of the lower part of the diagram in (b).

Since each γ ∈ Γ fixes 1 it leaves I �{1} invariant, so Γ leaves H =
〈Gi | i ∈ I �{1}〉 invariant. Thus, H can be considered as a normal subgroup
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Notes

of Γ�G with (Γ�G)/H = Γ�G1. To prove the commutativity of the upper
part just note that Γ�G = Γ� (G1 �H) = (Γ�G1)�H = Gal(F1/E0)�H.
�

Notes
We call the field F ′ =

⋂
i∈I Ni that appears in Remark 1.1.8 the precom-

pound of the patching data E of Definition 1.1.1. The idea of a patching
data as well as the notions of a ‘precompound’ and ‘compound’ of E ap-
pear in [HaV96, Sec. 3] (however, the precompound is denoted by F while
the compound is denoted by F ′ in [HaV96]). It is used there in order to
prove that if R is a complete local integral domain which is not a field and
if K = Quot(R), then for every finite group G, the field K(x) has a Galois
extension F with Galois group G such that F is a regular extension of K and
has a prime divisor of degree 1 unramified over K(x) [HaV96, Thm. 4.4]. In
addition, [HaV96, Cor. 4.7] states that if E is a function field of one variable
over a countable algebraically closed field, then Gal(E) ∼= F̂ω.

The action of a finite group on a patching data E is introduced in
[HaJ98a] in order to prove that the precompounds are solution fields of fi-
nite split embedding problems [HaJ98a, Prop. 1.5]. This suffices to prove the
main theorem of [HaJ98a] that every PAC Hilbertian field is ω-free. Note
however, that [HaJ98a] calls a ‘compound’ what we call a ‘precompound’.

The main advantage of the compound F on the precompound F ′ is that
PiF = Qi for each i ∈ I. This implies that the set of ‘branch points’ of F/E0

is the union of the sets of branch points of Fi/E0 (Proposition 7.2.3).
The presentation of the compound in Definition 1.1.4 is direct. Thus, we

prove the properties of the compound, in particular the solvability of finite
split embedding problems, without proving them first for the precompound
(as is done in [HaV96] and [HaJ98a]). This shorter presentation is due to
Dan Haran (private communication).

Lemma 1.1.3 is a workout of [HaV96, Prop. 3.4] for |I| = 1 and [HaJ98a,
Lemma 1.2] in the general case. Lemma 1.1.7 appears as [HaV96, Lemma
3.6].

The roles of Pi and Qi in the patching data of [HaV96], [HaJ98a],
etc. have been exchanged in this book in order for the smaller fields to be
named by earlier letters.
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Chapter 2.
Normed Rings

Norms ‖ · ‖ of associative rings are generalizations of absolute values | · | of
integral domains, where the inequality ‖xy‖ ≤ ‖x‖·‖y‖ replaces the standard
multiplication rule |xy| = |x|·|y|. Starting from a complete normed commuta-
tive ring A, we study the ring A{x} of all formal power series with coefficients
in A converging to zero. This is again a complete normed ring (Lemma 2.2.1).
We prove an analog of the Weierstrass division theorem (Lemma 2.2.4) and
the Weierstrass preparation theorem for A{x} (Corollary 2.2.5). If A is a
field K and the norm is an absolute value, then K{x} is a principal ideal
domain, hence a factorial ring (Proposition 2.3.1). Moreover, Quot(K{x})
is a Hilbertian field (Theorem 2.3.3). It follows that Quot(K{x}) is not a
Henselian field (Corollary 2.3.4). In particular, Quot(K{x}) is not separably
closed in K((x)). In contrast, the field K((x))0 of all formal power series
over K that converge at some element of K is algebraically closed in K((x))
(Proposition 2.4.5).

2.1 Normed Rings

In Section 4.4 we construct patching data over fields K(x), where K is a
complete ultrametric valued field. The ‘analytic’ fields Pi will be the quotient
fields of certain rings of convergent power series in several variables over K.
At a certain point in a proof by induction we consider a ring of convergent
power series in one variable over a complete ultrametric valued ring. So, we
start by recalling the definition and properties of the latter rings.

Let A be a commutative ring with 1. An ultrametric absolute value
of A is a function | |: A → R satisfying the following conditions:
(1a) |a| ≥ 0, and |a| = 0 if and only if a = 0.
(1b) There exists a ∈ A such that 0 < |a| < 1.
(1c) |ab| = |a| · |b|.
(1d) |a + b| ≤ max(|a|, |b|).

By (1a) and (1c), A is an integral domain. By (1c), the absolute value
of A extends to an absolute value on the quotient field of A (by |ab | = |a|

|b| ).
It follows also that |1| = 1, | − a| = |a|, and
(1d′) if |a| < |b|, then |a + b| = |b|.

Denote the ordered additive group of the real numbers by R+. The
function v: Quot(A) → R+ ∪ {∞} defined by v(a) = − log |a| satisfies the
following conditions:
(2a) v(a) = ∞ if and only if a = 0.
(2b) There exists a ∈ Quot(A) such that 0 < v(a) < ∞.
(2c) v(ab) = v(a) + v(b).
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2.1 Normed Rings

(2d) v(a + b) ≥ min{v(a), v(b)} (and v(a + b) = v(b) if v(b) < v(a)).
In other words, v is a real valuation of Quot(A). Conversely, every real
valuation v: Quot(A) → R+ ∪ {∞} gives rise to a nontrivial ultrametric
absolute value | · | of Quot(A): |a| = εv(a), where ε is a fixed real number
between 0 and 1.

An attempt to extend an absolute value from A to a larger ring A′ may
result in relaxing Condition (1c), replacing the equality by an inequality. This
leads to the more general notion of a ‘norm’.

Definition 2.1.1: Normed rings. Let R be an associative ring with 1. A
norm on R is a function ‖ ‖: R → R that satisfies the following conditions
for all a, b ∈ R:
(3a) ‖a‖ ≥ 0, and ‖a‖ = 0 if and only if a = 0; further ‖1‖ = ‖ − 1‖ = 1.
(3b) There is an x ∈ R with 0 < ‖x‖ < 1.
(3c) ‖ab‖ ≤ ‖a‖ · ‖b‖.
(3d) ‖a + b‖ ≤ max(‖a‖, ‖b‖).

The norm ‖ ‖ naturally defines a topology on R whose basis is the
collection of all sets U(a0, r) = {a ∈ R | ‖a − a0‖ < r} with a0 ∈ R and
r > 0. Both addition and multiplication are continuous under that topology.
Thus, R is a topological ring. �
Definition 2.1.2: Complete rings. Let R be a normed ring. A sequence
a1, a2, a3, . . . of elements of R is Cauchy if for each ε > 0 there exists m0

such that ‖an − am‖ < ε for all m, n ≥ m0. We say that R is complete if
every Cauchy sequence converges. �
Lemma 2.1.3: Let R be a normed ring and let a, b ∈ R. Then:
(a) ‖ − a‖ = ‖a‖.
(b) If ‖a‖ < ‖b‖, then ‖a + b‖ = ‖b‖.
(c) A sequence a1, a2, a3, . . . of elements of R is Cauchy if for each ε > 0

there exists m0 such that ‖am+1 − am‖ < ε for all m ≥ m0.
(d) The map x → ‖x‖ from R to R is continuous.
(e) If R is complete, then a series

∑∞
n=0 an of elements of R converges if and

only if an → 0.
(f) If R is complete and ‖a‖ < 1, then 1−a ∈ R×. Moreover, (1−a)−1 = 1+b

with ‖b‖ < 1.

Proof of (a): Observe that ‖ − a‖ ≤ ‖− 1‖ · ‖a‖ ≤ ‖a‖. Replacing a by −a,
we get ‖a‖ ≤ ‖ − a‖, hence the claimed equality.

Proof of (b): Assume ‖a+ b‖ < ‖b‖. Then, by (a), ‖b‖ = ‖(−a)+(a+ b)‖ ≤
max(‖ − a‖, ‖a + b‖) < ‖b‖, which is a contradiction.

Proof of (c): With m0 as above let n > m ≥ m0. Then

‖an − am‖ ≤ max(‖an − an−1‖, . . . , ‖am+1 − am‖) < ε.

Proof of (d): By (3d), ‖x‖ = ‖(x− y)+ y‖ ≤ max(‖x− y‖, ‖y‖) ≤ ‖x− y‖+
‖y‖. Hence, ‖x‖ − ‖y‖ ≤ ‖x − y‖. Symmetrically, ‖y‖ − ‖x‖ ≤ ‖y − x‖ =

11
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‖x− y‖. Therefore, | ‖x‖ − ‖y‖ | ≤ ‖x− y‖. Consequently, the map x �→ ‖x‖
is continuous.

Proof of (e): Let sn =
∑n

i=0 ai. Then sn+1 − sn = an+1. Thus, by (c),
s1, s2, s3, . . . is a Cauchy sequence if and only if an → 0. Hence, the series∑∞

n=0 an converges if and only if an → 0.

Proof of (f): The sequence an tends to 0. Hence, by (e),
∑∞

n=0 an converges.
The identities (1 − a)

∑n
i=0 ai = 1 − an+1 and

∑n
i=0 ai(1 − a) = 1 − an+1

imply that
∑∞

n=0 an is both the right and the left inverse of 1−a. Moreover,∑∞
n=0 an = 1 + b with b =

∑∞
n=1 an and ‖b‖ ≤ maxn≥1 ‖a‖n < 1. �

Example 2.1.4:

(a) Every field K with an ultrametric absolute value is a normed ring.
For example, for each prime number p, Q has a p-adic absolute value | · |p
which is defined by |x|p = p−m if x = a

b pm with a, b,m ∈ Z and p � a, b.
(b) The ring Zp of p-adic integers and the field Qp of p-adic numbers are

complete with respect to the p-adic absolute value.
(c) Let K0 be a field and let 0 < ε < 1. The ring K0[[t]] (resp. field

K0((t))) of formal power series
∑∞

i=0 ait
i (resp.

∑∞
i=m ait

i with m ∈ Z) with
coefficients in K0 is complete with respect to the absolute value |

∑∞
i=m ait

i| =
εmin(i | ai �=0).

(d) Let ‖·‖ be a norm of a commutative ring A. For each positive integer
n we extend the norm to the associative (and usually not commutative) ring
Mn(A) of all n × n matrices with entries in A by

‖(aij)1≤i,j≤n‖ = max(‖aij‖1≤i,j≤n).

If b = (bjk)1≤j,k≤n is another matrix and c = ab, then cik =
∑n

j=1 aijbjk and
‖cik‖ ≤ max(‖aij‖ · ‖bjk‖) ≤ ‖a‖ · ‖b‖. Hence, ‖c‖ ≤ ‖a‖‖b‖. This verifies
Condition (3c). The verification of (3a), (3b), and (3d) is straightforward.
Note that when n ≥ 2, even if the initial norm of A is an absolute value, the
extended norm satisfies only the weak condition (3c) and not the stronger
condition (1c), so it is not an absolute value.

If A is complete, then so is Mn(A). Indeed, let ai = (ai,rs)1≤r,s≤n be
a Cauchy sequence in Mn(A). Since ‖ai,rs − aj,rs‖ ≤ ‖ai − aj‖, each of the
sequences a1,rs, a2,rs, a3,rs, . . . is Cauchy, hence converges to an element brs

of A. Set b = (brs)1≤r,s≤n. Then ai → b. Consequently, Mn(A) is complete.
(e) Let a be a proper ideal of a Noetherian domain A. By a theorem of

Krull,
⋂∞

n=0 an = 0 [AtM69, p. 110, Cor. 10.18]. We define an a-adic norm
on A by choosing an ε between 0 and 1 and setting ‖a‖ = εmax(n | a∈an). If
‖a‖ = εm and ‖b‖ = εn, and say m ≤ n, then an ⊆ am, so a + b ∈ am, hence
‖a + b‖ ≤ εm = max(‖a‖, ‖b‖). Also, ab ∈ am+n, so ‖ab‖ ≤ ‖a‖ · ‖b‖. �

Like absolute valued rings, every normed ring has a completion:

12
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Lemma 2.1.5: Every normed ring (R, ‖ ‖) can be embedded into a complete
normed ring (R̂, ‖ ‖) such that R is dense in R̂ and the following universal
condition holds:

(4) Each continuous homomorphism f of R into a complete ring S uniquely

extends to a continuous homomorphism f̂ : R̂ → S.

The normed ring (R̂, ‖ ‖) is called the completion of (R, ‖ ‖).

Proof: We consider the set A of all Cauchy sequences a = (an)∞n=1 with
an ∈ R. For each a ∈ A, the values ‖an‖ of its components are bounded.
Hence, A is closed under componentwise addition and multiplication and
contains all constant sequences. Thus, A is a ring. Let n be the ideal of all
sequences that converge to 0. We set R̂ = A/n and identify each x ∈ R with
the coset (x)∞n=1 + n.

If a ∈ A � n, then ‖an‖ eventually becomes constant. Indeed, there
exists β > 0 such that ‖an‖ ≥ β for all sufficiently large n. Choose n0 such
that ‖an − am‖ < β for all n, m ≥ n0. Then, ‖an − an0‖ < β ≤ ‖an0‖,
so ‖an‖ = ‖(an − an0) + an0‖ = ‖an0‖. We define ‖a‖ to be the eventual
absolute value of an and note that ‖a‖ �= 0. If b ∈ n, we set ‖b‖ = 0 and
observe that ‖a + b‖ = ‖a‖. It follows that ‖a + n‖ = ‖a‖ is a well defined
function on R̂ which extends the norm of R.

One checks that ‖ ‖ is a norm on R̂ and that R is dense in R̂. Indeed, if
a = (an)∞n=1 ∈ A, then an + n → a + n. To prove that R̂ is complete under
‖ ‖ we consider a Cauchy sequence (ak)∞k=1 of elements of R̂. For each k we
choose an element bk ∈ R such that ‖bk−ak‖ < 1

k . Then (bk)∞k=1 is a Cauchy
sequence of R and the sequence (ak)∞k=1 converges to the element (bk)∞k=1 +n

of R̂.
Finally, let S be a complete normed ring and f : R → S a continuous

homomorphism. Then, for each a = (an)∞n=1 ∈ A, the sequence (f(an))∞n=1

of S is Cauchy, hence it converges to an element s. Define f̂(a + n) = s and
check that f̂ has the desired properties. �

Example 2.1.6: Let A be a commutative ring. We consider the ring R =
A[x1, . . . , xn] of polynomials over A in the variables x1, . . . , xn and the ideal
a of R generated by x1, . . . , xn. The completion of R with respect to a
is the ring R̂ = A[[x1, . . . , xn]] of all formal power series f(x1, . . . , xn) =∑∞

i=0 fi(x1, . . . , xn), where fi ∈ A[x1, . . . , xn] is a homogeneous polynomial
of degree i. Moreover, R̂ = A[[x1, . . . , xn−1]][[xn]] and R̂ is complete with
respect to the ideal â generated by x1, . . . , xn [Lan93, Chap. IV, Sec. 9]. If
R is a Noetherian integral domain, then so is R̂ [Lan93, p. 210, Cor. 9.6]. If
A = K is a field, then R̂ is a unique factorization domain [Mat94, Thm. 20.3].

If A is an integral domain, then the function v: R̂ → Z∪{∞} defined for
f as in the preceding paragraph by v(f) = mini≥0(fi �= 0) satisfies Condition
(2), so it extends to a discrete valuation of K̂ = Quot(R̂). However, by
Weissauer, K̂ is Hilbertian if n ≥ 2. [FrJ08, Example 15.5.2]. Hence, K̂

13
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is Henselian with respect to no valuation [FrJ08, Lemma 15.5.4]. Since v is
discrete, K̂ is not complete with respect to v. �

2.2 Rings of Convergent Power Series

Let A be a complete normed commutative ring and x a variable. Consider
the following subset of A[[x]]:

A{x} =
{ ∞∑

n=0

anxn | an ∈ A, lim
n→∞

‖an‖ = 0
}
.

For each f =
∑∞

n=0 anxn ∈ A{x} we define ‖f‖ = max(‖an‖)n=0,1,2,.... This
definition makes sense because an → 0, hence ‖an‖ is bounded.

We prove the Weierstrass division and the Weierstrass preparation theo-
rems for A{x} in analogy to the corresponding theorems for the ring of formal
power series in one variable over a local ring.

Lemma 2.2.1:
(a) A{x} is a subring of A[[x]] containing A.
(b) The function ‖ ‖: A{x} → R is a norm.
(c) The ring A{x} is complete under that norm.
(d) Let B be a complete normed ring extension of A. Then each b ∈ B with

‖b‖ ≤ 1 defines an evaluation homomorphism A{x} → B given by

f =
∞∑

n=0

anxn �→ f(b) =
∞∑

n=0

anbn.

Proof of (a): We prove only that A{x} is closed under multiplication. To
that end let f =

∑∞
i=0 aix

i and g =
∑∞

j=0 bjx
j be elements of A{x}. Consider

ε > 0 and let n0 be a positive number such that ‖ai‖ < ε if i ≥ n0
2 and

‖bj‖ < ε if j ≥ n0
2 . Now let n ≥ n0 and i + j = n. Then i ≥ n0

2 or j ≥ n0
2 .

It follows that ‖
∑

i+j=n aibj‖ ≤ max(‖ai‖ · ‖bj‖)i+j=n ≤ ε · max(‖f‖, ‖g‖).
Thus, fg =

∑∞
n=0

∑
i+j=n aibjx

n belongs to A{x}, as claimed.

Proof of (b): Standard checking.

Proof of (c): Let fi =
∑∞

n=0 ainxn, i = 1, 2, 3, . . ., be a Cauchy sequence in
A{x}. For each ε > 0 there exists i0 such that ‖ain−ajn‖ ≤ ‖fi−fj‖ < ε for
all i, j ≥ i0 and for all n. Thus, for each n, the sequence a1n, a2n, a3n, . . . is
Cauchy, hence converges to an element an ∈ A. If we let j tend to infinity in
the latter inequality, we get that ‖ain − an‖ < ε for all i ≥ i0 and all n. Set
f =
∑∞

i=0 anxn. Then an → 0 and ‖fi − f‖ = max(‖ain − an‖)n=0,1,2,... < ε
if i ≥ i0. Consequently, the fi’s converge in A{x}.
Proof of (d): Note that ‖anbn‖ ≤ ‖an‖ → 0, so

∑∞
n=0 anbn is an element of

B. �
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Definition 2.2.2: Let f =
∑∞

n=0 anxn be a nonzero element of A{x}. We
define the pseudo degree of f to be the integer d = max{n ≥ 0 | ‖an‖ =
‖f‖} and set pseudo.deg(f) = d. The element ad is the pseudo leading
coefficient of f . Thus, ‖ad‖ = ‖f‖ and ‖an‖ < ‖f‖ for each n > d. If
f ∈ A[x] is a polynomial, then pseudo.deg(f) ≤ deg(f). If ad is invertible
in A and satisfies ‖cad‖ = ‖c‖ · ‖ad‖ for all c ∈ A, we call f regular. In
particular, if A is a field and ‖ ‖ is an ultrametric absolute value, then each
0 �= f ∈ A{x} is regular. The next lemma implies that in this case ‖ ‖ is an
absolute value of A{x}. �

Lemma 2.2.3 (Gauss’ Lemma): Let f, g ∈ A{x}. Suppose f is regular of
pseudo degree d and f, g �= 0. Then ‖fg‖ = ‖f‖ · ‖g‖ and pseudo.deg(fg) =
pseudo.deg(f) + pseudo.deg(g).

Proof: Let f =
∑∞

i=0 aix
i and g =

∑∞
j=0 bjx

j . Let ad (resp. be) be the
pseudo leading coefficient of f (resp. g). Then fg =

∑∞
n=0 cnxn with cn =∑

i+j=n aibj .
If i + j = d + e and (i, j) �= (d, e), then either i > d or j > e. In

each case, ‖aibj‖ ≤ ‖ai‖‖bj‖ < ‖f‖ · ‖g‖. By our assumption on ad, we
have ‖adbe‖ = ‖ad‖ · ‖be‖ = ‖f‖ · ‖g‖. By Lemma 2.1.3(b), this implies
‖cd+e‖ = ‖f‖ · ‖g‖.

If i+j > d+e, then either i > d and ‖ai‖ < ‖f‖ or j > e and ‖bj‖ < ‖g‖.
In each case ‖aibj‖ ≤ ‖ai‖ · ‖bj‖ < ‖f‖ · ‖g‖. Hence, ‖cn‖ < ‖cd+e‖ for each
n > d + e. Therefore, cd+e is the pseudo leading coefficient of fg, and the
lemma is proved. �

Proposition 2.2.4 (Weierstrass division theorem): Let f ∈ A{x} and let
g ∈ A{x} be regular of pseudo degree d. Then there are unique q ∈ A{x}
and r ∈ A[x] such that f = qg + r and deg(r) < d. Moreover,

(1) ‖qg‖ = ‖q‖ · ‖g‖ ≤ ‖f‖ and ‖r‖ ≤ ‖f‖

Proof: We break the proof into several parts.

Part A: Proof of (1). First we assume that there exist q ∈ A{x} and
r ∈ A[x] such that f = qg + r with deg(r) < d. If q = 0, then (1) is
clear. Otherwise, q �= 0 and we let e = pseudo.deg(q). By Lemma 2.2.3,
‖qg‖ = ‖q‖ · ‖g‖ and pseudo.deg(qg) = e + d > deg(r). Hence, the coefficient
cd+e of xd+e in qg is also the coefficient of xd+e in f . It follows that ‖qg‖ =
‖cd+e‖ ≤ ‖f‖. Consequently, ‖r‖ = ‖f − qg‖ ≤ ‖f‖.

Part B: Uniqueness. Suppose f = qg + r = q′g + r′, where q, q′ ∈ A{x}
and r, r′ ∈ A[x] are of degrees less than d. Then 0 = (q − q′)g + (r − r′). By
Part A, applied to 0 rather than to f , ‖q − q′‖ · ‖g‖ = ‖r − r′‖ = 0. Hence,
q = q′ and r = r′.

Part C: Existence if g is a polynomial of degree d. Write f =
∑∞

n=0 bnxn

with bn ∈ A converging to 0. For each m ≥ 0 let fm =
∑m

n=0 bnxn ∈

15
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A[x]. Then the f1, f2, f3, . . . converge to f , in particular they form a Cauchy
sequence. Since g is regular of pseudo degree d, its leading coefficient is
invertible. Euclid’s algorithm for polynomials over A produces qm, rm ∈ A[x]
with fm = qmg + rm and deg(rm) < deg(g). Thus, for all k, m we have
fm − fk = (qm − qk)g + (rm − rk). By Part A, ‖qm − qk‖ · ‖g‖, ‖rm − rk‖ ≤
‖fm − fk‖. Thus, {qm}∞m=0 and {rm}∞m=0 are Cauchy sequences in A{x}.
Since A{x} is complete (Lemma 2.2.1), the qm’s converge to some q ∈ A{x}.
Since A is complete, the rm’s converge to an r ∈ A[x] of degree less than d.
It follows that f = qg + r

Part D: Existence for arbitrary g. Let g =
∑∞

n=0 anxn and set g0 =∑d
n=0 anxn ∈ A[x]. Then ‖g−g0‖ < ‖g‖. By Part C, there are q0 ∈ A{x} and

r0 ∈ A[x] such that f = q0g0 + r0 and deg(r0) < d. By Part A, ‖q0‖ ≤ ‖f‖
‖g‖

and ‖r0‖ ≤ ‖f‖. Thus, f = q0g + r0 + f1, where f1 = −q0(g − g0), and
‖f1‖ ≤ ‖g−g0‖

‖g‖ · ‖f‖.
Set f0 = f . By induction we get, for each k ≥ 0, elements fk, qk ∈ A{x}

and rk ∈ A[x] such that deg(rk) < d and

fk = qkg + rk + fk+1, ‖qk‖ ≤ ‖fk‖
‖g‖ , ‖rk‖ ≤ ‖fk‖, and

‖fk+1‖ ≤ ‖g − g0‖
‖g‖ ‖fk‖.

It follows that ‖fk‖ ≤
(

‖g−g0‖
‖g‖

)k

‖f‖, so ‖fk‖ → 0. Hence, also ‖qk‖, ‖rk‖ →
0. Therefore, q =

∑∞
k=0 qk ∈ A{x} and r =

∑∞
k=0 rk ∈ A[x]. By construc-

tion, f =
∑k

n=0 qng +
∑k

n=0 rn + fk+1 for each k. Taking k to infinity, we
get f = qg + r and deg(r) < d. �
Corollary 2.2.5 (Weierstrass preparation theorem): Let f ∈ A{x} be reg-
ular of pseudo degree d. Then f = qg, where q is a unit of A{x} and g ∈ A[x]
is a monic polynomial of degree d with ‖g‖ = 1. Moreover, q and g are
uniquely determined by these conditions.

Proof: By Proposition 2.2.4 there are q′ ∈ A{x} and r′ ∈ A[x] of degree < d
such that xd = q′f +r′ and ‖r′‖ ≤ ‖xd‖ = 1. Set g = xd−r′. Then g is monic
of degree d, g = q′f , and ‖g‖ = 1. It remains to show that q′ ∈ A{x}×.

Note that g is regular of pseudo degree d. By Proposition 2.2.4, there
are q ∈ A{x} and r ∈ A[x] such that f = qg + r and deg(r) < d. Thus,
f = qq′f + r. Since f = 1 · f + 0, the uniqueness part of Proposition 2.2.4
implies that qq′ = 1. Hence, q′ ∈ A{x}×.

Finally suppose f = q1g1, where q ∈ A{x}× and g1 ∈ A[x] is monic of
degree d with ‖g1‖ = 1. Then g1 = (q−1

1 q2)g and g1 = 1 · g + (g1 − g), where
g1 = g is a polynomial of degree at most d − 1. By the uniqueness part of
Proposition 2.2.4, q−1

1 q2 = 1, so q1 = q2 and g1 = g. �
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Corollary 2.2.6: Let f =
∑∞

n=0 anxn be a regular element of A{x} such
that ‖a0b‖ = ‖a0‖ · ‖b‖ for each b ∈ A. Then f ∈ A{x}× if and only if
pseudo.deg(f) = 0 and a0 ∈ A×.

Proof: If there exists g ∈
∑∞

n=0 bnxn in A{x} such that fg = 1, then
pseudo.deg(f)+pseudo.deg(g) = 0 (Lemma 2.2.3 applied to 1 rather than to
f), so pseudo.deg(f) = 0. In addition, a0b0 = 1, so a0 ∈ A×.

Conversely, suppose pseudo.deg(f) = 0 and a0 ∈ A×. Then f is regular.
Hence, by Corollary 2.2.5, f = q · 1 where q ∈ A{x}×.

Alternatively, a−1
0 f = 1 − h, where h = −

∑∞
n=1 a−1

0 anxn. By our
assumption on a0, we have ‖a−1

0 ‖ · ‖a0‖ = ‖a−1
0 a0‖ = 1, so ‖a−1

0 ‖ = ‖a0‖−1.
Since pseudo.deg(f) = 0, we have ‖a0‖ < ‖an‖, so ‖a−1

0 an‖ ≤ ‖a0‖−1‖an‖ <
1 for each n ≥ 1. It follows that ‖h‖ = max(‖a−1

0 an‖)n=1,2,3,... < 1. By
Lemma 2.1.3(f), a−1

0 f ∈ A{x}×, so f ∈ A{x}×. �

2.3 Properties of the Ring K{x}
We turn our attention in this section to the case where the ring A of the
previous sections is a complete field K under an ultrametric absolute value
| | and O = {a ∈ K | |a| ≤ 1} its valuation ring. We fix K and O for
the whole section and prove that K{x} is a principal ideal domain and that
F = Quot(K{x}) is a Hilbertian field.

Note that in our case |ab| = |a| · |b| for all a, b ∈ K and each nonzero
element of K is invertible. Hence, each nonzero f ∈ K{x} is regular. It
follows from Lemma 2.2.3 that the norm of K{x} is multiplicative, hence it
is an absolute value which we denote by | | rather than by ‖ ‖.

Proposition 2.3.1:
(a) K{x} is a principal ideal domain. Moreover, each ideal in K{x} is gen-

erated by an element of O[x].
(b) K{x} a unique factorization domain.
(c) A nonzero element f ∈ K{x} is invertible if and only if pseudo.deg(f) =

0.
(d) pseudo.deg(fg) = pseudo.deg(f) + pseudo.deg(g) for all f, g ∈ K{x}

with f, g �= 0.
(e) Every prime element f of K{x} can be written as f = ug, where u is

invertible in K{x} and g is an irreducible element of K[x].
(f) If a g ∈ K[x] is monic of degree d, irreducible in K[x], and |g| = 1, then

g is irreducible in K{x}.
(g) There are irreducible polynomials in K[x] that are not irreducible in

K{x}.
(h) There are reducible polynomials in K[x] that are irreducible in K{x}.

Proof of (a): By the Weierstrass preparation theorem (Corollary 2.2.5) (ap-
plied to K rather than to A) each nonzero ideal a of K{x} is generated by the
ideal a∩K[x] of K[x]. Since K[x] is a principal ideal domain, a∩K[x] = fK[x]
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for some nonzero f ∈ K[x]. Consequently, a = fK{x} is a principal ideal.
Moreover, dividing f by one of its coefficients with highest absolute value,
we may assume that f ∈ O[x].

Proof of (b): Since every principal ideal domain has a unique factorization,
(b) is a consequence of (a).

Proof of (c): Apply Corollary 2.2.6.

Proof of (d): Apply Lemma 2.2.3.

Proof of (e): By (a), f = u1f1 with u1 ∈ K{x}× and f1 ∈ K[x]. Write
f1 = g1 · · · gn with irreducible polynomials g1, . . . , gn ∈ K[x]. Then f =
u1g1 · · · gn. Since f is irreducible in K{x}, one of the gi’s, say gn is irreducible
in K{x} and all the others, that is g1, . . . , gn−1, are invertible in K{x}. Set
u = u1g1 · · · gn−1 and g = gn. Then f = ug is the desired presentation.

Proof of (f): The irreducibility of g in K[x] implies that d > 0. Our assump-
tions imply that pseudo.deg(g) = d. Hence, by Corollary 2.2.6, g � K{x}×.

Now assume g = g1g2, where g1, g2 ∈ K{x} are nonunits. By Corollary
2.2.5, we may assume that g1 ∈ K[x] is monic, say of degree d1, and |g1| = 1.
Thus pseudo.deg(g1) = d1. By Euclid’s algorithm, there are q, r ∈ K[x] such
that g = qg1 + r and deg(r) < d1. Applying the additional presentation
g = g2g1 + 0 and the uniqueness part of Proposition 2.2.4, we get that g2 =
q ∈ K[x]. Thus, either g1 ∈ K[x]× ⊆ K{x}× or g1 ∈ K[x]× ⊆ K{x}×. In
both cases we get a contradiction.

Proof of (g): Let a be an element of K with |a| < 1. Then ax − 1 is
irreducible in K[x]. On the other hand, pseudo.deg(ax − 1) = 0, so, by (c),
ax − 1 ∈ K{x}×. In particular, ax − 1 is not irreducible in K{x}.

Proof of (h): We choose a as in the proof of (f) and consider the reducible
polynomial f(x) = (ax−1)(x−1). By the proof of (f), ax−1 ∈ K{x}×. Next
we note that pseudo.deg(x− 1) = 1, so by (d) and (c), x− 1 is irreducible in
K{x}. Consequently, f(x) is irreducible in K{x}. �

Let E = K(x) be the field of rational functions over K in the variable
x. Then K[x] ⊆ K{x} and the restriction of | | to K[x] is an absolute
value. By the multiplicativity of | |, it extends to an absolute value of E.
Let Ê be the completion of E with respect to | | [CaF67, p. 47]. For each∑∞

n=0 anxn ∈ K{x} we have, by definition, an → 0, hence
∑∞

n=0 anxn =
limn→∞

∑n
i=0 aix

i. Thus, K[x] is dense in K{x}. Since K{x} is complete
(Lemma 2.2.1(c)), this implies that K{x} is the closure of K[x] in Ê.

Remark 2.3.2:
(a) |x| = 1.
(b) Let K̄ ⊆ Ē be the residue fields of K ⊆ E with respect to | |.

Denote the image in Ē of an element u ∈ K(x) with |u| ≤ 1 by ū. Then x̄ is
transcendental over K̄. Indeed, let h be a monic polynomial over K̄. Choose
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a monic polynomial p with coefficients in the valuation ring of K such that
p̄ = h. Since |p(x)| = 1, we have h(x̄) = p̄(x̄) �= 0. It follows that K̄(x̄) is the
field of rational functions over K̄ in the variable x̄ and K̄(x̄) ⊆ Ē. Moreover,
K̄(x̄) = Ē. Indeed, let u = f(x)

g(x) with f =
∑m

i=0 aix
i, g =

∑n
j=0 bjx

j �= 0, and
ai, bj ∈ K such that |u| ≤ 1. Then maxi |ai| ≤ maxj |bj |. Choose c ∈ K with
|c| = maxj |bj |. Then replace ai with c−1ai and bj with c−1bj , if necessary, to
assume that |ai|, |bj | ≤ 1 for all i, j and there exists k with |bk| = 1. Under

these assumptions, ū = f̄(x̄)
ḡ(x̄) ∈ K̄(x̄), as claimed.

(c) If | · |′ is an absolute value of E which coincides with | | on K and the
residue x′ of x with respect to | |′ is transcendental over K̄, then | |′ coincides
with | |.

Indeed, let p(x) =
∑n

i=0 aix
i be a nonzero polynomial in K[x]. Choose

a c ∈ K× with |c| = maxi |ai|. Then (c−1p(x))′ =
∑n

i=0(c
−1ai)′(x′)i �= 0

(the prime indicates the residue with respect to | |′), hence |c−1p(x)|′ = 1, so
|p(x)|′ = |c| = |p(x)|.

(d) It follows from (c) that if γ is an automorphism of E that leaves K
invariant, preserves the absolute value of K, and xγ is transcendental over
K̄, then γ preserves the absolute value of E.

In particular, γ is | |-continuous. Moreover, if (x1, x2, x3, . . .) is a | |-
Cauchy sequence in E, then so is (xγ

1 , xγ
2 , xγ

3 , . . .). Hence γ extends uniquely
to a continuous automorphism of the | |-completion Ê of E.

(e) Now suppose K is a finite Galois extension of a complete field K0

with respect to | | and set E0 = K0(x). Let γ ∈ Gal(K/K0) and extend γ in
the unique possible way to an element γ ∈ Gal(E/E0). Then γ preserves | |
on K. Indeed, |z|′ = |zγ | is an absolute valued of K. Since K0 is complete
with respect to | |, K0 is Henselian, so | |′ is equivalent to | |. Thus, there
exists ε > 0 with |zγ | = |z|ε for each z ∈ K. In particular, |z| = |z|ε for each
z ∈ K0, so ε = 1, as claimed. In addition xγ = x. By (d), γ preserves | | also
on E.

(f) Under the assumptions of (e) we let Ê0 and Ê be the | |-completions
of E and E0, respectively. Then Ê0E is a finite separable extension of Ê0

in Ê. As such Ê0E is complete [CaF67, p. 57, Cor. 2] and contains E, so
Ê0E = Ê. Thus, Ê/Ê0 is a finite Galois extension.

By (d) and (e) each γ ∈ Gal(E/E0) extends uniquely to a continuous
automorphism γ of Ê. Every x ∈ Ê0 is the limit of a sequence (x1, x2, x3, . . .)
of elements of E0. Since xγ

i = xi for each i, we have xγ = x. It follows that
res: Gal(Ê/Ê0) → Gal(E/E0) is an isomorphism.

(g) Finally suppose y = ax+b
cx+d with a, b, c, d ∈ K such that |a|, |b|, |c|, |d| ≤

1 and ād̄−b̄c̄ �= 0. Then āx̄+b̄ and c̄x̄+d̄ are nonzero elements of K̄(x̄), so ȳ =
āx̄+b̄
c̄x̄+d̄

∈ K̄(x̄). Moreover, K̄(x̄) = K̄(ȳ), hence ȳ is transcendental over K̄. We
conclude from (c) that the map x �→ y extends to a K-automorphism of K(x)
that preserves the absolute value. It therefore extends to an isomorphism∑

anxn →
∑

anyn of K{x} onto K{y}. �
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In the following theorem we refer to an equivalence class of a valuation
of a field F as a prime of F . For each prime p we choose a valuation vp

representing the prime and let Op be the corresponding valuation ring.
We say that an ultrametric absolute value | | of a field K is discrete, if

the group of all values |a| with a ∈ K× is isomorphic to Z.

Theorem 2.3.3: Let K be a complete field with respect to a nontrivial
ultrametric absolute value | |. Then F = Quot(K{x}) is a Hilbertian field.

Proof: Let O = {a ∈ K | |a| ≤ 1} be the valuation ring of K with respect
to | | and let D = O{x} = {f ∈ K{x} | |f | ≤ 1}. Each f ∈ K{x} can be
written as af1 with a ∈ K, f1 ∈ D, and |f1| = 1. Hence, Quot(D) = F .

We construct a set S of prime divisors of F that satisfies the following
conditions:
(1a) For each p ∈ S, vp is a real valuation (i.e. vp(F ) ⊆ R).
(1b) The valuation ring Op of vp is the local ring of D at the prime ideal

mp = {f ∈ D | vp(f) > 0}.
(1c) D =

⋂
p∈S Op.

(1d) For each f ∈ F× the set {p ∈ S | vp(f) �= 0} is finite.
(1e) The Krull dimension of D is at least 2.

Then D is a generalized Krull domain of dimension exceeding 1. A
theorem of Weissauer [FrJ05, Thm. 15.4.6] will then imply that F is Hilber-
tian.

The construction of S: The absolute value | | of K{x} extends to an
absolute value of F . The latter determines a prime M of F with a real
valuation vM (Section 2.1). Each u ∈ F with |u| ≤ 1 can be written as
u = a f1

g1
with a ∈ O and f1, g1 ∈ D, |f1| = |g1| = 1. Hence, OM = Dm, where

m = {f ∈ D | |f | < 1}.
By Proposition 2.3.1, each nonzero prime ideal of K{x} is generated by

a prime element p ∈ K{x}. Divide p by its pseudo leading coefficient, if
necessary, to assume that |p| = 1. Then let vp be the discrete valuation of
F determined by p and let pp be its equivalence class. We prove that p is a
prime element of D. This will prove that pD is a prime ideal of D and its
local ring will coincide with the valuation ring of vp.

Indeed, let f, g be nonzero elements of D such that p divides fg in D.
Write f = af1, g = bg1 with nonzero a, b ∈ O, f1, g1 ∈ D, |f1| = |g1| =
1. Then p divides f1g1 in K{x} and therefore it divides, say, f1 in K{x}.
Thus, there exists q ∈ K{x} with pq = f1. But then |q| = 1, so q ∈ D.
Consequently, p divides f in D, as desired.

Let P be the set of all prime elements p as in the paragraph before the
preceding one. Then S = {pp | p ∈ P} ∪ {M} satisfies (1a) and (1b).

By Proposition 2.3.1(b), K{x} is a unique factorization domain, hence
K{x} =

⋂
p∈P Op, hence

⋂
p∈S Op = {f ∈ K{x} | |f | ≤ 1} = D. This settles

(1c).
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Next observe that for each f ∈ F× there are only finitely many p ∈ P
such that vp(f) �= 0, so (1d) holds.

Finally note that if f =
∑∞

n=0 anxn is in D, then |an| ≤ 1 for all n and
|an| < 1 for all large n. Hence D/m ∼= K̄[x̄], where K̄ and x̄ are as in Remark
2.3.2(b). Since x̄ is transcendental over K̄, m is a nonzero prime ideal and
m + Ox is a prime ideal of D that properly contains m. This proves (1e) and
concludes the proof of the theorem. �

Corollary 2.3.4: Quot(K{x}) is not a Henselian field.

Proof: Since K{x} is Hilbertian (Theorem 2.3.3), K{x} can not be Hensel-
ian [FrJ08, Lemma 15.5.4]. �

2.4 Convergent Power Series

Let K be a complete field with respect to an ultrametric absolute value | |.
We say that a formal power series f =

∑∞
n=m anxn in K((x)) converges at

an element c ∈ K, if f(c) =
∑∞

n=m ancn converges, i.e. ancn → 0. In this
case f converges at each b ∈ K with |b| ≤ |c|. For example, each f ∈ K{x}
converges at 1. We say that f converges if f converges at some c ∈ K×.

We denote the set of all convergent power series in K((x)) by K((x))0
and prove that K((x))0 is a field that contains K{x} and is algebraically
closed in K((x)).

Lemma 2.4.1: A power series f =
∑∞

n=m anxn in K((x)) converges if and
only if there exists a positive real number γ such that |an| ≤ γn for each
n ≥ 0.

Proof: First suppose f converges at c ∈ K×. Then ancn → 0, so there
exists n0 ≥ 1 such that |ancn| ≤ 1 for each n ≥ n0. Choose

γ = max{|c|−1, |ak|1/k | k = 0, . . . , n0 − 1}.

Then |an| ≤ γn for each n ≥ 0.
Conversely, suppose γ > 0 and |an| ≤ γn for all n ≥ 0. Increase γ, if

necessary, to assume that γ > 1. Then choose c ∈ K× such that |c| ≤ γ−1.5

and observe that |ancn| ≤ γ−0.5n for each n ≥ 0. Therefore, ancn → 0, hence
f converges at c. �

Lemma 2.4.2: K((x))0 is a field that contains Quot(K{x}), hence also K(x).

Proof: The only difficulty is to prove that if f = 1 +
∑∞

n=1 anxn converges,
then also f−1 = 1 +

∑∞
n=1 a′

nxn converges.
Indeed, for n ≥ 1, a′

n satisfies the recursive relation a′
n = −an −∑n−1

i=1 aia
′
n−i. By Lemma 2.4.1, there exists γ > 1 such that |ai| ≤ γi for each

i ≥ 1. Set a′
0 = 1. Suppose, by induction, that |a′

j | ≤ γj for j = 1, . . . , n− 1.
Then |a′

n| ≤ maxi(|ai| · |a′
n−i|) ≤ γn. Hence, f−1 converges. �

21



Chapter 2. Normed Rings

Let v be the valuation of K((x)) defined by

v(
∞∑

n=m

anxn) = m for am, am+1, am+2, . . . ∈ K with am �= 0.

It is discrete, complete, its valuation ring is K[[x]], and v(x) = 1. The residue
of an element f =

∑∞
n=0 anxn of K[[x]] at v is a0, and we denote it by f̄ . We

also consider the valuation ring O = K[[x]]∩K((x))0 of K((x))0 and denote
the restriction of v to K((x))0 also by v. Since K((x))0 contains K(x), it is
v-dense in K((x)). Finally, we also denote the unique extension of v to the
algebraic closure of K((x)) by v.

Remark 2.4.3: K((x))0 is not complete. Indeed, choose a ∈ K such that
|a| > 1. Then there exists no γ > 0 such that |an2 | ≤ γn for all n ≥ 1. By
Lemma 2.4.1, the power series f =

∑∞
n=0 an2

xn does not belong to K((x))0.
Therefore, the valued field (K((x))0, v) is not complete. �
Lemma 2.4.4: The field K((x))0 is separably algebraically closed in K((x)).

Proof: Let y =
∑∞

n=m anxn, with an ∈ K, be an element of K((x)) which
is separably algebraic of degree d over K((x))0. We have to prove that
y ∈ K((x))0.

Part A: A shift of y. Assume that d > 1 and let y1, . . . , yd, with y = y1,
be the (distinct) conjugates of y over K((x))0. In particular r = max(v(y −
yi) | i = 2, . . . , d) is an integer. Choose s ≥ r + 1 and let

y′
i =

1
xs

(
yi −

s∑
n=m

anxn
)
, i = 1, . . . , d.

Then y′
1, . . . , y

′
d are the distinct conjugates of y′

1 over K((x))0. Also, v(y′
1) ≥ 1

and y′
i = 1

xs (yi−y)+y′
1, so v(y′

i) ≤ −1, i = 2, . . . , d. If y′
1 belongs to K((x))0,

then so does y, and conversely. Therefore, we replace yi by y′
i, if necessary,

to assume that

(1) v(y) ≥ 1 and v(yi) ≤ −1, i = 2, . . . , d.

In particular y =
∑∞

n=0 anxn with a0 = 0. The elements y1, . . . , yd are the
roots of an irreducible separable polynomial

h(Y ) = pdY
d + pd−1Y

d−1 + · · · + p1Y + p0

with coefficients pi ∈ O. Let e = min(v(p0), . . . , v(pd)). Divide the pi, if
necessary, by xe, to assume that v(pi) ≥ 0 for each i between 0 and d and
that v(pj) = 0 for at least one j between 0 and d.
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2.4 Convergent Power Series

Part B: We prove that v(p0), v(pd) > 0, v(pk) > v(p1) if 2 ≤ k ≤ d−1 and
v(p1) = 0. Indeed, since v(y) > 0 and h(y) = 0, we have v(p0) > 0. Since
v(y2) < 0 and h(y2) = 0, we have v(pd) > 0. Next observe that

p1

pd
= ±y2 · · · yd ±

d∑
i=2

y1 · · · yd

yi
.

If 2 ≤ i ≤ d, then v(yi) < v(y1), so v(y2 · · · yd) < v(y1
yi

) + v(y2 · · · yd) =
v(y1···yd

yi
). Hence,

(2) v
(p1

pd

)
= v(y2 · · · yd).

For k between 1 and d − 2 we have

(3)
pd−k

pd
= ±
∑

σ

k∏
i=1

yσ(i),

where σ ranges over all monotonically increasing maps from {1, . . . , k} to
{1, . . . , d}. If σ(1) �= 1, then {yσ(1), . . . , yσ(k)} is properly contained in

{y2, . . . , yd}. Hence, v(
∏k

i=1 yσ(i)) > v(y2 · · · yd). If σ(1) = 1, then

v
( k∏

i=1

yσ(i)

)
> v
( k∏

i=2

yσ(i)

)
> v(y2 · · · yd).

Hence, by (2) and (3), v(pd−k

pd
) > v( p1

pd
), so v(pd−k) > v(p1). Since v(pj) = 0

for some j between 0 and d, since v(pi) ≥ 0 for every i between 0 and d, and
since v(p0), v(pd) > 0, we conclude that v(p1) = 0 and v(pi) > 0 for all i �= 1.
Therefore,

(4) pk =
∞∑

n=0

bknxn, k = 0, . . . , d

with bkn ∈ K such that b1,0 �= 0 and bk,0 = 0 for each k �= 1. In particular,
|b1,0| �= 0 but unfortunately, |b1,0| may be smaller than 1.

Part C: Making |b1,0| large. We choose c ∈ K such that |cd−1b1,0| ≥ 1 and
let z = cy. Then z is a zero of the polynomial g(Z) = pdZ

d + cpd−1Z
d−1 +

· · ·+ cd−1p1Z + cdp0 with coefficients in O. Relation (4) remains valid except
that the zero term of the coefficient of Z in g becomes cd−1b1,0. By the choice
of c, its absolute value is at least 1. So, without loss, we may assume that

(5) |b1,0| ≥ 1.
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Part D: An estimate for |an|. By Lemma 2.4.1, there exists γ > 0 such
that |bkn| ≤ γn for all 0 ≤ k ≤ d and n ≥ 1. By induction we prove that
|an| ≤ γn for each n ≥ 0. This will prove that y ∈ O and will conclude the
proof of the lemma.

Indeed, |a0| = 0 < 1 = γ0. Now assume that |am| ≤ γm for each
0 ≤ m ≤ n−1. For each k between 0 and d we have that pkyk =

∑∞
n=0 cknxn,

where

ckn =
∑

σ∈Skn

bk,σ(0)

k∏
j=1

aσ(j),

and

Skn = {σ: {0, . . . , k} → {0, . . . , n} |
k∑

j=0

σ(j) = n}.

It follows that

(6) c0n = b0n and c1n = b1,0an + b11an−1 + · · · + b1,n−1a1.

For k ≥ 2 we have bk,0 = 0. Hence, if a term bk,σ(0)

∏k
j=1 aσ(j) in ckn contains

an, then σ(0) = 0, so bk,σ(0) = 0. Thus,

ckn = sum of products of the form bk,σ(0)

k∏
j=1

aσ(j),(7)

with σ(j) < n, j = 1, . . . , k.

From the relation
∑d

k=0 pkyk = h(y) = 0 we conclude that
∑d

k=0 ckn = 0 for
all n. Hence, by (6),

b1,0an = −b0n − b11an−1 − · · · − b1,n−1a1 − c2n − · · · − cdn.

Therefore, by (7),

(8)
b1,0an = sum of products of the form − bk,σ(0)

k∏
j=1

aσ(j),

with σ ∈ Skn, 0 ≤ k ≤ d, and σ(j) < n, j = 1, . . . , k.

Note that bk,0 = 0 for each k �= 1 (by (4)), while b1,0 does not occur on the
right hand side of (8). Hence, for a summand in the right hand side of (8)
indexed by σ we have

|bk,σ(0)

k∏
j=1

aσ(j)| ≤ γ
∑k

j=0 σ(j) = γn.

We conclude from |b1,0| ≥ 1 that |an| ≤ γn, as contended. �

24



2.5 The Regularity of K((x))/K((x))0

Proposition 2.4.5: The field K((x))0 is algebraically closed in K((x)).
Thus, each f ∈ K((x)) which is algebraic over K(x) converges at some
c ∈ K×. Moreover, there exists a positive integer m such that f converges
at each b ∈ K× with |b| ≤ 1

m .

Proof: In view of Lemma 2.4.4, we have to prove the proposition only for
char(K) > 0. Let f =

∑∞
n=m anxn ∈ K((x)) be algebraic over K((x))0.

Then K((x))0(f) is a purely inseparable extension of a separable algebraic
extension of K((x))0. By Lemma 2.4.4, the latter coincides with K((x))0.
Hence, K((x))0(f) is a purely inseparable extension of K((x))0.

Thus, there exists a power q of char(K) such that
∑∞

n=m aq
nxnq = fq ∈

K((x))0. By Lemma 2.4.1, there exists γ > 0 such that |aq
n| ≤ γnq for all

n ≥ 1. It follows that |an| ≤ γn for all n ≥ 1. By Lemma 2.4.1, f ∈ K((x))0,
so there exists c ∈ K× such that f converges at c. If 1

m ≤ |c|, then f
converges at each b ∈ K× with |b| ≤ 1

m . �

Corollary 2.4.6: The valued field (K((x))0, v) is Henselian.

Proof: Consider the valuation ring O = K[[x]] ∩ K((x))0 of K((x))0 at v.
Let f ∈ O[X] be a monic polynomial and a ∈ O such that v(f(a)) > 0 and
v(f ′(a)) �= 0. Since (K((x)), v) is Henselian, there exists z ∈ K[[x]] such that
f(z) = 0 and v(z − a) > 0. By Proposition 2.4.5, z ∈ K((x))0, hence z ∈ O.
It follows that (K((x))0, v) is Henselian. �

2.5 The Regularity of K((x))/K((x))0
Let K be a complete field with respect to an ultrametric absolute value | |.
We extend | | in the unique possible way to K̃. We also consider the discrete
valuation v of K(x)/K defined by v(a) = 0 for each a ∈ K× and v(x) = 1.
Then K((x)) is the completion of K(x) at v. Let K((x))0 be the subfield of
K((x)) of all convergent power series.

Proposition 2.4.5 states that K((x))0 is algebraically closed in K((x)).
In this section we prove that K((x)) is even a regular extension of K((x))0.
To do this, we only have to assume that p = char(K) > 0 and prove that
K((x))/K((x))0 is a separable extension. In other words, we have to prove
that K((x)) is linearly disjoint from K((x))1/p

0 over K((x))0. We do that in
several steps.

Lemma 2.5.1: The fields K((x)) and K((x1/p))0 are linearly disjoint over
K((x))0.

Proof: First note that 1, x1/p, . . . , xp−1/p is a basis for K(x1/p) over K(x).
Then 1, x1/p, . . . , xp−1/p have distinct v-values modulo Z = v(K((x))), so
they are linearly independent over K((x)).

Next we observe that 1, x1/p, . . . , xp−1/p also generate K((x1/p)) over
K((x)). Indeed, each f ∈ K((x1/p)) may be multiplied by an appropriate
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power of x to be presented as

(1) f =
∞∑

n=0

anxn/p,

with a0, a1, a2, . . . ∈ K. We write each n as n = kp + l with integers k ≥ 0
and 0 ≤ l ≤ p − 1 and rewrite f as

(2) f =
p−1∑
l=0

( ∞∑
k=0

akp+lx
k
)
xl/p.

If f ∈ K((x1/p))0, then there exists b ∈ K× such that
∑∞

n=0 anbn/p converges
in K, hence anbn/p → 0 as n → ∞, so akp+lb

kbl/p → 0 as k → ∞ for each l.
Therefore, for each l, we have akp+lb

k → 0 as k → ∞, hence
∑∞

k=0 akp+lx
k

converges, so belongs to K((x))0.
It follows that 1, x1/p, . . . , xp−1/p form a basis for K((x1/p))0/K((x))0

as well as for K((x1/p))/K((x)). Consequently, K((x)) is linearly disjoint
from K((x1/p))0 over K((x))0. �

We set K[[x]]0 = K[[x]] ∩ K((x))0.

Lemma 2.5.2: Let u1, . . . , um ∈ K̃[[x]]0 and f1, . . . , fm ∈ K[[x]]. Set ui0 =
ui(0) for i = 1, . . . , m and

(3) f =
m∑

i=1

fiui.

Suppose u10, . . . , um0 are linearly independent over K, f ∈ K̃[[x]]0, and
f(0) = 0. Then f1, . . . , fm ∈ K[[x]]0.

Proof: We break up the proof into several parts.

Part A: Comparison of norms. We consider the K-vector space V =∑m
i=1 Kui0 and define a function μ: V → R by

(4) μ(
m∑

i=1

aiui0) = max(|a1|, . . . , |am|).

It satisfies the following rules:
(5a) μ(v) > 0 for each nonzero v ∈ V .
(5b) μ(v + v′) ≤ max(μ(v), μ(v′)) for all v, v′ ∈ V .
(5c) μ(av) = |a|μ(v) for all a ∈ K and v ∈ V .

Thus, v is a norm of V . On the other hand, | | extends to an absolute
value of K̃ and its restriction to V is another norm of V . Since K is complete
under | |, there exists a positive real number s such that
(6) μ(v) ≤ s|v| for all v ∈ V
[CaF67, p. 52, Lemma].
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2.5 The Regularity of K((x))/K((x))0

Part B: Power series. For each i we write ui = ui0 +u′
i where u′

i ∈ K̃[[x]]0
and u′

i(0) = 0. Then

f =
∞∑

n=1

anxn with a1, a2, . . . ∈ K̃,(7a)

u′
i =

∞∑
n=1

binxn with bi1, bi2, . . . ∈ K̃, and(7b)

fi =
∞∑

n=0

ainxn with ai0, ai1, ai2, . . . ∈ K.(7c)

If a power series converges at a certain element of K̃×, it converges at
each element with a smaller absolute value. Since to each element of K̃×

there exists an element of K× with a smaller absolute value, there exists
d ∈ K× such that

∑∞
n=1 andn and

∑∞
n=1 bindn, i = 1, . . . , m, converge. In

particular, the numbers |andn| and |bindn| are bounded. It follows from the
identities |ancn| = |andn| ·

∣∣ c
d

∣∣n and |bincn| = |bindn| ·
∣∣ c
d

∣∣n that there exists
c ∈ K× such that

(8) max
n≥1

|ancn| ≤ s−1 and max
n≥1

|bincn| ≤ s−1

for i = 1, . . . , m.

Part C: Claim: |aincn| ≤ 1 for i = 1, . . . , m and n = 0, 1, 2, . . .. To prove
the claim we substitute the presentations (7) of f, u′

i, fi in the relation (3)
and get:

(9)
∞∑

n=1

anxn =
∞∑

n=0

m∑
j=1

ajnuj0x
n +

∞∑
n=1

m∑
j=1

n−1∑
k=0

ajkbj,n−kxn.

In particular, for n = 0 we get 0 =
∑m

j=1 aj0uj0. Since u10, . . . , um0 are
linearly independent over K and a10, . . . , am0 ∈ K, we get a10 = · · · = am0 =
0, so our claim holds in this case.

Proceeding by induction, we assume |aikck| ≤ 1 for i = 1, . . . , m and
k = 0, . . . , n − 1. By (5) and (6),

|ain| ≤ max(|a1n|, . . . , |amn|) = μ(
m∑

j=1

ajnuj0) ≤ s|
m∑

j=1

ajnuj0|,

hence

(10) |aincn| ≤ s|
m∑

j=1

ajnuj0c
n|.
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Chapter 2. Normed Rings

Next we compare the coefficients of xn on both sides of (9),

an =
m∑

j=1

ajnuj0 +
m∑

j=1

n−1∑
k=0

ajkbj,n−k,

change sides and multiply the resulting equation by cn:

m∑
j=1

ajnuj0c
n = ancn −

m∑
j=1

n−1∑
k=0

ajkck · bj,n−kcn−k.

By the induction hypothesis and by (8),

|
m∑

j=1

ajnuj0c
n| ≤ max

(
|ancn|, max

1≤j≤m
max

0≤k≤n−1
|ajkck| · |bj,n−kcn−k|

)
(11)

≤ max(s−1, 1 · s−1) = s−1

It follows from (10) and (11) that |aincn| ≤ 1. This concludes the proof of
the claim.

Part D: End of the proof. We choose a ∈ K× such that |a| < |c|. Then
|ainan| =

∣∣aincn
(
a
c

)n∣∣ ≤ ∣∣ac ∣∣n. Since the right hand side tends to 0 as n → ∞,
so does the left hand side. We conclude that fi converges at a. �
Lemma 2.5.3: The fields K((x)) and K1/p((x))0 are linearly disjoint over
K((x))0.

Proof: We have to prove that every finite extension F ′ of K((x))0 in
K1/p((x))0 is linearly disjoint from K((x)) over K((x))0.

If F ′ = K((x))0, there is nothing to prove, so we assume F ′ is a proper
extension of K((x)). Each element f ′ ∈ F ′ has the form f ′ =

∑∞
i=k bix

i with
bi ∈ K1/p and

∑∞
i=k bic

i converges for some c ∈ (K1/p)×. Thus, (f ′)p =∑∞
i=k bp

i x
ip ∈ K((x)) and

∑∞
i=k bp

i (c
p)i converges, so (f ′)p ∈ K((x))0. We

may therefore write F ′ = F (f), where F is a finite extension of K((x))0 in
F ′ and [F ′ : F ] = p.

By induction on the degree, F is linearly disjoint from K((x)) over
K((x))0. Let m = [F : K((x))0].

Moreover, K((x)) is the completion of K(x), so also of K((x))0. Hence,
F̂ = K((x))F is the completion of F under v. By the linear disjointness,
[F̂ : K((x))] = m.

The residue field of K((x)) and of K((x))0 is K and the residue field
of F̂ is equal to the residue field F̄ of F . Both K((x)) and K1/p((x)) have
the same valuation group under v, namely Z. Therefore, also v(F̂×) = Z,
so e(F̂ /K((x))) = 1. Since K((x)) is complete and discrete, [F̂ : K((x))] =
e(F̂ : K((x)))[F̄ : K] = [F̄ : K] [CaF65, p. 19, Prop. 3].
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Notes

Now we choose a basis u10, . . . , um0 for F̄ /K and lift each ui0 to an
element ui of F ∩ K̃[[x]]0. Then, u1, . . . , um are linearly independent over
K((x))0 and over K((x)), hence they form a basis for F/K((x))0 and for
F̂ /K((x)).

As before, F̂ ′ = K((x))F ′ is the completion of F ′. Again, both F ′ and F̂ ′

have the same residue field F ′ and [F̂ ′ : F̂ ] = [F ′ : F̄ ]. Note that F ′ ⊆ K1/p

and [F ′ : F̄ ] ≤ [F ′ : F ] = p. Therefore, F ′ = F̄ or [F ′ : F̄ ] = p.
In the first case f ∈ F̂ , so by the paragraph before the preceding one,

there exist f1, . . . , fm ∈ K((x)) such that f =
∑m

i=1 fiui. Multiplying both
sides by a large power of x, we may assume that f1, . . . , fm ∈ K[[x]] and
f(0) = 0. By Lemma 2.5.2, f1, . . . , fm ∈ K((x))0, hence f ∈ F . This
contradiction to the choice of f implies that [F ′ : F̄ ] = p. Hence, [K((x))F ′ :
K((x))F ] = [F̂ ′ : F̂ ] = p = [F ′ : F ]. This implies that F̂ and F ′ are linearly
disjoint over F . By the tower property of linear disjointness, K((x)) and F ′

are linearly disjoint over K((x))0, as claimed. �
Proposition 2.5.4: Let K be a complete field under an ultrametric abso-
lute value | | and denote the field of all convergent power series in x with
coefficients in K by K((x))0. Then K((x)) is a regular extension of K((x))0.

Proof: In view of Proposition 2.4.5, it suffices to assume that p = char(K) >

0 and to prove that K((x)) is linearly disjoint from K((x))1/p
0 over K((x))0.

Indeed, by Lemma 2.5.3, K((x)) is linearly disjoint from K1/p((x))0 over
K((x))0. Next observe that K1/p is also complete under | |. Hence, by Lemma
2.5.1, applied to K1/p rather than to K, K1/p((x)) is linearly disjoint from
K1/p((x1/p))0 over K1/p((x))0.

K((x)) K1/p((x)) K((x))1/p= K1/p((x1/p))

K((x))0 K1/p((x))0 K((x))1/p
0 = K1/p((x1/p))0

Finally we observe that K((x))1/p
0 = K1/p((x1/p))0 to conclude that K((x))

is linearly disjoint from K((x))1/p
0 over K((x))0. �

Notes
The rings of convergent power series in one variable introduced in Section
2.2 are the rings of holomorphic functions on the closed unit disk that ap-
pear in [FrP04, Example 2.2]. Weierstrass Divison Theorem (Proposition
2.2.4) appears in [FrP, Thm. 3.1.1]. Our presentation follows the unpub-
lished manuscript [Har05].

Proposition 2.4.5 appears as [Art67, p. 48, Thm. 14]. The proof given
by Artin uses the method of Newton polynomials.
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Chapter 2. Normed Rings

The property of K{x} of being a principle ideal domain appears in [FrP,
Thm. 2.2.9].

The proof that K((x))/K((x))0 is a separable extension (Proposition
2.5.4) is due to Kuhlmann and Roquette [KuR96].
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Chapter 3.
Several Variables

Starting from a complete valued field (K, | |), we choose an element r ∈ K×,
a finite set I, and for each i ∈ I an element ci ∈ K such that |r| ≤ |ci − cj |
if i �= j. Then we set wi = r

x−ci
, with an indeterminate x, and consider the

ring R = K{wi | i ∈ I} of all series

f = a0 +
∑
i∈I

∞∑
n=1

ainwn
i ,

with a0, ain ∈ K such that for each i the element ain tends to 0 as n → ∞.
The ring R is complete under the norm defined by ‖f‖ = maxi,n(|a0|, |ain|)
(Lemma 3.2.1). We prove that R is a principal ideal domain (Proposition
3.2.9) and denote its quotient field by P . More generally for each subset
J of I, we denote the quotient field of K{wi | i ∈ J} by PJ . We deduce
(Proposition 3.3.1) that PJ ∩ PJ′ = PJ∩J ′ if J, J ′ ⊆ I have a nonempty
intersection and PJ ∩ PJ′ = K(x) if J ∩ J ′ = ∅. Thus, setting Pi = PI �{i}
for i ∈ I, we conclude that

⋂
i∈I Pi = K(x). The fields E = K(x) and Pi are

the first objects of patching data (Definition 1.1.1) that we start to assemble.

3.1 A Normed Subring of K(x)
Let E = K(x) be the field of rational functions in the variable x over a field
K. Let I be a finite set and r an element of K×. For each i ∈ I let ci be an
element of K. Suppose ci �= cj if i �= j. For each i ∈ I let wi = r

x−ci
∈ K(x).

We consider the subring R0 = K[wi | i ∈ I] of K(x), prove that each of its
elements is a linear combination of the powers wn

i with coefficients in K, and
define a norm on R0.

Lemma 3.1.1:

(a) For all i �= j in I and for each nonnegative integer m

(1) wiw
m
j =

rm

(ci − cj)m
wi −

m∑
k=1

rm+1−k

(ci − cj)m+1−k
wk

j .

(b) Given nonnegative integers mi, i ∈ I, not all zero, there exist aik ∈ K
such that

(2)
∏
i∈I

wmi
i =

∑
i∈I

mi∑
k=1

aikwk
i .

M. Jarden,                                 , Springer Monographs in Mathematics,
DOI , © Springer-Verlag Berlin Heidelberg 201110.1007/978-3-642-15128-6_3
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Chapter 3. Several Variables

(c) Every f ∈ K[wi | i ∈ I] can be uniquely written as

(3) f = a0 +
∑
i∈I

∞∑
n=1

ainwn
i

where a0, ain ∈ K and almost all of them are zero.
(d) Let i �= j be elements of I. Then wi

wj
= 1 + ci−cj

r wi ∈ K[wi] is invertible

in K[wi, wj ].

Proof of (a) and (b): Starting from the identity

(4) wiwj =
r

ci − cj
wi −

r

ci − cj
wj

one proves (1) by induction on m. Then one proceeds by induction on |I|
and maxi∈I mi to prove (2).

Proof of (c): The existence of the presentation (3) follows from (b). To prove
the uniqueness we assume that f = 0 in (3) but ajk �= 0 for some j ∈ I and
k ∈ N. Then,

∑∞
n=1 ajnwn

j = −a0 −
∑

i �=j

∑∞
n=1 ainwn

i . The left hand side
has a pole at cj while the right hand side has not. This is a contradiction.

Proof of (d): Multiplying r
wj

− r
wi

= ci − cj by wi

r we get that

wi

wj
= 1 +

ci − cj

r
wi

is in K[wi]. Similarly, wj

wi
∈ K[wj ]. Hence wi

wj
is invertible in K[wi, wj ]. �

Now we make an assumption for the rest of this chapter:

Assumption 3.1.2: The field K is complete with respect to a nontrivial ul-
trametric absolute value | | and
(5)

|r| ≤ |ci − cj | for all i �= j. �

Geometrically, Condition (5) means that the open disks {a ∈ K | |a −
ci| < r}, i ∈ I, of K are disjoint.

Let E = K(x) be the field of rational functions over K in the variable x.
We define a function ‖ ‖ on R0 = K[wi | i ∈ I] using the unique presentation
(3):

‖a0 +
∑
i∈I

∑
n≥1

ainwn
i ‖ = max

i,n
{|a0|, |ain|}.

Then ‖f‖ ≥ 0 for each f ∈ R0, ‖f‖ = 0 if and only if f = 0 (Lemma
3.1.1(c)), and ‖f + g‖ ≤ max(‖f‖, ‖g‖) for all f, g ∈ R0. Moreover, ‖wi‖ = 1
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3.2 Mitagg-Leffler Series

for each i ∈ I but ‖wiwj‖ = |r|
|ci−cj | (by (4)) is less than 1 if |r| < |ci − cj |.

Thus, ‖ ‖ is in general not an absolute value. However, by (1) and (5)

‖wiw
m
j ‖ ≤ max

1≤k≤m

(∣∣∣ r

ci − cj

∣∣∣m,
∣∣∣ r

ci − cj

∣∣∣m+1−k)
≤ 1.

By induction, ‖wk
i wm

j ‖ ≤ 1 for each k, so ‖fg‖ ≤ ‖f‖ · ‖g‖ for all f, g ∈ R0.
Moreover, if a ∈ K and f ∈ R0, then ‖af‖ = ‖a‖‖f‖. Therefore, ‖ ‖ is a
norm on R0 in the sense of Definition 2.1.1.

3.2 Mitagg-Leffler Series

We keep the notation of Section 3.1 and Assumption 3.1.2 and proceed to
define rings of convergent power series of several variables over K. In the
language of rigid geometry, these are the rings of holomorphic functions on
the complements of finitely many open discs of the projective line P1(K).

Let R = K{wi | i ∈ I} be the completion of R0 = K[wi | i ∈ I] with
respect to ‖ ‖ (Lemma 2.1.5). Our first result gives a Mitagg-Leffler decom-
position of each f ∈ R. It generalizes Lemma 3.1.1(c):

Lemma 3.2.1: Each element f of R has a unique presentation as a Mitagg-
Leffler series

(1) f = a0 +
∑
i∈I

∞∑
n=1

ainwn
i ,

where a0, ain ∈ K, and |ain| → 0 as n → ∞. Moreover,

‖f‖ = max
i,n

{|a0|, |ain|}.

Proof: Each f as in (1) is the limit of the sequence (fd)d≥1 of its partial sums
fd = a0 +

∑
i∈I

∑d
n=1 ainwn

i ∈ R0, so f ∈ R. Since ‖fd‖ = maxi,n(|a0|, |ain|)
for each sufficiently large d, we have ‖f‖ = maxi,n(|a0|, |ain|). If f = 0 in
(1), then 0 = maxi,n(|a0|, |ain|), so a0 = ain = 0 for all i and n. It follows
that the presentation (1) is unique.

On the other hand, let g ∈ R. Then there exists a sequence of elements
gk = ak,0 +

∑
i∈I

∑∞
n=1 ak,inwn

i , k = 1, 2, 3, . . ., in R0, that converges to
g. In particular, for each pair (k, i) we have ak,in = 0 if n is sufficiently
large. Also, the sequence (gk)∞k=1 is Cauchy. Hence, each of the sequences
{ak,0 | k = 1, 2, 3, . . .} and {ak,in | k = 1, 2, 3, . . .} is Cauchy. Since K is
complete, ak,0 → a0 and ak,in → ain for some a0, ain ∈ K. Fix i ∈ I and let
ε > 0 be a real number. There is an m such that for all k ≥ m and all n we
have |ak,in−am,in| ≤ ‖gk −gm‖ ≤ ε. If n is sufficiently large, then am,in = 0,
and hence |ak,in| ≤ ε. Therefore, |ain| ≤ ε. It follows that |ain| → 0. Define
f by (1). Then f ∈ R and gk → f in R. Consequently, g = f . �

If I = ∅, then R = R0 = K.
We call the partial sum

∑∞
n=1 ainwn

i in (1) the i-component of f .

33



Chapter 3. Several Variables

Remark 3.2.2: Let i ∈ I. Then K{wi} = {
∑∞

n=0 anwn
i | an → 0} is a

subring of R, the completion of K[wi] with respect to the norm. Consider
the ring K{x} of converging power series over K. By Lemma 2.2.1(d), there
is a homomorphism K{x} → K{wi} given by

∑∞
n=0 anxn �→

∑∞
n=0 anwn

i .
By Lemma 3.2.1, this is an isomorphism of normed rings. �

Lemma 3.2.3: Let i, j ∈ I be distinct, let p ∈ K[wi] ⊆ R be a polynomial
of degree ≤ d in wi, and let f ∈ K{wj} ⊆ R. Then pf ∈ K{wi, wj} and the
i-component of pf is a polynomial of degree ≤ d in wi.

Proof: Presenting p as the sum of its monomials we may assume that p is a
power of wi, say, p = wd

i .
The assertion is obvious, if d = 0.
Let d ≥ 1 and assume, by induction, that wd−1

i f = p′ + f ′, where
p′ ∈ K[wi] is of degree ≤ d − 1 and f ′ ∈ K{wj}. Then wd

i f = wip
′ + wif

′.
Here wip

′ ∈ K[wi] is of degree ≤ d and the i-component of wif
′ is, by (1) of

Section 3.1, a polynomial of degree ≤ 1. Thus, the i-component of wd
i f is of

degree ≤ d. �

Remark 3.2.4: Let (L, | |) be a complete valued field extending (K, | |).
Each c ∈ L with |c − ci| ≥ |r|, for all i ∈ I, defines a continuous evaluation
homomorphism R → L given by f = a0 +

∑
i∈I

∑
n ainwn

i �→ f(c) = a0 +∑
i∈I

∑
n ain( r

c−ci
)n. Indeed, x �→ c defines a K-homomorphism ϕ: K[x] →

L. Let P be its kernel. Then ϕ extends to the localization K[x]P . Since
ϕ(x− ci) = c− ci �= 0, we have wi ∈ K[x]P , for each i ∈ I. Thus, ϕ restricts

to a homomorphism R0 → L, given by the above formula. Since
∣∣∣ r
c−ci

∣∣∣ ≤ 1

for each i, we have |f(c)| ≤ ‖f‖ for each f ∈ R0. Hence, ϕ uniquely extends
to a continuous homomorphism ϕ: R → L. �

Lemma 3.2.5 (Degree shifting): Let f ∈ R be given by (1). Fix i �= j in I.
Let
∑∞

n=1 a′
inwn

i be the i-component of
wj

wi
f ∈ R. Then

a′
in = −

∞∑
ν=n+1

aiνrν−n

(cj − ci)ν−n
(2)

=
−r

cj − ci

∞∑
ν=n+1

aiν

( r

cj − ci

)ν−(n+1)
, n = 1, 2, 3, . . . .

Furthermore, let m ≥ 1 be an integer, and let
∑∞

n=1 binwn
i be the i-

component of (wj

wi
)mf . Let ε ≥ 0 be a real number and let d be a positive

integer.

(a) If |ain| ≤ ε for each n ≥ d+1, then |bin| ≤ | r
cj−ci

|mε for each n ≥ d+1−m.

(b) Suppose d > m. If |ain| < ε for each n ≥ d + 1 and |aid| = ε, then
|bin| < | r

cj−ci
|mε for each n ≥ d + 1 − m and |bi,d−m| = | r

cj−ci
|mε.
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3.2 Mitagg-Leffler Series

(c)
∑∞

n=1 ainwn
i is a polynomial in wi if and only if

∑∞
n=1 binwn

i is.

Proof: By Lemma 3.1.1(d), wj

wi
∈ R×, so (wj

wi
)mf ∈ R for each m and the

above statements make sense.

Proof of (2): We may assume that a0 = ai1 = 0 and akν = 0 for each
k �= i and each ν. Indeed, wj

wi
= 1 + (cj − ci)

wj

r ∈ K{wj}. Hence, wj

wi
· wν

k ∈
K{wl | l �= i}. Furthermore, wj

wi
· wi = wj ∈ K{wl | l �= i}. Hence, by (1),

a0, ai1, and the akν do not contribute to the i-component of wj

wi
f .

Thus, f =
∑∞

ν=2 aiνwν
i . Hence, by (1) of Section 3.1,

wj

wi
f =

∞∑
ν=2

aiνwjw
ν−1
i =

∞∑
ν=2

aiν

[ rν−1

(cj − ci)ν−1
wj −

ν−1∑
n=1

rν−n

(cj − ci)ν−n
wn

i

]
=

∞∑
ν=2

aiνrν−1

(cj − ci)ν−1
wj −

∞∑
n=1

∞∑
ν=n+1

aiνrν−n

(cj − ci)ν−n
wn

i

,

from which (2) follows.

Proof of (a) and (b): By induction on m it suffices to assume that
m = 1. In this case we have to prove: (a) If |ain| ≤ ε for each n ≥ d + 1,
then |a′

in| ≤ | r
cj−ci

|ε for each n ≥ d; (b) assuming d ≥ 2, if |ain| < ε for
each n ≥ d + 1 and |aid| = ε, then |a′

in| < | r
cj−ci

|ε for each n ≥ d and
|a′

i,d−1| = | r
cj−ci

|ε. By Condition (5) of Section 3.1, | r
ci−cj

| ≤ 1. Hence, (a)
follows from (2) with n = d, d + 1, d + 2, . . . and (b) follows from (2) with
n = d − 1, d, d + 1, . . . .

Proof of (c): Again, it suffices to prove that
∑∞

n=1 ainwn
i is a polynomial

if and only if
∑∞

n=1 a′
inwn

i is a polynomial.
If
∑∞

n=1 ainwn
i is a polynomial, then aiν = 0 for all large ν. It follows

from (2) that a′
i,n = 0 for all large n. Hence,

∑∞
n=1 a′

inwn
i is a polynomial.

If
∑∞

n=1 ainwn
i is not a polynomial, then for each d0 there exists d > d0

such that aid �= 0. Since |ain| → 0 as n → ∞, there are only finitely many
n ≥ d with |ain| ≥ |aid|. Replacing d with the largest of those n’s, if necessary,
we may assume that |ain| < |aid| for each n ≥ d + 1. By (b), a′

i,d−1 �= 0.
Consequently,

∑∞
n=1 a′

inwn
i is not a polynomial. �

We apply degree shifting to generalize Weierstrass preparation theorem
(Corollary 2.2.5) to Mitagg-Leffler series.

Lemma 3.2.6: Suppose I �= ∅ and let 0 �= f ∈ R. Then there is an l ∈ I
such that f = pu with p ∈ K[wl] and u ∈ R×.

Proof: If I = ∅, then f ∈ K× = R×. We therefore suppose that |I| ≥ 1 and
continue by induction on |I|.

Write f in the form (1). Then, there is a coefficient with absolute value
‖f‖. Thus we are either in Case I or Case II below:
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Case I: |a0| = ‖f‖ > |ain| for all i and n. Multiply f by a−1
0 to assume

that a0 = 1. Then ‖1 − f‖ < 1. By Lemma 2.1.3(f), f ∈ R×, and l = i
satisfies the claim of the lemma.

Case II: There exist i and d ≥ 1 such that |aid| = ‖f‖. Increase d, if
necessary, to assume that |ain| < |aid| = ‖f‖ for all n > d.

Let A = K{wk | k �= i}. This is a complete subring of R. We introduce
a new variable z, and consider the ring A{z} of convergent power series in z
over A (Lemma 2.2.1(c)). Since aid ∈ K× ⊆ A×, the element

f̂ = (a0 +
∑
k �=i

∞∑
n=1

aknwn
k ) +

∞∑
n=1

ainzn

of A{z} is regular of pseudo degree d. By Corollary 2.2.5, we have f̂ = p̂û,
where û is a unit of A{z} and p̂ is a monic polynomial of degree d in A[z].

By definition, ‖wi‖ = 1. By Lemma 2.2.1(d), the evaluation homomor-
phism θ: A{z} → R defined by

∑
cnzn �→

∑
cnwn

i , with cn ∈ A, maps f̂ onto
f , û onto a unit of R, and p̂ onto a polynomial p of degree d in A[wi]. Replac-
ing f by p and using Lemma 3.1.1, we may assume that f ∈ A[wi] = A+K[wi]
is a polynomial of degree d in wi, that is,

f = (a0 +
∑
k �=i

∞∑
n=1

aknwn
k ) +

d∑
n=1

ainwn
i .

If I = {i}, then A[wi] = K[wi], and we are done. If |I| ≥ 2, we choose
a j ∈ I distinct from i. By Lemma 3.1.1(d), wj

wi
= 1 + cj−ci

r wj is invertible
in R0, hence in R. Since wj

wi
∈ A, we have wj

wi
(
∑

k �=i

∑∞
n=1 aknwn

k ) ∈ A. In
addition, by Lemma 3.1.1,

wj

wi

d∑
n=1

ainwn
i =

d∑
n=1

ainwn−1
i wj

is a polynomial in A[wi] of degree ≤ d − 1. Using induction on d, we may
assume that f ∈ A. Finally, we apply the induction hypothesis (on |I|) to
conclude the proof. �
Lemma 3.2.7: Let j ∈ I. Then each f ∈ R can be written as f = pu with
p ∈ K[wj ], ‖p‖ = 1, and u ∈ R×.

Proof: Lemma 3.2.6 gives a decomposition f = p1u1 with u1 ∈ R× and
p1 ∈ K[wi] for some i ∈ I. If i = j, we are done. If i �= j, we may assume
that f ∈ K[wi]. Thus, f =

∑d
n=0 anwn

i with ad �= 0. By Lemma 3.1.1(d),
wi

wj
is invertible in R0, hence in R. Multiplying f by

(
wj

wi

)d

gives

(wj

wi

)d

f =
d∑

n=0

an

(wj

wi

)d−n
wn

j =
d∑

n=0

an

(
1 +

cj − ci

r
wj

)d−n
wn

j ∈ K[wj ].
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3.3 Fields of Mitagg-Leffler Series

Thus, f = pu with p ∈ K[wj ] and u ∈ R×. Finally, we may divide p by a
coefficient with the highest absolute value to get that ‖p‖ = 1. �

Corollary 3.2.8: Let 0 �= g ∈ R. Then R0 + gR = R.

Proof: Since R =
∑

i∈I K{wi} and R0 = K[wi | i ∈ I] =
∑

i∈I K[wi]
(Lemma 3.1.1), it suffices to prove for each i ∈ I and for every f ∈ K{wi} that
there is r ∈ K[wi] such that f−r ∈ gR. By Lemma 3.2.7, we may assume that
g ∈ K[wi]. By Remark 3.2.2, there is a K-isomorphism K{z} → K{wi} that
maps K[z] onto K[wi]. Therefore the assertion follows from the Weierstrass
Division Theorem (Proposition 2.2.4) for the ring K{z}. �

The next result generalizes Proposition 2.3.1 to Mitagg-Leffler series.

Proposition 3.2.9: The ring R = K{wi | i ∈ I} is a principal ideal domain,
hence a unique factorization domain. Moreover, for each i ∈ I, each ideal a
of R is generated by an element p ∈ K[wi] such that a ∩ K[wi] = pK[wi].

Proof: Let f1, f2 ∈ R with f1f2 = 0. Choose an i ∈ I. By Lemma 3.2.7,
f1 = p1u1 and f2 = p2u2 with p1, p2 ∈ K[wi] and u1, u2 ∈ R×. Then
p1p2 = f1f2(u1u2)−1 = 0, and hence either p1 = 0 or p2 = 0. Therefore,
either f1 = 0 or f2 = 0. Consequently, R is an integral domain.

By Lemma 3.2.7, each ideal a of R is generated by the ideal a∩K[wi] of
K[wi]. Since K[wi] is a principal ideal domain, a∩K[wi] = pK[wi] for some
p ∈ K[wi]. Consequently, a = pR is a principal ideal. �

Remark 3.2.10: Lower bound. Haran proves in [Har05, Prop. 3.11] that for
each f ∈ R there exists an ε > 0 such that for every g ∈ R we have ε‖f‖·‖g‖ ≤
‖fg‖. He uses this bound rather than the multiplicativity of the absolute value
in order to decompose matrices in GLn(P ) as is done in Corollary 3.4.4. �

3.3 Fields of Mitagg-Leffler Series

In the notation of Sections 3.1 and 3.2 we consider for each nonempty subset
J of I the integral domain RJ = K{wi | i ∈ J} (Proposition 3.2.9) and let
PJ = Quot(RJ). For J = ∅, we set PJ = K(x). All of these fields are
contained in the field Q = PI . The fields Pi = PI �{i}, i ∈ I, will be our
‘analytic’ fields in patching data over E = K(x) that we start to assemble.
As in Definition 1.1.1, the fields P ′

i =
⋂

j �=i Pj will be useful auxiliary fields.

Proposition 3.3.1: Let J and J ′ be subsets of I. If J ∩ J ′ �= ∅, then
PJ ∩ PJ′ = PJ∩J ′ .

Proof: If either J = ∅ or J ′ = ∅, then PJ ∩ PJ ′ = K(x), by definition.
We therefore assume that J, J ′ �= ∅. Let j ∈ J . Then K[wj ] ⊆ RJ , hence
K(x) = K(wj) ⊆ PJ . Similarly K(x) ⊆ PJ′ . Hence K(x) ⊆ PJ ∩ PJ′ . If
J∩J ′ �= ∅, then, by the unique representation for the elements of R appearing
in (1) of Lemma 3.2.1, we have RJ∩J ′ = RJ ∩ RJ′ , so PJ∩J ′ ⊆ PJ ∩ PJ′ .
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Chapter 3. Several Variables

For the converse inclusion, let 0 �= f ∈ PJ ∩ PJ′ . Fix j ∈ J and j′ ∈ J ′;
if J ∩ J ′ �= ∅, take j, j′ ∈ J ∩ J ′. Write f as f1/g1 with f1, g1 ∈ RJ . By
Lemma 3.2.7, g1 = p1u1, where 0 �= p1 ∈ K[wj ] and u1 ∈ R×

J . Replace f1 by
f1u

−1
1 to assume that g1 ∈ K[wj ]. Similarly f = f2/g2 with f2 ∈ RJ′ and

g2 ∈ K[wj′ ].
If J ∩ J ′ �= ∅, then g1, g2 ∈ RJ ∩ RJ ′ = RJ∩J ′ . Thus g2f1 = g1f2 ∈

RJ ∩ RJ′ = RJ∩J ′ ⊆ PJ∩J ′ , and hence f = f1g2
g1g2

∈ PJ∩J ′ .

Now suppose J ∩ J ′ = ∅. Let g1 =
∑d1

n=0 bnwn
j with bn ∈ K. Put

h1 = (wj′
wj

)d1g1. Since wj′
wj

∈ K[wj′ ] (Lemma 3.1.1(d)), we have h1 =∑d1
n=0 bn(wj′

wj
)d1−nwn

j′ ∈ K[wj′ ]. Similarly there is an integer d2 ≥ 0 such

that h2 = ( wj

wj′
)d2g2 ∈ K[wj ]. Let d = d1 + d2. Then, for each k ∈ J

(1) f1h2 ·
(

wj′

wk

)d

= f2h1 ·
(

wj

wk

)d

.

Note that f1h2 ∈ RJ while f2h1 ∈ RJ′ . In particular, the k-component of
f2h1 is zero. By Lemma 3.2.5(c), the k-component of f2h1 ·

(wj

wk

)d is a poly-

nomial in wk. By (1), the k-component of f1h2 ·
(wj′

wk

)d
is a polynomial in wk.

Hence, again by Lemma 3.2.5(c), the k-component of f1h2 is a polynomial in
wk.

We conclude that f1h2 ∈ K[wk | k ∈ J ], so f = f1h2
g1h2

∈ K(x). �

Corollary 3.3.2: For each i ∈ I let P ′
i = P{i}. Then, P ′

i =
⋂

j �=i Pj and⋂
j∈I Pj = K(x).

Proof: We apply Proposition 3.3.1 several times:⋂
j �=i

Pj =
⋂
j �=i

PI �{j} = P⋂
j �=i I �{j} = P{i} = P ′

i .

For the second equality we choose an i ∈ I. Then⋂
j∈I

Pj = PI �{i} ∩
⋂
j �=i

PI �{j} = PI �{i} ∩ P{i} = K(x),

as claimed. �
Remark 3.3.3: Proper inclusion. Let J be a nonempty proper subset of I.
Then RJ is a proper subset of RI ∩ PJ .

Indeed, choose an i ∈ I � J . By definition, wi ∈ RI . In addition,
wi ∈ K(x) ⊆ PJ . Thus, wi ∈ RI ∩ PJ . However, wi /∈ RJ . Otherwise
wi = a0 +

∑
k∈J

∑∞
n=1 aknwn

k with a0, akn ∈ K and akn → 0 as n → 0,
contradicting the uniqueness in Lemma 3.2.1. �
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3.4 Factorization of Matrices over Complete Rings

We show in this section how to decompose a matrix over a complete ring
into a product of matrices over certain complete subrings. This will establish
the decomposition condition in the definition of the patching data (Definition
1.1.1) in our setup.

Lemma 3.4.1: Let (M, ‖ ‖) be a complete normed ring and let 0 < ε < 1.
Consider elements a1, a2, a3, . . . ∈ M such that ‖ai‖ ≤ ε for each i and
‖ai‖ → 0. Let

pi = (1 − a1) · · · (1 − ai), i = 1, 2, 3, . . . .

Then the sequence (pi)∞i=1 converges to an element of M×.

Proof: Let p0 = 1. Then ‖pi‖ ≤ ‖1 − a1‖ · · · ‖1 − ai‖ ≤ 1. Also, pi =
pi−1(1 − ai). Hence,

‖pi − pi−1‖ ≤ ‖pi−1‖ · ‖ai‖ ≤ ‖ai‖ → 0.

Thus, (pi)∞i=1 is a Cauchy sequence, so converges to some p ∈ M . Further-
more,

‖pk − 1‖ = ‖
k∑

i=1

(pi − pi−1)‖ ≤ max ‖ai‖ ≤ ε.

Consequently, ‖p − 1‖ < 1. By Lemma 2.1.3(f), p ∈ M×. �
Lemma 3.4.2 (Cartan’s Lemma): Let (M, ‖ ‖) be a complete normed ring.
Let M1 and M2 be complete subrings of M . Suppose
(1) for each a ∈ M there are a+ ∈ M1 and a− ∈ M2 with ‖a+‖, ‖a−‖ ≤ ‖a‖

such that a = a+ + a−.
Then for each b ∈ M with ‖b − 1‖ < 1 there exist b1 ∈ M×

1 and b2 ∈ M×
2

such that b = b1b2.

Proof: Let a1 = b − 1 and ε = ‖a1‖. Then 0 ≤ ε < 1. The condition

(2) 1 + aj+1 = (1 − a+
j )(1 + aj)(1 − a−

j ),

with a+
j , a−

j associated to aj by (1), recursively defines a sequence (aj)∞j=1 in
M . Use the relation aj = a+

j + a−
j to rewrite (2):

(3) aj+1 = a+
j a−

j − a+
j aj − aja

−
j + a+

j aja
−
j .

Inductively assume that ‖aj‖ ≤ ε2j−1
. Since ‖a+

j ‖, ‖a−
j ‖ ≤ ‖aj‖, (3) implies

that ‖aj+1‖ ≤ max(‖aj‖2, ‖aj‖3) = ‖aj‖2 ≤ ε2j

. Therefore, aj → 0, a−
j → 0,

and a+
j → 0. Further, by (2),

(4) 1 + aj+1 = (1 − a+
j ) · · · (1 − a+

1 ) b (1 − a−
1 ) · · · (1 − a−

j ).
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By Lemma 3.4.1, the partial products (1− a−
1 ) · · · (1− a−

j ) converge to some
b′2 ∈ M×

2 . Similarly, the partial products (1 − a+
j ) · · · (1 − a+

1 ) converge to
some b′1 ∈ M×

1 . Passing to the limit in (4) we get 1 = b′1bb
′
2. Therefore,

b = (b′1)
−1(b′2)

−1, as desired. �

Lemma 3.4.3: Let A be a complete integral domain with respect to an ab-
solute value | |, A1, A2 complete subrings of A, and A0 a dense subring of A.
Set Ei = Quot(Ai) for i = 0, 1, 2 and E = Quot(A). Suppose these objects
satisfy the following conditions:
(5a) For each a ∈ A there are a+ ∈ A1 and a− ∈ A2 with |a+|, |a−| ≤ |a|

such that a = a+ + a−.
(5b) A = A0 + gA for each nonzero g ∈ A0.
(5c) For every f ∈ A there are p ∈ A0 and u ∈ A× such that f = pu.
(5d) E0 ⊆ E2.

Then, for each b ∈ GLn(E) there are b1 ∈ GLn(E1) and b2 ∈ GLn(E2) such
that b = b1b2.

Proof: As in Example 2.1.4(d), we define the norm of a matrix a = (aij) ∈
Mn(A) by ‖a‖ = maxij |aij | and note that Mn(A) is a complete normed ring,
Mn(A1, ), Mn(A2) are complete normed subrings of Mn(A), and Mn(A0) is
a dense subring of Mn(A). Moreover, by (5a), for each a ∈ Mn(A) there
are a+ ∈ Mn(A1) and a− ∈ Mn(A2) with ‖a+‖, ‖a−‖ ≤ ‖a‖ such that
a = a+ + a−.

By Condition (5c) each element of E is of the form 1
hf , where f ∈ A

and h ∈ A0, h �= 0. Hence, there is h ∈ A0 such that hb ∈ Mn(A) and h �= 0.
If hb = b1b

′
2, where b1 ∈ GLn(E1) and b′2 ∈ GLn(E2), then b = b1b2 with

b2 = 1
hb′2 ∈ GLn(E2). Thus, we may assume that b ∈ Mn(A).
Let d ∈ A be the determinant of b. By Condition (5c) there are g ∈ A0

and u ∈ A× such that d = gu. Let b′′ ∈ Mn(A) be the adjoint matrix of b,
so that bb′′ = d1. Let b′ = u−1b′′. Then b′ ∈ Mn(A) and bb′ = g1.

We set

V = {a′ ∈ Mn(A) | ba′ ∈ gMn(A)} and V0 = V ∩ Mn(A0).

Then V is an additive subgroup of Mn(A) and gMn(A) ≤ V . By (5b),
Mn(A) = Mn(A0) + gMn(A). Hence V = V0 + gMn(A). Since Mn(A0) is
dense in Mn(A), and therefore gMn(A0) is dense in gMn(A), it follows that
V0 = V0 + gMn(A0) is dense in V = V0 + gMn(A). Since b′ ∈ V , there
is a0 ∈ V0 such that ||b′ − a0|| < |g|

||b|| . In particular, a0 ∈ Mn(A0) and
ba0 ∈ gMn(A).

Put a = 1
g a0 ∈ Mn(E0). Then ba ∈ Mn(A) and ||1 − ba|| = || 1g b(b′ −

a0)|| ≤ 1
|g| ||b|| · ||b′ − a0|| < 1. It follows from Lemma 2.1.3(f) that ba ∈

GLn(A). In particular det(a) �= 0 and therefore a ∈ GLn(E0) ≤ GL(E2).
By Lemma 3.4.2, there are b1 ∈ GLn(A1) and b′2 ∈ GLn(A2) ≤ GLn(E2)
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such that ba = b1b
′
2. Thus b = b1b2, where b1 ∈ GLn(A1) ≤ GLn(E1) and

b2 = b′2a
−1 ∈ GLn(E2). �

We apply Corollary 3.4.3 to the rings and fields of 3.3.

Corollary 3.4.4: Let B ∈ GLn(Q).
(a) For each partition I = J ·∪ J ′ into nonempty sets J and J ′ there exist

B1 ∈ GLn(PJ) and B2 ∈ GLn(PJ′) such that B = B1B2.
(b) For each i ∈ I there exist B1 ∈ GLn(Pi) and B2 ∈ GLn(P ′

i ) such that
B = B1B2.

Proof: We may assume without loss that both J and J ′ are nonempty and
apply Lemma 3.4.3 to the rings R,RJ , RJ′ , R0 rather than A, A1, A2, A0,
where R0 = K[wi | i ∈ I].

By definition, R, RJ , and RJ ′ are complete rings (Second paragraph of
Section 3.2). Given f ∈ R, say, f = a0+

∑
i∈I

∑∞
k=1 aikwk

i (Lemma 3.2.1), we
let f1 = a0+

∑
i∈J

∑∞
k=1 aikwk

i and f2 =
∑

i∈J′
∑∞

k=1 aikwk
i . Then |fi| ≤ |f |,

i = 1, 2 and f = f1 + f2. This proves condition (5a) in our context.
By definition, R is the completion of R0, so R0 is dense in R and

K(x) = Quot(R0) is contained in both PJ = Quot(Rj) and PJ ′ = Quot(RJ ′).
Conditions (5b) and (5c) are Corollary 3.2.8 and Lemma 3.2.7, respectively.
Our Corollary is therefore a special case of Lemma 3.4.3. �

We apply Corollary 3.3.2 and Corollary 3.4.4 to put together patching
data whose analytic fields are the fields Pi introduced above.

Proposition 3.4.5: Let K be a complete field with respect to an ultrametric
absolute value | |. Let x be an indeterminate, G a finite group, r and element
of K×, and I a finite set with |I| ≥ 2. For each i ∈ I let Gi be a subgroup of G,
Fi a finite Galois extension of E = K(x) with Gal(Fi/K) ∼= Gi, and ci ∈ K×

such that |r| ≤ |ci − cj | if i �= j. Set wi = r
x−ci

, Pi = Quot(K{wj | j ∈
I �{i}}), P ′

i = Quot(K{wi}), and Q = Quot(K{wi | i ∈ I}). Suppose
G = 〈Gi | i ∈ I〉 and Fi ⊆ P ′

i for each i ∈ I. Then E = (E,Fi, Pi, Q, Gi, G)i∈I

is patching data.

Proof: Our assumptions imply conditions (1a) and (1d) of Definition 1.1.1.
By Corollary 3.3.2, P ′

i = P{i} =
⋂

j �=i PI �{j} =
⋂

j �=i Pj and
⋂

i∈I Pi = E.
Thus, Conditions (1b) and (1c) of Definition 1.1.1 hold. Finally, Condition
(1e) of Definition 1.1.1 holds by Corollary 3.4.4. It follows that E is patching
data. �

Notes
The whole chapter is a rewrite of Sections 2–4 of [Har05], which for themselves
are a revision of Sections 2–4 of [HaJ98a]. Starting from a complete valued
field (K, | |), [HaJ98a] chooses ci ∈ K, i ∈ I, such that |ci| ≤ |ci − cj | = 1
for all distinct i, j ∈ I. Then [HaJ98a] extends | | to an absolute value of
K{wi | i ∈ I}, with wi = 1

x−ci
. Here we multiply wi by an element r ∈ K×
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and replace the above condition on the ci’s by |ri| ≤ |ci − cj | for all i �= j.
The absolute value of K extends in this case only to a norm of K{wi | i ∈ I}.
Yet, the main results of [HaJ98a] at this stage (Corollary 3.3.2 and Corollary
3.4.4) ) are still attained.

Remark 3.3.3 is due to Elad Paran.
Cartan’s lemma has many forms and applications. See [Hrb03] for an

extensive discussion. The author learned about the lemma from [FrP81,
(III.6.3)]. Our version for fields seems to appear for the first time in [HaJ98a].

There is an overlap between Chapter 3 and [FrP04, Sections 2.1 and 2.2]
in the case where K is algebraically closed.
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Chapter 4.
Constant Split Embedding
Problems over Complete Fields

Let K0 be a complete field under a discrete ultrametric absolute value and
x an indeterminate. We prove that each finite split embedding problem
over K0 has a rational solution. Thus, given a finite Galois extension K
of K0 with Galois group Γ that acts on a finite group G, there is a finite
Galois extension F of K0(x) which contains K(x) with Gal(F/K(x)) ∼= G
and Gal(F/K0(x)) ∼= Γ � G such that res: Gal(F/K0(x)) → Gal(K/K0)
corresponds to the projection Γ � G → Γ. Moreover, F has a K-rational
place unramified over K(x) whose decomposition group over K0(x) is Γ.

To construct F we choose finitely many cyclic subgroups Ci, i ∈ I,
of G which generate G. For each i ∈ I we construct a Galois extension
Fi = K(x, zi) of K(x) with Galois group Ci in K((x)). Then we consider the
ring R = K{wi | i ∈ I} as in Section 3.2, where wi = r

x−ci
, r ∈ K0, ci ∈ K,

and |r| ≤ |ci − cj | for all i �= j, and shift Fi into the field P ′
i = Quot(K{wi})

(Lemma 4.3.5). Choosing the ci’s in an appropriate way (Claim A of the proof
of Proposition 4.4.2), we establish patching data E with a proper action of Γ
and apply Proposition 1.2.2 to solve the given embedding problem.

4.1 Tame Realization of Cyclic Groups over K(x)
Given a field K and an indeterminate x, we construct for each finite cyclic
group A a Galois extension F of K(x) with Galois group A and with good
control on the ramification (Lemma 4.2.5). In particular, each prime divisor
of K(x)/K that ramifies in F is totally ramified, so F is a regular extension
of K.

In this section we handle the tame case where char(K) does not divide
the order of A. In the next section we treat the wild case where the order of
A is a power of char(K).

Remark 4.1.1: Branch points. Let K be a field, E = K(x), and F a finite
separable extension of E. A prime divisor P of F/K is an equivalence
class of valuations of F that are trivial on K. Let vP be a representative
of P and let F̄P be the residue field of F at P. The restriction of vP to
E represents a prime divisor p of E/K which is said to lie under P. Let
eP/p = (vP(F×) : vp(E×)) be the ramification index and F̄P/Ēp the residue
extension of P/p. We say that P ramifies over p (or over E) if eP/p > 1
or F̄P/Ēp is an inseparable extension. Next, p is said to ramify if F has a
prime divisor P which ramifies over p. If eP/p = [F : E] > 1, we say that p
totally ramifies in F . Moreover, the formula

∑
eifi = [F : E] that holds

for the ramification indices and residue degrees [Deu73, p. 97, Thm.] implies
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that p has a unique extension P to F and the residue degree is 1. We denote
the set of all prime divisors of E/K that ramify in F by Ram(F/E).

Each p ∈ Ram(F/E) corresponds either to a monic irreducible poly-
nomial pp ∈ K[x] or to ∞. In the former case vp(y) = m if y = pm

p
g
h ,

where m ∈ Z and g, h ∈ K[x] are relatively prime to pp. In the latter
case vp

(
g
h

)
= deg(h) − deg(g), where g, h ∈ K[x] and g, h �= 0. A branch

point of F/E with respect to x is either a zero of pp in K̃ for some finite
p ∈ Ram(F/E) or ∞, if ∞ ∈ Ram(F/E). We denote the set of all branch
points of F/E with respect to x by Branch(F/E, x) or by Branch(F/E) if x
is obvious from the context. We call a branch point of F/E separable if it
belongs to Ks ∪ {∞}. If F = E(y) and y is separable over E and integral
over K[x], then discr(irr(y,K(x))) is a polynomial h ∈ K[x] and each finite
branch point of F/E is a zero of h [Lan70, p. 62], hence Branch(F/E) is a
finite subset of K̃ ∪ {∞}.

If F ′ is a finite extension of E that contains F , then the multiplica-
tivity of the ramification index and the inseparable degree of the residue
field extension imply that Ram(F/E) ⊆ Ram(F ′/E), hence Branch(F/E) ⊆
Branch(F ′/E). If F1 and F2 are finite separable extensions of E and a prime
divisor p of E/K is unramified in both F1 and F2, then p is unramified in F1F2

[FrJ08, Lemma 2.3.6]. Thus, Ram(F1F2/E) = Ram(F1/E)∪Ram(F2/E) and
Branch(F1F2/E) = Branch(F1/E) ∪ Branch(F2/E). In particular, let L be
a finite separable extension of K. Then L(x)/K(x) is unramified [Deu73,
p. 113], so Branch(F/E) = Branch(FL/L(x)). �

Definition 4.1.2: Let F/K be a field extension. A K-place of F is a place
ϕ: F → K̃ ∪ {∞} such that ϕ(a) = a for each a ∈ K. We say that ϕ is a
K-rational place if ϕ is a K-place of F and K is its residue field. In this
case F/K is a regular extension [FrJ08, Lemma 2.6.9]. �

Notation 4.1.3: Each a ∈ K̃∪{∞} defines a K-place ϕx,a: K(x) → K̃∪{∞}
by ϕx,a(x) = a. We denote the corresponding normalized valuation by vx,a.
Thus, vx,a(irr(a, K)) = 1 if a ∈ K̃ and vx,a(x) = −1 if a = ∞. We denote the
corresponding prime divisor of K(x)/K by px,a. Note that if a′ ∈ K̃ ∪ {∞},
then px,a = px,a′ and vx,a = vx,a′ if and only if a and a′ are conjugate over
K. If we wish to emphasize the dependence of px,a on K, we write pK,x,a

rather than px,a. Similar adjustments apply to vx,a and ϕx,a. Note also that
for a = 0 and a = ∞, we get that px,0 = div0(x) and px,∞ = div∞(x) are the
divisor of zeros and the divisor of poles of x in K(x), respectively. �

Remark 4.1.4: Every K-automorphism θ of E = K(x) is given by θ(x) =
ax+b
cx+d , where

(
a
c

b
d

)
∈ GL2(K). It induces

(1a) a permutation θ′ of K̃ ∪ {∞} by θ′(α) = aα+b
cα+d ; and

(1b) a permutation θ∗ of the set of prime divisors of E/K by mapping the
equivalence class of the place ϕ onto the equivalence class of ϕ ◦ θ.

In particular, θ(x) is another generator of E/K. By definition, ϕx,α ◦ θ =
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ϕx,θ′(α) and ϕθ(x),θ′(α) = ϕx,α, so

(2) θ∗(px,α) = px,θ′(α) and pθ(x),θ′(α) = px,α.

Furthermore, let F/E be a finite extension and extend θ to an isomorphism
θ: F → F ′ of fields. Then F ′ is a finite extension of E and we have

(3)
θ′
(
Branch(F ′/E, x)

)
= Branch(F/E, x),

θ′
(
Branch(F/E, x)

)
= Branch(F/E, θ(x)).

Indeed, let α ∈ K̃∪{∞}. Then ϕx,α ◦θ: E → K̃∪{∞} represents θ∗(px,α) =
px,θ′(α). If ψ′: F ′ → K̃ ∪ {∞} extends ϕx,α, then ψ′ ◦ θ: F → K̃ ∪ {∞}
extends ϕx,α ◦ θ and the ramification indices remain unchanged. Thus α ∈
Branch(F ′/E, x) if and only if px,α is ramified in F ′/E if and only if px,θ′(α)

is ramified in F/E if and only if θ′(α) ∈ Branch(F/E, x). This proves the
first equality of (3).

Furthermore, it follows from ϕθ(x),θ′(α) = ϕx,α that α ∈ Branch(F/E, x)
if and only if px,α is ramified in F/E if and only if pθ(x),θ′(α) is ramified
in F/E if and only if θ′(α) ∈ Branch(F/E, θ(x)). This proves the second
equality of (3). �

We denote by ζn a root of unity of order n. If k is an integer, then ζk
n

has order n if and only if gcd(k, n) = 1. Thus, whenever one root of unity
of order n belongs to a field E, all roots of unity belong to E. Hence, a
condition ζn ∈ E does not depend on the choice of ζn.

Lemma 4.1.5: Let E be a field, a ∈ E, v a normalized discrete valuation
of E, n ∈ N, and z ∈ Es. Suppose char(E) � n, ζn ∈ E, gcd(n, v(a)) = 1,
and zn = a. Then F = E(z) is a cyclic extension of E of degree n and v is
totally ramified in F . If v′ is another normalized discrete valuation of E and
n|v′(a), then v′ is unramified in F .

Proof: By Kummer theory [Lan93, p. 288, Thm. 6.1], F is a cyclic extension
of E of degree at most n. Let w be a valuation of F lying over v. Then
nw(z) = ew/vv(a). Hence, n|ew/v. On the other hand, ew/v ≤ [F : E] ≤ n,
so ew/v = [F : E] = n. Consequently, v is totally ramified in F .

Finally, one can find the statement about v′ in [FrJ08, Example 2.3.8].
�

Lemma 4.1.6: Let K be a field, x an indeterminate, n a positive integer with
char(K) � n, and a, b ∈ K× with b �= a. Set L = K(ζn) and G = Gal(L/K).
Then K(x) has a cyclic extension F of degree n in K((x)) such that each
p ∈ Ram(F/K(x)) is totally ramified. Moreover,

(4) Branch(F/K(x)) =
{
{a, b} if ζn ∈ K
{aζσ

n | σ ∈ G} if ζn /∈ K
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Proof: First we consider the case where ζn ∈ K and let u = 1−a−1x
1−b−1x . Then

u ∈ K[[x]] and u ≡ 1 mod xK[[x]]. Since char(K) � n, Hensel’s lemma gives
a z ∈ K[[x]] with zn = u. Note that vx,a(u) = 1 and vx,b(u) = −1. Hence, by
Lemma 4.1.5, F = K(z) is a cyclic extension of K(x) of degree n and both
vx,a and vx,b are totally ramified in F . Moreover, if v is another valuation of
K(x)/K, then v(u) = 0, so v is unramified in F (Lemma 4.1.5). It follows
that Branch(F/K(x)) = {a, b}. This completes the proof in this case.

From now on suppose ζn /∈ K. We construct a Kummer extension F ′

of L(x) of degree n in L((x)), extend the action of G on L(x) to an action
of G on L((x)), and prove that the fixed field F of G in F ′ has the desired
properties.

Part A: Construction of F ′. Let χ be the map of G into the set of all
integers between 1 and n−1 that are relatively prime to n defined by ζ

χ(σ)
n =

ζσ
n . This map satisfies

(5) χ(στ) ≡ χ(σ)χ(τ) mod n

for all σ, τ ∈ G. By [FrJ08, Example 3.5.1], K((x)) is a regular extension of K
and L((x)) = K((x))(ζn). Thus, we may identify G with Gal(L((x))/K((x))).

We consider the element

u =
∏
σ∈G

(1 − a−1ζ−σ
n x

1 − b−1x

)χ(σ−1)

of L(x) and observe that 1−a−1ζ−1
n x

1−b−1x ∈ L[[x]]. Since char(K) � n, Hensel’s

lemma [FrJ08, Proposition 3.5.2] gives a y ∈ L[[x]] with yn = 1−a−1ζ−1
n x

1−b−1x .

Then z =
∏

σ∈G(yσ)χ(σ−1) ∈ L[[x]] and

zn =
∏
σ∈G

(
(yn)σ

)χ(σ−1) =
∏
σ∈G

(1 − a−1ζ−σ
n x

1 − b−1x

)χ(σ−1)

= u.

For each σ ∈ G we have vL,x,aζσ
n
(u) = χ(σ−1). Hence, by Lemma

4.1.5, F ′ = L(x, z) is a cyclic extension of L(x) of degree n and each of
the valuations vL,x,aζσ

n
is totally ramified in F ′. Since ζn /∈ K, there exists

τ ∈ G with χ(τ) �= 1. Hence, by (5),∑
σ∈G

χ(σ−1) ≡
∑
σ∈G

χ(τσ−1) ≡ χ(τ)
∑
σ∈G

χ(σ−1) mod n,

so
∑

σ∈G χ(σ−1) ≡ 0 mod n. Therefore, vL,x,b(u) =
∑

σ∈G −χ(σ−1) ≡
0 mod n. By Lemma 4.1.5, vL,x,b is unramified in F ′. If v is another val-
uation of L(x)/L, then v(u) = 0, so v is unramified in F ′. It follows that
Branch(F ′/L(x)) = {anζσ

n | σ ∈ G}.
The Galois group Gal(F ′/L(x)) is generated by an element ω satisfying

zω = ζ−1
n z.

46



4.2 Realization of Cyclic Groups of Order pk

Part B: Construction of F . By (5) there exist for all τ, ρ ∈ G a nonnegative
integer k(τ, ρ) and a rational function fτ ∈ L(x) such that

zτ =
∏
σ∈G

(yστ )χ(σ−1) =
∏
ρ∈G

(yρ)χ(τρ−1)(6)

=
∏
ρ∈G

(yρ)χ(τ)χ(ρ−1)+k(τ,ρ)n = zχ(τ)
∏
ρ∈G

(1 − a−1ζ−ρ
n x

1 − b−1x

)k(τ,ρ)

= zχ(τ)fτ (x).

It follows that G leaves F ′ invariant. Let F be the fixed field of G in F ′.
Then F ⊆ K((x)).

K((x)) L((x))

F F ′= L(x, z)

K(x) L(x)

K L= K(ζn)

Let H be the subgroup of Aut(F ′/K(x)) generated by Gal(F ′/L(x)) and
G. Then the fixed field of H is K(x), so F ′/K(x) is a Galois extension with
Gal(F ′/K(x)) = G ·Gal(F ′/L(x)). Moreover, given τ ∈ G, we set m = χ(τ).
By (6), zτ = zmfτ (x), hence zωτ = (ζ−1

n z)τ = ζ−m
n zmfτ (x) = (zm)ωfτ (x) =

(zmfτ (x))ω = zτω. Thus, τω = ωτ , so G commutes with Gal(F ′/L(x)).
Moreover, the map res: Gal(F ′/F ) → Gal(L(x)/K(x)) is an isomorphism, so
F is linearly disjoint from L(x) over K(x). Therefore, F/K(x) is a Galois
extension with Gal(F/K(x)) ∼= Gal(F ′/L(x)) ∼= Z/nZ.

By Remark 4.1.1, Branch(F/K(x)) = Branch(F ′/L(x)), so

Branch(F/K(x)) = {aζσ
n | σ ∈ G}.

Note that the elements aζσ
n with σ ∈ G are conjugate over K. Hence, all of

the valuations vL,x,aζσ
n

lie over the same valuation v = vK,x,aζn
of K(x)/K.

Moreover, since v is unramified in L(x), v totally ramifies in F , by the
multiplicity of the ramification index. �

4.2 Realization of Cyclic Groups of Order pk

Again, let K be a field and x an indeterminate. Our next task is to construct
cyclic extensions of K(x) of degree pn with p = char(K) and with information
about the branch points.
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Lemma 4.2.1: Let A be principal ideal domain, E = Quot(A), F a finite
separable extension of E, and B the integral closure of A in F . Suppose B
is unramified over A. Then there exists b ∈ B such that traceF/E(b) = 1.

Proof: We write trace for traceF/E and notice that the set B′ = {x ∈
F | trace(xB) ⊆ A} is a fractional ideal of B that contains B [Lan70, p. 58,
Cor.]. Hence, D = (B′)−1 is an ideal of B (called the Different of B over
A). Moreover, a prime ideal P of B is ramified over A if and only if P divides
D [Lan70, p. 62, Prop. 8]. Since, by assumption, no P is ramified over A, we
have D = B, so B′ = B.

Next observe that since trace: F → E is an E-linear map, trace(B) is
an ideal of A, hence there exists a ∈ A with trace(B) = aA. Since F/E
is separable, the map trace: F → E is nonzero [Lan93, p. 286, Thm. 5.2],
so a �= 0. Therefore, trace(a−1B) = A, hence a−1 ∈ B′ = B. It follows
that a−1B = B, so trace(B) = A. Consequently, there exists b ∈ B with
trace(b) = 1. �
Lemma 4.2.2: Suppose p = char(K) > 0. Let F be a cyclic extension of
K(x) of degree pn in K((x)), n ≥ 1. Suppose the integral closure O of K[x]
in F is unramified over K[x]. Then K(x) has a cyclic extension F ′ of degree
pn+1 in K((x)) which contains F such that the integral closure O′ of K[x] in
F ′ is unramified over K[x].

Proof: We define F ′ to be F (z), where z is a zero of Zp − Z − a with a
suitable element a ∈ O. The three parts of the proof produce a, and then
show that F ′ has the desired properties.

Part A: Construction of a and z. We apply Lemma 4.2.1 to choose b ∈ O
with traceF/K(x)(b) = 1. Then we set c = b − bp and notice that

traceF/K(x)(c) = traceF/K(x)(b) − (traceF/K(x)(b))p = 0.

Let σ be a generator of Gal(F/K(x)). Set q = pn and

a1 =
q−1∑
i=1

i−1∑
j=0

bσi

cσj

.

Then a1 ∈ O and

aσ
1 =

q−1∑
i=1

i−1∑
j=0

bσi+1
cσj+1

=
q∑

i=2

i−1∑
j=1

bσi

cσj

.

Hence,

a1 − aσ
1 = bσc + bσ2

c + · · · + bσq−1
c − bσq

q−1∑
j=1

cσj

=
q−1∑
i=0

bσi

c − b

q−1∑
j=0

cσj

= traceF/K(x)(b)c − b · traceF/K(x)(c) = c.
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Now note that O is integral over K[x] and is contained in K((x)), so
O ⊆ K[[x]] (because K[[x]] is integrally closed), in particular a1 ∈ K[[x]].
Let v be the K-valuation of K((x)) with v(x) = 1. Since K[x] is v-dense in
K[[x]], there is an a0 ∈ K[x] with v(a1 − a0) > 0. Set a = a1 − a0. Then
a ∈ O, v(a) > 0, and

(1) aσ − a = bp − b.

Thus, the polynomial f(Z) = Zp − Z − a satisfies v(f(0)) = v(−a) > 0 and
v(f ′(0)) = v(−1) = 0. By Hensel’s lemma for K((x)), there exists z ∈ K[[x]]
such that zp − z − a = 0.

Part B: Irreducibility of Zp −Z − a. Assume Zp −Z − a is reducible over
F . Then z ∈ F [Lan93, p. 290, Thm. 6.4(b)]. By (1),

(zσ − z)p − (zσ − z) − (bp − b) = (zσ − z)p − (zσ − z) − (aσ − a)(2)
= (zp − z − a)σ − (zp − z − a) = 0.

Since b is a root of Zp −Z − (bp − b), there is an integer i with zσ − z = b + i
[Lan93, p. 290, Thm. 6.4(b)]. Apply traceF/K(x) to both sides to get 0 on
the left and 1 on the right. This contradiction proves that Zp − Z − a is
irreducible.

It follows that f = irr(z, F ) ∈ O[Z], f(z) = 0, and f ′(z) = −1, in
particular discr(f) is a unit of O [FrJ08, p. 109]. Hence, O′ = O[z] is the
integral closure of O in F ′ = F (z) and O′/O is a ring cover in the sense of
[FrJ08, Def. 6.1.3]. In particular, no prime ideal of O is ramified in O′ [FrJ08,
Lemma 6.1.8(b)]. It follows from our assumption on O that O′ is unramified
over K[x].

Part C: Extension of σ to σ′ that maps z to z + b. Equality (1) implies
that z + b is a zero of Zp − Z − aσ. Thus, by Part B, σ extends to an
automorphism σ′ of F ′ with zσ′

= z + b. We need only to prove that the
order of σ′ is pn+1. Induction shows z(σ′)j

= z + b + bσ + · · ·+ bσj−1
for each

j ≥ 1. In particular,

z(σ′)q

= z + traceF/K(x)(b) = z + 1.

Hence, z(σ′)iq

= z+i for i = 1, . . . , p, so the order of σ′ is pn+1. Consequently,
F ′ is a cyclic extension of K(x) of order pn+1. �
Remark 4.2.3: Inertia group. Let (F,w)/(E, v) be a finite Galois extension
of discrete valued fields. The corresponding inertia group is the subgroup

Iw/v = {σ ∈ Gal(F/E) | w(xσ − x) > 0 for each x ∈ Ow}

of Gal(F/E). Its order satisfies |Iw/v| = ew/v[F̄w : Ēv]i, where the second
factor on the right is the inseparability index of the residue field extension
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[Ser79, p. 22, Prop. 21(a)]. Thus, w/v is ramified if and only if Iw/v is non-
trivial. If w/v is totally ramified, then ew/v = [F : E], so Iw/v = Gal(F/E)
and Ēv = F̄w (because, in general, ew/v[F̄w : Ēv] ≤ [F : E]). If (F ′, w′)
is a finite extension of (F,w) and F ′/E is Galois, then the restriction map
res: Gal(F ′/E) → Gal(F/E) maps Iw′/v onto Iw/v [Ser79, p. 22, Prop. 22(b)].
Taking inverse limit, the latter assertion generlizes also to arbitrary Galois
extensions F ′/E.

Note that there may be several valuations of F lying over v and they are
conjugate to one another. Thus, we refer to Iw/v also as an inertia group
of v in Gal(F/E).

Now consider an extension E1 of E in F in which v is unramified. Then
v is unramified in each E-conjugate of E1. Hence, by [FrJ08, Cor. 2.3.7(c)], v
is unramified in the compositum Ê of all conjugates of E1 over E. It follows
by the first paragraph of this remark that the restriction of Iw/v to Ê is
trivial. In particular, E1 is contained in the fixed field of Iw/v in F .

Let θ be an isomorphism of F onto a field F ′ and set E′ = Eθ. Then
F ′/E′ is a finite Galois extension and σ �→ σθ is an isomorphism of Gal(F/E)
onto Gal(F ′/E′). Let wθ and vθ be the corresponding valuations of F ′ and
E′ defined by wθ(x′) = w((x′)θ−1

) and vθ(x′) = v((x′)θ−1
). A direct check

reveals that Iθ
w/v = Iwσ/vσ .

If, in addition, E = K(x) is a rational function field and b ∈ K̃ ∪ {∞},
then we call each inertia group of vx,b in Gal(F/E) also an inertia group
of b in Gal(F/E) (with respect to x). �
Lemma 4.2.4: Let K be a field of positive characteristic p, x an indetermi-
nate, n a positive integer, and a ∈ K×. Then K(x) has a cyclic extension F
in K((x)) of degree pn such that Branch(F/K(x)) = {a} and px,a is totally
ramified in F .

Proof: We reduce the general case to the case where K is an algebraic
extension of a finite field.

Part A: We assume that K is perfect. Let u = x
x−a and observe that

K(x) = K(u). Note that x − a is a unit of K[[x]]. Hence, K((x)) = K((u))
and K[[x]] = K[[u]].

In the case where n = 1 we consider the polynomial f(Y ) = Y p −Y −u.
Then vx,0(f(0)) = vx,0(u) = 1 and vx,0(f ′(0)) = vx,0(−1) = 0. Hence, by
Hensel’s lemma, there exists y ∈ K((x)) with yp − y = u.

Next note that vx,a = vu,∞ and px,a = pu,∞. If y ∈ K(x), then vx,a(y) <
0, so pvx,a(y) = vx,a(yp−y) = vx,a(u) = −1, which is a contradiction. Hence,
by Artin-Schreier, f(Y ) is irreducible and K(y)/K(x) is a cyclic extension of
degree p [Lan93, p. 290, Thm. 6.4(b)]. Moreover, px,a totally ramifies in K(y)
[FrJ08, Example 2.3.9]. If v is another valuation of K(x)/K, then v(u) ≥ 0,
so v is unramified in F1 = K(y). It follows that Ram(F1/K(x)) = {px,a}.
Thus, if we denote the integral closure of K[u] in F1 by O1, we find that O1

is unramified over K[u].
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Inductively suppose we have constructed for n ≥ 1 a cyclic extension
F of K(x) in K((x)) of degree pn containing F1 such that px,a is the only
prime divisor of K(x)/K that ramifies in F . By Lemma 4.2.2, K(u) = K(x)
has a cyclic extension F ′ of degree pn+1 in K((u)) = K((x)). Moreover, the
integral closure of K[u] in F ′ is unramified over K[u]. Since px,a ramifies in
F1, it also ramifies in F ′. Thus, Branch(F ′/K(x)) = {a}.

In order to prove that px,a is totally ramified in F ′ note that our con-
struction gives a unique prime divisor q of F1/K lying over p = px,a. Let q′

be a prime divisor of F ′ lying over q. By Remark 4.2.3, the restriction map
res: Gal(F ′/K(x)) → Gal(F1/K(x)) maps the inertia group Iq′/p onto the
inertia group Iq/p. Since Gal(F ′/K(x)) ∼= Z/pn+1Z and Gal(F1/K(x)) ∼=
Z/pZ, the restriction map is a Frattini cover [FrJ08, Def. 22.5.1]. This
implies that Iq′/p = Gal(F ′/K(x)). Since K is perfect, eq′/p = |Iq′/p| = [F ′ :
K(x)] (Remark 4.2.3). This means that p is totally ramified in F ′.

Part B: The general case. Denote the algebraic closure of Fp in K by K0.
Then K0 is a perfect field, so K/K0 is a regular extension. Part A gives a
cyclic extension F0 of K0(x) in K0((x)) of degree pn such that p0 = pK0,x,1

is totally ramified in F0 and Branch(F0/K(x)) = {1}. Since F0 and K are
linearly disjoint over K0, F = F0K is a cyclic extension of K(x) of degree
pn. Moreover, F ⊆ K((x)).

Finally we choose a Möbius transformation θ of K(x)/K with θ(0) = 0
and θ(a) = 1. Then we extend θ to an isomorphism of F onto a field F ′.
Then F ′ is a cyclic extension of K(x) of degree pn in K((x)), the prime divisor
pK,x,a of K(x)/K is totally ramified in F ′, and Branch(F ′/K(x)) = {a}, as
desired. �

We combine Lemma 4.1.6 and Lemma 4.2.4 into the following result.

Lemma 4.2.5: Let K be a field of characteristic p, x an indeterminate, n
a positive integer, and a, b ∈ K× with b �= a. Suppose either p � n or n is a
power of p. Then K(x) has a finite cyclic extension F in K((x)) of order n
such that

Branch(F/K(x)) =

⎧⎨⎩ {a, b} if p � n and ζn ∈ K
{aζσ

n | σ ∈ Gal(K(ζn)/K)} if p � n and ζn /∈ K
{a} if p = p > 0 and n=pk.

Moreover, each p ∈ Ram(F/K(x)) is totally ramified in F .

Remark 4.2.6: Finite abelian groups. For each finite Abelian group A the
field K(x) has a Galois extension F such that F/K is regular and
Gal(F/K(x)) ∼= A [FrJ08, Prop. 16.3.5]. When K is infinite, a field crossing
argument then shows how to choose F in K((x)) [HaV96, Lemma 4.5].

Alternatively, let A =
∏r

i=1 Ai be the direct product of cyclic groups
Ai, where |Ai| = pki

i and pi is a prime number. By Lemma 4.2.5, we may
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construct for each i a cyclic extension Fi of degree |Ai| of K(x) in K((x))
such that the sets Branch(Fi/K(x)) are disjoint. Then for each 1 ≤ k ≤ r−1,

Branch(F1 · · ·Fk/K(x)) ∩ Branch(Fk+1/K(x)) = ∅.

Therefore, E = F1 · · ·Fk ∩ Fk+1 is an unramified extension of K(x). By
Riemann-Hurwitz, E = K(x) [FrJ08, Remark 3.6.2(d)]. It follows that
Gal(F1 · · ·Fr/K(x)) ∼= A. �

4.3 Rational Realization of Cyclic Groups
over Complete Fields

When the basic field K is complete under an ultrametric absolute value, we
are able to construct the cyclic extensions of K(x) in the fields of converging
power series. This is necessary for patching of cyclic groups into arbitrary
finite groups.

Remark 4.3.1: Contraction. For c ∈ K× let μc be the K-automorphism of
K((x)) that maps f =

∑∞
n=m anxn onto μc(f) =

∑∞
n=m ancnxn. In par-

ticular, μc(h(x)) = h(cx) for each h ∈ K[x], so μc leaves K[x] and K(x)
invariant. If K is complete under an ultrametric absolute value | | and f con-
verges at c, then ancn → 0, hence μc(f) ∈ Quot(K{x}) and μc(f) converges
at 1. Moreover, if f ∈ K[[x]], then μc(f) ∈ K{x}. Thus, μc “contracts the
radius of convergence” of the functions from |c| to 1. �
Notation 4.3.2: Let K be a field, | | an a ultrametric absolute value, and π0

an element of K× with |π0| < 1. For each positive integer n with char(K) � n
let ζn be a primitive root of unity of order n. Then let

Π(K, π0) = {π−i
0 ζn | i = 0, 1, 2, . . . ; n ∈ N, char(K) � n}

and note that Π(K, π0) is countable. �
Lemma 4.3.3: Let K be an infinite field, x an indeterminate, E = K(x),
F a Galois extension of E in K((x)) of a finite degree n, and b1, . . . , bn

distinct elements of K. Let S be the integral closure of K[x] in F . Then
S has n distinct prime ideals m1, . . . ,mn lying over K[x]x and F/E has a
primitive element y ∈ S such that y ≡ bi mod mi, i = 1, . . . , n. Moreover,
the polynomials g = irr(y, E) ∈ K[x, Y ] and h = discr(irr(y,E)) ∈ K[x]
satisfy h′(0) �= 0 and ∂g

∂Y (0, bi) �= 0 for i = 1, . . . , n.

Proof: Since F ⊆ K((x)) and since F/E is Galois, S has n distinct prime
ideals m1, . . . ,mn that lie over K[x]x and S/mi

∼= K, i = 1, . . . , n. More-
over, for each i there exists σi ∈ Gal(F/E) such that σimi = m1 and
σ1 = idF . By the Chinese remainder theorem, there exists y ∈ S such
that y ≡ bi mod mi, i = 1, . . . , n. Hence, yi = σiy satisfies yi ≡ bi mod m1,
i = 1, . . . , n. In particular, y1, . . . , yn are n distinct roots of g = irr(y, E).
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4.3 Rational Realization of Cyclic Groups over Complete Fields

It follows that F = E(y). Since F/E is Galois, y1, . . . , yn ∈ S. It follows
that h = discr(irr(y,E)) = ±

∏
i�=j(yi − yj) =

∑m
i=0 cix

i is in K[x] and

c0 = h(0) = ±
∏

i�=j(bi − bj) �= 0. Finally, h(x) = ±
∏n

i=1
∂g
∂Y (x, yi) and

h(0) = ±
∏n

i=1
∂g
∂Y (0, bi). Consequently, ∂g

∂Y (0, bi) �= 0 for i = 1, . . . , n. �
Lemma 4.3.4: Let K0 be a complete field under an ultrametric absolute
value | |, π0 an element of K×

0 with |π0| < 1, and C a finite cyclic group
of a prime power order. Set E0 = K0(x). Then for each a ∈ K×

0 there
exist π ∈ Π(K0, π0) and a Galois extension F0 = E0(z) of E0 in K0((x))
with Galois group C such that all conjugates of z over E0 are in K0{x},
discr(irr(z, E0)) ∈ K0{x}×, and aπ ∈ Branch(F0/E0). Moreover, px,aπ is
totally ramified in F0.

Proof: Let n = |C| and a ∈ K×
0 . By Lemma 4.2.5 (with aζn replac-

ing a if ζn ∈ K), there exist a Galois extension E′
0 of E0 in K0((x)) with

Gal(E′
0/E0) ∼= C and aζn ∈ Branch(E′

0/E0). Moreover, px,aζn
is totally

ramified in E′
0.

Let S0 be the integral closure of K0[x] in E′
0. By Lemma 4.3.3 the

extension E′
0/E0 has a primitive element y ∈ S0 such that

h(x) = discr(irr(y, E0)) =
l∑

i=0

cix
i ∈ K0[x]

and c0 �= 0. Denote the E0-conjugates of y by y1, . . . , yn. All of them lie in
S0.

Next note that S0, as the integral closure of K0[x] in E′
0, is contained in

every valuation ring of E′
0 containing K0[x], so S0 ⊆ K0[[x]]. By Proposition

2.4.5, every yi converges at c = πm
0 if m is sufficiently large. Then zi =

μc(yi) ∈ K0{x}, i = 1, . . . , n (Remark 4.3.1). Setting F0 = μc(E′
0) and

z = μc(y), we find that F0 is a Galois extension of E0 with Gal(F0/E0) ∼= C,
F0 = E0(z), and z1, . . . , zn are the E0-conjugates of z. Moreover, h(cx) =
μc(h(x)) = discr(irr(z, E0)), and h(cx) = c0 + c1cx + · · · + clc

lxl. If m is
sufficiently large, then |ckck| < |c0|, k = 1, . . . , l. Thus, pseudo.deg(h(cx)) =
0, so h(cx) ∈ K0{x}× (Proposition 2.3.1(c)), as desired. By Remark 4.1.4,
aζnc−1 = (μ′

c)
−1(aζn) ∈ Branch(F0/E0). Hence, π = ζnπ−m

0 ∈ Π(K, π0),
aπ = aζnc−1 ∈ Branch(F0/E0), and px,aπ is totally ramified in F0 (Remark
4.2.3). �

As in Chapter 3, let r be an element of K×, I a finite set, and ci distinct
elements of K for i ∈ I such that |r| ≤ |ci − cj | for i �= j. Recall that
wi = r

x−ci
, P ′

i = Quot(K{wi}), and R = K{wi | i ∈ I}.
Lemma 4.3.5: Let K0 be a complete field under an ultrametric absolute
value | |, π0 an element of K×

0 with |π0| < 1, K a finite Galois extension of
K0, and C a finite cyclic group of a prime power order. Set E0 = K0(x) and
E = K(x). Then for each i ∈ I and each a ∈ K×

0 there exists π ∈ Π(π0, K0)
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and a Galois extension F = E(z) of E in K((wi)) with Galois group C such
that zτ ∈ P ′

i ∩ R for all τ ∈ Gal(F/E), discr(irr(z, E)) ∈ R×, b = πaci+r
πa ∈

Branch(F/E), and pK,x,b is totally ramified in F .

Proof: Since wi = r
x−ci

, we have K0(wi) = E0. By Lemma 2.2.1(d), the
map x �→ wi extends to a K0-homomorphism αi: K0{x} → K0{wi}. By
Lemma 3.2.1, αi is an isomorphism. Now let a ∈ K×

0 . Then, by Lemma
4.3.4, there exists π ∈ Π(K0, π0) and E0 has a finite Galois extension F0 =
E0(z0) in K0((x)) with Galois group C such that all conjugates of z0 over
E0 are in K0{x}, discr(irr(z0, E0)) ∈ K0{x}×, and aπ ∈ Branch(F0/E0).
Moreover, pK0,x,aπ is totally ramified in F0. It follows that F ′

0 = αi(F0) is
a Galois extension of E0 with Galois group C and with a primitive element
z = αi(z0) such that zτ ∈ K0{wi} for all τ ∈ Gal(F ′

0/E0), discr(irr(z, E0)) ∈
K0{wi}×, and b = (α′

i)
−1(aπ) = πaci+r

πa ∈ Branch(F ′
0/E0) (Remark 4.1.4).

Since K0{wi} ⊆ P ′
i ∩ R, all of the E0-conjugates of z belong to P ′

i ∩ R and
discr(irr(z, E0)) ∈ R×. Moreover, pK0,x,b is totally ramified in F ′

0 (Remark
4.2.3).

By construction, F ′
0 ⊆ K0{wi} ⊆ K0((wi)). Since K0((wi)) is a regular

extension of K0 [FrJ08, Example 3.5.1] and K/K0 is a finite Galois extension,
F = F ′

0K is a Galois extension of E with Galois group C, b ∈ Branch(F/E),
and pK,x,b is totally ramified in F . �
Lemma 4.3.6: Let K be a complete field under an ultrametric absolute value
| |. Then, for each b ∈ K×, each of the sets Db = {a ∈ K | |a| ≤ |b|},
D0

b = {a ∈ K | |a| < |b|}, and Ub = {a ∈ K | |a| = |b|} has cardinality
card(K).

Proof: The map a �→ a−1 maps Db bijectively onto the set D′
b = {a ∈

K ∪ {∞} | |a| ≥ |b|}. Since K is complete, K is infinite. It follows from
K ∪ {∞} = Db ∪D′

b that card(Db) = card(K). Next we choose c ∈ K× with
|c| < |b|. Then Dc ⊆ D0

b . Since card(Dc) = card(K), we have card(D0
b ) =

card(K). Finally, the map a �→ a+ b maps D0
b injectively into Ub. Therefore,

card(Ub) = card(K). �
Lemma 4.3.7: Let K be a complete field under an ultrametric absolute value
| |, x an indeterminate, E = K(x), and F a finite Galois extension of E.
Suppose F/K has a prime divisor P of degree 1 unramified over E.
(a) There is a K-automorphism of E that extends to a K-embedding of F

into K((x)).
(b) There is a K-automorphism of E that extends to an isomorphism θ of F

onto a field F ′ = E(z) such that all conjugates of z over E are in K{x}
and discr(irr(z, E)) ∈ K{x}×.

(c) Suppose F ⊆ K((x)). Let B be a subset of K ∪ {∞} with card(B) <
card(K). Then we can choose θ such that in addition to the requirements
of (b), it satisfies Branch(F ′/E) ∩ B ⊆ {∞}.

Proof of (a): Let p be the prime of E/K below P. Let F̂ be the completion
of F at P, and let Ê ⊆ F̂ be the completion of E at p. Then [F̂ : Ê] =
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eP/p fP/p = 1, so F̂ = Ê. Moreover, there is a K-automorphism θ0 of E that
maps p to px,0. The completion of E at px,0 is K((x)). Hence, θ0 extends to
an automorphism θ′ of F̂ = Ê onto K((x)).

Proof of (b): By (a), we may assume that F ⊆ K((x)). Let n = [F : E] and
let S be the integral closure of K[x] in F . We choose a primitive element y
for F/E in S such that h = discr(irr(y, E)) = c0 + c1x + · · · + cmxm ∈ K[x]
and h(0) �= 0 (Lemma 4.3.3). Then we denote the E-conjugates of y by
y1, . . . , yn. All of them belong to S.

Next we note that S is contained in K[[x]]. By Proposition 2.4.5, there
exists c ∈ K× at which all yi converge. By Remark 4.3.1, μc is an auto-
morphism of K((x)), so θ = μc|F is an isomorphism of F onto a subfield
F ′ = E(z) of K((x)), where z = μc(y), and zi = μc(yi) ∈ K{x}, i = 1, . . . , n
are all the E-conjugates of z. Moreover, h(cx) = μc(h(x)) = discr(irr(z, E)),
where h(cx) = c0 + cc1x + · · · + ccmxm. Replacing c with an element of
smaller absolute value, we may assume that |ccj | < |c0|, j = 1, . . . , m. Thus,
pseudo.deg(h(cx)) = 0 and therefore h(cx) ∈ K{x}× (Proposition 2.3.1(c)),
as desired.

Proof of (c): Denote the set of all zeros of h by A. Since A is a finite
set, card(AB−1) < card(K). By Lemma 4.3.6, the set of all c ∈ K× with
|c| < min1≤j≤m |c−1

j c0| has cardinality card(K). In the proof of (b) we may
therefore choose c outside AB−1. Then Branch(F ′/E) ∩ B ⊆ {∞}.

Indeed, let b ∈ Branch(F ′/E) ∩ B, b �= ∞. Then b is a zero of
discr((irr(z, E)) (Remark 4.1.1), that is h(cb) = 0, so a = cb ∈ A. Since
h(0) �= 0, we have b �= 0. Hence, c = ab−1 ∈ AB−1. This contradiction to
the choice of c proves our assertion. �

4.4 Solution of Embedding Problems

Let K/K0 be a finite Galois extension of fields with Galois group Γ acting
on a finite group G. Consider an indeterminate x and set E0 = K0(x) and
E = K(x). Then E/E0 is a Galois extension and we identify Gal(E/E0)
with Γ = Gal(K/K0) via restriction. We refer to

(1) pr: Γ � G → Γ

as a constant finite split embedding problem over E0. We prove that
if K0 is complete under an ultrametric absolute value, then (1) has a solution
field (Section 1.2) equipped with a K-rational place whose decomposition
group is Γ.

Lemma 4.4.1: Let F be a solution field of (1). Let F0 = FΓ be the fixed field

of Γ in F . Let ϕ: F → K̃0∪{∞} be a K-place with ϕ(x) ∈ K0∪{∞}. Suppose
ϕ is unramified over E0, and let Dϕ and F̄ϕ be its decomposition group (over
E0) and residue field, respectively. Then F̄ϕ ⊇ K and the following assertions
are equivalent:
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Chapter 4. Constant Split Embedding Problems over Complete Fields

(a) F̄ϕ = K and Γ = Dϕ;
(b) Γ ⊇ Dϕ;
(c) F̄0,ϕ = K0;
(d) F̄ϕ = K and ϕ(fγ) = ϕ(f)γ for each γ ∈ Γ and f ∈ F with ϕ(f) �= ∞.

Proof: Since K ⊆ F , we have K = ϕ(K) ⊆ F̄ϕ. Since the inertia group of ϕ
in Gal(F/E0) is trivial, we have an isomorphism θ: Dϕ → Gal(F̄ϕ/K0) given
by

(2) ϕ(fγ) = ϕ(f)θ(γ), γ ∈ Dϕ, f ∈ F, ϕ(f) �= ∞.

Hence, |Dϕ| = [F̄ϕ : K0] ≥ [K : K0] = |Γ|. This gives (a) ⇐⇒ (b).
Since ϕ is unramified over E0, the decomposition field FDϕ is the largest

intermediate field of F/E0 with residue field K0. Thus, if F̄0,ϕ = K0, then
FΓ = F0 ⊆ FDϕ , so Dϕ ⊆ Γ. Conversely, if Dϕ ⊆ Γ, then F0 = FΓ ⊆ FDϕ ,
hence F̄0,ϕ = K0. Consequently, (b) is equivalent to (c).

Assertion (d) implies (c) by (2). If F̄ϕ = K, then fγ = ϕ(fγ) =
ϕ(f)θ(γ) = fθ(γ) for each f ∈ K (by (2)), so that θ(γ) = γ for all γ ∈ Dϕ.
Consequently, (a) =⇒ (d). �
Proposition 4.4.2: Let K0 be a complete field with respect to an ultra-
metric absolute value | |. Let K/K0 be a finite Galois extension with Galois
group Γ acting on a finite group G from the right. Then E has a Galois
extension F such that
(3a) F/E0 is Galois;
(3b) there is an isomorphism ψ: Gal(F/E0) → Γ�G such that pr◦ψ = resE ;

and
(3c) F has a K-rational place ϕ (so F/K is regular) unramified over E0 such

that ϕ(x) ∈ K0, F̄ϕ = K, and Dϕ = Γ.

Proof: Our strategy is to attach patching data E to the embedding prob-
lem, to define a proper action of Γ on E . Then we apply Proposition 1.2.2
to conclude that the compound F of E gives a solution to the embedding
problem.

We fix a finite set I on which Γ acts from the right and a system of
generators {τi | i ∈ I} of G such that for each i ∈ I
(4a) {γ ∈ Γ | iγ = i} = {1};
(4b) the order of the group Gi = 〈τi〉 is a power of a prime number;
(4c) τγ

i = τiγ , for every γ ∈ Γ; and
(4d) |I| ≥ 2.
(E.g. assuming G �= 1, let G0 be the set of all elements of G whose order is a
power of a prime number and note that Γ leaves G0 invariant. Let I = G0×Γ
and for each (σ, γ) ∈ I and γ′ ∈ Γ let (σ, γ)γ′

= (σ, γγ′) and G(σ,γ) = 〈σγ〉.)
Then Gγ

i = Giγ for each γ ∈ Γ and G = 〈Gi | i ∈ I〉. Choose a system
of representatives J for the Γ-orbits of I. Then every i ∈ I can be uniquely
written as i = jγ with j ∈ J and γ ∈ Γ.
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Claim A: There exists a subset {ci | i ∈ I} ⊆ K such that cγ
i = ciγ and

ci �= cj for all distinct i, j ∈ I and γ ∈ Γ.
Indeed, it suffices to find {cj | j ∈ J} ⊆ K (and then define ci, for

i = jγ ∈ I, as cγ
j ) such that cδ

j �= cε
j for all j ∈ J and all distinct δ, ε ∈ Γ, and

cδ
j �= ck for all distinct j, k ∈ J and all δ ∈ Γ.

The first condition says that cj is a primitive element for K/K0; the
second condition means that distinct cj and ck are not conjugate over K0.
Thus it suffices to show that there are infinitely many primitive elements for
K/K0. But if c ∈ K× is primitive, then so is c + a, for each a ∈ K0. Since
K0 is complete, hence infinite, the claim follows.

Construction B: Patching data.
We choose r ∈ K×

0 such that |r| ≤ |ci − cj | for all distinct i, j ∈ I. For
each i ∈ I we set wi = r

x−ci
∈ K(x). As in Section 3.2, consider the ring

R = K{wi | i ∈ I} and let Q = Quot(R). For each i ∈ I let

Pi = PI �{i} = Quot(K{wj | j �= i}) and P ′
i = P{i} = Quot(K{wi})

(we use the notation of Section 3.3).
Let γ ∈ Γ. By our definition, wγ

i = r
x−cγ

i
= wiγ , i ∈ I. Hence, γ

leaves R0 = K[wi | i ∈ I] invariant. Since | | is complete on K0, it has a
unique extension to K, so |aγ | = |a| for each a ∈ K. Moreover, for each
f = a0 +

∑
i∈I

∑∞
n=1 ainwn

i ∈ R0, we have

(5) fγ = aγ
0 +
∑
i∈I

∞∑
n=1

aγ
in(wγ

i )n

and

‖fγ‖ = ‖aγ
0 +
∑
i∈I

∞∑
n=1

aγ
in(wγ

i )n‖ = ‖aγ
0 +
∑
i∈I

∞∑
n=1

aγ
inwn

iγ‖

= max(|aγ
0 |, |a

γ
in|)i,n = max(|a0|, |ain|)i,n = ‖f‖.

By Lemma 2.1.5, γ uniquely extends to a continuous automorphism of the
completion R of R0, by formula (5) for f ∈ R. Hence, Γ lifts to a group of
continuous automorphisms of R. Therefore, Γ extends to a group of auto-
morphisms of P = Quot(R). In addition, P γ

i = Piγ and (P ′
i )

γ = P ′
iγ .

For each j ∈ J , Lemma 4.3.5 gives a cyclic extension Fj = E(zj) of E
with Galois group Gj = 〈τj〉 such that zτ

j ∈ P ′
j ∩ R for each τ ∈ Gj and

discr(irr(zj , E)) ∈ R×.
For an arbitrary i ∈ I there exist unique j ∈ J and γ ∈ Γ such that

i = jγ (by (4a)). Since γ acts on P and leaves E invariant, Fi = F γ
j = E(zi)

with zi = zγ
j is a Galois extension of E in P .

The isomorphism γ: Fj → Fi gives an isomorphism

Gal(Fj/E) ∼= Gal(Fi/E)
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that maps each τ ∈ Gal(Fj/E) onto γ−1 ◦ τ ◦ γ ∈ Gal(Fi/E) (notice that the
elements of the Galois groups act from the right). In particular, it maps τj

onto γ−1 ◦ τj ◦ γ. We can therefore identify Gi with Gal(Fi/E) such that τi

coincides with γ−1 ◦τj ◦γ. This means that (aτ )γ = (aγ)τγ

for all a ∈ Fj and
τ ∈ Gj . Therefore, zτ

i ∈ P ′
i ∩ R for each τ ∈ Gi and discr(irr(zi, E)) ∈ R×.

In particular, Fi ⊆ P ′
i for each i ∈ I. It follows from Proposition 3.4.5

that E = (E,Fi, Pi, Q; Gi, G)i∈I is patching data. By construction, Γ acts
properly on E (Definition 1.2.1).

Let Qi = PiFi. diagram (3) of Section 1.3. By Propositions 1.1.7 and
1.2.2, the compound F of E satisfies (3a) and (3b). Now we verify (3c).

Claim C: F/K has a set of prime divisors of degree 1 unramified over E0

with cardinality card(K0).
Each b ∈ K0 with

(6) |b| > max
i∈I

(|r|, |ci|)

satisfies
∣∣ r
b−ci

∣∣ < 1 for each i ∈ I, hence induces the evaluation homomor-
phism x �→ b from R to K that maps wi onto r

b−ci
(Remark 3.2.4). Since R is

a principal ideal domain (Proposition 3.2.9), this homomorphism extends to
a K-rational place ϕb: P → K ∪ {∞}. Thus, ϕb|F is a K-rational place of F
with ϕb(x) = b ∈ K0, so it corresponds to a prime divisor of F/K of degree
1. By Lemma 4.3.6, the cardinality of the set {b ∈ K0 | |b| > |r|, |ci|, i ∈ I}
is equal to card(K0). Since ϕb(x) = b, distinct b give distinct ϕb|F . All but
finitely many of the corresponding prime divisors are unramified over E0.

Claim D: Dϕb
= Γ. We fix b ∈ K0 satisfying (6) such that ϕ = ϕb|F is

unramified over E0 and verify that ϕ satisfies Condition (d) of Lemma 4.4.1.
By that Lemma, Dϕ will coincide with Γ and the proof will be complete.

By the proof of Claim C, F̄ϕ = K. It remains to prove that
(7) ϕb(fγ) = ϕb(f)γ for each γ ∈ Γ

and every f ∈ F with ϕb(f) �= ∞. Of course, it suffices to prove (7)
for every f ∈ P with ϕb(f) �= ∞. Since R is a principal ideal domain
(Proposition 3.2.9), the valuation ring of ϕb in Q is the local ring of R at a
certain prime ideal, so it suffices to prove (7) for each f ∈ R.

Each f ∈ R has the form f = a0 +
∑

i∈I

∑∞
n=1 ainwn

i , with a0, ain ∈
K and ain → 0 as n → ∞ (Lemma 3.2.1). By Construction B, each
γ ∈ Γ acts continuously on R, hence fγ = aγ

0 +
∑

i∈I

∑∞
n=1 aγ

inwn
iγ . Ap-

plying ϕb we get ϕb(f) = a0 +
∑

i∈I

∑∞
n=1 ain

(
r

b−ci

)n and ϕb(fγ) = aγ
0 +∑

i∈I

∑∞
n=1 aγ

in

(
r

b−ciγ

)n. Since also the action of γ on K is continuous,

ϕb(f)γ = aγ
0 +
∑

i∈I

∑∞
n=1 aγ

in

(
r

b−cγ
i

)n. Finally, by Claim A, ciγ = cγ
i for

each i ∈ I. Consequently, ϕb(fγ) = ϕb(f)γ , as claimed. �
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Notes

Notes
Lemma 4.1.6 adds a description of the branch points to [FrJ08, Lemma 16.3.1]
with total ramification. Lemma 4.2.2 improves [FrJ08, Lemma 16.3.2] in that
it constructs F ′ inside K((x)) with exactly one branch point which is totally
ramified.

Lemma 4.2.1 goes back at least to Dedekind. It can be found in Hecke’s
book [Hec23, Satz 101] and in [Noe27]. Lemma 4.2.4 is due to Geyer building
on classical results of Albert, Witt, and H. L. Schmidt.

Lemma 4.3.5 is a variant of [HaV96, Lemma 4.2] and of [HaJ98a,
Prop. 5.1]. Finally, Proposition 4.4.2 strengthens [HaJ98a, Prop. 5.2].

The history of Proposition 4.4.2 may be traced to Harbater’s realization
of every finite group over K(x), where K is the quotient field of an arbitrary
complete local domain which is not a field [Hrb87, Thm. 2.3]. Thus, K(x)
has a Galois extension F with Gal(F/K(x)) ∼= G. Moreover, one can deduce
from the proof of Harbater’s theorem that F/K is regular. This means that G
has a K-regular realization over K(x). As mentioned in the introduction,
Harbater used formal patching to prove his result.

Following ideas of Serre, Liu used rigid analytic geometry to reprove
Harbater’s result over each field complete with respect to a nontrivial discrete
valuation. The regularity of F/K is mentioned in Liu’s theorem explicitly.
Liu distributed a preprint containing the proof in 1990. The paper itself was
published only in 1995 [Liu95].

The importance of the K-regular realization of G over K(x) lies in the
simple observation that it implies an L-regular realization of G over L(x) for
each field extension L of K. Conversely, if G has an L-regular realization
over L(x) and K is existentially closed in L (Definition 5.2.4), then G has a
K-regular realization over K(x). Combining these observations, Pop deduced
from the result of Serre-Liu (or from that of Harbater) that every finite group
G has a K-regular realization over K(x) for each field K which is either PAC
or Henselian. This result is contained in a letter from Roquette to Geyer
from December 1990.

Inspired by the method of Serre-Liu, Pop used rigid geometry to prove
for any field K00 that every constant finite split embedding problem over
K0 = K00((t))(x) has a regular solution. Thus, if K is a finite Galois ex-
tension of K0 and Gal(K/K0) acts on a finite group G, than the embedding
problem Gal(K(x)/K0(x)) � G → Gal(K(x)/K0(x)) has a solution field F
which is regular over K [Pop96, Lemma 1.4]. In particular, taking K = K0,
the group G has a K-regular realization over K(x). This generalizes Har-
bater’s result in the case where R = K00[[t]]. As we shall see later, Pop’s
result actually implies that of Harbater in each case.

Proposition 5.2 of [HaJ98a] mentioned above applies algebraic patching
to reprove Pop’s result in the case where K0 is a complete field with respect
to a non-trivial discrete ultrametric absolute value with infinite residue field
and K/K0 is a finite Galois unramified extension. The solution field obtained
in that proposition has in addition a K-rational place.
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The extra conditions on K/K0 mentioned in the preceding paragraph
were needed in the proof of [HaJ98a, Prop. 5.2] in order to choose the ci’s in
K such that |ci − cj | = 1 for all distinct i, j ∈ I. The latter condition was
needed in order to extend the absolute value on K to an absolute value of
R = K[wi | i ∈ I], where the wi in [HaJ98a, Prop. 5.2] were defined to be

1
x−ci

. The approach we take in this book eliminates the extra conditions by
defining the wi’s as r

x−ci
with ci distinct and r ∈ K×

0 such that |r| ≤ |ci − cj |
for all distinct i, j ∈ I. By doing so, R is not a complete absolute valued ring
any more but only a complete normed ring. Nevertheless, the machinery still
works, leading to a successful proof of Proposition 4.4.2. The shift to normed
rings in this framework is due to [Har05], which for itself is borrowed from
[PrP04, Sec. 2.2].

Note that eventually also [HaJ98a] gets rid of the extra conditions of
[HaJ98a, Prop. 5.2]. It replaces the field extension K/K0 by K((t))/K0((t))
with the t-adic absolute value where the extra conditions are satisfied. The
solution over K0((t))(x) of the constant embedding problem coming from
K/K0 is then specialized to a solution over K0(x) using the “ampleness” of
K0. This step, which is important in its own sake, is explained in the next
chapter.
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One of the major problems of Field Arithmetic was whether the absolute Ga-
lois group of every countable PAC Hilbertian field K is free of countable rank.
By Iwasawa, that means that every finite embedding problem of Gal(K) is
solvable. The PAC property of K implies that Gal(K) is projective, so it
suffices to solve finite split embedding problems over K. Since K is Hilber-
tian, it suffices to solve finite split constant embedding problems over K(x),
where x is transcendental over K. Since K is PAC, it is existentially closed
in the field of formal power series K̂ = K((t)). By Bertini-Noether, it suffices
to solve each finite split constant embedding problem over K̂(x). Thus, the
initial problem of proving that Gal(K) ∼= F̂ω is reduced to a problem that
Proposition 4.4.2 settles.

The property of being existentially closed in K((t)) that each PAC field
K has is shared by all Henselian fields. We call a field K which is existentially
closed in K((t)) ample. In that case, the arguments of the preceding para-
graph prove that each finite split constant embedding problem over K(x) is
solvable (Theorem 5.9.2).

It turns out that ample fields can be characterized in diophantine terms:
A field K is ample if and only if every absolutely irreducible curve over K
with a simple K-rational point has infinitely many K-rational points (Lemma
5.3.1). Surprisingly enough, each field K such that Gal(K) is a pro-p group
for a single prime number p has the latter property and is therefore ample
(Theorem 5.8.3). On the other hand, the theorems of Faltings and Grauert-
Manin imply that number fields and function fields of several variables are
not ample (Proposition 6.2.5).

5.1 Varieties
Several types of fields K which appear in Field Arithmetic like PAC fields,
PRC fields, PpC fields, and Henselian fields have a common feature: K is
existentially closed in K((t)). This property has a remarkable consequence:
Every finite split constant embedding problem over K(x) has a regular so-
lution (Theorem 5.9.2). In Section 5.3, we prove several conditions on K to
be equivalent to the above mentioned one. This section and the next one
are devoted to various preparations for the proof of the equivalence of those
conditions. Here we recall basic notions of algebraic geometry, primarily that
of an absolutely irreducible variety, and prove a few results to be used later.
The proofs are not self-contained, at crucial points we refer to other sources
in the literature.

By a K-variety we mean a separated reduced irreducible scheme V of
finite type over K. For every field extension F of K, we denote the F -rational
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Chapter 5. Ample Fields

points of V by V (F ). If x ∈ V (F ) and trans.deg(K(x)/K) = dim(V ), then
x is a generic point of V (and V is generated by x). In this case K(x)
is isomorphic to the function field of V and each point of V (K̃) is a K-
specialization of x. We say that V is absolutely irreducible if V ×K K̃
is a K̃-variety. This is the case, if and only if K(x) is a regular extension
of K for each generic point x of V [FrJ08, Cor. 10.2.2(a)]. Finally, in order
to be compatible with the convention of [FrJ08], we also write “let V be
an absolutely irreducible variety defined over K” instead of “let V be an
absolutely irreducible K-variety”.

Every K-variety is a union of finitely many affine open sub-K-varieties.
It is absolutely irreducible if and only if each of its affine open sub-K-varieties
is absolutely irreducible.

Each affine K-variety V can be represented by a closed embedding into
An

K for some positive integer n as Spec(K[X]/p), where X = (X1, . . . , Xn)
and p is a prime ideal of K[X]. Then V is absolutely irreducible if and only
if pK̃[X] is a prime ideal of K̃[X].

Let V = Spec(K[X]/〈f1, . . . , fm〉) be an affine K-variety, where
〈f1, . . . , fm〉 is a prime ideal of K[X]. Let L be a field extension of K. We
view each point a of V (L) as an n-tuple (a1, . . . , an) of elements of L. Then
K(a) = K(a1, . . . , an) is the field generated by a1, . . . , an over K. We call a
simple (also known as nonsingular) if it satisfies the Jacobian criterion:

rank
( ∂fi

∂Xj
(a)
)

= n − dim(V ).

For an arbitrary K-variety V and a point a ∈ V (L) we say that a is
simple if a has an affine open neighborhood on which it is simple. We
denote the set of all simple points of V (L) by Vsimp(L).

Lemma 5.1.1: Let V be a K-variety. If V has a simple K-rational point,
then V is absolutely irreducible and defined over K.

Proof: Assume without loss that V is affine and let x be a generic point
of V . Then the specialization x → a extends to a K-rational place of K(x)
[JaRo80, Cor. A2], so K(x)/K is regular [FrJ08, Lemma 2.6.9]. Hence V is
absolutely irreducible and defined over K. �

Let F be a field extension of K. We view each a ∈ Pn
K(F ) as an equiv-

alence class of (n + 1)-tuples (a0, . . . , an) ∈ Fn+1 with aj �= 0 for at least
one j, modulo factors c ∈ F×, and denote that class by (a0: · · · :an). Then,
K(a) = K

(
a0
aj

, . . . , an

aj

)
.

Lemma 5.1.2: Let K be an infinite field and C an absolutely irreducible
K-curve which has a K-rational simple point p. Then there is a birational
correspondence θ between C and an affine plane K-curve defined by an ab-
solutely irreducible equation f(X, Y ) = 0 over K such that θ(p) = (0, 0),
f(0, 0) = 0, and ∂f

∂Y (0, 0) �= 0.
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Proof: Assume without loss that C is a projective K-curve in Pn
K and that

n ≥ 2. If n = 2, apply a linear automorphism of P2
K over K to assume

that p = (1:0:0). Then take f as the polynomial that defines an affine open
neighborhood of p in C, so that p = (0, 0). Exchange the coordinates X and
Y , if necessary, to obtain the condition ∂f

∂Y (0, 0) �= 0.
Assume therefore that n ≥ 3. Then, there is a nonempty Zariski-open

subset U of Pn
K such that for each point o ∈ U(K̃), the projection π: Pn

K →
Pn−1

K from o maps C onto an absolutely irreducible K-curve C ′ such that
π|C is a birational map and π(p) is simple on C ′. One may take U to be the
complement in Pn

K of the union of all lines going through p and another point
of C(K̃) and the tangent to C at p (See [GeJ89, Lemma 9.4] or [Mum88,
p. 262, Thm. 1].) Since K is infinite, we may choose o ∈ U(K). Then π|C
and C ′ are defined over K, π(p) ∈ C ′(K), and π(p) is simple. Now apply
induction on n. �
Lemma 5.1.3: Let K be an infinite field, V ⊆ Pn

K an absolutely irreducible
K-variety of positive dimension, and P a finite subset of V (Ks). Then, there
exists an absolutely irreducible curve C ⊆ V defined over K that passes
through each of the points of P . Moreover, if a point p of P is simple on V ,
then p is also simple on C.

Proof: Let r = dim(V ). If r = 1, there is nothing to prove. Suppose r ≥ 2
and the lemma holds for r − 1.

Assume without loss that P is closed under the action of Gal(K). The
method of blowing up gives a hypersurface H over K in Pn

K such that W =
H ∩ V is an absolutely irreducible variety of dimension r − 1 over K, P ⊂
W (Ks), and each simple point of P on V is also simple on W [JaR98, Lemma
10.1]. Now apply the induction hypothesis on W . �

Let F/K be a finitely generated extension of fields of transcendence
degree 1. A model of F/K is a K-curve C whose function field is F . If
x = (x1, . . . , xn) is a generic point over K of an affine open subcurve of C,
then F = K(x). If ϕ: F → K̃∪{∞} is a K-place of F (in particular ϕ(a) = a
for each a ∈ K) and p = ϕ(x) is finite, then p is a point of C(K̃) called the
center of ϕ at C.

Lemma 5.1.4: Let F/K be a finitely generated extension of transcendence
degree 1.
(a) Let ϕ: F → K ∪ {∞} be a K-rational place. Denote the valuation ring

of ϕ by O. Then F/K is regular and has an affine model C such that
the center of ϕ at C is a simple K-rational point a of C whose local ring
coincides with O.

(b) Conversely, suppose C is a model of F/K. Then, for each point p ∈
Csimp(K) there exists a unique K-rational place ϕ: F → K ∪{∞} whose
center at C is p.

Proof of (a): By [FrJ08, Lemma 2.6.9(b)], F/K is a regular extension.
Let t be a separating transcendence element for F/K. Replace t by t−1,
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Chapter 5. Ample Fields

if necessary, to assume that c = ϕ(t) ∈ K. Let R = K[t] and let p =
(t − c)R. Then the local ring Rp is a valuation ring. The integral closure
S of R in F is a finitely generated R-module [Lan58, p. 120]. In particular
S = K[x1, . . . , xn] is finitely generated over K as a ring and ϕ is finite at
x1, . . . , xn. Since K(x)/K as a subextension of F/K is regular, the curve
C = Spec(S) generated by x over K is absolutely irreducible.

Let Sp be the local ring of S with respect to the multiplicative set R � p.
Then Sp is the integral closure of Rp in F . In particular S ⊆ Sp ⊆ O.
Hence, a = ϕ(x) ∈ C(K). Moreover, let M be the maximal ideal of O,
let m = Sp ∩ M, and let n = S ∩ M. By [Lan58, p. 18, Thm. 4], OC,a =
Sn = (Sp)m = O. Finally, as a discrete valuation ring, O is a regular ring.
Consequently, a ∈ Csimp(K) [Lan58, p. 204, Thm. 2].

Proof of (b): The local ring O = OC,p is regular [Lan58, p. 201]. Since
dim(O) = 1, this means that the maximal ideal of O is principal. By [AtM69,
p. 94, Prop. 9.2], O is a discrete valuation ring. The corresponding place is
the desired one. �

5.2 Existentially Closed Extensions

Let K be a discrete Henselian field and K̂ its completion. We prove that
if K̂/K is a separable extension, than K is existentially closed in K̂. In
particular, K is algebraically closed in K̂. The separability assumption is
satisfied if K is ‘defectless’.

A valued field (K, v) is defectless if each finite extension L of K satisfies

(1) [L : K] =
∑
w|v

ew/vfw/v,

where w ranges over all of the valuations of L that extend v, ew/v is the
ramification index, and fw/v is the relative residue degree of w/v. If (K, v) is
Henselian, then v has a unique extension w to L. In that case we write eL/K

(resp. fL/K) rather than ew/v (resp. fw/v). Then condition (1) simplifies to

(2) [L : K] = eL/KfL/K .

For example, each complete discrete valued field (K, v) is defectless [Rbn64,
p. 236].

Lemma 5.2.1: Let (K, v) be a defectless discrete Henselian valued field and
let (K̂, v̂) be its completion. Then K̂/K is a regular extension.

Proof: We have to prove that each finite extension L of K is linearly disjoint
from K̂ over K.

Indeed, since K̂/K is an immediate extension, eK̂/K = 1 and fK̂/K = 1.
Thus, eK̂L/K̂ = eK̂L/K = eK̂L/LeL/K ≥ eL/K . Similarly, we have fK̂L/K̂ ≥
fL/K for the residue degrees. Hence, by (2)

[K̂L : K̂] ≤ [L : K] = eL/KfL/K ≤ eK̂L/K̂fK̂L/K̂ ≤ [K̂L : K̂].
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Thus, [K̂L : K̂] = [L : K]. Consequently, L is linearly disjoint from K̂ over
K. �

When we speak about a function field of one variable over a field
K, we mean a finitely generated regular extension F of K of transcendence
degree 1.

Remark 5.2.2: More examples of defectless valuations. Consider a discrete
valued field (K, v). Let O be its valuation ring, L a finite extension of K,
and O′ the integral closure of K in L. If O′ is a finitely generated O-module,
then (1) holds [Ser79, p. 14, Prop. 10]. This is in particular the case if L/K
is separable [Ser79, p. 13]. Hence, if char(K) = 0, then K is defectless with
respect to v.

If K is a function field of one variable over a field K0, and v is a valuation
of K trivial on K0, then there exists a finitely generated ring R over K0 and
a prime ideal p of R such that Rp is the valuation ring of v (Proof of Lemma
5.1.4(a)). Since the integral closure of R in L is finitely generated as an
R-module [Lan58, p. 120], also the integral closure of Rp in L is finitely
generated as an Rp-module. It follows that (K, v) is defectless. �

Lemma 5.2.3: Let (K, v) be a discrete Henselian valued field and let (K̂, v̂)
be the completion of (K, v). Then (K, v) is defectless in each of the following
cases:
(a) char(K) = 0.
(b) (K, v) is the Henselization of a valued field (K1, v1), where K1 is a func-

tion field of one variable over a field K0 and v1 is a valuation of K1 which
is trivial on K0.

Hence, by Lemma 5.2.1, in each of these cases, K̂/K is a regular extension.

Proof: By Remark 5.2.2, it suffices to consider only Case (b). Let L be a
finite extension of K. Since (2) holds if L/K is separable, it suffices to prove
(2) only when L/K is a purely inseparable extension of degree q. In that case
there exist a finite extension K2 of K1 in K and a finite purely inseparable
extension L2 of K2 of degree q such that K ∩ L2 = K2 and KL2 = L. Since
K2 is a function field of one variable over a finite extension of K0 and the
restriction of v to that extension is trivial, K2 is defectless (Remark 5.2.2).
Also, v2 = v|K2 has a unique extension w2 to L2. Hence, ew2/v2fw2/v2 = q.

Now denote the unique extension of v to L by w. Then w|L2 = w2. Since
(K, v) is also the Henselization of (K2, v2), we have eL/K = eL/K2 ≥ ew2/v2

and fL/K ≥ fw2/v2 . Hence,

q = [L : K] ≥ eL/KfL/K ≥ ew2/v2fw2/v2 = q,

so (2) holds, as desired. �

Definition 5.2.4: Let K̂/K be a field extension. We denote the first order
language of rings with constants for the elements of K by L(ring, K) [FrJ08,
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Example 7.3.1]. We say that K is existentially closed in K̂ if every exis-
tential sentence θ in L(ring, K) that holds in K̂ also holds in K. Since are
models are fields, θ is equivalent to a sentence of the form

(3) (∃X1) · · · (∃Xn)
[ r∨

i=1

r(i)∧
j=1

fij(X) = 0 ∧ gi(X) �= 0
]

where X = (X1, . . . , Xn) and fij , gi ∈ K[X]. Further, (3) is equivalent to the
sentence

(4) (∃X1) · · · (∃Xn)(∃Y1) · · · (∃Yr)
[ n∨

i=1

r∧
j=1

fij(X) = 0 ∧ gi(X)Yi − 1 = 0
]
.

The equalities in the brackets of (4) define a Zariski-closed subset of An+r
K .

Replacing n + r by n, we conclude that K is existentially closed in K̂ if and
only if for each Zariski-closed subset A of An

K , A(K̂) �= ∅ implies A(K) �= ∅.
Equivalently, each x ∈ K̂n has a K-rational specialization. This is a point
a ∈ Kn such that f(a) = 0 for each f ∈ K[X] that satisfies f(x) = 0. �

Remark 5.2.5: Model theoretic characterization of existential closedness. A
field K is existentially closed in an extension K̂ if and only if K̂ can be
K-embedded in a field K∗ that is an elementary extension of K [FrJ08,
Lemma 27.1.4]. The latter condition means that for each formula
ϕ(X1, . . . , Xn) of the language of rings and for all a1, . . . , an ∈ K the truth
of ϕ(a1, . . . , an) in K is equivalent to its truth in K∗. It is possible to choose
K∗ as an ultrapower of K [BeS74, p. 187, Lemma 3.9]. �

Lemma 5.2.6: Let K̂/K be a field extension such that K is existentially
closed in K̂. Then K̂/K is a regular extension.

Proof: It suffices (and also necessary) to prove that K is algebraically closed
in K̂ and that K̂/K is separable [FrJ08, Lemma 2.6.4].

Part A: K is algebraically closed in K̂. Indeed, consider x ∈ K̂ ∩ K̃ and
let f = irr(x, K). Then f(x) = 0, so there exists x0 ∈ K such that f(x0) = 0.
It follows that deg(f) = 1, hence x ∈ K.

Part B: K̂/K is a separable extension. We have to prove this claim only
if char(K) > 0. Indeed, let q be a power of char(K). Suppose a1, . . . , an

are elements of K1/q that are linearly dependent over K̂. Thus, there exist
x1, . . . , xn ∈ K̂ with

∑n
i=1 aixi = 0, and, say, x1 �= 0. Then

∑n
i=1 aq

i x
q
i = 0,

aq
i ∈ K, i = 1, . . . , n. Since K is existentially closed in K̂, there exist

y1, . . . , yn ∈ K such that
∑n

i=1 aq
i y

q
i = 0 and y1 �= 0. Hence,

∑n
i=1 aiyi = 0

and therefore a1, . . . , an are linearly dependent over K. �
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Lemma 5.2.7: Let (K, v) be a Henselian valued field and let (K̂, v̂) be its
completion. Suppose K̂/K is a separable extension. Then K is existentially
closed in K̂. In particular, if char(K) = 0 or K is a Henselization of a
function field K1 of one variable over a field K0 at v|K1 and v is trivial on
K0, then K is existentially closed in K̂.

Proof: Let x1, . . . , xn ∈ K̂. Choose a separating transcendence base
u1, . . . , ur for K(x)/K and let z be a primitive element for the finite separable
extension K(x)/K(u) which is integral over K[u]. Replacing some of the ui’s
by their inverses, if necessary, we may assume that v̂(ui) ≥ 0, i = 1, . . . , r,
hence also v̂(z) ≥ 0. Let f ∈ K[U1, . . . , Ur, Z] be an irreducible polynomial
such that f(u, z) = 0 and f ′(u, z) �= 0 (the prime stands for derivative with
respect to Z). In addition, let hi ∈ K[U, Z] and 0 �= h0 ∈ K[U] be such that
xi = hi(u,z)

h0(u) , i = 1, . . . , n.

Since (K, v) is dense in (K̂, v̂), we may approximate u1, . . . , ur, z by
elements of K to any desired degree. Since K is Henselian, there exist
b1, . . . , br, c ∈ K such that f(b, c) = 0 and h0(b) �= 0. It follows that (b, c)
is a K-rational specialization of (u, z).

Now let ai = hi(b,c)
h0(b) , i = 1, . . . , n. Then a is a K-rational specialization

of x. By Definition 5.2.4, K is existentially closed in K̂.
Finally, if char(K) = 0 or K is a Henselization of a function field of

one variable K1 over a field K0 at v|K1 and v is trivial on K0, then K̂/K is
separable (Lemma 5.2.3). Consequently, K is existentially closed in K̂. �

We apply Lemma 5.2.7 to the field of convergent power series.

Proposition 5.2.8: Let K be a complete field under an ultrametric absolute
value. Denote the field of all convergent power series in x with coefficients in
K by K((x))0. Then K((x))0 is existentially closed in K((x)).

Proof: By Corollary 2.4.6, the field K((x))0 is Henselian at the restriction
of the x-adic valuation of K((x)). By Proposition 2.5.4, K((x))/K((x))0 is
a regular extension. Hence, by Lemma 5.2.7, K((x))0 is existentially closed
in K((x)). �

5.3 Ample Fields

We give several equivalent definitions of ample fields and derive some of their
properties.

The t-adic valuation of the field of rational functions K(t) is the dis-
crete valuation v with v(t) = 1 which is trivial on K.

Lemma 5.3.1: The following conditions on a field K are equivalent:
(a) For each absolutely irreducible polynomial f ∈ K[X, Y ], the existence of

a point (a, b) ∈ K2 such that f(a, b) = 0 and ∂f
∂Y (a, b) �= 0 implies the

existence of infinitely many such points.
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(b) Every absolutely irreducible K-curve C with a simple K-rational point
has infinitely many K-rational points.

(c) If an absolutely irreducible K-variety V has a simple K-rational point,
then V (K) is Zariski-dense in V .

(d) Every function field of one variable over K that has a K-rational place
has infinitely many K-rational places.

(e) K is existentially closed in each Henselian closure K(t)h of K(t) with
respect to the t-adic valuation.

(f) K is existentially closed in K((t)).

Definition 5.3.2: Whenever a field K satisfies one of the (equivalent) condi-
tions of Lemma 5.3.1, we say that K is an ample field. �
Proof of (a) =⇒ (b): Let C be an absolutely irreducible K-curve with a
simple K-rational point p. Lemma 5.1.2 gives a plane curve Γ defined by an
absolutely irreducible equation f(X, Y ) = 0 with coefficients in K, a point
(a, b) ∈ K2 such that f(a, b) = 0 and ∂f

∂Y (a, b) �= 0, and an isomorphism
θ between a Zariski-open neighborhood C0 of p in C and a Zariski-open
neighborhood Γ0 of (a, b) in Γ. By assumption, Γ0(K) is infinite. Hence, so
is C0(K).

Proof of (b) =⇒ (c): Let p be a simple K-rational point of an absolutely
irreducible K-variety V and let U be a nonempty Zariski-open subset of V .
We assume without loss that dim(V ) > 0. By Section 5.1, V is defined
over K. Lemma 5.1.3 gives an absolutely irreducible K-curve C on V such
that C ∩ U �= ∅ and p ∈ Csimp(K). By (b), Csimp(K) is infinite. Since the
complement of C ∩ U in C is finite, (Csimp ∩ U)(K) �= ∅. Hence, U(K) �= ∅,
so V (K) is Zariski-dense in V .

Proof of (c) =⇒ (d): Let F be a function field of one variable over K with
a K-rational place ϕ. Then F/K is regular and has an affine model C with a
simple K-rational point p (Lemma 5.1.4(a)). By (c), C has infinitely many
simple K-rational points q. For each q Lemma 5.1.4(b) gives a K-rational
place ψ of F whose center at C is q. Thus, F has infinitely many K-rational
places.

Proof of (d) =⇒ (e): We may assume that K((t)) is the completion of K(t)h

with respect to the t-adic valuation. Let x = (x1, . . . , xn) be a point with
coordinates in K(t)h and set F = K(x). If x ∈ K̃n, then x ∈ Kn (because
K is algebraically closed in K((t))), so x is a K-rational specialization of
itself. Otherwise, trans.deg(F/K) = 1. Let ϕ0 be the restriction to F of the
place associated with the t-adic valuation of K((t)). Then ϕ0 is K-rational.
By (d), F/K has infinitely many K-rational places ϕ. All but finitely many
of them are finite at x, so the specialization a = ϕ(x) belong to Kn. We
conclude that K is existentially closed in K(t)h.

Proof of (e) =⇒ (f): By (e), K is existentially closed in K(t)h. By Lemma
5.2.7, K(t)h is existentially closed in K((t)). Hence, K is existentially closed
in K((t)).
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Proof of (f) =⇒ (a): Let f ∈ K[X, Y ] be an absolutely irreducible poly-
nomial. Suppose there exists a point (a, b) ∈ K2 such that f(a, b) = 0 and
∂f
∂Y (a, b) �= 0. Denote the set of all these points by A. We have to prove that
A is an infinite set.

Indeed, denote the t-adic valuation of K((t)) by v. Let (ai, bi) ∈ A,
i = 1, . . . , n. Choose a′

n+1 ∈ K((t)) �{a1, . . . , an} such that v(a′
n+1 − a)

is a large positive integer so that v( ∂f
∂Y (a′

n+1, b)) = v
(

∂f
∂Y (a, b)

)
< ∞ and

v(f(a′
n+1, b)) = v(f(a′

n+1, b) − f(a, b)) > 2v
(

∂f
∂Y (a′

n+1, b)
)
. Since K((t))

is Henselian, there exists b′n+1 ∈ K((t)) such that f(a′
n+1, b

′
n+1) = 0 and

v(b′n+1 − b) is a large positive integer. Hence, ∂f
∂Y (a′

n+1, b
′
n+1) �= 0. Since

K is existentially closed in K((t)), there exist an+1, bn+1 ∈ K such that
f(an+1, bn+1) = 0, ∂f

∂Y (an+1, bn+1) �= 0, and an+1 �= a1, . . . , an. Hence,
(an+1, bn+1) is a new point of A. We conclude by induction that A is infinite.
�

Corollary 5.3.3: Every ample field is infinite.

Proof: Let K be an ample field and consider the affine line A1
K . It is a

smooth curve with K-rational points (e.g. 0). By Lemma 5.3.1(a), K =
A1

K(K) is infinite. �

Section 5.4 strengthens (b) and (c) of Lemma 5.3.1 and generalizes Corol-
lary 5.3.3 considerably.

5.4 Many Points

We prove that if K is an ample field and V is an absolutely irreducible
K-variety of positive dimension with a simple K-rational point, then not
only V (K) is Zariski-dense in V but card(V (K)) = card(K) (Proposition
5.4.3(b)). Moreover, the points of V (K) generate K over every subfield of K
(Proposition 5.4.3(a)) over which V is defined.

Lemma 5.4.1: Let K be an infinite field, V a vector space over K, n a
positive integer, and I a set. For each i ∈ I let Wi be a proper subspace of
V such that V =

⋃
i∈I Wi and dim(Wi) < n for each i ∈ I. Then card(K) ≤

card(I).

Proof: The case dim(V ) ≤ 1 cannot occur, so we first suppose d = dim(V )
is finite but at least 2. Let v1, . . . , vd be a basis of V . If we let c range on
all elements of K, we get card(K) distinct subspaces Kv1 + · · · + Kvd−2 +
K(vd−1+cvd) of dimension d−1. If card(K) > card(I), then V has a subspace
W of dimension d−1 such that W �= Wi for each i ∈ I. Therefore, W∩Wi is a
proper affine subspace of W and W =

⋃
i∈I W ∩Wi. An induction hypothesis

on d gives card(K) ≤ card(I). This contradicts our previous assumption.
Now we consider the case where dim(V ) = ∞ and choose a subspace

V ′ of dimension n. Then dim(V ′ ∩ Wi) ≤ dim(Wi) < n = dim(V ′) and
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V ′ =
⋃

i∈I V ′∩Wi. It follows from the previous case that card(K) ≤ card(I).
�
Lemma 5.4.2 (Fehm): Let K be an ample field, f ∈ K[X, Y ] an absolutely
irreducible polynomial, and y0 ∈ K such that f(0, y0) = 0, ∂f

∂Y (0, y0) �= 0. We
denote the absolutely irreducible K-curve defined by the equation f(X, Y ) =
0 by C and let π: C → A1

K be the projection on the first coordinate. Then
card(π(C(K)) � K0) ≥ max(ℵ0, card(K0)) for each proper subfield K0 of K.

Proof: Since there are infinitely many pairs (a, b) ∈ K2 with f(a, b) = 0 and
f(a, Y ) �= 0 (Lemma 5.3.1(c)) and for each of them π−1(a) is finite, π(C(K))
is infinite. Thus, our inequality holds if K0 is finite. Therefore, it suffices to
prove that card(π(C(K)) � K0) ≥ card(K0) under the assumeption that K0

is infinite.
Consider an indeterminate t. For each c ∈ K let u1 = ct and u2 =

t. Applying Hensel’s lemma to the field K((t)) and to the polynomials
f(u1, Y ), f(u2, Y ) ∈ K[[t]][Y ], we find elements v1, v2 ∈ K((t)) such that
f(u1, v1) = 0 and f(u2, v2) = 0. By definition, u2 �= 0 and c = u1

u2
. Since K

is existentially closed in K((t)) (Definition 5.3.2), there exist a1, b1, a2, b2 ∈ K
such that f(a1, b1) = 0, f(a2, b2) = 0, a2 �= 0, and c = a1

a2
. It follows that

K =
{

x1
x2

| ∃y1, y2: (x1, y1), (x2, y2) ∈ C(K), x2 �= 0
}
.

Let A = {p ∈ C(K) | π(p) ∈ K0}, A′ = A � π−1(0), and B = {p ∈
C(K) | π(p) /∈ K0}. Then A ∪ B = C(K), A′ ∪ B = C(K) � π−1(0), and
π(B) = π(C(K)) � K0. Moreover,

K =
{π(p)

π(q)
| p ∈ C(K), q ∈ C(K) � π−1(0)

}
=
{π(p)

π(q)
| p ∈ A, q ∈ A′

}
∪
{π(p)

π(q)
| p ∈ A, q ∈ B

}
∪
{π(p)

π(q)
| p ∈ B, q ∈ A′

}
∪
{π(p)

π(q)
| p ∈ B, q ∈ B

}
⊆ K0 ∪

⋃
q∈B

K0
1

π(q)
∪
⋃
p∈B

K0π(p) ∪
⋃

p,q∈B

K0 ·
π(p)
π(q)

.

The right hand side is a union of 1+2card(B)+card(B)2 K0-subspaces of K
of dimensions 1 and 0. Since K0 is a proper subfield of K, the dimension of K
as a vector space over K0 is at least 2, so each of the above affine K0-subspaces
of K is proper. Hence, by Lemma 5.4.1, card(K0) ≤ 1+2card(B)+card(B)2.
Since K0 is infinite, so is B, hence card(K0) ≤ card(B). Since the fibers of
π are finite and π(B) = π(C(K)) � K0, we have card(K0) ≤ card(B) =
card(π(C(K)) � K0), as claimed. �
Proposition 5.4.3: Let K be an ample field, K0 a subfield of K, and V
an absolutely irreducible variety of positive dimension defined over K0 with
a K-rational simple point. Then:
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(a) K = K0(V (K)) (Fehm),
(b) card(V (K)) = card(K) (Pop).

Proof of (a): Replacing K0 by K0(p), if necessary, we may assume that p
is K0-rational. Lemma 5.1.3 gives an absolutely irreducible K0-curve C on
V such that p is simple on C. It suffices to prove that K0(C(K)) = K.

Assume that K2 = K0(C(K)) is a proper subfield of K. Lemma 5.1.2
gives an absolutely irreducible polynomial f ∈ K0[X, Y ] with f(0, 0) = 0 and
∂f
∂Y (0, 0) �= 0, and a birational map ϕ of C onto the plane curve C ′ defined by
f(X, Y ) = 0 over K0. In particular, there are open subsets C0 of C and C ′

0

of C ′ such that ϕ maps C0(K) bijectively onto C ′
0(K) and C0(K0) bijectively

onto C ′
0(K0). Hence, K1 = K0(C ′

0(K)) = K0(C0(K)) ⊆ K0(C(K)) = K2

is a proper subfield of K. By Lemma 5.4.2, card(π(C ′(K)) � K1) ≥ ℵ0.
Since π(C ′

0(K)) and π(C ′(K)) differ only by finitely many elements, also
card(π(C ′

0(K)) � K1) ≥ ℵ0. This contradicts the fact that π(C ′
0(K)) ⊆

K0(C ′
0(K)) = K1 and completes the proof of (a).

Proof of (b): First we note that card(V (K)) ≤ card(K). By Corollary 5.3.3,
card(V (K)) ≥ ℵ0. Hence, if card(K) = ℵ0, then card(V (K)) = card(K).

Next suppose card(K) > ℵ0. Let K0 be the prime field of K. Then

card(K0) ≤ ℵ0 < card(K).

Hence, if card(V (K)) < card(K), then card(K0(V (K))) < card(K). This
contradiction to (a) proves that card(V (K)) = card(K). �
Corollary 5.4.4: Let K be an ample field, V an absolutely irreducible
K-variety of positive dimension with a simple K-rational point, and h a
nonconstant rational function of V defined over K. Then, card{h(a) | a ∈
V (K)} = card(K).

Proof: The assumption on h gives distinct points q1,q2 ∈ V (Ks) with
h(q1) �= h(q2). There is also a point p ∈ Vsimp(K). By Lemma 5.1.3, there
exists an absolutely irreducible curve C on V defined over K that passes
through p,q1,q2 and p ∈ Csimp(K). In particular, the restriction of h to C
is nonconstant. We may therefore replace V by C, if necessary, to assume that
V is a curve. Removing the finitely many points of V at which h is undefined,
we may assume that h is defined at each point of V . Since h is nonconstant
on V , each of the fibers of h: V (K) → K is finite. By Lemma 5.4.3(b),
card(V (K)) = card(K). Consequently, card{h(a,b) | (a,b) ∈ V (K)} =
card(K). �
Corollary 5.4.5 (Fehm): Let K be an ample field, L a Galois extension
of K, and V an absolutely irreducible variety of positive dimension defined
over K with a simple K-rational point. Then Gal(L/K) acts faithfully on
the set V (L).

Proof: Assume σ ∈ Gal(L/K) fixes each point of V (L) and σ �= 1. Then
V (L) is contained in the fixed field L0 of σ in L and L0 is properly contained
in L. This contradicts Proposition 5.4.3(a). �
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Chapter 5. Ample Fields

5.5 Algebraic Extensions

Like the PAC and Henselian properties of fields, being ample is preserved
under algebraic field extensions.

Lemma 5.5.1: Let K be a field, L an algebraic extension of K, K̂ a field
extension of K, and L̂ = LK̂.
(a) If K is existentially closed in K̂, then L is existentially closed in L̂.
(b) If K is ample, then L is ample.

Proof of (a): Let A be a Zariski-closed subset of An
L which has an L̂-rational

point x = (x1, . . . , xn). We have to prove that A(L) �= ∅ (Definition 5.2.4).
Since A is defined by finitely many polynomials, we may assume that [L :
K] < ∞.

We choose polynomials f1, . . . , fm ∈ L[X1, . . . , Xn] that define A in An
L

and a basis w1, . . . , wd for L/K. By Lemma 5.2.6, K̂ is a regular extension
of K, so L is linearly disjoint from K̂ over K, hence w1, . . . , wd is also a basis
for L̂/K̂. We choose variables Yij such that Xi =

∑d
j=1 Yijwj , i = 1, . . . , n,

j = 1, . . . , d. Then, fr(X) =
∑d

j=1 frj(Y)wj , r = 1, . . . , m, where frj(Y)

are polynomials with coefficients in K. Also, xi =
∑d

j=1 yijwj , i = 1, . . . , m,

with yij ∈ K̂. It follows that
∑d

j=1 frj(y)wj = fr(x) = 0, r = 1, . . . , m.

Since frj(y) ∈ K̂, we have frj(y) = 0, r = 1, . . . , m, j = 1, . . . , d. Since
K is existentially closed in K̂, there exist bij ∈ K such that frj(b) = 0,
r = 1, . . . , m, j = 1, . . . , d. Let ai =

∑d
j=1 bijwj , i = 1, . . . , n. Then a ∈ Ln

and fr(a) =
∑d

j=1 frj(b)wj = 0, r = 1, . . . , m. Consequently, a ∈ A(L), as
desired.

Alternatively, we may use Remark 5.2.5 to K-embed K̂ into an ultra-
power KI/D. Then L̂ is L-embeddable in LI/D, so L is existentially closed
in L̂.

Proof of (b): We may assume that L is a finite extension of K. In this case
L((t)) = L · K((t)). By Definition 5.3.2, K is existentially closed in K((t)).
By (a), L is existentially closed in L((t)). Consequently, L is ample. �
Proposition 5.5.2: Let K ⊆ L be fields such that K is existentially closed
in L and L is ample. Then K is also ample.

Proof: Let f ∈ K[X, Y ] be an absolutely irreducible polynomial and (a, b) ∈
K2 a pair such that f(a, b) = 0 and ∂f

∂Y (a, b) �= 0. Since L is ample, f has
infinitely many L-rational zeros. Since K is existentially closed in L, for each
positive integer n, the polynomial f has at least n K-rational zeros. It follows
from Lemma 5.3.1(a) that K is ample. �

We ask about a converse of Lemma 5.5.1.

Problem 5.5.3: Let L/K be a finite separable extension such that L is
ample. Is K ample?
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Remark 5.5.4: Descending purely inseparable extensions.
(a) If L/K is a purely inseparable extension of positive characteristic p

such that L ⊆ K1/pn

and L is ample, then so is K1/pn

(Lemma 5.5.1). Since
K ∼= K1/pn

, it follows that K is ample.
(b) A theorem of Hrushovski gives for each prime number p a count-

able non-PAC field E of characteristic p such that Eins is PAC [FrJ08,
Thm. 11.7.8]. In order to prove that E is non-PAC the proof chooses al-
gebraically independent elements t1, t2, t3, t4, t5 over Fp, constructs an ab-
solutely irreducible curve C defined over K = Fp(t1, t2, t3, t4, t5), and con-
structs E as a regular extension of K such that C(E) is a finite set and Eins

is PAC. If p �= 2, then C is the hyperelliptic curve defined by the equation
Y 2 =

∏5
i=1(X − ti). In particular, (t1, 0) is a simple E-rational point of C.

Therefore, E is nonample.
If p = 2, then C is defined by the equation Y 2 + Y = 1∏

(X−ti)
. This

curve has two K-rational points at infinity. Unfortunately, each of them
is singular. However, if we choose (x, y) with y transcendental over E and
y2 + y = 1∏5

i=1(x−ti)
, we find that (y, x) is a generic point of C over K,

[K(y, x) : K(y)] = 5 and the K-rational place ϕy,∞ of K(y) (Notation 4.1.3)
extends to five distinct places ϕi of K(y, x) with ϕi(x) = ti, i = 1, . . . , 5.
They give rise to five distinct prime divisors p1, . . . , p5 of K(y, x)/K lying over
the prime divisor py,∞ of K(y)/K. It follows that ϕi is K-rational. Since E
is a regular extension of K and E,K(y, x) are algebraically independent over
K, they are linearly disjoint over K [FrJ08, Lemma 2.6.7]. Hence, E(y, x) is a
regular extension of E and each ϕi extends to an E-rational place of E(y, x).
If E were ample, then E(y, x) would have infinitely many E-rational places,
(Lemma 5.3.1) so C(E) would be infinite, in contrast to the construction of
C.

Alternatively, we can make the substitution Z = Y (X − t1) to bira-
tionally transfer C to a curve C ′ defined over K by the equation f(X,Z) = 0,
where

f(X, Z) =
(
Z2 + Z(X − t1)

) 5∏
i=2

(X − ti) − (X − t1).

Then we observe that f(t1, 0) = 0 and ∂f
∂X (t1, 0) = −1, so (t1, 0) is a simple

K-rational (hence, also E-rational) point of C ′. Since C(E) and C ′(E) differ
only by finitely many points, C ′(E) is finite. It follows again that E is
nonample.

Of course, Eins as a PAC field is ample. �

5.6 Examples of Ample Fields

Various, seemingly unrelated, types of fields turn out to be ample.

Example 5.6.1: PAC fields. A field K is PAC if every nonvoid absolutely
irreducible K-variety V has a K-rational point. By Rabinovich trick, V (K)
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is then Zariski-dense in V [FrJ08, Prop. 11.1.1]. Hence, by Lemma 5.3.1(c),
K is ample. In particular, every separably closed field is PAC [Lan58, p. 76,
prop. 10] and therefore ample.

By Weil, every infinite algebraic extension of a finite field is PAC [FrJ08,
Cor. 11.2.4]. For an arbitrary field K and elements σ1, . . . , σe of the absolute
Galois group Gal(K) of K, we denote the fixed field of σ1, . . . , σe in Ks by
Ks(σ). We also denote the maximal Galois extension of K in Ks(σ) by
Ks[σ]. If K is countable and Hilbertian, then Ks[σ] is PAC for almost all
σ ∈ Gal(K)e [FrJ08, Thm. 18.10.2]. Here almost all is used in the sense
of the Haar measure on Gal(K)e with respect to Krull topology of Gal(K)
[FrJ08, Chap. 18]. Let Ksymm be the compositum of all Galois extensions of
K with Galois group isomorphic to some Sn. Then Ksymm is PAC [FrV92,
p. 475]. However, it is unknown if the compositum of all Galois extensions
of K with Galois group isomorphic to An for some positive integer n is PAC
[FrV92, p. 476]. Finally, we note that every algebraic extension of a PAC
field is PAC [FrJ08, Cor. 11.2.5]. �

Example 5.6.2: Henselian fields. Let (K, v) be a Henselian valued field. As
in the proof of “(f) =⇒ (a)” of Lemma 5.3.1 we consider an absolutely
irreducible polynomial f ∈ K[X, Y ] and a point (a, b) ∈ K2 such that
f(a, b) = 0 and ∂f

∂Y (a, b) �= 0. Replacing a, b by πa, πb and f(X, Y ) by
πd+1f(π−1X, π−1Y ), where d = deg(f) and π is an element of K with v(π)
sufficiently large, we may assume that f ∈ Ov[X, Y ], where Ov is the valua-
tion ring of (K, v), and a, b ∈ Ov. Let (ai, bi) ∈ K2 with f(ai, bi) = 0, i =
1, . . . , n. We choose π ∈ Ov with v(π) sufficiently large such that a′ = a + π
is different from a1, . . . , an, v(f(a′, b)) > 0 and v(f(a′, b)) > 2v

(
∂f
∂Y (a′, b)

)
.

Since (K, v) is Henselian, there is a b′ ∈ K such that f(a′, b′) = 0. By the
choice of a′, we have (a′, b′) �= (ai, bi) for i = 1, . . . , n. It follows from Lemma
5.3.1(a) that K is ample.

In particular, if (K, v) is a complete discrete valued field, then (K, v) is
Henselian [CaF67, p. 83], hence K is ample. This applies in particular to
each p-adic field Qp and each field K0((t)) of formal power series over an
arbitrary field K0.

The following observation is a straightforward consequence of the defi-
nition of a Henselian field: If a field K is algebraically closed in a Henselian
field (L, v) and v|K is nontrivial, then (K, v|K) is Henselian. In particular,
the algebraic part Qp,abs of the p-adic field Qp is Henselian but not complete.
Similarly, the algebraic closure of K0(t) in K0((t)) is Henselian but not com-
plete. Another example of a Henselian field that is not complete is the field
K0((x))0 of all convergent power series

∑∞
n=0 anxn with coefficients an in a

complete field K0 under an ultrametric absolute value (Corollary 2.4.6 and
Remark 2.4.3). By the first paragraph of the example, each of these fields is
ample. �

Example 5.6.3: Real closed Fields. Let K be a real closed field and let
f, a, b, a1, . . . , an be as in Example 5.6.2. Then f(a, Y ) obtains in the neigh-
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borhood of b both positive and negative values. Choosing a′ close enough to
a, f(a′, Y ) obtains in the neighborhood of b positive and negative values and
a′ �= ai for i = 1, . . . , n. Hence, there exists b′ close to b such that f(a′, b′) = 0
[Lan93, p. 453, Thm. 2.5]. Again, by Lemma 5.3.1(a), K is ample. �
Example 5.6.4: PKC Fields. Let K be a field and let K be a family of
field extensions of K. We say that K is PKC if every nonempty absolutely
irreducible K-variety V with a simple K̄-rational point for each K̄ ∈ K has a
K-rational point [Jar91, Sec. 7] (Thus K satisfies a local-global principle
with respect to K.) If, in addition, each of the fields K̄ ∈ K is ample, then
K is also ample.

The proof of the latter statement applies Lemma 5.3.1(c). Let V be an
absolutely irreducible K-variety, p ∈ Vsimp(K), and U a nonempty Zariski-
open subset of V . Consider K̄ ∈ K and let V̄ = V ×K K̄. Then, p ∈
Vsimp(K̄) = V̄simp(K̄). Since Vsimp is Zariski-open in V [Lan58, p. 199,
Prop. 5], so is U ∩ Vsimp. Hence, (U ∩ Vsimp) ×K K̄ is Zariski-open in V̄ . By
assumption, K̄ is ample, so (U ∩ Vsimp)(K̄) �= ∅. Applying the local-global
principle to the absolutely irreducible K-variety U ∩ Vsimp, we conclude that
(U ∩ Vsimp)(K) �= ∅. Consequently, K is ample.

We note for latter use that if E is a finite separable extension of K and
K is PKC, then E is PK(E)C, where K(E) = {K̄E | K̄ ∈ K} [Jar91, Lemma
7.2]. �
Example 5.6.5: Local primes. Let K be a field. A local prime p of K is an
equivalence class of absolute values of K such that the completion K̂p of K
at p is a separable extension of K. Moreover, we demand that if the absolute
values in p are metric, then K̂p is either R or C. If the absolute values in p

are ultrametric, then K̂p is a finite extension of Fp((t)) or a finite extension
of Qp for some prime p.

Now consider a finite set S of local primes of K. For each p ∈ S choose
an embedding of K̃ in the algebraic closure of K̂p and let Kp = K̃ ∩ K̂p. If p

is metric, then Kp is either K̃ or a real closure of K. If p is ultrametric, then
Kp is a Henselian closure of K at p. The field of totally S-adic numbers
is:

Ktot,S =
⋂
p∈S

⋂
σ∈Gal(K)

Kσ
p .

Pop [Pop96, p. 25, Thm. S] proves that Ktot,S is PSC, that is Ktot,S is PKC
with

K = {Kσ
p | p ∈ S, σ ∈ Gal(K)}

By Examples 5.6.2, 5.6.3, and 5.6.4, Ktot,S is an ample field. �
Example 5.6.6: Almost all σ. Now suppose that K is a countable Hilbertian
field and let S be a finite set of local primes of K. Then for almost all
σ ∈ Gal(K)e, the field Ktot,S [σ] = Ks[σ] ∩ Ktot,S is PSC [GeJ02, Thm. A].
Again, by Examples 5.6.2, 5.6.3, and 5.6.4, Ktot,S is an ample field.
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By Lemma 5.5.1, for almost all σ ∈ Gal(K)e, each algebraic extension of
Ktot,S [σ] is ample. In particular, Ks[σ], Ktot,S(σ) = Ktot,S ∩Ks(σ), Ks(σ),
and Ktot,S are ample. Thus, the present example generalizes Examples 5.6.1
and 5.6.5. �
Example 5.6.7: Fields with pro-p absolute Galois groups. A completely dif-
ferent type of ample fields has a Galois theoretic flavor. Each field K whose
absolute Galois group is a pro-p group for a prime number p is ample. This
is proved in Section 5.8. �

5.7 Henselian Pairs
The basic definition of Henselian fields can be generalized to the category of
commutative rings, giving rise to ”Henselian pairs” (A, a). A simple argument
shows that if in those pairs A is an integral domain, then Quot(A) is an ample
field. This gives a new large class of ample fields. The argument is based on
the following version of the definition of an ample field.

Lemma 5.7.1: A necessary and sufficient condition for a field K to be ample
is that every absolutely irreducible polynomial

(1) f(X, Y ) = Y +
∑

i+j≥2

cijX
iY j

with cij ∈ K has infinitely many K-rational zeros.

Proof: Note that f(0, 0) = 0 and ∂f
∂Y (0, 0) = 1. Hence, if K is ample, f has

infinitely many K-rational zeros.
Conversely, suppose every absolutely irreducible polynomial f as in (1)

has infinitely many K-rational zeros. In order to prove that K is ample,
it suffices to prove that each absolutely irreducible polynomial g ∈ K[X, Y ]
with a simple K-rational zero has infinitely many K-rational zeros (Lemma
5.3.1(a)). Thus, we may assume that there exist a, b ∈ K with g(a, b) = 0
and ∂g

∂Y (a, b) �= 0. Replacing X, Y by X − a, Y − b, if necessary, we may
assume that (a, b) = (0, 0). Then g(X, Y ) = cX +dY +

∑
i+j≥2 aijX

iY j with
c, d, aij ∈ K and d �= 0. Now we define a new variable Z by Z = cX + dY .
Then h(X, Z) = g(X, Y ) = Z +

∑
i+j≥2 bijX

iZj for some bij ∈ K. By
assumption h(X, Z) has infinitely many K-rational zeros. Therefore, g(X, Y )
also has infinitely many K-rational zeros, as contended. �

Each of the rings appearing in this section will be commutative with 1.
A ring-ideal pair is a pair (A, a) consisting of a ring A and a nonzero ideal
a of A.

Definition 5.7.2: We say that a ring-ideal pair (A, a) is weakly Henselian
if for every polynomial f ∈ A[X] satisfying

f(0) ≡ 0 mod a and f ′(0) ≡ 1 mod a

there exists x ∈ A such that f(x) = 0. �
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Proposition 5.7.3 (Pop): If A is an integral domain and (A, a) is a weakly
Henselian pair, then K = Quot(A) is an ample field.

Proof: For a polynomial f as in (1) we choose an e ∈ a such that e �= 0 and
aij = ecij ∈ a for all i, j. Then we consider the polynomial

g(X,Y ) =
f(eX, eY )

e
=

1
e

(
eY +

∑
i+j≥2

cije
i+jXiY j

)
= Y +

∑
i+j≥2

aije
i+j−2XiY j .

For each a ∈ A we observe that

h(Y ) = g(a, Y ) = Y +
∑

i+j≥2

aije
i+j−2aiY j

= b0 + (1 + b1)Y +
∑
k≥2

bkY k

with bk ∈ a and h′(Y ) = (1+b1)+
∑

k≥2 kbkY k−1. Then h(0) = b0 ≡ 0 mod a
and h′(0) = 1 + b1 ≡ 1 mod a. The assumption on (A, a) gives b ∈ A such
that h(b) = 0, that is g(a, b) = 0, so f(ea, eb) = 0. Thus, f(X,Y ) has
infinitely many zeros in K. Consequently, K is ample. �

The basic examples of weakly Henselian pairs are complete pairs. Ac-
tually complete domain-ideals pairs (A, a) are even “Henselian pairs” in the
following sense:

Definition 5.7.4: A ring-ideal pair (A, a) is said to be a Henselian pair if
for every polynomial f ∈ A[X] satisfying

(2) f(0) ≡ 0 mod a and f ′(0) is a unit mod a

there exists x ∈ a such that f(x) = 0. �
Example 5.7.5: Completions. By definition, every Henselian pair (A, a) is
a weak Henselian pair. We show below that if A is complete with respect
to a, then (A, a) is also a Henselian pair. To this end recall that a sequence
(a1, a2, a3, . . .) of elements of a commutative ring A converges (with respect
to an ideal a) to an element a ∈ A if for each positive integer r there exists
n0 such that an − a ∈ ar for each n ≥ n0. We say that (a1, a2, a3, . . .) is
a Cauchy sequence (with respect to a) if for each positive integer r there
exists n0 such that an − am ∈ ar for all m, n ≥ n0. Finally, the pair (A, a) is
complete if every Cauchy sequence converges to a unique element of A. In
particular,

⋂n
i=1 an = 0. Also, if a sequence a1, a2, a3, . . . of A converges to 0,

then the partial sums of the infinite series
∑∞

n=1 an form a Cauchy sequence,
so
∑∞

n=1 an converges in A.
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For an arbitrary ring-ideal pair (A, a) we consider the ring Â = lim←−A/an

and its ideal â = lim←− a/an. We assume that
⋂∞

n=1 an = 0 (This condition

is satisfied for example if A is a Noetherian domain [AtM69, Cor. 10.18].)
Then A may be embedded into Â by mapping each a ∈ A onto the con-
stant sequence (a, a, a, . . .). Then one observes that every Cauchy sequence
(a1, a2, a3, . . .) of elements of A converges to an element of Â. Approximating
each Cauchy sequence of Â by a Cauchy sequence of A, we find that every
Cauchy sequence of Â with respect to â converges. Thus, (Â, â) is complete.
Moreover, if (B, b) is a complete pair and α: A → B is a homomorphism
such that α(a) ⊆ b, then α can be uniquely extended to a homomorphism
α̂: Â → B such that α(â) ⊆ b. This means that (Â, â) is the completion of
(A, a).

For example, let R = A[X1, . . . , Xn] be the ring of polynomials over a
ring A and let a =

∑n
i=1 RXi. Then R̂ = lim←−R/an is naturally isomorphic

to the ring A[[X1, . . . , Xn]] of formal power series over A. If f = (f1 +
a, f2 + a2, f3 + a3, . . .) is an element of R̂, then fk ≡ g0 + · · ·+ gk−1 mod ak,
where gi is a homogeneous polynomial of degree i independent of k. The
above mentioned isomorphism maps f onto

∑∞
k=0 gk. It maps â = lim←− a/an

onto the ideal I of A[[X1, . . . , Xn]] generated by X1, . . . , Xn. In particular,
(A[[X1, . . . , Xn]], I) is complete. �

Lemma 5.7.6: Let A be a complete ring with respect to an ideal a. Then
every u ∈ A which is a unit of A modulo a is a unit of A.

Proof: By assumption there exists v ∈ A such that uv ≡ 1 mod a. Thus,
a = 1−uv ∈ a. Hence,

∑∞
i=0 ai converges in A and uv

∑n
i=0 ai = 1−an+1 for

each positive integer n. Taking n to the limit, we find that uv
∑∞

i=0 ai = 1,
hence u ∈ A×. �

Proposition 5.7.7: If (A, a) is a complete domain-ideal pair, then (A, a) is
a Henselian pair and K = Quot(A) is an ample field.

Proof: We follow the classical proof that a complete discrete valued field is
Henselian.

Let f ∈ A[X] and a ∈ A such that (2) holds. In particular f ′(0) is a unit
modulo a. By Lemma 5.7.6, f ′(0) ∈ A×. Let a0 = 0 and inductively define
a sequence a0, a1, a2, . . . of elements of K by

(3) an+1 = an − f ′(an)−1f(an).

Inductively suppose
(4a) an ∈ A, an ≡ 0 mod a, and
(4b) f(an) ≡ 0 mod a2n

.

Then, f(an) ≡ f(0) ≡ 0 mod a and f ′(an) ≡ f ′(0) mod a is a unit of A
modulo a, so f ′(an) is a unit of A (Lemma 5.7.6). Therefore, an+1 is a well

78



5.7 Henselian Pairs

defined element of a. Moreover, by Taylor expansion,

f(an+1) = f(an − f ′(an)−1f(an))

= f(an) − f ′(an)f ′(an)−1f(an) + bf ′(an)−2f(an)2

= bf ′(an)−2f(an)2 ≡ 0 mod a2n+1
,

for some b ∈ A. Since A is complete with respect to a, (3) and (4) imply that
an converges to an element x of A. By (4a), x ≡ 0 mod a. Finally, by (4b),
f(x) ≡ 0 mod a2n

for all n, so f(x) = 0. Consequently, (A, a) is a Henselian
pair. By Proposition 5.7.3, K is ample. �
Remark 5.7.8: Completions. Let (A, a) be a domain-ideal pair and let (Â, â)
be its completion. If Â is an integral domain, then Quot(Â) is an ample field
(Proposition 5.7.7). This is, for example, the case when A = K[X1, . . . , Xn]
is the ring of polynomials in X1, . . . , Xn over a field K and a is the ideal gen-
erated by X1, . . . , Xn. As mentioned in Example 5.7.5, Â = K[[X1, . . . , Xn]]
is the ring of formal power series in X1, . . . , Xn over K. It is an integral
domain and Quot(Â) = K((X1, . . . , Xn)) is the field of power series in
X1, . . . , Xn over K.

More generally, Â is an integral domain if A is the local ring of an
absolutely irreducible variety over a field K at a normal subvariety. In other
words, let K[x] = K[x1, . . . , xn] be a domain such that K(x) is a regular
extension of K, let p be a prime ideal of K[x], and let A = K[x]p. Suppose A
is integrally closed. Then, by a theorem of Zariski [ZaS75, p. 320, Thm. 32],
the completion Â of A with respect to pA is an integrally closed domain,
hence Quot(Â) is ample. �

We finish this section with some remarks about the connection between
“weakly Henselian pairs” and “Henselian pairs”.

Proposition 5.7.9: The following statements hold for each weakly Hensel-
ian pair (A, a).
(a) The ideal a is contained in the Jacobson radical J(A) of A (defined as

the intersection of all maximal ideals of A).
(b) If u ∈ A is a unit of A modulo a, then u is a unit of A.
(c) If f ∈ A[X] satisfies f(0) ≡ 0 mod a and f ′(0) is a unit of A mod a, then

there exists x ∈ A such that f(x) = 0.

Proof of (a): Assume a �⊆ J(A) and choose a ∈ a � J(A). By definition, A
has a maximal ideal m that does not contain a. Thus, there exist u ∈ A and
m ∈ m such that m−ua = 1. The polynomial f(X) = m(1+X)− 1 satisfies
f(0) = m − 1 = ua ≡ 0 mod a and f ′(0) = m = 1 + ua ≡ 1 mod a. By
definition, f has a root x ∈ A. Thus, m(1 + x) = 1. This contradiction to
the fact that m is not invertible proves that a ⊆ J(A).

Proof of (b): Let u be a unit of A modulo a. Thus, there exists b ∈ A with
bu ≡ 1 mod a. Assume that u is not a unit of A. Then A has a maximal
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ideal m containing u. By (a), bu ≡ 1 mod m, so 1 ∈ m. This contradiction
proves that u is a unit of A.

Proof of (c): By (b), f ′(0) is a unit of A. Hence, the polynomial g =
f ′(0)−1f satisfies g(0) ≡ 0 mod a and g′(0) = f ′(0)−1f ′(0) = 1. By defini-
tion, there exists x ∈ A with g(x) = 0. Hence, f(x) = 0. �

Remark 5.7.10: On the uniqueness of the root. Let (A, a) be a ring-ideal
pair. Consider a polynomial f ∈ A[X] such that f(0) ≡ 0 mod a and
c1 = f ′(0) is a unit of A modulo a. If (A, a) is a weakly Henselian pair,
then there exists x ∈ A with f(x) = 0 (Proposition 5.7.9) while if (A, a) is a
Henselian pair, we may choose x in a. In both cases f has at most one root
in a.

Indeed, suppose x, y ∈ a and f(x) = f(y) = 0. Let f(X) =
∑n

k=0 ckXk

with ck ∈ A. Then

0 = f(x) − f(y) =
n∑

k=1

ck(xk − yk) = (x − y)(c1 + a),

where a =
∑n

k=2 ck

∑k−1
i=0 xiyk−1−i ∈ a. Since c1 is a unit modulo a, so is

c1 +a. Hence, by Proposition 5.7.9(a), c1 +a ∈ A×. It follows that x−y = 0,
hence x = y. �

Remark 5.7.11: Henselian closure. An extension (B, b) of (A, a) is a ring-
ideal pair such that A ⊆ B and b ∩ A = a. In particular, assuming that⋂∞

n=0 an = 0, the completion (Â, â) of (A, a) is an extension of (A, a). Let
(Ah, ah) be the intersection of all Henselian pairs (B, b) lying between (A, a)
and (Â, â). If f ∈ Ah[X], f(0) ≡ 0 mod ah, and f ′(0) is a unit modulo ah,
then f satisfies the same conditions with respect to each of the Henselian
pairs (B, b) and in particular with respect to (Â, â). The unique root x of f
in â (Remark 5.7.10) belongs to each of the ideals b, hence also to ah. Thus,
(Ah, ah) is a Henselian pair extending (A, a), called the Henselian closure
of (A, a).

It is possible to reach (Ah, ah) from below. To this end let A1 be the
subring of Ah generated by all of the roots x ∈ ah of polynomials f ∈ A[X]
such that f(0) ≡ 0 mod a and f ′(0) is a unit of A modulo a. Let a1 = ah∩A1.
Then f ′(x) ≡ f ′(0) mod a1, so f ′(x) �= 0. Thus, if both A and Â are integral
domains, then so is A1 and Quot(A1) is a separable algebraic extension of
Quot(A). Now we construct a pair (A2, a2) out of (A1, a1) in the same way
that (A1, a1) was constructed from (A, a). Then we continue inductively to
construct (A3, a3), (A4, a4), and so on. Finally let (A′, a′) be the union of all
pairs (An, an). Then (A′, a′) is a Henselian pair between (A, a) and (Ah, ah).
It follows from the minimality of the last pair, that (A′, a′) = (Ah, ah). If
both A and Â are integral domains, then Quot(Ah) is a separable algebraic
extension of Quot(A). By Proposition 5.7.7, Quot(Ah) is an ample field.
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The Henselian pair (Ah, ah) has the expected universal property: Let
(C, c) be a Henselian pair and α: (A, a) → (C, c) a homomorphism of ring-
ideal pairs, that is, α: A → C is a homomorphism of commutative rings such
that α(a) ⊆ c. Then α extends to a homomorphism α̂: (Â, â) → (Ĉ, ĉ) of the
completions. Let B = α̂−1(C) and b = α−1(c). Then the uniqueness of the
roots proved in Remark 5.7.10 implies that (B, b) is a Henselian pair between
(A, a) and (Â, â). By construction, Ah ⊆ B. It follows that the restriction
of α̂ to Ah is a homomorphism αh: (Ah, ah) → (C, c) of ring-ideal pairs that
extends α. The uniqueness of the roots mentioned above shows that the value
of α̂ at the element x mentioned at the beginning of the previous paragraph is
unique. Therefore, α̂ is unique on A1. Similarly, α̂ is uniquely determined on
A2, and so on. This proves that the extension αh of α is unique. Read more
about Henselian pairs in [Laf63], [Ray70, Chap Xi], and [KPR75, Chap. 2].
�
Example 5.7.12: Henselian fields. Let v be a valuation of a field K and
(Kh

v , v) a Henselization of (K, v). Let Ov and Oh
v be the corresponding val-

uation rings and let mv and mh
v be their maximal ideals. Then (Oh

v , mh
v ) is

a Henselian closure of the ring-pair (Ov, mv). By Remark 5.7.11 or Example
5.6.2, the field Kh

v is ample. �

5.8 Fields with pro-p Absolute Galois Groups

Very rarely has the absolute Galois group of a field K a decisive impact
on the diophantine nature of K. If Gal(K) is trivial, then K is separably
closed, if Gal(K) has order 2, then K is real closed (Artin-Schreier), and if
Gal(K) ∼= Gal(Qp), then K is p-adically closed (Efrat-Koenigsmann-Pop). It
is therefore surprising to find out that if Gal(K) is a pro-p group, then K is
ample.

Remark 5.8.1: Algebraic function fields of one variable. Let F be a function
field of one variable over a field K. We briefly recall the definitions of the main
objects attached to F/K and their properties. For a more comprehensive
survey see [FrJ08, Sections 3.1-3.2].

(a) Recall that a K-place of F is a place ϕ: F → K̃ ∪ {∞} such that
ϕ(a) = a for each a ∈ K (Definition 4.1.2). A prime divisor p of F/K is an
equivalence class of valuations of F that are trivial on K (Remark 4.1.1), or
what amounts to be equivalent, of K-places of F . Let ϕp be a place in that
class, vp the corresponding discrete valuation of F/K, and F̄p the residue
field. The latter field is a finite extension of K which is uniquely determined
by p up to K-conjugation. We set deg(p) = [F̄p : K]. A divisor of F/K is
a formal sum a =

∑
kpp where p ranges over all prime divisors of F/K, for

each p the coefficient kp is an integer, and kp = 0 for all but finitely many
p′s. The degree of a is deg(a) =

∑
kp deg(p). The divisor attached to an

element f ∈ F× is defined to be div(f) =
∑

vp(f)p, where p ranges over
all prime divisors of F/K. This makes sense, since vp(f) = 0 for all but
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finitely many p’s. Further, one attaches to f the divisor of zeros div0(f) =∑
vp(f)>0 vp(f)p and the divisor of poles div∞(f) = −

∑
vp(f)<0 vp(f)p.

If f /∈ K, the degrees of both divisors are equal to [F : K(f)]. Hence,
deg(div(f)) = deg(div0(f)) − deg(div∞(f)) = 0. If a =

∑
kpp is a divisor

of F/K, we write vp(a) = kp for each prime divisor p of F/K and note that
vp(div(f)) = vp(f) for each f ∈ F×. Given two divisors a, b of F/K, we write
a ≤ b if vp(a) ≤ vp(b) for each prime divisor p of F/K. Finally, one attaches
to each divisor a a finitely generated vector space L(a) over K consisting of
0 and of all f ∈ F× with div(f) + a ≥ 0 and write dim(a) for dim(L(a)). If
a ≤ b, then L(a) ⊆ L(b).

The inequality div(f)+a ≥ 0 can be rewritten as div0(f)+a ≥ div∞(f).
Since div0(f) and div∞(f) have no common prime divisors, the latter inequal-
ity is equivalent to a ≥ div∞(f) if a ≥ 0.

The latter inequality can be obtained for an arbitrary divisor a with
L(a) �= 0 by shifting it with a principal divisor. Indeed, fix f ∈ L(a), f �= 0
and set a′ = div(f)+ a. Then a′ ≥ 0, deg(a′) = deg(a), and the map x �→ fx
is a K-isomorphism of L(a′) onto L(a), in particular, dim(a′) = dim(a).

(b) The set Div(F/K) of all divisors of F/K is an additive Abelian
group freely generated by the set P(F/K) of all prime divisors of F/K. The
map deg : Div(F/K) → Z is a homomorphism whose kernel is the subgroup
Div0(F/K) of all divisors of degree 0. If in addition F/K has a prime divisor
of degree 1, then the short sequence

0−→Div0(F/K)−→Div(F/K)
deg−→Z−→ 0,

is exact.
(c) The Riemann-Roch theorem gives a nonnegative integer g, called the

genus of F/K, such that if deg(a) > 2g − 2, then dim(a) = deg(a) + 1 − g.
In the general case dim(a) = deg(a) + 1 − g + dim(w − a), where w is a
canonical divisor of F/K [FrJ08, Thm. 3.2.1]. To this end recall that all
canonical divisors of F/K are linearly equivalent (i.e. differ from each other
by a divisor of an element of F×), deg(w) = 2g − 2, and dim(w) = g [FrJ08,
Lemma 3.2.2].

(d) An easy corollary of the Riemann-Roch theorem characterizes ra-
tional function fields K(x) as those algebraic function fields of one variables
over K of genus zero with a prime divisor of degree 1 [FrJ08, Example 3.2.4].

(e) If L is an algebraic extension of K, then FL/L is an algebraic function
field of one variable. We say that a prime divisor P of FL/L lies over a
prime divisor p of F/K if vP lies over vp. If L/K is separable, then P/p is
unramified [Deu, p. 113]. In the general case, FL/L has only finitely many
prime divisors P1, . . . ,Pr that lie over p [Deu73, p. 96]. Then we identify p
with the divisor

∑r
i=1 ePi/pPi of FL/L and extend this identification to an

embedding of Div(F/K) into Div(FL/L). Then we write LFL(a) to denote
the linear subspace {f ∈ FL | div(f) + a ≥ 0} of FL associated with a. By
[Deu73, p. 132, Thm. 1], genus(FL/L) ≤ genus(F/K) and equality holds if
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L/K is separable. In this case dimK(LF (a)) = dimL(LFL(a)) for each divisor
a of F/K [Deu73, p. 132, Thm. 2].

(f) If F is a finite extension of a field E that contains K, then E is
also a function field of one variable over K. If in addition, F/E is separable,
then the Riemann-Hurwitz genus formula relates the genera of the two
function fields:

2genus(F/K) − 2 = [F : E](2genus(E/K) − 2) + deg(Diff(F/E)),

where Diff(F/E) is a nonnegative divisor of F/K whose prime divisors are
exactly those that ramify over E [FrJ08, Thm. 3.6.1]. In particular,

genus(E/K) ≤ genus(F/K).

Also, if F/E is unramified, then 2genus(F/K)− 2 = [F : E](2genus(E/K)−
2). Hence, if in addition, genus(E/K) = 1, then also genus(F/K) = 1.

If genus(E/K) = 0 (in particular if E = K(x)) and [F : E] > 1, then
F/E must ramify. Otherwise, deg(Diff(F/E)) = 0 and we get a contradiction
2genus(F/K) − 2 = −2[F : E]. �
Proposition 5.8.2: Let K be a perfect field such that Gal(K) is a pro-p
group for some prime number p. Then K is ample.

Proof: Consider a function field F of one variable over K with a prime
divisor p of degree 1. Let p1, . . . , pm be additional prime divisors of F/K
of degree 1. By the weak approximation theorem there exists f ∈ F with
vp(f) = 1 and vpi

(f) = 0 for i = 1, . . . , m [FrJ08, Prop. 2.1.1]. Then div(f) =
p +
∑n

j=1 kjqj , for some additional distinct prime divisors q1, . . . , qn. It
follows that

(1) 1 +
n∑

j=1

kj deg(qj) = deg(div(f)) = 0.

Denote the residue field of F at qj by F̄qj . Since K is perfect, F̄qj
/K is

separable. Since deg(qj) = [F̄qj
: K] and Gal(K) is a pro-p group, each of

the numbers deg(qj) is a power of p. We conclude from (1) that deg(qj) = 1
for some j between 1 and n. Consequently, F/K has infinitely many prime
divisors of degree 1. In other words, K is ample (Lemma 5.3.1(d)). �

More arguments are needed to prove Proposition 5.8.2 without the con-
dition “K is perfect”.

Theorem 5.8.3: Let K be a field such that Gal(K) is a pro-p group for
some prime number p. Then K is ample.

Proof: Each finite field has finite extensions of every degree, in particular
its absolute Galois group is not pro-p. It follows that K is infinite.
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Let F be a function field of one variable of genus g over K with a prime
divisor p of degree 1. Set p0 = p and let p1, . . . , pm with m ≥ 1 be additional
prime divisors of F/K of degree 1. Choose a positive multiple k of p such that
k ≥ 2g and char(K)|k if char(K) �= 0. Consider the divisors a = p+k

∑m
i=1 pi

and ai = a − pi, i = 0, . . . , m, of F/K. Then deg(a) > deg(a0) ≥ k ≥ 2g
and deg(a) > deg(ai) ≥ k − 1 ≥ 2g − 1 for i = 1, . . . , m. By Riemann-Roch,
dim(L(a)) = deg(a) + 1 − g and dim(L(ai)) = deg(ai) + 1 − g. Thus, L(ai)
is a proper subspace of L(a), i = 0, . . . , m. Since K is infinite, there exists
t ∈ L(a) �

⋃m
i=0 L(ai). Hence, div(t) + a ≥ 0 but div(t) + ai �≥ 0 for each i.

It follows that div∞(t) = a, so div∞(t − a) = a for each a ∈ K.
By definition

(2) deg(a) = 1 + k
m∑

i=1

deg(pi).

Hence,

(3) [F : K(t − a)] = deg(div∞(t − a)) = deg(a) ≡ 1 mod k.

In particular, if char(K) �= 0, then char(K) � [F : K(t)]. Thus, in each case,
F/K(t) is a finite separable extension.

Now choose a primitive element x for F/K(t), integral over K[t]. Let f =
irr(x, K(t)). Then f(T, X) ∈ K[T, X] is an absolutely irreducible polynomial
separable in X [FrJ08, Cor. 10.2.2(b)]. Hence, there exists a ∈ K such that
all roots of f(a, X) are simple. In particular, they belong to Ks. These roots
correspond to zeros of t − a (as an element of F ). Therefore, div0(t − a) =∑r

i=1 qi and for each i, qi is a prime divisor of F/K with residue field F̄qi

separable over K. The assumption on K implies that deg(qi) = [F̄qi
: K] is

a power of p. By (3),

r∑
i=1

deg(qi) = deg(div0(t − a)) = deg(div∞(t − a)) ≡ 1 mod p.

Hence, there exists i between 1 and r with deg(qi) = 1. In addition, qi is
relatively prime to a, so qi differs from p, p1, . . . , pm. Consequently, K is
ample. �
Problem 5.8.4: Let K be a field such that the order of Gal(K) is divisible
by only finitely many prime numbers. Is K ample?

5.9 Embedding Problems over Ample Fields

In this section K/K0 is an arbitrary finite Galois extension with Galois group
Γ and x is transcendental over K. Suppose Γ acts on a finite group G. We
look for a rational solution of the constant split embedding problem

(1) pr: Gal(K(x)/K0(x)) � G → Gal(K(x)/K0(x))
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over K0(x). When K0 is complete under an ultrametric absolute value, this
problem reduces to the special case solved in Section 4.4.

Consider also a regular extension K̂0 of K0 such that x is transcendental
over K̂0 and let K̂ = KK̂0. Then K̂0(x) is a regular extension of K0(x)
[FrJ08, Lemma 2.6.8(a)], so K̂0(x) is linearly disjoint from K(x) over K0(x).
Hence, res: Gal(K̂(x)/K̂0(x)) → Gal(K(x)/K0(x)) is an isomorphism. This
gives rise to a finite split embedding problem over K̂0(x),

(2) pr: Gal(K̂(x)/K̂0(x)) � G → Gal(K̂(x)/K̂0(x))

such that pr ◦ (resK(x) × idG) = resK(x) ◦ pr.
We identify each of the groups Gal(K̂(x)/K̂0(x)), Gal(K(x)/K0(x)), and

Gal(K̂/K̂0) with Γ = Gal(K/K0) via restriction. Moreover, if F (resp. F̂ )
is a solution field of embedding problem (1) (resp. (2)), then we identify
Gal(F/K0(x)) (resp. Gal(F̂ /K̂0(x))) with Γ � G via an isomorphism θ

(resp. θ̂) satisfying pr ◦ θ = res (resp. pr ◦ θ̂ = res). We say that (F, θ)
is a split rational solution of (1) if F has a K-rational place ϕ such that
Γ = Dϕ. We say that (F, θ) is unramified if ϕ can be chosen to be unrami-
fied over K0(x).

Lemma 5.9.1: In the above notation suppose K0 is ample and existentially
closed in K̂0. Let F̂ be a solution field to embedding problem (2) with a K̂-
rational place ϕ̂, unramified over K̂0(x), such that ϕ̂(x) ∈ K̂0 and Dϕ̂ = Γ.
Then embedding problem (1) has a solution field F with a K-rational place
ϕ unramified over K0(x) such that ϕ(x) ∈ K0 and Dϕ = Γ.

Proof: We break up the proof into several parts. First we solve embedding
problem (1) over K̂0(x), then we push the solution down to a solution over
a function field K0(u, x) which is regular over K0, and finally we specialize
the latter solution to a solution over K0(x) with a place satisfying all of the
prescribed conditions.

Part A: A solution of (1) over K̂0(x). By assumption, there exists an
isomorphism

θ̂: Gal(F̂ /K̂0(x)) → Gal(K̂(x)/K̂0(x)) � G

such that pr ◦ θ̂ = resK̂(x). Let F̂0 be the fixed field in F̂ of Dϕ̂ (= Γ). Then,

F̂0∩ K̂(x) = K̂0(x) and F̂0 · K̂(x) = F̂ , so m = [F̂0 : K̂0(x)] = [F̂ : K̂(x)]. By
Lemma 4.4.1, ϕ̂(F̂0) = K̂0 ∪ {∞}. Hence, F̂0/K̂0 is regular [FrJ08, Lemma
2.6.9(b)].

We choose a primitive element y for the extension F̂0/K̂0(x) integral
over K̂0[x]. By the preceding paragraph, F̂ = K̂(x, y).

By Lemma 5.1.2, there exists an absolutely irreducible polynomial h ∈
K̂0[V,W ] and elements v, w ∈ F̂0 such that K̂0(v, w) = F̂0, h(v, w) = 0,
h(0, 0) = 0, and ∂h

∂W (0, 0) �= 0.
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We also choose a primitive element c for K over K0, a primitive element
z for F̂ over K̂0(x) integral over K̂0[x], and note that F̂ = K̂0(c, x, y). Then
there exist polynomials f, p0, p1 ∈ K̂0[X, Z], g, r0, r1, r2 ∈ K̂0[X, Y ], q0, q1 ∈
K̂0[T, X, Y ], and s0, s1, s2 ∈ K̂0[V,W ] such that the following conditions
hold:
(3a) F̂ = K̂0(x, z) and f(x, Z) = irr(z, K̂0(x)); in particular discr(f(x, Z)) ∈

K̂0(x)×.
(3b) g(x, Y ) = irr(y, K̂0(x)) = irr(y, K̂(x)); since F̂0/K̂0 is regular (by the

first paragraph of Part A), g(X, Y ) is absolutely irreducible [FrJ08,
Cor. 10.2.2(b)].

(3c) y = p1(x,z)
p0(x,z) , z = q1(c,x,y)

q0(c,x,y) , p0(x, z) �= 0, and q0(c, x, y) �= 0.

(3d) v = r1(x,y)
r0(x,y) , w = r2(x,y)

r0(x,y) , x = s1(v,w)
s0(v,w) , y = s2(v,w)

s0(v,w) , r0(x, y) �= 0, and
s0(v, w) �= 0.

Part B: Pushing down. The polynomials introduced in Part A depend on
only finitely many parameters from K̂0. Thus, there are u1, . . . , un ∈ K̂0

with the following properties:
(4a) The coefficients of f, g, h, p0, p1, q0, q1, r0, r1, r2, s0, s1, s2 are in K0[u].
(4b) Fu = K0(u, x, z) is a Galois extension of K0(u, x),

f(x, Z) = irr(z, K0(u, x)), and discr(f(x, Z)) ∈ K0(u, x)×.
(4c) g(x, Y ) = irr(y, K0(u, x)) = irr(y,K(u, x)); we set F0,u = K0(u, x, y).

It follows that restriction maps the groups Gal(F̂ /K̂0(x)), Gal(F̂ /F̂0),
and Gal(F̂ /K̂(x)) isomorphically onto the groups Gal(Fu/K0(u, x)),
Gal(Fu/F0,u), and Gal(Fu/K(u, x)), respectively. Therefore, restriction
transfers θ̂ to an isomorphism

(5) θ: Gal(Fu/K0(u, x)) → Gal(K(u, x)/K0(u, x)) � G

satisfying pr ◦ θ = resFu/K(u,x).

Part C: Specialization. Since K0 is existentially closed in K̂0, the field K̂0

and therefore also K0(u) are regular extensions of K0 (Lemma 5.2.6). Thus, u
generates an absolutely irreducible variety U = Spec(K0[u]) over K0 [FrJ08,
Cor. 10.2.2]. The variety U has a nonempty Zariski-open subset U ′ that
contains u such that for each u′ ∈ U ′ the K0-specialization u → u′ extends
to a K(x)-homomorphism ′: K(x)[u, v, w, y, z] → K(x)[u′, v′, w′, y′, z′] such
that the following conditions, derived from (3) and (4), hold:
(6a) The coefficients of f ′, g′, h′, p′0, p

′
1, q

′
0, q

′
1, r

′
0, r

′
1, r

′
2, s

′
0, s

′
1, s

′
2 belong to

K0[u′].
(6b) F = K0(u′, x, z′) is a Galois extension of K0(u′, x), f ′(x, z′) = 0, and

discr(f ′(x, Z)) ∈ K0(u′, x)×.

(6c) y′ = p′
1(x,z′)

p′
0(x,z′) , z′ = q′

1(c,x,y′)
q′
0(c,x,y′) , p′0(x, z′) �= 0, and q′0(c, x, y′) �= 0; we set

F0 = K0(u′, x, y′) and find that F = F0K.
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(6d) g′(X, Y ) is absolutely irreducible, degY (g′(x, Y )) = degY (g(x, Y )),
g′(x, y′) = 0, and so g′(x, Y ) = irr(y′, K0(u′, x)) = irr(y′, K(u′, x));

(6e) h′(V,W ) is absolutely irreducible, h′(0, 0) = 0, and ∂h′
∂W (0, 0) �= 0.

(6f) v′ = r′
1(x,y′)

r′
0(x,y′) , w′ = r′

2(x,y′)
r′
0(x,y′) , x = s′

1(v
′,w′)

s′
0(v

′,w′) , y′ = s′
2(v

′,w′)
s′
0(v

′,w′) , r′0(x, y′) �= 0,
and s′0(v

′, w′) �= 0; thus F0 = K0(u′, v′, w′).

To achieve the absolute irreducibility of g′ and h′ we have used the
Bertini-Noether theorem [FrJ08, Prop. 9.4.3].

Part D: Choosing u′ ∈ Kn
0 . Since K0 is existentially closed in K̂0 and since

u ∈ U ′(K̂0), we can choose u′ ∈ U ′(K0). Then K0[u′] = K0, K0(u′, x) =
K0(x), F0 = K0(x, y′) = K0(v′, w′), and F = K0(x, z′). Since
discr(f ′(x, Z)) �= 0 (by (6b)) the homomorphism ′ induces an embedding

(7) ψ∗: Gal(F/K0(x)) → Gal(Fu/K0(u, x))

such that (ψ∗(σ)(s))′ = σ(s′) for all σ ∈ Gal(F/K0(x)) and s ∈ Fu with
s′ ∈ F [Lan93, p. 344, Prop. 2.8]. Each s ∈ K(x) is fixed by ′, hence
ψ∗(σ)(s) = σ(s) for each σ ∈ Gal(F/K0(x)). It follows that ψ∗ commutes
with restriction to K(x).

F̂0

������� F̂

�������

F0,u

��

Fu

��
F0 F

K̂0(x)

���
��

K̂(x)

����

K0(u, x)

���
��

K(u, x)

����

K0(x) K(x)

K̂0

������ K̂

������

K0(u)

������
K(u)

���
���

K0 K

By (6c), F = K(x, y′) = F0K. By (6d) and [FrJ08, Cor. 10.2.2(b)],
F0/K0 is a regular extension, so F0 is linearly disjoint from K over K0.
Therefore, F0 is linearly disjoint from K(x) over K0(x), hence F0 ∩ K(x) =
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K0(x) and [F0 : K0(x)] = [F : K(x)]. It follows from (6d) that

|Gal(F/K0(x))| = [F : K0(x)]
= [F : K(x)][K(x) : K0(x)]
= degY g′(x, Y )[K : K0]
= degY g(x, Y )[K : K0]
= [Fu : K(u, x)][K(u, x) : K0(u, x)]
= [Fu : K0(u, x)] = |Gal(Fu/K0(u, x))|.

Therefore ψ∗ is an isomorphism. Let

ρ: Gal(K(u, x)/K0(u, x)) � G → Gal(K(x)/K0(x)) � G

be the isomorphism whose restriction to Gal(K(u, x)/K0(u, x)) is the re-
striction map and to G is the identity map. Then, θ′ = ρ ◦ θ ◦ ψ∗ satisfies
pr ◦ θ′ = resF/K(x) (by (5)). This means that θ′ is a solution of embedding
problem (1).

Part E: Rational place. Finally, by (6e) and (6f), the curve defined by
h′(X,Y ) = 0 is a model of F0/K0 and (0, 0) is a K0-rational simple point
of it. Therefore, by Lemma 5.1.4(b), F0 has a K0-rational place ϕ0: F0 →
K0 ∪ {∞}. Since K0 is ample, F0 has infinitely many K0-places (Lemma
5.3.1). Only finitely many of them are ramified over K0(x). Hence, we may
choose ϕ0 to be unramified over K0(x). Using the linear disjointness of F0 and
K over K0, we extend ϕ0 to a K-rational place ϕ: F → K ∪ {∞} unramified
over K0(x). Consequently, by Lemma 4.4.1(c), Γ = Dϕ. �
Theorem 5.9.2: Let K0 be an ample field. Then each constant finite split
embedding problem over K0(x) has a split unramified rational solution.

Proof: Consider a constant finite split embedding problem (1) over K0(x).
Let K̂0 = K0((t)). Then K̂0 is complete under a nontrivial discrete ultramet-
ric absolute value with prime element t. Consequently, by Proposition 4.4.2,
(2) has a split unramified rational solution. By Lemma 5.3.1, K0 is exis-
tentially closed in K̂0. Hence, by Lemma 5.9.1, (1) has a split unramified
rational solution. �
Corollary 5.9.3: Let (A, a) be a weak Henselian pair such that A is a
domain and set K0 = Quot(A). Then each constant finite split embedding
problem over K0(x) has a split unramified rational solution. In particular,
this conclusion holds if (A, a) is a complete domain.

Proof: By Proposition 5.7.3, K0 is ample. Hence, by Theorem 5.9.2, each
constant finite split embedding problem over K0(x) has a split unramified
rational solution. In particular this conclusion holds if (A, a) is a complete
domain (by Proposition 5.7.7). �
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5.10 PAC Hilbertian Fields are ω-Free
The statement of the title was a major open problem of Field Arithmetic.
Theorem 5.10.3 settles that problem.

Recall that the rank of a profinite group G is the least cardinality of a
system of generators of G that converges to 1. If G is not finitely generated,
then rank(G) is also the cardinality of the set of all open normal subgroups
of G [FrJ08, Prop. 17.1.2]. We denote the free profinite group of rank m by
F̂m.

An embedding problem for a profinite group G is a couple

(1) (ϕ: G → A, α: B → A),

of homomorphisms of profinite groups with ϕ and α surjective. The embed-
ding problem is said to be finite if B is finite. If there exists a homomorphism
α′: A → B such that α ◦α′ = idA, we say that (1) splits. A weak solution
to (1) is a homomorphism γ: G → B such that α ◦ γ = ϕ. If γ is surjective,
we say that γ is a solution to (1). We say that G is projective if every
finite embedding problem for G has a weak solution.

An embedding problem over a field K is an embedding problem (1),
where G = Gal(K). If L is the fixed field of Ker(ϕ), we may identify A with
Gal(L/K) and ϕ with resKs/L and then consider α: B → Gal(L/K) as the
given embedding problem. This shows that our present definition generalizes
the one given in Section 1.2. Note that if γ: Gal(K) → B is a solution of
(1) and F is the fixed field in Ks of Ker(γ), then F is a solution field of
the embedding problem α: B → Gal(L/K) and γ induces an isomorphism
γ̄: Gal(F/K) → B such that α ◦ γ̄ = resF/L.

The first statement of the following proposition is due to Gruenberg
[FrJ08, Lemma 22.3.2], the second one is a result of Iwasawa
[FrJ08, Cor. 24.8.2].

Proposition 5.10.1: Let G be a projective group. If each finite split em-
bedding problem for G is solvable, then every finite embedding problem for
G is solvable. If in addition rank(G) ≤ ℵ0, then G ∼= F̂ω.

We say that a field K is ω-free if every finite embedding problem over
K (that is, finite embedding problem for Gal(K)) is solvable.

Theorem 5.10.2: Let K be an ample field.
(a) If K is Hilbertian, then each finite split embedding problem over K is

solvable.
(b) If in addition, Gal(K) is projective, then K is ω-free.
(c) If in addition, Gal(K) has countably many generators, and in particular,

if K is countable, then Gal(K) ∼= F̂ω.

Proof of (a): Every finite split embedding problem over K gives a finite split
constant embedding problem over K(x). The latter is solvable by Theorem
5.9.2. Now use the Hilbertianity and specialize to get a solution of the original
embedding problem over K [FrJ08, Lemma 13.1.1].
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Proof of (b): By (a), every finite split embedding problem over K is solv-
able. Hence, by Proposition 5.10.1, every finite embedding problem over K
is solvable.

Proof of (c): Use (b) and Proposition 5.10.1. �

The following special case of Theorem 5.10.2 is a solution of [FrJ86, Prob.
24.41].

Theorem 5.10.3: Let K be a PAC field. Then K is ω-free if and only if K
is Hilbertian.

Proof: That ‘K is ω-free’ implies ‘K is Hilbertian’ is a result of Roquette
[FrJ08, Cor. 27.3.3]. Conversely, if K is PAC, then Gal(K) is projective
[FrJ08, Thm. 11.6.2]. By Example 5.6.1, K is ample. Hence, if K is Hilber-
tian, then by Theorem 5.10.2(b), K is ω-free. �

Remark 5.10.4: It is a major problem of Galois theory whether statements
(a) and (b) of Theorem 5.10.2 are true without the assumption ‘K is ample’.
For the first statement, this is a conjecture of Débes and Deschamps [DeD97,
Section 2.1, Conjecture (Split EP/K hilb.)], the second it is a conjecture of
Fried and Völklein [FrJ08, Conjecture 24.8.6]. As a matter of fact Débes
and Deschamps make a stronger conjecture than the former one: If K is
an arbitrary field and x is a variable, then every constant split embedding
problem over K(x) has a regular solution [DeD97, Section 2.1, Conjecture
(Split EP/K(T ))]. By Theorem 5.9.2, the latter conjecture holds if K is ample.
On the other hand, we don’t know of any nonample field K for which this
conjecture holds. �

Example 5.10.5: The maximal Abelian extension of Q. We denote that field
by Qab. It is an Abelian extension of Q. Since Q is Hilbertian [FrJ08,
Thm. 13.4.2], a result of Kuyk asserts that Qab is also Hilbertian [FrJ08,
Thm. 16.11.3]. Moreover, Gal(Qab) is projective. Indeed, since

√
−1 ∈ Qab,

the field Qab has no embedding into R. Moreover, for each prime number
p the maximal unramified extension Qp,ur of the field of p-adic numbers Qp

is an Abelian extension with Galois group Ẑ. Since Ẑ ∼=
∏

l Zl, we have
l∞|[QabQp : Qp] for each prime number l. In addition, Qab has a cyclic
extension of degree l (e.g. because Qab is Hilbertian and contains ζl). It
follows by class field theory that the l-th cohomological dimension of Gal(Qab)
is 1 [Rib70, p. 303, Thm. 8.8]. Since this holds for each l, the cohomological
dimension of Gal(Qab) is 1. Consequently, Gal(Qab) is projective (Subsection
9.3.16).

It is not known whether Qab is ample. But if it is, it will follow from the
preceding paragraph and Theorem 5.10.2(c) that Gal(Qab) ∼= F̂ω. This will
prove a well known conjecture of Shafarevich. �

Example 5.10.6: The maximal pro-solvable extension of Q. We denote the
compositum of all finite solvable extensions of Q by Qsolv. It is an infinite
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extension of Q. Moreover, Gal(Qsolv) ≤ Gal(Qab), so by Example 5.10.5,
Gal(Qsolv) is projective. If N is a finite solvable extension of Qsolv, then
there exists a finite Galois extension N0 of Q such that QsolvN0 = N . Then
Gal(N/Qsolv) ∼= Gal(N0/K0), where K0 = Qsolv ∩ N0. Both K0/Q and
N0/K0 are solvable extensions, hence so is N0/Q. Therefore, N0 ⊆ Qsolv,
so N = Qsolv. In other words, Qsolv has no proper solvable extensions. In
particular, Qsolv has no quadratic extensions. It follows that Qsolv is not
Hilbertian. However, by Weissauer, each proper finite extension K of Qsolv

is Hilbertian [FrJ08, Thm. 13.9.1(b)]. In addition, since closed subgroups of
projective groups are projective [FrJ08, Prop. 22.4.7], Gal(K) is projective.
It follows that if Qsolv is ample, then so is K (Lemma 5.5.1(b)), hence by
Theorem 5.10.2(c), Gal(K) ∼= F̂ω.

Of course, the question if Qsolv is ample is at this time far from being
settled. However, we feel that there are more chances for an affirmative
answer to that question than for the correspondent question for Qab. �
Example 5.10.7: Let K be a countable Hilbertian field. Suppose K has
an embedding into R. Then this embedding defines a real local prime p
on K. Let S = {p}. By Example 5.6.6, for almost all σ ∈ Gal(K)e the
field Ktot,S [σ] is PSC, that is Ktot,S [σ] is PKC, where K is the family of
all real closures of K. By Example 5.6.4, M = Ktot,S [σ](

√
−1) is PKC,

where K′ = {K̄(
√
−1) | K̄ ∈ K}. Since each K̄ in K is real closed, K′ =

{K̃}. Hence, M is PAC. In addition, as a finite proper extension of a Galois
extension of a Hilbertian field, M is Hilbertian [FrJ08, Weissauer’s theorem
13.9.1]. Consequently, by Theorem 5.10.3, Gal(M) ∼= F̂ω (note that M itself
is countable).

The case where K = Q and e = 0 is especially attractive. In this case
Ktot,S is the maximal totally real extension of Q and is usually denoted
by Qtr. The preceding paragraph asserts that Qtr(

√
−1) is a PAC, Hilbertian

field with absolute Galois group isomorphic to F̂ω. �
Example 5.10.8: Let K be a Hilbertian field algebraic over either Q or Fp(x),
where x is an indeterminate (e.g. K is a global field [FrJ08, Thm. 13.4.2]).
Let Kcycl be the extension of K obtained by adjoining all roots of unity in
K̃ and let M be an algebraic extension of Kcycl. If Q ⊆ M , then

√
−1 ∈ M

and l∞|[MQp : Qp] = ∞ for all prime numbers l, p and every embedding
M into the algebraic closure of Qp. Hence, the cohomological dimension of
Gal(M) is at most 1 [Rib70, p. 303, Thm. 8.8]. Thus, Gal(M) is projective
[Ser79, p. 75, Prop. 3 or Subsection 9.3.16]. If M is an algebraic extension of
Fp(x)cycl, then M is an algebraic extension of F̃p(x), so Gal(M) is projective,
by [Ser79, p. 75, Prop. 3].

We consider a finite set S of local primes of K. By Example 5.6.6, for al-
most all σ ∈ Gal(K)e the field Ktot,S [σ] is ample. Hence, so is Ktot,S [σ]cycl =
Ktot,S [σ] · Kcycl (Lemma 5.5.1(b)). Omitting the complex local primes of K
from S does not effect Ktot,S nor Ktot,S [σ]. Thus, we assume that S contains
no complex local prime.
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Next observe that for almost all σ ∈ Gal(K)e the field Ktot,S [σ]cycl is
Hilbertian. Indeed, if S �= ∅, we choose p ∈ S and observe that Ktot,S [σ] is
contained in the completion K̂p of K at p and K̂p, as a non-complex local field,
contains only finitely many roots of unity. Thus, Kcycl �⊆ Ktot,S [σ]. There-
fore, we may choose a finite extension K ′ of K in Kcycl with K ′ �⊆ Ktot,S [σ].
Then, Ktot,S [σ]K ′ is a finite proper extension of Ktot,S [σ]. Since the lat-
ter field is Galois over K and K is Hilbertian, Ktot,S [σ]K ′ is Hilbertian
[FrJ08, Weissauer’s theorem 13.9.1]. Since Ktot,S [σ]cycl is an Abelian exten-
sion of Ktot,S [σ]K ′, a theorem of Kuyk implies that Ktot,S [σ]cycl is Hilbertian
[FrJ08, 16.11.3].

If S = ∅, then Ktot,S [σ] = Ks[σ] and the latter field is Hilbertian by
[Jar97, Thm. 2.7]. Hence, by Kuyk, Ktot,S [σ]cycl is Hilbertian.

It follows that for almost all σ ∈ Gal(K)σ, the field Ktot,S [σ]cycl is
ample, Hilbertian, and G = Gal(Ktot,S [σ]cycl) is projective. Consequently,
by Theorem 5.10.2(c), G ∼= F̂ω. �

5.11 Krull Domains
Krull domains give rise to a large family of ample Hilbertian fields.

Definition 5.11.1: An integral domain A with a quotient field K is said to
be a Krull domain if there exists a family P of prime ideals of A satisfying
the following conditions:
(1a) Ap is a discrete valuation ring of K for each p ∈ P.
(1b) Every nonzero a ∈ A belongs to only finitely many p ∈ P.
(1c) A =

⋂
p∈P Ap. �

Remark 5.11.2: Examples of Krull domains.
(a) Definition 5.11.1 is a reformulation of the definition of a Krull domain

in [Mats94, p. 87] (where it is called a Krull ring) and also to the one given
in [Bou89, p. 480]. It is also equivalent to the definition given in [FrJ08,
beginning of Sec. 15.5]. In particular, by [Mats94, p. 87, Thm. 12.3], each
nonzero minimal prime ideal of A belongs to P. Moreover, the family of
nonzero minimal prime ideals of A satisfies Condition (1).

(b) If S is a multiplicative subset of a Krull domain, then the localization
AS is also a Krull domain [Mats94, Thm. 12.1].

(c) Let A1, . . . , An be Krull subdomains of a field K. Then A =
⋂n

i=1 An

is a Krull domain [Bou89, p. 480].
(d) Let A be a Krull domain, L a finite extension of K = Quot(A), and

B the integral closure of A in L. Then B is a Krull domain.
(e) Every Noetherian integrally closed domain is a Krull domain [Mats94,

Thm. 12.4(i)]. In particular, every Dedekind domain is a Krull domain.
(f) If A is a Krull domain, then so is each of the rings A[X1, . . . , Xn] and

A[[X1, . . . , Xn]] [Mats94, Thm. 12.4(iii)].
(g) Every unique factorization domain is a Krull domain, the prime ideals

appearing in Definition 5.11.1 being those generated by the prime elements.
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In particular, if K is a field, then the ring of polynomials B = K[Xi | i ∈ I] is
a Krull domain. Note however that if I is infinite, then B is not Noetherian.
More generally, if A is a Krull domain, then so is A[Xi | i ∈ I] [Bou89, p. 547,
Exer. 8].

(h) Deeper than the previous results in this remark is the following theo-
rem of Mori-Nagata: If A is a Noetherian domain, then its integral closure A′

is a Krull domain [Nag62, Thm. 33.10]. Note that A′ need not be Noetherian
[Nag62, p. 207, Example 5]. �
Theorem 5.11.3: Let A be a Krull domain and set K = Quot(A).
(a) If A �= K, then F = Quot(A[[X1, . . . , Xn]]) is an ample Hilbertian field

for each n ≥ 1 (Pop-Weissauer).
(b) F = K((X1, . . . , Xn)) is an ample Hilbertian field for each n ≥ 2 (Pop-

Weissauer).
(c) In each case, every finite split embedding problem over F is solvable

(Paran).

Proof: For each positive integer n the integral domain R = A[[X1, . . . , Xn]]
is complete with respect to the ideal a generated by X1, . . . , Xn (Example
5.7.5). Hence, by Proposition 5.7.7, F = Quot(R) is ample.

On the other hand, by Remark 5.11.2(f), R is a Krull domain. If A �= K
and n ≥ 1, then A has a nonzero prime ideal p. Then P1 =

∑n
i=1 RXi

is a nonzero prime ideal of R properly contained in the prime ideal P2 =∑n
i=1 RXi + Rp. If A = K and n ≥ 2, then RX1 ⊂ RX1 + RX2 are nonzero

prime ideals of R. Thus, in both cases dim(R) ≥ 2. It follows from Weissauer
that F is Hilbertian [FrJ08, Thm. 15.4.6]. This concludes the proof of (a)
and (b). Statement (c) now follows from Theorem 5.10.2(a). �
Remark 5.11.4: In the case where n = 1 in Theorem 5.11.3(b), F = K((X1))
is a complete discrete valued field, hence ample (Example 5.6.2). However,
F is Henselian, so F is not Hilbertian [FrJ08, Lemma 15.5.4]. �

5.12 Lifting

Let K/K0 be a finite Galois extension of fields with Galois group Γ and
x an indeterminate. The Beckmann-Black Problem for (K0, K,Γ) asks
whether K0(x) has a Galois extension F0 such that Gal(F0/K0(x)) ∼= Γ,
F0/K0 is a regular extension, and there is a prime divisor p of F0/K0 with
decomposition field K0(x) and residue field K. Dèbes solved the Beckmann-
Black problem for PAC fields [FrJ08, Thm. 24.2.2]. Here we apply Theorem
5.9.2 to solve the problem when K0 is ample.

Theorem 5.12.1: Let K0 be an ample field, G a finite group, Γ a subgroup,
K a Galois extension of K0 with Galois group Γ, and x an indeterminate.
Then K0(x) has a Galois extension E with the following properties:
(1a) Gal(E/K0(x)) ∼= G.
(1b) E/K0 is a regular extension.
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Chapter 5. Ample Fields

(1c) E/K0 has infinitely many prime divisors p with decomposition group Γ
over K0(x) and residue field K.

Proof: Consider the action of Γ on G by conjugation and write the cor-
responding semidirect product as Γ � G = {(γ, g) | γ ∈ Γ, g ∈ G} with
the multiplication rule (γ1, g1)(γ2, g2) = (γ1γ2, g

γ2
1 g2) (Compare with Section

1.2). The projection pr: Γ � G → Γ on the first factor maps the subgroup
Γ′ = {(γ, 1) | γ ∈ Γ} of Γ � G isomorphically onto Γ.

Theorem 5.9.2 gives a Galois extension F of K0(x) containing K(x) such
that Gal(F/K0(x)) = Γ � G and res: Gal(F/K0(x)) → Gal(K(x)/K0(x)) is
the map pr: Γ � G → Γ. Moreover, F/K has a prime divisor q unramified
over K0(x) with residue field K and decomposition group Γ′ over K0(x). In
particular, F/K is regular [FrJ08, Lemma 2.6.9(b)].

Note that the map (γ, g) �→ (γ, γg) is an isomorphism ϕ: Γ�G → Γ×G.
Indeed,

ϕ((γ1, g1)(γ2, g2)) = ϕ(γ1γ2, g
γ2
1 g2) = (γ1γ2, γ1g1γ2g2)

= (γ1, γ1g1)(γ2, γ2g1) = ϕ(γ1, g1)ϕ(γ2, g2).

Composing ϕ with the projection on G gives rise to an epimorphism ρ: Γ �
G → G. Explicitly, we have ρ(γ, g) = γg for γ ∈ Γ and g ∈ G. Let
N = Ker(ρ) and denote the fixed field of N in F by E. Then we may identify
Gal(E/K0(x)) with G and ρ with res: Gal(F/K0(x)) → Gal(E/K0(x)).

It follows that E ∩ K(x) = K0(x) and [E : K0(x)] = |G| = [F : K(x)].
Hence, E is linearly disjoint from K(x) over K0(x), so E is linearly disjoint
from K over K0. Since F is regular over K, this implies that E is regular
over K0.

Let p be the restriction of q to E. Since ρ maps Γ′ isomorphically onto Γ,
we have Γ = Dp [Ser79, p. 22, Prop. 22(b)]. The residue field Ēp of E at p is
contained in the residue field F̄q, which is K. In addition, Gal(Ēp/K0) ∼= Dp,
because q, hence also p, are unramified over K0(x). Hence, |Γ| = |Dp| = [Ēp :
K0] ≤ [K : K0] = |Γ|. It follows that Ēp = K.

Finally, denote the fixed field of Dq in F by F0 and let q0 be the re-
striction of q to F0. Then q0 is unramified over K0(x) and its residue field
is K0. Since K0 is ample, F0 has infinitely many prime divisors q′0 unram-
ified over K0(x) and with residue field K0 (Lemma 5.3.1(d)). Extend each
q′0 to a prime divisor q′ of F/K unramified over K0(x) with residue field K.
Then, as in the preceding paragraph, the restriction p′ of q′ to E is a prime
divisor of E/K0 unramified over K0(x) with residue field K. Since over each
prime divisor of K0(x)/K0 there lie only finitely many prime divisors of F/K,
infinitely many of the prime divisors p′ are distinct. �

Remark 5.12.2: In case of Γ = G, Theorem 5.12.1 says that an ample
field K0 has the so-called arithmetic lifting property of Beckmann-Black
[Bla99]. �
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Remark 5.12.3: When K0 is PAC, Pierre Dèbes strengthens Theorem 5.12.1
considerably [FrJ08, Theorem 24.2.2]:

Let E = K0(x) with an indeterminate x and G a finite group. For
i = 1, . . . , n let Γi be a subgroup of G and Ki a Galois extension of K0 with
Galois group Γi. Then E has a Galois extension F such that
(2a) Gal(F/E) ∼= G.
(2b) F/K0 is a regular extension.
(2c) For each i there exists a prime divisor pi of F/K0 with decomposition

group over E equal to Γi and with residue field Ki. Moreover, p1, . . . , pn

are distinct. �

Notes
Pop’s observation mentioned in Roquette’s letter to Geyer (Notes to Chapter
4) that each finite group G has a K-regular realization over K(x) whenever
K is PAC or Henselian is based on the common property that both types of
fields have: in each case K is existentially closed in K((t)). This property is
equivalent to some other seemingly unrelated properties which are collected
into Lemma 5.3.1. The source of that lemma is [Pop96, Prop. 11]. In that
paper Pop calls the fields sharing the equivalent properties of Lemma 5.3.1
‘large fields’ . Unfortunately, the adjective ‘large’ in the naive sense has
been attached to algebraic extensions of Hilbertian fields in several papers
(e.g. [Jar72], [FyJ74], [Jar75], [GeJ78], [Jar79], [Jar82], [Jar97], [ImB06]).
Thus, in order not to create confusion we have replaced ‘large’ by the adjective
‘ample’ with similar attributes. See also [Hrb03, Remark 3.3.12] for other
alternatives.

The idea appearing in the first paragraph of the proof of Lemma 5.4.2
(which is a special case of [Feh10, Lemma 4]) to find two points (u1, v1)
and (u2, v2) on a given absolutely irreducible affine plane K-curve C over an
ample field K such that u1

u2
is a given element c of K is due to Koenigsmann

(Proposition 6.1.5). Pop applied that idea to prove Proposition 5.4.3(b).
In [HaS05] Harbater and Stevenson call a field K satisfying the con-

clusion of Proposition 5.4.3(b) very large. We prefer the expression very
ample. Question 4.5 of [HaS05] asks whether every ample field is very am-
ple. This question is positively answered by Proposition 5.4.3(b). The proof
is due to Pop [Har09, Prop. 3.3]. Proposition 5.4.3(a) and Corollary 5.4.5 are
proved by Fehm in [Feh10].

Pop uses restriction of scalars to prove Lemma 5.5.1(b). Our proof is
due to Haran.

Pop proves in [Pop96] that Ktot,S is PSC if S is a finite set of local
primes of a Hilbertian field K. He notices that the field Ktot,S(μ∞) obtained
by adjoining all roots of unity is ample and has a projective absolute Galois
group, so Gal(Ktot,S(μ∞)) ∼= F̂ω. It turns out that that in the special case
where S consists of the infinite prime of Q, the field Qtr(

√
−1) is PAC with

absolute Galois group F̂ω. This is perhaps the most explicit example for fields
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of that kind.
Harbater-Stevenson prove in [HaS05] that if K is a field, then every finite

split embedding problem over K((X1, X2)) can be lifted from a problem over
K((X1))(X2) and the latter problem has a solution that can be lifted to a
solution of the original problem.

Harbater and Stevenson noticed in the introduction to [HaS05] that their
result would follow from previous results if they knew that K((X1, X2)) was
ample. They suspected it was not.

Paran [Par08] generalizes the method of algebraic patching over complete
fields to algebraic patching over domains A with a prime ideal p such that
the function vp(x) = sup(n ∈ N | x ∈ pn) extends to a discrete valuation
of K = Quot(A) and (A, p) is complete. If in addition, A is a Noetherian
integrally closed domain, Paran’s Main Theorem in [Par09] states that every
constant finite split embedding problem over K(x) has a rational solution.
In particular, if K is Hilbertian, then every finite split embedding problem
over K is solvable [Par09, Thm. B]. This proves [Par09, Cor. C] that every
finite split embedding problem over K((X1, . . . , Xn)) is solvable if n ≥ 2
(and generalizes the theorem of Harbater-Stevenson.) It also proves that
every finite split embedding problem over Quot(A[[X1, . . . , Xn]]) is solvable
if n ≥ 1 and A is a Noetherian integrally closed domain which is not a
field. In particular, it follows that every finite split embedding problem over
Quot(Z[[X]]) is solvable.

Contrary to the suspicion that K((X1, X2)) is not ample, Pop realized
that the quotient field of each Henselian domain is ample [Pop10, Thm. 1.1],
in particular, so is K((X1, X2)). That showed that all of the results of
Harbater-Stevenson and Paran mentioned above about the solvability of fi-
nite split embedding problems follow already from the corresponding result
over ample field (Theorem 5.9.2).

Although Pop’s result has far reaching consequences, the insight behind
the proof is very simple: K((X1, X2)) is the quotient field of a Henselian
ring. In fact our proof of Proposition 5.7.3, which is an adjustment of a proof
of Fehm-Geyer (private communication) that every Henselian field is ample,
was written upon hearing the announcement of Pop’s result. Moreover, it
has turned out that our proof is essentially the same that of Pop.

Proposition 5.8.2 saying that every field of characteristic 0 with a pro-p
absolute Galois group is ample is due to Colliot-Thélène [CoT00, paragraph
preceding Thm. 1]. Theorem 5.8.3, extends that result to arbitrary charac-
teristic [Jar03].

Theorem 5.11.3(c) is proved by Paran in [Par08, Thm. B] in a stronger
form that we partially recapitulate in even a stronger form in Example 12.4.4.

Colliot-Thélène [CoT00] uses technique of Kollár, Miyaoka, and Mori to
prove Theorem 5.12.1 in characteristic 0. Moret-Bailly [MoB01, Thm. 1.1]
generalizes the theorem to arbitrary characteristic. We follow [HaJ00b].

Theorem 5.2.3 of [Hrb03] due to Harbater and Pop generalizes both
Lemma 5.9.1 and 5.12.1. It solves finite split embedding problems over func-
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tion fields of one variable over ample fields with information on decomposition
groups.
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Chapter 6.
Non-Ample Fields

It is sometimes more difficult to give examples of objects that do not have
a certain property P than examples of objects that have that property. A
standard method to do that is to prove that each object having the property
P has another property P’ and then to look for an object that does not have
the property P’. For example, by Corollary 5.3.3, every ample field is infinite.
Hence, finite fields are not ample. More sophisticated examples of nonample
fields are function fields of several variables over arbitrary fields (Theorem
6.1.8(a)). Likewise we prove that if E/K is a function field of one variable and
F is the compositum of a directed family of finite extensions of E of bounded
genus, then F is nonample (Theorem 6.1.8(b)). The proof uses elementary
methods like the Riemann-Hurwitz genus formula. We have not been able to
prove that number fields are nonample by elementary means. We have rather
used in Proposition 6.2.5 the deep theorem of Faltings (formerly, Mordell’s
conjecture).

Section 6.3 surveys concepts and results on Abelian varieties, Jacobian
varieties, and homogeneous spaces (the latter is applied only in 11.5). Like-
wise, Section 6.4 surveys the very deep Mordell-Lang conjecture proved by
Faltings and others. As a consequence we prove that the rational rank of
every nonzero Abelian variety over an ample field of characteristic zero is in-
finite (Theorem 6.5.2). That result combined with a result of Kato-Rohrlich
(Example 6.5.5) leads to examples of infinite algebraic extensions of number
fields that are nonample. Finally, we prove that for each positive integer d
there is a linearly disjoint sequence K1, K2, K3, . . . of extensions of Q of de-
gree d whose compositum is nonample (Example 6.8.9). The proof is based
on the concept of the “gonality” of a function field of one variable that we
establish in Sections 6.6 and 6.7 as well as on a result of Frey (Lemma 6.8.7)
based on the Mordell-Lang conjecture.

6.1 Nonample Fields — Elementary Methods

The nonampleness of function fields depends on the definability of ample
fields in function fields.

Lemma 6.1.1: Let K be a field of positive characteristic p, F a function field
of one variable over K, and n a positive integer. Then:
(a) [F : KF pn

] = pn.
(b) If K ⊂ E ⊆ F and F/E is a purely inseparable extension of degree pn,

then E = KF pn

.

Proof: Statement (b) follows from the inclusion KF pn ⊆ E ⊆ F and from
(a).

M. Jarden,                                 , Springer Monographs in Mathematics,
DOI , © Springer-Verlag Berlin Heidelberg 201110.1007/978-3-642-15128-6_6

Algebraic Patching

http://dx.doi.org/10.1007/978-3-642-15128-6_6


6.1 Nonample Fields — Elementary Methods

In order to prove (a) recall that our convention of a function field im-
plies that F/K is a regular extension. In particular F/K has a separat-
ing transcendence element x. In particular F/K(x) is a separable exten-
sion. Hence, so is F pn

/K(x)pn

. Therefore, KF pn

/K(xpn

) is also separable.
In addition, K(x)/K(xpn

) is a purely inseparable extension of degree pn.
Hence, K(x) is linearly disjoint from KF pn

over K(xpn

). This implies that
[K(x)F pn

: KF pn

] = [K(x) : K(xpn

)] = pn. Finally, F is both a separable
and a purely inseparable extension of K(x)F pn

. Hence, F = K(x)F pn

.

K(x)

pn

K(x)F pn

= F

K(xpn

) KF pn

K(x)pn

F pn

Consequently, [F : KF pn

] = pn. �

Lemma 6.1.2: Let K be a perfect field of positive characteristic p, F a
function field of one variable over K, and n a positive integer. Then:
(a) [F 1/pn

: F ] = pn.
(b) If F ′ is a purely inseparable extension of F of degree pn, then F ′ =

F 1/pn

and the map x �→ xpn

is an isomorphism of F ′/K onto F/K. In
particular, F ′/K is a function field of one variable and genus(F ′/K) =
genus(F/K).

Proof: Since K is perfect, KF pn

= Kpn

F pn

= F pn

. Hence, by Lemma
6.1.1, [F : F pn

] = pn. It follows that [F 1/pn

: F ] = pn.
Now let F ′ be a purely inseparable extension of F of degree pn. Then

F ′ ⊆ F 1/pn

, so by (a), F ′ = F 1/pn

. This implies all of the other statements
of (b). �

Lemma 6.1.3: Let E and F be function fields of one variable over a field K
such that E ⊆ F . Then genus(E/K) ≤ genus(F/K).

Proof: By assumption, F/E is a finite algebraic extension. Denote the maxi-
mal separable extension of E in F by F0. By Riemann-Hurwitz,
genus(E/K) ≤ genus(F0/K) (Remark 5.8.1). Moreover, F/F0 is purely in-
separable. Thus, we may assume that K has a positive characteristic p and
that F/E is a purely inseparable extension of degree pn for some n. Arguing
inductively, we may assume that n = 1.

By Lemma 6.1.1, E = KF p. Now note that

genus(F/K) = genus(F p/Kp)
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and genus(F p/Kp) ≥ genus(F pK/K) (Remark 5.8.1). Hence, genus(E/K) ≤
genus(F/K). �

Giving an absolutely irreducible K-variety V , we denote the function
field of V over K̃ (or, in the language of schemes, of V ×K K̃) by K̃(V ).

Lemma 6.1.4: Let F/K be a function field of one variable, C an absolutely
irreducible K-curve. Suppose genus(FK̃/K̃) < genus(K̃(C)/K̃). Then
C(F ) = C(K).

Proof: Assume there exists x ∈ C(F ) � C(K). Then x ∈ C(FK̃) � C(K̃),
because F ∩K̃ = K. Therefore, x is a generic point of C over K̃, so K̃(x) ∼=K̃

K̃(C). Hence, by Lemma 6.1.3,

genus(K̃(C)/K̃) = genus(K̃(x)/K̃) ≤ genus(FK̃/K̃).

This contradiction to our assumption proves that C(F ) = C(K). �

If ϕ(X) is a formula in the language of rings in the free variable X, K
is a field, and x ∈ K, we write K |= ϕ(x) to denote that the statement ϕ(x)
holds in K.

Proposition 6.1.5: For each prime number q there exists an existential
formula ϕq(Z) in the language of rings (Definition 5.2.4) with the following
property: For each ample field K with char(K) �= q and for each function
field F of one variable over K with genus(FK̃/K̃) < 1

2 (q − 1)(q − 2) we have
K = {z ∈ F | F |= ϕq(z)}.

Proof: Consider the Fermat polynomial f(X,Y ) = Xq+Y q−1 and let ϕq(Z)
be the formula (∃X1)(∃X2)(∃Y1)(∃Y2)[X1 = ZX2 ∧ X2 �= 0 ∧ f(X1, Y1) =
0 ∧ f(X2, Y2) = 0]. Now let K be an ample field with char(K) �= q and
let F be a function field of one variable over K with genus(FK̃/K̃) <
1
2 (q − 1)(q − 2). Since Y q − 1 is a separable polynomial, Eisenstein’s cri-
terion implies that f(X, Y ) is irreducible in K̃[X, Y ], that is f(X, Y ) is abso-
lutely irreducible. Let C be the absolutely irreducible K-curve defined by the
equation f(X, Y ) = 0. It has a smooth K-rational point (0, 1). Explicitly,
f(0, 1) = 0 and ∂f

∂Y (0, 1) �= 0. Moreover, the projective completion C∗ of C is
defined in P2 by the equation f∗(X, Y, Z) = Xq +Y q−Zq = 0. Since the only
common zero of the polynomials f∗(X, Y, Z), ∂f∗

∂X = qXq−1, ∂f∗

∂Y = qY q−1,
∂f∗

∂Z = −qZq−1 is (0, 0, 0) the curve C∗ is smooth. It follows from [FrJ08,
Cor. 5.3.6] that the genus of C∗ (and of C) over K̃ is 1

2 (q− 1)(q− 2). There-
fore, genus(FK̃/K̃) < genus(K̃(C)/K̃). By Lemma 6.1.4, C(F ) = C(K).
We prove that an element z ∈ F is in K if and only if F |= ϕq(z).

First suppose F |= ϕq(z). Then there exist x1, x2, y1, y2 ∈ F such that
x1 = zx2, x2 �= 0, f(x1, y1) = 0, and f(x2, y2) = 0. Then (xi, yi) ∈ C(F ) =
C(K) for i = 1, 2. In particular, x1, x2 ∈ K. Hence, z = x1

x2
∈ K.
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Conversely, let z ∈ K and z �= 0. Then each of the equations f(t, Y ) = 0
and f(tz, Y ) = 0 has a solution in K((t)) because 1 is a simple root of f(0, Y )
and K((t)) is Henselian with respect to the t-adic valuation. It follows that
the existential sentence
(1)
(∃X1)(∃X2)(∃Y1)(∃Y2)[X1 = zX2 ∧ X2 �= 0 ∧ f(X1, Y1) = 0 ∧ f(X2, Y2) = 0]

of L(ring, K) holds in K((t)). Since K is ample, K is existentially closed in
K((t)) (Lemma 5.3.1(f)), hence (1) is true also in K. In other words, there
exist x1, x2, y1, y2 ∈ K such that x1 = zx2, x2 �= 0 and f(xi, yi) = 0 for
i = 1, 2. Thus, K |= ϕq(z) and also F |= ϕq(z).

Finally, for z = 0, we use Lemma 5.3.1(b) to choose x2 ∈ K× and y2 ∈ K
such that f(x2, y2) = 0. In addition, we let x1 = 0 and y1 = 1 to conclude
that ϕq(0) holds in both K and F . �

Given a function field F/K of one variable, we refer to genus(FK̃/K̃)
as the absolute genus of F/K.

We generalize Proposition 6.1.5 to certain infinite algebraic extensions of
function fields of one variable. To this end we say that a field F is a general-
ized function field of one variable over a field K if trans.deg(F/K) = 1
and F/K is a regular extension. In particular, every function field F of one
variable over K is a generalized function field of one variable over K. We
define the genus of a generalized function field F/K as the supremum of
genus(E/K), where E ranges over all function fields of one variable over K
in F . By Lemma 6.1.3, this definition coincides with the usual definition of
genus(F/K) if F/K is a function field of one variable.

Proposition 6.1.6 (Fehm): For every prime number q there exists an ex-
istential formula ϕq(X) in L(ring) with the following property: For each
ample field K with char(K) �= q and for each generalized function field F
of one variable over K with absolute genus g < 1

2 (q − 1)(q − 2) we have
K = {x ∈ F | F |= ϕq(x)}.

Proof: We write F =
⋃

i∈I Fi, where Fi ranges over all function fields of
one variable over K in F . Then genus(FiK̃/K̃) ≤ genus(Fi/K) ≤ g (Remark
5.8.1(e)). Hence, by Proposition 6.1.5, K = {x ∈ Fi | Fi |= ϕq(x)}. Since
ϕq(X) is an existential formula,

{x ∈ F | F |= ϕq(x)} =
⋃
i∈I

{x ∈ Fi | Fi |= ϕq(x)}.

Consequently, K = {x ∈ F | F |= ϕq(x)}. �

Corollary 6.1.7: Let F be a generalized function field of one variable over
an ample field K. Suppose g = genus(F/K) is finite. Then:
(a) Every automorphism of F leaves K invariant.
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(b) If K ′ is an ample subfield of F and F is a generalized function field of
one variable over K ′ such that g′ = genus(F/K ′) < ∞, then K ′ = K.

Proof: We choose a prime number q �= char(K) such that g < 1
2 (q−1)(q−2).

By Proposition 6.1.6, there exists a formula ϕq(X) of L(ring) such that for
all x ∈ F the statement x ∈ K is equivalent to F |= ϕq(x). If α ∈ Aut(F ),
then F |= ϕq(x) if and only if F |= ϕq(α(x)). Hence, α(K) = K.

If K ′ is as in (b), enlarge q such that g′ < 1
2 (q − 1)(q − 2). Then

char(K ′) = char(K) �= q. Hence, K ′ = {x ∈ F | F |= ϕq(x)} = K. �

Proposition 6.1.8: Let F be a transcendental extension of a field K. Then
F is nonample in each of the following cases:

(a) F is finitely generated over K.

(b) trans.deg(F/K) = 1 and genus(FK̃/K̃) is finite (Fehm).

Proof: Assume F is ample. Replacing K by a bigger field in F shows
that we may assume that trans.deg(F/K) = 1 also in Case (a). Replac-
ing K by K̃ and F by FK̃, we may use Lemma 5.5.1 to assume that K is
algebraically closed. Thus, in both cases, F is a generalized function field
of one variable over K of finite genus. Let t ∈ F be transcendental over
K and choose an element t′ transcendental over F . Then the map t �→ t′

extends to a K-isomorphism of F onto a field F ′. The field F ′ is a gen-
eralized function field of one variable over K, F ′ is ample, and F ′ �= F .
By [FrJ08, Cor. 2.6.8], N = FF ′ is a regular extension of transcendence de-
gree 1 over both F and F ′. Moreover, by definition, F =

⋃
i∈I Fi, where

Fi/K is a function field of one variable with genus(Fi/K) ≤ genus(F/K).
Then N =

⋃
i∈I FiF

′ and FiF
′/F ′ is a function field of one variable with

genus(FiF
′/F ′) = genus(Fi/K) ≤ genus(F/K) (Remark 5.8.1). Thus, N/F ′

is a generalized function field of one variable of a finite genus. Similarly,
N/F is a generalized function field of one variable of a finite genus. This
contradiction to Corollary 6.1.7(b) proves that F is not ample. �

Example 6.1.9: We give three examples of nonample generalized function
fields of one variable that are not function fields of one variable.

(a) (Fehm) Let K be a field and x an indeterminate. For each positive
integer n with char(K) � n we choose xn ∈ K(x)s such that x1 = x and
xn

mn = xm for all m, n. Then F =
⋃

char(K)�n K(xn) is a generalized function
field of one variable over K of genus 0. By Proposition 6.1.8, F is nonample.
Moreover, [F : K(x)] = ∞, so F/K is not a function field of one variable.

(b) Let E be a function field of one variable over a field K with
genus(EK̃/K̃) = 1 (e.g. E is the function field of an elliptic curve de-
fined over K). If E′ is a finite unramified extension of E and E′ is regu-
lar over K, then E′K̃ is unramified over EK̃. Hence, by Riemann-Hurwitz,
genus(E′K̃/K̃) = 1 (Remark 5.8.1). Thus, if we denote the compositum of
all finite unramified extensions of E by Eur, then trans.deg(Eur/K) = 1 and
genus(EurK̃/K̃) = 1. By Proposition 6.1.8(b), Eur is nonample.
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Note that EurK̃/K̃ is not a function field of one variable. Indeed, even
more is true, namely that Ks ⊆ Eur, [Eur : EKs] = ∞, and Eur is linearly
disjoint from EK̃ over EKs, so [EurK̃ : EK̃] = ∞. However, in order to keep
our references as elementary as possible, we assume that K is algebraically
closed and prove that [Eur : E] = ∞.

Indeed, E has a K-rational point, so E is the function field of an elliptic
K-curve C [Sil86, Sec. III3]. Thus, E = K(x), where x is a generic point of
C over K. For each positive integer n with char(K) � n we choose a point
xn ∈ C(Ẽ) such that nxn = x (a consequence of [Sil86, p. 71, Prop. 4.2]).
Then xn is also a generic point of C over K and K(xn) is a Galois extension
of K(x) of degree n2 (a consequence of [Sil86, p.89, Cor. 6.4(b)]). In partic-
ular, genus(K(xn)/K) = 1, so by Riemann-Hurwitz, K(xn) is an unramified
extension of K(x). It follows that [Eur : E] = ∞, which proves our claim.

(c) The scope of the method that led to the preceding examples is limited.
Indeed, if E is a function field of one variable over a field K, genus(E/K) ≥ 2,
and F is an infinite separable algebraic extension of E regular over K, then
E has finite extensions E′ in F of unbounded degree. By Riemann-Hurwitz,
2genus(E′/K) − 2 ≥ [E′ : E](2genus(E/K) − 2). Hence, genus(E′/K) is
unbounded, so genus(F/K) = ∞ and Proposition 6.1.8 does not apply. In
the following section we use more powerful tools to get more examples of
nonample fields. �

For each prime number p there exists an example of Hrushovski of a
countable non-PAC field F of characteristic p such that Fins is PAC [FrJ08,
Thm. 11.7.8]. Problem 11.7.9 of [FrJ08] then asks if that F can be finitely
generated over Fp. The following result gives a negative answer to that
question.

Proposition 6.1.10 (Fehm): Let K be a field of positive characteristic and
F a finitely generated transcendental extension of K. Then Fins is not ample
(hence also not PAC).

Proof: We break up the proof into two parts.

Part A: K is perfect and F is a function field of one variable over K.
Let g = genus(F/K). For each positive integer n the map x �→ xpn

is
an isomorphism of F 1/pn

onto F that leaves K invariant, so F 1/pn

is also
a function field of one variable over K of genus g. It follows that Fins =⋃

n F 1/pn

is a generalized function field of one variable over K of genus g.
By Proposition 6.1.8(b), Fins is nonample.

Part B: The general case. Replacing K by a bigger field in F , if necessary,
we may assume that trans.deg(F/K) = 1 and K is algebraically closed in F .
Then K has a finite extension K ′ such that F ′ = FK ′ is a regular extension
of K ′, that is F ′/K ′ is a function field of one variable. Moreover, F ′

ins is an
algebraic extension of Fins. If Fins is ample, then so is F ′

ins (Lemma 5.5.1(b)).
Thus, without loss of generality, we may assume that F is a function field of
one variable over K. But then FKins is a function field of one variable over
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Kins. Since Kins is perfect and Fins = (FKins)ins, it follows from Part A that
Fins is not ample. �

6.2 Nonample Fields — Advanced Methods

We call a field K small if K is finite, a number field, or a finitely generated
transcendental extension of another field. In each of these cases, K is nonam-
ple. We have already proved this statement for the first and the third types
of fields (Corollary 5.3.3 and Theorem 6.1.8). To prove it for the second type
(and reprove it for the third type), we need examples of absolutely irreducible
K-curves with finitely many K-rational points. These are given by two deep
results of arithmetic geometry, Faltings’ theorem and the Grauert-Manin the-
orem. Each of these theorems speaks about curves of genus at least 2. Thus,
we start by establishing examples of such curves.

Let K/K0 be an extension of fields. An absolutely irreducible K-curve
C is said to be nonconstant over K/K0 if C is not birationally equivalent
over K̃ to any K̃0-curve C0.

Lemma 6.2.1 ([FrJ08, Remark 11.7.7 and Proposition 3.8.4]): Let K be a
field of characteristic p and u0, u1, u2, u3, u4, u5 distinct elements of K. Then
the K-curve

C :

{
Y 2 = (X − u1)(X − u2)(X − u3)(X − u4)(X − u5) if p �= 2
Y 2 + Y = X−u0

(X−u1)(X−u2)(X−u3)(X−u4)(X−u5)
if p = 2

is absolutely irreducible (and is hyperelliptic). Its genus over K and over
K̃ is 2 if p �= 2 and 4 if p = 2. Moreover, if K0 is a subfield of K and
u4 /∈ K̃0(u1, u2, u3), then C is nonconstant over K/K0.

Remark 6.2.2: Genus of a curve. Let C be an absolutely irreducible curve
defined over a field K and let F be the function field of C over K. We
define the genus (resp. absolute genus) of C to be the genus of F/K
(resp. FK̃/K̃). By Remark 5.8.1, the genus of C is greater or equal to its
absolute genus. Moreover, equality holds if K is perfect. �

The following result is known as the “Mordell’s Conjecture for function
fields” and is due to Grauert and Manin.

Proposition 6.2.3 ([Sam66, pp. 107 and 118]): Let K be a finitely gener-
ated regular extension of a field K0 and C an absolutely irreducible K-curve
nonconstant over K/K0. Suppose the absolute genus of C is at least 2. Then
C(K) is a finite set.

We also need Faltings’ theorem, formerly known as “Mordell’s Conjec-
ture”.

Proposition 6.2.4 ([Fal83]): Let K be a number field and C an absolutely
irreducible K-curve of genus at least 2. Then C(K) is finite.

104



6.3 Abelian Varieties and Jacobian Varieties

Proposition 6.2.5: In each of the following cases K is a nonample field:
(a) K is a number field.
(b) K is a finitely generated transcendental extension of a subfield K0.

Proof: We consider the absolutely irreducible K-curve C of genus ≥ 2 de-
fined in Lemma 6.2.1. In case (b) we may replace K0 by a finite algebraic
extension K ′

0 and K by KK ′
0, if necessary, to assume that K is a regular

extension of K0. If char(K) �= 2, then (u1, 0) ∈ Csimp(K). If char(K) = 2,
then (u0, 0) ∈ Csimp(K). Indeed, in each case, the corresponding point does
not satisfy the equation obtained by taking the derivative with respect to X
of the defining equation. Moreover, in case (b), C is nonconstant over K/K0.
It follows from Propositions 6.2.3 and 6.2.4 that C(K) is finite. By Lemma
5.3.1(a), K is nonample. �

Note that Case (b) of Proposition 6.2.5 is proved in Theorem 6.1.8 by
much simpler means. However, the theorem of Grauert-Manin comes in
handy in the proof of a generalization of the following result:

Theorem 6.2.6 (Fehm): Let K be a field of infinite cardinality m, n a
positive integer, x1, . . . , xn algebraically independent elements over K, and
F a compositum of less than m finite extensions of K(x1, . . . , xn). Then F
is nonample.

Proof: The case where m = ℵ0 is covered by Theorem 6.1.8(a) and also by
Proposition 6.2.5(b). Therefore we assume that m > ℵ0. We may also assume
that n = 1 and set F0 = K(x1). Lemma 6.2.1 gives an absolutely irreducible
F0-curve C nonconstant over F0/K of genus ≥ 2. Moreover, (0, u1) (resp. u0)
is a simple F0-rational point of C if char(F0) �= 2 (resp. if char(F0) = 2). By
assumption F =

⋃
i∈I Fi, where I is a set of cardinality less than m and each

Fi is a finite extension of F0. By Grauert-Manin, C(Fi) is finite, hence C(Fi)
is finite for each i. Hence, card(C(F )) ≤ card(I)ℵ0 < m. It follows from
Proposition 5.4.3(b) that F is nonample. �

6.3 Abelian Varieties and Jacobian Varieties
We survey in this section elements of the theory of Abelian varieties and
Jacobian varieties needed in this book. Our sources are Lang’s book [Lan59],
Mumford’s book [Mum74], and Milne’s two chapters in [CoS86].

6.3.1 Abelian Varieties.
A group variety over a field K is an absolutely irreducible K-variety G

with two morphisms G × G → G (multiplication), G → G (inverse), and an
element e ∈ G(K) (the unit element) defined over K such that the structure
on G(K̃) defined by the multiplication and the inverse is that of a group with
identity element e. In particular, G is smooth, that is each point of G(K̃)
is simple [CoS86, p. 104].

We say that a group variety A is an Abelian variety if A is complete.
In that case A(L) is an Abelian group for every field extension L of K [CoS86,
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p. 105, Cor. 2.4]. We write the operation of A as addition and use o (or oA)
for the zero element of A. One can embed A into a projective space Pr

K for
some positive integer r [CoS86, p. 113, Thm. 7.1].

A homomorphism α: A → B of Abelian varieties over K is a morphism
that respects addition. In particular, for each extension L of K, α gives rise
to a homomorphism α: A(L) → B(L) of Abelian groups. One says that α is
an isogeny, if α is surjective with a finite kernel and let deg(α) = [K(A) :
K(B)] be the degree of α. In this case, dim(A) = dim(B) [CoS86, p. 114,
Prop. 8.1].

Multiplication of elements of an Abelian variety A by a positive integer n
is an isogeny of degree n2 dim(A) denoted by nA (or just by n) [CoS86, p. 115,
Thm. 8.2]. Thus, A(K̃) is a divisible group, i.e. for each a ∈ A(K̃) and
every positive integer n there exists b ∈ A(K̃) such that nb = a. The isogeny
nA is étale (in particular separable) if char(K) � n. Writing An = Ker(nA),
we get in the latter case that An(K̃) ∼= (Z/nZ)2 dim(A) [Mum74, p. 64].

Now consider a subgroup Γ of A(K̃) and an extension L of K. We write
Γdiv(L) = {a ∈ A(L̃) | na ∈ Γ for some n ∈ N} for the divisible hull of Γ in
A(L̃). For each n ∈ N and every b ∈ Γ the set {a ∈ A(L̃) | na = b} is a coset
of An(K̃), hence it is a finite algebraic set defined over K̃, so it is contained
in A(K̃). It follows that Γdiv = Γdiv(L) ≤ A(K̃) is independent of L.

Finally let α be a rational map from an absolutely irreducible variety
V into an Abelian variety A defined over K. Then α is defined at each
simple point of V [Lan59, p. 20, Thm. 2]. Thus, if V is smooth, the α is a
morphism [CoS86, p. 106, Thm. 3.1]. Moreover, if V is an Abelian variety
and α(oV ) = oA then α is a homomorphism (see [Lan59, p. 24, Thm. 4] or
[CoS86, p. 107, Cor. 3.6]).

6.3.2 Jacobian Varieties.
Let C be a complete smooth absolutely irreducible curve of positive

genus g defined over a field K. We assume that C has a K-rational point o.
Then there exists an Abelian variety J = JC of dimension g and a rational
map γ: C → J defined over K such that γ(o) = oJ with the following
universal property: If α: C → A is a rational map into an Abelian variety A
defined over K such that α(o) = oA, then there is a unique homomorphism
α′: J → A such that α′ ◦ γ = α [Lan59, p. 35, Thm. 9]. Note that by the
final remark of Subsection 6.3.1, both maps γ, α are actually morphisms.

By [Lan59, p. 35, Thm. 8], the image of the morphism Cg → J given by

(p1, . . . ,pg) →
g∑

i=1

γ(pi)

is Zariski-dense in J . Since Cg is complete and the image of morphisms of
complete varieties is Zariski-closed, each point of J is the sum of g points of
γ(C) (see also [CoS86, p. 182]). Thus, γ(C) generates J . By [Lan59, p. 49,
Prop. 4], the map γ: C → γ(C) is an isomorphism.
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In particular, if C happens to be also an Abelian variety, then by the final
remark of Subsection 6.3.1, γ is a homomorphism. Hence, by the preceding
paragraph, γ(C(K̃)) = J(K̃). Therefore, γ: C → J is surjective and 1 ≤ g =
dim(J) ≤ dim(C) = 1. Consequently, g = 1, i.e. C is an elliptic curve.

In the general case, we choose a generic point x of C over K. Let
F = K(x) be the function field of C over K. Recall (Remark 5.8.1) that
P(FK̃/K̃) denotes the set of prime divisors of FK̃/K̃. Each p ∈ P(FK̃/K̃)
is represented by a unique place ϕp: FK̃ → K̃ ∪ {∞} such that ϕp(a) = a

for each a ∈ K̃. Since C is complete p = ϕp(x) is a point of C(K̃).
Since C is smooth, each point p ∈ C(K̃) is uniquely obtained in this way.
Thus, the map p �→ ϕp(x) from P(FK̃/K̃) into C(K̃) is bijective. Com-
posing this map with γ and extending linearly to Div(FK̃/K̃) we get a
homomorphism β: Div(FK̃/K̃) → J(K̃), namely if a =

∑n
i=1 kipi, then

β(a) =
∑n

i=1 kiγ(ϕpi
(x)). By the second paragraph of the present subsec-

tion, β is surjective.
Now let o be the prime divisor of F/K with ϕo(x) = o. Then o remains

prime over K̃ and β(o) = γ(o) = oJ . Thus, deg(a − deg(a)o) = 0, and
β(a−deg(a)o) = β(a). It follows that the restriction β0 of β to Div0(FK̃/K̃)
is also surjective. By Abel, Ker(β0) is the group div((FK̃)×) of principal
divisors [Lan59, p. 36, Thm. 10]. It follows that the following short sequence
of Abelian groups is exact:

(1) 0 → div((FK̃)×) → Div0(FK̃/K̃)
β0−→ J(K̃) → 0

Since γ is defined over K, it commutes with the action of Gal(K). On the
other hand, the equality ϕpσ (x) = ϕp(x)σ−1

implies that the map

P(FK̃/K̃) → C(K̃)

commutes with the action of Gal(K) up to the involution σ �→ σ−1. One
way to fix this problem is to let Gal(K) act both on P(FK̃/K̃) and on C(K̃)
(and then on J(K̃)) from the left. Then ϕσp(x) = σϕp(x) and the map
P(FK̃/K̃) → C(K̃) commutes with the action of Gal(K). It follows that (1)
yields for Pic0(FK̃/K̃) = Div0(FK̃/K̃)/div((FK̃)×) a Gal(K)-isomorphism

(2) Pic0(FK̃/K̃) ∼= J(K̃).

Like for any other Abelian variety, the group J(K̃) is divisible (Sub-
section 6.3.1). By (2) the quotient group, Div0(FK̃/K̃)/div((FK̃)×) is also
divisible. Since K̃ is algebraically closed, the degree of each prime divisor o of
FK̃/K̃ is 1. Hence, for each a ∈ Div(FK̃/K̃) and for each positive integer n
there exists f ∈ (FK̃)× such that a − deg(a)o ≡ div(f) mod nDiv(FK̃/K̃).
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6.3.3 Homogeneous Spaces.
Let A be an Abelian variety defined over a field K. A principal ho-

mogeneous space over A (also called a torsor) is an absolutely irreducible
K-variety V together with a right simply transitive action of A on V . In
other words, there is a K-morphism V × A → V mapping (v,a) onto va,
such that for all v,v1,v2 ∈ V (K̃) and a,b ∈ A(K̃) the following holds:
(3a) v · 0 = v.
(3b) v(a + b) = (va)b.
(3c) For every v1,v2 ∈ V (K̃) there is a unique a ∈ K̃ with v1a = v2.
(3d) The map ν: V × V → A mapping (v1,v2) onto a of (3c) is a K-

morphism.
Two principal homogeneous spaces V and V ′ are K-isomorphic if there

exists a K-isomorphism ϕ: V → V ′ of absolutely irreducible varieties such
that ϕ(va) = ϕ(v)a for all v ∈ V (K̃) and a ∈ A(K̃). We denote the set of
K-isomorphism classes of principal homogeneous spaces over A by P (A).

The Abelian variety A is a principal homogeneous space over itself. The
action is given by addition: (x,a) �→ x + a.

If L is an algebraic extension of K and v0 ∈ V (L), then the map a �→ v0a
is an L-isomorphism of A onto V . If v0 ∈ V (K), then that map is even a
map of principal homogeneous spaces over A.

By definition, if K is a PAC field, then every absolutely irreducible K-
variety has a K-rational point. Hence, in this case P (A) consists of one
element, namely the class of A.

The main interest in principal homogeneous spaces arises from a bijective
correspondence between P (A) and the first cohomology group
H1(Gal(K), A(Ks)). The class of A corresponds to the zero element of
H1(Gal(K), A(Ks)) [LaT58, p. 667, Prop. 4]. By the preceding paragraph,
H1(Gal(K), A(Ks)) = 0 if K is PAC.

6.4 The Mordell-Lang Conjecture

The Mordell-Lang conjecture (proved by Faltings and others) is a far reaching
generalization of the Mordell conjecture proved previously also by Faltings
(and others). We quote the result and draw several special cases of it.

We start by quoting Theorem 4.2 of [Fal94].

Proposition 6.4.1: Let K be a number field, A an Abelian variety defined
over K, and V a Zariski-closed subset of A defined over K. Then there exist
a1, . . . ,an ∈ A(K) and Abelian subvarieties B1, . . . , Bn of A defined over K
such that ai + Bi ⊆ V for each i and V (K) =

⋃n
i=1[ai + Bi(K)].

Remark 6.4.2: Rational rank. Let Γ be an additive Abelian group. Ele-
ments c1, . . . , cn of Γ are said to be linearly independent over Z if for all
k1, . . . , kn ∈ Z the equality

∑n
i=1 kici = 0 implies k1 = · · · = kn = 0. An ar-

bitrary subset of Γ is linearly independent if every finite subset is linearly
independent. The rational rank of Γ is the supremum of the cardinalities
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of all linearly independent subsets of Γ over Z. It is denoted by rr(Γ). For
example, rr(Γ) = 0 if and only if Γ is a torsion group. By [Bou89, p. 437],
rr(Γ) is also the dimension of the Q-vector space Q ⊗Z Γ. If Γ is finitely
generated, then Γ ∼=

⊕m
i=1 Z/qiZ⊕Zr for some prime powers q1, . . . , qm and

an integer r ≥ 0. Then rr(Γ) = r.
Now suppose Γ is contained in a divisible Abelian group A. Then rr(Γ) <

∞ if and only if Γ has a finitely generated subgroup Γ0 such that Γ ≤ Γdiv
0 =

{a ∈ A | na ∈ Γ0 for some n ∈ Z}.
Indeed, if there exists Γ0 as in the preceding paragraph and c1, . . . , cn are

linearly independent elements of Γ over Z, then there exists m ∈ N such that
mc1, . . . , mcn ∈ Γ0. By definition, also mc1, . . . , mcn are linearly independent
over Z. Hence, m ≤ rr(Γ0). It follows that rr(Γ) ≤ rr(Γ0) < ∞.

Conversely, if r = rr(Γ) < ∞, we choose linearly independent elements
c1, . . . , cr ∈ Γ over Z and let Γ0 be the subgroup of Γ generated by c1, . . . , cr.
If c is an arbitrary element of Γ, then c, c1, . . . , cr are linearly dependent over
Z. Thus, there exist k, k1, . . . , kr ∈ Z with k �= 0 such that kc + k1c1 + · · · +
krcr = 0. Therefore, c ∈ Γdiv

0 . �
Proposition 6.4.3 (The Mordell-Lang Conjecture): Let K be a field of
characteristic 0, A an Abelian variety defined over K̃, V a Zariski-closed
subset of A, and Γ a subgroup of A of a finite rational rank. Then there exist
elements a1, . . . ,an ∈ Γ and Abelian subvarieties B1, . . . , Bn of A defined
over K̃ such that ai + Bi(K̃) ⊆ V (K̃) for each i and V (K̃) ∩ Γ =

⋃n
i=1[ai +

(Bi(K̃) ∩ Γ)].

References to the proof: Following Raynaud [Ray83], Hindry reduces the
proposition to the case where Γ is finitely generated rather than of finite
rational rank [Hin88]. Then comes a reduction to the case where K is a
number field, A and V are defined over K, and Γ = A(K) [Maz00, §7]. The
latter case is due to Faltings (Proposition 6.4.1), who applies the technique
of diophantine approximation due to Vojta. �
Corollary 6.4.4: Let K be a field of characteristic 0, A an Abelian variety
defined over K, C an absolutely irreducible K-subcurve of A with genus(C) ≥
2, and Γ a subgroup of A(K̃) of finite rational rank. Then:
(a) C(K̃) ∩ Γ is a finite set.
(b) If rr(A(K)) < ∞, then C(K) is a finite set.
(c) If K is a number field, then C(K) is a finite set.

Proof of (a): By Proposition 6.4.3 there exist points a1, . . . ,an ∈ Γ and
Abelian subvarieties B1, . . . , Bn of A defined over K̃ such that ai + Bi(K̃) ⊆
C(K̃) for each i and C(K̃)∩Γ =

⋃n
i=1[ai+(Bi(K̃)∩Γ)]. If C(K̃)∩Γ is infinite,

then there is an i such that ai +(Bi(K̃)∩Γ) is infinite. Hence, ai +Bi(K̃) is
infinite. Since ai+Bi is a closed subset of C and C is irreducible, C = ai+Bi.
In particular, Bi is isomorphic to C. Hence, Bi is a curve of genus at least
2. This contradicts the consequence of the third paragraph of Section 6.3.2
and proves that C(K̃) ∩ Γ is finite.
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Proof of (b): Taking Γ = A(K), it follows from (a) that C(K) = C(K̃) ∩
A(K) is finite.

Proof of (c): By Mordell-Weil, A(K) is in our case finitely generated. Hence,
by (b), C(K) is finite. �

6.5 Consequences of the Mordell-Lang Conjecture

We use the Mordell-Lang conjecture in order to prove that if K is an ample
field of characteristic 0 and A is an Abelian variety of positive dimension
defined over K, then rr(A(K)) = ∞ (Theorem 6.5.2). Using another deep
theorem of Kato-Rohrlich, we give examples of infinite algebraic extensions
of Q that are nonample (Example 6.5.5).

In the following result we construct the subcurve C of A required in
Corollary 6.4.4 under the condition that dim(A) ≥ 2.

Lemma 6.5.1: Let A be an Abelian variety of dimension ≥ 2 defined over
an infinite perfect field K. Then there exists an absolutely irreducible curve
C of genus ≥ 2 defined over K, lying in A, and having a simple K-rational
point.

Proof: Recall that an Abelian variety B defined over K is said to be K-
simple if 0 and B are the only Abelian subvarieties of B defined over K.
By Poincaré, A is K-isogeneous to a product B = B1 × · · · ×Br of K-simple
Abelian subvarieties [Lan59, p. 28, Thm. 6]. Thus, there exists a morphism
α: A → B, defined over K, such that α(A(K̃)) = B(K̃) and Ker(α)(K̃) is
finite. In particular, dim(B) = dim(A) ≥ 2. For each i we choose a nonzero
point qi ∈ Bi(K̃) and a point pi ∈ A(K̃) with α(pi) = qi. By Lemma 5.1.3,
there exists an absolutely irreducible projective curve C defined over K that
lies on A and goes through the zero point oA of A and through each of the
points pi. Moreover, since oA and each of the points pi are simple on A, we
may choose C such that oA and each of the points pi are simple on C.

The proof of [JaR98, Lemma 10.1] (on which Lemma 5.1.3 is based) can
be refined to make C smooth (This may be used to remove the condition on
K to be perfect.) But since this is not explicitly stated there, we consider
the K-normalization π: C ′ → C of C. Since K is perfect, C ′ is smooth.
Moreover, there exist unique points o′ ∈ C ′(K) and p′

1, . . . ,p
′
r ∈ C ′(K̃) such

that π(o′) = oA and π(p′
i) = pi for i = 1, . . . , r.

Since C ′ is a smooth projective curve defined over K and o′ ∈ C ′(K),
the Jacobian variety J of C ′ is defined over K. Let γ′: C ′ → J be the unique
morphism such that γ′(o′) is the zero point oJ of J (Subsection 6.3.2). It
yields a homomorphism ϕ: J → A defined over K making the following
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diagram commutative:

C ′ γ′
��

π

��

J

ϕ

��
C

incl. �� A
α �� B= B1 × · · · × Br

For each i we have α(ϕ(γ′(p′
i))) = α(π(p′

i)) = qi ∈ Bi(K̃). Hence, α(ϕ(J))∩
Bi is a nonzero Abelian subvariety of Bi defined over K. Since Bi is K-
simple, Bi ⊆ α(ϕ(J)). It follows that α ◦ ϕ: J → B is surjective. Therefore,
genus(C) = genus(C ′) = dim(J) ≥ dim(B) ≥ 2, as desired. �

Theorem 6.5.2 (Fehm-Petersen): Let A be an Abelian variety of dimension
≥ 1 defined over an ample field K of characteristic 0. Then rr(A(K)) = ∞.

Proof: If rr(A(K)×A(K)) = ∞, then rr(A(K)) = ∞. Therefore, replacing
A by A × A, if necessary, we may assume that dim(A) ≥ 2. Let C be an
absolutely irreducible curve of genus at least 2 lying on A that Lemma 6.5.1
gives. In particular, the zero point oA of A is a simple K-rational point of
C. Since K is ample, C(K) is infinite (Lemma 5.3.1(b)). It follows from
Corollary 6.4.4(b) that rr(A(K)) = ∞. �

It is somewhat surprising that the latest result can be proved for ample
fields of infinite transcendence degree without the restriction on the charac-
teristic by much simpler means. One of the ingredients of that proof seems
to be folklore:

Lemma 6.5.3: Let K be a field with an infinite transcendece degree over its
prime field K0. Then card(K) = trans.deg(K/K0).

Proof: Let T be a transcendence basis of K/K0. By assumption m =
card(T ) = trans.deg(K/K0) ≥ ℵ0. Hence, the cardinality of the set T
of all finite subsets of T is also m. Since K0(T ) =

⋃
T0∈T K0(T0) and

card(K0(T0)) ≤ ℵ0, we have card(T ) ≤ card(K0(T )) ≤ ℵ0 · m = m. Thus,
card(K0(T )) = m. Since K is an algebraic extension of K0(T ), the cardinal-
ity of K is also m. �

Theorem 6.5.4: Let A be an Abelian variety of dimension ≥ 1 defined over
an ample field K. Let K0 be the prime field of K with trans.deg(K/K0) = ∞.
Then, rr(A(K)) = card(K).

Proof: Assume rr(A(K)) < card(K). Since trans.deg(K/K0) = ∞, we have
trans.deg(K/K0) = card(K). Let (ai)i∈I be a maximal linearly indepen-
dent set elements of A(K) with card(I) = rr(A(K)). By our assumption,
card(I) < card(K).

We choose a finitely generated subfield K1 in K over which A is defined
and let K2 = K1(ai | i ∈ I). If card(K) = ℵ0, then I is finite. Hence, K2/K1

is finitely generated, so trans.deg(K2/K0) < ℵ0 = card(K). If card(K) > ℵ0,
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then trans.deg(K2/K0) ≤ trans.deg(K1/K0)+ℵ0 · card(I) < card(K). Thus,

(1) trans.deg(K2/K0) < card(K)

in each case.
For each a ∈ A(K) there exists a positive integer n such that na belongs

to the group generated by the ai’s, hence to A(K2). Since n−1
A (A(K2)) ⊆

A(K̃2), we have K2(A(K)) ⊆ K̃2. On the other hand, K2(A(K)) = K, by
Lemma 5.4.3(b), hence K ⊆ K̃2. It follows from (1) that trans.deg(K̃2/K0) =
trans.deg(K2/K0) < card(K) = trans.deg(K/K0) ≤ trans.deg(K̃2/K0).
This contradiction proves that rr(A(K)) = card(K). �
Example 6.5.5: Examples of infinite algebraic extensions of Q that are non-
ample.

(a) Let S be a finite set of prime numbers, E a modular elliptic curve
defined over Q, and L the maximal Abelian extension of Q that is at most
ramified in S. By a deep theorem of Kato and Rohrlich [Gre01, Thm. 1.5],
E(L) is finitely generated. Hence, by Theorem 6.5.2, L is nonample. By
Lemma 5.5.1(b), every subfield of L is nonample. Of course, we know now
by the theorem of Breuil-Conrad-Diamond (that generalizes the Taylor-Wiles
theorem) that every elliptic Q-curve is modular. However, for our purpose
it suffices to choose only one such modular curve. For example, we may
choose X0(11) [Sil86, p. 355]. Recall that the latter curve parametrizes all
equivalence classes of pairs (E,C), where E is an elliptic curve defined over
Q with a subgroup C of order 11 invariant under the action of Gal(Q) [Sil86,
p. 354, Thm. 13.1(a)].

(b) Let p be a prime number and set F = Q(ζpi)i=1,2,3,.... Then
Gal(F/Q) ∼= A × Zp, where A is a finite group (isomorphic to Z/2Z if p = 2
or to Z/(p − 1)Z if p �= 2). Let L be the fixed field of A in F . Then,
Gal(L/Q) ∼= Zp. For each number field K, Gal(LK/K) is isomorphic to an
open subgroup of Zp, hence to Zp [FrJ08, Lemma 1.4.2(e)]. The field LK is
called the cyclotomic Zp-extension of K.

The only prime number that ramifies in L is p [CaF67, p. 87, Lemma
4]. In addition, only finitely many prime numbers ramify in K. Hence, only
finitely many prime numbers ramify in LK. If, in addition, K/Q is Abelian,
then by (a), LK is nonample. �

Our next goal is to prove that the inverse of Theorem 6.5.2 is not true.

Lemma 6.5.6: Let K be a field, C an absolutely irreducible K-curve of
absolute genus at least 2, and A an Abelian variety defined over K. Denote
the function field of A over K by F . Then C(K) = C(F ).

Proof: Assume there is a point p ∈ C(F ) � C(K). Then p ∈ C(F̃ ) � C(K̃)
(because K is algebraically closed in F ). Hence, making a base change from
K to K̃, if necessary, we may assume that K is algebraically closed.

Next let C ′ be a projective closure of C. Then p ∈ C ′(F ) � C ′(K)
(because K(p) is a transcendental extension of K). Finally, let π: C ′′ → C ′
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be the projective normalization of C ′. Since p is a generic point of C over K,
there exists a unique point p′′ ∈ C ′′(F ) � C ′′(K) with π(p′′) = p. Replacing
C by C ′′, if necessary, we may assume that C is a smooth projective curve
over K.

The inclusion K(p) ⊆ F defines a dominant rational map α: A → C
defined over K. It is defined at some point a ∈ A(K). Replacing α by α′

defined by α′(x) = α(a + x), if necessary, we may assume that α is defined
at the zero point oA of A.

Set o = α(oA). Let J be the Jacobian variety of C over K and let
γ: C → J be the canonical map satisfying γ(o) = oJ . Then θ = γ ◦ α is
a rational map from A to J with θ(oA) = oJ . By Subsection 6.3.1, θ is a
homomorphism of Abelian varieties. In particular, B = θ(A) is an Abelian
subvariety of J defined over K. In addition, B is birationally equivalent
to γ(C). On the other hand, by the second paragraph of Subsection 6.3.2,
γ(C) is isomorphic to C. It follows that B is an absolutely irreducible curve
over K of genus at least 2 as well as an Abelian variety. This contradicts a
consequence of Subsection 6.3.2 and proves that C(F ) = C(K), as contended.
�

Proposition 6.5.7: Let K be either a number field or a finite field. Then
K has an extension F such that F is nonample but rr(A(F )) = ∞ for every
Abelian variety A of positive dimension defined over F .

Proof: We choose an absolutely irreducible K-curve C of absolute genus at
least ≥ 2 with a K-rational simple point. For example we may take C to be
a Fermat curve appearing in the proof of Proposition 6.1.5. We construct for
every extension L of K and for every Abelian variety A of positive dimension
defined over L an extension L′ such that C(L) = C(L′) and rr(A(L′)) = ∞.
Moreover, if L is countable, then so is L′.

By induction we choose a sequence x1,x2,x3, . . . of algebraically inde-
pendent generic points of A over L. For each n ≥ 0 let Ln = L(x1, . . . ,xn).
Then we set L′ = L(x1,x2,x3, . . .). By Lemma 6.5.6, C(Ln−1) = C(Ln) for
each n ≥ 1. Hence, C(L) = C(L′). Moreover, the sequence x1,x2,x3, . . . of
points of A(L′) is linearly independent. Otherwise, there exist k1, . . . , kn ∈ Z
such that kn �= 0 and k1x1 + · · · + kn−1xn−1 = knxn. By Subsection 6.3.1,
xn ∈ A(L̃n−1). Since L(xn) is a regular extension of L and L(xn) is alge-
braically independent from L̃n−1 over L, the extensions L(xn) and L̃n−1 are
linearly disjoint over L. It follows that xn ∈ A(L). This contradicts the fact
that dim(A) > 0.

Next we list all of the Abelian varieties of positive dimension defined over
K as A1, A2, A3, . . . . Using the construction of the preceding paragraph, we
construct an ascending sequence of fields K = K0 ⊂ K1 ⊂ K2 ⊂ · · · such
that C(Kn) = C(Kn−1) and rr(An(Kn)) = ∞ for each n ≥ 1. The field
K(1) =

⋃∞
n=0 Kn satisfies C(K(1)) = C(K) and rr(A(K(1))) = ∞ for each

Abelian variety A of positive dimension defined over K.
Finally, we continue by induction to construct an ascending sequence
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of fields K = K(0) ⊂ K(1) ⊂ K(2) · · · such that C(K(n)) = C(K(n−1))
and rr(A(K(n))) = ∞ for every Abelian variety A of positive dimension
defined over K(n−1). Let F =

⋃∞
n=0 K(n). Then C(F ) = C(K) is a finite

set (Proposition 6.2.4) containing a simple K-rational (hence F -rational)
point. Thus, F is nonample. Moreover, every Abelian variety A of positive
dimension defined over F is already defined over K(n) for some n. Hence,
rr(A(K(n+1))) = ∞, so rr(A(F )) = ∞, as desired. �
Conjecture 6.5.8: Let K be a field such that Gal(K) is finitely generated.
Then:
(a) If K is infinite, then K is ample.
(b) If K is not an algebraic extension of a finite field and A is a nonzero

Abelian variety defined over K, then rr(A(K)) = ∞.

Remark 6.5.9: The reason for making Conjecture 6.5.8(a) is that each of
the known fields of the form Q̃(σ), with σ ∈ Gal(Q)e belongs to one of the
families of ample fields appearing in Section 5.6.

Conjecture 6.5.8(b) is stated as [Lar03, Question 1]. It is proved in
[ImL08] in the case where Gal(K) is procyclic and char(K) �= 2. In the gen-
eral case Conjecture 6.5.8(b) follows from Conjecture 6.5.8(a) and Theorem
6.5.2 in the case where char(K) = 0 and Remark in general. �

The following conjecture generalizes Example 6.5.5(b).

Conjecture 6.5.10: The maximal pro-p extension of a number field is non-
ample.

6.6 On the Gonality of a Function Field of One Variable

The gonality of a function field F/K of one variable is defined to be the
minimal number gon(F/K) of all degrees [F : K(x)] with x ∈ F � K. We
prove in this section that if K is perfect and F/K has a prime divisor of
degree 1, then gon(FK̃/K̃) ≥

√
gon(F/K) (Proposition 6.6.12(c)) and use

this inequality to construct for each perfect field K and each positive integer
d a function field F over K such that gon(FK̃/K̃) ≥ d.

Lemma 6.6.1: The following holds for a function field F/K of one variable.
(a) gon(F/K) = 1 if and only if F is a rational function field over K.
(b) gon(F/K) ≤ d if and only if F/K has a divisor a with dim(a) ≥ 2 and

deg(a) ≤ d.

Proof of (a): We have gon(F/K) = 1 if and only if F = K(x) for some
x ∈ F .

Proof of (b): If [F : K(x)] ≤ d, then a = div∞(x) satisfies deg(a) = [F :
K(x)] ≤ d (Remark 5.8.1) and 1, x are K-linearly independent elements of
L(a), so dim(a) ≥ 2.

Conversely, suppose a is a divisor of F/K with dim(a) ≥ 2 and deg(a) ≤
d. Replacing a by a linearly equivalent divisor, we may assume that a ≥ 0
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(Remark 5.8.1(a)). Then L(a) contains an element x /∈ K and this element
satisfies div∞(x) ≤ a (again by Remark 5.8.1(a)). Hence, [F : K(x)] =
deg(div∞(x)) ≤ deg(a) ≤ d, as desired. �
Lemma 6.6.2: Suppose a function field F/K of one variable has a prime
divisor of degree 1. Then gon(F/K) = 2 if and only if F/K is elliptic or
hyperelliptic.

Proof: By definition, F/K is elliptic (resp. hyperelliptic) if
genus(F/K) = 1 (resp. genus(F/K) ≥ 2), and F has a subfield E containing
K such that [F : E] = 2 and genus(E/K) = 0. In this case, the restriction
of the prime divisor of degree 1 of F/K to E is a prime divisor of degree 1
of E/K [FrJ08, Example 3.2.4], hence E/K is a field of rational functions.
Thus, gon(F/K) = 2.

Conversely, if gon(F/K) = 2, then F is nonrational (so, genus(F/K) ≥
1) and there exists x ∈ F with [F : K(x)] = 2. Consequently, F/K is either
elliptic or hyperelliptic. �
Lemma 6.6.3 (Monotony): Let K ⊂ E ⊆ F be a tower of fields such that
F/K is a function field of one variable and [F : E] < ∞. Then

gon(E/K) ≤ gon(F/K) ≤ [F : E]gon(E/K).

Proof: We choose an element z ∈ E � K with [E : K(z)] = gon(E/K).
Then, gon(F/K) ≤ [F : K(z)] = [F : E][E : K(z)] = [F : E]gon(E/K),
which proves the right inequality.

In order to prove the left inequality we choose a y ∈ F with [F :
K(y)] = gon(F/K). Set x = normF/E(y). Then, by [Deu73, p. 109, (3)],
gon(E/K) ≤ [E : K(x)] = deg(divE/K,∞(x)) = deg(divF/K,∞(y)) = [F :
K(y)] = gon(F/K). �
Lemma 6.6.4 (Constant field extension): Let F/K be a function field of one
variable and L a finite extension of K. Then gon(FL/L) ≤ gon(F/K) ≤ [L :
K]gon(FL/L).

Proof: We choose an x ∈ F with [F : K(x)] = gon(F/K). Since F is a
regular extension of K, F is linearly disjoint from L(x) over K(x). Hence,
gon(FL/L) ≤ [FL : L(x)] = [F : K(x)] = gon(F/K).

In order to prove the right hand inequality we choose a y ∈ FL with
gon(FL/L) = [FL : L(y)] and set x = normFL/F (y). Then, by [Che51, p. 66,
Lemma 2],

gon(F/K) ≤ [F : K(x)] = deg(divF/K,∞x) = [L : K] deg(divFL/L,∞y)

= [L : K][FL : L(y)] = [L : K]gon(FL/L),

as claimed. �
We use Riemann-Roch to give some basic upper bounds for gon(F/K).
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Lemma 6.6.5: Let F/K be a function field of one variable of genus g.
(a) If g = 0, then gon(F/K) ≤ 2.
(b) If g ≥ 2, then gon(F/K) ≤ 2g − 2.
(c) If F/K has a prime divisor p of degree 1, then gon(F/K) ≤ g + 1.
(d) If F/K has a prime divisor p of degree 1 and g ≥ 2, then gon(F/K) ≤ g.

Proof: Let w be a canonical divisor of F/K. Then deg(w) = 2g − 2 and
dim(w) = g (Remark 5.8.1).

Proof of (a): In this case, deg(−w) = −deg(w) = 2. Hence, by Riemann-
Roch, dim(−w) = 3. It follows from Lemma 6.6.1(b), that gon(F/K) ≤ 2.

Proof of (b): In this case dim(w) ≥ 2. Hence, by Lemma 6.6.1(b),
gon(F/K) ≤ 2g − 2.

Proof of (c): We have deg((g+1)p) = g+1 and dim((g+1)p) ≥ g+1+1−g =
2. Hence, by Lemma 6.6.1(b), gon(F/K) ≤ g + 1.

Proof of (d): We consider the divisor a = w− (g− 2)p. It satisfies deg(a) =
2g− 2− (g− 2) = g and w− a = (g− 2)p. Since 1 = dim(0) ≤ dim((g− 2)p),
Riemann-Roch asserts that dim(a) = g + 1 − g + dim((g − 2)p) ≥ 2. Hence,
by Lemma 6.6.1(b), gon(F/K) ≤ g. �

Remark 6.6.6: The results stated in the following comments are much deeper
than those proven so far in this section, but they will not be used in this book.

(a) In contrast to the cases g = 0 and g ≥ 2, the gonality of function
fields of one variable with genus 1 is not bounded from above. Indeed, at the
end of the introduction to [LaT58] the authors mention that for each positive
integer d there is a number field K and a function field F of one variable over
K with genus 1 such that the degree of each divisor of F/K is a multiple of
d. Thus, by Lemma 6.6.1(b), gon(F/K) ≥ d.

(b) A theorem of Kempf-Kleiman-Laksov improves Lemma 6.6.5(c) in
the case where K is algebraically closed. It says that in this case, gon(F/K) ≤
g+3
2 [KlL72].

(c) For each positive integer g there exists a variety Mg called the “mod-
uli space of curves of genus g”.

A theorem named after Brill-Noether-Kleiman-Laksov gives a lower
bound for the gonality in the case where K is algebraically closed. Given a
positive integer g, there exists a nonempty Zariski-open subset U of the mod-
uli space Mg of curves of genus g such that for each curve Γ corresponding to
a point of U(K) the function field F of Γ over K satisfies gon(F/K) ≥ 1

2g+1.
For a proof see Laksov’s appendix to [Kle76]. �

We could use Remark 6.6.6(c) in order to find function fields of one
variable over number fields with high gonalities. But we prefer to present a
result of Poonen proved by a much more elementary arguments that serves
the same purpose.
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Proposition 6.6.7 (Castelnuovo-Severi inequality [Sti93, p. 130, Thm.
III.10.3]): Let F, F1, F2 be function fields of one variable over a perfect field
K with genera g, g1, g2, respectively, such that F = F1F2. Then

g ≤ [F : F1]g1 + [F : F2]g2 + ([F : F1] − 1)([F : F2] − 1).

Definition 6.6.8: Let F/K be a function field of one variable and d a positive
integer. A function field of one variable E over K with E ⊆ F is d-controlled
by F if d has a divisor e such that [F : E] = d

e and genus(E/K) ≤ (e − 1)2.
�
Lemma 6.6.9: In the notation of Definition 6.6.8 suppose that K is perfect
and the function field E is d-controlled by F . Then E(y) is also d-controlled
by F for each y ∈ F with [F : K(y)] = d.

Proof: We consider an e as in Definition 6.6.8 and set f = [E(y) : E]. Then
[F : E(y)] = d

ef and [E(y) : K(y)] = ef . Hence, by Proposition 6.6.7,

genus(E(y)/K) ≤ ef · 0 + f · genus(E/K) + (ef − 1)(f − 1)

≤ f(e − 1)2 + (ef − 1)(f − 1) ≤ (ef − 1)2,

where the latter inequality is simplified to 0 ≤ (e − 1)(f − 1). Thus, E(y) is
d-controlled by F . �
Lemma 6.6.10: Let F be a function field of one variable over a perfect field
K. Then K(y1, . . . , yn) is d-controlled by F for all y1, . . . , yn ∈ F with
[F : K(yi)] = d, i = 1, . . . , n.

Proof: For n = 1 we have [F : K(y1)] = d
1 and genus(K(y1)/K) = 0 ≤

(1 − 1)2. Hence, K(y1) is d-controlled by F . The case where n > 1 follows
now by induction from Lemma 6.6.9. �
Lemma 6.6.11: Let F be a function field of one variable over a perfect
field K, L a Galois extension of K, and d = gon(FL/L). Then F has a
d-controlled subfield.

Proof: By assumption, FL has an element y with [FL : L(y)] = d. Let
y1, . . . , yn be all of the conjugates of y over F . Thus, for each i there exists
σ ∈ Gal(FL/F ) with yi = yσ. Since L is Galois over K, we have L(y)σ =
L(yi), so [FL : L(yi)] = [FL : L(y)] = d. Hence, by Lemma 6.6.10, the field
E′ = L(y1, . . . , yn) is d-controlled by FL. Thus, d has a divisor e such that
[FL : E′] = d

e and genus(E′/L) ≤ (e − 1)2.
Let G = Gal(FL/F ). By construction, E′ is G-invariant. Let E be the

fixed field of E′ under G. Then F ∩ E′ = E and FE′ = FL, so [F : E] =
[FL : E′] = d

e . Since F/K is regular, the restriction of G to L is a bijection
onto Gal(L/K). Hence, K ⊆ E and EL = E′. Therefore, genus(E/K) =
genus(E′/L) (Remark 5.8.1). By the preceding paragraph, genus(E/K) ≤
(e − 1)2. Consequently, E is d-controlled by F . �

All of these lemmas lead to the inequality for the gonality under constant
field extensions.
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Proposition 6.6.12 (Poonen): Let F be a function field of one variable
over a perfect field K with a prime divisor of degree 1. Consider an algebraic
extension L of K and set d = gon(FL/L).
(a) If d ≤ 2, then gon(F/K) = d.
(b) If d > 2, then gon(F/K) ≤ (d − 1)2.
(c) In any case, gon(FL/L) ≥

√
gon(F/K).

Proof of (a): If d = 1, then FL is a rational function field over L, so
genus(F/K) = genus(FL/L) = 0. Since F/K has a prime divisor of de-
gree 1, F is also a rational function field over K [FrJ08, Example 3.2.4], so
gon(F/K) = 1.

If d = 2, then by Lemma 6.6.2, FL/L is elliptic or hyperelliptic.
If FL/L is elliptic, then genus(F/K) = genus(FL/L) = 1. Since F/K

has a prime divisor p of degree 1, it is also elliptic. Indeed, by Riemann-Roch,
dim(p) = 1 and dim(2p) = 2, so we may choose an x ∈ L(2p) �L(p). Then
div∞(x) = 2p, so [F : K(x)] = 2. Consequently gon(F/K) = 2.

Now we suppose FL/L is hyperelliptic. Again, g = genus(F/K) =
genus(FL/L). We choose a canonical divisor w of F/K. Then deg(w) =
2g − 2 and dim(w) = g (Remark 5.8.1). Since L/K is a separable extension,
dimFL/L(w) = dimF/K(w) = g. Hence, w is also a canonical divisor of
FL/L [Sti93, p. 30, Prop. I.6.2]. Moreover, a base x1, . . . , xg of LF/K(w)
over K is also a base of LFL/L(w) over L. By [FrJ08, Prop. 3.7.4], E′ =
L(x2

x1
, . . . ,

xg

x1
) is the only subfield of FL containing L with [FL : E′] = 2

and genus(E′/L) = 0. Set E = K(x2
x1

, . . . ,
xg

x1
). Then EL = E′. Hence,

genus(E/K) = genus(E′/L) = 0. Since F/K has a prime divisor of degree 1,
so does E/K, hence E is a rational function field over K. Finally, since F/K
is regular, we have [F : E] = [FL : E′] = 2. Consequently, gon(F/K) = 2.

Proof of (b): Let L̂ be the Galois closure of L/K. By Lemma 6.6.4,
gon(FL̂/L̂) ≤ gon(FL/L). We may therefore replace L by L̂, if necessary, to
assume that L/K is Galois.

By Lemma 6.6.11, K has an extension E in F and d has a divisor e
such that [F : E] = d

e and g = genus(E/K) ≤ (e − 1)2. Since F has a
prime divisor of degree 1, so has E. Thus, if g = 0, then E is rational and
gon(F/K) ≤ d

e ≤ d < (d − 1)2.
If g = 1, then e ≥ 2. Moreover, E/K is elliptic and gon(E/K) = 2

(Lemma 6.6.2). Hence, by Lemma 6.6.3, gon(F/K) ≤ d
egon(E/K) ≤ d

22 =
d < (d − 1)2.

If g ≥ 2, then gon(E/K) ≤ g (Lemma 6.6.5(d)). Hence, by Lemma
6.6.3, gon(F/K) ≤ [F : E]gon(E/K) ≤ d

e (e−1)2 ≤ (d−1)2, where the latter
inequality holds because 1 ≤ e ≤ d.

Proof of (c): If d ≤ 2, then by (a), gon(F/K) = d ≤ d2. If d > 2, then by
(b), gon(F/K) ≤ (d − 1)2 < d2. In both cases gon(F/K) ≤ gon(FL/L)2. �
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6.7 Gonality under Constant Reduction

The aim of this section is to construct explicit function fields over Fp with
large gonalities and then to lift them to function fields over Q with large
gonalities.

Definition 6.7.1: Let F/K be a function field of one variable and v a valua-
tion of F . We use a bar to denote the reduction of objects at v and say that
F/K has a regular constant reduction at v if F̄ /K̄ is also a function field
of one variable. �
Lemma 6.7.2: Let F/K be a function field of one variable with a regular
constant reduction at a valuation v of F . Then gon(F/K) ≥ gon(F̄ /K̄).

Proof: We choose an x ∈ F with gon(F/K) = [F : K(x)]. By assumption,
F̄ /K̄ is a function field of one variable. Since [F̄ : K(x)] ≤ [F : K(x)] < ∞,
there exist elements y ∈ K(x) � K such that ȳ ∈ K(x) � K̄. Let y0 be an
element among them with n = [K(x) : K(y0)] minimal. We write y0 = f

g with
f =
∑r

i=0 aix
i, g =

∑s
j=0 bjx

j , where ai, bj ∈ K for all i, j and ar, bs �= 0.
By [FrJ08, Example 3.2.4], n = max(r, s). We define an element y ∈ K(y0)
by cases and check that in each case
(1a) K(y) = K(y0), v(y) = 0, ȳ ∈ K(x) � K̄, and
(1b) x is a root of a monic polynomial p ∈ K[y][X] of degree n.

Case A: If r > s, we set y = y0. Then r = n and
∑s

i=0(ai − ybi)xi +∑n
i=s+1 aix

i = 0. Dividing both sides by ar, we verify (1).

Case B: If r < s, we set y = y−1
0 . Exchanging the roles of f and g, we find

again that (1) holds.

Case C: If r = s, then f = cg + h, where c = an

bn
∈ K× and h ∈ K[x] has

degree less than n. This case splits into two subcases.

Case C1: If v(c) ≥ 0, we set y = g
h = 1

y0−c . Then K(y) = K(y0) and

ȳ0 �= c̄, because ȳ0 /∈ K̄. Thus, ȳ ∈ K(x) � K̄. As in case A, also (1b) holds.

Case C2: If v(c) < 0, we set y = cf
h =

(
c−1 − y−1

0 )−1 and note that
c̄−1 �= ȳ−1

0 , hence ȳ ∈ K(x) � K̄. The verification of (1b) proceeds as in Case
A.

Having chosen y as in (1), we may present each q ∈ K[X] as q(X) =
q1(X)p(X) + q2(X) with q1, q2 ∈ K[y][X] and degX(q2) < n. Substituting
x for X in the latter equation, we conclude that each element of K[x] is a
polynomial in x of degree at most n− 1 with coefficients in K[y]. The latter
expression may be rewritten as a polynomial in y with coefficients in K[x] of
degree at most n − 1.

Now we consider an element z ∈ K(x)×. By the preceding paragraph
there exist u0, . . . , um, w0, . . . , wm ∈ K[x] of degree at most n − 1 such that

(2) z =
u0 + u1y + · · · + umym

w0 + w1y + · · · + wmym
.
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Dividing the numerator and the denominator of the right hand side of (2)
by an element having the least value among the coefficients, we may assume
that v(ui), v(wj) ≥ 0 for all i, j. Moreover, v(ui) = 0 for at least one i or
v(wj) = 0 for at least one j. Since [K(x) : K(ui)] = deg(ui) ≤ n − 1, the
minimality of n implies that ūi ∈ K̄ for each i. Similarly, w̄j ∈ K̄ for each j.
Since ȳ is transcendental over K̄, this implies that ū0+ū1ȳ+· · ·+ūmȳm is not
zero unless all of the coefficients are zero. Similarly, w̄0 + w̄1ȳ + · · ·+ w̄mȳm

is not zero unless each of the coefficients is zero. Therefore, in the expression

z̄ =
ū0 + ū1ȳ + · · · + ūmȳm

w̄0 + w̄1ȳ + · · · + w̄mȳm

both the numerator and the denominator belong to K̄[ȳ] and at least one of
them is not zero. It follows that z̄ ∈ K̄(ȳ) ∪ {∞}. Consequently, K(x) =
K̄(ȳ).

By the latter consequence

gon(F̄ /K̄) ≤ [F̄ : K̄(ȳ)] = [F̄ : K(x)] ≤ [F : K(x)] = gon(F/K),

as claimed. �

We supply an explicit computation of the gonality over Fp and over Q
but first we need a general lemma.

Lemma 6.7.3: Let K be a field and f, g ∈ K[X] polynomials with relatively
prime degrees. Let x, y be elements in a field extension of K such that x is
transcendental over K and g(y) = f(x).
(a) The infinite valuation vx,∞ of K(x)/K is totally ramified in K(x, y),

[K(x, y) : K(x)] = deg(g), K(x, y)/K is a function field of one variable,
and the polynomial g(Y ) − f(X) is absolutely irreducible.

(b) Let v be a valuation of K(x) such that x̄ is transcendental over K̄ (where
we use a bar to denote reduction at v). Then v(amxm + · · · + a0) =
min(v(am), . . . , v(a0)) for all am, . . . , a0 ∈ K. Moreover, K(x) = K̄(x̄).

(c) Let v be a valuation of K(x, y) such that x̄ is transcendental over K̄,
deg(f) = deg(f̄) and deg(g) = deg(ḡ) (where we use a bar to denote
reduction at v). Then K̄(x̄, ȳ)/K̄ is a function field of one variable,
K(x, y) = K̄(x̄, ȳ), and gon(K̄(x̄, ȳ)/K̄) ≤ gon(K(x, y)/K).

Proof of (a): Let w be an extension of vx,∞ to K(x, y) and e the ramification
index of w over K(x). Then vx,∞(x) = −1, w(f(x)) = −deg(f)e, and
w(y) < 0, so w(g(y)) = deg(g)w(y). Thus, deg(g)w(y) = −deg(f)e. Since
gcd(deg(f),deg(g)) = 1, we have deg(g)|e. On the other hand, e ≤ [K(x, y) :
K(x)] ≤ deg(g). Therefore, e = deg(g) = [K(x, y) : K(x)]. In particular
w/vx,∞ is totally ramified.

The same argument, now applied to K̃ rather than to K, proves that
[K̃(x, y) : K̃(x)] = deg(g), hence [K̃(x, y) : K̃(x)] = [K(x, y) : K(x)]. This
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implies that K(x, y)/K is a regular extension, hence a function field of one
variable. In addition, we find that g(Y ) − f(X) is absolutely irreducible.

Proof of (b): Let a0, . . . , am ∈ K and set f(X) = amXm + · · · + a0. Let
a be one of the ai’s with a minimal value. For each i we set bi = ai

a . Then
v(bi) ≥ 0 for each i and one of the bi’s is 1. Since x̄ is transcendental over
K̄ this implies that b̄mx̄m + · · · + b̄0 �= 0, hence v(bmxm + · · · + b0) = 0. It
follows from the relation f(x) = a(bmxm + · · · + b0) that v(f(x)) = v(a), as
claimed.

Now we consider an element

(3) z =
ckxk + · · · + c0

dlxl + · · · + d0

of K(x) with ci, dj ∈ K and dj �= 0 for at least one j. Assuming that z̄ �=
∞, we conclude from the preceding paragraph that min(v(dl), . . . , v(d0)) ≤
min(v(ck), . . . , v(c0)). Dividing the numerator and denominator of (3) by one
of the dj ’s with the least value, we may assume that v(ci), v(dj) ≥ 0 for all
i, j and one of the dj ’s is 1. Thus,

z̄ =
c̄kx̄k + · · · + c̄0

d̄lx̄l + · · · + d̄0
∈ K̄(x̄).

Since the inclusion K̄(x̄) ⊆ K(x) is clear, we conclude that K(x) = K̄(x̄).

Proof of (c): By (b), K(x) = K̄(x̄). Since K̄(x̄, ȳ) ⊆ K(x, y), we have, by
(a) applied both to K and to K̄, that

deg(ḡ) = [K̄(x̄, ȳ) : K̄(x̄)] ≤ [K(x, y) : K(x)] ≤ [K(x, y) : K(x)] = deg(g).

Using the assumption deg(ḡ) = deg(g), we find that K̄(x̄, ȳ) = K(x, y). In
addition, by (a) applied to K̄ rather than to K, K̄(x̄, ȳ)/K̄ is a function field
of one variable. Hence, by Lemma 6.7.2, gon(K̄(x̄, ȳ)/K̄) ≤ gon(K(x, y)/K).
�
Lemma 6.7.4 (Fehm): Let p be a prime number and n a positive integer.
Let K be either Fp or Q. Consider elements x, y in a field extension of K
such that x is transcendental over K and ypn − y − xpn−1 + 1 = 0. Then
K(x, y)/K is a function field of one variable and gon(K(x, y)/K) = pn − 1.

Proof: By Lemma 6.7.3(a), K(x, y)/K is a function field of one variable.
Moreover, gon(K(x, y)/K) ≤ [K(x, y) : K(y)] ≤ pn − 1. Thus, it suffices to
prove that pn − 1 ≤ gon(K(x, y)/K).

Case A: K = Fp. Let E = Fpn(x) and F = Fpn(x, y). By Lemma 6.7.3(a),
F/Fpn is a function field of one variable and [F : E] = pn. For each a ∈ F×

pn ,
the specialization x → a gives rise to a prime divisor px,a of E/Fpn of degree
1. For each b ∈ Fpn we have bpn − b = 0 = apn−1 − 1. Moreover, the partial
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derivative of Y pn − Y − Xpn−1 + 1 with respect to Y at (a, b) is −1. Hence,
px,a extends to a prime divisor of F/Fpn of degree 1 in pn ways. Thus, the
number of prime divisors of F/Fpn of degree 1 is at least (pn − 1)pn.

On the other hand, let d = gon(F/Fpn) and let z be an element of F with
[F : Fpn(z)] = d. Since Fpn(z)/Fpn has exactly pn+1 prime divisors of degree
1 and each of them extends to F in at most d distinct ways, the number of
prime divisors of F/Fpn of degree 1 is at most d(pn + 1). Combining this
estimate with the conclusion of the preceding paragraph, we get pn(pn−1) ≤
d(pn + 1). It follows that pn − 2 < pn(pn−1)

pn+1 ≤ d. Since d is an integer,
pn − 1 ≤ d.

Finally, by Lemma 6.6.4, gon(Fp(x, y)/Fp) ≥ gon(Fpn(x, y)/Fpn) = d ≥
pn − 1. Therefore, gon(Fp(x, y)/Fp) = pn − 1.

Case B: K = Q. Let v be the p-adic valuation of Q. Applying Lemma
6.7.3(c) on the polynomials f(X) = Xpn−1 −1 and g(Y ) = Y pn −Y , we con-
clude from Case A that gon(Q(x, y)/Q) ≥ gon(Fp(x̄, ȳ)/Fp) = pn − 1, where
x̄ and ȳ are zeros of f and g considered as polynomials over Fp. Therefore,
gon(Q(x, y)/Q) = pn − 1. �

We combine Lemma 6.7.4 with Proposition 6.6.12(c) to conclude that
the absolute gonality of function fields over Fp and over Q is unbounded.

Proposition 6.7.5: Let p be a prime number and n a positive integer. Let
K be either Fp or Q. Consider elements x, y in a field extension of K such
that x is transcendental over K and ypn − y − xpn−1 + 1 = 0. Then for each
algebraic extension L of K, L(x, y)/L is a function field of one variable and
gon(L(x, y)/L) ≥

√
pn − 1.

Let F/Q be a function field of one variable. We prove in Lemma 8.3.1
that for almost all prime numbers p, reduction modulo p preserves the genus
of F/Q. Lemma 6.7.4 gives an example where the same phenomenon happens
with the gonality. We do not know if this is true for an arbitrary function
field F/Q.

Problem 6.7.6 (Fehm): Let F/Q be a function field of one variable with
a prime divisor of degree 1. Is gon(F̄ /Fp) = gon(F/Q) for almost all prime
numbers p?

6.8 Points of Degree d

We give more examples of infinite nonample extensions of Q. We prove that
for each positive integer d there exist infinitely many linearly disjoint exten-
sions of Q of degree d whose compositum is nonample. The main ingredient
of the proof is Faltings’ theorem (Corollary 6.4.4(c)).

We consider a field K of characteristic 0 and an absolutely irreducible
smooth projective curve C defined over K. Let F be the function field of
C over K. Following Subsection 6.3.2, we identify the set C(K̃) with the
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set of prime divisors of FK̃/K̃. This identification is compatible with the
action of Gal(K) from the left and preserves the degrees over K. It identifies
Div(FK̃/K̃) with the free Abelian additive group Div(C) generated by C(K̃).
We say that a divisor a of C is K-rational if σa = a for all σ ∈ Gal(K).

Now we assume that C has a K-rational point o and let γ: C → J
be a morphism such that γ(o) = oJ . Then γ extends to an epimorphism
β: Div(C) → J(K̃) such that β(

∑n
i=1 kipi) =

∑n
i=1 kiγ(pi). The restriction

β0 of β to the subgroup Div0(C) of divisors of degree 0 is also an epimorphism
onto J(K̃) whose kernel is the group of principal divisors (see (1) of Section
6.3).

Lemma 6.8.1: Let a,b be distinct nonnegative divisors of C of the same
degree such that β(a) = β(b). Suppose a is K-rational. Then there exists
f ∈ F such that [F : K(f)] ≤ deg(a).

Proof: By assumption, deg(b − a) = 0 and β0(b − a) = 0. By the remarks
preceding this lemma, there exists g ∈ (FK̃)× such that b − a = div(g).
Thus, g ∈ LFK̃(a). Since b − a �= 0, we have div(g) �= 0, so g /∈ K̃.
In addition, since a ≥ 0, each element of K̃ belongs to LFK̃(a). Hence,
dim(LFK̃(a)) ≥ 2. By Remark 5.8.1(e), dim(LF (a)) = dim(LFK̃(a)). Hence,
there exists f ∈ LF (a) � K. Therefore, div∞(f) ≤ a (Remark 5.8.1(a)), so
[F : K(f)] = deg(div∞(f)) ≤ deg(a), as asserted. �
Definition 6.8.2: Symmetric products. We fix a positive integer d and con-
sider the cartesian product Cd of d copies of C. The dth symmetric prod-
uct of C is the quotient C(d) of Cd by the symmetric group Sd of degree
d. By [Ser88, p. 53], each point of C(d)(K̃) can be identified with a non-
negative divisor

∑d
i=1 pi of degree d. Under this identification there is a

surjective morphism π: Cd → C(d) such that π(p1, . . . ,pd) =
∑d

i=1 pi. This
morphism commutes with the action of Gal(K) from the left, so C(d) and
π are defined over K. A point

∑d
i=1 pi belongs to C(d)(K) if and only if∑d

i=1 σpi =
∑d

i=1 pi for each σ ∈ Gal(K), that is the divisor
∑d

i=1 pi of C is
K-rational. Finally we note, that since C is projective, absolutely irreducible,
and smooth, so is C(d) [Ser88, p. 53]. �

We denote the set of all elements of K̃ of degree at most d over K by K(d)

and let C(K(d)) be the union of all C(L) with L ranging over all algebraic
extensions of K of degree at most d.

Lemma 6.8.3: The set C(K(d)) is infinite if and only if C(d)(K) is infinite.

Proof: We define a map λ: C(K(d)) → C(d)(K) in the following way. Given
p ∈ C(K(d)), let k = [K(p) : K]. Then k ≤ d and K(p) has exactly k
K-embeddings σ1, . . . , σk into K̃. We set λ(p) = σ1p + · · ·+ σkp + (d− k)o.
Then λ(p) is fixed under each σ ∈ Gal(K), so λ(p) ∈ C(d)(K). Since each
p ∈ C(K(d)) has at most d conjugates over K, the fibers of λ have at most
d elements. Therefore, if C(K(d)) is infinite, so is C(d)(K).
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Conversely, if
∑d

i=1 pi ∈ C(d)(K), then each pi has at most d conjugates
over K, namely p1, . . . ,pd. It follows that pi ∈ C(K(d)). Moreover, if
C(d)(K) is infinite, so is C(K(d)). �

The morphism Cd → J given by (p1, . . . ,pd) �→
∑d

i=1 γ(pi) has a unique
value on each Sd-class, so it defines a morphism ϕd: C(d) → J over K satis-
fying ϕd(

∑d
i=1 pi) =

∑d
i=1 γ(pi). Thus, ϕd coincides with β|C(d) . We denote

the image of C(d) under ϕd by Wd. Since C(d) is projective and absolutely ir-
reducible, Wd is a closed absolutely irreducible subvariety of J . In particular,
ϕd(C(d)(K̃)) = Wd(K̃) and ϕd(C(d)(K)) ⊆ Wd(K).

We denote the restriction of ϕd to C(d)(K) by ϕ.

Lemma 6.8.4: If the map ϕ: C(d)(K) → J(K) is not injective, then there
exists f ∈ F such that [F : K(f)] ≤ d.

Proof: We assume that C has distinct nonnegative K-rational divisors∑d
i=1 pi and

∑d
i=1 qi of degree d such that ϕ(

∑d
i=1 pi) = ϕ(

∑d
i=1 qi). Then,

by Lemma 6.8.1, there exists f ∈ F such that [F : K(f)] ≤ d. �
The conclusion of Lemma 6.8.4 can be achieved if ϕ is injective under

additional assumptions. To this end we need a certain combinatorial argu-
ment.

We denote the number of d-tuples (ε1, . . . , εd) ∈ {0, 1, 2}d such that

(1)
d∑

j=1

εj = d

by n(d).

Lemma 6.8.5: Let x: {1, . . . , d} → X be a surjective map of sets. Set
xi = x(i) for i = 1, . . . , d and let A the free additive Abelian monoid generated

by X. Denote the set of all sums
∑d

j=1 yj with y1, . . . , yd ∈ X by X(d); in

particular x =
∑d

j=1 xj ∈ X(d). Then the number of all y ∈ X(d) for which
there exists z ∈ A such that

(2) y + z = 2x

is at most n(d).

Proof: First we note that if y ∈ X(d) and z ∈ A solves (2), then z ∈ X(d).

Case A: x1, . . . , xd are distinct. Then there is a bijective correspondence
between the set of all y ∈ X(d) such that (2) is solvable and the set of solutions
(ε1, . . . , εd) ∈ {0, 1, 2}d of (1). Thus, in this case, the number of the y’s is
n(d).

Indeed, let y, z be elements of X(d) such that (2) holds and choose
y1, . . . , yd ∈ X with y =

∑d
j=1 yj . For each j let εj be the number of
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occurrences of xj in the d-tuple (y1, . . . , yd). Since x1, . . . , xd are distinct,
εj ∈ {0, 1, 2} and

∑d
j=1 εj = d. Moreover, (ε1, . . . , εd) depends only on y.

Conversely, let (ε1, . . . , εd) be a solution of (1). Choose (y1, . . . , yd),
(z1, . . . , zd) ∈ Xd such that for each j the number of occurrences of xj in
(y1, . . . , yd) is εj and in (z1, . . . , zd) is 2 − εj . Then y =

∑d
j=1 yj and z =∑d

j=1 zj solve (2).

Case B: x1, . . . , xd are not necessarily distinct. We choose distinct ele-
ments x′

1, . . . , x
′
d, set X ′ = {x′

1, . . . , x
′
d}, let A′ be the free additive Abelian

monoid generated by X ′, let (X ′)(d) be the set of all sums
∑d

j=1 y′
j with

y′
1, . . . , y

′
d ∈ X ′, and let x′ =

∑d
j=1 x′

j . By Case A, the number of y′ ∈ (X ′)(d)

for which there exists z′ ∈ A′ with

(2′) y′ + z′ = 2x′

is n(d).
The map (x′

1, . . . , x
′
d) �→ (x1, . . . , xd) defines an epimorphism α of A′

onto A and α((X ′)(d)) = X(d). If y′, z′ ∈ (X ′)(d) solve (2′), then y =
α(y′), z = α(z′) solve (2).

Conversely, let y =
∑d

j=1 yj and z =
∑d

j=1 zj be elements of X(d) sat-
isfying (2). Then there exists k(1) between 1 and d such that y1 = xk(1).
Canceling y1 and xk(1) from both sides of (2), we find a k(2) between 1
and d such that y2 = xk(2). Continuing in this way, we find a permuta-
tion (k(1), . . . , k(d), l(1), . . . , l(d)) of (1, . . . , d, 1, . . . , d) such that yj = xk(j)

and zj = xl(j) for j = 1, . . . , d. Now we set y′
j = x′

k(j) and z′j = x′
l(j) for

j = 1, . . . , d, y′ =
∑d

j=1 y′
j , and z′ =

∑d
j=1 z′j . Then y′, z′ ∈ (X ′)(d) satisfy

(2′), α(y′) = y, and α(z′) = z.
We conclude that the number of y ∈ X(d) for which (2) is solvable is at

most n(d), as claimed. �

Lemma 6.8.6: Suppose there exist a point p =
∑d

j=1 pj ∈ C(d)(K) and at

least n(d) + 1 points b0, . . . ,bn(d) ∈ J(K̃) such that β(p) ± bi ∈ Wd(K̃),
i = 0, . . . , n(d). Then there exists f ∈ F such that [F : K(f)] ≤ 2d.

Proof: For each 0 ≤ i ≤ n(d) there exist qi1, . . . ,qid, ri1, . . . , rid ∈ C(K̃)
such that with qi =

∑d
j=1 qij and ri =

∑d
j=1 rij we have

(3)
β(p) + bi = β(qi)
β(p) − bi = β(ri).

Summing up the equalities in (3), we have

(4) β(qi + ri) = β(2p).
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By definition, Div(C) is the free Abelian group generated by the set
C(K̃). Let A be the submonoid of Div(C) generated by p1, . . . ,pd. Then
A is the free Abelian monoid generated by X = {p1, . . . ,pd}. If qij /∈ X
for some i, j, then qi + ri �= 2p. Similarly, if rij /∈ X for some i, j, then
qi + ri �= 2p. If qij , rij ∈ X for all i, j, then by Lemma 6.8.5, there exists i
between 0 and n(d) such that qi + ri �= 2p. Since p is K-rational and both
qi + ri and p are nonnegative, (4) and Lemma 6.8.1 give an f ∈ F such that
[F : K(f)] ≤ deg(2p) = 2d. �
Lemma 6.8.7: Suppose K is a number field and C(K(d)) is infinite. Then
there exists f ∈ F such that [F : K(f)] ≤ 2d.

Proof: If the map ϕ: C(d)(K) → J(K) is not injective, then by Lemma
6.8.4, there exists f ∈ F such that [F : K(f)] ≤ d. We may therefore assume
that ϕ is injective.

By Faltings (Proposition 6.4.1), there exist a1, . . . ,an ∈ J(K) and
Abelian subvarieties B1, . . . , Bn defined over K such that Wd(K) =

⋃n
i=1[ai+

Bi(K)] and ai + Bi(K̃) ⊆ Wd(K̃) for each i. By Lemma 6.8.3, C(d)(K)
is infinite. Hence, ϕ(C(d)(K)) is an infinite subset of Wd(K), hence of⋃n

i=1[ai+Bi(K)]. Therefore, there exists i such that ϕ(C(d)(K))∩[ai+Bi(K)]
is infinite. This allows us to choose p ∈ C(d)(K) and b ∈ Bi(K) such
that ϕ(p) = ai + b. In addition, it follows that Bi(K) is infinite, so we
choose distinct points b0, . . . ,bn(d) ∈ Bi(K). For each of them we have
β(p)±bj = ϕ(p)±bj = ai +(b±bj) ∈ ai +Bi(K) ⊆ Wd(K̃). We conclude
from Lemma 6.8.6 that there exists f ∈ F such that [F : K(f)] ≤ 2d, as
desired. �
Proposition 6.8.8 (Corvaja): Let K be a number field, d a positive integer,
and K1, K2, K3, . . . a linearly disjoint sequence of extensions of degree d over
K. Then there exists a subsequence Ki(1), Ki(2), Ki(3), . . . whose compositum
Ki(1)Ki(2)Ki(3) · · · is a nonample field.

Proof: We choose a prime number p such that
√

p − 1 > 2d and consider
the affine absolutely irreducible Q-curve C defined by the equation Y p −
Y − Xp−1 + 1 = 0 (Lemma 6.7.3(a)). Let x be a transcendental element

over Q and y an element of Q̃(x) such that yp − y − xp−1 + 1 = 0. Since
(1, 0) is a simple Q-rational point of C, for each number field L, L(C)/L is a
function field of one variable with a prime divisor of degree 1. By Proposition
6.7.5, gon(L(C)/L) ≥

√
p − 1 > 2d. Hence, by Lemma 6.8.7, C(L(d)) is

finite. Also, by Lemma 6.6.5, genus(L(C)/L) + 1 ≥ gon(L(C)/L) > 2d, so
genus(L(C)/L) ≥ 2.

By Faltings (Proposition 6.2.4), C(K) is finite. Suppose by induction
we have already found i(1) < i(2) < · · · < i(m) such that

(5) C(K ′) = C(K),

where K ′ = Ki(1)Ki(2) · · ·Ki(m). By [FrJ08, Lemma 2.5.7] there exists n > m
such that the fields K ′

j = K ′Kj , j = n, n + 1, n + 2, . . ., are linearly disjoint
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over K ′. By the preceding paragraph, C((K ′)(d)) is finite. Since [K ′
j : K ′] ≤

[Kj : K] = d, it follows that the set
⋃∞

j=n C(K ′
j) is finite.

Now we consider integers k > j ≥ n. By the linear disjointness, C(K ′
j)∩

C(K ′
k) = C(K ′), so [C(K ′

j) � C(K ′)] ∩ [C(K ′
k) � C(K ′)] = ∅. Therefore,

there exists m such that i(m + 1) > n and C(K ′
i(m+1)) = C(K ′). It fol-

lows from (5) that C(Ki(1) · · ·Ki(m)Ki(m+1)) = C(K). This concludes the
induction.

Let M be the compositum of all the fields Ki(k). Then C(M) = C(K).
Since (1, 0) is a simple M -rational point of C, M is nonample. �

Example 6.8.9: Linearly disjoint extensions. For each positive integer d
there exists an infinite sequence p1, p2, p3, . . . of prime numbers satisfying
pi ≡ 1 mod d. This special case of Dirichlet’s theorem on primes in arith-
metic progressions has an elementary proof that uses arguments including
roots of unity [Nag51, p. 168, Thm. 96]. The fields Q(ζp1), Q(ζp2), Q(ζp3), · · ·
are linearly disjoint over Q and Gal(Q(ζpi)/Q) ∼= Z/(pi −1)Z [Lan93, p. 278,
Thms. 3.2 and 3.1]. In particular, for each i, the field Q(ζpi) contains a unique
cyclic extension Ki of Q of degree d. Moreover, the fields K1, K2, K3, . . . are
linearly disjoint over Q. By Proposition 6.8.8, there exist i(1) < i(2) < i(3) <
. . . such that M = Ki(1)Ki(2)Ki(3) · · · is nonample. Note that in this case M
is an Abelian extension of Q.

A more general method to construct linearly disjoint field extensions ap-
plies Hilbert’s irreducibility theorem. One starts from the general polynomial
f(t1, . . . , td, X) of degree d and successively specializes the (t1, . . . , td) to d-
tuples (a1, . . . , an) with coordinates in a given number field K such that the
root field (and even the decomposition field) of f(a1, . . . , ad, X) is linearly
disjoint from the previously constructed field extensions of K (see for exam-
ple the proof of [FrJ08, Lemma 16.2.6]). Applying Proposition 6.8.8, this
gives many more examples of infinite extensions of K that are nonample. �

Notes
Proposition 6.1.5 is due to Koenigsmann [Koe02, Thm. 2].

Theorem 6.5.2 is due to Fehm and Petersen [FeP10]. This theorem has a
history that goes back at least to a paper of Lutz [Lut37] from 1937. In that
paper Lutz proves that if E is an elliptic curve defined over a p-adic field K,
then E(K) contains a subgroup isomorphic to the additive group K+ of K.
Mattuck [Mat55] generalizes Lutz’s result to an arbitrary Abelian variety A
defined over a complete field K under a complete nonarchimedean absolute
value having characteristic 0. This implies that rr(A(K)) = ∞, because K
has infinite degree over its prime field. This also implies that rr(A(K)) = ∞
if K is an algebraically closed field of characteristic 0. The latter result was
generalized in [FyJ74, Thm. 10.1] to arbitrary algebraically closed fields that
are not algebraic extensions of finite fields. Moreover, in that paper, the
authors prove that if K is an infinite finitely generated field over its prime
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field, then for almost all σ ∈ Gal(K)e and for each Abelian variety A defined
over Ks(σ), we have rr(A(Ks(σ)) = ∞. The same result holds for the smaller
fields Ks[σ], again for almost all σ ∈ Gal(K)e, by [GeJ06]. In an appendix
to [Pet06] the author of this book uses methods of Petersen to generalize
the latter result to the case where K is a countable Hilbertian field. He also
considers a finite set S of local primes of K in the sense of Example 5.6.5 and
a nonnegative integer e. By Example 5.6.6, Ktot,S [σ] is an ample field for
almost all σ ∈ Gal(K)e. If in addition, char(K) = 0, then by Theorem 6.5.2,
rr(A(Ktot,S [σ])) = ∞ for almost all σ ∈ Gal(K)e and for all Abelian varieties
A defined over Ktot,S [σ]. Fehm and Petersen remove the assumption that
char(K) = 0 from the latter result [FeP09, Thm. 2.2]. Finally, as the book
goes to press, Fehm and Petersen announced a generalization of Theorem
6.5.2 to an arbitrary ample field that is not an algebraic extension of a finite
field.

Corollary 6.1.7, Proposition 6.1.8, Example 6.1.9(a), Proposition 6.1.10,
and Theorem 6.2.6, are taken from Fehm’s work [Feh11]. Lemma 6.7.4 is also
due to Fehm (private communication).

The results of Section 6.6 are taken from the work of Poonen [Poo07].
Lemma 6.7.2 originated from [Ohm83].
Most of Section 6.8 follows Frey’s article [Fre94]. Proposition 6.8.8 is

due to Corvaja.
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Chapter 7.
Split Embedding Problems
over Complete Fields

Let K0 be a complete field with respect to an ultrametric absolute value.
In Proposition 4.4.2 we considered a finite Galois extension K of K0 with
Galois group Γ acting on a finite group G and let x be an indeterminate. We
constructed a finite Galois extension F of K0(x) that contains K and with
Galois group Γ � G that solves the constant embedding problem Γ � G →
Gal(K(x)/K0(x)). Using an appropriate specialization we have been then
able to prove the same result in the case where K0 was an arbitrary ample
field (Theorem 5.9.2). This was sufficient for the proof that each Hilbertian
PAC field is ω-free (Theorem 5.10.3).

In this chapter we lay the foundation to the proof of the third major
result of this book: Giving a function field E of one variable over an ample
field K of cardinality m, each finite split embedding problem over E has m
linearly disjoint solution fields (Theorem 11.7.1).

Here we let K0 be as in the first paragraph, and consider a finite Galois
extension E′ of K0(x) (where E′ is not necessarily of the form K(x) with
K/K0 Galois) acting on a finite group H. We prove that the finite split
embedding problem Gal(E′/K0(x)) � H → Gal(E′/K0(x)) has a solution
field F ′. Moreover, if H is generated by finitely many cyclic subgroups Gj ,
then for each j there is a branch point bj with Gj as an inertia group.

7.1 Total Decomposition

An auxiliary goal in solving regular finite split embedding problems over a
field K is to achieve a solution field F with a K-rational place ϕ which
is unramified over K(x). In other words, the place p of K(x)/K which
corresponds to ϕ|K(x) totally decomposes in F . This means that there are
[F : K(x)] prime divisors of F/K lying over p. This extra condition ensures
that F is regular over K. Replacing x by another generator of K(x) over
K, we may assume that p is the pole px,∞ of x. The following result gives
a necessary and sufficient condition for px,∞ to totally decompose in F in
terms of the irreducible polynomial of an appropriate primitive element of
F/K(x).

Lemma 7.1.1: Let K be an arbitrary field and consider a Galois extension
F of E = K(x) of degree d which is regular over K. Let px,∞ be the pole of
x in K(x)/K and p a prime divisor of F/K over px,∞.

(a) Suppose px,∞ totally decomposes in F and let y be an element of F with
divF,∞(y) = kp for some positive integer k. Then y is integral over K[x],

M. Jarden,                                 , Springer Monographs in Mathematics,
DOI , © Springer-Verlag Berlin Heidelberg 201110.1007/978-3-642-15128-6_7
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http://dx.doi.org/10.1007/978-3-642-15128-6_7
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F = E(y), and f = irr(y,E) has the form

(1) f(x, Y ) = Y d + ad−1(x)Y d−1 + · · · + a0(x).

with ai ∈ K[x] and deg(ai(x)) ≤ deg(ad−1(x)) = k, i = 0, . . . , d − 1.
(b) Suppose px,∞ totally decomposes in F . Then there exists y as in (a)

with k ≤ genus(F/K) + 1.
(c) Conversely, suppose y ∈ F and f = irr(y, E) is given by (1) such that

ai(x) ∈ K[x], deg(ad−1(x)) > 0, and deg(ai(x)) ≤ deg(ad−1(x)), i =
0, . . . , d − 1. Then px,∞ totally decomposes in F .

Proof of (a): We denote the normalized valuation of F/K that corresponds
to p by vp. Then vp(y) = −k and w(y) ≥ 0 for each other valuation w of
F/K. If σ ∈ G = Gal(F/E) and σ �= 1, then vσ

p �= vp (because px,∞ totally

decomposes on F ), so vp(yσ−1
) = vσ

p (y) ≥ 0. Hence, yσ−1 �= y for each σ �= 1.
Therefore F = K(x, y).

In addition w(y) ≥ 0 if w(x) ≥ 0. Hence, y is integral over K[x]. In
particular f(x, Y ) = irr(y,K(x)) ∈ K[x, Y ] is a monic polynomial in Y . Since
F/E is a Galois extension, f(x, Y ) decomposes into distinct linear factors over
F :

(2) f(x, Y ) =
∏
σ∈G

(Y − yσ).

A comparison of (1) and (2) gives:

(3) ai(x) = (−1)d−i
∑

S∈Pi

∏
σ∈S

yσ

where Pi is the collection of all subsets of G of cardinality d − i. Note that
vp is unramified over E. Hence the restriction of vp to E coincides with the
valuation vx,∞ that corresponds to px,∞. Since σ = 1 appears at most once
in each of the summands

∏
σ∈S yσ, and since vp(yσ) ≥ 0 for σ �= 1, this gives

−deg(ai(x)) = vx,∞(ai(x)) = vp(ai(x)) ≥ min
S∈Pi

∑
σ∈S

vp(yσ) ≥ −k.

Finally, −deg(ad−1(x)) = vx,∞(ad−1(x)) = vp(−y−
∑

σ �=1 yσ) = vp(y) = −k,
as desired.

Proof of (b): Let g = genus(F/K). Since px,∞ decomposes in F into d
prime divisors, deg(p) = 1. We claim that there exists k between 1 and
g + 1 with dim((k − 1)p) = 1 and dim(kp) = 2. Indeed, by Riemann-Roch
(Remark 5.8.1(c)), if g = 0, then dim(0 · p) = 1 and dim(1 · p) = 2. If g = 1,
then dim(1 · p) = 1 and dim(2 · p) = 2. If g ≥ 2, we choose a canonical
divisor w of F/K. Then L(w − (k + 1)p) ⊆ L(w − kp). By Riemann-Roch,
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dim(kp) = k + 1− g + dim(w− kp). Hence, dim((k + 1)p)− dim(kp) ≤ 1. In
addition, dim(0 ·p) = 1. If there exists no k as above, then dim((g+1)p) = 1,
hence dim((2g − 1)p) ≤ g − 1. This will contradict Riemann-Roch which
predict that dim((2g − 1)p) = g. This concludes the proof of our claim.

Let y ∈ L(kp) �L((k − 1)p). Then divF,∞(y) = kp, as contended.

Proof of (c): Let k = deg(ad−1(x)). Then z = y/xk satisfies

(4) zd + bd−1(x)zd−1 + bd−2(x)zd−2 + · · · + b0(x) = 0,

where bi(x) = ai(x)/x(d−i)k. As in (a), we choose a prime divisor p of F/K
lying over px,∞, let vp be the normalized valuation of F/K corresponding to
p, and set e = evp/vx,∞ . Then vp(bd−1(x)) = e(vx,∞(ad−1(x)) − kvx,∞(x)) =
e(−deg(ad−1(x)) + k) = 0 and vp(bi(x)) = e(−deg(ai(x)) + (d − i)k)) > 0
for i = 0, . . . , d − 2. Hence, reduction of (4) modulo p gives z̄d−1(z̄ + c) = 0
with c = bd−1(x) ∈ K×. By Hensel’s Lemma, h(Z) = Zd + bd−1(x)Zd−1 +
· · ·+ b0(x) has a root in the completion K((x−1)) of E with respect to px,∞.
Since F = E(z) is Galois over E, all of the roots of h(Z) are in K((x−1)).
Consequently, px,∞ totally decomposes in F . �

7.2 Ramification
The most effective way by which we can distinguish between two finite Galois
extensions F1 and F2 of E = K(x), where K is a field and x is an indetermi-
nate, is through ramification. That is, F1 �= F2 if Ram(F1/E) �= Ram(F2/E)
or, equivalently, if Branch(F1/E) �= Branch(F2/E). A more refined separa-
tion of F1 and F2 is achieved, when they are linearly disjoint over E (Lemma
7.4.1 and Proposition 7.4.4). One way to do it is to use inertia groups. The
basic information on inertia groups we need is contained in the following
result.

Lemma 7.2.1: Let (E, v) be a discrete valued field, (Ê, v̂) its completion,
and F, F ′ finite Galois extensions of E. Suppose there is an embedding of
Ẽ into the algebraic closure of Ê such that F̂ = ÊF = ÊF ′. Denote the
unique extension of v̂ to F̂ by ŵ and let w and w′ be the restrictions of ŵ to
F and F ′, respectively. Then v is ramified in F if and only if v is ramified
in F ′. Moreover, the restriction maps resF̂ /F : Gal(F̂ /Ê) → Gal(F/E) and

resF̂ /F ′ : Gal(F̂ /Ê) → Gal(F ′/E) map Iŵ/v̂ isomorphically onto Iw/v and
Iw′/v, respectively. In particular, if v is totally ramified in F , then Iw′/v =
Gal(F ′/Ê ∩ F ′).

Proof: The valuation group and the residue field of a discrete valuation
coincide with the valuation group and the residue field, respectively, of its
completion. Hence, v is ramified in F if and only if v is ramified in F̂ if and
only if v is ramified in F ′.

131



Chapter 7. Split Embedding Problems over Complete Fields

To prove the statement about the inertia groups we note that if σ̂ ∈ Iŵ/v̂,
then ŵ(x̂σ̂ − x̂) > 0 for each x̂ ∈ Oŵ. Hence, σ = σ̂|F satisfies w(xσ − x) > 0
for each x ∈ Ow = F ∩ Oŵ. Therefore, σ ∈ Iw/v.

Conversely, we extend each σ ∈ Iw/v to an element σ̂ of Gal(F̂ /Ê).
To this end we present each x̂ ∈ F̂ as the limit of a sequence of elements
xi ∈ F . In particular, the xi’s form a w-Cauchy sequence. Being in Iw/v

the automorphism σ belongs also to the decomposition group, i.e. Oσ
w = Ow.

Hence, the xσ
i ’s also form a w-Cauchy sequence and we denote its unique

limit in F̂ by x̂σ̂. One observes that x̂σ̂ is independent of the approximation
of x̂ by elements of F . This implies that σ̂ is indeed a lifting of σ to an
element of Gal(F̂ /Ê).

Now we suppose x̂ ∈ Oŵ and choose x ∈ Ow with ŵ(x̂ − x) > 0. Since
ŵσ̂−1

= ŵ, this implies ŵ(x̂σ̂ − xσ̂) > 0. Hence, ŵ(x̂σ̂ − x̂) = ŵ(x̂σ̂ − xσ +
xσ − x + x− x̂) ≥ min

(
ŵ(x̂σ̂ − xσ), w(xσ − x), ŵ(x− x̂)

)
> 0. It follows that

σ̂ ∈ Iŵ/v̂. Since F̂ = ÊF , the restriction map resF̂ /F is injective, so it maps
Iŵ/v̂ isomorphically onto Iw/v.

Similarly, resF̂ /F ′ maps Iŵ/v̂ isomorphically onto Iw′/v. In particular,

if v totally ramifies in F , then Iw/v = Gal(F/E). Hence, Iŵ/v̂ = Gal(F̂ /Ê)
and therefore Iw′/v = Gal(F ′/Ê ∩ F ′). �

For the rest of this section we assume that K is complete under a non-
trivial ultrametric absolute value | | and extend | | to K̃ in the unique possible
way. As in Chapter 3 we consider a nonempty set I, and for each i ∈ I an
element ci ∈ K and r ∈ K× such that

(1) |r| ≤ |ci − cj | if i �= j.

For each i ∈ I let wi = r
x−ci

. We extend | | to a norm of the ring R0 =
K[wi | i ∈ I] by the rule

‖
n∑

i=0

aix
i‖ = max

n
(|a0|, . . . , |an|)

and let R = K{wi | i ∈ I} be the completion of R0 (Lemma 2.1.5). By
Lemma 3.2.1, each f ∈ R has a unique presentation as a multiple power
series:

f = a0 +
∑
i∈I

∞∑
n=1

ainwn
i ,

where a0, ain ∈ K and |ain| → 0 as n → ∞. Let Q = Quot(R).

Lemma 7.2.2: Let px,α be the prime divisor of E/K associated with an

element α ∈ K̃∪{∞} and let v = vx,α be the correspondent discrete valuation
of E/K.
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(a) If |α− ci| ≥ |r| for all i ∈ I, then v extends to a discrete valuation vQ of
Q such that the completion of Q at vQ is a completion of E at v.

(b) Let F/E be a finite Galois extension such that F ⊆ Q. If
α ∈ Branch(F/E), then there is an i ∈ I such that |α − ci| < |r|.

Proof of (a): Since K is complete under | |, so is K(α). Hence, we may apply
Lemma 2.2.1(d) to consider the evaluation homomorphism ϕ: R → K(α)
given by

a0 +
∑
i∈I

∞∑
n=1

ainwn
i �→ a0 +

∑
i∈I

∞∑
n=1

ain

( r

α − ci

)n

.

Since ϕ(wi) = r
α−ci

, we have ϕ(x) = α.
Now fix an i ∈ I. By Proposition 3.2.9, R is a principal ideal domain

and the ideal Ker(ϕ) of R is generated by an element q ∈ K[wi] such that
Ker(ϕ) ∩ K[wi] = qK[wi].

Since q is irreducible in R, the localization RqR is a discrete valuation
ring, hence ϕ uniquely extends to a place ϕ: Q → K(α) ∪ {∞}. The cor-
responding discrete valuation vQ of Q extends v. The residue fields of both
v and vQ is K(α) and q is a common uniformizer. This implies that E is
vQ-dense in Q.

Indeed, let f ∈ Q and assume without loss that vQ(f) ≥ 0. Inductively
assume that there exist p0, . . . , pn−1 ∈ E such that vQ(f −

∑n−1
i=0 piq

i) ≥
n. Then there exists fn ∈ Q with f −

∑n−1
i=0 piq

i = fnqn and there exists
pn ∈ E with v(fn − pn) ≥ 1. Therefore, v(fnqn − pnqn) ≥ n + 1, hence
vQ(f −

∑n
i=0 piq

i) ≥ n + 1, and the induction is complete.
Consequently, the completion of Q at vQ is also a completion of E at v.
Note that the above proof works also for α = ∞. In this case |α−ci| ≥ |r|,

r
α−ci

= 0, and wi = rx−1

1−cix−1 for each i ∈ I, so q = x−1. Alternatively,
wi ∈ K((x−1)) for each i ∈ I, so K((x−1)) is the completion of both Q and
E at v.

Proof of (b): Assume that |α − ci| ≥ |r| for each i ∈ I. By (a), v extends
to a discrete valuation vQ of Q such that the completion Q̂ of Q at vQ is
also a completion of E at v. In particular, v is unramified in Q̂, hence in F .
Consequently, α /∈ Branch(F/E). �

We assume from now till the end of this section that |I| ≥ 2. Let G
be a finite group and for each i ∈ I let Gi be a subgroup of G such that
G = 〈Gi | i ∈ I〉. As in Section 3.3 let Pi = K{wj | j �= i} and P ′

i = K{wi}.
Finally let Fi be a Galois extension of E in P ′

i with Gal(Fi/E) ∼= Gi. Then
E = (E,Fi, Pi, Q; Gi, G)i∈I is patching data (Construction B in the proof of
Proposition 4.4.2).
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Lemma 7.2.3: Let F be the compound of E = (E,Fi, Pi, Q; Gi, G)i∈I .

(a) Let i ∈ I. If α ∈ Branch(Fi/E), then |α − ci| < |r|. In particular, the
sets Branch(Fi/E), for i ∈ I, are disjoint.

(b) Branch(F/E) =
⋃
· i∈I Branch(Fi/E).

(c) Suppose the set I contains the symbol 1 and G = G1 � H, where
H = 〈Gi | i ∈ I �{1}〉 � G. Then FH = F1 and

⋃
· i∈I

i�=1
Branch(Fi/E) =

Branch(FG1/E).
(d) Under the assumptions of (c) let i ∈ I �{1} and α ∈ Branch(Fi/F ).

Suppose p = px,α totally ramifies in Fi. Then there exists a prime divisor
q of F/E over p such that Iq/p is the subgroup Gi of H.

Proof of (a): By assumption, Fi ⊆ P ′
i . By Lemma 7.2.2(b), with I =

{i}, each α ∈ Branch(Fi/E) satisfies |α − ci| < |r|. If α also belongs to
Branch(Fj/E) for some j �= i, then |α − cj | < |r|, so |ci − cj | < |r|, contra-
dicting (1). It follows that Branch(Fi/E) ∩ Branch(Fj/E) = ∅ if i �= j.

Proof of (b): Let α ∈ K̃ ∪{∞} and let p = px,α be the corresponding prime
divisor of E/K and v = vx,α the associated normalized discrete valuation.

Part A: First assume that α ∈ Branch(Fi/E). Then v is ramified in Fi.
By (a), |α − ci| < |r|. Hence, by (1), |α − cj | ≥ |r| for each j �= i. By
Lemma 7.2.2(a), applied to I �{i} rather than to I, Pi is contained in the
completion Ê of E at v. Now we embed Ẽ in the algebraic closure of Ê. By
Lemma 1.1.7(b), PiF = PiFi, so ÊF = ÊFi. By Lemma 7.2.1, v ramifies in
F , so α ∈ Branch(F/E).

Part B: Conversely, assume that v is ramified in F . If there is an i ∈ I
such that |α − ci| < |r|, then, by (1),
(2) |α − cj | ≥ |r| for all j �= i.
Otherwise, |α − cj | ≥ |r| for all j.

Thus, in each case we may fix an i such that (2) holds. As in Part A, Pi

is contained in a completion Ê of E at v and ÊFi = ÊF . By Lemma 7.2.1,
v is ramified in Fi, so α ∈ Branch(Fi/E).

Proof of (c): We have FH = F1, by Lemma 1.3.1(a). It follows that
FG1 ∩ F1 = E and FG1F1 = F . Hence, Branch(F/E) = Branch(F1/E) ∪
Branch(FG1/E) (Remark 4.1.1).

Let α ∈
⋃

i �=1 Branch(Fi/E). By (b), α ∈ Branch(F/E); but, by (a),
α /∈ Branch(F1/E). Hence α ∈ Branch(FG1/E).

Conversely, if α ∈ Branch(FG1/E), then α ∈ Branch(F/E). If α ∈
Branch(F1/E), then by Part A of the proof of (b), P1 is contained in the
completion of E at vx,α. By Lemma 1.1.7(b), FG1 ⊆ P1, so α is un-
ramified in FG1 . This contradiction to our assumption implies that α /∈
Branch(F1/E). Hence, by (b), α ∈

⋃
· i �=1 Branch(Fi/E). We conclude that⋃

· i�=1 Branch(Fi/E) = Branch(FG1/E).
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7.3 Solution of Embedding Problems over Complete Fields

Proof of (d): We continue the proof of Part A of (b) under the assumptions
of (d) and find, by Lemma 7.2.1, a prime divisor q of F/K lying over p such
that Iq/p = Gal(F/Ê∩F ). Since p totally ramifies in Fi, Ê∩Fi = E. Hence,
Ê ∩ PiF = Ê ∩ PiFi = Pi. Therefore, by Lemma 1.1.7, Gi = Gal(F/Ê ∩ F ),
so Gi = Iq/p, as claimed. �

7.3 Solution of Embedding Problems
over Complete Fields

We generalize Proposition 4.4.2 and prove that if K̂0 is a complete absolute
valued field, then each finite split embedding problem over K̂0(x) is solvable.
Moreover, if K̂0 is an extension of a subfield K0 with trans.deg(K̂0/K0) = ∞,
then we may find a solution field with a branch point which is transcendental
over K0. This allows us to find as many solution fields as the cardinality of
K̂0 with branch points having given inertia groups.

Proposition 7.3.1: Consider a diagram of fields and Galois groups

E0
Γ

E
G1

E′

K0 K̂0
Γ

K̂

satisfying the following assumptions:
(1a) K̂/K̂0 is a finite Galois extension of complete fields under an ultrametric

absolute value | |;
(1b) E0 = K̂0(x), E = K̂(x), where x is an indeterminate;
(1c) E′/E0 is a finite Galois extension;
(1d) E′ has a K̂-rational place ϕ unramified over E with ϕ(x) ∈ K̂0 ∪ {∞};
(1e) Gal(E′/E0) acts on a finite group H.

Then E0 has a finite Galois extension F with the following properties:
(a) F contains E′ and there exists an isomorphism

α: Gal(F/E0) → Gal(E′/E0) � H

such that pr ◦ α = resF/E′ ;

(b) F has a K̂-rational place ϕ′ that extends ϕ and is unramified over E.
(c) Let {Gj | j ∈ J} be a finite family of cyclic subgroups of H of prime

power orders that generate H. Then for each j ∈ J there exists a point
bj ∈ Branch(F/E) ∩ K̂0,s with Gj as an inertia group.

(d) If trans.deg(K̂0/K0) = ∞, then the bj ’s can be chosen to be algebraically
independent over K0.

Proof: We may assume that H �= 1. Let Γ = Gal(K̂/K̂0) = Gal(E/E0) and
F1 = E′.
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Chapter 7. Split Embedding Problems over Complete Fields

We break up the proof into several parts. The idea of the proof is to
extend (E,F1, G1) to patching data E = (E,Fi, Pi, Q; Gi, G)i∈I with 1 ∈ I
on which Γ properly acts. The compound F of E will be the required solution
field.

Part A: The completion of (E, | |). We extend | | to an ultrametric absolute
value of E by the formula |

∑n
i=0 aix

i| = max(|a0|, . . . , |an|) for a0, . . . , an ∈
K̂. Then let (Ê0, | |) be the completion of (E0, | |) and set Ê = Ê0E. By
Remark 2.3.2(f), Ê is the completion of E at | |, the map res: Gal(Ê/Ê0) →
Gal(E/E0) is an isomorphism, and |yγ | = |y| for each y ∈ Ê and γ ∈ Γ.

Part B: Construction of the Pi’s. We assume without loss 1 /∈ J . We put
I2 = J × Γ and let Γ act on I2 by (j, γ)γ′

= (j, γγ′). For each j ∈ J we
identify (j, 1) ∈ I2 with j and notice that
(2) every i ∈ I2 can be uniquely written as i = jγ with j ∈ J and γ ∈ Γ.
We let I = {1} ·∪ I2 and extend the action of Γ on I2 to an action on I by
1γ = 1 for each γ ∈ Γ.

Claim: There exists a subset {ci | i ∈ I} of K̂ such that ci �= cj and cγ
i = ciγ

for all distinct i, j ∈ I and γ ∈ Γ.
It suffices to choose c1 ∈ K̂0 and cj ∈ K̂ for j ∈ J (and then define ci,

for i = jγ ∈ I2, as cγ
j ) such that c1 �= cε

j and cδ
j �= cε

j for all j ∈ J and all
distinct δ, ε ∈ Γ, and cδ

j �= cε
k for all distinct j, k ∈ J and all δ, ε ∈ Γ.

The first condition says that cj is a primitive element for K̂/K̂0 and
cj �= c1 for j ∈ J if K̂0 = K̂; the second condition means that distinct cj , ck

are not conjugate over K̂0. Thus, it suffices to show that there are infinitely
many primitive elements for K̂/K̂0. But if c ∈ K̂× is primitive, then so is
c+a, for each a ∈ K̂0. Since K̂0 is complete, hence infinite, the claim follows.

Having proved the claim we choose r ∈ K̂×
0 such that |r| ≤ |ci − cj | for

all distinct i, j ∈ I. For each i ∈ I we put wi = r
x−ci

∈ K̂(x). As in Section

3.2, we consider the closure R = K̂{wi | i ∈ I} of K̂[wi | i ∈ I] in Ê and let
Q be its quotient field. For each i ∈ I we set

Pi = PI �{i} = Quot(K̂{wj | j �= i}) and P ′
i = P{i} = Quot(K̂{wi})

(we use the notation of Section 3.3).
By the Claim, each γ ∈ Γ satisfies wγ

i = wiγ , hence maps R0 =
K̂[wi | i ∈ I] onto itself. Since the action of γ on Ê is continuous, γ leaves
R, hence also Q, invariant. We identify Γ with its image in Aut(Q/E0). In
addition, P γ

i = Piγ and (P ′
i )

γ = P ′
iγ for each i ∈ I.

Part C: Without loss of generality F1 ⊂ P ′
1 and ϕ(w1) = 0. To show this

it suffices to construct a K̂-embedding θ: F1 → P ′
1 such that θ(E0) = E0,

θ(E) = E, and ϕ ◦ θ−1(w1) = 0. Then the assumptions and the conclusions
of our proposition hold for (F1, ϕ) if and only if they hold for (θ(F1), ϕ◦θ−1).
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7.3 Solution of Embedding Problems over Complete Fields

We construct θ as above in two steps.
Since ϕ maps w1 into K̂0 ∪ {∞}, there is a K̂0-automorphism ω of

E0 = K̂0(w1) such that ϕ◦ω−1(w1) = 0. We extend ω to a K̂-automorphism
of E and then to an isomorphism of fields F1 → F ′

1. Applying the first
paragraph of Part C, we assume that ϕ(w1) = 0, so that F1 ⊆ K̂((w1)).

Let y1 be a primitive element for F1/E. Since y1 is algebraic over E, and
since for each c ∈ K̂× there are elements in K̂×

0 of smaller absolute value,
there is a c ∈ K̂0 at which y1 converges (Proposition 2.4.5). In the notation of
Remark 4.3.1, this implies that μc(y1) ∈ Quot(K̂{w1}) = P ′

1. Therefore, the
automorphism μc of K̂((w1)) leaves E0 = K̂0(w1) and E = K̂(w1) invariant
and maps F1 into P ′

1. In particular, ϕ(μ−1
c (w1)) = ϕ(c−1w1) = c−1ϕ(w1) =

0, as needed.

Part D: Groups. Since F1 ⊂ Q is a Galois extension of E0, it is Γ-
invariant. We identify Γ ≤ Aut(Q/E0) with its image in Gal(F1/E0). Then
Gal(F1/E0) = Γ � G1, where Γ acts on G1 by conjugation in Gal(F1/E0).
Thus,
(3) (aτ )γ = (aγ)τγ

for all γ ∈ Γ, a ∈ F1, and τ ∈ G1.
The given action of Gal(F1/E0) on H induces an action of its subgroups

G1 and Γ on H. Let G = G1 � H with respect to this action. Then

Gal(F1/E0) � H = (Γ � G1) � H = Γ � (G1 � H) = Γ � G.

By assumption H = 〈Gj | j ∈ J〉. For each j ∈ J we choose a generator
τj of Gj . For each i ∈ I2 we use (2) to write i = jγ′

with unique j ∈ J and

γ′ ∈ Γ. Then we define Gi = Gγ′
j , τi = τγ′

j (so Gi = 〈τi〉), and observe that
(4a) Gγ

i = Giγ for all i ∈ I2 and γ ∈ Γ.
(4b) H = 〈Gi | i ∈ I2〉 and G = 〈Gi | i ∈ I〉.
(4c) |I| ≥ 2.

Part E: Patching data. Let π0 be an element of K̂×
0 with |π0| < 1 and

set Π(π0, K̂0) = {πk
0ζl

n | k = 0, 1, 2, . . . ; l = 0, 1; n ∈ N, char(K̂0) � n}.
Then, Π(π0, K̂0) ⊆ K̂0,s and for each j ∈ J and each aj ∈ K̂0 Lemma 4.3.5
gives a cyclic extension Fj/E with Galois group isomorphic to Gj and a
πj ∈ Π(π0, K̂0) such that Fj ⊂ P ′

j , bj = πjajcj+r
πjaj

∈ Branch(Fj/E), and
pE,x,bj is totally ramified in Fj , so that Ibj = Gj (here we are using that
|Gj | is a power of a prime). If trans.deg(K̂0/K0) = ∞, we may choose the
aj ’s such that they are algebraically independent over K1 = K0(r, cj , π0)j∈J .
Since π0 ∈ K1, the elements bj are algebraically independent over K1, hence
also over K0.

For an arbitrary i ∈ I2 there exist unique j ∈ J and γ ∈ Γ such that
i = jγ (by (2)). Let Fi = F γ

j . Since γ acts on Q and leaves E invariant, Fi

is a Galois extension of E and Fi = F γ
j ⊆ (P ′

j)
γ = P ′

i (by Part B).
The isomorphism γ: Fj → Fi yields an isomorphism Gal(Fj/E) ∼=

Gal(Fi/E) that maps each τ ∈ Gal(Fj/E) onto γ−1 ◦ τ ◦ γ ∈ Gal(Fi/E).
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We can therefore identify Gi with Gal(Fi/E) such that τi coincides with
γ−1 ◦ τj ◦ γ. This means that (aτ )γ = (aγ)τγ

for all a ∈ Fj and τ ∈ Gj .
It follows that for all i ∈ I and γ ∈ Γ we have F γ

i = Fiγ . Moreover,
(aτ )γ = (aγ)τγ

for all a ∈ Fi and τ ∈ Gi; this generalizes (3).
By Proposition 3.4.5, E = (E,Fi, Pi, Q; Gi, G)i∈I is patching data. By

construction Γ acts properly acts on E (Definition 1.2.1). Let F be the
compound of E . Lemma 1.3.1(d) gives an identification α: Gal(F/E0) →
Gal(E′/E0) � H such that pr ◦α = resF/E′ , as claimed. By Lemma 7.2.3(b),
Branch(F/E) =

⋃
· i∈I Branch(Fi/E). In particular, bj ∈ Branch(F/E)∩K̂0,s

for each j ∈ J . Moreover, by Lemma 7.2.3(d), Gj is an inertia group of pE,x,bj

in Gal(F/E) for each j ∈ J .

Part F: Extension of ϕ. Let b ∈ K̂0 such that |b| > |r| and |b| > |ci|
for each i ∈ I. We set z = b

x and let K̂{z} be the ring of convergent
power series in z over K̂ with respect to the absolute value | |z given by
|
∑∞

n=0 anzn|z = max(|an|). Then,

(5) wi =
r

x − ci
=

rz

b − ciz
=

rz

b
· 1
1 − ci

b z
=

rz

b

∞∑
n=0

(
ci

b

)n

zn ∈ K̂{z}

for each i ∈ I. Thus, R0 ⊂ K̂{z}. Moreover, |wi|z = |r|
|b| < 1. By Lemma

3.1.1, every f ∈ R0 is of the form f = a0+
∑

i∈I

∑∞
n=1 ainwn

i , where a0, ain ∈
K̂ and almost all of them are 0. Hence, |f |z ≤ |f |, so the inclusion R0 ⊂ K̂{z}
is a continuous R0-embedding. Since R is the completion of R0 with respect
to | | (second paragraph of Section 3.2), this inclusion induces a continuous
R0-homomorphism κ: R → K̂{z}. By Proposition 3.2.9, there is a p ∈ R0

such that Ker(κ) = Rp. Therefore, p = 0 and κ is injective.
We identify R with its image under κ to assume that R ⊂ K̂{z} ⊂ K̂[[z]].

Then F ⊆ Q = Quot(R) ⊆ K̂((z)). The specialization z → 0 extends to a
K̂-rational place of K̂((z)) unramified over E = K̂(z). Its restriction to F is
a K̂-rational place ψ of F unramified over E = K̂(z).

Since ψ(w1) = 0 = ϕ(w1) (by (5)) and E = K̂(w1), we have ψ|E = ϕ|E .
We may therefore replace ψ by ψ◦σ for a suitable σ ∈ Gal(F/E), if necessary,
to assume that ψ|F1 = ϕ. �

7.4 Linearly Disjoint Solutions

Consider a finite embedding problem

(1) (res: Gal(E) → Gal(E′/E), α: H → Gal(E′/E))

over a field E and a set F = {Fi | i ∈ I} of solution fields of (1). In particular,
each Fi is a finite Galois extension of E that contains E′. We say that F is
linearly disjoint if the fields Fi, i ∈ I, are linearly disjoint over E′. The
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7.4 Linearly Disjoint Solutions

following lemma applies simple valuation theoretic principles to achieve linear
disjointness of a solution field from a given Galois extension of E containing
E′.

Lemma 7.4.1: Let E ⊆ E′ ⊆ F and E ⊆ E′ ⊆ N be towers of fields such
that E′/E, F/E, and N/E are Galois extensions and F/E is finite. For each
j in a set J let Gj be a subgroup of Gal(F/E), vj a discrete valuation of
E, and wj an extension of vj to F . Suppose that Gal(F/E′) = 〈Gj | j ∈ J〉,
Gj ≤ Iwj/vj

, and vj is unramified in N for each j ∈ J . Then F ∩ N = E′.

Proof: We denote the restriction of wj to F ∩ N by v′
j . By assumption v′

j

is unramified over E, hence Iv′
j/vj

= 1 (Remark 4.2.3). Since Iv′
j/vj

is the
image of Iwj/vj

under the map res: Gal(F/E) → Gal(F ∩ N/E), we have
Iwj/vj

≤ Gal(F/F ∩ N). By assumption,

Gal(F/E′) = 〈Gj | j ∈ J〉 ≤ 〈Iwj/vj
| j ∈ J〉 ≤ Gal(F/F ∩ N),

so F ∩N ⊆ E′. Since E′ ⊆ F ∩N , we conclude that F ∩N = E′, as claimed.
�
Lemma 7.4.2: If K/K0 is an extension of fields such that card(K0) <
card(K) and card(K) > ℵ0, then trans.deg(K/K0) = ∞.

Proof: The cardinality of a field does not change or becomes at most ℵ0 by
algebraic extensions or by finitely generated purely transcendental extensions.
Hence, trans.deg(K/K0) = ∞. �
Lemma 7.4.3: Let K̂ be a complete field under an ultrametric absolute value
| |. Then card(K̂) ≥ 2ℵ0 .

Proof: By assumption there exists π ∈ K̂ with 0 < |π| < 1. For each
sequence a = (a0, a1, a2, . . .) consisting of 0’s and 1’s the infinite series∑∞

n=0 anπn converges in K̂ to an element, say s(a). If b = (b0, b1, b2, . . .)
is different similar sequence, then there is an r ≥ 0 such that ai = bi

for i = 0, . . . , r − 1 and, say, ar = 0 and br = 1. Then s(b) − s(a) =
πr +

∑∞
n=r+1(bn − an)πn. Hence, |s(b) − s(a)| = |π|r �= 0, so s(b) �= s(a).

Since there are 2ℵ0 sequences a of that type, we conclude that card(K̂) ≥ 2ℵ0 .
�
Proposition 7.4.4: Consider a diagram of fields and Galois groups

E0
Γ

E
G1

E′

K̂0
Γ

K̂

satisfying the following assumptions:
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(2a) K̂/K̂0 is a finite Galois extension of complete fields under an ultrametric
absolute value | |;

(2b) E0 = K̂0(x), E = K̂(x), where x is an indeterminate;
(2c) E′/E0 is a finite Galois extension;
(2d) E′ has a K̂-rational place ϕ unramified over E with ϕ(x) ∈ K̂0 ∪ {∞};

and
(2e) Gal(E′/E0) acts on a finite group H.

Then, with m = card(K̂0), the embedding problem

(3) Gal(E′/E0) � H → Gal(E′/E0)

over E0 has m linearly disjoint solution fields, each equipped with a K̂-
rational place that extends ϕ and is unramified over E.

Proof: We use transfinite induction to construct a transfinite sequence
(Fα)α<m of solution fields of (3) with the desired properties. Suppose β < m
is an ordinal number and for each α < β we have constructed a solution
field Fα of (3) equipped with a K̂-rational place ϕα unramified over E that
extends ϕ. Then N =

∏
α<β Fα is a Galois extension of E0 that contains E′.

Moreover, Branch(N/E0) =
⋃

α<β Branch(Fα/E0) (Remark 4.1.1). Since
Branch(Fα/E0) is a finite set, card(Branch(N/E0)) < m.

Let K0 be the prime field of K̂0 and set K ′
1 = K0(Branch(N/E0)). By

Lemma 7.4.3, m ≥ 2ℵ0 . Since card(K0) ≤ ℵ0, this implies that card(K ′
1) <

m. Moreover, each element y of K ′
1 is algebraic over K̂0. Let K1 be the

field generated over K0 by the coefficients of irr(y, K̂0), where y ranges on
K ′

1. Then, K ′
1 ⊆ K̃1 and card(K1) ≤ card(K ′

1) < m = card(K̂0). Hence, by
Lemma 7.4.2, trans.deg(K̂0/K1) = ∞.

Since each element of H is a product of elements of prime power order,
we may find a finite set {Gj | j ∈ J} of cyclic subgroups of H of prime power
order such that H = 〈Gj | j ∈ J〉. Proposition 7.3.1 then gives a solution
field Fβ of embedding problem (3) and for each j a point bj ∈ Branch(Fβ/E0)
with Gj as an inertia group such that the bj ’s are algebraically independent
over K1. Moreover, ϕ extends to a K̂-rational place ϕβ of Fβ unramified
over E. In particular, bj /∈ Branch(N/E0), so pE0,x,bj

is unramified in N for
all j ∈ J . It follows from Lemma 7.4.1 that Fβ ∩N = E′. Consequently, the
transfinite sequence of solutions (Fα)α≤β is linearly disjoint. This completes
the transfinite induction. �

Proposition 8.6.3 generalizes Proposition 7.4.4 to all ample fields.

Notes
The results of section 7.1 appear in [GeJ98, Sec. 9].

Lemma 7.2.1 already appears in [HaV96, Lemma 3.6(e)].
Lemma 7.2.2 is based on [HaJ00a, Lemma 1.2] and, in its present form,

on [Har05, Lemma 3.12].
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Notes

The first three parts of Lemma 7.2.3 are taken from [HaJ00a, Lemma
1.4].

Proposition 7.3.1 is the main result of this chapter. One of its main ingre-
dients, namely information about inertia groups appears already in [Pop94].

In contrast to Proposition 4.4.2, where only constant split embedding
problems are considered, Proposition 7.3.1 solves arbitrary finite split em-
bedding problems over K0(x), where K0 is a complete field with respect to
an ultrametric absolute value. This parts appears for the first time in [Pop03,
Lemma 2.8]. Our proof follows that of [HaJ98b, Prop. 4.1]. It adds the in-
formation about the branch points and their inertia groups. That feature
appears already in [Pop94].
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Chapter 8.
Split Embedding Problems over Ample Fields

We generalize Theorem 5.9.2 and prove that if K0 is an ample field, then not
only constant finite split embedding problems over K0(x) are solvable but
every finite split embedding problem Gal(E/K0(x)) � H → Gal(E/K0(x))
has as many linearly disjoint solution fields Fα, with α < card(K) (Propo-
sition 8.6.3). Moreover, let K be the algebraic closure of K0 in E. Then
each K-rational place ϕ of E unramified over K0(x) with ϕ(x) ∈ K0 ∪ {∞}
extends to a K-rational place of Fα unramified over K0(x) (Lemma 8.6.1).

The construction of the solutions for general finite split embedding prob-
lems over K0(x) in the case where K0 is an ample field relies on Proposition
7.3.1, where K0 is assumed to be complete under an ultrametric absolute
value. For an arbitrary ample field K0, we first lift the embedding problem
to one over K0((t))(x), and apply Proposition 7.3.1 to solve it with additional
information on the branch points (in particular they should be algebraically
independent over K0) and on their inertia groups. Then, we use Bertini-
Noether as in Lemma 5.9.1 to reduce that solution to one of the original
problem. In order to achieve many linearly disjoint solutions the reduction
has to keep track of the branch points and their inertia groups. This can be
done once the reduction is normal in the sense of Section 8.1.

8.1 Normal Reduction
Let (K, w) be a valued field and x a variable. The Gauss extension of w
to a valuation of the field K(x) bearing the same notation is defined by

(1) w
( n∑

i=0

aix
i
)

= min(w(a0), . . . , w(an))

for a0, . . . , an ∈ K [FrJ08, Example 2.3.3].
We denote the residue field of K by K̄ and the residue of each element

y ∈ K(x) by ȳ. Definition (1) implies that x̄ is transcendental over K̄.
Indeed, suppose there are ā0, . . . , ān ∈ K̄ such that

∑n
i=0 āix̄

i = 0. Let ai be
a lifting of āi to K. Then w(

∑n
i=0 aix

i) > 0. Hence, by (1), w(ai) > 0, so
āi = 0 for each i.

We denote the valuation rings of w in K and in K(x) by Ow,K and
Ow,K(x), respectively. By definition, Ow,K(x) ∩ K = Ow,K . Each element of
Ow,K(x) has the form

y =
∑

aix
i∑

bjxj
,

where i and j range over finite index sets, ai, bj ∈ K, and min(w(ai)) ≥
min(w(bj)) and not all bj are zero. We choose an index l with w(bl) =

M. Jarden,                                 , Springer Monographs in Mathematics,
DOI , © Springer-Verlag Berlin Heidelberg 201110.1007/978-3-642-15128-6_8
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8.1 Normal Reduction

min(w(bj)) and divide the numerator and the denominator of y by bl, if
necessary, to assume that min(w(ai)),min(w(bj)) ≥ 0 and one of the bj ’s is
1. Taking residues, we find that

ȳ =
∑

āix̄
i∑

b̄j x̄j
∈ K̄(x̄).

It follows that

(2) K(x) = K̄(x̄).

In the case where the denominator of y is 1, the previous arguments imply
that

(3) Ow,K(x) ∩ K[x] = Ow,K [x] and K[x] = K̄[x̄].

Now we consider a finite extension F of K(x), extend w to a valuation
of F having the same notation w, and write Ow,F for the valuation ring of w
in F . Let F̄ be the residue field of F at w. By (2), [F̄ : K̄(x̄)] ≤ [F : K(x)].
We say that F has a degree preserving constant reduction at w over K
with respect to x if the latter inequality is an equality, i.e.

(4) [F : K(x)] = [F̄ : K̄(x̄)].

Lemma 8.1.1: Under Assumption (4), w extends uniquely from K(x) to F ,
w(F×) = w(K×), and Ow,F is the integral closure of Ow,K(x) in F . If in
addition, F̄ /K̄(x̄) is separable, then w is unramified over K(x).

Proof: We list the extensions of w from K(x) to F as w1, . . . , wm. By
the fundamental inequality for valuations, the ramification indices and the
residue fields of F at these valuations satisfy

∑m
i=1 ei[F̄wi

: K̄(x̄)] ≤ [F :
K(x)] [Efr06, Thm. 17.1.5]. It follows from (4) that m = 1, w has a unique
extension from K(x) to F , and the ramification index is 1. In particular,
w(F×) = w(K(x)×). Hence, by (1), w(F×) = w(K×). Since the integral
closure of Ow,K(x) in F is the intersection of all valuation rings of F that lie
over Ow,K(x) [Lan58, p. 14, Prop. 5], Ow,F is the integral closure of Ow,K(x)

in F . Finally, if F̄ /K̄(x̄) is a separable extension, then w is unramified over
K(x). �

Note that F̄ is the set of all residues z̄ with z ∈ Ow,F . More generally,
for a subset A of F we write Ā = {ā ∈ F̄ | a ∈ A ∩ Ow,F } and observe that
Ā = A ∩ Ow,F . Moreover, A ⊆ B ⊆ F implies Ā ⊆ B̄ ⊆ F̄ . If R is a subring
of F , then R̄ is a subring of F̄ ; and if I is an ideal of R, then Ī is an ideal of
R̄.
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Definition 8.1.2: Let F/K be a function field of one variable, x a separat-
ing transcendental element, and w a valuation of FK̃. We say that F/K has
a degree preserving regular constant reduction at w with respect to x
if the following conditions hold:

(5a) The element x̄ is a separating transcendental element of F̄ /K̄.

(5b) The extensions F/K(x) and F̄ /K̄(x̄) have the same degree n.

(5c) F̄ /K̄ is a regular extension. �

Lemma 8.1.3: In the notation of Definition 8.1.2, let L be an algebraic ex-
tension of K. Then FL/L has a degree preserving regular constant reduction
at w with respect to x. Moreover, FL = F̄ L̄.

Proof: By (2) applied to L rather than to K, we have L(x) = L̄(x̄). Since
both F/K and F̄ /K̄ are regular extensions, so are FL/L and F̄ L̄/L̄. More-
over, [FL : L(x)] = [F : K(x)] and [F̄ L̄ : L̄(x̄)] = [F̄ : K̄(x̄)]. Also, note that
L̄(x̄) ⊆ F̄ L̄ ⊆ FL. Hence, by (5b),

[FL : L̄(x̄)] ≥ [F̄ L̄ : L̄(x̄] = [F̄ : K̄(x̄)]

= [F : K(x)] = [FL : L(x)] ≥ [FL : L̄(x̄)],

so [FL : L̄(x̄)] = [F̄ L̄ : L̄(x̄)]. This proves that FL = F̄ L̄ and also (5a), (5b),
and (5c) for L rather than for K, as claimed. �

Definition 8.1.4: In the notation of Definition 8.1.2, let R (resp. R′) be the
integral closure of K[x] (resp. K[x−1]) in F . We say that F/K has a normal
reduction at w with respect to x if in addition to (5a), (5b), and (5c) also
the following condition holds:
(6) R̄ and R′ are integrally closed. �

Remark 8.1.5: Good reduction. We say that F/K has a good reduction
at w with respect to x if (5a), (5b), (5c), and
(6’) genus(F/K) = genus(F̄ /K̄)
hold. In this book we use “normal reduction”. However, Green and Roquette
prove in the forthcoming book [GrR] that “normal reduction” is equivalent
to “good reduction” of F/K at w with respect to x, if K is perfect. �

By [Ser79, Prop. I.4.8], the rings R and R′ mentioned in Definition 8.1.4
are finitely generated over K. Combined with the following result, this gives
a convenient criterion for Condition (6) to hold.

Lemma 8.1.6: Let F be a function field of one variable over an algebraically
closed field L and let y1, . . . , yn ∈ F . Let f1, . . . , fm ∈ L[Y], with Y =
(Y1, . . . , Yn) such that fi(y) = 0 for i = 1, . . . , m, and consider the Jacobian
matrix

J(Y) =
(

∂fi

∂Yj

)
1≤i≤m, 1≤j≤n

.
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(a) If the ring L[y] is integrally closed and f1, . . . , fm generate the ideal of
all polynomials in L[Y] that vanish at y, then 1 is a linear combination
of all (n− 1)× (n− 1) subdeterminants of J(y) with coefficients in L[y].

(b) If 1 is a linear combination of all (n − 1) × (n − 1) subdeterminants of
J(y) with coefficients in L[y], then L[y] is integrally closed.

Proof: Let d1, . . . , dr ∈ L[Y] be the determinants of the (n − 1) × (n − 1)
submatrices of J(Y).

Proof of (a): The assumption that L[y] is integrally closed implies that the
affine curve C = Spec(L[y]) generated by the point y over L is smooth, so
rank(J(a)) = n− 1 for each a ∈ C(L) [Sha77, p. 112, Cor]. Hence, there is a
k such that dk(a) �= 0. It follows that f1, . . . , fm, d1, . . . , dr have no common
zero in Ln. By Hilbert Nullstellensatz [FrJ08, Prop. 9.4.1], 1 is a linear
combination of f1, . . . , fm, d1, . . . , dr with coefficients in L[Y]. Substituting
y for Y, we conclude that 1 is a linear combination of d1(y), . . . , dr(y) with
coefficients in L[y], as claimed.

Proof of (b): We add fm+1, . . . , fm′ ∈ L[Y] to f1, . . . , fm such that
f1, . . . , fm′ generate the ideal of all polynomials in L[Y] that vanish at y
and consider the Jacobian matrix J ′(Y) =

(
∂fi

∂Yj

)
1≤i≤m′, 1≤j≤n

. By assump-

tion, 1 is a linear combination of all (n−1)×(n−1) subdeterminants of J(Y),
hence of J ′(Y), with coefficients in L[y]. Therefore, for each point a ∈ C(L)
there is a subdeterminant of J ′(Y) whose value at a is nonzero. This implies
that rank(J ′(a)) ≥ n − 1. By [Mum88, Cor. III.4.1], a is a simple point of
C. We conclude from [Sha77, p. 110, Thm. 1] that the coordinate ring L[y]
of C is integrally closed. �

8.2 Inertia Groups

Our main application of reduction theory is to make sure that inertia groups
in appropriate Galois extensions of algebraic function fields of one variable are
mapped under normal reductions into inertia groups of the reduced Galois
extensions. Unfortunately, we can not always produce normal reductions.
However, we can produce degree preserving regular constant reductions that
become normal reductions after algebraic extensions of the base field.

Remark 8.2.1: Inertia groups of extensions of prime ideals. Let K be a field,
x a variable, and F a finite Galois extension of E = K(x). Let b ∈ K̃, set
px,b = irr(b, K), let Px,b = px,b(x)K[x] be the corresponding prime ideal of
K[x], and let v be the valuation of E/K with v(px,b(x)) = 1. Next we denote
the integral closure of K[x] in F by R and choose a valuation v′ of F lying
over v. Let P = {y ∈ R | v′(y) > 0} be the center of v′ at R.

Ov′ is the local ring RP of R at P .
The inertia group of P/Px,b is defined as

IP/Px,b
= {σ ∈ Gal(F/E) | yσ ≡ y mod P for each y ∈ R}.
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It contains the inertia group

Iv′/v = {σ ∈ Gal(F/E) | v′(zσ − z) > 0 for each z ∈ Ov′}.

Conversely, suppose σ ∈ IP/Px,b
. Then Rσ = R and Pσ = P . Each z ∈

Ov′ can be written as z = y
u with y ∈ R and u ∈ R � P . In particular,

v′(y), v′(yσ) ≥ 0 and v′(u) = v′(uσ) = 0. Hence,

v′(zσ − z) = v′(uyσ − uσy) − v′(uσ) − v′(u)
= v′(uyσ − uy + uy − uσy) = v′(u(yσ − y) + (u − uσ)y)
≥ min(v′(u) + v′(yσ − y), v′(u − uσ) + v′(y)) > 0,

so σ ∈ Iv′/v. Consequently, IP/Px,b
= Iv′/v.

By Remark 4.1.1, b is a branch point of F/E with respect to x if and only
if v′/v is ramified. By Remark 4.2.3, v′/v is ramified if and only if Iv′/v �= 1.
It follows from the preceding paragraph that b is a branch point of F/E if
and only if IP/Px,b

�= 1. Moreover, in this case IP/Px,b
is an inertia group of

b in Gal(F/E).
As usual, we define the inertia groups in F of ∞ with respect to x as

the inertia group in F of 0 with respect to x−1. �

Lemma 8.2.2: Let F/K be a function field of one variable, x a separating
transcendental element, and w a valuation of F . Suppose F/K has a degree
preserving regular constant reduction at w with respect to x and F/K(x) is
Galois.

Then there exists an isomorphism σ �→ σ̄ of Gal(F/K(x)) onto
Gal(F̄ /K̄(x̄)) such that ȳσ̄ = yσ for all σ ∈ Gal(F/K(x)) and y ∈ Ow,F .

Proof: By (2) of Section 8.1, K(x) = K̄(x̄), so F̄ /K̄(x̄) is normal. By (5a)
of Section 8.2, F̄ /K̄(x̄) is separable, hence F̄ /K̄(x̄) is Galois, Therefore, by
Lemma 8.1.1, w is unramified over K(x). Since [F : K(x)] = [F̄ : K̄(x̄)], the
decomposition group of w over K(x) is Gal(F/K(x)). Thus, the lemma is a
special case of [FrJ08, Lemma 6.1.1(b)]. �

Lemma 8.2.3: Let E/K be a function field of one variable and F/E a finite
Galois extension with F/K regular. Let K ′ be an algebraic extension of K
and set E′ = EK ′ and F ′ = FK ′. Let w′ be a valuation of F ′/K ′ and
denote the restriction of w′ to E,F, E′, respectively, by v, w, v′. Then the
isomorphism res: Gal(F ′/E′) → Gal(F/E) maps Iw′/v′ onto Iw/v.

Proof: First we observe that we may assume that K ′/K is finite and then
also that F ′/F is normal. Secondly we may assume that either K ′/K is
separable or K ′/K is purely inseparable.

If K ′/K is separable, then K ′/K is Galois, hence F ′/E is a finite Galois
extension. By Remark 5.8.1(e), v′/v is unramified, so Iw′/v = Iw′/v′ . By
Remark 4.2.3, res(Iw′/v′) = res(Iw′/v) = Iw/v.
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8.2 Inertia Groups

If char(K) > 0 and K ′/K is purely inseparable, then there exists a power
q of char(K) with (K ′)q ⊆ K, so (F ′)q ⊆ F . Each σ ∈ Iw/v can be lifted to
an element σ′ ∈ Gal(F ′/E′). Consider x ∈ Ow′ . It satisfies xq ∈ Ow, hence
w((xq)σ − xq) > 0. Therefore, with e = ew′/w we have eq ·w′(xσ − x) > 0. It
follows that w′(xσ − x) > 0, hence σ ∈ Iw′/v, as claimed. �

Lemma 8.2.4: Let F/K be a function field of one variable, x a separating
transcendental element, and w a valuation of FK̃. Suppose F/K has a degree
preserving regular constant reduction at w|F with respect to x and F/K(x)
is Galois. Suppose FK̃/K̃ has a normal reduction at w with respect to x.

Then for each b ∈ K̃ there exists an inertia group Ib of b in Gal(F/K(x))
and there exists an inertia group Ib̄ of b̄ in Gal(F̄ /K̄(x̄)) such that, under the
isomorphism of Lemma 8.2.2, Ib ≤ Ib̄. In particular, if b is a branch point of
F/K(x), then b̄ is a branch point of F̄ /K̄(x̄).

Proof: As in the proof of Lemma 8.2.2, F̄ /K̄(x̄) is Galois, so the second
paragraph of our lemma makes sense. First we prove the lemma over K̃ and
then we descend to K.

Part A: Working over L = K̃. Exchanging x with x−1, if necessary, we
assume that b̄ ∈ L̄, so w(b) ≥ 0.

Let S be the integral closure of L[x] in FL. We consider the maximal
ideal q = (x − b)L[x] of L[x] and choose a maximal ideal Q of S over q.
Then we set L[x]w = L[x] ∩ Ow,FL, qw = q ∩ Ow,FL, Sw = S ∩ Ow,FL, and
Qw = Q ∩ Ow,FL. Then qw and Qw are prime ideals of the rings L[x]w and
Sw, respectively. By (3) of Section 8.1, L[x]w = Ow,L[x].

Claim A1: L[x]w/qw = Ow,L. Indeed, if (x − b)f(x) ∈ L[x]w with f ∈
L[X], then w(x − b) + w(f(x)) ≥ 0. Since by (1) of Section 8.1, w(x − b) =
min(w(1), w(b)) = 0, we have w(f(x)) ≥ 0, so f(x) ∈ L[x]w. Thus, qw =
(x − b)L[x]w. It follows that L[x]w/qw = Ow,L[x]/(x − b)Ow,L[x] = Ow,L.
Moreover, q̄ = (x̄ − b̄)L̄[x̄].

Claim A2: Sw is the integral closure of L[x]w in FL. Indeed, consider
y ∈ Sw. Then y ∈ S, so y is integral over L[x]. Hence, irr(y, L(x)) ∈
L[x][Y ] and the coefficients of irr(y, L(x)) are the fundamental symmetric
polynomials in the conjugates of y over L(x). Since w is equal to each of its
conjugates over L(x) (Lemma 8.1.1), each of the conjugates of y belongs to
Ow,FL. Hence, the coefficients of irr(y, L(x)) belong to L[x]w. It follows that
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irr(y, L(x)) ∈ L[x]w[Y ], so y is integral over L[x]w.

Q

��
��

S

���
���

FL

���
��

Qw Sw Ow,FL

q

		
		

	
L[x]

���
�

L(x)

����

qw L[x]w Ow,L(x)

L









Ow,L

Conversely, let y ∈ FL be integral over L[x]w. Then y is integral over
L[x]. So, y ∈ S. Also, y is integral over Ow,L(x), so w(y) ≥ 0. Hence, y ∈ Sw.

Claim A3: Sw/Qw = Ow,L. Indeed, Qw = Q ∩ Sw is a prime ideal of Sw

that lies over qw. Moreover, by Claim A2, Sw/Qw is an integral extension of
L[x]w/qw = Ow,L (Claim A1). Since L is algebraically closed, Sw/Qw ⊆ L.
Finally, since Ow,L, as a valuation ring, is integrally closed in L, we have
Sw/Qw = Ow,L.

Following the convention used above, we use a bar for the reduction at
w and recall that S̄ = Sw and L̄ = Ow,L. Let Mw and Mw,L be the kernels
of the maps Sw → S̄ and Ow,L → L̄, respectively. Thus, S̄ ∼= Sw/Mw and
L̄ ∼= Ow,L/Mw,L.

Claim A4: We have (Qw + Mw)/Qw = Mw,L under the identification
Sw/Qw = Ow,L of Claim A3. Let π: Sw → Ow,L be the quotient map
of Claim A3. Each c ∈ Mw,L belongs to Mw. Since Qw ∩ L = 0, we have
π(c) = c. Thus, Mw,L ⊆ π(Qw + Mw).

Assume Mw,L �= π(Qw + Mw). Since Ow,L/Mw,L = L̄ is a field, Mw,L

is a maximal ideal of Ow,L. Hence, π(Qw + Mw) = Ow,L. Thus, there exist
q ∈ Qw and m ∈ Mw such that 1 = q + m. Taking the norm from FL to
L(x) of both sides and using that Sw is integral over Ow,L[x] (Claim A2), we
get

1 =
∏

σ∈Gal(FL/L(x))

(qσ + mσ) = q0 + m0,

where

q0 =
∏

σ∈Gal(FL/L(x))

qσ ∈ Qw ∩ Ow,L[x] = qw = (x − b)Ow,L[x]

(by Claim A1) and

m0 =
∑
A

∏
σ∈A
τ /∈A

qτmσ ∈ Ow,L[x]
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with A ranging over all nonempty subsets of Gal(FL/L(x)). Note that
w(m0) > 0 satisfies, because w(qτ ) = w(q) ≥ 0 and w(mσ) = w(m) > 0
for all σ, τ ∈ Gal(FL/L(x))). Thus, there exists g ∈ Ow,L[X] such that
1 = (x−b)g(x)+m0. Taking reduction on both sides, we get 1 = (x̄− b̄)ḡ(x̄),
which is a contradiction. We conclude from this contradiction that π(Qw +
Mw) = Mw,L, as claimed.

Claim A5: S̄/Q̄ = L̄. Note that Q̄ = Qw
∼= Qw/(Qw ∩ Mw) ∼= (Qw +

Mw)/Mw.

Sw

Qw Qw + Mw

Qw ∩ Mw Mw

It follows from Claims A3 and A4 that

S̄/Q̄ ∼= (Sw/Mw)/((Qw + Mw)/Mw) ∼= Sw/(Qw + Mw)
∼= (Sw/Qw)/((Qw + Mw)/Qw)
∼= Ow,L/Mw,L

∼= L̄,

as claimed.

Claim A6: IQ/q ⊆ IQ̄/q̄. By Claim A5, Q̄ is a maximal ideal of S̄. Since
q̄ ⊆ Q̄ and q̄ is a maximal ideal of L̄[x̄], it follows that Q̄ ∩ L̄[x̄] = q̄.

Let σ ∈ IQ/q. Then yσ ≡ y mod Q for each y ∈ S, hence for each
y ∈ Sw. Therefore, in the notation of Lemma 8.2.2, ȳσ̄ ≡ ȳ mod Q̄. Since the
reduction at w is normal with respect to x, the ring S̄ is the integral closure
of L̄[x̄] in F̄ L̄. Since the map Sw → S̄ is surjective, the latter congruence
implies that σ̄ ∈ IQ̄/q̄, as claimed.

Part B: Descending from K̃ to K. Let R be the integral closure of K[x]
in F . In the notation of Part A, q = (x−b)L[x], Px,b = K[x]∩q is the prime
ideal of all polynomials in K[x] that vanish at b and P = R ∩ Q is a prime
ideal of R lying over Px,b. By Remark 8.2.1, Ib = IP/Px,b

is an inertia group
of b in Gal(F/K(x)).

Again, by Part A, q̄ = (x̄− b̄)L̄[x̄] and Q̄ is a prime ideal of S̄ lying over
q̄. Thus, Px̄,b̄ = K̄(x̄) ∩ q̄ is the prime ideal of K̄[x̄] of all polynomials that
vanish at b̄.

Since S̄ is the integral closure of L̄[x̄] in F̄ L̄ (end of Part A), the ring
R′ = F̄ ∩ S̄ is the integral closure of K̄[x̄] in F̄ . Then P ′ = R′ ∩ Q̄ is a prime
ideal of R′ that lies over Px̄,b̄. By Remark 8.2.1, Ib̄ = IP ′/Px̄,b̄

is an inertia
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group of b̄ in Gal(F̄ /K̄(x̄)).
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The diagrams of fields give rise to a diagram of Galois groups.

Gal(FL/L(x))
res

�������������

ρL �� Gal(F̄ L̄/L̄(x̄))
res

�������������

Gal(F/K(x))
ρK �� Gal(F̄ /K̄(x̄))

IQ/q

���������������
�� IQ̄/q̄

���������������

IP/Px,b
�� IP ′/Px̄,b̄

The maps ρK and ρL are the reduction maps and res and res are the restric-
tion maps. Since F/K and FL/L have degree preserving regular constant
reduction at w with respect to x, both ρK and ρL are isomorphisms, by
Lemma 8.2.2. Moreover, since F/K and F̄ /K̄ are regular extensions, res
and res are isomorphisms. Since the reduction of Galois groups given by
Lemma 8.2.2 commutes with restrictions, the upper side of the diagram is
commutative.

The vertical lines in the diagram are inclusions. By Part A, ρL(IQ/q) ≤
IQ̄/q̄. By Lemma 8.2.3, res(IQ/q) = IP/Px,b

and res(IQ̄/q̄) = IP ′/Px̄,b̄
. It fol-

lows from the commutativity of the lower part of the diagram that
ρK(IP/Px,b

) ≤ IP ′/Px̄,b̄
, as claimed. �
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8.3 Almost All Reductions
We consider a field K, a function field of one variable F over K, and a
separating transcendental element x for F/K such that F/K(x) is Galois.
Let W be a set of valuations of K. We extend each w ∈ W to a valuation w
of K̃. Each w ∈ W has a unique Gauss extension to K̃(x) and then finitely
many extensions to FK̃(x), conjugate to each other over K̃(x). We use w
again to denote one of these extensions. As in previous sections, we use a bar
to denote reduction of elements of FK̃, residue fields at w, and reduction of
sets at w in the sense of Section 8.1. In particular, K̄ and F̄ are the residue
fields of K and F , respectively, and the residue x̄ of x at w is transcendental
over K̄. We say that a possible property P of elements and fields with respect
to a valuation holds for almost all w ∈ W if there exist c1, . . . , cn ∈ K̃× such
that P holds for each w ∈ W with w(ci) ≥ 0, i = 1, . . . , n. It follows that if
each one of finitely many possible properties P1, . . . , Pm holds for almost all
w ∈ W , then their conjunction P1 ∧ · · · ∧ Pm holds for almost all w ∈ W .

Lemma 8.3.1: In the above notation suppose K is infinite, F/K is a function
field of one variable, and F/K(x) is a Galois extension. Then, for almost all
w ∈ W , F/K has a degree preserving regular constant reduction at w with
respect to x such that F̄ /K̄(x̄) is Galois. Moreover, FK̃/K̃ has a normal
reduction at w with respect to x.

Proof: We break the proof into two parts.

Part A: Proof of Conditions (5a)–(5c) of Definition 8.1.2. We choose a
primitive element y for the extension F/K(x) that is integral over K[x].
Then irr(y,K(x)) is a monic irreducible polynomial f(x, Y ) in K[x, Y ]. By
[FrJ08, Cor. 10.2.2], f(X, Y ) is absolutely irreducible. Hence, by Bertini-
Noether, f̄(X, Y ) is absolutely irreducible for almost all w ∈ W [FrJ08,
Prop. 9.4.3]. In particular, f̄(x̄, Y ) is a monic irreducible polynomial in
K̄[x̄, Y ] and f̄(x̄, ȳ) = 0. By (2) of Section 8.1, K̄(x̄) = K(x), hence
[F : K(x)] = deg(f(x, Y )) = deg(f̄(x̄, Y )) = [K(x̄, ȳ) : K̄(x̄)] ≤ [F̄ :
K̄(x̄)] = [F̄ : K(x)] ≤ [F : K(x)]. Therefore, [F : K(x)] = [F̄ : K̄(x̄)]
and F̄ = K̄(x̄, ȳ). By [FrJ08, Cor. 10.2.2(b)], this implies that F̄ /K̄ is a
regular extension. Moreover, by [FrJ08, Lemma 13.1.1], F̄ /K̄(x̄) is a Galois
extension for almost all w ∈ W .

Part B: Normal reduction. We set L = K̃ and use Lemma 8.1.3 to ob-
serve that Conditions (5a), (5b), and (5c) of Definition 8.1.2 for FL/L follow
from the same conditions for F/K. In order to prove also Condition (6) of
Definition 8.1.4 we denote the integral closure of L[x] in FL by S. By [Ser79,
Prop. I.4.8], S = L[y1, . . . , yn] for some y1, . . . , yn ∈ FL. For each i we have
hi = irr(yi, L(x)) ∈ L[x, Y ].

Let f1, . . . , fm be generators of the ideal of all polynomials in L[Y] that
vanish at y and consider the Jacobian matrix

J(Y) =
(

∂fi

∂Yj

)
1≤i≤m, 1≤j≤n

.
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Let d1, . . . , dr ∈ L[Y] be the (n− 1)× (n− 1) subdeterminants of J(Y). By
Lemma 8.1.6(a), there exist c1, . . . , cr ∈ L[Y] such that

∑r
k=1 ck(y)dk(y) =

1.
For almost all w ∈ W the elements y1, . . . , yn belong to Ow,FL, and

the coefficients of f1, . . . , fm, h1, . . . , hn, c1, . . . , cr, d1, . . . , dr belong to Ow,L.
Hence, reduction at w gives that h̄i ∈ L̄[x, Y ] is a monic polynomial in Y
satisfying h̄(x̄, ȳi) = 0, so that ȳi is integral over L̄[x̄]. Therefore, L̄[ȳ] is
integral over L̄[x̄]. Moreover, J̄(Y) =

(
∂f̄i

∂Yj

)
1≤i≤m, 1≤j≤n

is the Jacobian

matrix of f̄1, . . . , f̄m, and d̄1, . . . , d̄r are the (n−1)× (n−1) subdeterminants
of J̄(Y). Finally,

∑r
k=1 c̄k(ȳ)d̄k(ȳ) = 1. Hence, by Lemma 8.1.6(b), L̄[ȳ] =

L[y] is integrally closed. It follows that L̄[ȳ] is the integral closure of L̄[x̄].
Similarly, for almost all w ∈ W , the reduction at w of the integral closure

of L[x−1] is the integral closure of L̄[x̄−1]. This completes the verification of
Condition (6) of Section 8.1. �

Next we assume that K is a finitely generated regular extension of a field
K0 and let u = (u1, . . . , un) with K = K0(u). Let U = Spec(K0[u]) be the
affine absolutely irreducible variety defined over K0 in An with generic point
u [FrJ08, Cor. 10.2.2(a)]. For each a ∈ Usimp(K̃0) we choose a K0-place ϕa of
K with residue field K0(a) such that ϕa(u) = a [JaRo80, Cor. A2]. Let wa be
a valuation of K that corresponds to ϕa and set W = {wa | a ∈ Usimp(K̃0)}.
As above, we fix a valuation of KK̃0 extending wa and call it wa too. In
addition, we consider a variable x, a finite Galois extension F of K(x), and
fix an extension of wa to a valuation of FK̃ with the same notation such that
wa|K̃(x) is the Gauss extension of wa|K̃ . We say that a property P of elements

and fields with respect to a valuation holds for almost all a ∈ U(K̃0) if there
exists a nonempty Zariski-open subset U0 of Usimp such that P holds for wa

for all a ∈ U0(K̃0). Note that if c ∈ K̃×, then irr(c, K) = Xr +
∑r−1

i=0
fi(u)
gi(u)X

i

with fi, gi ∈ K0[X1, . . . , Xn] such that gi(u) �= 0, i = 0, . . . , r−1. If gi(u) �= 0,
i = 0, . . . , r − 1, then wa(c) ≥ 0. It follows that the property P holds for
almost all a ∈ U(K̃0) if it holds for almost all w ∈ W . Conversely, if P holds
for almost all a ∈ U(K̃0), then it holds for almost all w ∈ W .

Proposition 8.3.2: Let K0 be a field, K = K0(u) a finitely generated
regular extension of K0, and U = Spec(K0[u]) the absolutely irreducible
affine variety defined over K0 with generic point u. Let x be a transcendental
element over K and F a finite Galois extension of K(x) which is regular over
K. Then the following statements hold for almost all a ∈ Usimp(K̃0):
(a) The valuation wa of FK̃ chosen above gives rise to a regular constant

reduction with residue fields F̄ and K̄ of F and K, respectively, such
that F̄ /K̄(x̄) is a Galois extension, and an isomorphism σ �→ σ̄ of
Gal(F/K(x)) onto Gal(F̄ /K̄(x̄)) such that ȳσ̄ = yσ for all
σ ∈ Gal(F/K(x)) and y ∈ F with ȳ ∈ F̄ .

(b) For each b ∈ K̃ there exists an inertia group Ib of b in Gal(F/K(x)) and
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there exists an inertia group Ib̄ of b̄ in Gal(F̄ /K̄(x̄)) such that under the
isomorphism of (a), Ib ≤ Ib̄.

Again, we use a bar over elements to denote reduction at wa.

Proof: By Lemma 8.3.1, F/K has a degree preserving regular constant
reduction at wa with respect to x for almost all a ∈ U(K̃0). Moreover, FK̃/K̃
has a normal reduction at wa with respect to x for almost all a ∈ U(K̃0).
For almost all a ∈ U(K̃0), the reduction of F at wa is a Galois extension of
the reduction of K(x) at wa. Now we apply Lemma 8.2.2 and then Lemma
8.2.4. �

8.4 Embedding Problems under
Existentially Closed Extensions

We generalize Lemma 5.9.1 from constant finite split embedding problems to
arbitrary finite split embedding problems.

Let K̂0/K0 be a field extension such that K0 is existentially closed in
K̂0 and let x be an indeterminate. Consider a finite split embedding problem

(1) Gal(E/K0(x)) � H
pr �� Gal(E/K0(x)) .

Let K be the algebraic closure of K0 in E. Then E is a Galois extension of
K(x), so E is a separable extension of K, hence E/K is a regular extension.
A solution field F of (1) is regular if F is regular over K.

We set K̂ = KK̂0 and Ê = EK̂0. By Lemma 5.2.6, K̂0 is a regular
extension of K0. In addition, K̂0 is algebraically independent from E over K0.
Hence, K̂0 is linearly disjoint from E over K0 [FrJ08, Lemma 2.6.7], so K̂0(x)
is linearly disjoint from E over K0(x). Therefore, resÊ/E : Gal(Ê/K̂0(x)) →
Gal(E/K0(x)) is an isomorphism. Thus, Gal(Ê/K̂0(x)) acts on H via resÊ/E .

This gives rise to a finite split K̂0-embedding problem

(2) Gal(Ê/K̂0(x)) � H
pr �� Gal(Ê/K̂0(x)).

Suppose E has a K-rational place ϕ unramified over K(x). Since K̂ and E
are linearly disjoint over K, the place ϕ extends to a K̂-rational place ϕ̂ of
Ê, unramified over K̂(x) [FrJ08, Lemma 2.5.11].

In this setup we prove:

Lemma 8.4.1: Suppose (2) has a solution field F̂ such that ϕ̂ extends to a
K̂-rational place of F̂ unramified over K̂(x). Then (1) has a regular solution
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field F such that ϕ extends to a K-rational place of F unramified over K(x).

K̂0(x)

���
���

Ê

��
��

�
F̂

K0(x) E F

K̂0








 K̂

��
��

�

K0 K

If in addition, K0 is ample, K̂0 = K0((t)), H is generated by finitely many
subgroups Gj , j ∈ J , we identify H with Gal(F̂ /Ê), and for each j ∈ J there

exists a point bj ∈ Branch(F̂ /K̂0(x)) transcendental over K0 such that Gj is
an inertia group of bj , then for each ordinal β < card(K) there is a regular
solution field Fβ to (1) such that ϕ extends to a K-place of Fβ unramified
over K(x) and there exists

bβ,j ∈
(
Branch(Fβ/K0(x)) ∩ Ks

)
�
⋃

α<β

Branch(Fα/K0(x))

such that Gj is contained in an inertia group of bβ,j in Gal(Fβ/K0(x)).

Proof: We may assume that ϕ(x) = ∞, so that the place px,∞ of K̂(x)/K̂

totally decomposes in F̂ ; otherwise ϕ(x) = a ∈ K and we may replace x by
1

x−a . In particular, F̂ is a regular extension of K̂ [FrJ08, Lemma 2.6.9(b)].

Part A: Solution of (2). By assumption, there exists an isomorphism

γ: Gal(F̂ /K̂0(x)) → Gal(Ê/K̂0(x)) � H

such that pr ◦ γ = resF̂ /Ê . Thus, there exist polynomials f ∈ K̂0[X, Z],

g ∈ K̂[X, Y ], and elements z, y ∈ F̂ such that the following conditions hold:
(3a) F̂ = K̂0(x, z), f(x, Z) = irr(z, K̂0(x)); we identify Gal(f(x, Z), K̂0(x))

with Gal(F̂ /K̂0(x)).
(3b) F̂ = K̂(x, y), g(x, Y ) = irr(y, K̂(x)). Therefore, g(X, Y ) is absolutely

irreducible [FrJ08, Lemma 10.2.2(b)]. By Lemma 7.1.1, we may assume
that g(X, Y ) = Y d + ad−1(X)Y d−1 + · · · + a0(X) with ai ∈ K̂[X] and
deg(ai(X)) ≤ deg(ad−1(X)) ≥ 1, for i = 0, . . . , d − 1.

Part B: Pushing the tower over K̂0 down toward K0. All of the objects in
(3) together depend on only finitely many parameters from K̂0. Let u1, . . . , un

be elements of K̂0 satisfying the following conditions:
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(4a) F = K0(u, x, z) is a Galois extension of K0(u, x), the coefficients of
f(X, Z) lie in K0[u], f(x, Z) = irr(z, K0(u, x)), and

Gal(f(x, Z), K0(u, x))=Gal(f(x, Z), K̂0(x));

again we identify Gal(f(x, Z), K0(u, x)) with Gal(F/K0(u, x)).
(4b) F = K(u, x, y) and the coefficients of g lie in K[u]; hence g(x, Y ) =

irr(y, K(u, x)).

By (4a) we may consider γ as an isomorphism of

(5) γ: Gal(F/K0(u, x)) → Gal(E(u)/K0(u, x)) � H

satisfying pr ◦ γ = resF/E(u).

Part C: Descending to K0. Since K̂0 is regular over K0, so is K0(u).
Thus, u generates an absolutely irreducible variety U = Spec(K0[u]) in An

over K0. The variety U has a nonempty Zariski-open subset U ′ such that
for each u′ ∈ U ′(K̃) the K0-specialization (u, x) → (u′, x) extends to an
E-homomorphism ′: E[u, x, z, y] → E[u′, x, z′, y′] such that the following
conditions hold:
(6a) f ′(x, z′) = 0, discr(f ′(x, Z), K0(u′, x)) �= 0, F ′ = K0(u′, x, z′) is the

splitting field of f ′(x, Z) over K0(u′, x); in particular F ′/K0(u′, x) is
Galois and we may identify Gal(f ′(x, Z), K0(u′, x)) with
Gal(F ′/K0(u′, x)).

(6b) g′(X, Y ) is absolutely irreducible and g′(x, y′) = 0, so

g′(x, Y ) = irr(y′, K(u′, x)).

Furthermore, g′(X,Y ) = Y d + a′
d−1(X)Y d−1 + · · · + a′

0(X) with a′
i ∈

K[u′, X] and deg(a′
i(X)) ≤ deg(a′

d−1(X)) ≥ 1, for i = 0, . . . , d − 1.

Condition (6a) follows from a Lemma of Hilbert [FrJ08, Lemma 13.1.1].
To achieve the absolute irreducibility of g′ we use Bertini-Noether [FrJ08,
Prop. 9.4.3]. Since K0 is existentially closed in K̂0 and since u ∈ U ′(K̂0), we
can choose u′ ∈ U ′(K0). By (6a), the homomorphism ′ induces an embedding

ϕ∗: Gal(f ′(x, Z), K0(x)) → Gal(f(x, Z), K0(u, x))

that commutes with the restriction to Gal(E/K0(x)) [FrJ08, Lemma 16.1.1].
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Observe that K(x) is linearly disjoint from K0(u) over K0.

F ′ F F̂

E E(u) Ê

K(x) K(u, x) K̂(x)

K0(x) K0(u, x) K̂0(x)

K0 K0(u) K̂0

Hence, by (6b),

|Gal(f ′(x, Z), K0(x))| = [F ′ : K0(x)] = deg(g′(x, Y ))[K(x) : K0(x)]
= deg(g(x, Y ))[K(u, x) : K0(u, x)]
= [F : K0(u, x)] = |Gal(f(x, Z), K0(u, x))|.

It follows that ϕ∗ is an isomorphism. Hence, γ◦ϕ∗ solves embedding problem
(1).

Part D: Extending ϕ. We extend ϕ to a place ϕ′ of F ′. Then ϕ′ extends
the specialization x → ∞. By Lemma 7.1.1 and (6b), ϕ′ totally decomposes
in F ′/K(x), that is, ϕ′ is unramified and K-rational.

Part E: Branch points. Finally we assume that K0 is ample and for each j
in a finite set J there exists bj ∈ Branch(F̂ /K̂0(x))∩Ks transcendental over
K0 that has Gj (when H is identified with Gal(F̂ /Ê)) as an inertia group. We
may choose u1, . . . , un such that bj = hj(u), for some hj ∈ Ks[X1, . . . , Xn].
By Proposition 8.3.2, we may make U ′ smaller, if necessary, to assume that
for each u′ ∈ U ′(K0), the isomorphism Gal(F/K0(u, x)) → Gal(F ′/K0(x))
maps each Gj (which is an inertia group of bj) into an inertia group of
b′j = hj(u′).

Let β be an ordinal less than card(K). Assume by transfinite induction
that for each α < β there exists u(α) ∈ U ′(K0) and an E-homomorphism
ψ(α): E[u, x, z, y] → E[u(α), x, z(α), y(α)] = E[x, z(α), y(α)] such that (6a) and
(6b) hold with ′ replaced by (α), so that F (α) = K0(x, z(α)) is a solution
field of embedding problem (1), ϕ extends to a K-rational place of F (α)

unramified over K(x), and for each j ∈ J , the group Gj (now considered as

156



8.5 The Transcendence Degree of the Field of Formal Power Series

a subgroup of H identified with Gal(Fβ/E)) is contained in an inertia group

of b
(α)
j = hj(u(α)), and b

(α)
j /∈

⋃
α′<α Branch(F (α′)/K0(x)). Since each of

the sets Branch(F (α)/K0(x)) is finite, D =
⋃

α<β Branch(F (α)/K0(x)) is of
cardinality less than card(K). Since bj is transcendental over K0, hj(u) is
non-constant on U ′. It follows from Corollary 5.4.4 that there exists u(β) ∈
U ′(K0) such that b

(β)
j = hj(u(β)) /∈ D. The corresponding field F (β) is a

solution of (1) and the points b
(β)
j will have all of the above properties. This

completes the transfinite induction. �

8.5 The Transcendence Degree
of the Field of Formal Power Series

In Proposition 7.3.1 we consider a field K0 and an extension K̂0 complete
under an ultrametric valuation and solve a finite split embedding problem
over K̂0(x) under appropriate assumptions. In Part (d) of that proposition
we further assume that trans.deg(K̂0/K0) = ∞ in order to enhance the
solution of the embedding problem with branch points that are algebraically
independent over K0. In this section we prove the extra assumption for fields
of formal power series. Indeed, we even compute the exact transcendence
degree in that case.

Lemma 8.5.1: Let K be an uncountable field and K0 the prime field of K.
Then:
(a) trans.deg(K/K0) = card(K), and
(b) trans.deg(K((t))/K) ≥ card(K).

Proof: We choose a transcendence base T for K/K0. Since K0 is at most
countable and K is uncountable, T is infinite, so card(K) = card(K0(T )) =
card(T ) = trans.deg(K/K0).

To prove (b) we set κ = card(K). Since κ · ℵ0 = κ, we can choose a
transcendence base (xαk)α<κ, k<ℵ0 of K/K0 indexed by κ × ℵ0. For each
α < κ we consider the element

yα =
∞∑

k=0

xαktk

of K[[t]]. We claim that the family (yα)α<κ is algebraically independent
over K. It suffices to prove that the yα’s are algebraically independent over
K0(xαk)α<κ, k<ℵ0 , equivalently, that the set {xαk, yα | α < κ, k < ℵ0} is
algebraically independent over K0.

It suffices to prove for distinct α1, . . . , αm < κ, k1, . . . , km < ℵ0, and
distinct β1, . . . , βn, β < κ that xα1k1 , . . . , xαmkm

, yβ1 , . . . , yβn
, yβ are alge-

braically independent over K0. Arguing inductively, it suffices to prove that
yβ =

∑∞
k=0 xβktk is transcendental over

K1 = K0(xα1k1 , . . . , xαmkm
, yβ1 , . . . , yβn

),
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under the assumption that xα1k1 , . . . , xαmkm , yβ1 , . . . , yβn are algebraically
independent over K0.

Otherwise, there is a nonzero polynomial

f ∈ K0[X1, . . . , Xm, Y1, . . . , Yn, Y ]

such that f(xα1k1 , . . . , xαmkm
, yβ1 , . . . , yβn

, yβ) = 0 and Y occurs in f . Thus,

f(X1, . . . , Xm, Y1, . . . , Yn, Y ) =
l∑

j=0

fj(X1, . . . , Xm, Y1, . . . , Yn)Y j

with f0, . . . , fl ∈ K0[X1, . . . , Xm, Y1, . . . , Yn], l ≥ 1, and fl �= 0 and

(1)
l∑

j=0

fj(xα1k1 , . . . , xαmkm , yβ1 , . . . , yβn)yj
β = 0.

The left hand side of (1) is an element of the ring K0[xαk | α < κ, k < ℵ0][[t]].
Since the xαk’s are algebraically independent over K0, we may specialize some
of the xαk to 0 leaving the elements of K0 and all the other xαk’s unchanged.
In particular, we may set r = max(k1, . . . , km) and specialize each xβi,s with
1 ≤ i ≤ n and s > r to 0. Then for each 1 ≤ i ≤ n the power series
yβi

=
∑∞

k=0 xβiktk is mapped onto the polynomial ȳβi
=
∑r

k=0 xβiktk. For
each 0 ≤ j ≤ l, the power series fj(xα1k1 , . . . , xαmkm

, yβ1 , . . . , yβn
) is mapped

onto the polynomial

f̄j(t) = fj(xα1k1 , . . . , xαmkm
, ȳβ1 , . . . , ȳβn

) ∈ K0[xαk | α < κ, k < ℵ0][t].

By the induction hypothesis fl(xα1k1 , . . . , xαmkm , yβ1 , . . . , yβn) �= 0. The
left hand side is a power series in t with coefficients in

K0[xα1k1 , . . . , xαmkm
, xβ1l1 , . . . , xβnln ],

where k1, . . . , km are as above and lj = 0, 1, 2, . . . . One of these coefficients is
nonzero. It involves only finitely many of the variables xαiki

, xβj lj . We may
therefore enlarge r such that none of those finitely many variables is changed
under the specialization of the xαk’s. This implies that

(2) fl(xα1k1 , . . . , xαmkm , ȳβ1 , . . . , ȳβn) �= 0.

Now we let d0 = max(deg(f̄0(t)), . . . ,deg(f̄l(t))), set d = max(r, d0), and
specialize each xβs with s > d + 1 to 0 and keep all of the other xαk’s un-
changed. Then the power series yβ =

∑∞
k=0 xβktk specializes to a polynomial
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ȳ =
∑d+1

k=0 xβktk of degree d + 1. The elements xαiki , i = 1, . . . , m, are fixed
under that specialization, so (1) becomes

(3)
l∑

j=0

fj(xα1k1 , . . . , xαmkm
, ȳβ1 , . . . , ȳβn

)ȳj = 0.

It follows from (2) that the degree of fl(xα1k1 , . . . , xαmkm
, ȳβ1 , . . . , ȳβn

)ȳl

in t is at least the degree of ȳl, that is (d + 1)l. On the other hand, for
each j < l, the degree of fj(xα1k1 , . . . , xαmkm

, ȳβ1 , . . . , ȳβn
)ȳj is at most d +

(d + 1)j < (d + 1)l. Therefore, the left hand side of (3), which is actually
f(xα1k1 , . . . , xαmkm , ȳβ1 , . . . , ȳβn , ȳ), is nonzero. This contradiction completes
our recursion and proves that the set (yα)α<κ is algebraically independent
over K. Consequently, trans.deg(K((t))/K) ≥ κ = card(K), as claimed. �
Proposition 8.5.2 (Fehm): Let K be a field. Then trans.deg(K((t))/K) =
card(K)ℵ0 .

Proof: As in Lemma 8.5.1 we denote the prime field of K by K0, set κ =
card(K), and observe that card(K((t))) = card(K[[t]]) = κℵ0 ≥ 2ℵ0 > ℵ0.
Hence, by Lemma 8.5.1(a), trans.deg(K((t))/K0) = card(K((t))) = κℵ0 . We
distinguish between two cases.

Case A: κℵ0 > κ. We use the inequality trans.deg(K/K0) ≤ card(K) = κ
and the equality

κℵ0 = trans.deg(K((t))/K0) = trans.deg(K((t))/K) + trans.deg(K/K0)

to conclude that trans.deg(K((t))/K) = κℵ0 .

Case B: κℵ0 = κ. Then κ > ℵ0, because κℵ0 ≥ 2ℵ0 > ℵ0. Hence, by
Lemma 8.5.1, trans.deg(K((t))/K) ≥ card(K), so

κ = card(K) ≤ trans.deg(K((t))/K) ≤ trans.deg(K((t))/K0) = κℵ0 = κ.

Consequently, trans.deg(K((t))/K) = κℵ0 , as claimed. �

8.6 Solution of Embedding Problems over Ample Fields

Let K0 be an ample field. Combining the results of the previous sections,
we prove that every finite split embedding problem over K0(x) has as many
linearly disjoint solutions as the cardinality of K0.

Lemma 8.6.1: Let K0 be an ample field and x an indeterminate. Consider
a finite split embedding problem over K0(x)

(1) Gal(E/K0(x)) � H
pr �� Gal(E/K0(x))
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with H �= 1. Let {Gj | j ∈ J} be a finite family of cyclic groups of prime
power orders that generate H. Let K be the algebraic closure of K0 in
E. Suppose E has a K-rational K-place ϕ unramified over K(x) such that
ϕ(x) ∈ K0 ∪ {∞}. Then:
(a) (1) has for each ordinal α < card(K) a regular solution field Fα.
(b) For each β < card(K) and every j ∈ J there exists

bβ,j ∈ Branch(Fβ/K0(x)) �
⋃

α<β

Branch(Fα/K0(x))

such that, when H is identified with Gal(Fβ/E), Gj is contained in an
inertia group of bβ,j .

(c) The solutions fields Fα, α < card(K), of (1) are linearly disjoint over E.
(d) The place ϕ extends to a K-rational K-place of Fα unramified over K(x).

Proof: Let t be an indeterminate. Set K̂0 = K0((t)), K̂ = K((t)), and
Ê = EK̂. Then K̂/K̂0 is a finite Galois extension of complete fields under
the t-adic absolute value. Since the extension K̂/K is regular [FrJ08, Exam-
ple 3.5.1] and algebraically independent from E/K, the fields K̂ and E are
linearly disjoint over K. Hence, ϕ extends to a K̂-rational place ϕ̂ of Ê, so K̂
is the algebraic closure of K̂0 in Ê [FrJ08, Lemma 2.6.9]. Furthermore, ϕ̂ is
unramified over K̂(x). Finally, Gal(Ê/K̂0(x)) is isomorphic to Gal(E/K0(x))
and acts on H via the restriction map. Thus,

(2) Gal(Ê/K̂0(x)) � H
pr �� Gal(Ê/K̂0(x))

is a finite split embedding problem over K̂0(x).
By Proposition 8.5.2, trans.deg(K̂0/K0) = ∞. By Proposition 7.3.1,

(2) has a solution field F̂ such that ϕ̂ extends to a K̂-rational place of F̂
unramified over K̂(x). Moreover, there exist bj ∈ Branch(F̂ /K̂0(x)), j ∈ J ,
algebraically independent over K such that Gj is an inertia group of bj .
Lemma 8.4.1 therefore gives for each ordinal β < card(K) a regular solution
field Fβ of (1), an extension of ϕ to a K-rational K-place of Fβ unramified
over K(x), and points bβ,j ∈ Branch(Fβ/K0(x)) �

⋃
α<β Branch(Fα/K0(x))

such that Gj is contained in an inertia group of bβ,j over K0(x). In particular,
the valuation vx,bβ,j

of K0(x) is unramified in the field N generated by Fα

for all α < β. By Lemma 7.4.1, Fβ ∩ N = E. Consequently, the fields Fα

with α < card(K) are linearly disjoint over E, as claimed in (c). �
Remark 8.6.2: Fiber products. Let ϕ̄: Â → A and α: B → A be epimor-
phisms of profinite groups. Then the closed subgroup B̂ = B×AÂ = {(b, â) ∈
B × Â | α(b) = ϕ̄(â)} of B × Â is called the fiber product of B and Â over
A. Let β: B̂ → B and α̂: B̂ → Â be the projections on the coordinates.

(3) B̂
α̂ ��

β

��

Â

ϕ̄

��
B

α �� A
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Then the fiber product is characterized by the following universal property:
If ϕ̂: G → Â and γ: G → B are homomorphisms from a profinite group G
satisfying α ◦γ = ϕ̄ ◦ ϕ̂, then there exists a unique homomorphism γ̂: G → B̂
such that β ◦ γ̂ = γ and α̂ ◦ γ̂ = ϕ̂. In that case

(4) Ker(β) ∩ Ker(α̂) = 1 and Ker(β) × Ker(α̂) = Ker(α ◦ β) = Ker(ϕ ◦ α̂)

[FrJ08, Lemma 22.2.4] and we say that diagram (3) is cartesian.
In particular, suppose a profinite group A acts continuously on a profinite

group C, let B = A � C and let α: A � C → A be the projection on the
first coordinate. Consider an epimorphism ϕ̄: Â → A. Then Â acts on C via
ϕ̄ and we can construct the semidirect product B̂ = Â � C with the maps
β: Â�C → A�C and α̂: Â�C → Â defined by α̂(âc) = â and β(âc) = ϕ̄(â)c
with â ∈ Â and c ∈ C. We define a homomorphism θ: B̂ → B ×A Â
by θ(b̂) = (β(b̂), α̂(b̂)) and note that θ followed by the projections on the
coordinates is β and α̂, respectively. If θ(b̂) = 1, then α̂(b̂) = 1, so b̂ ∈ C.
Since β is injective on C and β(b̂) = 1, we have b̂ = 1. Thus, θ is injective.
If (b, â) ∈ B ×A Â, then b = ac with a = ϕ̄(â) and c ∈ C. Thus, b̂ = âc ∈ B̂

satisfies θ(b̂) = (b, â). Therefore, θ is an isomorphism. In particular, relations
(4) hold. �

We omit the assumption and the conclusion about the place from Lemma
8.6.1.

Proposition 8.6.3: Let K0 be an ample field and x an indeterminate. Con-
sider a finite split embedding problem

(5) Gal(E/K0(x)) � H
pr �� Gal(E/K0(x))

over K0(x) with H �= 1. Let {Gj | j ∈ J} be a finite family of cyclic groups
of prime power orders that generate H. Let K be the algebraic closure of K0

in E. Then:
(a) (5) has for each ordinal α < card(K) a regular solution field Fα.
(b) For each β < card(K) and every j ∈ J there exists

bβ,j ∈ Branch(Fβ/K0(x)) �
⋃

α<β

Branch(Fα/K0(x))

such that when H is identified with Gal(Fβ/E), Gj is contained in an
inertia group of bβ,j .

(c) The solutions fields Fα, α < card(K), of (5) are linearly disjoint.

Proof: Only finitely many K0-places of E are ramified over K0(x) or insep-
arable [Deu73, p. 111, Thm]. Since K0 is infinite, we may choose a separable
K0-place ϕ of E unramified over K0(x), such that ϕ(x) ∈ K0. Composing ϕ
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with an automorphism of E over K0(x), we may assume that the restriction
of ϕ to K(x) is a K-place. Let K ′ be a finite Galois extension of K0 that con-
tains the residue field of ϕ. Set E′ = EK ′. Then ϕ extends to a K ′-rational
place ϕ′ of E′, unramified over K ′(x) [Deu73, p. 128, Thm]. Furthermore,
E′/K0(x) is a Galois extension and its Galois group Gal(E′/K0(x)) acts on
H via the restriction to Gal(E/K0(x)).

E E′

K0(x) K(x) K ′(x)

The existence of ϕ′ implies that E′/K ′ is regular.
By (b) of Lemma 8.6.1, the split embedding problem

(6) Gal(E′/K0(x)) � H
pr �� Gal(E′/K0(x))

has for each ordinal β < card(K) a regular solution field F ′
β and for each

j ∈ J there exists

bβ,j ∈ Branch(F ′
β/K ′(x)) �

⋃
α<β

Branch(F ′
α/K ′(x))

such that Gj is contained in an inertia group of bβ,j . The field F ′
β satisfies

Gal(F ′
β/K0(x)) ∼= Gal(E′/K0(x))�H and it fits into a commutative diagram

(7) 1 �� Gal(F ′
β/E′) ��

��

Gal(F ′
β/K0(x)) res ��

��

Gal(E′/K0(x)) ��

res
��

1

1 �� H �� Gal(E/K0(x)) � H �� Gal(E/K0(x)) �� 1

where the horizontal sequences are exact and the left vertical arrow is an
isomorphism. By Remark 8.6.2, the right square of (7) is cartesian. Thus, if
we denote the fixed field in F ′

β of the kernel of the middle vertical map in (7)
by Fβ , then, by (4), Gal(F ′

β/Fβ) ∩ Gal(F ′
β/E′) = 1 and

Gal(F ′
β/Fβ)Gal(F ′

β/E′) = Gal(F ′
β/E).

Therefore, FβE′ = F ′
β , hence FβK ′ = F ′

β and Fβ ∩ E′ = E. This implies
that Fβ is a solution field of (5), Branch(F ′

β/K0(x)) = Branch(Fβ/K0(x)),
and Branch(F ′

α/K0(x)) = Branch(Fα/K0(x)) for each α < β. Therefore,

bβ,j ∈ Branch(Fβ/K0(x)) �
⋃

α<β

Branch(Fα/K0(x)).
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Notes

Since Gj as a subgroup of Gal(F ′
α/K0(x)) is mapped onto Gj as a subgroup of

Gal(Fα/K0(x)), and each inertia group of bβ,j in Gal(F ′
α/K0(x)) is mapped

onto an inertia group of bβ,j in Gal(Fα/K0(x)), an inertia group of bβ,j in
Gal(Fα/K0(x)) contains Gj . It follows from Lemma 7.4.1 that the fields Fα,
α < card(K), are linearly disjoint over E, as asserted in (c).

Finally, since Fβ is linearly disjoint from K ′ over K, F ′
β is linearly

disjoint from K̃ over K ′, and FβK ′ = F ′
β , the field Fβ is linearly disjoint

from K̃ over K, that is Fβ is a regular extension of K. �

Notes
The main result of that work asserts that if K is an ample field and E is a
finite extension of K(x), then each finite split embedding problem E over E
has a regular solution. The first form of this result appears in in the unpub-
lished paper [Pop93, Thm. 2.7], using methods of rigid analytic geometry.
Our presentation follows [HaJ98b]. Using “formal patching”, Harbater and
Stevenson sharpen those results by constructing as many solutions to E as
the cardinality of K, if the kernel of E is nontrivial and K is perfect [HaS05,
Cor. 4.4]. Actually, Harbater and Stevenson state their corollary only in
the case where K is very ample (see Notes to Chapter 5). However, since
Proposition 5.4.3(b) asserts that every ample field is very ample, their result
applies to ample fields.

The notion of “linearly disjoint solutions of an embedding problem” ap-
pears for the first time in [BHH10]. We develop that notion in Chapter 10.

The main result of this Chapter (Proposition 8.6.3) applies our method
of algebraic patching to improve the results of Pop, Harbater-Stevenson, and
[HaJ98b] over an arbitrary ample field K in the case where E = K(x).
We construct many linearly disjoint solutions to each finite split embedding
problem over K(x) rather than just supplying many solutions, as is done
in the above mentioned papers. The case where E is an arbitrary finite
extension of K(x) is given by Theorem 11.7.1.

We achieve linearly disjoint soltions by keeping track of inertia groups of
branch points during the reduction of functions fields of one variable (Lemma
8.3.1). An earlier version of the proof of that lemma used an improved version
of Deuring’s theory of reduction of divisors of function fields. The present
version, due to Peter Roquette, is simpler and shorter. It replaces reduction of
divisors by reduction of prime ideals in integrally closed subrings of function
fields of one variable.

Lemma 8.4.1 enhances [HaJ98b, Lemma 2.1] with many solution fields
and information about branch points and their inertia groups.

The proof of Lemma 8.6.1 uses that trans.deg(K((t))/K) = ∞. That
result has a simpler proof than the stronger result trans.deg(K((t))/K) =
card(K)ℵ0 (Proposition 8.5.2) that we prove. The stronger result is due to
Arno Fehm (private communication).
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Chapter 9.
The Absolute Galois Group of C(t)

Let C be an algebraically closed field of cardinality m, x an indeterminate,
E a finite extension of C(x) of genus g, and S a set of prime divisors of E/C.
We denote the maximal extension of E ramified at most over S by ES . If
X is a smooth projective model of E/C, then we interpret S as a subset of
X(C), call Gal(ES/E) the fundamental group of X � S, and denote it by
π1(X � S). Starting from the fundamental group of the corresponding Rie-
mann surface and applying the Riemann existence theorem, one proves that
when r = card(S) < ∞, Gal(ES/E) is the free profinite group generated
by r + 2g elements σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g with the unique defining rela-

tion σ1 · · ·σr[τ1, τ
′
1] · · · [τg, τ

′
g] = 1 (Proposition 9.1.2). Using Grothendieck’s

specialization theorem, we generalize that result to an arbitrary algebraically
closed field C of characteristic 0 (Proposition 9.1.5). In particular, if r ≥ 1,
then Gal(ES/E) ∼= F̂r+2g−1. When m = card(S) is infinite, we take the limit
on all finite subsets of S to conclude that Gal(ES/E) ∼= F̂m (Corollary 9.1.9).
In particular, if S is all of the prime divisors of E/C, then card(S) = card(C)
and we find that Gal(E) ∼= F̂m (Corollary 9.1.10). In particular, Gal(E) is
projective (Corollary 9.1.11).

The situation is quite different when char(C) is a positive prime number
p. We can not use the Riemann existence theorem to determine the struc-
ture of Gal(ES/E). Indeed, if S is nonempty and of cardinality less than
that of C, then Gal(ES/E) is even not a free profinite group (Proposition
9.9.4) as is the case in characteristic 0. What we do know is the structure
of the Galois group Gal(ES,p′/E), where ES,p′ is the maximal Galois exten-
sion of E ramified at most over S and of degree not divisible by p. Using
Grothendieck’s lifting to characteristic 0, one proves that the latter group is
just the maximal quotient of order not divisible by p of the corresponding
group in characteristic 0 (Proposition 9.2.1). But, this does not help us to
compute Gal(E). Instead, we prove by algebraic means that Gal(E) is a free
profinite group of cardinality m. This proof works over every algebraically
closed field and does not use the Riemann existence theorem.

The first step is to prove that Gal(E) is projective (Proposition 9.4.6).
Our proof applies some basic properties of the cohomology of profinite groups.
Then we use that every finite split embedding problem for Gal(E) has m
solutions (Proposition 8.6.3) to conclude that Gal(E) ∼= F̂m (Corollary 9.4.9).

Interesting enough, the same arguments work if E is a finite extension
of K(x), where K is a field of cardinality m of positive characteristic p and
Gal(K) is a pro-p group. Thus, even in this case Gal(E) ∼= F̂m (Theorem
9.4.8).

Next we prove for each nonempty set of prime divisors of E/C that
Gal(ES/E) is projective (Corollary 9.5.8). In addition to the projectivity of
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9.1. The Fundamental Group of a Riemann Surface

Gal(E), the main tool used in the proof is the Jacobian variety of a smooth
projective model Γ of E/C. The same tool helps us to prove that Gal(ES/E)
is not projective if S is empty (Proposition 9.6.1). The latter group can be
interpreted as the fundamental group of Γ.

Finally we consider the case where E = C(x) and apply algebraic patch-
ing to solve each split embedding problems m times in ES , first in the case
that C is complete under an ultrametric absolute value and then when C is
an arbitrary algebraically closed field. This proves that Gal(ES/E) ∼= F̂m if
card(S) = m (Theorem 9.8.5). This is an optimal result in characteristic p.
In that case, Gal(ES/E) is not free if card(S) < m (Proposition 9.9.4).

9.1. The Fundamental Group of a Riemann Surface

Algebraic topology teaches us that the fundamental group of a sphere punc-
tured in r points is generated by r elements σ1, . . . , σr with the single relation
σ1 · · ·σr = 1. The theory of Riemann surfaces and in particular Riemann ex-
istence theorem translates this result to a theorem about finite Galois groups
over C(x) (Proposition 9.1.1) and more generally over algebraic function fields
E of one variable over C (Proposition 9.1.2). Using Grothendieck’s special-
ization theorem, it is possible to generalize these results to arbitrary alge-
braically closed field C of characteristic 0 (Proposition 9.1.5). Taking the
limit over the sets of prime divisors that we allow to ramify in the extensions
prove the main result of this section: Let S be a set of prime divisors of E/C
of infinite cardinality m. Denote the maximal Galois extension of E ramified
at most over S by ES . Then Gal(ES/E) ∼= F̂m (Proposition 9.1.9). In par-
ticular, Gal(E) is the free profinite group of rank equal to card(C) (Corollary
9.1.10).

Proposition 9.1.1 ([Voe96, Thm. 2.13]):
(a) Let F be a finite Galois extension of C(x). Let p1, . . . , pr be the prime

divisors of C(x) which are ramified in F . Then there exist generators
σ1, . . . , σr of Gal(F/C(x)) with σ1 · · ·σr = 1 such that σi generates an
inertia group over pi, i = 1, . . . , r.

(b) If G is a finite group generated by σ1, . . . , σr with σ1 · · ·σr = 1, then C(x)
has a finite Galois extension F ramified at most over p1, . . . , pr such that
σi generates an inertia group over pi, i = 1, . . . , r.

No algebraic proof is known to either parts of Proposition 9.1.1. It would
be highly desirable to have one.

Similar transition from topology to complex analysis and then to algebra
generalizes Proposition 9.1.1 to Galois extensions of function fields of one
variable over C. Following the usual convention of group theory, we set
[x, y] = x−1y−1xy for elements x, y of a group G.

Proposition 9.1.2 ([Ser92, Section 6.2]): Let E be a finite extension of
C(x) of genus g and S = {p1, . . . , pr} a set of r prime divisors of E/C.
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Chapter 9. The Absolute Galois Group of C(t)

(a) Let F be a finite Galois extension of E such that Ram(F/E) ⊆ S. Then
F has prime divisors P1, . . . ,Pr respectively lying over p1, . . . , pr and
there are elements σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g generating Gal(F/E) such

that σi generates the decomposition group DPi/pi
for i = 1, . . . , r and

(1) σ1 · · ·σr[τ1, τ
′
1] · · · [τg, τ

′
g] = 1.

(b) Let G be a finite group generated by elements σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g

satisfying relation (1). Then E has a Galois extension F such that
Gal(F/E) ∼= G and F has prime divisors P1, . . . ,Pr respectively lying
over p1, . . . , pr such that σi generates DPi/pi

, i = 1, . . . , r.

On the other hand, it is not difficult to replace C in Propositions 9.1.1
and 9.1.2 by an arbitrary algebraically closed field C of characteristic 0. This
depends on the ability to descend from an algebraically closed field to an
algebraically closed subfield.

Let E be a function field of one variable over an algebraically closed field
K, S a set of prime divisors of E/K, and G a finite group. We denote the
set of all Galois extensions F such that Gal(F/E) ∼= G and Ram(F/E) ⊆ S
by F(E,S, G). If E = K(x) is a field of rational functions, we identify the
set of prime divisors of E/K with the set K ∪ {∞} and Ram(F/E) with
Branch(F/E).

Lemma 9.1.3: Let K ⊆ L be an extension of algebraically closed fields, S a
finite subset of K ∪{∞}, G a finite group, and x an indeterminate. Suppose
F(L(x), S, G) is a finite set. Then the map F �→ FL maps F(K(x), S, G)
bijectively onto F(L(x), S, G). In particular, F(K(x), S, G) is a finite set.

Proof: If S is empty, then so is F(K(x), S, G) and F(L(x), S, G) (a conse-
quence of the Riemann-Hurwitz formula (Remark 5.8.1(f)). Thus, we may
assume that S is nonempty. Applying a Möbius transformation, we may
assume that ∞ ∈ S.

Since L/K is a regular extension, the map F �→ FL maps F(K(x), S, G)
injectively into the set F(L(x), S, G). The proof that the map is surjective
breaks up into two parts.

Part A: Suppose F(L(x), S, G) consists of only one field F . We denote the
set of zeros of a polynomials h ∈ L[x] by Zero(h). By [Has80, p. 64], there
are polynomials f1, . . . , fm ∈ L[X, Y ] monic in Y and primitive elements
y1, . . . , ym of F/L(x) such that fi(x, Y ) is irreducible in L(x)[Y ], fi(x, yi) = 0,
and

(2) Branch(F/L(x)) �{∞} =
m⋂

i=1

Zero(discr(fi(x, Y ))).

There exist u1, . . . , un ∈ L and polynomials gi ∈ K[U1, . . . , Un, x, Y ]
such that fi(x, Y ) = gi(u, x, Y ), where u = (u1, . . . , un), Fu = K(u, x, yi) is
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a Galois extension of K(u, x) independent of i with Galois group G. Since L
is algebraically closed, we may enlarge the set {u1, . . . , un} if necessary such
that it contains Zero(discr(fi(x, Y ))) for each i. The same reason implies that
the polynomials fi(x, Y ) are absolutely irreducible. Since K is algebraically
closed, u generates an absolutely irreducible variety U = Spec(K[u]) in An

K

defined over K.
By Hilbert [FrJ08, Lemma 13.1.1] and Bertini-Noether [FrJ08, Prop.

9.4.3], U has a nonempty Zariski-open subset U ′ such that for each u′ ∈
U ′(K) the K-specialization u → u′ extends to a K(x)-place ′ of the field Fu

with residue field Fu′ that has all the properties of the preceding paragraph
with u′ replacing u.

Hilbert’s Nullstellensatz gives a u′ ∈ U ′(K). Thus, Fu′ is a Galois
extension of K(x) with Galois group G, gi(u′, x, Y ) is absolutely irreducible
(as a polynomial in x, Y ), gi(u′, x, y′

i) = 0, and Fu′ = K(x, y′
i). Moreover,

discr(fi(x, Y ))′ = discr(gi(u, x, Y )′) = discr(gi(u′, x, Y )) for each i. Hence,
by (2),

Zero(discr(gi(u′, x, Y ))) = Zero(discr(fi(x, Y ))′)
= Zero(discr(fi(x, Y )))′ ⊆ S′ = S.

The second equality holds because we assumed that discr(fi(x, Y )) decom-
poses into linear factors over K(u).

Again, by [Has80, p. 64],

Branch(Fu′/K(x)) �{∞} ⊆
m⋂

i=1

Zero(discr(gi(u′, x, Y ))) ⊆ S.

It follows from ∞ ∈ S that Branch(Fu′/K(x)) ⊆ S, so Fu′ ∈ F(K(x), S, G).
By the second paragraph of the proof, Fu′L ∈ F(L(x), S, G) = {F}. Conse-
quently, Fu′L = F .

Part B: The general case. We list the fields of F(L(x), S, G) as F1, . . . , Fs

and set F to be their compositum. Then F is a finite Galois extension of
K, say with Galois group H. Moreover, Branch(F/L(x)) ⊆ S and H is the
compositum of all normal subgroups N with H/N ∼= G. If F ′ is another
field in F(L(x), S, H), then F ′ is a compositum of Galois extensions F ′

i ,
i = 1, . . . , s, that belong to F(L(x), S, G). Each of them must be contained
in F , so F ′ ⊆ F . Since both fields have the same Galois group over L(x),
they coincide. It follows that F(L(x), S, H) = {F}.

Part A gives a field E ∈ F(K(x), S, H) with EL = F . By the defini-
tion of H, E is the compositum of s distinct fields E1, . . . , Es with Galois
group G. The corresponding composita E1L, . . . , EsL are s distinct fields in
F(L(x), S, G) contained in F . Hence {E1L, . . . , EsL} = {F1, . . . , Fs}. Conse-
quently, the map E �→ EL from F(K(x), S, G) to F(L(x), S, G) is surjective.
�

167



Chapter 9. The Absolute Galois Group of C(t)

We generalize Lemma 9.1.3 from rational function fields to algebraic
function fields.

Proposition 9.1.4: Let K ⊆ L be an extension of algebraically closed fields,
E a function field of one variable over K algebraically independent from L
over K, S a finite subset of prime divisors of E/K, and G a finite group. We
identify S with a set of prime divisors of EL/L and suppose F(EL, S, G) is a
finite set. Then the map λ: F(E,S, G) → F(EL, S, G) defined by λ(F ) = FL
is bijective. In particular, F(E,S, G) is a finite set.

Proof: The map λ is injective because the fields Ẽ and L are linearly disjoint
over K. The proof that λ is surjective applies Lemma 9.1.3.

Let x be a separating transcendental element for the extension E/K.
Then x is also a separating transcendental element for EL/L. We choose a
finite subset T of K ∪ {∞} that contains Ram(E/K(x)) and the restriction
of S to K(x). Now consider F ′ ∈ F(EL, S, G), let F̂ ′ be the Galois closure of
F ′/L(x), and set H = Gal(F̂ ′/L(x)). Then F̂ ′ ∈ F(L(x), T, H). By Lemma
9.1.3, there exists F̂ ∈ F(K(x), T, H) with F̂L = F̂ ′. By linear disjointness,
the map res: Gal(F̂ ′/L(x)) → Gal(F̂ /K(x)) is an isomorphism. Hence, E has
a Galois extension F in F̂ satisfying FL = F ′ and Gal(F/E) ∼= G. Finally
consider p ∈ Ram(F/E). Then the unique extension of p to a prime divisor
of EL/L ramifies in F ′, so p ∈ S. Consequently, F ∈ F(E,S, G). �

Proposition 9.1.5: Let C be an algebraically closed field of characteristic
0, E a finite extension of C(x) of genus g and S = {p1, . . . , pr} a set of r
prime divisors of E/C.
(a) Let F be a finite Galois extension of E with Ram(F/E) ⊆ S. Then F

has prime divisors P1, . . . ,Pr respectively lying over p1, . . . , pr and there
are elements σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g generating Gal(F/E) such that

σi generates the decomposition group DPi/pi
, i = 1, . . . , r, and

(1) σ1 · · ·σr[τ1, τ
′
1] · · · [τg, τ

′
g] = 1.

(b) Let G be a finite group generated by elements σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g

satisfying relation (1). Then E has a Galois extension F such that
Gal(F/E) ∼= G and F has prime divisors P1, . . . ,Pr respectively lying
over p1, . . . , pr such that σi generates DPi/pi

, i = 1, . . . , r.

Proof: First we consider the case where C = C. Let ES be the maximal ex-
tension of E that is ramified at most over S. Let Γ be the free profinite group
with generators σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g and the unique defining relation

(1). Then Γ is finitely generated and, by Lemma 9.1.2, has the same finite
quotients as Gal(ES/E). Hence, Γ ∼= Gal(ES/E) [FrJ08, Prop. 16.10.7(b)].
It follows from [FrJ08, Lemma 16.10.2] that F(E,S, G) is finite. Moreover,
the cardinality n(r, g,G) of F(E,S, G) depends only on r, g, and G.

Next we consider the case where C ⊆ C. Without loss we may assume
that E is algebraically independent from C over C and identify S with a

168



9.1. The Fundamental Group of a Riemann Surface

set of prime divisors of EC/E by extending the field of constants from C to
C. By the preceding paragraph, F(EC, S, G) is finite. Hence, by Proposi-
tion 9.1.4, the map F �→ FC maps F(E,S, G) bijectively onto F(EC, S, G).
Moreover, g = genus(E/C) = genus(EC/C) [FrJ08, Prop. 3.4.2(b)]. Hence,
by the first paragraph, |F(E,S, G)| = n(r, g,G). By linear disjointness,
res: Gal(FC/EC) → Gal(F/E) is an isomorphism for each F ∈ F(E,S, G).
Since res maps the decomposition group over EC of a prime divisor P of
FC/C isomorphically onto the decomposition group of P|F over E, (a) and
(b) of our proposition follow from (a) and (b) of Proposition 9.1.2.

In the general case we find an algebraically closed subfield C0 of C with
a finite transcendence degree over Q, a function field E0 of one variable over
C0 algebraically independent from C over C0 with E0C = E, and a set
S0 = {p0,1, . . . , p0,r} of prime divisors of E0/C0 that uniquely extends to S
when C0 extends to C. Without loss we may assume that C0 ⊆ C. Then,
g = genus(E/C) = genus(E0/C0) = genus(E0C/C). By the preceding para-
graph, |F(E0, S0, G)| = n(r, g,G). Moreover, (a) and (b) hold for C0, E0, S0

replacing C, E, S. If F(E,S, G) had more than n(r, g,G) fields, then we
could choose C0 such that F(E0, S0, G) would also have more that n(r, g,G)
fields, in contrast to the previous conclusion. Therefore, F(E,S, G) is finite.
We may therefore apply Proposition 9.1.4 again and conclude that the map
F0 �→ F0C maps the set F(E0, S0, G) bijectively onto the set F(E,S, G).
This map is compatible with restriction of Galois groups and decomposition
groups. Therefore, (a) and (b) hold also for C, E, S. �

Giving a function field E of one variable over a field K and a set S
of prime divisors of E/K, we denote (as in the proof of Proposition 9.1.5)
the compositum of all finite Galois extensions F of E with Ram(F/E) ⊆ S
by ES . Thus, ES is a Galois extension of E. If S′ is another set of prime
divisors of E/K and S ⊆ S′, then ES ⊆ ES′ . If S is empty, then ES is the
compositum of all unramified finite Galois extensions of E. In this case we
denote ES also by Eur.

Proposition 9.1.6: Let C be an algebraically closed field of characteristic
0, E a finite extension of C(x) of genus g, and S = {p1, . . . , pr} a set of r
prime divisors of E/C. Then Gal(ES/E) is the free profinite group generated
by elements σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g satisfying the relation (1) and each

σi is a generator of the decomposition group of a prime divisor of ES/C lying
over pi.

Proof: We extend the argument of the first paragraph of the proof of Propo-
sition 9.1.5. For each finite Galois extension F of E in ES we consider the
finite set A(F/E) of all (2r + 2g)-tuples

(3) (P1, . . . ,Pr, σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g)

such that Pi is a prime divisor of F/C lying over pi, σi is a generator of
the decomposition group DPi/pi

, i = 1, . . . , r, and σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g
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are generators of Gal(F/E) satisfying relation (1). If F ′ is a finite Galois
extension of E in ES that contains F and P′

i is a prime divisor of F ′/C lying
over pi, then Pi = P′

i|F is a prime divisor of F/C lying over pi and the
epimorphism res: Gal(F ′/E) → Gal(F/E) maps DP′

i/pi
onto DPi/pi

[Ser79,
Chap. 1, Prop. 22(b)]. Hence res induces a map of A(F ′/E) into A(F/E).
By Proposition 9.1.5(a), each A(F/E) is nonempty. Therefore, the inverse
limit of the sets A(F/E) is nonempty [FrJ08, Lemma 1.1.3]. Each element
of that inverse limit is an (2r + 2g)-tuple (3) satisfying relation (1) such that
Pi is a prime divisor of ES/C lying over pi and σi generates DPi/pi

.
Now, let Γ be the free profinite group on the generators σ1, . . . , σr,

τ1, τ
′
1, . . . , τg, τ

′
g satisfying relation (1). By Proposition 9.1.5, Gal(ES/E) and

Γ have the same finite quotients. Consequently, by [FrJ08, Prop. 16.10.7],
Gal(ES/E) ∼= Γ. �
Corollary 9.1.7: In the notation of Proposition 9.1.6,
(a) If g = 0 and r ≥ 2 or g ≥ 1 and r ≥ 1, then 〈σi〉 ∼= Ẑ, i = 1, . . . , r.
(b) If r ≥ 1, then Gal(ES/E) ∼= F̂r−1+2g.

Proof of (a): In order to prove that 〈σi〉 ∼= Ẑ, it suffices to prove that for
each positive integer n the cyclic group Cn of order n is a quotient of 〈σi〉.

Let y be a generator of Cn. If r ≥ 2, we choose j �= i, 1 ≤ j ≤ r.
Then we map σi onto y, σj onto y−1 and all other generators to 1 to get an
epimorphism Gal(ES/E) → Cn that maps 〈σi〉 onto Cn.

It remains to consider the case where r = 1 and g ≥ 1. Let D2n be
the dihedral group of order 2n generated by elements x, y with the defining
relations x2n = 1, y2 = 1, and y−1xy = x−1. Then [x, y] = x−1y−1xy = x−2

has order n. Hence, the map σ1 �→ [x, y]−1, τ1 �→ x, τ ′
1 �→ y, τj �→ 1, and

τ ′
j �→ 1 for j ≥ 2 extends to an epimorphism of Gal(ES/E) onto D2n mapping
〈σ1〉 onto the cyclic group of order n generated by [x, y].

Proof of (b): By Proposition 9.1.6, Gal(ES/E) is the free profinite group
generated by the elements σ2, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g. The extra generator

σ1 can be expressed in terms of the other generators via (1). �
Remark 9.1.8: Inverse limit of free profinite groups. One way to construct
a free profinite group of arbitrary rank is to start from disjoint sets S, T such
that T is finite. For each subset A of S we set A′ = A ∪ T and consider the
free profinite group F̂A′ with basis A′. If A, B are finite subsets of S and
A ⊆ B, then the map B′ → A′ that maps each a ∈ A′ onto itself and each
b ∈ B � A onto 1 uniquely extends to an epimorphism αBA: F̂B′ → F̂A′ . The
inverse limit F of the groups F̂A′ and the maps αBA is isomorphic to the free
profinite group F̂S′ with basis S′ = S ∪ T . Indeed, for each A let αSA be
the limit of all maps αBA, where B ranges over all finite subsets B of S that
contain A. For each open normal subgroup N of F there exists a finite subset
A of S such that Ker(αSA) ≤ N , so S′ � A′ ⊆ N . Thus, S′ converges to 1 in
the sense of [FrJ08, Section 17.1]. Moreover, if ϕ0 is a map of S′ into a finite
group H that maps the complement of some A′ onto 1, then ϕ0 decomposes

170



9.1. The Fundamental Group of a Riemann Surface

through αSA: S′ → A′. Since A′ is a basis of F̂A′ , we may extend ϕ0 to a
continuous homomorphism ϕ: F → H.

Using compactness, it is possible to relax the above rigid condition on
the maps αBA. Consider a projective limit G = lim←−GA of profinite groups,

where A ranges over all finite subsets of S. Assume for each A the group
GA is isomorphic to F̂A′ , and if B ⊇ A, then the associated homomorphism
ρBA: GB → GA is surjective. Consider the compact space (GA)A′

(in the
product topology) of all functions from A′ into GA. Let ΦA be a closed subset
of (GA)A′

. Suppose each ϕ ∈ ΦA satisfies 〈ϕ(a) | a ∈ A′〉 = GA. Suppose also
that if B ⊇ A and ϕ′ ∈ ΦB , then ϕ = ρBA ◦ ϕ′|A′ ∈ ΦA and ρBA(ϕ′(b)) = 1
for each b ∈ B � A. Then ϕ (resp. ϕ′) uniquely extends to an epimorphism
ϕA: F̂A′ → GA (resp ϕB : F̂B′ → GB) such that ρBA ◦ ϕB = ϕA ◦ αBA. By
[FrJ08, Lemma 17.4.11], ϕA (resp. ϕB) is an isomorphism.

GB

ρBA

��

F̂B′

αBA

��

ϕB��

B′ϕ′

��������
		������

GA F̂A′
ϕA��

A′
ϕ

��������
		������





It follows that Φ = lim←−ΦA is nonempty [FrJ08, Lemma 1.1.3]. Each ϕ ∈ Φ

gives an isomorphism of F̂S′ onto G. In particular, ϕ(S′) is a basis of G and
for each A we have ρSA ◦ ϕ|A ∈ ΦA. �

Proposition 9.1.9: Let C be an algebraically closed field of characteristic
0, E a function field of one variable over C, S an infinite set of cardinality
m of prime divisors of E/C. Then Gal(ES/E) ∼= F̂m.

Proof: We choose a prime divisor p1 ∈ S and denote the collection of all
finite nonempty subsets of S �{p1} by A. We also choose a set T disjoint
from S of 2g elements, where g = genus(E/C). For each A ∈ A let GA =
Gal(E{p1}∪A/E) and A′ = A ∪ T . By Corollary 9.1.7(b), GA

∼= F̂A′ . Let ΦA

be the set of all functions ϕ: A′ → GA such that GA = 〈ϕ(a) | a ∈ A′〉 and
for each p ∈ A, ϕ(p) generates a decomposition group of a prime divisor of
E{p1}∪A/C over p.

Claim: ΦA is closed in GA′
A . Indeed, suppose a function ψ: A′ → GA be-

longs to the closure of ΦA. Then for each finite Galois extension F of E in
E{p1}∪A there exists ϕ ∈ ΦA such that ψ(a)|F = ϕ(a)|F for each a ∈ A′. It
follows that Gal(F/E) = 〈ψ(a)|F | a ∈ A′〉 and for each p ∈ A, ψ(p)|F gen-
erates a decomposition group of a prime divisor of F/C lying over p. Taking
the limit over all possible F , we find that ψ ∈ ΦA, as claimed.
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Next note that if B ∈ A and A ⊆ B, then E{p1}∪A ⊆ E{p1}∪B . Let
ρBA: GB → GA be the restriction map. Consider ϕB ∈ ΦB and p ∈ B � A.
Then ϕB(p) generates the decomposition group of some prime divisor of
E{p1}∪B/C lying over p. Therefore, ϕB(p)|E{p1}∪A

generates the decompo-
sition group of a prime divisor P of E{p1}∪A/C lying over p. Since C is
algebraically closed, DP/p = IP/p. However, p is unramified in E{p1}∪A,
because p /∈ A. Hence, IP/p = 1, so ρBA(ϕB(p)) = ϕB(p)|E{p1}∪A

= 1.
Finally observe that ρBA maps each set of generators of GB onto a set

of generators of GA. Therefore, ρBA ◦ ϕB |A ∈ ΦA.
Consequently, by Remark 9.1.8, Gal(ES/E) ∼= F̂m. �

If we take S in Proposition 9.1.9 to be the set of all prime divisors of
E/C, then ES = Ẽ. In this case the group Gal(ES/E) becomes the absolute
Galois group of E and card(S) = card(C).

Corollary 9.1.10 ([Dou64, Théorème 2]): Let C be an algebraically closed
field of characteristic 0 and of cardinality m and E a function field of one
variable over C. Then Gal(E) ∼= F̂m.

Since each free profinite group is projective [FrJ08, Cor. 22.4.5], the
combination of Corollary 9.1.7(b) and Proposition 9.1.9 gives the following
result:

Corollary 9.1.11: Let C be an algebraically closed field of characteristic
0 and S a nonempty set of prime divisors of E/C. Then Gal(ES/E) is
projective. In particular, Gal(E) is projective.

Remark 9.1.12: Freeness and projectivity. The projectivity of Gal(ES/E)
obtained in Corollary 9.1.11 is a much weaker property than the freeness of
the group. Yet we generalize it in Theorem 9.5.7 for an arbitrary characteris-
tic by algebraic means and deduce the freeness of Gal(ES/E) for infinite sets
S (Theorem 9.8.5). If however, char(C) > 0 and S is finite, then Gal(ES/E)
is not free (Proposition 9.9.4). �

9.2 Fundamental Groups in Positive Characteristic

We continue our survey of the theory of fundamental groups of curves over
an algebraically closed fields and move to the case where the characteristic
is a prime number p. The results obtained in characteristic 0 can be carried
over as long as we “stay away” from p, but are completely different in the
general case.

Proposition 9.2.1 ([SGA1, Exposé XIII, Cor. 2.12]): Let C be an alge-
braically closed field of characteristic p, E a function field of one variable
over C of genus g, and S = {p1, . . . , pr} a finite set of prime divisors of E/C.

(a) Let ES,tr be the compositum of all finite Galois extensions F of E such
that Ram(F/E) ⊆ S and each p ∈ Ram(F/E) is tamely ramified. Then
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Gal(ES,tr/E) is generated by elements σ1, . . . , σr, τ1, τ
′
1, . . . , τg, τ

′
g satis-

fying the relation

(1) σ1 · · ·σr[τ1, τ
′
1] · · · [τg, τ

′
g] = 1.

(b) Let ES,p′ be the compositum of all finite Galois extensions F of E of
degree not divisible by p such that Ram(F/E) ⊆ S. Then Gal(ES,p′/E)
is the free group generated by elements σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g with

the defining relation (1) in the category of profinite groups with order
not divisible by p.

(c) In both (a) and (b), σi can be chosen to generate a decomposition group
of a prime divisor lying over pi, i = 1, . . . , r.

Sketch of proof: One chooses a smooth projective model Γ for E/C. Then
one finds a complete discrete valuation ring R, with residue field C, and
an algebraically closed quotient field K of characteristic 0 and a projective
connected smooth curve Δ over S = Spec(R) whose special fiber is Δ ×S

Spec(C) ∼= Γ. Let ΔK be the generic fiber of Δ. Then genus(ΔK) = g.
Let p1, . . . ,pr be the points of Γ(C) corresponding to p1, . . . , pr. By Hensel’s
lemma, the points p1, . . . ,pr lift to points q1, . . . ,qr of ΔK(R). Let F be the
function field of ΔK over K and q1, . . . , qr the prime divisors corresponding
to the points q1, . . . ,qr. Let T = {q1, . . . ,qr}. Using knowledge of the
behavior of the tamely ramified covers of the curve, one proves that there
is a surjective map Gal(FT /F ) → Gal(ES,tr/E) defining an isomorphism
Gal(FT,p′/F ) → Gal(ES,p′/E) compatible with decomposition groups. Using
Proposition 9.1.6, this gives (a), (b), and (c). �

Remark 9.2.2: Abhyankar’s conjecture. Let C be an algebraically closed
field of positive characteristic p, E a function field of one variable of genus g,
S a finite nonempty set of r prime divisors of E/C. Proposition 9.2.1 gives us
information only on the maximal tamely ramified quotient and the maximal
p′-quotient of Gal(ES/E). The structure of Gal(ES/E) is unknown, even
in the case where E = C(x) and S consists of one prime divisor. That is,
we do not know the structure of the fundamental group of the affine line in
characteristic p. What we do know is the set of finite quotients of Gal(ES/E).

Consider a finite Galois extension F of E in ES . Let G = Gal(F/E)
and denote the normal subgroup of G generated by all p-Sylow subgroups
of G by G(p). Let F0 be the fixed field of G(p) in F . Then F0 is a finite
Galois extension of E in ES of order not divisible by p. It follows from
Proposition 9.2.1(b) that G/G(p) ∼= Gal(F0/E) is generated by elements
σ1, . . . , σr, τ1, τ

′
1, . . . , τg, τ

′
g satisfying Relation (1). In particular, if E is a field

of rational functions over C and r = 1, then g = 0, so σ1 = 1 and F0 = E.
This follows also from the Riemann-Hurwitz formula for tamely ramified
extensions [FrJ05, Remark 3.6.2(d)]. Therefore, G = G(p) is generated by
its p-Sylow subgroups. A finite group having that property is said to be a
quasi-p group.
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This observation led Shreeram Abhyankar in [Abh57] to conjecture that
each finite group G such that G/G(p) is generated by r + 2g elements sat-
isfying Relation (1) with r ≥ 1 appears as a quotient of Gal(ES/E). In the
case G(p) = 1, the conjecture follows from Proposition 9.2.1(b). Jean-Pierre
Serre proved Abhyankar’s conjecture for solvable groups G [Ser90] using class
field theory. Raynaud proved Abhyankar’s conjecture for an arbitrary quasi-p
group over the affine line [Ray94], and David Harbater settled the general
Abhyankar’s conjecture [Hrb94a] by reducing it to the case of the affine line
proved by Raynaud. Finally, [Pop95] proves that every finite split embedding
problem for Gal(ES/E) whose kernel is a finite quotient of the fundamental
group of the affine line is solvable. If S is nonempty, then Gal(ES/E) is a
projective group (Corollary 9.5.8). Using Proposition 9.2.1 and Raynaud’s
result this gives an alternative proof of Abhyankar’s conjecture.

Indeed, let G be a finite group such that G/G(p) is generated by r + 2g
elements satisfying Relation (1) with r ≥ 1. By Proposition 9.2.1(b), there
is an epimorphism ϕ: Gal(ES/E) → G/G(p). Let α: G → G/G(p) be
the quotient map. Since Gal(ES/E) is projective, there is a homomor-
phism γ: Gal(ES/E) → G such that α ◦ γ = ϕ. Denote the fixed field of
Ker(γ) by Ê. Then there are epimorphisms ϕ̂: Gal(ES/E) → Gal(Ê/E)
and ϕ̄: Gal(Ê/E) → G/G(p) such that ϕ = ϕ̄ ◦ ϕ̂. Moreover, there is an
embedding γ̄: Gal(Ê/E) → G such that γ = γ̄ ◦ ϕ̂ and α ◦ γ̄ = ϕ̄. Let
Ĝ = G×G/G(p) Gal(Ê/E) be the corresponding fiber product and let α̂: Ĝ →
Gal(Ê/E) be the projection on the second factor. Then (ϕ̂: Gal(ES/E) →
Gal(Ê/E), α̂: Ĝ → Gal(Ê/E)) is a finite split embedding problem for
Gal(ES/E) whose kernel is isomorphic to G(p), so it is a finite quotient
of the fundamental group of the affine line (by Raynaud). It follows from
Pop’s theorem that the embedding problem is solvable. In particular, G is a
quotient of Gal(ES/E), as claimed. �

Remark 9.2.3: Half Riemann existence theorem. One may refer to Propo-
sition 9.2.1 as the tame Riemann existence theorem. The best known
approximation to Proposition 9.1.1 is the so called Half Riemann exis-
tence theorem, due to Pop [Pop94]. It applies to an arbitrary Henselian
field (K, v). For a positive integer r let S = {a1, b1, . . . , ar, br} be a subset
of Ks such that ai �= bi, v(ai − bi) > v(ai − bj) for all i �= j, and both
{a1, . . . , ar} and {b1, . . . , br} are invariant under Gal(K). Let Π be F̂r if
char(K) = char(K̄v) and the free product of r copies of Ẑ/Zp if char(K) = 0
and char(K̄v) = p > 0. Then the field K(x) of rational functions in x
over K has a Galois extension N with Branch(N/K(x)) = S such that
Gal(N/Ks(x)) ∼= Π and Gal(N/K(x)) = Gal(K) � Gal(N/Ks(x)). More-
over, one may choose generators σ1, . . . , σr for Π such that σi generates an
inertia group of both ai and bi, i = 1, . . . , r. See also [Hrb03, Thm. 4.3.3 and
Remark 4.4.4(c)]. �
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9.3 Cohomology of Groups

We survey in this section the basic notions and results of the cohomology of
profinite groups needed in this book. Our basic references are [Rib70] and
[Ser79]. In this Chapter we apply a small part of our survey to prove that
Gal(E) is projective for each extension E of transcendence degree 1 over an
algebraically closed field (Proposition 9.4.6). In Chapter 11 we build on our
survey to prove local-global theorems for Brauer groups. This leads to fields
of transcendence degree 1 over PAC fields with projective absolute Galois
groups.

9.3.1 G-modules.
Let G be a profinite group and A a discrete Abelian (additive) group.

We say that A is a G-module if G acts continuously on A from the left, that
is there is a continuous map G×A → A mapping a pair (σ, a) ∈ G×A onto
the element σa of A such that
(1a) (στa) = σ(τa),
(1b) σ(a + b) = σa + σb, and
(1c) 1a = a

for all a, b ∈ A and σ, τ ∈ G. If σa = a for all σ ∈ G and a ∈ A we say that
A is a trivial G-module. Our basic examples occur when G = Gal(L/K)
is a Galois group and A is either the additive group L+ or the multiplicative
group L× of L (where in the latter case we have to switch to a multiplicative
module). We may also take A to be the group of all roots of unity belonging
to L or the group J(L), where J is an Abelian variety defined over K.

For each closed subgroup U of G we write AU for the fixed module of
A under U . For each a ∈ A the equality 1a = a implies that there exists an
open subgroup U of G such that σa = a for each σ ∈ U , i.e. a ∈ AU . Thus

(2) A =
⋃

AU ,

where U ranges on all open subgroups (or even open normal subgroups) U
of G.

A map ϕ: A → B between G-modules is a G-homomorphism if ϕ is a
group homomorphism that satisfies ϕ(σa) = σϕ(a) for all σ ∈ G and a ∈ A.

9.3.2 Definition of the Cohomology Groups.
Given a G-module A, we consider for each q ≥ 0 the group Cq(G, A)

of all continuous maps f : Gq → A (called non-homogeneous q-cochains)
and the homomorphisms ∂q+1: Cq(G, A) → Cq+1(G, A) (called the non-
homogeneous coboundary operators) defined by (∂1f)(σ) = σf(1)−f(1)
and for q ≥ 1 by

(∂q+1f)(σ1, . . . , σq+1) = σ1f(σ2, . . . , σq+1)(3)

+
q∑

i=1

(−1)if(σ1, . . . , σi−1, σiσi+1, σi+2, . . . , σq+1)

+ (−1)q+1f(σ1, . . . , σq).
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One proves that

(4) ∂q+1 ◦ ∂q = 0,

so that
0 → C0(G, A) ∂1−→C1(G, A) ∂2−→C2(G, A) ∂3−→ . . .

is a complex. Each element of the group Zq(G, A) = Ker(∂q+1) is a q-
cocycle whereas each element of the group Bq(G, A) = Im(∂q) is a q-
coboundary. By (4), Bq(G, A) ≤ Zq(G, A). This gives rise to the q-th
cohomology group with coefficients in A:

Hq(G, A) = Zq(G, A)/Bq(G, A).

Note that C0(G, A) is the set of all functions f : {1} → A. Taking ∂0 = 0,
we get B0(G, A) = 0 and H0(G, A) = Z0(G, A) = AG. A 1-coboundary is
a map fa: G → A defined by fa(σ) = σa − a for a fixed a ∈ A. A 1-
cocycle is a crossed homomorphism, namely a map f : G → A satisfying
f(στ) = σf(τ) + f(σ). Thus, an element of H1(G, A) is an equivalence
class of crossed homomorphisms modulo coboundaries. If A is a trivial G-
module, then each 1-coboundary is 0 and each crossed homomorphism is a
homomorphism G → A. Thus, in this case H1(G, A) = Hom(G, A).

9.3.3 Functoriality of the Cohomology Groups.
The cohomology groups are functorial in both variables. Each G-homo-

morphism α: A → B of G-modules induces a homomorphism α: Cq(G, A) →
Cq(G, B) of the corresponding cochain groups that commutes with the
coboundary operator: (αf)(σ1, . . . , σq) = α(f(σ1, . . . , σq)). It follows that
α(Zq(G, A)) ≤ Zq(G, B) and α(Bq(G, A)) ≤ Bq(G, B). Hence, α yields a
homomorphism α: Hq(G, A) → Hq(G, B). Each of the assignments A �
Cq(G, A), A � Zq(G, A), A � Bq(G, A), and A � Hq(G, A) is a covariant
functor from the category of G-modules to the category of Abelian groups.
This means that the composition β ◦ α of homomorphisms of G-modules
is assigned to the composition β ◦ α of Abelian groups and the identity of
G-modules is assigned to the corresponding identity of Abelian groups.

9.3.4 Short and Long Exact Sequences.
The most important feature of group cohomology is the theorem about

the exact sequences: To each short exact sequence

0 → A
α−→B

β−→C → 0

of G-modules there corresponds a long exact sequence

0 → AG α−→BG β−→CG

δ−→H1(G, A) α−→H1(G, B)
β−→H1(G, C)

δ−→H2(G, A) α−→H2(G, B)
β−→H2(G, C) δ−→· · · ,
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where the connecting homomorphisms δ are functorial [Rib70, p. 115,
Prop. 4.4].

9.3.5 Compatible Homomorphisms.
Generalizing the functoriality of the cohomology to both variables, we

consider a G-module A and an H-module B. A pair (ϕ, β) consisting of
a homomorphism of profinite groups ϕ: G → H and a homomorphism
β: B → A of H and G modules, respectively, is said to be compatible
if σ(β(b)) = β(ϕ(σ)b) for all σ ∈ G and b ∈ B. In this case they define
for each q ≥ 0 a homomorphism (ϕ, β): Cq(H,B) → Cq(G, A) by the for-
mula: ((ϕ, β)g)(σ1, . . . , σq) = β(g(ϕ(σ1), . . . , ϕ(σq))) for g ∈ Cq(H,B) and
σ1, . . . , σq ∈ G. As in Subsection 9.3.3, (ϕ, β) commutes with the coboundary
homomorphisms, so it induces natural homomorphisms

(ϕ, β): Hq(H,B) → Hq(G, A).

The maps (ϕ, β) behave functorially in the following sense. If I is a profinite
group, C is an I-module, and ψ: H → I and γ: C → B are compatible
homomorphisms, then (ψ ◦ ϕ, β ◦ γ) is a pair of compatible homomorphisms
from G to I and C to A and the following triangle is commutative:

(5) Hq(H,B)

(ϕ,β) ������������
Hq(I, C)

(ψ,γ)��

(ψ◦ϕ,β◦γ)������������

Hq(G, A)

9.3.6 Inflation and Restriction.
An important example occurs when N is a closed normal subgroup of

G. Let A be a G-module and denote the image of an element σ ∈ G in
G/N under the quotient map by σ̄. Then G/N acts on AN by σ̄a = σa and
this action is compatible with the inclusion AN → A. Thus, it induces for
each q ≥ 0 the inflation homomorphism inf : Hq(G/N, AN ) → Hq(G, A).
Similarly, the restriction of the action of G on A to N is compatible with the
identity map A → A, so it gives rise to the restriction homomorphisms
res: Hq(G, A) → Hq(N, A).

Lemma 9.3.7: Let G be a profinite group, N a closed normal subgroup, A
a G-module, and q ≥ 1. Suppose Hi(G, A) = 0 for 1 ≤ i ≤ q − 1. Then the
sequence

(6) 0 → Hq(G/N,AN ) inf−→Hq(G, A) res−→Hq(N, A)

is exact. In particular, if H1(G, A) = 0, then the following sequence is exact:

(7) 0 → H2(G/N, AN ) inf−→H2(G, A) res−→H2(N, A).
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The proof of the lemma for q = 1 is carried out by direct verification
on cocycles. Then one applies “dimension shifting” to continue the proof
for arbitrary q by induction. This is done in [CaF67, p. 100, Prop. 4] for
abstract groups and in [Koc70, Sec. 3.7] for profinite groups. Note that the
latter source adds two more groups to the sequence (6). The same five terms
sequence is also proved to be exact in [Rib70, p. 177, Cor. 5.4] by application
of spectral sequences.

9.3.8 Corestriction.
We consider an open subgroup U of a profinite group G and choose a set

S of representatives for the left cosets of G modulo U , thus G =
⋃
· σ∈S σU .

Then we define for each G-module A a group homomorphism NG/U : AU →
AG by NG/U (a) =

∑
σ∈S σa. It can be uniquely extended to a natural trans-

formation corU
G: Hq(U, A) → Hq(G, A), called the corestriction [Rib70,

p. 136]. Composing the corestriction with the restriction gives multiplication
with the index of U in G:

(8) corU
G ◦ resG

U = (G : U)id.

In particular, if G is finite and we apply (8) to an element x ∈ Hq(G, A)
with q ≥ 1, we find that resG

1 (x) ∈ Hq(1, A) = 0, hence |G|x = 0. In other
words, Hq(G, A) is a torsion group and the order of each element of Hq(G, A)
divides the order of G.

9.3.9 Direct Systems.
In order to generalize the latter result to profinite groups, we have to be

able to take direct limits of cohomology groups. To this end we consider a
direct system (Ai, αij)i,j∈I of Abelian groups. Thus, I is a partially ordered
nonempty set such that for all i, j ∈ I there exists k ∈ I with i, j ≤ k. For
all i, j ∈ I with i ≤ j the system has a homomorphism αij : Ai → Aj such
that αjk ◦ αij = αik if i ≤ j ≤ k. Moreover, αii = idAi

for i ∈ I. Let R
be the subgroup of

⊕
i∈I Ai generated by all elements ai − aj with i, j ∈ I,

ai ∈ Ai, aj ∈ Aj for which there exists k ≥ i, j such that αik(ai) = αjk(aj).
The factor group A = lim−→Ai = (

⊕
i∈I Ai)/R is called the direct limit of

the system (Ai, αij)i,j∈I . Viewing each Ai as a subgroup of
⊕

i∈I Ai, we may
consider the homomorphism αi: Ai → lim−→Ai given by αi(ai) = ai + R. The

homomorphisms αi satisfy the compatibility condition αj ◦ αij = αi if i ≤ j.
Moreover, given an Abelian group B and homomorphisms βi: Ai → B such
that βj ◦αij = βi whenever i ≤ j, there is a unique homomorphism β: A → B
such that β ◦ αi = βi for all i ∈ I.

Each a ∈ A can be written as a =
∑

i∈I0
ai + R, where I0 is a finite

subset of I and ai ∈ Ai for each i ∈ I0. We choose j ∈ I with i ≤ j for all
i ∈ I0 and let aj =

∑
i∈I0

αij(ai). Then aj ∈ Aj and a = aj + R = αj(aj).
Consequently, A =

⋃
i∈I αi(Ai).

If ai ∈ Ai and αi(ai) = 0, then ai is a sum of elements aij−aik in ⊕r∈IAr

with aij ∈ Aj , aik ∈ Ak, and there exists l ≥ j, k with αjl(aij) = αkl(aik).
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Since in a direct sum equality holds if and only if it holds in each coordinate,
we may assume that aij , aik ∈ Ai for all j, k. We choose an m ∈ I greater
or equal to i and all of the l’s occurring in the above conditions. Then
αim(ai) = 0. Of course, if the latter condition holds, then αi(ai) = 0.

9.3.10 Cohomology Groups as Directed Limes.
Now we consider an inverse system (Gi, πji)i,j∈I of profinite groups and

a directed system (Ai, αij)i,j∈I of Abelian groups such that Ai is a Gi-module
and for all i ≤ j the pair (πji, αij) is compatible. Let G = lim←−Gi and A =

lim−→Ai. For each i ∈ I let πi: G → Gi be the projection on the ith component

and αi: Ai → A the map defined by the embedding of Ai in
⊕

i∈I Ai. Then G
is a profinite group, A is an Abelian group, and G acts on A in the following
way: Given σ ∈ G and a ∈ A, we choose i ∈ I and ai ∈ Ai with αi(ai) = a and
set σi = πi(σ). Then we define σa = αi(σiai). One checks that this definition
is good and that the action of G on A is continuous, so that A becomes a
G-module. For all q ≥ 0 and i ≤ j the compatibility condition yields a
homomorphism (πij , αij): Hq(Gi, Ai) → Hq(Gj , Aj). By the commutativity
of the triangle (5), this leads to a directed system of cohomological groups
(Hq(Gi, Ai), (πij , αij))i,j∈I . By [Rib70, p. 109, Prop. 4.1],

(9) Hq(G, A) = lim−→Hq(Gi, Ai).

Starting from an arbitrary profinite group G and a G-module A, we
present G as an inverse limit G = lim←−G/U , where U ranges over all open

normal subgroups of G, and recall that A =
⋃

AU . Note that if U ′ ⊆ U ,
then AU ≤ AU ′

. Let πU ′,U : G/U ′ → G/U be the quotient map and let
αU,U ′ : AU → AU ′

be the inclusion map. Then, (9) yields in this case an
isomorphism

(10) Hq(G, A) = lim−→Hq(G/U, AU ).

Given an Abelian group A and a positive integer n we set An = {a ∈
A | na = 0}. For each prime number p we let Ap∞ =

⋃∞
k=1 Apk be the p-

primary part of A. If A is a torsion group, then A =
⊕

Ap∞ . It follows that
if α: A → B is a homomorphism of torsion Abelian groups, then α(Ap∞) ≤
Bp∞ for each p. Hence, each exact sequence A → B → C of torsion Abelian
groups yields an exact sequence Ap∞ → Bp∞ → Cp∞ of their p-primary
parts.

Since each of the groups G/U is finite, the order of each element of
Hq(G/U, AU ) is finite (Subsection 9.3.8). It follows that Hq(G, A) is a torsion
Abelian group. As such it has a presentation

(11) Hq(G, A) =
⊕

p

Hq(G, A)p∞ .
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Lemma 9.3.11: Let G be a profinite group acting on a vector space V over
Q. Then:
(a) Hq(G, V ) = 0 for each q ≥ 1.
(b) Hq−1(G, Q/Z) ∼= Hq(G, Z) for each q ≥ 2.

Proof of (a): First we suppose G is finite and consider the restriction map
res: Hq(G, V ) → Hq(1, V ) and the corestriction map

cor: Hq(1, V ) → Hq(G, V ).

Both maps are trivial, so α = cor ◦ res: Hq(G, V ) → Hq(G, V ) is also trivial.
By (8), α is multiplication by the order n of G.

Now let f : Gq → V be a q-cocycle. Since V is divisible, there exists a
function g: Gq → V such that ng = f . Since division by n is unique, g is
a cocycle. It follows from the preceding paragraph that f is a coboundary.
Consequently, Hq(G, V ) = 0.

In the general case we use the presentation (10). By the preceding
paragraph, Hq(G/U, V U ) = 0 for each U . Consequently, Hq(G, V ) = 0.

Proof of (b): The short exact sequence of trivial G-modules 0 → Z → Q →
Q/Z → 0 induces for each q ≥ 1 a four terms exact sequence

Hq−1(G, Q) → Hq−1(G, Q/Z) → Hq(G, Z) → Hq(G, Q).

By (a), the first and the fourth terms of this sequence are 0 for each q ≥ 2,
so (b) holds. �
9.3.12 Induced Modules.

Let H ≤ G be profinite groups. For each H-module A we denote by
IndG

H(A) the Abelian group of all continuous maps f : G → A such that
f(ησ) = ηf(σ) for all η ∈ H and σ ∈ G. The action of G on IndG

H(A)
is defined by (σ′f)(σ) = f(σσ′). This action is continuous [Rib70, p. 142,
Prop. 7.1], so IndG

H(A) is a G-module. Note that IndG
H(A) is naturally iso-

morphic to the G-module
∏

σ∈S A, where S is a system of representatives
for the right cosets of G modulo H. Indeed, each continuous map f : S → A
uniquely extends to an element f̂ of IndG

H(H) by f̂(ησ) = ηf(σ) for η ∈ H
and σ ∈ S.

Shapiro’s lemma ensures that

(12) Hq(G, IndG
H(A)) ∼= Hq(H,A)

for each q ≥ 0 [Rib70, p. 145, Thm. 7.4].
In the special case where H = 1, the right hand side of (12) is 0 for each

q ≥ 1. Hence, Hq(G, IndG
1 (A)) = 0.

9.3.13 Cohomological Triviality.
Let G be a finite group and A a G-module. The norm map norm: A → A

is defined by norm(a) =
∑

σ∈G σa. By [CaF, p. 113, Thm. 9], Hq(G, A) = 0
for each q ≥ 1 if AG = norm(A) and H1(G, A) = 0.
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9.3.14 Cohomological p-Dimension.
Let G be a profinite group, p a prime number, and n ≥ 0 an inte-

ger. We write n = cdp(G) if there exists a torsion G-module A such that
Hn(G, A)p∞ �= 0 but Hq(G, B)p∞ = 0 for each q ≥ n + 1 and every torsion
G-module B. In that case Hq(G, B)p∞ = 0 for each q ≥ n + 2 and every
G-module B [Rib70, p. 197, Prop. 1.4]. Finally we note that for the inequal-
ity cdp(G) ≤ n to hold it suffices that Hn+1(G, A) = 0 for all finite simple
p-primary G-modules A [Rib70, p. 200, Prop.1.5]. Here we say that A is a
simple G-module if the only G-submodules of A are 0 and A itself. In this
case A ∼= (Z/pZ)r for some nonnegative number r.

9.3.15 Cohomological Dimension.
The cohomological dimension, cd(G) of a profinite group G is the

supremum of cdp(G), where p ranges on all prime numbers. Thus, if n =
cd(G) < ∞, then there exists a torsion G-module A with Hn(G, A) �= 0 and
for all q ≥ n + 1, all torsion G-modules B, and every prime number p we
have Hq(G, B)p∞ = 0. By (11), Hq(G, B) = 0. Similarly, the latter equality
holds if q ≥ n + 2 and B is an arbitrary G-module.

9.3.16 Group Extensions.
We consider an exact sequence

(13) 0 → A → E
π−→G → 1

of profinite groups, where A is an additive finite Abelian group, choose a con-
tinuous section s: G → E of π [FrJ08, Lemma 1.2.7], and define a continuous
action of G on A by the formula (σ, a) �→ s(σ)as(σ)−1. This action does not
depend on s. We call (13) an extension of A by G. The extension (13)
is equivalent to another extension 0 → A → E

π′
−→G → 1 if there exists a

homomorphism E → E′ making the diagram

0 �� A �� E ��

��

G �� 1

0 �� A �� E′ �� G �� 1

commutative. Given a profinite group G and a finite G-module A, there is a
bijective correspondence between the equivalence classes of extensions of A
by G with the given G-action and the elements of H2(G, A) [Rib70, p. 100,
Thm. 3.1]. The class of split extensions corresponds under that correspon-
dence to the 0 element of H2(G, A) [Rib70, p. 105]. By Subsection 9.3.14 we
have for each prime number p that cdp(G) ≤ 1 if and only if H2(G, A) = 0
for all finite simple p-primary G-modules A. Hence, cdp(G) ≤ 1 if and only
if each exact sequence 0 → (Z/pZ)r → E → G → 1 splits. Consequently, by
[FrJ08, Cor. 22.4.3], G is projective if and only if cd(G) ≤ 1.

By [FrJ08, Prop. 22.10.4] (whose proof does not depend on cohomol-
ogy), a profinite group G is projective if and only if each of its p-Sylow
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groups (for all p) is a free pro-p group, alternatively a projective group [FrJ08,
Prop. 22.7.6].

9.3.17 Galois Cohomology.
Let L/K be a Galois extension. By the normal basis theorem,

H1(Gal(L/K), L+) = 0

[Rib70, p. 246, Prop. 1.1]. By the multiplicative form of Hilbert’s Theorem
90,

(14) H1(Gal(L/K), L×) = 1

[Rib70, p. 246, Prop. 1.2]. If p = char(K) > 0, then cdp(Gal(K)) ≤ 1 [Rib70,
p. 256, Thm. 3.3]. Thus, by Subsection 9.3.16, every p-Sylow subgroup of
Gal(K) is projective. It follows from the last paragraph of Subsection 9.3.16
that Gal(K) is projective if every l-Sylow subgroup of Gal(K), for each l �= p,
is projective.

9.3.18 Brauer Groups.
Let K be a field. A central simple K-algebra is an associative (but

not necessarily commutative) K-algebra A whose center is K and with no
nontrivial two sided ideals. If A is finitely generated, then by Wedderburn-
Artin [Bou58, p. 51, Cor. 2] there exist a division ring D with center K and
a positive integer n such that A is isomorphic to the algebra Mn(D) of all
n × n matrices with entries in D. Another finitely generated central simple
K-algebra A′ is equivalent to A if A′ ∼= Mn′(D) for some positive integer
n′. We denote the equivalence classes of A by [A]. Let Br(K) be the set of
all equivalence classes of finitely generated central simple K-algebras. The
operation ([A], [A′]) �→ [A ⊗K A′] makes Br(K) a group whose unit element
is the class of K [Bou58, p. 117]. If L is a field extension of K, then the
map [A] → [A ⊗K L] is a group homomorphism α: Br(K) → Br(L) [Bou58,
p. 118, Prop. 6]. The kernel of α consists of all classes [A] such that A splits
over L, i.e. A ∼=L Mn(L) for some positive integer n. One denotes Ker(α) by
Br(L/K).

There is an isomorphism H2(Gal(L/K), L×) ∼= Br(L/K) [Jac96, Thm.
2.5.11] such that if K ⊆ L ⊆ N is a tower of fields and N/K is Galois, then
the following diagram is commutative [Lor08, p. 194]

0 �� H2(Gal(L/K), L×)

��

inf �� H2(Gal(N/K), N×)

��

res �� H2(Gal(N/L), N×)

��
0 �� Br(L/K) �� Br(N/K) �� Br(N/L)

where the second arrow in the lower row is the inclusion map and the third
one is [A] �→ [A⊗K L]. Since, by (14), H1(Gal(N/K), N×) = 1, Lemma 9.3.7
implies that the upper row is exact. Hence, so is the lower.
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If cdp(Gal(K)) ≤ 1, then Br(K)p = 0 for each p �= char(K) [Rib70,
p. 262, Cor.3.7]. If Br(L) = 0 for each finite separable extension L of K, then
cd(Gal(K)) ≤ 1 [Rib70, p. 263, Cor. 3.8], so Gal(K) is projective (Subsection
9.3.16). If cd(Gal(K)) ≤ 1 and K is perfect, then Br(K) = 0 [Rib70, p. 263,
Prop. 3.9].

9.4 The Projectivity of Gal(C(t))
Our third main goal in these notes is to prove that for each algebraically closed
field C, the group Gal(C(x)) is free. It would then follow that Gal(C(x)) is
projective [FrJ08, Lemma 22.3.6]. However, the projectivity of Gal(C(x)) is
an essential step in our proof that Gal(C(x)) is free. So, we first prove that
Gal(C(x)) is projective. Our proof uses Galois cohomology, but it replaces
advanced tools by more basic ones.

Remark 9.4.1: Ci fields. A field K is said to be Ci if every form (i.e. ho-
mogeneous polynomial) f ∈ K[X0, . . . , Xn] of positive degree d with di ≤ n
has a nontrivial zero in Kn+1. Thus, for K to be C0 means that every ho-
mogeneous polynomial in K[X0, X1] has a nontrivial zero in K2. In other
words, K is algebraically closed. The field K is C1 if and only if each ho-
mogeneous polynomial f ∈ K[X0, . . . , Xn] with deg(f) ≤ n has a nontrivial
zero in Kn+1. For example, every finite field is C1 (a theorem of Chevalley
[FrJ08, Proposition 21.2.4]), every PAC field of characteristic 0 is C1 [Kol07,
Thm. 1], and every perfect PAC field of positive characteristic is C2 [FrJ08,
Thm. 21.3.6]. Moreover, if K is Ci and L is a field extension of K of transcen-
dence degree j, then L is Ci+j [FrJ08, Prop. 21.2.12]. In particular, if K is
algebraically closed and x is an indeterminate, then every algebraic extension
of K(x) is C1. �
Lemma 9.4.2: Let L/K be a finite Galois extension.
(a) If K is C1, then normL/KL× = K×.
(b) In the general case, traceL/KL = K.

Proof of (a): Let w1, . . . , wd be a basis of L/K and set G = Gal(L/K).
Then

f(X1, . . . , Xd) =
∏
σ∈G

(X1w
σ
1 + · · · + Xdw

σ
d )

is a form of degree d with coefficients in K. If x1, . . . , xd ∈ K and
f(x1, . . . , xd) = 0, then there exists τ ∈ G such that z = x1w

τ
1 + · · ·+xdw

τ
d =

0. Hence, all conjugates of z over K are zero. Thus, x1w
σ
1 + · · · + xdw

σ
d = 0

for all σ ∈ G. Since det(wσ
i ) �= 0 [Lan93, p. 266, Cor. 5.4], we have

x1 = · · · = xd = 0.
Let now a ∈ K×. Since K is C1, there exist y0, y1, . . . , yd ∈ K, not

all 0, such that f(y1, . . . , yd) = yd
0a. By the preceding paragraph, y0 �= 0.

Hence, with xi = yi/y0, i = 1, . . . , d, and b = x1w1 + · · · + xdwd, we have
normL/Kb = a.
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Proof of (b): By Artin’s theorem about the linear independence of characters
[Lan93, p. 283, Thm. 4.1], there exists x ∈ L with a =

∑
σ∈G xσ �= 0. Then,

a = traceL/Kx and a ∈ K. Consequently, each b ∈ K can now be written as
b = traceL/K

(
b
ax). �

Lemma 9.4.3: Let L/K be a finite cyclic field extension.

(a) If K is C1, then every short exact sequence

(1) 1−→L× −→E
h−→Gal(L/K)−→ 1

of groups with the usual Galois action of Gal(L/K) on L× splits. Thus,
H2(Gal(L/K), L×) = 1.

(b) In the general case, every short exact sequence

(2) 0−→L+ −→E
h−→Gal(L/K)−→ 1

of groups with the usual Galois action of Gal(L/K) on L+ splits. Thus,
H2(Gal(L/K), L+) = 0.

Proof: Let n = [L : K] and let σ be a generator of Gal(L/K). We have to
find ε ∈ E such that h(ε) = σ and εn = 1.

By assumption, there exists ε ∈ E such that h(ε) = σ. For each y ∈ L×,
we have yε = yσ. Also, εn ∈ L×. Hence, (εn)σ = (εn)ε = εn, so εn ∈ K×.

By Lemma 9.4.2, there exists x ∈ L× such that normL/Kx = ε−n in
Case (a) and traceL/Kx = ε−n in Case (b). For arbitrary elements x, ε of a
group G, one proves by induction on n that

(xε)n = εnxεn

xεn−1 · · ·xε.

In Case (a), this formula gives

(3) (xε)n = εnxεn

xεn−1 · · ·xε = εnxσn

xσn−1 · · ·xσ = εnnormL/Kx = 1.

Therefore, xε is the desired element of E.
In Case (b) the operation of L+ is addition, so we have to replace (3) by

(xε)n = εn(xεn

+ xεn−1
+ · · · + xε)

= εn(xσn

+ xσn−1
+ · · · + xσ) = εntraceL/Kx = 1.

Again, xε is the desired element of E.
The triviality of the second cohomology groups follows now from Sub-

section 9.3.16. �
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Lemma 9.4.4: Let K be a C1 field, p a prime number, and E a p-Sylow ex-
tension of K (i.e. E is the fixed field in Ks of a p-Sylow subgroup of Gal(K).)
Then
H2(Gal(E), E×

s ) = 1.

Proof: By Subsection 9.3.10, H2(Gal(E), E×
s ) = lim−→H2(Gal(N/E), N×),

where N ranges over all finite Galois extensions of E and the maps involved
in the direct limit are inflations. We prove by induction on the degree,
that for each finite Galois extension N/L with E ⊆ L ⊆ N ⊆ Ks we have
H2(Gal(N/L), N×) = 1.

Indeed, N/L is a p-extension. If this extension is nontrivial, it has a cyclic
subextension M/L of degree p. By Remark 9.4.1, L is C1, hence by Lemma
9.4.3(a), H2(Gal(M/L), M×) = 1. By induction, H2(Gal(N/M), N×) = 1.
Finally we use the exactness of the inflation restriction sequence

1−→H2(Gal(M/L), M×) inf−→H2(Gal(N/L), N×) res−→H2(Gal(N/M), N×)

(Lemma 9.3.7) to conclude that H2(Gal(N/L), N×) = 1. �
Lemma 9.4.5: Let K be a C1 field, p a prime number, and E a p-Sylow
extension of K. Then, Gal(E) is projective, hence pro-p free.

Proof: The statement holds for p = char(E) by [Rib70, p. 256]. So, we
assume that p �= char(E).

By Subsection 9.3.16, we have to prove that H2(Gal(E), Z/pZ) = 0. To
this end consider the short exact sequence

(4) 1−→μp −→E×
s

p−→E×
s −→ 1,

where μp is the group of roots of unity of order p and the map from E×
s to

E×
s is raising to the pth power. Since [E(μp) : E] divides p − 1 and Gal(E)

is a pro-p group, [E(μp) : E] = 1, so μp ⊆ E and the action of Gal(E) on
μp is trivial. Hence, μp is isomorphic to Z/pZ as a Gal(E)-module. Now we
consider the following segment of the long exact sequence derived from the
exact sequence (4) (Subsection 9.3.4):

(5) H1(Gal(E), E×
s )−→H2(Gal(E), Z/pZ)−→H2(Gal(E), E×

s ).

The left term of (5) is trivial, by Subsection 9.3.17. The right term of (5) is
trivial, by Lemma 9.4.4. Hence, the middle term of (5) is also trivial. �
Proposition 9.4.6 (Tsen):
(a) Let E be a C1 field. Then Gal(E) is projective.
(b) Let E be an extension of transcendence degree 1 over a separably closed

field C. Then Gal(E) is projective.

Proof of (a): By Lemma 9.4.5, each of the Sylow subgroups of Gal(E) is
projective. It follows from [FrJ08, Prop. 22.10.4] that Gal(E) is projective.
Note that the proof of the latter theorem is carried out without cohomology.
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Proof of (b): First we note that (EC̃)s/EsC̃ is both a separable extension
and a purely inseparable extension, so it is a trivial extension. Thus, EsC̃ =
(EC̃)s. In addition, Es ∩ EC̃ = E, hence Gal(E) ∼= Gal(EC̃). We may
therefore assume that C is algebraically closed. By Remark 9.4.1, E is a C1

field. Hence, by (a), Gal(E) is projective. �
Following [FrJ08, Remark 17.4.7], we denote the free profinite group of

rank m by F̂m and rephrase a special case of [FrJ08, Lemma 25.1.8]:

Proposition 9.4.7: Let m be an infinite cardinal and G a projective group
of rank at most m. Suppose every finite split embedding problem for G with
a nontrivial kernel has m solutions. Then G ∼= F̂m.

Theorem 9.4.8: Let K be a field of characteristic p and cardinality m and
let E be a function field of one variable over K. Suppose Gal(K) is trivial if
p = 0 or Gal(K) is a pro-p group if p > 0. Then Gal(E) ∼= F̂m.

Proof: We choose a separating transcendental element x for E/K. Consider
a prime number l �= p and let Gl be an l-Sylow subgroup of Gal(K(x)). Since
Gal(Ks(x)/K(x)) ∼= Gal(K) is trivial if p = 0 or a pro-p group if p > 0, Gl

is an l-Sylow subgroup of Gal(Ks(x)). By Proposition 9.4.6(b), Gal(Ks(x))
is projective. Hence, by Subsection 9.3.16, Gl is projective. It follows from
Subsection 9.3.17 that Gal(K(x)) is projective.

By Theorem 5.8.3, K is ample. Hence, by Proposition 8.6.3, every fi-
nite split embedding problem for Gal(K(x)) with a nontrivial kernel has m
solutions. In particular, m ≥ rank(Gal(K(x))) ≥ ℵ0. By Proposition 9.4.7,
Gal(K(x)) ∼= F̂m. It follows from [FrJ08, Prop. 25.4.2] that Gal(E) ∼= F̂m. �
Corollary 9.4.9: Let K be a separably closed field of cardinality m and let
E be an algebraic function field of one variable over K. Then Gal(E) ∼= F̂m.

Remark 9.4.10: An analog of Shafarevich’s Conjecture. We denote the ex-
tension of a field K generated by all roots of unity by Kcycl. As mentioned in
Example 5.10.5, Shafarevich’s conjecture predicts that Gal(Kcycl) ∼= F̂ω for
each number field K.

As is the case with several other conjectures (e.g. the Riemann hypoth-
esis), the analog of Shafarevich’s conjecture for function fields K of one vari-
able over finite fields is true. In this case Kcycl = F̃pK, where p = char(K).
Thus, if we choose a transcendental element x of K over Fp, then Kcycl is a
finite extension of F̃p(x). Therefore, by Corollary 9.4.9, Gal(Kcycl) ∼= F̂ω, as
claimed. �

9.5 Projectivity of Fundamental Groups

Let C be an algebraically closed field, E a function field of one variable over
C, S a nonempty set of prime divisors of E/C, and ES the maximal Galois
extension of E ramified at most over S. The only known proof of the Riemann
existence theorem uses complex analytic methods. It follows, as mentioned
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in Remark 9.1.12, that the proof of the projectiveness of Gal(ES/E) in the
case char(C) = 0, stated in Corollary 9.1.11, relies on analytic methods.

The aim of this section is to prove that Gal(ES/E) is projective, with-
out any restriction on the characteristic, by algebraic means. This will in
particular reproves the projectivity of Gal(ES/E) in characteristic 0.

As mentioned in the proof of Proposition 9.4.6, a profinite group G is
projective if and only if for each prime number p each p-Sylow subgroup
Gp of G is projective [FrJ08, Prop. 22.10.4]. We therefore say that G is p-
projective if Gp is projective. We say that an embedding problem (ϕ: H →
A, α: B → A) is central if Ker(α) is contained in the center of B.

Lemma 9.5.1: Let p be a prime number.
(a) Let G be a profinite group. Suppose for every open subgroup H, each

finite nonsplit central embedding problem

H

ϕ

��
0 �� Z/pZ �� B

α �� A �� 1

for which B is a p-group is solvable. Then G is p-projective.
(b) Let N/E be a Galois extension. Suppose for each finite subextension K

of N/E, for each finite p-subextension L/K of N/K, and every nonsplit
central exact sequence of p-groups

(1) 0−→Z/pZ−→B
α−→Gal(L/K)−→ 1

there exists a Galois extension L̂ of K in N that contains L and there
exists an isomorphism γ: Gal(L̂/K) → B such that α ◦ γ = resL. Then
Gal(N/E) is p-projective.

Proof: Statement (b) is a reinterpretation of (a) for Galois groups, so we
prove (a).

Let Gp be a p-Sylow subgroup of G. In order to prove that Gp is pro-
jective, it suffices to prove that each finite embedding problem

(2) Gp

ϕp

��
1 �� B0

�� B
α �� A �� 1

in which B is a p-group and B0 is a minimal normal subgroup of B is weakly
solvable, that is there exists a homomorphism γ: Gp → B such that α◦γ = ϕp

[FrJ08, Lemma 22.3.4 and Lemma 22.4.1]. By elementary group theory, B0

is isomorphic to Z/pZ and lies in the center of B. This means that the short
exact sequence in (2) is central.
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If the short exact sequence in (2) splits, there exists a homomorphism
α′: A → B such that α◦α′ = idA. Then α′ ◦ϕp weakly solves (2). Otherwise
we choose an open normal subgroup N of G such that Gp ∩ N = Ker(ϕp).
Let H = GpN . Then H is an open subgroup of G that contains Gp and
ϕp extends to a homomorphism ϕ: H → A. By assumption, there exists a
homomorphism γ: H → B such that α ◦ γ = ϕ. The restriction of γ to Gp

weakly solves embedding problem (2). Note that since we are now assuming
that α does not split, B0 ∩ γ(Gp) �= 1, so B0 ≤ γ(Gp). Therefore, γ|Gp

is
even surjective. �
Lemma 9.5.2: Let A be a finite group, p a prime number, and let

0−→Z/pZ−→Ei
εi−→A−→ 1

i = 1, 2, be central group extensions. Then there exists an isomorphism
ϕ: E1 → E2 such that ε2 ◦ ϕ = ε1 if and only if the two group extensions

0−→Z/pZ−→E1 ×A E2
πi−→Ei −→ 1,

where πi: E1 ×A E2 → Ei is the projection onto Ei, split.

Proof: Suppose there exists an isomorphism ϕ: E1 → E2 such that ε2 ◦
ϕ = ε1. Then ϕ induces a homomorphism ϕ′: E1 → E1 ×A E2 such that
π1 ◦ ϕ′ = idE1 [FrJ08, Prop. 22.2.1]. Applying the same argument to ϕ−1

yields the splitting of π2.
Conversely, suppose π1: E1 ×A E2 → E1 has a group theoretic section

π′
1: E1 → E1 ×A E2, that is π1 ◦ π′

1 = idE1 . Let ψ2 = π2 ◦ π′
1. Then,

ε2◦ψ2 = ε2◦π2◦π′
1 = ε1◦π1◦π′

1 = ε1, so Ker(ψ2) ≤ Ker(ε1). If Ker(ψ2) = 1,
then ψ2: E1 → E2 is the desired isomorphism ϕ. Otherwise, since Ker(ε1) =
Z/pZ, we have Ker(ψ2) = Ker(ε1). Therefore, ψ2 induces a monomorphism
ψ′

2: A → E2 such that ε2 ◦ ψ′
2 = idA. It follows that E2 = Z/pZ × ψ′

2(A).
Arguing with π2, we are reduced to the case where the latter consequence

of the preceding paragraph holds and in addition E1 = Z/pZ×ψ′
1(A), where

ψ′
1: A → E1 is a group theoretic section of ε1. Now we define a map ϕ: E1 →

E2 whose restriction to Z/pZ is the identity map and ϕ(ψ′
1(a)) = ψ′

2(a) for
each a ∈ A. Then ϕ is an isomorphism such that ε2 ◦ ϕ = ε1, as desired. �
Lemma 9.5.3: Let L/K be a Galois extension, p �= char(K) a prime number,
and (1) a nonsplit central exact sequence of p-groups. Suppose K contains a
root ζ of 1 of order p and let L(x1/p) be a solution field of (1) with x ∈ L×.
Then the set of solution fields of (1) coincides with the set of fields L((ax)1/p),
a ∈ K×.

Proof: Set x1 = x, N1 = L(x1/p
1 ), E1 = Gal(N1/K), and A = Gal(L/K).

Let ε1: E1 → A be the restriction map. By assumption, N1 is a solution field
of (1). Hence, 0 → Z/pZ → E1

ε1−→A → 1 is a nonsplit central extension
(because (1) is).
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Now consider an a ∈ K×. Set x2 = ax1, N2 = L(x1/p
2 ), and N =

N1N2. Then N = N1K(a1/p) is a Galois extension of K. Moreover, if
σ ∈ Gal(N/L), then σ|N1 is in the center of Gal(N1/K) (by assumption) and
σ|L(a1/p) is in Gal(L(a1/p)/L), hence is also in the center of Gal(L(a1/p)/K)
(because Gal(L(a1/p)/K) = Gal(L(a1/p)/L) × Gal(L(a1/p)/K(a1/p)) and
Gal(L(a1/p)/L) is cyclic). Thus, Gal(N/L) is contained in the center of
Gal(N/K). It follows that N2 (that lies between L and N) is a Galois exten-
sion of K and Gal(N2/L) is contained in the center of Gal(N2/K).

Assuming N1 �= N2, we set E2 = Gal(N2/K) and let ε2: E2 → A be the
restriction map. Then Gal(N2/L) ∼= Z/pZ (otherwise, a1/p ∈ N1, so the ε1

splits) and
0 → Z/pZ → E2

ε2−→A → 1 is a central exact sequence. Moreover,

Gal(N/K) ∼= E1 ×A E2

[FrJ08, Example 22.2.7(a)] is a split extension of both E1 and E2. Hence, by
Lemma 9.5.2, there exists an isomorphism ϕ: E1 → E2 that commutes with
restriction to L. Therefore, N2 is also a solution field of (1).

Conversely, suppose N2 = L(x1/p
2 ) with x2 ∈ L× is a solution field of

embedding problem (1) and N2 �= N1 and let E2 and ε2 be as above. Then
there exists an isomorphism ϕ: E1 → E2 such that ε2 ◦ ϕ = ε1. Then, with
N = N1N2, Gal(N/K) ∼= E1 ×A E2. By Lemma 9.5.2, the group extension
0 → Z/pZ → Gal(N/K) → Gal(N1/K) → 1 splits, which implies that N =
N1(a1/p) with a ∈ K×. But N = N1(x

1/p
2 ), so by Kummer theory, x2a

−1 ∈
(N×

1 )p (replacing a by a power of a if necessary). Hence, L((x2a
−1)1/p) ⊆ N1.

If equality holds, then by Kummer theory, x2a
−1x−1

1 ∈ (L×)p (replacing x1

by some power of itself if necessary), therefore N2 = L(x1/p
2 ) = L((ax)1/p),

as claimed.
Otherwise, x2a

−1 ∈ (L×)p, so N2 = L(x1/p
2 ) = L(a1/p). Hence, the short

exact sequence 1 → Gal(N2/L) → Gal(N2/K) → Gal(L/K) → 1 splits.
Therefore, also the short exact sequence 1 → Gal(N1/L) → Gal(N1/K) →
Gal(L/K) → 1 splits (because both N1 and N2 are solution fields of (1)).
This contradicts the assumption that embedding problem (1) does not split.
�

Lemma 9.5.4: Let K be a function field of one variable over an algebraically
closed field C, S a finite nonempty set of prime divisors of K/C, p �= char(K)
a prime number, and L/K a finite Galois subextension of KS/K. Suppose
(1) is a nonsplit central p-embedding problem which is solvable in Ks. Then
(1) has a solution field L̂ in KS .

Proof: Let L(x1/p) be a solution field of (1) in Ks. By Lemma 9.5.3, it
suffices to find a ∈ K× such that L((ax)1/p) ⊆ KS .

We extend each σ ∈ Gal(L/K) to an element σ of Gal(L(x1/p)/K). Then
L((x1/p)σ) = L(x1/p). Hence, (x1/p)σ = xi/pu for some 0 ≤ i ≤ p−1 and u ∈
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L× (by Kummer theory). Now we consider the element τ ∈ Gal(L(x1/p)/L)
defined by (x1/p)τ = ζx1/p, where ζ is a root of unity of order p. Then
(x1/p)τσ = (ζx1/p)σ = ζxi/pu and (x1/p)στ = (xi/pu)τ = ζixi/pu. Since
(1) is central, τσ = στ , so i = 1. It follows that xσ = xup, so div(xσ) ≡
div(x) mod pDiv(L/C). Hence, vP(xσ) ≡ vP(x) mod p for each prime
divisor P of L/C. Since vP(xσ) = vPσ−1 (x), this implies that vPσ (x) ≡
vP(x) mod p for all P and σ. Since the set of prime divisors of L/C lying
over each prime divisor p of K/C form a conjugacy class under the action of
Gal(L/K), we may denote the common residue modulo p of vP(x) for all P
dividing p by np and write div(x) ≡

∑
p np

∑
P|p P mod pDiv(L/C), where

p ranges over the prime divisors of K/C.
If p /∈ S, then p is unramified in L, so p =

∑
P|p P. Hence,

div(x) =
∑
p/∈S

np

∑
P|p

P +
∑
p∈S

np

∑
P|p

P mod pDiv(L/C)

≡ a + B mod pDiv(L/C),

where a ∈ Div(K/C) and B is a divisor of L/C that involves only primes
over S.

We choose o ∈ S. By Subsection 6.3.2, there exists a ∈ K× with
div(a) + a − deg(a)o ≡ 0 mod pDiv(K/C). Therefore, div(ax) ≡ deg(a)o +
B mod pDiv(L/C). This implies that vP(ax) ≡ 0 mod p for each P which
does not lie over S. Such P is unramified in L((ax)1/p) [FrJ08, Example
2.3.8]. Consequently, L((ax)1/p) ⊆ KS . �

In order to prove an analog of Lemma 9.5.3 also for p = char(C) > 0,
we have to replace Kummer theory in the above arguments by Artin-Schreier
theory. To that end we consider till the end of the proof of Lemma 9.5.6
only fields of characteristic p. Let ℘ be the additive operator defined on
fields of characteristic p by ℘(x) = xp − x. Recall that if L/K is a cyclic
extension of degree p, then L = K(x), where ℘(x) ∈ K � ℘(K) [Lan93,
p. 290, Thm. 6.4]. For each subgroup A of the additive group of K we
have [K(℘−1(A)) : K] = [A + ℘(K) : ℘(K)] [Lan93, p. 296, Thm. 8.3]. In
particular, let x, y, z ∈ Ks with ℘(x), ℘(y), ℘(z) ∈ K. Then
(3a) K(x) = K if and only if ℘(x) ∈ ℘(K).
(3b) If K(x) = K(y), then there exist k, l ∈ Z not both divisible by p such

that ℘(kx) + ℘(ly) ≡ 0 mod ℘(K). Conversely, if neither of k, l is
divisible by p and ℘(kx) + ℘(ly) ≡ 0 mod ℘(K), then K(x) = K(y).

(3c) If x /∈ K and K(x) = K(y), then there exists k ∈ Z such that p � k and
℘(y) ≡ ℘(kx) mod ℘(K).

(3d) If xi ∈ Ks, ai = ℘(xi) ∈ K for i = 1, . . . , n, and a1, . . . , an are linearly
independent over Fp modulo ℘(K), then the fields K(x1), . . . , K(xn)
are linearly disjoint cyclic extensions of K of degree p.

We use the rules (3) in the proof of the following additive analog of
Lemma 9.5.3.
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Lemma 9.5.5: Let L/K be a finite Galois extension of fields of positive
characteristic p and let (1) be a nonsplit central exact sequence. Suppose
L(x) is a solution field of (1) and ℘(x) ∈ L. Then L̂ is a solution field of (1)
if and only if L̂ = L(y) with ℘(y) ∈ L and ℘(y) ≡ ℘(x) mod K + ℘(L).

Proof: First suppose y is an element of Ks such that ℘(y) ∈ L and ℘(y) ≡
℘(x) + a mod ℘(L) with a ∈ K. Set A = Gal(L/K) and N = L(x, y) and
assume L(x) �= L(y). We choose z ∈ Ks such that ℘(z) = a. Then K(z)/K
is a cyclic extension of degree 1 or p and ℘(y) ≡ ℘(x + z) mod ℘(L). Hence,
L(x, y) = N = L(x, x + z) = L(x)K(z) (by (3b)). Therefore, the extension

(4) 1−→Gal(N/L(x))−→Gal(N/K)−→Gal(L(x)/K)−→ 1

splits. Next note that Gal(L(z)/K) = Gal(L(z)/L) × Gal(L(z)/K(z)) and
Gal(L(z)/L) is cyclic. Hence, Gal(L(z)/L) is contained in the center of
Gal(L(z)/K). In addition, by assumption, Gal(L(x)/L) is contained in
the center of Gal(L(x)/K). Hence, Gal(N/L) is contained in the center
of Gal(N/K). It follows that L(y)/K is Galois and 1 → Gal(L(y)/L) →
Gal(L(y)/K) → Gal(L/K) → 1 is a central exact sequence. Moreover, the
relation ℘(y − z) ≡ ℘(x) mod ℘(L) implies that L(y)K(z) = N , so the
extension

(5) 1−→Gal(N/L(y))−→Gal(N/K)−→Gal(L(y)/K)−→ 1

splits. Then Gal(N/K) ∼= Gal(L(x)/K) ×A Gal(L(y)/K) and the restric-
tion maps on L(x) and L(y) correspond to the projections on the groups
Gal(L(x)/K) and Gal(L(y)/K). By Lemma 9.5.2 there exists an isomor-
phism ϕ: Gal(L(y)/K) → Gal(L(x)/K) that commutes with the restriction
to L. It follows that L(y) is a solution field of (1).

Conversely, suppose L̂ is a solution field of (1). In particular, L̂ is a
cyclic extension of degree p of L. Hence L̂ = L(y0) with ℘(y0) ∈ L and there
exists an isomorphism ϕ: Gal(L(y0)/K) → Gal(L(x)/K) that commutes
with the restriction to L. Hence, with y0 replacing y, both extensions (4)
and (5) split (Lemma 9.5.2). This implies that N = L(x, z) with ℘(z) ∈ K.
If L(y0) = L(x), then ℘(ky0) ≡ ℘(x) mod ℘(L) for some k ∈ Z with p � k
(by (3c)).

If L(y0) �= L(x), then there exist k, l ∈ Z with p � k such that ℘(ky0) +
℘(lz) ≡ ℘(x) mod ℘(L) (by (3d)), so ℘(ky0) ≡ ℘(x) mod K +℘(L). In both
cases y = ky0 satisfies the requirements of the lemma. �
Lemma 9.5.6: Let K be a function field of one variable over an algebraically
closed field C of characteristic p > 0. Let S be a finite nonempty set of prime
divisors of K/C. Let L/K be a finite Galois subextension of KS/K. Suppose
the central nonsplit embedding problem (1) has a solution. Then (1) has a
solution field L̂ in KS .

Proof: By assumption there exists u ∈ L � ℘(L) and there exists x ∈ Ks

such that ℘(x) = u and L(x) solves (1). If P is a prime divisor of L/C that
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does not lie over S, then P is unramified over K. Moreover, the residue field
of L at P is C (because C is algebraically closed), hence equals to the residue
field of K at P|K . Therefore, K is P-dense in L. Since S is nonempty, the
strong approximation theorem [FrJ08, Prop. 3.3.1] gives an a ∈ K such that

(6)
vP(a − u) ≥ 0 if P|K /∈ S ∧ vP(u) < 0

vP(a) ≥ 0 if P|K /∈ S ∧ vP(u) ≥ 0.

We choose y ∈ Ks such that ℘(y) = u−a. By Lemma 9.5.5, L(y) is a solution
field of (1). By (6), vP(u− a) ≥ 0 for each P that does not lie over S, hence
by [FrJ08, Example 2.3.9], each such P is unramified in L(y). Consequently,
L(y) ⊆ KS , as desired. �

We combine Lemmas 9.5.4 and 9.5.6 with Lemma 9.5.1(b):

Theorem 9.5.7: Let E be a function field of one variable over an alge-
braically closed field C and S a finite nonempty set of prime divisors of E/C.
Then Gal(ES/E) is projective.

Proof: Consider a finite extension K of E in ES , a prime number p, a finite
p-extension L of K in ES , and a central nonsplit embedding problem (1).
By Lemma 9.5.1(b) it suffices to solve (1) in ES . Let S′ be the set of prime
divisors of K/C that lie over S. Then KS′ = ES . Hence, without loss, we
may assume that K = E and S′ = S. Therefore, by Lemmas 9.5.4 and 9.5.6,
it suffices to solve embedding problem (1) in the separable closure Ks of K.

By Proposition 9.4.6(b), Gal(K) is projective. Hence, there exists a
homomorphism γ: Gal(K) → B with α ◦ γ = resL. In particular,

α(γ(Gal(K))) = Gal(L/K).
If Z/pZ∩γ(Gal(K)) is trivial, then α has a group theoretic section, in contrast
to our assumption. Therefore, Z/pZ ⊆ γ(Gal(K)), so γ is surjective. The
fixed field of Ker(γ) in Ks is the desired field L(x). �
Corollary 9.5.8: Let E be a function field of one variable over an alge-
braically closed field C and S a nonempty set of prime divisors of E/C. Then
Gal(ES/E) is projective.

Proof: Every finite embedding problem for Gal(ES/E) is equivalent to an
embedding problem of the form
(7) (res: Gal(ES/E) → Gal(F/E), α: B → Gal(F/E)),
where F is a finite Galois extension of E in ES , B is a finite group, and α is
an epimorphism. The case F = E being trivial, we may assume that F is a
proper extension of E. Then the set T of all prime divisors of E/C ramified in
F is finite and we have F ⊆ ET ⊆ ES . Since S is nonempty, we may extend
F in ES , if necessary, to assume that T is nonempty. By Theorem 9.5.7,
there is a homomorphism γ: Gal(ET /E) → B such that α ◦ γ = resET /F . It
follows that the homomorphism γ′ = γ ◦ resES/ET

weakly solves embedding
problem (7). Consequently, Gal(ES/E) is a projective group. �
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9.6 Maximal Unramified Extensions
Let C be an algebraically closed field, E a function field of one variable over C,
and S a set of prime divisors of E/C. Theorem 9.5.7 states that Gal(ES/E)
is projective if S is nonempty. In this section we consider the case when
S is empty and redenote ES by Eur. Thus Eur is the maximal unramified
extension of E. In this case Theorem 9.5.7 is false, that is Gal(Eur/E) is not
projective. We prove it in two ways. The first method uses Proposition 9.2.1,
hence the Riemann existence theorem. The second method is algebraic and
involves the Jacobian of E.

Proposition 9.6.1: Let E be a function field of one variable over an alge-
braically closed field C of positive genus g. Then Gal(Eur/E) is not projec-
tive.

First proof: Let p = char(C) and choose a prime number l �= p. We denote
the compositum of all finite unramified Galois extensions of E of degree not
divisible by p by E′

ur and of an l-power degree by E
(l)
ur . Then E ⊆ E

(l)
ur ⊆

E′
ur ⊆ Eur. Assume Gal(Eur/E) is projective. Then Gal(E(l)

ur /E), being the
maximal pro-l quotient of Gal(Eur/E), is also projective [FrJ08, Prop. 22.4.8],
hence pro-l free [FrJ08, Prop. 22.7.6]. On the other hand, by Proposition
9.2.1(b), Gal(E′

ur/E) is the free group generated by elements τ1, τ
′
1, . . . , τg, τ

′
g

with the defining relation

(1) [τ1, τ
′
1] · · · [τg, τ

′
g] = 1

in the category of profinite groups with order not divisible by p. Since
Gal(E(l)

ur /E) is also the maximal pro-l quotient of Gal(E′
ur/E), it is the free

pro-l group generated by elements τ1, τ
′
1, . . . , τg, τ

′
g with the defining relation

(1). Now choose a basis t1, t
′
1, . . . , tg, t

′
g for the Fl-vector space F2g

l . The map

τi �→ ti and τ ′
i �→ t′i for i = 1, . . . , g extends to an epimorphism of Gal(E(l)

ur /E)
onto F2g

l . Since the rank of the latter group is 2g and that of the former one

is at most 2g, we deduce that rank(E(l)
ur /E) = 2g. It follows from [FrJ08,

Lemma 17.4.6(b)] that τ1, τ
′
1, . . . , τg, τ

′
g, viewed as generators of Gal(E(l)

ur /E)
form a basis of that group. Thus, every map of the basis into an l-group
A extends to a homomorphism of Gal(E(l)

ur /E) into A. In particular, this is
the case if we choose A to be noncommutative and a1, a

′
1 elements of A with

[a1, a
′
1] �= 1. Then the map τ1 �→ a1, τ ′

1 �→ a′
1, τi �→ 1, and τ ′

i �→ 1 for i ≥ 2
extends to a homomorphism into A. It follows from (1) that [a1, a

′
1] = 1.

This contradiction proves that Gal(Eur/E) is not projective. �
The second proof of Proposition 9.6.1 depends on the following piece of

information.

Lemma 9.6.2: Let E be a function field of one variable of genus g over an
algebraically closed field C. Let l �= char(C) be a prime number and A the
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subgroup of E×/(E×)l consisting of all cosets x(E×)l such that l|vp(x) for
all prime divisors p of E/C. Then, A ∼= (Z/lZ)2g.

Proof: We distinguish between two cases.

Case A: g = 0. Then E = C(t) is the field of rational functions over C
in an indeterminate t [FrJ08, Example 3.2.4]. In this case, each finite prime
divisor of E/C has a prime element of the form t − a with some a ∈ C.
Thus, if x(E×)l ∈ A, then x = c

∏
a∈C(t − a)lk(a) with c ∈ C× and with

k(a) ∈ Z such that k(a) = 0 for all but finitely many a’s. Moreover, since
C is algebraically closed, c is an l-power in C. Hence, x(E×)l is the unit
element of E×/(E×)l. Consequently, A is trivial.

Case B: g ≥ 1. We consider the group Div0(E/C) of divisors of E/C
of degree 0, its subgroup div(E×) of principal divisors, and the Jacobian
variety J of E/C (which exists since genus(E/C) > 0). For each x(E×)l ∈ A
there exists a divisor a of E/C such that div(x) = la. It satisfies 0 =
l deg(a), so deg(a) = 0. We map x(E×)l onto a + div(E×). If y ∈ E×,
then div(xyl) = l(a + div(y)), so our map defines a homomorphism α: A →
Div0(E/C)/div(E×). If x(E×)l ∈ Ker(α), then a = div(z) for some z ∈ E×,
so div(xz−l) = 0. Hence, xz−l ∈ C× [FrJ08, Sec. 3.1]. Since C is algebraically
closed, there exists c ∈ C× such that x = (cz)l. It follows that α is injective.
Note that since la = div(x), we have l(a + div(E×)) = 0. Thus, the image of
α lies in the subgroup D of Div0(E/C)/div(E×) of all elements annihilated
by l. Conversely, if a + div(E×) ∈ D, then there exists x ∈ E× such that
la = div(x), so α(x(E×)l) = a + div(E×). It follows that Im(α) = D. Hence
A ∼= D.

As mentioned in Subsection 6.3.2, there is an isomorphism

Div0(E/C)/div(E×) ∼= J(C).

Hence, D ∼= J(C)l. By Subsection 6.3.1, J(C)l
∼= (Z/lZ)2g. Consequently,

A ∼= (Z/lZ)2g. �

Next we apply Kummer theory.

Lemma 9.6.3: Let E be a function field of one variable over an algebraically
closed field C and let l �= char(C) be a prime number. Denote the maximal

unramified pro-l extension of E by E
(l)
ur and set g = genus(E/C). Then

rank(Gal(E(l)
ur /E)) = 2g.

Proof: Denote the compositum of all cyclic unramified extensions of E of de-
gree l by F . By [FrJ08, Lemma 22.7.4], Gal(E(l)

ur /F ) is the Frattini subgroup
of Gal(E(l)

ur /E) and Gal(F/E) ∼= (Z/lZ)r, where r = rank(Gal(E(l)
ur /E)).

On the other hand, since E contains a root of unity of order l, each cyclic
extension of E of degree l has the form E(x1/l) with x ∈ E×. That ex-
tension is unramified over E if and only if l|vp(x) for each prime divisor p
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of E/C [FrJ08, Example 2.3.8]. Thus, by Kummer Theory [Lan93, p. 295,
Thm. 8.2], Gal(F/E) ∼= A, where A is as in Lemma 9.6.2, hence by that
lemma Gal(F/E) ∼= (Z/lZ)2g. Combining that with the opening statement
of the proof, we conclude that rank(E(l)

ur /E) = 2g. �
Proposition 9.6.1: Let E be a function field of one variable over an alge-
braically closed field C of positive genus g. Then Gal(Eur/E) is not projec-
tive.

Second proof: Let p = char(C) and choose a prime number l �= p. We
denote the compositum of all finite unramified Galois extensions of E of
degree not divisible by p by E′

ur and of an l-power degree by E
(l)
ur . Then

E ⊆ E
(l)
ur ⊆ E′

ur ⊆ Eur. Assume that Gal(Eur/E) is projective. Then
G = Gal(E(l)

ur /E), being the maximal pro-l quotient of Gal(Eur/E), is also
projective [FrJ08, Prop. 22.4.8], hence pro-l free [FrJ08, Prop. 22.7.6]. By
Lemma 9.6.3, rank(G) = 2g.

Now we choose a proper finite extension F of E in E
(l)
ur and set h =

genus(F/C). Since F is unramified over E, Riemann-Hurwitz genus formula
simplifies to 2h − 2 = [F : E](2g − 2) (Remark 5.8.1(f)). hence

(2) h − 1 = [F : E](g − 1).

On the other hand, H = Gal(E(l)
ur /F ) is an open subgroup of G of index

[F : E]. Hence, by Nielsen-Schreier [FrJ08, Prop. 17.5.7], rank(H)− 1 = [F :
E](rank(G) − 1). Note that F

(l)
ur = E

(l)
ur , so by Lemma 9.6.3, rank(H) = 2h.

Hence,

(3) 2h − 1 = [F : E](2g − 1)

Substituting the value of h from (2) in (3) leads to [F : E] = 1. This
contradiction to our assumption proves that Gal(Eur/E) is not projective. �

9.7 Embedding Problems with Given Branching

We fix for the whole section a rational function field E = C(x) over an
algebraically closed field C. Assume that C is complete with respect to an
ultrametric absolute value. We show in this section how to solve finite split
embedding problems with an extra information on the branch points of the
solution fields. This prepares the way in the next section to prove for general
C that Gal(ES/E) is free of rank m, if |S| = m = card(C).

Lemma 9.7.1: For each integer n > 1 there exists a cyclic extension F/E of
degree n such that Branch(F/E) = {1,∞}.
Proof: The lemma follows from Lemma 4.2.5 by applying a suitable Möbius
transformation. Nevertheless, we supply a direct proof to the special case at
hand.
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If char(C) � n, let F = E(y), where yn = x− 1. If n = p = char(C) > 0,
let F = E(y), where yp − y = x2

x−1 . Then Branch(F/E) = {1,∞} [FrJ08,
Examples 2.3.8 and 2.3.9]. In each case F/E is a cyclic extension of degree
n.

The rest of the proof reduces the general case to these two cases.

Part A: Without loss of generality n is a prime power. Indeed, if n =∏m
i=1 pri

i , where p1, . . . , pm are distinct primes, and for each 1 ≤ i ≤ m there
is a cyclic extension Fi/E of degree pri

i , ramified at {1,∞} and unramified
elsewhere, then the compositum F =

∏m
i=1 Fi has the required properties.

Part B: Without loss of generality n is prime. Indeed, assume that n is a
power of a prime p and there is a cyclic extension F1/E of degree p, whose
branch points are 1,∞. Let S = {1,∞}. By Theorem 9.5.7, the embedding
problem

(α: Z/nZ → Z/pZ = Gal(F1/E), res: Gal(ES/E) → Gal(F1/E))

for Gal(ES/E) has a weak solution, say, ψ: Gal(ES/E) → Z/nZ. But ψ is
surjective, because α(ψ(Gal(ES/E))) = Z/pZ and Z/nZ is the only subgroup
H of Z/nZ with α(H) = Z/pZ. The fixed field F of Ker(ψ) has the required
properties. �
Lemma 9.7.2: Suppose C is complete with respect to an ultrametric absolute
value | |. Let c ∈ C, r ∈ C×, and set w = r

x−c . Let n > 1 be an integer. Then
there exists 0 < ε < |r| such that for all distinct b1, b2 ∈ C with |b1 − c|, |b2 −
c| ≤ ε there is a cyclic extension F/E of degree n, with Branch(F/E) =
{b1, b2} and F ⊆ Quot(C{w}).

Proof: Lemma 9.7.1 gives a cyclic extension F1/E of degree n with
Branch(F1/E) = {1,∞}. Since F1/E is unramified at 0 and C is alge-
braically closed, we have F1 ⊂ C((x)). Let y be a primitive element of
F1/E integral over C[x]. By Proposition 2.4.5, y converges at some point
b ∈ C. Thus, if we write y =

∑∞
n=0 anxn, then the series

∑∞
n=0 anbn con-

verges. Set ε = min(1, |rb|, |r|
2 ). Then for each a ∈ C× with |a| ≤ |rb| we

have μa(y) =
∑∞

n=0 ananxn =
∑∞

n=0 an

(
a
r

)n(rx)n, so the latter series in rx
converges. This means that μa(y) ∈ C{rx} and μa(F1) ⊆ Quot(C{rx}).

Let b1, b2 ∈ C such that |b1 − c|, |b2 − c| ≤ ε. Set a = b2 − b1 and
F2 = μa(F1). Then |a| ≤ ε ≤ |rb|, so F2 ⊆ Quot(C{rx}). By Remark 4.1.4,

Branch(F2/E) = (μ′
a)−1(Branch(F1/E))

=
1
a
{1,∞} = { 1

b2 − b1
,∞}.

Let θ be the C-automorphism of E given by θ(x) = 1
x−c , so that θ(rx) =

w. Extend θ to an isomorphism of fields θ: F2 → F3. Then F3 ⊆ Quot(C{w})
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and by Remark 4.1.4,

Branch(F3/E) = (θ′)−1(Branch(F2/E))

= (θ′)−1{ 1
b2 − b1

,∞} = {c + b2 − b1, c}.

Let d = c − b1. Then |d| ≤ ε ≤ 1. Let λ be the automorphism of C{w}
that maps f =

∑∞
n=0 anwn onto

λ(f) =
∞∑

n=0

an(w + d)n =
∞∑

n=0

an

n∑
k=0

(
n

k

)
dn−kwk

=
∞∑

k=0

( ∞∑
n=k

(
n

k

)
andn−k

)
wk.

Then
(
n
k

)
andn−k → 0 as n → ∞, so the series

∑∞
n=k

(
n
k

)
andn−k converges in

C, hence λ is well defined. Moreover,∣∣ ∞∑
n=k

(
n

k

)
andn−k

∣∣ ≤ max
n≥k

|an|.

We extend λ to an automorphism of Quot(C{w}). The restriction of λ to E
is the map w �→ w + d. Let F = λ(F3). Then F ⊆ Quot(C{w}) and

Branch(F/E) = (λ′)−1(Branch(F3/E)) = {c+b2−b1−d, c−d} = {b2, b1}. �
Remark 9.7.3: A disk in C ∪ {∞} is a set of the form

D = θ({a ∈ C | |a| ≤ ε})
where ε > 0 and θ is a Möbius transformation over C. Thus, each set of the
form D = {a ∈ C | |a − c| ≤ ε} or D = {a ∈ C | |a| ≥ ε} ∪ {∞} , where
c ∈ C, is a disk. (In fact, each disk is of this form; but we shall not use this
fact.) Note that the cardinality of a disk is the same as the cardinality of C.
�
Lemma 9.7.4: Assume C is complete with respect to an ultrametric absolute
value. Let F1/E be a finite Galois extension with group G1 and

(1) α: G = G1 � H → G1 = Gal(F1/E)

a finite split embedding problem for Gal(E) with a nontrivial kernel H. Con-
sider a finite set J that does not contain 1 and let {Gi}i∈J be a finite family of
nontrivial cyclic subgroups of G that generate H. Then there exists a family
of pairwise disjoint disks {Di}i∈J in C such that for every B ⊂

⋃
i∈J Di with

card(B ∩ Di) = 2 for each i ∈ J , there exists a solution field F of (1) with
Branch(FG1/E) = B.

Proof: Let I = J ∪{1}. Then G = 〈Gi | i ∈ I〉. We choose distinct elements
ci ∈ C, i ∈ I, and an element r ∈ C× with |r| ≤ |ci−cj | for all distinct i, j ∈ I.
Then let wi = r

x−ci
, Pi = Quot(C{wj | j �= i}) and P ′

i = Quot(C{wi}).
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Claim: We may assume that F1 ⊆ P ′
1. Indeed, since C is algebraically

closed, every prime divisor of F1/C is of degree 1. In particular, F1/C
has an unramified prime divisor of degree 1. By Lemma 4.3.7, there is
a C-automorphism of E that extends to an embedding θ: F1 → P ′

1. Let
F ′

1 = θ(F1) and extend θ to an automorphism of Es. Then θ defines isomor-
phisms θ∗: Gal(F1/E) → Gal(F ′

1/E) and θ∗: Gal(E) → Gal(E) such that the
following diagram commutes

Gal(E)
θ∗ ��

res

��

Gal(E)

res

��
G

α �� Gal(F1/E)
θ∗ �� Gal(F ′

1/E).

Suppose that there is a family of disjoint disks {D′
i}i∈J in C such that for

every B′ ⊂
⋃

i∈J D′
i with card(B′ ∩ D′

i) = 2 , for each i ∈ J , the embedding
problem

(θ∗ ◦ α: G → Gal(F ′
1/E), res: Gal(E) → Gal(F ′

1/E))

has a solution field F ′ with Branch(F ′G1/E) = B′. Let θ′ be the permutation
of C ∪ {∞} induced by θ as in Remark 4.1.4. Then the disks Di = θ′(Di),
for i ∈ J , have the required property.

Indeed, if B ⊂
⋃

i∈J Di and card(B ∩ Di) = 2 , for each i ∈ J , we put
B′ = (θ′)−1(B), let F ′ be as above, and extend θ to an automorphism of Es.
Then F = θ−1(F ′) solves (1) and θ(FG1) = F ′G1 . By Remark 4.1.4,

θ′(Branch(F ′G1/E)) = Branch(FG1/E).

Hence, B = Branch(FG1/E), as desired.
Thus, replacing F1 by F ′

1 we may assume that F1 ⊆ P ′
1.

By Lemma 9.7.2, there is an 0 < ε < |r| such that the (necessarily
disjoint) disks Di = {a ∈ C | |a − ci| ≤ ε}, for i ∈ J , have the following
property: For every B ⊂

⋃
i∈J Di with card(B ∩ Di) = 2, for each i ∈

J , there exist Galois extensions Fi/E with the cyclic Galois group Gi and
Branch(Fi/E) = B ∩ Di and Fi ⊆ Quot(C{wi}i∈I), for each i ∈ J . Let
P = Quot(C{wi}i∈I).

By Proposition 3.4.5, E = (E,Fi, Pi, Q; Gi, G)i∈I is patching data. Its
compound F is, by Lemma 1.3.1(c), a Galois extension of E that solves (1).
By Lemma 7.2.3(c),

Branch(FG1/E) =
⋃
i∈J

Branch(Fi/E) =
⋃
i∈J

B ∩ Di = B. �
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9.8 Descent
We wish to apply Lemma 9.7.4 to a sufficiently large complete extension of
a given algebraically closed field. Thus we consider the following situation.
Let C1 ⊆ C2 be two algebraically closed fields and x an intermediate. We set
E1 = C1(x), E2 = C2(x), and let

(1) ρ: G = G1 � H → G1 = Gal(F1/E1)

be a finite split embedding problem for Gal(E1) with a nontrivial kernel H.
Let F2 = F1E2. Then the restriction map Gal(F2/E2) → Gal(F1/E1) is an
isomorphism. We identify Gal(F2/E2) with G1 = Gal(F1/E1) via this map.
Then (1) induces a finite split embedding problem

(2) ρ: G = G1 � H → G1 = Gal(F2/E2)

for Gal(E2) with a nontrivial kernel.
Before dealing with embedding problems let us notice a simple fact:

Remark 9.8.1: Let A be an infinite subset of a field K. Then every nonempty
Zariski K-open subset of An meets An. Indeed, the only polynomial in n
variables over K that vanishes on An is 0. �
Lemma 9.8.2: Let A be an infinite subset of C1. Suppose (2) has a solution
field L2 such that ∞ /∈ Branch(LG1

2 /E2) and the elements of Branch(LG1
2 /E2)

are algebraically independent over C1. Then (1) has a solution field L1 with
Branch(LG1

1 /E1) ⊆ A.

Proof: There is an irreducible monic polynomial h ∈ C2[x, Z] such that
L2 = E2(z), with h(x, z) = 0. Furthermore, there are irreducible polynomials
f1, . . . , fr ∈ C2[x, Z] such that a root zj of fj is a primitive element of LG1

2 /E2

(hence also of L2/F2), and

(3) Branch(LG1
2 /E2) =

r⋂
j=1

Zero(discr(fj))

[Has80, p. 64].
We set Branch(LG1

2 /E2) = {u1, . . . , uk} and choose uk+1, . . . , ul ∈ C2

such that h, f1, . . . , fr ∈ C1[u][x, Z]. We also set Eu = C1(u, x), Fu =
F1(u) and add more elements of C2 to {u1, . . . , ul}, if necessary, such that
Lu = Eu(z) is a Galois extension of Eu that solves the embedding problem
G → Gal(Fu/Eu) induced from (1), and LG1

u = Eu(zj), j = 1, . . . , r.
Let U = Spec(C1[u]) be the irreducible variety that u generates over

C1. For each u′ ∈ U(C1) the C1-specialization u → u′ first extends to an
F1-place ′: Fu → F1 ∪ {∞}, and then to a place ′: Lu → Ẽ1 ∪ {∞}. Let
B = {u′

1, . . . , u
′
k} ⊂ C1 be the image of Branch(LG1

2 /E2) = {u1, . . . , uk}.
The variety U has a nonempty Zariski-open subset U ′ such that for all

u′ ∈ U ′ the following statements hold:
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(4a) h′, f ′
1, . . . , f

′
r ∈ C1[x, Z] are irreducible over C1(x) [FrJ08, Prop. 9.4.3];

(4b) L1 = E1(z′) is Galois over E1 and L1 solves embedding problem (1)
[FrJ08, Lemma 13.1.1];

(4c) the respective roots z′1, . . . , z
′
r of f ′

1, . . . , f
′
r are primitive elements for

LG1
1 /E1.

From (3), B =
⋂r

j=1 Zero(discr(f ′
j)). Since LG1

1 /E1 is unramified at each
point outside Zero(discr(f ′

j)), j = 1, . . . , r (by [Has80, p. 64]),
(4d) Branch(LG1

1 /E1) ⊆ B.
By assumption, u1, . . . , uk are algebraically independent over C1. Therefore,
the projection on the first k coordinates pr: U → Ak is a dominant map,
hence pr(U ′) contains a Zariski-open subset of Ak [Lan58, p. 88, Prop. 4]. By
Remark 9.8.1, we may choose u′ ∈ U ′(C1)∩pr−1(Ak), so B = {u′

1, . . . , u
′
k} ⊂

A. Consequently, Branch(LG1
1 /E1) ⊆ A. �

To achieve the algebraic independence in Lemma 9.8.2 we use:

Lemma 9.8.3: Let C1 ⊂ C2 be two algebraically closed fields such that
card(C1) < card(C2). Let {Dj}j∈J be a finite collection of pairwise disjoint
subsets of C2 of cardinality card(C2). Then there exists a set B ⊆

⋃
j∈J Dj

such that card(B ∩ Dj) = 2 for each j ∈ J and the elements of B are
algebraically independent over C1.

Proof: Write J as {1, . . . , k}, and suppose, by induction, that we have al-
ready found bj , b

′
j ∈ Dj , for j = 1, . . . , k − 1, such that b1, b

′
1, . . . , bk−1, b

′
k−1

are algebraically independent over C1. The cardinality of the algebraic closure
C ′

1 of C1(b1, b
′
1, . . . , bk−1, b

′
k−1) in C2 is card(C1) < card(C2) = card(Dk), so

there exist bk, b′k ∈ Dk algebraically independent over C ′
1. Thus,

b1, b
′
1, . . . , bk, b′k are algebraically independent over C1. �

Lemma 9.8.4: Let G be a projective group of rank m. Set m′ = 1 if m = ℵ0

and m′ = m if m > ℵ0. Suppose every finite split embedding problem for G
with a nontrivial kernel has m′ solutions. Then G ∼= F̂m.

Proof: The case where m > ℵ0 is settled in [FrJ08, Lemma 21.5.8]. Consider
the case where m = ℵ0. By Iwasawa, it suffices to prove that every finite
embedding problem

(5) (ϕ: G → A, α: B → A)

is solvable [FrJ08, Cor. 24.8.3]. Indeed, since G is projective, there exists a
homomorphism γ: G → B with α ◦ γ = ϕ. Then Ker(γ) is an open normal
subgroup of G, so Â = G/Ker(γ) is a finite group. Let ϕ̂: G → Â be the
quotient map and ϕ̄: Â → A and γ̂: Â → B the homomorphisms induced by
ϕ and γ, respectively. In particular α◦γ̂ = ϕ̄. Next consider the fiber product
B̂ = B ×A Â with the corresponding projections β: B̂ → B and α̂: B̂ → Â.
The defining property of the fiber product gives a homomorphism α̂′: Â → B̂
such that α̂ ◦ α̂′ = idÂ. In other words, α̂ splits. By assumption there exists
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an epimorphism δ: G → B̂ such that α̂ ◦ δ = ϕ̂. Thus, β ◦ δ solves embedding
problem (5). Consequently, G ∼= F̂ω. �

The preceding lemmas yield the main result of this chapter:

Theorem 9.8.5: Let C be an algebraically closed field of cardinality m,
E = C(x) the field of rational functions over C, and S a subset of C ∪ {∞}
of cardinality m. Then Gal(ES/E) is isomorphic to the free profinite group
of rank m.

Proof: Put C1 = C and E1 = E. By Corollary 9.5.8, Gal(ES/E) is pro-
jective. Therefore, by Lemma 9.8.4, it suffices to show that every finite split
embedding problem (1) for Gal(ES/E) with a nontrivial kernel has m′ solu-
tion fields, where m′ = 1 if m = ℵ0, and m′ = m otherwise.

Let β < m be an ordinal number. Suppose, by transfinite induction,
that {Nα}α<β is a family of distinct solution fields of (1). For each α, the
set Branch(Nα/E) is finite. Hence, A = S �

⋃
α<β Branch(Nα/E) is infinite.

We choose an algebraically closed field C2 that contains C and is com-
plete with respect to a nontrivial ultrametric absolute value such that
card(C) < card(C2). For instance, choose a field C ′ that contains C such that
card(C) < card(C ′), and let C2 be the completion of the algebraic closure of
C ′((t)). We consider the induced embedding problem (2).

Let {Gj | j ∈ J} be a nonempty set of nontrivial cyclic groups that gen-
erate H with 1 /∈ J . By Lemma 9.7.4, there exists a family of disks {Dj}j∈J

in C2 such that for every B ⊂
⋃

j∈J Dj with card(B ∩ Dj) = 2 for each

j ∈ J there exists a solution field L2 to (2) with Branch(LG1
2 /C2(x)) = B.

We choose such a set B. By Remark 9.7.3, card(Dj) = card(C2). By
Lemma 9.8.3, we may assume that the elements of B are algebraically inde-
pendent over C. Therefore, by Lemma 9.8.2, (1) has a solution field N = Nβ

such that Branch(NG1/E) ⊆ A.
Since N = F1N

G1 , we have

Branch(N/E) = Branch(F1/E) ∪ Branch(NG1/E)

(Remark 4.1.1). Furthermore,

Branch(F1/E),Branch(NG1/E) ⊆ S,

so Branch(N/E) ⊆ S. Since Branch(NG1/E) ⊆ A, we have

Branch(NG1/E) ∩ Branch(Nα/E) = ∅

for each α < β. In addition, [NG1 : E] = |H| > 1, so by the Riemann-Hurwitz
genus formula (Remark 5.8.1(f)), Branch(NG1/E) �= ∅. Since

Branch(NG1/E) ⊂ Branch(N/E),

it follows that Branch(N/E) �= Branch(Nα/E) for each α < β. Consequently
N �= Nα for each α < β. �
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Remark 9.8.6: Fundamental groups. In the special case of Theorem 9.8.5,
where S is the set of all prime divisors, C(x)S = C(x)s. Thus, Gal(C(x)) ∼=
F̂m. If F is a finite extension of C(x), then Gal(F ) is isomorphic to an open
subgroup of Gal(C(x)), so Gal(F ) ∼= F̂m [FrJ08, Prop. 25.2.2]. It follows that
Theorem 9.8.5 is essentially a generalization of Corollary 9.4.9.

One may try to generalize the latter observation to a proper finite exten-
sion F of C(x) and a set S of prime divisors of F/C of cardinality card(C).
Let T be the set of all prime divisors of C(x)/C that lie under S and those
that ramify in F . Then FS ⊆ C(x)T , so Gal(C(x)T /F ) is an open sub-
group of Gal(C(x)T /C(x)). By Theorem 9.8.5 and [FrJ08, Prop. 25.2.2],
Gal(C(x)T /F ) ∼= F̂m. However, Gal(FS/F ) might be a proper quotient of
Gal(C(x)T /F ), so our methods fail to prove that the latter group is also
isomorphic to F̂m.

Nevertheless, using formal patching, Harbater proved that Gal(FS/F ) ∼=
F̂m if the complement of S is finite [Hrb95, Thm. 4.4]. Using rigid analytic
patching, Pop proved the latter isomorphism under the weaker condition
that card(S) = m [Pop95, p. 556, Thm. A]. Note that both Harbater and
Pop consider a smooth projective model X for F/C, reinterpret S as a subset
of X(C), call Gal(FS/F ) the fundamental group of X � S, and denote it
by Π(X � S). �

9.9 Fundamental Groups with S Finite

We consider again a function field E of one variable of genus g over an
algebraically closed field C of characteristic p. Let S be a finite nonempty set
of prime divisors of E/C. As before we denote the maximal Galois extension
of E ramified at most over S by ES . By Corollary 9.1.7, Gal(ES/E) is a free
profinite group if p = 0. We prove in this section that this is false if p > 0.

For each prime number l we denote the maximal pro-l extension of E

which is ramified at most over S by E
(l)
S .

Lemma 9.9.1: Let E be a function field of one variable over an algebraically
closed field C, S a finite nonempty set of prime divisors of E/C, and l a

prime number. Then Gal(E(l)
S /E) is a free pro-l group.

Proof: The group Gal(E(l)
S /E) is the maximal pro-l quotient of Gal(ES/E).

By Theorem 9.5.7, the latter group is projective. Hence, by [FrJ08, Prop.
22.4.8], so is the former. Alternatively, one may repeat the proof of Theorem
9.5.7. �
Lemma 9.9.2: Let C be an infinite field of positive characteristic p and
cardinality m. Let E be a function field of one variable over C and S a

nonempty set of prime divisors of E/C. Then rank(Gal(E(p)
S /E)) = m.

Proof: Since card(E) = m, the field E has at most m finite extensions in
E

(p)
S , hence rank(Gal(E(p)

S /E)) ≤ m [FrJ08, Prop. 17.1.2]. Thus, it suffices to
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prove that rank(Gal(E(p)
S /E)) ≥ m. The rest of the proof breaks up into

two parts.

Part A: Assume E = C(x) with a transcendental element x over C. Since
Gal(C(x)(p)

S /C(x)) is a pro-p group, it suffices to construct m linearly disjoint
cyclic extensions in C(x)S of degree p [FrJ08, Lemma 22.7.1].

We apply a Möbius transformation on C(x), if necessary, to assume that
the pole px,∞ of x belongs to S. Then C(x)(p)

{px,∞} ⊆ C(x)(p)
S . Therefore, we

may further assume that S = {px,∞}. Since C is infinite, the dimension of
C as a vector space over Fp is m. Let B be a basis of C over Fp. For each
b ∈ B let yb be an element of C(x)s such that yp

b − yb = bx. Then C(x, yb) is
a cyclic extension of degree p. Moreover, since px,∞ is the only pole of bx, no
prime divisor of C(x)/C but px,∞ is ramified in C(x, yb). This means that

C(x, yb) ⊆ C(x)(p)
S . To conclude the proof we have now to prove that the

elements of Bx are linearly independent over Fp modulo ℘(C(x)) (Statement
(3d) of Section 9.5).

To that end consider distinct elements b1, . . . , bn of B and arbitrary
elements β1, . . . , βn ∈ Fp. Assume there exists u ∈ C(x) with

(1)
n∑

i=1

βibix = up − u.

Then u is integral over C[x], and because C[x] is integrally closed, u ∈ C[x].
If deg(u) ≥ 1, then the degree of the right hand side of (1) is greater than
1 while the degree of the left hand side of (1) is 1. If deg(u) = 0, then∑n

i=1 βibi = 0. Consequently, βi = 0 for each i, as contended.

Part B: The general case. We choose a transcendental element x of E
over C and denote the set of prime divisors of C(x)/C lying under S by T .
By Part A, rank(Gal(C(x)(p)

T /C(x))) = m. Since E is a finite extension of

C(x), so is E0 = C(x)(p)
T ∩E, hence Gal(C(x)(p)

T /E0) is an open subgroup of

Gal(C(x)(p)
T /C(x)), hence rank(Gal(C(x)(p)

T /E0)) = m [FrJ08, Cor. 17.1.5].

Now observe that C(x)(p)
T ⊆ E

(p)
S , so Gal(C(x)(p)

T /E0) is a quotient of the

group Gal(E(p)
S /E). Therefore, by [FrJ08, Cor. 17.1.4], rank(Gal(E(p)

S /E)) ≥
m, as contended. �

Lemma 9.9.3: Let C be an algebraically closed field, E a function field of
one variable over C, S a finite set of prime divisors of E/C, and l a prime

number that does not divide char(C). Then rank(Gal(E(l)
S /E)) < ∞.

Proof: Let E′ be the compositum of all cyclic extensions of E of degree l

in E
(l)
S . Since Gal(E(l)

S /E′) is a pro-l group and Gal(E(l)
S /E′) is the Frat-

tini subgroup of Gal(E(l)
S /E), the rank of Gal(E(l)

S /E) is equal to that of
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Gal(E′/E) [FrJ08, Lemma 22.7.4]. Thus, it suffices to prove that Gal(E′/E)
is finite.

Let S′ be the complement of S in the set of all prime divisors of E/C.
Denote the subgroup of E× consisting of all elements x satisfying l|vp(x) for
all p ∈ S′ by B′. Then E′ = E(x1/l | x ∈ B′) [FrJ08, Example 2.3.8]. Let
B be the subgroup of E×/(E×)l consisting of all x(E×)l with x ∈ B′. By
Kummer theory [Lan93, p. 294, Thm. 8.1], B ∼= Gal(E′/E). Thus, we have
to prove that B is finite.

To that end consider the map ν: B → (Z/lZ)S defined by

ν(x(E×)l) = (vp(x) + lZ)p∈S .

Then Ker(ν) consists of all left classes x(E×)l such that l|vp(x) for all prime
divisors of E/C. By Lemma 9.6.2, Ker(ν) is finite. Since (Z/lZ)S is finite, it
follows that B is also finite. �
Proposition 9.9.4: Let C be an algebraically closed field of positive char-
acteristic, E a function field of one variable over C, and S a set of prime
divisors of E/C with card(S) < card(C). Suppose that S is nonempty or E
is not rational. Then Gal(ES/E) is not a free profinite group.

Proof: If S is empty, then ES = Eur. By assumption, genus(E) > 0, so
Gal(ES/E) is not projective (Proposition 9.6.1). It follows that Gal(ES/E)
is not free [FrJ08, Cor. 22.4.5].

Assume S is nonempty and Gal(ES/E) is a free profinite group of rank
m. Then, for each prime number l, the maximal pro-l quotient Gal(E(l)

S /E) of
Gal(ES/E) is a free pro-l group of rank m [FrJ08, Lemma 17.4.10]. Applying
Lemma 9.9.2 for the case l = char(C), we conclude that

m = rank(Gal(E(l)
S /E)) = card(C)

is infinite.
On the other hand consider the case l �= char(C). If S is finite, then

rank(Gal(E(l)
S /E)) < ∞ (Lemma 9.9.3). This contradicts the conclusion of

the preceding paragraph.
If S is infinite, then ℵ0 ≤ card(S) < m. Let A be the collection of all

finite subsets of S. Then card(A) = card(S) and E
(l)
S =

⋃
A∈A E

(l)
A . Since

m is infinite, rank(Gal(E(l)
S /E)) is equal to the cardinality of the set of all

finite extensions of E in E
(l)
S [FrJ08, Prop. 17.1.2]. Each of these extensions

is contained in E
(l)
A for some A ∈ A. For each A ∈ A, E has at most

countably many finite extensions in E
(l)
A (because rank(Gal(E(l)

A /E)) < ∞).
It follows that rank(Gal(ES/E)) ≤ card(A)ℵ0 = card(S)ℵ0 < m. Again,
this is a contradiction to the conclusion of the second paragraph of the proof.
We conclude from this contradiction that Gal(ES/E) is not a free profinite
group. �
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Notes

Remark 9.9.5: Non-isomorphic fundamental groups. Let E be a function
field of one variable of genus g > 0 over an algebraically closed field of
characteristic p and let S be a finite set of prime divisors of r elements. By
Proposition 9.1.6, Gal(ES/E) is uniquely determined up to an isomorphism
by r and g if p = 0. This is not the case if p > 0.

Indeed, for p �= 0, 2 consider elements a and a′ in F̃p such that the elliptic
curve Γ defined over F̃p with j-invariant a is ordinary and the elliptic curve
Γ′ defined over F̃p with j-invariant a′ is supersingular. Let F (resp. F ′) be
the function field of Γ (resp. Γ′). Then Gal(Fur/F ) �∼= Gal(F ′

ur/F ′) although
genus(F/F̃p) = 1 = genus(F ′/F̃p). Indeed, F has a unique unramified Z/pZ-
extension while F ′ has none [Hrb77, p. 338, Exercise 4.8].

Similarly, let E = F̃p(x), S = {0, 1,∞, a} and S′ = {0, 1,∞, a′} with
distinct a, a′ ∈ F̃p. By [Hrb94b, Thm. 1.8], Gal(ES/E) �∼= Gal(ES′/E) al-
though they have the same invariants, r = 4 and g = 0. �

Notes
The proof of Proposition 9.1.1 and its generalization, Proposition 9.1.2, uses
non-algebraic tools such as algebraic topology and the theory of Riemann sur-
faces, so it goes beyond the scope of this book. For a complete detailed proof
of Proposition 9.1.1 we refer the reader to Helmut Völklein’s book [Voe96].
See also [MaM99, Chap. 1, Thms. 1.3 and 1.4]. A proof of Proposition 9.1.2
can be found in [Dou79], [Matz87, p. 30, Satz 1], and [Ser92, Section 6.2].
Proposition 9.1.5 is reduced to Proposition 9.1.2 via Proposition 9.1.4. This
reduction goes also under the name of “Grothendieck specialization theo-
rem”. Standard projective limit argument allows us to deduce Proposition
9.1.6 from Proposition 9.1.5. This transition appears also in [Matz87, p. 37,
Satz 3]. Corollary 9.1.10 is due to Douady. It is a special case of Proposition
9.1.9. The proof of the latter theorem applies Proposition 9.1.6 and a projec-
tive limit argument over all finite subsets of S. Although we do not include
information about the decomposition groups in Proposition 9.1.9 that infor-
mation enters into the limit argument in an essential way. We have borrowed
that ingredient of the proof from the proof of [Rib70, p. 70, Thm. 8.1].

A survey of Abhyankar’s conjecture, Raynaud’s proof of the conjec-
ture for the affine line, and Pop’s reduction to Raynaud’s result appears
in [MaM99, Sections 5.2, 5.3, and 5.4].

Section 9.3 surveys the cohomology of groups and Galois cohomology to
the extent needed in the book. Our main source is [Rib70].

Section 9.4 reproduces [Jar99, Sec. 1], which by itself puts together well
known arguments. The standard proof of Lemma 9.4.4 uses a special case of
cohomological triviality: Let G be a finite group and let A be a G-module.
If Ĥ0(G, A) = AG/NA = 0 (where Na = Σσ∈Gσa) and H1(G, A) = 0, then
H2(G, A) = 0 [CaF67, p. 113, Thm. 9]. In our case, G = Gal(N/K), A = N×

and AG/NA = K×/normN/KN× = 1. Also, H1(G, N×) = 1, by Hilbert’s
theorem 90. So, indeed, H2(G, A) = 1. Replacing cohomological triviality in
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the proof of Lemma 9.4.4 by the more elementary argument is due to Sigrid
Böge (private communication).

Proposition 9.4.6 is usually referred to as Tsen’s theorem, because
Tsen proved the essential ingredient of its proof, namely that the field of
ratioanl functions over an algebraically closed field is C1 [Tse33].

The proof that Gal(ES/E) is projective in Section 9.5 is based on tips
of Heinrich Matzat.

Lemma 9.5.2 is a rewrite of [Son94, Lemma 2.6]. Lemma 9.5.3 is due to
Shafarevich [Sha89, p. 109]. See also [Son94, Prop. 2.5]. The proof of Lemma
9.5.4 is a modification of the proof of [Son94, Prop. 3.2]. Theorem 9.5.7 is
proved by Serre [Ser90, Prop. 1], using étale cohomology.

The second proof of Proposition 9.6.1 that do not use Riemann’s exis-
tence theorem arose from discussions with Gerhard Frey. The same goes for
the proof of Lemma 9.6.2.

Harbater proves Theorem 9.8.5 in the case where C ∪ {∞}� S is finite
by formal patching [Har95, Thm. 4.1]. Pop proves Theorem 9.8.5 in its
full strength by rigid methods [Pop05, p. 556, Cor.]. We follow [HaJ00a].
Corollary 9.4.9 is a special case of Theorem 9.8.5 and Theorem 9.4.8 is a
slight generalization of Corollary 9.4.9.

Shafarevich discussed his conjecture on the freeness of Gal(Qab) during
a talk in Oberwolfach in 1964. Latter it appeared in [Bey80].

A Galois theoretic version of Lemma 9.8.4 appears in [Matz87, p. 231,
Lemma 1].
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Chapter 10.
Semi-Free Profinite Groups

We have already pointed out that a profinite group G of an infinite rank m is
free of rank m if (and only if) G is projective and every finite split embedding
problem for G with a nontrivial kernel has m solutions (Proposition 9.4.7).
Dropping the condition on G to be projective leads to the notion of a “quasi-
free profinite group” (Section 10.6).

A somewhat stronger condition is that of a “semi-free profinite group”.
We say that G is semi-free if every finite split embedding problem for G
with a nontrivial kernel has m independent solutions (Definition 10.1.5). The
advantage of the latter notion on the former one is that the known conditions
on a closed subgroup of a free profinite group of rank m to be free of rank m
go over to semi-free groups. Indeed, even the method of proof that applies
twisted wreath products goes over from free profinite groups to semi-free
profinite groups (Section 10.3). Thus, every open subgroup of a semi-free
group G is semi-free (Lemma 10.4.1), every normal closed subgroup N of
G with G/N Abelian is semi-free, every proper open subgroup of a closed
normal subgroup of G is semi-free, and in general every closed subgroup M
of G that is “contained in a diamond” is semi-free (Theorem 10.5.3).

An application of the diamond theorem to function fields of one variable
over PAC fields appears in the next chapter.

10.1 Independent Subgroups

We introduce a group theoretic counterpart of “linear disjointness of fields”.

Definition 10.1.1: Independent subgroups. Let F be a profinite group.
(a) Open subgroups M1, . . . , Mn of F are F -independent, if

(F :
n⋂

i=1

Mi) =
n∏

i=1

(F : Mi).

(b) A family M of open subgroups of F is F -independent if M1, . . . , Mn

are F -independent, for all distinct M1, . . . , Mn ∈ M. �

Remark 10.1.2:
(a) Let F be a profinite group, μ the normalized Haar measure of F , and

M1, . . . , Mn open subgroups of F . Then M1, . . . , Mn are F -independent
if and only if M1, . . . , Mn are μ-independent, that is μ(

⋂n
i=1 Mi) =∏n

i=1 μ(Mi) [FrJ08, Lemma 18.3.7].
(b) Suppose in the notation of (a) that M1, . . . , Mn are normal. Then

M1, . . . , Mn are F -independent if and only if F/
⋂n

i=1 Mi
∼=
∏n

i=1 F/Mi.

M. Jarden,                                 , Springer Monographs in Mathematics,
DOI , © Springer-Verlag Berlin Heidelberg 201110.1007/978-3-642-15128-6_10
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(c) Let L1, . . . , Ln be finite separable extensions of a field K. Then
Gal(L1), . . . ,Gal(Ln) are Gal(K)-independent if and only if L1, . . . , Ln

are linearly disjoint over K [FrJ08, Lemma 18.5.1]. �
The following basic rules for F -independency of open subgroups of a

profinite group F can be deduced from the corresponding properties of linear
disjointness [FrJ08, Section 2.5], using a realization of F as a Galois group of
a Galois extension [FrJ08, Cor. 1.3.4]. We give here direct proofs.

Lemma 10.1.3: Let M1, . . . , Mn be open subgroups of a profinite group F .
Then:
(a) (F :

⋂n
i=1 Mi) ≤

∏n
i=1(F : Mi).

(b) M1, M2 are F -independent if and only if (M1 : M1 ∩ M2) = (F : M2).
(c) Suppose M1 � F . Then M1, M2 are F -independent if and only if F =

M1M2.
(d) Let M1 ≤ N1 ≤ F . Then M1, M2 are F -independent if and only if

N1, M2 are F -independent and M1, N1 ∩ M2 are N1-independent (the
tower property).

(e) M1, . . . , Mn are F -independent if and only if M1, . . . , Mn−1 are

F -independent and
⋂n−1

i=1 Mi, Mn are F -independent.
(f) Suppose Mi ≤ Ni ≤ F for i = 1, . . . , n. If M1, . . . , Mn are F -independent,

then so are N1, . . . , Nn.

Proof of (a): The map F/
⋂n

i=1 Mi →
∏n

i=1 F/Mi of quotient spaces defined
by f
⋂n

i=1 Mi �→ (fM1, . . . , fMn) is injective, hence (a) is true.

Proof of (b): The statement follows from the identity (F : M1)(M1 : M1 ∩
M2) = (F : M1 ∩ M2).

Proof of (c): The assumption M1�F implies that (M2 : M1∩M2) = (M1M2 :
M1) ≤ (F : M1). Now we apply (b) with the indices 1 and 2 exchanged to
conclude (c).

Proof of (d): First assume that N1, M2 are F -independent and M1, N1∩M2

are N1-independent. Then, by (b),
(1)
(N1 : N1 ∩M2) = (F : M2) and (N1 : M1 ∩M2) = (N1 : M1)(N1 : N1 ∩M2).

Hence,

(F : M1 ∩ M2) = (F : N1)(N1 : M1 ∩ M2)
= (F : N1)(N1 : M1)(N1 : N1 ∩ M2) = (F : M1)(F : M2),

so M1, M2 are F -independent.
Conversely, suppose (F : M1 ∩ M2) = (F : M1)(F : M2). Then, by (a),

(F : M1)(F : M2) = (F : M1 ∩ M2) = (F : N1)(N1 : M1 ∩ M2)
≤ (F : N1)(N1 : M1)(N1 : N1 ∩ M2) ≤ (F : M1)(F : M2).
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Hence, (N1 : M1 ∩ M2) = (N1 : M1)(N1 : N1 ∩ M2), so by definition,
M1, N1 ∩ M2 are N1-independent. Also, (N1 : N1 ∩ M2) = (F : M2), so by
(b), N1, M2 are F -independent.

Proof of (e): First we suppose M1, . . . , Mn−1 are F -independent and⋂n−1
i=1 Mi, Mn are F -independent. Then, by (b),

(F : M1 ∩ · · · ∩ Mn)
= (F : M1 ∩ · · · ∩ Mn−1)(M1 ∩ · · · ∩ Mn−1 : M1 ∩ · · · ∩ Mn)
= (F : M1) · · · (F : Mn−1)(F : Mn),

so M1, . . . , Mn are F -independent.
Conversely, suppose M1, . . . , Mn are F -independent. Then, by (a),

n∏
i=1

(F : Mi) = (F :
n⋂

i=1

Mi) ≤ (F :
n−1⋂
i=1

Mi)(F : Mn) ≤
n−1∏
i=1

(F : Mi) ·(F : Mn),

hence (F :
⋂n

i=1 Mi) = (F :
⋂n−1

i=1 Mi)(F : Mn), as desired.

Proof of (f): By definition, M1, . . . , Mn−1 are F -independent. Hence, by an
induction hypothesis, N1, . . . , Nn−1 are F -independent. By the tower prop-
erty (d), Nn,

⋂n−1
i=1 Mi are F -independent. Hence, by (d) again, Nn,

⋂n−1
i=1 Ni

are F -independent. It follows from (e) that N1, . . . , Nn are F -independent.
�
Lemma 10.1.4: Let M = (Mα | α < λ) be a transfinite sequence of open
normal subgroups of a profinite group F . Suppose Mκ

⋂
α<κ Mα = F for

each κ < λ. Then M is F -independent.

Proof: Let α1 < · · · < αn be ordinal numbers smaller than λ. By as-
sumption,

⋂
α<αn

Mα, Mαn
are F -independent. Hence, by Lemma 10.1.3(d),⋂n−1

i=1 Mαi
, Mαn

are F -independent. By an induction hypothesis on n,

Mα1 , . . . , Mαn−1

are F -independent. Hence, by Lemma 10.1.3(e), Mα1 , . . . , Mαn
are

F -independent. Consequently, M is F -independent. �
Definition 10.1.5: Semi-free profinite group. Solutions of an embedding
problem

(2) (ϕ: F → A, α: B → A)

of a profinite group F are independent if their kernels are Ker(ϕ)-indepe-
ndent.

Note that if the kernel of (2) is trivial, then α is an isomorphism and
ψ = α−1 ◦ ϕ is a solution. In this case, if for each i in a set I we set
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ψi = ψ, then Ker(ψi) = Ker(ϕ), so {Ker(ψi) | i ∈ I} are Ker(ψ)-independent.
Therefore, {ψi | i ∈ I} is a set of independent solutions of (2).

A profinite group F of infinite rank m is semi-free if every finite split
embedding problem for F with a nontrivial kernel has m independent solu-
tions. �

Remark 10.1.6: Let M be a profinite group and m an infinite cardinal num-
ber. Suppose each finite split embedding problem with a nontrivial kernel
of M has m independent solutions. In particular, if G is a nontrivial finite
group, then the embedding problem (M → 1, G → 1) has m independent
solutions. Thus, M has m independent open normal subgroups Mi with
M/Mi

∼= G. In particular rank(M) ≥ m [FrJ08, Lemma 17.1.2]. It follows
that if in addition, rank(M) ≤ m, then rank(M) = m and M is semi-free. �

Lemma 10.1.7: Let F be a profinite group and M an infinite family of
pairwise F -independent normal open subgroups of F . Then M contains an
F -independent subfamily M0 of cardinality card(M).

Proof: By Zorn’s lemma, M has a maximal F -independent subfamily M0.
We prove that card(M0) = card(M).

Otherwise, card(M0) < card(M). Let M1 be the family of all finite
intersections of elements of M0. If M0 is finite, then so is M1. If M0 is
infinite, then card(M1) = card(M0). In both cases, card(M1) < card(M).

Next we denote the family of all subgroups of F that contain a group
belonging to M1 by M2. Again, if M1 is finite, then so is M2. If M1 is
infinite, then card(M2) = card(M1). In both cases, card(M2) < card(M).

By Lemma 10.1.3(d), each open proper subgroup of F contains at most
one group M ∈ M. Hence, there exists M ∈ M not contained in any proper
subgroup of F that belongs to M2. We claim that the family M0 ∪ {M} is
F -independent.

To prove the claim we consider M1, . . . , Mn ∈ M0. Then, M1, . . . , Mn

are F -independent. Moreover, M
⋂n

i=1 Mi ∈ M2. Hence, by the choice
of M we have M

⋂n
i=1 Mi = F . By Lemma 10.1.3(c), M,

⋂n
i=1 Mi are F -

independent. Therefore, by Lemma 10.1.3(e), M1, . . . , Mn, M are F -indepen-
dent. This completes the proof of the claim of the preceding paragraph and
gives the desired contradiction to the maximality of M0. �

Taking into account Remark 10.1.6, Lemma 10.1.7 yields the following
result:

Corollary 10.1.8: Let m be an infinite cardinal number and F a profinite
group of rank at most m. Then F is semi-free of rank m if and only if
every finite split embedding problem with a nontrivial kernel has m pairwise
independent solutions.

Definition 10.1.9: Weight. Let M be a closed subgroup of a profinite group
F . We define the weight of the quotient space F/M as 1 if M is open and
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10.1 Independent Subgroups

as the cardinality of the set of all open subgroups of F that contain M if
(F : M) = ∞.

Let m be an infinite cardinal number. If L =
⋂

i∈I Li, Li is a closed
subgroup of F , weight(F/Li) < m for each i ∈ I, and card(I) < m, then
weight(F/L) < m [FrJ08, Lemma 25.2.1(b)].

If N is a closed subgroup of a closed subgroup M of F , and weight(F/M),
weight(M/N) < m, then weight(F/N) < m [FrJ08, Lemma 25.2.1(d)]. �

Definition 10.1.10: Small quotient spaces. Let M be a closed subgroup of a
profinite group F . We denote the set of all open subgroups of F that contain
M by Open(F/M). We say that the quotient space F/M is small if for each
positive integer n, the set Open(F/M) has only finitely many groups of index
at most n. In particular if M � F , then the quotient group F/M is small in
the sense of [FrJ08, p. 329].

Note that if M ′ is a closed subgroup of M and F/M ′ is small, then so is
F/M . In particular, if M ′ �F and F/M ′ is finitely generated, then F/M ′ is a
small group [FrJ08, Lemma 16.10.2], so F/M is also a small quotient space.

Let M̂ =
⋂

σ∈F Mσ be the normal core of M in F . If F/M̂ is finitely
generated, then by the preceding paragraph, F/M is small. If in addition N
is an open normal subgroup of M , then there is an open normal subgroup L
of F such that L∩ M̂ ≤ N ∩ M̂ . Since F/(L∩ M̂) embeds into F/L× F/M̂
and the latter group is finitely generated, F/(L ∩ M̂) is small, so F/N is
small. �

Lemma 10.1.11: Let F be a profinite group, M a closed subgroup of F , and
E an F -independent infinite family of open normal subgroups of F . If
(a) weight(F/M) < card(E), or
(b) F/M is small and there exists a positive integer n such that (F : E) ≤ n

for each E ∈ E ,

then there exists E ∈ E such that EM = F .

Proof: Every proper open subgroup F0 of F contains at most one group of E .
In Case (a), card(Open(F/M)) < card(E). Hence, there exists E ∈ E which
is contained in no proper open subgroup of F that contains M . Therefore,
EM = F .

In Case (b), (F : EM) ≤ (F : E) ≤ n, so only finitely many E ∈ E
satisfy EM < F . Since E is infinite, there exists E ∈ E with EM = F . �

Lemma 10.1.12: Let F be a profinite group, M an open normal subgroup,
and E an infinite F -independent family of open normal subgroups of F .
Then, for each n there exist E1, . . . , En ∈ E such that E1, . . . , En, M are
F -independent.

Proof: We assume inductively that E1, . . . , En−1 ∈ E and E1, . . . , En−1, M
are F -independent. Then M ′ = E1∩· · ·En−1∩M is an open subgroup of F .
By Lemma 10.1.11, there exists En ∈ E with EnM ′ = F . Hence, by Lemma
10.1.3, E1, . . . , En, M are F -independent. This concludes the induction. �
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Chapter 10. Semi-Free Profinite Groups

We conclude this section with two results that line the notion of a “semi-
free profinite group” to that of a “free profinite group”.

Proposition 10.1.13: Let F be a free profinite group of infinite rank m.
Then every finite embedding problem (2) for F with a nontrivial kernel has
m independent solutions. In particular, F is semi-free.

Proof: Let λ < m be an ordinal number and assume {γκ | κ < λ} are
independent solutions of (2). We prove the existence of a solution γλ such that
the set of solutions {γκ | κ ≤ λ} of (2) is independent. Applying transfinite
induction and Lemma 10.1.4, this will give m independent solutions of (2).

Let E = Ker(ϕ). Since α ◦ γκ = ϕ, we have Ker(γκ) ≤ E, so M =⋂
κ<λ Ker(γκ) ≤ E. Since card(λ) < m and the Ker(γκ)’s are open in F ,

weight(F/M) < m (Definition 10.1.9). Set Â = F/M and let ϕ̂: F → Â be
the quotient map. Then there exists an epimorphism ϕ̄: Â → A such that
ϕ̄ ◦ ϕ̂ = ϕ. This gives rise to a commutative diagram

F

ϕ̂

��
B̂

α̂ ��

β̂

��

Â

ϕ̄

��
B

α �� A

in which the square is cartesian. By [FrJ08, Lemma 25.1.3], every finite
embedding problem for F has m solutions. Hence, by [FrJ08, Lemma 25.1.5],
there exists an epimorphism γ̂: F → B̂ such that α̂ ◦ γ̂ = ϕ̂. Thus, γ = β̂ ◦ γ̂
satisfies α ◦ γ = ϕ, that is γ is a solution of (2).

Let D = Ker(γ) and N = Ker(γ̂). Then D ∩ M = N , because if
x ∈ D ∩ M , then β̂(γ̂(x)) = γ(x) = 1 and α̂(γ̂(x)) = ϕ̂(x) = 1, hence
γ̂(x) = 1, so x ∈ N .

F

ϕ̂

��

γ̂

����
��

��
�

B̂
α̂ ��

β̂

��

Â

ϕ̄

��
B

α �� A

F

D E

N M

Then E/D ∼= Ker(α) and M/N ∼= Ker(α̂). By [FrJ08, Lemma 22.2.5],
Ker(α) ∼= Ker(α̂). Hence, (E : D) = (M : N). Therefore, by Lemma
10.1.3(b), D,M are E-independent. Consequently, γ is independent of the
set of solutions {γκ | κ < λ}. �
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10.2 Fiber Products

The converse of Proposition 10.1.13 is a reformulation of Proposition
9.4.7.

Proposition 10.1.14: Let F be a projective semi-free profinite group of
infinite rank m. Then F is a free profinite group.

10.2 Fiber Products
Fiber products of pairs of profinite groups are introduced in [FrJ08, Sec. 13.7].
Here we consider fiber products of finitely many profinite groups and use them
in the next section to construct wreath products.

Definition 10.2.1: Fiber products. For each 1 ≤ i ≤ n let αi: Hi → G be
an epimorphism of profinite groups. The fiber product

∏
G Hi = H1 ×G

· · · ×G Hn with respect to the αi’s is the group

∏
G

Hi = {(h1, . . . , hn) ∈
n∏

i=1

Hi | α1(h1) = · · · = αn(hn)}.

For each g ∈ G we can choose hi ∈ Hi with αi(hi) = g. Hence, the projection
prj :

∏
G Hi → Hj on the jth coordinate is surjective. It follows that the

homomorphism α(n) = αj ◦ prj :
∏

G Hi → G is independent of j and is
surjective.

If all of the Hi’s are the same group H and all of the αi’s are the same
map α, we also write Hn

G for
∏

G Hi.
Note that the fiber product is associative in the following sense: There is

a natural isomorphism
∏

G Hi
∼= (H1×G · · ·×G Hm)×G (Hm+1×G · · ·×G Hn)

for each 1 ≤ m ≤ n. �

Example 10.2.2: Let G, A1, . . . , An be profinite groups. Suppose G acts on
each Ai. Let αi: G � Ai → G be the projection on the first coordinate,
i = 1, . . . , n. Then

∏
G(G � Ai) consists of all n-tuples (σa1, . . . , σan) with

σ ∈ G and ai ∈ Ai, i = 1, . . . , n. For each j, the image of such an n-tuple
under αj ◦ prj is σ. On the other hand, G acts on

∏
Ai componentwise

and the projection G �
∏

Ai → G on the first coordinate maps an element
σ(a1, . . . , an) of G �

∏
Ai onto σ. We may therefore identify G �

∏
Ai with∏

G(G � Ai) and the projection on the first coordinate with α(n).
In particular, if all of the Ai’s are the same group A, we have (G�A)n

G =
G � An and α(n): (G � A)n

G → G is the projection on the first coordinate. �

A key property of fiber products, in our setting, is that weak solutions
ψi of embedding problems (ϕ: F → G, αi: Hi → G), i = 1, . . . , n, give
rise to a canonical weak solution, ψ =

∏n
i=1 ψi, of the embedding problem

(ϕ: F → G, α(n):
∏

G Hi → G). The homomorphism ψ: F →
∏

G Hi is
defined by ψ(x) = (ψ1(x), . . . , ψn(x)). In particular, taking F = G and
ϕ = id, we find that if all of the αi’s split, so does α(n).
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Chapter 10. Semi-Free Profinite Groups

In the case where all of the Hi’s are the same group H and all of the
αi’s are the same map α, we prove that independency of solutions ψ1, . . . , ψn

of embedding problems is equivalent to a solution of the corresponding em-
bedding problem onto Hn

G.

Lemma 10.2.3: Let E = (ϕ: F → G, α: H → G) be a finite embedding
problem of a profinite group F and ψ1, . . . , ψn weak solutions of E . Then
ψ1, . . . , ψn are independent solutions if and only if the weak solution ψ: F →
Hn

G of the embedding problem En = (ϕ: F → G, α(n): Hn
G → G) defined by

ψ(x) = (ψ1(x), . . . , ψn(x)) is a solution of that problem, that is ψ(F ) = Hn
G.

Proof: Let E = Ker(ϕ), Mi = Ker(ψi), and M =
⋂n

i=1 Mi. Then (F :
Mi) ≤ |H|, M = Ker(ψ), and (F : M) ≤ |Hn

G|. By definition,

Hn
G = {(h1, . . . , hn) ∈ Hn | α(h1) = · · · = α(hn)} =

⋃
·

g∈G

(α−1(g))n,

so |Hn
G| = |G|

(|H|
|G|
)n

.
Now we assume that ψ1, . . . , ψn are independent solutions of E and prove

that ψ is a solution of En. Since α ◦ prj ◦ ψ = α ◦ ψj = ϕ, it suffices to prove
that ψ(F ) = Hn

G. Indeed, ψi(F ) = H and (E : M) =
∏n

i=1(E : Mi), hence

|ψ(F )| = (F : M) = (F : E)(E : M) = (F : E)
n∏

i=1

(E : Mi)

= (F : E)
n∏

i=1

(F : Mi)
(F : E)

= |G| |H|n
|G|n = |Hn

G|.

Consequently, ψ(F ) = Hn
G.

Conversely, suppose ψ is a solution of En. Then by Lemma 10.1.3(a),

|Hn
G| = |ψ(F )| = (F : E)(E : M) ≤ (F : E)

n∏
i=1

(E : Mi)

= (F : E)
n∏

i=1

(F : Mi)
(F : E)

≤ |G| |H|n
|G|n = |Hn

G|,

hence (E : M) =
∏n

i=1(E : Mi) and (F : Mi) = |H| for each i. This means
that ψ1, . . . , ψn are independent solutions of E . �
Proposition 10.2.4: If every finite split embedding problem of a profinite
group F is solvable, then every finite split embedding problem with a non-
trivial kernel has ℵ0 independent solutions. In particular, if rank(F ) = ℵ0,
then F is semi-free.

Proof: We consider a finite split embedding problem

E = (ϕ: F → G, α: H → G).
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10.3 Twisted Wreath Products

By induction we suppose ψ1, . . . , ψn are independent solutions of E . By
Lemma 10.2.3, the map ψ: F → Hn

G defined by ψ(x) = (ψ1(x), . . . , ψn(x)) is
a solution of the embedding problem En = (ϕ: F → G, π: Hn

G → G), where
π = α ◦ prj is independent of j.

Let π′: Hn+1
G → H be the projection on the (n + 1)th coordinate and

α′: Hn+1
G → Hn

G the projection on the first n-coordinates. Then we observe
that the rectangle in diagram (1) is cartesian (Definition 10.2.1). Since α
split, so does α′ (comments preceding Lemma 10.2.3). By assumption, there
exists an epimorphism ψ′: F → Hn+1

G such that α′ ◦ ψ′ = ψ.

(1) F
ψ′

��
��

��
��

ψ

����
��
��
��
��
��
��
��

ψj

��
ϕ

��

Hn+1
G

α′

��

π′
�� H

α

��
Hn

G
π �� G

Thus, α ◦ π′ ◦ ψ′ = π ◦ α′ ◦ ψ′ = π ◦ ψ = ϕ. It follows that ψ′ is a solution
of the embedding problem En+1 = (ϕ: F → G, α ◦ pri: Hn+1

G → G) for
each 1 ≤ i ≤ n + 1. By Lemma 10.2.3, En+1 has independent solutions
ψ′

1, . . . , ψ
′
n+1 such that ψ′(x) = (ψ′

1(x), . . . , ψ′
n+1(x)) for each x ∈ F . Since

α′ ◦ ψ′ = ψ, we have ψ′
i(x) = ψi(x) for i = 1, . . . , n and every x ∈ F . We set

ψn+1 = ψ′
n+1 to conclude that ψ1, . . . , ψn, ψn+1 are independent solutions of

E , as desired. �

10.3 Twisted Wreath Products
Following the works [Har99a] and [Har99b], twisted wreath products have
been introduced in [FrJ08, Section 13.7] in order to prove the diamond the-
orem for Hilbertian fields [FrJ08, Thm. 13.8.3] and the diamond theorem for
free profinite groups [FrJ08, Thm. 25.4.3]. Here we consider those products
once more in order to generalize the latter theorem to a diamond theorem
for semi-free profinite groups.

Definition 10.3.1: Twisted wreath product. Let A and G be finite groups
and G0 a subgroup of G. Suppose G0 acts on A from the right and let
IndG

G0
(A) be the set of all functions f : G → A such that f(στ) = f(σ)τ for

all σ ∈ G and τ ∈ G0. We make IndG
G0

(A) a group by the rule (fg)(σ) =
f(σ)g(σ) and let G acts on IndG

G0
(A) by fσ(ρ) = f(σρ) for all σ, ρ ∈ G. This

gives rise to the semidirect product G � IndG
G0

(A) that we call the twisted
wreath product of G and A over G0 and denote by GwrG0A. In particular,
the map σf �→ σ for σ ∈ G and f ∈ IndG

G0
(A) is a split epimorphism onto G

with kernel IndG
G0

(A).
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Chapter 10. Semi-Free Profinite Groups

The map π0: IndG
G0

(A) → A defined by π0(f) = f(1) is an epimorphism.
It commutes with the action of G0. Indeed, for f ∈ IndG

G0
(A) and τ ∈ G0

we have π0(fτ ) = fτ (1) = f(τ) = f(1)τ = π0(f)τ . Thus, π0 extend to an
epimorphism π: G0 � IndG

G0
(A) → G0 � A defined by π(τf) = τf(1) giving

rise to the following commutative diagram of short exact sequences:

1 �� IndG
G0

(A) �� GwrG0A �� G �� 1

1 �� IndG
G0

(A) ��

π0

��

G0 � IndG
G0

(A) ��

π

��

��





G0
����





1

1 �� A �� G0 � A �� G0
�� 1

We call π0 and π the Shapiro maps of IndG
G0

(A) and G0 � IndG
G0

(A), re-
spectively.

If B is a normal subgroup of A invariant under G0, then the action
of G0 on A induces an action on A/B and the quotient map A → A/B
gives rise to epimorphisms G0 � A → G0 � A/B, IndG

G0
(A) → IndG

G0
(A/B),

G0 � IndG
G0

(A) → G0 � IndG
G0

(A/B), and GwrG0A → GwrG0A/B. The
second and the third maps commute with π. �

Remark 10.3.2: Distributive law for twisted wreath products. Let G be a
finite group, G0 a subgroup, and A1, . . . , An finite groups. Suppose G0

acts on each Ai. Then IndG
G0

(
∏

Ai) =
∏

IndG
G0

Ai and
∏

G(GwrG0Ai) ∼=
GwrG0

∏
Ai, where G0 acts on

∏
Ai componentwise.

Indeed, each element of IndG
G0

(
∏

Ai) can be identified as an n-tuple
(f1, . . . , fn) with fi ∈ IndG

G0
Ai. A combination of this observation with Ex-

ample 10.2.2 gives
∏

G(GwrG0Ai) = GwrG0

∏
Ai. Explicitly, each element of∏

G(GwrG0Ai) has the form (σf1, . . . , σfn), where σ ∈ G and fi ∈ IndG
G0

(Ai),
i = 1, . . . , n. We identify that element with the element σ(f1, . . . , fn) of
GwrG0

∏
Ai. �

The next technical lemma induces finite split embedding problems for
a closed subgroup M of a profinite group F to finite split embedding prob-
lems for F . Under an additional assumption, independent solutions of the
problems of F yield independent solutions of the problems of M .

Lemma 10.3.3: Let F be a profinite group, M a closed subgroup and

E1(A) = (μ: M → G1, α1: G1 � A → G1)

a finite split embedding problem for M . Let F0 be an open subgroup of F ,
D and L open normal subgroups of F , and N a closed normal subgroup of
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F as in the following diagram:

M F0 MD F

Ker(μ)

M ∩ D F0 ∩ D D

N M ∩ L L

Set G = F/L, G0 = F0/L, and let ϕ: F → G and ϕ0: F0 → G0 be the
quotient maps.

(a) There exists an epimorphism ϕ̄1: G0 = F0/L → G1 = M/Ker(μ) such
that μ = ϕ̄1 ◦ ϕ|M (after identifying M/M ∩ L with ML/L).

(b) Let ρ: G0 � A → G1 � A be the extension of ϕ̄1 by idA. Consider the
finite split embedding problem

E(A) = (ϕ: F → G, β: GwrG0A → G),

where G0 acts on A via ϕ̄1 and β is the projection on the first coordinate.
Let π: G0 � IndG

G0
(A) → G0 � A be the Shapiro map.

For a positive integer n we assume that

(*) no finite split embedding problem E(Ā) = (ϕ̄: F/N → G, β̄: GwrG0Ā →
G), where Ā is a nontrivial quotient of An and ϕ̄: F/N → F/L = G is
the quotient map, has a solution.

Finally, let ψ1, . . . , ψn be independent solutions of E(A). Then νi =
ρ ◦ π ◦ ψi|M , i = 1, . . . , n, are independent solutions of E1(A).

Proof: Since M ∩ D ≤ Ker(μ), the map μ: M → G1 extends to an epimor-
phism μ′: MD → G1 by μ′(md) = μ(m). In particular, μ′ is trivial on L, so
ϕ1 = μ′|F0 decomposes as ϕ1 = ϕ̄1 ◦ ϕ0, where ϕ̄1 is an epimorphism from
G0 onto G1.

MD

μ′

����
��
��
��

��
��
��

�
F

ϕ

��

M

μ

��

F0
ϕ1

��
��

��
��

ϕ0

��
G1 G0

ϕ̄1�� G

Since ϕ0 = ϕ|F0 , we have that μ = ϕ̄1 ◦ ϕ|M . This proves (a).
The proof of (b) breaks up into three parts.
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Part A: The maps νi are weak solutions of E1(A). For each 1 ≤ i ≤ n
we note that β(ψi(M)) = ϕ(M) ≤ ϕ(F0) = G0, so ψi(M) ≤ β−1(G0) =
G0 � IndG

G0
(A). Therefore, νi is well defined and the following diagram where

α is the restriction of β to G0 � IndG
G0

(A) and π0 is the Shapiro map of
IndG

G0
(A) is commutative:

(1) M
ψi|M

�������������

ϕ|M
��

μ

��

1 �� IndG
G0

(A) ��

π0

��

G0 � IndG
G0

(A) α ��

π

��

G0
�� 1

1 �� A �� G0 � A
α0 ��

ρ

��

G0
��

ϕ̄1

��

1

1 �� A �� G1 � A
α1 �� G1

�� 1

Thus, α1 ◦ νi = μ, so νi is a weak solution of E1(A). It suffices to prove that
νi is surjective and ν1, . . . , νn are independent.

Part B: The map ν. We use Remark 10.3.2 to identify IndG
G0

(An) with
IndG

G0
(A)n, and GwrG0A

n with (GwrG0A)n
G, and denote the corresponding

Shapiro maps by π
(n)
0 and π(n). By Lemma 10.2.3, ψ1, . . . , ψn define a solu-

tion ψ of the embedding problem

E(An) = (ϕ: F → G, β(n): GwrG0A
n → G),

where β(n) = prj ◦ β for each 1 ≤ j ≤ n. Replacing A in (1) by An, we get a
commutative diagram

(2) M
ψ|M

�������������

ϕ|M
��

μ

��

1 �� IndG
G0

(An) ��

π
(n)
0

��

G0 � IndG
G0

(An) α(n)
��

π(n)

��

G0
�� 1

1 �� An �� G0 � An
α

(n)
0 ��

ρ(n)

��

G0
��

ϕ̄1

��

1

1 �� An �� G1 � An
α

(n)
1 �� G1

�� 1

where α(n), α
(n)
0 , and α

(n)
1 are the projections on the first factor, and ρ(n) is

the extension of ϕ̄1 by idAn . Identifying G1 � An with (G1 � A)n
G (Example
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10.2.2), we first observe that the combined map ν = ρ(n) ◦π(n) ◦ψ|M satisfies
ν = ν1 × · · · × νn.

Indeed, by Remark 10.3.2, for each x ∈ M there are σ0 ∈ G0 and
f1, . . . , fn ∈ IndG

G0
(A) such that

(ψ1(x), . . . , ψn(x)) = ψ(x) = σ0(f1, . . . , fn) = (σ0f1, . . . , σ0fn).

Hence,

ν(x) = ρ(n)(π(n)(ψ(x))) = ρ(n)(π(n)(σ0(f1, . . . , fn)))

= ρ(n)(σ0(f1(1), . . . , fn(1)))
= ϕ̄1(σ0)(f1(1), . . . , fn(1)) = (ρ(σ0f1(1)), . . . , ρ(σ0fn(1)))
= (ρ(π(σ0f1)), . . . , ρ(π(σ0fn))) = (ρ(π(ψ1(x))), . . . , ρ(π(ψn(x))))
= (ν1(x), . . . , νn(x)),

as claimed.
In order to prove that ν1, . . . , νn are surjective and independent, it suf-

fices to prove that ν is surjective (Lemma 10.2.3). Since α
(n)
1 (ν(M)) =

μ(M) = G1, it suffices to prove that An ≤ ν(M). This will follow once
we prove that π(n)(ψ(N)) = An.

Part C: A proof that π(n)(ψ(N)) = An. Since N ≤ L = Ker(ϕ), we have
ϕ(N) = 1. In addition, N � F , so ψ(N) ≤ IndG

G0
(An) and ψ(N) � GwrG0A

n.
Hence, ψ(N) is a normal G-invariant subgroup of IndG

G0
(An). Thus, B =

π(n)(ψ(N)) is a normal G0-invariant subgroup of An. Therefore, G0 acts on
An/B. This gives a commutative diagram of two short exact sequences

F
ψ

�������������

ϕ

��
1 �� IndG

G0
(An) ��

λ0

��

GwrG0A
n

λ

��

β(n)
�� G �� 1

1 �� IndG
G0

(An/B) �� GwrG0(A
n/B)

β̄ �� G �� 1

in which λ0 and λ are defined by the quotient map An → An/B.
Now ψ(N) ≤ (π(n))−1(B) = {f ∈ IndG

G0
(An) | f(1) ∈ B} and, as men-

tioned above, ψ(N) is a G-invariant subgroup of IndG
G0

(An). Hence,

ψ(N) ≤
⋂

σ∈G

{f ∈ IndG
G0

(An) | f(1) ∈ B}σ

=
⋂

σ∈G

{f ∈ IndG
G0

(An) | f(σ) ∈ B} = Ker(λ).
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It follows that λ ◦ ψ defines an epimorphism ψ̄: F/N → GwrG0(A
n/B) that

solves embedding problem E(Ā) with Ā = An/B. By assumption, this cannot
happen, unless B = An, as claimed. �

As a corollary to Lemma 10.3.3 we prove a sufficient condition for a
closed subgroup of a semi-free profinite group to be semi-free.

Proposition 10.3.4: Let F be a semi-free profinite group of infinite rank
m and let M be a closed subgroup of F . Suppose for every open normal
subgroup D of F and for every finite group A there exists
(a) an open subgroup F0, an open normal subgroup L, and a closed normal

subgroup N of F such that
(b) M ≤ F0, L ≤ F0 ∩ D, and N ≤ M ∩ L; and
(c) no finite split embedding problem

(ϕ: F/N → F/L, α: F/LwrF0/LĀ → F/L),

where Ā is a nontrivial quotient of A2, ϕ is the quotient map, and α is
the projection on the first factor, is solvable.

Then M is semi-free of rank m.

Proof: By [FrJ08, Cor. 17.1.4], rank(M) ≤ rank(F ) = m. Thus, by Corol-
lary 10.1.8, it suffices to prove that every finite split embedding problem
E1(A) = (μ: M → G1, α1: G1 � A → G1) has m pairwise independent
solutions.

To this end we choose a proper open normal subgroup D of F with
M ∩ D ≤ Ker(μ). By assumption there exist subgroups F0, L, and N as in
(a) such that (b) and (c) hold. As in Lemma 10.3.3 we consider the finite split
embedding problem E(A) = (ϕ: F → G, α: GwrG0A → G), where G = F/L,
G0 = F0/L, ϕ is the quotient map, and α is the projection on the first factor.

By assumption, E(A) has a family Ψ of independent solutions of cardi-
nality m. In particular, every pair of solutions in Ψ is independent. For each
ψ ∈ Ψ we consider the map ν = ρ ◦ π ◦ ψ|M : M → G1 � A, where π and ρ
are as in (1). Note that Assumption (c) of our lemma implies Assumption
(∗) of Lemma 10.3.3 with n = 2. Hence, by Lemma 10.3.3 in the case n = 2,
{ρ◦π◦ψ|M | ψ ∈ Ψ} is a pairwise independent set of m well defined solutions
of E1(A), as desired. �

10.4 Closed Subgroups of Semi-free Profinite Groups

We prove in this section that the property of a profinite group F to be semi-
free is inherited to each closed subgroup M which does not lie too deep in
F . By that we mean that either the cardinality of all open subgroups of
F that contain M is less than rank(F ) or for each positive integer n there
are only finitely many open subgroups that contain M . In particular, each
open subgroup of F is semi-free. The proof of the latter statement uses the
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machinery of twisted wreath products developed in the preceding section.
The proof of the two major statements is then reduced to the statement
about open subgroups.

Lemma 10.4.1: Let M be an open subgroup of a semi-free profinite group
F of rank m. Then M is semi-free of rank m.

Proof: Let D be an open normal subgroup of F . We choose an open normal
subgroup L of F with L ≤ M ∩ D and set F0 = M and N = L. Then for
each nontrivial finite group Ā on which F0/L acts, the finite split embed-
ding problem (F/N → F/L, F/LwrF0/LĀ → F/L) has no solution because
|F/LwrF0/LĀ| > |F/N |. It follows from Proposition 10.3.4 that M is semi-
free of rank m. �
Lemma 10.4.2: Let M be a closed subgroup of a semi-free profinite group
F of infinite rank m. Suppose weight(F/M) < m. Then M is semi-free of
rank m.

Proof: Let EM = (μ: M → G, α: H → G) be a finite split embedding
problem with a nontrivial kernel. We use transfinite induction to construct
for each λ < m a solution ψλ of EM such that the set {ψλ | λ < m} of
solutions is independent.

Let M1 = Ker(μ) and consider an ordinal number λ < m. Inductively
suppose we have constructed an independent family {ψκ | κ < λ} of solutions
of EM . Then {Ker(ψκ) | κ < λ} is an M1-independent family of open sub-
groups of M1. By Definition 10.1.9, N =

⋂
κ<λ Ker(ψκ) is a closed normal

subgroup of M and weight(M/N) < m, hence weight(F/N) < m.
By [FrJ08, Lemma 1.2.5(c)], μ extends to an epimorphism ϕ: E → G

for some open subgroup E of F containing M . In particular, E1 = Ker(ϕ)
satisfies E1 ∩ M = M1. By Lemma 10.4.1, E is semi-free of rank m. Hence,
the finite split embedding problem EE = (ϕ: E → G, α: H → G) has an
independent family Ψ of solutions of cardinality m. Thus, {Ker(ψ) | ψ ∈ Ψ}
is an E1-independent family of open normal subgroups of E1. Since E1 is open
in F , we have weight(E1/N) = weight(E/N) < m. Hence by Lemma 10.1.11,
there exists ψ ∈ Ψ such that Ker(ψ)N = E1. Let ψλ = ψ|M . By Lemma
10.1.3(d), Ker(ψλ)N = M1. Hence, ψλ is a solution of EM independent of
{ψκ | κ < λ}. This concludes the transfinite induction and proves, by Lemma
10.1.4, that {ψλ | λ < m} is an independent set of solutions of EM . �
Lemma 10.4.3: Let M be a closed subgroup of a semi-free profinite group
F of an infinite rank m. Suppose F/M is small. Then M is semi-free of rank
m.

Proof: Since weight(F/M) ≤ ℵ0, the case where m > ℵ0 is a special case of
Lemma 10.4.2. Thus, we have only to prove the lemma under the additional
assumption that m = ℵ0.

By Proposition 10.2.4, it suffices to prove that every finite split embed-
ding problem with a nontrivial kernel for M is solvable. Let EM = (μ: M →
G, α: H → G) be such an embedding problem.
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Let M1 = Ker(μ). By [FrJ08, Lemma 1.2.5(c)], μ extends to an epi-
morphism ϕ: E → G for some open subgroup E of F containing M . In
particular, E1 = Ker(ϕ) is an open normal subgroup of E with E1∩M = M1

and E1M = E.
By Lemma 10.4.1, E is semi-free of rank ℵ0. Hence, the finite split

embedding problem EE = (ϕ: E → G, α: H → G) has an infinite independent
family Ψ of solutions. Thus, K = {Ker(ψ) | ψ ∈ Ψ} is an E1-independent
family of open subgroups of E1 and each of them is normal in E. In particular,
by Lemma 10.1.3, each proper open subgroup of E1 contains at most one
group belonging to K.

Let K ∈ K. Then (KM : KM1) = (M : M1) = (E : E1) = (KM :
E1 ∩ KM), hence KM1 = E1 ∩ KM . In addition, (F : KM) ≤ (F : E)(E :
K) = (F : E)|H|. Since F/M is small, F has only finitely many open
subgroups of the form KM with K ∈ K.

Now assume the set K0 = {K ∈ K | KM1 < E1} is infinite. Then, by the
preceding paragraph, there exist distinct K1, K2 ∈ K0 with K1M = K2M .
By the preceding paragraph, K1M1 = E1 ∩ K1M = E1 ∩ K2M = K2M1.
This contradicts the independency of K1, K2 in E1. We conclude from that
contradiction, that K0 is finite and choose K ∈ K�K0. Let ψ ∈ Ψ with
Ker(ψ) = K. Then ψ|M is a solution of EM . �

10.5 The Diamond Theorem
The diamond theorem for Hilbertian fields gives a convenient condition on a
separable algebraic extension M of a Hilbertian field K to be Hilbertian. The
condition requires the existence of Galois extensions M1 and M2 of K such
that M �⊆ M1, M �⊆ M2, and M ⊆ M1M2 [FrJ08, Thm. 13.8.2]. In that case
we say that M is contained in a K-diamond. An analog of that theorem
holds for free profinite groups: Let F be a free profinite group of infinite
rank m and M a closed subgroup of F that is contained in an F -diamond
(Definition 10.5.2). Then M is free of rank m. The proofs of both theorems
are similar, both utilize twists wreath products. It turns out that the same
method applies also to semi-free groups.

We start with a technical lemma that emphasizes the incommutativity
of twisted wreath products.

Lemma 10.5.1 ([FrJ08, Lemma 13.7.4]): Let α: GwrG0A → G be a twisted
wreath product of finite groups, H1 � GwrG0A, and h2 ∈ GwrG0A. Put
I = IndG

G0
(A) = Ker(α) and G1 = α(H1). Suppose A �= 1.

(a) Suppose α(h2) /∈ G0 and (G1G0 : G0) > 2. Then there is an h1 ∈ H1 ∩ I
with h1h2 �= h2h1.

(b) Suppose G1 �≤ G0 and α(h2) /∈ G1G0. Then there is an h1 ∈ H1 ∩ I with
hh2

1 /∈ 〈h1〉h
′
for all h′ ∈ α−1(G1G0). In particular, h1h2 �= h2h1.

Proof: Put σ2 = α(h2). Consider σ1 ∈ G1 and g ∈ I. By definition, there
are f1, f2 ∈ I with σ1f1 ∈ H1 and h2 = σ2f2. Put h1 = gσ1f1g−1. Then
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h1 = [σ1f1, g
−1] ∈ [H1, I] ≤ H1 ∩ I. For each τ ∈ G

h1(τ) =
(
(gσ1)f1

)
(τ)g(τ)−1 = g(σ1τ)f1(τ)g(τ)−1.

Hence, for all τ ∈ G and f ′ ∈ I we have:

hh2
1 (1) = hσ2f2

1 (1) = h1(σ2)f2(1) = g(σ1σ2)f1(σ2)f2(1)g(σ2)−f2(1),(1a)

hτf ′
1 (1) = h1(τ)f ′(1) = g(σ1τ)f1(τ)f ′(1)g(τ)−f ′(1), and(1b)

h1(1) = g(σ1)f1(1)g(1)−1.(1c)

We apply (1) in the proofs of (a) and (b) to special elements σ1 and g. Choose
a ∈ A, a �= 1.

Proof of (a): Since (G1G0 : G0) > 2, there is a σ1 ∈ G1 with distinct
cosets σ−1

1 G0, σ2G0, G0. Thus, none of the cosets σ1G0, σ2G0, σ1σ2G0 is G0.
Therefore, by definition of I, there is a g ∈ I with g(σ1) = g(σ2) = g(σ1σ2) =
1 and g(1) = a. By (1a), hh2

1 (1) = 1. By (1c), h1(1) �= 1. Consequently,
hh2

1 �= h1, as desired.

Proof of (b): Since H1 � GwrG0A, we have G1 � G, so Gσ2
1 = G1 �≤ G0,

hence G1 �≤ G
σ−1
2

0 . Hence, G1 ∩ G0 and G1 ∩ G
σ−1
2

0 are proper subgroups of
G1. Their union is a proper subset of G1. Thus, there is an element σ1 ∈
G1 �(G0 ∪ G

σ−1
2

0 ). It follows that σ2 /∈ σ1σ2G0. By assumption, σ2 /∈ G1G0.
Therefore, there is a g ∈ I with g(G1G0) = 1, g(σ1σ2) = 1, and g(σ2) = a−1.

Consider τ ∈ G1G0 and f ′ ∈ I. By (1a), hh2
1 (1) = af2(1) �= 1. By

(1b), hτf ′
1 (1) = 1. Hence, (hk

1)τf ′
(1) = 1 for all integers k. It follows that

hh2
1 /∈ 〈h1〉h

′
for all h′ ∈ α−1(G1G0). �

Definition 10.5.2: A closed subgroup M of a profinite group F is said to
be contained in an F -diamond if F has closed normal subgroups M1, M2

such that M1 ∩M2 ≤ M , M1 �≤ M , and M2 �≤ M . The following diagram of
profinite groups reveals why we have chosen that name:

F













����������

M1

��������� M M2

���������

M1 ∩ M2 �

Theorem 10.5.3 (The diamond theorem for semi-free profinite groups): Let
F be a semi-free profinite group of infinite rank m. If a closed subgroup M
of F is contained in an F -diamond, then M is semi-free of rank m.

Proof: Let M1, M2 be as in Definition 10.5.2. We use Lemma 10.4.1 to
assume (F : M) = ∞. Then we first prove the theorem under an additional
assumption:
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(2) Either M1M2 = F or (M1M : M) > 2.

The proof of the theorem in this case utilizes Proposition 10.3.4. It has
two parts.

Part A: Construction of L, F0, and N . We consider an open normal
subgroup D of F , choose another open normal subgroup L of F in D,
and set F0 = ML. Let G = F/L and ϕ: F → G the quotient map,
G0 = ϕ(M) = F0/L, G1 = ϕ(M1), and G2 = ϕ(M2). Then
(3a) G1, G2 � G.

Moreover, choosing L sufficiently small, the following holds:
(3b) G1, G2 �≤ G0 (use M1, M2 �≤ M).
(3c) (G : G0) > 2 (use (F : M) = ∞).
(3d) G1G2 = G or (G1G0 : G0) > 2 (use (2)).

This implies:
(4) G2 �≤ G1G0 or (G1G0 : G0) > 2.

Indeed, suppose both G2 ≤ G1G0 and G1G2 = G. Then G = G1G0, so by
(3c), (G1G0 : G0) > 2.

Now let N = L ∩ M1 ∩ M2. Then N ≤ M .

Part B: An embedding problem. Suppose G0 acts on a nontrivial finite
group Ā and set H = GwrG0Ā. Consider the embedding problem

(5) (ϕ: F → G, α: H → G)

where α is the quotient map. We have to prove that (5) has no solution that
factors through F/N .

Assume ψ: F → H is an epimorphism with α ◦ ψ = ϕ and ψ(N) = 1.
For i = 1, 2 put Hi = ψ(Mi). Then Hi � H and α(Hi) = ϕ(Mi) = Gi.

We use (4) to find h1 ∈ H1 and h2 ∈ H2 with α(h1) = 1 and [h1, h2] �= 1.
First suppose G2 �≤ G1G0. Then there is an h2 ∈ H2 with α(h2) /∈ G1G0.
By (3b), G1 �≤ G0, so Lemma 10.5.1(b) provides the required h1 ∈ H1. Now
suppose (G1G0 : G0) > 2. We use (3b) to find h2 ∈ H2 with α(h2) /∈ G0.
Lemma 10.5.1(a) gives the required h1 ∈ H1.

Having chosen hi, we choose fi ∈ Mi with ψ(fi) = hi. Then ϕ(f1) =
α(h1) = 1, so f1 ∈ L. Then [f1, f2] ∈ [L, M2]∩[M1, M2] ≤ L∩(M1∩M2) = N .
Therefore, [h1, h2] = [ψ(f1), ψ(f2)] ∈ ψ(N) = 1. This contradiction proves
that ψ as above does not exist.

Conclusion of the proof: In the general case we use M1 �≤ M to con-
clude that (M1M : M) ≥ 2. The case (M1M : M) > 2 is covered by the
special case proved above. Suppose (M1M : M) = 2. Choose an open sub-
group K2 of F containing M but not M1M . Then, K2 ∩ M1M = M . Put
K = K2M1M . Then (K : K2) = (M1M : M) = 2, hence K2 � K. Observe:
M1K2 = K and K2 ∩ M1 ≤ K2 ∩ M1M = M ≤ K. Furthermore, K2 �≤ M ,
because (K2 : M) = ∞.
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By Lemma 10.4.1, K is semi-free of rank m, so the first alternative of
(2) applies with K replacing F and K2 replacing M2. Consequently, M is
semi-free of rank m. �

Theorem 10.5.4 (Bary-Soroker, Haran, and Harbater): Let F be a semi-
free profinite group of an infinite rank m and let M be a closed subgroup.
Then M is semi-free of rank m in each of the following cases:
(a) M is an open subgroup of a closed subgroup M0 of F and M0 contains

a closed normal subgroup N of F that is not contained in M (an analog
of a theorem of Weissauer).

(b) M is a proper subgroup of finite index of a closed normal subgroup of F .
(c) M � F and F/M is Abelian (an analog of a theorem of Kuyk).
(d) M � F , F/M is pronilpotent of order divisible by at least two prime

numbers.

Proof of (a): The case where M is open is taken care of by Lemma 10.4.1.
Thus, we may assume that (F : M) = ∞ and choose an open normal sub-
group M1 of F with M1 ∩ M0 ≤ M . In particular, M1 �≤ M , N �≤ M ,
and M1 ∩ N ≤ M . It follows from the Diamond theorem 10.5.3 that M is
semi-free of rank m.

Proof of (b): Take N = M0 in (a).

Proof of (c): If M = F , there is nothing to prove. Otherwise, we choose
σ ∈ F � M . Then 〈M,σ〉/M is a nontrivial Abelian group. Hence, 〈M,σ〉
has a proper open subgroup L that contains M . By (a), L is semi-free of rank
m. In addition, L/M is a procyclic group. Hence, by Proposition 10.4.3, M
is semi-free of rank m.

Proof of (d): Since each Sylow subgroup of a pronilpotent group is normal,
F has closed normal subgroups P1, P2 that properly contain M such that
P1/M is the p1-Sylow subgroup of F/M , P2/M is the p2-Sylow subgroup of
F/M , and p1 �= p2. In particular, P1 ∩ P2 = M . By the Diamond theorem
10.5.3, M is semi-free of rank m. �

Remark 10.5.5: One may add two more cases to the list of Theorem 10.5.4:
(e) M is a sparse subgroup of F . That is, for each positive integer n

there exists an open subgroup K of F that contains M such that for each
proper open subgroup L of K that contains M we have [K : L] ≥ n.

(f) We have (F : M) =
∏

pα(p), where α(p) < ∞ for each prime number p.

The reader may try to settle these cases by himself, applying Lemma
10.4.1 or consult [BHH10 Section 4]. �

Applying Proposition 10.1.14, the results we have proved so far about
closed subgroups of semi-free profinite groups yield the corresponding results
about closed subgroups of free profinite groups. This gives a new proof for
results proved in [FrJ08, Section 25.4].
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Theorem 10.5.6: Let F be a free profinite group of infinite rank m and let
M be a closed subgroup of F . Then each of the following conditions on M
suffices for M to be free of rank m:
(a) M is open in F .
(b) weight(F/M) < m.
(c) F/M is small.
(d) M is contained in an F -diamond.
(e) M is an open subgroup of a closed subgroup M0 of F and M0 contains a

closed normal subgroup of F that is not contained in M .
(f) M is a proper subgroup of finite index of a closed normal subgroup of F .
(g) M � F and F/M is Abelian.
(h) M � F and F/M is pronilpotent of order divisible by at least two prime

numbers.
(i) M is a sparse subgroup of F .
(j) (F : M) =

∏
pα(p), where α(p) < ∞ for each prime number p.

Proof: Since F is free, F is projective, so M is also projective [FrJ08,
Prop. 22.4.7]. Thus, in order to prove that M is free of rank m, it suffices,
by Proposition 10.1.14, to prove in each case that M is semi-free of rank m.
By Proposition 10.1.13, F is semi-free. Therefore, (a) follows from Lemma
10.4.1, (b) follows from Lemma 10.4.2, (c) follows from Lemma 10.4.3, (d)
follows from Theorem 10.5.3, (e), (f), (g), (h) follow from Theorem 10.5.4,
and (i), (j) follow from Remark 10.5.5. �
Remark 10.5.7: C-semi-free groups. Let C be a Melnikov formation, that
is C is a family of finite groups closed under taking quotients, normal sub-
groups, and extensions. For example the family of all finite groups, the family
of all finite p-groups, and the family of all finite solvable groups are Melnikov
formations. A C-embedding problem for a pro-C group F is an embedding
problem E = (ϕ: F → G, α: H → G) where H (hence also G) belongs to C.

We say that a profinite group F of rank m is C-semi-free if F is a pro-C
group and each split C-embedding problem with a nontrivial kernel has m
independent solutions. �

The results about subgroups of semi-free groups yield the corresponding
results about subgroups of C-semi-free groups.

Theorem 10.5.8: Let C be a Melnikov formation of finite groups, F a C-
semi-free group of infinite rank m, and M a closed subgroup of F . Then M
is C-semi-free of rank m in each of the following cases:
(a) M is open in F .
(b) weight(F/M) < m.
(c) F/M is small.
(d) M is contained in an F -diamond.
(e) M is an open subgroup of a closed subgroup M0 of F and M0 contains a

closed normal subgroup N of F not contained in M .
(f) M is a proper subgroup of finite index of a closed normal subgroup of F .
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(g) M � F and F/M is Abelian.
(h) M � F and F/M is pronilpotent of order divisible by at least two prime

numbers.
(i) M is a sparse subgroup of F .
(j) (F : M) =

∏
pα(p), where α(p) < ∞ for each prime number p.

Proof: Let E = (ϕ: M → G, α: H → G) be a split C-embedding problem
with a nontrivial kernel. By [FrJ08, Prop. 17.4.8] there is a free profinite
group F̂ of rank m and an epimorphism ψ: F̂ → F . For each closed subgroup
L of M we let L̂ = ψ−1(L). In particular, M̂ is a closed subgroup of F̂ and
Ê = (ϕ ◦ ψ|M̂ : M̂ → G, α: H → G) is a finite split embedding problem for
M̂ . Moreover, Ker(ϕ ◦ ψ|M̂ ) = ψ−1(Ker(ϕ)).

We observe that in each of the cases (a)–(j), M̂ satisfies the correspond-
ing condition that M satisfies. Hence, by Theorem 10.5.6, the group M̂ is
semi-free of rank m. Hence, Ê has m-independent solutions. The correspond-
ing kernels M̂i are normal subgroups of M̂ such that M̂/M̂i are isomorphic to
the C-group H. It follows that those solutions define m-independent solutions
to E . Consequently, M is C-semi-free of rank m. �

10.6 Quasi-Free Profinite Groups

If we drop the condition of the independence of the solutions from the defi-
nition of semi-free profinite group, we get the notion of “quasi-free profinite
group” introduced in [HaS05]. In this section we introduce the latter notion
and discuss its advantages and its limits.

Let G be a profinite group of infinite rank m. We say that G is quasi-
free if every finite split embedding problem E for G with a nontrivial kernel
has at least m solutions. In particular, every embedding problem of the form
(G → 1, A → 1), where A is a finite group is solvable, so A is a quotient of G.
Unlike for semi-free profinite groups, we do not insist that the solutions will
be independent. Still, by [FrJ08, Lemma 25.1.8], if G is projective and quasi-
free of rank m, then G is free. By [RSZ07, Thm. 2.1], every open subgroup
of a quasi-free profinite group is quasi-free. If G is quasi-free of rank m, then
so is its commutator group [Hrb09, Thm. 2.4]. By [HaS05, Thm. 5.1], the
absolute Galois group of the field K((t1, t2)) of formal power series in two
variables over an arbitrary field K is quasi-free of rank equal to card(K). It
follows that Gal(K((t1, t2))ab) is quasi-free. If K is algebraically closed, then
Gal(K((t1, t2))ab) is projective [Hrb09, Thm. 4.4]. It follows that in this case
Gal(K((t1, t2))ab) is free of rank equal to card(K). Finally, Harbater proves
that if K is ample, then Gal(K(x)) is quasi-free [Hrb09, Thm. 3.4].

In view of Example 10.6.1 below, the latter result is weaker than The-
orem 11.7.1 saying that Gal(K(x)) is semi-free if K is ample. In addition,
we have been able to prove the diamond theorem only for semi-free profinite
groups but not for quasi-free profinite groups. Thus, using only the con-
cept of quasi-free profinite groups, we would not be able to prove that the
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K-radical extension of K(x) (with K being PAC) that we have constructed
in Theorem 11.7.6 has a free absolute Galois group. Finally, in contrast to
semi-free groups (Theorem 10.5.8(b)), a closed subgroup N of a quasi-group
G with weight(G/N) < rank(N) need not be quasi-free, as Lemma 10.6.4
below demonstrates.

Example 10.6.1: (Bary-Soroker, Haran, Harbater) Example of a quasi-free
profinite group that is not semi-free. Let X be a set of uncountable cardi-
nality m and let C =

∏
p Z/pZ be the direct product of all cyclic groups of

prime order. For each x ∈ X let Cx be an isomorphic copy of C. We consider
the free product E =

∏
∗ x∈X Cx in the sense of [BNW71]. Thus, each Cx is

a closed subgroup of E and every family of homomorphisms ψx: Cx → C̄
into a finite group A, such that ψx(Cx) = 1 for all but finitely many x ∈ X,
uniquely extends to a homomorphism ψ: E → C̄. Let G =

∏
∗ x∈X Cx ∗ F̂ω.

Claim A: G is quasi-free of rank m. The rank of
∏
∗ x∈X Cx is m and the

rank of F̂ω is ℵ0 < m. Hence, rank(G) = m. Let

(1) (ϕ: G → A, α: B → A)

be a finite split embedding problem with a nontrivial kernel and let α′: A → B
be its splitting. We need two auxiliary maps: First, there exists a nontriv-
ial homomorphism π: C → Ker(α); namely, an epimorphism of C onto a
subgroup of Ker(α) of prime order. Secondly, there exists an epimorphism
ψ′: F̂ω → α−1(ϕ(F̂ω)) such that α ◦ ψ′ is the restriction of ϕ to F̂ω [FrJ08,
Thm. 24.8.1]. In particular, ψ′(F̂ω) contains Ker(α).

The definition of
∏
∗ x∈X Cx gives a subset Y of X such that X � Y is finite

and ϕ(Cx) = 1 for every x ∈ Y . For every y ∈ Y we define a homomorphism
ψy: G → B in the following manner:

ψy|Cy
= π

ψy|Cx = 1 if x ∈ Y and x �= y

ψy|Cx = α′ ◦ ϕ if x ∈ X � Y

ψy|F̂ω
= ψ′

Then, α ◦ψy = ϕ. Since ψy(G) ≥ ψ′(F̂ω) ≥ Ker(α), the map ψy is a solution
of (1).

Since ψy1 �= ψy2 for distinct y1, y2 ∈ Y , (1) has at least |Y | = m distinct
solutions. Thus, G is quasi-free of rank m.

Claim B: G is not semi-free. Consider the finite split embedding problem

(2) (ϕ: G → 1, Z/4Z → 1)

with the nontrivial kernel Z/4Z. Let Ψ be an independent set of solutions of
(2). The map Z/4Z → 1 decomposes into α: Z/4Z → Z/2Z and β: Z/2Z → 1.
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If ψ1, ψ2 ∈ Ψ are independent, then α◦ψ1, α◦ψ2 are independent solutions of
(ϕ: G → 1, β: Z/2Z → 1) (Lemma 10.1.3(f)). In particular, α ◦ ψ1 �= α ◦ ψ2.
Thus, {α ◦ ψ | ψ ∈ Ψ} has at least the cardinality of Ψ.

On the other hand, Z/4Z is a 2-group and the 2-Sylow subgroup of C is of
order 2. Hence, every ψ ∈ Ψ maps each Cx into Ker(α), the unique subgroup
of Z/4Z of order 2, so α ◦ ψ is trivial on Cx. Therefore α ◦ ψ is trivial on∏
∗ x∈X Cx. It follows that α ◦ ψ is determined by its restriction to F̂ω. But
there are only ℵ0 homomorphisms F̂ω → Z/4Z. Therefore, card(Ψ) ≤ ℵ0. �

In order to prove the last piece of information about the group G of
Example 10.6.1, we need a basic lemma about free products of two profinite
groups.

Lemma 10.6.2: Let A and B be profinite groups, A ∗ B their free product,
and π: A ∗ B → B the homomorphism defined by π(a) = 1 for a ∈ A and
π(b) = b for b ∈ B. Then, A ∗ B = B � Ker(π) and Ker(π) = 〈Ab | b ∈ B〉.

Proof: Let K = 〈Ab | b ∈ B〉. Then K is a closed normal subgroup of A ∗B
and K ≤ Ker(π).

If a1, . . . , an ∈ K and b1, . . . , bn ∈ B, then

a1b1a2b2 · · · anbn = b1(ab1
1 a2)b2 · · · anbn

and ab1
1 a2 ∈ K. Induction on n gives a k ∈ K such that

(ab1
1 a2)b2 · · · anbn = b2 · · · bnk.

Hence, a1b1 · · · anbn = bk with b = b1 · · · bn.
Now let g ∈ A ∗ B and consider an open normal subgroup N of A ∗ B.

Since A and B generate A ∗ B there are a1, . . . , an ∈ A and b1, . . . , bn ∈ B
such that g ≡ a1b1 · · · anbn mod N . By the preceding paragraph, g ∈ BKN .
Intersecting on all possible N gives g ∈ BK [FrJ08, Lemma 1.2.2(b)]. Thus,
A ∗ B = BK.

If g ∈ Ker(π), then writing g = bk with b ∈ B and k ∈ K and applying
π we get that 1 = b, so g = k ∈ K. Therefore, K = Ker(π).

That A ∗B = B � K follows now from the observation that B ∩K = 1.
�
Remark 10.6.3: It is further proved in [HJP09, Lemma 2.3] that Ker(π)
in Lemma 10.6.2 is isomorphic to the free product

∏
∗ b∈B Ab in the sense of

Melnikov [Mel90]. However, we do not need here that extra information. �
Lemma 10.6.4: Let G =

∏
∗ x∈X Cx ∗ F̂ω be as in Example 10.6.1. Suppose

m > ℵ0. Then G has a closed normal subgroup K such that weight(G/K) <
rank(G) but K is not quasi-free.

Proof: Let K be the kernel of the projection of G onto F̂ω, mapping each
element of E =

∏
∗ x∈X Cx onto 1 and each element of F̂ω onto itself. Then
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G/K ∼= F̂ω, so weight(G/K) = rank(F̂ω) = ℵ0 < m = rank(G). On the
other hand, by Lemma 10.6.2, K = 〈Eb | b ∈ F̂ω〉. Thus, K is generated by
elements of prime order. Therefore, every finite quotient of K is generated
by elements of prime order. In particular, Z/4Z is not a quotient of K.
Consequently, K is not quasi-free. �
Remark 10.6.5: Let K be an ample Hilbertian field. By Theorem 5.10.2(a),
every finite split embedding problem for Gal(K) is solvable. Hence, if K is
countable, or more generally, if rank(Gal(K)) = ℵ0, then Gal(K) is semi-
free (Proposition 10.2.4). It follows from Theorem 10.5.8 that Gal(K ′) is
semi-free in each of the following cases:
(3a) K ′ is a finite separable extension of K,
(3b) K ′ is a small separable algebraic extension of K (i.e. for each n

there are only finitely many extensions of K in K ′ of degree at most n),
(3c) K ′ is contained in a K-diamond,
(3d) K ′ is a finite proper separable extension of a Galois extension of K, and
(3e) K ′ is an Abelian extension of K. �

Following Remark 10.6.5, it is tempting to conjecture that Gal(K) is
semi-free if K is ample and Hilbertian. However, as Example 10.6.7 shows,
this is not the case.

Example 10.6.6: A projective non-semi-free profinite group N for which each
finite embedding problem is solvable.

Let m be an uncountable cardinal number and set F = F̂m. By [FrJ08,
Prop. 25.7.7], F has a closed normal subgroup N that has m N -independent
open normal subgroups M with N/M ∼= Z/pZ for each prime number p
but only ℵ0 N -independent open normal subgroups M with N/M ∼= S for
each non-Abelian simple finite group S. By [FrJ08, Lemma 25.7.1], N is not
free. As a closed subgroup of a free profinite group, N is projective [FrJ08,
Cor. 22.4.6]. Hence, by Proposition 10.1.14, N is not semi-free. We prove
that every finite embedding problem

(4) (ϕ: N → A, α: B → A)

for N is solvable. By induction on the order of C = Ker(α), we may suppose
that C is a minimal normal subgroup of B (see the proof of [FrJ08, Lemma
25.1.4]).

Let N1 = Ker(ϕ). By [FrJ08, Lemma 1.2.5], F has an open normal
subgroup F0 such that N ∩ F0 ≤ N1. Then K = NF0 is an open normal
subgroup of F and ϕ extends to a homomorphism κ: K → A by κ(nf0) =
ϕ(n) for f0 ∈ F0 and n ∈ N .

By [FrJ08, Proposition 17.6.2], K is free of rank m. Hence, there exists
an epimorphism θ: K → B with α ◦ θ = κ [FrJ08, Lemma 25.1.2]. Set K1 =
Ker(κ) and K2 = Ker(θ). Then N ∩ K1 = N1, NK1 = K, K/K2

∼= B, and
K1/K2

∼= C. In particular, N1 and K2 are normal in K. Hence, N1K2/K2 is
a normal subgroup of K/K2 which is contained in K1/K2. The latter group
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is minimal normal in K/K2 (because C is minimal normal in B), so either
N1K2 = K1 or N1 ≤ K2.

Case 1: N1K2 = K1. Then NK2 = K. Hence, θ(N) = θ(K) = B and
θ|N : N → B solves embedding problem (4).

Case 2: N1 ≤ K2. Then L = NK2 is normal in K, L/K2
∼= N/N1

∼= A,
and L ∩ K1 = K2. Thus,

B ∼= K/K2
∼= L/K2 × K1/K2

∼= A × C.

Since C is a minimal normal subgroup of B, it is isomorphic to a direct
product

∏r
i=1 Si of isomorphic copies of a single finite simple group S [FrJ08,

Remark 16.8.4]. By assumption, N has infinitely many N -independent open
normal subgroups M with N/M ∼= S. Hence, by Lemma 10.1.12, N has
open normal subgroups M1, . . . , Mr with N/Mi

∼= S, i = 1, . . . , r, and
M1, . . . , Mr, N1 are N -independent. Let M =

⋂r
i=1 Mi and N2 = M ∩ N1.

Then N/M ∼= Sr ∼= C, N/N2
∼= N/M ×N/N1

∼= C×A ∼= B and the quotient
map γ: N → N/N2 solves embedding problem (4). �
Example 10.6.7: A Hilbertian ample field K with a non-semi-free absolute
Galois group. Let N be the profinite group given by Example 10.6.6. In
particular, N is projective. Hence, by Lubotzky-v.d.Dries, there exists a
PAC field K with Gal(K) ∼= N [FrJ08, Cor. 23.1.2]. In particular, K is ample
(Example 5.6.1). Since every finite embedding problem for N is solvable, K
is ω-free (Section 5.10). By Roquette, K is Hilbertian [FrJ08, Cor. 27.3.3].
Finally, by Example 10.6.6, Gal(K) is not semi-free. �
Remark 10.6.8: Although the absolute Galois group of an arbitrary Hilber-
tian ample field F need not be semi-free, there are many cases where Gal(F )
is semi-free and F is uncountable. See Theorem 12.4.1 and Example 12.4.4.
�
Remark 10.6.9: Non quasi-free fundamental groups. Let E be a function
field of one variable over an algebraically closed field C of positive character-
istic and S a finite nonempty set of prime divisors of E/C. Then Gal(ES/E)
is not quasi-free. Otherwise, since Gal(ES/E) is projective (Theorem 9.5.7),
[FrJ08, Lemma 25.1.8] will imply that Gal(ES/E) is free. This will contra-
dicts Proposition 9.9.4. �

Notes
The notions of independent subgroups of a profinite group and of twist fiber
products of several finite groups is used in [BHH10] in order to improve
the criterion developed by Haran in his proof of the diamond theorem for
profinite groups. While [FrJ08, Prop. 24.14.1] which reconstruct that proof
gives a criterion for a closed subgroup M of a profinite group F to have all
finite split embedding problems solvable once the same holds for F , Lemma
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10.3.3 gives a criterion for M to have independent solutions of those problems
once F has independent solutions.

We have placed the group G on the left side of the twisted wreath product
and A on its right side in order to be consistent with the placement of the
factors in the semidirect product G � IndG

G0
(A). Note however that this is

inconsistent with the notation we use in [FrJ08], where the same group is
denoted by AwrG0G.

Most of Sections 10.1 – 10.5 is a workout of some parts of [BHH10].
Example 10.6.1 is a workout of [BHH10, Prop. 6.1].
The concept “sparse subgroup” of a profinite group F is introduced in

[BSo06] in order to prove the diamond theorem for free profinite groups of
finite rank.
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Chapter 11.
Function Fields of One Variable
over PAC Fields

We prove that if K is an ample field of cardinality m and E is a function
field of one variable over K, then Gal(E) is semi-free of rank m (Theorem
11.7.1). It follows from Theorem 10.5.4 that if F is a finite extension of E, or
an Abelian extension of E, or a proper finite extension of a Galois extension
of E, or F is “contained in a diamond” over E, then Gal(F ) is semi-free.

We apply the latter results to the case where K is PAC and E = K(x),
where x is an indeterminate. We construct a K-radical extension F of E
in a diamond over E and conclude that F is Hilbertian and Gal(F ) is semi-
free and projective (Theorem 11.7.6), so Gal(F ) is free. In particular, if K
contains all roots of unity of order not divisible by char(K), then Gal(E)ab
is free of rank equal to card(K) (Theorem 11.7.6).

11.1 Henselian Fields
We give a sufficient condition for the absolute Galois group of a Henselian
field (M,v) to be projective. Our proof is valuation theoretic and starts
almost from the basic definitions. In particular, we do not use the connection
between projectivity and the vanishing of the Brauer groups.

Let p be a prime number and A an Abelian group. We say that A is
p′-divisible, if for each a ∈ A and every positive integer n with p � n there
exists b ∈ A such that a = nb. Note that if p = 0, then “p′-divisible” is the
same as “divisible”.

Lemma 11.1.1: Let p be 0 or a prime number, B a torsion free Abelian group,
and A a p′-divisible subgroup of finite index. Then B is also p′-divisible.

Proof: First suppose that p = 0 and let m = (B : A). Then, for each b ∈ B
and a positive integer n there exists a ∈ A such that mb = mna. Since B is
torsion free, b = na. Thus, B is divisible.

Now suppose p is a prime number, let mpk = (B : A), with p � m and
k ≥ 0, and consider b ∈ B. Then mpkb ∈ A. Hence, for each positive integer
n with p � n there exists a ∈ A with mpkb = mna. Thus, pkb = na. Since
p � n, there exist x, y ∈ Z such that xpk +yn = 1. It follows from xpkb = xna
that b = n(xa + yb), as claimed. �
Corollary 11.1.2: Let L/K be an algebraic extension, v a valuation of L,
and p = 0 or p is a prime number. Suppose that v(K×) is p′-divisible. Then
v(L×) is p′-divisible.

Proof: Let x ∈ L× and n a positive integer with p � n. Then v(K(x)×)
is a torsion free Abelian group and v(K×) is a subgroup of index at most
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DOI , © Springer-Verlag Berlin Heidelberg 201110.1007/978-3-642-15128-6_11
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[L : K]. Since v(K×) is p′-divisible, Lemma 11.1.1 gives y ∈ K(x)× such
that v(x) = nv(y). It follows that v(L×) is p′-divisible. �

Given a Henselian valued field (M,v), we use v also for its unique exten-
sion to Ms. We use a bar to denote the residue with respect to v of objects
associated with M , let OM be the valuation ring of M , and let ΓM = v(M×)
be the value group of M .

Proposition 11.1.3: Let (M, v) be a Henselian valued field. Suppose p =
char(M) = char(M̄), Gal(M̄) is projective, and ΓM is p′-divisible. Then
Gal(M) is projective.

Proof: We denote the inertia field of M by Mu. It is determined by its
absolute Galois group: Gal(Mu) = {σ ∈ Gal(M) | v(σx − x) > 0 for all x ∈
Ms with v(x) ≥ 0}. The map σ �→ σ̄ of Gal(M) into Gal(M̄) such that
σ̄x̄ = σx for each x ∈ OMs is a well defined epimorphism [Efr06, Thm. 16.1.1]
whose kernel is Gal(Mu). It therefore defines an isomorphism

(1) Gal(Mu/M) ∼= Gal(M̄).

Claim A: M̄u is separably closed. Let g ∈ Mu[X] be a monic irreducible
separable polynomial of degree n ≥ 1. Then there exists a monic polynomial
f ∈ OMu

[X] of degree n such that f̄ = g. We observe that f is also irreducible
and separable. Moreover, if f(X) =

∏n
i=1(X−xi) with x1, . . . , xn ∈ Ms, then

g(X) =
∏n

i=1(X − x̄i). Given 1 ≤ i, j ≤ n there exists σ ∈ Gal(Mu) such
that σxi = xj . By definition, x̄j = σxi = σ̄x̄i = x̄i. Since g is separable,
i = j, so n = 1. We conclude that M̄u is separably closed.

Claim B: Each l-Sylow group of Gal(Mu) with l �= p is trivial. Indeed, let
L be the fixed field of an l-Sylow group of Gal(Mu) in Ms. If l = 2, then
ζl = −1 ∈ L. If l �= 2, then [L(ζl) : L]|l − 1 and [L(ζl) : L] is a power of l, so
ζl ∈ L.

Assume that Gal(L) �= 1. By the theory of finite l-groups, L has a cyclic
extension L′ of degree l. By the preceding paragraph and Kummer theory,
there exists a ∈ L such that L′ = L( l

√
a). By Corollary 11.1.2, there exists

b ∈ L× such that lv(b) = v(a). Then c = a
bl satisfies v(c) = 0. By Claim

A, L̄ is separably closed. Therefore, c̄ has an lth root in L̄. By Hensel’s
lemma, c has an lth root in L. It follows that a has an lth-root in L. This
contradiction implies that L = Ms, as claimed.

Having proved Claim B, we consider again a prime number l �= p and let
Gl be an l-Sylow subgroup of Gal(M). By the claim, Gl∩Gal(Mu) = 1, hence
the map res: Gal(M) → Gal(Mu/M) maps Gl isomorphically onto an l-Sylow
subgroup of Gal(Mu/M). By (1), Gl is isomorphic to an l-Sylow subgroup of
Gal(M̄). Since the latter group is projective, so is Gl, i.e. cdl(Gal(M)) ≤ 1
[Ser79, p. 58, Cor. 2].

Finally, if p �= 0, then cdp(Gal(M)) ≤ 1 [Ser79, p. 75, Prop. 3], because
then char(M) = p. It follows that cd(Gal(M)) ≤ 1 [Ser79, p. 58, Cor. 2]. �
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11.2 Brauer Groups of Henselian Fields

We establish a short exact sequence for the Brauer group of a finite unramified
extension of a Henselian field. That sequence will be used in the proof of
Lemma 11.5.1.

Again, when (M,v) is a Henselian field, we denote its valuation ring by
OM , the maximal ideal of OM by mM , the group of units of M by UM , the
value group of (M,v) by ΓM , and use a bar to denote reduction modulo mM

Proposition 11.2.1: Let (M,v) be a Henselian valued field and (N, v) a
finite Galois extension with a trivial inertia group. Set G = Gal(N/M). Then
the G-module 1+mN is G-cohomologically trivial, that is Hi(G, 1+mN ) = 0
for all positive integers i.

Proof: By Subsection 9.3.13, it suffices to prove the following equalities:

(1)
(1 + mN )G = normN/M (1 + mN )

Z1(G, 1 + mN ) = B1(G, 1 + mN ).

Since the right hand sides of (1) are contained in the left hand sides, it suffices
to prove only the other inclusions. This is done in two parts.

Part A: Proof that (1 + mN )G ≤ normN/M (1 + mN ). Note that (1 +
mN )G = 1+mM . Thus, we have to prove that 1+mM ≤ normN/M (1+mN ).

Since G0(N/M) = 1, (1) of Section 11.1 implies that the map σ �→ σ̄
is an isomorphism Gal(N/M) ∼= Gal(N̄/M̄). By the normal basis theorem
there exists x ∈ ON such that {σ̄x̄ | σ ∈ G} is a basis of N̄/M̄ [Lan93,
p. 312 for the case where M is infinite and Jac64, p. 61 for M finite]. Then
the elements σx, σ ∈ G, are linearly independent over M , so they form a
basis of N/M . If traceN/M (x) = 0, then traceN/M (σx) = 0 for each σ ∈ G,
so traceN/M (y) = 0 for all y ∈ N . This contradiction to the fact that
traceN/M : N → M is a nonzero M -linear function [Lan93, p. 286, Thm. 5.2]
proves that a = traceN/M (x) �= 0. Dividing x by a, we may assume that
traceN/M (x) = 1.

Now let n = [N : M ] = |G| and consider y ∈ mM and the polynomial

f(Z) = −y + Z + a2Z
2 + · · · + an−1Z

n−1 + normN/M (x)Zn

with ak =
∑

σ xσ1 · · ·xσk , where σ ranges over all injections from {1, . . . , k}
into G. In particular, f ∈ OM [Z]. For each z ∈ OM we have

normN/M (1 + xz) =
∏
σ∈G

(1 + xσz)

= 1 + traceN/M (x)z + a2z
2 + · · · + an−1z

n−1 + normN/M (x)zn

= 1 + z + a2z
2 + · · · + an−1z

n−1 + normN/M (x)zn,

so f(z) = normN/M (1 + xz) − 1 − y.
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Since y ∈ mM , we have

f(y) = a2y
2 + · · · + an−1y

n−1 + normN/M (x)yn ≡ 0 mod m2
M

and

f ′(y) = 1+2a2y
2+· · ·+(n−1)an−1y

n−2+n·normN/M (x)yn−1 ≡ 1 mod m2
M .

The Henselianity of (M, v) gives a z ∈ mM with f(z) = 0, that is

normN/M (1 + xz) = 1 + y,

as desired.

Part B: Z1(G, 1 + mN ) ≤ B1(G, 1 + mN ). Consider a 1-cocycle

a ∈ Z1(G, 1 + mN ).

Then a ∈ Z1(G, N×). Since H1(G, N×) = 1 (Hilbert’s theorem 90, Subsec-
tion 9.3.17), there exists b ∈ N× such that aσ = (σ − 1)b for each σ ∈ G.
Since v(N×) = v(M×), there exists b′ ∈ M× with v(b′) = v(b). Then c = b

b′
satisfies v(c) = 0 and aσ = (σ − 1)c for each σ ∈ G. Since aσ ∈ 1 + mN ,
we have 1 = (σ̄ − 1)c̄, hence σ̄c̄ = c̄ for all σ ∈ G. Therefore, c̄ ∈ M̄ , so
there exists c′ ∈ OM with c′ = c̄. The element d = c

c′ is in 1 + mN and
satisfies aσ = (σ − 1)d for all σ ∈ G. This means that a ∈ B1(G, 1 + mN ), as
contended. �

Proposition 11.2.1 has a series of consequences expressed in the following
lemmas.

Lemma 11.2.2: Let M , N , and G be as in Proposition 11.2.1. Then, for each
positive integer i there is a natural isomorphism, Hi(G, UN ) ∼= Hi(G, N̄×).

Proof: The short exact sequence 1 → 1 + mN → UN → N̄× → 1 of G-
modules, in which UN → N̄× is the reduction map, induces a natural long
exact sequence

Hi(G, 1 + mN ) → Hi(G, UN ) → Hi(G, N̄×) → Hi+1(G, 1 + mN )

(Subsection 9.3.4). The first and the fourth terms of that sequence are trivial
by Proposition 11.2.1. Hence the second and the third terms of that sequence
are naturally isomorphic. �

Lemma 11.2.3: Let M , N , v, and G be as in Proposition 11.2.1. Then for
each positive integer i there is a natural short exact sequence

1 → Hi(G, N̄×
v ) → Hi(G, N×) v−→Hi(G, ΓM ) → 0.
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In particular, for i = 2 the following short sequence is exact:

0 → Br(N̄v/M̄v) → Br(N/M) → H2(G, ΓM ) → 0

Proof: The short exact sequence 1 → UN → N× v−→ΓN → 0 gives rise to a
long exact sequence

(2) · · · δ−→Hi(G, UN ) → Hi(G, N×) v−→Hi(G, ΓN ) δ−→· · · .

By Lemma 11.2.2, we may replace Hi(G, UN ) by Hi(G, N̄×). Since N/M is
unramified, ΓN = ΓM . Hence, (2) simplifies to a long exact sequence

(3) · · · δ−→Hi(G, N̄×) → Hi(G, N×) v−→Hi(G, ΓM ) δ−→· · ·

of cohomology groups. We have to prove that each of the homomorphisms
δ is the zero map. This is equivalent to proving that the map v in (3) is
surjective for each i ≥ 0.

To this end we consider a finitely generated subgroup A of ΓM . Since
ΓM is torsion free, A is free. Lifting free generators of A to elements of M×

gives generators of a subgroup B of M× that v maps isomorphically onto A.
Since G acts trivially both on M and on ΓM , v|B is a G-isomorphism.

N× v �� ΓN

M× v ��





ΓM

B
v ��





A





Ignoring the second row and taking cohomology gives a commutative diagram

Hi(G, N×) v �� Hi(G, ΓM )

Hi(G, B)





v �� Hi(G, A)





in which the lower arrow v is an isomorphism. In particular, each element of
Hi(G, A) lies in the image of v. Since Hi(G, ΓM ) is the inductive limit of all
of the groups Hi(G, A) (Subsection 9.3.10), the upper arrow of the preceding
diagram is surjective. �
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11.3 Local-Global Theorems for Brauer Groups

We establish a commutative diagram for the Brauer group of a generalized
function field of one variable over a field K relating it to the product of the
Brauer groups of the Henselizations.

Remark 11.3.1: Let K be a perfect field and F a generalized function field of
one variable over K, that is a regular extension of K of transcendence degree
1. We denote the set of all equivalence classes of valuations of F that are
trivial on K by P(F/K). We choose a representative vp in each p ∈ P(F/K)
and a Henselian closure Fp of F at vp. Then the residue fields F̄p of both F
and Fp are the same and so are the value groups Γp. We extend the residue
map of Fp to a place x �→ x̄ of Fs onto K̃ ∪ {∞} that fixes the elements of
K̃. Then the map σ �→ σ̄ defined by σ̄x̄ = σx is an epimorphism of Gal(Fp)
onto Gal(F̄p). In particular, σ̄x = σx for each σ ∈ Gal(Fp) and every x ∈ K̃,
that is the map σ → σ̄ is the restriction map. It follows that Fp ∩ K̃ = F̄p.
Moreover, if σ ∈ Gal(Fp), then σ̄x̄ = x̄ for all x ∈ Fs with x̄ ∈ K̃ if and only
if σ ∈ Gal(FpK̃). Thus, Gal(FpK̃) is the inertia group of the extension of p

to Fs and the restriction map Gal(FpK̃/Fp) → Gal(F̄p) is an isomorphism.
�
Lemma 11.3.2: Let F be a generalized function field of one variable over a
field K and let p be a prime number. Suppose for each function field E of
one variable over K in F the map

(1) res: Br(E)p∞ →
∏

p∈P(E/K)

Br(Ep)p∞

is injective and its image lies in
⊕

p∈P(E/K) Br(Ep)p∞ . Then the map

(2) res: Br(F )p∞ →
∏

p∈P(F/K)

Br(Fp)p∞

is injective.

Proof: Given an algebraic extension of fields E ⊆ E′, we denote the restric-
tion map Br(E)p∞ → Br(E′)p∞ by resE

E′ . Now we consider a function field
E of one variable over K in F , let p ∈ P(E/K), and let x ∈ Br(Ep)p∞ . Sup-
pose resEp

Fq
(x) = 0 for each q ∈ P(F/K) over p. Let E be the set of all finite

extensions of E in F . We prove there exists E′ ∈ E such that resEp

E′
q
(x) = 0

for each q ∈ P(E′/K) lying over p.
To this end we recall that for each E′ ∈ E the set of prime divisors of

E′/K that lie over p bijectively corresponds to the set of all Ep-isomorphisms
of E′Ep into Es. If σ′ is such an isomorphism and q′ is the corresponding
prime divisor of E′/K, we choose σ′(E′Ep) as the Henselian closure E′

q′ of
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E′ at q′. This choice ensures that if E′′ is a finite extension of E′ in F and
q′′ is a prime divisor of E′′/K that lies over q′, then E′

q′ ⊆ E′′
q′′ .

Now assume E has no extension E′ as in the first paragraph of the proof.
Then for each E′ ∈ E the finite set Q(E′) of all prime divisors q ∈ P(E′/K)
lying over p such that resEp

E′
q
(x) �= 0 is nonempty. If E′′ is a finite extension

of E′ in F , then restriction of divisors maps Q(E′′) into Q(E′). Since the
inverse limit of nonempty finite sets is nonempty [FrJ08, Cor. 1.1.4], there
exists a set Q = {qE′ ∈ Q(E′) | E′ ∈ E} such that qE′ is the restriction of
qE′′ for all E′, E′′ ∈ E with E′ ⊆ E′′. The set Q determines an element q of
P(F/K) such that resEp

Fq
(x) �= 0, in contrast to the assumption made in the

first paragraph of the proof.

Claim: The map (2) is injective. Otherwise, there exists z ∈ Br(F )p∞ such
that z �= 0 and resF

Fq
(z) = 0 for every q ∈ P(F/K). Since F is the union

of function fields E of one variable over K and Br(F )p∞ is the direct limit
of the groups Br(E)p∞ (Subsections 9.3.10 and 9.3.18), there exist such a
field E and an element x ∈ Br(E)p∞ with x �= 0 and resE

F (x) = z. By our
assumption on the image of the map (1), resE

Ep
(x) = 0 for all but finitely

many p ∈ P(E/K). We denote the exceptional set by P . For each p ∈ P

let xp = resE
Ep

(x). Then resEp

Fq
(xp) = resF

Fq
(z) = 0 for each q ∈ P(F/K)

lying over p. By what we have proved above, E has a finite extension E(p)
in F such that resEp

E(p)q
(xp) = 0 for each q ∈ P(E(p)/K) lying over p. Let

E′ =
∏

p∈P E(p). Then E′ is a finite extension of E in F and resE
E′

q
(x) = 0 for

each p ∈ P and every q ∈ P(E′/K) lying over p. It follows from the definition
of P that resE

E′
q
(x) = 0 for each p ∈ P(E/K) and every q ∈ P(E′/K) lying

over p. Finally, let y = resE
E′(x). Then resE′

F (y) = z �= 0, so y �= 0. On the
other hand, resE′

E′
q
(y) = 0 for all q ∈ P(E′/K). This contradicts the injectivity

of the map (1). �
Lemma 11.3.3: In the notation of Remark 11.3.1 and with P = P(F/K)
there is a natural commutative diagram
(3)

Br(F )
β ��

res��

H2(Gal(K), (FK̃)×)
γ ��

res��

H2(Gal(K), (FK̃)×/K̃×)

��∏
p∈P Br(Fp)

β′
�� ∏

p∈P H2(Gal(F̄p), (FpK̃)×)
γ′

��
∏

p∈P H2(Gal(F̄p),Γp)

where β and β′ are isomorphisms.

Proof: The inflation-restriction sequence for Brauer groups (Subsection
9.3.18) applied to Gal(F ) and Gal(FK̃) is
(4)
1 → H2(Gal(FK̃/F ), (FK̃)×) inf−→H2(Gal(F ), F×

s ) res−→H2(Gal(FK̃), F×
s ).
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Since F/K is regular, the map res: Gal(FK̃/F ) → Gal(K) is an isomorphism.
By Proposition 9.4.6(b), cd(Gal(FK̃)) ≤ 1, so H2(Gal(FK̃), F×

s ) = 1 (Sub-
section 9.3.18). Thus, inf in (4) is an isomorphism. We denote its inverse by
β to get the left upper map in Diagram (3). The homomorphism γ in (3) is
induced by the quotient map (FK̃)× → (FK̃)×/K̃×.

For each p ∈ P we replace F and K in the preceding argument by Fp and
F̄p, respectively, and use that Fp/F̄p is a regular extension (Remark 11.3.1) to
produce an isomorphism βp: Br(Fp) → H2(Gal(F̄p), (FpK̃)×) that commutes
with the restriction map. Then we define β′ as the product of all the βp’s.

Similarly, for each p ∈ P, the quotient map (FpK̃)× → (FpK̃)×/K̃×

yields a homomorphism

γp: H2(Gal(F̄p), (FpK̃)×) → H2(Gal(F̄p), (FpK̃)×/K̃×).

The valuation vp extended to FpK̃ maps (FpK̃)× onto the valuation group
Γp and vanish on K̃×. So it defines a homomorphism

γ′
p: H2(Gal(F̄p), (FpK̃)×/K̃×) → H2(Gal(F̄p),Γp).

We let γ′ =
∏

p∈P γ′
p ◦ γp. Finally, noting that FK̃ = FpK̃, the third vertical

arrow in (3) is just
∏

p∈P γ′
p ◦ res. �

11.4 Picard Groups

Let F be a function field of one variable over a perfect field K. Thus, F/K
is a finitely generated regular extension of transcendence degree 1. Let P =
P(F/K) be the set of prime divisors of F/K (Remark 11.3.1). Using the
notation of Remark 5.8.1, we recall that each a ∈ Div(F/K) has a unique
representations as a =

∑
p∈P vp(a)p, with integers vp(a), all but finitely many

are 0. In particular, div(f) =
∑

p∈P vp(f)p for each f ∈ F×. Thus, the map
a �→ (vp(a))p∈P is a natural isomorphism,

(1) Div(F/K) ∼=
⊕
p∈P

Γp

The map div: F× → Div(F/K) is a homomorphism with Ker(div) =
K× [Deu73, p. 25]. The Picard group of F/K is the cokernel of div,
also called the group of divisor classes of F/K, that is, Pic(F/K) =
Div(F/K)/div(F×). Since div(F×) ∼= F×/K×, we get the following natural
short exact sequence:

(2) 1 → F×/K× div−→Div(F/K) → Pic(F/K) → 0.

Recall that the group of divisors of degree 0, Div0(F/K), contains
div(F×) (Remark 5.8.1(a)). Hence, Pic0(F/K) = Div0(F/K)/div(F×) is
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11.4 Picard Groups

a subgroup of Pic(F/K) and (2) yields the following natural short exact
sequence:

(3) 1 → F×/K× div−→Div0(F/K) → Pic0(F/K) → 0.

Analogous convention and rules hold for the function field FK̃/K̃. Here we
write P̃ = P(FK̃/K̃).

Lemma 11.4.1: There is a natural isomorphism

Div(FK̃/K̃) ∼=
⊕
p∈P

IndGal(K)

Gal(F̄p)
(Γp)

of Gal(K)-modules.

Proof: Consider a prime divisor p ∈ P and a prime divisor P ∈ P̃ lying over p.
We identify Gal(FK̃/K̃) with Gal(K) via restriction. For each σ ∈ Gal(K)
the prime divisor σP is the equivalence class of the valuation vσP of FK̃
defined by vσP(x) = vP(σ−1x). When σ ranges over Gal(K), the divisor
σP ranges over all extensions of p to FK̃. By Remark 11.3.1, the stabilizer
of P under this action is Gal(F̄p). Hence,

⊕
Q|p ΓQ =

⊕
σ∈S ΓσP, where S

is a subset of Gal(K) satisfying Gal(K) =
⋃
· σ∈S Gal(F̄p)σ. Note that for

each Q ∈ P̃ lying over p the value group ΓQ is Z, so we may identify it
with Γp. It follows from Subsection 9.3.12 that

⊕
Q|p ΓQ =

⊕
σ∈S ΓσP =⊕

σ∈S Γp = IndGal(K)

Gal(F̄p)
(Γp). Consequently, Div(FK̃/K̃) ∼=

⊕
p∈P

⊕
Q|p ΓQ =⊕

p∈P IndGal(K)

Gal(F̄p)
(Γp), as claimed. �

Lemma 11.4.2: Let G be a profinite group acting trivially on a discrete
torsion free Abelian group A. Then H1(G, A) = Hom(G, A) = 0.

Proof: The left equality follows from the definition of H1 (Subsection 9.3.2).
Each element of Hom(G, A) is a continuous homomorphism f : G → A. Its
image is a compact subgroup, so must be finite. Since A is torsion free,
f(G) = 0. Therefore, Hom(G, A) = 0. �
Lemma 11.4.3: Let F be a function field of one variable over a perfect field
K. Then there is a natural exact sequence

(4)

0 → H1(Gal(K),Pic(FK̃/K̃)) → H2(Gal(K), (FK̃)×/K̃×)

→
⊕

p∈P(F/K)

H2(Gal(F̄p),Γp) → H2(Gal(K),Pic(FK̃/K̃))

→ H3(Gal(K), (FK̃)×/K̃×).

Proof: As above we set P = P(F/K) and start from the short exact sequence
for FK̃/K̃ analogous to (2):

1 → (FK̃)×/K× div−→Div(FK̃/K̃) → Pic(FK̃/K̃) → 0.
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It induces a long exact sequence:

(5)

H1(Gal(K),Div(FK̃/K̃)) → H1(Gal(K),Pic(FK̃/K̃))

→ H2(Gal(K), (FK̃)×/K̃×) → H2(Gal(K),Div(FK̃/K̃))

→ H2(Gal(K),Pic(FK̃/K̃)) → H3(Gal(K), (FK̃)×/K̃×).

By Lemma 11.4.1 and by Shapiro’s Lemma (Subsection 9.3.12), we have for
i = 1, 2 natural isomorphism

Hi(Gal(K),Div(FK̃/K̃)) ∼=
⊕
p∈P

Hi(Gal(K), IndGal(K)

Gal(F̄p)
(Γp))

∼=
⊕
p∈P

Hi(Gal(F̄p),Γp),

where the action of Gal(F̄p) on Γp is trivial. Since Γp is a torsion free discrete
Abelian group, H1(Gal(K),div(FK̃/K̃)) = 0 (Lemma 11.4.2). Collecting
this information into (5) gives the exact sequence (4). �
Lemma 11.4.4: Let F be a function field of one variable over a perfect field
K and let p be a prime number. Then:
(a) The natural map

H1(Gal(K),Pic0(FK̃/K̃)) → H1(Gal(K),Pic(FK̃/K̃))

is surjective.
(b) If F/K has a prime divisor of degree 1, then

Hi(Gal(K),Pic0(FK̃/K̃))p∞ = 0

for each i > cdp(Gal(K)) and
(c) there is a natural isomorphism

Hi(Gal(K),Pic(FK̃/K̃))p∞ ∼= Hi−1(Gal(K), Q/Z)p∞

for each i > max(1, cdp(Gal(K))).

Proof of (a): The definition of the Picard groups gives rise to a short exact
sequence

(6) 0 → Pic0(FK̃/K̃) → Pic(FK̃/K̃)
deg−→Z → 0

of Gal(K)-modules. We consider a segment of the corresponding long exact
sequence of cohomology groups:

H1(Gal(K),Pic0(FK̃/K̃)) → H1(Gal(K),Pic(FK̃/K̃)) → H1(Gal(K), Z).
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Since Gal(K) acts trivially on Z, Lemma 11.4.2 implies that H1(Gal(K), Z) =
0, hence (a) is true.

Proof of (b): Let J be the Jacobian variety of F/K. By Subsection 6.3.1,
J(K̃) is a divisible Abelian group. Hence, multiplication by pn gives a short
exact sequence:

0 → J(K̃)pn → J(K̃)
pn

−→ J(K̃) → 0,

which in turn gives for each positive integer i a long exact sequence

Hi(Gal(K), J(K̃)pn) → Hi(Gal(K), J(K̃))(7)
pn

−→Hi(Gal(K), J(K̃))
→ Hi+1(Gal(K), J(K̃)pn).

If i > cdp(Gal(K)), then both the first and the last groups in (7) are zero.
Therefore multiplication with pn is an automorphism of Hi(Gal(K), J(K̃)).
In particular, Hi(Gal(K), J(K̃))p∞ = 0. Finally, by Subsection 6.3.2,

Pic0(FK̃/K̃) ∼= J(K̃)

as Gal(K)-modules. Consequently, Hi(Gal(K),Pic0(FK̃/K̃))p∞ = 0, as
claimed.

Proof of (c): For each i ≥ 0 the short exact sequence (6) induces an exact
sequence

(8)

Hi(Gal(K),Pic0(FK̃/K̃)) → Hi(Gal(K),Pic(FK̃/K̃))

→ Hi(Gal(K), Z)

→ Hi+1(Gal(K),Pic0(FK̃/K̃)).

By Subsection 9.3.10, the p-primary part

Hi(Gal(K),Pic0(FK̃/K̃))p∞ → Hi(Gal(K),Pic(FK̃/K̃))p∞

→ Hi(Gal(K), Z)p∞

→ Hi+1(Gal(K),Pic0(FK̃/K̃))p∞

of (8) is also exact. By (b), the first and the last groups in the latter sequence
are zero if i > cdp(Gal(K)). In addition, by Lemma 9.3.11, there is a natural
isomorphism Hi(Gal(K), Z) ∼= Hi−1(Gal(K), Q/Z) if i ≥ 2. Hence, there is
a natural isomorphism as in (c) if i > max(1, cdp(Gal(K))). �
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11.5 Fields of Cohomological Dimension at most 1
We analyze the exact sequence of Lemma 11.4.3 in the case where
cd(Gal(K)) ≤ 1 and prove a local-global principle for Brauer groups of gen-
eralized function fields of one variable over perfect PAC fields.

Lemma 11.5.1: Let F be a generalized function field over a perfect field K
with cd(Gal(K)) ≤ 1. Then:
(a) The natural homomorphism

γ: H2(Gal(K), (FK̃)×) → H2(Gal(K), (FK̃)×/K̃×)

induced by the quotient map (FK̃)× → (FK̃)×/K̃× is an isomorphism.
(b) Hi(Gal(K), (FK̃)×/K̃×) = 0 for i ≥ 3.
(c) For each p ∈ P(F/K), the valuation map

H2(Gal(F̄p), (FpK̃)×) → H2(Gal(F̄p),Γp)

is an isomorphism.

Proof: The short exact sequence

1 → K̃× → (FK̃)× → (FK̃)×/K̃× → 1

of Gal(K)-modules gives rise to an exact sequence

(1)
H2(Gal(K), K̃×) → H2(Gal(K), (FK̃)×)

→ H2(Gal(K), (FK̃)×/K̃×) → H3(Gal(K), K̃×)

of cohomology groups. Since cd(Gal(K)) ≤ 1, we have H2(Gal(K), K̃×) ∼=
Br(K) = 0 (Subsection 9.3.18) and H3(Gal(K), K̃×) = 0 for each i ≥ 3
(Subsection 9.3.15). Thus, (a) follows from (1). Moreover, (b) holds.

Finally, let p ∈ P(F/K) and apply Lemma 11.2.3 for Fp, FpK̃, and vp

rather than to M , N , and v. Recall that we have identified Gal(FpK̃/Fp) with
Gal(F̄p) (Remark 11.3.1). Hence, that lemma gives a short exact sequence

0 → Br(F̄p) → H2(Gal(F̄p), (FpK̃)×) → H2(Gal(F̄p),Γp) → 0.

Now we use that Gal(F̄p) as a closed subgroup of Gal(K) has cohomological
dimension at most 1 to deduce that Br(F̄p) = 0 and conclude the proof of
(c). �
Lemma 11.5.2: Let F be a generalized function field over a perfect field K
with cd(K) ≤ 1. Then there is a natural commutative square

Br(F ) ��

res

��

H2(Gal(K), (FK̃)×/K̃×)

��∏
p∈P(F/K) Br(Fp) ��

∏
p∈P(F/K) H2(Gal(F̄p),Γp)
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where the horizontal arrows are isomorphisms.

Proof: By Lemma 11.5.1, the maps γ and γ′ of Lemma 11.3.3 are isomor-
phisms. Hence, so are the maps γ◦β and γ′◦β′ of the latter lemma. Therefore,
the diagram of Lemma 11.3.3 shrinks to the diagram of our lemma. �
Lemma 11.5.3: Let F be a function field of one variable over a perfect field
K. Suppose F/K has a prime divisor of degree 1 and cd(Gal(K)) ≤ 1. Then
there exists a natural exact sequence

0 → H1(Gal(K),Pic(FK̃/K̃)) → Br(F )
res−→

⊕
p∈P(F/K)

Br(Fp)

→ Hom(Gal(K), Q/Z) → 0

Proof: We apply Lemma 11.5.2 to replace

H2(Gal(K), (FK̃)×/K̃×) and
⊕

p∈P(F/K)

H2(Gal(F̄p),Γp)

in the exact sequence of Lemma 11.4.3 by Br(F ) and
⊕

p∈P(F/K) Br(Fp),
respectively. Since cd(Gal(K)) ≤ 1 and each cohomology group of positive
degree is the sum of its primary parts, Lemma 11.4.4(c) implies that

H2(Gal(K),Pic(FK̃/K̃)) ∼= H1(Gal(K), Q/Z) = Hom(Gal(K), Q/Z).

By Lemma 11.5.1(b), H3(Gal(K), (FK̃)×/K̃×) = 0. Consequently, the exact
sequence of Lemma 11.4.3 becomes the sequence of our lemma. �
Lemma 11.5.4: Let F be a function field of one variable over a perfect PAC
field K. Then there is a natural exact sequence

0 → Br(F ) res−→
⊕

p∈P(F/K)

Br(Fp) → Hom(Gal(K), Q/Z) → 0

Proof: Let J be the Jacobian variety of F/K. Since K is PAC,

H1(Gal(K), J(K̃)) = 0.

(Subsection 6.3.3). By Subsection 6.3.2, Pic0(FK̃/K̃) ∼= J(K̃) as Gal(K)-
modules. Hence,

H1(Gal(K),Pic0(FK̃/K̃)) = 0.

Therefore, by Lemma 11.4.4(a), H1(Gal(K),Pic(FK̃/K̃)) = 0. Consequen-
tly, the exact sequence of Lemma 11.5.3 shortens to the exact sequence of
the present lemma. �

Using lemma 11.3.2, we extract the following result for generalized func-
tion fields from Lemma 11.5.4:
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Proposition 11.5.5 (Efrat): Let F be a generalized function field of one
variable over a perfect PAC field K. Then the restriction map

res: Br(F ) →
∏

p∈P(F/K)

Br(Fp)

is injective

Corollary 11.5.6: Let F be a generalized function field of one variable over
a perfect PAC field K. Suppose Gal(Fp) is projective for each p ∈ P(F/K).
Then Gal(F ) is projective.

Proof: For each p ∈ P(F/K) the group Gal(Fp) is projective, hence
cd(Gal(Fp)) ≤ 1 (Subsection 9.3.16). Since K is perfect, Br(Fp) = 0 (Sub-
section 9.3.18). Therefore, by Proposition 11.5.5, Br(F ) = 0.

The same conclusion holds for every finite separable extension F ′ of F ,
because the algebraic closure of K in F ′ is perfect and PAC [FrJ08, Corol-
lary 11.2.5] and closed subgroups of projective groups are projective [FrJ08,
Prop. 22.4.7]. By Subsection 9.3.18, Gal(F ) is projective. �

11.6 Radical Extensions
We call an algebraic extension F/E of fields of characteristic p radical if for
each a ∈ E and every positive integer n with p � n there exists xa,n ∈ F such
that xn

a,n = a and F = E(xa,n)a∈E, p�n. The following conjecture is a variant
of a conjecture of Bogomolov-Positselski [BoP05, Conjecture 1.1]:

Conjecture 11.6.1: Let E be an extension of a field K with
trans.deg(E/K) = 1 and F an algebraic extension of E. Suppose F con-
tains a radical algebraic extension of E. Then Gal(F ) is projective.

We prove Conjecture 11.6.1 in the special case where K is PAC. It turns
out that in this case it suffices to adjoin much less radicals to E than de-
manded by the definition of the radical extension.

Definition 11.6.2: K-radical extensions. Let E/K be a function field of one
variable and F an algebraic extension of E. In the notation of Remark 11.3.1
we say that F/E is a K-radical extension if for each p ∈ P(E/K) and for
each positive integer n with char(K) � n there exists an element xp,n ∈ F
such that xn

p,n ∈ E, vp(xn
p,n) = 1, and F = K(xp,n)p∈P(E/K),char(K)�n.

In particular, if F/E is a radical extension, then F/E is also a K-radical
extension. �
Definition 11.6.3: Let K be a field of characteristic p and F an extension of
K of transcendence degree 1. We say that F has p′-divisible K-functional
valuation groups if the value group of F at each valuation trivial on K is
p′-divisible.

Note that in that case each algebraic extension F ′ of F also has p′-
divisible K-functional valuation groups (Remark 11.1.2). �
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Lemma 11.6.4: Let p be either 0 or a prime number and let Γ be an additive
subgroup of Q. Suppose 1

n ∈ Γ for each positive integer n with p � n. Then
Γ is p′-divisible.

Proof: We consider γ ∈ Γ. If p = 0, we write γ = a
b , with a ∈ Z and b ∈ N.

Given n ∈ N, we have γ
n = a · 1

nb ∈ Γ.
If p > 0, we write γ = a

bpk , where a ∈ Z, b ∈ N, k ∈ Z, and p � a, b.

Let n ∈ N with p � n. If k < 0, then γ
n = ap−k · 1

nb ∈ Γ. If k > 0, we may

choose x, y ∈ Z such that xpk + ynb = 1. Then γ
n = a

nbpk = axpk+aynb
nbpk =

ax · 1
nb + by · a

bpk ∈ Γ, as claimed. �

Lemma 11.6.5: Let E/K be a function field of one variable of characteristic
p and F a K-radical extension of E. Then F has a p′-divisible K-functional
valuation groups.

Proof: Let p ∈ P(E/K) and consider a valuation w of F extending vp.
Thus, w(y) = vp(y) for each y ∈ E. Since F is an algebraic extension of
E the value group Γ of w is contained in Q. On the other hand, for each
p ∈ P(E/K) and each n not divisible by p there is xp,n ∈ F such that
1
n = 1

nvp(xn
p,n) = w(xp,n) ∈ Γ. By Lemma 11.6.4, Γ is p′-divisible. �

Proposition 11.6.6: Let K be a PAC field of characteristic p, F an exten-
sion of K of transcendence degree 1 with p′-divisible K-functional valuation
groups. Then Gal(F ) is projective.

Proof: By assumption, the value group of each valuation of F/K is p′-
divisible. Hence, so is the value group of each valuation of every algebraic
extension F ′ of F , therefore also of each Henselian closure of F ′.

By Ax-Roquette, each algebraic extension of a PAC field is again PAC
[FrJ08, Cor. 11.2.5]. Hence, we may first replace K by Kins and F by FKins

to assume that K is perfect. Then, we may replace K by F ∩ K̃ to assume
that F is a generalized function field of one variable over K.

Now we consider a prime divisor p of F/K and its Henselization Fp.
The residue field F̄p is an algebraic extension of K, so F̄p is PAC. Hence,
by [FrJ08, Thm. 11.6.2], Gal(F̄p) is projective. It follows from Proposition
11.1.3 that Gal(Fp) is projective. By Corollary 11.5.6, Gal(F ) is projective.
�

Corollary 11.6.7: Let K be a PAC field, E a function field of one variable
over K, and F an algebraic extension of a K-radical extension of E. Then
Gal(F ) is projective.

Proof: Let p = char(K). By Lemma 11.6.5 and Definition 11.6.3, F has
a p′-divisible K-functional valuation groups. Hence, by Proposition 11.6.6,
Gal(F ) is projective. �
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11.7 Semi-Free Absolute Galois Groups

The chapter culminates with its main new result. We construct for each PAC
field K of cardinality m an algebraic extension F of K(x) in Kcycl(x)ab such
that F is Hilbertian and Gal(F ) ∼= F̂m. If K contains all roots of unity, then
Gal(K(x)ab) ∼= F̂m. The latter result, can be considered as an analog of a
well known conjecture of Shafarevich saying that Gal(Qab) ∼= F̂ω.

First of all we apply the main result of Chapter 8 to the absolute Galois
group of a function field of one variable over an ample field.

Theorem 11.7.1: Let E be a function field of one variable over an ample
field K of cardinality m. Then Gal(E) is semi-free of rank m.

Proof: We choose a separating transcendence element x for E/K. Since K is
ample, m is infinite and m = card(K(x)) = card(E). Hence,
rank(Gal(K(x))) ≤ m. By Proposition 8.6.3, each finite split embedding
problem for Gal(K(x)) with a nontrivial kernel has m linearly disjoint solu-
tions. Thus, Gal(K(x)) is semi-free of rank m (Remark 10.1.6). Since Gal(E)
is an open subgroup of Gal(K(x)), Gal(E) is semi-free of rank m (Lemma
10.4.1). �

The combination of Theorems 10.5.8 and 11.7.1 gives the following result:

Theorem 11.7.2: Let K be an ample field with rank(Gal(K)) = m, E a
function field of one variable over K, and F a separable algebraic extension
of E. Then Gal(F ) is a semi-free profinite group of rank m in each of the
following cases:
(a) [F : E] < ∞.
(b) weight(F/E) < m.
(c) F/E is small.
(d) F is contained in an E-diamond.
(e) F is a proper finite extension of an extension E0 of E and E0 is contained

in a Galois extension N of E that does not contain F .
(f) F is a proper finite extension of a Galois extension of E.
(g) F/E is Abelian.

The next construction will allow us to move from a function field F of
one variable to infinite extensions of F that are not too large.

Lemma 11.7.3: Let E be a function field of one variable over a field K, F
a finite extension of E, and p a prime divisor of E/K tamely and totally
ramified in F . Then F is a regular extension of K.

Proof: The extension F/E is separable, because p is tamely and totally
ramified in F . Since E/K is separable, also F/K is separable.

It remains to prove that K is algebraically closed in F . Thus, it suffices
to prove that F ∩ EL = E for each finite extension L of K. Indeed, let L0

be the maximal separable extension of K in L. Then p is unramified in EL0.
Hence, F ∩EL0 = E and each extension p′ of p to EL0 is tamely and totally
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11.7 Semi-Free Absolute Galois Groups

ramified in FL0. Since EL/EL0 is purely inseparable, p′ is either unramified
or wildly ramified in EL. Therefore, FL0 ∩ EL = EL0. Consequently,
F ∩ EL = E. �

Given a field E and a prime number p, we write E
(p′)
ab for the maximal

Abelian extension of E of degree prime to p.

Construction 11.7.4: Special K-radical extensions. Let K be a field of char-
acteristic p and infinite cardinality m. Let x be a variable and set E = K(x).
We denote the set of all monic irreducible polynomials of K[x] by F . Let
F =
⋃
· r

i=1 Fi be a partition of F such that card(Fi) = F = m for i = 1, . . . , r.
For each i we choose a wellordering Fi = (fi,α)α<m. Then, for each α < m
and every positive integer n with p � n we choose a root (f1,α · · · fr,α)1/n in

Es such that if n = dd′, then
(
(f1,α · · · fr,α)1/n

)d = (f1,α · · · fr,α)1/d′
. Then

we consider the separable algebraic field extension

F0 = E
(
(f1,α · · · fr,α)1/n

)
α<m, p�n

of E and call F0 a special K-radical extension of E. Note that F0Kcycl

is an Abelian extension of Kcycl(x) of degree not divisible by p. Hence,

F0 ⊆ Kcycl(x)(p
′)

ab .
In the special case where r = 1, the presentation of F0 is simplified to

F0 = E(f1/n)f∈F, p�n. �
Lemma 11.7.5: Let K, x, E, and F0 be as in Construction 11.7.4. Then:
(a) F0/E is a K-radical extension (Definition 11.6.2).
(b) F0/K is regular, thus F0/K is a generalized function field of one variable.

(c) Every extension F of F0 in Kcycl(x)(p
′)

ab is contained in an E-diamond,
hence F is Hilbertian.

(d) If K contains no primitive root of order l for some prime number l �=
char(K), then F0/E is not Galois.

Proof of (a): For each prime divisor p �= px,∞ of K(x)/K there exist (unique)
1 ≤ j ≤ r and α < m such that vp(fj,α) = 1. Since the Fi’s are disjoint,
vp(fi,α) = 0 if i �= j. For p � n, let xp,n = (f1,α · · · fr,α)1/n. Then xp,n ∈ F0,
xn

p,n ∈ E, and vp(xn
p,n) = 1. Next, for p = px,∞ we set p′ = px,0 and

xp,n = x−1
p′,n. Then xp,n ∈ F0, xn

p,n ∈ E, and vp(xn
p,n) = 1. Finally, by

construction, F0 is the field obtained from E by adjoining all xp,n where
p ∈ P(E/K) and p � n. Thus, F0 is a K-radical extension of E.

Proof of (b): Every finite extension E′ of E in F0 is contained in a field

Er = E(f1/n1
1 , . . . , f1/nr

r ),

where f1, . . . , fr are distinct elements of F and n1, . . . , nr are positive integers
not divisible by p. Inductively assume Er−1 = E(f1/n1

1 , . . . , f
1/nr−1
r−1 ) is a
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regular extension of K. For i = 1, . . . , r, let vi be the valuation of E/K
satisfying vi(fi) = 1. Then vi(fj) = 0 for i �= j. By [FrJ08, Example
2.3.8], vr is unramified in Er−1. Let w be an extension of vr to Er−1. Then
w(fr) = 1, so again by [FrJ08, Example 2.3.8], w tamely and totally ramifies
in Er. By Lemma 11.7.3, Er/K is regular. Consequently, F0 is a regular
extension of K.

Proof of (c): Let N1 be the field obtained from E by adjoining all roots of
unity ζn and all roots x1/n with p � n. Let N2 be the field obtained from E by
adjoining all ζn and all roots f1/n with f ∈ F �{x} and p � n. Then both N1

and N2 are Galois extensions of E and N1N2 = Kcycl(x)(p
′)

ab , so F ⊆ N1N2.
Moreover, px,1 is ramified in F0 but unramified in N1, so F �⊆ N1. Similarly,
px,0 is ramified in F0 but unramified in N2, so F0 �⊆ N2, hence F �⊆ N2.
Thus, F is contained in a diamond over E. By [FrJ08, Thm. 13.4.2], E is
Hilbertian. Hence, by Haran’s diamond theorem [FrJ08, Thm. 13.8.3], F is
Hilbertian.

Proof of (d): Now we assume that ζl /∈ K for some prime number l �= p.
Then, by (b), ζl /∈ F0. Let f = f1,0 · · · fr,0. Then f1/l ∈ F0. If F0/E is Galois,
then also ζlf

1/l ∈ F0, hence ζl ∈ F0. It follows from this contradiction that
F0 is not a Galois extension of E. �
Theorem 11.7.6: Let K be a PAC field of characteristic p and cardinality
m and let F0 be a special K-radical extension of E = K(x) (Construction
11.7.4). Then:

(a) Every extension F of F0 in Kcycl(x)p′
ab is Hilbertian and Gal(F ) ∼= F̂m.

(b) If K contains no primitive root of order l for some prime number l �= p,
then F0/E is not Galois.

(c) If K contains all roots of unity, then Eab is a Hilbertian field with
Gal(Eab) ∼= F̂m.

Proof: By Lemma 11.7.5(a), F0 is indeed a K-radical extension of E. Let
F be as in (a). By Lemma 11.7.5(c), F is contained in an E-diamond, in
particular F is Hilbertian. By Theorem 11.7.1, Gal(E) is semi-free of rank m.
Hence, by Theorem 11.7.2(d), Gal(F ) is semi-free of rank m. By Corollary
11.6.7, Gal(F ) is projective. Hence, by Proposition 10.1.14, Gal(F ) is free of
rank m as claimed in (a).

Statement (b) is a special case of Lemma 11.7.5(d). To prove (c) note
that since F0 is generated by radicals of elements of E and all roots of unity
of order prime to p are contained in E, we have F0 ⊆ Eab. In particular,
Eab is an Abelian extension of F . Since F is Hilbertian, so is Eab [FrJ08,
Thm. 16.11.3]. Since Gal(F ) is isomorphic to F̂m, so is Gal(Eab) [FrJ08,
Cor. 25.4.8]. �
Remark 11.7.7: Note that Theorem 11.7.6(c) follows already from the results
of David Harbater quoted in the second paragraph of Section 10.6. Indeed
according to those results, if K is a PAC field that contains all roots of unity,
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Notes

then Gal(K(x)) is quasi-free of rank m, hense so is Gal(K(x)ab). In addition,
by Corollary 11.6.7, Gal(K(x)ab) is projective. Hence, by Proposition 9.4.7,
Gal(K(x)ab) ∼= F̂m.

The condition that K contains all roots of unity of order not divisible
by char(K) is necessary for Theorem 11.7.6(c) to hold. In fact given an odd
prime number l, we have examples of Hilbertian PAC fields K that contain all
roots of unity of order not divisible by n with ζl /∈ K such that Gal(K(x)ab)
is not projective. In particular Gal(K(x)ab) is not free. We will publish those
examples elsewhere. �
Example 11.7.8: Starting from a PAC field K of cardinality m, Theorem
11.7.6 gives an extension F of K(x) in K(x)ab such that Gal(F ) ∼= F̂m and F
is Hilbertian. It is however not clear to us whether F is ample. We suspect
it is not.

However, [GeJ01, Thm. 2.6] gives an example of a Hilbertian field F
with Gal(F ) ∼= F̂ω (in particular, Gal(F ) is projective), but F is nonample.
�

Notes
Proposition 11.1.3 about the projectivity of Gal(M) for a Henselian field
M under appropriate assumptions on the residue field and the value group
reproduces [JaP09, Lemma 1.3].

The results about the cohomology of local Galois groups appearing in
Section 11.2 are taken from [Pop88, §2].

Sections 11.3, 11.4, and 11.5 are a work out of part of Efrat’s work
[Efr01]. The main result of [Efr01] we use is Proposition 11.5.5.

Lemma 11.3.2 is a special case of a more general lemma on a local-
global principle for the Brauer group of a field that is a directed union of
fields satisfying a local-global principle for their Brauer groups (see [Pop88,
Lemma 4.4], or [Efr01, Lemma 3.3]).

Proposition 11.6.6 is [JaP09, Lemma 1.4].
One of the main results of the chapter is Theorem 11.7.1. It also appears

as [BHH10, Thm. 7.2]. The proof of the latter theorem is an adjustment of
the proof of [HaS05, Thm. 4.3] about quasi-freeness.

We note that [BHH10, Section 8] gives an account of Construction 11.7.4
and of Theorem 11.7.6 with a reference to our book. That work also refers
to Theorem 11.7.1 (see [BHH08, comment following the proof of Thm. 7.2]).
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Chapter 12.
Complete Noetherian Domains

Following [Pop10], we generalize and strengthen Theorem 5.11.3 and prove
that the absolute Galois group of a Noetherian domain which is complete with
respect to a prime ideal of height at least 2 is semi-free (Theorem 12.4.3).

12.1 Perseverance of Inertia Groups

Let K be a Hilbertian field, x an indeterminate, and F a finite Galois exten-
sion of K(x). Then K has a separable Hilbert subset H such that if a ∈ H,
then the specialization x → a extends to a place of F/K that induces an
isomorphism of Gal(F/K(x)) onto the residue Galois group Gal(F̄ /K). We
prove in this section that H can be chosen such that, under certain condi-
tions, the inertia groups of Gal(F/K(x)) are mapped isomorphically onto
inertia groups of Gal(F̄ /K).

Let (F/w)/(E, v) be a finite Galois extension of valued fields. We recall
the notation Ow = {x ∈ F | w(x) ≥ 0} for the valuation ring of w, ew/v =
(w(F×) : w(E×)) for the ramification index of w/v (so, w(a) = ew/vv(a) for
each a ∈ E),

Dw/v = {σ ∈ Gal(F/E) | σ(Ow) = Ow}

for their decomposition group, and

Iw/v = {σ ∈ Gal(F/E) | w(σx − x) > 0 for each x ∈ Ow}

for their inertia group.

Lemma 12.1.1: Let (F,w)/(E, v) be a finite Galois extension of valued fields.
Suppose ew/v = |Dw/v| and let z be an element of F satisfying
(1) w(z) = 1 and w(σ(z − 1)) = 1 for each σ ∈ Gal(F/E) � Dw/v.

Then z is integral over Ov and the coefficients of the polynomial

(2) Xn + an−1X
n−1 + · · · + a0 =

∏
σ∈Gal(F/E)

(X − σz)

satisfy
(a1) v(ak) ≥ 0 for each 0 ≤ k ≤ n − 1,
(a2) v(a0) = 1,
(a3) v(ak) ≥ 1 for each 0 ≤ k ≤ ew/v − 1, and
(a4) v(aew/v

) = 0.

Proof: Set G = Gal(F/E), D = Dw/v, e = ew/v, and note that n = |G|. By
Lemma (after going to the Henselian closure), D = {σ ∈ G | w ◦ σ = w}.
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By (1), w(σz) = 1 for each σ ∈ D. Moreover, w(σz − 1) = 1, so w(σz) = 0,
for each σ ∈ G � D. Hence, v(ak) ≥ 0 for each k, in particular, z is integral
over Ov.

It follows from the equality a0 = (−1)n
∏

σ∈D σz
∏

σ∈G � D σz that

ev(a0) = w(a0) =
∑
σ∈D

w(σz) +
∑

σ∈G�D

w(σz) = e,

so v(a0) = 1.
In order to prove (a3) and (a4) we denote for each 0 ≤ k ≤ n − 1 the

collection of all subsets of G of n − k elements by Sn−k. Then

ak =
∑

S∈Sn−k

(−1)n−k
∏
σ∈S

σz.

If 0 ≤ k < e and S ∈ Sn−k, then |S| = n−k > n−e = |G � D|, so S∩D �= ∅.
Hence, w(

∏
σ∈S σz) ≥ 1, so w(ak) ≥ 1.

Finally we write

(3) ae = (−1)n−e
( ∏

σ∈G�D

σz +
∑

S∈Sn−e

S �=G � D

∏
σ∈S

σz
)
.

The w-value of the first term in the right hand side of (3) is 0. If S ∈ Sn−e

and S �= G � D, then S ∩ D �= ∅. Hence, w(
∏

σ∈S σz) ≥ 1. Therefore, the
w-value of the second term in the right hand side of (3) is at least 1. We
conclude that w(ae) = 0, as asserted by (a4). �

Setup 12.1.2: Let K be a Hilbertian field, x an indeterminate, and F a
finite Galois extension of E = K(x) with Galois group G. We fix an element
b0 ∈ K, set p = px,b0 to be the corresponding prime divisor of E/K, let
vp = vx,b0 be the normalized discrete valuation of E/K associated with p
(thus, vp(x − b0) = 1), and consider a normalized valuation wp of F lying
over vp. We assume that the residue field of F under wp is also K. Thus, the
inertia group I = Iwp/vp

coincides with the decomposition group D = Dwp/vp

of wp/vp.
For each b ∈ K we may extend the specialization x → b to a K-place ϕ of

F . We let F̄ be the residue field of ϕ. For each y ∈ F we set ȳ = ϕ(y). There
is a separable Hilbert subset H0 of K such that if b ∈ H0, then F̄ /K is a
Galois extension and ϕ induces an isomorphism ϕ∗: Gal(F/E) → Gal(F̄ /K)
mapping each σ ∈ Gal(F/E) onto an element σ̄ ∈ Gal(F̄ /K) such that
σ̄ȳ = σy for each y ∈ F with ȳ ∈ F̄ [FrJ08, Lemma 16.1.1]. Then ϕ∗ maps I
isomorphically onto a subgroup Ī of Gal(F̄ /K). �
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Lemma 12.1.3: Under Setup 12.1.2, F/E has a primitive element z that
satisfies (1) and is integral over K[x].

Proof: Since wp ◦ σ �= wp for each σ ∈ G � D, the strong approximation
theorem [FrJ08, Prop. 3.3.1] gives z0 ∈ F satisfying wp(σz0) = 1 for each
σ ∈ D and wp(σ(z0 − 1)) = 1 for each σ ∈ G � D, and wq(z) ≥ 0 for each
prime divisor of F/K that lies neither over p nor over px,∞. In particular, z0

is integral over K[x].
Now we choose a primitive element z1 for F/E, integral over K[x]. Then

z0 + cz1 is a primitive element for each c ∈ K[x] satisfying σz0 + cσz1 �=
τz0 +cτz1 for all distinct σ, τ ∈ G. In addition, z0 +cz1 is integral over K[x].
Since σz1 �= τz1 if σ, τ are distinct, there exist such c. Moreover, we may
choose c such that, in addition, wp(c) + wp(σz1) ≥ 2 for each σ ∈ G. Then
z = z0 + cz1 is a primitive element for F/E that satisfies (1). �

Lemma 12.1.4: Under Setup 12.1.2, K has a separable Hilbert set H con-
tained in H0 and a finite subset A, such that if v is a discrete valuation of K
satisfying v(a) = 0 for each a ∈ A and if b ∈ H satisfies v(b − b0) = 1, then
Ī is an inertia group of an extension w of v to F̄ .

Proof: Suppose we have proved the lemma for a K-place ϕ of F with ϕ(x) =
b and ϕ′ is another K-place of F satisfying ϕ′(x) = b. Then ϕ′ is conjugate
to ϕ over E. Hence, ϕ′

∗ maps I onto a subgroup Ī ′ of Gal(F̄ /K) which is
conjugate to Ī. Thus, Ī is the inertia group of another extension w′ of v to
F̄ . Therefore, in order to prove the lemma, we may choose ϕ at will.

Part A: A good primitive element for F/E. We set G = Gal(F/E), n =
[F : E] = |G|, and e = ewp/vp

. Since F̄wp = Ēvp , we have |D| = |I| = e.
By Lemma 12.1.3, there exists a primitive element z for F/E, integral over
K[x], such that
(4) wp(σz) = 1 for each σ ∈ I and wp(σz − 1) = 1 for each σ ∈ G � I.

It follows that
(5) wp(σz − 1) = 0 for each σ ∈ I and wp(σz) = 0 for each σ ∈ G � I.

Since z is integral over K[x],

(6) f = irr(z, E) = Zn + an−1(x)Zn−1 + · · · + a0(x) ∈ K[x, Z].

By Lemma 12.1.1, vp(a0(x)) = 1. Since vp(x − b0) = 1, we have:
(7) a0(x) = (x − b0)g0(x) with g0 ∈ K[x] satisfying g0(b0) �= 0.

Let R be the integral closure of K[x] in F . Then R is the intersection
of all valuation rings of F/K that contain x [FrJ08, Prop. 2.4.1]. Thus, if
y ∈ F and every pole of y is a pole of x, then y ∈ R. Similarly, if every pole
of y is a pole of x or a zero of g0(x), then y belongs to the integral closure
R′ = R[g0(x)−1] of K[x, g0(x)−1] in F .

In particular, since σz ∈ R for each σ ∈ G, each pole q of σz
z or of σz−1

z
which is not a pole of x is a zero of z. Hence, q is a zero of a0(x) (by (6)), so
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q is a zero of x− b0 or of g0(x) (by (7)). In the first case, q lies over p, hence
wq = wp ◦ τ for some τ ∈ G.

First suppose σ ∈ I. If τ ∈ I, then τσ ∈ I, so by (4), wq

(
σz
z

)
=

wp(τσz) − wp(τz) = 1 − 1 = 0. If τ ∈ G � I, then τσ ∈ G � I, so by (5),
wq

(
σz
z

)
= wp(τσz)−wp(τz) = 0−0 = 0. Hence, σz

z ∈ R′ and z
σz ∈ R′. Thus,

in this case, σz
z is a unit of R′.

Now suppose σ ∈ G � I. If τ ∈ I, then τσ ∈ G � I. Hence, by (4) and
(5), wq

(
σz−1

z

)
= wp(τσz − 1) − wp(τz) = 1 − 1 = 0. If τ ∈ G � I, then

wq

(
σz−1

z

)
= wp(τσz − 1) − wp(τz) ≥ 0 − 0 = 0. Thus, σz−1

z ∈ R′.
It follows that for each σ ∈ I there exist elements uσ, u′

σ ∈ R and non-
negative integers k(σ), k′(σ), and for each σ ∈ G � I there exist an element
uσ ∈ R and a nonnegative integer k(σ) such that
(8a) σz = uσ

g0(x)k(σ) z if σ ∈ I,
(8b) σz = 1 + uσ

g0(x)k(σ) z if σ ∈ G � I, and

(8c) uσu′
σ = g0(x)k′(σ) if σ ∈ I.

Part B: A Hilbert set. For each σ ∈ I we set fσ = irr(uσ, E) and f ′
σ =

irr(u′
σ, E). For each σ ∈ G � I we let fσ = irr(uσ, E). Since uσ, u′

σ ∈ R, we
may consider fσ and f ′

σ as elements of the ring K[x, Z] that satisfy
(9) fσ(x, uσ) = 0 for each σ ∈ G and f ′

σ(x, u′
σ) = 0 for each σ ∈ I.

We choose a finite subset A of K and let O = Z[A] if char(K) = 0 and
O = Fp[A] if char(K) = p > 0 such that
(10a) g0(x) ∈ O[x], f, fσ ∈ O[x, Z] for each σ ∈ G, and f ′

σ ∈ O[x, Z] for each
σ ∈ I, and

(10b) b0, g0(b0) ∈ A.
Let H0 be the separable Hilbert subset of K given in Setup 12.1.2 and

consider the separable Hilbert set H = H0 �{a ∈ K | g0(a) �= 0}. For each
b ∈ H let ϕ and ϕ∗ be as in Setup 12.1.2. Since ϕ(x) = b and g0(b) �= 0, ϕ
is finite on K[x, g0(x)−1], hence ϕ is also finite on R′. We apply ϕ and ϕ∗ on
the equalities appearing in Conditions (8) and (10a) to get
(11a) σ̄z̄ = ūσ

g0(b)k(σ) z̄ if σ ∈ I,

(11b) σ̄z̄ = 1 + ūσ

g0(b)k(σ) z̄ if σ ∈ G � I,

(11c) ūσū′
σ = g0(b)k′(σ) if σ ∈ I,

(11d) g0(b) ∈ O[b], g0(b) �= 0, and f(b, Z), fσ(b, Z) ∈ O[b, Z] for all σ ∈ G,
and f ′

σ(b, Z) ∈ O[b, Z] for all σ ∈ I.

Part C: A valuation of K. We consider a discrete valuation v of K that
satisfies v(a) = 0 for each a ∈ A. Then O ⊆ Ov and, by (10),
(12a) g0(x) ∈ Ov[x], f, fσ ∈ Ov[x, Z] for each σ ∈ G, and f ′

σ ∈ Ov[x, Z] for
each σ ∈ I.

(12b) v(b0) = 0 and v(g0(b0)) = 0.
Let w be a normalized valuation of F̄ over v and set ē = ew/v. Suppose

b ∈ H satisfies v(b − b0) = 1. By (12),
(13) v(b) = 0 and v(g0(b)) = 0.
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By (7), a0(b) = (b − b0)g0(b). Hence, by (13),
(14) v(a0(b)) = 1.
Since f(b, Z) = Zn + an−1(b)Zn−1 + · · · + a0(b) ∈ Ov[Z] (by (12a)), all of
the roots of f(b, Z) belong to Ow and their product is a0(b). By (14), one of
them, which we denote by z̄, satisfies
(15) w(z̄) > 0.

We choose a K-place ϕ as in Setup 12.1.2 such that ϕ(x) = b and
ϕ(z) = z̄.

Let σ ∈ I. Since fσ(b, ūσ) = 0 and f ′
σ(b, u′

σ) = 0 (by (9)) and since
fσ(b, Z) and f ′

σ(b, Z) are monic polynomials with coefficients in Ov (by (12a)),
we have ūσ, u′

σ ∈ Ow. Hence, by (11c) and (13), w(ūσ) = 0 if σ ∈ I.
Therefore, by (11a) and (13),
(16a) w(σ̄z̄) = w(z̄) if σ ∈ I.

If σ ∈ G � I, then by (12a) and (9), fσ(b, Z) ∈ Ov[Z] and fσ(b, ūσ) = 0,
so w(ūσ) ≥ 0. Therefore, by (11b), (13), and (15),
(16b) w(σ̄z̄ − 1) ≥ w(z̄) > 0, so w(σ̄z̄) = 0 if σ ∈ G � I.

By (15) and (16b), we have for σ ∈ G � I that w(σ̄z̄) �= w(z̄), hence
w ◦ σ̄ �= w. Therefore, σ̄ /∈ Dw/v, hence σ̄ /∈ Iw/v. This implies that Ḡ � Ī ⊆
Ḡ � Iw/v, hence Iw/v ⊆ Ī. On the other hand, a0(b) =

∏
σ∈G σ̄z̄. Hence,

by (14), (16a), and (16b), ē = ē · v(a0(b)) = w(a0(b)) = |I|w(z̄). Therefore,
|Ī| = |I| ≤ ē ≤ |Iw/v|, so Ī = Iw/v, as claimed. �

Lemma 12.1.5: Let (K, v) ⊆ (K ′, v′) and (L, w) ⊆ (L′, w′) be extensions of
discrete valued fields such that (K, v) ⊆ (L, w). Suppose L/K is a Galois
extension, K ′/K is a purely inseparable extension, and L′ = LK ′. Then
res: Gal(L′/K ′) → Gal(L/K) maps Iw′/v′ bijectively onto Iw/v.

Proof: By assumption, the map res is an isomorphism. Let σ′ ∈ Gal(L′/K ′)
and set σ = σ′|L. If σ′ ∈ Iw′/v′ and x ∈ Ow, then x ∈ Ow′ , so w(σx − x) =
e−1

w′/ww′(σ′x − x) > 0. Hence, σ ∈ Iw/v.
Conversely, we may assume that p = char(K) > 0. If σ ∈ Iw/v and

y ∈ Ow′ , then there exists a power q of p such that yq ∈ L. Hence, yq ∈ Ow

and qw′(σ′y − y) = ew′/ww(σyq − yq) > 0. Therefore, w′(σ′y − y) > 0. It
follows that σ′ ∈ Iw′/v′ . Consequently, res: Iw′/v′ → Iw/v is a bijective map.
�

12.2 Krull Fields
One of the consequences of the Chebotarev density theorem for a finite Galois
extension K ′/K of global fields is that there are infinitely many primes of K
that totally split in K ′. We prove an analog of that statement that applies
in particular to fields of formal power series in several variables.

Remark 12.2.1: Splitting of prime ideals. Let S be an integrally closed do-
main with quotient field K. Let K ′ be a Galois extension of K of degree n
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and let S′ be the integral closure of S in K ′. We introduce some notation
that concern total splitting of prime ideals of S in S′.

(a) Let z ∈ S′ be a primitive element of K ′/K and

pz(X) = Xn + an−1X
n−1 + · · · + a0 = irr(z, K) ∈ S[X].

Consider a prime ideal p of S. If discr(pz) �≡ 0 mod p, then Sp[z] is the
integral closure of Sp in K ′ [FrJ08, Lemma 6.1.2]. Hence, if p′ is a prime
ideal of S′ lying over p and we use a bar to denote reduction modulo p′, we
have K ′

p′ = S′
p′/p′S′

p′ = Quot(Sp[z]) = K̄p(z̄). Moreover, the distinct roots
z1, . . . , zn of pz in K ′ belong to S′, their reductions z̄1, . . . , z̄n are distinct
and belong to K̄p[z̄]. In addition, K ′

p/K̄p is a Galois extension whose Galois
group is isomorphic to the decomposition group Dp′/p.

(b) In particular, if z̄ ∈ K̄p, then K ′
p′ = K̄p. Hence, z̄1, . . . , z̄n ∈ K̄p

and Dp′/p = 1. Since the prime ideals of S′ that lie over p are conjugate and
their number is (Gal(K ′/K) : Dp′/p), this number is n. In other words, p
totally splits in S′. In this case we also say that p totally splits in K ′.

(c) One way to achieve total splitting of p is to consider the homogeneous
polynomial

p∗z(T, U) = Tn + an−1T
n−1U + · · · + a1TUn−1 + a0U

n

associated with pz. For each r, s ∈ S with s �= 0 we have snpz

(
r
s

)
= p∗z(r, s). It

follows from the factorization pz(X) =
∏n

i=1(X−zi) that p∗z(r, s) =
∏n

i=1(r−
zis).

If s,discr(pz) /∈ p and p∗z(r, s) ∈ p, then pz has a root modulo p and p
splits completely in K ′ (by (b)).

(d) Let Ov be the valuation ring of a discrete valuation v of K and
let w be a valuation of K ′ lying over v. If v splits completely in K ′, then
K ′

w = K̄v and v is unramified in K ′. It follows from the equality K̂v = K̂ ′
w

for the completions that K is w-dense in K ′. More directly, we consider
x ∈ K ′ � K and inductively assume that there exists a ∈ K, such that
w(x − a) ≥ m. Since v is unramified in K ′ there exists b ∈ K× such that
w(b) = w(x − a). Then w(b−1(x − a)) = 0, so from K̄v = K ′

w there exists
c ∈ K with w(b−1(x − a) − c) ≥ 1. Hence, w(x − (a + bc)) ≥ m + 1. �

We prove that the quotient field of a complete Krull domain with respect
to a maximal ideal of height at least 2 is a Krull field in the following sense:

Definition 12.2.2: Let K be a field and let V be a set of discrete valuations
of K. We say that (K,V) is a Krull field (or also that K is a Krull field
with respect to V) if
(1a) for each a ∈ K× the set Va = {v ∈ V | v(a) �= 0} is finite, and
(1b) for each finite Galois extension K ′ of K the set SplV(K ′/K) of all v ∈ V

that totally split in K ′ has the same cardinality as of K.
We say that K is a Krull field if K is a Krull field with respect to some set
of discrete valuations. �
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Remark 12.2.3: Finite ramification. Let (K,V) be a Krull field and K ′ a
finite Galois extension of K. Choose a primitive element z for K ′/K and
let irr(z, K) =

∑
i∈I aiX

i, where I is a finite set of nonnegative integers and
ai ∈ K× for each i ∈ I. Note that d = discr(irr(z, K)) ∈ K×. By (1a),
V ′ = Vd ∩

⋃
i∈I Vai

is a finite set. Since each v ∈ V is a discrete valuation
of K, each v ∈ V �Vd is unramified in K ′ [Lan70, p. 62]. Hence, the set
RamV(K ′/K) of all v ∈ V that ramify in K ′ is finite. �

The following lemma says that finite extensions of Krull fields are again
Krull fields.

Lemma 12.2.4: Let K be a Krull field with respect to a set V of discrete
valuations and let K ′ be a finite extension of K. Then K ′ is a Krull field
with respect to the set V ′ of all extensions of the valuations in V to K ′.

Proof: Note that each v ∈ V has finitely many extensions to K ′ and each of
them is discrete. Every x ∈ (K ′)× satisfies an equation xn +an−1x

n−1+ · · ·+
a0 = 0 with a0, . . . , an−1 ∈ K and a0 �= 0. Also, there are b0, . . . , bn−1 ∈ K
with b0 �= 0 such that (x−1)n +bn−1(x−1)n−1 + · · ·+b0 = 0. Let W be the set
of all w ∈ V ′ such that w(ai) = 0 when ai �= 0 and w(bj) = 0 when bj �= 0.
Each w ∈ W satisfies w(x) ≥ 0 and w(x−1) ≥ 0, so w(x) = 0. Thus, V ′ �W
is a finite set that contains V ′

x. Therefore, V ′
x is finite.

In order to prove (1b) for K ′ it suffices to consider only the cases where
K ′/K is separable or K ′/K is purely inseparable.

Case A: K ′/K is separable. Let L′ be a finite Galois extension of K ′ and
choose a finite Galois extension N of K that contains L′. Then, SplV′(L′/K ′)
is contained in the set of all extensions of the valuations of SplV(N/K) to N .
Since the latter set has cardinality card(K) = card(K ′), so does the former.

Case B: K ′/K is purely inseparable. Let L′ be a finite Galois extension
of K ′. Then L′ is a normal extension of K. Hence, K has a Galois extension
L such that LK ′ = L′ and L ∩ K ′ = K. Thus, n = [L : K] = [L′ : K ′].

If v ∈ V splits into distinct valuations w1, . . . , wn of L, then their re-
spective extensions w′

1, . . . , w
′
n to L′ are distinct and lie over the unique

extension v′ of v to K ′. It follows from card(SplV(L/K)) = card(K) that
card(SplV′(L′/K ′)) = card(K ′).

Consequently, in all cases (K ′,V ′) is a Krull field. �

Lemma 12.2.5: Let R be an integral domain with a prime ideal m of height
at least 2. Let S be the integral closure of R in K and choose a prime ideal n
of S lying over m of height at least 2. Denote the set of all nonzero minimal
prime ideals of S contained in n by P. Suppose S is a Krull domain. Then:

(a) For each p ∈ P, the local ring Sp of S at p is a discrete valuation ring
of K, each nonzero a ∈ S is contained in only finitely many p ∈ P, and
Sn =

⋂
p∈P Sp.

(b) Each a ∈ n is contained in some p ∈ P.
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(c) For each nonzero r0 ∈ n there exists r1 ∈ n such that r0 and r1 are not
contained in a common p ∈ P.

(d) P is an infinite set and card(P) ≤ card(S).

Proof: By assumption, m properly contains a nonzero prime ideal p. Since
S is integral over R, the going up theorem gives prime ideals q and n of S
lying over p and m, respectively, [Mats94, p. 68, Thm. 9.4(i)] such that q ⊆ n.
It follows that q ⊂ n, so height(n) ≥ 2. This justifies the choice of n as in the
lemma.

Proof of (a): Since S is a Krull domain, Sp is a discrete valuation ring of
K for every p ∈ P and each nonzero a ∈ S lies in only finitely many p ∈ P
(Definition 5.11.1). Moreover, Sn is also a Krull domain (Remark 5.11.2(b))
and {pSn | p ∈ P} is the set of all nonzero minimal prime ideals of Sn. Now
note that Sp = (Sn)pSn . Hence, by Definition 5.11.1(1c), Sn =

⋂
p∈P Sp.

Proof of (b): Consider a ∈ n. If a /∈ p for all p ∈ P, then by (a), a−1 ∈⋂
p∈P Sp = Sn. Therefore, 1 = aa−1 ∈ nSn, which is a contradiction.

Proof of (c): By (a), only finitely many prime ideals p ∈ P contain r0. List
them as p1, . . . , pm. Since height(n) ≥ 2, each p ∈ P is properly contained
in n. Hence, there exists r1 ∈ n �

⋃m
i=1 pi [AtM69, Prop. 1.11(i)]. It follows

that no p ∈ P contains both r0 and r1.

Proof of (d): Suppose we have already proved the existence of m distinct
prime ideals p1, . . . , pm ∈ P. In each pi we choose a nonzero element ri. Then,
r0 = r1 · · · rm ∈ p1 ∩ · · · ∩ pm. By (c), there exists r ∈ n which is contained
in no p belonging to P that contains r0. By (b), there exists pm+1 ∈ P that
contains r. In particular, pm+1 �= pi for i = 1, . . . , m. Consequently, P is
infinite.

In order to bound the cardinality of P we note that for each nonzero
a ∈ S the set P(a) = {p ∈ P | a ∈ p} is finite (by (a)) and P =

⋃
a∈S
a �=0

P(a).

Hence, card(P) ≤ ℵ0 · card(S) = card(S). �

Setup 12.2.6: We consider an integral domain R with quotient field K, a
prime ideal m of R, a nonzero element t ∈ m, and a system of representatives
R0 for R/m. We assume that R is Hausdorff and complete with respect to the
Rt-adic topology. In particular,

⋂∞
n=0 Rtn = 0. Thus, each series

∑∞
n=0 cntn

with cn ∈ R for each n converges to a unique element of R in the Rt-adic
topology. Let R1 be the set of the sums of all those series for which cn ∈ R0

for all n and c0 /∈ m. By assumption, m �= 0, so R is infinite, hence R1 is
infinite.

Let S be the integral closure of R in K. We assume that height(m) ≥ 2
and use Lemma 12.2.5 to choose a prime ideal n of S over m such that
height(n) ≥ 2.

Now we assume that S is a Krull domain. Let P be the set of all
nonzero minimal prime ideals of S in n, For each nonzero x ∈ S, we write
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P(x) = {p ∈ P | x ∈ p}. By Lemma 12.2.5(a),(b), P(x) is a finite nonempty
set if x ∈ n. If x /∈ n, then P(x) = ∅.

For each p ∈ P we let vp be the normalized discrete valuation of K with
valuation ring Sp (Lemma 12.2.5(a)). Then let V = {vp | p ∈ P}.

Finally, for a finite Galois extension K ′ of K, let S′ be the integral
closure of R in K ′. Then S ⊆ S′, S′ is integral over S, and S′ is integrally
closed, hence S′ is also the integral closure of S in K ′. Let SplP(K ′/K) be
the set of all p ∈ P that totally split in S′. Further, let SplV(K ′/K) be the
set of all vp ∈ V with p ∈ P that totally split in K ′. �
Lemma 12.2.7: The map p �→ vp is a bijection of P onto V. Moeover,
for each finite Galois extension K ′ of K that map maps SplP(K ′/K) onto
SplV(K ′/K).

Proof: By definition, the map p �→ vp maps P onto V. Since Sp = Ovp , we
have p = {x ∈ S | vp(x) > 0}, so the map is also injective.

Now we consider a finite Galois extension K ′ of K. Let S′ be the inegral
closure of S in K ′ and let p ∈ P. By Remark 5.11.2(d), S′ is a Krull domain.
Since there are no inclusions among prime ideals of S′ that lie over the same
prime ideal of S [Mats94, p. 66, Thm. 9.3(ii)], each prime ideal of S′ that
lies over p is nonzero and minimal. If S′ has n = [K ′ : K] prime ideals lying
over p, then the local rings of S′ at those ideals are distinct discrete valuation
rings whose intersections with K are Sp = Ovp .

Conversely, suppose K ′ has n discrete valuation rings Ow1 , . . . , Own lying
over Ovp . Then each i contains the integral closure of Ovp in K ′, hence
S′ ⊆ Owi

. The set pi = {x ∈ S′ | wi(x) > 0} is a prime ideal of S′ that lie
over p. Moreover, since p is a nonzero minimal prime ideal of S, the same
argument as in the preceding paragraph implies that the pi’s are nonzero
minimal prime ideals of S′. Since S′ is Krull, S′

pi
is a discrete valuation ring

contained in Owi . Hence, Spi = Owi . It follows that p1, . . . , pn are distinct,
so p ∈ SplP(K ′/K). �
Lemma 12.2.8: Let A be an infinite set and let {Ai | i ∈ I} be a family of
finite subsets of A with A =

⋃
i∈I Ai. Then card(A) ≤ card(I).

Proof: Since A is infinite, the cardinality of B = {Ai | i ∈ I} is infinite.
Since the map i �→ Ai maps I onto B and A =

⋃
B∈B B, we have card(A) ≤

card(B)ℵ0 = card(B) ≤ card(I), as claimed. �
Lemma 12.2.9: The following statements on R1 are true under Setup 12.2.6:
(a) R1 ∩ m = ∅, in particular P(u) = ∅ for each u ∈ R1.
(b) If u, v ∈ R1 and u �= v, then P(u − v) = P(t).
(c) card(R/m)ℵ0 = card(R1) ≤ card(SplP(K ′/K)) for each finite Galois ex-

tension K ′ of K.

Proof of (a): We consider u ∈ R1 and write u =
∑∞

k=0 uktk as a converging
series in the Rt-adic topology, where uk ∈ R0 for each k ≥ 0 and u0 /∈ m.
Then u − u0 ∈ Rt ⊆ m, so u /∈ m, as (a) claims.
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Proof of (b): We write v =
∑∞

k=0 vktk as a converging series in the Rt-adic
topology with vk ∈ R0 for each k ≥ 0 and v0 /∈ m. Suppose u �= v. Then

(2) u − v =
∞∑

k=m

(uk − vk)tk = tm
(
(um − vm) +

∞∑
k=m+1

(uk − vk)tk−m
)

for some m ≥ 0 with um − vm �= 0. Since R0 is a system of representatives of
R/m, the latter condition means that um �≡ vm mod m. It follows that the
element in the parentheses in the right hand side of (2) does not belong to
m, hence nor to n. In particular, that element does not belong to any p ∈ P.
Therefore, P(u − v) = P(tm) = P(t), as claimed in (b).

Proof of (c): Let K ′ be a finite Galois extension of K of degree n. One
notes, as in the proof of (b), that since R0 is a set of representatives of R/m,
the map (c0, c1, c2, . . .) �→

∑∞
n=0 cntn from (R0 � m)×RN

0 onto R1 is bijective.
Hence, card(R/m)ℵ0 = card(R0)ℵ0 = card(R1). This proves the equality of
(c).

In order to prove the right inequality of (c) we use the notation of Remark
12.2.1 and set a = a0 · discr(pz). Then observe that at ∈ n and use Lemma
12.2.5(d) to choose an r ∈ n such that P(r) ∩ P(at) = ∅.

For each p ∈ P, we consider the set R(p) = {u ∈ R1 | p∗z(ru, at) ∈ p}.
Thus, if u ∈ R(p), then in the notation of Remark 12.2.1(c),

(3) rnun + an−1r
n−1un−1at + · · · + a1ruan−1tn−1 + a0a

ntn ≡ 0 mod p.

Claim A: If p ∈ P and u ∈ R(p), then ruat /∈ p. Otherwise, ru ∈ p or
at ∈ p. If at ∈ p, then by (3), ru ∈ p. Since P(r) ∩ P(at) = ∅, this implies
that u ∈ p, so u ∈ n∩R = m. Since u ∈ R1, this contradicts (a). We conclude
that at /∈ p.

If ru ∈ p, (3) implies that a0(at)n ∈ p. It follows from the preceding
paragraph that a0 ∈ p. Hence, at = a0 · discr(pz)t ∈ p. This contradicts the
preceding paragraph and concludes the proof of Claim A.

Claim B: If p ∈ P and R(p) �= ∅, then p ∈ SplP(K ′/K). Indeed, let u ∈
R(p). Since a = a0 · discr(pz), Claim A implies that discr(pz) /∈ p. Hence, by
Remark 12.2.1(c), applied to ru, at rather than r, s, we have p ∈ SplP(K ′/K).

Claim C: For each p ∈ P, the set R(p) contains at most n elements.
Let S′ be the integral closure of S in K ′. Assume R(p) contains at least

n+1 elements. For each u ∈ R(p) we have p∗z(ru, at) ≡ 0 mod p. By Remark
12.2.1(a), there exist z1, . . . , zn ∈ S′ such that p∗z(ru, at) =

∏n
i=1(ru − atzi).

Hence, for each prime ideal p′ of S′ lying over p we have
∏n

i=1(ru − atzi) ≡
0 mod p′. Therefore, there exists 1 ≤ i(u) ≤ n such that ru − atzi(u) ≡
0 mod p′. Since R(p) contains at least n + 1 elements, there exist distinct
u, v ∈ R(p) such that i(u) = i(v). Thus, rv − atzi(u) ≡ 0 mod p′. Therefore,
ru − rv ≡ 0 mod p′, so r(u − v) ≡ 0 mod p. By Claim A, r /∈ p, hence
u−v ∈ p. It follows from (b) that t ∈ p, in contrast to Claim A. We conclude
that Claim C is true.
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Conclusion of proof of (c): Since r, t ∈ n, each u ∈ R1 satisfies
p∗z(ru, at) ∈ n. Hence, by Lemma 12.2.5(b), we may choose pu ∈ P that
contains p∗z(ru, at). Thus, u ∈ R(pu). Therefore, setting P1 = {pu | u ∈ R1},
we have R1 =

⋃
p∈P1

R(p).
By Claim B, P1 ⊆ SplP(K ′/K). Since R(p) is finite for each p ∈ P1

(Claim C) and R1 is infinite (Setup 12.2.6), it follows from Lemma 12.2.8
that card(R1) ≤ card(P1). Hence, card(R1) ≤ card(SplP(K ′/K)). �

Proposition 12.2.10 (Pop): Let R be an integral domain, K = Quot(R),
m a prime ideal of R of height at least 2, and t a nonzero element of m. Let
S be the integral closure of R in K and choose a prime ideal n of S of height
at least 2 lying over m. Let P be the set of all nonzero minimal prime ideals
of S in n. Suppose S is a Krull domain. For each p ∈ P let vp be the unique
discrete valuation of K whose valuation ring is Sp. Set V = {vp | p ∈ P}.
Suppose m is generated by ℵ0 elements,

⋂∞
k=1 mk = 0, and R is complete

with respect to the Rt-adic topology for some nonzero t ∈ m. Then (K,V) is
a Krull field.

Proof: By Lemma 12.2.5(a), each nonzero a ∈ S belongs to only finitely
many p ∈ P. Since K = Quot(S), every x ∈ K× satisfies vp(x) �= 0 for only
finitely many p ∈ P.

Next let K ′ be a finite Galois extension of K and let S′ be the integral
closure of S in K ′. Then the discriminant d of S′/S is a nonzero element
of S [Ser79, p. 53, Cor. 1] and p ∈ P ramifies in S′ if and only if d ∈ p.
By the first paragraph, there are only finitely many such p’s. It follows that
RamP(K ′/K) is finite. Hence, by Lemma 12.2.7, RamV(K ′/K) is finite.

Finally we choose a system of representatives R0 for R/m and, as in
Setup 12.2.6, let R1 be the set of all series

∑∞
k=0 cktk with c0 ∈ R0 � m

and ck ∈ R0, for all k ≥ 1. Then, by Lemma 12.2.9(c), card(R/m)ℵ0 =
card(R1) ≤ card(SplP(K ′/K). By Lemma 12.2.5(d), card(P) ≤ card(S) =
card(K). Hence, card(SplP(K ′/K)) ≤ card(P) ≤ card(K).

By assumption m =
∑

i∈I Rxi, where card(I) = ℵ0. For each e ≥ 0 let
Me be the set of all monomials in the xi’s of degree e. Then card(Me) ≤
card(I) = ℵ0. Since R0 represents R modulo m, induction on n proves
that for each x ∈ R and every positive integer n there exists a unique pre-
sentation x ≡

∑n
e=0

∑
m∈Md

cx,e,mm mod mn+1 with cx,e,m ∈ R0 for all
e, m. Since

⋂∞
n=1 mn = 0, the map x → (cx,e,m)e,m is injective. Thus,

card(K) = card(R) ≤ card(R0)ℵ0 = card(R1).
It follows that card(SplP(K ′/K)) = card(K). Hence, by Lemma 12.2.7,

cardV(K ′/K) = card(K). Consequently, K is a Krull field with respect to
V. �

Remark 12.2.11: Function fields of one variable. Let E be a function field of
one variable over a Hilbertian field K, let F0 be a finite separable extension
of E, and let F be a finite Galois extension of E that contains F0. Consider
also u1, . . . , um ∈ F×. F. K. Schmidt proved in [Sch34] that F has a K-place
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ϕ unramified over E such that ϕ(u1), . . . , ϕ(um) ∈ K×
s and Gal(F/F0) is the

decomposition group of ϕ over E. If K is countable, this implies that E is a
Krull field with respect to the set V of all valuations of E/K.

Next recall that each rational function field K0(t) is Hilbertian. More-
over, if K0 is infinite, then each separable Hilbert subset of K0(t) contains
a set of the form {a + bt | (a, b) ∈ U(K0)} for some nonempty Zariski-open
subset U of A2 [FrJ08, Prop. 13.2.1]. Using transfinite induction, it is possi-
ble then to prove that every function field of one variable over an arbitrary
field K is Krull with respect to the set V of all its valuations over K.

We will not use this result, so we do not go into the details of the proof.
�

12.3 Density of Hilbert Sets

Let v1, . . . , vm, <1, . . . , <n be an independent set of valuations and orderings
of a Hilbertian field K. We prove that the diagonal map x �→ (x, . . . ,x)
maps each separable Hilbert subset H of Kr into a dense subset of (Kr)m+n.
Here, the ith copy of Kd is equipped with the vi-topology, i = 1, . . . , m, while
the jth copy of Kd is equipped with the <j-topology, j = 1, . . . , n. Each
ordering < of a field K yields a generalized absolute value | | on K defined
by |x| = max(x,−x). The above valuations and orderings are independent
if the topologies of K they induce are distinct.

The proof depends on the weak approximation theorem for valuations
and orderings. It has two versions. The first one holds for arbitrary valuations
and orderings while the approximated element is common to all coordinates.

Proposition 12.3.1 ([Jar94, Prop. 17.1]): Let v1, . . . , vm, <1, . . . , <n be
valuations and orderings of a field K. Consider a, a′

1, . . . , a
′
m, b′1, . . . , b

′
n ∈ K

such that a′
i �= 0 and b′j >j 0 for all i and j. Then

(a) there exists x ∈ K, x �= a, such that vi(x−a) ≥ vi(a′
i), i = 1, . . . , m, and

|x − a| <j b′j , j = 1, . . . , n, and
(b) there exists y ∈ K× such that vi(y) < vi(a′

i), i = 1, . . . , m, and y >j b′j ,
j = 1, . . . , n.

The second version gives approximations to various elements, for that it
holds only if the valuations and orderings are independent.

Proposition 12.3.2 (Weak approximation theorem for independent valu-
ations and orderings [Jar94, Prop. 17.4]): Let v1, . . . , vm, <1, . . . , <n be an
independent set of valuations and orderings of a field K. Let

a1, . . . , am, a′
1, . . . , a

′
m, b1, . . . , bn, b′1, . . . , b

′
n ∈ K

such that a′
i �= 0 and b′j >j 0 for all i and j. Then there exists x ∈ K such

that

vi(x − ai) ≥ v(a′
i), i = 1, . . . , m, and |x − bj | ≤j b′j , j = 1, . . . , n.

Next we prove several results on irreducible polynomials.
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Lemma 12.3.3: Let K be a Hilbertian field and f ∈ K[T1, . . . , Tr, X] an ab-
solutely irreducible polynomial separable in X. Then, there exist
a1,a2,a3, . . . ∈ Kr and c1, c2, c3, . . . ∈ Ks such that f(ai, ci) = 0 and
K(c1), K(c2), K(c3), . . . is a linearly disjoint sequence of separable extensions
of K of degree n = degX f .

Proof: Assume inductively that ai, ci have been found for i = 1, . . . , m.
Then L = K(c1, . . . , cm) is a finite separable extension of K. Since f(T, X)
is irreducible over L, [FrJ08, Cor. 12.2.3] gives an am+1 ∈ Kr such that
f(am+1, X) is irreducible over L of degree n. Choose a root cm+1 of
f(am+1, X) = 0. Then K(cm+1) is a separable extension of K of degree n
which is linearly disjoint from L over K. Consequently, K(c1), . . . , K(cm+1)
are linearly disjoint over K. �

Lemma 12.3.4: Let F1, F2, F3, . . . be a linearly disjoint sequence of exten-
sions of a field K. Let L be a finite separable extension of K and let f ∈ K[X]
be an irreducible separable polynomial. Then there exists k such that

(a) f is irreducible over Fi, i = k, k + 1, k + 2, . . . , and

(b) the sequence LFk, LFk+1, LFk+2, . . . is linearly disjoint over L.

Proof of (a): Let N be the splitting field of f over K. Then N has only
finitely many subfields that contain K. If N∩Fi were a proper extension of K
for infinitely many i’s, then there would exist i < j such that N ∩Fi = N ∩Fj

is a proper extension of K. This would however contradict Fi ∩ Fj = K.
Hence, there exists k such that for each i ≥ k, N ∩Fi = K, hence by [FrJ08,
Lemma 2.5.3], fi is irreducible over Fi.

Proof of (b): Replace L, if necessary, by its Galois closure over K to assume
that L is Galois over K. Assume that the sequence L, Fk, Fk+1, Fk+2, . . . is
linearly disjoint over K for no k. Then, for each k there exists an integer
f(k) ≥ k such that L∩ (Fk · · ·Ff(k)) is a proper extension of K. Again, since
L has only finitely many subfields that contain K, there exists a proper exten-
sion K ′ of K such that L∩(Fk · · ·Ff(k)) = K ′ for infinitely many k’s. Fix one
of those k’s and take l > f(k) such that L ∩ (Fl · · ·Ff(l)) = K ′. Then, K ′ ⊆
(Fk · · ·Ff(k)) ∩ (Fl · · ·Ff(l)). This contradiction to the linear disjointness of
F1, F2, F3, . . . over K proves the existence of k such that L, Fk, Fk+1, Fk+2, . . .
is linearly disjoint over K. Consequently, LFk, LFk+1, LFk+2, . . . are linearly
disjoint over L. �

Lemma 12.3.5: Let f ∈ K[X1, . . . , Xr, Y ] be an irreducible polynomial over
K and let n be a positive integer which is not a multiple of char(K). For
i = 1, 2, 3, . . . and j = 1, . . . , r let cij ∈ K and choose an nth root n

√
cij .

Suppose

{K( n
√

cij) | i = 1, 2, 3, . . . ; j = 1, . . . , r}

is a linearly disjoint set of extensions of K of degree n. Then for all but
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finitely many i’s, the polynomial

(1) fi(X1, . . . , Xr, Y ) = f

(
1

Xn−1
1 − ci1X

−1
1

, . . . ,
1

Xn−1
r − cirX

−1
r

, Y

)

is irreducible in the ring K(X1, . . . , Xr)[Y ].

Proof: We choose r algebraically independent elements t1, . . . , tr over K.
For each i and j we choose xij ∈ K(tj)s such that

(2) xn
ij − t−1

j xij − cij = 0.

Then

(3) t−1
j = xn−1

ij − cijx
−1
ij , j = 1, . . . , r.

Hence, with xi = (xi1, . . . , xir), K(xi) is an algebraic extension of K(t), of
degree at most nr. Since t1, . . . , tr are algebraically independent over K, so
are xi1, . . . , xir.

Claim: For each m, [K(x1, . . . ,xm) : K(t)] = nrm. For all i, j the poly-
nomial Xn − cij is irreducible over K, so K( n

√
cij) ∼= K(ζn n

√
cij), where ζn

is a root of 1 of order n. Therefore, by (2), the specialization t−1
j → 0,

j = 1, . . . , r, extends to a homomorphism ϕ1: K[xi]i=1,...,m → K[ζij n
√

cij ]i,j ,
where ζn

ij = 1 for all i, j. Since the fields K( n
√

cij) are linearly disjoint over
K of degree n, the K-isomorphisms ϕ′

2: K[ n
√

cij ] → K[ζij n
√

cij ] combine to a
K-isomorphism ϕ′

2: K[ n
√

cij ]i,j → K[ζij n
√

cij ]i,j . Let ϕ = (ϕ′
2)

−1 ◦ ϕ1. Then

ϕ: K[x1, . . . ,xm] → K[ n
√

cij | i = 1, . . . , m; j = 1, . . . , r]

is a K-homomorphism. By assumption, the latter ring (which is actually a
field) has, as a vector space over K, dimension nrm. Hence, the dimension of
K(x1, . . . ,xm) as a K(t)-vector space is at least nrm. Since [K(x1, . . . ,xm) :
K(t)] ≤ nrm (by (2)), equality must hold.

By the claim, K(x1), K(x2), K(x3), . . . is a linearly disjoint sequence of
extensions of K(t) of degree nr. Since f(t1, . . . , tr, Y ) is irreducible over
K(t), Lemma 12.3.4(a) provides a k such that for each i ≥ k we have, by (3),

f(t1, . . . , tr, Y ) = f

(
1

xn−1
i1 − ci1x

−1
i1

, . . . ,
1

xn−1
ir − cirx

−1
ir

, Y

)

is irreducible over K(xi). Since xi1, . . . , xir are algebraically independent
over K, this means that the polynomial (1) is irreducible over K(X). �
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Lemma 12.3.6: Let K be a Hilbertian field with valuations and order-
ings v1, . . . , vm, <m+1, . . . , <n. Then, for each irreducible polynomial f ∈
K[X1, . . . , Xr, Y ] separable in Y there exists a ∈ Kr such that f(a, Y ) is
irreducible over K,

(4) vi(a) ≥ 0, i = 1, . . . , m, and |a| ≤j 1, j = m + 1, . . . , n.

Proof: Let p = 2 if char(K) �= 2 and p = 3 if char(K) = 2. Since the
polynomial Y p − X is absolutely irreducible and separable in Y and K is
Hilbertian, Lemma 12.3.3 gives a set {ckl ∈ K× | k = 0, 1, 2, . . . ; l = 1, . . . , r}
such that {K( p

√
ckl) | k = 0, 1, 2, . . . ; l = 1, . . . , r} is a linearly disjoint set of

extensions of K of degree p.
For each nonnegative integer k there are unique εkil ∈ {0, 1} such that

(5) k ≡
r∑

l=1

n∑
i=1

εkil2i−1+(l−1)n mod 2rn.

Each ckl can be multiplied by a p-power bp
kl of K× without changing K( p

√
ckl).

Thus, using Proposition 12.3.1, we may choose the ckl’s such that for 1 ≤ i ≤
m and m + 1 ≤ j ≤ n

εkil = 0 implies vi(ckl) > 0, and εkjl = 0 implies |ckl| ≤j 1(6a)
εkil = 1 implies vi(ckl) ≤ 0, and εkjl = 1 implies |ckl| ≥j 6.(6b)

By Lemma 12.3.5, all but finitely many of the polynomials

fk(X1, . . . , Xr, Y ) = f

(
1

Xp−1
1 − ck1X

−1
1

, . . . ,
1

Xp−1
r − ckrX

−1
r

, Y

)

are irreducible in K(X)[Y ]. We omit the first e · 2rn of them for e large
enough, if necessary, to assume that each fk is irreducible. Then, we use the
Hilbertianity of K to choose b ∈ Kr such that fk(b, Y ) is irreducible in K[Y ]
for each 0 ≤ k < 2rn.

For all 1 ≤ i ≤ m, m + 1 ≤ j ≤ n, and 1 ≤ l ≤ r we define εil and εjl in
the following way:

εil = 0 if vi(bl) ≤ 0; εjl = 0 if |bl| ≥j 2;(7a)
εil = 1 if vi(bl) > 0; εjl = 1 if |bl| <j 2.(7b)

Then we set

k =
r∑

l=1

⎡⎣ m∑
i=1

εil2i−1+(l−1)n +
n∑

j=m+1

εjl2j−1+(l−1)n

⎤⎦
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and
al =

1
bp−1
l − cklb

−1
l

, l = 1, . . . , r.

Thus, εil is equal to the coefficient εkil appearing in (5), i = 1, . . . , n. It
follows that f(a, Y ) = fk(b, Y ) is irreducible in K[Y ]. We prove that a
satisfies (4).

If 1 ≤ i ≤ m and vi(bl) ≤ 0, then εil = 0 (by (7a)). Hence, by (6a),
vi(ckl) > 0. Thus, vi(cklb

−1
l ) > vi(b

p−1
l ). Therefore, vi(b

p−1
l − cklb

−1
l ) =

vi(b
p−1
l ) ≤ 0 and vi(al) ≥ 0.
If vi(bl) > 0, then εil = 1 (by (7b)). Hence, by (6b), vi(ckl) ≤ 0. Thus,

vi(b
p−1
l ) > vi(ckl)− vi(bl). Therefore, vi(b

p−1
l − cklb

−1
l ) = vi(ckl)− vi(bl) < 0

and vi(al) > 0.
If m + 1 ≤ j ≤ n and |bl| ≥j 2, then εjl = 0 (by (7a)). Also, p = 2,

because otherwise char(K) = 2 and K has no orderings. Hence, by (6a),
|ckl| ≤j 1. Thus, |bl − cklb

−1
l | ≥j |bl| − |ckl||b−1

l | >j 1, so |al| <j 1.
Finally, if |bl| <j 2, then εjl = 1 (by (7b)). Hence, by (6b), |ckl| ≥j 6.

Thus, |bl − cklb
−1
l | ≥j |ckl||b−1

l | − |bl| >j 1 and |al| <j 1. Therefore, (4) is
satisfied in each case. �
Proposition 12.3.7 (Approximation of zero theorem for separable Hilbert
sets): Let K be a Hilbertian field equipped with valuations and orderings
v1, . . . , vm, <1, . . . , <n. Denote the valuation ring of vi by Γi. Let H be a
separable Hilbert subset of Kr. Then, for all a ∈ Kr, b1, . . . , bm ∈ K×, and
all c1, . . . , cn ∈ K with cj >j 0 for j = 1, . . . , n, there exists x ∈ H such that

(8) vi(x − a) ≥ vi(bi), i = 1, . . . , m, and |x − a| <j cj , j = 1, . . . , n.

Proof: By [FrJ08, Lemma 12.1.6], there exists an irreducible polynomial g
in K[X1, . . . , Xr, Y ] separable in Y such that HK(g) ⊆ H. By Proposition
12.3.1, there exists d ∈ K× such that

vi(d) ≥ vi(bi), i = 1, . . . , m, and |d| <j cj , j = 1, . . . , n.

Applying Lemma 12.3.6 to the polynomial f(T, Y ) = g(a + dT, Y ), we find
t ∈ Kr such that g(a + dt, Y ) is irreducible over K,

vi(t) ≥ 0, i = 1, . . . , m, and |t| ≤j 1, j = 1, . . . , n.

Then x = a + dt belongs to H and satisfies (8). �
A combination of the weak approximation theorem for independent val-

uations and orderings (Proposition 12.3.2) and Proposition 12.3.7 gives the
density theorem for separable Hilbert sets.

Proposition 12.3.8 (Density theorem for separable Hilberts sets): Let K
be a Hilbertian field equipped with independent valuations and orderings
v1, . . . , vm, <1, . . . , <n. Let H be a separable Hilbert subset of Kr. Then,
for all a1, . . . ,am,b1, . . . ,bn ∈ Kr, a′

i ∈ K×, i = 1, . . . , m, and b′j ∈ K with
b′j >j 0, j = 1, . . . , n, there exists x ∈ H such that

vi(x − ai) ≥ vi(a′
i), i = 1, . . . , m, and |x − bj | <j b′j , j = 1, . . . , n.
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12.4 Krull Hilbertian Ample Fields

We prove that the absolute Galois group of a Hilbertian ample Krull field is
semi-free and deduce that the absolute Galois group of the quotient field of
each Noetherian domain which is complete with respect to a prime ideal of
dimension at least 2 is semi-free.

Theorem 12.4.1 (Pop): Let K be a Hilbertian ample field of cardinality
m. Suppose K is Krull with respect to a set V of discrete valuations. Then
Gal(K) is semi-free of rank m.

Proof: By Theorem 5.10.2(a), every finite split embedding for Gal(K) is
solvable. Hence, by Proposition 10.2.4, every finite split embedding problem
for Gal(K) has infinitely many linearly disjoint solutions. Thus,
rank(Gal(K)) ≥ ℵ0. Hence, by [FrJ08, Prop. 17.1.2], rank(Gal(K)) is the
cardinality of the set of all finite extensions of K, so rank(Gal(K)) ≤ m.
Therefore, if K is countable, then Gal(K) is semi-free of countable rank.

In order to complete the proof of the theorem, we may assume that
m > ℵ0 and we have to prove that each finite split embedding problem

E : G
α−→Gal(L/K)

has m linearly disjoint solutions.

Part A: Regular solution. Since K is ample, E has a rational solution
(Theorem 5.9.2). In other words, given a variable x, the field E = K(x) has a
Galois extension F that contains L, there exists an isomorphism
γ: Gal(F/E) → G, such that α ◦ γ = resF/L, and F has an L-rational
place. In particular, F is a regular extension of L [FrJ08, Lemma 2.6.9]. Let
P1, . . . , Pr be the prime divisors of E/K that ramify in F . For each i between
1 and r we choose a prime divisor Qi of F/L that lies over Pi. Then we let
L′ be the normal closure of LF̄Q1 · · · F̄Qr

/K.

Part B: Assuming L′/K is Galois. Let K ′ be the maximal purely insep-
arable extension of K in L′. Then, res: Gal(LK ′/K ′) → Gal(L/K) and
res: Gal(K ′) → Gal(K) are isomorphisms. So, E yields an embedding prob-
lem G → Gal(LK ′/K ′). If the latter has card(K) linearly disjoint solutions,
so does E . Next note that K ′ is Hilbertian [FrJ08, Prop. 12.3.3], ample
(Lemma 5.5.1(b)), and Krull with respect to the set of all unique extensions
of the valuations belonging to V to K ′ (Lemma 12.2.4). Therefore, replacing
K by K ′ and F by FK ′, if necessary, we may assume that L′ is a Galois
extension of K.

Part C: Transfinite induction. Let λ < card(K) be a cardinal number
and suppose we have already constructed a transfinite sequence (Mκ)κ<λ of
linearly disjoint solutions for E . Then M =

∏
κ<λ Mκ is a Galois extension

of K that contains L. We have to construct an additional solution Mλ for E
such that Mλ ∩M = L. To this end we let RamV(Mκ/K) and RamV(M/K)
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be the sets of all v ∈ V that ramify in Mκ and M , respectively, and note that
RamV(M/K) =

⋃
κ<λ RamV(Mκ/K). By Remark 12.2.3, each of the sets

RamV(Mκ/K) is finite. Hence,

(1)

card(RamV(M/K)) = card
( ⋃

κ<λ

RamV(Mκ/K)
)

≤
∑
κ<λ

card(RamV(Mκ/K)) ≤ ℵ0 · card(λ) < card(K).

Part D: Fiber product. We consider the fiber product G′ = G ×Gal(L/K)

Gal(L′/K) and the function field F ′ = FL′ of one variable over L′. They
give rise to a commutative diagram of groups

(2) Gal(F ′/E)
γ′

������������������������

�������������

��

G′ α′
��

π

��

Gal(L′/K)

��

Gal(F/E)
γ

������������������������

�������������

G
α �� Gal(L/K)

in which γ′ is an isomorphism, α′ and π are epimorphism, and the four
remaining maps are restrictions.

We let E′ = L′(x) and choose prime divisors Q′
1, . . . , Q

′
r of F ′/L′ that

lie respectively over Q1, . . . , Qr. For each 1 ≤ i ≤ r let P ′
i be the prime

divisor of E′/L′ that lies under Q′
i. Since L′ is a separable extension of

K, F ′
Q′

i
= F̄Qi

L′ = L′ = E′
P ′

i
. Let bi be the residue of x under P ′

i and
note that bi ∈ L′. Then, the assumptions of Setup 12.1.2 are satisfied with
respect to L′, E′, P ′

i , bi replacing K, E, p, b0. By Lemma 12.1.4, there exists
for each 1 ≤ i ≤ r a separable Hilbert subset Hi of L′ and a finite subset
Ai of L′, such that if v′ is a discrete valuation of L′ satisfying v′(a) = 0 for
each a ∈ Ai, if b ∈ Hi satisfies v′(b − bi) = 1, if ϕ is an L′-place of F ′ that
satisfies ϕ(x) = b and we denote reduction of objects of F ′/L′ under ϕ by
a bar, then ϕ induces an isomorphism ϕ′

∗: Gal(F ′/E′) → Gal(F ′/L′) that
commutes with reduction of elements and maps each inertia group of P ′

i in
Gal(F ′/L′(x)) onto an inertia group of v′ in Gal(F ′/L′).

Part E: Descent to K. We may replace each element of Ai by the set of
all nonzero coefficients of its irreducible polynomial over K, if necessary, to
assume that Ai ⊆ K. By [FrJ08, Prop. 12.3.3], we may assume that Hi is a
Hilbert subset of K, [F ′ : K] = [F ′ : E], F̄ is linearly disjoint from L′ over
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L, and F̄L′ = F ′. Note that under this assumption, each b in Hi is also in K,
so under the additional assumption that v′(b − bi) = 1, the isomorphism ϕ′

∗
extends to an isomorphism ϕ′

∗: Gal(F ′/E) → Gal(F ′/K) compatible with ϕ,
and ϕ′

∗ induces an isomorphism ϕ∗: Gal(F/E) → Gal(F̄ /K) such that the
following diagram of groups is commutative:

(3) Gal(F ′/E)
ϕ′

∗ ��

��

Gal(F ′/K)

��

Gal(F ′/E′)

�������������� ϕ′
∗ ��

��

Gal(F ′/L′)

��

�������������

Gal(F/E)
ϕ∗ �� Gal(F̄ /K)

Gal(F/L(x))
ϕ∗ ��

��������������
Gal(F̄ /L)

�������������

In this diagram, the horizontal arrows are isomorphisms, the vertical arrows
are restriction maps and they are surjective, and the diagonal maps are in-
clusions.

Combining (2) with the back side of (3), we find that F̄ is a solution
field of E .

Part F: Valuations that totally split in L′. We set A =
⋃r

i=1 Ai and H =⋂r
i=1 Hi. By assumption (K,V) is a Krull field, so card(SplV(L′/K)) =

card(K). Hence, we may use (1) to choose distinct

v1, . . . , vr ∈ SplV(L′/K) � RamV(M/K)

such that vi(a) = 0 for each i and for all a ∈ A. Let v′
1, . . . , v

′
r be normalized

discrete valuations of L′ lying over v1, . . . , vr. Then v′i/vi is unramified and
v′i(a) = 0 for each i and all a ∈ A.

It follows from Part D that if b ∈ H satisfies v′i(b−bi) = 1 for i = 1, . . . , r,
ϕ is an L′-place of F ′ that satisfies ϕ(x) = b, and we use a bar to denote
reduction of objects of F ′/L′ with respect to ϕ, then F̄ is a solution field of
E , linearly disjoint from L′ over L, ϕ induces the commutative diagram (3),
ϕ′
∗ maps each inertia group over P ′

i in Gal(F ′/E′) onto an inertia group of v′i
in Gal(F ′/L′), i = 1, . . . , r. Since E′/E and L′/K are unramified extensions,
each inertia group of P ′

i in Gal(F ′/E′) is also an inertia group of P ′
i in

Gal(F ′/E) and each inertia group of v′i in Gal(F ′/L′) is an inertia group of
v′

i in Gal(F ′/K). Finally, since both restriction maps in the back rectangle
of (3) map inertia groups onto the corresponding inertia groups [Ser79, p. 22,
Prop. 22], ϕ∗ maps each inertia group of Pi in Gal(F/E) isomorphically onto
an inertia group of vi in Gal(F̄ /K).
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12.4 Krull Hilbertian Ample Fields

Part G: Density of Hilbertian sets. Since v1, . . . , vr totally splits in L′, the
field K is v′

i-dense in L′ (Remark 12.2.1(d)). Hence, by Proposition 12.3.8,
there exists b ∈ H such that v′i(b− bi) = 1 for i = 1, . . . , r. Let ϕ and F̄ be as
in Part F and set Mλ = F̄ . Then Mλ is a solution field of embedding problem
E . Since L(x)/K(x) is a Galois extension, Pi is unramified in L(x), so all of
its inertia groups in Gal(F/E) are contained in Gal(F/L(x)). Since F/L is
regular, Gal(F/L(x)) is generated by all of the inertia groups of P1, . . . , Pr in
Gal(F/K(x)) [FrJ08, Remark 3.6.2(e)]. Therefore, Gal(Mλ/L) is generated
by all of the inertia groups of v1, . . . , vr. Since v1, . . . , vr are unramified in
M , we get Mλ ∩ M = L, as desired. �

We need the following result from commutative algebra [ZaS75, p. 275,
Thm. 14]:

Lemma 12.4.2: Let A be a Noetherian domain and b ⊆ a proper ideals of
A. Suppose A is complete with respect to a. Then A is also complete with
respect to b.

Proof: We start the proof with two claims:

Claim A: a is contained in every maximal ideal of A. Otherwise there
exists a maximal ideal m that does not contain a. Thus, a+m = A. In other
words, there exist a ∈ a and m ∈ m with a + m = 1. Hence, m = 1 − a
is not not a unit of A. However, since A is complete with respect to a, the
series

∑∞
n=0 an converges in A and (1− a)

∑∞
n=0 an = 1 (Here we use Krull’s

lemma saying that
⋂∞

n=0 an = 0 [AtM69, Cor. 10.18]). This contradiction
proves our claim.

Claim B:
⋂∞

n=1(a
n +bm) = bm for each m ≥ 1. Indeed, the A-modul M =

A/bm is generated by one element, namely 1+bm. Let N =
⋂∞

n=0 anM . Then
aN = N . It follows from Claim A and from a consequence of the lemma of
Artin-Rees [AtM69, Cor. 10.19] that N = 0. Therefore,

⋂∞
n=1(a

n+bm) = bm.
In order the conclude the proof of the lemma, we consider a Cauchy

sequence x1, x2, x3, . . . in A in the b-adic topology. Then

(4) xj − xi ∈ bm(i)

for each j ≥ i ≥ 1 and m(i) tends to infinity as i → ∞. Since bm(i) ⊆
am(i), the sequence x1, x2, x3, . . . is also Cauchy in the a-adic topology. By
assumption, the sequence converges a-adically to an element x ∈ A. In other
words,

(5) xj − x ∈ an(j)

and n(j) tends to infinity as j → ∞. It follows from (4) and (5) and from
Claim B that

xi − x ∈
⋂
j≥i

(bm(i) + an(j)) = bm(i).

Consequently, xi → x in the b-topology, as desired. �
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Chapter 12. Complete Noetherian Domains

Theorem 12.4.3 (Pop): Let R be a Noetherian domain of dimension at
least 2. Then K = Quot(R) is Hilbertian. If in addition, R is complete with
respect to a nonzero ideal a and a is contained in a prime ideal m of height
at least 2, then K is ample and Krull. Moreover, Gal(K) is semi-free of rank
card(K).

Proof: By Mori-Nagata, the integral closure R′ of R in K is a Krull domain
(Remark 5.11.2). By the going up theorem [Mats94, p. 68, Thm. 9.4(i)]
dim(R′) = dim(R) ≥ 2. Hence, by Weissauer, K is Hilbertian [FrJ08,
Thm. 15.4.6].

Now we assume that R is complete with respect to a nonzero ideal a of
R. Then, by Proposition 5.7.7, K is ample. In addition, let t be a nonzero
element of a. Then, by Lemma 12.4.2, R is complete with respect to the ideal
Rt.

Finally, we assume that, in addition, a is contained in a prime ideal
m of height at least 2. Since R is Noetherian, m is finitely generated and⋂∞

k=0 mk = 0. By Proposition 12.2.10, K is a Krull field. Consequently, by
Theorem 12.4.1, Gal(K) is semi-free of rank card(R) = card(K). �

As an application of Theorem 12.4.3, we strengthen Theorem 5.11.3.

Theorem 12.4.4: Each of the following fields K is Hilbertian, ample, and
Krull. Thus, Gal(K) is semi-free of rank card(K).
(a) K = K0((X1, . . . , Xn)), where K0 is an arbitrary field and n ≥ 2.

(b) K = Quot(R0[[X1, . . . , Xn]]), where R0 is a Noetherian domain which is
not a field and n ≥ 1.

Proof: Note that (a) is a special case of (b), since K0[[X1, . . . , Xn]] =
R0[[X2, . . . , Xn]], where R0 = K0[[X1]] is a complete discrete valuation ring,
hence also a Noetherian domain which is not a field. So it suffices to prove
(b).

To this end we set R = R0[[X1, . . . , Xn]] and a =
∑n

i=1 R0Xi. Then
we choose a nonzero prime ideal p of R0 and let m = Rp + a. We observe
that R/a ∼= R0 is an integral domain, so a is a nonzero prime ideal. Also,
R/(Rp + a) ∼= R0/p is a nonzero integral domain, so m is a prime ideal of
height at least 2.

Since R0 is a Noetherian ring, so is R [AtM69, p. 113, 10.27]. Finally,
a ⊆ m and R is complete with respect to a (Example 5.7.5). It follows from
Theorem 12.4.3 that K is Hilbertian, ample, Krull, and Gal(K) is semi-free
of rank card(K). �

Another interesting special case of Theorem 12.4.3 occurs when R is
local.

Theorem 12.4.5 (Paran): Let R be a complete local Noetherian domain of
dimension at least 2. Then K = Quot(R) is Hilbertian, ample, and Krull.
Moreover, Gal(K) is semi-free of rank card(K).
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Notes

Proof: Let m be the unique maximal ideal of R and let a = m. Then
height(m) ≥ 2 and R is complete with respect to a. Thus, our theorem is a
special case of Theorem 12.4.3. �

In the second paragraph of Section 10.6 we point out that Harbater
uses quasi-freeness in order to prove that Gal(C((x, y))ab) is a free profinite
group if C is separably closed. Here, we reprove that result using semi-
freeness. Both proofs rely on a deep result that Gal(C((x, y))ab) is projective.
Unfortunately, the proof of that result lies beyond the scope of our book.

Theorem 12.4.6: Let C be a separably closed field of characteristic p, K =
C((x, y)) the field of formal power series in x, y over C. Denote the maximal
Abelian extension of K (resp. of degree not divisible by p) by Kab (resp. K ′

ab).
Then Gal(Kab) and Gal(K ′

ab) are free of rank card(K).

Proof: Set m = card(K). By Example 12.4.4, Gal(K) is semi-free of rank m.
Hence, by Theorem 10.5.4(c), both Gal(Kab) and Gal(K ′

ab) are semi-free of
rank m. By a theorem of Harbater [Hrb09, Thm. 4.4] that generalizes a the-
orem of Colliot-Thélène, Ojanguren, and Parimala [COP02, Thm. 2.2], both
groups are projective. By Proposition 9.4.7, both Gal(Kab) and Gal(K ′

ab)
are free. �

Notes
Most of Chapter 12 except of Section 12.3 is a workout of [Pop10]. The basic
result of the Chapter, Theorem 12.4.1, is [Pop10, Thm. 1.1]. It says that if
K is a Hilbertian ample Krull field of cardinality m, then Gal(K) is semi-
free of rank m. Thus, each finite split embedding problem E over K with a
nontrivial kernel has m linearly disjoint solutions.

The conditions on K in Theorem 12.4.1 of being ample and Krull hold
under standard assumption of commutative algebra. This leads to the main
result of the chapter: Let R be a Noetherian ring, m a prime ideal of height
at least 2, and a a nonzero ideal in m such that R is complete with respect to
a. Then K = Quot(R) is Hilbertian, ample, and Krull, so Gal(K) is semi-free
of rank card(K) (Theorem 12.4.3).

The most striking examples of Theorem 12.4.3 occur when
R = K0[[X1, . . . , Xn]] with K0 an arbitrary field and n ≥ 2, or
R = Z[[X1, . . . , Xn]] (Example 12.4.4). In each case we conclude that Gal(K)
is semi-free. There are two independent approaches to the proof of this case.

Paran first realizes cyclic extensions with control on ramification over
K(x). Then he uses his variant of algebraic patching to patch the latter cyclic
extensions to m linearly disjoint solutions of a given finite split embedding
problem E over K(x), again with control on ramification and without using
the ampleness of K. Finally he uses the Hilbertianity of K to specialize the
solutions of E he constructed over K(x) to distinct solutions of E over K
[Par10].
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Chapter 12. Complete Noetherian Domains

Pop on the other hand uses the ampleness of K in [Pop10] to solve E
over K(x). Then he uses the Hilbertianity of K to specialize the solution of
E over K(x) to m linearly disjoint solutions over K (Theorem 12.4.1).

Pop’s proof essentially shows that K is a fully Hilbertian field, that
is a field satisfying a strong form of Hilbertianity that allows specializations
of each finite separable extension F of K(x) into card(K) extensions of K
that are linearly disjoint over the algebraic closure of K in F . This notion
is introduced and studied in a general context in [BSP09]. Among others,
[BSP09] gives an independent proof of the above mentioned theorem about
rings of formal power series.

Using Cohen’s structure theorem and Lemma 12.2.4, Example 12.4.4
implies that the absolute Galois group of the quotient field of a complete
local Noetherian domain of dimension at least 2 is also semi-free with rank
card(K) (Theorem 12.4.5), as noticed in [Par10].

Theorem 12.4.3 generalizes Paran’s result, mainly by dropping the con-
dition on R to be local.

Proposition 12.2.10 captures the special case of [Pop10, Thm. 3.4] we
need in order to prove Theorem 12.4.3.

Section 12.3 is a rewrite of [Jar94, Sec. 19]. The main result of the latter
section is the density theorem for Hilbert sets with respect to independent
valuations and orderings. That result generalizes Lemma 3.4 of [Gey78] about
the density of Hilbert sets with respect to distinct absolute values. Note
however that the only application of the density theorem appears in Part G
of Proposition 12.4.1 and it applies only the special case proven by Geyer.

Theorem 12.4.6 is due to Harbater [Hrb09, Thm. 4.6]. Theorem 1.3 of
[Pop10] generalizes that result.
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Open Problems

1. Let K be a field such that the order of Gal(K) is divisible by only finitely
many prime numbers. Is K ample (Problem 5.8.4)?

2. Let K be a field and x a variable. Which of the following statements is
true:
(a) Every constant finite split embedding problem over K(x) has a regular

solution.
(b) If K is Hilbertian, then every finite split embedding problem over K is

solvable.
(c) If every finite split embedding problem over K is solvable, then K is

ample.
(Remark 5.10.4)
3. Is the field Qab ample (Example 5.10.5)?
4. Is the field Qsolv ample (Example 5.10.6)?
5. Let K be a field such that Gal(K) is finitely generated. Prove that
(a) If K is infinite, then K is ample (Koenigsmann [JuK09, discussion pro-

ceeding Question 8]), and
(b) if K is not an algebraic extension of a finite field and A is a nonzero

Abelian variety defined over K, then rr(A(K)) = ∞ (Conjecture 6.5.8).
6. The maximal pro-p extension of a number field is nonample (Conjecture
6.5.10).
7. Let F/Q be a function field of one variable with a prime divisor of degree
1. Is gon(F̄p/Fp) = gon(F/Q) for almost all prime numbers p, where F̄p is the
residue field of F under a good reduction that extends the p-adic reduction
of Q in the sense of Section 8.1? (Problem 6.7.6).
8. Give an algebraic proof to Proposition 9.1.1(a): Let F be a finite Galois
extension of C(x). Let p1, . . . , pr be the prime divisors of C(x)/C that are
ramified in F . Then there exist generators σ1, . . . , σr of Gal(F/C(x)) satisfy-
ing σ1 · · ·σr = 1 such that σi generates an inertia group over pi, i = 1, . . . , r
(Section 9.1).
9. Give an algebraic proof to Proposition 9.1.1(b): Let G be a finite group
generated by σ1, . . . , σr with σ1 · · ·σr = 1. Then C(x) has a finite Galois
extension F ramified at most over {p1, . . . , pr} such that σi generates an
inertia group over pi, i = 1, . . . , r (Section 9.1).
10. (Bogomolov-Positselski) Let E be an extension of a field K such that
trans.deg(E/K) = 1 and F an algebraic extension of E. Suppose F contains
a radical algebraic extension of E. Then Gal(F ) is projective (Conjecture
11.6.1).

M. Jarden,                                 , Springer Monographs in Mathematics,
DOI , © Springer-Verlag Berlin Heidelberg 201110.1007/978-3-642-15128-6

Algebraic Patching

http://dx.doi.org/10.1007/978-3-642-15128-6


References

[Abh57] S. S. Abhyankar, Coverings of algebraic curves, American Journal of
Mathematics 79 (1957), 825–856.

[Art67] E. Artin, Algebraic Numbers and Algebraic Functions, Gordon and
Breach, New York, 1967.

[AtM69] M. F. Atiyah and I. G. Mackdonald, Introduction to Commutative Al-
gebra, Addison–Wesley, Reading, 1969.

[BSo06] L. Bary-Soroker, Diamond theorem for a finitely generated free profinite
group, Mathematische Annalen 336 (2006), 949–961.

[BHH08] L. Bary-Soroker, Dan Haran, and David Harbater, Permanence criteria
for semi-free profinite groups, arXiv:0810.0845, v2, 1 April 2010.

[BHH10] L. Bary-Soroker, Dan Haran, and David Harbater, Permanence criteria
for semi-free profinite groups, Mathematische Annalen,
DOI 10.1007/s00208-010-0484-8, 9 February 2010.

[BSP09] L. Bary-Soroker and E. Paran, Fully Hilbertian fields, arXiv:0907.0343

[Bel80] G. V. Belyi, On extensions of the maximal cyclotomic field having a
given classical Galois group, Journal für die reine und angewandte Math-
ematik 341, (1980), 147-158.

[BNW71] E. Binz, J. Neukirch, and G. H. Wenzel, A subgroup theorem for free
products of profinite groups, Journal of Algebra 19 (1971), 104–109.

[Bla99] E. V. Black, Deformations of dihedral 2-group extensions of fields, Trans-
actions of the AMS 351 (1999), 3229–3241.
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Glossary of Notation

See also Notation and Convention on page xxiii.
P ′

i (=
⋂

j �=i Pj) 1
Γ � G (semi-direct product) 5
R+ (the additive group of the real numbers) 10
A{x} (ring of convergent power series at 1) 14
pseudo.deg(f) (pseudo degree) 15
K((x))0 (field of convergent power series) 21
wi = r

x−ci
∈ K(x) 31

K{wi | i ∈ I} (ring of convergent power series in several dependent variables)
33
PJ (quotient field of K{wj | j ∈ J}) 37
Pi (the field PI �{i}) 37
eP/p (ramification index) 43
Branch(F/E, x) (or Branch(F/E)) 44
Ram(F/E) (set of prime divisors of E/K that ramify in F ) 44
ϕx,a: K(x) → K̃ ∪ {∞} (K-place of K(x) with ϕx,a(x) = a) 44
vx,a (normalized valuation corresponding to ϕx,a) 44
px,a (prime divisor corresponding to vx,a) 44
pK,x,a (prime divisor corresponding to vx,a) 44
ζn (root of unity of order n) 45
card(K) (cardinality of K) 54
Vsimp(L) (L-rational simple points of a variety V ) 62
L(ring, K) (first order language of rings with constants for the elements of
K) 65
Ks(σ) (fixed field in Ks of σ1, . . . , σe) 74
Ks[σ] (the maximal Galois extension of K in Ks(σ)) 74
Ksymm (compositum of all symmetric extensions of K) 74
Ktot,S [σ] = Ktot,S ∩ Ks[σ] 75
PKC, (pseudo K closed) 75
PSC (pseudo S closed) 75
Ktot,S(σ) = Ktot,S ∩ Ks(σ) 76
deg(p) (degree of the prime divisor p) 81
deg(a) (degree of the divisor a) 81
div(f) (divisor of the function f) 81
div0(f) (divisor of zeros of f) 82
div∞(f) (divisor of poles of f) 82
vp(a) (p-th value of a) 82
a ≤ b (inequality between divisors) 82
L(a) (vector space attached to a) 82
dim(a) (dimension of L(a)) 82
Div(F/K) (group of divisors of F/K) 82
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Glossary of Notation

P(F/K) (set of prime divisors of F/K) 82
Div0(F/K) (group of divisors of degree 0 of F/K) 82
Qab (maximal Abelian extension of Q) 90
Qp,ur (maximal unramified extension of Qp) 90
Qsolv (maximal prosolvable extension of Q) 90
Kcycl (extension of K by all roots of unity) 91
A ⊂ B (A is a proper subset of B) 93
K |= ϕ(x) (the formula ϕ(x) holds in K) 100
Γdiv(L) (divisible hull) 106
rr(Γ) (rational rank) 109
Div(C) (group of divisors of C) 123
C(d) (symmetric product) 123
K(d) (set of elements of degree at most d) 123
[x, y] = x−1y−1xy (commutator in a group) 165
ES (maximal extension of E ramified at most over S) 165, 169
F(E,S, G) (set of Galois extensions of E with Galois group G, ramification
over S) 166
Zero(h) (set of zeros of a polynomial h) 166
ES,tr (maximal extension of E tamely ramified at most over S) 172
Hq(G, A) (q-th cohomology group) 176
lim−→Ai (direct limit) 178

An (n-torsion of an Abelian group) 179
Ap∞ (p-primary part of A) 179
IndG

H(A) (induced module) 180
Br(K) (Brauer group) 182
Br(L/K) (relative Brauer group) 182
Ci (field) 183
C0 (field) 183
C1 (field) 183
C2 (field) 183
μp (group of roots of unity or order dividing p) 185
F̂m (free profinite group of rank m) 186
℘(x) (Artin-Schreier operator) 190
Eur (maximal unramified extension of E) 193

E
(p′)
ab (maximal Abelian extension of E of degree not divisible by p) 249

RamV(K ′/K) (the set of all valuations v ∈ V that ramify in K ′) 258
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Index

Abelian variety 105
Abhyankar’s conjecture 173
absolute genus (of a curve) 104
absolutely irreducible (variety) 62
almost all (for Haar measure) 74
almost all (points) 152
almost all (valuations) 151
ample field 68
arithmetic lifting property 94
Artin-Schreier 81
Ax-Roquette 247
Bary-Soroker, Haran, and Harbater

225, 228
Böge 206
Bogomolov-Positselski 246
branch point 44
Brill-Noether-Kleiman-Laksov

(theorem) 116
Breuil-Conrad-Diamond

(theorem) 112
canonical divisor 82
Cartan’s decomposition 1
Cartan’s Lemma 39
cartesian 161
Castelnuovo-Severi inequality 117
Cauchy (normed ring) 11
Cauchy sequence

(with respect to an ideal) 77
C-embedding problem 226
center (of a place at a curve) 63
central (embedding problem) 187
central simple K-algebra 182
Chevalley 183
cohomology group

with coefficients in A 176
Colliot-Thélène 96, 273
Common lemma 2
complete (normed ring) 11
complete

(with respect to an ideal) 77

completion
(with respect to an ideal) 78

complex (of modules) 176
compound 3
connecting homomorphisms 177
constant field extension

(for gonality) 115
constant finite split

embedding problem 55
contained in a K-diamond 222
contained in an F -diamond 223
converges (power series) 21
converges (with respect to an ideal) 77
corestriction 178
Corvaja 126, 128
crossed homomorphism 176
C-semi-free 226
d-controlled (function fields) 117
Dèbes 93, 95
Dèbes-Deschamps 90
degree (of a devisor) 81
degree (of an isogeny) 106
degree preserving

constant reduction 143
degree preserving

regular constant reuction 144
diamond theorem

for semi-free profinite groups 223
direct limit 178
direct system 178
discrete (absolute value) 20
disk 197
divisible group 106
divisor 81
divisor of poles 82
divisor of zeros 82
Douady 205
Efrat 246
Efrat-Koenigsmann-Pop 81
elementary extension 66
elliptic (function field) 115
embedding problem

(for a profinite group) 89
equivalent (algebras) 182
equivalent (of extensions) 181
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Index

evaluation homomorphism 14, 34
existentially closed 66
expansion 3
extension (of a group) 181
extension (of Henselian pairs) 80
Faltings xv, xvi, 61, 98,

104, 108, 109, 122, 126, 126
Fehm 70, 71, 101, 102,

103, 105, 121, 122, 159, 163
Fehm-Geyer 96
Fehm-Petersen xx, 111, 128
fiber product

(of profinite groups) 160, 213
field of power series 79
field of totally S-adic numbers 75
F -independent

(subgroups of a profinite group) 207
F -independent (solutions of

embedding problems) 209
finite (embedding problem) 89
finite split embedding problem 5
Frey 98, 206
Fried-Völklein x, xix, 90
fully Hilbertian fields 274
function field (of a K-variety) 62
function field of one variable 65
fundamental group (of a curve) 164
Gauss extension (of a valuation) 142
Gauss’ Lemma 15
generalized function

field of one variable 101
generalized Krull domain

of dimension exceeding one 20
generated by (variety) 62
generic point 62
genus (of a curve) 104
genus (of a function

field of one variable) 82
genus (of a generalized

function field of one variable) 101
Geyer 59, 274
G-homomorphism 175
G-module 175
gonality (of a function field) 114
Grauert-Manin 61, 104

group of divisor classes 240
group variety 105
Gruenberg 89
Haran 37, 95, 231
Haran’s diamond theorem 250
Haran-Jarden xix
Haran-Völklein xiii
Harbater xi, xii, xix, xxii, 59, 96,

163, 174, 202, 206, 227, 250, 273
Harbater-Stevenson 96
Henselian closure 80
Henselian pair 77
Hindry 109
homomorphism

(of Abelian varieties) 106
Hrushovski 73, 103
hyperelliptic (function field) 115
i-component 33
independent

(valuations and orderings) 263
inertia group (of a branch point) 50
inertia group (of a valuation) 49
inflation homomorphism 177
isogeny 106
Iwasawa, xii, 61, 200
Jacobson radical 79
Kato-Rohrlich 98, 110
Kempf-Kleiman-Laksov

(theorem) 116
K-isomorphic

(homogeneous spaces) 108
Koenigsmann 95, 127
K-place 44
K-rational (divisor) 123
K-rational place 44
K-rational specialization 66
K-simple (Abelian variety) 110
K-variety 61
Kuhlmann-Roquette 30
Lang 105
large xi, 95
Laksov 116
lie under (prime divisor) 43
linearly disjoint (solutions) 138
linearly equivalent 82
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Index

linearly independent over Z
(elements of an Abelian group) 108

Liu xi
local global principle 75
local prime 75
Matzat x, 206
maximal totally

real extension of Q 91
Melnikov formation 226
Milne 105
Mittag-Leffler series 33
model (of a function field) 63
Mordell-Lang Conjecture 109, 110
Mumford 105
non-homogeneous

coboundary operators 175
non-homogeneous q-cochains 175
norm (of a vector space) 26
normal core

(of a closed subgroup) 211
Ojanguren 273
ω-free (field) 89
Paran xix, 42, 93, 96, 272, 273
Parimala 273
p′-divisible (Abelian group) 233
Petersen 128
Picard group 240
Poonen 116, 118
Pop xi, xii, xix, xix, 59, 71, 75,

77, 95, 96, 163, 174, 202, 205,
206, 262, 272, 274

Pop-Weissauer 93
p-primary part 179
p-projective 187
precompound 9
prime divisor 43
prime of a field 20
principal homogeneous space 108
projective (profinite group) 89
proper action 5
pseudo degree 15
pseudo leading coefficient 15
p-Sylow extension (of a field) 185
q-cocycle 176

q-th cohomology group
with coefficients in A 176

quasi-free 227
radical (extension of fields) 246
ramifies over (prime divisor) 43
ramify (prime divisor) 43
rank (of a profinite group) 89
rational rank

(of an Abelian group) 108
rational solution 43
Raynaud xii, 109, 174, 205
real valuation 11
regular (element of A{x}) 15
regular solution (of a

constant embedding problem) xv
restriction homomorphisms 177
ring-ideal pair 76
Roquette 90, 163, 231
semi-free (profinite group) 207, 210
separable (branch point) 44
Serre xi, 174
Shafarevich x, xviii, 90, 206
Shafarevich’s conjecture 186, 248
Shapiro maps 216
Shapiro’s lemma 180
simple G-module 181
simple (point) 62
small (field) 104
small (quotient space

of profinite groups) 211
smooth (variety) 105
solution field (of an

embedding problem) 5
solution (of an

embedding problem) 5, 89
special K-radical extension 249
split (algebra) 182
split (embedding problem) 89
split rational solution 85
t-adic valuation 67
Taylor-Wiles theorem 112
Thompson x
topological ring 11
torsor 108
totally ramifies (prime divisor) 43
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Index

totally splits (prime ideal) 257
tower property (of subgroups) 208
trivial G-module 175
Tsen 185
Tsen’s theorem 206
twisted wreath product 215
unramified (rational solution) 85
valuation ring

(of an absolute value) 17

very large 95
Vojta 109
Völklein x, xi, 205
Weierstrass division theorem 15
Weierstrass preparation theorem 16
weakly Henselian 76
weak solution

(of an embedding problem) 89
weight (of a closed subgroup) 210
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